
3
Global properties of curves

All the properties of curves that we have discussed so far are ‘local’: they

depend only on the behaviour of a curve near a given point and not on the

‘global’ shape of the curve. Proving global results about curves often requires

concepts from topology, in addition to the calculus techniques we have used

in the first two chapters of this book. Since we are not assuming that readers

of this book have extensive familiarity with topological ideas, we will not be

able to give complete proofs of some of the global results about curves that we

discuss in this chapter.

3.1 Simple closed curves

In this chapter, we shall consider plane curves of the following type.

Definition 3.1.1

A simple closed curve in R
2 is a closed curve in R

2 that has no self-intersections.

It is a standard, but highly non-trivial, result of the topology of R2, called

the Jordan Curve Theorem, that any simple closed curve in the plane has an

‘interior’ and an ‘exterior’: more precisely, the complement of the image of γ
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56 3. Global properties of curves

(i.e., the set of points of R2 that are not in the image of γ) is the disjoint

union of two subsets of R2, denoted by int(γ) and ext(γ), with the following

properties:

(i) int(γ) is bounded, i.e., it is contained inside a circle of sufficiently large

radius.

(ii) ext(γ) is unbounded.

(iii) Both of the regions int(γ) and ext(γ) are connected, i.e., they have the

property that any two points in the same region can be joined by a curve

contained entirely in the region (but any curve joining a point of int(γ) to

a point of ext(γ) must cross the curve γ).

Example 3.1.2

The ellipse γ(t) = (p cos t, q sin t), where p and q are non-zero constants, is

a simple closed curve with period 2π. The interior and exterior of γ are, of

course, given by
{
(x, y) ∈ R

2 | x2

p2 + y2

q2 < 1
}

and
{
(x, y) ∈ R

2 | x2

p2 + y2

q2 > 1
}
,

respectively.

Not all examples of simple closed curves have such an obvious interior and

exterior, however. Is the point p in the interior or the exterior of the simple

closed curve shown below?

P

Example 3.1.3

The limaçon in Example 1.1.7 is closed but is not a simple closed curve as it

has a self-intersection – see Exercise 3.1.1.

The fact that a simple closed curve has an interior and an exterior enables

us to distinguish between the two possible orientations of γ. We shall say that

γ is positively-oriented if the signed unit normal ns of γ (see Section 2.2) points
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into int(γ) at every point of γ. This can always be achieved by replacing the

parameter t of γ by −t, if necessary. In the diagrams below, the arrow indicates

the direction of increasing parameter. Is the simple closed curve shown above

positively-oriented?

t

ns

ns

t

Positively-oriented Not positively-oriented

We conclude this section by stating the following important result.

Theorem 3.1.4 (Hopf’s Umlaufsatz)

The total signed curvature of a simple closed curve in R
2 is ±2π.

The proof of Theorem 3.1.4 would take us a little further into the realm of

topology than is appropriate for this book. A heuristic proof (of a slightly more

general result) is given in Section 13.1.

Note that Corollary2.2.5 shows that the total signed curvature of any closed

curve in R
2 is an integer multiple of 2π. The point of Hopf’s theorem is that

if the curve is simple closed, this integer must be ±1. The German word

‘Umlaufsatz’ means ‘rotation theorem’: from the proof of Corollary2.2.5 we

see that Hopf’s theorem says that any turning angle ϕ of a simple closed curve

changes by ±2π on going once round the curve, which means that the tangent

vector rotates by ±2π. The reader might like to check that this property holds

for the maze-like simple closed curve preceding Example 3.1.3.

EXERCISES

3.1.1 Show that
γ(t) = ((1 + a cos t) cos t, (1 + a cos t) sin t),

where a is a constant, is a simple closed curve if |a| < 1, but that

if |a| > 1 its complement is the disjoint union of three connected

subsets of R
2, two of which are bounded and one is unbounded.

What happens if a = ±1?
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3.2 The isoperimetric inequality

The area contained by a simple closed curve γ is

A(γ) =

∫

int(γ)

dxdy . (3.1)

This can be computed by using the following theorem.

Green’s Theorem Let f(x, y) and g(x, y) be smooth functions (i.e., functions

with continuous partial derivatives of all orders), and let γ be a positively-

oriented simple closed curve. Then,
∫

int(γ)

(
∂g

∂x
− ∂f

∂y

)
dxdy =

∫

γ

f(x, y)dx + g(x, y)dy .

A proof can be found in standard books on multivariable calculus.

Proposition 3.2.1

If γ(t) = (x(t), y(t)) is a positively-oriented simple closed curve in R
2 with

period T , then

A(γ) =
1

2

∫ T

0

(xẏ − yẋ)dt . (3.2)

Proof

Taking f = − 1
2y, g = 1

2x in Green’s theorem, we get

A(γ) =
1

2

∫

γ

xdy − ydx ,

which gives Eq. 3.2 immediately.

Note that, although the formula in Eq. 3.2 involves the parameter t of γ, it

is clear from the Definition 3.1.1 that A(γ) is unchanged if γ is reparametrized.

One of the most famous global results about plane curves is the following

theorem.

Theorem 3.2.2 (Isoperimetric Inequality)

Let γ be a simple closed curve, let �(γ) be its length and let A(γ) be the area

contained by it. Then,

A(γ) ≤ 1

4π
�(γ)2,

and equality holds if and only if γ is a circle.
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Of course, it is obvious that equality holds when γ is a circle, since in that

case �(γ) = 2πR and A(γ) = πR2, where R is the radius of the circle.

To prove this theorem, we need the following result from analysis:

Proposition 3.2.3 (Wirtinger’s Inequality)

Let F : [0, π] → R be a smooth function such that F (0) = F (π) = 0. Then,

∫ π

0

(
dF

dt

)2

dt ≥
∫ π

0

F (t)2dt ,

and equality holds if and only if F (t) = D sin t for all t ∈ [0, π], where D is a

constant.

Assuming this result for the moment, we show how to deduce the isoperi-

metric inequality from it.

Proof

We start by making some assumptions about γ that will simplify the proof.

First, we can, if we wish, assume that γ is parametrized by arc-length s. How-

ever, because of the π that appears in Theorem 3.2.2, it turns out to be more

convenient to assume that the period of γ is π. If we change the parameter of

γ from s to

t =
πs

�(γ)
, (3.3)

the resulting curve is still simple closed, and has period π because when

s increases by �(γ), t increases by π. We shall therefore assume that γ is

parametrized using the parameter t in Eq. 3.3 from now on.

For the second simplification, we note that both �(γ) and A(γ) are un-

changed if γ is subjected to a translation γ(t) �→ γ(t) + b, where b is any

constant vector (see Exercise 3.2.1). Taking b = −γ(0), we might as well as-

sume that γ(0) = 0 to begin with, i.e., we assume that γ begins and ends at

the origin.

To prove Theorem 3.2.2, we shall calculate �(γ) and A(γ) by using polar

coordinates

x = r cos θ, y = r sin θ.

Using the chain rule, it is easy to show that

ẋ2 + ẏ2 = ṙ2 + r2θ̇2, xẏ − yẋ = r2θ̇,
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with d/dt denoted by a dot. Then, using Eq. 3.3,

ṙ2 + r2θ̇2 =

(
dx

dt

)2

+

(
dy

dt

)2

=

((
dx

ds

)2

+

(
dy

ds

)2
)(

ds

dt

)2

=
�(γ)2

π2
, (3.4)

since (dx/ds)2 + (dy/ds)2 = 1. Further, by Eq. 3.2, we have

A(γ) =
1

2

∫ π

0

(xẏ − yẋ)dt =
1

2

∫ π

0

r2θ̇dt . (3.5)

To prove Theorem 3.2.2, we have to show that

�(γ)2

4π
−A(γ) ≥ 0,

with equality holding if and only if γ is a circle. By Eq. 3.4,

∫ π

0

(ṙ2 + r2θ̇2)dt =
�(γ)2

π
.

Hence, using Eq. 3.5,

�(γ)2

4π
−A(γ) =

1

4

∫ π

0

(ṙ2 + r2θ̇2)dt− 1

2

∫ π

0

r2θ̇dt =
1

4
I,

where

I =

∫ π

0

(ṙ2 + r2θ̇2 − 2r2θ̇)dt . (3.6)

Thus, to prove Theorem 3.2.2, we have to show that I ≥ 0, and that I = 0 if

and only if γ is a circle.

By simple algebra,

I =

∫ π

0

r2(θ̇ − 1)2dt +

∫ π

0

(ṙ2 − r2)dt . (3.7)

The first integral on the right-hand side of Eq. 3.7 is obviously ≥ 0, and the

second integral is ≥ 0 by Wirtinger’s inequality (we are taking F = r: note that

r(0) = r(π) = 0 since γ(0) = γ(π) = 0). Hence, I ≥ 0. Further, since both

integrals on the right-hand side of Eq. 3.7 are ≥ 0, their sum I is zero if and

only if both of these integrals are zero. But the first integral is zero only if θ̇ = 1

for all t, and the second is zero only if r = D sin t for some constant D (by

Wirtinger again). So θ = t+α, where α is a constant, and hence r = D sin(θ−α).

It is easy to see that this is the polar equation of a circle of diameter D, thus

completing the proof of Theorem 3.2.2 (see the diagram below).
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µ - ®

®

µ

r

We now prove Wirtinger’s inequality.

Let G(t) = F (t)/ sin t. Then, denoting d/dt by a dot as usual,
∫ π

0

Ḟ 2dt =

∫ π

0

(Ġ sin t+G cos t)2dt

=

∫ π

0

Ġ2 sin2 t dt + 2

∫ π

0

GĠ sin t cos t dt +

∫ π

0

G2 cos2 t dt .

Integrating by parts1:

2

∫ π

0

GĠ sin t cos t dt = G2 sin t cos t
∣∣π
0
−
∫ π

0

G2(cos2 t− sin2 t)dt

=

∫ π

0

G2(sin2 t− cos2 t)dt .

Hence,
∫ π

0

Ḟ 2dt =

∫ π

0

Ġ2 sin2 t dt +

∫ π

0

G2(sin2 t− cos2 t)dt +

∫ π

0

G2 cos2 t dt

=

∫ π

0

(G2 + Ġ2) sin2 t dt =

∫ π

0

F 2dt+

∫ π

0

Ġ2 sin2 t dt ,

and so ∫ π

0

Ḟ 2dt −
∫ π

0

F 2dt =

∫ π

0

Ġ2 sin2 t dt .

The integral on the right-hand side is obviously ≥ 0, and it is zero if and only

if Ġ = 0 for all t, i.e., if and only if G(t) is equal to a constant, say D, for all

t, which means that F (t) = D sin t.

1 In performing the integration by parts, we assume that G is continuously differen-
tiable (for we assume that the function G(t)2 sin t cos t is equal to the integral of its
derivative). Unfortunately, G(t) is not even defined when t = 0 or π, as the ratio
F (t)/ sin t is 0/0 there. So we must show that G can be defined at these points
so as to become continuously differentiable everywhere. This can be done by using
l’Hospital’s rule.
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EXERCISES

3.2.1 Show that the length �(γ) and the area A(γ) are unchanged by

applying an isometry to γ.

3.2.2 By applying the isoperimetric inequality to the ellipse

x2

p2
+

y2

q2
= 1

(where p and q are positive constants), prove that

∫ 2π

0

√
p2 sin2 t+ q2 cos2 t dt ≥ 2π

√
pq,

with equality holding if and only if p = q.

3.3 The four vertex theorem

We conclude this chapter with a famous result about convex curves in the

plane. A simple closed curve γ is called convex if its interior int(γ) is convex,

in the sense that the straight line segment joining any two points of int(γ) is

contained entirely in int(γ).

not convexconvex

Definition 3.3.1

A vertex of a curve γ(t) in R
2 is a point where its signed curvature κs has a

stationary point, i.e., where dκs/dt = 0.

It is easy to see that this definition is independent of the parametrization

of γ.
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Example 3.3.2

The signed curvature of the ellipse γ(t) = (p cos t, q sin t), where p and q are

positive constants, is easily found to be

κs(t) =
pq

(p2 sin2 t+ q2 cos2 t)3/2
.

Then,
dκs

dt
=

3pq(q2 − p2) sin t cos t

(p2 sin2 t+ q2 cos2 t)5/2

vanishes at exactly four points of the ellipse, namely the points with t =

0, π/2, π and 3π/2, which are the ends of the two axes of the ellipse.

The following theorem says that this is the smallest number of vertices a

convex simple closed curve can have.

Theorem 3.3.3 (Four Vertex Theorem)

Every convex simple closed curve in R
2 has at least four vertices.

The conclusion of this theorem actually remains true without the assump-

tion of convexity, but the proof is then more difficult than the one we are about

to give.

Proof

Let γ be a parametrization of a convex simple closed curve in R
2, and let � be

its length. Assume for a contradiction that γ has fewer than four vertices. We

show first that there is a straight line L that divides γ into two segments, in

one of which κ̇s > 0 and in the other κ̇s ≤ 0 (or possibly κ̇s ≥ 0 on one and

κ̇s < 0 on the other). Indeed, κs attains all of its values on the closed interval

[0, �], so κs must attain its maximum and minimum values at some points p

and q of γ. We can assume that p �= q, since otherwise κs would be constant,

γ would be a circle (by Example 2.2.7), and every point of γ would be a vertex.

If p and q were the only vertices of γ, we would have κ̇s > 0 on one of the

segments into which the line through p and q divides γ and κ̇s < 0 on the

other. Suppose now that there is just one more vertex, say r. Then, p, q and

r divide γ into three segments, on each of which either κ̇s > 0 or κ̇s < 0. It

follows that there are two adjacent segments on which κ̇s > 0 or two on which

κ̇s < 0 (except at the point at which the two segments meet). This proves our

assertion.
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P Q

a

Let a be a unit vector perpendicular to L, so that γ ·a > 0 on one side of L

and γ · a < 0 on the other. Then, the quantity κ̇s(γ · a) is either always > 0 or

always < 0, except at the two points in which L intersects the curve. It follows

that ∫ �

0

κ̇s(γ · a) dt �= 0, (3.8)

as this integral is definitely > 0 in the first case and < 0 in the second. But,

using the equation ṅs = −κst (see Exercise 2.2.1), we get

κ̇sγ = (κsγ )̇− κsγ̇ = (κsγ + ns)̇,

so the integrand on the left-hand side of (3.8) is the derivative of (κsγ+ns)·a =

λ, say. Since γ is �-periodic,

γ(t+ �) = γ(t) for all t,

differentiating with respect to t shows that the tangent vector t of γ is also

�-periodic:

t(t+ �) = γ̇(t+ �) = γ̇(t) = t(t).

Rotating by π/2 gives

ns(t+ �) = ns(t),

and hence κs(t + �) = κs(t). It follows that λ(t + �) = λ(t) for all t, so the

integral in (3.8) is equal to

∫ �

0

λ̇(t) dt = λ(�)− λ(0) = 0.

This contradiction proves that γ must have at least four vertices.
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EXERCISES

3.3.1 Show that the ellipse in Example 3.1.2 is convex.

3.3.2 Show that the limaco̧n in Example 1.1.7 has only two vertices (cf.

Example 3.1.3).

3.3.3 Show that a plane curve γ has a vertex at t = t0 if and only if the

evolute ε of γ (Exercise 2.2.7) has a singular point at t = t0.
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