
Chapter 12
Applications

The previous chapters demonstrate the capabilities of the bond graph methodol-

ogy in tackling various basic engineering problems and how various software pro-

grammes support this methodology. In this chapter, application of the methodol-

ogy in various engineering fields is illustrated by considering a number of small

case studies. Some of these examples have been analysed elsewhere in the literature

without making use of bond graphs. Bond graph models of further examples can be

found in text books on bond graph modelling published in various languages and in

many research papers. As to text books, readers are referred to, e.g. [13, 17, 21, 29],

just to mention a few. In most of the following case studies, the integrated mod-

elling and simulation environment 20-sim®[7], version 3.2, has been used. The

open source mathematical software package Scilab [26] and the root finding ver-

sion LSODAR of the ODE solver LSODA [14, 23] as part of Scilab has been used

for the example of a clutch (Section 12.6) and for the example of a quarter vehicle

(Section 12.7).

12.1 Inverted Pendulum

In feedback control of engineering systems, the inverted pendulum is often chosen

as an example in order to show how a controller can be designed for stabilising

an inherently unstable system. The equations of motion are usually set up directly

by considering forces and moments in a free body diagram. In [13], Gawthrop and

Smith gave a library model for the planar motion of a rigid rod and adapted it to

the case of a simple inverted pendulum hinged to a cart. In [29], Vergé and Jaume

applied the general multibond graph approach to modelling rigid multibody sys-

tems. In this section, it is shown how easily a bond graph model can be developed

by graphically representing velocity constraints derived from geometric constraints.

From the completed bond graph with all I energy storage elements in derivative

causality, equations of motion are derived in the form of Lagrange equations of the

second kind.
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Fig. 12.1 Schematic of an inverted pendulum

Development of a Bond Graph Model

Figure 12.1 shows a schematic of the inverted pendulum with a uniform rigid rod

of length 2l, mass m, moment of inertia J about its centre of mass hinged to a rigid

cart of mass M . The cart is pushed by a force F (t).
The schematic provides the following two geometric relations.

x = x1 + l cos ϕ (12.1a)

y = l sin ϕ (12.1b)

Differentiation with respect to time gives

ẋ = ẋ1 − lϕ̇ sin ϕ = (−l sin ϕ)ϕ̇ + ẋ1 (12.2a)

ẏ = lϕ̇ cos ϕ = (l cos ϕ)ϕ̇ . (12.2b)

The velocity constrains 12.2a–12.2b can be represented by the bond graph of Fig-

ure 12.2.

A bond graph of the inverted pendulum is obtained by simply adding effort

sources, I elements and the resistor R : b representing friction between the wheels

of the cart and the ground. For simplicity, a linear friction characteristic is assumed.

The completed bond graph is depicted in Figure 12.3.

Note that derivative causality has been assigned to all I elements. The two flow

sources with a vanishing effort into the source are artificial flow sources introduced

by Karnopp [16]. They resolve the causal conflicts at the 1-junctions they are at-

tached to and indicate the generalised coordinates x1 and ϕ (cf. Section 4.10).
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Deriving Lagrange Equations from the Bond Graph

Clearly, the system has two degrees of freedoms. Summing up all moments at the

left 1-junction representing ϕ̇ gives one of the two Lagrange equations of the second

kind.

0 = Jϕ̈ + l cos ϕ (mÿ + mg) + (−l sin ϕ) mẍ

= Jϕ̈ + ml2 cos ϕ (ϕ̈ cos ϕ − ϕ̇2 sin ϕ) + mgl cos ϕ

− ml sin ϕ [ẍ1 − l(ϕ̈ sin ϕ + ϕ̈2 cos ϕ)]
= (J + ml2)ϕ̈ − ml ẍ1 sin ϕ + mgl cos ϕ (12.3)

Summation of all forces at the 1-junction representing ẋ1 gives the Lagrange equa-

tion for the second degree of freedom.

0 = F (t) − Mẍ1 − m ẍ − b ẋ1

= F (t) − Mẍ1 − m [ẍ1 − (ϕ̈ sin ϕ + ϕ̇2 cos ϕ)] − b ẋ1

F (t) − b ẋ1 = (M + m) ẍ1 − ml ϕ̈ sin ϕ − ml ϕ̇2 cos ϕ (12.4)

Deriving Equations of Motion from the Lagrangian

For comparison, the equations of motion 12.3–12.4 shall be deduced also from the

Lagrangian of the inverted pendulum. As the system has two degrees of freedom,

the following equations are to be formed

d

dt

(
∂L

∂ẋ1

)
− ∂L

∂x1
= F (t) − b ẋ1 (12.5a)

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
= 0 , (12.5b)

where L := T−V is the difference of the kinetic energy, T , and the potential energy

V .

The kinetic energy is

T =
1
2
M ẋ2

1 +
1
2
m [(ẋ1 − lϕ̇ sin ϕ)2 + ( lϕ̇ cos ϕ)2] +

1
2
J ϕ̇2

=
1
2
(M + m) ẋ2

1 +
1
2
m (−2l ẋ1ϕ̇ sin ϕ + l2 ϕ̇2) +

1
2
J ϕ̇2 . (12.6)

The potential energy is

V = −mgl sin ϕ . (12.7)

Hence,

d

dt

(
∂L

∂ẋ1

)
=

d

dt
[(M + m) ẋ1 − ml ϕ̇ sin ϕ]

= (M + m) ẍ1 − ml(ϕ̈ sin ϕ + ϕ̇2 cos ϕ) (12.8)
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and
∂L

∂x1
= 0 . (12.9)

Substitution of Equations 12.8 and 12.9 into Equation 12.5a gives Equation 12.4.

Furthermore,

d

dt

(
∂L

∂ϕ̇

)
=

d

dt
[−mgl ẋ1 sin ϕ + ml2 ϕ̇ + J ϕ̇]

= (J + ml2) ϕ̈ − ml(ẍ1 sin ϕ + ẋ1 ϕ̇ cos ϕ) (12.10)

and
∂L

∂ϕ
= −ml ẋ1 ϕ̇ cos ϕ − mgl cos ϕ . (12.11)

Finally, substitution of Equations 12.10 and 12.11 into Equation 12.5b gives Equa-

tion 12.3.

Transfer Function of the Inverted Pendulum

Now, let ϕ := π/2 + φ. For small φ, viz. small deviations from the vertical position

of the rod, the equations of motion 12.3–12.4 can be linearised.

(J + ml2) φ̈ − ml ẍ1 − mgl φ = 0 (12.12a)

(M + m) ẍ1 − ml φ̈ = F (t) − b ẋ1 (12.12b)

Laplace transform of the linearised equations of motions gives the transfer function

L φ

L F
=

mls2

(M̃J̃ − m2l2)s4 + bJ̃s3 − mglM̃s2 − bmgls
, (12.13)

where M̃ := M + m and J̃ := J + ml2.

As can be seen from the transfer function of Equation 12.13, there is a pole-zero

cancellation at the origin. Furthermore, if the parameter values of Table 12.1 [12]

are used, the transfer function has one positive real pole, p1 = 5.087, in the right-

half of the s-plane. This is in agreement with the fact that the open-loop system is

unstable. Figure 12.4 shows a root locus plot and Figure 12.5 depicts a Nyquist plot

of the uncontrolled cart-pendulum system.

Table 12.1 Parameters of the inverted pendulum

Parameter Value Units Meaning

M 0.7429 kg Cart mass

m 0.21 kg Mass of the rigid rod

2l 0.61 m Pendulum length

b 7.19 Ns/m Friction between cart wheels and ground
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Fig. 12.4 Root locus plot of the uncontrolled cart-pendulum system

If G(s) denotes the open-loop transfer function and H(s) the transfer function

of the feedback component then according to the Nyquist stability criterion, H(s)
has to be designed so that the Nyquist plot of G(s)H(s) has one anti-clockwise

encirclement of the point −1 + j 0. As a result, the number of unstable closed-loop

poles is zero. As the purpose of this section has been the development of a bond

graph model of the inverted pendulum and the derivation of Lagrange equations

of motion from the bond graph, the design of a controller for stabilisation of the

unstable inverted pendulum is not considered. The control of the unstable inverted

pendulum example has been addressed, for instance, in the textbook of F. Brown

[3] (Guided Problem 8.2) and in the online tutorials authored by B. Messner and

D. Tilbury [19].

12.2 Shunt Motor

In Chapter 11, a bond graph model of a shunt motor has been used as a reference

example for illustration of various aspects. In this section, a small simulation study

is carried out to determine the motor’s dynamic response to a sudden increase of the

load torque. For convenience, the schematic and the bond graph model are repro-

duced from Chapter 11 (Figures 12.6 and 12.7).
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Fig. 12.5 Nyquist plot of the uncontrolled cart-pendulum system
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Fig. 12.6 Schematic of a shunt motor

From the causal bond graph in Figure 12.7, the following equations can be de-

rived.

if =
1

Rf
E (12.14a)

uR = Ra × ia (12.14b)

MR = Rm × ω (12.14c)

Ψ = K × if (12.14d)

ua = Ψ × ω (12.14e)

M = Ψ × ia (12.14f)
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Fig. 12.7 Bond graph model of a shunt motor

dia
dt

=
1
La

(E − ua − uR) (12.14g)

dω

dt
=

1
Jm

(M − MR + Mload) (12.14h)

For the simulation study, it is assumed that the motor is driven by a constant voltage

source. Its value is E = 220V . First, the motor’s idling performance is analysed.

Then, after 2.5 s, the motor is subjected to an immediate jump of the load torque

to a constant value of 100 Nm. The parameters used for the simulation are listed in

Table 12.2.

Table 12.2 Parameters of the simulation study

Parameter Value Units Meaning

E 220 V Voltage supply

Rf 5.495 Ω Resistance of the field winding

Ra 0.875 Ω Resistance of the armature winding

Rm 0.066 Nms Friction coefficient

K 0.0307 V s/A Ψ = K × if
La 0.175 H Self-inductance of the armature winding

Jm 0.8 Nms2 Moment of inertia of the flywheel

Mload 100 Nm Load torque effective for t ≥ 2.5 s
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Fig. 12.8 Time evolution of the shaft velocity and the armature current

Simulation Results

Figure 12.8 shows the time evolution of the angular velocity, ω, of the motor shaft

and of the current, ia, through the armature winding. After switching on the voltage

supply of the motor, the angular velocity rises and approches a steady idle speed

value. During the rise time of the angular velocity, the current consumption reaches

a maximum value and peaks off to low values when the angular velocity is around

its steady state value.

Some algebra on the dynamic equations results in the following formulae for the

steady state values i0a and ω0.

i0a =
Rf

K E
Rm ω0 (12.15a)

E =
(

K E

Rf
+ Ra

Rf

K E
Rm

)
ω0 (12.15b)

With the parameters from Table 12.2, i0a and ω0 take the numerical values
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i0a = 9.257 A (12.16a)

ω0 = 172.4 1/s , (12.16b)

which verifies the values obtained by simulation.

When the constant load torque becomes effective at t = 2.5 s, then the angular

velocity drops and the current consumption rise to new steady state values, as to be

expected.

12.3 A Machine with an Unbalanced Rotor

An unbalanced mass has a feedback on the motor of a shaft-driven machine and can

cause unwanted vibrations and noise of a machine mounted on springs. A motor

mounted on springs as sketched in Figure 12.9 has been analysed by Christ in his

dissertation in as early as 1966 [6].

As the differential equations are nonlinear, Hoffmann has chosen this example

for a MATLAB®/Simulink® simulation that starts from given differential equations

[15]. Such a spring mounted vertically moving machine is also briefly considered in

the textbook by Brown ([3], Example 6.8), where a very simple bond graph is given.

Development of a Bond Graph Model

Similar to the case of the previous example of an inverted pendulum, in this section,

the development of a bond graph model starts from considering the position of the

unbalanced mass. Differentiation of its coordinates in a global frame with respect

to time, again, provides velocity constraints that can be represented in a bond graph

fragment. This bond graph for the kinematic constraints can be easily extended into

a full dynamic model from which the equations of motion can be derived.

In a global frame, the position of the unbalanced mass, m2, has the coordinates

�
ẏ1m1

m2 �
+

�
�

�
�
�
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--,,--,,--,,
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k/2



















































Fig. 12.9 Schematic of a machine with an unbalanced rotor
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x2 = 0 + e sin ϕ (12.3a)

y2 = y1 + e cos ϕ . (12.3b)

Differentiation with respect to time gives the velocity constraints

ẋ2 = (e cos ϕ) ϕ̇ (12.4a)

ẏ2 = ẏ1 + (−e sin ϕ) ϕ̇ . (12.4b)

As for the rod of the inverted pendulum, the velocity constrains 12.4a–12.4b can be

represented by the bond graph of Figure 12.10.

The bond graph fragment of Figure 12.10 is extended into a dynamic model of

the machine by adding inertia elements to the 1-junctions, a C and an R element for

the spring-damper pair and effort sources accounting for gravitational forces. Fig-

ure12.11 shows the resulting bond graph. The machine is driven by a DC motor with

constant excitation providing a torque Mm. A bond graph of the motor is depicted

in Figure 12.12.

Derivation of Model Equations from the Bond Graph

Summation of all forces at the 1-junction representing ẏ1 gives

m1 ÿ1 = −m1g − b ẏ1 − ky1 − (m2g + m2 ÿ2)
m1 ÿ1 + b ẏ1 + ky1 = −m2 ÿ2 − (m1 + m2)g . (12.5)

1 ϕ̇
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Fig. 12.10 Bond graph representation of the velocity constraints 12.4a–12.4b
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The sum of flows at the upper 0-junction reads

ẏ2 = (−e sin ϕ) ϕ̇ + ẏ1 . (12.6)

The derivative causality of the I element attached to the 1-junction of ẏ2 requires

differentiation of Equation 12.6. Substitution of the result into Equation 12.5 yields

the equation for the vertical motion of the machine.

(m1 + m2) ÿ1 + bẏ1 + ky1 = m2e(ϕ2 cos ϕ + ϕ̈ sin ϕ) −
(m1 + m2)g (12.7)

If the system is at rest, then the initial position is

y10 = − (m1 + m2)g
k

. (12.8)

If there is no unbalance with eccentricity e, then natural frequency of the undamped

oscillation is

ω0 =
√

k

m1 + m2
. (12.9)

The unbalanced mass m2with the eccentricity e causes the vertical excitation force

Fe = m2e(ϕ2 cos ϕ + ϕ̈ sin ϕ) . (12.10)

Summation of all moments at the 1-junction representing ϕ̇ yields

Mm = J ϕ̈ + rϕ̇ + (−e sin ϕ)(m2 ÿ2 + m2g) +
(e cos ϕ)m2 ẍ2 . (12.11)

Again, summation of all flows at the 0-junctions yields ẏ2 and ẋ2. Derivative causal-

ity at both right-hand side I elements of mass m2 requires differentiation with re-

spect to time. After substitution of these time derivatives, the balance of moments

reads

Mm = (J + m2 e2) ϕ̈ + r ϕ̇ − m2 e ( ÿ1 + g) sin ϕ . (12.12)

From the bond graph of the DC motor in Figure 12.12, the following two equations

are derived.

Mm = kT ia (12.13a)

E = La
dia
dt

+ R ia + kT ϕ̇ (12.13b)
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Table 12.3 Parameters of the machine with an unbalanced mass

Parameter Value Units Meaning

m1 80 kg Mass of the bed and the rotor

m2 20 kg Unbalanced mass

k 1600 N/m Spring stiffness

b 4 Ns/m Friction coefficient for translational motion

r 100 Nms Friction coefficient for rotation

J 9.8 Nms2 Moment of inertia

e 0.1 m Eccentricity of m2
La 1.0 H Inductance of the armature winding

Ra 0.1 Ω Resistance of the armature winding

kT 50 Nm/A Torque constant of the motor

E 100 V Voltage applied to the motor

Simulation of the Machine with an Unbalanced Rotor

For simulation, the parameter values in Table 12.3 [15] have been used. If there is

no eccentricity, then the rotor speed in steady state, ωm, is

ωm = E/(Ra
r

kT
+ kT ) . (12.14)

With the given parameter values, the angular velocity takes the value ωm =
1.992 rad/s. The vertical vibration due to the unbalanced mass causes the angular

velocity of the motor to oscillate around this mean value, as Figure 12.13 shows.

Furthermore, in case there is no eccentricity, the torque provided by the motor in

steady state is

Mm = r × ωm . (12.15)

This steady state value is Mm = 199.2 Nm. As ωm oscillates around a mean value,

so does the motor torque due to the vibration of the spring-mass system caused by

the unbalanced mass m2 (cf. Figure 12.14). Figure 12.15 shows the time evolution

of the vertical oscillation, y1, of the bed due to the unbalance.

Frequency Analysis of the Machine with an Unbalanced Rotor

A FFT of the time evolution of y1 (cf. Figure 12.16) reveals that the vertical exci-

tation force at mean angular frequency, ωm = 1.992 rad/s, stimulates the resonant

frequency, ω0 = 4 rad/s of the undamped spring-mass system, which is undesired.

If y1 is replaced by y1 + y10 in Equation 12.7, then, by observing the expression

for the excitation force Fe, Equation 12.10, the Laplace transform of Equation 12.7

gives

L y1

L Fe
=

1
(m1 + m2) s2 + bs + k

(12.16)
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Fig. 12.13 Angular velocity of the motor

in case of a constant excitation frequency ϕ̇ = ωm = const.
Given the parameter values of Table 12.3, Figure 12.17 depicts the Bode plot of

the transfer function of Equation 12.16. As can been seen, for excitation frequen-

cies well above the natural frequency of the spring-mass system, the amplitude of

the vertical oscillation rapidly decreases and the phase takes the constant value of

−180o degrees due to the system’s inertia.

Reducing the value of the stiffness k of the spring supporting the bed from

1600 N/m to 160 N/m results in a natural frequency, ω0 = 1.25 rad/s of the

undamped spring-mass system that is below the mean excitation frequency of the

motor. Figure 12.18 shows the oscillation of the bed in case of a reduced spring

stiffness. A FFT of the time evolution of y1 shows that in steady state, the frequency

of the vertical oscillation adapts to the excitation frequency (cf. Figure 12.19).

12.4 An Electronic Balance with Displacement Compensation

Figure 12.20 depicts a conceptual schematic of an electronic balance with displace-

ment compensation. If there is no load on the weighing scale, then the gravitational
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Fig. 12.14 Feedback of the unbalance on the motor torque

force of the scale pan and the spring force will be in equilibrium, defining the set

point of the weighing scale’s displacement set point y = 0. No voltage, E, is ap-

plied to the plunger coil and no current is flowing through the coil. Now, a load,

m, causes a deviation from this set point. A current through the plunger coil causes

an electromagnetic force that lifts the scale pan back into its initial position. The

current needed to generate the electromagnetic force for compensation of the scale

pan’s displacement or the voltage applied to the coil can serve as a measure of the

load. The electromechanical energy conversion in the coil can be represented by a

gyrator.

Development of a Bond Graph Model

Construction of a bond graph model inspired by the topology of the schematic in

Figure 12.20 is straightforward. Figure 12.21 shows the result. The lower 1-junction

represents the current through the plunger coil. The attached R and I element ac-

count for its resistance and self-inductance. The upper 1-junction represents the ve-

locity of load and scale pan against a spring and a damper force of the suspension.

Finally, the Se source accounts for the gravitational force of the total mechanical

load.
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Fig. 12.15 Vertical oscillation y1 of the bed due to the unbalance

The velocity of the load is sensed and integrated. The deviation from the set point

is input into a controller. The output signal of the controller is fed into an amplifier

with saturation. The amplifier’s output is a voltage that is applied to the coil.

The sum of all efforts at the upper 1-junction yields the equation of motion for

the mechanical part of the scale with respect to the equilibrium position.

− mg + T i = (m + mb)ÿ + rẏ + k y (12.17)

The sum of all efforts at the lower 1-junction results in an equation for the dynamic

behaviour of the electrical part.

E(t) = L
di

dt
+ Ri + T ẏ (12.18)

The rules for assigning half arrows to the bonds of a bond graph help to ensure

that signs in the model equations derived from the bond graph are consistent. This

consistency is not automatically ensured if a free body diagram is used for the me-

chanical part of an electromechanical system and a conventional network for the

electrical part. If a load m is put on the scale at some time, t, then, in steady state,

the voltage
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Fig. 12.16 Power spectral density of the vertical oscillation y1

Es = R
mg

T
(12.19)

is needed to generate an electromagnetic force that compensates for the scale pan’s

displacement,

ys = −mg

k
. (12.20)

In order to achieve a compensation of the scale’s displacement, a PID controller is

chosen.

Finally, putting a load on the scale at some time means that the mass of the

scale pan is instantaneously increased. However, a rigid body with a time varying

mass cannot be represented by a bond graph I element. That is, the I element in

Figure 12.21 has to be replaced by a functional block implementing an equation of

the form

p.f = int(p.e) / ( mb + m * step(tstart)) . (12.21)

In this equation, p.f and p.e denote the effort and flow variables of port p. The

effort is integrated by the function int and the function step produces a unity step

at time tstart. The mass of the scale pan is mb which is increased by the mass m
of the load.
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Fig. 12.17 Bode plot of the vertical oscillation case of a constant excitation frequency

Simulation of the Electronic Balance with Displacement Compensation

For simulation of the dynamic behaviour, the parameters given in Table 12.4 have

been used [25].

The transfer function of the PID controller is used in the form

U(s) = K

⎡⎢⎣1 +
1

Ti s
+

Td s

1 +
Td

N
s

⎤⎥⎦ E(s) , (12.22)

Table 12.4 Parameters of the controlled balance

Parameter Value Units Meaning

R 1 Ω Resistance of the coil

L 20 mH Self-inductance of the coil

T 5 Vs Transductance of the coil

k 1500 N/m Stiffness of the spring

r 8.5 Ns/m Damping coefficient

mb 0.03 kg Mass of the scale pan

m 0.05 kg Mass of the load
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Fig. 12.18 Vertical oscillation y1 of the bed in case of reduced spring stiffness

where s ∈ C. In Equation 12.22, E and U denote the Laplace transforms of input

and output. As can be seen, the derivative part is approximated. Table 12.5 lists the

controller parameters.

Given the parameters in Table 12.4, the steady state value of the voltage needed

to compensate the scale’s displacement according to Equation 12.19 is

Es = 1 × 0.05 × 9.81
5

= 98.1 mV . (12.23)

If this voltage is not applied to the coil, then the load of m = 0.05 kg would cause

a displacement of

Table 12.5 Parameters of the PID controller

Parameter Value Units Meaning

K 400 Proportional gain

Ti 0.05 s Integral time constant

Td 0.01 s Derivative time constant

N 20 Derivative gain limitation
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ys = −0.05 × 9.81
1500

= 0.33 mm (12.24)

according to Equation 12.20.

Figure 12.22 shows the time evolution of the current and the scale’s displacement

due to an instantaneous increase of the load from 0 to 0.05 kg at t = 0.2 s. As can

be seen from Figure 12.22, the displacement, in fact, is compensated within about

0.4 s. When the mechanical load jumps from 0.03 kg to 0.08 kg at t = 0.2 s, then

the current just starts from 0 A. and the scale pan is lowered by about 0.2 mm. When

this displacement is reduced to zero at about t = 0.6 s, the current actually reaches

the value of 98.1 mA, which is necessary for generating the electromagnetic force

that compensates the gravitational force of the load.

As an instantaneous increase in the load does not only mean a disturbance of

the gravitational load force but also the movement of a heavier body, the dynamic

behaviour during compensation is different for different loads with respect to fre-

quency and damping. Figure 12.23 depicts the time evolution of the displacement

and the current in the coil for a four times heavier load.
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Fig. 12.20 Conceptual schematic of an electronic balance with displacement compensation (cf.

[15])

12.5 A Piezoelectric Seismometer

This section addresses the bond graph modelling of a piezoelectric transducer and its

use in a seismometer. A piezoelectric crystal can be considered an electromechanical

transducer that mechanically behaves like a spring and electrically like a capacitor,

and both effects are coupled. That is, a force imposed on the crystal produces results

in a (small) voltage drop across the device and vice versa. Piezoelectric crystals

are used, e.g. for sensing vibrations, for converting pressures into voltages, or as

actuators in hydraulic control valves.

Bond Graph Model of the Piezoelectric Crystal

In the following, a one-dimensional model is considered. That is, it is assumed that

mechanical stress or strain is applied in only one direction and the electric field lines

are perpendicular to the parallel conductive surfaces of cross-sectional area A. Let

x0 denote the distance of these surfaces for the unbiased crystal. Let S denote the

mechanical strain, Δx = x0S, the relative displacement of the parallel conductive

surfaces, σ, the tensile stress, F = Aσ, the associated force, Em, the mechanical

modulus of elasticity, E, the electric field strength, up = x0E, the applied voltage,

D the electric displacement, ε, the dielectric constant and dε, the piezoelectric cou-

pling. The constitutive relations of a piezoelectric crystal are assumed to be linear.
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Fig. 12.21 Bond graph model of the electronic balance with displacement compensation

A commonly known form is[
S
D

]
=

[
1/Em dε

dε ε

] [
σ
E

]
. (12.25)

Given the introduced quantities, the constitutive relations can be rewritten as[
Δx
q

]
=

[
1/kp dε

dε Cp

] [
F
up

]
, (12.26)

where kp = EA/x0 denotes the mechanical stiffness of the piezoelectric crystal

and Cp = εA/x0, its electrical capacitance.
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Fig. 12.22 Time evolution of the displacement and the current due to a load added at t = 0.2s

If Equation 12.26 is solved for the vector [F up]t, then the result can be read

as the constitutive relation of a linear energy conservative 2-port C field in integral

causality (cf. Figure 12.24). The linear 2-port C field can be decomposed as depicted

in Figure 12.25, where Δ := cp/kp − d2
ε.

Bond Graph Model of the Piezoelectric Seismometer

In the following, the bond graph of Figure 12.25 is used in the development of a

model of a piezoelectric seismometer as sketched in Figure 12.26.

The casing of the piezoelectric seismometer is placed on the ground, or, e.g., on

a surface of a machine where vibrations u̇(t) are to be sensed. Inside the case, a

piezoelectric crystal is attached to the case. A seismic mass, m, on top of the crystal

is fixed to the case by a spring of stiffness k. The piezoelectric crystal reacts to the

relative motion, ẏr := ẏ − u̇, between the case and the seismic mass. It produces a

small current that is fed into an amplifier to be modelled in a third step.
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Fig. 12.26 Piezoelectric seismometer

The bond graph modelling of the seismometer is straightforward. The result is

depicted in Figure 12.27. Displacements are relative to the position where gravita-

tional force of the seismic load and the spring force of the crystal are in equilibrium.

From the bond graph of Figure 12.27, the following equation of motion is derived

for the mechanical part of the piezoelectric sensor.

mÿr + rẏr + (k + kp)yr = −mü − dεkpup (12.27)

MSf

��

1 u̇

��

0

��

1 ẏ

��

I : m

��u̇ − ẏ
1

��

R : r

��

C : 1/k

��−ẏr
1

��

C : 1/kp

�� TF

−dεkp
..

�� 0 �� q̇

��
up

C : kpΔ

0 ��
i

uC + ua
Ampl.

Fig. 12.27 Bond graph of the piezoelectric seismometer
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Bond Graph Model of a Charge Amplifier

The current q̇, generated by the piezoelectric crystal, is fed into a charge amplifier of

which a circuit diagram is shown in Figure 12.28. Figure 12.29 shows a bond graph

of the charge amplifier.

� �
� ��

up

��
��
��

������
−

+
A ��

�
C

�
R

� � �
ua

Fig. 12.28 Charge amplifier
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i

uC + ua
0 � MSe

−A..
�� 0 ��

ua
De

��

0 �� 1

��
iR

R : R

��

�� 1

��
uC iC

C : C

��

0

��

Fig. 12.29 Bond graph of the charge amplifier in Figure 12.28
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From the bond graph of Figure 12.29, a relation between the voltage ua at the

amplifier’s output and the current i = −q̇ into the charge amplifier can be derived.

C(1 +
1
A

)u̇a +
1
R

(1 +
1
A

)ua = q̇ (12.28)

For A � 1, Equation 12.28 reduces to

RCu̇a + ua = Rq̇ . (12.29)

Furthermore, the constitutive equation of the modulated voltage source in the bond

graph of the amplifier (Figure 12.29) is

ua = (−A)(uC + ua) . (12.30)

Hence, as up = uC + ua (cf. Figure 12.27), a high value of the amplification, A,

entails a small voltage, up, across the electrical terminals of the piezoelectric crystal.

up = ua + uC = − 1
A

ua ≈ 0 (12.31)

Consequently,

− q̇ = (−dεkp)(−ẏr) (12.32)

and

mÿr + rẏr + (k + kp︸ ︷︷ ︸
k

)yr = −mü . (12.33)

Frequency Analysis of the Piezoelectric Seismometer-Amplifier System

Combining the Laplace transforms of Equations 12.29, 12.31, and 12.33 yields the

transfer function

L ua

L ü
=

−m

k
m

k︸︷︷︸
1/ω2

0

s2 +
r

k︸︷︷︸
2ζ/ω0

s + 1
(− dεkp︸︷︷︸

T

)
Rs

RC︸︷︷︸
τ

s + 1

=

TR

ω2
0

s[(
s

ω0

)2

+
(

2ζ

ω0

)
s + 1

]
[τs + 1]

. (12.34)

For a Bode plot of the transfer function (Equation 12.34), the parameters in

Table 12.6 have been used (cf. [15]). The frequency domain behaviour of the

seismometer-amplifier system is shown in Figure 12.30.
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Table 12.6 Parameters of the seismometer-amplifier system

Parameter Value Units Meaning

f0 104 1/s ω0 = 2πf0 : eigenfrequency of the undamped seismometer

T 108 As/m T = dεkp : Transduction coefficient of the piezoelectric

crystal

ζ 0.5 Damping coefficient of the seismometer

R 1 Ω Resistance (cf. Figure 12.28)

τ 5 s τ = R × C : Time constant of the amplifier

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

-130
-120
-110
-100

-90
-80
-70
-60
-50
-40

Magnitude

 Hz

db

.

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

-180

-140

-100

-60

-20

20

60

100
Phase

 Hz

degrees

.

Seismometer-amplifier system: Bode plot

Fig. 12.30 Bode plot of the seismometer-amplifier system

As can be seen from Figure 12.30, the system can sense accelerations of the

ground almost up to the eigenfrequency, f0, of the undamped seismometer. The low

frequency behaviour of the system is limited by the high pass filter characteristic of

the charge amplifier and its corner frequency ωc = 0.2 1/s.

12.6 Engagement of a Clutch

In Chapter 7, some approaches to a bond graph representation of variable structure

models have been discussed. If one wants to keep the structure of the bond graph

and the computational causality invariant for all system modes, then one option is
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J1 J2

M1
ω1

M2
ω2

�Fc
� Fc

Fig. 12.31 Schematic of a clutch

to use sinks of fixed causality. At the advent of a discrete event, they impose an

effort or a flow such that there is an instantaneous state transition and the new state

conditions are met (cf. Section 7.1.4). In the following, this approach is used to

model the engagement of a clutch. Another option is to model the clutch by an ideal

switch of variable causality as has been done by Buisson in [4] (cf. also Section 7.2).

In [25], this example has been used for a MATLAB®/Simulink®simulation.

Figure 12.31 shows a schematic of the clutch. Clearly, as long as the clutch is

disengaged, the two disks rotate with their own angular velocity. When they get into

contact, the two of them encounter a friction moment MR. This friction moment

reduces the angular velocity, ω1, on the drive side and simultaneously accelerates

the power-takeoff side against a possible load moment M2. If the value of the contact

force, Fc, is high enough, then the angular velocities of the disks will converge. At

one point in time, they stick together and will continue to rotate as one single body

with one and the same angular velocity ω. That is, there are two system modes.

Bond Graph Model of the Clutch

The approach in Section 7.1.4 leads to the bond graph in Figure 12.32.

MSe






�

��
M
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1 − b..

�� 1 �� MTF

b..
��

MR
Se

��

MSe ��
M1

1 �� 0 �� 1 ��
M2

MSe

��
ω1

I : J1

��
ω2

I : J2

Fig. 12.32 Bond graph of the clutch with invariant structure and invariant computational causality
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In the bond graph of Figure 12.32, M1 and M2 denote the moment on the drive

side and the load moment on the power-takeoff side respectively. According to Sec-

tion 7.1.2, switches have been modelled by modulated transformers. As long as

there is a difference between the two angular velocities on the drive side and on

the power-takeoff side, the modulus b equals 1 and both rotating disks encounter a

friction moment, MR, proportional to the contact force Fc. As in [25], it is assumed

that the initial angular velocity of the engine is ω10 = 200 rad/s, while the trans-

mission side starts from ω20 = 0 rad/sec. When the increasing angular velocity ω2

equals ω1, then the two disks stick together and the modulus b of the right-hand side

MTF is set to zero. Consequently, the upper left part of the bond graph becomes

active. It provides a moment M that ensures that the two disks stick together and

rotate with one and the same angular velocity ω. Note that in both system modes,

the two inertia elements are invariantly in integral causality. However, when the two

disks rotate with a common angular velocity, the set of equations is a DAE system

as there is no differential equation for the moment, M , ensuring that the angular

velocity difference remains zero.

Simulation of the Clutch Behaviour

Given the parameter values in Table 12.7 [25], simulation (by means of Scilab)

yields the time evolution of the angular velocities depicted in Figure 12.33.

Analytical Evaluation of the Clutch Model

Due to the simplifying assumptions, the problem can also be analytically solved.

Hence, essential values obtained by simulation can be checked. For ω2 < ω1 (b =
1), the following two equations for the inertia elements are easily derived from the

bond graph.

ω̇1 =
1
J1

(M1 − MR) (12.35a)

ω̇2 =
1
J2

(MR − M2) (12.35b)

Table 12.7 Parameter values used for simulation of the clutch engagement

Parameter Value Units Meaning

M1 200 Nm Driving torque

M2 0 Nm Load moment

J1 1 kgm2 Moment of inertia on the drive side

J2 5 kgm2 Moment of inertia on the power-takeoff side

Fc 5000 N Contact force

k 0.38 m MR = k × Fc

ω1(0) 200 rad/s Initial angular velocity on the drive side

ω2(0) 0 rad/s Initial angular velocity on the transmission side
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Fig. 12.33 Angular velocities of the clutch disks

Their integration yields

ω1(t) =
M1 − MR

J1
t + ω10 (12.36a)

ω2(t) =
MR − M2

J2
t + ω20 . (12.36b)

If the value of the contact force, Fc, is sufficiently high, the clutch disks stick to-

gether at some time point t = t1 and continue to rotate with one and the same

angular velocity ω. Equality of both angular velocities gives for t1

t1 =
ω10 − ω20

M2 − MR

J2
+

MR − M1

J1

. (12.37)

The parameter values in Table 12.7 result in the value t1 = 7.143 s. The value of the

common angular velocity is ω = 271.43 rad/s. For t > t1, the angular acceleration

ω̇ reads

ω̇ =
M1

J1 + J2
. (12.38)

The numerical value is ω̇ = 33.3 rad/s2.
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For t > t1 (b = 0), the DAE system derived from the bond graph reads

ω̇1 =
1
J1

(M1 − M) (12.39a)

ω̇2 =
1
J2

(M − M2) (12.39b)

0 = ω1 − ω2 . (12.39c)

After differentiation of the algebraic constraint with respect to time, solution of the

resulting ODE system yields for the moment M

M =
J2

J1 + J2
M1 +

J1

J1 + J2
M2 . (12.40)

Given the parameter values in Table 12.7, the value is M = 166.7 Nm. Hence,

for t ≥ t1, the descriptor vector, [ω1, ω2, M ]t, has the initial conditions [271.43,
271.43, 166.7]T . Location of the time point t1 and continuation of the simulation

with the correct initial conditions can be performed by the root finding version of

the widely used numerical integration codes DASSL [2] or ODEPACK [14]. These

solvers are part of, for instance, the open source mathematical software package

Scilab [26].

12.7 Dry Friction in a Suspension Strut of a Car

Another example in which different system modes can be distinguished is the stick-

slip effect in a suspension strut of a car. For the analysis of this effect, the widely

used simple quarter vehicle model depicted in Figure 12.34 is considered.

As long as there is slip friction effective in the strut, the mass of the chassis, mc,

and the mass of the wheel, mw, move up and down with different displacements xc

and xw. If stick friction is effective, there is a holonomic constraint

xw − xc = const. (12.41)

and the view can be taken that one body with the combined mass is moving up and

down. In this mode, one degree of freedom has gone. Once the break value FH of

the sticking force has been overcome, the system returns into the slip mode and the

suppressed degree of freedom is available again. In [18], Kölsch and Ostermeyer

account for the sticking mode and the switching between slip and sticking mode

by a modification of the constraint force between two bodies in the equations of

motion.
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Bond Graph Model of the Quarter Vehicle Accounting for Stick-Slip Friction

In the following, the more general bond graph approach using sinks of fixed com-

putational causality described in Section 7.1.4 is applied.

Figure 12.35 shows a bond graph of the quarter vehicle accounting for the slip

and the sticking mode. In the bond graph model of Figure 12.35, the modulated

effort sink provides the constraint force λ. The value of the transformer modulus b
accounts for the system mode. For b = 1, the sticking force Fstick is enabled and,

simultaneously, the slip friction force Fslip is disabled and vice versa for b = 0. That

is, according to the system mode, one part of the bond graph model is switched on

and another one is switched off. Note that computational causalities remain fixed

independent of the system mode.

Derivation of Model Equations from the Bond Graph

The mathematical model to be derived from the bond graph depends on the system

mode. For the slip mode, it is a set of explicit ODEs. For the sticking mode, it is

a DAE system of index 2 that can analytically reduced to an explicit ODE system
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Fig. 12.35 Bond graph of the quarter vehicle accounting for the slip and the sticking mode

different from the one for the slip mode. Clearly, the control logic that switches the

value of the transformer modulus b cannot be part of the bond graph and has to be

formulated separately. The modulated flow source on the lower left-hand side of the

bond graph models the unevenness of the road surface.

Following causal paths, the two equations of motion can be derived directly from

the bond graph.

mwẍ1 = rw(u̇ − ẋ1) + kw(u − x1) − rc(ẋ1 − ẋ2) − kc(x1 − x2)
−(1 − b) Fslip − b λ (12.42a)

mcẍ2 = rc(ẋ1 − ẋ2) + kc(x1 − x2) + (1 − b)Fslip + b λ (12.42b)

For b = 1, the two equations of motion together with the constraint for the dis-

placement of the two bodies constitute a DAE system of index 2 for the unknowns

x1, x2, λ.

In order to obtain an expression for the constraint force λ, the constraint, Equa-

tion 12.41, is differentiated twice with respect to time. After substitution of the

equations of motion, the result is
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λ = kc(x2 −x1)+ rc(ẋ2 − ẋ1)− kw
mc

mw + mc
(x1 −u)− rc

mc

mw + mc
(ẋ1 − u̇) .

(12.43)

In slip mode (b = 0), the friction force F is

F = Fslip = Fs sign(v1 − v2) . (12.44)

Simulation of the Stick-Slip Problem Using Scilab and LSODAR

Computation of this hybrid model requires the location of times at which the system

mode changes from sliding to sticking or vice versa. This suggests the use of the root

finding version of an ODE solver. For this case study, Scilab and the ODE solver

LSODAR have been used.

Formulation of the model equations as a Scilab function is straightforward. The

result is shown in Figure 12.36. The Scilab function f is an argument of the Scilab

function ode which is an interface to the ODE solvers in the software package

ODEPACK.

// Scilab function of a quarter vehicle
// Suspension with dry friction

function [dy] = f(t,y)

v1 = y(1)
v2 = y(2)
x1 = y(3) // vertical position of the chassis
x2 = y(4) // vertical position of the wheel

u = ramp(t,t0,t1,u1) // unevenness of the road surface
du = pulse(t,t0,t1)

Fslip = Fs*sign(v2 - v1)

lambda = kc*(x2 - x1) + rc*(v2 - v1) - c1*(x1 - u) - c2*(v1 - du)

mwdv1 = -(rw + rc)*v1 + rc*v2 - (kw + kc)*x1 + kc*x2 + kw*u + rw*du
+ (1-b)*Fslip - b*lambda

dv1 = mwdv1 / mw

mcdv2 = rc*v1 - rc*v2 + kc*x1 - kc*x2 - (1-b)*Fslip + b*lambda
dv2 = mcdv2 / mc

dy1 = dv1
dy2 = dv2
dy3 = v1
dy4 = v2

dy = [dy1;dy2;dy3;dy4]

endfunction

Fig. 12.36 Equations of the quarter vehicle model as a Scilab function
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Figure 12.37 shows the Scilab script for a simulation run on the quarter vehicle

model. In the Scilab script of Figure 12.37, the meaning of variables has been ex-

plained by inline comments. The root finding capability of the ODE solver is used

to locate the time points tc at which the system mode may change from sticking

to slipping or vice versa. If the current mode is sticking (b = 1), then integration is

performed up to a time point for which |λ|−FH = 0 holds. Otherwise, if the current

mode is sliding (b = 0), then integration stops at a time point for which v1 = v2.

Both conditions are formulated in the function g. If such a time point tc has been

located, it must be checked if the conditions for a change in the system mode are

met. If the current mode is sticking and the absolute value of the constraint force

reaches the breakaway level, FH , of the friction force F , then both bodies can slip.

On the contrary, if both bodies slide with a common velocity, then there is potential

risk for sticking. Both bodies will stick if the absolute value of lambda falls below

the slip level, Fs, of the friction force F . The system mode is taken into account by

the value of the modulus b, which must be changed appropriately. This is done in

the function change depicted in Figure 12.38. In this manner, integration proceeds

from one discrete event to the next until the final simulation time has been reached.

For simulation runs, parameter values given in [18] have been used (Table 12.8).

As to the velocity excitation of the road, u̇(t), it is assumed that the quarter vehicle

moves up a ramp (Figure 12.39). Furthermore, it is assumed that the strut is in

stiction mode at t = 0. The initial conditions for the simulation run are

v1(0) = v2(0) = 0 (12.45)

and

x1(0) = x2(0) = 0 . (12.46)

The simulation result in Figure 12.40 shows that immediately after the start, the

system changes from initial sticking into the slipping mode, which lasts until about

1.43 s. During this period, there are two short time intervals in which sticking oc-

curs. As can be seen from Figure 12.40, in fact, the difference between the vertical

velocities of the wheel, v1, and of the chassis, v2, vanishes during the sticking peri-

ods. Figure 12.41 shows the time history of the vertical displacements of the wheel,

x1, and of the chassis (x2). According to Figure 12.40, for t > 1.43 s, the wheel

Table 12.8 Parameter values used for simulation of the quarter vehicle

Parameter Value Units Meaning

mw 100 kg Mass of the wheel

rw 126 Ns/m Damping coefficient for the tyre

kw 395 × 103 N/m Stiffness of the tyre

rc 1500 Ns/m Damping coefficient of the suspension

kc 39.5 × 103 N/m Stiffness of the suspension

FH 500 N Breakaway level of the friction force F

Fs 500 N Slip level of the friction force F

mc 1000 kg Mass of the chassis
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// run quarter vehicle model

%ODEOPTIONS=[2,0,0,%inf,0,2,1000,12,5,0,-1,-1];
tf = 5.0; // [sec] tf: final time of the integration
ng = 1;
b = 1; // inital mode is sticking
//
// ’root’: LSODAR from ODEPACK is called
// x0: vector of initial conditions
// t0: initial start time
// f: right-hand side of the set of ODEs: ydot = f(t,y)
// g: integration of ydot = f(t,y) is performed
// until g(t,y) = 0 holds for one component of y
// rd(1): time at which integration stops
// sol: matrix, each row >= 2 contains a component of y at times <= rd(1)
//
[sol,rd] = ode(’root’,x0,t0,tf,f,ng,g);
m = size(sol); // m(2): number of columns
tc = rd(1);
//
bvector=b*ones(1,m(2)); // contains system mode at times <= tc
//
// check if the system mode changes at tc:
//
b = change(sol);
//
// continue the integration as long as tc <= tf:
//
while tc <= tf
//
// use values at tc as new initial conditions xc:
//
xc = [sol(2,m(2));sol(3,m(2));sol(4,m(2));sol(5,m(2))];
//
// continue the integration until the solution crosses
// the surface g(t,y) = 0:
//
[xsol2,rd2] = ode(’root’, xc,tc,tf,f,ng,g);
//
m2 = size(xsol2);
bvector2 = b*ones(1,m2(2));
bvector = [bvector,bvector2];
//
sol = [sol,xsol2];
m = size(sol);
tc = rd2(1);
//
// check if the system mode changes at tc:
//
b = change(sol);

Fig. 12.37 Scilab script for a simulation run on the quarter vehicle model
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// Function change() is called at time point tc
// at which integration has stopped because the conditions
// specified in function g() are met.
// According to the result of the check below function change()
// returns an update of the system mode indicator b used in the
// script that calls change().
// Fs: slip level of the friction force F

function [b] = change(sol)
v1 = sol(2,m(2))
v2 = sol(3,m(2))
x1 = sol(4,m(2))
x2 = sol(5,m(2))

u = ramp(tc,t0,t1,u1)
du = pulse(tc,t0,t1)

lambda = kc*(x2 - x1) + rc*(v2 - v1) - c1*(x1 - u) - c2*(v1 - du)

mode = b; // current system mode
if (mode == 0 & abs(lambda) <= Fs) then b = 1; end
if mode == 1 then b = 0; end

endfunction

Fig. 12.38 Function change changing the system mode indicator b appropriately
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t [s]
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[m]

u1 = 0.1

t1 = 0.1

Fig. 12.39 Roadway unevenness u over time

and the chassis stick together and oscillate with a common frequency of about 3 Hz

and a very small amplitude up and down. This oscillation is lightly damped because

of the low damping coefficient of the tyre.

Finally, Figure 12.42 displays the time evolution of the constraint force λ and of

the slip friction force Fslip = Fs sign(v1 − v2). The simulation results presented in

this case study agree with those given in [18].
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Fig. 12.40 System mode indicator b and relative velocity between wheel and chassis
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Fig. 12.41 Vertical displacements of the wheel and of the chassis
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Fig. 12.42 Constraint force λ and slip friction force Fslip

12.8 A Buck Converter

Chapter 7 discusses several approaches to a representation of variable structure

models. As bond graphs are based on the energy exchange between system com-

ponents taking place in time periods not equal to zero, they are best suited for con-

tinuous time models. Accordingly, Section 7.3 proposes to describe discrete system

states and transitions between them by a Petri net and to develop a bond graph model

for each system mode. For illustration of this approach and in order to apply bond

graph modelling to an electronic circuit beyond passive RLC networks, a DC-DC

buck converter as displayed in Fig 12.43 is studied.

E

Q1

D1

L

C R

Fig. 12.43 Schematic of a buck converter
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A DC-DC buck converter is a well known power electronic device [5]. Its purpose

is to reduce a DC input voltage. The use of switching elements enables one to reduce

the energy consumption in comparison to linear regulators. Due to its function and

the use of switching elements, it is also called step-down switch mode power supply.

As the device is superior to linear voltage regulators, they are used in applications

where size and power dissipation matters, e.g. for the low voltage power supply of

processors in laptop computers, or in rechargers.

In the context of bond graph modelling of power electronic circuits, buck con-

verters have been considered by several authors [1, 10, 11, 20]. The transistor Q1
and the diode D are usually modelled as switches with an ON-resistance. In [10, 11],

Garcia-Gomez uses a unique bond graph model for all switch modes and represents

the switches by means of a modulated transformer and a resistor (cf. Figure 7.6,

Section 7.1.2).

System Modes of the Buck Converter

If the transistor and the diode are considered as switches, theoretically, four system

modes as listed in Table 12.9 can be distinguished.

When the transistor switch is in ON state (closed), a current is flowing through

the inductor into the load composed of the resistor R and the capacitor C in parallel,

and the inductor stores energy as highlighted in Figure 12.44. In this system mode,

the diode (displayed in grey in Figure 12.44) is off because it is reverse biased. This

system mode is known as load state.

Table 12.9 Theoretical switch state combinations

System mode Transistor Diode

1 ON OFF

2 OFF ON

3 ON ON

4 OFF OFF

E

Q1

D1

L iL

C R

Fig. 12.44 Buck converter in mode 1 (transistor switch on and diode off)
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E

Q1

D1

L iL

C R

Fig. 12.45 Buck converter in mode 2 (transistor switch off and diode on)

In system mode 2, the transistor switch is off (Figure 12.45). The diode is forward

biased and the energy stored in the inductor discharges into the load. This mode is

called free wheel mode.

If the ON resistance of both switches is neglected, then the third switch state

combination (both switches are closed) would entail a short-circuit of the voltage

source and consequently a disfunction of the circuit. That is, this switch state com-

bination can be discarded. This is reflected by a causal conflict in the bond graph of

Figure 12.46.

In the fourth system mode (both switches are off), the current through the coil

has become zero and the coil does not store any magnetic energy. While the in-

ductor remains empty, the energy of the capacitor discharges via the load resistor

(Figure 12.47). In the literature, this state is sometimes called the rest state. In Fig-

ure 12.47, there is no current in the part of the circuit displayed in grey. In the fol-

lowing, it is assumed that the transistor is switched on and off periodically and that

there are no time periods in which the current through the inductor remains zeros.

In this case, the buck converter is said to operate in continuous mode. Accordingly,

the circuit toggles between the two system modes 1 and 2. This is captured in the

simple Petri net of Figure 12.48. In the Petri net, T denotes the duty cycle of the

Se ��
E

1 ��

��
uQ1

Sw : 0

0��
��

��
uD1

Sw : 0

�� 1

��

I

�� 0

��

C

�� R

Fig. 12.46 Bond graph of the buck converter in case both switches are on
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Fig. 12.47 Buck converter in mode 4 (both switches off)
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Fig. 12.48 Petri net for a periodically switched buck converter

signal switching the transistor on and off. The transistor is on for the period α T
(0 < α < 1), while it is off during the period (1 − α) T (Figure 12.49).

Bond Graph Models of the Buck Converter in Load Mode and in Free Wheel Mode

For both system modes, the construction of a bond graph is straightforward. Fig-

ures 12.50 and 12.51 show the results.

A straightforward way to simulate the behaviour of the buck converter is to al-

ternate between the computation of the two models. For the buck converter under

study, a look at the equations derived from the bond graph models shows that both

models can be combined into one unique bond graph displayed in Figure 12.52. In

the bond graph of Figure 12.52, the transformer modulus m is the OnOff-function
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Fig. 12.49 Signal switching the transistor on and off
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Fig. 12.50 Bond graph of the buck converter in load mode
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Fig. 12.51 Bond graph of the buck converter in free wheel mode

in Figure 12.49. This modulus toggles the computation between the sets of model

equations for the two system modes.

Simulation of the Buck Converter Dynamic Behaviour

The simulation study uses the parameters listed in Table 12.10. Figure 12.53 dis-

plays the time evolution of the current, iL, through the inductor as well as its mean

value īL over one duty cycle. Accordingly, Figure 12.54 shows the time evolution

of the voltage drop, uC , across the capacitor as well as its mean value ūC .
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Fig. 12.52 Unique bond graph of the buck converter for system modes 1 and 2

Table 12.10 Parameters used in the simulation study

Parameter Value Units

E 100 V

Ron 0.1 Ω
L 50 mH

C 50 μF

R 50 Ω
T 10−3 s

α 0.7 -

Verification of Simulation Results

As the circuit under study is rather simple, simulation results can be checked against

analytical results. From the bond graph of Figure 12.52, the following two state

equations can be derived.

diL
dt

=
1
L

[m E − Ron iL − uC ] (12.47a)

u̇C =
1
C

[iL − 1
R

uC ] (12.47b)

If the ON resistance Ron is neglected and if mE is replaced by the mean value αE,

then for t → ∞, the voltage drop across the capacitor takes the value

ūC = αE = 0.7 × 100 V = 70 V . (12.48)

Accordingly, for t → ∞, the current through the inductor takes the value

īL =
1
R

ūC =
1
50

70 A = 1.4 A . (12.49)

The mean values (t → ∞) obtained from simulation are in good agreement with

these values.
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Fig. 12.53 Time evolution of the current through the inductor
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Fig. 12.54 Time evolution of the voltage drop across the capacitor
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Furthermore, as Figure 12.53 shows, there is a significant ripple on the waveform

of the inductor current. If the ON resistance of the switches is neglected and if the

voltage across the capacitor is replaced by the mean value αE, then Equation 12.47a

reads
diL
dt

=
1
L

[mE − αE] =
m − α

L
E . (12.50)

That is, when the circuit is in load state (m = 1), the current through the inductor

rises linearly while it falls linearly in the free wheel state (m = 0). For m = 1, the

value of the slope is

diL
dt

=
1.0 − 0.7
50 × 10−3

× 100 A/s = 600 A/s . (12.51)

For m = 0, the inclination is

diL
dt

=
−0.7

50 × 10−3
× 100A/s = −1400 A/s . (12.52)

As can be seen from an enlargement of the ripple depicted in Figure 12.55, simula-

tion results agree well with these values.

According to [24], the amplitude ΔI/2 of the ripple on the waveform of the

inductor current iL is

ΔI =
α E(1 − α)

L
T . (12.53)
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Fig. 12.55 Enlargement of the ripple on the waveform of the inductor current
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With the parameters in this case study, the amplitude is 0.21 A. As the mean value

is 1.4, values of the ripple should be within the range

1.19 A = (1.40 − 0.21) A ≤ iL ≤ (1.40 + 0.21) A = 1.61 A .

This can be verified by inspection of Figure 12.55.

The amplitude ΔV/2 of the ripple on the waveform of uC is

ΔV =
ΔI

8C
× T (12.54)

[24]. The parameters in this case study give the result ΔV = 1.05 V . The enlarge-

ment of the ripple on the waveform of uC well confirms this value (Figure 12.56).

The ripple on the waveform of uC oscillates around the mean value of 70 V with an

amplitude of about 0.5 V .
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Fig. 12.56 Enlargement of the ripple on the waveform of the voltage drop across the capacitor
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12.9 A Two Degrees of Freedom Rotary Joint Manipulator

The concise representation of multibond graphs supports the systematic develop-

ment of bond graph models of multibody systems. Library models of a freely mov-

ing rigid body with hinges and various types of joints can be assembled in the same

way the bodies and the joints of the real system are connected. What needs to be

taken into account are transformations between body fixed reference frames repre-

sented by multiport transformers in a multibond graph.

For illustration, a multibond graph of a part of the Stanford arm has been given in

Chapter 8). In the following, it is assumed that the prismatic joint is locked, result-

ing in a simpler rotary joint manipulator with two degrees of freedom. Figure 12.57

depicts a schematic of this manipulator which may be considered a part of the in-

dustrial PUMA robot.

As can be seen from Figure 12.57, body 1 simply rotates on its y1 axis, while

body 2 moves in three dimensions by rotation on an axis through point A that is

parallel to the z1 axis. This axis in turn rotates around the y1 axis. This type of

manipulator has also been considered by Gawthrop and Smith in [13] and by Vergé

and Jaume in [29]. In this case study it is shown that the standard form of robot

equations [8]

M(Θ)Θ̈ + V(Θ, Θ̇) + G(Θ) = τ , (12.55)

can be directly derived from the multibond graph of the robot in all derivative causal-

ity. In Equation 12.55, the vectors Θ, Θ̇, Θ̈ denote the position, the velocity, and the

accelerations of the joints. M(Θ) is the n×n mass matrix, V(Θ, Θ̇) the n×1 vec-

tor of centrifugal and Corriolis terms, and G(Θ) is an n×1 vector of gravity terms.

Torques are combined into the vector τ .

In this study, the Lagrange equations have been manually derived from the multi-

bond graph, reformulated as a set of four ODEs and coded as a Scilab function [26].

With software packages supporting multibond graphs, the equations of motion can

be automatically derived.

Multibond Graph of the Rotary Joint Manipulator

Since there is no translation, the multibond graphs of the two rigid bodies simplify

(cf. to the multibond graph of a freely moving rigid body with two hinge points in

Figure 8.16). The robot’s base, body 0, does not move at all. As a result, Figure 12.58

gives a multibond graph of the rotary joint manipulator.

Derivation of the Standard Form of Robot Equations from the Multibond Graph

In the multibond graph of Figure 12.58, the vector ω1
1 (ω2

2) denotes the angular ve-

locity of body 1 (body 2) with respect to reference frame 0 expressed in coordinates

of reference frame 1 (reference frame 2). Actually,

ω1
1 = ω0

1 = [ 0 Θ̇1 0 ]T (12.56)
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Fig. 12.57 Schematic of a two degrees of freedom rotary joint manipulator
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Fig. 12.58 Multibond graph of the two degrees of freedom rotary joint manipulator

where Θ̇1 denotes the angular velocity of motor 1. Matrix J1
1 (J2

2) denotes the inertia

matrix of body 1 (body 2) with respect to the reference frame sitting in the centre of

gravity of body 1 (body 2). Both matrices are diagonal as the axes of the body fixed

reference frames are parallel to the principal axes of inertia.

The modulated multiport transformer MTF : A2,1 represents the transformation

between the two reference frames of body 1 and body 2. Accordingly, the angular

velocity of body 1 with respect to reference frame 0 expressed in coordinates of

reference frame 2 reads
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ω2
1 =

⎡⎣ cos Θ2 sin Θ2 0
− sin Θ2 cos Θ2 0

0 0 1

⎤⎦
︸ ︷︷ ︸

A2,1

ω1
1 =

⎡⎣ Θ̇1 sin Θ2

Θ̇1 cos Θ2

0

⎤⎦ . (12.57)

Let ω2
2 = [ ωx2 ωy2 ωz2 ]T . Then according to the multibond graph in Fig-

ure 12.58, ⎡⎣ωx2

ωy2

ωz2

⎤⎦ = A2,1

⎡⎣ 0
Θ̇1

Θ̇2

⎤⎦ =

⎡⎣ Θ̇1 sin Θ2

Θ̇1 cos Θ2

Θ̇2

⎤⎦ . (12.58)

In the same way, the matrix A0,2 relates the absolute velocity of the centre of

gravity of body 2, c2, expressed in coordinates of the body fixed reference frame to

the same velocity expressed in coordinates of the inertial frame sitting in the centre

of gravity of body 0.

A0,2 =

⎡⎣ cos Θ2 − cos Θ1 sin Θ2 sin Θ1

sin Θ2 cos Θ2 0
− sin Θ1 cos Θ2 sin Θ1 sin Θ2 cos Θ1

⎤⎦ (12.59)

Furthermore, l2 denotes the distance of the centre of gravity of body 2, c2, from

the hinge point A. The vector from the origin of reference frame 2 to hinge point

A expressed in coordinates of frame 2 is l22 = [−l2 0 0 ]T and l̃22 denotes

the skew symmetric matrix generated by this vector. Consequently, according to the

multibond graph in Figure 12.58, the moment acting on body 2 caused by the force

of gravity is

m2 g

⎡⎣ 0
0

l2 cos Θ2

⎤⎦ =

⎡⎣0 0 0
0 0 l2
0 −l2 0

⎤⎦
︸ ︷︷ ︸

(−l̃22)
T

⎡⎣ c Θ2 s Θ2 −s Θ1c Θ2

−c Θ1s Θ2 c Θ2 s Θ1s Θ2

s Θ1 0 c Θ1

⎤⎦
︸ ︷︷ ︸

(A0,2)T

⎡⎣ 0
m2 g

0

⎤⎦ ,

(12.60)

where c Θ := cos Θ and sΘ := sinΘ.

The moment acting on body 2 contributed by the Eulerian junction structure is

− ω̃2
2 J2

2 ω2
2 = −

⎡⎣ 0 ωz2 −ωy2

−ωz2 0 ωx2

ωy2 −ωx2 0

⎤⎦ ⎡⎣Jx2 0 0
0 Jy2 0
0 0 Jz2

⎤⎦
︸ ︷︷ ︸

:= J2
2

⎡⎣ωx2

ωy2

ωz2

⎤⎦

=

⎡⎣ Jz2 ωy2 ωz2 − Jy2 ωy2 ωz2

Jx2 ωx2 ωz2 − Jz2 ωx2 ωz2

Jy2 ωx2 ωy2 − Jx2 ωx2 ωy2

⎤⎦ . (12.61)
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Let τ = [ τx1 τy1 τz1 ]T . Then, summation of moments at the 1-junction of ω2
2

and transformation across the multiport transformer MTF : A21, gives

τ = (A2,1)T ( J2
2 ω̇2

2 + (−ω̃2
2)J

2
2 ω2

2 + m2 g

⎡⎣ 0
0

l2 cos Θ2

⎤⎦ ) . (12.62)

Finally, summation of torques at the 1-junction of Θ̇2 yields

τ2 = R2Θ̇2 + τz1 . (12.63)

Expanding this equations by using Equations 12.62, 12.61, 12.58 and 12.57 gives

one of the two Lagrange equations describing the motion of the rotary joint manip-

ulator.

τ2 = R2Θ̇2 + Jz2︸︷︷︸
=: m22

Θ̈2 − (Jx2 − Jy2)(sin Θ2 cos Θ2)︸ ︷︷ ︸
=: C21

Θ̇2
1 + m2 g l2 cos Θ2︸ ︷︷ ︸

=: g21

(12.64)

The second Lagrange equation is obtained in the same manner. Summation of

torques on the 1-junction of Θ̇1 gives

τ1 = R1Θ̇1 + Jy1Θ̈1 + τy1 . (12.65)

After evaluation of Equation 12.62, the torque τy1 becomes

τy1 =
[
sin Θ2 cos Θ2 0

]⎛⎝⎡⎣Jx2ω̇x2

Jy2ω̇y2

Jz2ω̇z2

⎤⎦
+

⎡⎣ Jz2 ωy2 ωz2 − Jy2 ωy2 ωz2

Jx2 ωx2 ωz2 − Jz2 ωx2 ωz2

Jy2 ωx2 ωy2 − Jx2 ωx2 ωy2

⎤⎦ + m2 g

⎡⎣ 0
0

l2 cos Θ2

⎤⎦⎞⎠
= Jx2ω̇x2 sin Θ2 + Jy2ω̇y2 cos Θ2

+ (Jz2 − Jy2)ωy2ωz2 sin Θ2

+ (Jx2 − Jz2)ωx2ωz2 cos Θ2 . (12.66)

Finally, observing Equation 12.58, the second Lagrange equation reads

τ1 = R1Θ̇1 + (Jy1 + Jx2 sin2 Θ2 + Jy2 cos2 Θ2)︸ ︷︷ ︸
m11

Θ̈1

+ (2(Jx2 − Jy2) sinΘ2 cos Θ2)︸ ︷︷ ︸
b11

Θ̇1Θ̇2 . (12.67)
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That is, Equation 12.55 takes the form[
m11 0
0 m22

]
︸ ︷︷ ︸

M

[
Θ̈1

Θ̈2

]
+

[
b11

0

]
︸ ︷︷ ︸

B

[
Θ̇1Θ̇2

]
+

[
0 0

c21 0

]
︸ ︷︷ ︸

C

[
Θ̇2

1

Θ̇2
2

]
+

[
0

g21

]
︸ ︷︷ ︸
G(Θ)

=

[
τ1

τ2

]
−

[
R1Θ̇1

R2Θ̇2

]
. (12.68)

Notice that the entries in the matrices B and C are zero when either Θ2 = 0 or

Θ2 = π/2.

Simulation of the Robot’s Motion

For a simulation of the robot’s motion, the parameters listed in Table 12.11 have

been used [29]. In this table, ci denotes the centre of gravity of body i. Given the

parameters in Table 12.11, Figure 12.59 displays the time evolution of the angular

velocities ω1, ω2 and of the angle Θ2. As can be seen from Figure 12.59, with

increasing time, the angular velocity of body 1 takes a steady state value of about

0.66 rad, ω2 becomes zero and consequently, takes a constant value of about −0.1.

These values can be verified. Under the conditions ω1 = const. and ω2 = 0, the

dynamic Equation 12.67 reduces to

ω1 =
τ1

R1
= 1.0/1.5 = 0.66 rad/s . (12.69)

When Θ2 = const., Equation 12.64 reduces to a nonlinear algebraic equation for

Θ2.

τ2 = m2gl2 cos Θ2 − (Jx2 − Jy2)(sinΘ2 cos Θ2)Θ̇1
2

(12.70)

A numerical solution of Equation 12.70 is Θ2 = −0.0999574 rad.

Table 12.11 Parameter values used for simulation of the robot’s motion

Parameter Value Units Meaning

Jy1 6 kgm2 Moment of inertia of body 1 with respect to c1
Jx2 5 kgm2 Moment of inertia of body 2 with respect to c2
Jy2 10 kgm2 Moment of inertia of body 2 with respect to c2
Jy2 10 kgm2 Moment of inertia of body 2 with respect to c2
m2 40 kg Mass of body 2

l2 0.5 m Distance c2 - pivot point A (cf. Figure 12.57)

R1 1.5 Nms/rad Friction between body 0 and body 1

R2 2.0 Nms/rad Friction in pivot point A

τ1 1.0 Nm Torque acting on body 1

τ2 195 Nm Torque acting on body 2
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Fig. 12.59 Time evolution of the angular velocities ω1, ω2 and of the angle Θ2

12.10 Fluid Level Control in a Three Tank System

One of the usual tasks in process engineering systems is to control the fluid level in

tanks. As an example, the system of three coupled tanks depicted in Figure 12.60 is

considered. It is assumed that

• the fluid flow is one way from left to right,

• the fluid inertia can be neglected,

• there is a uniform hydrostatic pressure at the bottom of each tank,

• isothermal conditions apply,

• hydraulic power can be approximated by the product of hydrostatic pressure and

volume flow.

In this example, the task is to control the fluid level in the last right-hand side tank.

To that end, the level is sensed and fed into a PID controller that controls the fluid

flow supply into the first tank as shown in Figure 12.60. In [15], Hoffmann starts

from the equations and presents a MATLAB®/Simulink® simulation of this exam-

ple.
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Fig. 12.60 Schematic of a three tank system

Bond Graph Model of the Three Tank System

Bond graph modelling of this hydraulic plant is straightforward. The valves in the

pipes connecting the tanks are modelled by resistors. Their constitutive relation is

given by Bernoulli’s law. The pressure at the bottom of the tanks is represented by

a 0-junction and the storage of potential energy in the tanks is taken into account by

a C element. Accordingly, Figure 12.61 represents a bond graph model of the three

tank system.

Let Aij be the cross section area of the valve between pressures pi and pj . Ac-

cording to Bernoulli’s law, the volume flow Qij through the valve equals

Qij = Aij sign(Δpij)
√

2
�
|Δpij|

= Aij sign(Δhij)
√

2g|Δhij| . (12.71)
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Fig. 12.61 Bond graph of the three tank system
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Dynamic Equations of the Three Tank System

The dynamic equations are immediately derived from the bond graph of Fig-

ure 12.61.

ṗ1 =
1
C1

(Qs − Q12) (12.72a)

ṗ2 =
1
C2

(Q12 − Q23) (12.72b)

ṗ3 =
1
C1

(Q23 − Q30) (12.72c)

An equal cross section area for all three valves implies that in steady state

h2 = 2h3 (12.73a)

h1 = 3h3 (12.73b)

(as depicted in Figure 12.60) and

Qs = Q12 = Q23 = Q30 . (12.74)

Adopting the values Qs = 1 m3/s and A12 = 0.1 m2 results in the steady state

fluid levels

h1 = 15.29 m , h2 = 10.19 m , h3 = 5.097 m . (12.75)

Simulation of the Uncontrolled Three Tank System

Simulation of the uncontrolled system’s behaviour confirms these steady values (cf.

Figure 12.62 and Figure 12.63). Numerical values used for simulation of the uncon-

trolled systems are listed in Table 12.12.

Simulation of the Controlled Three Tank System

The transfer function of the PID controller is used in the form

Table 12.12 Parameters for simulation of the uncontrolled three tank system

Parameter Value Units Meaning

A1 = A2 = A3 1.999 m2 Cross section area of the tanks

A12 = A23 = A30 0.1 m2 Cross section area of the valves

� 780 kg/m3 Fluid density

Qs 1 m3/s Volume flow of the supply
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Fig. 12.62 Time evolution of fluid levels in the uncontrolled three tank system due to a step of Qs

U(s) = K

⎡⎢⎣1 +
1

Ti s
+

Td s

1 +
Td

N
s

⎤⎥⎦ E(s) , (12.76)

where s ∈ C and E and U denote the Laplace transforms of the input error and the

controller output. Table 12.13 gives the parameters of the PID controller.

If details of the hydraulic power supply subsystem are known, a bond graph can

be developed for the submodel called pump in the bond graph of Figure 12.61.

Otherwise, it may be appropriate and sufficient to approximate the pump’s de-

lay in response to an immediate step in the controller signal by a first order lag

signal element and to account for saturation of the volume flow Qs by a satura-

Table 12.13 Parameters of the PID controller

Parameter Value Units Meaning

K 5 Proportional gain

Ti 50 s Integral time constant

Td 3 s Derivative time constant

N 20 Derivative gain limitation
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Fig. 12.63 Time evolution of volume flows in the uncontrolled three tank system

tion signal block. The first order lag element is described by a transfer function

G(s) := k/(τs+1), where k denotes the proportional gain and τ the time constant.

Parameters of these two signal blocks are given in Table 12.14.

Figure 12.64 shows the time history of the fluid levels in the tanks if all of them

are initially empty and if the set point for the fluid level in the third tank is 1 m.

Again, in steady state, Equations 12.73a–12.73b hold. Figure 12.65 shows the dy-

namics of the volume flows in the controlled system.

According to Equation 12.71 and given the set point of 1 m for the fluid level h3,

a steady state value of

Q30 = A30

√
2g = 0.1

√
2 × 9.81 = 0.4429 m3/s (12.77)

Table 12.14 Parameters of the first order lag element and the saturation block

Parameter Value Units Meaning

kp 1 Proportional gain

τ 1 s Time constant

min 0 m3/s lower bound

max 2.5 m3/s upper bound of the saturation block
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Fig. 12.64 Time evolution of fluid levels in the controlled three tank system

is obtained. This and Equation 12.74 is confirmed by the simulation results in Fig-

ure 12.65. Figure 12.66 shows the history of the volume flows in case the set point

for the fluid level in tank 3 rises linearly to its value of 1 m within a time interval

of 10 s. The simulation results displayed in Figure 12.66 agree with those given in

[15].

For further reading on bond graph modelling of controlled hydraulic systems,

refer to the textbook of Dransfield [9].

12.11 Fault Detection in a Hydraulic Two Tank System

This section illustrates the bond graph model-based approach to FDI introduced

in Section 6.8 by application to the simple hydraulic two tank system displayed

in Figure 6.12 and reproduced in Figure 12.67 for the sake of convenience. It is

assumed that the pressures in both tanks are measured. For simplicity, only the mass

flow is considered. Associated thermal convection is not taken into account.
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Fig. 12.65 Dynamics of the volume rates in the controlled three tank system

Bond Graph Models of the Two Tank System Coupled by Residual Sinks

Figure 12.68 shows a behavioural model of the process subject to faults (lower part

of Figure 12.68) coupled to a model of the faultless process (upper part of Fig-

ure 12.68) by modulated effort sources and residual flow sinks. The measuring of

the tank pressures has been taken into account by effort detectors (De-elements) at-

tached to the 0-junctions. A fault such as leakage from a tank can be introduced into

the model of the real process by switching the modulated flow sinks, MSf, attached

to the 0-junctions of the tank pressures on and off.

A partial blockage of a valve results in a reduction of the valve’s parameter k =
cdAV (t)

√
2/�. Hence, k is a function of time, t, that takes into account the way in

which the valve blocks. This may take place abruptly or progressively. Accordingly,

the valves are represented by modulated resistors in the model of the faulty process.

As a result, the model of the real process differs from that of the faultless model by

these elements allowing, for user introduced faults.

In the integrated model, all energy stores take preferred integral causality. Due to

the residual sinks, the underlying mathematical model is a DAE system.
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set point rise is limited
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C : C2

��
QR2

R : R2()

Fig. 12.68 Coupling of a faulty process model (lower part) to a faultless process model (upper

part) by means of residual flow sinks

The DAE System Derived from the Coupled Bond Graphs

Derivation of model equations from the causal bond graph in Figure 12.68 is

straightforward. In this case study, they have been formulated in Scilab’s mathemat-

ical input language and stored in a script to be read by Scilab. The Scilab function

of the DAE system of the overall model to be passed in a call to the solver DASSL

is displayed in Figure 12.69.

The application of the solver DASSL requires that all equations are written in

implicit form. In the Scilab script, the residuals r(i), i = 1, . . . , 6, are not to be

confused with the residuals of the ARRs to be computed. The latter variables are

denoted f1, f2. In the behavioural model of the real engineering process, perturbed

power variables are denoted by a name that starts with the letter t standing for tilde.

With xp := [p1, p2, p̃1, p̃2]T and w := [f1, f2] as components of a descriptor

vector, the DAE system of the example, in fact, is a semi-explicit DAE of the form

of Equation 6.105. Its index is 2. In this example, the matrices in Equation 6.106
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// Scilab function including the DAE system of the two tank models
// coupled by two residual flow sinks
function [res, ires] = daesys(t,x,xdot)

// components of the descriptor vector x = [x_p, w]:
// tank pressures (faultless process model):
p1 = x(1)
p2 = x(2)
// tank pressures (faulty process model):
tp1 = x(3)
tp2 = x(4) // x_p := [ p1,p2,tp1,tp2 ]
// residuals:
f1 = x(5)
f2 = x(6) // w := [ f1, f2 ]

// time derivatives of the components of the descriptor vector:
dp1 = xdot(1)
dp2 = xdot(2)
dtp1 = xdot(3)
dtp2 = xdot(4)
df1 = xdot(5)
df2 = xdot(6)

// system inputs: volume flow of the feed pump
Qp = Flow*pulse(t,tstart,tstop)

// no leakage from the two tanks of the real process:
tQl1 = 0.0
tQl2 = 0.0

// volume flows through the valves:
QR1 = orifice(AV1,p1,p2)
QR2 = orifice(AV2,p2,p0)

// partial blockage of valve 1 for 50.0s <= t <= 60.0s:
tQR1 = (1.0 - pulse2(t,50.0,60.0,0.8))*orifice(AV1,tp1,tp2)
tQR2 = orifice(AV2,tp2,p0)

// continuity equations for the tanks in both submodels:
r(1) = Qp - QR1 - C1*dp1 - f1 // p1
r(2) = QR1 - QR2 - C2*dp2 - f2 // p2
r(3) = Qp - tQR1 - tQl1 - C1*dtp1 // tp1
r(4) = tQR1 - tQR2 - tQl2 - C2*dtp2 // tp2

// equations of the residual flow sinks:
r(5) = p1 - tp1 // f1
r(6) = p2 - tp2 // f2

ires = 0 // indicator of successful computation of r
endfunction

Fig. 12.69 Scilab function including the DAE system of the two tank models coupled by residual

flow sinks
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take the form
∂f2
∂xp

=
[

1 0 −1 0
0 1 0 −1

]
(12.78)

and

∂f1
∂w

=

⎡⎢⎢⎣
−1/C1 0

0 −1/C2

0 0
0 0

⎤⎥⎥⎦ . (12.79)

Consequently,

det
(

∂f2
∂xp

∂f1
∂w

)
= det

[−1/C1 0
0 −1/C2

]
=

1
C1C2

�= 0 . (12.80)

Simulation of the Faultless System Behaviour

The numerical solution of a DAE system requires a consistent set of initial condi-

tions for the components of the descriptor vector and their time derivatives. For the

consistent initialisation of a DAE system, the algorithm of Pantelides [22] can be

used. To facilitate the specification of a consistent set of initial conditions, it is as-

sumed that the two tanks are empty at initial time t = 0 and that the pump delivers

a constant volume flow, Qp, for the time period 10.0 s ≤ t ≤ 40.0 s. That is, the

empty tanks are filled for 30 s. Thereafter, they discharge at a rate depending on how

much the valves are open. Figure 12.70 depicts the undisturbed dynamic behaviour.

The parameters of the hydraulic two tank system are given in Table 12.15.
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Fig. 12.70 Time history of the tank pressures in faultless operation mode
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Table 12.15 Parameters of the hydraulic two tank system

Parameter Value Units Meaning

g 9.81 m/s2 Gravitational acceleration

� 780 kg/m3 Oil density

cd 0.61 Discharge coefficient

AT1 = AT2 0.153 m2 Cross sectional area of the tanks

C1 = C2 = AT1/(� g) m3/Pa Capacitances of the tanks

AV1 0.2 · 10−2 m2 Cross sectional area of valve 1

AV2 0.1 · 10−2 m2 Cross sectional area of valve 2

Flow 0.5 · 10−2 m3/s Volume flow of the pump

Ql 0.1 · 10−2 m3/s Leakage from tank 1

p0 0.0 Pa Pressure of the environment

Study of Fault Scenarios

In this case study, two types of faults are considered, namely leakage from the tanks

and partial blockage of the valves. As a first fault scenario, a constant leakage flow

from tank 1 is assumed to be effective for the time period 50 s ≤ t ≤ 60 s, while the

two tanks discharge. As a result, the pressures in the tanks decrease at a higher rate

during this time period. Figure 12.71 shows the time history of the tank pressures in

the case of a leakage from tank 1.

Leakage from tank 1 corresponds to a decrease of the area of its bottom. Accord-

ing to the fault signature matrix of Table 6.5, residual res1 is affected, while residual
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Fig. 12.71 Time history of the tank pressures in the case of a leakage from tank 1
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res2 is not. Figures 12.72 and 12.73 depicting the residuals f1 and f2 validate this

expectation. Note that at t = 60 s, the leakage from tank 1 abruptly stops. The sys-

tem abruptly returns to normal mode operation. Accordingly, residual f1 abruptly

drops to zero.
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Fig. 12.72 Residual f1 in the case of a leakage from tank 1 during the time interval 50 s ≤ t ≤
60 s
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Fig. 12.73 Residual f2 in the case of a leakage from tank 1
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Fig. 12.74 Residuals f1 and f2 in the case of partial blockage of the valve 1 during the time

interval 50 s ≤ t ≤ 60 s

As a second fault scenario, partial blockage of the valve between the two tanks is

assumed to be effective during the time interval 50 s ≤ t ≤ 60 s after the constant

flow pump has been switched off. Consequently, the pressure in tank 1 decreases at

a lower rate, while the pressure in tank 2 decreases at a higher rate. Its outlet is not

affected, but its inlet is chocked. According to the fault signature matrix 6.5, both

residuals should be sensitive to this type of fault. This is verified by Figure 12.74.

12.12 Heated Stirred Tank

Bond graph modelling of thermal systems is the subject of a book by Thoma and

Bouamama [27]. In this section, the simple example of a single heated stirred tank

considered in Section 10.1.1 is taken as a subject of a small modelling and simula-

tion study (cf. [13, 29]). The schematic of the tank and a pseudo bond graph model

are redisplayed in Figure 12.75 and Figure 12.76.

The following assumptions apply.

• The fluid flow is one way from left to right.

• The mass flow can be considered incompressible; inertia effects can be neglected.

• The mass flow ṁi and the temperature Ti at the tank inlet are constant.

• There is a uniform hydrostatic pressure at the bottom of the tank.

• The fluid in the tank is heated. The heat is supplied at constant rate. Stirring

ensures a spatially uniformly distributed temperature T .

• Heat losses to the ambient and the heat capacity of the tank wall can be neglected.
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Fig. 12.75 Heated stirred tank

Constitutive Relations of the Elements

As the pressure at the hydraulic inlet resistor only affects the (ideal) source of hy-

draulic power supply, it can be omitted. The constitutive relation (CR) of the hy-

draulic outlet resistor is

ṁo = k2
√

p . (12.81)

The constitutive realtion of the hydraulic capacitor is

p =
1

Ch
m , (12.82)

where Ch = A/�.

The thermal capacitor’s constitutive relation is

T =
1

Ctherm
H , (12.83)

where Ctherm = c × m.

The constitute relation of the thermal resistors is

Ḣindex = c ṁindex Tindex , (12.84)

where index either denotes the inlet or the outlet resistor.

Table 12.16 gives the parameters of the simulation study (cf. [29]). The fluid flow

enters the tank at a mass flow of 4 kg/s. At time instance t = 1500 s, this value

increases to 4.8 kg/s. That is,
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Fig. 12.76 Pseudo bond graph of the heated stirred tank

ṁi =
{

4.0 kg/s 0 s ≤ t < 1500 s
4.8 kg/s t ≥ 1500 s

. (12.85)

Simulation Results

Figure 12.77 shows the time evolution of the temperature and the fluid level in the

tank. As can be seen from Figure 12.77, the fluid level as well as the temperature

in the tank increase due to an inflow at constant mass flow and due to constant

heating of the fluid. Then, due to the immediate increase of the mass flow at time

t = 1500 s and a continued unchanged constant heating of the fluid, the fluid level

further increases while the temperature in the tank decreases.
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Table 12.16 Parameters of the simulation study

Parameter Value Units Meaning

g 9.81 m/s2 gravitational acceleration

� 800 kg/m3 Fluid density

cp 200 J/(kg oC) specific heat

A 1.0 m2 Cross section area of the tank

k2 5.824 × 10−2 √
kg m Coefficient of the hydraulic outlet resistor

Ti 20 oC Inlet temperature

Q̇ 40 kW Heat flow

h(0) 0.4 m Initial fluid level in the tank

T (0) 45 oC Initial temperature in the tank

H(0) 2.88 × 106 J Initial enthalpy in the tank
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Fig. 12.77 Time evolution of the temperature and the fluid levels in the tank

The steady state values of fluid level and temperature in the tank obtained by

simulation can be easily manually verified. Summation of mass flows at the upper

0-junction of the bond graph in Figure 12.76 gives

ṗ =
1

Ch
( ṁi − ṁo )
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=
1

Ch
( ṁi − k2

√
p )

=
1

Ch
( ṁi − k2

√
� g h ) . (12.86)

In steady state, the time derivative of the pressure vanishes. Hence,

h =
ṁ2

i

k2
2 � g

. (12.87)

Using numerical values from Table 12.16 gives h(t = 3000 s) = 0.865 m.

The steady state value of the temperature in the tank is obtained accordingly.

Summation of enthalpy flows at the lower 0-junction of the bond graph in Fig-

ure 12.76 in steady state gives

0 =
1

Ctherm
[ cp ṁi Ti − cp ṁo T + Q̇ ] . (12.88)

Hence,

T = Ti +
1

cp ṁo
Q̇ . (12.89)

The numerical result is T (t = 3000 s) = 61.66 oC.

12.13 A Counterflow Heat Exchanger

This section illustrates how the pseudo bond graph approach can be conveniently

used for modelling open thermodynamic systems. The example under study is a

simple counterflow heat exchanger as is depicted in Figure 12.78. In [25], Scherf

directly sets up the equations for a counterflow heat exchanger and uses them for a

MATLAB®/Simulink®simulation. In this case study, the parameters given by Scherf

are used. A bond graph model of a heat exchanger has also been presented by Thoma

and his co-authors [27, 28]. It makes use of a non-standard element they call HEXA

(Heat Exchanger).

The simple counterflow heat exchanger in Figure 12.78 can be considered as a

tube carrying the cooling water with a counterflow hot oil stream passing through an

inner tube. Both tubes have an inlet and an outlet. That is, each tube can be viewed

as a control volume with a mass inflow and a mass outflow and can be presented by

a pseudo bond graph similar to the one of a heated stirred tank in Section 10.1.1.

For simplicity, it is assumed that

• a one-dimensional concentrated parameter model is appropriate,

• no mass is accumulated in both tubes,

• hydraulic losses can be neglected in both tubes, and

• the wall of pipe enclosing the inner tube is perfectly insulating.
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A Pseudo Bond Graph Model of the Counterflow Heat Exchanger

According to the pseudo bond graph model of a heated stirred tank (cf. Figure 10.5),

Figure 12.79 shows a pseudo bond graph of the heat exchanger. The upper part of

the pseudo bond graph model represents the outer tube with the cooling water. The

lower part of same structure models the inner pipe carrying the hot oil stream. The

hydraulic part of both submodels reduces to a 1-junction of the mass flow as mass

accumulation and hydraulic losses have been neglected. Both submodels are cou-

pled by a modulated resistor that accounts for the heat conduction from the hot

inner pipe to the enclosing pipe. This R element is modulated by the upstream tem-

peratures of water and oil. Its constitutive equations are

ΔT =
( T oil

i − Tw ) − ( T oil − Tw
i )

ln(T oil
i − Tw ) − ln(T oil − Tw

i )
(12.90a)

Ḣoil = k A ΔT (12.90b)

Ḣw = k A ΔT , (12.90c)

where k denotes the thermal conductance coefficient (assumed to be constant) and

A is the surface of the inner pipe effective in the heat exchange.

As pointed out in Section 10.1.1, the enthalpy flow into and out of each pipe does

not depend on a temperature difference, but on the upstream temperature. Therefore,

the bond with the downstream temperature is activated. Furthermore, the C element

in the thermal part of both submodels is modulated, which is no problem in a pseudo

bond graph.

The cooling water entering the heat exchanger is provided through a valve. In

order to ensure a given constant temperature of the oil at the outlet, the actual tem-
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perature is measured and compared with a set point value. The difference is fed into

a PID controller that controls the opening of the water inlet valve. If details of the

valve are known, a bond graph model can be developed for the valve. In this study,

the limitation of the opening is taken into account by a signal saturation block. The

dynamics of the valve opening are modelled by a first order lag signal block.

From the pseudo bond graph in Figure 12.79, the equations describing the dy-

namics of the heat exchanger are easily derived by summing up flows at the right-

hand side 0-junctions. They are, in fact, power balances. The enthalpy flow entering

the C element reads

coil moil Ṫ
oil = Ḣoil

i − Ḣoil − Ḣoil
o

= coil ṁoil T
oil
i − k A ΔT −

coil ṁoil T
oil (12.91a)
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Table 12.17 Parameters used for simulation runs

Parameter Value Units Meaning

moil 75 kg Oil mass in the heat exchanger

mw 100 kg Mass of water in the heat exchanger

A 5 m2 Surface of inner pipe effective in heat conductance

k 85 J/(s m2 K) Thermal conductance coefficient

coil 1600 J/(kgK) Specific heat of the oil at constant volume

cw 4200 J/(kgK) Specific heat of the water at constant volume

ṁoil 500 kg/h Oil mass flow

T oil
i 120 oC Oil temperature at the inlet

T w
i 10 oC Water temperature at the inlet

cw mw Ṫw = cw ṁw Tw
i + k A ΔT −

cw ṁw Tw , (12.91b)

where coil and cw denote the specific heat at constant volume of the oil and the

water.

Simulation of the Uncontrolled Counterflow Heat Exchanger

In order to see whether the model correctly reflects the dynamic behaviour of the

heat exchanger, first, the uncontrolled system has been simulated. To that end, the

parameters in Table 12.17 (cf. [25]) have been used.

If in steady state the outlet temperatures are to be Toil = 33.8 oC and Tw =
43.0 oC respectively, then for the cooling water flow, the required mass flow is

ṁw = 0.1382 kg/s. Starting from this steady state, the oil mass flow is increased by

10% at t = 1000 s. Furthermore, at t = 5000 s, the temperature of the oil entering

the heat exchanger rises from 5 oC to 125 oC.

Figure 12.80 shows the step responses of the uncontrolled systems. Both events

cause an increase in the outlet temperatures as to be expected. As can be seen, the

dynamics of the increase are different. At t = 1000 s the outlet temperature of the

oil rises much faster than the one of the water.

Simulation of the Controlled Counterflow Heat Exchanger

The transfer function of the PID controller is

U = K

⎡⎢⎣1 +
1

Ti s
+

Td s

1 +
Td

N
s

⎤⎥⎦ E , (12.91c)

where s ∈ C. E denotes the Laplace transform of the error into the controller and

U the Laplace transform of the controller output. The parameters of the controller

have been adopted from [25] and are given in Table 12.18.



12.13 A Counterflow Heat Exchanger 637

�������	
��������������������������������

� ���� ���� ���� ���� ���� ����  ��� !���
�"#��$�%

&
'�

"
�
$�(
��
%

&
'�

�$�
(�
�
%

��

��

�!

��

��

��

��

�������	�
���
�����
���������

����
����	�
���
�����
���������

Fig. 12.80 Step responses of the uncontrolled system

Table 12.18 Parameters of the PID controller

Parameter Value Units Meaning

K -150 Proportional gain

Ti 630 s Integral time constant

Td 63 s Derivative time constant

N 63 Derivative gain limitation

As been mentioned above, the major characteristics of the valve have been mod-

elled by a signal saturation block followed by a first order lag signal block with

the transfer function G(s) := k/(τs + 1). The minimum and the maximum output

bound of the saturation block are 0 and 100 respectively. The proportional gain of

the first order lag block is k = 0.005 so that the output of the valve is limited to

0.5 kg/s. The time constant of the first order lag block is τ = 1 s.

The initial value of the controller’s internal integrator, uI0 = 27.7, is the valve’s

opening that corresponds to the steady state value of the mass flow of the water

flow, ṁw = 0.1385 kg/s, required to maintain a steady state oil temperature Toil =
33.6 oC at the outlet.

Figure 12.81 depicts the oil temperature at the outlet of the controlled heat ex-

changer and the mass flow of the cooling water flow. At t = 1000 s, the set point of
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Fig. 12.81 Oil outlet temperature and mass flow of the cooling water flow for the controlled system

the oil outlet temperature instantly drops from 33.6 oC to 33.0 oC. At t = 4000 s,

the mass flow of the entering oil is increased by 10% and at t = 8000 s, the tem-

perature of the entering oil rises by 5 oC. In all three cases, after a more or less

significant overshoot, the oil outlet temperature returns to the given set point value.

The time evolution of the mass flow of the cooling water flow clearly shows the

saturation of the valve.

12.14 Conclusion

In this chapter, bond graph methodology has been used in a number of small elab-

orated case studies. The aim has been to show that, in fact, bond graph modelling

can cover the whole range of engineering applications from mechanical systems to

electromechanical systems, robots, hydraulic and to open thermodynamic systems

in a unified manner. A further objective of this chapter has been to illustrate the

application of different features of bond graph modelling methodology.

• As to mechanical systems, an intuitive and convient modelling approach is to

start by considering geometric relations, deriving kinematic constraints from
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them and augmenting their bond graph representation so that a model of the

system dynamics is obtained.

• Furthermore, classical Lagrange equations, e.g. for robots can be derived directly

and systematically from a multibond graph representation. Of course, if simula-

tion of the dynamic behaviour is the purpose and if a standard DAE solver is to

be used then these second order ODEs are to be transformed into a set of first

order ODEs.

• Three case studies, the engagement of a clutch (Section 12.6), dry friction in

a suspension strut of a car (Section 12.7) and a DC-DC buck converter (Sec-

tion 12.8) have been chosen to show how hybrid systems including discrete

events can be modelled and simulated in bond graph framework.

• As to hydraulic systems, in general, it is sufficient and appropriate to use a hy-

drostatic approach. That is, the hydrostatic pressure is chosen as an effort and the

amount of hydraulic power is approximated by the product of hydrostatic pres-

sure and volume flow. This assumption has been used in the fluid level control of

a three tank system.

• The bond graph model-based approach to FDI presented in Section 6.8 has been

illustrated by means of the often used hydraulic two tank system.

• Finally, two small examples including the well known heated stirred tank prob-

lem (Section 12.12) and a counterflow heat exchanger (Section 12.13) have been

chosen to illustrate the practical use of the pseudo bond graph approach.

In this presentation of a number of small case studies from various disciplines, em-

phasis has been on bond graph modelling. It has not been the aim to show how ex-

isting software can support bond modelling and simulation of the examples. There

is one exception with the consideration of dry friction in a suspension leg. For this

example, it has been shown in some detail how such a hybrid model, actually, can

be computed by means of the open source mathematical software Scilab and the use

of an ODE solver with root finding capability.

As to large bond graph models of complex systems, it is clearly beneficial to

have some software available that supports a hierarchical modelling approach, pro-

vides component model libraries, can automatically set up model equations and can

manipulate them symbolically before numerical solution is performed. For models

of small up to medium size, an ordered set of model equations can also be derived

manually from a causal bond graph in a systematic manner and can be directly for-

mulated, e.g. in the script language of Scilab.
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