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Curves in the plane and in space

In this chapter, we discuss two mathematical formulations of the intuitive

notion of a curve. The precise relation between them turns out to be quite

subtle, so we begin by giving some examples of curves of each type and prac-

tical ways of passing between them.

1.1 What is a curve?

If asked to give an example of a curve, you might give a straight line, say

y − 2x = 1 (even though this is not ‘curved’ !), or a circle, say x2 + y2 = 1, or

perhaps a parabola, say y − x2 = 0.

y−2x= 1 y−x2= 0 x2+y2= 1
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2 1. Curves in the plane and in space

All of these curves are described by means of their Cartesian equation

f(x, y) = c,

where f is a function of x and y and c is a constant. From this point of view,

a curve is a set of points, namely

C = {(x, y) ∈ R
2 | f(x, y) = c}. (1.1)

These examples are all curves in the plane R
2, but we can also consider curves

in R
3 – for example, the x-axis in R

3 is the straight line given by

y = 0, z = 0,

and more generally a curve in R
3 might be defined by a pair of equations

f1(x, y, z) = c1, f2(x, y, z) = c2.

Curves of this kind are called level curves, the idea being that the curve in

Eq. 1.1, for example, is the set of points (x, y) in the plane at which the quantity

f(x, y) reaches the ‘level’ c.

But there is another way to think about curves which turns out to be more

useful in many situations. For this, a curve is viewed as the path traced out by

a moving point. Thus, if γ(t) is the position of the point at time t, the curve

is described by a function γ of a scalar parameter t with vector values (in R
2

for a plane curve, in R
3 for a curve in space). We use this idea to give our

first formal definition of a curve in R
n (we shall be interested only in the cases

n = 2 or 3, but it is convenient to treat both cases simultaneously).

Definition 1.1.1

A parametrized curve in R
n is a map γ : (α, β) → R

n, for some α, β with

−∞ ≤ α < β ≤ ∞.

The symbol (α, β) denotes the open interval

(α, β) = {t ∈ R | α < t < β}.
A parametrized curve, whose image is contained in a level curve C, is called

a parametrization of (part of) C. The following examples illustrate how to pass

from level curves to parametrized curves and back again in practice.

Example 1.1.2

Let us find a parametrization γ(t) of the parabola y = x2. If γ(t) =

(γ1(t), γ2(t)), the components γ1 and γ2 of γ must satisfy

γ2(t) = γ1(t)
2 (1.2)
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for all values of t in the interval (α, β) where γ is defined (yet to be decided),

and ideally every point on the parabola should be equal to (γ1(t), γ2(t)) for

some value of t ∈ (α, β). Of course, there is an obvious solution to Eq. 1.2: take

γ1(t) = t, γ2(t) = t2. To get every point on the parabola we must allow t to

take every real number value (since the x-coordinate of γ(t) is just t, and the

x-coordinate of a point on the parabola can be any real number), so we must

take (α, β) to be (−∞,∞). Thus, the desired parametrization is

γ : (−∞,∞) → R
2, γ(t) = (t, t2).

But this is not the only parametrization of the parabola. Another choice is

γ(t) = (t3, t6) (with (α, β) = (−∞,∞)). Yet another is (2t, 4t2), and of course

there are (infinitely many) others. So the parametrization of a given level curve

is not unique.

Example 1.1.3

Now we try the circle x2+y2 = 1. It is tempting to take x = t as in the previous

example, so that y =
√
1− t2 (we could have taken y = −√

1− t2). So we get

the parametrization

γ(t) = (t,
√
1− t2).

But this is only a parametrization of the upper half of the circle because√
1− t2 is always ≥ 0. Similarly, if we had taken y = −√

1− t2, we would only

have covered the lower half of the circle.

If we want a parametrization of the whole circle, we must try again. We

need functions γ1(t) and γ2(t) such that

γ1(t)
2 + γ2(t)

2 = 1 (1.3)

for all t ∈ (α, β), and such that every point on the circle is equal to (γ1(t), γ2(t))

for some t ∈ (α, β). There is an obvious solution to Eq. 1.3: γ1(t) = cos t

and γ2(t) = sin t (since cos2 t + sin2 t = 1 for all values of t). We can take

(α, β) = (−∞,∞), although this is overkill: any open interval (α, β) whose

length is greater than 2π will suffice.

The next example shows how to pass from parametrized curves to level

curves.
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Example 1.1.4

Take the parametrized curve (called an astroid)

γ(t) = (cos3 t, sin3 t), t ∈ R.

Since cos2 t + sin2 t = 1 for all t, the coordinates x = cos3 t, y = sin3 t of the

point γ(t) satisfy

x2/3 + y2/3 = 1.

This level curve coincides with the image of the map γ. See Exercise 1.1.5 for

a picture of the astroid.

In this book, we shall be studying parametrized curves (and later, surfaces)

using methods of calculus. Such curves and surfaces will be described almost

exclusively in terms of smooth functions: a function f : (α, β) → R is said to be

smooth if the derivative dnf
dtn exists for all n ≥ 1 and all t ∈ (α, β). If f(t) and

g(t) are smooth functions, it follows from standard results of calculus that the

sum f(t)+g(t), product f(t)g(t), quotient f(t)/g(t), and composite f(g(t)) are

smooth functions, where they are defined.

To differentiate a vector-valued function such as γ(t) (as in Definition 1.1.1),

we differentiate componentwise: if

γ(t) = (γ1(t), γ2(t), . . . , γn(t)),

then

dγ

dt
=

(
dγ1
dt

,
dγ2
dt
, . . . ,

dγn
dt

)
,

d2γ

dt2
=

(
d2γ1
dt2

,
d2γ2
dt2

, . . . ,
d2γn
dt2

)
, etc.

To save space, we often denote dγ/dt by γ̇(t), d2γ/dt2 by γ̈(t), etc. We say

that γ is smooth if the derivatives dnγ/dtn exist for all n ≥ 1 and all t ∈ (α, β);

this is equivalent to requiring that each of the components γ1, γ2, . . . , γn of γ

is smooth.

From now on, all parametrized curves studied in this book

will be assumed to be smooth.

Definition 1.1.5

If γ is a parametrized curve, its first derivative γ̇(t) is called the tangent vector

of γ at the point γ(t).
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To see the reason for this terminology, note that the vector

γ(t+ δt)− γ(t)

δt

is parallel to the chord joining the points γ(t) and γ(t+δt) of the image C of γ:

γ(t)

γ(t + δt)

As δt tends to zero the length of the chord also tends to zero, but we expect

that the direction of the chord becomes parallel to that of the tangent to C at

γ(t). But the direction of the chord is the same as that of the vector

γ(t+ δt)− γ(t)

δt
,

which tends to dγ/dt as δt tends to zero. Of course, this only determines a well-

defined direction tangent to the curve if dγ/dt is non-zero. If that condition

holds, we define the tangent line to C at a point p of C to be the straight line

passing through p and parallel to the vector dγ/dt.

The following result is intuitively clear:

Proposition 1.1.6

If the tangent vector of a parametrized curve is constant, the image of the curve

is (part of) a straight line.

Proof

If γ̇(t) = a for all t, where a is a constant vector, we have, integrating compo-

nentwise,

γ(t) =

∫
dγ

dt
dt =

∫
a dt = t a+ b,
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where b is another constant vector. If a �= 0, this is the parametric equation of

the straight line parallel to a and passing through the point b:

γ(t)ta

b a
0

If a = 0, the image of γ is a single point (namely, b).

Before proceeding further with our study of curves, we should point out a

potential source of confusion in the discussion of parametrized curves. This is

regarding the question what is a ‘point’ of such a curve? The difficulty can be

seen in the following example.

Example 1.1.7

The limaçon is the parametrized curve

γ(t) = ((1 + 2 cos t) cos t, (1 + 2 cos t) sin t), t ∈ R

(see the diagram below). Note that γ has a self-intersection at the origin in the

sense that γ(t) = 0 for t = 2π/3 and for t = 4π/3. The tangent vector is

γ̇(t) = (− sin t− 2 sin 2t, cos t+ 2 cos 2t).

In particular,

γ̇(2π/3) = (
√
3/2,−3/2), γ̇(4π/3) = (−

√
3/2,−3/2).

So what is the tangent vector of this curve at the origin? Although γ̇(t) is well-

defined for all values of t, it takes different values at t = 2π/3 and t = 4π/3,

both of which correspond to the point 0 on the curve.
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This example shows that we must be careful while talking about a ‘point’

of a parametrized curve γ: strictly speaking, this should be the same thing

as a value of the curve parameter t, and not the corresponding geometric

point γ(t) ∈ R
n. Thus, Definition 1.1.5 should more properly read “If γ is

a parametrized curve, its first derivative γ̇(t) is called the tangent vector of

γ at the parameter value t.” However, it seems to us that to insist on this

distinction takes away from the geometric viewpoint, and we shall sometimes

repeat the ‘error’ committed in the statement of Definition 1.1.5. This should

not lead to confusion if the preceding remarks are kept in mind.

EXERCISES

1.1.1 Is γ(t) = (t2, t4) a parametrization of the parabola y = x2?

1.1.2 Find parametrizations of the following level curves:

(i) y2 − x2 = 1;

(ii) x2

4 + y2

9 = 1.

1.1.3 Find the Cartesian equations of the following parametrized curves:

(i) γ(t) = (cos2 t, sin2 t);

(ii) γ(t) = (et, t2).

1.1.4 Calculate the tangent vectors of the curves in Exercise 1.1.3.

1.1.5 Sketch the astroid in Example 1.1.4. Calculate its tangent vector at

each point. At which points is the tangent vector zero?

1.1.6 Consider the ellipse
x2

p2
+
y2

q2
= 1,
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where p > q > 0 (see below). The eccentricity of the ellipse is ε =√
1− q2

p2 and the points (±εp, 0) on the x-axis are called the foci

of the ellipse, which we denote by f1 and f2. Verify that γ(t) =

(p cos t, q sin t) is a parametrization of the ellipse. Prove that

(i) The sum of the distances from f1 and f2 to any point p on the

ellipse does not depend on p.

(ii) The product of the distances from f1 and f2 to the tangent line

at any point p of the ellipse does not depend on p.

(iii) If p is any point on the ellipse, the line joining f1 and p and

that joining f2 and p make equal angles with the tangent line

to the ellipse at p.

ff2

pp

ff1

1.1.7 A cycloid is the plane curve traced out by a point on the circum-

ference of a circle as it rolls without slipping along a straight line.

Show that, if the straight line is the x-axis and the circle has radius

a > 0, the cycloid can be parametrized as

γ(t) = a(t− sin t, 1− cos t).

1.1.8 Show that γ(t) = (cos2 t− 1
2 , sin t cos t, sin t) is a parametrization of

the curve of intersection of the circular cylinder of radius 1
2 and axis

the z-axis with the sphere of radius 1 and centre (− 1
2 , 0, 0). This is

called Viviani’s Curve – see above.
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1.1.9 The normal line to a curve at a point p is the straight line passing

through p perpendicular to the tangent line at p. Find the tangent

and normal lines to the curve γ(t) = (2 cos t− cos 2t, 2 sin t− sin 2t)

at the point corresponding to t = π/4.

1.2 Arc-length

We recall that, if v = (v1, . . . , vn) is a vector in R
n, its length is

‖ v ‖=
√
v21 + · · ·+ v2n.

If u is another vector in R
n, ‖ u−v ‖ is the length of the straight line segment

joining the points u and v in R
n.

To find a formula for the length of a parametrized curve γ, note that, if δt

is very small, the part of the image C of γ between γ(t) and γ(t+ δt) is nearly

a straight line, so its length is approximately

‖ γ(t+ δt)− γ(t) ‖ .
Again, since δt is small, (γ(t + δt) − γ(t))/δt is nearly equal to γ̇(t), so the

length is approximately

‖ γ̇(t) ‖ δt. (1.4)

If we want to calculate the length of a (not necessarily small) part of C, we
can divide it into segments, each of which corresponds to a small increment δt

in t, calculate the length of each segment using (1.4), and add up the results.

Letting δt tend to zero should then give the exact length.
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This motivates the following definition:

Definition 1.2.1

The arc-length of a curve γ starting at the point γ(t0) is the function s(t)

given by

s(t) =

∫ t

t0

‖ γ̇(u) ‖ du.

Thus, s(t0) = 0 and s(t) is positive or negative according to whether t

is larger or smaller than t0. If we choose a different starting point γ(t̃0), the

resulting arc-length s̃ differs from s by the constant
∫ t̃0
t0

‖ γ̇(u) ‖ du because

∫ t

t0

‖ γ̇(u) ‖ du =

∫ t

t̃0

‖ γ̇(u) ‖ du+

∫ t̃0

t0

‖ γ̇(u) ‖ du.

Example 1.2.2

For a logarithmic spiral

γ(t) = (ekt cos t, ekt sin t),

where k is a non-zero constant, we have

γ̇ = (ekt(k cos t− sin t), ekt(k sin t+ cos t)),

∴ ‖ γ̇ ‖2= e2kt(k cos t− sin t)2 + e2kt(k sin t+ cos t)2 = (k2 + 1)e2kt.

Hence, the arc-length of γ starting at γ(0) = (1, 0) (for example) is

s =

∫ t

0

√
k2 + 1eku du =

√
k2 + 1

k
(ekt − 1).
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The arc-length is a differentiable function. Indeed, if s is the arc-length of

a curve γ starting at γ(t0), we have

ds

dt
=

d

dt

∫ t

t0

‖ γ̇(u) ‖ du = ‖ γ̇(t) ‖ . (1.5)

Thinking of γ(t) as the position of a moving point at time t, ds/dt is the speed

of the point (rate of change of distance along the curve). This suggests the

following definition.

Definition 1.2.3

If γ : (α, β) → R
n is a parametrized curve, its speed at the point γ(t) is ‖ γ̇(t) ‖,

and γ is said to be a unit-speed curve if γ̇(t) is a unit vector for all t ∈ (α, β).

We shall see many examples of formulas and results relating to curves that

take on a much simpler form when the curve is unit-speed. The reason for this

simplification is given in the next proposition. Although this admittedly looks

uninteresting at first sight, it will be extremely useful for what follows.

We recall that the dot product (or scalar product) of vectors a = (a1, . . . , an)

and b = (b1, . . . , bn) in R
n is

a · b =

n∑

i=1

aibi.

If a and b are smooth functions of a parameter t, we shall make use of the

‘product formula’
d

dt
(a · b) = da

dt
· b+ a · db

dt
.

This follows easily from the definition of the dot product and the usual product

formula for scalar functions,

d

dt
(aibi) =

dai
dt
bi + ai

dbi
dt
.

Proposition 1.2.4

Let n(t) be a unit vector that is a smooth function of a parameter t. Then, the

dot product
ṅ(t) · n(t) = 0

for all t, i.e., ṅ(t) is zero or perpendicular to n(t) for all t.

In particular, if γ is a unit-speed curve, then γ̈ is zero or perpendicular

to γ̇.
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Proof

Using the product formula to differentiate both sides of the equation n · n = 1

with respect to t gives

ṅ · n+ n · ṅ = 0,

so 2ṅ · n = 0. The last part follows by taking n = γ̇.

EXERCISES

1.2.1 Calculate the arc-length of the catenary γ(t) = (t, cosh t) starting at

the point (0, 1). This curve has the shape of a heavy chain suspended

at its ends – see Exercise 2.2.4.

1.2.2 Show that the following curves are unit-speed:

(i) γ(t) =
(

1
3 (1 + t)3/ 2, 13 (1 − t)3/ 2, t√

2

)
.

(ii) γ(t) =
(
4
5 cos t, 1− sin t,− 3

5 cos t
)
.

1.2.3 A plane curve is given by

γ(θ) = (r cos θ, r sin θ),

where r is a smooth function of θ (so that (r, θ) are the polar coor-

dinates of γ(θ)). Under what conditions is γ regular? Find all func-

tions r(θ) for which γ is unit-speed. Show that, if γ is unit-speed,

the image of γ is a circle; what is its radius?

1.2.4 This exercise shows that a straight line is the shortest curve joining

two given points. Let p and q be the two points, and let γ be a curve

passing through both, say γ(a) = p, γ(b) = q, where a < b. Show

that, if u is any unit vector,

γ̇ · u ≤‖ γ̇ ‖
and deduce that

(q− p) · u ≤
∫ b

a

‖ γ̇ ‖ dt.

By taking u = (q− p)/ ‖ q− p ‖, show that the length of the part

of γ between p and q is at least the straight line distance ‖ q−p ‖.
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1.3 Reparametrization

We saw in Examples 1.1.2 and 1.1.3 that a given level curve can have many

parametrizations, and it is important to understand the relation between them.

Definition 1.3.1

A parametrized curve γ̃ : (α̃, β̃) → R
n is a reparametrization of a parametrized

curve γ : (α, β) → R
n if there is a smooth bijective map φ : (α̃, β̃) → (α, β)

(the reparametrization map) such that the inverse map φ−1 : (α, β) → (α̃, β̃) is

also smooth and
γ̃(t̃) = γ(φ(t̃)) for all t̃ ∈ (α̃, β̃). (1.6)

Note that, since φ has a smooth inverse, γ is a reparametrization of γ̃:

γ̃(φ−1(t)) = γ(φ(φ−1(t))) = γ(t) for all t ∈ (α, β).

Two curves that are reparametrizations of each other have the same image,

so they should have the same geometric properties.

Example 1.3.2

In Example 1.1.3, we found that the circle x2 + y2 = 1 has a parametrization

γ(t) = (cos t, sin t). Another parametrization is

γ̃(t) = (sin t, cos t)

(since sin2 t + cos2 t = 1). To see that γ̃ is a reparametrization of γ, we have

to find a reparametrization map φ such that

(cosφ(t), sinφ(t)) = (sin t, cos t).

One solution is φ(t) = π/2− t.

As we remarked in Section 1.2, the analysis of a curve is simplified when

it is known to be unit-speed. It is therefore important to know exactly which

curves have unit-speed reparametrizations.

Definition 1.3.3

A point γ(t) of a parametrized curve γ is called a regular point if γ̇(t) �= 0;

otherwise γ(t) is a singular point of γ. A curve is regular if all of its points are

regular.
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Before we show the relation between regularity and unit-speed reparametri-

zation, we note two simple properties of regular curves. Although these results

are not particularly appealing, they are very important for what is to follow.

Proposition 1.3.4

Any reparametrization of a regular curve is regular.

Proof

Suppose that γ and γ̃ are related as in Definition 1.3.1, let t = φ(t̃) and ψ = φ−1

so that t̃ = ψ(t). Differentiating both sides of the equation φ(ψ(t)) = t with

respect to t and using the chain rule gives

dφ

dt̃

dψ

dt
= 1.

This shows that dφ/dt̃ is never zero. Since γ̃(t̃) = γ(φ(t̃)), another application

of the chain rule gives
dγ̃

dt̃
=
dγ

dt

dφ

dt̃
,

which shows that dγ̃/dt̃ is never zero, if dγ/dt is never zero.

Proposition 1.3.5

If γ(t) is a regular curve, its arc-length s (see Definition 1.2.1), starting at any

point of γ, is a smooth function of t.

Proof

We have already seen that (whether or not γ is regular) s is a differentiable

function of t and
ds

dt
= ‖ γ̇(t) ‖ .

To simplify the notation, assume from now onwards that γ is a plane

curve, say

γ(t) = (u(t), v(t)),

where u and v are smooth functions of t, so that

ds

dt
=

√
u̇2 + v̇2.



1.3 Reparametrization 15

The crucial point is that the function f(x) =
√
x is a smooth function on

the open interval (0,∞). Indeed, it is easy to prove by induction on n ≥ 1 that

dnf

dxn
= (−1)n−1 1.3.5. . . . .(2n− 1)

2n
x−(2n+1)/2.

Since u and v are smooth functions of t, so are u̇ and v̇ and hence is u̇2 + v̇2.

Since γ is regular, u̇2 + v̇2 > 0 for all values of t, so the composite function

ds

dt
= f(u̇2 + v̇2)

is a smooth function of t, and hence s itself is smooth.

The main result we want is the following.

Proposition 1.3.6

A parametrized curve has a unit-speed reparametrization if and only if it is

regular.

Proof

Suppose first that a parametrized curve γ : (α, β) → R
n has a unit-speed

reparametrization γ̃, with reparametrization map φ. Letting t = φ(t̃), we have

γ̃(t̃) = γ(t) and so

dγ̃

dt̃
=
dγ

dt

dt

dt̃
,

∴
∣
∣
∣
∣

∣
∣
∣
∣
dγ̃

dt̃

∣
∣
∣
∣

∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣
dγ

dt

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
dt

dt̃

∣
∣
∣
∣ .

Since γ̃ is unit-speed, ‖ dγ̃/dt̃ ‖= 1, so dγ/dt cannot be zero.

Conversely, suppose that the tangent vector dγ/dt is never zero. By Eq. 1.5,

ds/dt > 0 for all t, where s is the arc-length of γ starting at any point of the

curve, and by Proposition 1.3.5 s is a smooth function of t. It follows from

the inverse function theorem that s : (α, β) → R is injective, that its image

is an open interval (α̃, β̃), and that the inverse map s−1 : (α̃, β̃) → (α, β) is

smooth. (Readers unfamiliar with the inverse function theorem should accept

these statements for now; the theorem will be discussed informally in Section 1.5

and formally in Section 5.6.) We take φ = s−1 and let γ̃ be the corresponding

reparametrization of γ, so that γ̃(s) = γ(t) (see Eq. 1.6). Then,

dγ̃

ds

ds

dt
=
dγ

dt
,
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∴
∣
∣
∣∣

∣
∣
∣∣
dγ̃

ds

∣
∣
∣∣

∣
∣
∣∣
ds

dt
=

∣
∣
∣∣

∣
∣
∣∣
dγ

dt

∣
∣
∣∣

∣
∣
∣∣ =

ds

dt
(by Eq. 1.5),

∴
∣
∣
∣
∣

∣
∣
∣
∣
dγ̃

ds

∣
∣
∣
∣

∣
∣
∣
∣ = 1.

The proof of Proposition 1.3.6 shows that the arc-length is essentially the

only unit-speed parameter on a regular curve:

Corollary 1.3.7

Let γ be a regular curve and let γ̃ be a unit-speed reparametrization of γ:

γ̃(u(t)) = γ(t) for all t,

where u is a smooth function of t. Then, if s is the arc-length of γ (starting at

any point), we have

u = ±s+ c, (1.7)

where c is a constant. Conversely, if u is given by Eq. 1.7 for some value of c

and with either sign, then γ̃ is a unit-speed reparametrization of γ.

Proof

The calculation in the first part of the proof of Proposition 1.3.6 shows that u

gives a unit-speed reparametrization of γ if and only if

du

dt
= ±

∣
∣
∣∣

∣
∣
∣∣
dγ

dt

∣
∣
∣∣

∣
∣
∣∣ = ±ds

dt
(by Eq. 1.5),

which is equivalent to u = ±s+ c for some constant c.

Although every regular curve has a unit-speed reparametrization, this may

be very complicated, or even impossible, to write down ‘explicitly’, as the fol-

lowing examples show.

Example 1.3.8

For the logarithmic spiral γ(t) = (ekt cos t, ekt sin t), we found in Example 1.2.2

that ‖ γ̇ ‖2= (k2 + 1)e2kt. This is never zero, so γ is regular. The arc-

length of γ starting at (1, 0) was found to be s =
√
k2 + 1(ekt − 1)/k. Hence,

t = 1
k ln

(
ks√
k2+1

+ 1
)
, so a unit-speed reparametrization of γ is given by the

rather unwieldy formula
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γ̃(s) =

((
ks√
k2 + 1

+ 1

)
cos

(
1

k
ln

(
ks√
k2 + 1

+ 1

))
,

(
ks√
k2 + 1

+ 1

)
sin

(
1

k
ln

(
ks√
k2 + 1

+ 1

)))
.

Example 1.3.9

The twisted cubic is the space curve given by

γ(t) = (t, t2, t3), t ∈ R.

We have γ̇(t) = (1, 2t, 3t2) and so

‖ γ̇(t) ‖=
√
1 + 4t2 + 9t4.

This is never zero, so γ is regular. The arc-length starting at γ(0) = 0 is

s =

∫ t

0

√
1 + 4u2 + 9u4 du.

This integral cannot be evaluated in terms of familiar functions like logarithms

and exponentials, and trigonometric functions. (It is an example of an elliptic

integral.)

Our final example shows that a given level curve can have both regular and

non-regular parametrizations.

Example 1.3.10

For the parametrization γ(t) = (t, t2) of the parabola y = x2, γ̇(t) = (1, 2t) is

obviously never zero, so γ is regular. But γ̃(t) = (t3, t6) is also a parametrization

of the same parabola. This time, ˙̃γ = (3t2, 6t5), and this is zero when t = 0, so

γ̃ is not regular.
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EXERCISES

1.3.1 Which of the following curves are regular?

(i) γ(t) = (cos2 t, sin2 t) for t ∈ R.

(ii) The same curve as in (i), but with 0 < t < π/2.

(iii) γ(t) = (t, cosh t) for t ∈ R.

Find unit-speed reparametrizations of the regular curve(s).

1.3.2 The cissoid of Diocles (see below) is the curve whose equation in

terms of polar coordinates (r, θ) is

r = sin θ tan θ, −π/2 < θ < π/2.

Write down a parametrization of the cissoid using θ as a parameter

and show that

γ(t) =

(
t2,

t3√
1− t2

)
, −1 < t < 1

is a reparametrization of it.

1.3.3 The simplest type of singular point of a curve γ is an ordinary cusp:

a point p of γ, corresponding to a parameter value t0, say, is an

ordinary cusp if γ̇(t0) = 0 and the vectors γ̈(t0) and
...
γ (t0) are

linearly independent (in particular, these vectors must both be non-

zero). Show that:

(i) The curve γ(t) = (tm, tn), where m and n are positive integers,

has an ordinary cusp at the origin if and only if (m,n) = (2, 3)

or (3, 2).
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(ii) The cissoid in Exercise 1.3.2 has an ordinary cusp at the origin.

(iii) If γ has an ordinary cusp at a point p, so does any

reparametrization of γ.

1.3.4 Show that:

(i) If γ̃ is a reparametrization of a curve γ, then γ is a

reparametrization of γ̃.

(ii) If γ̃ is a reparametrization of γ, and γ̂ is a reparametrization of

γ̃, then γ̂ is a reparametrization of γ.

1.4 Closed curves

It is obvious that some curves ‘close up’, like a circle or an ellipse, while some do

not, like a straight line or a parabola. If a point moves, say at constant speed,

around a curve that closes up, it will return to its starting point after some time

interval, and will then trace out the same curve all over again. On the other

hand, if a point moves at constant speed along a straight line or a parabola, it

will never return to its starting point. But there are some intermediate cases like

γ(t) = (t2 − 1, t3 − t);

a point moving at constant speed along this curve may return to its starting

point if the starting point is the origin, but will not do so otherwise. So a careful

definition of what it means for a curve to ‘close up’ is needed.
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Definition 1.4.1

Let γ : R → R
n be a smooth curve and let T ∈ R. We say that γ is

T -periodic if
γ(t+ T ) = γ(t) for all t ∈ R.

If γ is not constant and is T -periodic for some T �= 0, then γ is said to be

closed.

Thus, if γ is T -periodic, a point moving around γ returns to its starting

point after time T , whatever the starting point is. Of course, every curve is

0-periodic.

Remark

If γ is T -periodic, it is clear that γ is determined by its restriction to any

interval of length |T |. Conversely, closed curves are often given to us as curves

defined on a closed interval, say γ : [a, b] → R
n. If γ and all its derivatives take

the same value at a and b,1 there is a unique way to extend γ to a (b − a)-

periodic (smooth) curve γ : R → R
n. Thus, the discussion below can be applied

to curves defined on closed intervals.

It is clear that if a curve γ is T -periodic then it is (−T )-periodic because

γ(t− T ) = γ((t− T ) + T ) = γ(t).

It follows that if γ is T -periodic for some T �= 0, then it is T -periodic for some

T > 0.

Definition 1.4.2

The period of a closed curve γ is the smallest positive number T such that γ

is T -periodic.

It is actually not quite obvious that this number T exists (remember that

not every set of positive real numbers has a smallest element). A proof that it

does exist can be found in the exercises.

Example 1.4.3

The ellipse γ(t) = (p cos t, q sin t) (Exercise 1.1.6) is a closed curve with period

2π because both of its components are (by well-known properties of trigono-

metric functions).

1 The derivatives at the endpoints a and b must be defined in the one-sided sense.
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If γ is a regular closed curve, a unit-speed reparametrization of γ is always

closed. To see this, note that since every point in the image of a closed curve

γ of period T is traced out as the parameter t of γ varies through any interval

of length T , for example, 0 ≤ t ≤ T , it is reasonable to define the length of γ

to be

�(γ) =

∫ T

0

‖ γ̇(t) ‖ dt.

By the proof of Proposition 1.3.6, using the arc-length

s =

∫ t

0

‖ γ̇(u) ‖ du

of γ as the parameter gives a unit-speed reparametrization γ̃ of γ (so that

γ̃(s) = γ(t)). Note that

s(t+ T )=

∫ t+T

0

‖ γ̇(u) ‖du =

∫ T

0

‖ γ̇(u) ‖du+
∫ t+T

T

‖ γ̇(u) ‖du = �(γ) + s(t),

since, putting v = u−T and using γ(u−T ) = γ(u) (and hence by differentiation

γ̇(u− T ) = γ̇(u)), we get

∫ t+T

T

‖ γ̇(u) ‖ du =

∫ t

0

‖ γ̇(v) ‖ dv = s(t).

Hence,

γ̃(s(t)) = γ̃(s(t′)) ⇐⇒ γ(t) = γ(t′) ⇐⇒ t′ − t = kT ⇐⇒ s(t′)− s(t) = k�(γ),

where k is an integer. This shows that γ̃ is a closed curve with period �(γ).

Note that, since γ̃ is unit-speed, this is also the length of γ̃. In short, we can

always assume that a closed curve is unit-speed and that its period is equal to

its length.

Returning to the curve illustrated at the beginning of this section, it is

clearly not closed; nevertheless, if a point starts at the origin and moves at

constant speed around the loop in the region x < 0 it will return to its starting

point. This suggests the following definition.

Definition 1.4.4

A curve γ is said to have a self-intersection at a point p of the curve if there

exist parameter values a �= b such that

(i) γ(a) = γ(b) = p, and

(ii) if γ is closed with period T , then a− b is not an integer multiple of T .
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Example 1.4.5

The limaçon in Example 1.1.7 is a closed curve with period 2π. It is clear from

the picture that it has exactly one self-intersection, at the origin. (This can also

be verified analytically – cf. Exercise 1.4.1 and its solution.)

EXERCISES

1.4.1 Show that the Cayley sextic

γ(t) = (cos3 t cos 3t, cos3 t sin 3t), t ∈ R,

is a closed curve which has exactly one self-intersection. What is

its period? (The name of this curve derives from the fact that its

Cartesian equation involves a polynomial of degree 6.)

1.4.2 Give an example to show that a reparametrization of a closed curve

need not be closed.

1.4.3 Show that if a curve γ is T1-periodic and T2-periodic, then it is

(k1T1 + k2T2)-periodic for any integers k1, k2.

1.4.4 Let γ : R → R
n be a curve and suppose that T0 is the smallest pos-

itive number such that γ is T0-periodic. Prove that γ is T -periodic

if and only if T = kT0 for some integer k.

1.4.5 Suppose that a non-constant function γ : R → R is T -periodic for

some T �= 0. This exercise shows that there is a smallest positive

T0 such that γ is T0-periodic. The proof uses a little real analysis.

Suppose for a contradiction that there is no such T0.

(i) Show that there is a sequence T1, T2, T3, . . . such that T1 > T2 >

T3 > · · · > 0 and that γ is Tr-periodic for all r ≥ 1.

(ii) Show that the sequence {Tr} in (i) can be chosen so that Tr → 0

as r → ∞.

(iii) Show that the existence of a sequence {Tr} as in (i) such that

Tr → 0 as r → ∞ implies that γ is constant.

1.4.6 Let γ : R → R
n be a non-constant curve that is T -periodic for some

T > 0. Show that γ is closed.
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1.5 Level curves versus parametrized curves

We shall now try to clarify the relation between the two types of curves we

have considered in previous sections.

Level curves in the generality we have defined them are not always the

kind of objects we would want to call curves. For example, the level ‘curve’

x2 + y2 = 0 is a single point. The correct conditions to impose on a function

f(x, y) in order that f(x, y) = c, where c is a constant, will be an acceptable

level curve in the plane are contained in the following theorem, which shows

that such level curves can be parametrized. Note that we might as well assume

that c = 0 (since we can replace f by f − c).

Theorem 1.5.1

Let f(x, y) be a smooth function of two variables (which means that all the par-

tial derivatives of f , of all orders, exist and are continuous functions). Assume

that, at every point of the level curve

C = {(x, y) ∈ R
2 | f(x, y) = 0},

∂f/∂x and ∂f/∂y are not both zero. If p is a point of C, with coordinates

(x0, y0), say, there is a regular parametrized curve γ(t), defined on an open

interval containing 0, such that γ passes through p when t = 0 and γ(t) is

contained in C for all t.

The proof of this theorem makes use of the inverse function theorem (one

version of which has already been used in the proof of Proposition 1.3.6). For the

moment, we shall only try to convince the reader of the truth of this theorem.

The proof will be given later (Exercise 5.6.2) after the inverse function theorem

has been formally introduced and used in our discussion of surfaces.

To understand the significance of the conditions on f in Theorem 1.5.1,

suppose that (x0 +Δx, y0 +Δy) is a point of C near p, so that

f(x0 +Δx, y0 +Δy)= 0.

By the two-variable form of Taylor’s theorem,

f(x0 +Δx, y0 +Δy) = f(x0, y0) + Δx
∂f

∂x
+Δy

∂f

∂y
,

neglecting products of the small quantities Δx and Δy (the partial derivatives

are evaluated at (x0, y0)). Hence,

Δx
∂f

∂x
+Δy

∂f

∂y
= 0. (1.8)
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Since Δx and Δy are small, the vector (Δx,Δy) is nearly tangent to C at p,

so Eq. 1.8 says that the vector n =
(

∂f
∂x ,

∂f
∂y

)
is perpendicular to C at p.

(Δx, Δy)

P

n
C

x

y

The hypothesis in Theorem 1.5.1 tells us that the vector n is non-zero at

every point of C. Suppose, for example, that ∂f
∂y �= 0 at p. Then, n is not parallel

to the x-axis at p, so the tangent to C at p is not parallel to the y-axis.

x

P

x0

y0

y

C

This implies that vertical lines x = constant near x = x0 all intersect C in a

unique point (x, y) near p. In other words, the equation

f(x, y) = 0 (1.9)
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has a unique solution y near y0 for every x near x0. Note that this may fail to

be the case if the tangent to C at p is parallel to the y-axis (i.e., if ∂f/∂y = 0):

y

P

xx0

C

In this example, lines x = constant just to the left of x = x0 do not meet C
near p, while those just to the right of x = x0 meet C in more than one point

near p.

The italicized statement about f in the last paragraph means that there is

a function g(x), defined for x near x0, such that y = g(x) is the unique solution

of Eq. 1.9 near y0. We can now define a parametrization γ of the part of C near

p by

γ(t) = (t, g(t)).

If we accept that g is smooth (which follows from the inverse function theorem),

then γ is certainly regular since γ̇ = (1, ġ) is obviously never zero. This ‘proves’

Theorem 1.5.1.

x2 + y2 = 1 x2 − y2 = 1

It is actually possible to prove slightly more than we have stated in

Theorem 1.5.1. Suppose that f(x, y) satisfies the conditions in the theorem,

and assume in addition that the level curve C given by f(x, y) = 0 is connected.
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For readers unfamiliar with point set topology, this means roughly that C is

in ‘one piece’. For example, the circle x2 + y2 = 1 is connected, but the hy-

perbola x2 − y2 = 1 is not (see above). With these assumptions on f , there

is a regular parametrized curve γ whose image is the whole of C. Moreover,

if C is not closed γ can be taken to be injective; if C is closed, then γ maps

some closed interval [α, β] onto C, γ(α) = γ(β) and γ is injective on the open

interval (α, β).

A similar argument can be used to pass from parametrized curves to level

curves:

Theorem 1.5.2

Let γ be a regular parametrized plane curve, and let γ(t0) = (x0, y0) be a point

in the image of γ. Then, there is a smooth real-valued function f(x, y), defined

for x and y in open intervals containing x0 and y0, respectively, and satisfying

the conditions in Theorem 1.5.1, such that γ(t) is contained in the level curve

f(x, y) = 0 for all values of t in some open interval containing t0.

The proof of Theorem 1.5.2 is similar to that of Theorem 1.5.1. Let

γ(t) = (u(t), v(t)),

where u and v are smooth functions. Since γ is regular, at least one of u̇(t0)

and v̇(t0) is non-zero, say u̇(t0). This means that the graph of u as a function

of t is not parallel to the t-axis at t0:

u

u0

t0
t

As in the proof of Theorem 1.5.1, this implies that any line parallel to the t-axis

close to u = x0 intersects the graph of u at a unique point u(t) with t close

to t0. This gives a function h(x), defined for x in an open interval containing
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x0, such that t = h(x) is the unique solution of u(t) = x if x is near x0 and t is

near t0. The inverse function theorem tells us that h is smooth. The function

f(x, y) = y − v(h(x))

has the properties we want.

It is not in general possible to find a single function f(x, y) satisfying the

conditions in Theorem 1.5.1 such that the image of γ is contained in the

level curve f(x, y) = 0, for γ may have self-intersections like the limaçon in

Example 1.1.7. It follows from the inverse function theorem that no single func-

tion f satisfying the conditions in Theorem 1.5.1 can be found that describes

a curve near such a self-intersection.

EXERCISES

1.5.1 Show that the curve C with Cartesian equation

y2 = x(1− x2)

is not connected. For what range of values of t is

γ(t) = (t,
√
t− t3)

a parametrization of C? What is the image of this parametrization?

1.5.2 State an analogue of Theorem 1.5.1 for level curves in R
3 given by

f(x, y, z) = g(x, y, z) = 0.

1.5.3 State and prove an analogue of Theorem 1.5.2 for curves in R
3

(or even R
n). (This is easy.)

In the remainder of this book, we shall speak simply of ‘curves’,

unless there is serious danger of confusion as to which type

(level or parametrized) is intended.
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