
Chapter 4
Causal Bond Graphs and Forms of
Mathematical Models

4.1 Causal Paths Between Resistive Ports

After the discussion of the systematic construction of bond graphs, their causal aug-

mentation and the systematic derivation of equations from a causal bond graph, we

are prepared to consider different causal patterns in bond graphs and their relation

with different forms of mathematical models in detail.

As a general prerequisite, we assume that if controlled sources appear in a bond

graph, their modulating signal can be expressed by system inputs or by state vari-

ables. Furthermore, if transformers and gyrators are modulated, they are allowed to

be modulated only by state variables. The reason for this confinement is that oth-

erwise, algebraic loops may result that are not easily detected by inspection of a

causal bond graph as will be explained in more detail in Section 4.8.

In Chapter 5, approaches to the symbolic and numerical solution of mathematical

models derived from bond graphs are considered in detail [4, 5].

It has already been pointed out in the previous chapter that a causally completed

bond graph gives indication to the form of a mathematical model prior to any equa-

tions formulation. In that context, the notion of a causal path plays an important

role (Definition 3.5). The simplest case of bond graphs has already been dealt with.

That is, all storage ports have preferred integral causality. There are neither causal

paths between resistive ports, nor causal loops, nor causal meshes in the junction

structure. In this case, the equations derived from the bond graph can be written in

state space form.

In the following, relaxations of these conditions will be considered. First, causal

paths between resistive ports are allowed as they result in bond graphs, e.g., of elec-

trical or hydraulic Wheatstone bridges. Figure 4.1 shows a hydraulic bridge circuit

with variable area orifices and a symmetric double acting cylinder in the load di-

agonal. The piston has a cross sectional area A and a mass m. The transformation

of the circuit schematic into a bond graph is straightforward. Choosing the return

pressure of the reservoir, pT , as a reference results in the bond graph depicted in

Figure 4.2. The annotations gi() of the resistor symbols denote a nonlinear function
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Fig. 4.1 Hydraulic Wheatstone bridge with a symmetric double acting cylinder in the load diagonal

relating the pressure drop across the orifice to the volume flow through the orifice

according to Bernoulli’s law. Since the example is a hydraulic circuit, power vari-

ables are denoted by the symbol ‘p’ (pressure) and ‘Q’ (volume flow), as common in

hydraulics. The bond graph of Figure 4.2 shows two disjoint causal paths between

the resistive ports with bonds enumerated 1 − 2 − 3 and 4 − 5 − 6.

If the outputs of the resistors Ri are denoted pi or Qi depending on their causal-

ity, then the following set of equations can be derived from the bond graph of Fig-

ure 4.2.

pS = fS(t) (4.1a)

p1 = g−1
1 ( Q2 − A v ) (4.1b)

Q2 = g2 ( pS − p1 ) (4.1c)

Q3 = g3 ( pS − p4 ) (4.1d)

p4 = g−1
4 ( Q3 + A v ) (4.1e)

v̇ =
1
m

[ ( pS − p4 ) − ( pS − p1 ) ] (4.1f)

The system of algebraic equations for the outputs of the four resistors is divided into

two separate subsystems with two coupled equations because the two causal paths
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Fig. 4.2 Bond graph of the hydraulic bridge with two disjoint causal paths between resistive ports

are disjoint. Two of the four algebraic unknowns belong to one subsystem, while

the other two belong to the other. Variables p1 and Q2 both belong to the causal

path with bonds labelled 1−2−3. The corresponding Equations 4.1b and 4.1c may

be graphically represented as a signal flow loop along the causal path 1 − 2 − 3.

Consider the signal flow loop along the causal path 1 − 2 − 3. The volume flow Q2

enters into resistor 1. The pressure p1 leaving that resistor is an input into resistor 2,

while the volume flow Q2 is an output of resistor 2. That is, both power variables of

each bond of the causal path are involved in the signal flow loop. This gives rise to

the following definitions.

Definition 4.1 (Topological loop). A topological loop is a signal flow loop along

a causal path or a causal loop. The causal path must not begin or end at an ideal

source.
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Remark 4.1. A causal path that begins or ends at an ideal source is not associated

with a topological loop because the power port variables of an ideal source or sink

are not related. In other words, an ideal source breaks a topological loop.

Definition 4.2 (Topological path). A topological path is a part of a topological loop.

It is a signal flow graph fragment that represents bond variables and constitutive

relations being part of a causal path.

Definition 4.3 (Algebraic loop). If the variables of a topological loop depend alge-
braically on themselves, that is no integration with respect to time is involved, then

the topological loop is called an algebraic loop.

Definition 4.4 (Order of a topological loop). The order of a topological loop de-

notes the number of remaining integrators involved in the causal path. If there is

no remaining integration in the causal path, then the topological loop is called a

zero-order loop.

Definition 4.5 (Flat loop). A topological loop is called a flat loop if both opposite

signals of each bond being part of the causal path or causal loop are involved in the

signal flow loop.

Remark 4.2. A flat loop passes each bond of the causal path or causal loop twice.

Figure 4.3 depicts a flat loop related with the causal path 1 − 2 − 3.

Definition 4.6 (Open loop). A topological loop that uses only one of the opposite

signals of some or all bonds in a causal path is called an open loop.

Remark 4.3. Prerequisite for an open loop is a bond loop. (Definition 3.7).

The topological loop in Figure 4.4 only uses one of the two power variables of the

bonds involved in the bond loop. Hence, according to the above definition, it is an

open loop. There is a second open loop not depicted in the graph that runs in parallel

to the first, but is oppositely oriented. The places where the signal path that leaves

0 �� R

��

1 �� R

� �

Fig. 4.3 Flat loop related with a causal path
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Fig. 4.4 Example of an open loop with mesh stubs

the bond loop reverses in a 1-port passive element and returns into the bond loop are

called mesh stubs [10].

In [10], Brown observes:

Most loops in passive systems are flat, and in fact a tree-like bond graph (with no meshes)

cannot have other than flat loops.

The topological loops in the bond graph of the example are parts of a signal flow

graph that can be assigned to the bond graph. This link between bond graphs and

signal flow graphs will be considered later in Chapter 6 in more detail. In this chap-

ter, it sufficient to note that a causal path between two resistive ports indicates an

algebraic loop.

In the example under consideration, the causal paths do not touch. Thus, for

each of the two causal paths, we can substitute one of the algebraic equations into

the other one. As a result, we obtain two implicit algebraic equations that can be

separately solved. With the solutions of the two equations the other unknown can be

directly computed. In Section 5.4, we will consider the case in which causal paths

share bonds and introduce an approach leading to a small set of coupled equations.

Once its solution is known, all other algebraic unknowns can be directly computed.

In [32], van Dijk introduces several classes of causal paths depending on the

type of ports they connect or whether they are closed. He calls causal paths between

resistive ports class-2 zero-order causal paths. The prefix zero-order emphasises

that the variables of the causal path are algebraically coupled.

If the outputs of the resistors in the bond graph of Figure 4.2 are combined into

an auxiliary vector h = (p1, Q2, p4, Q3)T , then the equations of the example may

be written in the general form

h(t) = f1(x(t),h(t),u(t) ) (4.2a)

ẋ(t) = f2(x(t),h(t),u(t) ) (4.2b)

with x = [v] and u = [pS ].
The causal paths in the bond graph of Figure 4.2 indicate that the standard Se-

quential Causality Assignment Procedure (SCAP) requires an inversion of the char-

acteristic of two of the four resistors, which is possible in this case. In the case of
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non-invertible characteristics, the causalities at two resistive ports would not agree

with the form of the constitutive equations. We could account for non-invertible

resistor characteristics by writing Equations 4.1b and 4.1e in the form

g1 (p1) = Q2 − A v (4.3a)

g4 (p4) = Q3 + A v , (4.3b)

leading to a semi-explicit nonlinear DAE system of the general form

0 = f̃1(x(t),h(t),u(t) ) (4.4a)

ẋ(t) = f2(x(t),h(t),u(t) ) . (4.4b)

We will consider another causality assignment procedure in addition to the standard

Sequential Causality Assignment Procedure (SCAP) used so far. It is the method of

relaxed causalities as introduced by Joseph and Martens (cf. Section 4.9).

4.2 Some Fundamentals from the Theory of
Differential-Algebraic Systems

Figure 4.2 of the previous example illustrates that the mathematical model derived

from a bond graph takes the form of a DAE system if there are causal paths between

resistive ports. An essential characteristic of DAE systems is their so-called index.

To put it simply, it is an indication of how far away a DAE system is from an ODE

system. An early 1982 article by Petzold [27] considering some of the difficulties

that can occur with the numerical solution of DAE systems is titled:

Differential/Algebraic Equations are not ODEs

A general experience is that the higher the index is, the more difficulties are to

be expected with the numerical solution of the DAE system (see Section 5.1 and

Section 5.5).

Regarding the index of a DAE system, some definitions are required. By pro-

viding them, we will follow the presentation in the fundamental book of Brenan,

Campbell and Petzold [8]. In the very first sentence of the preface, the authors point

out that:

Differential-algebraic equations (DAE’s) arise naturally in many applications, but present

numerical and analytical difficulties which do not occur with ordinary differential equations.

Some books on DAE systems are, e.g. [16–18].

In the following, we assume a linear differential-algebraic set of equations of the

form

Aẋ(t) + Bx(t) = f(t) . (4.5)

In Equation 4.5, A,B are n× n matrices with constant coefficients, f : R → R is a

vector function of the system inputs and t ∈ [0,∞).
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Definition 4.7 (Matrix pencil). Let λ ∈ C, then λA + B is called a matrix pencil.

If the determinant det(λA + B) is not identically zero as a function of λ, then the

matrix pencil is called regular.

Remark 4.4. The definition of a regular matrix pencil is important because it is a

necessary and sufficient condition for the solvability of a linear constant coefficient

DAE (Equation 4.5). ([8], Theorem 2.3.1)

Definition 4.8 (Index of a matrix). A quadratic matrix M is called nilpotent if there

is positive integer k such that Mk = 0.

If M is a nilpotent matrix, then the smallest positive integer ν for which Mν = 0
and Mν−1 �= 0 is called the index of nilpotency.

The following theorem precedes the definition of the index of a linear constant co-

efficient DAE.

Theorem 4.1 (Kronecker). Let λA+B be a regular matrix pencil. Then, there exist
non-singular matrices P and Q such that

PAQ =
[
I 0
0 N

]
PBQ =

[
C 0
0 I

]
,

where I is an identity matrix and N a nilpotent matrix of index k.

Definition 4.9 (Index of a linear coefficient DAE). Let λA + B be a regular ma-

trix pencil, then the index of nilpotency, or index for short, of the linear constant

coefficient DAE (4.5) is the index of nilpotency, k, of the matrix N defined in The-

orem 4.1.

If N = 0, then define k = 1. In the case of a non-singular matrix A, the index is

defined as k = 0.

An important consequence of Kronecker’s theroem is that the solution of the DAE

system 4.5 can be given in analytical form. Suppose that the matrices P and Q in

Theorem (4.1) are known. Then, by means of the transformation

x = Q
[
y1

y2

]
and by scaling of Equation 4.5 using the matrix P, the DAE system can be split

into two uncoupled subsystems for which the analytical solution is known. With

this transformation and the definition

Pf(t) =:
[
g1(t)
g2(t)

]
,

an explicit first order ODE for y1 and a singular subsystem in canonical form for

the unknown y2 results.
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ẏ1 + Cy1 = g1 (4.6a)

Nẏ2 + y2 = g2 (4.6b)

Let L− denote the Laplace operator

(L−x)(s) :=
∫ ∞

0−
x(τ)e−sτdτ , (4.7)

where s ∈ C ([21], Section 1.2), then the Laplace transform of Equation 4.6b yields

(L−y2)(s) = (Ns + I)−1Ny2(0−) + (Ns + I)−1(L−g2)(s)

=
∞∑

i=0

(−1)i (Ns)iNy2(0−) +

∞∑
i=0

(−1)i (Ns)i(L−g2)(s) . (4.8)

Since N is a nilpotent matrix of index k, the infinite series reduces to a sum with a

finite number of terms. Transformation back into the time domain gives y2(t).

y2(t) =
k−1∑
i=0

(−1)i Ni δ(i)Ny2(0−) +
k−1∑
i=0

(−1)i Ni g(i)
2 (t) , (4.9)

where δ(i) denotes the ith derivative of the Dirac pulse. Apparently, the Dirac pulse

and its derivatives vanish and with it a source for big errors in the numerical solution

due to a limited machine precision if values y2(0−) vanish. If the index of the DAE

system is > 1, then the solution of the subsystem (4.6b) includes the derivatives of

the function g2 up to the order k − 1. Their computation, if numerically performed,

is ill conditioned. This problem does not appear if the matrix A in Equation 4.5 is

non-singular. Then, Equation 4.5 is not truly a DAE but an ODE. The solution of

the explicit ODE, Equation 4.6a, is

y1 = e−Cty1(0) +
∫ t

0

e−C(t−τ) g1(τ)dτ (4.10)

for every initial value y1(0).

Definition 4.10 (Local index of a linear time-variant DAE). If the coefficient ma-

trices in Equation 4.5 are time dependent, then the local index is the index of the

DAE system for some time t. It is denoted by k(t).

For general nonlinear implicit differential-algebraic systems

F( ẏ, y, t ) = 0 , (4.11)

a so-called differential index has been introduced by Gear [14].
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Definition 4.11 (Differential index of a nonlinear DAE system). If the matrix

∂F/∂ẏ is non-singular, the index k is set to zero, k = 0. (In this case Equation 4.11

is an implicit ODE that, in principle, can be transformed into an explicit ODE.)

Otherwise, the following set of equations is established by repeated differentiation

of Equation 4.11 with respect to time

0 = F( ẏ, y, t )

0 =
d

dt
F =

∂F
∂ẏ

ÿ +
∂F
∂y

ẏ +
∂F
∂t

0 =
d2

dt2
F =

∂F
∂ẏ

y(3) + . . .

...

0 =
dj

dtj
F =

∂F
∂ẏ

y(j+1) + . . . ,

in which ẏ, . . . ,y(j+1) are considered separate independent algebraic variables be-

ing functions of the variables y and t (considered independent). Since ∂F/∂ẏ is

singular, it is not possible to solve for the highest derivative y(j+1). However, if

it is possible to solve for ẏ for some finite j, then the smallest j, for which this

is possible, is defined the differential index k of the differential-algebraic system,

Equation 4.11.

Remark 4.5. 1. Repeated differentiation of the initial DAE provides additional equa-

tions. If the resulting set of equations is solvable for ẏ, the problem of solving

the initial DAE can be transformed into the problem of solving an explicit ODE.

In the above scheme, all equations of (4.11) are differentiated with respect to

time, although it may be sufficient to differentiate only some of them in order to

determine ẏ as a continuous function of y and t. In [14], Gear gives an algorithm

by which only equations are differentiated that do not include components of ẏ.

2. For linear constant coefficient DAEs (Equation 4.5), the differential index equals

the index of nilpotency introduced in Definition 4.9.

If the state vector x and the vector of algebraic variables h in the hydraulic bridge

example are combined into a vector y, then one step of differentiation yields that

the DAE system is of index one if the partial derivative of the algebraic constraint

with respect to y is non-singular (cf. Equations 4.2a, 4.2b or Equations 4.4a, 4.4b).

For DAE systems of the form

0 = f1(ẋ,x, z, t) (4.12a)

0 = f2(x, z, t) , (4.12b)

also called semi-state systems or systems in descriptor form, the definition of the

differential index can be reformulated.
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Definition 4.12 (Differential index of a semi-state system). The index of a semi-

state system is the minimum number of times that the algebraic part (4.12b) must be

differentiated with respect to time in order to determine ẋ as a continuous function

of the state vector x, the vector of so-called semi-state variables z and time t.

For linear time-variant differential-algebraic systems, Gear and Petzold have

given an algorithm on matrices that can be used for the determination of the index

[15]. Since in the following we want to determine the local index for some exam-

ples, we recall the algorithm for the determination of the index of linear constant

coefficient DAEs [8].

Algorithm 4.1 (Index determination for linear constant coefficient DAEs).

1. The index k is initialised with zero.
2. If the matrix A in Equation 4.5 is non-singular, we are done. No further iteration

is necessary. The algorithm terminates.
3. Otherwise, Equation 4.5 is pre-multiplied by a non-singular matrix P that trans-

forms the DAE into the form[
A11 A12

0 0

] [
ẋ1

ẋ2

]
+

[
B̃11 B̃12

B̃21 B̃22

] [
x1

x2

]
=

[
f̃1
f̃2

]
,

in which the row-rank of the matrix [A11 A12 ] equals the number of its rows.
4. After differentiation of the algebraic equation B̃21x1 + B̃22x2 = f̃2 , we get

the new system[
A11 A12

B̃21 B̃22

] [
ẋ1

ẋ2

]
+

[
B̃11 B̃12

0 0

] [
x1

x2

]
=

[
f̃1
˙̃f2

]
.

5. The index is increased by one. The old system is replaced by the new one. The
algorithm continues with step 2.

Remark 4.6. If the algorithm terminates after k iterations, then the DAE system in

the last iteration has the index zero. The DAE system in the next to last iteration is

of index one. The original DAE system then has the index k. That is, the algorithm

not only determines the index. Actually, it does an index reduction.

In general, the algebraic constraints of a DAE system are nonlinear as in the con-

sidered example of a hydraulic Wheatstone bridge. Hence, for each time tn, often,

they can be solved only numerically by iteration. If Equations 4.2a–4.2b derived

from a bond graph with causal paths between resistive ports are linearised, then the

local index of the linearised system equals one [32]. This means that they can be

solved by means of an ODE based method. A widely used code for the numerical

solution of DAE systems of index < 2 has become the solver called DASSL [8].

Public domain mathematical software such as Scilab [11, 29] or GNU Octave [2]

provide a function that calls the DASSL code. In addition, Octave [2] includes a

function that calls DASPK [1, 30] a further development of the DASSL code.
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4.3 Inserting Energy Stores into Causal Paths Between Resistive
Ports

It is certainly an essential objective of object-oriented methodologies to separate

the modelling phase from the formulation of equations and their numerical solution

in order to achieve consistency in the development of large models. Following an

object-oriented approach, the interfaces of submodels are connected according to

the topology in a system schematic. Constitutive equations of the submodels are

expected to be reformulated automatically, if required by the interconnection of the

submodels. If library submodels are protected from modifications by the developer

of a system model, then obviously less errors can occur. On the other hand, the

model developer cannot affect the generation of system equations. Still, on a lower

level, there are relations between decisions taken in the modelling phase and aspects

with regard to the numerical solution of the generated equations. In former times,

when no solvers for differential-algebraic equations systems were available, these

relations were frequently used. Even with today’s solvers, it makes sense to take

into account aspects of an efficient numerical solution of the generated equations

in the phase of the model development. Moreover, it may be useful to have the

generated equations undergo a symbolic preprocessing before they are passed on to

a numerical solver. For instance, it is well known that problems with the numerical

solution of DAEs increase with an increase of their index. In Chapter 5, relations

between bond graph modelling and the symbolic and numerical solution of system

equations will be considered in detail. In the following, first, simple possibilities

will be discussed to affect the form of the resulting mathematical model already in

the modelling phase.

The algebraic constraints 4.2a can be avoided by inserting energy stores into

causal paths between resistive ports. In order to ensure that the dynamic behaviour

of the original model is not perceptibly affected, additional energy stores must be

small. In complex nonlinear models, it is not easy to estimate how small parame-

ter values of additional energy stores must be. On the other hand, including small

energy stores may be justified from physics. There are always dynamic effects that

are often neglected because their impact on the overall dynamic behaviour of the

system is assumed to be negligible. In the bond graph of Figure 4.2, the two disjoint

causal paths between resistors may be removed by adding two C energy stores to the

lower 0-junctions accounting for the oil compliance in the volumes of the cylinder

in the load diagonal of the bridge (Figure 4.5). From the modified bond graph in

Figure 4.5, a state space model of order 3 may be derived so that a DAE solver is

not necessary. As the added C elements are linear, the two additional ODEs can be

written in the form

C1 ṗC1 = g1(p1) + A v − Q2 (4.13a)

C2 ṗC2 = g4(p4) − A v − Q3 . (4.13b)

For C1, C2 → 0, the two ODEs turn into the algebraic Equations 4.1b and 4.1e.
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Fig. 4.5 Removal of causal paths between resistors by inserting C energy stores

Disadvantages of such an approach are that the order of the system is increased

and that fast dynamic transients are introduced because the capacitances C1 and C2

of the added energy C stores are small. Hence, it is true that the result is a set of

explicit ODEs, but its solution requires a small step size or an implicit numerical

integration algorithm.

Estimation of the Time Constants of a Linear Model

It is well known that if a set of linearised ODEs is solved by means of an explicit

numerical integration algorithm, then its step size must be chosen smaller than the

smallest time constant. The determination of the time constants means the deter-

mination of eigenvalues which is quite costly. A rough estimate, however, can be

obtained directly from the bond graph by following causal paths between storage

ports and resistive ports. Suppose constitutive equations are linear or have been
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linearised, then such causal paths identify first order transients considered isolated

from other transients in the system and isolated from forcing inputs.

In Figure 4.5, their time constant is just the product of the parameters of the

storage port at one end of the causal path and of the resistive port at its other end.

To see this, the following equations are derived from the bond graph in Figure 4.5.

Q2 = g2 (pC1) (4.14a)

ṗC1 =
1
C1

[ Q1 + A v − Q2 ] (4.14b)

Consider the homogeneous ODE

ṗC1 +
1
C1

g2 (pC2) = 0 . (4.15)

If the nonlinear characteristic of g2 is replaced by a linear one of slope 1/R2 in

the neighbourhood of an operating point, then the time constant, τ12, of the free

response given by Equation 4.15 is τ12 = R2C1. Apparently, by considering all

causal paths between storage ports and resistive ports, the smallest time constant

can be determined. However, it must be kept in mind that transients are considered

decoupled this way. This, however, is not true. The evaluation of the exact value

of the smallest time constant requires the solution of an eigenvalue problem. The

corresponding considerable effort, however, is not worthwhile. Anyway, the useful-

ness of an estimation of the time constants is limited to systems of linear constant

coefficient ODEs that are solved by means of an explicit integration algorithm. The

inspection of the bond graph with regard to time constants of isolated transients may

give an indication of how widely time constants are separated when small energy

stores are included into the bond graph in order to avoid algebraic loops.

In addition to these first order transients, the C energy stores included in the

bond graph of Figure 4.5 lead to another oscillations that are identified by causal

paths between a C element and the I energy store. In addition to Equation 4.14b, the

following state equation is immediately obtained from the bond graph.

v̇ =
A

m
( pC2 − pC1 ) (4.16)

By differentiation of Equation 4.14b and substituting it into the state equation of the

I energy store, a second order ODE results for the output of the C energy store with

capacitance parameter C1.

p̈C1 +
1
C1

A2

m
pC1 =

1
C1

( Q̇1 − Q̇2 +
A2

m
pC2 ) (4.17)

The natural frequency of the free undamped oscillation of pressure pC1 reads

ω2
0 =

A2

C1 m
. (4.18)
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For small values of the fluid filled volume V1 or the mass m, C energy stores for the

fluid compliance in the volumes V1 and V2 can remove causal paths between resis-

tive ports, but introduce high frequent oscillations superimposed on the dynamics

of the pressures in the volumes. They may be damped by attaching resistors with

a small parameter to the 0-junctions representing the two pressures pC1 and pC2 .

However, in the case of an explicit integration algorithm, a small step size is still

required.

These considerations show that in the case of causal paths between resistive ports,

a DAE system can be avoided by including energy stores with a small parameter.

Solution of the resulting ODE system, however, generally requires a stiffly stable

integration algorithm. Of course, the ODE system derived from the modified bond

graph can be converted into a DAE system. If capacitances tended to zero, the ODEs

of the C energy stores reduce to algebraic constraints for the pressures in the vol-

umes of the cylinder.

Finally, particularities of a model, if there are any, can be used to remove causal

paths between resistive ports. If, for instance, the resistors of a bridge circuit are the

control orifices of a spool valve with zero overlap in the central position, then two

orifices in a diagonal are always open while the other two are closed. This can be

used for a model reduction that removes the causal paths between resistive ports.

Although such an approach leads to a model allowing for an efficient numerical

computation, it is not generally applicable. On the other hand, it is always possible

to include energy stores with small parameters. However, it appears that there is

only a need for modifying a model this way if the available modelling and simulation

software does not accept DAEs of index one and if a model reduction is not possible.

4.4 Causal Paths Between Storage Ports of the Same Type

In this section, we will exclude causal paths between resistive ports. Instead, we will

consider causal paths between independent and dependent storage ports (van Dijk

calls them class-1 zero-order causal paths [32]). Such causal paths often appear in

bond graphs of multibody systems with algebraic contraints between the velocities

of some rigid bodies caused by joints connecting them. In Section 3.4, we already

considered a simple example of two inertias coupled by a transformer with constant

modulus (Figure 3.14). In this case, the dependent energy store can be transformed

over the transformer and can be combined with the independent one into a new one

with integral causality. If energy stores have a linear characteristic, then C energy

stores attached to a 0-junction or I energy stores connected to a 1-junction can be

combined into one equivalent energy store.

If such reductions are not possible or if they are not performed, then the mathe-

matical model to be derived from a bond graph with causal paths between storage

ports of the same type is of the form of a DAE system
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ẋi(t) = f1 (xi(t), ẋd(t), u(t) ) (4.19a)

xd(t) = f2 (xi(t),u(t) ) . (4.19b)

In Equations 4.19a and 4.19b, xi denotes the vector of independent state variables,

whereas xd is the vector of dependent state variables. Again, u is the vector of all

system inputs.

Van Dijk has shown that the linearised DAE system obtained from a bond graph

with causal paths between independent and dependent storage ports is of local index

one [32].

Example: Slider Crank Mechanism

For illustration, consider the often used example of a simple slider crank mechanism

depicted in Figure 4.6. A massless rod of length L links a flywheel of moment

of inertia J to a piston of mass m. In [3], Allen considers a similar slider crank

mechanism as an introductory example in the context of establishing Lagrange’s

equations for complex mechanical mechanism (cf. Section 4.10).

The rod establishes a geometric constraint between the angular position, ϕ(t) :=∫ t

0
ω(τ)dτ , of the flywheel and the position of the piston. Differentiation with re-

spect to time yields a constraint between the angular velocity, ω, and the transla-

tional velocity, v, of the piston

v = T (ϕ) × ω (4.20)

and

T (ϕ) =
r ( r cos ϕ +

√
L2 − r2 sin2 ϕ ) sinϕ√

L2 − r2 sin2 ϕ
. (4.21)

Assuming that rotational power is transformed into translational power without any

losses, yields for the moment M̃ transformed into the force F̃ acting on the piston

M̃ = T (ϕ) F̃ . (4.22)

Thus, this transformation can be represented by a displacement modulated trans-

former of modulus T (ϕ). Such transformers are often used for representing trans-
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Fig. 4.6 Slider crank mechanism
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formations between reference frames when the planar or 3D motion of mechanical

systems is modelled. They have no counterpart in electrical engineering. Due to the

constraint of the velocities, one I element in the bond graph of Figure 4.7 must have

derivative causality. For the energy store with preferred integral causality, the state

equation

ω̇ =
1
J

[ M − T (ϕ) × ( m v̇ + r v − F ) ] (4.23)

is derived from the bond graph. In addition to the angular velocity ω in this example,

the kinematic displacement of the ϕ is needed as another state variable which is

typical for modelling planar or 3D motion of mechanical systems.

ϕ̇ = ω (4.24)

All three equations can be combined into a linear implicit DAE system also called

a linearised descriptor form [13, 24].⎡⎣J T m 0
0 0 1
0 0 0

⎤⎦ ⎡⎣ ω̇
v̇
ϕ̇

⎤⎦ +

⎡⎣ 0 Tr 0
−1 0 0
T −1 0

⎤⎦ ⎡⎣ω
v
ϕ

⎤⎦ =

⎡⎣M + T F
0
0

⎤⎦ (4.25)

Due to the algebraic dependency between the velocities, the matrix pre-multiplying

the time-rate of the descriptor vector is singular. Thus, the mathematical model de-

rived from a bond graph with a causal path between an independent and a dependent

storage port, in fact, takes the form of a true DAE system. If algorithm 4.1 is applied

to this DAE, then the matrix pre-multiplying the time-rate of the descriptor vec-

tor becomes non-singular after one step. Hence, the local index of the DAE system

equals one as to be expected.

The DAE system can be avoided, i.e., an explicit state space model can be de-

rived, if the dependent energy store is transformed over the transformer like in the

example of Figure 3.14. However in contrast to that example, here, the modulus of

the transformer is not constant. Hence, the inertia of the resulting I element is not
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constant. We come back to this issue in Section 4.10 when we consider the deriva-

tion of Lagrange’s equations from bond graphs. Another option that can be justified

from physics is to neutralise the kinematic constraint by assuming that the rod is not

completely rigid, but has some compliance. With this assumption, a C energy store

with a small parameter can be used to remove the causal path between the two iner-

tias. Like in the hydraulic bridge example (Figure 4.2), this leads to a high frequency

oscillation that can be damped by including a resistor in addition to the C energy

store. The resistor may also be justified for physical reasons. Taking a closer look at

the rod, it turns out that it is not a purely elastic, but quite stiff link. There are also

energy losses in the rod. The simplest approximation to a continuum model is to use

a pair of C and R elements along with parameters that are estimated on the basis

of experience. For numerical stability, it is reasonable to use an implicit integration

algorithm.

4.5 Closed Causal Paths

So far, causal paths between resistive ports or between independent and dependent

storage ports have been considered. In addition, closed causal paths in the junction

structure can occur. They are called causal loops (Definition 3.10).

For illustration, consider the simple example of a bond graph with a bond loop

displayed in Figure 4.8. Figure 4.9 shows an electrical circuit that can be represented

by the bond graph in Figure 4.8. As can be seen from the bond graph of Figure 4.8,

the causality of the flow source and the preferred integral causality of the energy

stores do not propagate into the junction structure. In this simple example, there is a

need to perform step 5 of the sequential causality assignment procedure by choosing

a bond and assigning causality to it. This gives rise to the introduction of the notion

of strong (weak) causal determination.

Definition 4.13 (Strong (weak) causal determination of a junction). A bond im-

poses a strong causal determination on a junction J it is connected to if one of its

power conjugate variables determines the variable common to all remaining adja-

cent bonds. Otherwise, the bond gives a weak causal determination to the junction

[26].

Remark 4.7. If the causal stroke of a bond connected to a 0-junction is on its end

attached to the 0-junction, then the effort common on all adjacent bonds is deter-

mined. That is, the effort imposed on a 0-junction is propagated to ports connected

to it.

In the example of Figure 4.8, the two 0-junctions have a weak causal determi-

nation. In order to complete causality assignment, causality must be chosen at one

internal bond (Definition 2.9) No matter which bond is chosen, the result is a causal

loop (Definition 4.6) associated with two open signal flow loops of opposite orien-

tation as depicted in Figure 4.10. One signal flow loop only relates the efforts of the
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internal bonds, while in the other, only the corresponding flows are involved. Thus,

each algebraic loop contributes an auxiliary variable. If the outputs of the trans-

former e4 and f3 are chosen as auxiliary variables, then the following equations can

be derived from the bond graph of Figure 4.10

0 = e4 − 1
n

e4 − eC (4.26a)

0 = F − 1
n

f3 + f3 − fI (4.26b)

ėC =
1
C

( F − 1
n

f3 ) (4.26c)
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ḟI =
1
I

( e4 − eC ) . (4.26d)

Since in this example the system of equations determining the algebraic variables

is linear, it can be symbolically solved and the algebraic variables can be removed

from the state equations.

ėC =
1

C(n − 1)
[ nF − fI ] (4.27a)

ḟI =
1

I(n − 1)
eC (4.27b)

However, as can be seen from the result, this elimination step is only possible for

a transformer modulus n �= 1. Ort and Martens [26] have given a mathematical

criterion for the solvability of the algebraic equations of the junction structure. In

[28], Rosenberg and Andry have given a criterion that can be directly checked on

the bond graph. First, consider the mathematical criterion applied to our example.

By looking at the bond graph in Figure 4.10, the following equations for efforts can

be written. ⎡⎢⎢⎢⎢⎢⎢⎣
eS

eI

e1

e2

e3

e4

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 1
0 0 1 0 0
0 0 0 0 1
−1 1 0 0 0
0 0 1 0 0
0 0 0 n 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
eC

e1

e2

e3

e4

⎤⎥⎥⎥⎥⎦ (4.28)

Let us combine the efforts that are outputs of the junction structure into a vector

eout = (eS , eI)T and all internal efforts into a vector eint = (e1, e2, e3, e4)T .
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The vector of efforts that are input to the junction structure has only one component

ein = (eC). With these vectors, the system of equations 4.28 has the form[
eout

eint

]
=

[
S1 S2

S3 S4

] [
ein

eint

]
. (4.29)

In general, the system of equations 4.29 can be solved for eint if det(I − S4) �= 0.

The dimension of the identity matrix I equals the number of internal bonds. In the

example under consideration, the determinant is equal to 1 − n. Solvability of the

junction structure equations means that the mathematical model can be written in

state space form.

Instead of establishing a linear system of junction structure equations and to

check for its solvability at the level of equations, it appears to be more convenient to

use a criterion that can be directly checked on the bond graph. Such a criterion has

been given by Rosenberg and Andry [28]. In order to recall it here, some definitions

are needed.

Definition 4.14 (Influence coefficient). The influence coefficient of a junction struc-

ture node is the ratio of the output variable to the input variable for a particular

signal flow loop fragment associated with two adjacent bonds of opposite causal

orientation [28].

For illustration of this definition, consider the bond graph fragment depicted in

Figure 4.11. The causal path 1 − 2 − 3 is associated with two signal flow loop

fragments, one for the efforts of the bonds and one of opposite orientation for the

flow variables. Consider the flow variables. They are equal at the 1-junction. Con-

sequently, the influence coefficient c12 = f1/f2 is equal one. The influence coef-

ficient c23 = f2/f3 of the transformer has the value n. Since 1-junctions add up

effort variables, the sign of the influence coefficient c21 = e2/e1 depends on the

power orientation of the bonds. For the transformer, we have c32 = e3/e2 = c23

(Note that there is another causal path 4 − 2 − 3).

1
1
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2
TF
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..

3

�f1
�
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�

c23

�e1 �
c21 �e2 �e3�
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Fig. 4.11 Causal path 1 − 2 − 3 and associated signal flow loop fragments
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Definition 4.15 (Loop gain of a topological loop). The loop gain of a topological

loop is the product of all influence coefficients [28].

There are two topological loops of opposite orientation associated with a causal

loop in a bond graph (cf. Figure 4.10). It has been shown that the loop gain of both

topological loops associated with a causal loop are equal. Hence, due to this unique

value, the gain of a causal loop can be defined.

Definition 4.16 (Causal loop gain). The gain of a causal loop is the loop gain of the

two topological loops of opposite orientation associated to the causal loop.

The bond graph based rule given by Rosenberg and Andry now states that the linear

equations of a general junction structure (GJS) are solvable if and only if causal

loops are pairwise disjoint and if the loop gain of every causal loop is different from

+1. ([28], Theorem 3)

Van Dijk divides causal loops into two classes according to their loop gain. He

calls causal loops of loop gain different from one class-4 zero-order causal paths
and denotes loops of loop gain equal to one as class-5 zero-order causal paths.

Concerning the local index of a DAE system derived from a bond graph with causal

loops, he proves that it is equal to one if, as required in Rosenberg and Andry’s

theorem, causal loops in the graph are pairwise disjoint and if the loop gain of every

causal loop is different from +1 ([32], Proposition 5.7).

Let us apply Rosenberg’s and Andry’s criterion to the example in Figure 4.10. If Ge

denotes the loop gain of the topological loop of efforts variables and Gf the loop

gain of the signal flow loop of flow variables, then their common value is equal to

that of the transformer modulus n.

Ge = c21 × c32 × c43 × c14

= 1 × 1 × n × 1 (4.30a)

Gf = c12 × c41 × c34 × c23

= 1 × (−1) × n × (−1) (4.30b)

If n �= 1, then the linear equations of the junction structure are solvable, as we know

from the previous analysis at equations level.

If the modulus of transformers or the ratio of gyrators is not constant, e.g., there

are displacement modulated transformers in the weighted junction structure, then

the rule of Rosenberg and Andry is no longer applicable. In that case, the mathe-

matical model takes the form of the Equations 4.2a–4.2b of a DAE system.

Remark 4.8. Since both topological loops associated with a causal loop either relate

efforts or flow variables of all bonds of the causal loop, they are open loops accord-

ing to Definition 4.6. In the bond graph of Figure 4.10, an even number of bonds of

the causal loop has the same power orientation. Therefore, its loop gain is positive.

If we changed the power orientation of the bond annotated with e2, then the loop

gain would be (−n). In the case of a causal mesh, viz., a closed causal path with

an odd number of gyrators (Definition 3.11) , there are also two open loops. The
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absolute value of their loop gains is the same. However, they are different in sign.

Brown calls a mesh even if the loop gain of both open loops of opposite orientation

is positive, an odd mesh if the loop gain of both open loops is negative, and a neu-
tral mesh if the loop gain of both open loops have opposite signs [10]. This way,

the Definition 3.9 of a simple even (odd) mesh is extended to general meshes with

transformers or gyrators.

4.6 Bond Graphs with Causal Paths from Different Classes

In the previous sections, bond graphs with causal paths from one class only have

been considered. Now, bond graphs will be allowed to have causal paths from dif-

ferent classes. We already know that the underlying mathematical model has the

form of a DAE system. The interesting question, however, is of what index they are.

In the following, we will confine ourselves by considering some examples. A more

comprehensive analysis has been performed by van Dijk in [32].

Figure 4.12 shows a modification of the circuit example of Figure 4.9. Consider

the associated bond graph displayed in Figure 4.13. There is a causal path 5 −
2 − 6 − 7 − 8 between resistors R1 − R2 and another causal path 1 − 2 − 3 − 4
between the independent C energy store C1 and the dependent C energy store C2.

Both causal paths have bond 2 in common. These causal paths result in the following

manner. First, causality of the flow source and preferred integral causality at the

C energy stores do not propagate into the junction structure. Making a choice and

assigning resistance causality to either R1 or R2 leads to a causal conflict at the

upper 1-junction that can be removed by changing preferred integral causality at C2

into derivative causality. The result is a causal path between the two energy stores.

Assigning conductance causality to either one resistor or to both of them still leaves

the bond graph causally incomplete such that causality at one of the bonds of the

bond loop must be chosen. The result would be a causal loop. For both open loops

associated with this causal loop, two algebraic variables would be needed.

By working along causal paths in the bond graph of Figure 4.13, the following

equations can be derived.

e5 = R1 [ n ( F − f8 − C2 ė4) + C2 ė4 ] (4.31a)

f8 =
1

R2
n ( e1 + e5 ) (4.31b)

e4 = (n − 1) ( e1 + e5 ) (4.31c)

ė1 =
1
C1

[ n (F − f8) − (n − 1) C2 ė4 ] (4.31d)

They can be written in the linear implicit form[
A1 A2

0 0

]
ẋ +

[
B1 B2

B3 B4

]
x = b , (4.32)
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Fig. 4.13 Bond graph with class-2 and class-1 zero-order causal paths

in which the matrix pre-multiplying the derivative of the descriptor vector is singu-

lar. Application of algorithm 4.1 yields that the matrix[
A1 A2

B3 B4

]
is non-singular. That is, the (local) index of the DAE system is equal to one. This

result generally holds for bond graphs with causal paths between resistive ports
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as well as for bond graphs with causal paths between independent and dependent

storage ports [32].

Now, let us modify the bond graph in Figure 4.13 such that in addition to the

class 1 zero-order causal path between storage ports, a causal loop results (Fig-

ure 4.14). Again, assigning fixed causality to the flow source and integral causality

to the energy stores leaves the bond graph causally incomplete. Choosing causal-

ity at bond 7 (as depicted in Figure 4.14) leads to a causal conflict at the lower

1-junction that can be removed by changing integral causality at the lower C energy

store C2 into derivative causality. Thus, there are two causal paths, 1−2−3−4−5
and 1 − 2 − 6 − 7 − 9 between both C energy stores. Only one of them has been

highlighted for clarity.

Due to the causal loop 6−7−8−2, the output variables, e7 and f6, of the trans-

former are chosen as auxiliary algebraic variables. Then, the following equations

can be written.

ė1 =
1
C1

[−f6 + n2 C2 · ė2 + f10 ] (4.33a)
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Fig. 4.14 Bond graph with causal loop and class 1 zero-order causal path
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ḟ10 =
1
I

[ e7 − e1 ] (4.33b)

e5 = n2 (e7 − e1) − e7 (4.33c)

f6 = n1 [ F + C2 ė5 − (f10 + n2 C2 ė5 − f6) ] (4.33d)

e7 = n1 ( e7 − e1 ) (4.33e)

If they are written in linear implicit form (cf. Equation 4.32), then the matrix pre-

multiplying the descriptor vector is singular, as to be expected. After one step of

algorithm 4.1 the resulting matrix

[
A1 A2

B3 B4

]
=

⎡⎢⎢⎢⎢⎣
C1 0 0 0 −n2 C2

0 I 0 0 0
0 0 0 0 −n1 (1 − n2) C2

n1 0 0 (1 − n1) 0
n2 0 0 (1 − n2) 1

⎤⎥⎥⎥⎥⎦ (4.34)

is still singular. Hence, the (local) index is > 1. This result does not hold only for

the example for which the index is equal to 2. It can be shown that in general, the

local index is > 1, if the bond graph includes class 1 zero-order causal paths that

join bonds with causal loops ([32], Proposition 5.10).

4.7 Causal Loops of Unity Loop Gain

Finally, we will address the case of causal loops of unity loop gain by considering

the example of the electrical circuit depicted in Figure 4.15 [9, 32]. It will be shown

that bond graphs do not directly display Kirchhoff’s generalised non-local current

law for cut-sets, but indirectly via a causal loop of unity loop gain or by means of

a causal conflict at a 0-junction. It appears that the standard sequential causality as-

signment procedure (SCAP) yields a causal pattern that does not adequately reflect

the global continuity of flow variables. This is why van Dijk has proposed a modifi-

cation of the SCAP that avoids causal loops of unity loop gain. For details, see [32].

Moreover, by means of the delta circuit example (Figure 4.15), we will show that

causal loops of unity loop gain can result in DAEs of index > 1. Thus, with regard

to a robust numerical solution of the DAE system, they should be avoided.

First, we assume that all passive elements of the delta circuit in Figure 4.15 have

an invertible characteristic such that the computational causality at the ports of their

corresponding bond graph elements is indifferent. As can be seen from the bond

graph in Figure 4.16, fixed causality of the flow source and preferred integral causal-

ity at the I energy stores do not propagate into the junction structure.

If conductance causality is chosen at one of the resistor ports, then it imposes a

strong causal determination at the 1-junction the resistor is connected to (cf. Defini-

tion 4.13). In the end, it results in a causal conflict at a 0-junction (Figure 4.17).
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If resistance causality is chosen at the resistive ports in order to avoid a causal

conflict, then this causality is not propagated and the bond graph remains causally

incomplete. Therefore, causality must be chosen at an internal bond leading to a

causal loop. Since there are no transformers or gyrators in the loop, its loop gain

is equal to one. There are two open loops of opposite orientation associated to the

causal loop as depicted in Figure 4.18.

Consequently, in addition to the outputs of the energy stores, an effort variable

must be chosen from one open loop and a flow variable from the other. These have

been marked in the bond graph of Figure 4.18. Using these algebraic auxiliary vari-

ables, u and i, the following equations can be written
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u1 = R1 i (4.35a)

u2 = R2 ( I(t) − i ) (4.35b)

u3 = R3 ( i − iL1 ) (4.35c)

d

dt
iL1 =

1
L1

( u − u2 + u3) (4.35d)

d

dt
iL2 =

1
L2

( u − u2 ) . (4.35e)

Walking along the open loop for the efforts yields

u = u1 + u3 + u − u2 , (4.36)

which is the sum of all voltages around mesh 1 in the circuit (cf. Figure 4.15). From

the second topological loop, we obtain Kirchhoff’s generalised current law for cut-

set 1.

i = I(t) − iL1 − iL2 + i (4.37)

The algebraic relation between the outputs of the I energy stores,

0 = I(t) − iL1 − iL2 , (4.38)

can also be obtained from the sum of all flows at the 0-junction with an undeter-

mined common effort if the outputs of the resistors R1 and R2 are substituted.

From Equation 4.38, it can be concluded that the delta circuit of the three resis-

tors behaves like a node for which Kirchhoff’s current law must hold. In contrast

to an actual node, however, it transforms electrical energy into heat. If, in addition

to the principle of power conservation, a subsystem complies globally with Kirch-

hoff’s node law, it is said to have the nodicity property [19, 33]. The term goes

back to Paynter. Electrical networks of passive elements have this nodicity property.

In particular for the delta sub-structure of the resistors, continuity of the currents

into the structure holds. If the delta structure of resistors is represented by a 3-port,

then, according to the causality pattern required for a 0-junction locally represent-

ing a balance of flows, an effort should be imposed at one of its ports (Figure 4.19).

However, the nodicity property is not directly expressed in the bond graph of Fig-

ure 4.18. On the contrary, preferred integral causality at the I energy stores suggests

that the currents into the delta subnetwork of resistors are independent. However,

due to Kirchhoff’s generalised current law for cut-sets (Equation 4.38), this is not

true. If according to Equation 4.38, derivative causality is assigned to one of the two

I energy stores, say L1, then the causal loop of unity loop gain disappears. Instead,

a causal path 8−9−6−10 emerges between the energy stores and two other causal

paths 1 − 2 − 3 − 4 and 5 − 6 − 7 − 4 between resistors R3 − R1, or R2 − R1

(Figure 4.20).

From the previous section, we know that the DAE system derived from the bond

graph in Figure 4.20 is of index one. Hence, it can be numerically solved with a BDF

based solver. However, if we leave the causal loop of unity loop gain in the bond

graph of Figure 4.18, then the corresponding DAE system is of index > 1. In fact, if
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we write Equations 4.35a–4.35e and Equations 4.36 and 4.38 in linear implicit form⎡⎢⎢⎣
L1 0 0 0
0 L2 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ d

dt

⎡⎢⎢⎣
iL1

iL2

u
i

⎤⎥⎥⎦ +

⎡⎢⎢⎣
R3 0 −1 −(R2 + R3)
0 0 −1 −R2

−R3 0 0 R1 + R2 + R3

1 1 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

iL1

iL2

u
i

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−R2I(t)
−R2I(t)
R2I(t)
I(t)

⎤⎥⎥⎦ ,

(4.39)

then after one step of algorithm 4.1, the resulting matrix
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L1 0 0 0
0 L2 0 0

−R3 0 0 R1 + R2 + R3

1 1 0 0

⎤⎥⎥⎦
is still singular. Hence, the DAE system is of index > 1.

The problem with the standard sequential causality assignment procedure is that

it does not give advice on how to proceed such that the nodicity property is directly

expressed in terms of causalities. This was one reason for van Dijk to propose a

modification of the SCAP [32].

4.8 Algebraic Loops due to Internal Modulation

From the previous considerations, we know that causal paths between resistive ports,

or between independent and dependent storage ports, or closed causal paths in the

junction structure represent algebraic constraints such that the mathematical model

derived from the bond graph has the form of a DAE system. However, even in bond

graphs with no such causal paths, algebraic loops (Definition 4.3) can appear due to

so-called internal modulation.

Definition 4.17 (Internal modulation). If a bond graph element is modulated by a

power variable, then it is said to be internally modulated.

For illustration, consider the two examples in Figure 4.21. One constitutive equation

of the transformer in Figure 4.21a) reads

f2 = g (f2) f1 , (4.40)

which cannot be symbolically solved for f2 in general. Thus, a state equation with-

out algebraic constraint is not possible, although there is no causal path between

resistive ports or between independent and dependent storage ports.
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Fig. 4.21 Examples of internal modulation
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For the example with the modulated resistor (Figure 4.21b, see also [12]), the

following equations can be written

f1 = G ( E − eC , f1 + f2 ) (4.41a)

f2 = R (E − eC) (4.41b)

ėC =
1
C

( f1 + f2 ) . (4.41c)

In both cases, modulation by a power variable originating from a junction results in

an implicit nonlinear algebraic equation. We already used a modulated transformer

for a model of the slider crank mechanism (see Figures 4.6 and 4.7). However, in

that case, the transformer is modulated by a kinematic displacement, which is a state

variable needed to describe the system state. On the contrary, in Figure 4.21a, the

transformer is modulated by a power variable. This is not merely a hypothetical pos-

sibility. Consider the bond graph displayed in Figure 4.22. It represents a simplified

model of a series motor in which the inductances of the field and the armature coils

have been neglected [31]. Let r denote the ratio of the gyrator. Then, the following

equations are obtained from the bond graph.

M = r × i (4.42a)

r = f (i) (4.42b)

u = r × ω (4.42c)

i =
1
R

( E(t) − u ) (4.42d)

Due to hysteresis and saturation, f() is a nonlinear function such that the current i
is determined by an implicit nonlinear relation. If the inductances of the coils are

taken into account by adding an I element to the 1-junction, then the algebraic loop

disappears.
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Fig. 4.22 Simplified bond graph of a series motor
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Fig. 4.23 Internal modulation without algebraic loop

Internal modulation does not necessarily result in algebraic loops. For illustra-

tion, we interchange the resistor and the C element in Figure 4.21b (cf. [12]). From

the modified bond graph (Figure 4.23), we obtain the equations

f1 =
1
R

( E − eC ) (4.43a)

f2 = G ( eC , f1 ) (4.43b)

ėC =
1
C

( f1 − f2 ) . (4.43c)

Substitution of the output variables of the resistors into the equation of the energy

store yields a state equation without algebraic constraint.

The examples of Figure 4.21 show that internal modulation may lead to algebraic

loops that are not detected by inspecting causal paths alone. In addition, signals must

also be taken into account that originate from junctions and modulate bond graph

elements. On the other hand, internal modulation does not necessarily result in al-

gebraic loops as the bond graph of Figure 4.23 illustrates. It is this possibility of

algebraic loops not expressed by causal paths that explains why at the beginning of

this chapter sources, transformers and gyrators have only been allowed to be modu-

lated by state variables or system inputs. Finally, let us consider an example with an

internally modulated source depicted in Figure 4.24. Since there is no causal path

between resistors, the bond graph at a first glance suggests that the mathematical

model can be reduced to state space form. From the bond graph of Figure 4.24, the

following three algebraic equations for the controlled source and the two resistors

and an ODE for the C energy store can be written.

u = k i2 (4.44a)

i2 =
1

R2
( u − uC ) (4.44b)
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i1 =
1

R1
( E − uC ) (4.44c)

u̇C =
1
C

( i1 + i2 ) (4.44d)

In the example of the voltage follower (Figure 3.22), the output of the controlled

source is proportional to the difference of the input voltage. The voltage across the

capacitor is a state variable. In this example, the output of the controlled source is

proportional to the power variable i2. By taking into account the signal modulat-

ing the left-hand side source, we see that there is a flat loop between the controlled

source and the resistor with resistance R2. Apparently, if the source was indepen-

dent, then there would be no algebraic loop associated with the causal path between

the source and the resistor R2. Substituting the constitutive equation of the con-

trolled source into the equation of the resistor R2 yields an equation that determines

the controlling signal i2.

R2 i2 = k i2 − uC (4.45)

Equation 4.45 is just the sum of all efforts at the left 1-junction. It is solvable for

i2 if k �= R2. Under this condition, the equations derived from the bond graph can

be reduced into one state equation for uC . In case k = R2, the DAE system is

of index one (The algebraic constraints need to be differentiated once in order to

obtain u̇C(t) = 0. For k = R2, the circuit degenerates into one with no dynamic

element). The simple example shows that conclusions with regard to the form of the

mathematical model cannot be drawn from considering causal paths alone if internal

modulation is not excluded. The form of the mathematical model or the index of a

DAE system may even depend on parameter values.

In [12], Cornet and Lorenz show how causality assignment and causality prop-

agation can be used to establish a set of sorted equations in the sense of a compu-
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tational order. Since algebraic loops prevent a complete sorting, their detection is

essential in this context.

Breedveld argues that internal modulation should be relinquished from a concep-

tional point of view because basic features of elements can be changed and elements

with arbitrary characteristics can be constructed by means of internal modulation

[7]. Thus, there would be a potential risk that modelling violates physical conserva-

tion laws. Fundamental features of physical modelling would not be guaranteed any

more. Van Dijk proposes to use a multiport with appropriate nonlinear constitutive

equations instead of local internal modulation [32] where possible. He considers

internal modulations as an exception.

4.9 The Method of Relaxed Causalities

So far, we have only used the standard procedure of Karnopp and Rosenberg for as-

signing and propagating computational causalities in bond graphs. Resulting causal

patterns and their implication with regard to the form of the mathematical model

have been analysed. The notion of the causal path has been essential in this con-

text. In addition to the standard sequential causality assignment procedure SCAP,

some modifications of this procedure have been proposed in the bond graph litera-

ture. In the following, first, the so-called method of relaxed causalities introduced

by Joseph and Martens [20] is considered by means of the example of a hydraulic

bridge (Figure 3.26).

In this example, the necessity appears to choose causality at two of the four re-

sistors leading to two separate causal paths (cf. Figure 4.2) and the requirement

that the resistors must have an invertible characteristic. Otherwise, causality at two

resistors would not be in accordance with their characteristic. This can be taken

into account by establishing implicit nonlinear equations that can only be numeri-

cally solved by iteration. In [20], Joseph and Martens propose a modification of the

SCAP that enables one to assign nonlinear resistors the causality their characteristic

requires and that allows violations at 0- and 1-junctions. For instance, if all resistors

of the hydraulic bridge require conductance causality and if these causalities are as-

signed in the order R1, R2, R3, R4, then no causal paths appear, but at the lower

right side 0-junction and at the upper left side 1-junction, causality rules cannot be

maintained any longer. There are two type of conflicts highlighted by a flash. At the

0-junction, there is no effort that determines the effort at the other adjacent bonds.

At the 1-junction, there are two flows that want to determine the common flow at

all bonds (cf. Figure 4.25). If a source requires a causality at a resistive port that is

not in accordance with the resistors constitutive relation, then the method of relaxed

causalities enables one to insert an extra 0- or 1-junction and to reassign causal-

ity at the resistive port resulting in a causal violation at the junction as depicted in

Figure 4.26. If the causality at a resistive port is determined by the preferred inte-

gral causality of an energy store and if the resistor characteristic requires reverse
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Fig. 4.25 Bond graph with two types of causal conflicts at a 0- and a 1-junction
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Fig. 4.26 Bond graph fragment with an extra 0-junction taking a causal violation

causality, then either the causality of the storage port can be changed into derivative

causality or an extra junction can be included.

As the example of the hydraulic bridge shows, two types of causal violations at 0-

and 1-junctions can be distinguished. Moreover, if several bonds want to determine
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the common variable of a junction, Joseph and Martens have introduced a degree

that indicates how many algebraic constraints must be established for each a junction

in addition to the ODEs of the energy stores. That is, the resulting mathematical

model is a DAE system.

Definition 4.18 (Causal conflict of type 1). In this case, there is no bond that deter-

mines the common variable of the junction. At a 1-junction, the causal stroke of all

adjacent bonds point towards the 1-junction. At a 0-junction, the causal stroke at all

adjacent bonds is pointing away from the junction (Figure 4.27).

Definition 4.19 (Causal conflict of type 2 and degree k). If there are k + 1 bonds

that want to determine the common variable of a junction, then there is a causal

conflict of type 2 and degree k. That is, at a 1-junction, not one but k + 1 flows are

input to the junction, while at a 0-junction, k + 1 instead of only one single effort

are input to the junction (Figure 4.28).

According to these definitions, the bond graph of Figure 4.25 shows a causal conflict

of type 1 at the right side 0-junction and a causal conflict of type 2 and degree 1 at

the left side 1-junction.

If there is a causal conflict of type 1 at a 0-junction, then the effort at one of its

adjacent bonds must be chosen as an input variable. Preferably, a bond is chosen that

connects the 0-junction to a nonlinear resistive port with conductance causality or a

port of an I energy store with preferred integral causality. Joseph and Martens call

such a variable an algebraic state variable. In the example of the hydraulic bridge

(Figure 4.25), the effort p2 is chosen and considered to be an input to the 0-junction.

Adding up the flows at that junction yields an equation that determines the algebraic

state variable p2.
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0 = g1 (pS − p2) − g2 (p2) + A v (4.46)

If there is a causal violation of type 2 and degree k at a 0-junction with n adja-

cent bonds, and if none of the efforts of the adjacent bonds is a state variable, then

an effort is arbitrarily chosen as an input to the 0-junction from those bonds that

connect the junction to a nonlinear resistive port. Without loss of generality, e1 is

assumed to be that input. From the n flows at the 0-junction adding up to zero, flows

fk+2, . . . , fn of those bonds causing no violation can be expressed by components

of the state vector x. That is, the flow f1 into the resistive port can be represented in

terms of the algebraic state variables f2, f3, . . . , fk+1 and the state vector x. Hence,

the constitutive equation of the resistive port takes the form

e1 = Ψ1 (f2, f3, . . . , fk+1,x) . (4.47)

In addition, for each of the k bonds (2, . . . , k+1) that want to determine the common

effort of the 0-junction like bond 1 and that are causing a violation in this way, an

equation of the form

0 = ei − Ψi (fi), i = 2, . . . , k + 1 (4.48)

holds. Since there is a common effort at all bonds of a 0-junction, Equation 4.47

can be substituted into Equation 4.48. The result is a set of k implicit algebraic

equations determining the algebraic state variables f2, . . . , fk+1. Apparently, if e1

is a state variable, then Equation 4.47 is not applicable.

Similar equations can be formulated for 1-junctions as their functionality is dual

to that of 0-junctions.

In the case of a type 1 causal violation at a 1-junction, there is no flow that is input

into the junction. Consequently, one flow must be chosen as an input. Effort con-

tinuity of the 1-junction provides an algebraic equation that determines the chosen

input flow.

For causal violation of type 2 and degree k at a 1-junction, algebraic constraints

corresponding to equations 4.47 and 4.48 are obtained for those flow variables that

inflict causal violations. Consider the bond graph of Figure 4.25. From the two flows

Q4 and Q5 that want to determine the common flow at the upper left 1-junction, Q5

is chosen as an input. It can be represented in terms of the state variable, v, and the

effort, p4, of that bond inflicting the causal violation.

Q5 = g3 (pS − p4) + A v (4.49)

For that bond causing the violation the algebraic relation

Q4 = g4 (p4) (4.50)

holds. Since there is a common flow at a 1-junction, Equation 4.49 can be substituted

into Equation 4.50. The result is an equation that determines the algebraic state

variable p4. In this example, the method of relaxed causalities yields two coupled

nonlinear implicit algebraic constraints for the algebraic state variables p4 and p2
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and an ODE for the inertia of the piston.

0 = g1 ( pS − p2 ) + A v − g2 ( p2 ) (4.51a)

0 = g4 ( p4 ) − g3 ( pS − p4 ) − A v (4.51b)

v̇ =
1
m

A [ ( pS − p4 ) − p2 ] (4.51c)

Again, the resulting DAE has the form of Equations 4.4a–4.4b.

This result can also be obtained by inserting additional energy stores into the

bond graph. If C energy stores are attached to the 0-junctions in the lower part of the

bond graph shown in Figure 4.25, then the causal conflicts vanish. The mathematical

model derived from the modified bond graph has the form of an explicit state space

model. If the state equation of each additional C energy store is multiplied by its

capacitance and if the latter tended to zero, then the above Equations 4.51a and

4.51b are the result.

4.10 Lagrange Causalities

In Section 4.4, the well known example of a slider crank mechanism was used to

illustrate that the mathematical model takes the form of a DAE system if there is

a causal path in the bond graph between an independent and a dependent storage

port. Since the rod, assumed to be massless, links the piston to the flywheel, there is

a geometric constraint between the piston’s displacement and the angular position

of the crank. Apparently, the number of unknowns in Equation 4.25 is not minimal.

The mechanism has only one degree of freedom. Moreover, the balance of moments

depends on the angular position of the crank. It is a peculiarity of mechanical sys-

tems in planar or 3D motion that generally equations determining their dynamic

equilibrium cannot be formulated without knowing geometric positions. In contrast,

power variables in electrical systems must comply with Kirchhoff’s laws that do not

depend on generalised displacements, viz. charge or flux linkage. Furthermore, the

complexity of mathematical models of mechanical systems strongly depends on the

reference frame(s) in use and on the choice of the state variables. Therefore, often

appropriate coordinates, so-called generalised coordinates, used in mechanics and

equations of motion are formulated as Lagrange equations of the second kind. This

way, a compact and, due to geometric constraints, a strongly nonlinear model results

with a minimal number of state variables. These are displacements and velocities

of the bodies chosen with respect to appropriate reference frames. Lagrange equa-

tions, however, are not confined to mechanical systems. Generalised coordinates are

only special generalised displacements, but in the context of Lagrange equations

of motion, the notion of generalised coordinates is kept even when this method of

establishing equations of motion is used in non-mechanical energy domains. If a

Lagrange approach is applied, for instance, to describe nonlinear electrical systems,

then generalised coordinates are the integral of currents with respect to time (These
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quantities are not necessarily the charge of certain capacitors). Karnopp has given a

procedure that, first of all, enables one to identify generalised coordinates and their

associated so-called generalised forces in a bond graph [23]. In a second step, the

Lagrangian L is determined from the bond graph as a function of the generalised

coordinates and their time derivatives. Proper derivatives of the Lagrangian then,

eventually, yield the Lagrange equations.

In the following, we will see that as opposed to a DAE system, Lagrange equa-

tions can be directly derived from a bond graph. In order to identify the needed

generalised coordinates, we use the modification of the standard sequential causal-

ity assignment procedure (SCAP) given by Karnopp in [23]. Further procedures

for the derivation of Lagrange equations with Lagrange multipliers directly from a

bond graph have been proposed by Bos [6], van Dijk [32] and Marquis-Favre and

Scavarda [25].

4.10.1 Identification of Generalised Coordinates in a Bond Graph

1. All independent sources are assigned a causality according to their type. This

causal information is propagated into the junction structure as far as possible.

If any causal conflicts appear, modelling assumptions must be checked and the

model must be modified.

2. If the common flow variable of a 1-junction is still undetermined, then an artifi-
cial flow source is attached that imposes a flow. This flow information is propa-

gated into the junction structure as far as possible.

If there are no undetermined 1-junctions left and if the bond graph is still causally

incomplete, then a 1-junction is inserted into an acausal bond.

3. Step 2 is repeated until all bonds have a causal stroke.

The 1-junctions to which an artificial flow source has been attached represent the

time derivatives of the generalised coordinates we are looking for. There is no rule

as to which undetermined 1-junction an artificial flow source has to be attached to

first. Moreover, if there are no undetermined 1-junctions but still acausal bonds, then

an acausal bond can be arbitrarily chosen for insertion of a 1-junction. That is, the

set of generalised coordinates identified by this procedure is not unique.

4.10.2 Determination of Generalised Forces from a Bond Graph

The generalised forces are the efforts into the artificial flow sources. They are ob-

tained by adding the efforts at the 1-junction to which an artificial flow source has

been attached. However, in this sum, only efforts from sources and resistors are

taken into account. In order to ensure that the generalised force is the sum of all

these efforts including their sign, the half arrow points toward the artificial flow

source [23]. More precisely, one should talk of artificial flow sinks.
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4.10.3 Derivation of Lagrange Equations from a Bond Graph

Lagrange equations can be directly derived from a bond graph by adding up the ef-

forts at all 1-junctions that represent the time derivative of a generalised coordinate.

In contrast to the procedure applied for identification of generalised forces, in this

balance, all efforts are taken into account. The sum of all efforts into an artificial

flow source is equal to zero. In the following, both steps shall be applied to the

example of the slider crank mechanism and to an example of an electrical network.

Example: Slider Crank Mechanism

If an artificial flow source is attached to the 1-junction representing the angular ve-

locity ω = ϕ̇, and if this flow information is propagated into the junction structure,

then the bond graph is already causally complete after this step (Figure 4.29). That

is, the angle ϕ is the only generalised coordinate according to the one degree of

freedom of the mechanism (If we had attached an artificial flow source to the right-

hand 1-junction, the displacement of the piston would have become the generalised

coordinate). From the balance of efforts at the left-hand 1-junction

0 = M − J ϕ̈ − M̃ (4.52)

we obtain the same second order ODE for ϕ

( J + T mT ) ϕ̈ + (T mṪ ) ϕ̇ + (T rT )ϕ̇ = M + TF (4.53)

that would result after establishing and proper differentiation of the Lagrangian.

In general

T ∗ :=
∫ f

0

p(f̃) df̃ (4.54)
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Fig. 4.29 Bond graph of the slider crank mechanism with an artificial flow source
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denotes the kinetic co-energy and V the potential energy of a system. The La-

grangian is defined as the difference of both terms

L := T ∗ − V . (4.55)

(The distinction between kinetic energy and kinetic co-energy is of relevance only

for relativistic mechanics and for systems with non-mechanical, nonlinear inertias.

Otherwise, T ∗ = T .) Let q denote the vector of generalised coordinates and Q
the vector of generalised forces, then T ∗ is a function of q and q̇, whereas V is a

function of q and
d

dt

∂L

∂q̇
(q, q̇) − ∂L

∂q
(q, q̇) = Q (4.56)

is the Lagrange equation of motion. For the example of the slider crank mechanism,

ϕ is the only generalised coordinate. The generalised force is Q = M − T [r(T ϕ̇) −
F ]. The Lagrangian is the sum of the kinetic energy of the flywheel and of the piston.

L =
1
2

( J ϕ̇2 + m (T ϕ̇)2 ) (4.57)

If L is differentiated according to Equation 4.56, then Equation 4.53 results.

Virtual Inertia and its Companion Gyristor

Section 3.4 mentions that in the case of an independent I energy store and a de-

pendent I energy store coupled by a transformer with a constant ratio (Figure 3.14),

the energy store with derivative causality can be transformed over the transformer

and can be combined with the independent energy store. Since in Equation 4.53 the

factor pre-multiplying ϕ̈ has the same form as the one in the bond graph of Fig-

ure 3.15, it is obvious to also represent Equation 4.53 by a bond graph. In the case

of the slider crank mechanism, however, the modulus of the transformer is a func-

tion of the generalised coordinate ϕ. Consequently, the term J + TmT viewed as

moment of inertia, J̃ , is not constant. In [3], Allan denotes J̃ as an instantaneous
or virtual inertia. Unlike the case of a transformer with constant modulus, the con-

sequence of this view is that the additional term (TmṪ ) ϕ̇) must be represented by

a new artificial bond graph element (GR) called gyristor by Allan. It takes into ac-

count that the virtual inertia depends on the displacement ϕ and, therefore, is not

constant (TmṪ = (1/2) ˙̃J). The new element ensures that the kinetic co-energy

of the virtual inertia is conserved. That is, it is equal to the kinetic co-energy of the

mechanism [3]. If the new artificial element is accepted, then Lagrange equation

(4.53) can be represented by the bond graph of Figure 4.30.

The derivation of Lagrange equations from a bond graph is suitable especially

for mechanical systems with complicated kinematics if moving reference frames

are used and for nonlinear systems. The resulting second order equations of motion

are strongly nonlinear. The model, however, is much more compact than a DAE

system. This has been illustrated by Karnopp in an article on different approaches

to the derivation of equations from a bond graph by comparing the equations for the
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Fig. 4.30 Bond graph with virtual inertia and gyristor as companion

components of the momentum of a simple mathematical pendulum with respect to

a fixed Cartesian reference frame to the well known second order equation for the

angle [22].

Example: RLC Network

Finally, we will show by means of the simple RLC circuit of Figure 4.31 that the

Lagrange method is not confined to mechanical systems. Application of Karnopp’s

method to the bond graph of the circuit yields the two generalised coordinates q̇1

and q̇2 (Figure 4.32).

In the next step, all efforts at the 1-junctions are added up assuming that the

efforts into the artificial flow sources are zero. After differentiation of the effort

balance at the left-hand 1-junction, the two Lagrange equations are

1
C1

Ie = R q̈1 +
(

1
C1

+
1
C2

)
q̇1 − 1

C2
q̇2 (4.58a)

0 = L1 q̈2 +
1
C2

q2 − 1
C2

q1 . (4.58b)
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Fig. 4.31 RLC circuit
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Fig. 4.32 Bond graph of the RLC circuit with artificial flow sources

Equation 4.58a can also be directly obtained from the network by adding up all

voltages along mesh I, by differentiating this sum with respect to time and by using

Kirchhoff’s current law to express the currents into the capacitors by the derivatives

of the generalised coordinates. Likewise, the second Equation 4.58b results from

adding up all voltages along mesh II.

The same equations result if the Lagrangian of the system

L =
1
2

L1 q̇2
1 − 1

2C1
(
∫ t

0

(Ie(τ) − q̇1)dτ)2 − 1
2C2

(q1 − q2)2 (4.59)

is differentiated according to Equation 4.56. The generalised forces

E1 = −R q̇1 (4.60a)

E2 = 0 (4.60b)

are obtained from the bond graph of Figure 4.32.

4.11 Conclusion

In the previous chapter, the important notion of a causal path was introduced. In

the process of a systematic derivation of a mathematical model from a causal bond

graph, first, only causal paths between resistive ports had been allowed. In this chap-

ter, different types of causal paths and their influence on the form of the mathemat-

ical model have been considered. The following zero-order causal paths have been

analysed.

1. Causal paths between resistive ports

2. Causal paths between storage ports of the same type

3. Causal loops

4. Bond graphs with different types of causal paths
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In these cases, a mathematical model of the form of a DAE system can be derived

from the bond graph. If this form is not supported by the available simulation pro-

gram or if an explicit state space form is needed for other reasons, then causal paths

can be removed by inserting additional energy stores or resistors.

In the case of linear algebraic constraints, one may try to remove them by sym-

bolic manipulation supported by various algebra programs. The first approach is

generally applicable and can be justified from a physics point of view by taking into

account effects that are negligible with regard to the overall dynamics of a system.

For instance, in multibody systems, joints linking bodies are not completely rigid,

but have got some compliance and exhibit some dissipation. Consequently, inertias

of bodies can be decoupled by a spring-damper pair. The disadvantage, however, is

that fast transients or high frequency oscillations are introduced that are not signifi-

cant for the overall system dynamics.

Transients or oscillations in a system considered to be isolated can be identified

by looking at causal paths between a storage port and a resistive port and between

storage ports of different type. For linear or linearised characteristics, time constants

or natural frequencies can be obtained from element parameters. Since transients

and oscillations in a system are not isolated but influence each other, this approach

yields only a rough estimate of the actual time constants and natural frequencies of

the linearised system which is not so bad because determination of eigenvalues is so

costly that their evaluation prior to simulation is not worthwhile.

Inserting additional energy stores or resistors often results in a stiff ODE sys-

tem. Numerical solution of such system requires an implicit stiffly stable integration

method. Thus, the solution is costly with regard to computational time in compar-

ison to an explicit method. Moreover, including additional energy stores increases

the order of the ODE system. The disadvantage of a symbolic reduction approach is

that it is not generally applicable.

The standard sequential causality assignment procedure, SCAP, may lead to the

requirement of inverting the characteristic of some resistive ports. If that is not pos-

sible for a resistive port, causality in the bond graph is not in accordance with the

form of constitutive relation. In this case, the equation of a port can be considered

an implicit non-invertible algebraic relation for the determination of the output vari-

able. A transformation of the DAE system into a state space model is not possible.

An alternative to the standard SCAP is the method of relaxed causalities intro-

duced by Joseph and Martens. Following this procedure, nonlinear resistive ports

always obtain the causality corresponding to their constitutive relation with the con-

sequence of possible causal violations at 0- or 1-junctions. The type of causal vio-

lation indicates how many algebraic constraints must be formulated for each such

junction. Hence, in general, the procedure of Joseph and Martens yields mathemat-

ical models of the form of a DAE system. Consequently, causal conflicts do not

necessarily indicate contradictions in the model, meaning that the model equations

cannot be solved. Whether a mathematical model can be reduced to an explicit state

space model depends on whether the algebraic constraints resulting from causal vi-

olations at 0- or 1-junctions can be symbolically solved.
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If there is a causal path between an independent and a dependent linear energy 1-

port store, then both energy stores can be combined into one with integral causality.

Transforming an energy I store with derivative causality over a transformer requires

its parameter to be multiplied by the square of the transformer modulus. If the mod-

ulus is controlled by a generalised displacement, then the result is a so-called virtual

inertia that has an artificial element, the gyristor, as a companion. The latter takes

into account that the virtual inertia depends on the instantaneous value of the gen-

eralised displacement and ensures that the kinetic co-energy of the virtual inertia is

conserved [3].

Another option is to apply a procedure introduced by Karnopp that enables one

to identify generalised coordinates in a bond graph and to derive Lagrange equations

for them. This can be achieved by adding all efforts at the 1-junctions representing

the derivatives of generalised coordinates. The method of Lagrange equations is not

confined to mechanical systems even if the terminology originating from mechanics

is retained. For electrical systems, the charge of capacitors can be used as gener-

alised coordinates. In any case, the result is a compact generally nonlinear model

with a minimal number of state variables.

If the mathematical model derived from a bond graph takes the form of a DAE

system, then its index is an important characteristic with regard to the numerical

solution. Van Dijk has shown that conclusions with regard to the index can be drawn

from inspection of causal patterns in the bond graph. For instance, if causal paths

occur between resistive ports or between independent and dependent storage ports,

then the DAE system for the outputs of the energy stores is of index one.

For bond graphs with causal loops (Definition 3.10), Andry and Rosenberg have

shown that the algebraic equations of the general junction structure (Definition 2.14)

are solvable if and only if causal loops are pairwise disjoint and if for each causal

loop, its loop gain (Definition 4.16) is different from +1. If causal paths between

independent and dependent storage ports share bonds with causal loops while causal

loops do not touch, then the DAE system is of index > 1, as has been shown by van

Dijk. Consequently, solvers based on the BDF method, like the widely used DASSL

code, cannot be used, in general, for such DAE systems.

Causal loops of unity loop gain in the junction structure are an indication of a

weak point of the SCAP. In the bond graph of Figure 4.16, the fixed causality of

the flow source and the preferred causalities of the I energy stores do not propagate

into the junction structure. According to the SCAP, causality must be chosen at a

resistor. If conductance causality is assigned, a causal conflict results at a 0-junction.

On the contrary, assignment of resistance causality leaves the bond graph causally

incomplete. Hence, causality must be chosen at an internal bond. No matter at which

of the six internal bonds causality is chosen, the result is a causal loop of unity

loop gain. Setting up equations reveals that the causal loop of unity loop gain as

well as the causal conflict at the 0-junction indirectly express a nodicity property of

the delta subnetwork of resistors. According to this nodicity property, the currents

of the source and of the two I energy stores cannot be independent in contrast to

the assignment of preferred causalities at the storage ports. The nodicity property

can be expressed in the bond graph by assigning derivative causality to one of the
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two I energy stores. As a result, the causal loop disappears. In the bond graph of

Figure 4.18, the equation of cut-set 1 depicted in the network of Figure 4.15 is not

expressed directly, but the bond graph is consistent with that constraint. In that light,

the weakness of the SCAP could be accepted. With regard to the numerical solution

of the DAE system, however, it turns out that it is of index > 1. If one of the two

I energy stores obtains derivative causality, then the DAE system is of index one,

allowing for a safe numerical solution. Van Dijk has proposed a modification of the

SCAP that avoids the emergence of causal loops of unity loop gain such that bond

graphs causally completed this way lead to DAE systems of lower index.

Finally, internal modulation may cause algebraic loops. They are not expressed

by causal paths alone. Their systematic detection is not so easy. Since internal mod-

ulation enables the representation of functional relations that do not comply with

physical conservation laws, Breedveld suggests to refrain from using it.
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