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Hyperbolic geometry

One of the most remarkable discoveries of nineteenth century mathematics is

that the pseudosphere discussed in Section 8.3 has a geometry that closely

resembles Euclidean geometry, with geodesics playing the role of straight lines.

In fact, the closest correspondence with Euclidean geometry is obtained by

‘embedding’ the pseudosphere in a larger geometry, which is called hyperbolic

or non-Euclidean geometry. When this is done, we find that all the axioms of

Euclidean geometry hold in hyperbolic geometry, except the so-called ‘parallel

axiom’: this states that if p is a point that is not on a straight line l, there is a

unique straight line passing through p that does not intersect l (i.e., which is

‘parallel’ to l in the usual sense).

Hyperbolic geometry was discovered independently and almost simultane-

ously by the Hungarian mathematician Janos Bolyai and the Russian Nicolai

Lobachevsky, although the formulations of it that we shall describe in this

chapter are due to Eugenio Beltrami, Felix Klein and Henri Poincaré. David

Hilbert, one of the greatest mathematicians of the twentieth century, wrote that

the discovery of non-Euclidean geometry was ‘one of the two most suggestive

and notable achievements of the last century’. It ended centuries of attempts

by Greek, Arab and later Western mathematicians to deduce the parallel axiom

from the other axioms of Euclidean geometry, and it profoundly changed our

view of what geometry is.
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270 11. Hyperbolic geometry

11.1 Upper half-plane model

We saw in Example 9.3.3 that if the pseudosphere is parametrized as

σ̃(v, w) =

(
1

w
cos v,

1

w
sin v,

√
1− 1

w2
− cosh−1 w

)
,

where we must have w > 1 for σ̃ to be well defined and smooth, its geodesics

correspond to arcs of circles and straight lines in the vw-plane that intersect

the v-axis perpendicularly. The line w = 1 appears to be a rather artificial

boundary in the vw-plane, since the geodesics are well defined in the entire

region w > 0. On the other hand, the line w = 0 is a ‘real’ boundary since the

first fundamental form
dv2 + dw2

w2
(11.1)

of the pseudosphere is undefined when w = 0. It is therefore natural to ask

if there is a surface that corresponds to the whole of the half-plane w > 0

with this first fundamental form. In fact, there is no such surface for a cele-

brated theorem of Hilbert shows that there is no surface with constant negative

Gaussian curvature that is ‘geodesically complete’, i.e., a surface for which all

geodesics can be extended indefinitely in both directions (see Exercise 10.1.3).

One possible response to Hilbert’s theorem is essentially to ignore it: all

those properties of surfaces that depend only on the first fundamental form

(lengths, angles, areas, geodesics, local isometries, ...) can still be studied for

the half-plane

H = {(v, w) ∈ R
2 |w > 0}

equipped with the first fundamental form (11.1). They will then be called hyper-

bolic lengths, hyperbolic angles, etc. (We shall see the reason for the adjective

‘hyperbolic’ later.)

It will often be convenient to identify R
2 with the set of complex numbers

C via (v, w) ↔ v + iw, so that

H = {z ∈ C | Im(z) > 0}
is the set of complex numbers with positive imaginary part.

The first thing to observe is that H is a ‘conformal model’:

Proposition 11.1.1

Hyperbolic angles in H are the same as Euclidean angles.
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Proof

This is just because the first fundamental form (11.1) of H is a multiple of

dv2 + dw2 (see Corollary 6.3.4).

The ‘hyperbolic lines’ are the geodesics in H, which were determined in

Example 9.3.3.

Proposition 11.1.2

The geodesics in H are the half-lines parallel to the imaginary axis and the

semicircles with centres on the real axis.

Here are some simple properties of hyperbolic lines.

Proposition 11.1.3

(i) There is a unique hyperbolic line passing through any two distinct points

of H.

(ii) The parallel axiom does not hold in H.

In the following proof, and later in this chapter, ‘lines’ and ‘circles’ will mean

Euclidean lines and circles (‘hyperbolic line’ means ‘geodesic’). On the other

hand, ‘lengths’ and ‘angles’ will always mean hyperbolic lengths and angles,

unless explicitly stated otherwise.

Proof

(i) Let a, b ∈ H, a �= b. If the line passing through a and b is parallel to the

imaginary axis, the unique hyperbolic line passing through the points a and b

is the half-line containing them. If the line through a and b is not parallel to the

imaginary axis, its perpendicular bisector intersects the real axis at some point

c, say, and the unique hyperbolic line passing through a and b is the semicircle

with centre c and radius |a− c| = |b− c|.
(ii) Take l to be the imaginary axis and let a ∈ H be any point not on l. For

definiteness, assume that the real part Re(a) > 0. Then, the perpendicular

bisector of the line joining a to the origin intersects the real axis at some point

b > 0. Let c be a real number greater than b; then the semicircle with centre c

passing through a is a hyperbolic line in H that does not intersect l. Of course,
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the half-line through a parallel to the imaginary axis is another hyperbolic line

with the same property (it can be regarded as the limiting case when c→ ∞).

Since there is a unique hyperbolic line passing through any two points a, b ∈
H, it makes sense to define the hyperbolic distance dH(a, b) between a and b

to be the length of the hyperbolic line segment joining them. It is shown in

Exercise 11.2.1 that this is actually the hyperbolic length of the shortest curve

joining a and b.

Proposition 11.1.4

The hyperbolic distance between two points a, b ∈ H is

dH(a, b) = 2 tanh−1 |b− a|
|b− ā| .

In this formula, ā denotes the complex conjugate of the complex number

a. The appearance of the hyperbolic tangent gives an indication of the reason

why the geometry of H is called ‘hyperbolic geometry’.

Proof

There are two cases, depending on whether the hyperbolic line joining a and b

is a semicircle or a half-line. We shall deal with the semicircle case, leaving the

simpler case of the half-line to Exercise 11.1.2.

Suppose then that a and b lie on the semicircle with centre c on the real

axis and radius r. The semicircle can be parametrized by

v = c+ r cos θ, w = r sin θ.

Writing d for dH(a, b) and denoting d/dθ by a dot, we have

d =

∫ ψ

ϕ

√
v̇2 + ẇ2

w2
dθ =

∫ ψ

ϕ

√
r2 sin2 θ + r2 cos2 θ

r2 sin2 θ
dθ =

∫ ψ

ϕ

dθ

sin θ
,

where ϕ = arg(a− c), ψ = arg(b− c) (note that d is independent of the radius

of the semicircle). Hence,

d = ln
tan ψ

2

tan ϕ
2

.
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a

b

c

Á
Ã

Now,

tanh
d

2
=
ed − 1

ed + 1
=

tan ψ
2 − tan ϕ

2

tan ψ
2 + tan ϕ

2

=
sin ψ

2 cos ϕ2 − cos ψ2 sin ϕ
2

sin ψ
2 cos ϕ2 + cos ψ2 sinϕ2

=
sin ψ−ϕ

2

sin ψ+ϕ
2

.

(11.2)

On the other hand,

|b− a|2 = r2((cosψ − cosϕ)2 + (sinψ − sinϕ)2)

= 2r2(1− cos(ψ − ϕ)) = 4r2 sin2
ψ − ϕ

2
,

and similarly

|b− ā|2 = 4r2 sin2
ψ + ϕ

2
.

Combining the last two equations with Eq. 11.2 gives

tanh
d

2
=

|b − a|
|b − ā| .

We conclude this section with another beautiful formula, this time for the

area of a hyperbolic polygon, i.e., a polygon whose sides are hyperbolic lines.

Theorem 11.1.5

Let P be a n-sided hyperbolic polygon in H with internal angles α1, α2, . . . , αn.

Then, the hyperbolic area of the polygon is given by

A(P) = (n− 2)π − α1 − α2 − · · · − αn.
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a1 a2
a3

®1
®2
®3

P

In particular, for a triangle with angles α, β, γ, the area is

π − α− β − γ.

This should be compared with the well-known formula

α+ β + γ = π

for the sum of the angles of a Euclidean triangle with straight line sides, and

the formula

α+ β + γ − π

for the area of a triangle on the unit sphere with geodesic (i.e., great circle)

sides (Theorem 6.4.7).

Proof 11.1.5 Let a1, . . . , an be the vertices of P and C its boundary, consisting

of n hyperbolic line segments a1a2, a2a3, . . . , ana1 (we assume that α1 is the

internal angle of P at the vertex a1, etc.). Since the first fundamental form is

(dv2 + dw2)/w2, the area of P is ∫
P

dvdw

w2
.

We evaluate this integral by using Green’s theorem (Section 3.2):∫
C
pdv + qdw =

∫
P

(
∂q

∂v
− ∂p

∂w

)
dvdw,
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where p and q are smooth functions of (v, w). Taking p = 1/w and q = 0 gives∫
P

dvdw

w2
=

∫
C

dv

w
. (11.3)

To evaluate this integral we first prove the following lemma.

Lemma 11.1.6

Let a and b be the endpoints of a segment l of a hyperbolic line in H that forms

part of a semicircle with centre p on the real axis, and suppose that the radius

vectors joining p to a and p to b make angles ϕ and ψ, respectively, with the

positive real axis (see the diagram in the proof of Proposition 11.1.4). Then,∫
l

dv

w
= ϕ− ψ.

Note that the integral is independent of the radius of the semicircle, and

that the formula is correct even if the hyperbolic line is part of a half-line, for

in that case the integral vanishes since v is constant along the hyperbolic line.

Proof 11.1.6 We parametrize the hyperbolic line by v = r cos θ, w = r sin θ,

where r is the radius of the semicircle. Then, the integral is∫ ψ

ϕ

−r sin θ dθ
r sin θ

= −
∫ ψ

ϕ

dθ = ϕ− ψ.

ai

ai+1

®i

®i+1
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Returning to the proof of Theorem 11.1.5, let ϕi and ψi be the angles

defined in the lemma corresponding to the side with endpoints ai and ai+1, for

i = 1, . . . , n (it is understood that an+1 means a1). By Eq. 11.3 and the lemma,

∫
P

dvdw

w2
=

n∑
i=1

(ϕi − ψi). (11.4)

We can simplify this sum by considering the change in direction of the

outward-pointing normal of P as we traverse its boundary in an anticlockwise

direction. As we traverse the side with endpoints ai and ai+1, the outward

normal rotates anticlockwise through an angle ψi − ϕi, while at the vertex ai
it rotates by π − αi. Hence, as we traverse the boundary of P , the outward

normal rotates through an angle

nπ +

n∑
i=1

(ψi − ϕi − αi).

But this angle of rotation is 2π (cf. Theorem 3.1.4), so we have the equation

2π = nπ +
n∑
i=1

(ψi − ϕi − αi).

Rearranging, we get

n∑
i=1

(ϕi − ψi) = (n− 2)π −
n∑
i=1

αi.

By Eq. 11.4, this is the desired area.

Note that the area of a hyperbolic triangle, i.e., a triangle whose sides are

hyperbolic lines, depends only on its angles. We found in Proposition 6.5.8

that the same result holds in spherical geometry, but as we noted there this

is completely different to the Euclidean situation, where we can change the

size of a triangle (and hence its area) without changing its angles. In fact, we

shall show in the next section that, as in spherical geometry (Exercise 6.5.2),

two hyperbolic triangles with the same angles are congruent. But first we must

discuss what congruence means in hyperbolic geometry.

EXERCISES

11.1.1 Show that, if l is a half-line geodesic in H and a is a point not on l,

there are infinitely many hyperbolic lines passing through a that do

not intersect l.
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11.1.2 Complete the proof of Proposition 11.1.4 by dealing with the case

in which the hyperbolic line passing through a and b is a half-line.

11.1.3 Show that for any a ∈ H there is a unique hyperbolic line passing

through a that intersects the hyperbolic line l given by v = 0 per-

pendicularly. If b is the point of intersection, one calls dH(a, b) the

hyperbolic distance of a from l.

11.1.4 The hyperbolic circle Ca,R with centre a ∈ H and radius R > 0 is the

set of points of H which are a hyperbolic distance R from a:

Ca,R = {z ∈ H | dH(z, a) = R}.
Show that Ca,R is a Euclidean circle.

Show that the Euclidean centre of Cic,R, where c > 0, is ib and that

its Euclidean radius is r, where

c =
√
b2 − r2, R =

1

2
ln
b+ r

b− r
.

Deduce that the hyperbolic length of the circumference of Cic,R is

2π sinhR and that the hyperbolic area inside it is 2π(coshR − 1).

Note that these do not depend on c; in fact, it follows from the results

of the next section that the circumference and area of Ca,R depend

only on R and not on a (see the remarks preceding Theorem 11.2.4).

Compare these formulas with the case of a spherical circle in Exercise

6.5.3, and verify that they are consistent with Exercise 10.2.3.

11.2 Isometries of H
In Euclidean plane geometry, two triangles are said to be congruent if one

triangle can be moved until it coincides with the other. The types of motion

that are allowed are combinations of rotations, translations, and reflections, i.e.,

the isometries of the plane (see Appendix 1). Similarly, to discuss congruence in

spherical geometry, it was necessary in Section 6.5 to determine the isometries

of the sphere.

It is easy to identify some isometries of H:

(i) Translations parallel to the real axis, given by

Ta(z) = z + a, a ∈ R.
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(ii) Reflections in lines parallel to the imaginary axis, given by

Ra(z) = 2a− z̄, a ∈ R.

Ra(z) is the ‘reflection’ of z in the line Re(z) = a, thought of as a mirror;

each point of this line is fixed by Ra.

(iii) Dilations by a factor a > 0, given by

Da(z) = az.

In terms of the parameters (v, w), these maps are given by (v, w) �→
(v + a, w), (v, w) �→ (2a − v, w) and (v, w) �→ (av, aw), respectively, each

of which obviously takes H to H and preserves the first fundamental form

(11.1). But there is also a fourth type of isometry that is not quite as obvious:

(iv) Inversions in circles with centres on the real axis. The inversion in the

circle with centre a ∈ R and radius r > 0 is

Ia,r(z) = a+
r2

z̄ − a

(see Appendix 2).

To see that Ia,r is an isometry of H, we consider first the case a = 0, r = 1,

and denote I0,1 by I. Then,

I(v + iw) =
v + iw

v2 + w2
,

which makes it clear that I takes any point in H to another point of H and

any point on the real axis to another point on the real axis. To see that I is

indeed an isometry of H, we use the result of Exercise 6.1.4: if ṽ = v
v2+w2 and

w̃ = w
v2+w2 , then

dṽ =
(w2 − v2)dv − 2vwdw

(v2 + w2)2
, dw̃ =

−2vwdv + (v2 − w2)dw

(v2 + w2)2
,

and hence

dṽ2 + dw̃2

w̃2
=

1

w2(v2 + w2)2

{(
(w2 − v2)dv − 2vwdw

)2
+

(−2vwdv+(v2 − w2)dw
)2}

=
(w2 − v2)2 + 4v2w2

w2(v2 + w2)2
(dv2 + dw2) =

dv2 + dw2

w2
.
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Returning to the general case, we note that

Ia,r(z) = Ta

(
r2

z̄ − a

)
= TaDr2

(
1

z̄ − a

)
= TaDr2I(z − a) = TaDr2IT−a(z),

so Ia,r is a composite Ta ◦ Dr2 ◦ I ◦ T−a of maps that are already known to

be isometries of H. Since any composite of isometries is an isometry, it follows

that Ia,r is an isometry of H.

We summarize our observations as follows:

Proposition 11.2.1

Any composite of a finite number of maps of the types (i)–(iv) defined above

is an isometry of H.

We shall call an isometry of one of the types (i)–(iv) an elementary isometry

ofH. In fact, every isometry ofH is a composite of a finite number of elementary

isometries, but since we shall not make use of this result we leave its proof to

the exercises.

Since isometries take geodesics to geodesics (Corollary 9.2.7), we know that

the elementary isometries take half-lines and semicircles perpendicular to the

real axis to other half-lines and semicircles perpendicular to the real axis. In

fact, it is clear that translations, dilations and reflections take half-lines to half-

lines and semicircles to semicircles, but the situation for inversions is a little

more complicated:

Proposition 11.2.2

The inversion Ia,r in the circle with centre a ∈ R and radius r > 0 takes

hyperbolic lines that intersect the real axis perpendicularly at a to half-lines,

and all other hyperbolic lines to semicircles.

See Appendix 2 for the proof. The result is intuitively clear, since if a point

of H “tends to” a point a its image under Ia,r “tends to infinity” (both limits

in the Euclidean sense) and so cannot lie on a semicircle geodesic.

Isometries can be used to simplify the solution of many problems in hyper-

bolic geometry, by reducing the problem to a ‘standard’ situation. The basic

result needed for this is
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Proposition 11.2.3

Let l1 and l2 be hyperbolic lines in H, and let z1 and z2 be points on l1 and l2,

respectively. Then, there is an isometry of H that takes l1 to l2 and z1 to z2.

Proof

We observe first that it is enough to prove this result in the special case in

which l2 is the half-line l passing through the origin and z2 = i. For if the

proposition has been proved in this case, there is an isometry F1 that takes

l1 to l and z1 to i, and an isometry F2 that takes l2 to l and z2 to i. Then,

F−1
2 ◦ F1 is an isometry that takes l1 to l2 and z1 to z2.

There are now two cases depending on whether l1 is a half-line or a semi-

circle. If l1 is the half-line v = a, say, the translation T−a takes l1 to l and z1 to

some point ib, say, on l, where b > 0. Then, the dilation Db−1 takes l to itself

and ib to i, and so the isometry we want is Db−1 ◦ T−a.
Finally, suppose that l1 is a semicircle, and let a be one of the two points in

which it intersects the real axis. By Proposition 11.2.2, the inversion Ia,1 takes

l to a half-line geodesic l′, say, and z1 to some point z′ on l′. By the preceding

case, there is an isometry F that takes l′ to l and z′ to i, so the isometry we

want is F ◦ Ia,1.

As a simple application, we can now complete Exercise 11.1.4. If a, b ∈ H,

there is an isometry F of H that takes a to b. Then, F will clearly take the

hyperbolic circle Ca,R to Cb,R for all R > 0. It follows that these hyperbolic

circles have the same circumference and area.

Here is a more important application.

Theorem 11.2.4

In hyperbolic geometry, similar triangles are congruent.

Proof

We have to prove that if we have two triangles T and T ′ with vertices a, b, c and

a′, b′, c′, and if the angle α of T at a is equal to that of T ′ at a′, and similarly

for the angles β at b and b′ and for the angles γ at c and c′, then there is an

isometry F of H such that F (a) = a′, F (b) = b′ and F (c) = c′.
Let l,m, n and l′,m′, n′ be the sides of T and T ′ (so that l is the side opposite

the vertex a, etc.). It is enough to prove the theorem in the special case in which

a = a′ = i and m = m′ is the imaginary axis. For by Proposition 11.2.3, there
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is an isometry G that takes a to i and m to the imaginary axis, and an isometry

G′ that takes a′ to i and m′ to the imaginary axis. If F is the desired isometry

in the special case, then (G′)−1 ◦ F ◦ G is the desired isometry in the general

case.

Assume then that a = a′ = i andm = m′ is the imaginary axis. By applying

the reflection in the imaginary axis if necessary, we can further assume that b

and b′ are on the same side of the imaginary axis. Then either the hyperbolic

lines n and n′ coincide, or one is obtained from the other by applying the

inversion I0,1 (which fixes m and the vertex i). Hence, we can assume that

n = n′.
If now b = b′ and c = c′ the theorem is proved. If not, then we must be in

one of the three situations shown below. By making use of Theorem 11.1.5, we

shall prove that each of these situations is impossible.

a a a

b

b

bb�
b�

c�

c�

c�

c

c

c

®
®

®

°

°

°

°

°

°

¯

¯

¯
¯

¯

In the first case, the angle sum of the quadrilateral with vertices b, c, c′, b′ is

(π − β) + (π − γ) + γ + β = 2π,

whereas by Theorem 11.1.5 the angle sum must be < 2π.

In the second case, the angle sum of the triangle with vertices d, b′, b is

δ + (π − β) + β,

where δ is the angle between l and l ′ at their intersection point d. This is > π,

again contradicting Theorem 11.1.5.

Finally, in the third case the triangle with vertices b, c, c′ has angle sum

δ + (π − γ) + γ > π,

where δ is as in the preceding case (if c and c′ are interchanged the argument

is the same).
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It follows from this theorem that there must be a formula for the lengths

of the sides of a triangle in H in terms of its angles. Although we could prove

such a formula now, it is slightly easier to establish it in a different model of

hyperbolic geometry, and this is what we consider next.

EXERCISES

11.2.1 Show that if a, b ∈ H, the hyperbolic distance dH(a, b) is the length

of the shortest curve in H joining a and b.

11.2.2 Show that, if l is any hyperbolic line in H and a is a point not on l,

there are infinitely many hyperbolic lines passing through a that do

not intersect l.

11.2.3 Let a be a point of H that is not on a hyperbolic line l. Show that

there is a unique hyperbolic line m passing through a that intersects

l perpendicularly. If b is the point of intersection of l and m, and c

is any other point of l, prove that

dH(a, b) < dH(a, c).

Thus, b is the unique point of l that is closest to a.

11.2.4 This exercise and the next determine all the isometries of H.

(i) Let F be an isometry ofH that fixes each point of the imaginary

axis l and each point of the semicircle geodesic m at the centre

of the origin and radius 1. Show that F is the identity map.

(ii) Let F be an isometry of H such that F (l)= l and F (m)=m,

where l and m are as in (i). Prove that F is the identity map,

the reflection R0, the inversion I0,1 or the composite I0,1 ◦ R0

(in the notation at the beginning of this section).

(iii) Show that every isometry of H is a composite of elementary

isometries.

(iv) Show that every isometry of H is a composite of reflections and

inversions in lines and circles perpendicular to the real axis.

11.2.5 A Möbius transformation (see Appendix 2) is said to be real if it is

of the form

M(z) =
az + b

cz + d
,
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where a, b, c, d ∈ R. Show that:

(i) Any composite of real Möbius transformations is a real Möbius

transformation, and the inverse of any real Möbius transforma-

tion is a real Möbius transformation.

(ii) The Möbius transformations that take H to itself are exactly

the real Möbius transformations such that ad− bc > 0.

(iii) Every real Möbius transformation is a composite of elementary

isometries of H, and hence is an isometry of H.

(iv) If J(z) = −z̄ and M is a real Möbius transformation, M ◦ J is

an isometry of H.

(v) If we call an isometry of type (iii) or (iv) a Möbius isometry,

any composite of Möbius isometries is a Möbius isometry;

(vi) Every isometry of H is a Möbius isometry.

11.3 Poincaré disc model

We now consider a model of hyperbolic geometry based on the unit disc in the

complex plane. Poincaré used this model to bring hyperbolic geometry into the

mainstream of mathematics by establishing its connections with other areas,

notably complex analysis and number theory.

We consider the transformation

P(z) =
z − i

z + i
.

It defines a bijection between the complex plane with the point −i removed

and the complex plane with the point 1 removed, its inverse being

P−1(z) =
z + 1

i(z − 1)
.

In particular, P is well defined at all points of H and its boundary the real

axis.

Let us determine the image of H under P . We have,

P(v + iw) =
v + i(w − 1)

v + i(w + 1)
,
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so

|P(v + iw)| =
(
v2 + w2 + 1− 2w

v2 + w2 + 1 + 2w

)1/2

.

Hence, |P(v + iw)| is < 1 if w > 0, is = 1 if w = 0 and is > 1 if w < 0. Thus,

P takes H to the unit disc

D = {z ∈ C | |z| < 1},
and the real axis to the boundary of D, i.e., the unit circle C given by |z| = 1.

Definition 11.3.1

The Poincaré disc model DP of hyperbolic geometry is the disc D equipped

with the first fundamental form for which P : H → DP is an isometry.

Proposition 11.3.2

The first fundamental form of DP is

4(dv2 + dw2)

(1 − v2 − w2)2
.

In particular, DP is a conformal model of hyperbolic geometry.

Proof

If ṽ + iw̃ = P−1(v + iw), we find that

ṽ =
−2w

(v − 1)2 + w2
, w̃ =

1− v2 − w2

(v − 1)2 + w2
,

which gives

dṽ =
4(v − 1)wdv − 2((v − 1)2 − w2)dw

((v − 1)2 + w2)2
,

dw̃ =
2((v − 1)2 − w2)dv + 4(v − 1)wdw

((v − 1)2 + w2)2
.

Hence,

dṽ2 + dw̃2 =
16(v − 1)2w2 + 4((v − 1)2 − w2)2

((v − 1)2 + w2)4
(dv2 + dw2) =

4(dv2 + dw2)

((v − 1)2 + w2)2



11.3 Poincaré disc model 285

and so
dṽ2 + dw̃2

w̃2
=

4(dv2 + dw2)

(1− v2 − w2)2
.

Since the first fundamental form of DP is a multiple of du2 + dv2, DP is a

conformal model.

Since P : H → DP is an isometry, it follows that the isometries of DP are

exactly the maps

P ◦ F ◦ P−1,

where F is any isometry of H. Indeed, since any composite of isometries is an

isometry, P ◦F ◦P−1 is an isometry of DP if F is an isometry of H; conversely,

if G is any isometry of DP , then F = P−1 ◦ G ◦ P is an isometry of H, and

G = P ◦ F ◦ P−1.

Here is a simple application of this observation:

Proposition 11.3.3

(i) Let Γ be a circle that intersects C perpendicularly. Then, inversion in Γ is

an isometry of DP .
(ii) Let l be a line passing through the origin (and so perpendicular to C).

Then, (Euclidean) reflection in l is an isometry of DP .

Proof

For (i), let Γ have centre a ∈ C and radius r > 0; then, the inversion in Γ is

given by

Ia,r = a+
r2

z̄ − ā
.

By PropositionA.2.8, Ia,r takes DP to itself. We have to show that P−1◦Ia,r◦P
is an isometry of H. We find that

Ia,r(P(z)) =
(a− |a|2 + r2)z̄ + i(a+ |a|2 − r2)

(1− ā)z̄ + i(1 + ā)
.

Now, since Γ intersects C at right angles, |a|2 = r2 + 1, so

Ia,r(P(z)) =
(a− 1)z̄ + i(a+ 1)

(1− ā)z̄ + i(1 + ā)
.
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This leads to

P−1(Ia,r(P(z))) =
i(a− ā)z̄ − (2 + a+ ā)

(2− a− ā)z̄ − i(a− ā)
.

This is a real Möbius transformation (Exercise 11.2.5) and so is an isometry

of H.

For (ii), let l make an angle θ with the real axis, so that reflection in l is

the map R(z) = e2iθz̄. We find that

P−1(R(P(z))) =
z cos θ + sin θ

−z sin θ + cos θ
,

which is again a real Möbius transformation.

Note that simple isometries in one model may not correspond to simple

isometries in the other. For example, it is clear from Proposition 11.3.2 that

any rotation about the origin is an isometry of DP (because such a rotation

is an isometry of the Euclidean plane, and hence preserves dv2 + dw2 and

v2 + w2), but the corresponding isometry of H is quite complicated (it is not

an elementary isometry, for example).

Since P is an isometry, the geodesics (i.e., the hyperbolic lines) in DP are the

images under P of the geodesics in H. Hence, the properties of the hyperbolic

lines in H can be transferred to DP . For example, if a and b are two distinct

points of DP , then by Proposition 11.1.3, there is a unique hyperbolic line l in

H passing through the distinct points P−1(a) and P−1(b), so P(l) is the unique

hyperbolic line in DP passing through a and b. Similarly, Proposition 11.2.3

holds as stated with H replaced by DP .
The distance between two points of DP is given by

dDP (a, b) = dH(P−1(a),P−1(b)), a, b ∈ DP .
Using the formula in Proposition 11.1.4, it is straightforward (see Exercise

11.3.1) to prove

Proposition 11.3.4

For a, b ∈ DP , we have

dDP (a, b) = 2 tanh−1 |b− a|
|1− āb| .
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The explicit form of the hyperbolic lines in DP can, of course, be determined

from the first fundamental form in Proposition 11.3.2. But it is easier to make

use of some simple properties of the map P .

Proposition 11.3.5

The hyperbolic lines in DP are the lines and circles that intersect C perpendic-

ularly (see the diagram below).

Proof

This follows from Proposition 11.1.2 and the fact that P takes the boundary

of H to that of DP and, being a Möbius transformation, preserves (Euclidean)

angles and takes lines and circles to lines and circles (see Appendix 2).

Note that Proposition 11.3.3 tells us that ‘reflection’ in any hyperbolic line

in DP is an isometry of DP – ‘reflection’ in a circle being interpreted as inversion

(and Exercise 11.3.5 shows that every isometry of DP is a composite of such

reflections).

We shall now establish some new properties of hyperbolic geometry to which

the Poincaré model is particularly well suited, starting with the basic result in

hyperbolic trigonometry.

Theorem 11.3.6

Consider a hyperbolic triangle with angles α, β, γ and sides of length A,B,C

(so that A is the length of the side opposite α, etc.). Then,

coshC = coshA coshB − sinhA sinhB cos γ,
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and two analogous formulas can be obtained by applying the cyclic permuta-

tions α→ β → γ → α and A→ B → C → A.

This formula is called the ‘hyperbolic cosine rule’ because it becomes

the usual cosine rule when A,B, and C are small: using the approximations

coshA = 1 + 1
2A

2 and sinhA = A, etc. we get

C2 = A2 +B2 − 2AB cos γ

(compare the spherical case treated in Proposition 6.5.3(i)).

Proof

Let a, b, and c be the vertices of the triangle, so that α is the angle at a,

etc. By applying an isometry of DP that takes c to the origin followed by a

suitable rotation about the origin (i.e. another isometry), we can assume that

c = 0 ∈ DP and that a > 0. By Proposition 11.3.4,

a = tanh
1

2
B, b = eiγtanh

1

2
A.

Now

coshA = cosh2
1

2
A+ sinh2

1

2
A =

1 + tanh2 1
2A

sech2 1
2A

=
1 + tanh2 1

2A

1− tanh2 1
2A

=
1 + |a|2
1− |a|2

and by Proposition 11.3.4 again

tanh
1

2
C =

|b− a|
|1− āb| ,

so

coshC =
1 + tanh2 1

2C

1− tanh2 1
2C

=
|1− āb|2 + |b− a|2
|1− āb|2 − |b− a|2

=
(1− āb)(1− ab̄) + (b− a)(b̄ − ā)

(1− āb)(1− ab̄)− (b− a)(b̄ − ā)

=
1 + |a|2 + |b|2 + |a|2|b|2 − 2(āb+ ab̄)

1− |a|2 − |b|2 + |a|2|b|2

=
(1 + |a|2)(1 + |b|2)− 2(āb+ ab̄)

(1− |a|2)(1− |b|2)

= coshA coshB − 4 cos γ
tanh 1

2A tanh 1
2B

(1− tanh2 1
2A)(1− tanh2 1

2B)

= coshA coshB − sinhA sinhB cos γ,

using sinhA = 2 sinh 1
2A cosh 1

2A.
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In particular, we have the hyperbolic analogue of Pythagoras’ theorem:

Corollary 11.3.7

Suppose that a hyperbolic triangle has sides of lengths A,B, and C and that

the angle opposite the side of length C is a right angle. Then,

coshC = coshA coshB.

Further results in hyperbolic trigonometry can be found in the exercises.

EXERCISES

11.3.1 Prove Proposition 11.3.4.

11.3.2 Let l and m be hyperbolic lines in DP that intersect at right angles.

Prove that there is an isometry of DP that takes l to the real axis

and m to the imaginary axis. How many such isometries are there?

11.3.3 Show that the Möbius transformations that take DP to itself are

those of the form

z �→ az + b

b̄z + ā
, |a| > |b|.

Recall (Exercise 6.5.4) that these are unitary Möbius transforma-

tions.

11.3.4 Show that the isometries of DP are the transformations of the fol-

lowing two types:

z �→ az + b

b̄z + ā
, z �→ az̄ + b

b̄z̄ + ā
,

where a and b are complex numbers such that |a| > |b|. Note that

this and the preceding exercise show that the isometries of DP are

exactly the Möbius and conjugate-Möbius transformations that take

DP to itself.

11.3.5 Prove that every isometry of DP is the composite of finitely many

isometries of the two types in Proposition 11.3.3.

11.3.6 Consider a hyperbolic triangle with vertices a, b, and c, sides of length

A,B, and C and angles α, β, and γ (so that A is the length of the

side opposite a and α is the angle at a, etc.). Prove the hyperbolic

sine rule
sinα

sinhA
=

sinβ

sinhB
=

sin γ

sinhC
.
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11.3.7 With the notation in the preceding exercise, suppose that γ = π/2.

Prove that:

(i) cosα = sinhB coshA
sinhC .

(ii) coshA = cosα
sin β .

(iii) sinhA = tanhB
tan β .

11.3.8 With the notation in Exercise 11.3.6, prove that

coshA =
cosα+ cosβ cos γ

sinβ sin γ
.

This is the formula we promised at the end of Section 11.2 for the

lengths of the sides of a hyperbolic triangle in terms of its angles.

11.3.9 Show that if R2 is provided with the first fundamental form

4(du2 + dv2)

(1 + u2 + v2)2
,

the stereographic projection map Π : S2\{north pole} → R
2 defined

in Example 6.3.5 is an isometry. Note the similarity between this

formula and that in Proposition 11.3.2: the plane with this first fun-

damental form provides a ‘model’ for the sphere in the same way as

the half-plane with the first fundamental form in Proposition 11.3.2

is a ‘model’ for the pseudosphere.

11.4 Hyperbolic parallels

In Euclidean plane geometry, there are many equivalent criteria for two lines l

and m to be parallel. For example:

(i) l and m do not intersect.

(ii) l and m have a common perpendicular line.

(iii) l and m are a constant distance apart.

(A fourth criterion is considered in Exercise 11.4.3.) In hyperbolic geometry,

these conditions are not equivalent. In fact, two distinct hyperbolic lines are

never a constant distance apart (see Exercise 11.4.2), so (iii) is not relevant to

the discussion of parallels in hyperbolic geometry. Further, it is clear that in

hyperbolic geometry (i) does not imply (ii) (consider two half-line geodesics in

H, for example), so we must distinguish two cases:
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Definition 11.4.1

Let l and m be hyperbolic lines in DP that do not intersect at any point of

DP . If l and m intersect at a point of the boundary of DP they are said to be

parallel; otherwise they are said to be ultra-parallel.

In the diagram below, l and m are parallel, and l and n are ultra-parallel.

n

l m

We have already noted (Proposition 11.1.3(ii)) that the parallel axiom does

not hold in hyperbolic geometry. In fact, if a is a point that is not on a

hyperbolic line l, there are infinitely many hyperbolic lines through a that

do not intersect l (see Exercise 11.1.1). The following result shows that exactly

two of these hyperbolic lines are parallel to l.

Proposition 11.4.2

Suppose that a ∈ DP is a point not on a hyperbolic line l. Then, there are

exactly two hyperbolic lines, say m and m′, passing through a that are parallel

to l. The angle between m and m′ at a is 2Π, where

sinΠ = sechd,

and d is the hyperbolic distance of a from l (Exercise 11.1.3). Moreover, a

hyperbolic line through a intersects l if and only if it lies between m and m′

on the same side of a as l, and the hyperbolic line through a perpendicular to

l bisects the angle between m and m′.
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The angle Π is called the angle of parallelism.

ΠΠ

l

m

a

m�

Proof

We first show that there is an isometry of DP that takes l to the real axis and

a to a point on the imaginary axis. In that case, all the assertions made in the

proposition are clear, except for the formula for Π.

Π

Π

0

a

c

r

R

Let ã = P−1(a), l̃ = P−1 (l). There is an isometry F of H that takes l̃ to

the imaginary axis; let b = F (ã). The isometry D1/|b| takes b to a point on the

unit circle v2 + w2 = 1 and fixes the imaginary axis. Now note that P takes

the imaginary axis in H to the real axis in DP and the unit circle in H to the

imaginary axis in DP .
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We can therefore assume that l is the real axis and that a = ir where

r = tanh 1
2d by Proposition 11.3.4. The circle m through a that touches the

real axis at 1 has centre c = 1 + iR and radius R for some R > 0, and so has

equation

|z − 1− iR| = R.

Since m passes through ir, we have | − 1 + i(r −R)| = R, which gives

R =
1 + r2

2r
.

In the right-angled (Euclidean) triangle with vertices a, iR and c, the hy-

potenuse is perpendicular to m, so the angle of the triangle at a is π/2−Π (see

the diagram above). Hence, by Euclidean trigonometry,

R sinΠ = R− r

and we get

sinΠ = 1− r

R
= 1− 2r2

1 + r2
=

1− r2

1 + r2
=

1− tanh2 1
2d

1 + tanh2 1
2d

=
1

coshd
.

As we mentioned above, one characterization of parallel lines in Euclidean

plane geometry is that such lines have a common perpendicular. In hyperbolic

geometry, this property characterizes ultra-parallels:

Proposition 11.4.3

Two hyperbolic lines in DP are ultra-parallel if and only if they have a common

perpendicular (i.e., a hyperbolic line that intersects them both at right-angles).

In that case the common perpendicular is unique.

l
m

n
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In Euclidean plane geometry, of course, two parallel lines have infinitely

many common perpendiculars.

Proof

Suppose first that l and m are hyperbolic lines in DP that have a common

perpendicular n which intersects them at the points a and b. We can assume

that l and n are the real and imaginary axes, respectively, and that a is the

origin (see Exercise 11.3.2). Then m is part of a circle with centre at some point

iR on the imaginary axis, where |R| > 1. Since m intersects C at right angles,

the radius r of C satisfies

R2 = r2 + 1.

In particular, |R| > r, so m does not intersect the real axis. Hence, l and m are

ultra-parallel.

Conversely, suppose that l and m are ultra-parallel. As before, we can as-

sume that l is the real axis. Suppose that m is the circle with centre a and

radius r; then, as above,

|a|2 = r2 + 1. (11.5)

We claim that

− 1 < Re(a) < 1. (11.6)

Indeed, m intersects the real axis at a point v if and only if

|v − a| = r.

In view of (11.5), this gives

v2 − 2vRe(a) + 1 = 0. (11.7)

If |Re(a)| > 1, Eq. 11.7 has two distinct real roots whose product is equal to

1, hence one root v satisfies −1 < v < 1. This means that l and m intersect in

DP , contrary to assumption. Similarly, if |Re(a)| = 1, Eq. 11.10 has ±1 as a

repeated root, so l touches m at 1 or −1 on the boundary of DP , again contrary

to assumption. Hence, (11.6) must hold.

We now consider a circle with centre b on the real axis and radius s. This

intersects both m and C at right angles if and only if

b2 = s2 + 1 and |b− a|2 = r2 + s2.

If Re(a) �= 0, these equations have the unique solution

b =
1

Re(a)
, s =

√
(Re(a)−2 − 1,
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and the corresponding circle n is the unique common perpendicular to l and

m. If Re(a) = 0, it is clear that the imaginary axis is the unique common

perpendicular.

EXERCISES

11.4.1 Which pairs of hyperbolic lines in H are parallel? Ultra-parallel?

11.4.2 Let l be the imaginary axis in H. Show that, for any R > 0, the set

of points that are a distance R from l is the union of two half-lines

passing through the origin, but that these half-lines are not hyper-

bolic lines. This contrasts with the situation in Euclidean geometry,

in which the set of points at a fixed distance from a line is a pair of

lines.

11.4.3 Let a and b be two distinct points in DP , and let 0 < A < π. Show

that the set of points c ∈ DP such that the hyperbolic triangle with

vertices a, b and c has area A is the union of two segments of lines

or circles, but that these are not hyperbolic lines. Note that this

equal-area property could be used to characterize lines in Euclidean

geometry.

11.5 Beltrami–Klein model

The final model of non-Euclidean geometry that we shall discuss was actually

the first to be introduced by Beltrami, but it was Klein who realised that this

model could be used to unify non-Euclidean geometry with projective geometry,

a subject that has been studied since antiquity. (We do not assume that the

reader is familiar with projective geometry.)

The model is constructed by using two projections of the unit sphere S2.

We recall the stereographic projection map Π (Example 6.3.5) from S2 to the

xy-plane. This map defines a diffeomorphism from the ‘southern hemisphere’

S2
− = {(x, y, z) ∈ S2 | z < 0}

to the unit disc

D = {(x, y, 0) ∈ R
3 |x2 + y2 < 1}.

We shall also need the ‘vertical’ projection of R3 onto the xy-plane:

pr(x, y, z) = (x, y, 0).
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This also defines a diffeomorphism from S2
− to D. Hence, the composite map

K = pr ◦Π−1 : D → D
is a diffeomorphism. It is easy to see (Exercise 11.5.1) that, if we identify the

xy-plane with C by (x, y, 0) �→ x+ iy as usual, then

K(z) =
2z

|z|2 + 1
, z ∈ D. (11.8)

Definition 11.5.1

The Beltrami-Klein model DK of non-Euclidean geometry is the disc D
equipped with the first fundamental form for which the diffeomorphism

K : DP → DK
is an isometry.

We shall not need to know the first fundamental form of DK explicitly (it

was actually computed in Exercise 8.3.1(iii)).

The Beltrami-Klein model has the following remarkable property.

Proposition 11.5.2

The hyperbolic lines in the Beltrami-Klein model are the (Euclidean) straight

line segments contained in the disc DK .



11.5 Beltrami–Klein model 297

Proof 11.5.2 Let l be the line segment joining points a and b on C. The curve on
S2
− that corresponds to � under the projection pr is the intersection of S2 with

the plane perpendicular to the xy-plane that contains �. This is a semicircle m,

say, that intersects C at right angles at a and b.

N

b

a

`

m

Π(m)

Since Π is a conformal map that takes circles on S2 to lines and circles

in the xy-plane (see Example 6.3.5 and Exercise 6.3.7), Π (m) is an arc of a

circle in D that intersects the boundary of D at right angles, in other words a

hyperbolic line in DP . It follows that every line segment in DK is a hyperbolic

line. Since there is a line segment passing through any given point of DK
in any given direction, these must be all of the hyperbolic lines in DK (see

Proposition 9.2.4).

Corollary 11.5.3

DK is not a conformal model of hyperbolic geometry.

Proof

Consider a hyperbolic triangle in DK . By Proposition 11.5.2 this is also a

Euclidean triangle, so the sum of its internal Euclidean angles is π. But, by

Theorem 11.1.5, the sum of its internal hyperbolic angles is < π.

The isometries of DK can, of course, be deduced from those of DP by using

the isometry K. For example, any rotation about the origin is an isometry of

DK . For, if ρθ is such a rotation by an angle θ, so that ρθ(z) = eiθz, it is clear

from Eq. 11.8 that K ◦ ρθ ◦ K−1 = ρθ and we know that ρθ is an isometry of

DP (see the remarks following the proof of Proposition 11.3.3). But to proceed

further, it is more instructive to take a different, and more geometric, approach.
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Πa(z)

q

r

a

z

p

s

If a ∈ C and |a| > 1, define the perspectivity

Πa : DK → DK
with centre a as follows. Let z ∈ DK and let l be any hyperbolic line in DK
passing through z. Thus, l is a (Euclidean) line segment that intersects C at

two points, say p and q. Let the lines through a and p and through a and q

intersect C again at r and s, respectively (if the line through a and p happens

to be tangent to C at p, then r = p; and similarly for the line through a and

q). Then, Πa(z) is defined to be the point of intersection of the line through a

and z with the line through r and s (see the diagram above).

Of course, it is not obvious that this definition makes sense, i.e., that Πa(z)

depends only on z (and a) and not on the choice of the line l, but this follows

from

Proposition 11.5.4

With the above notation,

Πa = K ◦ Ia,r ◦ K−1,

where r =
√|a|2 − 1. In particular, Πa is an isometry of DK .

To prove this we need
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Lemma 11.5.5

Let l and m be hyperbolic lines in DK and suppose that these lines intersect

C at the points b, c and d, e, respectively. Suppose that the tangents to C at b

and c intersect at a, and that the extension of m passes through a. Then, l and

m intersect at right angles in the hyperbolic sense.

l

m

b

c

a

e

d
K−1(m)

K−1(l)

Proof 11.5.5 The hyperbolic lines K−1(l) and K−1(m) in DP corresponding to l

and m are circular arcs that intersect C at right angles at the points b, c and d, e,

respectively. Let I be the inversion in the circle of whichK−1(l) is an arc, so that

I is an isometry of DP (see Appendix 2, especially PropositionA.2.8). Now I
takesK−1(m) to a circular arc that intersects C at right angles (CorollaryA.2.7),

and it obviously interchanges the points d and e. It follows that I pre-

serves K−1(m). This implies that K−1(l) and K−1(m) are perpendicular in the

Euclidean sense (PropositionA.2.8), and hence in the hyperbolic sense since

DP is a conformal model. Since K : DP → DK is an isometry, l and m are per-

pendicular in the hyperbolic sense.

Proof 11.5.4 Let the tangents from a to C touch it at b and c, let m be the line

segment with endpoints b, c and let the line through a and z intersect C at t

and u. Let l be any line passing through z and let l intersect C at p, q. Let r, s
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be the points of C such that the lines through p and r and through q and s

pass through a, let n be the line segment with endpoints r, s and let u be the

point of intersection of C with the line o passing through a and z. Since z is

the intersection of l and o, K−1(z) is the intersection of K−1(l) and K−1(o);

similarly, K−1(Πa(z)) is the intersection of K−1(n) and K−1(o).

l

n

o

m
at

u

s
c

r
b

By Lemma 11.5.5,m and o are perpendicular in DK , so K−1(m) and K−1(o)

are perpendicular in DP . It follows that Ia,r fixes K−1(o). Since Ia,r takes p to r
and q to s, it takes K−1(l) to K−1(n). Hence, Ia,r takes K−1(z) to K−1(Πa(z)):

Ia,r(K−1(z)) = K−1(Πa(z)).

This is what we wanted to prove.

Now that we have the isometries Πa at our disposal, we can prove a beautiful

formula for the distance between two points of DK . For this, we shall need the

following concept from projective geometry.

Definition 11.5.6

If a, b, c, and d are distinct complex numbers, their cross-ratio is

(a, b; c, d) =
(a− c)(b− d)

(a− d)(b − c)
.

Proposition 11.5.7

Suppose that the points a, b, c, and d lie on a line and that a and b are between

c and d. Then, (a, b; c, d) > 0. Moreover, if p is a point distinct from a, b, c,
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and d and if the lines through p and each of the points a, b, c, and d intersect

another line at a′, b′, c′, and d′, then

(a, b; c, d) = (a′, b′; c′, d′).

This result is expressed by saying that the cross-ratio is a ‘projective

invariant’: the cross-ratio of four points on a line is unchanged when they are

‘projected’ from some point p onto another line.

Proof

Let l be the line containing a, b, c, and d. Since a and b are on the ‘same side’

of l relative to c, arg(a− c) = arg(b − c), so

a− c

b − c
=

|a− c|
|b − c| .

Similarly,
b− d

a− d
=

|b − d|
|a− d| .

Hence,

(a, b; c, d) =
|a− c||b− d|
|a− d||b− c| .

In particular, this cross-ratio is a positive number.

c�

a�

b �
d�

c
a

p

b
d
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Let ∠apb be the angle between the lines through p and a and through p

and b, etc. By the Euclidean sine rule,

|a− c|
sin∠apc =

|p− c|
sin∠pac ,

|a− d|
sin∠apd =

|p− d|
sin∠pad,

|b− c|
sin∠bpc =

|p− c|
sin∠pbc ,

|b − d|
sin∠bpd =

|p− d|
sin∠pbd .

Hence,

(a, b; c, d) =
sin∠apc sin∠bpd
sin∠apd sin∠bpc .

But obviously ∠a′p′c′ = ∠apc, etc., hence the result.

In particular, the cross-ratio (a, b; c, d), with a, b, c, d ∈ DK , is unchanged

if a, b, c, and d are subjected to any perspectivity. Note that the cross-ratio is

also unchanged if a, b, c, and d are subjected to any rotation about the origin,

since this amounts to multiplying each of a, b, c, and d by a non-zero complex

number.

Theorem 11.5.8

Let a, b ∈ DK and let c, d be the points of intersection of the line through a, b

with C. Then, the Beltrami-Klein distance between a and b is

dDK (a, b) =
1

2
| ln(a, b; c, d)|.

Proof

We use a suitable isometry of DK to reduce to the case in which a and b are

real. Let l be the line through c and 1, and m the line through d and −1. We

consider two cases, according to whether l and m are parallel (in the Euclidean

sense) or not.

If l andm are parallel, the line joining c and d passes through the origin, and

a suitable rotation about the origin will take c to 1, d to −1 and a, b to points

a′, b′ on the real axis. Such a rotation is an isometry of DK by the remarks

following Corollary 11.5.3.

Suppose, on the other hand, that l and m intersect at a point p, say. If

|p| > 1, the perspectivity Πp takes c to 1, d to −1 and a, b to points a′, b′ on
the line joining −1 and 1, i.e., the real axis. If |p| < 1, the lines l′ joining c
and −1 and m′ joining d and 1 intersect at a point p′ with |p′| > 1 and the

perspectivity Πp′ takes c to −1, d to 1 and a, b to points a′, b′ on the real axis.
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We compute the distance dDK (a, b) = dDK (a′, b′) by transferring to DP
using the isometry K : DP → DK , so that dDK (a′, b′) = dDP (K−1(a′),K−1(b′)).
Using Proposition 11.3.2, this gives

dDK (a′, b′) =
∫ K−1(b′)

K−1(a′)

2dv

1− v2
= ln

(1 +K−1(b′))(1 −K−1(a′))
(1 +K−1(a′))(1 −K−1(a′))

. (11.9)

Using the formula (11.8) for K, we find that

K−1(λ) =
1

λ
(1−

√
1− λ2), λ ∈ D,

which implies that
1 +K−1(λ)

1−K−1(λ)
=

√
1 + λ

1− λ
.

Using this, (11.9) becomes

dDK (a′, b′) =
1

2
ln

(1 + b′)(1− a′)
(1 − b′)(1 + a′)

. (11.10)

On the other hand, we have seen that there is a perspectivity or a rotation about

the origin that takes (a, b, c, d) to (a′, b′, 1,−1) or (a′, b′,−1, 1) with a′, b′ ∈ R,

and that these transformations of DK leave the cross-ratio unchanged (see the

remarks following the proof of Proposition 11.5.7). In the first case,

(a, b; c, d) = (a′, b′; 1,−1) =
(1− a′)(1 + b′)
(1 + a′)(1 − b′)

,

and in the second case,

(a, b; c, d) = (a′, b′;−1, 1) =
(1 + a′)(1 − b′)
(1− a′)(1 + b′)

,

so in both cases

dDK (a, b) = dDK (a′, b′) =
1

2
| ln(a, b; c, d)|.

EXERCISES

11.5.1 Prove Eq. 11.8.

11.5.2 Extend the definition of cross-ratio in the obvious way to include the

possibility that one of the points is equal to ∞, e.g., (∞, b; c, d) =

(b − d)/(b − c). Show that, if M : C∞ → C∞ is a Möbius transfor-

mation, then

(M(a),M(b);M(c),M(d)) = (a, b; c, d) for all distinct points

a, b, c, d ∈ C∞. (11.11)
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Show, conversely, that ifM : C∞ → C∞ is a bijection satisfying this

condition, then M is a Möbius transformation.

11.5.3 Use the preceding exercise to show that, if (a, b, c) and (a′, b′, c′)
are two triples of distinct points of C∞, there is a unique Möbius

transformation M such that M(a) = a′, M(b) = b′ and M(c) = c′.

11.5.4 Let a, b ∈ C∞ and let d be the spherical distance between the points

of S2 that correspond to a, b under the stereographic projection map

Π (Example 6.3.5). Show that

− tan2
1

2
d =

(
a,−1

ā
; b,−1

b̄

)
.

11.5.5 Show that, if R is the reflection in a line passing through the origin,

then KR = RK. Deduce that R is an isometry of DK .

11.5.6 Show that the isometries of DK are precisely the composites

of (finitely many) perspectivities and reflections in lines passing

through the origin.
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