
12
Minimal surfaces

In Section 9.4 we considered the problem of finding the shortest paths between

two points on a surface. We now consider the analogous problem in one higher

dimension, that of finding a surface of minimal area with a fixed curve as its

boundary. This is called Plateau’s Problem. The solutions to Plateau’s problem

turn out to be surfaces whose mean curvature vanishes everywhere. The study

of these so-called minimal surfaces was initiated by Euler and Lagrange in the

mid-eighteenth century, but new examples of minimal surfaces are still being

discovered.

12.1 Plateau’s problem

In Section 9.4, we found the condition for a curve on a surface to minimize

distance between its endpoints by embedding the given curve in a family of

curves passing through the same two points, and studying how the length of

the curve varies as the curve varies through the family. Accordingly, we shall

now study a family of surface patches στ : U → R
3, where U is an open subset

of R2 independent of τ , and τ lies in some open interval (−δ, δ), for some δ > 0.

Let σ = σ0. The family is required to be smooth, in the sense that the map

(u, v, τ) �→ στ (u, v) from the open subset {(u, v, τ) | (u, v) ∈ U, τ ∈ (−δ, δ)}
of R

3 to R
3 is smooth. The surface variation of the family is the function

ϕ : U → R
3 given by

ϕ = σ̇τ |τ=0 ,

where here and elsewhere in this section, a dot denotes d/dτ .
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306 12. Minimal surfaces

Let π be a simple closed curve that is contained, along with its interior

int(π), in U (see Section 3.1). Then π corresponds to a closed curve γτ = στ ◦π
in the surface patch στ , and we define the area function A(τ) to be the area

of the part of στ inside γτ :

A(τ) =

∫
int(π)

dAστ .

Note that, if we are considering a family of surfaces with a fixed boundary

curve γ, then γτ = γ for all τ , and hence ϕτ (u, v) = 0 when (u, v) is a point

on the curve π.

Theorem 12.1.1

With the above notation, assume that the surface variation ϕτ vanishes along

the boundary curve π. Then,

Ȧ(0) = −2

∫
int(π)

H(EG− F 2)1/2α dudv, (12.1)

where H is the mean curvature of σ, E,F and G are the coefficients of its first

fundamental form, and α = ϕ ·N where N is the standard unit normal of σ.

We defer the proof of this theorem to the end of this section.

If σ has the smallest area among all surfaces with the given boundary

curve γ, then A must have an absolute minimum at τ = 0, so Ȧ(0) = 0 for all

smooth families of surfaces as above. This means that the integral in (12.1) must

vanish for all smooth functions α : U → R. As in the proof of Theorem 9.4.1,

this can happen only if the term that multiplies α in the integrand vanishes,

in other words only if H = 0. This suggests the following definition.

Definition 12.1.2

A minimal surface is a surface whose mean curvature is zero everywhere.

Theorem 12.1.1 and the preceding discussion then give

Corollary 12.1.3

If a surface S has least area among all surfaces with the same boundary curve,

then S is a minimal surface.

Minimal surfaces have an interesting physical interpretation as the shapes

taken up by soap films. A soap film has energy by virtue of surface tension,
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and this energy is proportional to its area. A soap film spanning a wire in the

shape of a curve C should therefore adopt the shape of a surface of least area

with boundary C. By Corollary 12.1.3, this will be a minimal surface.

More generally, if the soap film separates two regions of different pressure,

the film will adopt the shape of a surface of constant mean curvature. This is

the case for a soap bubble, for example, for which the air pressure inside the

bubble is greater than the pressure outside. To see this, we apply the principle

of ‘virtual work’. This tells us that, if the soap film is in equilibrium, and

we imagine a (‘virtual’) change in the surface, the change in the energy of the

film must be the same as the work done by the film against the air pressure.

If p is the pressure difference, the force exerted by the air on a small piece of

the surface of area ΔA is pΔA, and so the work done when it moves a small

distance α perpendicular to itself is αpΔA. On the other hand, the formula in

Theorem 12.1.1 shows that the change in area of the surface is proportional to

αHΔA (note that α is the component of the variation ϕ perpendicular to the

surface). So p is proportional to H . Since the pressure difference must be the

same across the whole surface, so must the mean curvature H . Surfaces of

constant non-zero mean curvature were discussed in Section 8.5.

For the moment, we give only one example of a minimal surface; others will

be given in the next section. This example already shows, however, that the

converse of Corollary 12.1.3 is false.

Example 12.1.4

The surface obtained by revolving the curve x = cosh z in the xz-plane

around the z-axis is called a catenoid (a picture of a catenoid can be found

in Exercise 5.3.1). The catenoid can be parametrized by

σ(u, v) = (coshu cos v, coshu sin v, u).

Then,

σu = (sinhu cos v, sinhu sin v, 1),σv = (− coshu sin v, coshu cos v, 0),

σu × σv = (− coshu cos v,− coshu sin v, sinhu coshu),

N = (−sechu cos v,−sechu sin v, tanhu),

σuu = (coshu cos v, coshu sin v, 0),

σuv = (− sinhu sin v, sinhu cos v, 0),

σvv = (− coshu cos v,− coshu sin v, 0).

This gives the coefficients of the first and second fundamental forms of σ as

E = G = cosh2 u, F = 0, L = −1, M = 0, N = 1.
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The first three of these equations show that the parametrization σ is conformal,

and Corollary 8.1.3 gives

H =
LG− 2MF +NE

2(EG− F 2)
=

− cosh2 u+ cosh2 u

2 cosh4 u
= 0,

showing that the catenoid is a minimal surface.

C+

C-

S

S0

Fix a > 0, and let b = cosha. The surface S consisting of the part of the

catenoid with |z| < a has the two circles C± of radius b in the planes z = ±a
with centres on the z-axis as boundary. Another surface spanning the same two

circles is, of course, the surface S0 consisting of the two discs x2 + y2 ≤ b2 in

the planes z = ±a. The area of S is, by Proposition6.4.2,

∫ 2π

0

∫ a

−a

(EG− F 2)1/2dudv =

∫ 2π

0

∫ a

−a

cosh2 u dudv = 2π(a+ sinh a cosha).

The area of S0 is, of course, 2πb2 = 2π cosh2 a. So the minimal surface S will

not minimize the area among all surfaces with boundary the two circles C± if

cosh2 a < a+ sinh a cosha, i.e., if
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(12.2)
1 + e−2a < 2a.

2a

1 +e−2a

a

The graphs of 1+ e−2a and 2a as functions of a clearly intersect in exactly one

point a = a0, say, and the inequality (12.2) holds if a > a0. If this condition is

satisfied, the catenoid is not area minimizing.

It can be shown that if a < a0 the catenoid does have least area among all

surfaces spanning the circles C+ and C−.

It is time to prove Theorem 12.1.1.

Proof

Let ϕτ = σ̇τ , so that ϕ0 = ϕ, and let Nτ be the standard unit normal of στ .

There are smooth functions ατ , βτ and γτ of (u, v, τ) such that

ϕτ = ατNτ + βτστ
u + γτστ

v ,

so that α = α0. To simplify the notation, we drop the superscript τ for the rest

of the proof; at the end of the proof we put τ = 0.

We have

A(τ) =

∫
int(π)

‖ σu × σv ‖ dudv =

∫
int(π)

N · (σu × σv) dudv,

so

Ȧ =

∫
int(π)

∂

∂τ
(N · (σu × σv)) dudv. (12.3)

Now,

∂

∂τ
(N · (σu × σv)) = Ṅ · (σu × σv) +N · (σ̇u × σv) +N · (σu × σ̇v). (12.4)

Since N is a unit vector,

Ṅ · (σu × σv) = Ṅ ·N ‖ σu × σv ‖= 0.
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On the other hand,

N · (σ̇u × σv) =
(σu × σv) · (σ̇u × σv)

‖ σu × σv ‖
=

(σu · σ̇u)(σv · σv)− (σu · σv)(σv · σ̇u)

‖ σu × σv ‖
=

G(σu · σ̇u)− F (σv · σ̇u)

(EG − F 2)1/2
,

using Proposition 6.4.2. Similarly,

N · (σu × σ̇v) =
E(σv · σ̇v)− F (σu · σ̇v)

(EG− F 2)1/2
.

Substituting these results into Eq. 12.4, we get

∂

∂τ
(N ·(σu×σv)) =

E(σv · σ̇v)− F (σ̇u · σv + σu · σ̇v) +G(σu · σ̇u)

(EG − F 2)1/2
. (12.5)

Now

σ̇u = ϕu = αuN+ βuσu + γuσv + αNu + βσuu + γσuv,

∴ σu · σ̇u = Eβu + Fγu + (σu ·Nu)α + (σu · σuu)β + (σu · σuv)γ.

Since σu ·Nu = −σuu ·N = −L, σu ·σuu = 1
2Eu and σu ·σuv = 1

2Ev, we get

σu · σ̇u = Eβu + Fγu − Lα+
1

2
Euβ +

1

2
Evγ.

Similarly,

σv · σ̇u =Fβu +Gγu −Mα+ (Fu − 1

2
Ev)β +

1

2
Guγ,

σu · σ̇v =Eβv + Fγv −Mα+
1

2
Evβ + (Fv − 1

2
Gu)γ,

σv · σ̇v =Fβv +Gγv −Nα+
1

2
Guβ +

1

2
Gvγ.

Substituting these last four equations into the right-hand side of Eq. 12.5,

simplifying, and using the formula for H in Corollary8.1.3, we find that

∂

∂τ
(N · (σu × σv)) =

(
β(EG− F 2)1/2

)
u
+
(
γ(EG− F 2)1/2

)
v

−2αH(EG− F 2)1/2.

(12.6)

Comparing with Eq. 12.3, and reinstating the superscripts, we see that we must

prove that∫
int(π)

{(
β0(EG− F 2)1/2

)
u
+
(
γ0(EG− F 2)1/2

)
v

}
dudv = 0. (12.7)
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But by Green’s theorem (see Section 3.2), this integral is equal to
∫
π

(EG− F 2)1/2(β0dv − γ0du),

and this obviously vanishes because β0 = γ0 = 0 along the boundary curve π.

This completes the proof of Theorem 12.1.1.

Note that we did not quite use the full force of the assumptions in

Theorem 12.1.1, since they imply that α0 (= α) vanishes along the bound-

ary curve, and this was not used in the proof. So Eq. 12.1 holds provided the

surface variation ϕ is normal to the surface along the boundary curve.

Note also that Theorem 12.1.1 is intuitively obvious for variations ϕ that

are parallel to the surface, i.e., those for which α = 0 everywhere on the surface,

since such a parallel variation causes the surface to slide along itself and will not

change the shape, and in particular the area, of the surface. Thus, the main

point is to prove Theorem 12.1.1 for normal variations, i.e., those for which

β = γ = 0 everywhere on the surface. Making this restriction simplifies the

above proof considerably.

EXERCISES

12.1.1 Show that the Gaussian curvature of a minimal surface is ≤ 0 every-

where, and that it is zero everywhere if and only if the surface is an

open subset of a plane. We shall obtain a much more precise result

in Corollary 12.5.6.

12.1.2 Let σ : U → R
3 be a minimal surface patch, and assume that

Aσ(U) < ∞ (see Definition 6.4.1). Let λ 	= 0 and assume that the

principal curvatures κ of σ satisfy |λκ| < 1 everywhere, so that the

parallel surface σλ of σ (Definition 8.5.1) is a regular surface patch.

Prove that

Aσλ(U) ≤ Aσ(U)
and that equality holds for some λ 	= 0 if and only if σ(U) is an open

subset of a plane. (Thus, any minimal surface is area-minimizing

among its family of parallel surfaces.)

12.1.3 Show that there is no compact minimal surface.

12.1.4 Show that applying a dilation or an isometry of R3 to a minimal

surface gives another minimal surface. Can there be a local isometry

between a minimal surface and a non-minimal surface?
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12.2 Examples of minimal surfaces

The simplest minimal surface is, of course, the plane, for which both principal

curvatures are zero everywhere. Apart from this, the first minimal surfaces to

be discovered were those in the following two examples.

Example 12.2.1

If a is a non-zero constant, the surface Sa obtained by rotating the curve

x = 1
a coshaz in the xz-plane around the z-axis is called a catenoid. More

generally, a catenoid is a surface obtained by applying an isometry of R3 to

a surface Sa. Any catenoid S is a minimal surface, since S can be obtained

from the special catenoid S1 in Example 12.1.4 by applying an isometry and a

dilation (Exercise 12.1.4). A picture of a catenoid can be found in Exercise 5.3.1.

Catenoids are surfaces of revolution. In fact, apart from the plane, they are

the only minimal surfaces of revolution:

Proposition 12.2.2

Any minimal surface of revolution S is an open subset of a plane or a catenoid.

Proof

By applying an isometry of R3, we can assume that the axis of the surface S is

the z-axis and the profile curve lies in the xz-plane. We parametrize S in the

usual way (see Example 5.3.2):

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

where the profile curve u �→ (f(u), 0, g(u)) is assumed to be unit-speed and

f > 0. From Examples 6.1.3 and 7.1.2, the first and second fundamental forms

are

du2 + f(u)2dv2 and (ḟ g̈ − f̈ ġ)du2 + f ġdv2,

respectively, a dot denoting d/du. By Corollary 8.1.3, the mean curvature is

H =
1

2

(
ḟ g̈ − f̈ ġ +

ġ

f

)
.

We suppose now that, for some value of u, say u = u0, we have ġ(u0) 	= 0.

Since ġ is continuous (because g is smooth), we shall then have ġ(u) 	= 0 for u
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in some open interval containing u0. Let (α, β) be the largest such interval.

Supposing now that u ∈ (α, β), the unit-speed condition ḟ2 + ġ2 = 1 gives

(as in Example 8.1.4)

ḟ g̈ − f̈ ġ = − f̈
ġ
,

and so we get

H =
1

2

(
ġ

f
− f̈

ġ

)
.

Since ġ2 = 1− ḟ2, S is minimal if and only if

f f̈ = 1− ḟ2. (12.8)

To solve the differential equation (12.8), put h = ḟ , and note that

f̈ =
dh

dt
=
dh

df

df

dt
= h

dh

df
.

Hence, Eq. 12.8 becomes

fh
dh

df
= 1− h2.

Note that, since ġ 	= 0, we have h2 	= 1, and so we can integrate this equation

as follows: ∫
hdh

1− h2
=

∫
df

f
,

∴ h =

√
a2f2 − 1

af
,

where a is a non-zero constant. (We have omitted a ±, but the sign can be

changed by replacing u by −u if necessary.) Writing h = df/du and integrating

again,
∫

afdf√
a2f2 − 1

=

∫
du,

∴ f =
1

a

√
1 + a2(u+ b)2,

where b is a constant. By a change of parameter u �→ u+ b, we can assume that

b = 0. So,

f =
1

a

√
1 + a2u2.
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To compute g, we have

ġ2 = 1− ḟ2 = 1− h2 =
1

a2f2
,

∴ dg

du
= ± 1√

1 + a2u2
,

∴ g = ±1

a
sinh−1(au) + c (where c is a constant),

∴ au = ± sinh(a(g − c)),

∴ f =
1

a
cosh(a(g − c)).

Thus, the profile curve of S is

x =
1

a
cosh(a(z − c)).

This surface is obtained by applying to the catenoid Sa a translation along the

z-axis.

We are not quite finished, however. So far, we have only shown that the

open subset of S corresponding to u ∈ (α, β) is part of the catenoid, for in the

proof we used in an essential way that ġ 	= 0. This is why the proof has so far

excluded the possibility that S is a plane. To complete the proof, we argue as

follows. Suppose that β <∞. Then, if the profile curve is defined for values of

u ≥ β, we must have ġ(β) = 0, for otherwise ġ would be non-zero on an open

interval containing β, which would contradict our assumption that (α, β) is the

largest open interval containing u0 on which ġ 	= 0. But the formulas above

show that

ġ2 =
1

1 + a2u2
if u ∈ (α, β),

and so, since ġ is a continuous function of u, ġ(β) = ±(1+ a2β2)−1/2 	= 0. This

contradiction shows that the profile curve is not defined for values of u ≥ β. Of

course, this also holds trivially if β = ∞. A similar argument applies to α, and

shows that (α, β) is the entire domain of definition of the profile curve. Hence,

the whole of S is an open subset of a catenoid.

The only remaining case to consider is that in which ġ(u) = 0 for all values

of u for which the profile curve is defined. But then g(u) is a constant, say d,

and S is an open subset of the plane z = d.

Example 12.2.3

A helicoid is a ruled surface swept out by a straight line that rotates at constant

speed about an axis perpendicular to the line while simultaneously moving at

constant speed along the axis. By applying an isometry of R3 we can take the
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axis to be the z-axis. Let ω be the angular velocity of the rotating line and

α its speed along the z-axis. If the line starts along the x-axis, at time v the

centre of the line is at (0, 0, αv) and it has rotated by an angle ωv. Hence, the

point of the line initially at (u, 0, 0) is now at the point

σ(u, v) = (u cosωv, u sinωv, αv).

We leave it to Exercise 12.2.1 to check that this is a minimal surface. (A picture

of a helicoid can be found in Exercise 4.2.6.)

We have the following analogue of Proposition 12.2.2.

Proposition 12.2.4

Any ruled minimal surface is an open subset of a plane or a helicoid.

Proof

We take the usual parametrization

σ(u, v) = γ(u) + vδ(u)

(see Example 5.3.3), where γ is a curve that meets each of the rulings and δ(u)

is a vector parallel to the ruling through γ(u). We begin the proof by making

some simplifications to the parametrization.

First, we can certainly assume that ‖δ(u)‖= 1 for all values of u. We assume

also that δ̇ is never zero, where the dot denotes d/du. (We shall consider later

what happens if δ̇(u) = 0 for some values of u.) We can then assume that

γ̇ · δ̇ = 0 (see Exercise 5.3.4).

We have σu = γ̇ + vδ̇, σv = δ, so

E = ‖ γ̇ + vδ̇ ‖2, F = (γ̇ + vδ̇) · δ = γ̇ · δ, G = 1.

Let A =
√
EG− F 2. Then,

N = A−1(γ̇ + vδ̇)× δ.

Next, we have σuu = γ̈ + vδ̈, σuv = δ̇, σvv = 0, so

L = A−1(γ̈ + vδ̈) · ((γ̇ + vδ̇)× δ),

M = A−1δ̇ · ((γ̇ + vδ̇)× δ) = A−1δ̇.(γ̇ × δ),

N = 0.
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Hence, the minimal surface condition

H =
LG− 2MF +NE

2A2
= 0

gives

(γ̈ + vδ̈) · ((γ̇ + vδ̇)× δ) = 2(δ · γ̇)(δ̇ · (γ̇ × δ)).

This equation must hold for all values of (u, v). Equating coefficients of powers

of v gives

γ̈ · (γ̇ × δ) = 2(δ · γ̇)(δ̇ · (γ̇ × δ)), (12.9)

γ̈ · (δ̇ × δ) + δ̈ · (γ̇ × δ) = 0, (12.10)

δ̈ · (δ̇ × δ) = 0. (12.11)

Equation 12.11 shows that δ, δ̇ and δ̈ are linearly dependent. Since δ and δ̇

are perpendicular unit vectors, there are smooth functions α(u) and β(u) such

that

δ̈ = αδ + βδ̇.

But, since δ is unit-speed, δ̇ · δ̈ = 0. Also, differentiating δ · δ̇ = 0 gives

δ · δ̈ = −δ̇ · δ̇ = −1. Hence, α = −1 and β = 0, so

δ̈ = −δ. (12.12)

Equation 12.12 shows that the curvature of the curve δ is 1, and that its

principal normal is −δ. Hence, its binormal is δ̇ × (−δ), and since

d

du
(δ̇ × δ) = δ̈ × δ + δ̇ × δ̇ = −δ × δ = 0,

it follows that the torsion of δ is zero. Hence, δ parametrizes a circle of radius

1 (see Proposition2.3.5). By applying an isometry of R3, we can assume that

δ is the circle with radius 1 and centre the origin in the xy-plane, so that

δ(u) = (cosu, sinu, 0).

From Eq. 12.12, we get δ̈ · (γ̇ × δ) = −δ · (γ̇ × δ) = 0, so by Eq. 12.10,

γ̈ · (δ̇ × δ) = 0.

It follows that γ̈ is parallel to the xy-plane, and hence that

γ(u) = (f(u), g(u), au+ b),

where f and g are smooth functions and a and b are constants. If a = 0, the

surface is an open subset of the plane z = b. Otherwise, Eq. 12.9 gives

g̈ cosu− f̈ sinu = 2(ḟ cosu+ ġ sinu). (12.13)
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We finally make use of the condition γ̇ · δ̇ = 0, which gives

ḟ sinu = ġ cosu. (12.14)

Differentiating this gives

f̈ sinu+ ḟ cosu = g̈ cosu− ġ sinu. (12.15)

Equations 12.13 and 12.15 together give

ḟ cosu+ ġ sinu = 0

and using Eq. 12.14 we get ḟ = ġ = 0. Thus, f and g are constants. By a

translation of the surface, we can assume that the constants f , g and b are

zero, so that γ(u) = (0, 0, au) and

σ(u, v) = (v cosu, v sinu, au),

which is a helicoid.

We assumed at the beginning that δ̇ is never zero. If δ̇ is always zero, then

δ is a constant vector and the surface is a generalized cylinder. But in fact a

generalized cylinder is a minimal surface only if the cylinder is an open subset

of a plane (Exercise 12.2.3). The proof is now completed by an argument similar

to that used at the end of the proof of Proposition 12.2.2, which shows that

the whole surface is an open subset of a plane or a helicoid.

After the catenoid and helicoid, the next minimal surfaces to be discovered

were the following two.

Example 12.2.5

Enneper’s surface is

σ(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ u2v, u2 − v2

)
.

It was shown in Exercise 8.5.1 that this is a minimal surface.
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Strictly speaking, this is not a surface patch as it is not injective. The

self-intersections are clearly visible in the picture above. However, if we restrict

(u, v) to lie in sufficiently small open sets, σ will be injective (see Exercise

5.6.3).

Example 12.2.6

Scherk’s surface is the surface with Cartesian equation

z = ln
( cos y
cosx

)
.

It was shown in Exercise 8.5.2 that this is a minimal surface. Note that the

surface exists only when cosx and cos y are both > 0 or both < 0, in other

words in the interiors of the white squares of the following chess board pattern,

in which the squares have vertices at the points (π/2+mπ, π/2+nπ), where m

and n are integers, no two squares with a common edge have the same colour,

and the square containing the origin is white:

The white squares have centres of the form (mπ, nπ), where m and n are

integers with m+ n even. Since, for such m,n,

cos(y + nπ)

cos(x+mπ)
=

cos y

cosx
,

it follows that the part of the surface over the square with centre (mπ, nπ) is

obtained from the part over the square with centre (0, 0) by the translation

(x, y, z) �→ (x+mπ, y + nπ, z). So it suffices to exhibit the part of the surface

over a single square (see below).
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EXERCISES

12.2.1 Show that every helicoid is a minimal surface.

12.2.2 Show that the surfaces σt in the isometric deformation of a helicoid

into a catenoid given in Exercise 6.2.2 are minimal surfaces. (This is

‘explained’ in Exercise 12.5.4.)

12.2.3 Show that a generalized cylinder is a minimal surface only when the

cylinder is an open subset of a plane.

12.2.4 Verify that Catalan’s surface

σ(u, v) =
(
u− sinu coshv, 1− cosu cosh v,−4 sin

u

2
sinh

v

2

)

is a conformally parametrized minimal surface. (As in the case of

Enneper’s surface, Catalan’s surface has self-intersections, so it is

only a surface if we restrict (u, v) to sufficiently small open sets.)
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Show that:

(i) The parameter curve on the surface given by u = 0 is a straight

line.

(ii) The parameter curve u = π is a parabola.

(iii) The parameter curve v = 0 is a cycloid (see Exercise 1.1.7).

Show also that each of these curves, when suitably parametrized,

is a geodesic on Catalan’s surface. (There is a sense in which

Catalan’s surface is ‘designed’ to have a cycloidal geodesic – see

Exercise 12.5.5.)

12.3 Gauss map of a minimal surface

Recall from Section 7.2 that the Gauss map G of an oriented surface S associates

to each point p ∈ S the unit normal Np of S at p regarded as a point of the

unit sphere S2. We begin with the following ‘local’ result:

Proposition 12.3.1

With the above notation, suppose that the Gaussian curvature of S is non-zero

at the point p. Then, there is an open subset V of S containing p such that

the restriction of G to V is injective.

This result (and its proof) implies that, if the Gaussian curvature of S is

nowhere zero, the Gauss map of S is a local diffeomorphism.

Proof

Let σ : U → R
3 be a surface patch of S containing p, say p = σ(u0, v0), and

let N : U → R
3 be the standard unit normal of σ. By Eq. 8.2,

Nu ×Nv = K σu × σv,

where K is the Gaussian curvature of S, so by Exercise 5.6.3 there is an open

subset W of U containing (u0, v0) such that the restriction of the map N to W

is injective. Then, σ(W ) is an open subset of S containing p and the restriction

of G to σ(W ) is injective.
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Theorem 12.3.2

Let S be a minimal surface with nowhere vanishing Gaussian curvature. Then,

the Gauss map is a conformal map from S to S2.

Proof

By Theorem 6.3.3, we have to show that the bilinear forms 〈 , 〉 and G∗〈 , 〉
are proportional. Now, if p ∈ S and v,w ∈ TpS,

G∗〈v,w〉 = 〈DpG(v),DpG(w)〉 = 〈−W(v),−W(w)〉 = 〈W2(v),w〉,
where W is the Weingarten map; the last equation follows from the fact that

W is self-adjoint (Corollary 7.2.4). But, by Exercise 8.1.6 and the fact that the

mean curvature H is zero, we have

W2 = −K,
the Gaussian curvature of S. It follows that

G∗〈 , 〉 = −K〈 , 〉,
as we want.

We saw in Exercise 6.3.4 that a conformal parametrization of the plane is

necessarily holomorphic or anti-holomorphic, so this proposition strongly sug-

gests a connection between minimal surfaces and holomorphic functions. This

connection turns out to be very extensive, and we shall give an introduction to

it in Section 12.5.

EXERCISES

12.3.1 Let S be a connected surface whose Gauss map is conformal.

(i) Show that, if p ∈ S and if the mean curvature H of S at p is

non-zero, there is an open subset of S containing p that is part

of a sphere.

(ii) Deduce that, if H is non-zero at p, there is an open subset of

S containing p on which H is constant.

(iii) Deduce that S is either a minimal surface or an open subset of

a sphere.
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12.3.2 Show that:

(i) The Gauss map of a catenoid is injective and its image is the

whole of S2 except for the north and south poles.

(ii) The image of the Gauss map of a helicoid is the same as that of

a catenoid, but that infinitely many points on the helicoid are

sent by the Gauss map to any given point in its image.

(The fact that the Gauss maps of a catenoid and a helicoid have the

same image is ‘explained’ in Exercise 12.5.3 (ii).)

12.4 Conformal parametrization of minimal

surfaces

Our goal in this section is to prove the following theorem.

Theorem 12.4.1

Let S be a minimal surface and let p ∈ S. Then, there is a surface patch σ of

S containing p that is conformal.

Recall from Section 6.3 that this means that the first fundamental form of

σ(u, v) is of the form E(du2 + dv2) for some smooth function E(u, v).

Proof

Let p = (x0, y0, z0). By Exercise 5.6.4, if the tangent plane of S at p does

not contain the z-axis, there is an open set U in R
2 containing (x0, y0) and

a smooth function f : V → R such that an open subset of S consisting of

the points (x, y, z) with (x, y) ∈ V coincides with the graph of the function f .

(If the tangent plane at p does contain the z-axis, then S will be a graph of

the form x = f(y, z) or y = f(x, z) near p.) We can also assume that V is an

open disc

D = {(x, y) | (x− x0)
2 + (y − y0)

2 < r2},
for some r > 0, since any open set in R

2 containing (x0, y0) contains such a

disc. We must therefore show that the surface patch

σ̃(x, y) = (x, y, f(x, y)), (x, y) ∈ D,

has a conformal reparametrization.



12.4 Conformal parametrization of minimal surfaces 323

The coefficients of the first fundamental form of σ̃ are

E = 1 + f2
x , F = fxfy, G = 1 + f2

y .

We show first that (
F

A

)
x

=

(
E

A

)
y

,

(
G

A

)
x

=

(
F

A

)
y

, (12.16)

where A =
√
EG− F 2. Indeed,

(
F

A

)
x

−
(
E

A

)
y

=
(1 + f2

x + f2
y )(fxxfy + fxfxy)− fxfy(fxfxx + fyfxy)

(1 + f2
x + f2

y )
3/2

−2(1 + f2
x + f2

y )fxfxy − (1 + f2
x)(fxfxy + fyfyy)

(1 + f2
x + f2

y )
3/2

=
fy((1 + f2

y )fxx − 2fxfyfxy + (1 + f2
x)fyy)

(1 + f2
x + f2

y )
3/2

= 0,

by Exercise 8.1.1. The second equation in (12.16) is proved similarly.

From advanced calculus, we know that Eqs. 12.16 imply the existence of

smooth functions ϕ, ψ : D → R such that

ϕx =
E

A
, ϕy =

F

A
, ψx =

F

A
, ψy =

G

A
.

In fact, we can just define

ϕ(x, y) =

∫ 1

0

xE((1 − t)r0 + tr) + yF ((1− t)r0 + tr)

A((1− t)r0 + tr)
dt,

where r = (x, y), r0 = (x0, y0); and similarly for ψ.

The reparametrization map we want is

u(x, y) = x+ ϕ(x, y), v(x, y) = y + ψ(x, y).

Note that(
ux uy
vx vy

)
=

(
1 + ϕx ϕy

ψx 1 + ψy

)
=

(
1 + E

A
F
A

F
A 1 + G

A

)
(12.17)

so ∣∣∣∣ ux uy
vx vy

∣∣∣∣ =
(
1 +

E

A

)(
1 +

G

A

)
− F 2

A2
= 2 +

E +G

A
> 0.

By the Inverse Function Theorem 5.6.1, the function F : D → R
2 given by

F (x, y) = (u(x, y), v(x, y)) has a smooth inverse function F−1 (we may have to

replace D by a smaller open disc with centre (x0, y0)). Let

F−1(u, v) = (x(u, v), y(u, v)).
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We shall show that the reparametrization

σ(u, v) = (x(u, v), y(u, v), f(x(u, v), y(u, v)))

of σ̃ is conformal.

By the chain rule,

(
xu xv
yu yv

)(
ux uy
vx vy

)
= I,

so

(
xu xv
yu yv

)
=

(
ux uy
vx vy

)−1

=
1

E +G+ 2A

(
G+A −F
−F E +A

)

by Eq. 12.17. Letting z(u, v) = f(x(u, v), y(u, v)), we get (again using the chain

rule)

zu = fxxu + fyyu =
fx(G+A)− fyF

E +G+ 2A
,

zv = fxxv + fyyv =
fy(E +A)− fxF

E +G+ 2A
.

Hence,

σu.σu = x2u + y2u + z2u

=
(G+A)2 + F 2 + (fx(G+A)− fyF )

2

(E +G+ 2A)2

=
(G+A)2 + F 2 + (E − 1)(G+A)2 + (G− 1)F 2 − 2(G+A)F 2

(E +G+ 2A)2

=
E(G+A)2 +GF 2 − 2(G+A)F 2

(E +G+ 2A)2

=
EA2 + 2A(EG− F 2) +G(EG− F 2)

(E +G+ 2A)2

=
A2

E +G+ 2A
,

using f2
x = E − 1, f2

y = G − 1 to pass from the second line to the third and

A2 = EG − F 2 to pass from the fifth line to the sixth. Similar calculations

show that

σv.σv =
A2

E +G+ 2A
, σu.σv = 0.
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EXERCISES

12.4.1 Use Proposition12.3.2 to give another proof of Theorem 12.4.1 for

surfaces S with nowhere-vanishing Gaussian curvature.

12.5 Minimal surfaces and holomorphic
functions

In this section, we shall make use of certain elementary properties of holomor-

phic functions. Readers without the necessary background in complex analysis

may safely omit this section, the results of which are not used anywhere else

in the book.

Let σ : U → R
3 be a conformal surface patch. We introduce complex

coordinates in the plane of which U is an open subset by setting

ζ = u+ iv, (u, v) ∈ U,

and we define

ϕ(ζ) = σu − iσv. (12.18)

Thus, ϕ = (ϕ1, ϕ2, ϕ3) has three components, each of which is a complex-valued

function of (u, v), i.e., of ζ. The basic result which establishes the connection be-

tween minimal surfaces and holomorphic functions is the following proposition.

Proposition 12.5.1

Let σ : U → R
3 be a conformal surface patch. Then σ is minimal if and only

if the function ϕ defined in Eq. 12.18 is holomorphic on U .

To say that ϕ is holomorphic means that each of its components ϕ1, ϕ2 and

ϕ3 is holomorphic.

Proof

Let ϕ(u, v) be a complex-valued smooth function, and let α and β be its real

and imaginary parts, so that ϕ = α+ iβ. The Cauchy–Riemann equations

αu = βv and αv = −βu
are the necessary and sufficient conditions for ϕ to be holomorphic. Applying

this to each of the components of ϕ, we see that ϕ is holomorphic if and only if
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(σu)u = (−σv)v and (σu)v = −(−σv)u. (12.19)

The second equation imposes no condition on σ, and the first is equivalent to

σuu + σvv = 0. But it was shown in Exercise 8.5.1 that a conformal surface

patch σ is minimal if and only if σuu + σvv is zero.

The holomorphic function ϕ associated to a minimal surface σ is not

arbitrary:

Theorem 12.5.2

If σ : U → R
3 is a conformally parametrized minimal surface, the vector-

valued holomorphic function ϕ = (ϕ1, ϕ2, ϕ3) defined in Eq. 12.18 satisfies the

following conditions:

(i) ϕ2
1 + ϕ2

2 + ϕ2
3 = 0.

(ii) ϕ is nowhere zero.

Conversely, if U is simply-connected, and if ϕ1, ϕ2 and ϕ3 are holomorphic

functions on U satisfying conditions (i) and (ii) above, there is a conformally

parametrized minimal surface σ : U → R
3 such that ϕ = (ϕ1, ϕ2, ϕ3) satis-

fies Eq. 12.18. Moreover, σ is uniquely determined by ϕ1, ϕ2 and ϕ3 up to a

translation.

An open subset U of R2 is said to be simply-connected if every simple closed

curve in U can be shrunk to a point staying inside U . Intuitively, this means

that U has no ‘holes’.

Simply-connected Not simply-connected

In the course of the following proof, and in the proof of Proposition 12.5.5

below, we shall need to recall that, if F is a holomorphic function of ζ = u+ iv,

then
Fu = F ′, Fv = iF ′, (F )u = F ′, (F )v = −iF ′,

where F ′ = dF/dζ is the complex derivative of F , and the bar denotes complex-

conjugate.
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Proof

Suppose first that σ = (σ1, σ2, σ3) is minimal, where σk : U → R for k = 1, 2, 3.

We have to show that ϕ = (ϕ1, ϕ2, ϕ3) satisfies conditions (i) and (ii). Since

ϕk = σk
u − iσk

v for k = 1, 2, 3,

3∑
k=1

ϕ2
k =

3∑
k=1

(
(σk

u)
2 − (σk

v )
2 − 2iσk

uσ
k
v

)
= ‖ σu ‖2 − ‖ σv ‖2 −2iσu · σv,

(12.20)

which vanishes since σ is conformal. Finally, ϕ = 0 if and only if σu = σv = 0,

and this is impossible since σ is regular.

For the converse, take ϕ satisfying conditions (i) and (ii). We must show

that ϕ arises from a minimal surface as above, and that this minimal surface

is unique up to a translation of R3. Fix (u0, v0) ∈ U and define σ as the real

part of a complex line integral:

σ(u, v) = Re

∫
π

ϕ(ξ)dξ,

where π is any curve in U from (u0, v0) to (u, v) ∈ U . The fact that U is

simply-connected implies, by virtue of Cauchy’s Theorem, that
∫
π
ϕ(ξ)dξ is in-

dependent of the path π chosen, and hence so is σ(u, v). Now,Φ(ζ) =
∫
π
ϕ(ξ)dξ

is a holomorphic function of ζ = u+ iv, and Φ′(ζ) = ϕ(ζ). Hence, by the facts

stated just before the beginning of the proof,

σu = Re(Φu) = Re(Φ′) = Re(ϕ),

σv = Re(Φv) = Re(iΦ′) = −Im(ϕ),
(12.21)

so ϕ = σu − iσv.

To complete the proof, we have to show that σ is a conformal surface

patch. But, condition (ii) and Eqs. 12.21 show that σu and σv are not both

zero. By condition (i) and Eq. 12.20, ‖ σu ‖= ‖ σv ‖ and σu · σv = 0. Since

σu and σv are not both zero, this proves that σu and σv are both non-zero

and perpendicular, hence linearly independent, so that σ is a regular surface

patch; it also proves that σ is conformal.

If another conformal minimal surface σ̃ corresponds to the same holomor-

phic function ϕ as σ, then σ̃u = σu and σ̃v = σv everywhere on U , which

implies that σ̃ − σ is a constant, say a, so that σ̃ is obtained from σ by

translating by the vector a.

Before giving some examples, we observe that, if a holomorphic function ϕ

satisfies the conditions in Theorem 12.5.2, so does iϕ. If ϕ is the holomorphic

function corresponding to a minimal surface S, the minimal surface to which

iϕ corresponds is called the conjugate of S. It is well defined by S up to a

translation.



328 12. Minimal surfaces

Example 12.5.3

The parametrization

σ(u, v) = (coshu cos v, coshu sin v, u)

of the catenoid is conformal (see the solution of Exercise 6.2.3). The associated

holomorphic function is

ϕ(ζ) = σu − iσv

= (sinhu cos v + i coshu sin v, sinhu sin v − i coshu cos v, 1)

= (sinh(u + iv),−i cosh(u+ iv), 1)

= (sinh ζ,−i cosh ζ, 1).
Note that conditions (i) and (ii) in Theorem 12.5.2 are satisfied, since ϕ is

clearly never zero and the sum of the squares of its components is

sinh2 ζ − cosh2 ζ + 1 = 0.

Let us determine the conjugate minimal surface σ̃ of the catenoid. From

the proof of Theorem 12.5.2,

σ̃(u, v) = Re

∫
π

(i sinh ξ, cosh ξ, i) dξ

= Re(i cosh ζ, sinh ζ, iζ)

= (− sinhu sin v, sinhu cos v,−v),
up to a translation. If we reparametrize by defining ũ = sinhu, ṽ = v+π/2, we

get the surface
(ũ, ṽ) �→ (ũ cos ṽ, ũ sin ṽ,−ṽ),

after translating by (0, 0,−π/2), which is obtained from the helicoid in Exercise

4.2.6 by reflecting in the z-axis. Note that the parametrization of the helicoid

given in Exercise 4.2.6 is not conformal, so the constructions in this section

cannot be applied to it.

It is actually possible to ‘solve’ the conditions on ϕ in Theorem 12.5.2.

Proposition 12.5.4

Let f(ζ) be a holomorphic function on an open set U in the complex plane,

not identically zero, and let g(ζ) be a meromorphic function on U such that, if

ζ0 ∈ U is a pole of g of order m ≥ 1, say, then ζ0 is also a zero of f of order

≥ 2m. Then,

ϕ =

(
1

2
f(1− g2),

i

2
f(1 + g2), fg

)
(12.22)
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satisfies conditions (i) and (ii) in Theorem 12.5.2, and conversely every

holomorphic function ϕ satisfying these conditions arises in this way.

The correspondence given by Theorem 12.5.2 and Proposition 12.5.4 be-

tween pairs of functions f and g and minimal surfaces is called Weierstrass’

representation.

Proof

Suppose that f and g are as in the statement of the proposition. If g has a pole

of order m ≥ 1 at ζ0 ∈ U , and f has a zero of order n ≥ 2m at ζ0, then the

Laurent expansions of f and g about ζ0 are of the form

f(ζ) = a(ζ − ζ0)
n + · · · and g(ζ) =

b

(ζ − ζ0)m
+ · · · ,

where a and b are non-zero complex numbers and the · · · indicates terms in-

volving higher powers of ζ − ζ0. Then,

f(1± g2) = ±ab2(ζ − ζ0)
n−2m + · · · and fg = ab(ζ − ζ0)

n−m + · · ·
involve only non-negative powers of ζ − ζ0, so ϕ is holomorphic near ζ0. Since

it is clear that ϕ is holomorphic wherever g is holomorphic, it follows that the

function ϕ defined by Eq. 12.22 is holomorphic everywhere on U . It is clear

that ϕ is identically zero only if f is identically zero, and simple algebra shows

that ϕ satisfies condition (i) in Theorem 12.5.2.

Conversely, suppose that ϕ = (ϕ1, ϕ2, ϕ3) is a holomorphic function satis-

fying conditions (i) and (ii) in Theorem 12.5.2. If ϕ1 − iϕ2 is not identically

zero, define

f = ϕ1 − iϕ2, g =
ϕ3

ϕ1 − iϕ2
. (12.23)

Since ϕ is holomorphic, f is holomorphic and g is meromorphic. Condition (i)

implies that (ϕ1 + iϕ2)(ϕ1 − iϕ2) = −ϕ2
3, and hence that

ϕ1 + iϕ2 = −fg2. (12.24)

Simple algebra shows that Eqs. 12.23 and 12.24 imply Eq. 12.22. Equation 12.24

implies that fg2 is holomorphic, and the argument with Laurent expansions

in the first part of the proof now gives the condition on the zeros and poles

of f and g. Finally, if ϕ1 − iϕ2 = 0, we repeat the above argument replacing

ϕ1 ± iϕ2 by ϕ1∓ iϕ2 (note that ϕ1− iϕ2 and ϕ1+ iϕ2 cannot both be zero, for

if they were we would have ϕ1 = ϕ2 = 0, hence ϕ3 = 0 by condition (i), and

this would violate condition (ii)).

We give only one application of Weierstrass’ representation.
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Proposition 12.5.5

The Gaussian curvature of the minimal surface corresponding to the functions

f and g in Weierstrass’ representation is

K =
−16|dg/dζ|2
|f |2(1 + |g|2)4 .

Proof

This is a straightforward, if tedious, computation, and we shall omit many of

the details. Define ϕ by taking the complex-conjugate of each component of ϕ.

Then, σu = 1
2 (ϕ + ϕ), σv = 1

2i(ϕ − ϕ). Since ϕ · ϕ = ϕ · ϕ = 0, the first

fundamental form is 1
2ϕ · ϕ(du2 + dv2). Substituting the formula for ϕ from

Eq. 12.22 and simplifying, we find that the first fundamental form is

1

4
|f |2(1 + |g|2)2(du2 + dv2). (12.25)

Next,

σu × σv =
1

4i
(ϕ+ ϕ) × (ϕ−ϕ) =

1

2i
ϕ× ϕ,

∴ ‖ σu × σv ‖2 = −1

4
(ϕ× ϕ) · (ϕ×ϕ) = −1

4
((ϕ ·ϕ)(ϕ ·ϕ)− (ϕ · ϕ)2) =

1

4
(ϕ ·ϕ)2,

∴ N = i
ϕ× ϕ

ϕ ·ϕ .

In terms of f and g, this becomes

N =
1

1 + |g|2
(
g + g,−i(g − g), |g|2 − 1

)
. (12.26)

Using the remarks preceding the proof of Theorem 12.5.2 and the formulas

L = −σu ·Nu, M = −σu ·Nv, N = −σv ·Nv

(which follow by differentiating σu ·N = σv ·N = 0), we find that the second

fundamental form is

− 1

2

(
(fg′ + fg′)(du2 + dv2) + 2i(fg′ − fg′)dudv

)
. (12.27)

Combining Eqs. 12.25–12.27, and using the formula for the Gaussian curvature

K in Corollary 8.1.3, we finally obtain the formula in the statement of the

proposition.
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Corollary 12.5.6

Let S be a minimal surface that is not part of a plane. Then, the zeros of the

Gaussian curvature of S are isolated.

This means that, if the Gaussian curvature K vanishes at a point p ∈
S, then K does not vanish at any other point of S sufficiently near to p.

More precisely, if p lies in a surface patch σ of S, say p = σ(u0, v0), there

is a number ε > 0 such that K does not vanish at the point σ(u, v) ∈ S if

0 < (u− u0)
2 + (v − v0)

2 < ε2.

Proof

From the formula for K in Proposition 12.5.5, K vanishes exactly where the

meromorphic function g′ vanishes. If g′ is zero everywhere, so is K and S is

an open subset of a plane (this was shown in Proposition 8.2.9, but follows

immediately from Eq. 12.26 which shows that N is constant if g is constant).

But it is a standard result of complex analysis that the zeros of a non-zero

meromorphic function are isolated, so if K is not identically zero its zeros must

be isolated.

EXERCISES

12.5.1 Find the holomorphic function ϕ corresponding to Enneper’s mini-

mal surface given in Example 12.2.5. Show that its conjugate mini-

mal surface coincides with a reparametrization of the same surface

rotated by π/4 around the z-axis.

12.5.2 Find a parametrization of Henneberg’s surface, the minimal sur-

face corresponding to the functions f(ζ) = 1 − ζ−4, g(ζ) = ζ

in Weierstrass’ representation. The following are a ‘close up’ view

and a ‘large scale’ view of this surface.

Henneberg: close up
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Henneberg: Large scale

12.5.3 Show that, if ϕ satisfies the conditions in Theorem 12.5.2, so does

aϕ for any non-zero constant a ∈ C; let σa be the minimal surface

patch corresponding to aϕ, and let σ1 = σ be that corresponding

to ϕ. Show that:

(i) If a ∈ R, then σa is obtained from σ by applying a dilation and

a translation.

(ii) If |a| = 1, the map σ(u, v) �→ σa(u, v) is an isometry, and the

tangent planes of σ and σ̃ at corresponding points are parallel

(in particular, the images of the Gauss maps of σ and σa are

the same).

12.5.4 Show that if the function ϕ in the preceding exercise is that cor-

responding to the catenoid (see Example 12.5.3), the surface σeit

coincides with the surface denoted by σt in Exercise 6.2.3.

12.5.5 Let γ : (α, β) → R
3 be a (regular) curve in the xy-plane, say

γ(u) = (f(u), g(u), 0),

and assume that there are holomorphic functions F and G defined

on a rectangle

U = {u+ iv ∈ C |α < u < β, −ε < v < ε},
for some ε > 0, and such that F (u) = f(u) and G(u) = g(u) if u is

real and α < u < β. Note that (with a dash denoting d/dz as usual),

F ′(z)2 +G′(z)2 	= 0 if Im(z) = 0,
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so by shrinking ε if necessary we can assume that F ′(z)2+G′(z)2 	= 0

for all z ∈ U . Show that:

(i) The vector-valued holomorphic function

ϕ = (F ′, G′, i(F ′2 +G′2)1/2)

satisfies the conditions of Theorem 12.5.2 and therefore defines

a minimal surface σ(u, v).

(ii) Up to a translation, σ(u, 0) = γ(u) for α < u < β.

(iii) γ is a pre-geodesic on σ (see Exercise 9.1.2).

(iv) If we start with the cycloid

γ(u) = (u− sinu, 1− cosu, 0),

the resulting surface σ is, up to a translation, Catalan’s surface and

we have ‘explained’ why Catalan’s surface has a cycloidal geodesic –

see Exercise 12.2.4.


	12. Minimal surfaces
	12.1 Plateau's problem
	12.2 Examples of minimal surfaces
	12.3 Gauss map of a minimal surface
	12.4 Conformal parametrization of minimal surfaces
	12.5 Minimal surfaces and holomorphic functions


