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Preface

Nowadays, engineering systems are of ever-increasing complexity and must be con-

sidered as multidisciplinary systems composed of interacting subsystems or system

components from different engineering disciplines. Thus, an integration of various

engineering disciplines, e.g, mechanical, electrical and control engineering in a con-
current design approach is required. With regard to the systematic development and

analysis of system models, interdisciplinary computer aided methodologies are be-

coming more and more important.

A graphical description formalism particularly suited for multidisciplinary sys-

tems are bond graphs devised by Professor Henry Paynter in as early as 1959 at the

Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, USA

and in use since then all over the world.

This monograph is devoted exclusively to the bond graph methodology. It gives a

comprehensive, in-depth, state-of-the-art presentation including recent results scat-

tered over research articles and dissertations and research contributions by the au-

thor to a number of topics.

The book systematically covers the fundamentals of developing bond graphs

and deriving mathematical models from them, the recent developments in method-

ology, symbolic and numerical processing of mathematical models derived from

bond graphs. Additionally it discusses modern modelling languages, the paradigm

of object-oriented modelling, modern software that can be used for building and for

processing of bond graph models, and provides a chapter with small case studies

illustrating various applications of the methodology.

In favour of presenting topics in some reasonable depth and to keep the size of

the book manageable, the book refrains from scratching the surface of too many

topics. For this reason, some topics, e.g., chemical reactions or links to qualitative

reasoning, are not addressed. The compilation of the material in this book and its

presentation has been motivated by the author’s individual experiences in research

and teaching for more than two decades and has been inspired by his personal inter-

action with many leading personalities in this area.

This monograph addresses students, lecturers, researchers, and practicing engi-

neers in industry who want to learn more about the potential and the state-of-the-art
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design of this powerful interdisciplinary graphical modelling methodology and who

want to see how it can help them better understand physical processes in multi-

energy domain engineering systems in order to develop proper models in their re-

spective engineering field. As bond graph modelling is based on the intuitive con-

sideration of energy exchange between system components from various energy

domains, the methodology is particularly suited for modelling and design tasks in

mechatronics.

Bond Graph Methodology – Development and Analysis of Multidisciplinary
Models addresses the fundamentals as well as advanced topics. It has been designed

to serve readers interested in what bond graph modelling is about, readers with ex-

pertise in related areas who want to see how bond graph modelling can help them

in their projects as well as members of the international community of bond graph

modellers. The book can be used as a supplementary text in master’s programme

courses on modelling, simulation and control, as well as a guide for self-study and

as a reference.

The progress made in bond graph modelling is due to many people around the

world. Without their research, this monograph would not have been possible.
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About This Book

This book on Bond Graph Methodology is organised into 13 chapters. Its focus

is mainly on concepts, modelling approaches, techniques and software tools that

support the process of bond graph based physical systems modelling.

By covering a number of advanced topics, e.g., models of variable structure,

multibody systems and open thermodynamic systems, the book aims at demonstrat-

ing the true interdisciplinary potential of bond graph methodology. The discussion

of concepts makes use of many examples that, for pedagogical reasons, have been

kept fairly small and easy to survey. A glossary supports the use of the terminology.

The introduction briefly recalls essential features of block diagrams, signal flow

graphs, network representations and the paradigm of object-oriented modelling. The

intention is to begin with well known graphical model representations and modelling

techniques and to outline the context in which bond graph modelling is embedded.

Chapter 2 provides the fundamentals of bond graph based physical systems mod-

elling, allowing the reader to systematically construct a so-called non-causal bond

graph from a system schematic system representation. Non-causal bond graphs re-

flect the structure of the system to be modelled. In the conceptual phase of devel-

oping a hierarchical (top-down, or bottom-up) model, functional relations between

physical quantities, given either by equations or by look-up tables are not impor-

tant in the beginning. Consequently, at a conceptual model development stage, non-

causal bond graphs are used to represent physical effects and relations between them

in a qualitative manner. At this early stage of model development, a mathematical

model derived from a non-causal bond graph could take only the form of a set of

differential-algebraic equations including many redundant algebraic equations due

to the interconnection of system component models.

With regard to the systematic derivation of a mathematical model from a bond

graph, the concept of computational causality is explained in Chapter 3. The so-

called Standard Causality Assignment Procedure (SCAP), introduced by Karnopp

and Rosenberg, is presented and the choice of state space variables is addressed.

After an introduction of the basic notion of a causal path, it is shown how an or-

dered set of equations can be derived manually from causal bond graphs of moder-

ate size by following causal paths back and forth. In the simplest case, the equations
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obtained can be turned into a set of explicit state space equations by eliminating

auxiliary algebraic variables.

Beyond the most simple case of an explicit state space form, several types of

causal paths in a bond graph and their effect on the form of the mathematical model

are considered in Chapter 4. It turns out that a mathematical model to be derived

from a causal bond graph, in general, is a set of differential-algebraic Equations

(DAE system). Therefore, important notions from the theory of DAE systems are

provided, in particular the notions of the index of nilpotency and the differential
index of a DAE system.

From a modelling point of view, the generation of a DAE system can be avoided

by inserting small energy storage elements into the bond graph. This way, a model is

slightly modified. This approach, quite common before numerically robust solvers

for DAE systems of index < 2 came up, is briefly discussed. Moreover, two alter-

natives to the standard causality assignment procedure, viz., the method of relaxed
causalities, introduced by Joseph and Martens, and Lagrange causalities (Karnopp

1977) are considered.

In Chapter 5, some aspects of solving DAE systems numerically by means of the

standard multistep Backward Differentiation Formula (BDF) are discussed. Some

modelling and simulation software packages can perform symbolic manipulation of

the equations of the DAE system before it is passed on to a numerical solver. In this

context, reduction of the differential index of a DAE system based on Pantelides’

algorithm is considered. Moreover, it is demonstrated how tearing of algebraic con-

straints can be supported by adding controlled sources to a bond graph.

Chapter 6 shows that a bond graph can be considered a core model representa-

tion from which not only equations for simulation can be derived, but also transfer

functions, information about structural properties, e.g., structural controllability and

structural observability as well as equations of the inverse system, parameter sen-

sitivities and forms of state equations for robustness study. Also, bond graphs can

support model-based fault detection and isolation.

As is well known, engineering components (e.g., diodes, thyristors, hydraulic

check valves, clutches) or physical effects (e.g., stick-slip friction or the stop of a

piston at a limiting position) give rise to the modelling abstraction of an instanta-

neous discontinuous change of state. With regard to the overall system dynamics,

this abstraction is appropriate and can help avoid numerical problems due to steep

gradients. For these reasons, it is common practice to use this abstraction. Chapter 7

considers several approaches to a combination of this abstraction with bond graph

modelling. The latter methodology is based on conservation laws from physics and

requires that state transitions take place in a nonzero time period. It appears that so

far, no standard bond graph approach to hybrid modelling (time continuous models

including the description of discrete events) has formed.

Chapters 8, 9, and 10 on multibody systems, on lumped parameter bond graph

model approximations of distributed parameter models, and on open thermody-

namic systems show the potential of the interdisciplinary bond graph methodology.

Multibond graphs as introduced by Breedveld allow for a concise representation of

models of multibody systems with bodies assumed to be rigid.
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In Chapter 8, multibond graph modelling of multibody systems as proposed by

Bos is presented. That is, translational motion of bodies assumed to be rigid is re-

ferred to an inertial frame, whereas the rotation of a body is described with reference

to a body fixed frame. Moreover, bond graph modelling of multibody systems can

also be used for the joint coordinate method that is well known in mechanical engi-

neering.

If some bodies of a multibody system are to be considered flexible and conse-

quently are to be represented by a distributed parameter model, then the latter can

be approximated by a lumped parameter bond graph model based either on modal

analysis (Karnopp and Margolis) or on a finite element approach (Pelegay, Doblare

and Buil).

Chapter 10 presents fundamentals of pseudo bond graph as well as true bond

graph modelling of open thermodynamic systems. Moreover, some effects in hy-

draulic systems are addressed that have given rise to an ad hoc representation in

some bond graph related research reported in the literature.

Chapter 11 on automated modelling discusses modern modelling languages, the

paradigm of object-oriented modelling (OOM), modern software that can be used

for systematic development and processing of bond graph models.

As bond graph models have been developed concurrently in various places all

over the world, Chapter 11 also addresses the issue of how this engineering knowl-

edge can be shared. Inspired by the success of XML in many computer science

related areas, a bond graph markup language, BGML, is proposed that can support

the exchange and the reuse of bond graph models.

Regarding software for bond graph modelling, some features of three state-of-

the-art integrated modelling and simulation environments have been considered and

illustrated by some screen shots. However, it must be pointed out that the presenta-

tion of software is not meant to be product oriented. The aim, rather, is to outline

different approaches towards a software support of bond graph modelling.

Finally, in Chapter 12, small elaborated case studies illustrate various applica-

tions of the bond graph methodology.
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Chapter 1
Introduction

1.1 A Historical Survey of Bond Graph Modelling

When designing a new dynamic system or analysing an existing one, it is common

for designers and engineers to use graphical representations of their models in order

to communicate with others, to exchange ideas, to express modelling assumptions

and to exchange their models for reuse. This is not surprising, as graphical rep-

resentations are far more suited to human perception than oral or textual ones. For

instance, a schematic of a closed loop controlled system is clearly more easily under-

stood than a verbal description given over the telephone. In engineering disciplines,

e.g., network representations, block diagrams, or linear graphs have a long tradition.

In addition, (domain specific) iconic diagrams have become popular. If graphical

representations adhere to formal rules, not only do they avoid misunderstandings

between human beings, but they also allow for an automatic transformation into an

executable program by means of appropriate software programs.

Among several graphical representation means used in different application ar-

eas, bond graphs are a description formalism best suited for modelling physical

processes and multidisciplinary dynamic engineering systems including effects or

components from different energy domains, viz., the mechanical, the electrical, the

thermal, and the hydraulic domain. Many technical systems, often termed mecha-
tronic systems, integrate components from different disciplines and exploit interact-

ing effects, e.g., sensors and electronically controlled actuators.

Bond graphs, to be formally introduced in the next chapter, were devised by

Professor Henry Paynter1 at the Massachusetts Institute of Technology (MIT) in

1959. His former Ph.D. students, Professor D. Karnopp and Professor D. Margolis

(University of California at Davis), and Professor R. Rosenberg (Michigan State

University, East Lansing, Michigan), elaborated the concept into a methodology

for physical systems modelling that nowadays is used in academia and industry by

many people around the world. In retrospect, Paynter wrote in 1992 ([35] p. 13):

1 1923–2002

1
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So it was that on April 24, 1959, as the writer was about to give a seminar lecture
at Case Institute (now Case-Western) on “Interconnected Engineering Systems”,
he awakened earlier that morning with the 0,1-junctions somehow finally planted
in his head! Thus on that date the BG2 system was complete and constituted a
formal discipline.

The first published books of these pioneers include Paynter’s historic lecture notes

titled Analysis and Design of Engineering Systems, dating back to the year 1961

[34], the book titled Analysis and Simulation of Multiport Systems – The Bond
Graph Approach to Physical System Dynamics by Karnopp and Rosenberg [22]

published in 1968, as well as the first edition of the textbook System Dynamics –
A Unified Approach [23]. This book has become a widely recognised standard. A

second edition was published in 1990 and a third edition in 2000, both co-authored

by D. Margolis. In 2006, the three authors published an even more mature fourth

edition that reflects their experience over decades in teaching courses at universi-

ties and in industry. This textbook now is titled System Dynamics - Modeling and
Simulation of Mechatronic Systems [25].

Early promoters of the new modelling technique were Professor J. Thoma (Pro-

fessor Emeritus at the University of Waterloo, Ontario, Canada), Professor J. J. van

Dixhoorn (University of Twente, Enschede, Netherlands who passed away in 2001),

P. Dransfield, Professor at Monash University, Melbourne, Australia and S. Scav-

arda, Professor at Institut National des Sciences Appliquées de Lyon (INSA), France

who passed away in 2008. These gentlemen significantly contributed to the promo-

tion and dissemination of the bond graph modelling technique in Europe, Japan,

India and China. Van Dixhoorn founded a Technical Committee on Bond Graph

Modelling (TC 16) as part of the International Association for Mathematics and

Computers in Simulation (IMACS) that was chaired by J. Thoma for many years.

Right from its beginning, the bond graph methodology was supported by the fa-

mous ENPORT™ simulation program developed by R. Rosenberg. Its probably best

known version has been ENPORT-4™. At that time, bond graphs were entered in

alpha-numerical form in a so-called line code. Entries in that line code separated by

commas denoted the type of a bond graph vertex followed by the numbers of the

edges attached to that node. In his Ph.D. thesis [20], Professor J. Granda (California

State University at Sacramento) developed a bond graph preprocessor that trans-

formed the line code into equations for input into widely used simulation programs

such as ACSL™3 . In a further obvious step, he replaced the line code entry by a

graphical editor.

Nowadays, several facts demonstrate the worldwide acceptance and the success

of bond graph modelling methodology. During the first years of bond graph method-

ology development, almost everyone concerned with the new technique knew al-

most all publications and moreover, knew many members of the small but world-

wide community of bond graph modellers personally. Today, the number of bond

2 BG means Bond Graph
3 ACSL, acslX, and PowerBlock are registered trademarks of The AEgis Technologies Group, Inc.,

631 Discovery Drive, Huntsville, AL 35806, USA, http://www.acslx.com
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graph related publications has grown tremendously so that a comprehensive survey

is almost impossible. In 1977, V. Gebben [19] published the first Bond Graph Bib-
liography with the aim of recording the enormous increase in the number of bond

graph related publications. Updates followed in 1985 [6] and 1991 [8], both pub-

lished in the renowned Journal of the Franklin Institute. Around 1996, Professor F.

Cellier, now with the Swiss Federal Institute of Technology, Switzerland, took on

the tremendous burden of compiling references to bond graph related publications

in a Bond Graph Compendium available on the World Wide Web [12]. Even this

comprehensive compendium needs another update. For instance, in the year 2000

alone, several textbooks on bond graph modelling were published [3, 13, 24, 30, 41].

Some more recently published books on bond graph modelling are [25, 31, 37, 43].

In the past decades, bond graph researchers contributed many special sessions

on bond graph modelling to international conferences. The author organised such

special sessions as part of the ESM 1993, Lyon, France, of the 1994 and the 2003

Mathmod conference in Vienna, Austria, as part of the ESS 1997 in Passau, Ger-

many and contributed to bond graph sessions organised by other members of the

community, e.g., to CESA 1996 in Lille, France, and the CIFA 2008 in Bucarest,

Romania. As general chairman, the author of this book organised the 2006 Euro-

pean Conference on Modelling and Simulation (ECMS 2006) held near Bonn, Ger-

many [5]. This conference featured a well received track with three sessions devoted

to bond graph modelling. Professor Cellier delivered a keynote speech by address-

ing his current research activities in bond graph modelling. During the last decade,

many more conferences with papers, sessions, or even tracks addressing bond graph

modelling took place. Space in this introduction does not allow for all of them to be

listed.

Besides publications in international conferences, bond graph researchers have

contributed to special journal issues, e.g., the 1999 special issue of Simulation Prac-
tice and Theory edited by J. U. Thoma and H. J. Halin [42], the 2002 special issue of

the Proceedings of the Institute of Mechanical Engineers edited by P. Gawthrop and

S. Scavarda [17], the 2006 special issue of the journal Mathematical & Computer
Modelling of Dynamical Systems edited by I. Troch, W. Borutzky and P. Gawthrop

[44], or the 2009 special issue of the journal Simulation Modelling Practice and The-
ory edited by the author [4]. The latter special issue also includes an introduction

of bond graph modelling by the author of this book. In 2007, Gawthrop and Bevan

published a tutorial introduction into bond graph modelling for control engineers in

the IEEE Control Systems Magazine [16].

Last but not least, the biannual International Conference on Bond Graph Mod-
elling (ICBGM) as part of the Western Multiconference (WMC) of the Society for

Modelling and Simulation International (SCS) has to be mentioned.

In addition to research, bond graph based physical systems modelling has been

considered more and more to be a important fundamental topic in engineering ed-

ucation and has become a regular part in the syllabi of many engineering pro-

grammes. In addition to the 2000 textbooks already mentioned above, other text-

books on bond graph modelling have been published in different languages during

the past decades, e.g. [2, 7, 14, 18, 23, 32, 40, 46]. This list, which is not meant to
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be comprehensive, shows that there has been a growing awareness and acceptance

of the bond graph modelling technique worldwide during the past decades. In his

contribution to the March, 1995 special issue on simulation in engineering of the

journal SIMULATION, Professor F. Cellier points out why bond graphs are “the

right choice for educating students in modelling continuous-time physical systems”

[11].

Not only in research and education, but also in industry, bond graph modelling

has become a useful approach in the everyday business of many engineers in small

consulting firms as well as in big companies, especially the automobile industry,

in aerospace and in automation. In the context of mechatronic system design, the

appropriateness of a bond graph approach is particularly evident. On the other

hand, it must be mentioned that bond graph modelling is one of a number of mod-

elling methodologies that are equally well suited for a given design task. People in

academia and industry do have their preferences. Consequently, bond graph mod-

elling is not appreciated to the same extent in different places. Although bond graph

modelling has spread from MIT to many places all over the world, there are engi-

neering departments even in the USA where this technique is still not used.

In some countries, bond graph modellers founded national associations, e.g., the

Bondgraafclub in the Netherlands, or the Club de Bondgraphistes with members in

France and in Belgium.

In 2000, the first edition of this monograph was published as a first comprehen-

sive presentation of bond graph methodology in the German language. The author

of this monograph became aware of bond graphs in 1979 by a survey article by

A. Schöne [38]. It was the starting point of an ever-continuing enthusiasm for this

methodology that I share with friends in many places around the world.

1.2 Some General Aspects of Modelling Dynamic Systems

Building a model is an iterative procedure. It starts with the identification of essen-

tial features and of inherent mechanisms of a dynamic system to be designed. In a

step by step refinement of the understanding of a dynamic physical system, different

forms of representation are used. They are of graphical nature, especially during the

conceptual phase as our eyes can easily perceive different information in parallel.

Graphical representations are not only easy to grasp, they are also best suited for

communication between individuals. This becomes evident if one considers the dif-

ficulty of transmitting all the information contained in a schematic of an electronic

or hydraulic circuit by telephone, or if one receives the description of a dynamic sys-

tem in a simulation language on many pages without any comments. The importance

of graphical representations is not only essential in the modelling phase, but also for

visualisation of simulation results. With the ever increasing computing power, not

only is the graphical representation of numerical results as curves required, there is

also a demand for 3D animation of system motion in a realistic fashion. With the de-

velopment of languages such as Virtual Reality Modelling Language (VRML) and
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appropriate freely available visualisation software tools, 3D presentations may be

exchanged via the internet. Thus, graphical representations and visualisation play a

vital role during the design of a dynamic system and the design of its control [36].

Graphical and textual model representations of dynamic systems are always as-

sociated with a certain view of a system, its properties and its inherent mechanisms.

They reflect abstractions and modelling assumptions. The starting point of the mod-

elling process always involve certain questions. Thus, features and system properties

are assessed and are either taken into account or deliberately neglected. These con-

siderations and decisions as well as the designer’s experience have an impact on the

choice of the graphical description. Answers to the question as to what purpose a

model of a system to be designed shall serve, may give an indication to an appro-

priate choice of a description formalism from a repertoire of possible means. Often,

the answer to the question concerning the most suitable form of representation is

not unique. Several description formalisms may equally serve the requirements, or

depending on the design task, a combination of some of them may be appropriate,

e.g., a bond graph representation of a system and a block diagram of its control.

Moreover, a graphical representation may be transformed into another one provided

both are equivalent. For instance, a network could be transformed into a bond graph

which in turn could be transformed into a block diagram. Consequently, a program

for control systems could be used to simulate a system described as a network.

There is a similar situation in computer science. For the software implementation of

a solution to a given problem, several programming languages may be appropriate,

whereby each one has its own flavour. On the other hand, software programs for

automatic translation from one programming language to another are available.

1.3 Object-Oriented Physical Systems Modelling

The ever increasing performance of computers and simulation software has enabled

one to model and to simulate problems of more and more complexity. While the

simulation of a problem required hours of computation time in former times on

computers called minicomputers, the same problem can be solved within minutes

or less on a personal computer. The ever increasing complexity of problems to be

analysed has had an essential impact on modelling methodologies and the software

tools supporting them.

In order to cope with the increasing complexity of the system to be analysed, it

is obviously necessary to pursue a hierarchical approach and to build libraries with

reusable submodels as is known, for example, from the design of large integrated

circuits. Moreover, for the development of large models, the need for a graphical

representation becomes apparent. It is true that continuous system simulation lan-

guages (CSSLs), e.g., ACSL®4 (Advanced Continuous System Simulation Language
), offer macro features to build modularly structured models. However, instead of

4 ACSL, acslX, and PowerBlock are registered trademarks of The AEgis Technologies Group, Inc.,

631 Discovery Drive, Huntsville, AL 35806, USA, http://www.acslx.com
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writing many thousands of lines of code in a more or less well structured model

description language, it is more reliable to hierarchically develop a graphical model

using model libraries and to have the result transformed automatically into simu-

lation code. To that end, an easy to use graphical user interface (GUI) alone is not

sufficient. What is needed is an appropriate model description language underlying

the graphical model representation and its automatic transformation into a modelling

language. However, as languages based on the CSSL standard established in 1967

[39] are more simulation languages than modelling languages, they show shortcom-

ings in supporting the development of hierarchical modular structured models. Such

a modelling language was described as early as 1979 in Elmqvist’s dissertation [15].

On the other hand, in computer science, software projects of ever increasing size

have led to the paradigm of Object-Oriented Programming (OOP). In their widely

recognised 1991 book, Object-Oriented Modelling and Design, J. Rumbaugh and

his co-authors present object-oriented modelling as a methodology for the design of

large complex software systems that include the analysis of the problem, the design

and the software implementation. They use the term Object Modelling Technique
(OMT) and point out in the preface of their book that object orientation means more

than merely a kind of programming. The attractiveness and the success of this fun-

damental concept has also had an impact on the terminology in physical systems

modelling and the manner models of large systems are developed and described.

Since about 1990, with the event of modelling languages such as Omola [1], the term

object-oriented physical systems modelling has come into use. In contrast to classi-

cal control, describing a system’s behaviour by functional input-output blocks and

consequently focusing on the computational structure, object-oriented modelling

emphasises the view of a model composed of non-causal submodels connected ac-

cordingly to the physical structure of the system. The new approach at that time was

promoted by Anderson and Mattson [28] and F. Cellier [10]. In his dissertation [33],

Otter used the modelling language Dymola®5 [15], developed by Emqvist in as early

as 1978, for an object-oriented approach to mechatronic systems modelling. With-

out discussing details of the language Dymola or its successor Modelica®6 [29],

the characteristics of an object-oriented physical systems modelling approach are

presented in the following.

Characteristics of Object-Oriented Physical Systems Modelling

According to principles of object-oriented programming in software engineering,

object-oriented physical systems modelling may be characterised by the following

features.

• Objects

In object-oriented physical systems modelling, models of components of engi-

neering systems as well as models of physical processes are considered to be

5 Dymola® is a registered trademark of Dynasim AB, Ideon Science Park, SE-223 70 Lund, Swe-

den, http://www.dymola.com
6 Modelica® is a registered trademark of the Modelica Association, http://www.modelica.org
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objects. Since basic models are comprised of inherent parameters, e.g., length,

mass, moment of inertia, resistance, or data provided from the outside world

through so-called interfaces, and constitutive equations, there is a correspon-

dence to objects in the sense of object-oriented programming (OOP). Physical

system models may be viewed as an aggregation of data and methods operating

on them. In OOP, the term method means a function or a procedure that can pro-

cess data of a defined type. For instance, the coordinates of a point, a length, and

a function that returns the area of a circle around that point may be aggregated

into a class called circle. A circle around a given point of given radius may be

named c1. Then, c1 is a particular object of the class circle. Likewise, the voltage

across and the current through a resistor, parameters, and the constitutive (non-

linear) relation between voltage and current may be considered a class resistor
corresponding to the element type resistor. A copy of the class resistor with given

values for the parameters in the constitutive relation called, for instance, R5, cor-

responds to a particular resistor in a circuit.

• Model Hierarchy

As it is well known, a model of a system may be composed of lower level sub-

models which in turn may contain submodels as well. That is, physical-system

models are hierarchical in nature (in the sense of a membership relation).

• Model Classes and Instantiation

As explained above, physical system models and submodels of components can

be viewed as particular objects of a certain class. In object-oriented modelling,

the term instantiation is adopted from OOP. A model or submodel is called an

instance of a model class. Models or submodels are instantiated from generic

models or model classes in which more general properties common to the mem-

bers of a model class are described. The members of a model class have got the

same structure and exhibit the same general dynamic behaviour. For example, an

instance of the model class diode is obtained by giving particular values to its

parameters. The resulting instance corresponds to a particular diode in a circuit.

• Inheritance

If a submodel class is instantiated into a particular submodel, its properties are

inherited by the submodel. That is, the particular submodel declaration is a spe-

cial version of the more general submodel declaration. In Section 11.5.2, an in-

complete model class is introduced that only captures the energetic property of a

1-port energy storage element in the sense that this type of element stores a phys-

ical quantity such as electrical charge. In that class, a relation between the state

and the rate variable is not given. By adding this information, a particular class

can be derived. The more special model class inherits all properties of the su-

perclass from which it is derived. Consequently, it describes a particular type of

an energy store. Again, by specifying parameters, a particular object or instance

of this class is obtained associated with a particular energy store in the system.

Another example is an incomplete model class passiveOnePort that accounts for

the passivity of a 1-port element. A special class diode may be obtained from this

incomplete superclass by specifying the constitutive relation as that of a diode.

Obviously, the subclass inherits the passivity property of a 1-port from the su-
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perclass. Using inheritance in the declaration of library model classes has the

advantage that the potential of errors in the code is reduced. All features of the

superclass are copied. Only features that characterise the more special class need

to be added.

• Encapsulation

Knowledge contained in a model is encapsulated. Only a well defined part of it

can be accessed in a well defined manner via interfaces to the outside world of an

object. This means that the internal definition of a submodel is not affected by the

connection of the submodel to other submodels. The part of a submodel describ-

ing its interfaces is separated from the part in which the behaviour is described by

means of non-causal mathematical equations. The latter do not need to be known

when submodels are connected in order to build a hierarchical model. In gener-

alised networks for instance, an interface of a submodel is a pin. It is described

by two power variables called across and through variables.

• Polymorphism

In a submodel definition, the description of its interfaces to the outside world is

separated from the internal description of its dynamic behaviour. In this internal

description, multiple possible cases may be taken into account. Consequently,

depending on current conditions, the same submodel may exhibit different be-

haviour.

• Connection of Submodels

Submodel interfaces are connected accordingly to component interconnections

in the real physical system, also called the physical structure of the system. In

contrary to block diagrams, this means that equations of a submodel must be non-
causal. The interconnection of submodels may require solving them for certain

variables. In block diagrams, it is fixed a priori whether an interface variable of

a block is an input or an output variable. This must be taken into account when

connecting blocks.

Of course, it has been a tradition in physical systems modelling to build hierarchical

models and to connect submodels according to the physical structure long before

object-oriented modelling was introduced. In Chapter 11, aspects of object-oriented

physical systems modelling will be picked up again when looking at bond graph

modelling from an object-oriented modelling point of view.

1.4 Traditional Graphical Model Representations

There are many forms of graphical model representation in use in different engi-

neering disciplines, e.g., free body schematics in mechanical engineering, circuit

representations in electrical engineering and in hydraulics, linear graphs as well as

block diagrams and signal flow diagrams in control theory. All of these forms are

well known and have a long tradition. Therefore, only some aspects of block di-

agrams and signal flow graphs on the one hand, and network representations on

the other hand, will be outlined. The aim is to show the context in which bond
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graph methodology is embedded. In the following, aspects are discussed from a

methodology point of view. In Chapter 11, links to corresponding software tools are

considered.

1.4.1 Block Diagrams

Block diagrams have the following characteristics:

• They support the abstraction of unilateral signal flow through a system. Informa-

tion flow is considered not to be bound to the transfer of energy or the transport

of mass. A block in an oriented chain of blocks does not have a direct impact

on its predecessor. Feedback is taken into account separately by signal feedback

loops.

• The interface variables of a signal block are a priori discriminated into input and

output signals, independent of the actual use of a signal block in a block diagram

model. This must be taken into account when signal blocks are connected.

• Signal blocks represent functional relations between input and output signals.

It is neither required nor ensured that relations comply with first principles of

physics. Blocks may represent any linear, or nonlinear algebraic, or time depen-

dent relation.

• Block diagrams display which variables must be known in order to compute oth-

ers. They represent the structure of the mathematical model, or as van Dixhoorn

[45] has termed it, the computational structure. They do not reflect the physi-
cal structure of a system. The reason is that feedback is represented by separate
feedback loops. Signal blocks cannot be connected like corresponding system

components. For instance, if two electrical devices are connected, then the volt-

ages are set to be equal and at the same time, currents are added to zero. In block

diagrams, however, a connection between two blocks represents only one sig-

nal. As will be pointed out later, in bond graphs, each edge is associated with

two conjugate power variables. Consequently, connected bond elements always

have a feedback to each other. If submodels in a block diagram are modified by

neglecting effects or by taking into account additional ones, then small changes

may have a considerable impact on the computational structure and thus on the

structure of the block diagram. This disadvantage does not appear in networks or

in bond graph graphs.

• As block diagrams represent signal flows and functional relations independent

of the physical meaning of variables, they can be used in different engineering

disciplines. They are used particularly in control since control systems are often

designed in such a manner that there is no feedback between components. The

computational structure then corresponds to the physical structure.

• Finally, block diagrams support a hierarchical decomposition into functional

blocks.
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Fig. 1.2 Block diagram corresponding to the bond graph in Figure 1.1

As will become clarified, bond graphs reflect the physical structure of a system,

as do networks. On the other hand, the computational structure may be superim-

posed on a bond graph by adding a perpendicular stroke to each edge, turning the

initially non-causal model into a causal one. Moreover, such a causally completed

bond graph can be systematically transformed into a block diagram if needed. Dur-

ing this transformation, information about the physical structure gets lost, as can be

seen from Figures 1.1 and 1.2. As signal blocks in block diagrams can represent

any functional relation, the converse does not hold. Not every block diagram can

be transformed into a bond graph. Equations represented by bond graphs should

comply with the first principles of physics.

1.4.2 Signal Flow Graphs

In signal flow graphs, the role of edges and vertices is essentially interchanged in

comparison to block diagrams. Oriented edges represent functional relations be-

tween variables, while nodes are used to represent variables and the summation of

variables. In that respect, they may be considered the dual of block diagrams. How-

ever, signal flow graphs are less general than block diagrams because besides the

summation of variables, no functions with more than one input variable can be rep-

resented. Like block diagrams, signal flow graphs represent the computational, not

the physical structure of a system. In the case of linear models, they can be used to

derive the transfer function between two variables by applying Mason’s loop rule

[27]. Bond graphs can also be transformed into signal flow graphs as shown in Fig-
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Fig. 1.4 Signal flow graph corresponding to the bond graph fragment in Figure 1.3

ures 1.3 and 1.4. However, as Brown has shown, Mason’s loop rule can be applied

directly to a bond graph [9].

1.4.3 Networks

In electrical engineering, it is common to represent models as networks. However,

this representation is not restricted to electrical systems. By relating the electrical

power variables voltage and current to non-electrical quantities appropriately, net-

works may be used to represent models of systems in other energy domains. A

unified approach to the modelling of engineering systems based on so-called gen-
eralised networks has been introduced by MacFarlane [26]. Networks have the fol-

lowing essential features.

• Contrary to block diagrams, networks represent the physical structure, but not

the computational structure of an engineering system. Submodels are connected

like corresponding components or devices in the real system. There is no need

to decide whether an interface variable is an input or an output variable. The

graphical representation of submodels is not uniform across energy domains as in

bond graphs, but depends on the engineering discipline. For instance, hydraulic

circuits use different icons for submodels than electrical circuits. In any case,
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Kirchhoff’s laws hold for electrical power variables as well as for corresponding

variables in other energy domains.

• Networks are hierarchical in nature. Submodels can have a network structure.

• Networks account for energy flows in a system. Circuit nodes connecting pins

of submodels comply with power conservation. Moreover, physical quantities,

e.g., charge, are conserved if properly taken into account in the development

of submodels. Meyer’s NMOS transistor model, for instance, does not ensure

conservation of charge ([21], Section 3.4.4)

Bond graphs, which will be introduced formally in the next chapter, on the one hand,

reflect the physical system structure like networks. On the other hand, a computa-

tional structure can be superimposed so that the causally completed bond graph can

be considered a concise representation of a block diagram. As bond graphs have

features in common with block diagrams and with networks, both representations

have been briefly discussed in this introduction. Moreover, bond graphs can be con-

sidered a core model representation for the following reasons.

• Generalised networks can be systematically converted into bond graphs (cf. Sec-

tion 2.7). If orientations of edges in a bond graph indicating the reference di-

rection of the energy flow across a bond are chosen with care, then the directed

bond graph is equivalent to the network from which it has been constructed (Sec-

tion 2.8). For instance, if the circuit in Figure 1.5 is converted into a bond graph,

then the result is the bond graph in Figure 1.3.

• From a causally completed bond graph, a block diagram as well as a signal flow

graph can be derived.

• Finally, domain-specific iconic diagrams can be systematically converted into a

bond graph if there are bond graph equivalents of basic icons.

1.5 Conclusion

Dynamic system modelling has a long tradition. On the other hand, the views of

model developers, methods and corresponding software tools change, and new is-
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sues and new applications have been tackled. Due to the ever increasing power of

computers and even of mobile computers, imitation, or the prediction of reality is

becoming steadily less expensive in more and more fields. Even if experiments with

the real system under consideration are feasible, less expensive computer simula-

tion will reduce them to some extent. In this context, many publications on dynamic

systems modelling have already appeared and many more are to be expected in the

future. This introduction has focused on some general aspects of dynamic systems

modelling. Essential features of block diagrams and of networks have been briefly

recalled because bond graphs combine characteristics of both graphical model rep-

resentations. In summary, one can say:

• Graphical model representation is a means of communication between humans

and between humans and computer programs. The choice of an appropriate

model representation depends on the purpose of the modelling process, the ques-

tions it helps to answer.

• In the process of abstraction, some properties of a real system and some effects

are taken into account in an idealised manner, while others are completely ne-

glected. The assessment of properties and their selection is guided by the pur-

pose of the modelling task and by the experience of the model developer. Conse-

quently, graphical model representations always reflect only some aspects. Thus,

block diagrams appropriate for representing signal processing represent the com-

putational structure, but not the physical structure of a system, whereas on the

other hand, electrical, or hydraulic networks display how corresponding real sys-

tem components are connected at the expense of the computational structure.

Graphical model representations are particularly appropriate for some purposes

while they are less suited for others. Some may be converted into others, e.g., a

network of an electric circuit can be converted into a block diagram. A possible

reason for such a conversion may be that the available modelling software does not

support a combination of different model representations. The choice of a graphi-

cal model representation formalism in dynamic modelling is similar to the choice

of a programming language in a software development project. Depending on the

task, some programming languages are more suited than others. Often, several pro-

gramming languages may serve the requirements. Moreover, some programming

languages can be translated automatically into others. Since graphical model repre-

sentation formalisms are not equally suited for all applications and purposes, it may

be reasonable to use a combination of them.

Bond graphs fit into the spectrum of graphical model representations as a for-

malism that is particularly suited for engineering systems with effects from multiple

energy domains. Consequently, they are an ideal representation for mechatronic and

for micro-mechanical systems. Moreover, they not only support model development

as some kind of visual language, they have also been proven as an appropriate core

representation. That is, several other graphical representations can be converted into

bond graphs, while from causal bond graphs graphical representations, e.g., block

diagrams, equations, transfer functions and other information can be derived sys-
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tematically. This motivates the introduction of bond graph based physical systems

modelling in the next chapter.
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Chapter 2
Bond Graph Based Physical Systems Modelling

2.1 Fundamentals

Block diagrams represent signal flows and their processing. In contrast, bond graph

modelling starts from the intuitive and physical approach that a dynamic system is

composed of subsystems, components, or basic elements that interact by exchanging

energy. From this basic description, a first (preliminary) definition of a bond graph

can be derived and some important conclusions can be drawn which show that bond

graph modelling fundamentally differs from block diagram modelling.

Definition 2.1 (Undirected bond graph). An undirected bond graph is an undirected

graph whose vertices denote subsystems, components, or basic elements, while the

edges called (power) bonds represent the instantaneous energy transfer between

nodes.

Remark 2.1. An undirected bond graph displays the components of a system and

their energetic interconnection. Each vertex in a bond graph has a certain number

of connection points called power ports (cf. Definition 2.3). Bonds connect power

ports of two different nodes. Each power port of a vertex must be connected to a

power port of another vertex. That is, the number of bonds connected to a bond

graph node equals its number of power ports. Power ports are not explicitly marked

on a bond graph. The graphical editor of some software packages supporting bond

graph modelling can make ports visible on demand.

An instantaneous energy transfer between two power ports means that energy is

neither generated, stored, or dissipated in a port to port connection represented by a

power bond.

2.1.1 Physical System Structure

In general, the transfer of energy between subsystems is enabled by means of en-

gineering links, e.g., mechanical shafts, electrical wires, hydraulic conduits, hoses,

17
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or glass fibre optics cables. Since subsystems, components and elements are repre-

sented by bond graph vertices and their energetic interaction by power bonds, bonds

graphs reflect the physical structure of a system, the way real engineering system

components are connected. As long as bond graphs are constructed according to

certain rules and are not simplified, they exhibit a strong topological affinity to the

initial schematic of a mechanical system, an electrical circuit, or a cross sectional

representation of a hydraulic device. Therefore, topological connections in a sys-

tem schematic can guide the construction of a bond graph model. This could be

achieved by drawing a bond graph directly on top of a schematic. For instance, if

two dead volumes in a hydraulic valve are connected by a conduit, their models will

be connected by the model of the conduit. The latter most often reduces simply to

a power bond. The same strategy is applied to rigid bodies connected by a joint,

or to integrated sub-circuits connected by transmission lines. For illustration, Fig-

ure 2.1 shows a cross sectional view of the magnetic circuit inside the torque-motor

of an electrohydraulic servovalve. The magnetic circuit is composed of an upper

and a lower pole-shoe connected by two permanent magnets. The one in the front

has been removed as well as the mechanical flexible tube on which the armature is

mounted. Although details of bond graph modelling have not yet been introduced,

it can be seen how the bond graph is superimposed on the schematic. In block di-

agram representations, the information about the physical structure of the systems

gets lost. They rather represent the computational structure, which may change sig-

nificantly with small model modifications. On the contrary, the structure of a bond

graph model is derived from the physical structure of the system and is retained if

the computational structure changes.

2.1.2 Physical Systems Modelling

The exchange of energy between subsystems is associated with the exchange of

physical quantities, e.g., momentum, mass, electrical charge, or entropy. For these

physical quantities and for power conservation, principles should be reflected in a

bond graph representation. Since there are no such constraints for information flows,

signal processing blocks in block diagrams may represent any functional relation be-

tween signals. In bond graphs, however, constitutive relations of nodes must comply

with conservation laws from physics. In his short article titled “System Graphing

Concepts”, Paynter [28] stresses at the beginning:

Models of physical systems must be compatible with the conservation of mass, momentum,

and energy. Functional models must be compatible with causality, such that a present state

depends only on the past states (or: no effect in the absence of cause).

If one assumes that subsystems exchange energy when interacting, then processes

must take place in the subsystems by which energy received from a subsystem is

either transferred to another subsystem, distributed among others, transformed into

other forms, or stored. That is, bond graphs represent physical processes in an en-

gineering system. This is one reason why in bond graph related literature the term
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Fig. 2.1 Schematic of the magnetic circuit inside the torque motor of an electrohydraulic valve

and a bond graph superimposed on it

physical systems modelling is in use [8]. Since physical processes are continuous

with respect to time (and space), bond graphs are particularly suited for modelling

time continuous systems. Chapter 7 discusses how the abstraction of a discontinuous

description of continuous fast state transitions can be included into the framework of

bond graph modelling. In this context, the observation can be made that only during

the last 10 years, bond graphs have been increasingly used for models of varying

structure. For many years, bond graph modelling was predominantly applied to sys-

tems in which energy exchange between subsystems is bound to time invariant real

physical links, e.g., mechanical shafts.

2.1.3 Multidisciplinary Engineering Systems

The focus on energy exchange between subsystems and the transformation of energy

from one form into another implies that bond graphs, from a conceptual point of

view, are particularly suited for modelling multidisciplinary engineering systems, or
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mechatronic systems in which effects from different energy domains interact with

each other. This is an essential feature of bond graphs.

2.1.4 Hierarchical and Recursive Modelling

Like networks, bond graphs support a recursive top-down decomposition of a sys-

tem into subsystems. That is, models of subsystems are represented by bond graphs

until submodels are identified that represent basic physical processes described by

equations. In this top-down approach, submodels of subsystems or components are

denoted by words or alphanumeric symbols (enclosed by an ellipse). On the lowest

hierarchy level the mnemonic code of elements is fixed. It indicates the behaviour of

the element with respect to energy or power. As words are used for components or

subsystem models, such bond graphs are called word bond graphs [21]. In a bottom-

up approach, nodes in a word bond graph denote submodels described either by a

bond graph or by a set of equations. Word bond graphs are not only a way to clearly

represent large models in a hierarchical manner. They are important because they

support the first steps of the conceptual modelling phase. Word bond graphs visu-

alise the energy exchange between different parts of a system (subsystems, compo-

nents, elements) that have been identified without the need for specifying all details

of the system parts. At the beginning of the decomposition process, a word is suf-

ficient that qualitatively indicates the behaviour of a system part with respect to

power processing. Even on the lowest hierarchy level, when nodes describe physi-

cal processes and fixed mnemonic codes are used, a 1-port R-element, for instance,

qualitatively describes dissipation of free energy. With regard to a mathematical de-

scription, there must be a relation between two so-called power conjugate variables.

The decision on the form of the constitutive equation, however, can be postponed to

a later phase of the modelling process.

Definition 2.2 (Word bond graph). A bond graph is called a word bond graph if

its vertices represent subsystems or components and are denoted by a word or an

alphanumeric symbol.

Remark 2.2. Mnemonic codes in a word bond graph may be enclosed by an ellipse.

As an example, Figure 2.2 shows a word bond graph of a hydrostatic plant. In the

early phase of the modelling process, properties of the components are not yet spec-

ified.

Definition 2.3 (Power port). The connection points of a bond graph node that en-

able the energy exchange with other nodes across a power bond are called power

ports.

Remark 2.3. Power ports may be viewed as places where energy can enter or leave a

subsystem. In this context, the notion of a place is not limited to locations in space.

Gawthrop and Smith also use the notion energy interface in their book [18]. Power
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Fig. 2.2 Word bond graph of a hydrostatic plant

ports can be considered as energetic interfaces of an object (subsystem, component,

element) to its outside world.

An energy flow between two power ports also involves a transfer of information.

If the amount of power in a bond can be neglected with regard to other bonds and if

only the flow of information shall be taken into account, which is appropriate if, for

instance, a measuring instrument is connected to a system part port, then the port is

called a signal port. In that case, the bond connecting the signal port of the system

part with the instrument signal port can be replaced by an oriented edge as it is used

in block diagrams. In that context, the notion of an activated bond is also used (cf.

Definition 3.3). In the modelling language SIDOPS, ports have several properties.

There is not only a distinction between power ports and signal ports, but also with

respect to the energy domain. That is, an electrical power port can be only connected

directly to an electrical power port of another submodel. In other words, the energy

domain is an attribute of a power port among others.

Definition 2.4 (Multiport). A bond graph node is called a multiport if it has more

than one port.

Figure 2.3 depicts an example of a general word bond graph in which S denotes the

model of the overall system and Si (i = 1, . . . , 6) the model of the ith subsystem.

According to definitions 2.1 and 2.4, models S3, S4 are one-ports, S1, S6 are two-

ports, while S5 is a three-port and S2 is a four-port.

2.2 Nodes and Edges in Bond Graphs

As mentioned, on the lowest hierarchy level, bond graph models are called elements.

They represent basic physical processes in which energy is

• distributed,

• transferred from one power port to another,

• transformed in the same energy domain,

• converted into another energy form, in particular into heat, or

• stored.
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As in physical systems modelling based on networks, bond graph modelling also

adopts the abstraction of spatially lumped physical properties. That is, mechanical

elasticity, for instance, or friction in a fluid may be approximated by assuming that

these effects are spatially concentrated in certain locations. Consequently, the above

basic physical processes may be located in space and represented by a node in a

bond graph. Since these elementary physical processes are encountered in all energy

domains, it is reasonable to represent them by means of a unique mnemonic code

that indicates the type of the process and that is the same for all energy domains.

For instance, the symbol R always denotes irreversible transformation of energy into

heat. Spatial concentration of physical properties means that bond graphs represent

so-called lumped parameter models. The above processes are represented by basic

bond graph elements that will be discussed when variables used in bond graphs have

been introduced.

2.3 Bond Graph Variables and Physical Analogies

2.3.1 Power Variables

According to Definition 2.1, bonds in a bond graph represent an instantaneous en-

ergy flow, i.e., power between power ports of different bond graph nodes. It is a

general observation that in each energy domain, the amount of power transferred

equals the product of two physical quantities. Thus, contrary to block diagrams, in

bond graphs two power conjugated variables are assigned to each edge. They are

called effort and flow and are denoted by the letters e and f.

Power = Effort × Flow
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Fig. 2.4 Historical convention of annotating a bond with power variables effort and flow

This representation of power between two ports by the product of two variables,

however, is not a physical law, but a convenience. The amount of power transferred

can also be decomposed differently by means of so-called wave-power variables

[27]. However, it is remarkable that two variables are sufficient for describing the

power across a connection.

Regarding the annotation of bonds with two power conjugated variables, it is a

historical convention to write the effort variable on the left side of a vertical bond

and the flow variable on its right side. For horizontal bonds, the effort is written

above and the flow below the edge (Figure 2.4). None of the two power conjugated

variables is discriminated in its role against the other. They are only characterised

by the fact that their product equals the energy flow Ė(t) between two ports at a

given time t.

2.3.2 Analogies

As both power variables play an equal role for each energy domain, it must be

decided which of them shall be the effort, while the other becomes the flow. As

a result, two different analogies between mechanical and electrical systems have

emerged in the literature.

One option is to let forces in mechanical systems be the efforts. Consequently,

translational velocities become flows. At the same time, voltages in electrical sys-

tems may be considered efforts and currents as flows. This force-voltage analogy is

known as direct or classical analogy (Table 2.1).

The other equally valid option is to denote velocities and voltages as efforts and

forces and currents as flows. This velocity-voltage assignment is called dual or mo-
bility analogy (Table 2.2). It was proposed by Firestone [17] in 1933, while the

force-voltage analogy has been known for more than 100 years. This may justify

the notion of a classical analogy.

Table 2.1 Classical force-voltage analogy

Force � Effort � Voltage

Velocity � Flow � Current
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Table 2.2 Mobility (Firestone) analogy

Velocity � Effort � Voltage

Force � Flow � Current

The mobility analogy is suggested by the observation that Kirchhoff’s current

law (The sum of all currents into an electrical node equals zero.) is equivalent to

D’Alembert’s principle in mechanics. The latter says that for a system of n mass

points, the sum of inertial forces and imposed forces is equal to zero. The mobility

analogy also appears reasonable from a measurement point of view. For the mea-

surement of an electrical voltage and of mechanical velocities, two points in space

are needed, while for measuring electrical currents and forces, one point in space

is sufficient. The measurement point of view has led to the two notions across- and

through-variable. The mobility analogy is commonly used when non-electrical sub-

systems are represented by a generalised network or an iconic diagram.

An essential feature of the mobility analogy is that it conserves the interconnec-

tion structure of a system when mechanical power variables are replaced by elec-

trical ones and vice versa. That is, a parallel connection of two elements remains

a parallel connection. The same holds for series connections. If the network repre-

sentations of systems from different energy domains have the same structure, then

these systems are called structurally analogue [37].

Another consequence of the mobility analogy is that a mechanical inertia corre-

sponds to an electrical capacitor. This can be seen by comparing the equation for

the momentum of a point mass with that for the charge of an electrical capacitor.

Assuming that the initial values of momentum and charge vanish, both equations

read: ∫ t

0

F (τ)dτ = m × v(t) (2.1)∫ t

0

i(τ)dτ = C × u(t) . (2.2)

Similarly, one can show that a mechanical spring corresponds to an electrical induc-

tance.

In the community of bond graph modellers, it has become common to use the

direct analogy. With regard to basic elements, this analogy entails that a mechani-

cal inertia corresponds to an electrical inductance. This can be seen by comparing

Newton’s third law to Faraday’s law.

F =
dp

dt
= m × dv

dt
(2.3)

uL = L × di

dt
(2.4)
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Likewise, a mechanical spring corresponds to an electrical capacitor. If Fsp denotes

the spring force, k, the stiffness of a spring with a linear characteristic, and uC ,

the voltage drop across a capacitor, then the electrical capacitance parameter, C,

corresponds to the compliance, 1/k, of the spring.

Fsp(t) = k ×
∫ t

0

v(τ)dτ + Fsp(t = 0) (2.5)

uC(t) =
1
C

×
∫ t

0

i(τ)dτ + uC((t = 0) (2.6)

It is obvious that a mechanical dashpot corresponds to an electrical resistor. The

constitutive equation of an electrical resistor algebraically relates the voltage drop

u across its terminal to the current i through the two pin element. The linear case is

given by Ohm’s law

u = R × i , (2.7)

where R denotes the resistance. The constitutive equation of an ideal dashpot is an

algebraic relation between the damping force FD and the velocity v

FD = b × v , (2.8)

where b is the dashpot constant. As the classical analogy relates a force to a voltage

and a velocity to a current, the two elements correspond to each other.

Contrary to the mobility analogy, the classical analogy does not preserve the

model structure. That is, when mechanical power variables are exchanged by those

of the electrical domain, a parallel connection of mechanical elements becomes a

series connection of corresponding electrical elements. For instance, if a mechanical

spring and a damper are connected in parallel (Figure 2.5), then the force acting in

each of the two hinge points (on the wall and on the moving body) is obviously the

sum of the spring force and the damper force.

If electrical currents are assigned to mechanical forces, the electrical analogue

is a parallel connection of an inductance and a resistor. If however, voltages are

assigned to forces, then according to Kirchhoff’s voltage law, the electrical analogue

is a series connection of a capacitor and a resistor (cf. Figure 2.6).

Fsp + Fd + m
dv

dt
= F (t) (2.9)

Table 2.3 Correspondence of mechanical and electrical energy stores according to the classical

analogy

mechanical inertia � electrical inductance

mechanical (rotational) spring � electrical capacitor

mechanical dashpot � electrical resistor
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uC + uR + L
di

dt
= E(t) (2.10)

With regard to the derivation of a mathematical model from the bond graph, it

does not matter which analogy has been chosen. As the classical analogy is com-

mon in bond graph related literature, this convention is also adopted throughout this

monograph. Regarding the mobility analogy, see [16, 25, 37].

Table 2.4 shows which physical quantities are commonly chosen as effort and

flow variables in the different energy domains. Regarding the electromagnetic en-

ergy domain, the horizontal line separating electrical quantities from magnetic ones

does not go from left to right because the magnetic domain is not an energy do-

main independent from the electrical domain. The reader may notice that it is not

the magnetic flux that can be chosen as a flow variable, but the magnetic flux rate.

The product of magnetomotive force and magnetic flux is not the magnetic power

transferred between two points in a magnetic material. The magnetic flux becomes

conceivable by looking at paths built by the spatial orientations of tiny magnets in-

side the magnetic material. The flow is the variation of their orientations with time.

Finally, taking into account that for generalised networks or iconic diagram rep-

resentations, the mobility analogy is commonly used, while in bond graph mod-

elling, the classical analogy is most widely adopted, across- and through variables

in networks can be related directly to efforts and flows in bond graphs, as shown in

Table 2.5.



2.3 Bond Graph Variables and Physical Analogies 27

Table 2.4 Bond graph variables used in the various energy domains

Energy Effort Flow Generalised Generalised

domain momentum displacement

e f p q

Translational Force Velocity Momentum Displacement

mechanics F v p x

[N] [m/s] [Ns] [m]

Rotational Angular Angular Angular Angle

mechanics moment velocity momentum

M ω pω θ
[Nm] [rad/s] [Nms] [rad]

Electro- Voltage Current Linkage flux Charge

u i λ q

[V] [A] [Vs] [As]

magnetic Magnetomotive Magnetic Magnetic flux

domain force flux rate

V Φ̇ – Φ
[A] [Wb/s] [Wb]

Hydraulic Total Volume Pressure Volume

domain pressure flow momentum

p Q pp Vc

[N/m2] [m3/s] [N/m2 s] [m3]

Thermo- Temperature Entropy Entropy

dynamic flow

T Ṡ – S

[K] [J/K/s] [J/K]

Chemical Chemical Molar flow Molar mass

domain potential

μ Ṅ – N

[J/mole] [mole/s] [mole]
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Table 2.5 Relation between across- and through variables in networks and efforts and flows in

bond graphs

Energy domain Effort Flow

Mechanical Through Across

domains variable variable

Non-mechanical Across Through

domains variable variable

2.3.3 Energy Variables

Table. 2.4 introduces two additional physical quantities used in bond graph mod-

elling. They are called generalised momentum (p) and generalised displacement (q)

and are obtained by integration of the power variables with respect to time.

p(t) = p(t0) +
∫ t

0

e(τ)dτ (2.11)

q(t) = q(t0) +
∫ t

0

f(τ)dτ (2.12)

It has been a convention since the beginning of bond graph modelling to use the no-

tions generalised momentum and generalised displacement. However, these terms

are not fully convincing since their roots are obviously in mechanical engineering.

This may be considered inappropriate in other engineering disciplines. In electrical

engineering, for instance, the charge, q, of a capacitor is the integral with respect

to time of the current (flow). However, it is rather unusual to consider the electrical

charge a generalised displacement, while in mechanical engineering displacements,

in general, are not denoted by the letter q. The additional physical quantities intro-

duced in Table 2.4 are called energy variables since they quantify the energy trans-

ferred in a time period and accumulated in an ideal energy store (cf. Section 2.5.3,

Equations 2.38 and 2.46).
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2.4 Orientation of Power Bonds

First, the energy exchange between power ports of submodels can be represented

by non-directed edges in a bond graph. If, however, equations are given for all basic

submodels, a sign convention is needed for the derivation of a set of equations from

a bond graph in which variables are consistent with respect to their sign. This is

achieved in bond graph modelling by adding a so-called half arrow to each bond

indicating the positive reference direction of the energy flow. A half arrow is chosen

to distinguish between energy flows and signal flows. The latter are commonly rep-

resented by edges with a full arrow. This orientation of a bond graph edge does not

represent the actual direction of the energy flow which can vary with time. Rather

it means a time-invariant reference direction which coincides with the energy di-

rection at time t, if for the amount of power, P , holds: P (t) = e(t) × f(t) > 0.

Aside from energy sources, the reference direction of power is assumed positive if

a bond connected to a power port of a submodel is oriented toward the power port.

That is, if P (t) = e(t) × f(t) > 0, energy flows towards the port. If, in addi-

tion, f(t) > 0, then the flow is directed towards the port at time t. This convention

is motivated by the fact that energy stores and resistors consume energy whereas

energy stores give up the accumulated energy at a later time, resistors irreversibly

convert it into heat. For a bond connected to a power port of an energy source, the

positive reference direction of the power is oriented away from the port. That is, if

P (t) = e(t) × f(t) > 0, energy flows out of the source corresponding to the fact

that sources usually supply energy to a system. These considerations of a positive

reference direction for energy flows allow for a refinement of Definition 2.1 and the

introduction of directed bond graphs.

Definition 2.5 (Directed bond graph). A bond graph is called a directed bond graph

if a half arrow has been added to each bond indicating the positive reference direc-

tion of the energy flow across the bond.

By convention, the half arrow is added on that side of the bond where the flow

variable is annotated (cf. Figure 2.7). In the case the inclination of a bond is not

a multiple of 90◦, the question as to where to mark the half arrow doesn’t has not

a unique answer. It depends on how the bond is virtually rotated into a vertical or

horizontal position. In such cases, the convention is adopted that the flow variable

is always on that side of a bond where the half arrow has been attached [6].

2.5 Basic Bond Graph Elements and Power Port Orientations

The fundamental physical processes, already mentioned in Section 2.2, suggest the

introduction of the following classes of basic multiport elements used for an ide-

alised description of physical processes.
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Fig. 2.7 Conventions for adding the half arrow to power bonds

• Energy sources and sinks (= negative energy sources),

• Energy stores,

• Dissipators converting energy irreversibly into heat,

• Power couplers and transducers, and

• Power nodes that instantaneously distribute power.

Energy sources deliver energy into a system, whereas sinks consume energy flowing

out of the system. As depicted in Figure 2.3, sources and sinks do not belong to a

system. They rather represent boundary conditions of a system embedded into the

surroundings. In other words, sources and sinks model the impact of the surrounding

on a system. In [10], Cellier points out:

A source as drawn in the circuit example above is actually a non-physical element. Power

cannot be generated, only transported and converted. However, a “system” never denotes

the whole of the universe. It denotes a piece of the universe. Sources are interfaces between

the system and the universe around it.

Definition 2.6 (Junction strucure). A bond graph in which bonds connect only

nodes that instantaneously transfer or distribute power (without energy storage or

conversion into heat), is called Junction Structure (JS).

The above classification indicates that basic elements are an idealised description

of physical processes. That is, only one effect is represented, while other simulta-

neous effects are not taken into account. If several effects are involved in a physical

process, different elements will have to be composed in a bond graph submodel rep-

resenting the process. Besides the 0-junction and the 1-junction that are introduced

in the next section, bond graph elements are similar to those used in generalised

networks. This is not surprising since generalised networks also start from basic

physical processes.

If the elements of a bond graph of a system model S are combined into submod-

els according to the classification discussed above, and if all power bonds between
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the submodels introduced this way are represented by two parallel edges (undi-

rected multibonds), then all bond graphs exhibit the general structure depicted in

Figure 2.8. An essential feature of bond graphs is that the structure of the intercon-

nections is a separate model part. The junction structure contains multiport elements

that distribute or transfer power without storage or conversion into heat. As will be

considered subsequently, the junction structure includes a type of an interconnection

node that has no equivalent in networks. The reason is that networks are terminal
oriented, whereas bond graphs are power port oriented.

In the following, the above classes of bond graph multiport elements will be

discussed. Before starting with the bond graph elements that compose the general

junction structure, the notion of constitutive equations, often used in the follow-

ing section, is introduced. The constitutive equations describe the behaviour at the

ports of a multiport element by relating power port variables. In the case of a 1-port

element, its characteristic is a graphical representation of its constitutive equation.

2.5.1 Power Conserving Junctions

An ideal node that instantaneously distributes energy without storing it or converting

it into heat must comply with the principle of power conservation. If Pin denotes

the power entering the node and Pout the power leaving the node, then

Pin − Pout = 0 . (2.13)

If such a node has n ≥ 3 power ports and if one assumes without loss of generality

that power enters at port 1 while leaving the node at all others ports simultaneously,

then power conservation reads

e1f1 − e2f2 − . . . − enfn = 0 . (2.14)
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Zero Junctions

As has been pointed out by F. Cellier in [11], among all possibilities to comply

with the power balance, the simplest ones are to assume either equal efforts or equal

flows. Assuming that all efforts are equal, the constitutive equations of an element

are obtained that Paynter termed 0-junction (zero junction). In bond graphs, its type

is denoted by the symbol 0.

Definition 2.7 (0-junction). A 0-junction is a multiport element defined by the fol-

lowing equations

e1 = e2 = . . . = en (2.15a)

f1 = f2 + . . . + fn . (2.15b)

According to Equation 2.15a the element is also called common effort junction.

Equation 2.15b has given rise to the notion of a flow junction.

Equations 2.15a and 2.15b are well known in electrical engineering. Let e1, e2,
. . . , en denote the voltage drops across the n ports of a subnetwork and f1, f2, . . . , fn

the port currents, then Equation 2.15b is just Kirchhoff’s current law. Thus, parallel

connections in electrical networks can be represented by a 0-junction in a corre-

sponding bond graph (cf. Figure 2.9).

If in Figure 2.9 node 2 is the common ground node, then the 0-junction just

represents the voltage of node 1 with respect to ground. In hydraulics, a pipe tee

junction can be represented by a 0-junction if dynamic pressures can be neglected

with regard to hydrostatic pressures. The reader may notice that the number of ports

of a 0-junction is not fixed.

According to what has been said regarding to the orientation of bonds and ac-

cording to Equation 2.14, bond 1 must point toward the 0-junction while all other

edges are directed away from the node (Figure 2.10).

Equation 2.15b indicates that power reference directions correspond to the sign

of the flow variables. That is, if a power bond points towards a 0-junction, it is
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Fig. 2.9 Example of a 0-junction in an electrical network
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Fig. 2.10 Orientation of the bonds connected to a 0-junction according to Equation 2.14

assumed that its flow variable has positive sign, otherwise its sign is negative. If

in a bond graph of a mechanical system one of the power ports of a 0-junction is

connected to a power port of an energy store (spring) or to the port of a dissipator

(dash-pot) by means of bond 2 then one of the remaining bonds connected to the

0-junction must point towards the junction while another bond must be directed

away from the junction (cf. Figure 2.41). This rule reflects that physical connections

between two bodies become effective if there is a relative velocity between them. It

is the difference of velocities, not a sum of velocities, that gives rise to an action. On

the other hand, a real physical link between two bodies, e.g., a spring, or a dashpot

impose one and the same force, or a moment on both bodies. Consequently, in bond

graphs of mechanical systems, 0-junctions are used for describing links.

It should be stressed that Equation 2.15b is not an assignment statement. It may

be solved for any of the flow variables as needed. Which of the flow variables is a

dependent one depends on the element ports, or submodels ports the 0-junction is

connected to.

One Junctions

Let us now assume that all flow variables are equal in Equation 2.14. Thus, the sum

of all efforts must vanish.

f1 = f2 = . . . = fn (2.16a)

e1 − e2 − . . . − en = 0 (2.16b)

Equations 2.16a and 2.16b characterise an element that apparently is the dual to the

0-junction. For this reason, Paynter called it the 1-junction (one junction). In bond

graphs, it is denoted by the symbol 1. According to its constitutive equations, it is

also known as common flow junction, or as effort junction.

Definition 2.8 (1-junction). A 1-junction is a multiport element, for which power

port variables comply with Equations 2.16a and 2.16b.

Equations 2.16a and 2.16b are also well known in electrical engineering. If the

flow variables denote the current through elements with two terminals connected

in series and if the effort variables are the voltage drops across the elements, then
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Fig. 2.12 Multiport 1-junction with power bond orientations according to Equation 2.14

Equation 2.16b is just Kirchhoff’s voltage law (Figure 2.11). Figure 2.12 depicts a

multiport 1-junction with power bond orientations according to Equation 2.14.

In contrast to networks, bond graphs use an additional node to allow for series

interconnection of elements in non-mechanical systems. There is a need for such a

node since in bond graphs power ports are to be connected, whereas in networks,

terminals are connected.

If in bond graphs of non-mechanical systems one bond of a 1-junction is ori-

ented towards to the port of an adjacent energy store or a resistor, then one of its

other bonds must point towards the 1-junction while another edge must be directed

away from the 1-junction. This rule takes into account that it is a voltage drop across

an electrical element with two terminals that gives rise to the current through the el-

ement and not the sum of electrical voltages with respect to ground. Likewise, it

is a pressure difference across a hydraulic line and not the sum of pressures that is

related to a fluid flow through the line. As a consequence of this rule, half arrows

pointing to and away from the 1-junction also indicate the flow, e.q. electrical cur-

rent, volume flow, or mass flow through the element from the higher to the lower

potential. In bond graphs of mechanical systems, 1-junctions indicate the (angular)

velocity at a point and at the same time, the sum of all forces (moments) acting on

that point (D’Alembert’s principle).
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Fig. 2.13 Signal arrows taking up the information of the effort of a 0-junction or of the flow of

1-junction

Since both types of junction indicate a power variable that is common for all adja-

cent bonds, they may have one signal port in addition to their power ports. From this

signal port, the information of the common power variable can be taken up and fed

into a block diagram for signal processing. Ideal measuring of the common power

variable does not affect the power balance of the junction and can be represented by

attaching a signal arrow to the junction pointing away from it (Figure 2.13). Clearly,

the information taken up at the signal port must be provided at one and only one of

the power ports (cf. Section 3.2 on computational causalities, Figure 3.5).

The introduction of 0- and 1-junctions gives rise to further definitions.

Definition 2.9 (Internal bond). A bond is called an internal bond if it connects a 0-

or 1-junction to another 0- or 1-junction.

Definition 2.10 (Simple junction structure). A bond graph is called a simple junc-

tion structure, or Kirchhoff junction structure if each node is either a 0- or a 1-

junction.

Definition 2.11 (External bond). A bond is called an external bond if it connects

a 0- or 1-junction to a power port of an element that does not belong to the simple

junction structure.

2.5.2 Ideal Power Couplers and Power Transducers

The assumption that a power coupler or power transducer neither stores energy nor

converts it irreversibly into heat means that the constitutive equations of such a de-

vice must comply with the principle of power conservation. First, two-port elements

are considered. The general case of n-port elements will be dealt with in Chapter 8
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in the context of multibond graphs. In the case of a two-port element, power conser-

vation means

e1f1 = e2f2 . (2.17)

Transformers

Assuming a constraint between the two efforts

e1(t) = m × e2(t) , (2.18)

where m is a non-negative real parameter and by substituting Equation 2.18 into the

power balance yields

f2(t) = m × f1(t) (2.19)

for the flow variables. Another possible constraint between the two efforts is

k × e1 = e2 . (2.20)

That is, both parameters, m, k ∈ R, m, k ≥ 0, are constrained by the relationship

m = 1/k.

If the two efforts are considered to be the voltages across the ports of an electrical

two-port element and the flows are the currents flowing into and out of the ports, then

Equations 2.18 and 2.19 describe an ideal electrical transformer. These observations

have lead to a bond graph element called transformer. In bond graphs, it is denoted

by the symbol TF.

Definition 2.12 (Two-port transformer). A two-port transformer is an element with

constitutive Equations 2.18 and 2.19. Its modulus m may be a constant of non-

negative real value, a function of some other power variable or conserved physical

quantity, or a function of time.

In bond graphs, the symbol TF may be annotated by the modulus m separated from

the symbol TF by a colon. If the modulus is not constant, the symbol TF is prefixed

by the letter M (Figure 2.14). In that case, the transformer is called a modulated
transformer. Moreover, modulation may be emphasised by connecting the output

of a signal processing block and the transformer node via a signal arrow. In that

case, the two-port transformer becomes a 3-port element with two power ports and

an additional signal port. Thus, the graphical representation of a model becomes a

combination of a bond graph and a block diagram. In a slider crank mechanism for

instance, the angular velocity ω is transformed into the translational velocity vp of

the piston. The transformer modulus is a (complicated) function of the angle φ that

is derived from the geometric constraints (cf. Figure 4.6).

Since an ideal two-port transformer does not store energy, it is appropriate to have

one bond pointing towards the element while the other one is directed away from the
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Fig. 2.14 Representation of two-port transformers

elements. This convention supports the view that energy flows through the element1.

The transformer modulus is defined unambiguously because the power variables e1

and f1 are always associated with the bond pointing towards the transformer [9].

Example: Mechanical Gear Pair

In mechanics, an ideal transformer can be used to capture the main function of a

gear pair (Figure 2.15). Both gears have the same tangential velocity vt.

r1 × ω1 = vt = r2 × ω2 (2.21)

Substitution of this kinematic relationship into the power balance yields for the mo-

ments

r2 × M1 = r1 × M2 . (2.22)
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Fig. 2.15 Gear pair

1 If an inward orientation of the bonds is adopted, then a minus sign would result in Equation 2.19

for the flows due to the rule that power is assumed positive if the bond is directed toward the

element. e1f1 + e2f2 = e2(mf1 + f2) = 0
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Example: Hydraulic Cylinder

In hydraulics or pneumatics, the core function of a cylinder can be represented by an

ideal transformer. If the piston has cross section areas A1 and A2 and a translational

velocity v, and if Q1 and Q2 denote the inlet and the outlet volume flow, then the

velocity of an incompressible fluid reads

Q1

A1
= v =

Q2

A2
. (2.23)

If it is assumed that hydraulic power is approximately the product of hydrostatic

pressure times volume flow, then the power balance for the hydrostatic pressures

yields

p1A1 = p2A2 . (2.24)

Another device that may be approximately described by an ideal transformer is a hy-

draulic flow pump. In this case, the transformer represents the instantaneous trans-

formation of mechanical power into hydraulic power. Losses and storage effects in

real pumps are accounted for by further bond graph elements.

Gyrators

If Faraday’s law is applied to a conductor of length l moving at velocity v in a mag-

netic field of magnetic flux density B, then there is a relation between the electrical

effort, the voltage u across the conductor, and the mechanical flow, the velocity v

u = (B × l) × v . (2.25)

Substitution of this relation into the power balance yields a relationship for the

power conjugated variables, the Lorentz force, F, acting on the conductor and the

current, i, through the conductor

F = (B × l) × i . (2.26)

Both relations assume that the vectors B, i,v are perpendicular to each other. In

contrast to the constitutive equations of a two-port transformer, these equations re-

late efforts to flows. Moreover, they describe a power conversion between electrical

and mechanical energy.

Definition 2.13 (Two-port gyrator). An ideal two-port gyrator is a power conserva-

tive element defined by the two constitutive relations

e1 = r × f2 (2.27a)

e2 = r × f1 . (2.27b)

The parameter, r ∈ R, r > 0, is called gyrator ratio.

In bond graphs, gyrators are denoted by the symbol GY. The gyrator ratio r may

be attached to the symbol separated from the symbol by a colon. If the ratio is not
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Fig. 2.16 Gyrator and modulated gyrator

a constant, the symbol MGY is used and the gyrator is called a modulated gyrator

(Figure 2.16).

As to the orientation of the two adjacent bonds, a through direction is adopted

like for transformers. The gyrator ratio is unambiguously defined by relating the

effort of the bond pointing towards the two-port gyrator to the flow of the other

bond pointing away from the node. Consequently, unlike the transformer modulus,

the gyrator ratio always has a physical dimension. Since the constitutive equations

of a gyrator are symmetric, it does not matter which of the two bonds has an inward

orientation. A gyrator is mostly used to approximately describe transducers that

transform energy from one form into another. Examples are electrical DC motors,

electrodynamic loudspeakers, mass accelerometers, or centrifugal pumps.

Example: Energy Conversion in an Electrical Coil

A phenomenon that can be represented by a gyrator with constant ratio is the con-

version of electrical energy into magnetic energy that happens in an electrical coil

wound on a magnetic core. The voltage u across the terminals of a coil with n turns

is related to the rate of the magnetic flux Φ according to Faraday’s Law

u = n × dΦ

dt
. (2.28)

Its substitution into the power balance

u × i = V × dΦ

dt
(2.29)

yields for the magnetomotive force V setting up the magnetic field

V = n × i . (2.30)

Both equations can be represented by a gyrator (Figure 2.17).

Storage effects, e.g., the self-inductance of the coil, storage of magnetic energy

in the ferromagnetic material, losses, e.g., due to eddy currents in the magnetic core

are to be accounted for separately.
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Fig. 2.17 Conversion between electrical and magnetic power in a coil

Example: DC Motor

The power conservative conversion of electrical energy into mechanical energy in

a DC motor can be described by a modulated gyrator (MGY). Its ratio is a non-

linear function of the field current due to saturation. Further effects, e.g., the self-

inductance of the field and armature coils, the mechanical inertia of the rotor, elec-

trical resistances and mechanical bearing losses will have to be accounted for by

additional bond graph elements.

Although only bond graph elements belonging to the junction structure have been

introduced so far, Figure 2.19 depicts an entire bond graph model of a shunt motor

shown in Figure 2.18. The core bond graph element in this model is the modulated

gyrator (MGY) representing ideal instantaneous lossless conversion from electrical

into mechanical energy. One of its two constitutive equations relates the current, ia,

through the armature of the motor to the torque, M , driving the mechanical load.

The second equation takes into account that the angular velocity, ω, of the load

causes an induced voltage ua.

M = Ψ × ia (2.31a)

ua = Ψ × ω (2.31b)

The 0-junction represents the voltage, E, delivered by the voltage source. Simulta-

neously, it indicates that the current, i, through the voltage source is the sum of the

current, ia, through the armature and the current, if , through the field winding.

i = ia + if (2.32)

The left-hand side 1-junction represents the current ia and the sum of all voltage

drops along mesh II.

− E + uRa
+ uLa

+ ua = 0 (2.33)

The upper 1-junction indicates the current, if , through the field winding and that

the voltage, E, of the voltage source is the voltage across the resistor of the field

winding according to the schematic of the motor.

Finally, the right-hand side 1-junction represents the angular veloctiy, ω, and,

simultaneously, the sum of all torques acting on the flywheel with the moment of

inertia Jm.

M + Mload − MR − Jmω̇ = 0 (2.34)
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Fig. 2.19 Bond graph model of a shunt motor

The further bond graph elements, the energy storing elements denoted by the

symbol I, the resistors (R elements) and the effort sources (Se) can be related to

the elements in the schematic of the motor. They will be introduced in subsequent

Sections 2.5.3, 2.5.4 and 2.5.6. The perpendicular strokes at the bonds in Figure 2.19

will be introduced later in Section 3.2. The bond graph model of the shunt motor is

used in Chapter 11 as a reference in order to illustrate various aspects.
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Now, having introduced the bond graph nodes of type 0,1, TF, GY, a formal

definition of the notion General Junction Structure can be given.

Definition 2.14 (General junction structure). A bond graph with nodes of type 0,1,

(M)TF, (M)GY is called General Junction Structure (GJS) [31].

A special case is the so-called weighted junction structure.

Definition 2.15 (Weighted junction structure). A bond graph with nodes of type

0,1, (M)TF is called a Weighted Junction Structure (WJS) [31].

Remark 2.4. Since the general junction structure is a bond graph of which all nodes

are power conservative, it is a power conservative multiport.

Definition 2.16 (Environmental elements). All elements that do not belong to the

general junction structure are called environmental elements [31, 36].

2.5.3 Energy Storage Elements

Like in generalised networks [25], in bond graphs, also two types of energy stores

are used to describe energy storage in all energy domains except in the magnetic

domain, the thermodynamic and in the chemical domain. In bond graphs, these two

types of stores are designated by the symbols C and I. Although energy storage

elements are multiport elements in the general case, in the following, the discussion

will first consider 1-port energy storage elements. This limitation is justified since

for many real problems, bond graph models can be developed that only use 1-port

energy stores. After the discussion of further aspects of bond graph modelling in the

subsequent chapters, we will come back to multiport energy stores. These are also

called energy storage fields in the context of modelling rigid multibody systems (see

Chapter 8).

Definition 2.17 (1-port C energy store). An ideal 1-port element of type C is defined

by a one-to-one function ΦC : R → R relating the effort variable, e, of the power

port to the generalised displacement q

q(t) = ΦC(e(t)) , (2.35)

where t ∈ R and t ≥ 0. The function ΦC must have a unique single valued inverse

Φ−1
C

(cf. [22]). According to its definition (see Equation 2.12), the rate of the generalised

displacement equals the flow variable of the power port

q̇ = f . (2.36)
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Remark 2.5. This definition of a C element is independent of the form in which its

constitutive equation is written. Due to the existence of a single valued inverse Φ−1
C ,

the constitutive equation could also be written in the form e = Φ−1
C (q).

The existence of a single valued inverse Φ−1
C is required to ensure that the con-

stitutive Equation 2.35 can be solved for the effort variable, if needed. It is not

acceptable that the solution of a set of coupled equations depends on how elements

are interconnected. An element should be independent of the surroundings in which

it is embedded. For instance, if two point masses are connected via two springs in

series, the position of the interconnection point of both springs is used in the con-

stitutive equations of both springs. That is, the springs cannot act independently of

each other. In order to eliminate the position of the point connecting both springs

and to replace the two springs by a single one, imposing a force F on both point

masses requires the existence of a single valued inverse function for one of the two

constitutive relations.

From the non-uniqueness of the inverse relation of an element, Beaman and

Rosenberg conclude that multiple physical effects have been accounted for improp-

erly by the same element. They call such elements composite [2]. The requirement

of constitutive relations having a unique inverse does not mean a limitation to mod-

elling. Since non-unique inverse relations can cause problems, both authors suggest

to avoid composite elements and to try to capture effects in separate elements that

have a single valued inverse characteristic.

The relationship defining an ideal C energy store is well known from modelling

mechanical springs, torsion springs, electrical capacitors, or volumes that store a

compressible fluid. For instance, if q designates the charge and u the voltage drop

across the terminals of an electrical capacitor, its constitutive relations reads

q = C × u . (2.37)

The capacitance C may depend on the voltage drop u. Following the example of the

electrical capacitor, the bond graph element is called a (1-port) capacitor.

If an initially empty capacitor is assumed and if the direction towards the element

is chosen as a positive reference direction of the energy flow, then the energy stored

at time instant t is

E(t) =
∫ t

0

e(τ) × f(τ) dτ

=
∫ q

0

Φ−1
C (q̃)dq̃ . (2.38)

Equation 2.38 indicates that the integral of the flow with respect to time, the con-

served quantity, q, can be considered to be a so-called energy variable. It is a mea-

sure for the stored energy.

In the case of a linear characteristic

q = C × e , (2.39)
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the capacitance, C, may be added to the symbol C indicating the element type. The

parameter C is separated from the symbol of the element by a colon (Figure 2.20).

The half arrow of the adjacent bond should point towards the element meaning

that the energy store is accumulating energy. If the half arrow is added such that it

points away from the element, this might be compensated by a negative parameter.

This, however, is a source for potential sign errors if variables and parameters are

not used consistently. Moreover, real devices are usually characterised by positive

parameters. A mechanical spring, for instance, has a positive stiffness parameter

or an electrical capacitor has a positive capacitance. For an electrical capacitor the

parameter of the bond graph element equals the capacitance. In the case of a me-

chanical spring, it equals the inverse of the stiffness parameter. For a hydraulic fluid

store, the parameter of the bond graph C element is the ratio of the bulk modulus of

the fluid (and the wall of the container) and the container volume.

In the case of a linear characteristic, Equation 2.38 takes the well known form

E(t) =
q(t)2

2C
. (2.40)

If x designates the elongation of a linear spring of stiffness k, then its stored poten-

tial energy is expressed as

Epot(t) =
1
2
kx2(t) . (2.41)

For nonlinear characteristics, we will have to distinguish between the stored energy

and the so-called co-energy E∗

E∗(e) =
∫ e

0

ΦC(ẽ)dẽ . (2.42)

There is a relation between both energies

E∗ = e × q − E . (2.43)

The co-energy can be represented by the area above the characteristic e = Φ−1
C (q).

Definition 2.18 (1-port I energy store). An ideal 1-port element of type I is defined

by a one-to-one function ΦI : R → R relating the flow variable, f, of the power port

to the generalised momentum p

p(t) = ΦI(f(t)) . (2.44)
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The function ΦI must have a unique single valued inverse Φ−1
I

(cf. [22]). According to its definition (see Equation 2.11), the rate of the generalised

momentum equals the effort variable of the power port

ṗ = e . (2.45)

An element defined by Equations 2.44 and 2.45 is called an inertia, or an I element

in bond graph methodology. In non-relativistic mechanics, Equation 2.44 is a linear

relation. Its parameter designated by the letter I may be the mass or the moment

of inertia of a rigid body, whereas in electrical engineering, Equation 2.44 relates

the flux linkage λ and the current i. In the latter case, Equation 2.11 is a nonlinear

relation in general. That is, in mechanics, a bond graph I element represents the

storage of kinetic energy of a rigid body. In electrical engineering, the I element

accounts for the storage of magnetic energy in a coil.

If we assume that the initial momentum vanishes, that is, the I energy store is

empty at t = 0, then the amount of stored energy is

E =
∫ p

0

Φ−1
I (p̃)dp̃ . (2.46)

In hydraulics, the use of a generalised momentum is uncommon. However, New-

ton’s third law can be applied to an incompressible fluid in a volume of length l.
Assuming a 1-dimensional flow and by replacing mechanical quantities by their

corresponding hydraulic ones in the two equations

p = m × v (2.47)

ṗ = F (2.48)

yields

Δp = I × Q̇ (2.49)

and

I =
∫ l

0

	

A(x)
dx . (2.50)

In these equations, Δp designates the pressure drop across the length l and A(x), the

cross section area of the volume at the position x (0 ≤ x ≤ l). That is, the parameter

I represents the inertia of a 1-dimensional incompressible fluid in a volume of length

l. As can be seen, the smaller the cross section area of a pipe, the higher the inertia

of the fluid.

As to the orientation of the bond connected to a port of an I element and regarding

the annotation of the parameter, the same rules hold as for a C store (Figure 2.21).

Table 2.6 lists some examples of devices and physical effects in various energy

domains that can be approximately described by a C energy store or by an I energy

store. The missing entries indicate that there are no inertia elements in the mag-
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Fig. 2.21 1-port I element

Table 2.6 Capacitor and inertia in various energy domains

Energy domain C store I store

Translational Spring Rigid body

mechanics

Rotational Torsion spring Flywheel

mechanics

Electro- Capacitor Coil

magnetic Ferromagnetic material —

domain

Hydraulics Fluid compressibility Fluid inertia

Thermodynamics Lump of material —

netic and in the thermal domain, as it is well known. This is also the reason why in

Table 2.4, generalised momenta for these energy domains are not given.2

2 Occasionally, it has been argued in the literature that a thermal inertia would violate the second

law of thermodynamics. In order to prove this statement, a hypothetical thermal inertia with the

constitutive equation

dṠ(t)

dt
=

1

I
× (ΔT )(t)

is assumed. Apparently, such a relation implies a constant entropy flow, Ṡ = const. = Ṡ(t = t0)
in the case of a vanishing temperature difference ΔT = 0. It has been argued that this would con-

tradict the second law of thermodynamics. Consequently, thermal inertia could not exist. However,

since this proof, constructing a contradiction does not provide a constant > 0 and the latter could

be zero as well. In this case, there would be no contradiction and nothing has been proven.
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The Thermal Capacitor

In Table 2.6, a lump of material is considered a thermal capacitor. The constitutive

equation of such an energy storage element is

S = ΦS(T ) (2.51)

relating entropy3, S, to temperature, T, can be derived in the following manner. First,

we assume that the expansion of the volume can be neglected when the lump of

material under consideration is heated. That is, the mechanical work it performs can

be neglected. Otherwise, an additional port would be needed at which mechanical

energy may enter or leave. From physics, it is known that the thermal capacitance

is defined as the stored amount of heat, Q, divided by the temperature increase ΔT .

Differentiation of the equation

Q = C × ΔT (2.52)

with respect to time and observing that Q̇ = T Ṡ results in

T Ṡ = C Ṫ . (2.53)

Integration with respect to time and defining T0 := T (t = t0), S0 := S(t = t0)
gives the required constitutive relation

S − S0 = C ln
T

T0
, (2.54)

relating the effort T to the displacement S.

Equivalent Representation of the I Store

The introduction of a second type of an energy store indicates that this type is simply

obtained by interchanging the role of effort and flow. For this reason, the I energy

store is called dual to the C energy store. An I element can be replaced by combin-

ing a C energy store with a gyrator of unity ratio. Such a gyrator has been termed

symplectic gyrator [5]. This equivalence can be seen by taking the following steps.

First, Equation 2.27b of the gyrator is differentiated with respect to time. Then, ė2

is replaced by f2 using the constitutive relation of a C store. Finally, f2 is replaced

by e1 using Equation 2.27b of the gyrator.

ḟ1 =
1
r
ė2 =

1
r

1
C

f2 =
1
r

1
C

1
r
e1

3 Around 1855, Clausius introduced entropy by the equation

dS =
dQ

T
,

where dQ denotes the change of heat.
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Fig. 2.22 Equivalence of an I energy store to a gyrator–C energy store combination

=
1

r2C
e1 =

1
I
e1 , (2.55)

where I := r2C (Figure 2.22).

The equivalent representation of an I energy store by means of a symplectic gy-

rator and a C energy store could be used to give up the introduction of a second store

in order to overcome the discrepancy that the second type of an energy store does

not exist in all energy domains. For this reason, P. Breedveld introduced a general

uniform bond graph concept that uses only the C type store. First, he called such

bond graphs thermodynamic bond graphs [3]. Later, he changed the term into Gen-
eralised Bond Graphs [4]. Most bond graph modellers, however, prefer to keep two

types of stores for convenience, although this is not fully satisfying with regard to

a general uniform theory. In this book, we will follow the long lasting tradition of

using two types of energy stores.

Are There Controlled Energy Stores?

In contrast to ideal power conservative couplers or transducers, energy storage ele-

ments cannot be controlled by a signal (Figure 2.23) because this would violate the

principle of energy conservation.

Consider, for instance, a capacitor with movable plates. For such devices, the

voltage e across the two terminals not only depends on the charge q of the plates,

but also on their distance x. If C(x) designates the capacitance, then

e(t) = C−1(x(t)) × q(t) . (2.56)

Consequently, the stored energy is a function of the charge q and the distance x of

the plates

E(q, x) =
q2

2C(x)
. (2.57)

Thus, a change of the stored energy is

�x
MC 



e

q̇

Fig. 2.23 Non-existing signal controlled energy C store
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P (t) = Ė(t) =
∂E

∂q
q̇(t) +

∂E

∂x
ẋ(t) . (2.58)

If a signal controlled energy store of variable capacitance is assumed, then the sec-

ond term in that sum must vanish because the energy flow associated with a control-

ling signal is neglected. For this reason, there is a distinction between power ports

and signal ports in bond graphs. This, however, means that the stored energy and

hence the voltage e cannot be a function of the modulating signal. Thus, modulated

stores cannot exist [2].

In other words, if the stored energy, E, is a function of q and x, then Equa-

tion 2.58 must hold. However, if P (t) = e(t)× q̇(t), then the second term in Equa-

tion 2.58 must be zero. As ẋ �= 0, the factor ∂E/∂x must vanish. This means that

∂

∂q

(
∂E

∂x

)
= 0 . (2.59)

On the other hand, as E is assumed to be a function of q and x,

∂

∂x

(
∂E

∂q

)
�= 0 . (2.60)

That is, the value of the line integral∫
C

(
∂E

∂q

)
dq +

(
∂E

∂x

)
dx (2.61)

along the path C is not independent of the path C , which means that the modulated
2-port C element is not energy conservative.

This does not mean that the stored energy cannot depend on a variable distance

of the plates. However, it must be taken into account that a change of their distance

is combined with an energy flow. Accordingly, a modulated C energy store is to be

replaced by a multiport store. Such elements will be considered in Chapter 8.

2.5.4 Dissipators

Since there is no loss of energy, the notion of free energy is introduced.

Definition 2.19 (Free energy). If E denotes the total energy in a system and Eth

the thermal energy, then the free energy, Ef , is the difference

Ef := E − Eth (2.62)

(see, for instance, [9]).

The loss of free energy due to friction in mechanical and hydraulic systems, due

to heat production in electrical circuits, or due to thermal conduction is modelled in

bond graphs (like in generalised networks) by means of resistors. In bond graphs,
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f
R : r

Fig. 2.24 1-port R element

the type of these elements, which may be multiport elements, is designated by the

symbol ‘R’. In the following, 1-port resistors will be considered.

Definition 2.20 (1-port resistor). A 1-port resistor is defined by one of the two

constitutive equations relating the power port variables e and f

e(t) = ΦR(f(t)) (2.63)

or

f(t) = ΦG(e(t)) , (2.64)

where t ∈ R and t ≥ 0. Both functions, ΦR and ΦG, must be one-to one and have a

single valued inverse. Their characteristics must fall into the first and third quadrants

of the e-f plane.

In case of a 1-port resistor with a linear characteristic

e = r × f , (2.65)

the parameter r may be attached to the symbol R denoting the type of the element

(Figure 2.24). In the general case of a (non)linear (multiport) resistor or (multiport)

energy store, the symbol X (C or R) may be annotated by a string (Figure 2.25). In

terms of object-oriented modelling, X : s denotes an instantiation of the class X. The

string s is the name of the instantiation that allows one to distinguish it from others.

In case of a single element parameter, the string may be the name of that parameter.

For more than one parameter, s may be the name of the set of parameters used in

the constitutive equations. This is similar to the way in which elements in a circuit

diagram are distinguished. There is a standardised graphical symbol for an element

of type resistor. Different resistors have different names. The name R1 associated

with one of them may be the name of its parameter having a value of 10 Ω, viz.,

R1 = 10 Ω. Resistors are also called dissipators, or R elements.

The free energy entering an R element is lost in the system. It is dissipated by the

element. However, according to the first law of thermodynamics, energy cannot is

conserved. In R elements, energy is converted irreversibly into heat. It is appropriate

to define the direction towards the element as the positive reference direction of the

��
e

f
X : s

Fig. 2.25 Nonlinear 1-port element of type X (C or R) with s being the name of its parameter set
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energy flow. Since true resistors irreversibly convert energy into heat, the reference

direction is also the actual direction of the energy flow. Thus, in addition to the

constitutive relation of an R element, there is the constraint e(t)×f(t) > 0 ∀t > 0.

Remark 2.6. The requirement of single valued inverse functions Φ−1
R and Φ−1

G shall

ensure that the constitutive relation of an R element can be solved for the power

variable in the function’s argument list if necessary due to the connection of the

resistor with other elements. Consider, e.g., an R element and a C energy store both

of which are connected to a 0-junction as depicted in Figure 2.26.

Assume that the R element is defined by a nonlinear relation e2 = ΦR(f2),
whereas the characteristic of the C energy store is linear for simplicity. Observing

the equations of the 0-junction, we have the following equations

e1 = e2 = e3 (2.66a)

e2 = ΦR(f2) (2.66b)

C ė3 = f1 − f2 . (2.66c)

Now, suppose the effort e1 is to be computed for a given flow f1. This is only

possible if ΦR has a unique inverse.

If the constitutive relation of an R element does not have a unique inverse rela-

tion, then Beaman and Rosenberg assume that the characteristic describes a com-

posite element that captures more than one physical effect [2] and they make the

conjecture that with more detailed modelling, such composite elements could be

avoided. Despite the problem with the guaranteed uniqueness of the solution, it is

common and convenient in electronics to model real devices by resistors with a

characteristic that exhibit a negative gradient in some region. This modelling ap-

proach is less common in other disciplines. A well known example in mechanics is

the approximation of dry friction by a sign (signum) function neglecting stiction.

In contrast to stores, R elements may be modulated by a signal.

0��
e1

f1

��
e2 f2

R

��
e3

f3

C : C

Fig. 2.26 Connection of a nonlinear R element and a linear C store
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The RS Element

If isothermal conditions cannot be assumed, e.g., the impact of temperature on the

operating point of an electronic circuit, or on the elasticity of the oil in a hydraulic

hose must be taken into account, then instead of free energy, total energy includ-

ing thermal energy must be considered. Since total energy is conserved in a closed

system, dissipators become energy transducers converting non-thermal energy into

heat. For that reason, a closer look reveals that 1-port R elements have an additional

port, i. e., a thermal port. Since the conversion into heat is irreversible, dissipators

can be considered to be heat sources in the thermal domain. For that reason, Thoma

introduced the symbol ‘RS’ [34]. It accounts for the loss of free energy at the non-

thermal port and the production of entropy at the thermal port (Figure 2.27). The

letter ’S’ means source and expresses the source character in the thermal domain.

Since this special transducer does not store energy, the principle of power conserva-

tion must hold.

e f = T Ṡ (2.67)

According to the second law of thermodynamics, Ṡ > 0. Moreover, since T > 0,

power conservation implies that the power port variables of a dissipator must hold

the constraint e(t) × f(t) > 0, ∀t > 0, as stated previously.

Since the power conversion is unidirectional from non-thermal energy into heat,

it cannot be represented by a transformer with constant modulus or by a gyrator with

constant ratio. The orientation of bonds connected to the ports of the RS element

introduced by Thoma indicates the actual direction of the irreversible energy flow.

From Equation 2.67, it can be seen that the additional constitutive relation of an

RS element is always nonlinear, even if the relation between the non-thermal power

port variables is linear. Assuming Δe = R × f , then power conservation yields for

the thermal port

Ṡ =
R f2

T
. (2.68)

Since the absolute temperature T cannot be negative, it follows from the second law

of thermodynamics that the resistance parameter must be positive, R > 0. Or, the

other way round, given a positive resistance, R, a resistor, in fact, produces entropy

in accordance with the second law of thermodynamics.

Transfer of the generated heat may take place either via thermal conduction,

convection, or radiation.

��
e

f
RS ��

T

Ṡ

Fig. 2.27 Extension of a 1-port R element according to Thoma
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Ṡ1

T1
1 �� 0 ��

Ṡ2
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��

T1 − T2 Ṡ1

RS

��
T2 Ṡ2 − Ṡ1

Fig. 2.28 Bond graph model of heat conduction using the RS element (Thoma 1975)

Example: Thermal Conduction

Thermal conduction between two points with absolute temperatures T1 and T2, and

T1 > T2 > 0 may be modelled by means of an RS element as depicted in Fig-

ure 2.28 [33].

For the RS element in Figure 2.28 power conservation reads

(T1 − T2) Ṡ1 = T2 (Ṡ2 − Ṡ1) . (2.69)

With Q̇ denoting the heat flow from bond 1 to bond 2, it follows

Q̇ = T1 Ṡ1 = T2 Ṡ2 . (2.70)

That is, the model for heat transfer from point 1 to point 2 is power conservative.

From Equation 2.69, it follows that

Ṡ2 − Ṡ1 > 0 (2.71)

because the heat flow into the RS element is positive, (T1 − T2) × Ṡ1 > 0, and

temperature T2 > 0. That is, at the point where the heat flow leaves the lump,

entropy is higher than the entropy at the point where the heat flow enters the lump.

Thus, there is an entropy flow from the higher to the lower temperature and entropy

increases in accordance with the second law of thermodynamics.

Heat conduction is also described by Fourier’s law in the form

Q̇ = K (T1 − T2) . (2.72)

K denotes a constant that depends on the thermal conductivity and the geometry of

the heat conductor. Fourier’s law and Equation 2.70 for power conservation yield

for the two entropy flows

Ṡ1 = K
T1 − T2

T1
(2.73a)

Ṡ2 = K
T1 − T2

T2
. (2.73b)
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For the irreversible entropy production during heat transfer, it follows

Ṡ2 − Ṡ1 = K
(T1 − T2)2

T1T2
> 0 . (2.74)

Thus, the constitutive equations of the RS element read:

Ṡ1 = K
T1 − T2

T1
(2.75a)

Ṡ2 − Ṡ1 = K
(T1 − T2)2

T1T2
. (2.75b)

Remark 2.7. For an RS element, relating a non-thermal energy domain to the ther-

mal domain, energy that disappears at the non-thermal port reappears at the thermal

port. In the case of thermal conduction, the amount of heat entering into the R-port

remains in the thermal domain. It is fed back to the system via the source port of

the RS element. Hence, the flow of produced entropy must be added to a junction

in the model. In Figure 2.28, this is done by adding it to the outward power port of

the model. Without affecting the port behaviour of the heat conduction model, the

flow of produced entropy can also be added to the model’s inward power port. In

the alternative model, the locations of the 1- and the 0-junction are interchanged.

The heat conduction model in Figure 2.28 assumes T1 > T2. Index 1 denotes the

inward power port and index 2 the outward power port. In the case T2 > T1, heat

conduction is represented by the slightly modified bond graph model in Figure 2.29

[33].

Instead of the RS element, a modulated transformer may also be used for mod-

elling heat conduction as depicted in Figure 2.30. The transformer expresses power

conservation (Equation 2.70). The variable transformer modulus results from Equa-

tions 2.73a and 2.73b. Finally, the modulation of the transformer correctly reflects

the production of entropy.

��
Ṡ1

T1
0 �� 1 ��

Ṡ2

T2

��

T1 Ṡ

RS

��
T2 − T1 Ṡ2

Fig. 2.29 Heat conduction model using an RS element in case T1 < T2
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1
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Ṡ2
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Fig. 2.30 Modelling heat conduction by means of a modulated transformer

Ṡ2 − Ṡ1 =
1
K

Ṡ1 Ṡ2 ≥ 0 (2.76)

Like the bond graph of Figure 2.29, its alternative of Figure 2.29 assumes that T1 >
T2. In case T2 > T1, the modulus is determined by Ṡ2 instead of Ṡ1.

Example: Electrical Current and Entropy Flow in an Electrical Conductor

Let us return to the irreversible conversion of non-thermal energy into heat and

consider an electrical conductor of resistance R. The conductor gets heated while

an electrical current is flowing. Thus, there is a flow of electrical energy and of

entropy as well. The entropy flow can be accounted for by replacing the common

electrical 1-port resistor by the submodel depicted in Figure 2.31. The result is an

extended bond graph that uniformly accounts for the electrical as well as for the

thermal energy flow.

�i� �i�

T1 T2

u1 u2

�

Δu

0

0

�� 1 �� 0

�� 1 �� 0 ��

RS

��

��

��

T1 T2

u1 u2

Ṡ1 Ṡ2

Ṡ

iΔu

Fig. 2.31 Flow of electrical energy and of entropy in an electrical conductor
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A closer look reveals that in an electrical conductor not only electrical energy

flow and heat conduction take place. The material also stores thermal energy as

illustrated in Table 2.6. The storage of thermal energy can be taken into account

by adding a thermal capacitor to the 0-junction. That is, thermal energy storage

distributed over the volume of the conductor has been lumped into the point with

the lower temperature T2 in this one-dimensional model.

In conclusion, the R element representing the loss of free energy in the non-

thermal energy domains is to be replaced by the RS element, if thermal effects must

be taken into account. Finally, a ‘dissipator’ does not exist in the thermal domain.

The thermal energy leaving at the resistive port of an RS element reenters the system

at its S-port.

2.5.5 Memristors

As early as 1961, in his class notes for M.I.T. course 2.751 [27], H. Paynter repre-

sented the possible functional relationships between the key variables, e, f ,p,q by

the so-called tetrahedron of state. In this graph, the vertices are associated with the

power and the energy variables of a given system while the edges denote functional

relationships between them (Figure 2.32).
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Fig. 2.32 Tetrahedron of state (H. M. Paynter, 1961)
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Fig. 2.33 Tetrahedron of state for the three 1-port elements R, C, and I (Karnopp, Margolis, Rosen-

berg, 2005)

In order to point out the nature of the relationships, other authors have added two

integral operators and the basic elements R, C and I, as shown in Figure 2.33 [23].

Interestingly, in his diagram, Paynter has connected the vertices for the energy

variables p and q by a dashed line indicating a possible functional relation between

the energy variables. The symmetry in the tetrahedron of state may suggest the exis-

tence of another basic element besides the two types of energy stores and resistors.

In 1971, L. O. Chua postulated the existence of a fourth basic two-terminal circuit

element besides the capacitor, inductor and resistor that is characterised by such

a relationship between flux linkage and electrical charge. He termed that element

memristor (memory resistor) and presented an active circuit realisation containing

many circuit elements [12]. Inspired by this introduction of a fourth basic circuit el-

ement, Oster and Auslander proposed the memristor as a new bond graph element.

The abstract of their 1972 article in the Journal of Dynamic Systems, Measurement

and Control [26] reads:

The “memristor”, firstly defined by L. Chua for electrical circuits, is proposed as a new

bond graph element on an equal footing with R,L, & C, and having some unique modelling

capabilities for nonlinear systems.

In [26], the authors call the integral of the effort with respect to time, p =
∫ t

0
e(τ)dτ ,

impulse and distinguish between a charge controlled memristor with a constitutive

relation

p = G(q) (2.77)



58 2 Bond Graph Based Physical Systems Modelling

and an impulse controlled memristor with a constitutive relation of the form

q = F (p) , (2.78)

where F,G are functions R → R with trajectories in the first and third quadrant.

Differentiation of these two forms of constitutive relations with respect to time re-

sults in the two equations

e = M(q) × f (2.79a)

f = W (p) × e , (2.79b)

where M(q) is called incremental memristance and W (p) incremental memduc-
tance. The equations obtained after differentiation with respect to time show that

a memristor turns into an ordinary resistor in case of a linear constitutive relation.

Nevertheless, the memristor is a peculiar element. It is dissipative, but at the same

time, it is a dynamic element requiring the specification of an initial value. Oster

and Auslander considered a tapered dashpot and an electrochemical system with

two oppositely charged membranes that can be modelled by using a memristor. In

[13], Chua shows that the electrical behaviour with a hysteresis loop in the voltage-

current plane observed from a two-terminal nanowire device driven by a low fre-

quency periodic voltage signal can be explained by using a memristor.

The view that there are physical phenomena that justify the introduction of a

memristor to be added to the small set of fundamental bond graph elements has not

been shared by most members of the bond graph community. Even in the fourth

edition of their renowned textbook [23], Karnopp, Margolis and Rosenberg note

that “no element will relate p and q”. This statement is annotated by the following

footnote

One can, in fact, define an element corresponding to the hidden edge, the “memristor”.

While interesting and occasionally useful, memristors can be represented in terms of other

elements to be introduced later, so the memristor will not be considered to be a basic ele-

ment. . . .

However, in May 2008, Strukov and his colleagues from a Hewlett-Packard lab-

oratory in Palo Alto, California, USA reported in a communication published in the

journal nature that they have been able to build an integrated nanoscale circuit de-

vice that behaves like a memristor [32]. The device is composed of a 5 nm titanium

dioxide film with two layers of different resistivities that are connected to wire elec-

trodes. One layer has a slight depletion of oxygen atoms which results in a lower

resistance in comparison to the non-depleted layer. An electric field applied to the

device lets the oxygen vacancies serving as charge carriers pass in one direction.

As a result, the boundary between the two layers moves and by this way, the re-

sistance of the device changes. This discovery by Stanley Williams and his team at

HP Labs has received considerable attention worldwide. It opens up possibilities for

various practical applications and gives rise for further research. As a memristor is a

dynamic element that is described by an algebraic relation between effort and flow

and an additional differential equation, it will affect standard state space modelling.
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The dimension of the state space is not only determined by the storage elements, but

also by memristors. An extension of the so-called port-based Hamiltonian formula-

tion framework [35] including memristors is considered by Jeltsema and Maks in a

paper presented at the Mathmod 2009 conference [19].

2.5.6 Ideal Energy Sources and Sinks

Having considered passive bond graph elements, in the following, we will briefly

address sources. As mentioned, they are not part of a system model itself. Rather,

they describe boundary conditions of the system, or in other words, the impact of the

environment in which the system is embedded. Like in physical systems modelling

by means of generalised networks, in bond graph modelling, there are also two types

of sources. They are designated by the symbol ‘S’ (source). Their type is indicated

either by a subscript ‘e’ or ‘f’ depending on whether the source imposes an effort

or a flow on the system (Figure 2.34). Often, the letter characterising the type of a

source is not a subscript. That is, the notations Se and Sf are also used. For sources,

it is appropriate to assume the outward orientation as the positive reference direction

of the energy flow.

Sources may provide a power variable that is either constant or time dependent.

Moreover, sources may be controlled by a signal. In this case, the symbol ‘S’ is

prefixed by the letter ‘M’ as shown by the example of a modulated effort source

on the right-hand side of Figure 2.34. Furthermore, as resistors, energy stores and

all other bond graph elements, the symbol of an element of type source may be

annotated by a string that distinguishes the source from other sources of the same

type. The string may also be a constant parameter. This is convenient if, for instance,

the source represents a vanishing boundary condition, or if the source provides a

power variable of constant value (Figure 2.35).

Examples of Sources

With good approximation, gravity near the surface of the earth may be modelled by

a constant effort source independent of the coordinates of the place where gravity is

effective. Gravity acting on a rigid body of mass m can be represented as shown in

Figure 2.35.

Se ��
e(t)

Sf ��f(t)
� MSe ��

Fig. 2.34 Ideal sources in bond graphs
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Se : mg

��

1 �� I : m

Fig. 2.35 Bond graph fragment accounting for gravity acting on a rigid body

If only the current is of interest that an amplifier feeds into an electrohydraulic

servovalve then the amplifier may be captured by a flow source. Furthermore, isen-

tropic boundary conditions of a system may be represented by a flow source impos-

ing a vanishing entropy flow (dS/dt = 0).

Another example in which boundary conditions are to be represented by sources

is a submodel of a rigid body with two hinge points. The model has two ports for

translational velocities and two ports for angular velocities to the outside world. If

the body as part of a manipulator is mounted on a basis that does not move, then the

two ports of the hinge connected to the bed need to be connected to flow sources

that provide zero values.

Controlled Sources

In modelling electronic circuits, it is appropriate and convenient to use controlled

sources. The core of a functional model that captures the terminal behaviour of

an operational amplifier, for instance, is often a voltage controlled voltage source.

Furthermore, if the dynamic behaviour of an actuator in a controlled engineering

system is not relevant, it may be represented by a source that is controlled by a signal

provided by a signal processor. The latter serves as a controller. A D/A converter

converts the signal into an analog signal of low power level, while it is the role of

an actuator to provide an effort or a flow at a sufficient power level that affects the

system behaviour. Therefore, controlled sources are also available in bond graph

modelling. If a source is controlled by a signal, then this is often highlighted by a

letter ‘M’ preceding the source symbol (cf. Figure 2.34).

However, one should be aware of potential risks. Controlled sources can be used

to represent relations that do not comply with the principle of energy conservation.

In [20], Karnopp and Rosenberg stress

. . . at once very powerful and at the same time hard to discipline, because the nature of the

signal input that sets the modules appears to be quite arbitrary. It is possible to represent

virtually any system using these modulated 2-ports and other elements in a variety of ways

if the moduli are allowed to be dynamically related to system variables. When much of the

dynamics of the system is put into signals setting the moduli, the organizational structure

which bond graph techniques usually bring to the study of physical system dynamics may

be obscured.
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This statement is also recalled by Beaman and Rosenberg in [2]. In [1], Beaman and

Breedveld conclude

Although the models with controlled sources are functionally correct, these active sources

can violate the energetic basis of bond graphs. Hence, they should be avoided in physical

models, whenever possible.

In other words, if given relations are essentially represented by means of controlled

sources, then the virtue of bond graphs over block diagrams expressing the phys-

ical structure gets lost. Moreover, in bond graphs, the use of controlled sources in

accordance with the principle of energy conservation, as required by Paynter for

physical system models, is not evident. As mentioned in Section 1.4.1, in block di-

agrams, all kinds of functional relations may be represented that are not necessarily

consistent conservation laws from physics. This is also possible in bond graphs if

controlled sources are used. If, however, bond graphs are meant to be more than

merely a graphical representation of equations, then they should at least comply

with the principle of energy conservation as they represent the energy exchange

between subsystems.

From power continuity of the RS element (Equation 2.67, it can be seen that

the flow of entropy provided at the S-port of the element is not independent of the

temperature T . Moreover, it depends on the power fed into the element from the

non-thermal side. Hence, from the thermal side, the RS element may be considered

a controlled source [18].

Energy Sinks

The environment of a system may be considered intuitively to be a reservoir of

infinite capacity. Independent of the amount of entropy flow it receives from the

system, the ambient temperature remains constant. A similar observation holds for a

hydraulic return reservoir. Independent of the amount of returning hydraulic volume

flow, the pressure in the tank remains constant (at atmospheric level). That is, the

environment imposes a boundary condition on the system and at the same time it

receives an energy flow that does not affect its impact on the system. Both aspects

suggest the use of a sink, i.e., a source element with a positive reference direction

of the energy flow towards the element. Isothermal boundary conditions, e.g., may

be represented by an effort sink that imposes a constant temperature on the system

independent of the amount of entropy it receives from the system. This view does

not exclude the possibility that a sink may operate temporarily as a source. Likewise,

sources may operate temporarily as sinks.

According to Equations 2.73a and 2.73b, heat conduction between two points

in space may be represented by a doubly modulated entropy source (Figure 2.36).

This is an alternative to the modulated transformer representation introduced in the

previous section (Figure 2.30). While the element is power conservative, it produces

entropy. If the reference direction in Figure 2.30 corresponds with the actual direc-

tion of energy flow, i. e., there is a heat flow from T1 to T2, then the source receives

an entropy flow at the left port while it provides a higher amount of entropy flow at
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Fig. 2.36 Representation of heat conduction between two temperatures by a doubly modulated

entropy flow source

its right port. If the actual direction of the energy flow is opposite to the reference

direction, then it becomes a negative source at the port where the adjacent bond is

pointing outward and a negative sink at the other port.

2.5.7 Sensors

For the control of engineering systems, sensors are clearly necessary to measure

aspects of the system response, e.g., velocities and displacements in mechanical

systems. Sensors, in general, perform a conversion of a non-electrical signal of low

power into an electrical one, which is converted into a digital signal and fed into a

controller via a feedback loop. A characteristic feature of sensors is that they sense

a signal without affecting the system. The amount of power they take out of the

system is very small and can be neglected. If the dynamic behaviour of a sensor can

also be neglected, then the device can be modelled by an energy sink that provides

a zero effort or a zero flow.

According to Table 2.7, an effort sensor can be represented by a zero flow sink

and a flow sensor can be modelled by a zero effort sink. Table 2.7 also includes

alternative representations of ideal sensors that are particularly popular in the com-

munity of bond graph modellers in France. The symbol for the type of element

clearly indicates which power variable is measured and the signal arrow points out

that the conjugate power variable vanishes. In order to distinguish between detectors

representing real sensors of measurable variables and fictitious (virtual) detectors of

non-measurable variables, a star, ∗, is added as a superscript to the latter (De∗ and

Df∗) [14].

Table 2.7 Representation of sensors in bond graphs

Sf0 : 


e

f = 0
0 Effort sensor, zero flow source De � 0 Effort detector

Se0 : 


e = 0

f
1 Flow sensor, zero effort source Df � 1 Flow detector
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Fig. 2.37 Source-sensor element (Gawthrop and Smith, 1996)
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Fig. 2.38 Connection of passive 1-port elements

When a source imposes a power variable on a system, then, at the same time,

the conjugate power variable is the feedback of the system onto the source. Hence,

the source can be a sensor of the conjugate power. Therefore, Gawthrop and Smith

introduced a so-called source-sensor element, SS, that combines a source with a

sensor. This element can be used for representing sources as well as sensors and

has proven particularly useful in so-called bicausal bond graphs used for system

inversion (cf. Sections 6.3 and 6.7). The SS element, shown in Figure 2.37, can

represent either an effort source and simultaneously a flow sensor, or it can be a

flow source combined with an effort sensor.

The two detector elements (De and Df) can be considered special cases of this SS

element. An effort detector corresponds to a zero flow source-effort sensor, while a

flow detector is a zero effort-flow sensor (cf. Section 6.7 on bicausal bond graphs,

Table 6.2).

These considerations of sources close the introduction of basic ideal bond graph

elements. The top-down decomposition of an initial word bond graph model comes

to an end when incompletely specified multiports representing submodels have been

replaced recursively until bond graphs of submodels are only composed of basic

bond graph elements. We shall call a bond graph model at the bottom of the model

hierarchy built by basic elements an elementary bond graph. Note that, due to the

conventions for the reference directions of energy flows, power ports cannot always

be connected directly by a bond. For instance, passive elements cannot be joint

directly (Figure 2.38).

2.6 Pseudo Bond Graphs

In the previous section, basic elements have been introduced that enable a unified

physical modelling approach for all energy domains on the basis of one of the two

analogies discussed in Section 2.3. Both analogies, the classical force - voltage anal-

ogy as well as the dual mobility analogy, are in accordance with the general obser-

vation that in all energy domains, the amount of power transferred between two

power ports may be expressed as the product of two power conjugated variables.
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Table 2.8 Effort and flow variables in pseudo bond graphs

Hydraulics Thermodynamics

Effort Pressure Temperature Temperature

Flow Mass flow Heat flow Enthalpy flow

This is essential in bond graph modelling. Nevertheless, in considering thermal or

hydraulic systems, occasionally, it is convenient to choose effort and flow variables

not as indicated in Table 2.4 and to accept that their product is not the power trans-

ferred between ports. Although the basic principle does no longer applies, again,

basic elements describing physical effects in an idealised manner can be introduced.

Moreover, the systematic construction of a bond graph from a schematic and, fur-

thermore, the systematic derivation of equations from the bond graph still remain

applicable. However, since such bond graphs do not represent energy flows, they

are called pseudo bond graphs in the literature. In general, such pseudo bond graphs

cannot be connected to true power bond graphs via transformers or gyrators. Their

advantage is that modelling of thermodynamic systems may be become easier (cf.

Chapter 10). On the other hand, it may be considered a disadvantage that pseudo

bond graph modelling of physical effects is sometimes not quite convincing. If, for

instance, in the magnetic domain, the magnetic flux is chosen as a flow instead of

the flux rate, then the magnetic capacitor with the capacitance parameter C becomes

a resistor with the resistance Rmag = 1/C. Table 2.8 shows some choices of effort

and flow variables in the hydraulic and in the thermal domain for which the product

is not the power transferred between ports. The choice of mass flow and an enthalpy

flow takes into account that in open systems, an energy flow between subsystems

is accompanied by a flow of mass. It is common to consider a control volume and

to set up balances for energy, matter and momentum. Whereas a correct true bond

graph representation is not always easy, a pseudo bond graph approach is similar to

common engineering practice, especially in modelling process engineering systems.

Often, pseudo bond graph modelling is considered to be more intuitive. True bond

graph modelling of open thermal systems is dealt with in Chapter 10.

Example: Heat Transfer Through a Slab of Material

In the following, pseudo bond graph modelling shall be illustrated by considering

heat transfer through an insulating slab of material. Since in this case, there is no

flow of matter, according to Table 2.8, the absolute temperature T may be chosen as

a effort variable and the heat flow Q̇ as a flow variable (The latter variable already

has the physical dimension of power).
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Fig. 2.39 Isolation between two temperatures

Consider two insulating parallel layers of thickness d and area A as depicted in

Figure 2.39. The schematic may represent a piece of a wall separating a room of

temperature T1 from the colder surrounding at temperature T3.

Inside the wall, between the two layers, a uniform temperature distribution is

assumed. If k denotes the thermal conductance coefficient of the two layers, then

Fourier’s law reads

Q̇1 =
kA

d
(T1 − T2) . (2.80)

According to the choice of effort and flow, Equation 2.80 may be represented by

a combination of a resistor with the resistance parameter R = d/(kA) and a 1-

junction accounting for the temperature difference.

Due to the heat flows entering and leaving the lump of material between the two

insulating layers, the spatially uniformly distributed temperature T2 changes. The

amount of heat stored in the wall is

Q1(t) − Q3(t) = C (T2(t) − T20) , (2.81)

where T20 := T2(t = 0). Since Equation 2.81 relates temperature T2 to the dis-

placements Q1, Q2, it may be considered to be the constitutive equation of a 1-port

capacitor with the capacitance parameter C. This capacitor model assumes that the

change of the volume between the two layers can be neglected. Let c denote the

specific heat at constant volume and m the mass of the material lump between the

two layers, then C = cm. The difference of heat flows rates can be represented by

a 0-junction connected to the 1-port capacitor. If heat production inside the room

(temperature T1) is represented by a temperature source and the surrounding, con-

sidered to be a reservoir of infinite capacity at temperature T3, is represented by

a thermal effort sink, then the combination of the two resistors and the capacitor

results in a coarse model of the wall displayed in Figure 2.40.



66 2 Bond Graph Based Physical Systems Modelling

Se ��
T1

Q1
1 �� 0 �� 1 ��

T3

Q3
Se

��

R : R1

��
T2 Q2

C : C

��

R : R3

Fig. 2.40 Coarse pseudo bond graph model of a wall

2.7 Systematic Construction of Bond Graphs

Having introduced basic bond graph elements for representing fundamental physi-

cal processes and discussed reference directions for energy flows, the question now

is how these elements can be combined in a systematic manner in order to come

up with a bond graph model of a real physical process at the bottom of a model

hierarchy. In other words, how can a non-hierarchical bond graph model be con-

structed in a systematic manner from a given system schematic. Procedures for each

energy domain have been given by Karnopp, Margolis and Rosenberg in their text-

book [23]. Breedveld gives a uniform formulation for all non-mechanical energy

domains (electrical, magnetic, hydraulic, thermal domain). Since this method does

not represent reference nodes in the bond graph and accounts for simplifications of

structures in constructing the bond graph, the result does not exhibit the close topo-

logical affinity with the system schematic that an initial bond graphs shows if the

procedure of Karnopp, Margolis and Rosenberg is applied. It may be a matter of

personal preference, whether one or the other of the two procedures or a modifica-

tion of them is used. At least for students, it might be useful if the construction of

an initial bond graph is guided by the topology of the system schematic and if the

initial result clearly resembles the system schematic. In subsequent steps, the initial

bond graph can be simplified and completed following the given rules. In this book,

we follow the procedure of Karnopp, Margolis and Rosenberg. In the following,

the construction of bond graphs for planar motion of mechanical systems will be

discussed first and then illustrated by an example.

2.7.1 Construction of Bond graphs for Mechanical Subsystems
(Translation and Fixed-axis Rotation)

The starting point for a systematic construction of bond graphs for mechanical sub-

systems are distinct velocities and angular velocities.
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1. Identify distinct inertial velocities and angular velocities and represent them by

a 1-junction.

They should be annotated by a name in order to express which 1-junction rep-

resents which velocity. Ground (zero absolute velocity) is often represented by

a 1-junction with a zero velocity (flow) source (Sf) attached. For the sake of a

closer structural similarity between a given system schematic and an initial bond

graph, the 1-junction representing zero absolute velocity may be repeatedly used

in various places of the bond graph.

2. Connect 1-port C energy stores representing springs and 1-port resistors for dash-

pots to a 0-junction and insert them between proper pairs of 1-junctions.

Insert 2-port transformers, or 2-port gyrators between proper pairs of 1-junctions.

Springs and dampers react to a velocity difference. They provide a force or a

moment acting equally on both velocity points. Therefore, their corresponding

bond graph element is connected to a 0-junction that accounts for the velocity

difference. The 0-junction is inserted between the two 1-junctions representing

the velocities. In Figure 2.41, the symbol ‘X’ may be replaced either by a ‘C’

or an ‘R’ element. In order to ensure that there is a velocity difference at the

port of the element, one bond must be oriented towards the 0-junction, the other

one must point away from the 0-junction and the third one must be inward to

the element port. Transformers couple velocities. For gyrators, two velocities

are either inputs or both are outputs. Consequently, both types of elements are

inserted between appropriate pairs of 1-junctions. The symbol ‘TG’ stands for

‘TF’ or ‘GY’ (Figure 2.42).

3. Add 1-port inertia elements to their respective 1-junction.

1

v1

��
F

0 ��
F

1

v2

��
F v1−v2

X

Fig. 2.41 Springs and dampers between two velocities

1

v1

��
F1

TG ��
F2

1

v2

Fig. 2.42 2-port transformer or gyrator between two velocities
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Since the motion of the centre of gravity of a rigid body, or the rotation with

respect to a fixed axis is defined with reference to an inertial frame, stores of

kinetic energy are attached directly to the 1-junction representing their velocity

or angular velocity. The body’s kinetic (co-)energy is a function of its velocity.

4. Add 1-port sources and 1-port sinks to appropriate 1-junctions.

Sources and sinks represent boundary conditions. For instance, each body is sub-

ject to gravity force, or a motor provides an angular velocity. Since 1-junctions

not only represent velocities or angular velocities, but also the sum of forces or

moments acting on a body, sources or sinks are attached directly to the proper

1-junction.

5. Orientation of bonds

Having inserted all elements in the bond graph, reference directions for energy

flows are assigned to the bonds. For that purpose, it is useful to assume empty

energy stores and an energy flow from the sources through the junction struc-

ture into energy stores, dissipators and sinks. Following this view, orientations of

bonds must comply with rules already discussed for each bond graph element. In

particular, orientations at 0-junctions connected to the power port of a C energy

store or R element must ensure a velocity difference as depicted in Figure 2.41.

6. Simplification of the bond graph

Finally, all 1-junctions representing a velocity or angular velocity equal to zero

are eliminated along with all adjacent bonds. Resulting 2-port junctions with

a through orientation of adjacent bonds are replaced by a single bond (Fig-

ure 2.43a). The symbol ‘J’ may be a 0- or 1-junction. If both adjacent bonds of a

2-port junction have an inward orientation, the junction cannot be condensed into

a single bond. Such node changes the sign of one of the two power conjugated

variables. Consider the 0-junction shown in Figure 2.44. Power conservation and

the equality of efforts entails f1 + f2 = 0. 2-port 1-junctions with inward ori-

ented adjacent bonds may be used in bond graphs of mechanical systems to ex-

plicitly represent internal forces in a body that appear in a free body diagram.

Apparently, two junctions of the same type, either a 0- or a 1-junction, can be

condensed into a single junction (Figure 2.43b).

A general recommendation finally added to the previously commented construction

procedure is to add labels to elements so that they can be easily identified and dis-

tinguished from other elements of the same type. Typically, the label is a parameter

if only one of the latter exists for a particular element. Otherwise, it can be either

a function of the parameter, for example sin α where α is an angle, a time depen-
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Fig. 2.43 Simplifications of junctions. a Replacing junction with two bonds by a single bond. b
Condensing connected junctions of the same type into one junction
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Fig. 2.44 Change in sign at a 2-port junction: f2 = −f1

dent function for a source, a name that may point to a set of parameters or just an

identifier of the element.

Example: Rolling Cylinder on an Inclined Plane

For illustration of the systematic construction of a bond graph of a mechanical sys-

tem in planar motion, consider the example depicted in Figure 2.45. In this example,

a cylinder of radius r and mass m connected to a spring of stiffness k is rolling on

a plane inclined at an angle α. It has a moment of inertia J with respect to an axis

perpendicular to the paper plane through its centre of gravity. The centre of gravity

of the rigid body moves at velocity v(t) parallel to the inclined plane. At the same

time, the cylinder is rotating with the angular velocity ω(t). At the contact point

between the cylinder and the inclined plane, a viscous friction force is acting that

is proportional to the relative velocity vr. The contact point as part of the rolling

cylinder has the velocity v − vt = v − r × ω, whereas the velocity of the contact

point as part of the plane is zero. Hence, the relative velocity vr, effecting the vis-

cous friction force, reads vr = v − r × ω. The step by step construction of a bond

graph model is shown in Figures 2.46 and 2.47.

For the sake of simplicity, linear characteristics have been assumed for the spring

and the viscous friction. Furthermore, it is assumed that the inclined plane is station-
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Fig. 2.45 Rolling cylinder on an inclined plane

ary (v0 ≡ 0). The 2-port junctions are then condensed into bonds and the result is

depicted in Figure 2.47.

We will come back to this example in the next chapter after having introduced the

concept of computational causality (Section 3.2) and a procedure for systematically

deriving equations from a bond graph.

For modelling more complex planar mechanical motion, and in particular for the

description of three-dimensional motion of rigid multibody systems, it is customary

to use several moving body fixed reference frames. Since quantities are related to lo-

cal reference frames, transformations between reference frames are needed. In bond

graphs, such transformations can be represented by MTF elements. Their modulus

depends on displacements. Three-dimensional motion of more complex mechanical

systems is considered in Chapter 8. In the following, we will continue by consider-

ing the systematic construction of bond graph for non-mechanical subsystems. The

notion of non-mechanical subsystems shall express that the modelling will focus on

electrical, magnetic, hydraulic, acoustic, or thermal properties. Mechanical proper-

ties are assumed to be negligible. For instance, if a body is heated, it is assumed that

the mechanical work due to its expansion can be neglected.

2.7.2 Construction of Bond Graphs for Non-mechanical
Subsystems

The starting point for the construction of a bond graph for non-mechanical systems

are distinct efforts. Apart from the interchanged role of efforts and flows due to

the classical force voltage analogy, the procedure is quite similar to the one for

mechanical systems.
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Step 5: Orientation of bonds

Fig. 2.46 Step by step construction of a bond graph model
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Step 6: Simplification of the bond graph

Fig. 2.47 Figure 2.46 (continued)

1. Identify distinct efforts and represent them by 0-junctions.

This means that according to Table 2.4, electrical, or magnetic potentials, abso-

lute pressures in hydraulic subsystems, or absolute temperatures in the thermal

domain are represented by 0-junctions. Like 1-junctions in bond graphs of me-

chanical subsystems, they should be labelled by a name in order to distinguish

them.

2. The non-mechanical power port of an energy store, a resistor, a 2-port trans-

former, a 2-port gyrator, or a source is connected to a 1-junction to be inserted

between a proper pair of 0-junctions.

In case of an electrical transformer, the 1-junction at both ports of the TF element

represent the currents through the coils of the transformer. In bond graphs of hy-

draulic systems, C elements are inserted via a 1-junction between the 0-junction

of an absolute pressure and the 0-junction of the atmospheric pressure. In bond

graphs of thermal systems, the thermal port of a C element is attached directly to

the 0-junction of an absolute temperature.

In electrical circuits, for instance, there is a voltage drop across an element with

two terminals. In order to ensure a difference of potentials, one bond must be ori-

ented toward the 1-junction, a second one away from the junction, and the third

one towards the power port of the element (either an energy store or a resistor).

The reference direction through the 1-junction corresponds to the reference di-

rection of the current through the element with two terminals. There must also be
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Fig. 2.48 Reference directions of energy flows for non-mechanical 1-port elements
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Fig. 2.49 Inserting a 2-port transformer

a through reference direction at a 1-junction if a source is connected to it (Fig-

ure 2.48). For each 1-junction connected to a port of a transformer or a gyrator,

the reference direction of the energy flow must be through the junction according

to Figure 2.49.

3. Once all elements have been inserted, reference directions for energy flows

are assigned assuming empty energy stores and energy flows from the sources

through the junction structure into energy stores, dissipators and sinks. Follow-

ing this view, orientations of bonds must comply with rules already discussed for

each bond graph element.
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4. In bond graphs of electrical systems, choose a potential as reference and elim-

inate its corresponding 0-junction along with all adjacent bonds. If two sub-

circuits of an electrical circuit are connected via an isolating transformer, a ref-

erence potential must be chosen in each sub-circuit.

In hydraulic subsystems, it is common to choose the atmospheric pressure of

the return reservoir. After elimination of its associated 0-junction along with all

adjacent bonds, 0-junctions represent gage pressures. This results in a simplifi-

cation of the construction of bond graphs for hydraulic systems. If 0-junctions

represent gage pressures, then C elements are attached directly to a proper 0-

junction. As TF elements in bond graphs of hydraulic systems relate a pressure

to its associated mechanical force and, at the same time, the volume flow of an

incompressible fluid flow to its associated translational velocity, the hydraulic

port of the TF element is connected to a 0-junction of a gage pressure while its

mechanical port is connected to the 1-junction of a velocity.

5. After elimination of reference nodes along with adjacent bonds, the bond graph

is simplified, as has been discussed for bond graphs of mechanical subsystems.

Finally, it is good practice to add labels to elements so that they can be easily identi-

fied and distinguished from other elements of the same type. This has already been

emphasised in the introduction of bond graph elements and as a general comment

to the previous construction procedure for mechanical subsystems.

Example: Electrical Network with an Isolating Transformer

Consider the electrical network depicted in Figure 2.50. The conversion of the cir-

cuit diagram into a non-simplified bond graph is straightforward. Distinct nodes in

the circuit are represented by 0-junctions. Bond graph elements corresponding to

elements with two pins are inserted by means of a 1-junction. The result of the first

three steps is shown in Figure 2.51. One can clearly see the topological affinity of

the bond graph with the circuit diagram. The circled 0-junctions indicate reference

potentials. After their elimination and subsequent simplification of the graph, the

bond graph depicted in Figure 2.52 is obtained.

Before we follow the above procedure for the construction of a bond graph of a

hydraulic subsystem, some preceding remarks have to made.

Hydraulic Capacitance of an Oil Filled Volume

As indicated in Table 2.6, the compliance of a fluid can be represented by a C energy

store. If Efluid denotes its bulk modulus and Qc the volume flow into a pressurised

volume V filled with a fluid of density 	 assumed to be spatially uniform, then the

increase of fluid in the volume due to its compression in the sealed volume results

in a pressure increase (Equation 2.82)
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Fig. 2.50 Electrical circuit with an isolating transformer
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Fig. 2.51 Bond graph corresponding to the electrical circuit in Figure 2.50 after step 1) to 3)

p(t) − p(t = 0) = Efluid × Qcdt

V
. (2.82)

That is, the integral of the volume flow Qc with respect to time is related to the

absolute pressure, not to a difference, p1(t) − p2(t), of two pressures at points 1

and 2 in space represented by two 0-junctions in a bond graph. Consequently, hy-

draulic C energy storage elements are always inserted between the 0-junction of a

pressure assumed to be uniformly distributed in a volume and the 0-junction repre-

senting the atmospheric pressure p0. Since the latter one is usually taken as refer-

ence, the corresponding 0-junction is removed from the bond graph with all adjacent

bonds. Thus, a hydraulic C energy storage element is to be connected directly to the

0-junction representing the pressure, p, in the pressurised volume V . From Equa-
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Fig. 2.52 Simplified bond graph corresponding to the circuit example in Figure 2.50

tion 2.82, we obtain for the capacitance parameter of a hydraulic C energy store

Chy = V/Efluid.

Lossless Hydraulic Tee Junction

Moreover, we recall that the total pressure accounts for the hydrostatic pressure, the

dynamic pressure and a gravitational term proportional to a difference of vertical

heights. If the energy transported by the fluid is considered, then the kinetic energy

and the internal energy of the fluid must be taken into account in addition to the

hydraulic energy. It appears that bond graph modelling of thermofluid systems may

be complicated. It becomes rather simple for so-called hydrostatic systems with

low velocity flows and hydrostatic pressures of high values. Consequently, the total

amount of power transferred between two ports may be approximated by the product

of hydrostatic pressure and volume flow. Under this assumption, a lossless tee junc-

tion in a hydraulic circuit can be represented by a 0-junction like nodes in electrical

networks. However, if fluid velocities cannot be neglected, dynamic pressures have

to be taken into account. Consequently, the hydraulic tee junction can no longer be

represented by a potential junction. Consider the hydraulic tee junction shown in

Figure 2.53a). Assuming an incompressible fluid, the mass balance becomes

Q1 + Q2 + Q3 = 0 . (2.83)

Let vi (i = 1, 2, 3) denote the corresponding fluid velocities. With the assumption

that the pipes have the same cross sectional area A and that the fluid is not acceler-

ated inside the tee junction, the momentum balance reads

A(p1 − p2) = −(	 Q1v1 − 	 Q2v2) . (2.84)

Finally, the energy balance is

(p1 +
1
2
v2
1)Q1 + (p2 +

1
2
v2
2)Q2 + (p3 +

1
2
v2
3)Q3 = 0 . (2.85)
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Fig. 2.53 Hydraulic tee junction. a Schematic. b Bond graph of a lossless hydraulic tee junction

accounting for dynamic pressures (Breedveld, 1984)

All three balances can be represented by the bond graph depicted in Figure 2.53.

Apparently, the modulated gyrator disappears and the bond graph reduces to a

0-junction if v1 = v2.

Hydraulic Ram

At the piston of a hydraulic ram, the hydrostatic pressure, p, in the chamber is con-

verted into a mechanical force, F , acting on the piston of cross sectional area A. At

the same time, the piston’s displacement at (slow) velocity, v, entails a volume flow

V̇ .

F = A × p (2.86a)

V̇ = A × v (2.86b)

As these equations relate efforts and simultaneously relate associated flows, they

are the constitutive equations of a transformer, of which the hydraulic port is to be

connected to the 0-junction of the gage pressure, p, and its mechanical port to the

1-junction representing the translational velocity v.
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Fig. 2.54 Piecewise linear approximation of the static characteristic of a the pressure relief valve

Pressure Relief Valve

If the fast dynamics of a pressure relief valve are neglected, then it may be modelled

as a switched resistor. If the pressure on the pump surmounts an allowed limit ps,

the valve is considered to open immediately and some volume flow returns to the

tank passing an opening. In this view, the pressure relief valve may be compared to

an electrical diode. Its characteristic may be approximated by the piecewise linear

curve depicted on Figure 2.54, where Δp denotes the pressure drop across the valve

and Q the volume flow through the valve.

Example: Hydrostatic Drive

With these remarks, a bond graph model of a hydraulic drive can be developed

systematically by following the procedure for non-mechanical subsystems.

In the simple example of a hydrostatic drive (Figure 2.55), a constant volume

flow pump, protected by a pressure relief valve, delivers a hydraulic volume flow

into a double acting unsymmetrical cylinder with cross sectional areas A1 and A2.

Its piston moves a mechanical load (not depicted) against a spring of stiffness k.

The initial word bond graph in Figure 2.56 directly corresponds with the circuit

schematic. In the word bond graph, an effort source accounts for possible distur-

bances on the mechanical load.

Since the aim is to demonstrate the step by step construction of a bond graph and

not to develop a model accounting for given requirements, it is sufficient to build a

rather simple model. The constant flow pump may be represented by a flow source

and the pressure relief valve (PRV) by a nonlinear resistor neglecting the valve’s fast

dynamics.

After the first three steps of the procedure for the systematic construction of bond

graphs of non-mechanical subsystems, the bond graph depicted in Figure 2.57 is ob-

tained. Like the initial bond graph of the electrical network, it shows a close topolog-

ical affinity to the hydraulic circuit schematic. The fluid compliance in the trapped

oil volumes on both sides of the piston has been accounted for by two C energy

stores. If the return tank pressure is chosen as a reference, elimination of the corre-
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Fig. 2.56 Word bond graph of the hydraulic drive

sponding 0-junctions and subsequent simplification yields the bond graph shown in

Figure 2.58.

Example: Electromechanical System

For systems with subsystems in different energy domains, it is obvious to construct

a bond graph model for each subsystem following the steps of the corresponding

procedure and to connect the submodels by models of the energy transducers. For

illustration, consider the mechanical slider crank mechanism driven by an electrical

DC motor with constant excitation as shown in Figure 2.59. The armature winding

has a self-inductance L and a resistance R. The rod connecting the disk of inertia J
to the slider of mass m is assumed to be massless. The piston is moving against an

external disturbance force. Figure 2.60 shows the corresponding bond graph of the

electromechanical system.
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Fig. 2.58 Simplified bond graph of the hydraulic drive

The bond graph of the electrical subsystem shows a clear similarity to the topol-

ogy of the circuit schematic. In the bond graph of the mechanical subsystem, the 1-

junction of the translational velocity, v, of the piston is connected to the 1-junction

of the angular velocity, ω, by a displacement modulated transformer. Its modulus,

T (φ), is controlled by the angle, φ, of the crank given by the geometry. The mo-

tor converting electrical energy into mechanical energy has been simply modelled

by the gyrator. It transforms the electrical current, ia, through the armature wind-

ing into a mechanical moment and simultaneously converts the angular velocity, ω,

into a voltage. Its ratio is the torque constant kT . That is, the inertia of the rotor

and bearing friction are neglected. Moreover, the shaft between the motor and the

pump is considered an ideal power conservative connection represented by a bond.
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Fig. 2.60 Bond graph of the electromechanical system in Figure 2.59

Torsion and inertia effects are neglected. The friction between the piston and the

plane is modelled by a resistor connected to a 0-junction that is inserted between

the 1-junctions of the piston and the plane. An external disturbance force F (t), act-

ing on the piston, has been accounted for by an effort source. Mechanical inertias

are connected directly to the two 1-junctions representing the angular velocity ω of

the disk and the translational velocity v of the piston.

2.7.3 Simplification of Some Bond Graph Structures

Once a bond graph has been derived from a system schematic following the steps

of the construction procedures discussed above, it might be appropriate to look for

further simplifications. This is useful for visual analysis of the graph, but also for
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its automatic processing by software packages. If rule based simplifications are not

carried out automatically, then the storage of variables that are not needed and un-

necessary operations can be avoided if simplifications of the graph are done manu-

ally prior to any further model processing. Figure 2.61 shows some sub-structures

in bond graphs and their corresponding equivalent simplification. Equivalences may

be proven by setting up the equations for all nodes and subsequent simplification.

Figure 2.62 depicts how a transformer or a gyrator together with another element

can be condensed into one element.

2.8 Some Remarks on the Choice of Orientations in Bond
Graphs

In the previous sections, the basic bond graph elements and two procedures for

systematically constructing a bond graph from a system schematic orientations of

bonds have been introduced. The rules for reference directions of energy flows do

not determine a unique orientation for all bonds in a bond graph. There may be

several admissible pattern of orientations for the bonds of the junction structure.

However, this does not mean that once an undirected bond graph has been con-

structed, subsequently orientations of bonds in the junction structure may be chosen

almost arbitrarily [7]. The result may easily be an inconsistent choice of signs. As

Perelson has shown in [29], a bond graph derived from an electrical circuit may no

longer represent the network if there is no through orientation of the energy flow at

1-junctions representing the current through an element with two pins.

In 1993, Lamp, Asher and Woodall [24] considered the reverse question under

which condition a given bond graph can be implemented by a network. In [24],

they observe that the bond graph structure reproduced in Figure 2.63 can be im-

plemented by a network with one transformer (Figure 2.64). A particular feature of

this bond graph structure is that the bond loop includes an odd number of bonds

having the same energy reference direction. As a generalisation of this observation,

they express the conjecture that each bond graph can be implemented as a network

if a certain number of transformers and gyrators is used. This, however, means that

either the functionality of 1- and 0-junctions is extended or networks are considered

realisations of bond graphs even if they contain elements with no correspondence

in the bond graph (see Perelson, footnote in [29]). In [30], Perelson shows that if 1-

junctions connected to a port of an element have an adjacent bond oriented towards

the junction and another pointing away from it (cf. Figure 2.48), then the directed

bond graph is equivalent to the network from which it has been constructed. This

has been taken into account when the procedure for the construction of bond graphs

for non-mechanical subsystems (cf. Figure 2.48) was introduced.

With respect to practical engineering problems, the transformation of a system

schematic into a bond graph is considered to be of primary concern. This holds in

particular for multidisciplinary systems for which graphical model representations

are either not formalised or which use domain specific symbols. Consequently, a
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1993)

unified formalised graphical representation, e.g., a bond graph, is certainly a use-

ful step towards a mathematical model. If the rules discussed above are taken into

account, then the equivalence of the resulting bond graph with the initial representa-

tion is ensured. Moreover, since there are powerful software packages available for

modelling and simulation that, besides other formalisms support bond graphs and

are able to directly process them, there is little need to transform a bond graph of a

multidisciplinary system into a network to have it processed by a program for net-

work analysis. Therefore, the transformation of a given bond graph into a network

is considered less important and will not be furthermore addressed in this book.

2.9 Conclusion

In this chapter, the fundamentals of bond graph based physical system modelling

have been provided. The adjective physical emphasises that the intellectual decom-

position of a system uses the view of an exchange of energy between subsystems

and that there are elementary physical processes on the bottom of the model hierar-
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chy for which fundamental balances, viz., conservation of energy, conservation of

mass, or momentum hold.

Before starting the development of a bond graph model, it must be decided which

physical effects are to be taken into account.4 In bond graphs, these effects are repre-

sented either by a word free of choice for a subsystem, e.g., a transducer or a sensor,

or a reserved symbol denoting a basic physical process, e.g., storage of potential

energy in a spring. Like networks, bond graphs use the abstraction of spatial con-

centration of physical properties. It is a characteristic feature of bond graph based

or network based physical systems modelling that an initial graphical model is de-

veloped by accounting for physical effects in a qualitative manner. Moreover, as

long as the initial bond graph is not simplified, it shows a clear resemblance to the

topological structure in the system schematic.

In contrast to block diagrams, in general, it is not necessary to consider functional

relations in order to construct a bond graph. There is no need to precisely know

how the power conjugated variables of an element are related. It is sufficient to

know which type of an element the constitutive equations define. Consideration and

manipulation of equations can be reserved to subtle cases in which it is unclear

how coupled physical effects can be modelled under given assumptions. The aim of

bond graph based physical modelling is not only to graphically express functional

relations, but to come up with a model that complies with conservations laws of

physics. Such a task is not easy for open thermodynamic systems in which mass

enters and leaves a control volume conveying momentum and energy.

Since the conceptual starting point of bond graph modelling is the energy ex-

change between subsystems, this modelling approach is particularly suited for mul-

tidisciplinary dynamic systems in which several energy domains are involved. More-

over, the introduction of two general power conjugated variables and their assign-

ment to physical quantities in each energy domain enable a uniform description of

basic physical process, viz., the distribution or the storage of energy, and energy

conversion. The uniform representation is reflected by a few elements that are the

same in all energy domains apart from some details, e.g., that there is no inertia in

thermodynamics. Like in networks, there are sources, energy stores and resistors. In

contrast to networks, the range of symbols is limited to those representing funda-

mental effects. For instance, a diode can be considered to be a resistor with a special

characteristic.

The choice of effort and flow variables is based on an analogy between mechani-

cal and electrical quantities. There are two such analogies, the classical force voltage

analogy and the mobility analogy. Both analogies lead to equivalent mathematical

models. Following a widely used convention in the bond graph literature, the clas-

sical analogy is adopted throughout this monograph.

Especially for thermodynamic and process engineering systems, it is also com-

mon to use physical quantities as effort and flow, although their product does not

have the physical dimension of power. With such choices, it is convenient to develop

4 The proper choice of physical effects that need be included in a model clearly has an impact

on the complexity of a model. This subject is briefly addressed in Section 6.9. A recent review of

proper modelling techniques is given in the 2008 article [15] by Ersal and his co-authors.



References 87

pseudo bond graphs. They do have an intuitive meaning, but cannot be coupled to

true bond graphs via transformers or gyrators in general.

True bond graphs as well as pseudo bond graphs can be systematically con-

structed from a system schematic. For that purpose, there are two procedures, one

for mechanical and one for non-mechanical subsystems. Regarding the orientation

of bonds, some rules are crucial in order to ensure that a bond graph complies with

requirements from physics and is equivalent to the initial system representation.

The next chapter discusses how bond graphs can be augmented so that they are

equivalent to a block diagram and how a mathematical model can be derived from

a so-called causally augmented bond graph in a systematic manner. Often, causal

information is added to a bond graph following a basic procedure introduced by

Karnopp and Rosenberg. Once this procedure is available, some interesting aspects

and approaches can be discussed.
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Chapter 3
Derivation of Mathematical Models from Bond
Graphs

3.1 On the Form of a Mathematical Model

Bond graph based physical systems modelling starts from a qualitative considera-

tion of physical effects. In contrast to block diagrams, model development is not

guided by setting up equations. The approach is rather object-oriented as explained

in Section 1.3. This aspect is essential for bond graph based physical systems mod-

elling. Due to its conceptual approach, bond graph modelling can help better un-

derstand the interacting physical processes in a system. Moreover, bond graphs, as

an interdisciplinary graphical description language, can support communication be-

tween experts from different engineering disciplines. Nevertheless, like other graph-

ical means, they shall enable the (automatic) derivation of equations so that the dy-

namic behaviour of a system, already existing or still under design, can be analysed

by solving these equations numerically or symbolically when possible and appro-

priate.

One possible way to derive a set of equations from a directed bond graph is to

set up the constitutive equations of all nodes of the graph after the edges have been

enumerated. The result will be a set of differential-algebraic equations (DAEs) with

much redundant information due to the elements of the junction structure. For model

developers, this approach is certainly convenient

• if all equations are set up automatically,

• if redundant variables and equations are removed symbolically,

• if the processed set of equations is passed on to a numerical solver for differential-

algebraic equations and

• if solutions are available with reasonable computational effort.

However, it is not always appropriate to have a set of differential-algebraic equa-

tions generated with auxiliary variables neither with respect to the modelling aim

nor with respect to its subsequent numerical computation. If, for instance, the aim

is to develop a closed loop control for a system, it is more appropriate to use a state

space model of the system, if possible. Furthermore, sometimes only the entries of

89
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the matrices of linearised state space equations are needed for the use in a soft-

ware program, e.g., MATLAB®/Simulink®1 [2]. In the case of mechanical multi-

body systems, often the equations of motion are generated in the form of Lagrange

equations. On the other hand, the most suitable form of a mathematical model to

be derived from a graph also depends on the capabilities of the available software

tools. In the past, many so-called general purpose simulation programs designed

for the Continuous System Simulation Language (CSSL) standard [19] were not

able or had limited capabilities to process differential-algebraic Equations (DAE)

systems. However, even if a given software program can process DAEs, it may be

convenient to get the program to generate an explicit state space model. A model

developer primarily concerned with the design of a (control) system may prefer a

state space model if numerical difficulties or unnecessary long simulation runs are to

be expected. For instance, the program Dymola®2 [7] may be directed to partition a

large DAE system into smaller coupled sets of equations to solve linear subsystems

symbolically and to try to generate a set of explicit Ordinary Differential Equations

(ODEs) without algebraic constraints.

Given an implicit set of equations, it is an open question which variable is de-

fined by which equation, i.e., which variables are inputs to an equation and which

variable is an output. When dealing with this problem at equation level, the decision

can be made by means of a so-called bipartite graph3. In a bond graph framework,

the same situation arises when the set of equations is generated by setting up the

constitutive equations of each node of a bond graph. However, in this case, it is pos-

sible to already make the input-output decisions at the bond graph level by adding

to one end of each bond a perpendicular stroke, the so-called causal stroke, as will

be explained in the next section. This causal information assigned to a bond is com-

pletely separate from the reference direction of the energy flow indicated by the half

arrow. An essential consequence of augmenting the bond graph with causal strokes

is that the form of the mathematical model can be determined without formulating

and manipulating any equation. After rule based manual or automatic assignment of

causal strokes to all bonds, one can decide whether a set of explicit first order ODEs

can be derived from the bond graph, or whether it will be a DAE system. If inspec-

tion of the causally completed bond graph reveals that the mathematical model to be

derived is an ODE set, then its order (cf. Definition 3.12) and the independent state

variables can be determined directly from the graph. If causal analysis of the bond

graph reveals that the mathematical model has the form of a differential-algebraic

system (descriptor form), then inspection of the causal pattern in the bond graph

allows for statements about the differential index (see Definition 4.9) of the DAE

system.

1 MATLAB®, Simulink® and Symbolic Math Toolbox™ are trademarks of the MathWorks, Inc.,

3 Apple Hill Drive, Natick, MA, 01760-2098 USA, http://www.mathworks.com
2 Dymola® is a registered trademark of Dynasim AB, Ideon Science Park, SE-223 70 Lund, Swe-

den, http://www.dymola.com
3 In a bipartite graph, variables as well as equations are represented by nodes. If a variable appears

in an equation, their corresponding nodes are connected by an undirected edge. See, for instance,

[8].
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Not only mathematical models in state space form or descriptor form may be

derived from a bond graph augmented by causal strokes, but also Lagrange equa-

tions (Section 4.10), transfer functions ( Section 6.2) or a so-called port-controlled

Hamiltonian formulation of equations [6]. That is, bond graphs are a generic model

representation from which different formulations of mathematical models can be

deduced depending on the purpose of the model and the capabilities of the avail-

able software tools. Gawthrop calls bond graphs a core model from which other

representation forms may be obtained by an order of transformation steps [10].

For small and medium scale bond graphs, equations may be manually derived

in a systematic manner. By following bonds back and forth in the graph, as will be

explained later, intermediate variables can be eliminated. In order to avoid mistakes,

it is safer to refrain from elimination of intermediate variables in the case of large

bond graphs and to have a program remove redundant information symbolically

and sort the resulting set of equations. If a program is available that can directly

process bond graphs, then there is no need to derive any equations. Moreover, in

practice, modellers do not need to care about the orientations of bonds or about the

assignment of causal strokes. Both information is added automatically by software

programs, e.g., 20-sim®4 [4], or CAMP-G® [3] when power ports are connected.

However, not all programs remove redundant information from the set of equations

derived from a bond graph. In any case, augmentation of a bond graph by causal

strokes provides valuable insight into the model.

• On the one hand, causal information can help the modeller to reveal inconsis-

tencies which may lead to the reflection of (implicit) modelling assumptions.

Moreover, the model can be checked for structural properties, e.g., structural

controllability.

• On the other hand, causal information can be used by appropriate modelling

programs for automatic generation of equations for transient analysis, transfer

functions, parameter sensitivities, or equations for robustness study in symbolic

form.

Bond graph related aspects of some modelling languages and software tools will be

addressed later in Chapter 11.

Since it may be numerically more efficient to solve a set of explicit ODEs rather

than a DAE system, and since numerical problems become more severe with higher

index DAE systems (see Section 5.1) and Section 5.5), it would be useful to have

information available about the form of the mathematical model before model equa-

tions are set up and symbolically manipulated. In order to derive such information

from a bond graph, the graph must be causally completed by systematically as-

signing causal strokes to all bonds. For that purpose, the concept of computational
causalities is introduced in the next section. A procedure for systematic assignment

of causal strokes is given in Section 3.3. After a discussion of the question of which

variables are to be chosen for state variables (Section 3.4) and after introduction of

the key notion of a causal path, we will be able to consider the simplest class of

4 20-sim® is a registered trademark of the University of Twente, Drienerlolaan 5, 7522 NB En-

schede, The Netherlands, http://www.utwente.nl



92 3 Derivation of Mathematical Models from Bond Graphs

�� A

��

��

��
e

f
B

��

��

Fig. 3.1 Two multiport elements A and B connected by a bond

bond graphs from which state space models may be manually derived. This will be

illustrated by a number of examples. In Chapter 4, classes of bond graphs will be

considered that lead to DAE systems.

3.2 The Concept of Computational Causality

3.2.1 The Notion of Computational Causality

In bond graphs, a bond connects two power ports and there are always two power

conjugated variables assigned to each bond. If we assume that one of the two power

variables is computed in one of the two (multiport) elements connected by that bond

while its conjugated variable is computed in the other element, then apparently, we

must decide which variable is computed in which multiport element.

Consider the two multiport elements A and B depicted in Figure 3.1. Suppose

that the flow f is an independent variable in the constitutive equations of multiport

A. Then, there is an equation among the constitutive equations of A that enables the

computation of the conjugate effort e. However, the flow f can only be an indepen-

dent variable in the equations of multiport A if one of the constitutive equations of

multiport B allows for computation of f , which in turn requires knowledge of the

effort e.

e = fAi (. . . , f , . . .) (3.1a)

f = fBj (. . . , e, . . .) (3.1b)

The situation could be the other way round as well. Making a choice is called an as-

signment of computational causality. It is guided by some quite obvious rules that

will be considered in the following. Causality assignment does not require linear
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element characteristics. (In some cases causality assignment is determined by the

characteristic of an element. For instance, if dry friction is modelled by a 1-port

resistor with a slip friction force related to the sign of the velocity, then there is

no choice. The velocity must be the independent variable in the equation of the 1-

port resistor.) In bond graph literature, often, only the term causality has been used,

which might be a bit confusing because it could be misunderstood as cause and ef-

fect in a physical sense. It is true that Newton’s postulate actio = re-actio holds,

though one cannot determine what is the cause and what must be the effect. A force

acting on a body might be considered the cause for the body’s motion. The opposite

view is also possible. A body in an accelerated reference frame experiences a force.

In bond graph modelling, assignment of causality only means the decision of which

one of the two conjugated variables at a power port is the external one and, therefore,

an independent variable in the constitutive equations of the multiport element un-

der consideration. Consequently, the power conjugated variable is computed in that

multiport element. That is, it is a dependent variable with respect to that element.

Since in a bond graph context causality is related to the computation of variables, the

more precise notion of computational causality should always be used. Assignment

of computational causality superimposes what van Dixhoorn has called a computa-
tional structure on the physical structure represented by the non-causal bond graph.

There is no unique computational structure. It depends on the modeller’s decisions

and the procedure how causalities are assigned. The computational structure is not

determined by physics and must be distinguished from the physical structure.

The decision as to which one of the two power variables assigned to a bond is

computed in which multiport element may be connected with the view that there are

two opposite signals in the control theory sense assigned to each bond [17]. Thus,

each bond graph element with n ports becomes a functional block with n inputs

and n outputs. From this point of view, a causally completed bond graph may be

considered a compact representation of a block diagram. In fact, each causal bond

graph can be systematically transformed into a block diagram [16], although there

is almost no need to do so due to today’s software programs, except for a program

that accepts graphical models only in the form of block diagrams. In Chapter 11,

we will see how different types of software tools can support bond graph modelling.

As mentioned in the introduction, not every block diagram corresponds to a bond

graph. In block diagrams, pure functional relations may be expressed that are not

necessarily consistent with conservation laws from physics.

3.2.2 Representation of Computational Causalities in Bond Graphs

If one of the two power variables at a port is determined to be the independent

one, then the conjugate variable simultaneously is determined by the constitutive

equations of the multiport element. That is, the choice of computational causality at

a port can be expressed by a single bit of information added to the bond connected to

the port. The founders of the bond graph methodology introduced a perpendicular
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Fig. 3.3 Causal stroke and reference direction of the energy flow

stroke added to that end of the bond where the flow is computed in the adjacent

element. Using the control theory view of two opposite signals, we can say that the

causal stroke indicates the direction of the effort signal. At the same time, the other

end of the bond indicates the direction of the flow signal (Figure 3.2).

It must be pointed out that the concept of computational causality is independent

of the choice of reference directions for the energy flows. Consequently, there are

four possibilities of adding a half arrow and a causal stroke to a bond, as depicted

in Figure 3.3. The causal stroke is an additional feature of bond graphs. Hence, we

can discriminate more precisely between causal and acausal bond graphs.

Definition 3.1 (Causal Bond graph). A directed bond graph is called a causal or

causally completed bond graph if a decision with regard to computational causality

has been made for each bond expressed by a perpendicular causal stroke added to

one end of each bond.

Remark 3.1. In a causal bond graph, each bond has two orientations, one indicating

the reference direction of the energy flow and the other determining the direction of

the effort signal.

Definition 3.2 (Acausal bond graph). An acausal bond graph is a directed bond

graph. That is, reference directions for the energy flows have been defined, though

not computational causalities.

3.2.3 Activated Bonds

In measurement and in control processes, the power connected with a signal is so

small compared to other energy flows in a system that it can be neglected. In bond
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Fig. 3.4 Activated bond (Bell and Martens, 1974)

graph modelling, this means that only one of the two power conjugated variables

assigned to a bond is used, while the other one is suppressed. That is, its value is set

to zero for all time instances.

Definition 3.3 (Activated bond). A bond is called activated if one of its power con-

jugated variables is set zero for all time instances.

Remark 3.2. In the bond graph literature, some authors also talk about active bonds

[17]. We will follow Gawthrop and Smith who use the term activated bond in their

book [11].

In some older publications [1], the activation of a bond is expressed by a double

arrowhead attached to the middle of the bond. Depending on which of the two op-

posite signals is to be activated, the additional full arrow either points to the causal

stroke or to the other end of the bond. In the first case, the effort is activated and the

flow is suppressed. In the second case, the flow is activated and the effort is set to

zero (Figure 3.4).

Since the choice of the causality is independent of the reference direction of

the energy flow, the activation arrow is an attribute independent of the half arrow.

Usually, activated bonds are replaced simply by full signal arrows as they are used in

block diagrams. These signal arrows start either from a 0- or a 1-junction, depending

on whether they signify an effort or a flow (Figure 3.5). According to the constitutive

Equations 2.15a and 2.15b of a 0-junction, the effort of one bond determines the

effort of all other adjacent bonds. Conversely, for the determination of its conjugate

flow, the flows of all other bonds are needed. This means that only one causal stroke

may point towards a 0-junction. At all other bonds, the causal stroke must point

away from the junction. It is the effort determining a 0-junction that can be conveyed

by a signal arrow attached to the junction. In Figure 3.5, e1 is the effort determining

the 0-junction. According to Equations 2.16a and 2.16b, the role of a 1-junction is

dual to that of a 0-junction. Consequently, the free end of a single bond is allowed to

point towards a 1-junction. It is the bond that determines the flow at all other bonds.

(In Figure 3.5, it is the flow f1.) At all other bonds, the free end must point away
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Fig. 3.5 Signal arrows conveying the effort of a 0-junction or the flow of 1-junction

from the junction. That is, the flow determining the 1-junction may be conveyed by

a signal arrow attached to the junction (Figure 3.5). At the same time, the single

causal stroke pointing away from a 1-junction means that the effort of that bond is

equal to the sum of efforts at all remaining bonds.

A signal arrow conveying the information effort from a 0-junction or the infor-

mation flow from a 1-junction does not affect power conservation at that junction

because the power connected with the signal arrow is equal to zero.

3.2.4 Rules for Causality Assignment at the Ports of Bond Graph
Elements

There are some obvious and intuitive rules for the choice of causalities at the ports

of bond graph elements (cf. Figure 3.6).

Sources

Depending on the type of a source, its output is either an effort (Se) or a flow (Sf).

0- and 1-Junctions

At a 0-junction, only one effort is allowed to be an input. All others are outputs. At

a 1-junction, conversely, all efforts except one must be inputs to the junction.

Transformers and Gyrators

Since a 2-port transformer couples the efforts of both ports and, separately, the con-

jugated flows, both efforts, apparently, cannot be inputs. That is, one effort may be

an input while the other one must be an output. Note that a decision with regard to

the role of the efforts immediately determines the inverse input-output relationship
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for the flows. Conversely, because gyrators switch the role of effort and flow, both

efforts of a 2-port gyrator must be either inputs or outputs.

Energy Stores

At a power port of an energy store, any of the two power variables may be the

output, although there is a preferred causality. If the constitutive equation of a 1-

port C energy store, q = ΦC(e), (Equation 2.35) is solved for the effort, then the

effort is an output and is obtained by integration of the input with respect to time.

For that reason, this choice of causality is called integral causality.

e(t) = Φ−1
C (q(t))

= Φ−1
C (

∫ t

0

f(τ)dτ) (3.2)

If the constitutive Equation 2.35 is differentiated with respect to time, then the flow

is an output and results from differentiation of the input. In this case, the choice of

causality is called derivative causality.

f(t) =
d

dt
ΦC(e(t)) =

dΦC

de
ė(t) (3.3)

If the input to an energy store with derivative causality immediately jumps to another

value at time t, then there is a problem because the output exhibits a pulse of infinite

height at that time. This problem does not appear with integral causality.

For the dual type of an energy store, the flow is obtained by integration of the

effort with respect to time.

f(t) = Φ−1
I (p(t))

= Φ−1
I (

∫ t

0

e(τ)dτ) (3.4)

That is, for an I energy store with integral causality, the effort is an input. If, however,

the constitutive equation p = ΦI(f) (Equation 2.44) is differentiated, then the

effort is the output.

e(t) =
dΦI

df
ḟ(t) (3.5)

If integral causality can be assigned to all energy stores in a bond graph, explicit

differential equations can be derived from the graph, possibly along with some al-

gebraic constraints due to causally coupled dissipators. If there is a mixture of inte-

gral and derivative causalities, then the resulting mathematical model, in general, is

a DAE system. In former times, simulation languages were designed for so-called

assignment statements. Simulation programs based on these simulation languages

had limited capabilities to solve differential equations with additional nonlinear al-
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gebraic constraints before appropriate numerical solvers, e.g., Gear’s DIFSUB or

Petzold’s DASSL were developed and used by simulation programs. For such rea-

sons, explicit state space models played an important role and are even today still

important in control theory. Thus, integral causality is the preferred causality at

the power ports of energy stores. Nevertheless, e.g., in bond graphs of mechani-

cal multibody systems, it is quite common that a number of ports of I energy stores

have derivative causality because bodies are assumed to be rigidly coupled by joints.

Moreover, it is also possible to choose derivative causality as the preferred causal-

ity. The connection between computational causalities in a bond graph and forms of

mathematical models that can be derived from the bond graph will be discussed in

detail in Chapter 4.

Dissipators

There are no general rules for the computational causalities at the ports of resistors.

These are indifferent with regard to causality. If the characteristic of a 1-port resistor

is one-to-one and has a unique inverse, then the effort or the flow may be the output.

Following electrical engineering, sometimes the terms resistance causality or con-

ductance causality are used. As mentioned, there are cases, e.g., Coulomb friction,

with no choice of computational causality. Moreover, it can be appropriate to ap-

proximate a characteristic with a unique inverse by a piecewise linear characteristic,

e.g., in the case of diodes. Hence, there is no choice in causality.

Causal Conflicts

Figure 3.6 summarises the admissible causal patterns at the ports of bond graph

elements. Patterns that do not comply with these rules are called causal conflicts. For

instance, clearly, two effort sources attached to a 0-junction must lead to a violation

of the rules (Figure 3.7). If the type of the sources is observed, then two causal

strokes point to the junction which violates the junction’s permissible pattern. If

there is no causal violation at the 0-junction, then one source obtains a causality

that does not correspond to its type. Such conflicts indicate physically impossible

situations. Two voltage sources in parallel cannot impose independent voltages. In

this book, causal conflicts in bond graphs will be circled and highlighted by a flash

as depicted in Figure 3.7.

Finally, Figures 3.8–3.10 show the block diagram fragments that correspond to

bond graph elements if causalities have been chosen at their power ports. In Fig-

ure 3.10, a signal block of type INT denotes an integrator.

In the next section, a procedure will be given for the systematic assignment of

computational causalities and their propagation from element ports into the bond

graph. The result will be a causally completed bond graph. Such a bond graph could

be transformed into a block diagram if bond graph elements were replaced by their

block diagram fragments and bonds by two opposite oriented signal arrows.
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Fig. 3.6 Causalities at the ports of basic bond graph elements
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3.3 Sequential Assignment of Computational Causalities

For a systematic, step by step assignment of computational causalities, Karnopp

and Rosenberg introduced the so-called Sequential Causality Assignment Proce-
dure (SCAP) [16, 17], which has become a standard in bond graph literature and

will be recalled first. Later, when we consider the connection between causal pat-

terns in bond graphs and forms of mathematical models that can be derived, some



102 3 Derivation of Mathematical Models from Bond Graphs

��
f

e
I : I

d/dt

I

�

	 	

f

e

��
f

e
I : I

1
I

INT

	

�

	

f

e

��
f

e
C : C

d/dt

C	

�

	

f

e

��
f

e
C : C

INT

1
C

�

	 	

f

e

��
f

e
R : r

1
r

�

	

f

e

��
f

e
R : r

r�

	

f

e

Fig. 3.10 Block diagram fragments corresponding to linear 1-port energy stores and dissipators



3.3 Sequential Assignment of Computational Causalities 103

modifications of the standard procedure as well as alternative approaches will be

discussed.

The Sequential Causality Assignment Procedure (SCAP) of Karnopp and
Rosenberg

1. Assign causality to a power port of one of the sources according to its type and

propagate this causal information into the bond graph through its junction struc-

ture as far as possible by observing causality rules at element ports. Repeat this

step until all ports of all sources are assigned an appropriate causality.

If causal conflicts appear in this phase, model assumptions must be checked and

the model must be changed appropriately.

2. If there is a resistor port with a characteristic that does not have a unique in-

verse, assign the required causality to ensure correct formulation. For example,

the Coulomb friction between two sliding bodies is most commonly assumed to

be proportional to the sign of the velocity difference between the two bodies.

Propagate this causal information into the bond graph through its junction struc-

ture as far as possible by observing causality rules at element ports. Repeat this

step until all such resistor ports have their correct causality.

3. Assign preferred integral causality to a port of an energy store and propagate

this causal information into the bond graph as far as possible. Propagation of the

causality at a storage port may lead to derivative causality at power ports of other

energy stores and often entails an assignment of causality at resistor ports. For

instance, if an I element and a 1-port resistor representing Coulomb friction are

attached to a 1-junction, then the I element port must take derivative causality.

Repeat this step until all storage ports are assigned a causality.

4. Finally, if there are still resistor ports or internal bonds without causality, one

resistor port or an internal bond must be chosen. Causality is arbitrarily assigned

and propagated through the junction structure. This step is repeated until no

causally unassigned bonds are left. (If this last step is needed, this means that

algebraic loops, namely, implicit algebraic equations, will be part of the math-

ematical model to be derived from the causal bond graph. However, many of

today’s software programs supporting bond graph modelling are able to cope

with algebraic loops. They just issue a warning or process the model silently

depending on the program’s settings.)

If there are still unassigned bonds after the fixed causality of resistors and the pre-

ferred causality of energy stores has been propagated, then it appears not to be an

optimal approach to assign an arbitrary causality on an arbitrary chosen bond still

unassigned. In [12], Gawthrop and Smith stress that if bonds remain unassigned,

each iteration of the last part of the procedure corresponds with an implicit algebraic

equation, a so-called algebraic loop. In order to make algebraic variables involved

in these algebraic loops explicit in the bond graph, they propose an alternative to

the last part of the classic SCAP of Karnopp and Rosenberg. Such details will be

addressed in Chapter 5 when combined symbolic, numerical approaches to the so-

lution of DAE systems derived from a bond graph will be discussed. The aim of this
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chapter, first of all, is to show how equations can be systematically derived from a

causally completed bond graph.

The steps of the SCAP are demonstrated by means of the bond graph shown in

Figure 2.52. It corresponds to the network of Figure 2.50. Figure 3.11 shows that

the causal information of the sources is not propagated by the junction structure.

Preferred integral causality at the element C : C1 is propagated by the 0-junction to

the left 1-junction, while preferred causality at the energy store C : C2 is not prop-

agated. Integral causality at the I energy store propagates from the left 1-junction

through the transformer to the 1-junction on the right-hand side. Consequently, the

flow at the right side 1-junction is determined. Hence, the resistor must have resis-

tance causality. Thus, the bond graph has been causally completed. The remaining

steps of the procedure are not necessary in this case.

Alternatively, step 3 of the SCAP could also start with assigning preferred inte-

gral causality to the I energy store. Propagation of this information and application

of the rules, interestingly, results in a fully causally completed bond graph (cf. Fig-

ure 3.12 and Figure 3.13). In practice, often, sources and energy stores determine

causalities at all other bonds of the graph. Examples of bond graphs that remain

causally incomplete after step 3 are considered in Section 3.5.

3.4 On the Choice of State Variables

If a mathematical model is to be set up, the first question that must be answered is

which variables are to be chosen for description of the dynamic behaviour. There

is no unique choice of such variables. Since the bond graph methodology pursues

a physical modelling approach, the choice is confined to those variables having a

physical meaning. Moreover, if their initial values at time t = 0 are given and if the

inputs to the model are known at all times t ≥ 0, then they must enable a unique

computation of all other system variables. Variables that meet these requirements

are called state variables [9].

Definition 3.4 (State variable, System state). Suppose there are q inputs u1, . . . , uq

to a dynamic system and n intermediate variables x1, . . . , xn. Moreover, physical

laws may yield n differential equations

ẋi(t) = fi(x1(t), . . . , xn(t);u1(t), . . . , uq(t)) i = 1, . . . , n . (3.6)

Let t0 ≥ 0 be an arbitrary time point. For all times t ≥ t0, values u1(t), . . . uq(t) of

all q system inputs may be known. Then, n intermediate variables x1(t), . . . xn(t)
are called state variables if they are uniquely determined for all times t > t0
provided their initial values x1(t0), . . . xn(t0) are given. The set of all values

x1(t), . . . xn(t) at time t ≥ 0 is called the state of a system.

Apparently, energy variables, in particular, may be chosen as state variables. They

quantify the content of the energy stores at all times t ≥ 0. In this context, we

will talk more precisely of the energetic state of a system. The energy variable of
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Fig. 3.11 Assignment of causalities to a bond graph
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Fig. 3.13 The C store C : C1 must take integral causality

a 1-port energy store is connected to the co-energy variable by the energy store’s

constitutive equation. Since characteristics of energy stores are assumed to have a

unique inverse, also the co-energy variable may be chosen as a state variable. It is

a power variable and the output of an energy store with preferred integral causality.

In bond graph literature, some authors chose the energy variables of energy stores

in integral causality as state variables, while others use their co-energy variables. In

this book, the latter choice is adopted5.

If a 1-port energy store must receive derivative causality in the process of causal-

ity propagation, then its energy variable is algebraically related to the energy vari-

ables of the energy stores with integral causality. In this case, its state variable is

called a dependent state variable. Energy stores with derivative causality are clas-

sified accordingly as dependent stores. Stores with integral causality are called in-
dependent. These algebraic dependencies between the energy variables of energy

stores of the same type may be especially found in models of rigid multibody sys-

tems due to geometric constraints (cf. Chapter 8).

Transformation of a Dependent Energy Store over a Transformer

Figure 3.14 depicts a simple but typical situation in which two inertias are connected

by a transformer with constant modulus n.

Since the transformer couples the flows at its ports, only one of the two veloc-

ities can be independent and can be chosen as a state variable. Consequently, one

of the two I energy stores must accept derivative causality. In this context, we want

5 Causally completed bond graphs may be converted into a block diagram if needed. While in block

diagrams, usually integrator outputs are chosen as state variables, in bond graphs, the outputs of

energy stores in integral causality are chosen as state variables (in this book). For a C energy

store in integral causality, the output of the integrator is the generalised displacement q. The state

variable eC contributed by the C element is related to q by the energy store’s one-to-one function

ΦC : R → R. That is, there is a transformation relating state variables in the bond graph and state

variables in the corresponding block diagram.
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to point to a typical simplification of bond graphs. If both energy I stores have a

linear characteristic, which is true for non-relativistic mechanics, then one of the

two I energy stores may be transformed to the other side of the transformer and

combined with the I energy store on that side (Figure 3.15). This way, the algebraic

constraint between the two velocities disappears. (Notice the square of the trans-

former modulus in the resulting inertia.) We will come back to this kind of bond

graph processing when we consider the numerical solution of mathematical models

derived from bond graphs.

Kinematic Displacements as State Variables

In bond graphs of mechanical and hydromechanical systems, it may be necessary

to choose the displacements of some inertias as state variables in addition to the

outputs of energy stores with integral causality. These variables are called kinematic
displacements. In spool valves for instance, the cross sectional area of the control

orifices depend on the position, x, of the spool which is simply obtained by integra-

tion of its velocity, v, with respect to time. That is, equations of the form ẋ = v
have to be added to the equations derived from the bond graph.

The Choice of State Variables in Dynamic Networks

The previous considerations regarding the choice of state variables in bond graphs

have their equivalent in dynamic networks. In networks, usually the charge of capac-

itors and the flux linkage of inductors are chosen as state variables. Both variables
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are energy variables. Alternatively, the voltage drop across capacitors and the cur-

rent through inductors may also be chosen as state variables. The latter variables are

co-energy variables. Each loop of capacitors and each cut-set of inductors reduces

the number of independent state variables by one. According to Kirchhoff’s voltage

law and a more general form of his current law, capacitors in a loop and inductors in

a cut-set are not independent. Another reason for a number of state variables smaller

than the number of energy stores are controlled sources that establish relations be-

tween the variables of different energy stores.

3.5 Systematic Derivation of Equations from a Bond Graph
Using Computational Causalities

First, the important notion of a causal path is introduced. It is used in the procedure

for manual derivation of equations from bond graphs. Moreover, it is a frequently

used term in the following.

Definition 3.5 (Causal path). A sequence of bonds from one power port of an ele-

ment to a power port of another element is called a causal path if there is no 2-port

gyrator in between and if all bonds have their causal stroke at the same end.

A cascade of bonds between two power ports with a gyrator in between is called a

causal path if all bonds on one side of the gyrator have there causal stroke at the

same end, while all bonds on the other side of the gyrator have their causal stroke

on the opposite end. That is, the gyrator switches the direction of efforts on one of

its sides.

Figure 3.16 shows two bond graph fragments with a causal path from port 1 to

port 2 and from port 3 to port 4. It is obvious that there may be causal paths with

joint edges, or closed causal paths leading to further definitions that are used in the

next chapter when considering various causal pattern in bond graphs.

Definition 3.6 (Disjoint causal paths). Causal paths that do not share any bonds are

called disjoint.

Definition 3.7 (Bond loop or mesh). A closed cascade of bonds is called a bond
loop, a mesh, or a general mesh.

Definition 3.8 (Simple mesh). A bond loop is called a simple mesh if it includes no

transformers, no gyrators, and no 2-port energy stores or 2-port resistors. In other

words, a simple mesh is a loop of bonds that alternately interconnect 0- and 1-

junctions.

In contrary, general meshes may contain any series of two-port elements and junc-

tions.
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Fig. 3.16 Causal paths between two ports

Definition 3.9 (Simple even (odd) mesh). A simple mesh is called even (odd), if an

even (odd) number of its bonds has the same energy flow reference direction in a

clock-wise or counter-clockwise sense.

Definition 3.10 (Causal loop). If the bonds of a causal path only connect elements

of the junction structure and if the causal path is closed, then it is called a causal
loop.

Figure 3.17 shows an example of a causal loop with bonds 1-2-3-4.

Definition 3.11 (Causal mesh). A causal mesh is a closed causal path with an odd

number of gyrators (Figure 3.18).

First, we will only consider simple examples of causal bond graphs with the

following features:
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• All energy stores have integral causality.

• There are no causal loops and no causal meshes.

• Causal paths between resistor ports do not share bonds.

More general cases are dealt with in Chapter 5. Once outputs of sources, energy

stores and resistors are denoted in the bond graph, an ordered set of model equations

can be manually derived from small and medium size bond graphs in a systematic



112 3 Derivation of Mathematical Models from Bond Graphs

manner [21]. These equations may be coded in a simulation language [15] or in a

modelling language directly from the bond graph.

3.5.1 Procedure for the Manual Derivation of Equations from a
Causal Bond Graph

1. Write the constitutive equations for all independent sources. Their outputs are

given functions of time.

2. In contrast, the output of a controlled source is algebraically related to its input.

If the latter is not an output of an independent source or an energy store with

integral causality, then it can be expressed by means of such outputs by back

propagation of causal paths in the junction structure and by eliminating interme-

diate variables.

3. The outputs of resistors algebraically depend on their inputs. By back propaga-

tion along causal paths through the junction structure, their outputs can be ex-

pressed by sources either independent, or controlled ones and outputs of energy

stores. The outputs of dependent sources do not need to be eliminated since they

have already been determined in the previous step.

If there are causal paths between resistor ports, implicit and likely nonlinear al-

gebraic equations will result.

4. For storage ports, the derivative with respect to time of an output is a function

of the input(s). By working back causal paths, the inputs can be expressed by

outputs of other energy stores, resistors, or sources.

3.5.2 Application of the Procedure to Some Examples

Bond Graph with Stores in Integral Causality, No Causal Paths between Resistive
Ports, No Causal Loops and No Causal Meshes

For illustration of the procedure, equations will be derived from the causal bond

graph of Figure 3.11 of the network in Figure 2.50. Application of the procedure

yields the following ordered set of equations.

Independent Sources

U = f1(t) (3.7a)

I = f2(t) (3.7b)
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Dissipators

uR = R n iL (3.7c)

Energy Stores

u̇C1 =
1
C1

[ I − iL ] (3.7d)

u̇C2 =
1
C2

n iL (3.7e)

d

dt
iL =

1
L

[ uC1 − n ( uC2 + uR − U ) ] (3.7f)

The equations can be processed directly in this order. Moreover, after the elimination

of the output of the resistor in the equations of the energy stores, the equations of

the energy stores may be written in linear state space form

d

dt

⎡⎣uC1

uC2

iL

⎤⎦
︸ ︷︷ ︸

ẋ

=

⎡⎣ 0 0 −1/C1

0 0 n/C2

1/L −n/L −n2R/L

⎤⎦
︸ ︷︷ ︸

A

⎡⎣uC1

uC2

iL

⎤⎦
︸ ︷︷ ︸

x

+

⎡⎣ 0 1/C1

0 0
n/L 0

⎤⎦
︸ ︷︷ ︸

B

[
U
I

]
︸ ︷︷ ︸
u

(3.8)

with the state vector x = [uC1 , uC2 , iL]T and the vector of system inputs u =
[U, I]T . The superscript T denotes the transposition of vectors. In the case of non-

linear resistor characteristics, the set of state equations takes the more general form

ẋ(t) = f (x(t),u(t)) . (3.9)

Bond Graph with a Causal Path between Resistive Ports

In order to demonstrate the application of the procedure to a bond graph with a

causal path between resistor ports, the I energy store in the bond graph of Figure 3.11

is replaced by a resistor (Figure 3.19).

From the modified bond graph portrayed in Figure 3.19, the following equations

can be derived, eliminating intermediate variables by back tracking causal paths into

the junction structure.

Sources

E = f1(t) (3.10a)

F = f2(t) (3.10b)
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Dissipators

eR1 = R1 n
1

R2
[ n ( eC1 − eR1 ) + E − eC2 ] (3.10c)

fR2 =
1

R2
[ n ( eC1 − R1n fR2 ) + E − eC2 ] (3.10d)

Energy Stores

ėC1 =
1
C1

[ F − n fR2 ] (3.10e)

ėC2 =
1
C2

fR2 (3.10f)

The equations of the resistors preceding the equations of the energy stores are im-

plicit, but not coupled. Thus, each of them may be solved independent from the

other one and the set of equations can be solved exactly in that order. If the output

of a resistor was expressed by means of the output of sources, energy stores and

the output of the other resistor, the resulting equations for the resistors would be

shorter because causal paths to the next output are shorter, but the equations would

be coupled.

eR1 = R1 n fR2 (3.10g)

fR2 =
1

R2
[ n ( eC1 − eR1 ) + E − eC2 ] (3.10h)

If the equations of the resistors are linear, as in this example, they may be solved

symbolically and the outputs of resistors may be eliminated in the equations of the

energy stores. The result is a state space model (Equation 3.8 or Equation 3.9). Oth-
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erwise, the set of equations remains in the form of a DAE system which results if

certain types of causal paths appear in the bond graph. In the case of this simple

example, the equations can be easily formulated in a simulation language or in a

modelling language and processed by software supporting the language. More gen-

eral cases of causal paths and the question of the differential index of the resulting

DAE system are dealt with in the next chapter.

Bond Graph with a Controlled Source

Next, the procedure is applied to an example in which a source is controlled by a

system input and a state variable. Consider the voltage follower depicted in Fig-

ure 3.20. Often, a voltage controlled voltage source is used as core functional model

of an operational amplifier. Usually, in addition to a high amplification, Ad < ∞,

the model accounts for an input resistance Ri of high value and an output resis-

tance Ro of low value. The behavioural macro model (Figure 3.21) may be easily

transformed into the bond graph depicted in Figure 3.22. The signals starting from

the 0-junctions transmit the junction’s effort as an information without affecting the

power balance at these nodes. The power flows associated with the activated bonds

are zero by definition. The summing node builds the voltage drop, ud, across the

input resistor that modulates the internal voltage source of the amplifier. First, we

write the equation of the independent source.

Independent Sources

Vi = fi(t) , (3.11a)

where fi is a given function of time, t, that imposes a voltage Vi on the system.
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Fig. 3.20 Voltage follower
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From the bond graph of Figure 3.22, the following equations are derived.

Dependent Sources

V = Ad ( Vi − uc ) (3.11b)

Resistors

ii =
1
Ri

( Vi − uc ) (3.11c)

io =
1

Ro
[ V − uC ] (3.11d)

Energy Stores

u̇C =
1
C

( ii + io ) (3.11e)

For high values of the amplification, Ad → ∞, these equations reduce to uc = Vi.

That is, the voltage across the capacitors follows the input voltage.

In this example, the initial DAE system can be reduced to an explicit state space

model. In general, if the signals modulating dependent sources, transformers, or

gyrators can be expressed by system inputs or state variables, then the mathematical

model can be written in state space form provided there are no causal paths between

resistor ports, no causal conflicts at junctions, and all storage ports can be assigned

integral causality [20].

Bond Graph of the Rolling Cylinder Example

Finally, we will derive the equations of motion for the rolling cylinder on an inclined

plane (Figure 2.45) from the bond graph constructed step by step in Section 2.7. The

simplified and causally completed bond graph is shown in Figure 3.23. In this simple

example, the energy stores determine causalities at all other bonds.

From the bond graph, the following equations are derived.

Independent Sources

F = mg sin α (3.12a)

Dissipators

FR = b (v − r ω) (3.12b)
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Energy Stores

v̇ =
1
m

[ F − Fsp − FR ] (3.12c)

Ḟsp = k v (3.12d)

ω̇ =
1
J

r FR (3.12e)

These equations may be written in state space form.

d

dt

⎡⎣ v
Fsp

ω

⎤⎦
︸ ︷︷ ︸

ẋ

=

⎡⎣−b/m −1/m b r/m
k 0 0

r b/J 0 −r2b/J

⎤⎦
︸ ︷︷ ︸

A

⎡⎣ v
Fsp

ω

⎤⎦
︸ ︷︷ ︸

x

+

⎡⎣1/m
0
0

⎤⎦
︸ ︷︷ ︸

B

[F ]︸︷︷︸
u

(3.13)

The equations derived from the bond graph may also be rewritten into two Lagrange

equations for the displacements, x, ϕ, of the inertias.

mẍ + b (ẋ − rϕ̇) + kx = mg sin α (3.14a)

Jϕ̈ + r mẍ + r kx = r mg sin α (3.14b)

The Lagrange equations can also be obtained in the traditional way by adding up

the components in x-direction of all forces acting at the centre of gravity and by

adding all moments at the contact point. Later in Section 4.10, we will see how

Lagrange equations can be directly derived from a bond graph by using a procedure

introduced by Karnopp.
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3.6 Independent State Variables

In the previously considered examples, the differential equations derived from the

bond graph can be transformed into a state space model (Equation 3.9) in which

the number of independent state variables equals the number of energy stores with

integral causality. By means of an example, we will show that the number of in-

dependent state variables may be smaller than the number of energy stores with

integral causality.

Definition 3.12 (Order of the model). It is assumed that kinematic displacements

are not needed to describe the dynamic behaviour of a system.

If integral causality has been assigned as preferred causality to the power ports of

storage elements, then the order of the model is the number of power ports of energy

stores with integral causality.

Remark 3.3. The order of the model apparently equals the number of independent

initial conditions [20].

Energy stores with integral causality are important because their output or their

energy variable may be chosen as a state variable. For energy stores with derivative

causality, the energy variable algebraically depends on the energy variables of en-

ergy stores with integral causality and/or source outputs (system inputs). Therefore,

they do not contribute to the system state. They are called dependent state variables
and can be eliminated in the case of linear equations.

Each energy store in a bond graph contributes a differential equation determining

a state variable. If kinematic displacements are needed, e.g., the bond graph contains

transformers modulated by kinematic displacements, then in addition to the differ-

ential equations of all energy stores with integral causality, equations of the form

ẋ = v are needed for a complete description of the system state. (x denotes a kine-

matic displacement, while v is the flow of an I energy store.) Hence, in this case, the

number of state variables is higher than the number of energy stores with integral

causality. However, it may also be smaller.

Definition 3.13 (Dimension of the state vector). It is assumed that kinematic dis-

placements are not needed to describe the dynamic behaviour of a system. Then, the

dimension of the state vector equals the number of I and C ports.

Definition 3.14 (Order of the set of differential equations). The order of the set of

differential equations is equal to the number of independent state variables ([20], p.

34).

Remark 3.4. A number of n independent state variables means that the set of first-

order ODEs may be transformed into a single ODE of order n.

In the case of a set of linear first-order ODEs its order denotes the number of

eigenvalues distinct from zero.
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Fig. 3.25 Bond graph of two masses interconnected by a spring

Example: Two Oscillating Masses Connected by a Spring

Consider the simple example of two oscillating masses connected by a spring with

an external force acting on mass m1 as depicted in Figure 3.24 [13]. The corre-

sponding bond graph in Figure 3.25 shows that the preferred integral causality can

be assigned to all three energy stores. That is, their initial conditions can be chosen

arbitrarily. Thus, the order of the model is three. Derivation of the equations shows

that the initial values for the velocities v1(t), v2(t) can be independently chosen at

times t > 0, however, the velocities are dependent. That is, the order of the system

of equations is two.

The following equations can be derived from the bond graph.

v̇1 =
1

m1
(F − Fsp) (3.15a)

v̇2 =
1

m2
Fsp (3.15b)

Ḟsp =
1
C

( v1 − v2 ) (3.15c)

As there is no need for kinematic displacements as state variables, the dimension of

the state vector is three. Equations 3.15a and 3.15b yield
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m1v1 + m2v2 =
∫ t

0

F (τ) dτ + const . (3.16)

The integration constant, const, is

p0 := m1v10 + m2v20 = const . (3.17)

That is, the initial values v10 := v1(t = 0), v20 := v2(t = 0) can be chosen

arbitrarily. At times t > 0, the velocities are dependent.

If the Equations of motion 3.15a–3.15c are written as vector state equation, the

dependency of state variables is also reflected by a singular system matrix A of rank

two with one vanishing eigenvalue and two complex eigenvalues (Equations 3.18

and 3.19).

⎡⎣ v̇1

v̇2

Ḟsp

⎤⎦
︸ ︷︷ ︸

ẋ

=

⎡⎢⎢⎢⎢⎣
0 0 − 1

m1

0 0
1

m2
1
C

− 1
C

0

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎣ v1

v2

Fsp

⎤⎦
︸ ︷︷ ︸

x

+

⎡⎢⎣
1

m1
0
0

⎤⎥⎦
︸ ︷︷ ︸

B

[
F

]︸︷︷︸
u

(3.18)

det(λI − A) = λ

[
λ2 +

1
C

(
1

m1
+

1
m2

)]
= 0 (3.19)

In the general case of a linear bond graph in which all energy stores have integral

causality, the state space equations are of the form

ẋ(t) = Ax(t) + Bu(t) (3.20)

with the n × n system matrix A, the input matrix B, the vector of state variables x
and the vector u of system inputs. The order of the model then equals the number,

n, of rows (columns) of the state matrix A, while the order of the system of differ-

ential equations is equal to the number, q, of eigenvalues of A distinct from zero.

In other words, the order of the model is equal to the degree of the denominator

polynomial of all entries in the transfer matrix H(s) = [L yj/L ui], s ∈ C, from

any input ui to any output yj . The number of independent state variables is equal to

this denominator degree minus the number, k, of integrators in a transfer function.

The number, q, of independent state variables is also equal to the rank of the

system matrix. The characteristic polynomial, P, of the system matrix A reads

P (s) := det(sI − A) = sn + (a11 + a22 + . . . + ann)︸ ︷︷ ︸
αn−1

sn−1 + . . . + detA︸ ︷︷ ︸
α0

.

(3.21)

If a power of s, sk, k ≥ 1 can be factored out of this sum, that is, P takes the form

P (s) = sk(sn−k + αn−1s
n−k−1 + . . . + αk+1s + αk) , (3.22)
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then k coefficients α0 . . . αk−1 must vanish. (The coefficients αi, i = 0, n − 1 are

functions of the coefficients of the system matrix.) For the system matrix A, these

contraints mean that k of its rows are linearly dependent of the n − k other rows.

Thus, rankA = n − k = q.

In the example of two oscillating masses interconnected by a spring, the number

of independent state variables is two. Thus, it is sufficient to chose the spring force

Fsp and one of the two velocities, say v1, as state variables. If p(t) :=
∫ t

0
F (τ)dτ +

p0 denotes the total momentum of both masses at time t, then

v̇1 =
1

m1
(F − Fsp) (3.23a)

Ḟsp =
1
C

[(
1 +

m1

m2

)
v1 − p(t)

m2

]
. (3.23b)

The other velocity, v2, is uniquely determined by Equation 3.16. Consequently, the

two masses interconnected by a spring may be described by the following DAE

system

⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦⎡⎣ v̇1

Ḟsp

v̇2

⎤⎦ +

⎡⎢⎢⎢⎣
0

1
m1

0

− 1
C

(
1 +

m1

m2

)
0 0

m1 0 m2

⎤⎥⎥⎥⎦
⎡⎣ v1

Fsp

v2

⎤⎦ =

⎡⎢⎢⎢⎣
1

m1
F

− 1
C

p(t)
m2

p(t)

⎤⎥⎥⎥⎦ .

(3.24)

In Equation 3.24, the matrix pre-multiplying the time derivative of the so-called

descriptor vector x = [v1, Fsp, v2]T includes a vanishing row for the dependent

inertia m2. That is, the matrix is singular.

If Equation 3.15c for the spring force is differentiated with respect to time, then

after elimination of the differentiated velocities, a second order ODE for the spring

force is obtained

F̈sp +
1
C

m1 + m2

m1 m2
Fsp =

1
m1

F (3.25)

with the undamped natural frequency ω0 given by Equation 3.27. That is, the order

of the system of differential equations in this example is two.

Causalities in the bond graph of Figure 3.25 do not reflect that for times t > 0 the

velocities are dependent. Thus, the number of storage ports with integral causality

does not necessarily equal the number of independent state variables. Nevertheless,

the number of independent state variables may be directly determined from a bond

graph prior to the formulation of any equations. Again, we assume that no kinematic

displacements are needed for a complete state description. In [14], Karnopp intro-

duces a modification of the standard Sequential Causality Assignment Procedure

(SCAP). In this modified procedure, all energy stores obtain derivative causality as

the preferred causality. As a result of propagation of this preferred causality, it may

happen that a storage port must accept integral causality. Again, this is an indication

that the energy variables of some energy stores algebraically depend on those of

other energy stores. If this so-called all derivative approach is applied to the exam-
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�� 1

��
v2

I : m2

Fig. 3.26 Bond graph with derivative causalities as preferred causalities

ple of the two interconnected masses, it turns out that one I energy store must have

integral causality (Figure 3.26). Hence, their co-energy variables, the velocities v1,

v2, cannot be independent. The unmodified SCAP using integral causality as the

preferred causality does not reveal this result.

If the outputs of the energy stores with preferred causality are chosen as state

variable, the following equations are obtained from the bond graph in Figure 3.26.

[
F1

vsp

]
=

[
0

m1 m2

m1 + m2−C 0

] [
Ḟ1

v̇sp

]
+

[ m1

m1 + m2
0

] [
F

]
+

[
0
C

] [
Ḟ

]
.

(3.26)

In Equation 3.26, the 2 × 2 matrix pre-multiplying the vector of rates, [Ḟ1, v̇sp]T ,

is non singular. The eigenvalues, λ, of its inverse are given by the characteristic

equation λ2 + ω2
0 = 0 with

ω2
0 :=

1
C

m1 + m2

m1 m2
. (3.27)

3.7 Determination of the Number of Independent State Variables
Directly from the Bond Graph

The number of independent state variables may be determined from the bond graph

in the following manner [20]. First, the bond graph is causally completed using in-

tegral causality as the preferred causality by means of the unmodified SCAP. In a

second step, causality assignment is repeated by using derivative causality as the

preferred causality (all derivative mode of the SCAP). As a result, the number of in-
dependent state variables equals the number of storage ports that have the preferred
causality in both modes. In other words, if n denotes the order of the model and k
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the number of energy stores that retain integral causality, when preferred derivative

causality is assigned, then the number of independent state variables, q, equals n−k.

This difference is also called the bond graph rank (BG − rankA) of a n × n state

matrix A ([5], Chapter 8) and is equal to its rank if there are no numerical perturba-

tions in the entries of the state matrix and no numerical errors in the computation of

its rank. (It is also equal to the number of non-zero eigenvalues of the state matrix.)

The number of energy stores that retain integral causality when preferred derivative

causality is assigned, k, is called the number of (structural) null modes. If a transfer

function is set up, k is equal to the number of integrators 1/s in the transfer function.

Assuming that kinematic displacements are not needed to describe the dynamic

behaviour of a linear time-invariant system, then these results can be summarised in

the following manner.

Proposition 3.1 (Rank of the state matrix). The rank of the state matrix equals the

number of I and C ports in derivative causality if derivative causality is chosen as

the preferred causality.

Proposition 3.2 (Number of null eigenvalues of the state matrix). The number of

null eigenvalues of the state matrix equals the number of null poles in the transfer

functions and is equal to the number of I and C ports that must accept integral

causality when derivative causality is the preferred causality.

In the example under consideration, the number of storage ports that retain inte-

gral causality when derivative causality is the preferred one is equal to one. Notice

that the all derivative mode of the SCAP is only used to compare the number of

storage ports with preferred causality in both modes and to determine the number

of independent state variables. The example shows that instead of the unmodified

SCAP, also the SCAP in all derivative mode could be used. The equations, derived

from the bond graph causally completed this way generally have the form of a DAE

system. In the case of the example, it can be transformed into an ODE since the

matrix pre-multiplying the vector of rates is non-singular.

Remark 3.5. The example of two oscillating masses interconnected by a spring is a

well known example of a so-called semi-definite or degenerated vibratory system

[18]. The system has a non-vibratory rigid body motion corresponding to the zero

eigenvalue and a vibratory mode, viz. the relative motion between the two bodies

corresponding to the pair of conjugate complex eigenvalues.

Example: RC Network

For illustration of the determination of the number of independent state variables

from a bond graph, let us consider another example. Figure 3.28 displays the bond

graph of the simple RC network of Figure3.27.

Since all three C storage elements take the preferred integral causality, the order

of the model is three. However, if derivative causality is the preferred causality, then

only one of the three energy stores can accept derivative causality (cf. Figure 3.29).
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Fig. 3.27 Circuit schematic of a simple RC network
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Fig. 3.28 Bond graph of the RC network in Figure 3.27

Consequently, the bond graph rank of the system matrix equals one, (BG − rank)A
= 1. As a result, there should be one eigenvalue distinct from zero, and two null

modes and the number of independent state variables is one. This will be verified.

From the bond graph with preferred integral causality, the following state equations

can be derived.

⎡⎣ ė1

ė2

ė3

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− 1
C1R

1
C1R

1
C1R

1
C2R

− 1
C2R

− 1
C2R

1
C3R

− 1
C3R

− 1
C3R

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎣ e1

e2

e3

⎤⎦ +

⎡⎢⎣
1
C1
0
0

⎤⎥⎦ [
F

]
(3.28)
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��
e1 q̇1

C : C1

��
e2 q̇2

C : C1

		

e2 q̇2

C : C3

Fig. 3.29 Bond graph of the RC network with preferred derivative causality

Actually,

det(sI − A) = s2
[
s1 +

(
1

C1R
+

1
C2R

+
1

C3R

)]
. (3.29)

That is, the number of null modes equals two (k = 2) and the number of independent

state variables is one (q = 1). As it is easily checked on A, rankA = 1. It is

not surprising that there is only one state variable. The following equations can be

immediately derived from the circuit schematic of Figure 3.27.

q̇2 = F − C1ė1 (3.30a)

C2ė2 = q̇2 = q̇3 = C3ė3 (3.30b)

eR = R (F − C1ė1) (3.30c)

Hence, e1 as a state variable and F (t) as input are sufficient to determine all other

variables.

3.8 Conclusion

In an initial phase of bond graph based physical modelling, an ideal physical model

is developed by making assumptions and by deciding which physical effects are to

be taken qualitatively into account. The next step towards a quantitative analysis

is the systematic development of a mathematical model to be derived from a bond

graph. For that purpose, the founders of bond graph methodology introduced the

concept of computational causality. For each power port, one decides which of the

two power variables is an independent variable in the constitutive equations of the
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multiport under consideration. Simultaneously, the conjugate variable must be pro-

vided from that power port adjacent at the other end of the bond connecting both

ports. This decision is expressed by a perpendicular stroke attached to one end of

the bond. Thus, the physical structure displayed by the acausal bond graph is su-

perimposed by a computational structure. Causality can be assigned to power ports

without knowing actual constitutive equations. Only a certain type of constitutive

equations is assumed. If the constitutive equations for all bond graph nodes are

known, then the causally completed bond graph corresponds to a block diagram and

could be transformed systematically into a block diagram. However, since results

obtained from a block diagram can also be directly derived from the bond graph

itself, such a transformation does not lead to further results from a methodologi-

cal point view. Regarding the derivation of transfer functions or the simulation of

the dynamic system behaviour, there are several programs available that accept a

combination of bond graphs and block diagrams.

Concerning mathematical models to be derived from a bond graph, an essential

feature of bond graphs is that after causalities have been assigned, statements can

be made about the form of the mathematical model, the model order, the number of

independent state variables without formulating and rearranging any equations. It is

not even necessary to know actual functional relations. It is sufficient to know which

types of variables are related, e.g., whether it is a relation between an effort and the

integral of the flow or between the effort and the flow at a power port. In general,

a nonlinear relation will be assumed. Relations between causal patterns in a bond

graph and features of mathematical models will be considered in detail in the next

chapter. In this chapter, rules for causality assignment are discussed that obviously

result from the properties of the elements. Moreover, for the systematic assignment

and the propagation of causalities, the Sequential Causality Assignment Procedure,

SCAP, introduced by Karnopp and Rosenberg, has become a standard procedure in

bond graph literature.

As state variables, either the energy or the co-energy variables of energy stores

with integral causality may be chosen. In this book, co-energy variables are used.

They are power variables and outputs of the energy stores. Both the energy and co-

energy variable of a 1-port energy store are related by its characteristic assumed

to be one-to-one and having a unique inverse. In addition to these state variables,

kinematic displacements may be needed for a complete state description, especially

for the planar or 3D motion of mechanical systems. Energy stores with derivative

causality do not contribute to the state of a system. Their energy variable depends

on the energy variables of other energy stores with integral causality. Having intro-

duced the notion of a causal path, a procedure is given for the manual derivation

of equations from bond graphs of small and medium size. The procedure assumes

that there are no energy stores with derivative causality, no causal loops, no causal

meshes and that causal paths between resistor ports do not share bonds. Application

of the procedure has been illustrated by some simple examples.

Finally, it has been shown how the number of independent state variables, the

order of the system of differential equations, can be determined from the bond graph.

To that end, causality assignment is repeated by using derivative causality as the
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preferred causality. The number of storage ports having the preferred causality in

both modes of the SCAP equals the number of independent state variables. It is the

smallest number of state variables needed for the description of the system state

provided no kinematic displacements have to be added.
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Chapter 4
Causal Bond Graphs and Forms of
Mathematical Models

4.1 Causal Paths Between Resistive Ports

After the discussion of the systematic construction of bond graphs, their causal aug-

mentation and the systematic derivation of equations from a causal bond graph, we

are prepared to consider different causal patterns in bond graphs and their relation

with different forms of mathematical models in detail.

As a general prerequisite, we assume that if controlled sources appear in a bond

graph, their modulating signal can be expressed by system inputs or by state vari-

ables. Furthermore, if transformers and gyrators are modulated, they are allowed to

be modulated only by state variables. The reason for this confinement is that oth-

erwise, algebraic loops may result that are not easily detected by inspection of a

causal bond graph as will be explained in more detail in Section 4.8.

In Chapter 5, approaches to the symbolic and numerical solution of mathematical

models derived from bond graphs are considered in detail [4, 5].

It has already been pointed out in the previous chapter that a causally completed

bond graph gives indication to the form of a mathematical model prior to any equa-

tions formulation. In that context, the notion of a causal path plays an important

role (Definition 3.5). The simplest case of bond graphs has already been dealt with.

That is, all storage ports have preferred integral causality. There are neither causal

paths between resistive ports, nor causal loops, nor causal meshes in the junction

structure. In this case, the equations derived from the bond graph can be written in

state space form.

In the following, relaxations of these conditions will be considered. First, causal

paths between resistive ports are allowed as they result in bond graphs, e.g., of elec-

trical or hydraulic Wheatstone bridges. Figure 4.1 shows a hydraulic bridge circuit

with variable area orifices and a symmetric double acting cylinder in the load di-

agonal. The piston has a cross sectional area A and a mass m. The transformation

of the circuit schematic into a bond graph is straightforward. Choosing the return

pressure of the reservoir, pT , as a reference results in the bond graph depicted in

Figure 4.2. The annotations gi() of the resistor symbols denote a nonlinear function

129
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Fig. 4.1 Hydraulic Wheatstone bridge with a symmetric double acting cylinder in the load diagonal

relating the pressure drop across the orifice to the volume flow through the orifice

according to Bernoulli’s law. Since the example is a hydraulic circuit, power vari-

ables are denoted by the symbol ‘p’ (pressure) and ‘Q’ (volume flow), as common in

hydraulics. The bond graph of Figure 4.2 shows two disjoint causal paths between

the resistive ports with bonds enumerated 1 − 2 − 3 and 4 − 5 − 6.

If the outputs of the resistors Ri are denoted pi or Qi depending on their causal-

ity, then the following set of equations can be derived from the bond graph of Fig-

ure 4.2.

pS = fS(t) (4.1a)

p1 = g−1
1 ( Q2 − A v ) (4.1b)

Q2 = g2 ( pS − p1 ) (4.1c)

Q3 = g3 ( pS − p4 ) (4.1d)

p4 = g−1
4 ( Q3 + A v ) (4.1e)

v̇ =
1
m

[ ( pS − p4 ) − ( pS − p1 ) ] (4.1f)

The system of algebraic equations for the outputs of the four resistors is divided into

two separate subsystems with two coupled equations because the two causal paths
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Fig. 4.2 Bond graph of the hydraulic bridge with two disjoint causal paths between resistive ports

are disjoint. Two of the four algebraic unknowns belong to one subsystem, while

the other two belong to the other. Variables p1 and Q2 both belong to the causal

path with bonds labelled 1−2−3. The corresponding Equations 4.1b and 4.1c may

be graphically represented as a signal flow loop along the causal path 1 − 2 − 3.

Consider the signal flow loop along the causal path 1 − 2 − 3. The volume flow Q2

enters into resistor 1. The pressure p1 leaving that resistor is an input into resistor 2,

while the volume flow Q2 is an output of resistor 2. That is, both power variables of

each bond of the causal path are involved in the signal flow loop. This gives rise to

the following definitions.

Definition 4.1 (Topological loop). A topological loop is a signal flow loop along

a causal path or a causal loop. The causal path must not begin or end at an ideal

source.
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Remark 4.1. A causal path that begins or ends at an ideal source is not associated

with a topological loop because the power port variables of an ideal source or sink

are not related. In other words, an ideal source breaks a topological loop.

Definition 4.2 (Topological path). A topological path is a part of a topological loop.

It is a signal flow graph fragment that represents bond variables and constitutive

relations being part of a causal path.

Definition 4.3 (Algebraic loop). If the variables of a topological loop depend alge-
braically on themselves, that is no integration with respect to time is involved, then

the topological loop is called an algebraic loop.

Definition 4.4 (Order of a topological loop). The order of a topological loop de-

notes the number of remaining integrators involved in the causal path. If there is

no remaining integration in the causal path, then the topological loop is called a

zero-order loop.

Definition 4.5 (Flat loop). A topological loop is called a flat loop if both opposite

signals of each bond being part of the causal path or causal loop are involved in the

signal flow loop.

Remark 4.2. A flat loop passes each bond of the causal path or causal loop twice.

Figure 4.3 depicts a flat loop related with the causal path 1 − 2 − 3.

Definition 4.6 (Open loop). A topological loop that uses only one of the opposite

signals of some or all bonds in a causal path is called an open loop.

Remark 4.3. Prerequisite for an open loop is a bond loop. (Definition 3.7).

The topological loop in Figure 4.4 only uses one of the two power variables of the

bonds involved in the bond loop. Hence, according to the above definition, it is an

open loop. There is a second open loop not depicted in the graph that runs in parallel

to the first, but is oppositely oriented. The places where the signal path that leaves

0 �� R

��

1 �� R

� �

Fig. 4.3 Flat loop related with a causal path
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Fig. 4.4 Example of an open loop with mesh stubs

the bond loop reverses in a 1-port passive element and returns into the bond loop are

called mesh stubs [10].

In [10], Brown observes:

Most loops in passive systems are flat, and in fact a tree-like bond graph (with no meshes)

cannot have other than flat loops.

The topological loops in the bond graph of the example are parts of a signal flow

graph that can be assigned to the bond graph. This link between bond graphs and

signal flow graphs will be considered later in Chapter 6 in more detail. In this chap-

ter, it sufficient to note that a causal path between two resistive ports indicates an

algebraic loop.

In the example under consideration, the causal paths do not touch. Thus, for

each of the two causal paths, we can substitute one of the algebraic equations into

the other one. As a result, we obtain two implicit algebraic equations that can be

separately solved. With the solutions of the two equations the other unknown can be

directly computed. In Section 5.4, we will consider the case in which causal paths

share bonds and introduce an approach leading to a small set of coupled equations.

Once its solution is known, all other algebraic unknowns can be directly computed.

In [32], van Dijk introduces several classes of causal paths depending on the

type of ports they connect or whether they are closed. He calls causal paths between

resistive ports class-2 zero-order causal paths. The prefix zero-order emphasises

that the variables of the causal path are algebraically coupled.

If the outputs of the resistors in the bond graph of Figure 4.2 are combined into

an auxiliary vector h = (p1, Q2, p4, Q3)T , then the equations of the example may

be written in the general form

h(t) = f1(x(t),h(t),u(t) ) (4.2a)

ẋ(t) = f2(x(t),h(t),u(t) ) (4.2b)

with x = [v] and u = [pS ].
The causal paths in the bond graph of Figure 4.2 indicate that the standard Se-

quential Causality Assignment Procedure (SCAP) requires an inversion of the char-

acteristic of two of the four resistors, which is possible in this case. In the case of
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non-invertible characteristics, the causalities at two resistive ports would not agree

with the form of the constitutive equations. We could account for non-invertible

resistor characteristics by writing Equations 4.1b and 4.1e in the form

g1 (p1) = Q2 − A v (4.3a)

g4 (p4) = Q3 + A v , (4.3b)

leading to a semi-explicit nonlinear DAE system of the general form

0 = f̃1(x(t),h(t),u(t) ) (4.4a)

ẋ(t) = f2(x(t),h(t),u(t) ) . (4.4b)

We will consider another causality assignment procedure in addition to the standard

Sequential Causality Assignment Procedure (SCAP) used so far. It is the method of

relaxed causalities as introduced by Joseph and Martens (cf. Section 4.9).

4.2 Some Fundamentals from the Theory of
Differential-Algebraic Systems

Figure 4.2 of the previous example illustrates that the mathematical model derived

from a bond graph takes the form of a DAE system if there are causal paths between

resistive ports. An essential characteristic of DAE systems is their so-called index.

To put it simply, it is an indication of how far away a DAE system is from an ODE

system. An early 1982 article by Petzold [27] considering some of the difficulties

that can occur with the numerical solution of DAE systems is titled:

Differential/Algebraic Equations are not ODEs

A general experience is that the higher the index is, the more difficulties are to

be expected with the numerical solution of the DAE system (see Section 5.1 and

Section 5.5).

Regarding the index of a DAE system, some definitions are required. By pro-

viding them, we will follow the presentation in the fundamental book of Brenan,

Campbell and Petzold [8]. In the very first sentence of the preface, the authors point

out that:

Differential-algebraic equations (DAE’s) arise naturally in many applications, but present

numerical and analytical difficulties which do not occur with ordinary differential equations.

Some books on DAE systems are, e.g. [16–18].

In the following, we assume a linear differential-algebraic set of equations of the

form

Aẋ(t) + Bx(t) = f(t) . (4.5)

In Equation 4.5, A,B are n× n matrices with constant coefficients, f : R → R is a

vector function of the system inputs and t ∈ [0,∞).
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Definition 4.7 (Matrix pencil). Let λ ∈ C, then λA + B is called a matrix pencil.

If the determinant det(λA + B) is not identically zero as a function of λ, then the

matrix pencil is called regular.

Remark 4.4. The definition of a regular matrix pencil is important because it is a

necessary and sufficient condition for the solvability of a linear constant coefficient

DAE (Equation 4.5). ([8], Theorem 2.3.1)

Definition 4.8 (Index of a matrix). A quadratic matrix M is called nilpotent if there

is positive integer k such that Mk = 0.

If M is a nilpotent matrix, then the smallest positive integer ν for which Mν = 0
and Mν−1 �= 0 is called the index of nilpotency.

The following theorem precedes the definition of the index of a linear constant co-

efficient DAE.

Theorem 4.1 (Kronecker). Let λA+B be a regular matrix pencil. Then, there exist
non-singular matrices P and Q such that

PAQ =
[
I 0
0 N

]
PBQ =

[
C 0
0 I

]
,

where I is an identity matrix and N a nilpotent matrix of index k.

Definition 4.9 (Index of a linear coefficient DAE). Let λA + B be a regular ma-

trix pencil, then the index of nilpotency, or index for short, of the linear constant

coefficient DAE (4.5) is the index of nilpotency, k, of the matrix N defined in The-

orem 4.1.

If N = 0, then define k = 1. In the case of a non-singular matrix A, the index is

defined as k = 0.

An important consequence of Kronecker’s theroem is that the solution of the DAE

system 4.5 can be given in analytical form. Suppose that the matrices P and Q in

Theorem (4.1) are known. Then, by means of the transformation

x = Q
[
y1

y2

]
and by scaling of Equation 4.5 using the matrix P, the DAE system can be split

into two uncoupled subsystems for which the analytical solution is known. With

this transformation and the definition

Pf(t) =:
[
g1(t)
g2(t)

]
,

an explicit first order ODE for y1 and a singular subsystem in canonical form for

the unknown y2 results.
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ẏ1 + Cy1 = g1 (4.6a)

Nẏ2 + y2 = g2 (4.6b)

Let L− denote the Laplace operator

(L−x)(s) :=
∫ ∞

0−
x(τ)e−sτdτ , (4.7)

where s ∈ C ([21], Section 1.2), then the Laplace transform of Equation 4.6b yields

(L−y2)(s) = (Ns + I)−1Ny2(0−) + (Ns + I)−1(L−g2)(s)

=
∞∑

i=0

(−1)i (Ns)iNy2(0−) +

∞∑
i=0

(−1)i (Ns)i(L−g2)(s) . (4.8)

Since N is a nilpotent matrix of index k, the infinite series reduces to a sum with a

finite number of terms. Transformation back into the time domain gives y2(t).

y2(t) =
k−1∑
i=0

(−1)i Ni δ(i)Ny2(0−) +
k−1∑
i=0

(−1)i Ni g(i)
2 (t) , (4.9)

where δ(i) denotes the ith derivative of the Dirac pulse. Apparently, the Dirac pulse

and its derivatives vanish and with it a source for big errors in the numerical solution

due to a limited machine precision if values y2(0−) vanish. If the index of the DAE

system is > 1, then the solution of the subsystem (4.6b) includes the derivatives of

the function g2 up to the order k − 1. Their computation, if numerically performed,

is ill conditioned. This problem does not appear if the matrix A in Equation 4.5 is

non-singular. Then, Equation 4.5 is not truly a DAE but an ODE. The solution of

the explicit ODE, Equation 4.6a, is

y1 = e−Cty1(0) +
∫ t

0

e−C(t−τ) g1(τ)dτ (4.10)

for every initial value y1(0).

Definition 4.10 (Local index of a linear time-variant DAE). If the coefficient ma-

trices in Equation 4.5 are time dependent, then the local index is the index of the

DAE system for some time t. It is denoted by k(t).

For general nonlinear implicit differential-algebraic systems

F( ẏ, y, t ) = 0 , (4.11)

a so-called differential index has been introduced by Gear [14].
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Definition 4.11 (Differential index of a nonlinear DAE system). If the matrix

∂F/∂ẏ is non-singular, the index k is set to zero, k = 0. (In this case Equation 4.11

is an implicit ODE that, in principle, can be transformed into an explicit ODE.)

Otherwise, the following set of equations is established by repeated differentiation

of Equation 4.11 with respect to time

0 = F( ẏ, y, t )

0 =
d

dt
F =

∂F
∂ẏ

ÿ +
∂F
∂y

ẏ +
∂F
∂t

0 =
d2

dt2
F =

∂F
∂ẏ

y(3) + . . .

...

0 =
dj

dtj
F =

∂F
∂ẏ

y(j+1) + . . . ,

in which ẏ, . . . ,y(j+1) are considered separate independent algebraic variables be-

ing functions of the variables y and t (considered independent). Since ∂F/∂ẏ is

singular, it is not possible to solve for the highest derivative y(j+1). However, if

it is possible to solve for ẏ for some finite j, then the smallest j, for which this

is possible, is defined the differential index k of the differential-algebraic system,

Equation 4.11.

Remark 4.5. 1. Repeated differentiation of the initial DAE provides additional equa-

tions. If the resulting set of equations is solvable for ẏ, the problem of solving

the initial DAE can be transformed into the problem of solving an explicit ODE.

In the above scheme, all equations of (4.11) are differentiated with respect to

time, although it may be sufficient to differentiate only some of them in order to

determine ẏ as a continuous function of y and t. In [14], Gear gives an algorithm

by which only equations are differentiated that do not include components of ẏ.

2. For linear constant coefficient DAEs (Equation 4.5), the differential index equals

the index of nilpotency introduced in Definition 4.9.

If the state vector x and the vector of algebraic variables h in the hydraulic bridge

example are combined into a vector y, then one step of differentiation yields that

the DAE system is of index one if the partial derivative of the algebraic constraint

with respect to y is non-singular (cf. Equations 4.2a, 4.2b or Equations 4.4a, 4.4b).

For DAE systems of the form

0 = f1(ẋ,x, z, t) (4.12a)

0 = f2(x, z, t) , (4.12b)

also called semi-state systems or systems in descriptor form, the definition of the

differential index can be reformulated.
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Definition 4.12 (Differential index of a semi-state system). The index of a semi-

state system is the minimum number of times that the algebraic part (4.12b) must be

differentiated with respect to time in order to determine ẋ as a continuous function

of the state vector x, the vector of so-called semi-state variables z and time t.

For linear time-variant differential-algebraic systems, Gear and Petzold have

given an algorithm on matrices that can be used for the determination of the index

[15]. Since in the following we want to determine the local index for some exam-

ples, we recall the algorithm for the determination of the index of linear constant

coefficient DAEs [8].

Algorithm 4.1 (Index determination for linear constant coefficient DAEs).

1. The index k is initialised with zero.
2. If the matrix A in Equation 4.5 is non-singular, we are done. No further iteration

is necessary. The algorithm terminates.
3. Otherwise, Equation 4.5 is pre-multiplied by a non-singular matrix P that trans-

forms the DAE into the form[
A11 A12

0 0

] [
ẋ1

ẋ2

]
+

[
B̃11 B̃12

B̃21 B̃22

] [
x1

x2

]
=

[
f̃1
f̃2

]
,

in which the row-rank of the matrix [A11 A12 ] equals the number of its rows.
4. After differentiation of the algebraic equation B̃21x1 + B̃22x2 = f̃2 , we get

the new system[
A11 A12

B̃21 B̃22

] [
ẋ1

ẋ2

]
+

[
B̃11 B̃12

0 0

] [
x1

x2

]
=

[
f̃1
˙̃f2

]
.

5. The index is increased by one. The old system is replaced by the new one. The
algorithm continues with step 2.

Remark 4.6. If the algorithm terminates after k iterations, then the DAE system in

the last iteration has the index zero. The DAE system in the next to last iteration is

of index one. The original DAE system then has the index k. That is, the algorithm

not only determines the index. Actually, it does an index reduction.

In general, the algebraic constraints of a DAE system are nonlinear as in the con-

sidered example of a hydraulic Wheatstone bridge. Hence, for each time tn, often,

they can be solved only numerically by iteration. If Equations 4.2a–4.2b derived

from a bond graph with causal paths between resistive ports are linearised, then the

local index of the linearised system equals one [32]. This means that they can be

solved by means of an ODE based method. A widely used code for the numerical

solution of DAE systems of index < 2 has become the solver called DASSL [8].

Public domain mathematical software such as Scilab [11, 29] or GNU Octave [2]

provide a function that calls the DASSL code. In addition, Octave [2] includes a

function that calls DASPK [1, 30] a further development of the DASSL code.
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4.3 Inserting Energy Stores into Causal Paths Between Resistive
Ports

It is certainly an essential objective of object-oriented methodologies to separate

the modelling phase from the formulation of equations and their numerical solution

in order to achieve consistency in the development of large models. Following an

object-oriented approach, the interfaces of submodels are connected according to

the topology in a system schematic. Constitutive equations of the submodels are

expected to be reformulated automatically, if required by the interconnection of the

submodels. If library submodels are protected from modifications by the developer

of a system model, then obviously less errors can occur. On the other hand, the

model developer cannot affect the generation of system equations. Still, on a lower

level, there are relations between decisions taken in the modelling phase and aspects

with regard to the numerical solution of the generated equations. In former times,

when no solvers for differential-algebraic equations systems were available, these

relations were frequently used. Even with today’s solvers, it makes sense to take

into account aspects of an efficient numerical solution of the generated equations

in the phase of the model development. Moreover, it may be useful to have the

generated equations undergo a symbolic preprocessing before they are passed on to

a numerical solver. For instance, it is well known that problems with the numerical

solution of DAEs increase with an increase of their index. In Chapter 5, relations

between bond graph modelling and the symbolic and numerical solution of system

equations will be considered in detail. In the following, first, simple possibilities

will be discussed to affect the form of the resulting mathematical model already in

the modelling phase.

The algebraic constraints 4.2a can be avoided by inserting energy stores into

causal paths between resistive ports. In order to ensure that the dynamic behaviour

of the original model is not perceptibly affected, additional energy stores must be

small. In complex nonlinear models, it is not easy to estimate how small parame-

ter values of additional energy stores must be. On the other hand, including small

energy stores may be justified from physics. There are always dynamic effects that

are often neglected because their impact on the overall dynamic behaviour of the

system is assumed to be negligible. In the bond graph of Figure 4.2, the two disjoint

causal paths between resistors may be removed by adding two C energy stores to the

lower 0-junctions accounting for the oil compliance in the volumes of the cylinder

in the load diagonal of the bridge (Figure 4.5). From the modified bond graph in

Figure 4.5, a state space model of order 3 may be derived so that a DAE solver is

not necessary. As the added C elements are linear, the two additional ODEs can be

written in the form

C1 ṗC1 = g1(p1) + A v − Q2 (4.13a)

C2 ṗC2 = g4(p4) − A v − Q3 . (4.13b)

For C1, C2 → 0, the two ODEs turn into the algebraic Equations 4.1b and 4.1e.
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Fig. 4.5 Removal of causal paths between resistors by inserting C energy stores

Disadvantages of such an approach are that the order of the system is increased

and that fast dynamic transients are introduced because the capacitances C1 and C2

of the added energy C stores are small. Hence, it is true that the result is a set of

explicit ODEs, but its solution requires a small step size or an implicit numerical

integration algorithm.

Estimation of the Time Constants of a Linear Model

It is well known that if a set of linearised ODEs is solved by means of an explicit

numerical integration algorithm, then its step size must be chosen smaller than the

smallest time constant. The determination of the time constants means the deter-

mination of eigenvalues which is quite costly. A rough estimate, however, can be

obtained directly from the bond graph by following causal paths between storage

ports and resistive ports. Suppose constitutive equations are linear or have been
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linearised, then such causal paths identify first order transients considered isolated

from other transients in the system and isolated from forcing inputs.

In Figure 4.5, their time constant is just the product of the parameters of the

storage port at one end of the causal path and of the resistive port at its other end.

To see this, the following equations are derived from the bond graph in Figure 4.5.

Q2 = g2 (pC1) (4.14a)

ṗC1 =
1
C1

[ Q1 + A v − Q2 ] (4.14b)

Consider the homogeneous ODE

ṗC1 +
1
C1

g2 (pC2) = 0 . (4.15)

If the nonlinear characteristic of g2 is replaced by a linear one of slope 1/R2 in

the neighbourhood of an operating point, then the time constant, τ12, of the free

response given by Equation 4.15 is τ12 = R2C1. Apparently, by considering all

causal paths between storage ports and resistive ports, the smallest time constant

can be determined. However, it must be kept in mind that transients are considered

decoupled this way. This, however, is not true. The evaluation of the exact value

of the smallest time constant requires the solution of an eigenvalue problem. The

corresponding considerable effort, however, is not worthwhile. Anyway, the useful-

ness of an estimation of the time constants is limited to systems of linear constant

coefficient ODEs that are solved by means of an explicit integration algorithm. The

inspection of the bond graph with regard to time constants of isolated transients may

give an indication of how widely time constants are separated when small energy

stores are included into the bond graph in order to avoid algebraic loops.

In addition to these first order transients, the C energy stores included in the

bond graph of Figure 4.5 lead to another oscillations that are identified by causal

paths between a C element and the I energy store. In addition to Equation 4.14b, the

following state equation is immediately obtained from the bond graph.

v̇ =
A

m
( pC2 − pC1 ) (4.16)

By differentiation of Equation 4.14b and substituting it into the state equation of the

I energy store, a second order ODE results for the output of the C energy store with

capacitance parameter C1.

p̈C1 +
1
C1

A2

m
pC1 =

1
C1

( Q̇1 − Q̇2 +
A2

m
pC2 ) (4.17)

The natural frequency of the free undamped oscillation of pressure pC1 reads

ω2
0 =

A2

C1 m
. (4.18)
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For small values of the fluid filled volume V1 or the mass m, C energy stores for the

fluid compliance in the volumes V1 and V2 can remove causal paths between resis-

tive ports, but introduce high frequent oscillations superimposed on the dynamics

of the pressures in the volumes. They may be damped by attaching resistors with

a small parameter to the 0-junctions representing the two pressures pC1 and pC2 .

However, in the case of an explicit integration algorithm, a small step size is still

required.

These considerations show that in the case of causal paths between resistive ports,

a DAE system can be avoided by including energy stores with a small parameter.

Solution of the resulting ODE system, however, generally requires a stiffly stable

integration algorithm. Of course, the ODE system derived from the modified bond

graph can be converted into a DAE system. If capacitances tended to zero, the ODEs

of the C energy stores reduce to algebraic constraints for the pressures in the vol-

umes of the cylinder.

Finally, particularities of a model, if there are any, can be used to remove causal

paths between resistive ports. If, for instance, the resistors of a bridge circuit are the

control orifices of a spool valve with zero overlap in the central position, then two

orifices in a diagonal are always open while the other two are closed. This can be

used for a model reduction that removes the causal paths between resistive ports.

Although such an approach leads to a model allowing for an efficient numerical

computation, it is not generally applicable. On the other hand, it is always possible

to include energy stores with small parameters. However, it appears that there is

only a need for modifying a model this way if the available modelling and simulation

software does not accept DAEs of index one and if a model reduction is not possible.

4.4 Causal Paths Between Storage Ports of the Same Type

In this section, we will exclude causal paths between resistive ports. Instead, we will

consider causal paths between independent and dependent storage ports (van Dijk

calls them class-1 zero-order causal paths [32]). Such causal paths often appear in

bond graphs of multibody systems with algebraic contraints between the velocities

of some rigid bodies caused by joints connecting them. In Section 3.4, we already

considered a simple example of two inertias coupled by a transformer with constant

modulus (Figure 3.14). In this case, the dependent energy store can be transformed

over the transformer and can be combined with the independent one into a new one

with integral causality. If energy stores have a linear characteristic, then C energy

stores attached to a 0-junction or I energy stores connected to a 1-junction can be

combined into one equivalent energy store.

If such reductions are not possible or if they are not performed, then the mathe-

matical model to be derived from a bond graph with causal paths between storage

ports of the same type is of the form of a DAE system
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ẋi(t) = f1 (xi(t), ẋd(t), u(t) ) (4.19a)

xd(t) = f2 (xi(t),u(t) ) . (4.19b)

In Equations 4.19a and 4.19b, xi denotes the vector of independent state variables,

whereas xd is the vector of dependent state variables. Again, u is the vector of all

system inputs.

Van Dijk has shown that the linearised DAE system obtained from a bond graph

with causal paths between independent and dependent storage ports is of local index

one [32].

Example: Slider Crank Mechanism

For illustration, consider the often used example of a simple slider crank mechanism

depicted in Figure 4.6. A massless rod of length L links a flywheel of moment

of inertia J to a piston of mass m. In [3], Allen considers a similar slider crank

mechanism as an introductory example in the context of establishing Lagrange’s

equations for complex mechanical mechanism (cf. Section 4.10).

The rod establishes a geometric constraint between the angular position, ϕ(t) :=∫ t

0
ω(τ)dτ , of the flywheel and the position of the piston. Differentiation with re-

spect to time yields a constraint between the angular velocity, ω, and the transla-

tional velocity, v, of the piston

v = T (ϕ) × ω (4.20)

and

T (ϕ) =
r ( r cos ϕ +

√
L2 − r2 sin2 ϕ ) sinϕ√

L2 − r2 sin2 ϕ
. (4.21)

Assuming that rotational power is transformed into translational power without any

losses, yields for the moment M̃ transformed into the force F̃ acting on the piston

M̃ = T (ϕ) F̃ . (4.22)

Thus, this transformation can be represented by a displacement modulated trans-

former of modulus T (ϕ). Such transformers are often used for representing trans-
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Fig. 4.6 Slider crank mechanism
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Fig. 4.7 Bond graph of the slider crank mechanism

formations between reference frames when the planar or 3D motion of mechanical

systems is modelled. They have no counterpart in electrical engineering. Due to the

constraint of the velocities, one I element in the bond graph of Figure 4.7 must have

derivative causality. For the energy store with preferred integral causality, the state

equation

ω̇ =
1
J

[ M − T (ϕ) × ( m v̇ + r v − F ) ] (4.23)

is derived from the bond graph. In addition to the angular velocity ω in this example,

the kinematic displacement of the ϕ is needed as another state variable which is

typical for modelling planar or 3D motion of mechanical systems.

ϕ̇ = ω (4.24)

All three equations can be combined into a linear implicit DAE system also called

a linearised descriptor form [13, 24].⎡⎣J T m 0
0 0 1
0 0 0

⎤⎦ ⎡⎣ ω̇
v̇
ϕ̇

⎤⎦ +

⎡⎣ 0 Tr 0
−1 0 0
T −1 0

⎤⎦ ⎡⎣ω
v
ϕ

⎤⎦ =

⎡⎣M + T F
0
0

⎤⎦ (4.25)

Due to the algebraic dependency between the velocities, the matrix pre-multiplying

the time-rate of the descriptor vector is singular. Thus, the mathematical model de-

rived from a bond graph with a causal path between an independent and a dependent

storage port, in fact, takes the form of a true DAE system. If algorithm 4.1 is applied

to this DAE, then the matrix pre-multiplying the time-rate of the descriptor vec-

tor becomes non-singular after one step. Hence, the local index of the DAE system

equals one as to be expected.

The DAE system can be avoided, i.e., an explicit state space model can be de-

rived, if the dependent energy store is transformed over the transformer like in the

example of Figure 3.14. However in contrast to that example, here, the modulus of

the transformer is not constant. Hence, the inertia of the resulting I element is not
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constant. We come back to this issue in Section 4.10 when we consider the deriva-

tion of Lagrange’s equations from bond graphs. Another option that can be justified

from physics is to neutralise the kinematic constraint by assuming that the rod is not

completely rigid, but has some compliance. With this assumption, a C energy store

with a small parameter can be used to remove the causal path between the two iner-

tias. Like in the hydraulic bridge example (Figure 4.2), this leads to a high frequency

oscillation that can be damped by including a resistor in addition to the C energy

store. The resistor may also be justified for physical reasons. Taking a closer look at

the rod, it turns out that it is not a purely elastic, but quite stiff link. There are also

energy losses in the rod. The simplest approximation to a continuum model is to use

a pair of C and R elements along with parameters that are estimated on the basis

of experience. For numerical stability, it is reasonable to use an implicit integration

algorithm.

4.5 Closed Causal Paths

So far, causal paths between resistive ports or between independent and dependent

storage ports have been considered. In addition, closed causal paths in the junction

structure can occur. They are called causal loops (Definition 3.10).

For illustration, consider the simple example of a bond graph with a bond loop

displayed in Figure 4.8. Figure 4.9 shows an electrical circuit that can be represented

by the bond graph in Figure 4.8. As can be seen from the bond graph of Figure 4.8,

the causality of the flow source and the preferred integral causality of the energy

stores do not propagate into the junction structure. In this simple example, there is a

need to perform step 5 of the sequential causality assignment procedure by choosing

a bond and assigning causality to it. This gives rise to the introduction of the notion

of strong (weak) causal determination.

Definition 4.13 (Strong (weak) causal determination of a junction). A bond im-

poses a strong causal determination on a junction J it is connected to if one of its

power conjugate variables determines the variable common to all remaining adja-

cent bonds. Otherwise, the bond gives a weak causal determination to the junction

[26].

Remark 4.7. If the causal stroke of a bond connected to a 0-junction is on its end

attached to the 0-junction, then the effort common on all adjacent bonds is deter-

mined. That is, the effort imposed on a 0-junction is propagated to ports connected

to it.

In the example of Figure 4.8, the two 0-junctions have a weak causal determi-

nation. In order to complete causality assignment, causality must be chosen at one

internal bond (Definition 2.9) No matter which bond is chosen, the result is a causal

loop (Definition 4.6) associated with two open signal flow loops of opposite orien-

tation as depicted in Figure 4.10. One signal flow loop only relates the efforts of the
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internal bonds, while in the other, only the corresponding flows are involved. Thus,

each algebraic loop contributes an auxiliary variable. If the outputs of the trans-

former e4 and f3 are chosen as auxiliary variables, then the following equations can

be derived from the bond graph of Figure 4.10

0 = e4 − 1
n

e4 − eC (4.26a)

0 = F − 1
n

f3 + f3 − fI (4.26b)

ėC =
1
C

( F − 1
n

f3 ) (4.26c)
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ḟI =
1
I

( e4 − eC ) . (4.26d)

Since in this example the system of equations determining the algebraic variables

is linear, it can be symbolically solved and the algebraic variables can be removed

from the state equations.

ėC =
1

C(n − 1)
[ nF − fI ] (4.27a)

ḟI =
1

I(n − 1)
eC (4.27b)

However, as can be seen from the result, this elimination step is only possible for

a transformer modulus n �= 1. Ort and Martens [26] have given a mathematical

criterion for the solvability of the algebraic equations of the junction structure. In

[28], Rosenberg and Andry have given a criterion that can be directly checked on

the bond graph. First, consider the mathematical criterion applied to our example.

By looking at the bond graph in Figure 4.10, the following equations for efforts can

be written. ⎡⎢⎢⎢⎢⎢⎢⎣
eS

eI

e1

e2

e3

e4

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 1
0 0 1 0 0
0 0 0 0 1
−1 1 0 0 0
0 0 1 0 0
0 0 0 n 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
eC

e1

e2

e3

e4

⎤⎥⎥⎥⎥⎦ (4.28)

Let us combine the efforts that are outputs of the junction structure into a vector

eout = (eS , eI)T and all internal efforts into a vector eint = (e1, e2, e3, e4)T .
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The vector of efforts that are input to the junction structure has only one component

ein = (eC). With these vectors, the system of equations 4.28 has the form[
eout

eint

]
=

[
S1 S2

S3 S4

] [
ein

eint

]
. (4.29)

In general, the system of equations 4.29 can be solved for eint if det(I − S4) �= 0.

The dimension of the identity matrix I equals the number of internal bonds. In the

example under consideration, the determinant is equal to 1 − n. Solvability of the

junction structure equations means that the mathematical model can be written in

state space form.

Instead of establishing a linear system of junction structure equations and to

check for its solvability at the level of equations, it appears to be more convenient to

use a criterion that can be directly checked on the bond graph. Such a criterion has

been given by Rosenberg and Andry [28]. In order to recall it here, some definitions

are needed.

Definition 4.14 (Influence coefficient). The influence coefficient of a junction struc-

ture node is the ratio of the output variable to the input variable for a particular

signal flow loop fragment associated with two adjacent bonds of opposite causal

orientation [28].

For illustration of this definition, consider the bond graph fragment depicted in

Figure 4.11. The causal path 1 − 2 − 3 is associated with two signal flow loop

fragments, one for the efforts of the bonds and one of opposite orientation for the

flow variables. Consider the flow variables. They are equal at the 1-junction. Con-

sequently, the influence coefficient c12 = f1/f2 is equal one. The influence coef-

ficient c23 = f2/f3 of the transformer has the value n. Since 1-junctions add up

effort variables, the sign of the influence coefficient c21 = e2/e1 depends on the

power orientation of the bonds. For the transformer, we have c32 = e3/e2 = c23

(Note that there is another causal path 4 − 2 − 3).

1
1

4

2
TF

1/n
..

3

�f1
�

c12 �f2 �f3
�

c23

�e1 �
c21 �e2 �e3�

c32

Fig. 4.11 Causal path 1 − 2 − 3 and associated signal flow loop fragments
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Definition 4.15 (Loop gain of a topological loop). The loop gain of a topological

loop is the product of all influence coefficients [28].

There are two topological loops of opposite orientation associated with a causal

loop in a bond graph (cf. Figure 4.10). It has been shown that the loop gain of both

topological loops associated with a causal loop are equal. Hence, due to this unique

value, the gain of a causal loop can be defined.

Definition 4.16 (Causal loop gain). The gain of a causal loop is the loop gain of the

two topological loops of opposite orientation associated to the causal loop.

The bond graph based rule given by Rosenberg and Andry now states that the linear

equations of a general junction structure (GJS) are solvable if and only if causal

loops are pairwise disjoint and if the loop gain of every causal loop is different from

+1. ([28], Theorem 3)

Van Dijk divides causal loops into two classes according to their loop gain. He

calls causal loops of loop gain different from one class-4 zero-order causal paths
and denotes loops of loop gain equal to one as class-5 zero-order causal paths.

Concerning the local index of a DAE system derived from a bond graph with causal

loops, he proves that it is equal to one if, as required in Rosenberg and Andry’s

theorem, causal loops in the graph are pairwise disjoint and if the loop gain of every

causal loop is different from +1 ([32], Proposition 5.7).

Let us apply Rosenberg’s and Andry’s criterion to the example in Figure 4.10. If Ge

denotes the loop gain of the topological loop of efforts variables and Gf the loop

gain of the signal flow loop of flow variables, then their common value is equal to

that of the transformer modulus n.

Ge = c21 × c32 × c43 × c14

= 1 × 1 × n × 1 (4.30a)

Gf = c12 × c41 × c34 × c23

= 1 × (−1) × n × (−1) (4.30b)

If n �= 1, then the linear equations of the junction structure are solvable, as we know

from the previous analysis at equations level.

If the modulus of transformers or the ratio of gyrators is not constant, e.g., there

are displacement modulated transformers in the weighted junction structure, then

the rule of Rosenberg and Andry is no longer applicable. In that case, the mathe-

matical model takes the form of the Equations 4.2a–4.2b of a DAE system.

Remark 4.8. Since both topological loops associated with a causal loop either relate

efforts or flow variables of all bonds of the causal loop, they are open loops accord-

ing to Definition 4.6. In the bond graph of Figure 4.10, an even number of bonds of

the causal loop has the same power orientation. Therefore, its loop gain is positive.

If we changed the power orientation of the bond annotated with e2, then the loop

gain would be (−n). In the case of a causal mesh, viz., a closed causal path with

an odd number of gyrators (Definition 3.11) , there are also two open loops. The
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absolute value of their loop gains is the same. However, they are different in sign.

Brown calls a mesh even if the loop gain of both open loops of opposite orientation

is positive, an odd mesh if the loop gain of both open loops is negative, and a neu-
tral mesh if the loop gain of both open loops have opposite signs [10]. This way,

the Definition 3.9 of a simple even (odd) mesh is extended to general meshes with

transformers or gyrators.

4.6 Bond Graphs with Causal Paths from Different Classes

In the previous sections, bond graphs with causal paths from one class only have

been considered. Now, bond graphs will be allowed to have causal paths from dif-

ferent classes. We already know that the underlying mathematical model has the

form of a DAE system. The interesting question, however, is of what index they are.

In the following, we will confine ourselves by considering some examples. A more

comprehensive analysis has been performed by van Dijk in [32].

Figure 4.12 shows a modification of the circuit example of Figure 4.9. Consider

the associated bond graph displayed in Figure 4.13. There is a causal path 5 −
2 − 6 − 7 − 8 between resistors R1 − R2 and another causal path 1 − 2 − 3 − 4
between the independent C energy store C1 and the dependent C energy store C2.

Both causal paths have bond 2 in common. These causal paths result in the following

manner. First, causality of the flow source and preferred integral causality at the

C energy stores do not propagate into the junction structure. Making a choice and

assigning resistance causality to either R1 or R2 leads to a causal conflict at the

upper 1-junction that can be removed by changing preferred integral causality at C2

into derivative causality. The result is a causal path between the two energy stores.

Assigning conductance causality to either one resistor or to both of them still leaves

the bond graph causally incomplete such that causality at one of the bonds of the

bond loop must be chosen. The result would be a causal loop. For both open loops

associated with this causal loop, two algebraic variables would be needed.

By working along causal paths in the bond graph of Figure 4.13, the following

equations can be derived.

e5 = R1 [ n ( F − f8 − C2 ė4) + C2 ė4 ] (4.31a)

f8 =
1

R2
n ( e1 + e5 ) (4.31b)

e4 = (n − 1) ( e1 + e5 ) (4.31c)

ė1 =
1
C1

[ n (F − f8) − (n − 1) C2 ė4 ] (4.31d)

They can be written in the linear implicit form[
A1 A2

0 0

]
ẋ +

[
B1 B2

B3 B4

]
x = b , (4.32)
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Fig. 4.13 Bond graph with class-2 and class-1 zero-order causal paths

in which the matrix pre-multiplying the derivative of the descriptor vector is singu-

lar. Application of algorithm 4.1 yields that the matrix[
A1 A2

B3 B4

]
is non-singular. That is, the (local) index of the DAE system is equal to one. This

result generally holds for bond graphs with causal paths between resistive ports
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as well as for bond graphs with causal paths between independent and dependent

storage ports [32].

Now, let us modify the bond graph in Figure 4.13 such that in addition to the

class 1 zero-order causal path between storage ports, a causal loop results (Fig-

ure 4.14). Again, assigning fixed causality to the flow source and integral causality

to the energy stores leaves the bond graph causally incomplete. Choosing causal-

ity at bond 7 (as depicted in Figure 4.14) leads to a causal conflict at the lower

1-junction that can be removed by changing integral causality at the lower C energy

store C2 into derivative causality. Thus, there are two causal paths, 1−2−3−4−5
and 1 − 2 − 6 − 7 − 9 between both C energy stores. Only one of them has been

highlighted for clarity.

Due to the causal loop 6−7−8−2, the output variables, e7 and f6, of the trans-

former are chosen as auxiliary algebraic variables. Then, the following equations

can be written.

ė1 =
1
C1

[−f6 + n2 C2 · ė2 + f10 ] (4.33a)
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Fig. 4.14 Bond graph with causal loop and class 1 zero-order causal path
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ḟ10 =
1
I

[ e7 − e1 ] (4.33b)

e5 = n2 (e7 − e1) − e7 (4.33c)

f6 = n1 [ F + C2 ė5 − (f10 + n2 C2 ė5 − f6) ] (4.33d)

e7 = n1 ( e7 − e1 ) (4.33e)

If they are written in linear implicit form (cf. Equation 4.32), then the matrix pre-

multiplying the descriptor vector is singular, as to be expected. After one step of

algorithm 4.1 the resulting matrix

[
A1 A2

B3 B4

]
=

⎡⎢⎢⎢⎢⎣
C1 0 0 0 −n2 C2

0 I 0 0 0
0 0 0 0 −n1 (1 − n2) C2

n1 0 0 (1 − n1) 0
n2 0 0 (1 − n2) 1

⎤⎥⎥⎥⎥⎦ (4.34)

is still singular. Hence, the (local) index is > 1. This result does not hold only for

the example for which the index is equal to 2. It can be shown that in general, the

local index is > 1, if the bond graph includes class 1 zero-order causal paths that

join bonds with causal loops ([32], Proposition 5.10).

4.7 Causal Loops of Unity Loop Gain

Finally, we will address the case of causal loops of unity loop gain by considering

the example of the electrical circuit depicted in Figure 4.15 [9, 32]. It will be shown

that bond graphs do not directly display Kirchhoff’s generalised non-local current

law for cut-sets, but indirectly via a causal loop of unity loop gain or by means of

a causal conflict at a 0-junction. It appears that the standard sequential causality as-

signment procedure (SCAP) yields a causal pattern that does not adequately reflect

the global continuity of flow variables. This is why van Dijk has proposed a modifi-

cation of the SCAP that avoids causal loops of unity loop gain. For details, see [32].

Moreover, by means of the delta circuit example (Figure 4.15), we will show that

causal loops of unity loop gain can result in DAEs of index > 1. Thus, with regard

to a robust numerical solution of the DAE system, they should be avoided.

First, we assume that all passive elements of the delta circuit in Figure 4.15 have

an invertible characteristic such that the computational causality at the ports of their

corresponding bond graph elements is indifferent. As can be seen from the bond

graph in Figure 4.16, fixed causality of the flow source and preferred integral causal-

ity at the I energy stores do not propagate into the junction structure.

If conductance causality is chosen at one of the resistor ports, then it imposes a

strong causal determination at the 1-junction the resistor is connected to (cf. Defini-

tion 4.13). In the end, it results in a causal conflict at a 0-junction (Figure 4.17).
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If resistance causality is chosen at the resistive ports in order to avoid a causal

conflict, then this causality is not propagated and the bond graph remains causally

incomplete. Therefore, causality must be chosen at an internal bond leading to a

causal loop. Since there are no transformers or gyrators in the loop, its loop gain

is equal to one. There are two open loops of opposite orientation associated to the

causal loop as depicted in Figure 4.18.

Consequently, in addition to the outputs of the energy stores, an effort variable

must be chosen from one open loop and a flow variable from the other. These have

been marked in the bond graph of Figure 4.18. Using these algebraic auxiliary vari-

ables, u and i, the following equations can be written
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u1 = R1 i (4.35a)

u2 = R2 ( I(t) − i ) (4.35b)

u3 = R3 ( i − iL1 ) (4.35c)

d

dt
iL1 =

1
L1

( u − u2 + u3) (4.35d)

d

dt
iL2 =

1
L2

( u − u2 ) . (4.35e)

Walking along the open loop for the efforts yields

u = u1 + u3 + u − u2 , (4.36)

which is the sum of all voltages around mesh 1 in the circuit (cf. Figure 4.15). From

the second topological loop, we obtain Kirchhoff’s generalised current law for cut-

set 1.

i = I(t) − iL1 − iL2 + i (4.37)

The algebraic relation between the outputs of the I energy stores,

0 = I(t) − iL1 − iL2 , (4.38)

can also be obtained from the sum of all flows at the 0-junction with an undeter-

mined common effort if the outputs of the resistors R1 and R2 are substituted.

From Equation 4.38, it can be concluded that the delta circuit of the three resis-

tors behaves like a node for which Kirchhoff’s current law must hold. In contrast

to an actual node, however, it transforms electrical energy into heat. If, in addition

to the principle of power conservation, a subsystem complies globally with Kirch-

hoff’s node law, it is said to have the nodicity property [19, 33]. The term goes

back to Paynter. Electrical networks of passive elements have this nodicity property.

In particular for the delta sub-structure of the resistors, continuity of the currents

into the structure holds. If the delta structure of resistors is represented by a 3-port,

then, according to the causality pattern required for a 0-junction locally represent-

ing a balance of flows, an effort should be imposed at one of its ports (Figure 4.19).

However, the nodicity property is not directly expressed in the bond graph of Fig-

ure 4.18. On the contrary, preferred integral causality at the I energy stores suggests

that the currents into the delta subnetwork of resistors are independent. However,

due to Kirchhoff’s generalised current law for cut-sets (Equation 4.38), this is not

true. If according to Equation 4.38, derivative causality is assigned to one of the two

I energy stores, say L1, then the causal loop of unity loop gain disappears. Instead,

a causal path 8−9−6−10 emerges between the energy stores and two other causal

paths 1 − 2 − 3 − 4 and 5 − 6 − 7 − 4 between resistors R3 − R1, or R2 − R1

(Figure 4.20).

From the previous section, we know that the DAE system derived from the bond

graph in Figure 4.20 is of index one. Hence, it can be numerically solved with a BDF

based solver. However, if we leave the causal loop of unity loop gain in the bond

graph of Figure 4.18, then the corresponding DAE system is of index > 1. In fact, if
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we write Equations 4.35a–4.35e and Equations 4.36 and 4.38 in linear implicit form⎡⎢⎢⎣
L1 0 0 0
0 L2 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ d

dt

⎡⎢⎢⎣
iL1

iL2

u
i

⎤⎥⎥⎦ +

⎡⎢⎢⎣
R3 0 −1 −(R2 + R3)
0 0 −1 −R2

−R3 0 0 R1 + R2 + R3

1 1 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

iL1

iL2

u
i

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−R2I(t)
−R2I(t)
R2I(t)
I(t)

⎤⎥⎥⎦ ,

(4.39)

then after one step of algorithm 4.1, the resulting matrix
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L1 0 0 0
0 L2 0 0

−R3 0 0 R1 + R2 + R3

1 1 0 0

⎤⎥⎥⎦
is still singular. Hence, the DAE system is of index > 1.

The problem with the standard sequential causality assignment procedure is that

it does not give advice on how to proceed such that the nodicity property is directly

expressed in terms of causalities. This was one reason for van Dijk to propose a

modification of the SCAP [32].

4.8 Algebraic Loops due to Internal Modulation

From the previous considerations, we know that causal paths between resistive ports,

or between independent and dependent storage ports, or closed causal paths in the

junction structure represent algebraic constraints such that the mathematical model

derived from the bond graph has the form of a DAE system. However, even in bond

graphs with no such causal paths, algebraic loops (Definition 4.3) can appear due to

so-called internal modulation.

Definition 4.17 (Internal modulation). If a bond graph element is modulated by a

power variable, then it is said to be internally modulated.

For illustration, consider the two examples in Figure 4.21. One constitutive equation

of the transformer in Figure 4.21a) reads

f2 = g (f2) f1 , (4.40)

which cannot be symbolically solved for f2 in general. Thus, a state equation with-

out algebraic constraint is not possible, although there is no causal path between

resistive ports or between independent and dependent storage ports.
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Fig. 4.21 Examples of internal modulation
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For the example with the modulated resistor (Figure 4.21b, see also [12]), the

following equations can be written

f1 = G ( E − eC , f1 + f2 ) (4.41a)

f2 = R (E − eC) (4.41b)

ėC =
1
C

( f1 + f2 ) . (4.41c)

In both cases, modulation by a power variable originating from a junction results in

an implicit nonlinear algebraic equation. We already used a modulated transformer

for a model of the slider crank mechanism (see Figures 4.6 and 4.7). However, in

that case, the transformer is modulated by a kinematic displacement, which is a state

variable needed to describe the system state. On the contrary, in Figure 4.21a, the

transformer is modulated by a power variable. This is not merely a hypothetical pos-

sibility. Consider the bond graph displayed in Figure 4.22. It represents a simplified

model of a series motor in which the inductances of the field and the armature coils

have been neglected [31]. Let r denote the ratio of the gyrator. Then, the following

equations are obtained from the bond graph.

M = r × i (4.42a)

r = f (i) (4.42b)

u = r × ω (4.42c)

i =
1
R

( E(t) − u ) (4.42d)

Due to hysteresis and saturation, f() is a nonlinear function such that the current i
is determined by an implicit nonlinear relation. If the inductances of the coils are

taken into account by adding an I element to the 1-junction, then the algebraic loop

disappears.

Se ��
E(t)

1

��
iR

R : R

��
u

i
MGY ��

M

ω
1

��

R : Rm

��

I : Jmf( )�

�
r

Fig. 4.22 Simplified bond graph of a series motor
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Fig. 4.23 Internal modulation without algebraic loop

Internal modulation does not necessarily result in algebraic loops. For illustra-

tion, we interchange the resistor and the C element in Figure 4.21b (cf. [12]). From

the modified bond graph (Figure 4.23), we obtain the equations

f1 =
1
R

( E − eC ) (4.43a)

f2 = G ( eC , f1 ) (4.43b)

ėC =
1
C

( f1 − f2 ) . (4.43c)

Substitution of the output variables of the resistors into the equation of the energy

store yields a state equation without algebraic constraint.

The examples of Figure 4.21 show that internal modulation may lead to algebraic

loops that are not detected by inspecting causal paths alone. In addition, signals must

also be taken into account that originate from junctions and modulate bond graph

elements. On the other hand, internal modulation does not necessarily result in al-

gebraic loops as the bond graph of Figure 4.23 illustrates. It is this possibility of

algebraic loops not expressed by causal paths that explains why at the beginning of

this chapter sources, transformers and gyrators have only been allowed to be modu-

lated by state variables or system inputs. Finally, let us consider an example with an

internally modulated source depicted in Figure 4.24. Since there is no causal path

between resistors, the bond graph at a first glance suggests that the mathematical

model can be reduced to state space form. From the bond graph of Figure 4.24, the

following three algebraic equations for the controlled source and the two resistors

and an ODE for the C energy store can be written.

u = k i2 (4.44a)

i2 =
1

R2
( u − uC ) (4.44b)
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Fig. 4.24 Bond graph with an internally modulated source

i1 =
1

R1
( E − uC ) (4.44c)

u̇C =
1
C

( i1 + i2 ) (4.44d)

In the example of the voltage follower (Figure 3.22), the output of the controlled

source is proportional to the difference of the input voltage. The voltage across the

capacitor is a state variable. In this example, the output of the controlled source is

proportional to the power variable i2. By taking into account the signal modulat-

ing the left-hand side source, we see that there is a flat loop between the controlled

source and the resistor with resistance R2. Apparently, if the source was indepen-

dent, then there would be no algebraic loop associated with the causal path between

the source and the resistor R2. Substituting the constitutive equation of the con-

trolled source into the equation of the resistor R2 yields an equation that determines

the controlling signal i2.

R2 i2 = k i2 − uC (4.45)

Equation 4.45 is just the sum of all efforts at the left 1-junction. It is solvable for

i2 if k �= R2. Under this condition, the equations derived from the bond graph can

be reduced into one state equation for uC . In case k = R2, the DAE system is

of index one (The algebraic constraints need to be differentiated once in order to

obtain u̇C(t) = 0. For k = R2, the circuit degenerates into one with no dynamic

element). The simple example shows that conclusions with regard to the form of the

mathematical model cannot be drawn from considering causal paths alone if internal

modulation is not excluded. The form of the mathematical model or the index of a

DAE system may even depend on parameter values.

In [12], Cornet and Lorenz show how causality assignment and causality prop-

agation can be used to establish a set of sorted equations in the sense of a compu-
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tational order. Since algebraic loops prevent a complete sorting, their detection is

essential in this context.

Breedveld argues that internal modulation should be relinquished from a concep-

tional point of view because basic features of elements can be changed and elements

with arbitrary characteristics can be constructed by means of internal modulation

[7]. Thus, there would be a potential risk that modelling violates physical conserva-

tion laws. Fundamental features of physical modelling would not be guaranteed any

more. Van Dijk proposes to use a multiport with appropriate nonlinear constitutive

equations instead of local internal modulation [32] where possible. He considers

internal modulations as an exception.

4.9 The Method of Relaxed Causalities

So far, we have only used the standard procedure of Karnopp and Rosenberg for as-

signing and propagating computational causalities in bond graphs. Resulting causal

patterns and their implication with regard to the form of the mathematical model

have been analysed. The notion of the causal path has been essential in this con-

text. In addition to the standard sequential causality assignment procedure SCAP,

some modifications of this procedure have been proposed in the bond graph litera-

ture. In the following, first, the so-called method of relaxed causalities introduced

by Joseph and Martens [20] is considered by means of the example of a hydraulic

bridge (Figure 3.26).

In this example, the necessity appears to choose causality at two of the four re-

sistors leading to two separate causal paths (cf. Figure 4.2) and the requirement

that the resistors must have an invertible characteristic. Otherwise, causality at two

resistors would not be in accordance with their characteristic. This can be taken

into account by establishing implicit nonlinear equations that can only be numeri-

cally solved by iteration. In [20], Joseph and Martens propose a modification of the

SCAP that enables one to assign nonlinear resistors the causality their characteristic

requires and that allows violations at 0- and 1-junctions. For instance, if all resistors

of the hydraulic bridge require conductance causality and if these causalities are as-

signed in the order R1, R2, R3, R4, then no causal paths appear, but at the lower

right side 0-junction and at the upper left side 1-junction, causality rules cannot be

maintained any longer. There are two type of conflicts highlighted by a flash. At the

0-junction, there is no effort that determines the effort at the other adjacent bonds.

At the 1-junction, there are two flows that want to determine the common flow at

all bonds (cf. Figure 4.25). If a source requires a causality at a resistive port that is

not in accordance with the resistors constitutive relation, then the method of relaxed

causalities enables one to insert an extra 0- or 1-junction and to reassign causal-

ity at the resistive port resulting in a causal violation at the junction as depicted in

Figure 4.26. If the causality at a resistive port is determined by the preferred inte-

gral causality of an energy store and if the resistor characteristic requires reverse
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Fig. 4.25 Bond graph with two types of causal conflicts at a 0- and a 1-junction
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Fig. 4.26 Bond graph fragment with an extra 0-junction taking a causal violation

causality, then either the causality of the storage port can be changed into derivative

causality or an extra junction can be included.

As the example of the hydraulic bridge shows, two types of causal violations at 0-

and 1-junctions can be distinguished. Moreover, if several bonds want to determine
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the common variable of a junction, Joseph and Martens have introduced a degree

that indicates how many algebraic constraints must be established for each a junction

in addition to the ODEs of the energy stores. That is, the resulting mathematical

model is a DAE system.

Definition 4.18 (Causal conflict of type 1). In this case, there is no bond that deter-

mines the common variable of the junction. At a 1-junction, the causal stroke of all

adjacent bonds point towards the 1-junction. At a 0-junction, the causal stroke at all

adjacent bonds is pointing away from the junction (Figure 4.27).

Definition 4.19 (Causal conflict of type 2 and degree k). If there are k + 1 bonds

that want to determine the common variable of a junction, then there is a causal

conflict of type 2 and degree k. That is, at a 1-junction, not one but k + 1 flows are

input to the junction, while at a 0-junction, k + 1 instead of only one single effort

are input to the junction (Figure 4.28).

According to these definitions, the bond graph of Figure 4.25 shows a causal conflict

of type 1 at the right side 0-junction and a causal conflict of type 2 and degree 1 at

the left side 1-junction.

If there is a causal conflict of type 1 at a 0-junction, then the effort at one of its

adjacent bonds must be chosen as an input variable. Preferably, a bond is chosen that

connects the 0-junction to a nonlinear resistive port with conductance causality or a

port of an I energy store with preferred integral causality. Joseph and Martens call

such a variable an algebraic state variable. In the example of the hydraulic bridge

(Figure 4.25), the effort p2 is chosen and considered to be an input to the 0-junction.

Adding up the flows at that junction yields an equation that determines the algebraic

state variable p2.
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Fig. 4.28 Causal conflict of type 2 and degree k
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0 = g1 (pS − p2) − g2 (p2) + A v (4.46)

If there is a causal violation of type 2 and degree k at a 0-junction with n adja-

cent bonds, and if none of the efforts of the adjacent bonds is a state variable, then

an effort is arbitrarily chosen as an input to the 0-junction from those bonds that

connect the junction to a nonlinear resistive port. Without loss of generality, e1 is

assumed to be that input. From the n flows at the 0-junction adding up to zero, flows

fk+2, . . . , fn of those bonds causing no violation can be expressed by components

of the state vector x. That is, the flow f1 into the resistive port can be represented in

terms of the algebraic state variables f2, f3, . . . , fk+1 and the state vector x. Hence,

the constitutive equation of the resistive port takes the form

e1 = Ψ1 (f2, f3, . . . , fk+1,x) . (4.47)

In addition, for each of the k bonds (2, . . . , k+1) that want to determine the common

effort of the 0-junction like bond 1 and that are causing a violation in this way, an

equation of the form

0 = ei − Ψi (fi), i = 2, . . . , k + 1 (4.48)

holds. Since there is a common effort at all bonds of a 0-junction, Equation 4.47

can be substituted into Equation 4.48. The result is a set of k implicit algebraic

equations determining the algebraic state variables f2, . . . , fk+1. Apparently, if e1

is a state variable, then Equation 4.47 is not applicable.

Similar equations can be formulated for 1-junctions as their functionality is dual

to that of 0-junctions.

In the case of a type 1 causal violation at a 1-junction, there is no flow that is input

into the junction. Consequently, one flow must be chosen as an input. Effort con-

tinuity of the 1-junction provides an algebraic equation that determines the chosen

input flow.

For causal violation of type 2 and degree k at a 1-junction, algebraic constraints

corresponding to equations 4.47 and 4.48 are obtained for those flow variables that

inflict causal violations. Consider the bond graph of Figure 4.25. From the two flows

Q4 and Q5 that want to determine the common flow at the upper left 1-junction, Q5

is chosen as an input. It can be represented in terms of the state variable, v, and the

effort, p4, of that bond inflicting the causal violation.

Q5 = g3 (pS − p4) + A v (4.49)

For that bond causing the violation the algebraic relation

Q4 = g4 (p4) (4.50)

holds. Since there is a common flow at a 1-junction, Equation 4.49 can be substituted

into Equation 4.50. The result is an equation that determines the algebraic state

variable p4. In this example, the method of relaxed causalities yields two coupled

nonlinear implicit algebraic constraints for the algebraic state variables p4 and p2
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and an ODE for the inertia of the piston.

0 = g1 ( pS − p2 ) + A v − g2 ( p2 ) (4.51a)

0 = g4 ( p4 ) − g3 ( pS − p4 ) − A v (4.51b)

v̇ =
1
m

A [ ( pS − p4 ) − p2 ] (4.51c)

Again, the resulting DAE has the form of Equations 4.4a–4.4b.

This result can also be obtained by inserting additional energy stores into the

bond graph. If C energy stores are attached to the 0-junctions in the lower part of the

bond graph shown in Figure 4.25, then the causal conflicts vanish. The mathematical

model derived from the modified bond graph has the form of an explicit state space

model. If the state equation of each additional C energy store is multiplied by its

capacitance and if the latter tended to zero, then the above Equations 4.51a and

4.51b are the result.

4.10 Lagrange Causalities

In Section 4.4, the well known example of a slider crank mechanism was used to

illustrate that the mathematical model takes the form of a DAE system if there is

a causal path in the bond graph between an independent and a dependent storage

port. Since the rod, assumed to be massless, links the piston to the flywheel, there is

a geometric constraint between the piston’s displacement and the angular position

of the crank. Apparently, the number of unknowns in Equation 4.25 is not minimal.

The mechanism has only one degree of freedom. Moreover, the balance of moments

depends on the angular position of the crank. It is a peculiarity of mechanical sys-

tems in planar or 3D motion that generally equations determining their dynamic

equilibrium cannot be formulated without knowing geometric positions. In contrast,

power variables in electrical systems must comply with Kirchhoff’s laws that do not

depend on generalised displacements, viz. charge or flux linkage. Furthermore, the

complexity of mathematical models of mechanical systems strongly depends on the

reference frame(s) in use and on the choice of the state variables. Therefore, often

appropriate coordinates, so-called generalised coordinates, used in mechanics and

equations of motion are formulated as Lagrange equations of the second kind. This

way, a compact and, due to geometric constraints, a strongly nonlinear model results

with a minimal number of state variables. These are displacements and velocities

of the bodies chosen with respect to appropriate reference frames. Lagrange equa-

tions, however, are not confined to mechanical systems. Generalised coordinates are

only special generalised displacements, but in the context of Lagrange equations

of motion, the notion of generalised coordinates is kept even when this method of

establishing equations of motion is used in non-mechanical energy domains. If a

Lagrange approach is applied, for instance, to describe nonlinear electrical systems,

then generalised coordinates are the integral of currents with respect to time (These
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quantities are not necessarily the charge of certain capacitors). Karnopp has given a

procedure that, first of all, enables one to identify generalised coordinates and their

associated so-called generalised forces in a bond graph [23]. In a second step, the

Lagrangian L is determined from the bond graph as a function of the generalised

coordinates and their time derivatives. Proper derivatives of the Lagrangian then,

eventually, yield the Lagrange equations.

In the following, we will see that as opposed to a DAE system, Lagrange equa-

tions can be directly derived from a bond graph. In order to identify the needed

generalised coordinates, we use the modification of the standard sequential causal-

ity assignment procedure (SCAP) given by Karnopp in [23]. Further procedures

for the derivation of Lagrange equations with Lagrange multipliers directly from a

bond graph have been proposed by Bos [6], van Dijk [32] and Marquis-Favre and

Scavarda [25].

4.10.1 Identification of Generalised Coordinates in a Bond Graph

1. All independent sources are assigned a causality according to their type. This

causal information is propagated into the junction structure as far as possible.

If any causal conflicts appear, modelling assumptions must be checked and the

model must be modified.

2. If the common flow variable of a 1-junction is still undetermined, then an artifi-
cial flow source is attached that imposes a flow. This flow information is propa-

gated into the junction structure as far as possible.

If there are no undetermined 1-junctions left and if the bond graph is still causally

incomplete, then a 1-junction is inserted into an acausal bond.

3. Step 2 is repeated until all bonds have a causal stroke.

The 1-junctions to which an artificial flow source has been attached represent the

time derivatives of the generalised coordinates we are looking for. There is no rule

as to which undetermined 1-junction an artificial flow source has to be attached to

first. Moreover, if there are no undetermined 1-junctions but still acausal bonds, then

an acausal bond can be arbitrarily chosen for insertion of a 1-junction. That is, the

set of generalised coordinates identified by this procedure is not unique.

4.10.2 Determination of Generalised Forces from a Bond Graph

The generalised forces are the efforts into the artificial flow sources. They are ob-

tained by adding the efforts at the 1-junction to which an artificial flow source has

been attached. However, in this sum, only efforts from sources and resistors are

taken into account. In order to ensure that the generalised force is the sum of all

these efforts including their sign, the half arrow points toward the artificial flow

source [23]. More precisely, one should talk of artificial flow sinks.



168 4 Causal Bond Graphs and Forms of Mathematical Models

4.10.3 Derivation of Lagrange Equations from a Bond Graph

Lagrange equations can be directly derived from a bond graph by adding up the ef-

forts at all 1-junctions that represent the time derivative of a generalised coordinate.

In contrast to the procedure applied for identification of generalised forces, in this

balance, all efforts are taken into account. The sum of all efforts into an artificial

flow source is equal to zero. In the following, both steps shall be applied to the

example of the slider crank mechanism and to an example of an electrical network.

Example: Slider Crank Mechanism

If an artificial flow source is attached to the 1-junction representing the angular ve-

locity ω = ϕ̇, and if this flow information is propagated into the junction structure,

then the bond graph is already causally complete after this step (Figure 4.29). That

is, the angle ϕ is the only generalised coordinate according to the one degree of

freedom of the mechanism (If we had attached an artificial flow source to the right-

hand 1-junction, the displacement of the piston would have become the generalised

coordinate). From the balance of efforts at the left-hand 1-junction

0 = M − J ϕ̈ − M̃ (4.52)

we obtain the same second order ODE for ϕ

( J + T mT ) ϕ̈ + (T mṪ ) ϕ̇ + (T rT )ϕ̇ = M + TF (4.53)

that would result after establishing and proper differentiation of the Lagrangian.

In general

T ∗ :=
∫ f

0

p(f̃) df̃ (4.54)
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Fig. 4.29 Bond graph of the slider crank mechanism with an artificial flow source
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denotes the kinetic co-energy and V the potential energy of a system. The La-

grangian is defined as the difference of both terms

L := T ∗ − V . (4.55)

(The distinction between kinetic energy and kinetic co-energy is of relevance only

for relativistic mechanics and for systems with non-mechanical, nonlinear inertias.

Otherwise, T ∗ = T .) Let q denote the vector of generalised coordinates and Q
the vector of generalised forces, then T ∗ is a function of q and q̇, whereas V is a

function of q and
d

dt

∂L

∂q̇
(q, q̇) − ∂L

∂q
(q, q̇) = Q (4.56)

is the Lagrange equation of motion. For the example of the slider crank mechanism,

ϕ is the only generalised coordinate. The generalised force is Q = M − T [r(T ϕ̇) −
F ]. The Lagrangian is the sum of the kinetic energy of the flywheel and of the piston.

L =
1
2

( J ϕ̇2 + m (T ϕ̇)2 ) (4.57)

If L is differentiated according to Equation 4.56, then Equation 4.53 results.

Virtual Inertia and its Companion Gyristor

Section 3.4 mentions that in the case of an independent I energy store and a de-

pendent I energy store coupled by a transformer with a constant ratio (Figure 3.14),

the energy store with derivative causality can be transformed over the transformer

and can be combined with the independent energy store. Since in Equation 4.53 the

factor pre-multiplying ϕ̈ has the same form as the one in the bond graph of Fig-

ure 3.15, it is obvious to also represent Equation 4.53 by a bond graph. In the case

of the slider crank mechanism, however, the modulus of the transformer is a func-

tion of the generalised coordinate ϕ. Consequently, the term J + TmT viewed as

moment of inertia, J̃ , is not constant. In [3], Allan denotes J̃ as an instantaneous
or virtual inertia. Unlike the case of a transformer with constant modulus, the con-

sequence of this view is that the additional term (TmṪ ) ϕ̇) must be represented by

a new artificial bond graph element (GR) called gyristor by Allan. It takes into ac-

count that the virtual inertia depends on the displacement ϕ and, therefore, is not

constant (TmṪ = (1/2) ˙̃J). The new element ensures that the kinetic co-energy

of the virtual inertia is conserved. That is, it is equal to the kinetic co-energy of the

mechanism [3]. If the new artificial element is accepted, then Lagrange equation

(4.53) can be represented by the bond graph of Figure 4.30.

The derivation of Lagrange equations from a bond graph is suitable especially

for mechanical systems with complicated kinematics if moving reference frames

are used and for nonlinear systems. The resulting second order equations of motion

are strongly nonlinear. The model, however, is much more compact than a DAE

system. This has been illustrated by Karnopp in an article on different approaches

to the derivation of equations from a bond graph by comparing the equations for the
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Fig. 4.30 Bond graph with virtual inertia and gyristor as companion

components of the momentum of a simple mathematical pendulum with respect to

a fixed Cartesian reference frame to the well known second order equation for the

angle [22].

Example: RLC Network

Finally, we will show by means of the simple RLC circuit of Figure 4.31 that the

Lagrange method is not confined to mechanical systems. Application of Karnopp’s

method to the bond graph of the circuit yields the two generalised coordinates q̇1

and q̇2 (Figure 4.32).

In the next step, all efforts at the 1-junctions are added up assuming that the

efforts into the artificial flow sources are zero. After differentiation of the effort

balance at the left-hand 1-junction, the two Lagrange equations are

1
C1

Ie = R q̈1 +
(

1
C1

+
1
C2

)
q̇1 − 1

C2
q̇2 (4.58a)

0 = L1 q̈2 +
1
C2

q2 − 1
C2

q1 . (4.58b)

����
����
�

	� �

�

�

�
Ie C1 C2 L1

R

�

eC1

�

�

eC2

�

�
�	+ I

�
�	+ II

�

�̇
q1

�

�̇
q2

Fig. 4.31 RLC circuit
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Fig. 4.32 Bond graph of the RLC circuit with artificial flow sources

Equation 4.58a can also be directly obtained from the network by adding up all

voltages along mesh I, by differentiating this sum with respect to time and by using

Kirchhoff’s current law to express the currents into the capacitors by the derivatives

of the generalised coordinates. Likewise, the second Equation 4.58b results from

adding up all voltages along mesh II.

The same equations result if the Lagrangian of the system

L =
1
2

L1 q̇2
1 − 1

2C1
(
∫ t

0

(Ie(τ) − q̇1)dτ)2 − 1
2C2

(q1 − q2)2 (4.59)

is differentiated according to Equation 4.56. The generalised forces

E1 = −R q̇1 (4.60a)

E2 = 0 (4.60b)

are obtained from the bond graph of Figure 4.32.

4.11 Conclusion

In the previous chapter, the important notion of a causal path was introduced. In

the process of a systematic derivation of a mathematical model from a causal bond

graph, first, only causal paths between resistive ports had been allowed. In this chap-

ter, different types of causal paths and their influence on the form of the mathemat-

ical model have been considered. The following zero-order causal paths have been

analysed.

1. Causal paths between resistive ports

2. Causal paths between storage ports of the same type

3. Causal loops

4. Bond graphs with different types of causal paths



172 4 Causal Bond Graphs and Forms of Mathematical Models

In these cases, a mathematical model of the form of a DAE system can be derived

from the bond graph. If this form is not supported by the available simulation pro-

gram or if an explicit state space form is needed for other reasons, then causal paths

can be removed by inserting additional energy stores or resistors.

In the case of linear algebraic constraints, one may try to remove them by sym-

bolic manipulation supported by various algebra programs. The first approach is

generally applicable and can be justified from a physics point of view by taking into

account effects that are negligible with regard to the overall dynamics of a system.

For instance, in multibody systems, joints linking bodies are not completely rigid,

but have got some compliance and exhibit some dissipation. Consequently, inertias

of bodies can be decoupled by a spring-damper pair. The disadvantage, however, is

that fast transients or high frequency oscillations are introduced that are not signifi-

cant for the overall system dynamics.

Transients or oscillations in a system considered to be isolated can be identified

by looking at causal paths between a storage port and a resistive port and between

storage ports of different type. For linear or linearised characteristics, time constants

or natural frequencies can be obtained from element parameters. Since transients

and oscillations in a system are not isolated but influence each other, this approach

yields only a rough estimate of the actual time constants and natural frequencies of

the linearised system which is not so bad because determination of eigenvalues is so

costly that their evaluation prior to simulation is not worthwhile.

Inserting additional energy stores or resistors often results in a stiff ODE sys-

tem. Numerical solution of such system requires an implicit stiffly stable integration

method. Thus, the solution is costly with regard to computational time in compar-

ison to an explicit method. Moreover, including additional energy stores increases

the order of the ODE system. The disadvantage of a symbolic reduction approach is

that it is not generally applicable.

The standard sequential causality assignment procedure, SCAP, may lead to the

requirement of inverting the characteristic of some resistive ports. If that is not pos-

sible for a resistive port, causality in the bond graph is not in accordance with the

form of constitutive relation. In this case, the equation of a port can be considered

an implicit non-invertible algebraic relation for the determination of the output vari-

able. A transformation of the DAE system into a state space model is not possible.

An alternative to the standard SCAP is the method of relaxed causalities intro-

duced by Joseph and Martens. Following this procedure, nonlinear resistive ports

always obtain the causality corresponding to their constitutive relation with the con-

sequence of possible causal violations at 0- or 1-junctions. The type of causal vio-

lation indicates how many algebraic constraints must be formulated for each such

junction. Hence, in general, the procedure of Joseph and Martens yields mathemat-

ical models of the form of a DAE system. Consequently, causal conflicts do not

necessarily indicate contradictions in the model, meaning that the model equations

cannot be solved. Whether a mathematical model can be reduced to an explicit state

space model depends on whether the algebraic constraints resulting from causal vi-

olations at 0- or 1-junctions can be symbolically solved.
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If there is a causal path between an independent and a dependent linear energy 1-

port store, then both energy stores can be combined into one with integral causality.

Transforming an energy I store with derivative causality over a transformer requires

its parameter to be multiplied by the square of the transformer modulus. If the mod-

ulus is controlled by a generalised displacement, then the result is a so-called virtual

inertia that has an artificial element, the gyristor, as a companion. The latter takes

into account that the virtual inertia depends on the instantaneous value of the gen-

eralised displacement and ensures that the kinetic co-energy of the virtual inertia is

conserved [3].

Another option is to apply a procedure introduced by Karnopp that enables one

to identify generalised coordinates in a bond graph and to derive Lagrange equations

for them. This can be achieved by adding all efforts at the 1-junctions representing

the derivatives of generalised coordinates. The method of Lagrange equations is not

confined to mechanical systems even if the terminology originating from mechanics

is retained. For electrical systems, the charge of capacitors can be used as gener-

alised coordinates. In any case, the result is a compact generally nonlinear model

with a minimal number of state variables.

If the mathematical model derived from a bond graph takes the form of a DAE

system, then its index is an important characteristic with regard to the numerical

solution. Van Dijk has shown that conclusions with regard to the index can be drawn

from inspection of causal patterns in the bond graph. For instance, if causal paths

occur between resistive ports or between independent and dependent storage ports,

then the DAE system for the outputs of the energy stores is of index one.

For bond graphs with causal loops (Definition 3.10), Andry and Rosenberg have

shown that the algebraic equations of the general junction structure (Definition 2.14)

are solvable if and only if causal loops are pairwise disjoint and if for each causal

loop, its loop gain (Definition 4.16) is different from +1. If causal paths between

independent and dependent storage ports share bonds with causal loops while causal

loops do not touch, then the DAE system is of index > 1, as has been shown by van

Dijk. Consequently, solvers based on the BDF method, like the widely used DASSL

code, cannot be used, in general, for such DAE systems.

Causal loops of unity loop gain in the junction structure are an indication of a

weak point of the SCAP. In the bond graph of Figure 4.16, the fixed causality of

the flow source and the preferred causalities of the I energy stores do not propagate

into the junction structure. According to the SCAP, causality must be chosen at a

resistor. If conductance causality is assigned, a causal conflict results at a 0-junction.

On the contrary, assignment of resistance causality leaves the bond graph causally

incomplete. Hence, causality must be chosen at an internal bond. No matter at which

of the six internal bonds causality is chosen, the result is a causal loop of unity

loop gain. Setting up equations reveals that the causal loop of unity loop gain as

well as the causal conflict at the 0-junction indirectly express a nodicity property of

the delta subnetwork of resistors. According to this nodicity property, the currents

of the source and of the two I energy stores cannot be independent in contrast to

the assignment of preferred causalities at the storage ports. The nodicity property

can be expressed in the bond graph by assigning derivative causality to one of the
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two I energy stores. As a result, the causal loop disappears. In the bond graph of

Figure 4.18, the equation of cut-set 1 depicted in the network of Figure 4.15 is not

expressed directly, but the bond graph is consistent with that constraint. In that light,

the weakness of the SCAP could be accepted. With regard to the numerical solution

of the DAE system, however, it turns out that it is of index > 1. If one of the two

I energy stores obtains derivative causality, then the DAE system is of index one,

allowing for a safe numerical solution. Van Dijk has proposed a modification of the

SCAP that avoids the emergence of causal loops of unity loop gain such that bond

graphs causally completed this way lead to DAE systems of lower index.

Finally, internal modulation may cause algebraic loops. They are not expressed

by causal paths alone. Their systematic detection is not so easy. Since internal mod-

ulation enables the representation of functional relations that do not comply with

physical conservation laws, Breedveld suggests to refrain from using it.
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Chapter 5
Computing Mathematical Models Derived from
Bond Graphs

In the previous chapter, we analysed causally completed bond graphs with regard

to the form of the mathematical models that can be systematically derived. It has

turned out that, in general, a DAE system results. An important indication for a

robust numerical solution of such systems is their index. For that reason, the index

has been determined for some bond graphs with causal paths from different classes

and general results, proven by van Dijk [49], have been cited. DAE systems derived

from bond graphs are often of index ≤ 2, giving reason to the conjecture that this

holds in general. However, there is no formal proof thus far.

For a comprehensive presentation of bond graph based physical systems mod-

elling and simulation, in the following, the principle of some approaches to the

symbolic and numerical solution of DAE systems and their features are dealt with.

For details and mathematical proofs, readers are referred to publications in the area

of numerical mathematics. First, the principle and features of the widely used nu-

merical approach based on the so-called Backward Differentiation Formula (BDF)

are considered. Subsequently, we will discuss how symbolic preprocessing of the

DAE system can be supported at bond graph level. The idea is to reduce the index

or to solve the system of algebraic constraints symbolically, if possible, before the

DAE system is passed on to a numerical solver.

5.1 Numerical Solution of Differential-Algebraic Systems

5.1.1 The Backward Differentiation Formula

Linear stiffly stable multi-step methods have been used for the solution of systems

of implicit stiff ODEs for a long time, e.g., for the transient analysis of integrated

circuits. The idea of using them also for DAE systems goes back to Gear [24]. In a

general implicit DAE,

F (x(t) , ẋ(t) , t ) = 0 , (5.1)

177
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the derivative ẋ at the future time tn+1 is replaced by an approximation ẋn+1 that is

a weighted sum of the unknown approximate value xn+1 at time tn+1 and k known

approximate past values xn+1−i at times tn+1−i (i = 1 . . . k)

ẋn+1 = − α0

hn+1
xn+1 − 1

hn+1

k∑
i=1

αi xn+1−i , (5.2)

where hn+1 := tn+1 − tn is the present time step and α0, α1, . . . , αk are coeffi-

cients. Equation 5.2 is called the Backward Differentiation Formula (BDF) of order

k. It transforms the initial DAE into a nonlinear set of algebraic equations for the

unknown approximate vector xn+1 at time tn+1.

G (xn+1 , tn+1 ) = 0 (5.3)

The BDF of order k gives the exact value x(tn+1) if the solution of the DAE (5.1)

is a polynomial of order k. This requirement yields a linear algebraic system deter-

mining the coefficients αi (i = 0 . . . k)⎡⎢⎢⎢⎢⎢⎣
1 1 . . . 1
0 a1

1 . . . a1
k

0 a2
1 . . . a2

k
...

...
...

0 ak
1 . . . ak

k

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
α0

α1

α2

...

αk

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0
1
0
...

0

⎤⎥⎥⎥⎥⎥⎦ , (5.4)

where aj
i :=

[
tn+1 − tn+1−i

hn+1

]j

, i = 1, . . . , k, j = 1, . . . , k. Note that these

coefficients must be re-evaluated whenever the current time step hn+1 changes.

For order k = 1, for instance, the determination of the coefficients yields the well

known implicit backward Euler method (BE) and Equation 5.3 takes the form

F (xn+1 ,
xn+1 − xn

hn+1
, tn+1 ) = 0 . (5.5)

The nonlinear set of algebraic equations (5.3) is solved by iteration. Usually,

Newton-Raphson (NR) iteration is used. Let JG denote the Jacobian matrix of

the function G and x(m)
n+1 the mth iteration of the unknown value xn+1. Then, the

Newton-Raphson iteration is

JG (x(m)
n+1 ) [x(m+1)

n+1 − x(m)
n+1 ] = −G (x(m)

n+1 , tn+1 ) . (5.6)

Let xP (t) be the unique kth degree interpolation polynomial that passes through

the k + 1 past approximate values xn+1−i, (i = 1, . . . , k + 1). Then, xP
n+1 :=

xP (tn+1) �= xn+1 is a predicted value of the unknown approximate value xn+1,
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xP
n+1 =

k+1∑
i=1

γi xn+1−i , (5.7)

that can be used as an initial guess for the Newton-Raphson iteration (x(0)
n+1 =

xP
n+1). The requirement that Equation 5.7 gives the exact value xP

n+1 = xP (tn+1)
at tn+1 for all polynomials of degree i = 1, . . . , k yields the set of linear equations

(5.8) determining the coefficients γi (i = 1, . . . , k + 1) [14].⎡⎢⎢⎢⎢⎢⎣
1 . . . 1 1
a1
1 . . . a1

k a1
k+1

a2
1 . . . a2

k a2
k+1

...
...

...

ak
1 . . . ak

k ak
k+1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
γ1

γ2

γ3

...

γk+1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1
0
0
...

0

⎤⎥⎥⎥⎥⎥⎦ (5.8)

The matrix in Equation 5.8 is called a Vandermonde matrix. Its first k columns

are identical to columns 2, 3, . . . , k + 1 of the matrix in Equation 5.4. That is, the

coefficients α0, α1, . . . , αk and γ1, γ2, . . . , γk+1 can be related. Now, if the step size

changes, both sets of coefficients must be re-evaluated. However, as has been shown

by Brayton, Gustavson and Hachtel in [7], the new coefficients can be efficiently

derived from the ones for the old step sizes.

The computational effort of the BDF method can be considerably reduced if both

the step size and the order of the method are controlled [7]. Software implementa-

tions of the BDF method control the step size as well as the order k in such a way

that the absolute value of the local truncation error (LTE) remains below a given

bound. For a method of order k, the local truncation error is approximately

Ek,j ≈ hn+1

tn+1 − tn−k
( xn+1,j − xP

n+1,j ) , (5.9)

where the second subscript j denotes the component of the vectors ([7], Equation 5b,

[14]). The possibility of varying the step size, in principle, makes the BDF methods

suitable for models with discontinuities.

5.1.2 Problems with the Numerical Solution of DAEs by Means of
the BDF

If the step size is varied, then the coefficients αi in Equation 5.2 and, in particular,

the first coefficient α0 change. This would entail a repetitive LU decomposition of

the Jacobian matrix. To avoid this effort, Brenan, Campbell and Petzold use a special

form of the BDF method in their DASSL code in which the coefficient α0 is inde-

pendent of the step size [8]. This method is known as fixed leading coefficient BDF.

Variation of the step size may lead to an instability of the method [7, 22]. Moreover,

a reduction of the step size increases the condition number of the Jacobian matrix in
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Equation 5.6. If the BDF, Equation 5.2, is rewritten in a simplified notation as

ẋ = −α0

h
x +

1
h
c , (5.10)

where c := −∑k
i=1 αi xn+1−i is a constant determined by the approximate values

xn+1−i at the past k + 1 time points, then the Jacobian matrix of G reads

JG(x) = (
∂F
∂x

+
∂F
∂ẋ

(−α0

h
) ) (x) . (5.11)

Substituting Equation 5.11 into Equation 5.6, multiplying the resulting equation by

h and letting h → 0 yields

− α0
∂F
∂ẋ

(x(m)
n+1) [x(m+1)

n+1 − x(m)
n+1 ] = 0 . (5.12)

For a DAE system of index one, the matrix ∂F/∂ẋ is singular. This problem does

not appear if something is known about the structure of the set of equations such

that the vector x can be partitioned into a state vector and a vector of semi-state

variables. From the previous chapter, we know that a DAE system derived from a

bond graph with causal paths between resistive ports or causal loops of loop gain

different from one is of semi-explicit form

ẋ = f1(x, z, t ) (5.13a)

0 = f2(x, z, t ) , (5.13b)

where x denotes the vector of state variables and z the vector of semi-state vari-

ables. Now, we substitute the derivative ẋ in Equation 5.13a by means of the BDF,

Equation 5.10, apply Newton-Raphson formula, multiply the resulting equations by

h and let h → 0. Then, the result is the following equation to be solved for each

iteration step⎡⎢⎣−α0I 0

∂f2
∂x

∂f2
∂z

⎤⎥⎦ (x(m)
n+1, z

(m)
n+1)

⎡⎣Δx(m+1)
n+1

Δz(m+1)
n+1

⎤⎦ = −
⎡⎣ −α0 xn+1

f2(x
(m)
n+1, z(m)

n+1, tn+1 )

⎤⎦ .

(5.14)

Clearly, Equation 5.14 is solvable if the sub-matrix ∂f2/∂z is non-singular. This

condition is necessary and sufficient for the local index of the DAE system 5.13a)–

(5.13b to be equal to one. With regard to a practical check, this mathematical con-

dition is less appropriate than a criterion based on the inspection of a causally com-

pleted bond graph. If the local index of an underlying semi-explicit DAE system

is one, then this means that in each step of the Newton-Raphson iteration, the set

of linear algebraic equations can be safely solved even for small step sizes h if the

Newton-Raphson equation is scaled by h first.

If the sub-matrix ∂f2/∂z is singular, then the DAE is of local index > 1. In that

case, the matrix in the recurrence equation, Equation 5.14, is singular.
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The condition number of the iteration matrix

JG =
∂F
∂x

− α0

h

∂F
∂ẋ

(5.15)

in Equation 5.6, in general, is of order O(h−ν) for a DAE system of local index

ν ([8], Theorem 5.4.1). That is, for DAE systems of local index > 1, small step

sizes can result in large roundoff errors in the solution of the set of linear equa-

tions in each Newton-Raphson iteration step. As a consequence, the NR iteration

may fail to converge. Small step sizes may occur especially at the beginning of the

numerical integration and in the vicinity of discontinuities. Rounding errors, how-

ever, are not of the same order for all unknowns. They are larger for the algebraic

unknowns than for the state variables. Lötstedt and Petzold [33] state that for the

semi-explicit system (5.13a)–(5.13b), the roundoff error in x is of the order O(u)
and for z of the order O(u/h) (u denotes the machine unit) if the row in the Jaco-

bian matrix hJG, according to the algebraic constraints, is scaled by 1/h. Since the

algebraic variables do not influence the dynamic behaviour beyond the actual time,

convergence problems of the Newton-Raphson iteration in the case of semi-explicit

DAE systems of local index > 1 can be reduced by tolerating much larger errors in

the algebraic variables than in the state variables and by excluding them from error

control decisions.

In addition to the problem of an increased condition number of the iteration ma-

trix, Equation 5.11, a reduction of the step size h entails further problems in the

numerical solution of DAE systems of higher index [8]. In his dissertation, Bu-

jakiewicz [10] gives a formula for the error en := xn − x(tn) in the solution of

Equation 5.1 obtained by the BDF (Equation 5.2). In that formula, inclusion of the

local truncation error of the BDF as well as the error in the solution of Equation 5.3

by iteration is of crucial importance. For a DAE system of index m, the inverse of

the iteration matrix includes powers of (1/h) up to the order m − 1. According to

the formula of Bujakiewicz, this entails that the local truncation error of the BDF

method is amplified by powers of (1/h). The same holds for the errors that have

emerged at k past times in the iteration of Equation 5.3. By means of an example

of a linear DAE system of index 3, Bujakiewicz shows that for this reason, the local

error in some variables cannot be diminished by reducing the step size [10].

In summary, the numerical solution of higher index DAE systems by means of

the BDF method entails the following problems that complicate the step size control.

• The local truncation error is amplified by powers of (1/hn).
• The algebraic error, due to a limited number of Newton-Raphson iterations and

due to roundoff errors in the solution of the Newton-Raphson equation, is ampli-

fied by powers of (1/hn).
• The condition number of the iteration matrix is increased by a reduction of the

step size.

For nonlinear semi-explicit DAEs of index 2

F1(x, ẋ, z, t ) = 0 (5.16a)
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F2(x, z, t ) = 0 , (5.16b)

where det ∂F1/∂ẋ �= 0 and ∂F2/∂z has constant rank, Lötstedt and Petzold have

shown in [34] that the k-step BDF (k < 7) is convergent and globally accurate to

O(hk) after k + 1 steps if all initial values are accurate to O(hk) and if the result of

the Newton-Raphson iteration at each time is accurate to O(hk+1) [8].

Finally, it is recalled that for a fixed step size, the BDF method is identical with

Gear’s method. As it is well known, the BDF method is stiffly-stable. That is, in

the vicinity of the imaginary axis of the complex (hλ)-plane, λ ∈ C, stability is

not ensured. Consequently, the BDF method is not well suited for the solution of

oscillatory models if the linearised model includes weakly damped oscillatory com-

ponents of eigenvalues λi(t). Hence, for a given order and some step sizes h, the

points hλi(t) close to the imaginary axis may be outside the region of absolute

stability (cf. [25], Figure 11.7).

5.2 Reduction of the Index of a Differential-Algebraic System

The previous considerations make it clear that, in general, a reliable numerical so-

lution of DAEs by means of the BDF method is possible if they are of index < 2.

Index 2 DAE systems can be solved using the BDF method if they are of a special

form, e.g., semi-explicit DAEs ([9], Theorem 3.2.2). However, as to the software im-

plementation of the BDF method in the widely used DASSL code, error estimation

has not been designed for the class of semi-explicit DAEs. The numerical solution

of index 2 DAE systems has been subject of research, e.g., by März and Tischendorf

[37, 38] and by Tischendorf and her group [28, 45]. Furthermore, Lötstedt and Pet-

zold have shown that the BDF method also works for some special cases of index 3

DAEs [34].

A possible alternative to the BDF method are implicit Runge-Kutta methods.

In contrast to linear multi-step methods, A-stable methods of high order can be

constructed. As one-step methods, they are self-starting, they enable a simple step

size control and are suited for models with frequent discontinuities. Whereas multi-

step methods must restart at low order after a discontinuity has occurred, implicit

Runge-Kutta methods can restart at higher order. The low order of the BDF at a

restart is a problem in the solution of index 3 systems. However, the computational

effort per step is substantially higher than for multi-step methods which has lead

van der Houwen and Sommeijer [43] to the development of parallel implicit Runge-

Kutta methods.

Hairer, Lubich and Roche [27] investigate the numerical solution of DAE sys-

tems by means of Runge-Kutta methods and describe a code called RADAU5 based

on the three-stage RADAU IIA method that enables one to solve linear implicit

systems

Aẋ = f(x, t) (5.17)

of index 1,2 or 3 where A is a square constant coefficient matrix.
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The direct numerical solution of higher index DAE systems, in general, however,

is difficult [8]. In [22], Gear points out:

We do not know how to solve problems of higher index numerically without resorting to

symbolic manipulations of the equations. One such approach, suggested by Campbell [10],

consists of performing the differentiation shown in (1.2), solving for y′ . . .

where differentiation means the differentiation to be carried out for determining the

differential index of a nonlinear DAE (see Definition 4.11).

It is true that DAEs derived from bond graphs are often of index 1, but DAEs of

index > 1 may also result for instance if a causal paths between an independent and

a dependent storage port and a causal loop share a bond, as in the bond graph of

Figure 4.14. In view of the problems that can occur in solving numerically higher

index DAEs by means of the BDF method, it is obvious to try to reduce the index

of a DAE system by symbolic differentiation and manipulation of the equations, as

suggested by Gear, before passing it on to a numerical solver. This approach, how-

ever, entails another two problems, namely the determination of consistent initial

values and the phenomenon of numerical drift.

Example: Mathematical Pendulum

For illustration of both problems, we will consider the classical example of a math-

ematical pendulum of point mass m and a massless bar of length L (Figure 5.1).
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Fig. 5.1 Mathematical pendulum
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Given a fixed Cartesian reference frame, let u denote the velocity of the point

mass in x- and v its velocity in y-direction and λ the tension in the bar. Then, the

motion of the point mass can be described by Equations 5.18a–5.18e.

ẋ = u (5.18a)

ẏ = v (5.18b)

u̇ =
1

mL
λ x (5.18c)

v̇ =
1

mL
λ y + g (5.18d)

L2 = x2 + y2 (5.18e)

The equations of motion can be derived either directly from the drawing of Fig-

ure 5.1, or by transforming the Euler-Lagrange equations of a pendulum into first

order ODEs. Equation 5.18e is a constraint at the geometric level for the position of

the point mass.

If we want to reduce the DAE system 5.18a)–(5.18e into an explicit ODE system,

then we need to express the derivative of the tension, λ̇, as a function of the vari-

ables x, y, u, v, λ. Differentiation of Equations 5.18c–5.18d yields two new equa-

tions which include λ̇, but also two new variables ü and v̈. After substitution of ẋ
and ẏ we get

ü =
1

mL
( λ̇x + λu ) (5.19a)

v̈ =
1

mL
( λ̇y + λv ) . (5.19b)

By differentiation of the constraint at positional level and substitution of ẋ and ẏ,

we get a constraint for the velocity vector [u, v]T of the mass-point

0 = xu + yv . (5.20)

Equation 5.20 expresses that the velocity vector and the position vector of the point

mass are perpendicular to each other. From the velocity constraint, we see that we

need to differentiate it another two times and that we need to differentiate Equations

5.18a and 5.18b one more time to get rid of ẍ and ÿ in order to finally express λ̇ by

the variables x, y, u, v, λ.

0 = ẍu + ÿv + 2( ẋu̇ + ẏv̇ ) + xü + yv̈ (5.21a)

ẍ = u̇ (5.21b)

ÿ = v̇ (5.21c)

Actually, by substitution of Equations 5.21b and 5.21c as well as Equations 5.19a

and 5.19b into Equation 5.21a and by observing Equations 5.18e and 5.20, we get
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λ̇ = −3mg

L
v . (5.22)

Thus, the DAE system is of index 3. In order to find this result, it was not necessary

to differentiate all equations three times. This raises the questions regarding which

equations need to be differentiated how many times in order to express the rate of

the state vector as a continuous function of the state vector and of time.

Closely related with the reduction of a DAE system to an ODE system is the

problem of consistent initial values for the DAE system. As can be seen from Equa-

tion 5.20, it is not sufficient to give initial values for the initial DAE system. The

initial values rather must satisfy all additional equations that result from differentia-

tion. Hence, repeated differentiation of a part of the DAE system is not only needed

to determine the index, but also to determine a set of consistent initial values. In

[41], Pantelides gives a graph-based algorithm that determines a minimal number

of equations from which a set of consistent initial values can be computed. Since

the differentiation of equations is used in the reduction of the index and since dif-

ferentiation can be symbolically performed, the algorithm of Pantelides has been

implemented in the program Dymola [19] for symbolic reduction of a higher index

DAE systems (cf. Chapter 11).

Under the assumption that the occurrence of a variable in an equation is inde-

pendent of the values of the parameters in the equation, the above steps for deter-

mination of λ̇ can be systemised in the following manner. For the DAE system 5.1

in which ẋ denotes the vector of unknowns, a so-called occurrence matrix S [35]

can be set up. Their rows corresponds to the equations and their columns to the un-

knowns. If the jth unknown occurs in the ith equation, then the entry in position

(i, j) of S is set to 1. Otherwise, it is zero. Hence, it is a binary matrix that accounts

for the structural relationship between variables and equations. It does not reflect

the functional form of equations (The occurrence matrix S reflects the structure of

the Jacobian matrix ∂F/∂ẋ of Equation 5.1).

For Equations 5.18a–5.18e and the vector ẋ of unknowns, ẋ = [ẋ ẏ u̇ v̇ λ̇]T , we

get the occurrence matrix of Equation 5.23

S0 =

(5.18a)
(5.18b)
(5.18c)
(5.18d)
(5.18e)

ẋ ẏ u̇ v̇ λ̇⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ . (5.23)

There are no unknowns in Equation 5.18e. It rather establishes a relation between

some components of the known vector x. For that reason, the matrix S0 is singu-

lar. That is, the set of equations cannot be solved for ẋ, the vector of unknowns.

Therefore, the DAE system is of index > 1. If Equation 5.18e is differentiated with

respect to time and replaced by Equation 5.20, then the occurrence matrix S1 of the

modified set of equations is still singular. Equation 5.20 also leads to a row in the
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occurrence matrix with vanishing entries. If we differentiate Equations 5.18a–5.18d

as well as Equation 5.20 and add the differentiated equations to the initial Equations

5.18a–5.18d, then we see that the algebraic constraint differentiated two times has

lead to a vanishing entry on the diagonal of the occurrence matrix S2 transformed

to lower triangular form. Hence, also S2 is singular. Let S̃2 denote the occurrence

matrix S2 transformed to lower triangular form. Then,

S̃2 =

(5.18a)
(5.18b)
(5.18c)
(5.18d)
(5.21b)
(5.21c)
(5.20)
(5.19b)
(5.19a)

ẋ ẏ u̇ v̇ ẍ ÿ λ̇ v̈ ü⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
1 1 1 1 0 0 0 0 0
0 1 0 0 0 0 1 1 0
1 0 0 0 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.24)

If the algebraic constraint differentiated two times is differentiated a third time,

then the occurrence matrix of the resulting set of equations can be transformed to

lower block-triangular form with a structural non-singular block matrix. Thus, the

set of equations is solvable and the reduction process stops after three steps. In

each step, only those equations are differentiated that lead to a singular occurrence

matrix. Apparently, occurrence matrices can be represented by bipartite graphs. The

algorithm of Pantelides [41] for the identification of a minimal sub-set of equations

to be differentiated for the determination of a set of consistent initial conditions

works on bipartite graphs.

The second problem related with the reduction of the index of a DAE system

mentioned at the beginning of this section is that of numerical drift. Let us consider

the example of a mathematical pendulum once again. The formulation by means of

the Equations 5.18a–5.18e includes a constraint for the position of the point mass. In

the process of transforming the DAE system into an ODE system, the constraint on

geometric level is differentiated. Thus, this information vanishes. Due to numerical

imprecision in the numerical integration of the ODEs, the solution of the reduced

system only approximates the geometric constraint. Consequently, if the pendulum

with no friction in the pivot point starts swinging from a horizontal position, in the

long run after many swings, it will not return to its horizontal starting position due to

an increasing influence of numerical errors [20, 50]. Differentiation of the geometric

constraint yields a constraint for the velocity (Equation 5.20. Its differentiation gives

another constraint for the forces acting on the point mass (Equation 5.21a. If only

the explicit ODE system resulting from the reduction process is used, then the con-

straints at geometric and at velocity level are not existent in the model and cannot be

taken into account in the numerical solution. The problems with the direct numerical

solution of higher index DAE systems and that of numerical drift suggest to reduce
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a higher index system to one of index 1 and to add the initial constraints for stabil-

isation of the numerical solution. This yields an over-determined set of equations

for the Newton-Raphson iteration. To overcome this problem, Führer has combined

the Newton-Raphson iteration with Gauß’ least square method. This approach has

been implemented in the solver ODASSL [20]. Another option is to consider the

derivatives of some variables as new independent variables such that the number of

the unknowns corresponds with the number of the equations increased by the num-

ber of the differentiated equations that have been added. The derivatives considered

to be new independent variables are called dummy derivatives. However, with this

approach, the problem arises to decide which variables are state variables and which

are not.

Finally, we will show that a bond graph model can be easily constructed for

the mathematical pendulum that represents the DAE system of index 2. That is,

the velocity constraint is taken into account, but not the geometric constraint. Since

bond graphs represent relations between power variables, it is not possible to express

geometric constraints.

In describing the planar or 3D motion of mechanical systems, it is typical to

use several reference frames and transformations between them. In bond graphs,

these transformations between reference frames can be represented by displacement

modulated transformers. In particular, differentiation of the relations between polar

coordinates (r, φ) and Cartesian coordinates x, y yields two relations between the

corresponding velocities[
φ̇
ṙ

]
=

[ cos φ

r
− sin φ

r
sin φ cos φ

] [
ẋ
ẏ

]
. (5.25)

Moreover, let e1, f1, e2, f2 be vectors of efforts or flows and A a non-singular

matrix relating the vectors of flows

f2 = Af1 . (5.26)

Then, power continuity

eT
1 f1 = eT

2 f2 (5.27)

yields for the corresponding vectors of efforts

e1 = AT e2 . (5.28)

In the case of the mathematical pendulum, this relation takes the form

[
m ẍ

m ÿ − m g

]
=

⎡⎢⎣ cos φ

r
sin φ

− sin φ

r
cos φ

⎤⎥⎦ [
M
λ

]
, (5.29)

where M denotes the moment in the pivot point and λ, the tension in the bar. Since

ṙ ≡ 0 and M ≡ 0, Equations 5.25 and 5.29 simplify to
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Fig. 5.2 Bond graph of the planar motion of a mathematical Pendulum using the constraint force

λ

0 = ẋ sin φ + ẏ cos φ (5.30a)

m ẍ = λ sin φ (5.30b)

mÿ = λ cos φ + m g . (5.30c)

Substitution of sin φ = x/L and cos φ = y/L just yields the DAE system in

which the geometric constraint has been replaced by that for the velocities. The

corresponding bond graph is obtained by representing each of the velocities ẋ, ẏ and

ṙ (≡ 0) by a 1-junction and the kinematic relation (Equation 5.30a) between them

by means of modulated transformers as depicted in Figure 5.2. The components of

the kinetic energy of the point mass and the gravitational force have been taken

into account by two I energy stores and an effort source attached to the 1-junction

representing ẏ. Due to power continuity at the 1-junctions, the equations of motion

are automatically fulfilled. The controlled effort source on the left side of the graph

in Figure 5.2 provides a force λ such that ṙ ≡ 0. The sum of flows at the 0-junction

yields the velocity constraint (Equation 5.20). The sum of efforts at the right side

1-junctions give the equations of motion for the x- and y-direction. The geometric

constraint (Equation 5.18e) is not displayed in the bond graph.

If we invert the kinematic relations (5.25) and take into account ṙ = 0 and r = L,

then the bond graph representation of the kinematic equations

ẋ = (r cos φ) φ̇ (5.31a)

ẏ = (−r sin φ) φ̇ (5.31b)

can be extended into the bond graph of Figure 5.3 in a similar manner, as the bond

graph in Figure 5.2 has been constructed [30].

In the bond graph of Figure 5.3, the controlled flow source provides the kinematic

variable φ̇ such that the moment into the source vanishes. If we add the moments

at the 1-junction of φ̇, eliminate ẍ, ÿ by differentiation of the flow relations of the

transformers (Equations 5.31a–5.31b), then the result is is the well known Lagrange
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Fig. 5.3 Bond graph of the planar motion of a mathematical pendulum with Lagrange causalities

equation of the second kind

φ̈ +
g

L
sin φ = 0 . (5.32)

Alternatively, the two I energy stores could be transformed over the transformers and

combined into one attached at the 1-junction representing φ̇. The gyristor elements

that emerge if energy stores are transformed over modulated transformer cancel each

other in this case.

Thus, if the kinematic displacement φ is chosen as an appropriate coordinate for

the description of the motion of the point mass along a circle segment, then the

geometric constraint is fulfilled for all values of φ and the constraint force λ can be

eliminated from the Euler-Lagrange equations of motion. This leads us to a similar

and quite elegant, approach that has been proposed by van der Shaft and Maschke

in [47]. In the following, the basic idea shall be explained.

5.3 Reduction of Hamiltonian Equations of Motion with
Constraints

In this section, the presentation is confined to lossless, so-called conservative me-

chanical systems. Hamiltonian equations, however, can also be formulated for phys-

ical systems in other energy domains [39]. Moreover, the formulation of Hamilto-

nian equations of motion for conservative systems originating from classical me-

chanics has been extended to so-called port-controlled Hamiltonian systems with

dissipation [16, 46, 51]. In [16], Donaire and Junco show how a port-Hamiltonian

formulation of equations can be obtained from a bond graph model including dissi-

pation.
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Hamiltonian Equations

As in Section 4.10 on Lagrange causalities, generalised coordinates of a system

are denoted as q = ( q1, . . . , qn ) and the Lagrangian as L(q, q̇). Let us define

generalised momenta by p := ∂L/∂q̇. Then by applying the so-called Legendre

transformation Γ to the Lagrangian, we obtain another function H of the variables

q and p, known as the Hamiltonian.

Γ (L(q, q̇)) :=
n∑

i=1

pi q̇i − L(q, q̇) (5.33a)

H(q, p) := Γ (L(q, q̇)) (5.33b)

Since L is the difference of the kinetic co-energy, T ∗, and the potential energy,

V , its Legrendre transform just provides the sum of kinetic energy and potential

energy.

H =
n∑

i=1

pi q̇i − ( T ∗ − V )

= T + V (5.34)

Let AT be an k × n matrix of row rank k (there are k independent kinematic con-

straints), λ the vector of Lagrange multipliers, B an n×m matrix and u the vector

of system input flows. The equations of motion may be given in the form of Euler-

Lagrange equations

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= A(q)λ + B(q)u (5.35)

with the constraints

AT (q) q̇ = 0 (5.36)

for the generalised velocities q̇. The term A(q)λ represents the constraint forces

with λ uniquely determined by Equation 5.36, while Q := B(q)u are external

forces affecting the system. By means of the Hamiltonian H , the n constrained

second order Euler-Lagrange equations can be transformed into 2n constrained first

order ODEs known as Hamiltonian equations.

q̇ =
∂H

∂p
(q,p) (5.37a)

ṗ = −∂H

∂q
(q,p) + A(q)λ + B(q)u (5.37b)

0 = AT (q) q̇

= AT (q)
∂H

∂p
(q,p) (5.37c)
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Remark 5.1. If there are no constraints, then it follows immediately from the Hamil-

tonian equations that the Hamiltonian function, H, is in accordance with the energy

conservation principle as to be expected.

Ḣ =
∂H

∂q
(q, p) q̇T +

∂H

∂p
(q, p) ṗT

= (Q − ṗ)
(

∂H

∂p

)T

+
∂H

∂p
ṗT

= Q
(

∂H

∂p

)T

= Qq̇T (5.38)

Along with the constraints, the Hamiltonian equations constitute a DAE system

of local index 2. Equations 5.37a and 5.37b can be written in the form

[
q̇
ṗ

]
= J

⎡⎢⎢⎣
∂H

∂q
∂H

∂p

⎤⎥⎥⎦ +
[

0
A(q)

] [
λ
]

+
[

0
B(q)

] [
u
]

, (5.39)

where

J :=
[

0 I
−I 0

]
(5.40)

is called the Poisson structure matrix [47].

If we use the general mass matrix M(q), then the generalised momentum can be

written as

p = M(q) q̇ (5.41)

and the Hamiltonian is of the form

H(q, p) =
1
2

pT M−1(q)p + V (q) . (5.42)

Regarding the constraints, Equation 5.36, we assume a so-called holonomic sys-

tem. That is, new generalised coordinates q̃1, . . . , q̃n can be found such that the

derivatives with respect to time of k < n of these coordinates vanish, ˙̃qn−(k−j) =
0, (j = 1, . . . , k). That is, these coordinates q̃n−(k−j) are constant and only depend

on the initial conditions. Hence, they can only be eliminated such that the equations

of motion can be formulated by means of the remaining generalised coordinates. No

constraints are needed [47]. In other words, it is the number of components of the

vector q̇ that is necessary and sufficient to describe all motions at each time t [31].

In [31], the vector of generalised coordinates is also denoted as qK and is called the

vector of kinematic displacements. For non-holonomic constraints, such elimination

is not possible.
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Example: Planar Motion of a Mathematical Pendulum

For the example of the planar motion of a mathematical pendulum, the constrained

Hamiltonian equations are just the Equations 5.18a–5.18d and 5.20 if the Carte-

sian coordinates are denoted by qx, qy instead of x, y and if the velocities u, v are

expressed by the momenta px, py .

[
q̇x

q̇y

]
=

⎡⎢⎣
px

m
py

m

⎤⎥⎦ (5.43a)

[
ṗx

ṗy

]
= −

[
0
0

]
+

⎡⎢⎣
qx

L
qy

L

⎤⎥⎦ [
λ
]

+
[

0
1

] [
0

mg

]
(5.43b)

0 =
[ qx

L

qy

L

] ⎡⎢⎣
px

m
py

m

⎤⎥⎦ (5.43c)

If we use the variables qx, qy, px, py also in the bond graph of Figure 5.2, then the

constrained Hamiltonian equations of the pendulum can be directly derived from the

bond graph. This does not only hold for the example of the pendulum. For general

lossless mechanical systems, the Hamiltonian equations can be derived from the

bond graph. If reference frames are chosen such that the general mass matrix be-

comes a diagonal matrix, then only 1-port I energy stores appear in the bond graph.

Let ṗ denote the effort at such an I energy store port and q̇ the corresponding flow

variable. For the ith inertia, then clearly, the Hamiltonian equation q̇i = (1/mi)pi

holds. The force ṗi accelerating the ith inertia results from spring forces and external

forces. The same is true for moments. A spring force is related to the displacement

qC of the spring according to its characteristic. Furthermore, there is a geometric

relation between the vector qC of displacements of the springs and the vector q of

the kinematic displacements of inertias qC = Φ(q). That is, the potential energy

of all springs is a function of the vector q of the kinematic displacements of iner-

tias. The geometric relation differentiated with respect to time q̇C = (∂Φ/∂q) q̇
can be represented in a bond graph by means of transformers modulated by compo-

nents of q. Hence, equations can be derived from the bond graph that express the

derivative of the vector of momenta, ṗ, as a function of the vector q of kinematic

displacements and of external forces or moments. Thus, Hamiltonian equations can

be derived directly from a bond graph of a lossless mechanical system.

Let us modify the simple example of a mathematical pendulum such that the

point mass is connected to a spring and may slip along a massless rod. That is, the

geometric constraint q2
x + q2

y = L2 is dismissed. For this example, we obtain a bond

graph that slightly differs from the one shown in Figure 5.2.

In the bond graph of Figure 5.4, we have the displacement of the spring qC in

addition to the kinematic displacements of the inertias. The Hamiltonian equations
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Fig. 5.4 Bond graph of a pendulum with a point mass connected to spring and sliding along a

massless rod

q̇x =
1
m

px (5.44a)

q̇y =
1
m

py (5.44b)

ṗx = − 1
C

qx (5.44c)

ṗy = − 1
C

qy + mg (5.44d)

can be directly obtained from the bond graph in accordance with their analytical

derivation from the Hamiltonian. The sum of flows at the 0-junctions yields the

relation between the derivative of the spring displacement and the derivatives of the

kinematic displacements of the inertias. The displacement modulated transformers

establish the link between these velocities.

[q̇C ] =
[ qx

qC

qy

qC

] [
q̇x

q̇y

]
( =

∂Φ

∂q
q̇ ) (5.45)

Reduction to Unconstrained Equations by Means of a Coordinate Transformation

Now, the basic idea of the reduction of constrained Hamiltonian equations presented

by van der Schaft and Maschke [47, 48] is to perform a coordinate transformation

and to use the constraints in order to reduce the number of equations of motion such

that the constraint forces disappear.

To that end, first, a n × (n − k) matrix S(q) of row rank (n − k) is determined

such that the matrix [S|A] is non-singular (A is the matrix in the constraint equation

(5.36)) and such that

AT (q)S(q) = 0 (5.46)

holds.
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Now, let p̃ = [p̃1, p̃2], then

p̃1 := ST (q)p (5.47a)

p̃2 := AT (q)p (5.47b)

defines a coordinate transformation. With this transformation, the Hamiltonian

Equation 5.39 takes the form

⎡⎢⎣ q̇
˙̃p
1

˙̃p
2

⎤⎥⎦ = J̃(q, p̃)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂H̃

∂q
∂H̃

∂p1

∂H̃

∂p2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎣ 0
0

AT A

⎤⎦ [
λ
]

+

⎡⎣ 0
ST B
AT B

⎤⎦ [
u
]

(5.48)

and the constraint Equation 5.36 becomes

∂H̃

∂p̃2
= 0 . (5.49)

In the transformed equation (5.48), H̃ = H̃(q, p̃) is the Hamiltonian H(q,p)
expressed in the new coordinates q, p̃. Due to the transformed constraints (5.49), the

last k rows and columns in the matrix J̃ can be deleted. The transformed constraints

can be used to express p̃2 by q and the remaining momenta p̃1. If the reduced

Hamiltonian Hr(q, p̃1) is defined as H̃(q, p̃) with p̃ satisfying the transformed

constraint (5.49), then by disregarding the last row in the transformed Hamiltonian

Equations 5.48, reduced Hamiltonian equations for the new coordinates q, p̃1 result.

[
q̇
˙̃p
1

]
= Jr(q, p̃1)

⎡⎢⎢⎣
∂Hr

∂q
(q, p̃1)

∂Hr

∂p̃
(q, p̃1)

⎤⎥⎥⎦ +
[

0
ST B

] [
u
]

, (5.50)

where Jr(q, p̃1) is the skew symmetric (2n − k) × (2n − k) matrix

Jr(q, p̃1) =

⎡⎢⎣ 0n×n S(q)

−ST (q) [−pT [Si, Sj ](q)]i,j=1,2,...,n−k

⎤⎥⎦ . (5.51)
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The expression [Si, Sj ](q) denotes the Lie bracket of the ith and the jth column of

the matrix S(q).1 The vector p is expressed in q, p̃ with p̃ satisfying the constraint

(5.49).

In his diploma thesis [42], supervised by the author and B. Maschke, R. Red-

din implemented this outlined reduction of constrained Hamiltonian equations in

a procedure for the symbolic algebra program Maple™ [36]. Thus, Hamiltonian

equations derived from a bond graph can be automatically reduced to unconstrained

equations of motion before they are passed on to a numerical solver.

The approach of van der Schaft and Maschke for the reduction of constrained

Hamiltonian equations for lossless mechanical systems to a reduced system of ex-

plicit ODEs without constraints is essentially based on a proper coordinate trans-

formation. In contrast to the index reduction discussed in the previous section, the

question as to which equations need to be differentiated how many times in order to

obtain a set of consistent initial conditions and also the problem of numerical drift

does not emerge. However, in practical symbolic computation, problems may ap-

pear, for instance, if the transformed constraint (5.49) does not allow one to express

the vector of new momenta p̃2 as a function of q and p̃1.

5.4 Tearing of Algebraic Constraints

In Chapter 4, bond graphs with causal paths between resistive ports as well as causal

loops in the junction structure have been considered. In both cases, the mathematical

model has the form

ẋ(t) = f(x(t),h(t),u(t)) (5.52a)

0 = g(x(t),h(t),u(t)) , (5.52b)

where h denotes the vector of auxiliary algebraic variables. For bond graphs with

causal paths between resistive ports, the local index of the linearised model is equal

to one. It is also equal to one for bond graphs with causal loops if they are pairwise

disjoint and if their loop gain (Definition 4.16) is different from one [49]. Hence, the

underlying mathematical model allows for a robust numerical solution by means of

a solver based on the BDF method. However, the direct numerical solution is not

always efficient. If the ODEs are not stiff and if the algebraic constraints can be

symbolically solved, then there is no need for a stiffly stable implicit multi-step

integration method. That is, the iterative solution of a set of algebraic equations at

each time can be avoided and an integration method for explicit non-stiff ODEs

1 Let F, G be two smooth functions of x and let J be the standard Poisson structure matrix. Then,

the Lie bracket of both functions is defined as:

{F, G}(x) :=

(
∂F

∂x

)T

(x)J

(
∂G

∂x

)
(x) .
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could be used instead. On the other hand, the symbolic solution of the algebraic

constraints can require a considerable amount of storage and computational time.

Hence, an advantage can only be expected if small sets of algebraic equations are to

be solved.

In [26], Granda considers the special case of a semi-explicit DAE system in

which the ODEs and the algebraic equations are linear.

ẋ = A0 x + B0 u + Ja (5.53a)

a = Kx + Lu + Ma (5.53b)

where A0,B0,J,K,L,M are matrices of appropriate dimensions. The components

of the vector a are auxiliary power variables that have been chosen in order to com-

plete the causality assignment on a bond graph. The result, then, is a bond graph

with algebraic loops. Clearly, if I denotes the identity matrix and if the inverse of

the matrix (I−M) exists for given numerical values of its entries, then, in this case,

the semi-explicit DAE system can be transformed into a linear state space model.

Its matrices can be generated in symbolic form by means of the program CAMP-G

[11].

In this section, we will consider a symbolic and numerical approach that may

be an alternative to a direct numerical solution of the initial DAE system [4]. It

is based on the method of tearing algebraic equations introduced by G. Kron as

early as 1962 [32]. The basic idea is to decompose a large system of equations

into coupled smaller systems. Although tearing is not limited to linear systems,

for the sake of a simpler presentation, we will assume that the system of algebraic

constraints, Equation 5.52b, is linear in h and can be solved for h. That is, the

system of algebraic constraints (5.52b) can be written in the form

A(x(t))h = b , (5.54)

where the n × n matrix A(x(t)) is non-singular for each time t. Moreover, in gen-

eral, A(x) is a sparsely populated matrix since the components of a large physical

systems usually are directly connected only to a small number of other compo-

nents. If no information about the structure of the matrix is available, then a general

sparse matrix solver, as it is common in circuit simulation, is used (cf., e.g., [40]).

Such a solver aims to compromise between the requirement of preserving the ma-

trix structure and the requirement of preserving its condition number (For reasons

of accuracy, rows and columns will be interchanged, in order to make the element

of largest absolute value in the current sub-matrix the pivot. On the other hand, ad-

ditional non-vanishing elements, so-called fill-ins, emerge in the L and U factors of

a permutated matrix A). An alternative to a direct solution of the entire set of alge-

braic constraints is to partition the system with a sparse matrix into a set of small

systems with dense matrices. If a sub-vector h2 of p so-called tearing variables is

known and if the remaining components of h are combined into a sub-vector h1,

then permutation matrices P and Q with
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h = Q
[
h1

h2

]
and Pb =

[
b1

b2

]
(5.55)

can be found such that the set of algebraic equations (5.54) can be transformed into

the form [
L Ã12

Ã21 Ã22

] [
h1

h2

]
=

[
b1

b2

]
. (5.56)

In this form, L is a lower block triangular matrix with blocks Lii (i = 1, 2, . . . , (n−
p)) of minimal dimension on the main diagonal and diagonal elements different

from zero (cf., e.g. [17]). Hence, the matrix in Equation 5.56 is of the form of a bor-

dered block triangular matrix. This way, the task of solving a large set of algebraic

equations with sparse coefficient matrix is reduced to the solution of a sequence of

coupled small systems of equations with dense matrix. If, in particular, L is a lower

triangular matrix, then the initial task essentially reduces to the solution for the sub-

vector h2 of tearing variables. Since L is a lower triangular matrix, the equation

Lh1 = b1 − Ã12h2 (5.57)

can be symbolically solved for h1 by forward substitution. For the sub-vector of

tearing variables, h2, we obtain the smaller system

( Ã22 − Ã21L−1Ã12 )h2 = b2 − Ã21L−1b1 (5.58)

with a p × p coefficient matrix. Once, this set of equations is solved, which can

also be done symbolically since it is usually small, then the components of h1 are

obtained by forward substitution.2

Since the symbolic solution of large linear systems requires considerable mem-

ory, the reduction to a smaller system for the tearing variables h2 is essential for a

symbolic solution of the entire system of algebraic constraints. If the smaller sys-

tems are solved numerically, then there is a reduction of computational time in

comparison to a direct numerical solution of the entire original system. Let A in

Equation 5.54 be a dense n × n matrix and assume that the coefficient matrix in

Equation 5.58 is a dense p × p matrix with p < n. Then, the computational cost

of solving Equation 5.58 for the tearing vector, h2, is of the order O(p3). Solv-

ing Equation 5.57 for h2 by forward substitution requires O((n − p)2) long op-

erations. If the system of algebraic constraints is not torn and solved by Gaussian

elimination, then the computational effort is O(n3). Thus, this way it is roughly

r := O(n3)/(O((n − p)2) + O(p3)) times more costly than solving the torn sys-

tem. For illustration, consider some figures. For n = 8, p = 3, the ratio becomes

r = 9.8.

2 If L is lower block triangular with blocks Lii on the main diagonal, then a number of small

systems of equations with matrices Lii must be solved one after another in order to solve Equa-

tion 5.57 for h1. If L is a block diagonal matrix, the sub-vectors of h1 can be computed indepen-

dently of each other. Thus, they can be computed in parallel.
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The effort of solving the algebraic part of a semi-explicit DAE system 5.52a–

5.52b becomes minimal if a sub-vector h2 with a minimal number of tearing vari-

ables can be identified. The equations determining the tearing variables are called

residual equations. The problem is to find such variables. Unfortunately, the special

task of finding a minimal number of tearing variables is a so-called NP-complete

problem3 [35]. Consequently, some heuristic algorithms operating on the level of

equations and determining a small number of tearing variables have been proposed

in the literature (cf., e.g. [13, 44]).

In bond graphs, causal paths of a certain type express algebraic constraints. In the

following, we will introduce special controlled sinks, so-called residual sinks, that

can break up such causal paths or remove causal conflicts at junctions. By inspecting

computational causalities in a bond graph and by adding these sinks in appropriate

locations of a bond graph, a small, though not necessarily minimal, number of tear-

ing variables can be identified and residual equations can be found in a heuristic

manner. These sinks enable one to add tearing information to a bond graph that can

be used in the automatic generation of equations for tearing the algebraic constraints

and for their symbolic solution before the model is passed on to a numerical solver.

In the following, first, this heuristic bond graph based approach to the tearing of al-

gebraic constraints is illustrated for bond graphs with causal paths between resistive

ports, but no causal paths between independent and dependent storage ports.

5.4.1 Causal Paths Between Resistive Ports

Consider the bond graph in Figure 5.5. Since the fixed causality of the effort source

and the preferred integral causality of the C energy store do not propagate into the

3 The abbreviation NP stands for Nondeterministic Polynomial.

Definition 5.1 (Polynomial problem). A problem P is said to be polynomial if there exists a deter-
ministic algorithm that solves the problem in time T (n) = O(nc) where n is the number of input

data and c is a constant.

P denotes the class of all polynomial problems.

Definition 5.2 (Nondeterministic polynomial problem). A problem Q is said to be NP if there exist

a solution x and a nondeterministic algorithm that verifies the correctness of x with polynomial

amount of time.

NP denotes the class of all nondeterministic polynomial problems.

Remark: Each problem Q ∈ NP can be solved by means of a deterministic algorithm with expo-
nential amount of time. Clearly, P ⊆ NP.

Definition 5.3 (NP completeness). A problem P is called NP-complete if P ∈ NP and if for every

other problem Q ∈ NP there exists an algorithm T that transforms each input x of Q into an input

y of P with polynomial amount of time such that x is a solution of Q if and only if y is a solution

of P.

(cf. [15]). Remark: Given an NP-complete problem, it is unlikely that there exists a deterministic

algorithm which solves it in polynomial time.
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Fig. 5.5 Bond graph of a tree structure with touching causal paths between resistive ports

junction structure, the bond graph remains causally incomplete for the present. Thus,

a bond must be chosen and causality must be assigned. If resistance causality is

assigned to resistor R1, then this causal information is propagated to the 1-junction

in the middle. As a consequence, again, a bond must be chosen and causality must

be assigned to it. If resistance causality is chosen at resistor R3, then we obtain the

causally completed bond graph of Figure 5.5. The resistive ports are denoted by

encircled numbers. If we denote a causal path between two R elements by means

of their resistance parameters, then there are the causal paths R1 – R2, R3 – R4,

R1 – R4, R1 – R5 and R3 – R5. One of the flat loops (Definition 4.5) associated

with these causal paths has been highlighted. The causal paths in this example have

joint bonds. As we will see shortly, all algebraic loops can be broken up if the flow

variables f1, f3, f5 (marked in the bond graph of Figure 5.5) were known. From this

bond graph, we can derive the equations

e1 = R1 f1 (5.59a)

e3 = R3 f3 (5.59b)

f2 = f1 − f3 (5.59c)

f4 = f3 − f5 (5.59d)

R5 f5 = E − e1 − e3 − eC (5.59e)

R2 f2 = E − e1 (5.59f)

R4 f4 = E − e1 − e3 (5.59g)

ėC =
1
C

f5 . (5.59h)
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Writing the algebraic equations as a matrix equation⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −R1 0
0 1 0 0 0 0 −R3

0 0 1 0 0 −1 1
0 0 0 1 1 0 −1
1 1 0 0 R5 0 0
1 0 R2 0 0 0 0
1 1 0 R4 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e3

f2

f4

f5

f1

f3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

E − eC

E
E

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.60)

we see that, in fact, the latter is of the form (5.56). The left upper sub-matrix in

this case is even a unity matrix. The variables e1, e3, f2, f4 can be determined by

forward elimination, if the flow variables f1, f3, f5 were known.

In order to obtain this information, we could add an I energy store to each of the

1-junctions. This way, the flow variables f1, f3, f5 would become state variables and

all causal paths between resistive ports would disappear. The outputs of the resistors

would be determined by the outputs of the energy stores and the output of the effort

source. The algebraic equations could be eliminated and a system of four explicit

ODEs would result. In order to avoid a significant perturbation of the dynamic be-

haviour of the system, the parameters of the energy stores must be small leading to a

stiff ODE system. If we multiply the constitutive equations of the I energy stores by

their parameters to remove them from the denominator and if we let the parameters

tend to zero, then the ODEs of the I energy stores reduce to coupled algebraic equa-

tions. The variables f1, f3, f5 then are no longer state variables. However, together

with the output of the C energy store they still determine the outputs of the resistors.

Hence, they can be chosen as tearing variables.

Residual Sinks

In the bond graph, the I energy stores can be replaced by sinks that provide a flow

such that the effort into the sink vanishes. For I → 0, the constitutive equation of

an I energy store I × ḟ = e becomes the trivial equation e = 0. The dual element

would be a controlled sink that provides an effort such that the flow into the sink

vanishes. We will call such sinks residual sinks.

In order to make the internal modulation of these sinks explicit and to avoid the

introduction of a new bond graph element, we adopt a representation introduced by

Bos [6] and also used by van Dijk [49].

The modulation of the flow sinks in Figure 5.6 means that these residual flow

sinks adjust their output flow such that the effort into the sinks vanishes.

We used these residual sinks already in bond graph models of the mathematical

pendulum (Figures 5.2 and 5.3). A residual effort sink can be used to represent an in-

ternal constraint force. Its value ensures that a velocity difference vanishes. Residual

flow sinks also appear in Karnopp’s approach to the derivation of Lagrange equa-

tions (Section 4.10). In that context, they are called artificial flow sources. They

identify derivatives of generalised coordinates and the sum of all efforts into such
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Fig. 5.6 Bond graph with three residual flow sinks

a source vanishes. In [21], Gawthrop and Smith propose a modification of the stan-

dard sequential causality assignment procedure (SCAP) by adding sources with the

functionality of these residual sources to junctions that have been left causally in-

complete after causality has been assigned to all storage ports and propagated into

the junction structure. Furthermore, the use of residual sinks corresponds to the

method of singular perturbation. In the state equations of a singular perturbed linear

systems, the derivative of the state variable of the fast component is multiplied by

a parameter ε with very small value. Letting ε → 0, the state equations turn into a

DAE system (cf., e.g. [1]).

Observing that the efforts into the controlled sinks vanish, the following equa-

tions can be derived from the bond graph of Figure 5.6.

e1 = R1 f1 (5.61a)

e2 = R2 (f1 − f3) (5.61b)

e3 = R3 f3 (5.61c)

e4 = R4 (f3 − f5) (5.61d)

e5 = R5 f5 (5.61e)

0 = E − e1 − e2 (5.61f)

0 = e2 − e3 − e4 (5.61g)

0 = e4 − e5 − eC (5.61h)

ėC =
1
C

f5 (5.61i)
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Fig. 5.7 Bond graph with two residual effort sinks

Again, these equations can be written in the form of Equation 5.56.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −R1 0 0
0 1 0 0 0 −R2 R2 0
0 0 1 0 0 0 −R3 0
0 0 0 1 0 0 −R4 R4

0 0 0 0 1 0 0 −R5

1 1 0 0 0 0 0 0
0 1 −1 −1 0 0 0 0
0 0 0 1 −1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

e3

e4

e5

f1

f3

f5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
E
0
eC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.62)

If residual flow sinks are added to the 1-junctions as depicted in Figure 5.6, then

their flow variables, in fact, are possible tearing variable variables. Their number,

however, is not necessarily minimal. If we take a closer look at the bond graph of

Figure 5.5 and insert residual effort sinks as shown by the bond graph of Figure 5.7,

then we see that these two residual effort sinks providing the efforts e1 and e2 are

sufficient to make all causal paths between resistive ports disappear and to compute

the outputs of all resistors.

From the bond graph of Figure 5.7, we obtain the matrix equation⎡⎢⎢⎢⎢⎣
R2 0 0 1 0
0 R4 0 1 1
0 0 R5 1 1

R1 R1 R1 −1 0
0 R3 R3 0 −1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

f2

f4

f5

e1

e3

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
E
E

E − eC

0
0

⎤⎥⎥⎥⎥⎦ . (5.63)

That is, the places where residual sinks can be inserted in a bond graph are not

unique. Apparently, places are favourable where the residual sinks remove as many

causal paths as possible. In [4], a simple heuristic algorithm has been proposed
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Fig. 5.8 Bond graph with causal violation at a 1-junction due to non-invertible resistor character-

istics

that enables one to identify a small but not necessarily minimal number of tearing

variables in bond graphs with causal paths between resistive ports and no causal

paths between independent and dependent storage ports.

5.4.2 Causal Conflicts at Junctions

If there are resistive ports with non-invertible or preferable characteristic, then, in-

stead of causal paths between resistive ports, causal conflicts at junctions can occur,

especially if the method of relaxed causalities of Joseph and Martens [29] is used.

As we know, causal violations at junctions introduce algebraic constraints. Their

number depends on the type of the violation. In contrary to causal paths between

resistive ports, violations of type 1 give an indication where a residual sink can

be inserted. Consider the example of a simple circuit with two nonlinear resistors

in series. Their characteristic is assumed to be non-invertible. The bond graph is

depicted in Figure 5.8. The annotations G1(), G2() to the resistors do not denote

their conductances but the nonlinear non-invertible functions used in the constitu-

tive equations of the resistors. Instead of adding a C energy store with a parameter

of small value to the 0-junction, we insert a controlled sink that provides an effort

such that the flow into the sink vanishes.

From the bond graph of Figure 5.9, we immediately get the equations

fR =
1
R

eC (5.64a)

fR1 = G1(eC − E) (5.64b)

fR2 = G2(E) (5.64c)
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Fig. 5.9 Bond graph with residual effort sink added to the 0-junction

0 = fR1 − fR2 (5.64d)

fC = F − fR − fR1 (5.64e)

ėC =
1
C

fC . (5.64f)

If the variable E was known, then apparently, all other algebraic variables can be

computed. This is also reflected in the so-called structural Jacobian matrix of the

set of nonlinear equations. In this matrix, an entry of numerical value 1 in place

(i, j) indicates that the jth variable appears in the ith equation (In Section 5.2, we

used the term occurrence matrix). In the case of the example, the structural Jacobian

matrix can be transformed into bordered lower triangular form (cf. Equation 5.56).

The equation determining E is nonlinear in this case and, therefore, must be solved

by iteration.

0 = G1 (eC − E) − G2 (E) (5.65)

As a result, the variable E is a tearing variable.

The fact that causal conflicts at junctions point to possible tearing variables is also

evident in the bond graph of a hydraulic bridge in Figure 5.10 (cf. Figure 4.25). If

we assume Bernoulli’s law in conductance causality for all four orifices, then causal

conflicts at the 0-junction result that can be removed by inserting residual effort

sinks. If their outputs were known, all other algebraic variables can be computed.

The outputs of the residual sinks are semi-state variable that represent the pressure

in the chambers of the cylinder [21].
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Fig. 5.10 Bond graph of a hydraulic bridge with causal conflicts at 0-junctions

5.4.3 Causal Paths Between Storage Ports of the Same Type

Thus far, only causal paths between resistive ports have been considered in this sec-

tion. The approach, however, is also applicable to causal paths between independent

and dependent storage ports if, as it is common in circuit analysis, energy stores are

replaced by a their resistive companion model. The latter is obtained by applica-

tion of the Backward Differentiation Formula, BDF, to the constitutive equation of

an energy store. If energy stores are replaced this way, then causal paths between

resistive ports result that can be removed by inserting residual sinks.

First, the construction of a resistive companion model for an energy store is

briefly recalled. To that end, we consider a C energy store and apply the Backward

Euler integration formula

xn = xn−1 + h fn (5.66)

to its constitutive law.

u̇ =
1
C

i (5.67)

In Equation 5.66, xn denotes the approximation of the exact solution of the ODE

ẋ = f(x, t) at time tn, fn := f(xn, tn) the derivative at (xn, tn) and h, the

integration time step. As a result, we get

un = un−1 + h
1
C

in . (5.68)
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Fig. 5.13 Resistive bond graph model of an I energy store

In circuit analysis, Equation 5.68 is usually graphically represented by a resistor and

a constant current source of known value as displayed in Figure 5.11. The network

is called companion model [14]. It relates power variables un and in at present

time tn. The parameters of the elements must be updated after each time step. The

corresponding bond graph model is shown in Figure 5.12.

For an I element, we get a similar resistive bond graph model (Figure 5.13).

The structure of these resistive companion models remain invariant if, instead of

the special implicit Euler method, the general BDF is used. Only the value of the

constant source dependents on the chosen BDF method.

In the following, the approach of replacing energy stores by their companion

model is applied to the well known example of two capacitors connected in parallel
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Fig. 5.14 Bond graph of two capacitors connected in parallel
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Fig. 5.15 Bond graph with C energy stores replaced by resistive companion models

(Figure 5.14). In the bond graph of this circuit, one C energy store must receive

derivative causality. Replacing the C energy stores by their resistive companion

model yields a bond graph with causal paths between the resistors (Figure 5.15).

Again, the causal paths between resistors can be removed by inserting residual flow

sinks. In the bond graph of Figure 5.16, the superscripts n or (n − 1) denote times

tn or tn−1.
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Fig. 5.16 Resistive bond graph with two residual flow sinks

The equations derived from the bond graph (Figure 5.16) can be written as a matrix

equation⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −R −R
0 1 0 0 0 −h/C1 0
0 0 1 0 0 0 −h/C2

1 0 0 1 0 0 0
0 0 0 −1 1 0 0
0 −1 0 1 0 0 0
0 0 −1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

un
R

un
1

un
2

un
C1

un
C2

in1
in2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

En

0
un−1

C1

un−1
C2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.69)

As to be expected, Equation 5.69 has the form of Equation 5.56. Since the left upper

sub-matrix is a lower triangular matrix, variables that are not tearing variables can

be eliminated by forward substitution. The following residual equations result for

the tearing variables:⎡⎢⎢⎣
(

R +
h

C1

)
R

R

(
R +

h

C2

)
⎤⎥⎥⎦ [

in1
in2

]
=

[
En − un−1

C1

En − un−1
C2

]
. (5.70)

Solving Equation 5.70, we get for the voltage drop un
C1

across the capacitor C1 from

Equation 5.69

un
C1

=
R(C1 + C2)un−1

C1
+ hEn

R(C1 + C2) + h
. (5.71)
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Fig. 5.17 Resistive bond graph model of the circuit with combined capacitors

Writing this equation in the form

un
C1

=
h

C1 + C2

En − un
C1

R
+ un−1

C1
, (5.72)

we see that we would get the same result if we combined the two parallel capacitors

into one and replaced it by its resistive companion model. Equation 5.72 can be

obtained directly from the bond graph of Figure 5.17. In [5], it has been shown that

the case of causal paths between storage ports of the same type can be dealt with

directly, without the use of resistive companion models, if the constitutive equation

of the residual sources are slightly changed.

5.4.4 Causal Loops

The second case we want to consider in the context of tearing the algebraic part of a

DAE system are causal loops in the junction structure [2, 3]. First, we want to show

that it depends on the way causality is assigned whether a bond loop leads to a causal

loop. To that end, consider the simple bond graph in Figure 5.18. The fixed causality

of the flow source does not propagate beyond the 0-junction. Thus, the bond graph

remains causally incomplete and a bond must be chosen for causality assignment.

If strong causality is chosen at one of the resistive ports, i.e., a causality that is

passed on by the junction the resistor is attached to, then we get a causally complete

bond graph with two causal paths between the 1-port resistors but no causal loop

(Figure 5.19).

If we assign weak causality to both resistive ports, which does not propagate,

then we must chose an internal bond for causality assignment. The result is a causal

loop in addition to a causal path between the resistors Figure 5.20. Finally, if we

assigned weak causality to one of the resistive ports first, and strong causality to the
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Fig. 5.18 Bond graph with bond loop
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Fig. 5.19 Bond graph with causal paths between resistive ports

other resistor, then a causal conflict at the 1-junction would result because strong

causality at one resistive port entails strong causality at the other one.

Now, consider the slightly modified bond graph depicted in Figure 5.21. Assign-

ing weak causality to both resistive ports and causality to an internal bond leads to

a causal loop. If strong causality is assigned to one of two resistors, say R1, then

the result is a causal path between the two resistors and a causal conflict at one of

the two 0-junctions. In this case, it is the 0-junction to which R1 is attached. Con-

sideration of this and other examples suggest a simple heuristic rule. Chose strong

causality at an external bond (Definition 2.11) if causality must be chosen in step 5
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Fig. 5.20 Bond graph with causal loop and causal path between resistive ports
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Fig. 5.21 Bond graph with causal conflict and causal path between resistive ports

of the sequential causality assignment procedure (SCAP) to enable causality prop-

agation into the junction structure as far as possible. Emerging causal conflicts at

junctions indicate a possible tearing variable. Let us move the causal conflict from

one of the two 0-junctions to the 1-junction and remove the conflict as well as the

causal path between both resistors by inserting residual flow sinks as displayed in

Figure 5.22.
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Fig. 5.22 Bond graph with residual flow sinks added

Writing equations derived from the bond graph in Figure 5.22 as a matrix equation⎡⎢⎢⎣
m 0 (1 − m)R1 R1

0 1 0 −R2

m −1 0 0
1 − m 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

e1

e2

F1

F2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
E

⎤⎥⎥⎦ , (5.73)

we see that this equation has the form of Equation 5.56. That is, the outputs F1

and F2 of both residual flow sinks are indeed possible tearing variables. As can be

seen from Equation 5.73, the transformer modulus must be different from unity.

Otherwise, the matrix is singular.

If there are bond loops with joint bonds, then assignment of strong causality can

help avoid touching causal loops. In [49], the bond graph of Figure 5.23 is causally

completed such that two causal loops result that share the bond in the middle.

If strong causality is assigned to the lower left resistor, then instead of two touch-

ing causal loops, a causal conflict at a 0-junction and a causal path between the two

resistors result. Both cases have been previously considered.

However, assignment of strong causalities is not always a remedy for causal

loops. This can be seen from the bond graph of Figure 4.10 considered in Sec-

tion 4.5. In this section, this bond graph is displayed again in Figure 5.24.
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Fig. 5.23 Bond graph with two touching bond loops (van Dijk, 1994)
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Fig. 5.24 Bond graph with causal loop that cannot be avoided

If preferred integral causality is assigned to the storage ports, then causality is

determined at all external bonds. Since the fixed causality of the flow source and

the preferred integral causality of the energy stores do not propagate, causality must

be chosen at an internal bond leading to a causal loop. The latter is associated with

algebraic loops of opposite orientation (cf. Figure 4.10). One of the two algebraic
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Fig. 5.25 Bond graph with residual sinks removing the causal loop

loops relates effort variables, while the other one establishes a relation between the

conjugate flow variables. Hence, for each algebraic loop, a tearing variable is needed

to break it. Accordingly, a residual effort and a residual flow sink have been inserted

which make the causal loop disappear (Figure 5.25).

From the bond graph of Figure 5.25, two residual equations determining the tear-

ing variables can be derived in addition to the equations for the energy stores.

ėC =
1
C

f (5.74a)

ḟI = e (5.74b)

0 = m e − eC − e (5.74c)

0 = m ( F − f ) + f − fI (5.74d)

Since causal loops are closed causal paths in the junction structure, the algebraic

loops associated with them are linear with respect to the power variables of the

internal bonds if transformer moduli and gyrator ratios are either constant or depend

on state variables only. Consequently, residual equations are linear with respect to

the tearing variables, as in this example and, therefore, can be solved symbolically.

For the existence of a unique solution, the matrix of the set of residual equations

must be non-singular at each time (In the case of the example, this requirement

reduces to the condition that the transformer modulus must be different from one).

If there are several causal loops that cannot be avoided by the assignment of

strong causality, then the aim is to insert residual sinks that remove as many causal

loops with joint bonds as possible. In the general case of large bond graphs with

causal paths between resistive ports, causal conflicts at junctions and unavoidable

causal loops, it may become difficult to insert the smallest possible number of resid-
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ual sinks. For a symbolic solution of the algebraic part of a DAE system, however,

it is essential to find a small set of tearing variables so that the solution of a large set

of algebraic equations essentially reduces to the solution of a small set of residual

equations for the tearing variables.

5.5 The Perturbation Index of Differential-Algebraic Equations

We close this chapter on the numerical or combined symbolic and numerical solu-

tion of differential algebraic systems by returning to the notion of the index. The

latter indication of how severe difficulties in numerical solution of the DAE system

can be. In Section 4.2, first, the notion of the index of nilpotency was introduced in

the context of Kronecker’s theorem (Theorem 4.1) For general nonlinear fully im-

plicit DAEs, the notion of the differential index going back to Gear was given (Def-

inition 4.11). For linear constant coefficient DAEs, the differential index equals the

index of nilpotency. In addition, Hairer, Lubich and Roche introduced the so-called

perturbation index [27] . It is a measure of how sensitive the numerical solution of

a DAE system is with regard to perturbations of the DAE. The latter can be caused

by the local truncation error and the finite number of Newton-Raphson iterations at

each time. Hence, the perturbation index is of fundamental importance.

Definition 5.4 (Perturbation index of a DAE). The general fully implicit DAE

F( ẋ, x ) = 0 (5.75)

has the perturbation index p = m ≥ 1 if m is the smallest positive integer such that

for solutions, z(t), of the DAE perturbed by the function f(t),

F( ẋ, x ) = f(t) , (5.76)

there exists a bound on the difference between x(t) and z(t) over the time interval

[0, t]:

||x(t)− z(t) || ≤ C ( ||x(0)− z(0) || + max
0≤ξ≤t

||f(ξ)|| +. . .+ max
0≤ξ≤t

||f (m−1)(ξ)|| ) ,

(5.77)

and if this bound is sufficiently small. The perturbation index is equal to zero if there

exists an upper bound such that

||x(t) − z(t) || ≤ C ( ||x(0) − z(0) || + max
0≤ξ≤t

||
∫ ξ

0

f(τ)dτ || ) . (5.78)

In both expressions, C is a constant that depends only on F and on the length of the

time interval.

The expression in Equation 5.77 clarifies why difficulties in the numerical solution

of a DAE increase with an increasing perturbation index. In the case of a perturba-
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tion index m > 1, not only the perturbation f but also all its derivatives up to the

(m − 1)th derivative affect the solution. In the numerical solution, the derivative

leads to a term O(f)/hm−1, where h denotes the step size. Hence, the higher the

perturbation index and the smaller the step size, the more severe the influence of

even small perturbations.

For the case of perturbed linear constant coefficient DAEs,

Aẋ + Bx = f . (5.79)

Bujakiewicz [10] shows that the derivatives of the perturbation function f result

from the fact that the matrix (As + B )−1, s ∈ C, includes powers of s with

exponents being non-negative integers if A is singular.

In fact, by Laplace transform of the perturbed DAE, first, we get

(L−x)(s) = (As + B )−1Ax(0−) + (As + B )−1(L−f)(s) . (5.80)

If A is non-singular, (As + B )−1 can be developed into a series of powers of 1/s.

(As + B )−1 = ( I +
1
s
A−1B )−1 1

s
A−1

=
∞∑

ν=0

(
1
s
A−1B)ν 1

s
A−1 (5.81)

If A is singular, then powers sν , ν ∈ N, lead to derivatives of the perturbation

function f in the back transformation of skL−f .

(L −1
− ( skL−f ))(t) = f (k)(t) +

k−1∑
ν=0

f (ν)(0−) δ(k−1−ν) (5.82)

Furthermore, in [10], Bujakiewicz gives a graph-based algorithm that enables one to

determine the powers of s with the highest non-negative exponents in the develop-

ment of (As + B )−1 by considering the indices of the non-vanishing elements of

the matrices A and B. This result enables one to estimate how sensitive the numer-

ical solution of each unknown is with regard to the perturbation in each equation.

This information can be used to scale error estimates such that the step size control

used for index 1 DAEs can also be used for higher index systems. In particular, in-

formation about the powers of s in the development of the matrix (As + B )−1 can

be used to scale the error estimate that decides on the termination of the Newton-

Raphson iteration at each time. This way, perturbations can be diminished that result

from too few iterations based on an inadequate error estimate.

The question is how this perturbation index can be related to the previously in-

troduced differential index. In [23], Gear has shown that for ODEs, linear constant

coefficient DAEs and semi-explicit systems (Equations. 4.4a–4.4b), the perturbation

index is equal to the differential index. As mentioned in a remark to the definition

of the differential index (Definition 4.11), the latter is equal to index of nilpotency
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for linear constant coefficient DAEs. Hence, in this special case, all three indices are

equal. Regarding the general case, it was believed for some time that the perturba-

tion index p and the differential index d are related by the inequality

d ≤ p ≤ d + 1 (5.83)

[23]. In [12], however, Campbell and Gear give an example which shows that this is

not true. This example shall be recalled.

Let m ∈ N, y(t) = [y1(t), . . . , ym(t)]T and N a m × m upper triangular nilpo-

tent Jordan block. Consider the DAE

ymNẏ + y = 0 . (5.84)

As the last row of N vanishes, ym(t) ≡ 0 and the differentiation index, d, becomes

one. If the right-hand side is replaced by a perturbation, then ym(t) is no longer

identical to zero and a differential index p = m results.

5.6 Conclusion

In the previous chapter, it has been shown that the underlying mathematical model

of bond graphs with certain types of causal paths has the form of a DAE system.

In this chapter, approaches to the solution of DAE systems and emerging problems

have been considered. First, it can be distinguished between approaches that pursue

a direct numerical solution of DAE systems and those that aim to symbolically re-

duce the DAE system to an ODE system, or at least to simplify the original system

before passing it on to a numerical solver. Regarding numerical approaches, we con-

fined ourselves to the widely used BDF method. Discussion of the basic idea and

of features of the BDF reveals that application of this method to higher order DAEs

give rise to the following problems if the step size hn is reduced:

• The local truncation error is amplified by powers of (1/hn).
• The algebraic error in the Newton-Raphson iteration is amplified by powers of

(1/hn).
• The condition number of the iteration matrix becomes large for small step sizes.

Due to the above problems, it is obvious to reduce the index of a DAE system

derived from a bond graph by symbolic differentiation before it is passed on to a

numerical solver. This, however, entails two new problems, namely

• the problem of numerical drift and

• the problem of determining a set of consistent initial conditions for variables and

their derivatives.

For illustration of both problems, the classical problem of planar motion of a

mathematical pendulum has been considered.
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For the problem of finding a set of consistent initial conditions, Pantelides has

given a bipartite graph based algorithm that has been implemented in the modelling

and simulation program Dymola [18]. In this software program, the algorithm is

used to reduce the differential index of the DAE system.

The problem of numerical drift results from the fact that the solution of the dif-

ferentiated equations only approximates the solution of the initial constraints not

being differentiated. To minimise this problem, Führer proposed to differentiate

some equations in order to achieve a lower index but to keep the initial algebraic

constraints for numerical stabilisation such that an over-determined set of equations

results. For its solution, he combines the Newton-Raphson iteration with Gauß’ least

square method. The approach has been implemented in the solver ODASSL.

In the case of the mathematical pendulum (Section 5.2), it has been shown that

its planar motion can be described by an index 3 system taking into account the

constraint force in the massless rod and the geometric constraint for the position of

the point mass (cf. Equations 5.18a–5.18e). With regard to the numerical solution,

an index 3 formulation is undesirable. Moreover, since the variables associated with

the bonds in a bond graph are power variables, pure geometric constraints cannot be

expressed in bond graphs even though displacements can modulate transformers. If

the geometric constraint for the position of the point mass is replaced by a differ-

entiated constraint, viz. a constraint for the velocity, then an index 2 DAE system

results that can be represented by a bond graph (Figure 5.2). That is, if a bond graph

is constructed for a mechanical system with geometric constraints, then the index of

the DAE system derived from the bond graph is lower than the index of a direct for-

mulation including constraints on geometric, on velocity and on acceleration level.

The reason is that geometric constraints are not captured by a bond graph approach.

Alternatively to a (fixed) Cartesian reference frame, the angle to the vertical axis

could be used as an appropriate coordinate for the description of the position of the

point mass. With this coordinate, the geometric constraint is automatically fulfilled

for all values of the angle. Moreover, the constraint force in the massless rod can be

eliminated. The resulting model can be represented in a bond graph with Lagrange

causalities (Figure 5.3).

The use of the angle as an appropriate generalised coordinate instead of Carte-

sian coordinates has led us to the reduction of constrained first order Hamiltonian

equations of motion, as introduced by van der Schaft and Maschke. Their method

uses a coordinate transformation and the constraints, and it results in a reduced set

of Hamiltonian equations in which the constraint forces do not appear. The presen-

tation of the method in this section was confined to lossless mechanical systems,

although it can be applied in other energy domains, e.g., to LC networks as well. An

appealing aspect of their approach is that the question as to which equations are to

be differentiated how many times and the problem of determining a set of consistent

initial values do not arise. As illustrated by means of the slightly modified example

of the pendulum, Hamiltonian equations of motion can be directly derived from a

bond graph of a mechanical system.

For bond graphs with causal paths between resistive ports or causal loops of loop

gain different from one, we have seen that the underlying mathematical model is
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of the form of a semi-explicit DAE system (Equations 5.52a–5.52b). Its reduction

to a set of explicit ODEs by differentiation of the algebraic constraints entails the

problem of numerical drift. The direct numerical solution based on the BDF method

is possible since the local index is equal to one. However, at each time possibly a

large set of algebraic equations must be solved in each step of the Newton-Raphson

iteration. If the equations of the overall system have been automatically generated

using submodels from different model libraries, information about the structure of

the set of linearised equations may not be available. Consequently, only a general

purpose sparse matrix solver can be used. This is not always efficient.

An alternative can be to solve the algebraic equations symbolically, or, if this

is impossible due to nonlinear element characteristics, to decompose the algebraic

part of a DAE system into a sequence of coupled smaller systems. If the algebraic

Equations 5.52b are linear with respect to the auxiliary algebraic variables combined

into a vector h, then they can be symbolically solved. A large system, however,

requires a considerable amount of memory and computational time. For that reason,

we used the method of tearing introduced by G. Kron. With this method, the task

of symbolically solving the entire system is essentially reduced to the solution of a

small set of residual equations for the tearing variables. The problem is to identify

a smallest possible number of tearing variables among the algebraic variables. In

the literature, some heuristic algorithms operating on the equations level have been

proposed.

In this chapter, a heuristic bond graph based approach has been presented. By in-

serting residual sinks into causal paths between resistive ports, into causal loops, or

by adding them to junctions with causal conflicts, a small but not necessarily min-

imal number of tearing variables can be found. These residual sinks enable one to

add information to a bond graph that can be used for automatic tearing of the alge-

braic constraints and for their possibly symbolic solution after model equations have

been automatically generated. The effect of these residual sinks has been considered

for bond graphs with causal paths between resistive ports and for bond graphs with

causal paths between storage ports of the same type. The latter case has been reduced

to the first one. Energy stores can be replaced by a resistive companion model based

on the BDF, as it is common in circuit analysis.

In the case of bond graphs with bond loops, we have seen that it depends on

the way causality is assigned whether causal loops will result. It has turned out that

they often can be avoided if a strong causality is assigned to an external bond. Thus,

instead of (touching) causal loops, causal conflicts at junctions emerge in addition

to possible causal paths between resistive ports. Causal violations of type 1 can

be viewed as an indication where to add a residual sink. A simple example has

shown that causal loops cannot always be avoided. Since they are associated with

two separate algebraic loops of opposite orientation, one for the flow variables and

the other for the efforts, two residual sinks are needed to break them. In the case

of bond graphs with several touching causal loops, it is obvious to insert residual

sinks so that they remove as many causal loops as possible. The general case of

bond graphs with causal paths between resistive ports, causal paths between storage
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ports of the same type, causal loops and causal conflicts at junctions requires further

investigation.

Finally, the notion of the perturbation index of a DAE system, as introduced by

Hairer, Lubich and Roche, is given in order to clarify why problems in solving a

DAE system numerically become more severe the higher the index is. In his disser-

tation, Bujakiewicz has given a graph-based algorithm that enables one to determine

the perturbation index of perturbed linear constant coefficient DAEs. Moreover, the

results of his research provide information on how sensitive the numerical solu-

tion of an unknown is to perturbations in some equations. This makes it possible to

scale the error estimate for the step size control and the one for the termination of

the Newton-Raphson iteration. Consequently, with these scalings, the DASSL code,

widely used for index 1 DAEs, could also be used for direct numerical solution of

higher index systems. There is no need to either modify the model or for a preceding

index reduction by symbolic differentiation of equations.
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duzierung von zwangsgeführten mechanischen Systemen. Master’s thesis, Fachhochschule
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Chapter 6
Analysis of Causal Bond Graph Models

So far, we have seen that causalities can be assigned to a bond graph by differ-

ent methods (SCAP, relaxed causalities, Lagrange causalities) and that different

forms of mathematical time domain models can be derived from a bond graph (state

space form, descriptor form, Lagrange equations). Since mathematical models de-

rived from bond graphs frequently take the form of a DAE system, its index and

approaches to a symbolic and numerical solution have been considered.

However, not only simulation of the dynamic behaviour of a multidisciplinary

system is of concern, but other tasks also, e.g., the determination of a steady-state

needed for the linearisation of the model equations, the establishment of transfer

functions, the determination of pole-zero loci. Moreover, with regard to the design

of a controller, properties, e.g., structural controllability and observability, are of

interest. Of course, once a time domain model is available, the information needed

can be derived from the linearised model equations.

In this chapter, we will see that not only time domain models but other infor-

mation relevant for control system design can be derived directly from a causally

completed bond graph. That is, bond graphs can be viewed as a core model repre-

sentation from which information for different purposes can be derived in suitable

form.

According to this view, Gawthrop and Smith developed a set of model trans-

formation tools collected in a toolbox MTT (Model Transformation Tools) [35].

Depending on the actual task, these tools enable one to automatically transform

one model representation into another where an acausal bond graph is the core rep-

resentation. Aspects of this approach to automated modelling will be considered

separately in Section 11.6.6.

In the next section, it is shown how a bond graph can be used to set up equations

for the determination of the steady-state of a dynamic system.

223
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6.1 Equations Determining the Steady-state of a Dynamic
System

In bond graph terms, the steady-state of a dynamic system is characterised by the

fact that flows into C energy stores and efforts into I elements are equal to zero.

This can be expressed in a bond graph in two different ways. First, a C energy store

can be replaced by a flow sink that imposes a flow equal to zero. The value of the

effort into the sink is the steady-state to be determined. Alternatively, a C energy

store can be replaced by an effort sink imposing an unknown constant effort such

that the flow into the sink is equal to zero. Reverse statements hold for an I element

dual to a C energy store. The first option corresponds to the approach adopted in

circuit analysis. For the determination of the steady-state, capacitors in network

are removed and inductances are replaced by short circuits. In bond graphs, the

substitution of energy stores entails a reassignment of causalities. As a consequence,

it can happen that a flow sink replacing a C energy store attached to a 0-junction

does not determine the common effort at that junction anymore. In the same way,

an effort sink replacing an I element attached to a 1-junction does not determine the

common flow at that junction. Consequently, the causality at some resistive port or

at an internal bond must be changed. Thus, a causal path between resistive ports or a

causal loop may emerge. On the contrary, if C energy stores are replaced by constant

effort sinks and I elements by constant flow sinks, then causalities are retained. In

both cases, algebraic equations determining the steady-state can be derived from the

modified bond graph. The resulting sets of equations are equivalent, but different in

form due to different causalities in the bond graph.

Example: RC-Network

For illustration, consider the example of the simple RC-network depicted in Fig-

ure 6.1. If the capacitors are replaced by flow sinks, then the bond graph shown in

Figure 6.2 results with three touching causal paths between the resistors. The causal

paths could be removed by adding a residual effort sink (Section 5.4) to each 0-

junction. Since the effort imposed by the residual sinks is equal to the effort into the

flow sinks that replace the C energy stores, the flow sinks can be omitted. Conse-

quently, we get the same bond graph (Figure 6.3) we would get if the C elements

are replaced by effort sinks instead of flow sinks.

From the bond graph of Figure 6.3, the algebraic system⎡⎢⎢⎢⎢⎢⎢⎣
R1 0 0 0 −1 0
0 R2 0 0 −1 1
0 0 R3 0 0 −1
0 0 0 R4 0 1
1 1 0 0 0 0
0 1 −1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
fR1

fR2

fR3

fR4

e1

e2

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
E

F
0

⎤⎥⎥⎥⎥⎥⎥⎦ (6.1)
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Fig. 6.3 Bond graph with effort sinks for determination of the steady-state

can be directly derived where e1 and e2 are the tearing variables to be determined.

The residual equations

0 = F − fR1 − fR2 (6.2a)

0 = fR2 − fR3 + fR4 (6.2b)
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in the above set of Equations 6.1 can also be obtained by just setting the derivatives

ė1, ė2 in the dynamic equations equal to zero (From the bond graph of Figure 6.2, a

similar set of equations determining the efforts into the flow sinks can be derived).

Depending on the approach, either the output or the input of a sink replacing

an energy store is equal to zero. Propagation of this information into the junction

structure can lead to relations that are either inconsistent or are fulfilled for all values

of a variable. That is, in such a case, the bond graph reveals that there is no unique

solution to the steady-state equations or that they are fulfilled for an infinite number

of values [16].

Example: RLC-Network

For illustration, consider the simple network in Figure 6.4. If in the corresponding

bond graph (Figure 6.5) the C energy stores are replaced by an effort sink and the

I element by a flow sink with inputs equal to zero, then flow continuity at the 0-

junction requires that the flow of the independent flow source must be zero. If this

is not the case, then no steady-state solution exists.

On the other hand, let us assume that the switch, S2, in the right side series

connection of elements first is open and the capacitor C1 is charged to a certain

value. Then, the flow source is switched off and the switch S2 is closed. In this case,

the constitutive equation of the transformer relating the efforts, viz. e2 = n × e1

holds for all values of e1. That is, an infinite number of steady-states exists.

In summary, we see that the equations determining the steady-state of a dynamic

system can be derived directly from a bond graph after energy stores have been re-

placed by sinks for which either the input or the output is equal to zero depending on

the chosen approach. If C energy stores are replaced by flow sinks and I elements by

effort sinks, then causalities must be reassigned. If the output of a sink replacing an

energy store vanishes, then propagation of the value zero into the junction structure

may yield that a relation of a junction is not fulfilled or that it holds for an infinite

number of values. In the first case, there is no steady-state solution. In the second

case, there are many solutions.

For mechanical systems of which the steady-state is due to gravity effects,

Dauphin-Tanguy and her co-authors use structural analysis of the bond graph in

order to decide whether a solution exists and show how an existing steady-state can
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Fig. 6.5 Bond graph for the determination of the steady-state of the network in Figure 6.4

be determined symbolically directly from the bond graph [25]. Their approach also

applies for the case that the n×n matrix A of a linear state space model is singular.

In that case, the steady-state values of r components of the state vector depend on

the values of the remaining n − r components, where r = rankA.

If the equations determining the steady-state are nonlinear, then a problem well

known, e.g., from circuit analysis ,is that Newton-Raphson iteration only converges

if an initial guess of the solution is already sufficiently close to the solution to be

determined. A possible approach known from circuit analysis is to perform a so-

called pseudo transient analysis in which the values of all independent sources are

linearly increased from zero to their initial value during a ramping time. Then, they

are held constant for some settling time. The final values of voltages and currents

in this pseudo transient analysis are the steady-state solution that can be used for a

subsequent real circuit simulation.

6.2 Transfer Functions

Once the steady-state of a system has been determined, the model equations can

be linearised and a small signal analysis can be performed. Of course, the matrix

of transfer functions can be obtained analytically by Laplace transform of the lin-

earised DAE system.

On the other hand, transfer functions relating an input to an output can be derived

directly from a bond graph of a linear time-invariant multiple input, multiple output

system (MIMO system). This can be accomplished by means of the loop rule orig-

inally presented by Shannon in 1941 and rediscovered by Mason in 1955 [51]. The

loop rule applies to signal flow graphs. However, as Brown [18] has shown, it can

be applied directly to bond graphs so that there is no need to convert a bond graph

into a signal flow graph.
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6.2.1 Transfer Functions from the State Space Model

First, consider the DAE system

0 = F(x, ẋ,u ) (6.3a)

y = G(x,u ) (6.3b)

and let xs,us,ys denote the steady-state solution. Then, the deviations from steady-

state values Δẋ, Δx, Δu are determined by the linear DAE system

EΔẋ = AΔx + BΔu (6.4a)

Δy = CΔx + DΔu , (6.4b)

where

E :=
∂F
∂ẋ

∣∣∣∣
xs,us

(6.5a)

A := − ∂F
∂x

∣∣∣∣
xs,us

(6.5b)

B := − ∂F
∂u

∣∣∣∣
xs,us

(6.5c)

C :=
∂G
∂x

∣∣∣∣
xs,us

(6.5d)

D :=
∂G
∂u

∣∣∣∣
xs,us

. (6.5e)

Laplace transform of the linearised DAE system yields a direct relation between

inputs and outputs

L {Δy}(s) = H(s)L {Δu}(s) , (6.6)

where s ∈ C and

H(s) = C(sE − A)−1B + D (6.7)

is the matrix of transfer functions to be determined. Assuming that the linearised

constant coefficient DAE system is solvable means that (sE − A) is a regular

pencil. Hence, the inverse (sE − A)−1 exists.

An entry hij in the matrix H represents the transfer function relating the jth

input to the ith output under the assumption that all other inputs are not taken into

account. As it is known, the inverse of a non-singular matrix M can be computed

by means of its adjoint according to M−1 = (1/ detM) · AdjM. Hence, each

coefficient hij is a ratio of two polynomial in s ∈ C with the polynomial

Δ(s) := det(sE − A) (6.8)
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in the denominator. The poles of the transfer functions hij , i. e., the roots of the

characteristic equation

det(sE − A) = 0 , (6.9)

are equal to the eigenvalues of the matrix A if factors common in the nominator and

in the denominator polynomial are not cancelled (pole-zero cancellation). Their loci

in the complex plane determine the stability of a linear time-invariant (LTI) system.

6.2.2 Transfer Functions from a Signal Flow Graph

Instead of deducing a transfer function between a given input and a given output

from the linearised and Laplace transformed DAE system, alternatively, it can be

obtained directly from a signal flow graph representation of the linearised model by

means of Mason’s loop rule. To that purpose, signal loops must be identified and

their loop gain must be determined. Since every bond in a bond graph is associated

with two signals of opposite direction, a bond graph of a linear time-invariant system

could be converted systematically into a signal flow graph. The result would be less

clear and concise than the original bond graph. As Brown has shown in [18], the

information needed for application of the loop rule can be determined directly from

the bond graph. For that reason, we will address the conversion of a bond graph

into a signal flow graph only briefly with regard to signal loops and their loop gain.

Moreover, in the following, the application of Mason’s loop is only illustrated by

means of some simple bond graph examples. For further details, see [17, 18].

In Section 4.1, two types of signal loops were introduced, namely flat loops (Def-

inition 4.5 and open loops (Definition 4.6). As depicted in Figure. 4.3, a causal

path between two 1-port resistors corresponds to a flat loop. This fact is not re-

stricted to resistors. After Laplace transform of the constitutive equations of linear

1-port energy stores, their input and output variables are algebraically related like

the power variables of 1-port resistors. However, there is no signal loop associated

with a causal path between a 1-port source and a 1-port resistor or a 1-port energy

store because the input and output of an ideal independent source are not related.

That is, the associated signal path is not closed.

In Section 4.3, we saw that causal paths between a storage port and a resistive

port represent a transient. If this component of the response of the linearised system

to input signals is considered isolated, then its time constant is equal to the product

of the element parameters. Similarly, a causal path between a 1-port C energy store

and a 1-port I energy store identifies an oscillation. If it is considered isolated, then

its natural frequency is determined by the parameters of the 1-port energy stores

(Equation 4.18. In Section 4.5 on causal loops in the junction structure, we intro-

duced the notion of the loop gain (Definition 4.15) and calculated the loop gain of

the causal loops in the bond graph of Figure. 4.10. With regard to flat loops, here

we add that the influence coefficient (Definition. 4.14) of a linear 1-port resistor is

either its parameter R or 1/R depending on its causality. Likewise, the influence
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coefficient of a linear 1-port energy store of parameter p after Laplace transform

of its constitutive equation is either 1/(sp) for integral causality or sp in the case

of derivative causality. Thus, we can identify flat and open loops in bond graphs

and can determine their loop gain. For illustration, consider the simple example in

Figure. 6.6. The corresponding signal flow graph is shown in Figure 6.7.

Comparing both graphs, one can deduce how bond graphs with passive 1-port

elements can be converted into a signal flow graph (multiport energy stores and re-

sistors will have to be replaced by equivalent bond graph models having only 1-port

energy stores and 1-port resistors). The product of all influence coefficients along

the signal loop gives the loop gain L = −n2/(sRC). The result is not surprising

since the causal path between the C energy store and the R element corresponds to

a control loop with an open loop gain of the same value. Since the positive refer-

ence directions of the energy flows point to the ports of the passive elements, the

power orientation must change for an odd number of bonds that are members of

the causal path between the two passive elements (In the example, the power ori-

entation changes from bond 1 to bond 3). Therefore, the loop gain of a flat loop

between passive ports is always negative. For open loops associated with simple

meshes (Definition 3.8), the loop gain is positive if the number of bonds in the bond

loop is even (Definition 3.9). If the simple mesh is odd, then the loop gain of the

open loop is negative ([18], Theorem 4, p. 257).

CC : 1 TF
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Fig. 6.6 Bond graph fragment with a flat loop
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Mason’s loop rule now states that the transfer function hij between the jth input

and the ith output of a linear time-invariant system with multiple inputs and outputs

can be determined by calculating loop gains. The loop rule can be expressed as

hij =
1
Δ

×
∑

k

GkΔk . (6.10)

In this equation, the denominator Δ is the same for all ratios of Laplace transformed

outputs and inputs (Δ = det(sE − A)). It is called the graph determinant [51]

or the system determinant. The symbol Gk represents the path gain of the kth path

between two nodes in the signal flow graph representing an input and an output

variable. The path gain is the product of all influence coefficients along the path. The

symbol Δk denotes the determinant of the reduced signal flow graph that results if

the kth path is expunged with all its nodes. The sum extends over all paths from the

node of the jth input to the ith. The graph determinant in the denominator is equal

to the sum

Δ = 1 −
∑

i

Gi +
∑
i,j

GiGj −
∑
i,j,k

GiGjGk + . . . . (6.11)

In this sum, the term
∑

i Gi is the sum of gains of all individual loops in the signal

flow graph. The sum
∑

i,j GiGj extends over all products of loop gains of two loops

that do not touch, in other words, that do not share a node. Since loops in a signal

flow graph usually often touch one another, there are only few pairs of non-touching

loops among all loops. Similarly, the term
∑

i,j,k GiGjGk is the sum of all products

of loop gains for sets of three non-touching loops (Different sets of three loops may

share two loops but must have a distinct third loop). In practice, such sets are rather

rare. For the kth path between the nodes of an input and an output variable, the

reduced signal graph is obtained by expunging all loops that touch the kth path. For

computation of the denominator, Δ, all loops must be considered. Among these,

all loops not touching the kth path between the nodes of the input and the output

variable contribute to the determinant of the reduced signal flow graph, Δk, in the

nominator.

6.2.3 Transfer Functions Directly from a Causal Bond Graph

Now, since we do not want to convert a bond graph into a signal flow graph in order

to able to apply Mason’s loop rule, the signal loops must be identified in the bond

graph itself. As explained, there are flat loops associated with causal paths between

passive 1-port elements and open loops associated with causal loops. Concerning

the touching of these loops, Brown gives the following rules in bond graph terms.
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• Flat loops touch each other if and only if their corresponding causal paths have a

common 0- or 1-junction. If a causal path between two passive 1-port elements

shares a junction with another possibly closed path, then their corresponding

signal loops touch one another.

• The two open loops of opposite orientation of a closed causal path touch each

other if the mesh includes one or several mesh stubs (cf. Figure 4.4).

• Open loops of two different meshes touch one another if both have a common

junction located in a mesh stub of one of both meshes (They may not touch even

if both meshes have a joint bond).

• Finally, two signal loops touch each other, if their corresponding causal paths

have a common passive 1-port element.

With this information, we are now able to derive transfer functions directly from

a bond graph using Mason’s loop rule. This will be illustrated by means of two

examples.

Example: Bond Graph with a Tree-Structure

As an example of a bond graph with a tree-like structure, consider the bond graph

model of a DC motor depicted in Figure 6.8.

In this model, Ia denotes the inductance and Ra the resistance of the armature.

The symbol km represents the torque constant. On the mechanical side, Jm is the

moment of inertia and rm the friction coefficient. The effort source accounts for a

load moment. Since the bond graph is of tree-like structure, there are no bond loops

and hence no open signal loops. However, there are three causal paths highlighted

by additional oriented thin lines, one between the mechanical inertia and the in-

ductance, another between the electrical resistor and the induction, and a third one

between the mechanical resistor and the inertia where the second and the third path
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Fig. 6.8 Bond graph of a DC motor with tree-like structure
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do not touch. The gain of the associated flat loops are −k2
m/(s2JmIa), −Ra/(sIa)

and −rm/(sJm). Hence, the graph determinant reads

Δ = 1 +
k2

m

s2JmIa
+

Ra

sIa
+

rm

sJm
+

Rarm

sIasJm
. (6.12)

If we want to determine the transfer function between the input voltage ua and the

armature current ia as the output, then the signal path between the nodes of theses

variables in the corresponding signal flow graph is associated with the causal path

between the voltage source and the inductance. It is the only signal path between the

two variables. Its path gain, G1, is equal to −1/(sIa). Since the flat loops between

the electrical resistor and the inductance and the one across the gyrator do touch this

signal path, they are left out in the computation of the reduced graph determinant

Δ1

Δ1 = 1 +
rm

sJm
. (6.13)

According to Mason’s loop rule, the transfer function in question therefore is

L ia
L E

=
G1Δ1

Δ

=
rm + sJm

Rarm + k2
m + (JmRa + Iarm)s + s2JmIa

. (6.14)

Example: Bond Graph with a Bond Loop

As a second example, consider the bond graph in Figure 4.4 depicted in this section

in Figure 6.9. This bond graph involves two open loops along a bond loop with mesh

stubs. The two signal loops of opposite orientation run along the bonds 1− 2− 3−
4 − 5 − 6. Their loop gain is +1/(sCsI). In addition, the bond graph has the flat

loops listed in Table 6.1. All three loops touch each other. In the expression of the

graph determinant, the gains of the first two flat loops cancel with the gains of the

open loops. Hence, the graph determinant is
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Fig. 6.9 Bond graph with two open signal loops
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Table 6.1 Flat loops and their loop gains

Signal loop Causal path Loop gain

1 6-5-4 − 1

sCsI

2 6-1-2-3-4 − 1

sCsI

3 6-1-2-8 − 1

sCR

Df

�
f7e9 = 0

Se
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Fig. 6.10 Bond graph of Figure 6.9 with a flow detector Df sensing the output f7

Δ = 1 +
1

sCR
. (6.15)

Between the input e7 and the output f7, there are two signal paths running along the

causal paths 7− 2− 8 and 7− 2− 3− 4. A flow detector Df highlights the location

of the output variable f7 and helps to identify the signal paths between input and

output (Figure 6.10).

Their path gain is 1/R or 1/(sI). The first path is not touched by signal loop

number 1. The second path is touched by all signal loops. Hence, we get for the

transfer function in question

L f7

L e7
=

1
Δ

[
1
R

(
1 − (− 1

sCsI
)
)

+
1
sI

(1 − 0)
]

. (6.16)

Of course, the results obtained directly from the bond graphs of the two examples

by application of Mason’s loop rule can be checked by Laplace transform of the time
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domain equations derived from the bond graphs and by solving them for the ratio of

the Laplace transforms of output and input variables to be determined.

In case a model is not structurally controllable or not structurally observable

(cf. Sections 6.4 and 6.4.2), Mason’s loop rule leads to transfer functions with a

denominator of reduced degree because of the cancellation of a null zero by a null

pole.

For large bond graphs, the location of all signal loops, the determination as

to which of them touch, and the computation of loop gains can be tedious and

error-prone. Thus, a computer based symbolic computation of transfer functions

is needed. The presented approach based on the direct application of the loop rule

to bond graphs is implemented, for instance, in the program ARCHER [5].

6.3 Equations of the Inverse System

A frequent reason for the systematic development of a model is certainly to deter-

mine the response of a dynamic system to given external excitations. This kind of

problem is usually called the direct problem [37]. If the dynamic behaviour of a sys-

tem has been analysed and if a control system is to be designed, the reverse question

of concern is how inputs must be chosen such that a system of known structure pro-

duces a required system response. This task is called the control problem. Regarding

robots, for instance, forces and torques to be applied to joints by motors are wanted

so that a robot’s tip moves along a prescribed trajectory. A usual approach to answer

such a question is to develop a graphical model of a dynamic system, to derive the

model equations in a systematic manner and to transform them into the equations of

the so-called inverse system.

Definition 6.1 (Inverse system). Let S denote a system; let u be the vector of all

inputs to S and y the vector of outputs of S. Then, the inverse system SI is the

system that provides the signals u as a response yI = u to the input signals uI = y.

Of course, if a system S is described by the linear constant coefficient state space

model

ẋ(t) = Ax(t) + Bu(t) (6.17a)

y(t) = Cx(t) + Du(t) , (6.17b)

then this is easily rewritten as a DAE system for the inverse problem of determining

the inputs such that the system response is a given vector y.[−I 0
0 0

] [
ẋ
u̇

]
+

[
A B
C D

] [
x
u

]
=

[
0
y

]
(6.18)

On the other hand, a bond graph representation offers the possibility to convert

the bond graph of a system into the bond graph of the inverse system by just chang-

ing computational causalities. That is, the structure of the bond graph is retained
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when going from a system to its inverse. If a block diagram representation is used,

then the structure is generally not preserved because block diagrams represent the

computational structure of a system. Apparently, from the bond graph of the inverse

system, equations can be derived in the same manner as from the bond graph of the

system.

Example: RC-Network and the Analogue Hydraulic Two Tank System

The determination of the equations of the inverse system from its bond graph is

illustrated by means of the simple RC-network in Figure 6.1. The corresponding

bond graph is displayed in Figure 6.11.

We get the same bond graph for the well known hydraulic system of two coupled

tanks depicted in Figure 6.12 if the interconnection between the two tanks is mod-

elled by the resistance R2 of the valve. The capacitances of the tanks are represented

by the C energy stores C1 and C2 and possible leakage of the tanks is taken into ac-

count by the resistances R1 and R3. The resistor R4 models the valve in the outlet

of the second tank to the return system. The effort source represents the ambient

pressure. The hydraulic system modelled this way is the hydraulic analogue of the

RC-network in Figure 6.1.
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Fig. 6.11 Bond graph of the RC-network in Figure 6.1
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Fig. 6.12 Hydraulic analogue to the RC network in Figure 6.1: Two coupled tanks
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Since there are only two energy stores in integral causality, the order of the model

is two. Also, the order of the set of ODEs is two, as can be easily checked by apply-

ing the SCAP in all derivative mode. For simplicity, we assume linear R elements.

Then, the equations derived from the bond graph can be written in state space form

[
ė1

ė2

]
=

⎡⎢⎢⎣− 1
C1

(
1

R1
+

1
R2

)
1

C1R2

1
C2R2

− 1
C2

1
R

⎤⎥⎥⎦[
e1

e2

]
+

⎡⎢⎢⎣
1
C1

0

0
1

C2R4

⎤⎥⎥⎦[
F
E

]
,

(6.19)

where 1/R := 1/R2 + 1/R3 + 1/R4.

In this model, the outputs of the C energy stores, e1 and e2, are the independent

state variables. Conversely, if we want to know the flow f that is necessary to pro-

duce a given voltage drop across the capacitor C1, or a given pressure, p1, at the

bottom of the first tank, then we only need to replace the flow source in the bond

graph of Figure 6.11 by an effort source that imposes the effort es. After adaption of

causalities to this change (only the causality at the energy store C1 must be reversed

in this case), we obtain the bond graph of the inverse system with respect to the pair

of variables u1 = F and y1 = e1 (Figure 6.13). Since in the case of a hydraulic sys-

tem the pressure, p1, at the bottom of the first tank is proportional to the fluid level

in that tank, the question is which input volume flow Qi is necessary to maintain a

given fluid level in the first tank.

As a consequence of replacing the flow source by an effort source, the C energy

store with parameter C1 has derivative causality. That is, its energy variable is not

an independent state variable anymore. Thus, the order of the inverse system in this

example is the order of the system reduced by one. In [33] (p. 98), Gawthrop states

that, in general, the order of the inverse system (with respect to a pair of an input

and an output variable) is equal to the number of energy stores that maintain their

causality in the transition from the model of the system to the model of the inverse

system. Due to the energy store with derivative causality, the equations of the inverse
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Fig. 6.13 Bond graph of the inverse system with respect to the pair u1 = F and y1 = e1
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system with respect to the pair u1 = F and y1 = e1 can only be written in descriptor

form and not in state space form as the model of the system.

⎡⎣C2 0 0
0 C1 0
0 0 0

⎤⎦⎡⎣ ė2

ė1

ḟ

⎤⎦ +

⎡⎢⎢⎢⎢⎣
1
R

− 1
R2

0

− 1
R2

1
R2

−1

0 1 0

⎤⎥⎥⎥⎥⎦
⎡⎣ e2

e1

f

⎤⎦ =

⎡⎢⎢⎢⎢⎣
1

R4
E

− 1
R4

es

es

⎤⎥⎥⎥⎥⎦ (6.20)

Another inverse system exists with respect to the pair u1 = F and y2 = e2. In this

case, the two variables are not a pair of conjugated power variables associated with

one single bond (Figure 6.14). Gawthrop and Smith call such pairs of an input and an

output variable non-collocated ([37], p. 162). This case of a non-collocated pair of

an input and an output variable can be reduced to the case of pairs of collocated input

and output variables. This can be achieved by taking into account the input into each

source which leads to additional system outputs. Moreover, for each system output

not linked with a source, e.g., y2 = e2, a source is added. In order to assure that

these additional sources do not affect the system, they must be sources imposing

an input on the system equal to zero. After this preparation, the step from the bond

graph of the system to the one of the inverse system can be performed by reversing

the causality at certain sources. The bond graph of the inverse system with respect

to the non-collocated pair u1 = F and y2 = e2 obtained this way is shown in

Figure 6.15. In this model, F is an output and e2s is an input not linked to an output

flow. The flow into the sink imposing the effort e2s is equal to zero. Thus, both

C energy stores have derivative causality. Hence, the mathematical model of this

inverse system is also of the form of a DAE system.

In summary, the bond graph of an inverse system with respect to a given pair of

an input and an output variable is obtained by adding sources in a first step such

that each system output is input to a source. In a second step, the causality of those

sources is reversed that correspond to the pair of input and output variables for

which the inverse system is to be determined. Consequently, a source does not only

impose an input on the system. Simultaneously, it can be a sensor of the conjugate

power variable viewed as an output of the system. Gawthrop and Smith, therefore,

introduced the so-called source-sensor element denoted by the symbol SS [37]. It

can replace standard bond graph representations of sources and of ideal sensors. The

latter can be represented by a usual effort or flow source with its conjugate power

variables set to zero (cf. Section 6.7 on bicausal bond graphs).
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Fig. 6.14 Input and output not being power variables of a single bond
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Fig. 6.15 Bond graph of the inverse system with respect to the non-collocated pair u1 = F and

y2 = e2

In the case of linear time-invariant systems, a transfer function of the inverse

system can be deduced either from its underlying DAE system or directly from

its bond graph by application of the loop rule. The procedure is the same as for

the system itself. Another option is to determine a transfer function of the system

and then build its algebraic inverse. Since a transfer function of a system usually

has more poles than zeros, the contrary holds for transfer functions of the inverse

system. For illustration, let us consider the RC-network in Figure 6.1 once again.

For the direct problem, the following transfer function can be deduced from the

bond graph in Figure 6.11.

L e2

L f
=

R4

a2s2 + a1s + a0
, (6.21)

where

a2 = C1R2C2R4 (6.22a)

a1 = (R2 + R4 +
R2R4

R3
) C1 +

R2R4

R1
C2 + C2R4 (6.22b)

a0 = 1 +
R4

R3
+ (R2 + R4 +

R2R4

R3
)

1
R1

. (6.22c)

For the inverse problem, in other words, the question as to which flow f is required

to assure a given effort e2s at the second C energy store (Figure 6.15), we just get the

reciprocal of the transfer function in Equation 6.21, viz. a polynomial of degree 2.
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6.4 Structural Controllability and Observability

A causally completed bond graph can provide many kinds of information before any

equations are formulated. Its inspection can reveal possible inconsistencies in the

modelling assumptions, or provide information about independent state variables

and the form of the underlying mathematical model. Moreover, as mentioned in

Section 3.1, properties, e.g., structural controllability and observability, playing an

essential role in the context of control system design, can be directly analysed by

inspection of the causally completed bond graph.

In the next two sections, two criteria for structural controllability and structural

observability are briefly illustrated by means of examples. Both criteria can be di-

rectly applied to a causally completed bond graphs. The interested reader may find

more information, e.g., in [22] (Chapter 8) and in [58, 63, 72]. It is assumed that the

structure of a bond graph and the assignment of causalities remains invariant with

regard to time. There are no components or phenomena in the system under con-

sideration that give rise to the model abstraction of instantaneous changes from one

state to another. Modelling of such systems is considered in Chapter 7. Rahmani and

Dauphin-Tanguy have extended the analysis of structural controllability and struc-

tural observability to bond graphs of systems containing switching elements (cf.,

e.g. [59]).

6.4.1 Structural Controllability

With regard to the notion of structural controllability, first, it is necessary to provide

some definitions.

Definition 6.2 (Structural matrix). A structural matrix [A] is determined by the

number and the position of its non-zero entries. The latter are considered to be of

indeterminate value and independent of each other. They are denoted by the symbol

∗.

Remark 6.1. The structural matrix is a class of structurally equivalent matrices. If

non-zero entries are replaced by the value one, then all matrices of the class yield

the same so-called Boolean matrix.

Definition 6.3 (Admissible numerical realisation of a structural matrix). Let [A]
be a structural matrix. A matrix A is called an admissible numerical realisation of

[A] (for short A ∈ [A]) if all entries of indeterminate value are replaced by entries

of particular numerical values [58].
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Example

Let

[A] :=
[

0 ∗
∗ 0

]
,

then

A :=
[

0 1
2 0

]
is an admissible numerical realisation of [A].

In the following, we will confine ourselves to linear time-invariant MIMO sys-

tems given by the equations

ẋ(t) = Ax(t) + Bu(t) (6.23a)

y(t) = Cx(t) + Du(t) , (6.23b)

where x denotes the vector of state variables, u the vector of excitation functions

and y the vector of output variables. A,B,C,D are constant coefficient matrices,

where A ∈ Rn × Rn , B ∈ Rn × Rm , C ∈ Rp × Rn , D ∈ Rp × Rm.

Definition 6.4 (Complete state controllability). The state x(t) is said to be control-

lable at time t = t0 if there exists a piecewise continuous input function u(t) that

causes the state vector to move to any final value x(tf ) in a finite time tf > t0. If

each state x0 is controllable, then the system is said to be completely state control-

lable [42].

To check for the complete state controllability of a linear time-invariant system,

Kalman has given the following sufficient and necessary condition.

Theorem 6.1 (Kalman). A linear time-invariant MIMO system is completely state
controllable if and only if the so-called n × (nm) controllability matrix

[B|AB|A2B| . . . |An−1B]

has rank n.

Remark 6.2. Mathematical software such as Scilab [67], GNU Octave [3] or the

(commercial) MATLAB® Control System Toolbox [2] provide functions to con-

struct the controllability matrix.

For instance, the Octave function is controllable(A,B,tol) returns the

value 1 if the LTI system given by the matrices A and B is controllable, otherwise

it returns the value 0. Note that the determination of the rank of the controllability

matrix is sensitive to errors in the matrix entries and to roundoff errors.

Definition 6.5 (Structurally complete state controllability). A linear time invariant

MIMO system with matrices A and B is said to be structurally completely state
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controllable if there is at least one numerical admissible realisation A of the struc-

tural matrices [A] and one admissible realisation B of [B] for which the system is

completely state controllable [68].

Having introduced the notion of structural controllability, a criterion is given that

enables one to decide whether a linear time-invariant system is structurally control-

lable by checking its causally completed bond graph. It is assumed that

• energy sources, energy stores and dissipators in the bond graph are 1-port ele-

ments,

• there are only power bonds in the bond graph, no signals,

• all elements are linear.

That is, the mathematical model, corresponding to the causally completed bond

graph is of the form of Equations 6.23a and 6.23b.

Theorem 6.2 (Sueur and Dauphin-Tanguy, 1991). A linear time-invariant MIMO
system with the n × n state matrix A and the n × m matrix B is structurally state
controllable if and only if the following two conditions are satisfied.

1. Given that the preferred causality applied to the energy stores in the bond graph
is integral causality, then for each energy store in integral causality there exists
a causal path from a controlled source to the energy store. In other words, all
states are input-reachable.

2. In a bond graph with preferred integral causality, all energy stores in integral
causality take derivative causality if derivative causality is the preferred causal-
ity. If this condition is not met directly, then it is achieved by replacing some
controlled sources in appropriate places by their dual.

Remark 6.3. • If BG − rankA = n, then one properly located input source is suf-

ficient to control the system.

• If BG − rankA = n − k, where 1 ≤ k < n denotes the number of storage

ports that must take integral causality when derivative causality is the preferred

causality, then at least k input sources properly located are necessary to control

the system.

• Proper location means that if the sources are replaced by their duals, then all

storage ports are in derivative causality, which means that the system is state

controllable by the added sources [24, 72].

Example

For illustration, consider an example. As both C stores take integral causality, the

order of the model is two. In the bond graph depicted in Figure 6.16, there is a causal

path 1 − 2 from the flow source to the C element with capacitance C1 and a causal

path 1 − 2 − 3 − 4 − 5 from the source to the other capacitor, C2, highlighted by

additional lines. That is, the first condition in Theorem 6.2 is fulfilled.

Now, if derivative is the preferred causality, then one energy store must retain in-

tegral causality (Figure 6.17), which means that BG − rankA = 2−1 = 1. That is,
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Fig. 6.16 Bond graph with preferred integral causality
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dual

at least one input source is necessary to control the system. However, the remaining

integral causality can be removed by replacing the flow source by an effort source

(Figure 6.18), which means that the existing source is properly located. As the sec-

ond condition in Theorem 6.2 also holds, the system represented by the bond graph

is structurally controllable. In fact, from the bond graph shown in Figure 6.16, the

following state equations can be derived.
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d

dt

[
e1

e2

]
=

⎡⎢⎢⎣− 1
C1R

1
C1R

1
C2R

− 1
C2R

⎤⎥⎥⎦
︸ ︷︷ ︸

A

[
e1

e2

]
+

⎡⎣ 1
C1
0

⎤⎦
︸ ︷︷ ︸

B

[F ] (6.24)

From the state matrix, it can been that rankA = 1. With these matrices, we obtain

the controllability matrix

[B|AB] =

⎡⎢⎢⎣
1
C1

− 1
RC2

1

0
1

RC1C2

⎤⎥⎥⎦ . (6.25)

Its rank is two. Consequently, according to Kalman’s criterion (Theorem 6.1), the

system is completely state controllable. Thus, according to definition 6.5, it is struc-

turally controllable.

A simple check to be performed on the bond graph whether a system is struc-

turally not controllable has been given by Rosenberg and Andry in as early as 1979

[63]. The procedure is simple.

1. All sources are replaced by resistors.

2. The standard causality assignment procedure (SCAP) of Karnopp and Rosenberg

is applied to the modified bond graph.

If an energy store in the modified bond graph receives derivative causality, then the

system is not structurally controllable.

This criterion, however, is only sufficient. Consider the simple bond graph shown

in Figure 6.19. After replacement of the effort source by a resistor, both energy

stores can be assigned preferred integral causality. In this case, the test of Rosen-

berg and Andry fails. It does not enable one to decide whether the system is not

structurally controllable.

In contrast, the criterion of Sueur and Dauphin-Tanguy (Proposition 6.2) yields

that the system is not structurally controllable. First, it can be immediately seen that

there are causal paths from the effort source to both capacitors. If derivative causality

is the preferred causality, one energy store retains integral causality (Figure 6.20)

which cannot be removed by replacing the effort source by its dual. On the contrary,

neither energy stores can be assigned preferred derivative causality (Figure 6.21).

According to Theorem 6.2, the system is not structurally controllable.

6.4.2 Structural Observability

Clearly, for the control of a system, its state x(t) at a current time instant, t, must be

known. However, in general, not all state variables can be measured. Therefore, it is

necessary to deduce a system state from the output variables measured for a limited
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Fig. 6.19 Bond graph of a simple linear system

Se �� 1 �� C

��

R : R

��

C : C1

: C2

Fig. 6.20 Bond graph after assignment of

preferred derivative causality

Sf �� 1 �� C

��

R : R

��

C : C1

: C2

Fig. 6.21 Bond graph after replacement of

the effort source by its dual

period of time and the knowledge of the input variables. This leads to the notion of

observability.

Definition 6.6 (Complete observability). A system is said to be completely observ-

able if for each initial state x(t1) at time instant t1, there is a time t2 > t1 such that

x(t1) can be found from the known input vector u(t) and the output vector y(t)
measured over the interval of time [t1, t2].

Controllability, discussed in the previous section and observability are two dual

concepts. For checking the observability of a linear time invariant MIMO system,

Kalman has given a criterion that is similar in its structure to the one for controlla-

bility and is also necessary and sufficient.
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Theorem 6.3 (Kalman). A linear time-invariant MIMO system is completely ob-
servable if and only if the so-called n × (np) observability matrix

O =

⎡⎢⎢⎢⎣
C

CA
...

CAn−1

⎤⎥⎥⎥⎦
has rank n.

Clearly, the rank of the observability matrix depends on the numerical values of

the model parameters. However, these can be subject to uncertainties. Furthermore,

the model can be ill conditioned. Consequently, the application of a criterion that is

based on numerical evaluations cannot be considered a robust indicator of complete

observability. Thus, the question arises whether the elements of a model and the way

they are connected permits observability independent of actual numerical values of

the model parameters. Such a model property is captured by the notion of structural
observability.

Definition 6.7 (Structurally complete observability). A linear time invariant MIMO

system with matrices A and C is said to be structurally completely observable if

there are numerical admissible realisations A ∈ [A] and C ∈ [C] for which the

system is completely observable.

An alternative formulation is

Definition 6.8 (Structurally complete observability). A linear time invariant MIMO

system with the structural matrices [A] and [C] is structurally completely observ-

able if it is completely observable for almost all values of the model parameters.

As for structural controllability, structural observability can also be checked di-

rectly on a causally completed bond graph of a linear time-invariant system. Again,

it is assumed that

• energy sources, energy stores and dissipators in the bond graph are 1-port ele-

ments,

• there are only power bonds in the bond graph, no signals and

• all elements are linear.

For checking structural observability directly on a causal bond graph, Sueur and

Dauphin-Tanguy have given the following necessary and sufficient criterion.

Theorem 6.4 (Sueur and Dauphin-Tanguy, 1991). A linear time invariant MIMO
system with matrices A and C is structurally observable if and only if the following
two conditions are satisfied.

1. Given that the preferred causality applied to the energy stores in the bond graph
is integral causality, then every energy store in integral causality must have at
least one causal path to a sensor.
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2. In a bond graph with preferred integral causality, all energy stores in integral
causality must take derivative causality if derivative causality is the preferred
causality. If this condition is not met directly, then it is achieved by replacing
some sensors in appropriate places by their dual [24, 72].

Remark 6.4. If the two conditions of Theorem 6.4 are met, then rankO = n. If

rankA = n, then one observer, suitably placed, is sufficient to assure complete

observability. Otherwise, if rankA = q < n, then n − q observers are needed

to guarantee observability. They are to be placed such that the first condition of

Theorem 6.4 is satisfied.

Example: Hydraulic Two Tank System

For illustration, consider the example of a simple hydraulic two tanks system de-

picted in Figure 6.12. We assume that the valve at the outlet of the second tank is

user controlled and that the pressure, p2, in the second tank is sensed. Furthermore,

it is assumed that the model equations have been linearised in the vicinity of some

operating point.

A bond graph with preferred integral causality is displayed in Figure 6.22. The

sensor of the pressure, p2, in the second tank has been modelled by means of a

zero flow sink. As both storage elements can take integral causality, the order of the

model, n, is two.

If preferred derivative causality is assigned, then both C elements take deriva-

tive causality. That is, the bond graph rank of the state matrix equals the order of

the model, n = 2. Consequently, one controlled source is sufficient to control the

system.

As can be seen from the bond graph in Figure 6.22, there are causal paths from the

controlled flow source representing the pump to the C elements. These paths have

been pointed out by additionally indicating signal forward paths in thin lines. Fur-
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Fig. 6.22 Bond graph of the hydraulic two tanks system in Figure 6.12: causal paths from the

controlled flow source to the energy stores
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Fig. 6.23 Bond graph of the hydraulic two tanks system in Figure 6.12: causal paths from the

storage elements to the sensor

thermore, as both storage elements take derivative causality when derivative causal-

ity is the preferred causality, there is no need to replace the controlled flow source

by its dual. As a result, the corresponding linear time-invariant MIMO system is

structurally controllable.

Now, for an observability check, consider the bond graph in Figure 6.23. As the

bond graph rank of the state matrix equals two, we already know that one sensor is

sufficient to observe the system.

According to Theorem 6.4, there is a causal path from each of the two C stores to

the sensor. These pathes are pointed out by additional thin lines indicating a signal

forward path. Furthermore, both energy stores take derivative causality when deriva-

tive causality is the preferred causality. That is, both conditions of Theorem 6.4 are

fulfilled. Hence, the two tank system with a pressure sensor at the second tank is

observable.

As a remark to Theorem 6.4, it has been mentioned that if both conditions are

satisfied, then the rank of the observability matrix equals the order of the model. In

fact, from the bond graph of Figure 6.22, the following state space model can be

derived.

[
ṗ1

ṗ2

]
︸ ︷︷ ︸

ẋ

=

⎡⎢⎢⎣
− 1

C1RV1

1
C1RV1

1
C2RV1

− 1
C2R

⎤⎥⎥⎦
︸ ︷︷ ︸

A

[
p1

p2

]
︸ ︷︷ ︸

x

+

⎡⎢⎣ 1
C1

0

0
1

C2R

⎤⎥⎦
︸ ︷︷ ︸

B

[
Qi

p0

]
︸ ︷︷ ︸

u

(6.26a)

[p2]︸︷︷︸
y

=
[
0 1

]︸ ︷︷ ︸
C

[
p1

p2

]
︸ ︷︷ ︸

x

+
[
0 0

]︸ ︷︷ ︸
D

[
Qi

p0

]
︸ ︷︷ ︸

u

, (6.26b)
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where 1/R := 1/RV1 + 1/RV2 . It can be easily checked that rankA = 2.

Furthermore,

rankO = rank

⎡⎢⎣ 0 1

1
C2RV1

− 1
C2R

⎤⎥⎦ = 2 . (6.27)

6.5 Parameter Sensitivities

In this section, we will see that bond graphs can also be used to determine unnor-

malised frequency domain sensitivities in symbolic form. With regard to this aim,

several approaches based on pseudo bond graphs have been reported in the liter-

ature [19, 34, 57]. In these pseudo bond graphs, the variables associated with the

bonds are not power variables, but first order partial derivatives of the effort and the

flow of a bond with respect to a parameter. That is, these pseudo bond graphs reflect

relations between first order sensitivities. In contrast, in this section, a so-called in-
cremental bond graph is considered. Incremental bond graphs for the determination

of unnormalised frequency domain sensitivities was proposed by the author at the

2001 International Conference on Bond Graph Modelling (ICBGM 2001) [12]. An

elaborated article was published in a journal in 2002 [13]. The presentation in this

section follows [13].

Unlike pseudo bond graph approaches to the determination of sensitivities, incre-

mental bond graphs represent relations between the increments (Δe)(t), (Δf)(t) of

true power variables e(t) and f(t), t ∈ R, t ≥ 0 due to time-independent parameter

perturbations. The latter are explicitly displayed in the incremental bond graph by

means of sources modulated by a nominal power variable of the initial bond graph.

Incremental bond graphs can be constructed in a systematic manner from an ini-

tial bond graph by replacing the bond graph elements by their corresponding incre-

mental models. For linear elements, their corresponding model in the incremental

bond graph also has a linear characteristic. By deriving the system equations in sym-

bolic state space form from the incremental bond graph in the same way they are

derived from the initial bond graph, the sensitivity matrix of the system can be set

up in symbolic form. Its entries are transfer functions depending on the nominal pa-

rameter values and on the nominal states and the inputs of the original model. The

sensitivities can be determined automatically, e.g., by means the bond graph pre-

processor CAMP-G® [20], or the widely used program MATLAB® [6] along with

the Symbolic Math Toolbox for symbolic mathematical calculation. No particular

software is needed for the approach proposed.

The sensitivity of the behaviour in the time or in the frequency domain with re-

gard to parameter changes is expressed by partial derivatives. If y denotes an output

of a lumped parameter system model and Θ a parameter, e.g., a resistance R, then

∂y

∂Θ
× Θ

y
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is called the relative or normalized sensitivity of y with respect to the parameter Θ.

The partial derivative ∂y/∂Θ is called the unnormalised sensitivity. The objective in

this section is the determination of unnormalised sensitivities. In the following, the

adjective unnormalised is omitted. Sensitivities can be calculated in the time domain

as well as in the frequency domain. In the second case, they are of complex value

and depend on the frequency, ω, in general. In the following, we focus on frequency

domain sensitivities.

A brute force method to the determination of sensitivities is to replace the differ-

entials by differences. Performing numerical differentiation, however, has the dis-

advantage of poor accuracy because the difference of the computer representations

of two nearly equal numbers results in a loss of information. Moreover, it is costly

with regard to computation time because for each frequency and for each parameter

that has changed a simulation run must be performed. To avoid numerical differen-

tiation, a common approach in network analysis, is to construct a so-called adjoint
network N̂ from an initial network N and to exploit Tellegen’s theorem for an effi-

cient calculation of sensitivities [27].

The incremental bond graph approach presented in the following starts from the

observation that parameter changes cause perturbed power variables e + Δe and

f + Δf at the power ports of an element [12, 13]. Both variables, the flow and the

effort, at a power port are effected by a parameter variation due to the interaction

with the rest of the system. In principle, a parameter change effects all variables in

the system (The variables e(t) and f(t) denote nominal values, whereas (Δe)(t)
and (Δf)(t) denote deviations from nominal values at time t). We will construct

a true bond graph G̃ for the incremental power variables Δe and Δf from the ini-

tial bond graph G. The derived bond graph G̃ is called the associated incremental
bond graph. Unnormalised sensitivities can be determined in symbolic form by de-

riving the system equations from the incremental bond graph. This approach is in

accordance with the incremental network approach in network theory. The advan-

tage over an approach corresponding to the adjoint network approach is that the

incremental bond graph provides better insight into the effect of parameter changes

because these are visualised in the incremental bond graph by sources.

6.5.1 Incremental Models of Linear Bond Graph Elements

For the sake of simplicity of the presentation, energy sources, energy stores and

resistors are assumed to be 1-port elements with a linear constitutive law, whereas

transformers and gyrators are assumed to have two ports. Power variables en(t) and

fn(t), t ∈ R, t ≥ 0, and parameters in the linear constitutive relation between the

power variables of a port denote nominal values (indicated by a subscript n). Devia-

tions from the nominal values of power variables, i. e., their increments, are denoted

by (Δe)(t) or (Δf)(t), that is, (Δe)(t) := e(t) − en(t), (Δf)(t) := f(t) − fn(t).
Note that the increment Δv of a function v is different from its total differential dv,

in general.
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Now, consider a linear 1-port resistor with the nominal resistance Rn. The basic

idea is that a time independent parameter variation ΔR causes perturbed power port

variables (eRn + Δe)(t) and (fRn + Δf)(t) at each time t. Hence, the constitutive

relation

eRn(t) = Rn × fRn(t) (6.28)

becomes

(eRn + ΔeR)(t) = (Rn + ΔR) × (fRn + ΔfR)(t) . (6.29)

Substituting Equation 6.28 into Equation 6.29 and neglecting the higher-order term

(ΔR) × (ΔfR) results in a linear relation between the incremental power variables

ΔeR and ΔfR

(ΔeR)(t) = Rn × (ΔfR)(t) + fRn(t) × ΔR , (6.30)

which could also be obtained by taking the total differential of the product R × fR.

With regard to the determination of parameter sensitivities, the neglect of higher-

order terms such as (ΔR) × (ΔfR) is reasonable since small parameter perturba-

tions, resulting in small deviations of power variables from nominal values are of

interest. Hence, a first order approximation of the increment (Δv)(t) of a power

variable v at time instant t is justified. Equation 6.30 can be represented by the bond

graph depicted in Figure 6.24.

As can be seen from Figure 6.24, the incremental model associated with a re-

sistor differs from the R element only by an additional effort source modulated by

the nominal flow fRn
(t). The latter originates from the initial bond graph.1 The ad-

��
ΔeR

ΔfR
1 �� R : Rn

��

MSe : −fRn(t) × ΔR

Fig. 6.24 First order incremental bond graph of a linear 1-port resistor

1 Apparently, Equation 6.30 could be transformed into a relation between the partial derivatives of

the power variables with respect to the parameter R.

∂eR

∂R
(t) = Rn

∂fR

∂R
(t) + fRn

(t)

If the partial derivatives of the power variables are taken as the effort and the flow of a bond, then

this equation may be represented as a pseudo bond graph model that has the same structure as the

incremental model in Figure 6.24 (cf. [19]).
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ditional source does not affect initial computational causalities. Note that the prod-

uct of the incremental power variables (ΔeR)(ΔfR) has the physical dimension of

power. Actually, it is only a part of the power change, ΔP , due to the parameter

change ΔR.

ΔP = (eR + ΔeR) × (fR + ΔfR) − eR × fR

= (ΔeR) × (ΔfR) + further terms (6.31)

Similar results can be obtained for linear 1-port energy stores. For instance, for a

linear C element with the nominal capacitance Cn and the constitutive relation

qn(t) = Cn × eCn(t) , (6.32)

a time-independent perturbation ΔC leads to the equation

qn(t) + (Δq)(t) = (Cn + ΔC)(eCn(t) + ΔeC(t)) . (6.33)

If the higher-order term (ΔC)(ΔeC) is neglected, then we get the equation

ΔeC(t) =
1

Cn
× Δq(t) − ΔC

Cn
× eCn(t) . (6.34)

It can be represented by a bond graph as depicted in Figure 6.25.

As for the incremental model of an R element, the additional modulated source in

the incremental model of an energy store does not affect computational causalities.

However, contrary to an energy store in the initial bond graph, its associated incre-

mental model is not energy conservative. Apparently, the modulated source can be

split into an independent source representing the parameter change and a modulated

transformer, as shown in Figure 6.26 for the case of an inertia. As for resistors and

energy stores, incremental models can be easily developed for all other bond graph

elements in the same manner. The only difference between a bond graph element

and its associated incremental model is the modulated source attached to a junction

that reflect for the parameter variation. The incremental models corresponding to

��
ΔeC

ΔfC
1 �� C : Cn

��

MSe :
ΔC

Cn
× eCn(t)

Fig. 6.25 First order incremental bond graph of a linear 1-port capacitor
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Fig. 6.26 First order incremental bond graph of a linear 1-port inertia
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Fig. 6.27 First order incremental bond graph of a 2-port transformer

a 2-port TF or a GY element have two sources. That is, they are not power con-

servative. The incremental model of a 2-port transformer is shown in Figure 6.27.

Accordingly, Figure 6.28 shows the incremental bond graph model of a 2-port gy-

rator.

Because 1- and 0-junctions are linear, their associated incremental model is iden-

tical to the junction. Consequently, a bond graph in which all elements have been

replaced by their associated incremental model retains the structure of the initial

bond graph with nominal parameters. Only the sources and their location are differ-

ent. Apparently, a parameter independent source vanishes in the incremental bond

graph. In other words, a parameter independent source in the initial bond graph

transforms into a source of the same type with vanishing output. The incremental

bond graph of a linear system accounts for all parameter changes. Due to the lin-

earity of the junction structure, the result of changes in several parameters is the

superposition of all effects due to a change in a single parameter. Thus, if the effect

of a change in only one parameter is of interest, it is sufficient to replace only the

affected element by its incremental model.
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Fig. 6.28 First order incremental bond graph model of a 2-port gyrator

6.5.2 Derivation of Parameter Frequency Domain Sensitivities
from an Incremental Bond Graph

Let Θ be the vector of all uncertain parameters, Θn the vector of nominal pa-

rameters, x(t, Θ) the state vector of a system with uncertain parameters, and

Δx := x(t, Θ) − x(t, Θn) the increment of x due to parameter uncertainties ΔΘ.

Thus, xn(t) := x(t, Θn) denotes the state vector corresponding to the nominal

bond graph, whereas Δ1x means a first order approximation of the increment Δx
that neglects higher order terms in the power series expansion. The nominal model

is assumed to be linearised and described by the equations

ẋn(t) = An xn(t) + Bn u(t) (6.35a)

yn(t) = Cn xn(t) + Dn u(t) (6.35b)

with constant coefficient matrices An,Bn,Cn,Dn depending on Θn and having

appropriate dimensions. In general, the dependencies of the matrix entries from the

components of the parameter vector Θn are nonlinear. The vectors u and y denote

the vector of inputs and the vector of outputs of the nominal system. Then, the state

equations derived from the incremental bond graph may be written in the form

Δ1ẋ(t) = An Δ1x + B̃(xn(t),u(t), Θn) ΔΘ (6.36a)

Δ1y(t) = Cn Δ1x + D̃(xn(t),u(t),Θn) ΔΘ (6.36b)

because the incremental bond graph retains the structure of the initial bond graph. It

differs only by the sources. The matrices B̃(xn(t),u(t),Θn) and D̃(xn(t),u(t),Θn)
are obtained by differentiation of the Equations 6.35a and 6.35b with respect to Θ.

Since both matrices depend on vectors xn(t) and u(t), they are time dependent.

B̃(t) =
∂

∂Θ
(An(Θ)xn(t) + Bn(Θ)u(t))

∣∣∣∣
Θ=Θn

(6.37a)
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D̃(t) =
∂

∂Θ
(Cn(Θ)xn(t) + Dn(Θ)u(t))

∣∣∣∣
Θ=Θn

(6.37b)

Laplace transform of Equations 6.36a and 6.36b yields

(L Δ1y)(s) = (Δ1L y)(s)
= [Cn (sI − An)−1 (L B̃)(s) + (L D̃)(s)] ΔΘ , (6.38)

where s ∈ C.

For infinitesimal small parameter variations, ΔΘ, the matrix in Equation 6.38 is

just the sensitivity matrix S(s)

S(s) := ∂L y/∂Θ = Cn (sI − An)−1 (L B̃)(s) + (L D̃)(s) (6.39)

to be determined.

That is, once the matrices Bn and Dn in Equations 6.35a and 6.35b have been set

up in symbolic form from the initial nominal bond graph by means of some suitable

software, they could be symbolically differentiated with respect to the parameters

yielding the matrices B̃, D̃ (Equations 6.37a and 6.37b). After their Laplace trans-

form, the sensitivity matrix could be computed according to Equation 6.39.

In practice, the sensitivity matrix is not computed exactly that way. Instead, as

has been shown by Borutzky and Granda in [13], software, e.g., the bond graph pre-

processor CAMP-G®[20] or MATLAB® [6] along with the Symbolic Math Toolbox

can be used to automatically derive from an incremental bond graph the sensitivity

matrix in symbolic form. In fact, if the outputs of the modulated sources in the in-

cremental bond graph are combined into a vector w, matrices An, B∗, Cn, D∗

depending on Θn can be automatically generated such that

Δ1ẋ(t) = An Δ1x(t) + B∗(Θn)w(t) (6.40a)

Δ1y(t) = Cn Δ1x(t) + D∗(Θn)w(t) . (6.40b)

By looking at the modulated sources in the incremental models of the bond graph

elements, a diagonal matrix W(t, Θn) can be easily found such that

w(t) = W(t, Θn)ΔΘ . (6.41)

Substituting Equation 6.41 into (6.40a) and comparing the result with Equation 6.36a

yields

B̃(t) = B∗(Θn)W(t, Θn) . (6.42)

A similar result is obtained for the matrix D̃. With both results, Equation 6.39 for

the sensitivity matrix reads

S(s) = [Cn (sI − An)−1 B∗ + D∗](L W)(s) . (6.43)

The matrices An and Cn are generated from the initial nominal bond graph, while

matrices B∗ and D∗ are obtained in the same manner from the incremental bond
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graph. The matrix operations in Equation 6.43 may be performed in a MATLAB®

script.

Note that the ratio of an incremental variable L Δy and a parameter change ΔΘi

is a transfer function between the output variable L Δy and the input variable ΔΘi

if modulated sources representing parameter changes are split into an independent

source and a modulated transformer (cf. Figure 6.27). As Brown has shown, transfer

functions can be determined by identifying causal paths and determining loop gains

as needed in Mason’s loop rule (see Section 6.2). That is, instead of setting up

matrices in symbolic form from the initial bond graph and in the same manner from

its associated incremental bond graph as shown above, alternatively, sensitivities

could be directly derived from the incremental bond graph by application of Mason’s

rule.

Another possible approach is to represent dependencies between sensitivities in

a pseudo bond graph and to apply Mason’s loop rule directly to the pseudo bond

graph, as has been demonstrated by Kam in [45]. Mason’s loop rule is implemented

in the bond graph processing software ARCHER [5].

In the following, the procedure presented is illustrated by means of a small ex-

ample for which calculations could be carried out manually.

Example: DC Motor with Constant Excitation

Consider the simple, well known example of a DC motor with constant excitation

as portrayed in Figure 6.29. Figure 6.30 shows the corresponding bond graph. kT

is the torque constant of the motor, while Mload denotes an external disturbing load

moment.

The state equations derived from the initial bond graph are

��
�� 	
�
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LaRa

��
��

E(t)

�
Jm

Rm

Fig. 6.29 DC motor with constant excitation positioning a mechanical load
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Fig. 6.30 Bond graph of the DC motor example

d

dt

[
pm

pe

]
︸ ︷︷ ︸

ẋ

=

⎡⎢⎢⎣−Rm

Jm

kT

La

− kT

Jm
−Ra

La

⎤⎥⎥⎦
︸ ︷︷ ︸

An

[
pm

pe

]
︸ ︷︷ ︸

x

+
[

0 1
1 0

]
︸ ︷︷ ︸
Bn

[
E

Mload

]
︸ ︷︷ ︸

u

. (6.44)

Let us choose the current through the armature coil, ia, as an output variable y. Then,

the matrices Cn and Dn read:

[ia]︸︷︷︸
y

=
[

0
1
La

]
︸ ︷︷ ︸

Cn

[
pm

pe

]
︸ ︷︷ ︸

x

+ [0 0]︸ ︷︷ ︸
Dn

[
E

Mload

]
︸ ︷︷ ︸

u

. (6.45)

For the matrix B̃ we get

B̃ =
∂

∂p
(Anxn + Bnu) =

∂

∂p
(Anxn)

=
∂

∂(Ra, La, kT , Rm, Jm)

⎡⎢⎢⎣−Rm

Jm
pm +

kT

La
pe

− kT

Jm
pm − Ra

La
pe

⎤⎥⎥⎦

=

⎡⎢⎢⎣ 0 −kT

L2
a

pe
1
La

pe − 1
Jm

pm
Rm

J2
m

pm

− 1
La

pe
Ra

L2
a

pe − 1
Jm

pm 0
kT

J2
m

pm

⎤⎥⎥⎦ . (6.46)
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According to Equation 6.37b, the matrix D̃ is

D̃ =
∂

∂p
(Cnxn + Dnu) =

∂

∂p
(Cnxn)

=
∂

∂(Ra, La, kT , Rm, Jm)

[
1
La

pe

]

=
[

0 − 1
L2

a

pe 0 0 0
]

. (6.47)

The matrix (sI − An)−1 then reads

(sI − An)−1 =
1
Δ

⎡⎢⎢⎣ s +
Ra

La

kT

La

− kT

Jm
s +

Rm

Jm

⎤⎥⎥⎦ , (6.48)

where

Δ := s2 + (
Ra

La
+

Rm

Jm
)s +

RmRa

JmLa
+

k2
T

JmLa
. (6.49)

With these results, a lengthy expression that is not given here is finally obtained for

the sensitivity matrix

S(s) = Cn(sI − An)−1(L B̃)(s) + (L D̃)(s) . (6.50)

Replacement of the bond graph elements in the bond graph of the DC motor

example (Figure 6.29) by their associated incremental models discussed in Sec-

tion 6.5.1 results in an incremental model of the system under consideration shown

in Figure 6.31. The incremental bond graph differs from the initial bond graph by the

fact that the incremental models of the inertances, the resistors and the gyrator in-

troduce sinks that reflect parameter variations, while the time dependent, parameter

independent source of the voltage supply and the load moment disappear. Besides

these differences, the incremental bond graph is an ordinary bond graph that can

be entered into a graphical bond graph editor. A combination of programs such as

CAMPG® and MATLAB® can then generate the transfer matrix H for this bond

graph in symbolic form. As the inputs into the incremental bond graph are parame-

ter variations, this matrix is just the sensitivity matrix (Equation 6.50).

Parameter Sensitivities of Transfer Functions

If there is a change only in one element parameter, then only that element needs

to be replaced by its associated incremental bond graph and the sensitivity matrix

reduces to a scalar. For instance, if there is only a variation in the mechanical friction

coefficient ΔRm, then the incremental bond graph takes the more simpler form

displayed in Figure 6.32.
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��
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��

Se : −ΔkT

Fig. 6.31 Incremental bond graph of the DC motor example (Figure 6.29)

If the impact of the variation ΔRm on the armature current is of interest then,

first, from the incremental bond graph in Figure 6.32, the following two state equa-

tions can be immediately derived.

sL Δi =
1
L

(−RaL Δi − kT L Δω) (6.51a)

sL Δω =
1

Jm
[kT L Δi − RmL Δω − (L fRm)ΔRm] (6.51b)

Elimination of Δω gives

∂L i

∂Rm
=

[kT /(LaJm)]L fRm

(s + Ra/La)(s + Rm/Jm) + k2
T /(LaJm)

. (6.52)

The denominator in the transfer function of Equation 6.52 is the determinant in

Equation 6.49. This is not surprising. Since the incremental bond graph has the

same structure as the initial bond graph, both graphs share the same system ma-

trix. The transfer function above can be obtained from the incremental bond graph

(Figure 6.32) directly by observing causal paths and by applying Mason’s rule (cf.

Section 6.2). For an automatic derivation of the transfer function directly from a

bond graph, the program ARCHER could be used.
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Se0 : �� 1 �� GY

kT..
�� 1 �� R : Rm

��

I : La

��

R : Ra

��

I : Jm

��

MTFfRm(t) :

��

Se : ΔRm

Fig. 6.32 Incremental bond graph of the DC motor example in case of a variation in mechanical

friction only

The Laplace transform L fRm
= L ω is obtained from the initial bond graph of

the DC motor (Figure 6.30). Let Mload = 0. Then,

L ω =
kT

k2
T + (sLa + Ra)(sJm + R)

L E . (6.53)

Substitution into Equation 6.52 yields

∂L i

∂Rm
=

k2
T

(LaJmdet(sI − A))2
L E . (6.54)

Let F11 := L i/L E. Then, Equation 6.54 results in the sensitivity of the transfer

function F11 with regard to the parameter Rm.

∂F11

∂Rm
=

k2
T

(LaJmdet(sI − A))2
(6.55)

The result can be easily verified by derivation of F11 from the initial bond graph and

by subsequent differentiation with respect to Rm.

Parameter sensitivities of the other transfer functions, e.g. F21 := L ω/L E, can

be determined in the same manner. In practice, the transfer functions such as the two

given by Equation 6.52 and Equation 6.53 are available from the sensitivity matrices

that can be set up automatically in symbolic form from the initial bond graph and

from the incremental bond graph.

The incremental bond graph approach to the determination of parameter sensi-

tivities presented so far in this section can be also applied to bond graphs of hybrid
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models in which switches are modelled by means of a Boolean controlled modu-

lated transformer and a resistor representing its ON state resistance (cf. Figure 7.6).

6.6 State Equations for Robustness Study

When developing models for dynamic systems, one must be aware of shortcomings

due to uncertainties. These may be caused by external hazardous perturbations, or

may be due to insufficient erroneous parameter identification, or due to tolerances

in the manufacturing process of a system. In this section, we will address parameter

uncertainties. The analysis of a system with respect to robustness aims at a robust

closed loop control that ensures stability and a required system behaviour within

acceptable tolerance boundaries in the presence of hazardous perturbations and pa-

rameter variations. For robustness study, two special forms of state equations are

used. Especially for large systems, considerable computational effort may be neces-

sary to construct these forms even if a software package for symbolic manipulation

is used.

Kam and Dauphin-Tanguy [23, 43, 44] have shown how two special forms of

state equations used in robustness study, viz. the canonical form of state equations

with uncertain parameters and the standard interconnection form can be derived

systematically from a so-called uncertainty bond graph. This is a bond graph with

true perturbed power variables effort and flow in which elements have been split

into a nominal and an uncertain part.

Both sensitivity of state variables and output variables with respect to parameter

perturbations considered in the previous section as well as robustness in stability

and robustness in performance are important issues in the design of a system and

its control. In the following, it is shown that the incremental bond graph previously

introduced for the determination of first order parameter sensitivities can also serve

as an appropriate starting point for the systematic derivation of the canonical form of

state equations used for robustness analysis if higher-order terms in the incremental

models of bond graph elements are not neglected [10, 11]. The incremental bond

graph approach to the derivation of state equations for robustness study is equivalent

to the uncertainty bond graph approach of Kam and Dauphin-Tanguy and can be

applied by using a bond graph program which can generate, in symbolic form, the

entries in the matrices in the state equations of linear time-invariant systems [14].

Only a multiplication of matrices derived from the nominal bond graph and from

the incremental bond graph needs to be carried out by a program for mathematical

computation, e.g., MATLAB®, in order to obtain the increments of matrices in the

canonical form. In the following, the presentation follows the one in [11].

In the next subsection, first, incremental models of standard bond graph elements

are briefly revisited. This time, the aim is not the derivation of first order parameter

sensitivities, but the derivation of a particular form of state equations used for robust-

ness study. Therefore, higher-order terms in relations between increments of power
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variables are no longer neglected as they were in the previous section. In the follow-

ing, we will see how the matrices in the canonical form of state equations can be set

up systematically by means of the initial bond graph and its associated incremen-

tal bond graph. The approach, applicable to general linear time-invariant systems,

is illustrated by means of an intentionally small example that can be checked by

hand calculation to keep the presentation easy to survey. It should be kept in mind,

however, that the major benefit of the method is the automatic derivation of state

equations for robustness study in symbolic form for large systems.

6.6.1 Incremental Models of Linear Bond Graph Elements
Revisited

Once again, consider the case of a linear 1-port resistor with nominal resistance Rn.

Then, a time-independent parameter variation ΔR causes perturbed power port vari-

ables (eRn +ΔeR)(t) and (fRn +ΔfR)(t) at each time t and the linear constitutive

equation

eRn(t) = Rn × fRn(t) (6.56)

becomes

(eRn + ΔeR)(t) = (Rn + ΔR) × (fRn + ΔfR)(t) (6.57)

(cf. Section 6.5).

If the higher-order term (ΔR)(ΔfR) is not neglected, then the equation for the

increment ΔeR reads

(ΔeR)(t) = Rn × (ΔfR)(t) − (−fR(t) × ΔR) . (6.58)

The incremental model representing Equation 6.58 is almost identical to the one

depicted in Section 6.5, Figure 6.24. The difference is that the effort source is not

modulated by the nominal flow fRn(t) as indicated in Figure 6.24, but by the un-
certain flow fR(t) = fRn(t)+(ΔfR)(t). This means that an internal modulation is

introduced into the incremental bond graph model of the resistor as has been pointed

out in Figure 6.33.

With δRn
:= ΔR/Rn, Equation 6.58 can be rewritten in the form

(ΔeR)(t) = Rn × (ΔfR)(t) +
ΔR

R
× R × fR(t)

= Rn × (ΔfR)(t) −
(
− δRn

1 + δRn

)
× eR(t)) . (6.59)

Alternatively, an incremental model without internal modulation can be obtained

by simply regrouping the terms in Equation 6.58 in a different manner
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��
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MSe : −fR(t) × ΔR

Fig. 6.33 Incremental bond graph model of a linear 1-port resistor with nominal parameter Rn

and internal modulation

��
ΔeR

ΔfR
1 �� R : R

��
wR

MSe : −δRn × eRn(t)

Fig. 6.34 Alternative incremental bond graph of a linear 1-port resistor with uncertain parameter

R and no internal modulation

(ΔeR)(t) = Rn × (ΔfR)(t) + (ΔR)(ΔfR)(t)
−(ΔR)(ΔfR)(t) + (ΔR)fR(t)

= R × (ΔfR)(t) − (−δRn × eRn(t)) , (6.60)

where δRn := ΔR/Rn. Equation 6.60 can be represented by the incremental model

shown in Figure 6.34. Notice that the nominal parameter value Rn is replaced by

the uncertain value R = Rn + ΔR.

Similar results can be obtained for 1-port energy stores. For instance, for a linear

C element with nominal capacitance Cn, the relation for the increment ΔeC is
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ΔeC(t) =
1

Cn
× (Δq)(t) − ΔC

Cn︸︷︷︸
=: δCn

× eC(t) (6.61)

=
1
C

× (Δq)(t) − ΔC

C︸︷︷︸
=: δC

× eCn
(t) . (6.62)

Equation 6.61 can be represented by the incremental model of Figure 6.35, while

Figure 6.36 shows the incremental model corresponding to Equation 6.62.

Like for a resistor and a C energy store, incremental bond graph models can be

easily developed for all other bond graph elements without neglecting higher-order

terms. For a transformer, for instance, the result is the same bond graph given in

Figure 6.27. Only the modulus, mn, is to be replaced by the perturbed parameter

��
ΔeC

ΔfC

0

� � �
�

eCn(t)

�� 1 ��
ΔzC

Δq̇

C : Cn

��
wC

MSe : δCn
× eC(t)

Fig. 6.35 Incremental bond graph of a linear 1-port capacitor with nominal capacitance Cn and

internal modulation

��
ΔeC

ΔfC

1 �� C : C

��
wC

MSe : δC × eCn
(t)

Fig. 6.36 Alternative incremental bond graph model of a linear 1-port energy store with uncertain

parameter C and no internal modulation
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m = mn+Δm. The incremental models of 1- and 0-junctions are 1- and 0-junctions

because their constitutive equations are linear and also hold for the incremental

power variables. That is, the incremental bond graph retains the structure of the

initial bond graph.

6.6.2 Derivation of the Canonical Form of State Equations from
an Incremental Bond Graph

In this subsection, we consider linear time-invariant state space models of the special

form

ẋ = [An + ΔA]x + [Bn + ΔB]u (6.63a)

y = [Cn + ΔC]x + [Dn + ΔD]u (6.63b)

referred to as the canonical form in the literature. The matrices An, Bn, Cn, Dn

are of appropriate dimensions. Their entries depend on the components of the vec-

tor of nominal parameters Θn. The entries in the incremental matrices ΔA, ΔB,

ΔC, ΔD, in general, are nonlinear functions of the parameter variations ΔΘ and

the nominal parameters. ΔA := A(Θ) − A(Θn), Θ := Θn + ΔΘ. The matri-

ces ΔB, ΔC, ΔD are defined likewise. In principle, the required canonical form

could be obtained by replacing nominal parameters Θin in the state equations of

the nominal system by the perturbed value Θi := Θin + ΔΘi, (i = 1, . . . , np),
where np is the number of parameters. However, the separation of each matrix into

a sum of two term as indicated above may be difficult and may require considerable

computational effort especially for large systems since the entries in the matrices

are generally nonlinear functions of the parameters. The incremental bond graph

approach as well as the uncertainty bond graph approach have the advantage that

both of them can produce the required matrices in symbolic form. This means that

the impact of each parameter perturbation on the robustness of a system can be

analysed.

For the derivation of the canonical form of state equations from the associated

incremental graph, both forms of incremental models of bond graph elements can be

used [11]. In the following, incremental models with perturbed parameters and no
internal modulation are used (Figures 6.34 and 6.36). In the subsequent formulae,

this is indicated by a subscript 2. The state variables in the incremental bond graph

are denoted by Δx, while the output variables of the sources in the incremental

models of standard bond graph elements are combined into a vector w2. The latter

is related to the vector z2n
of outputs of all elements with nominal parameters via a

diagonal matrix Δ2 (cf. Equations 6.60 and 6.62)

w2 = Δ2z2n
. (6.64)
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The state equations for Δx can be derived in symbolic form from the incremen-

tal bond graph in the same manner in which state equations are derived from the

nominal bond graph

Δẋ = A(Θ)Δx + B∗(Θ)w2 (6.65)

with matrices A and B∗ depending on perturbed parameters. The initial bond graph

with nominal parameters yields

z2n
= C2n

xn + D2n
u . (6.66)

The combination of the Equations 6.65, 6.64, and 6.66 gives for Δẋ

Δẋ = AΔx + B∗Δ2(C2nxn + D2nu)
= AΔx + (B∗Δ2 · C2n)xn + (B∗ΔD2n)u . (6.67)

On the other hand, we can write Δẋ in the form:

Δẋ = ẋ − ẋn

= [Ax + Bu] − [Anxn + Bnu]
= A(xn + Δx) − Anxn + [B − Bn]u
= AΔx + (ΔA)xn + (ΔB)u . (6.68)

Finally, comparison of the Equations 6.67 and 6.68 gives

ΔA = B∗Δ2C2n (6.69a)

ΔB = B∗Δ2D2n
. (6.69b)

Similar results can be obtained for the matrices ΔC and ΔD. Equation 6.67 will be

illustrated by means of a small example. From a practical point of view, the matrices

An, Bn, C2n , D2n (initial bond graph), and B∗(Θ) (incremental bond graph) can

be obtained by means of any software program that can derive state space equations

in symbolic form from a bond graph, e.g., the bond graph preprocessor CAMP-

G®[20], or the computer aided modelling and analysis program ARCHER [5]. The

multiplications of matrices needed can be performed by a program for mathematical

computations, e.g., MATLAB® [6].

Example: Electrical Circuit with Two Energy Stores

The derivation of the canonical form of state equations shall be illustrated by means

of the simple circuit with two energy stores shown in Figure 6.37. The initial bond

graph corresponding to the circuit schematic is shown in Figure 6.38.
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Fig. 6.37 Circuit with two energy stores
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Fig. 6.38 Bond graph of the circuit

The state equations are[
ṗ
q̇

]
︸︷︷︸
ẋ

=
[−R1/L −1/C

1/L −1/(R2C)

]
︸ ︷︷ ︸

A(Θ)

[
p
q

]
︸︷︷︸
x

+

[
1

0

]
︸︷︷︸
B

[E(t)]︸ ︷︷ ︸
u

. (6.70)

The bond graph elements in the initial bond graph can be replaced equally by incre-

mental models with or without internal modulation. In the following, incremental

models without internal modulation, but with perturbed parameters are used. Fig-

ure 6.39 shows the resulting incremental bond graph (with uncertain parameters).

As for any other linear bond graph, the following equations can be derived in

symbolic form. [
Δṗ
Δq̇

]
︸ ︷︷ ︸
Δẋ

=
[−R1/L −1/C

1/L −1/(R2C)

]
︸ ︷︷ ︸

A(Θ)

[
Δp
Δq

]
︸ ︷︷ ︸
Δx

+
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Se0 : �� 1 �� 0 �� 1 �� C : C

��

1

��

R : R1

��
wR1

MSe−δR1n
eR1n

:

��

0��
wL

MSfδL fLn :

��

I : L

��

1

��

R : R2

��
wR2

MSe : −δR2n
eR2n

��
wC

MSe : δC eCn
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Fig. 6.39 Incremental bond graph of the example circuit with perturbed parameters

[
R1 1 0 1
−1 0 −1/R2 1/R2

]
︸ ︷︷ ︸

B∗(Θ)

⎡⎢⎢⎣
wL

wR1

wR2

wC

⎤⎥⎥⎦
︸ ︷︷ ︸

w2

(6.71)

Equation 6.64 takes the form

w2 =

⎡⎢⎢⎣
δL

−δR1n −δR2n
R2n

δC

⎤⎥⎥⎦
︸ ︷︷ ︸

Δ2

⎡⎢⎢⎣
fLn

eR1n

fR2n

eCn

⎤⎥⎥⎦
︸ ︷︷ ︸

z2

. (6.72)

From the initial bond graph with nominal parameter values, the following equations

can be derived:

z2 =

⎡⎢⎢⎣
1/Ln 0

R1n/Ln 0
0 1/(R2nCn)
0 1/Cn

⎤⎥⎥⎦
︸ ︷︷ ︸

C2n

[
pn

qn

]
︸ ︷︷ ︸
xn

. (6.73)
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Thus, D2n = 0 in this example. With these results, the product B∗Δ2C2n gives

the incremental matrix ΔA to be determined (Equation 6.69a).

ΔA =

⎡⎢⎢⎣R1
ΔL

LLn
− ΔR1

Ln

ΔC

CCn

− ΔL

LLn

ΔR2

R2R2n
Cn

+
ΔC

R2CCn

⎤⎥⎥⎦ (6.74)

Consider the special case in which only the two resistors are assumed to have un-

certain parameters, i. e., ΔL = 0, ΔC = 0. Then, the matrix ΔA reduces to

ΔA =

⎡⎢⎢⎣−ΔR1

Ln
0

0
ΔR2/R2n

R2n
Cn(1 + ΔR2/R2n

)

⎤⎥⎥⎦ (6.75)

in accordance with a result given earlier by Dauphin and Kam in [23]. Due to D2n
=

0, the increment ΔB vanishes (cf. Equation 6.69b). This is true because the entries

in B are independent of any parameter values. If y = [ec], then the increment Δy
is obtained from the incremental bond graph.

ΔeC =
1
C

Δq − wC

=
[
0 1/C

]︸ ︷︷ ︸
C(Θ)

Δx +
[
0 0 0 −1

]︸ ︷︷ ︸
D∗

w2 (6.76)

Substitution of the vector w2 by means of Equations 6.72 and 6.73 finally gives

ΔC = D∗Δ2C2n

=
[
0 0 0 −1

] ⎡⎢⎢⎣
δL

−δR1n −δR2n
× R2n

δC

⎤⎥⎥⎦

·

⎡⎢⎢⎣
1/Ln 0

R1n
/Ln 0
0 1/(R2n

Cn)
0 1/Cn

⎤⎥⎥⎦ =
[
0 −δC/Cn

]
. (6.77)

6.6.3 The Standard Interconnection Form

The standard interconnection form, or Linear Fractional Transformation (LFT)

form, mentioned in the beginning of Section 6.6 is another form of state equations

for robustness study. The underlying idea is to account for parameter uncertainties
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Fig. 6.40 Standard interconnection model

in linear time-invariant systems by means of an internal feedback as shown in Fig-

ure 6.40 [44]. The model in Figure 6.40 is also known as an internal feedback loop
model. The matrix M(s), s ∈ C, denotes the interconnection matrix depending on

nominal parameter values only, while Δ is a diagonal matrix (δij) with |δii| < 1
(L denotes the Laplace operator). According to Figure 6.40, matrices of appropriate

dimensions can be set up such that a linear system is given by the equations

ẋ = Anx + [B1nB2n ]︸ ︷︷ ︸
B̂n

[
w
u

]
(6.78a)

[
z
y

]
=

[
C1n

C2n

]
︸ ︷︷ ︸

Ĉn

x +
[
D11n

D12n

D21n
D22n

]
︸ ︷︷ ︸

D̂n

[
w
u

]
(6.78b)

w = Δ · z . (6.78c)

With these matrices M(s) in Figure 6.40 reads

M(s) = Ĉn(sI − An)−1B̂n + D̂n . (6.79)

The standard interconnection form is used by the μ-Analysis and Synthesis method

for which a MATLAB® toolbox has been developed by Balas and his co-workers

[31].

Now, first it is assumed that the incremental models corresponding to the standard

bond graph elements incorporate internal modulation (cf. Figures 6.33, 6.35). In

subsequent formulae, this case is indicated by a subscript 1. The state variables

in the incremental bond graph are denoted by Δx and the output variables of the

modulated sources in the incremental models of standard bond graph elements are

combined into a vector w1. The state equations for Δx can be derived automatically

in symbolic form from the incremental bond graph as from any other linear bond

graph.
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Δẋ = AnΔx + B∗
nw1 (6.80)

Since the elements in the incremental submodels have nominal parameters (cf. Fig-

ures 6.33, 6.35) the matrices in Equation 6.80 depend on nominal parameters as

indicated by the subscript n.

If the initial bond graph is used with uncertain parameters and if the outputs

eR, eC etc. of all elements with uncertain parameters are grouped into a vector

z1, then this vector is related to w1 in the incremental bond graph by means of

a diagonal matrix Δ1 = (δ1ii) with entries |δ1ii| < 1 (cf. Equations 6.59 and 6.61).

w1 = Δ1z1 (6.81)

With these equations, the matrices in the standard interconnection form are easily

obtained. Equations 6.80 and 6.35a result in

ẋ = ẋn + Δẋ

= [Anxn + Bnu] + [AnΔx + B∗
nw]

= Anx + B∗
nw + Bnu . (6.82)

If the outputs of all elements in the incremental bond graph are combined into a

vector Δz (cf. Figure 6.35), an equation

Δz = CnΔx + D11n
w (6.83)

may be automatically derived from the incremental bond graph while the initial

bond graph with nominal parameters provides

zn = Cnxn + D12nu . (6.84)

Combining both equations leads to

z = zn + Δz = Cnx + D11n
w + D12n

u . (6.85)

In the same manner, the matrices in the equation for the vector of output variables y
in the standard interconnection form (Equation 6.78b) are obtained. Finally, vectors

w1 and z are related by the diagonal matrix Δ1 (Equation 6.81). That is, the ma-

trices in the standard interconnection form can also be derived from the initial bond

graph and its associated incremental bond graph.

6.6.4 Outline of the Uncertainty Bond Graph Approach

Section 6.6.2 has shown that the incremental bond graph introduced by Borutzky

and Granda for supporting the deduction of frequency domain sensitivities in sym-

bolic form can also be used to derive state equations for robustness study. Regard-

ing the latter objective, Kam and Dauphin-Tanguy presented a different approach
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��
eΔI
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Fig. 6.41 Decomposition of passive 1-port elements with regard to the canonical form of state

equations (Dauphin-Tanguy and Kam 1999). a Decomposition of a 1-port resistor. b Decomposi-

tion of a 1-port energy store.

based on a so-called uncertainty bond graph. Whereas bonds in the incremental
bond graph carry increments of power variables, they are perturbed power variables

e := en + Δe and f := fn + Δf in the uncertainty bond graph as mentioned at the

beginning of Section 6.6. The basic idea of their approach is to split each linear pas-

sive 1-port impedance into a nominal part and an uncertain part and to replace the

linear 1-port element by two elements of the same type attached to a junction. The

type of the additional element depends on whether the canonical form or the stan-

dard interconnection form is the objective. If the canonical form of state equations

is required, then 1-port resistors and 1-port energy stores are decomposed as shown

in Figure 6.41. To ensure that the order of the model is not increased by the compan-

ion store of an energy store with nominal parameter, the additional energy stores,

representing the parameter variations must have derivative causality (Figure 6.41b).

For the example circuit, the uncertainty bond graph is shown in Figure 6.42.

The standard interconnection form of state equations uses a diagonal matrix

Δ = (δii) with |δii| < 1. For that reason, passive 1-port elements are decomposed

as shown in Figure 6.43 [44] for the case of a linear 1-port resistor in resistance

causality.

The element De in Figure 6.43 denotes a detector that senses the effort of the

0-junction. Summation of efforts at the 1-junction gives

eR = Rn × fR − (−δRn
) × z︸ ︷︷ ︸

w

(6.86)

= Rn × fR +
ΔR

Rn
× Rn × fR (6.87)

= (Rn + ΔR) × fR = R × fR . (6.88)

Two-port transformers and gyrators may be split into two elements in a similar man-

ner. The result for a TF is shown in Figure 6.44. If all elements are replaced in this

way (0-junctions and 1-junctions remain invariant), then the resulting bond graph is

called the uncertainty bond graph. Apparently, it reduces to the initial nominal bond

graph if all parameter variations vanish.
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Fig. 6.42 Uncertainty bond graph of the example circuit in Figure 6.37

��
eR

fR

1 �� 0 �� R : Rn

�

De : z

�−δRn

�

w

�

Fig. 6.43 Decomposition of a 1-port resistor with regard to the standard interconnection form

(Kam and Dauphin-Tanguy, 2001)

Each uncertainty bond graph can be partitioned as shown in the block diagram of

Figure 6.45. The latter is an extension of the general field representation of Karnopp

and Rosenberg [46] (p. 272ff), or [62]. This block diagram is obtained by introduc-

ing the uncertain elements along with their variables and their constitutive laws.

With the vectors and matrices introduced in Figure 6.45, lengthy general ex-

pressions for the nominal matrices and the incremental matrices in the canon-

ical form of state equations can be deduced. The procedure is straightforward

and requires extensive symbolic computational effort. In fact, according to Fig-
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Fig. 6.44 Partitioning of a TF with an uncertain parameter into two elements

Energy storage

{In,Cn},Z0 = Fnx0

{ΔI, ΔC}, Δx = (ΔF)−1ΔZ
�

Z0,Δẋ
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�

u
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Inputs

Outputs

Fig. 6.45 Partitioning of an uncertainty bond graph (cf. Kam 2001)

ure 6.45, all output vectors of the junction structure can be combined into a vector

sout := [ẋ0, ΔZ, Din, ΔDin, y]T and all input vectors of the junction structure

into a vector sin := [Z0, Δẋ, Dout, ΔDout, u]T . Both vectors are related by the

junction structure matrix S := {Sij , i, j = 1, . . . , 5}

sout = S · sin . (6.89)

Furthermore, the state vector x of the uncertainty bond graph is related to the state

vector x0 of the nominal bond graph by means of a diagonal transformation matrix

T. That is, x = Tx0. Since the junction structure equations as well as the con-

stitutive equations of the elements are linear, the matrices in the canonical form of

state equations (Equations 6.63a and 6.63b) can be deduced after basic but extensive

symbolic manipulations. The result are lengthy expressions. Details may be found in

Kam’s Ph.D. thesis [43]. The expressions for the nominal matrices in the canonical

form of the state equations read

A0 = [S11 + S13LnS31]Fn (6.90a)

B0 = [S15 + S13LnS35] (6.90b)

C0 = [S51 + S53LnS31]Fn (6.90c)

D0 = [S55 + S53LnS35] . (6.90d)
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The entries in these nominal matrices can be directly derived from the nominal

bond graph by following causal paths and by determining loop gains according to

Mason’s loop rule.

For the incremental matrices in the canonical form of the state equations, the

following expressions can be obtained

ΔA = A0(T−1 − I) + ΓT−1 (6.91a)

ΔB = [S14 + S13LnS34]ΔL[I − S43LnS34ΔL]−1

·[S45 + S43LnS35] (6.91b)

ΔC = C0(T−1 − I) + ΛT−1 (6.91c)

ΔD = [S54 + S53LnS34]ΔL[I − S43LnS34ΔL]−1

·[S45 + S43LnS35] (6.91d)

and

T = [I − S12ΔFS21Fn] (6.92a)

Γ = [S14 + S13LnS34]ΔL[I − S43LnS34ΔL]−1

·[S41 + S43LS31]Fn (6.92b)

Λ = [S54 + S53LnS34]ΔL[I − S43LnS34ΔL]−1

·[S41 + S43LnS31]Fn . (6.92c)

The evaluation of the Equations 6.91a–6.91d for the incremental matrices to be

determined requires a tool for symbolic manipulation, especially for models of large

dimension.

The definition of the vectors ΔDin, ΔDout and their affect on the causalities

in the junction structure result in sub-matrices Sij of particular structure. For the

reason of power conservation, the junction structure matrix S is skew-symmetric.

Consequently,

S12 = −S21 (diagonal matrices)

S31 = −ST
13

S41 = −ST
14 .

Since resistors and energy stores are assumed to be linear 1-port elements, the ma-

trices accounting for their constitutive equations are diagonal.

Fn =
[

1/Iin 0
0 1/Cjn

]
(6.93a)

ΔF =
[

ΔIi 0
0 ΔCj

]
(6.93b)
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Ln =
[

Rkn 0
0 1/Rln

]
(6.93c)

ΔL =
[

ΔRk 0
0 ΔRl

]
(6.93d)

From the uncertainty bond graph in Figure 6.42, all matrices needed in the lengthy

expressions of the incremental matrices can be derived. The result of the symbolic

computation is the same obtained by means of the incremental bond graph approach

presented in the previous subsection.

6.7 Bicausal Bond Graphs

For tasks such as

• system inversion,

• state estimation,

• parameter estimation, and

• fault detection

so-called bicausal bond graphs have proven useful. The concept of bicausality has

been introduced by Gawthrop [36]. The idea of bicausal bonds basically is to de-

couple the orientation of the effort from that of the flow at a bond.

Until now, bicausal bond graphs are not unanimously appreciated in the commu-

nity of bond graph modellers and have not become a standard part of the bond graph

methodology. Aiming at the ordering of equations derived from bond graphs with

internal modulation, Cornet and Lorenz in as early as 1989 proposed a represen-

tation that is able to independently follow the two power variables associated with

bonds [21]. However, in recent years, bicausal bond graphs have received increased

attention by researchers, especially in France [50].

Figure 6.46 explains the principle of bicausal bonds. As can be seen from Fig-

ure 6.46, standard unicausal bonds are a special case of bicausal bonds. If both

causal half strokes coincide at a bicausal bond, then it turns into a standard uni-

causal bond. In other words, bicausal bonds result if the standard causal stroke is

split into two causal half strokes that are attached at both ends of a bond.

In bicausal bond graphs, a bond connected to the port of the 1-port source sensor

element, SS, introduced by Gawthrop may be assigned six different causal pattern.

Accordingly, the SS element assumes different roles as listed in Table 6.2 [54].

Tables 6.3 and 6.4 depict assignments of bicausalities to the bonds attached to

the standard bond graph elements and to two additional elements, AE and AF, in-

troduced by Gawthrop [55].

For a 0 (1)-junction, the effort (flow) is the input at one port, while flows (efforts)

are inputs at all ports except one. According to this formulation of the rule, for a

bicausal junction this means, that two and only two adjacent bonds can be bicausal
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Fig. 6.46 The principle of bicausal bonds

Table 6.2 Causal patterns for the source-sensor element SS (cf. Ngwompo and Gawthrop, 1999)

Causal pattern Nature of the SS element

SS �� Effort source, flow sensor Se element

SS �� Flow source, effort sensor Sf element

SS 


f = 0

Zero flow source, effort sensor De element: Effort detector

SS 


e = 0

Zero effort source, flow sensor Df element: Flow detector

SS �� Flow source, effort source

SS 

 Flow sensor, effort sensor

bonds, i.e., if at one port both effort and flow are inputs then there must be another

port, where both power variables are outputs as indicated in Table 6.3. The two

additional elements AE and AF are an effort and a flow amplifier respectively. Their
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Table 6.3 Causal patterns for the standard bond graph elements and two additional elements

Bicausal pattern Assignment statements

C : C�� C := q/e

I : I�� I := p/f

R : R�� R := e/f

0��
1

��
3

��
2

e2 := e1

e3 := e1

f3 := f1 − f2

1��
1

��
3

��
2

f2 := f1

f3 := f1

e3 := e1 − e2

TF

n..

��
1

��
2

e2 := e1/n

f2 := n × f2

TF

n..

��
1

��
2

e1 := n × e2

f1 := f2/n

GY

r..

��
1

��
2

e2 := r × f1

f2 := e1/r

GY

r..

��
1

��
2

e1 := r × f2

f1 := e2/r
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Table 6.4 Causal patterns for two additional elements

Bicausal pattern Assignment statements

AE : k��
1

��
2

e2 := k × e1

f1 := 0

AE : k��
1

��
2

e1 := e2/k

f1 := 0

AF : k��
1

��
2

f2 := k × f1

e1 := 0

AF : k��
1

��
2

f2 := k × f1

e2 := 0

function can be represented alternatively in a more traditional way by signal arrows

and a GAIN block for amplification of the input signal.

6.7.1 Bicausal Bond Graphs for Parameter Estimation

An illustration of a bicausal bond graph is given in Figure 6.47. With this assign-

ment of bicausality, the SS element imposes both the system input u = E and the

system output y = i. It is assumed that both variables have been measured and that

the values for the capacitance parameter C and the capacitor’s initial state q0 are

known. This simple bicausal bond graph now shows that the resistance of the R el-

ement can be estimated from the measured input and output. Since the capacitance,

C, and the initial state, q0, are known and since the current, i, is an input to the

capacitor, its output is determined. Thus, the bond connect to the C element is uni-

causal. Consequently, as indicated by the bicausal bond connect to the R element,

both effort and flow are known. That is, its resistance can be deduced. Accordingly,

the following assignment statements can be derived from the bicausal bond graph.

u̇c :=
1
C

i (6.94a)

R :=
E − uC

i
(6.94b)
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Fig. 6.47 Bicausal bond graph of a RC series interconnection
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Fig. 6.48 Simple bond graph model of a DC motor

6.7.2 Bicausal Bond Graphs for System Inversion

The subject of system inversion has already been dealt with in Section 6.3. In this

section, a bicausal bond graph is used for the derivation of the equations of the

inverse system. For illustration, consider the simple bond graph model of a DC

motor depicted in Figure 6.48. In this example, the motor is fed by an electrical

voltage E and operates against an external mechanical torque M . As a result, the

mechanical load rotates with an angular velocity ω and the voltage supply is subject

to a feedback current i. That is, there are two inputs, E and M into the system and

two outputs, ω and ia.

Now, let us consider a partial inversion of the system with respect to u = E and

y = ω by questing for the voltage that is necessary to maintain a certain angular

velocity under the given load torque. The bicausal bond graph corresponding to this

question is given in Figure 6.49. Note that both the voltage E and the current ia
are outputs at the electrical port of the motor model, while both the load torque M
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Fig. 6.49 Bicausal bond graph of the inverse system of the DC motor with respect to u = E and

y = ω

and the angular velocity ω are inputs to the mechanical port. Furthermore, in con-

trast to the system model, Figure 6.48, both energy stores have derivative causality.

Consequently, the inverse system model has no states.

From the bicausal bond graph of the inverse system model, the following equa-

tions can be directly derived.

e2 = Jm
dω

dt
+ M (6.95a)

e1 = k × ω (6.95b)

ia =
1
k

e2 (6.95c)

E = Ia
dia
dt

+ Ra × ia + e1 (6.95d)

Elimination of the efforts of the Gyrator and Laplace transform gives the following

transfer matrix [
L i
L E

]
=

[
h11 h12

h21 h22

] [
L ω
L M

]
, (6.96)

where

h11 =
Jm

k
(6.97a)

h12 =
1
k

(6.97b)

h21 =
Ia

k
Jms2 +

Ra

k
Jms + k (6.97c)

h22 =
Ra

k
. (6.97d)
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Fig. 6.50 Bicausal bond graph of a RC series interconnection for initial state estimation

This section on bicausal bond graphs concludes by briefly considering their use for

state estimation. The basic idea also goes back to Gawthrop [36].

6.7.3 Bicausal Bond Graphs for State Estimation

For illustration, the simple example of a RC series interconnection is used again.

According to the constitutive equation of a capacitor, uc(t) = q(t)/C + q0/C, the

initial state, q0, can be represented explicitly in a bond graph by an effort source.

Given fixed component parameters, the aim is to determine the initial state q0 from

the measured input v and output i. That purpose serves the bicausal bond graph

depicted in Figure 6.50.

From the bicausal bond graph of Figure 6.50, the following two equations are

immediately derived.

uC = E − R × i (6.98a)

1
C

q0 = uc − 1
C

q (6.98b)

6.8 Bond Graph Model-based Fault Detection and Isolation

The previous sections of this chapter clearly demonstrate that the bond graph

methodology can well serve various tasks beyond the development of a model to

be used for simulation. This section presents a bond graph approach to model-based

fault detection and isolation.

Automatic fault detection and isolation (FDI) is a prerequisite for system recon-

figuration, fault tolerant closed loop control and supervision of process engineering

systems. Model-based fault detection and isolation means that a system model is

available that provides information about the desired accurate dynamic behaviour to
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be used for comparison with the measured behaviour of the real process engineer-

ing system being subject to faults. Significant deviations can serve as indicators to

possible faults in some system components.

Due to its importance, model-based FDI has been the subject of many publi-

cations. A survey has been given by Isermann in [41]. Besides research articles,

presentations of model-based approaches to FDI not using bond graphs can also be

found in textbooks, e.g. [7, 26, 38]. As to bond graph modelling, its use for quan-
titative as well as to qualitative model-based FDI has been addressed in various

research articles, e.g. [8, 15, 32, 39, 40, 52, 66, 69]. The textbook of Mukherjee,

Kamarkar and Samantaray [53] devotes an entire chapter to model-based FDI using

bond graphs. Furthermore, Ould Bouamama and Samantaray recently published a

textbook on model-based process supervision [65].

This section shows that residual bond graph sinks previously used in bond graph

models of the mathematical pendulum (Section 5.2, Figure 5.2 and Figure 5.3) and

for tearing algebraic contraints (Section 5.4) can also serve as the base of a bond

graph approach to the numerical computation of fault indicators in quantitative

model-based fault detection. In the modelling, the role of residual sinks is intuitive

and (automatic) derivation of equations from the bond graph leads to a DAE system

of which the descriptor vector includes fault indicators as components.

6.8.1 Analytical Redundancy Relations

In model-based FDI, so-called Analytical Redundancy Relations (ARRs) [71, 74]

play a key role. ARRs establish constraints between known variables (input vari-

ables and measured output variables) and, in general, also include known model pa-

rameters. Under normal mode conditions, the numerical evaluation of ARRs should

produce values equal to zero. In practice, the result of an evaluation of an ARR,

the output variable of an ARR, also called residuals, will be within certain small

error bounds due to numerical inaccuracies, sensor noise or process parameter un-

certainties. If the measured system is subject to faults in some system components,

then the values of some residuals may be outside given thresholds and can serve as

fault indicators. Structural analysis of analytical constraint relations reveals whether

faults can be isolated or not.

In bond graphs, such algebraic constraints arise from junctions. Each junction

contributes a continuity equation for flows or efforts. By using the constitutive equa-

tions of bond graph elements and by elimination of unknown variables, ARRs may

be obtained in symbolic form if nonlinearities permit necessary eliminations. The

form of the set of ARRs is not unique and depends on the choice of computational

causalities in a bond graph and the procedure that is applied. Moreover, algebraic

dependencies indicated by causal paths in the bond graph and nonlinear constitutive

relations may prevent the elimination of unknown variables.

Given that unknown variables can be eliminated, then structural analysis of each

resulting equation leads to what is called a signature in terms of known variables
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and system component parameters for each residual. Summing up power variables at

two junctions may result in the same signature. That is, derivation of ARRs from all

junctions of a bond graph would produce redundant information. ARRs are derived

only from those bond graph junctions with a detector connected to it. The detector

models the measuring of a process variable (presented by the common junction

variable).

Clearly, for FDI, a model of a system under study should be structurally ob-

servable. Moreover, it must be structurally controllable to enable fault tolerant con-

trol (FTC). Sensors should be placed such that these conditions are met. Sueur and

Dauphin-Tanguy have given sufficient and necessary criterions that enable one to

check structural observability and structural controllability directly on a causal bond

graph of a linear time-invariant MIMO system (cf. Theorem 6.2, Section 6.4 and

Theorem 6.4, Section 6.4.2).

Example: Hydraulic Two Tank System

For illustration, the simple hydraulic two tank system of Figure 6.12 will be consid-

ered again. Figure 6.51 shows a bond graph of the system with two effort detectors

(De) representing sensors that read the pressures in the tanks.

Evidently, there is a causal path from each C element to a sensor. Moreover, both

C storage elements could take preferred differential causality if the causality of the

sensors is inverted. That is, the system with the two pressure sensors is structurally
state observable according to Theorem 6.4. The tank pressures are states that can be

observed. If the sensor of pressure p1 is removed and a sensor of the flow through

the valve between both tanks is attached to the left 1-junction, then this system is

also structurally observable as it meets the criterion of Theorem 6.4. Other senor

placements also lead to a structurally observable system. For instance, in addition

to the two pressure sensors, a flow sensor could be attached to the right-hand side

1-junction measuring the volume flow through the outlet valve (Figure 6.52).

MSf ��
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0

��

f1 = 0

De : p1

�� 1 �� 0

��

f2 = 0

De : p2

�� 1 ��
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��
p1 QC1

C : C1

��
QR1

R : R1()

��
p2 QC2

C : C2

��
QR2

R : R2()

Fig. 6.51 Bond graph of the hydraulic two tank system with two pressure sensors
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Fig. 6.52 Bond graph of the hydraulic two tank system with tank pressure sensors and a flow

sensor in the outlet valve

In the bond graph of Figure 6.51, the left-hand side 0-junction representing the

tank pressure p1 provides the continuity equation for the volume flows:

0 = Qp − QC1 − QR1 . (6.99)

If in this equation the left-hand side zero is replaced by a variable called residual,

res1, and if the constitutive equations of the (linear) energy C-store, C1 and of the

nonlinear hydraulic resistor, R1, are inserted, then equation Equation 6.99 reads:

res1 = Qp − C1ṗ1 − k1sign(p1 − p2)
√

|p1 − p2| . (6.100)

The right-hand side of this equation only includes known variables and known com-

ponent parameters because the pressures in the tanks are measured output variables

as indicated by the two effort detectors in Figure 6.51. That is, Equation 6.100 is an

ARR. A substitution of the unknown flow variable QC1 by means of the measured

pressure p1 is also possible in case of an invertible nonlinear characteristic.

Likewise, the sum of all volume flows at the right-hand side 0-junction of tank

pressure p2 leads to an ARR for another residual res2.

res2 = k1sign(p1 − p2)
√
|p1 − p2| − C2ṗ2 − k2

√
p2 (6.101)

In the same way, an ARR, res3, could be established by summing up all efforts at

the 1-junction representing the flow QR1 through the valve between the two tanks.

0 = p1 − p2 − 1
k2
1

(Qp − C1ṗ1)2sign(Qp − C1ṗ1) = res3 (6.102)

However, inspection of this equation reveals that it does not provide other informa-

tion with respect to known variables and component parameters than does the ARR
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Fig. 6.53 Bond graph of the hydraulic two tank system in preferred derivative causality and sensors

with inverted causality

of residual res1. That is, both ARRs have the same signature. Their residuals are not

structurally independent.

Note that the same ARRs, Equations 6.100 and 6.101 for residuals res1 and res2,

are obtained from a bond graph of the two tank system in which preferred derivative

causality has been assigned to the C stores and causality of the pressure detectors

has been inverted (Figure 6.53). The assignment of preferred derivative causality for

the determination of residuals is favoured by Samantaray and his co-workers [66].

6.8.2 Structural Fault Signature Matrices

Inspection of ARRs with respect to the known variables and component parameters

they link leads to a so-called fault signature matrix. For instance, in the ARR of

residual res1, Equation 6.100, the left side tank, T1, contributes a parameter C1

and the valve between the two tanks contributes a parameter k1. Looking at ARRs

this way, an occurrence matrix can be set up with one row for each known variable

or component parameter and one column for each residual. A known variable or

component parameter present in an ARR is indicated by ‘1’, its absence by ‘0’. That

is, the resulting matrix shows which components contribute to which residuals. The

columns in a structural fault signature matrix indicate the signatures of the ARRs of

the residuals. The rows display the fault signatures of components. Such a matrix is

usually extended by two additional columns. The first one with the heading ‘Det’

indicates whether a fault can be detected. The second additional column with the

heading ‘Iso’ indicates whether a fault can be isolated [15], that is, can be identified

unequivocal as the cause of a failure among other possible faults in one or several

system components. If this is feasible, then it is expressed by ‘1’ and otherwise by

‘0’. A fault can be detected if there is at least one non-zero entry in that row. This is

indicated by ‘1’ in the first additional column and otherwise by ‘0’.
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Table 6.5 Structural fault signature matrix of the two tank system with two pressure sensors

Component Variable/Parameter res1 res2 Det Iso

Pump Qp 1 0 1 0

Tank 1 C1 := AT1/(�g) 1 0 1 0

Valve 1 k1 := cdAV1

√
2/� 1 1 1 0

Tank 2 C2 := AT2/(�g) 0 1 1 0

Valve 2 k2 := cdAV2

√
2/� 0 1 1 0

Pressure sensor 1 p1 1 1 1 0

Pressure sensor 2 p2 1 1 1 0

For illustration, Table 6.5 shows the structural fault signature matrix of the hy-

draulic two tank system with two pressure sensors. Clearly, the continuity equation

of each junction in the bond graph of Figure 6.51 leads to an ARR. However, as only

two of them differ with respect to their signature, the ARRs obtained from junctions

with a sensor attached to it are included in the fault signature matrix in Table 6.5.

6.8.3 Fault Isolation

As can be seen from the fault signature matrix in Table 6.5, all faults can be de-

tected, but none of them can be isolated. If for the system with two pressure sensors

the value of residual 2 is outside the given thresholds, then it cannot be decided

whether this is due to a leakage from tank 2 or due to a fault in the outlet valve,

or due to simultaneous failures in both components. Clearly, a single fault can be

located (isolated) if it can be detected and if the pattern of non-zero entries in the

corresponding row of the matrix is unique. The mentioned problem can be solved

by adding a flow sensor (Df) that measures the volume flow through outlet valve.

Then, the constitutive equation of the outlet valve provides the ARR

res4 = Qo − k2
√

p2 = 0 . (6.103)

Adding the signature of this ARR and a row for the flow sensor results in the struc-

tural fault signature matrix shown in Table 6.6. In the fault signature matrix of

Table 6.6, the fault signatures of the second tank and the outlet valve are unique.

Consequently, faults in these two components can be isolated. If it is assumed that

sensors are not faulty, then their rows can be eliminated from the fault signature

matrix.

For the two tank system with two pressure sensors, the number of structurally

independent residuals is two. In the second case with two pressure sensors and a

flow sensor, their number is three. In general, for an observable system, their number

is equal to the number of sensors present in the system [53].
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Table 6.6 Structural fault signature matrix of the two tank system with two pressure sensors and a

flow sensor

Component Variable/Parameter res1 res2 res4 Det Iso

Pump Qp 1 0 0 1 0

Tank 1 C1 := AT1/(�g) 1 0 0 1 0

Valve 1 k1 := cdAV1

√
2/� 1 1 0 1 0

Tank 2 C2 := AT2/(�g) 0 1 0 1 1

Valve 2 k2 := cdAV2

√
2/� 0 1 1 1 1

Pressure sensor 1 p1 1 1 0 1 0

Pressure sensor 2 p2 1 1 1 1 1

Flow sensor Q0 0 0 1 1 1

For the considered simple example of a hydraulic two tank system, fault signature

matrices have been obtained by setting up continuity equations for junctions and by

eliminating unknown variables. This intuitive approach has only been used for an

easy introduction into the topic. Clearly, as mentioned, such a procedure fails if non-

linearities do not one permit to eliminate unknown variables. Moreover, it is clearly

inefficient to set up continuity equations for each junction, eliminate unknown vari-

ables and then to single out the structurally independent ARRs. For the numerical

computation of residuals it is not necessary to set up ARRs in symbolic form and

a structural fault signature matrix can be set up directly from a causal bond graph

by inspection of causal paths [65, 66], regardless of the special form of nonlinear

constitutive element equations. It is sufficient to know which of the two conjugate

variables at a power port has been assigned the role of an input variable. Ghoshal

[39] and Samantaray and Ghoshal [64] have made use of bicausalities properly as-

signed to a bond graph in order to construct a fault signature matrix directly from

the bond graph.

Having introduced and illustrated the notions of ARRs and of residuals as fault

indicators, the next section introduces a bond graph approach to the numerical com-

putation of fault indicators in quantitative model-based fault detection based on the

use of residual sinks. Unknown variables do not need to be eliminated from model

equations in order to obtain ARRs in symbolic form. Fault indicators being compo-

nents of the descriptor vector of a DAE system are numerically computed.

6.8.4 Residual Sinks in Bond Graph Model-based Fault Detection

As the deliberate introduction of faults into a real engineering process for test pur-

poses may lead to hazardous situations, to periods of process instability if the equip-

ment allows for introduction of faults at all, it is obvious to replace the real process

by a behavioural model which enables one to introduce all kinds of faults without
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risk and to analyse various fault scenarios through off-line simulation. That is, a

model of the faulty real process and a faultless process model are computed simul-

taneously and ‘measured’ signals being outputs of the simulated faulty real process

are to be compared with the behaviour produced by the faultless process model.

In the bond graph model-based approach to FDI presented by Samantaray and

his coworkers [52, 65, 66], a behavioural bond graph model of the real process

subject to faults is coupled to a so-called diagnostic bond graph. The latter is a

bond graph in which energy stores are assigned preferred derivative causality and in

which sensors attached to junctions are replaced by modulated sources. The power

variable into such a modulated source, equated to zero, is measured by means of a

virtual residual sensor (The adjective virtual means that these sensors do not repre-

sent a real sensor, but only have computational meaning. In bond graphs, a star (∗)

is added as a superscript to the symbol of a virtual detector in order to distinguish it

from the one of a detector representing a real sensor. For instance, Df∗ denotes a vir-

tual flow detector). The coupling of the behavioural and the diagnostic bond graph is

achieved by feeding signals from the behavioural model, or in an online simulation,

measurements from the real process into the modulated sources (Figure 6.54).

Differentiation with respect to time according to the preferred derivative causality

in the diagnostic bond graph is numerically performed by using a functional bond

graph model of an electronic analogue differentiator device.

In that approach, derivative causality is given preference over integral causality in

the diagnostic bond graph because differentiation makes the computation of resid-

uals independent of initial values of states. Furthermore, computation of a residual

based on integration must be re-initialised when the fault disappears after repair.

�� 0 ��

��

C : C1

��

De : p1

�� 0 ��

��

C : C1

�
p1

MSe

��

1 �� Df∗ : res1

��

(a) (b)

Fig. 6.54 Effort sensor De with inverted causality (a) and its replacement (b)
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However, the model of the analog differentiator is only an approximation of the

differentiation operation that depends on the chosen values of the model parame-

ters. Moreover, as is well known, numerical differentiation of signals carrying noise

degrades the accuracy.

In contrast, in the following, the real engineering process model is coupled to

a model of the faultless process by means of residual bond graph sinks and inte-
gral causality as the preferred computational causality is used in both bond graph

models. Instead of performing numerical differentiation, the model is formulated as

a DAE system. Signals from the behavioural real process model sensed by detec-

tors De or Df, control modulated sources. Their output values are compared with

corresponding values from the model of the faultless process.

The real engineering process model accounts for faults by means of modulated

sources that can be switched on and off and by modulated resistors with a time-

dependent parameter. These elements allow for the analysis of various fault scenar-

ios by deliberately introducing one single fault at a time.

If no faults are introduced into the real process model, then the difference be-

tween ‘measured’ signals and their corresponding signals from the faultless process

model, theoretically, is equal to zero. In any case, such differences are input into

residual sinks. If a difference vanishes, the output of a residual sink is equal to zero.

However, if a process variable differs from the corresponding variable in the fault-

less process model due to a fault introduced into the real process model, the residual

sink provides a flow or an effort in order to adapt the faultless process model’s

behaviour to the perturbed process behaviour and to force the difference to zero

(Figure 6.55).
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process

model
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faultless

process

model

perturbations

��

�

�

��

��

�
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Δy
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Fig. 6.55 Coupling of the models of the real and the faultless process by residual sinks
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Fig. 6.56 A residual flow sink, rSf, giving rise to a residual, res, at the upper 0-junction

The non-zero output of a residual sink is equal to a residual of an ARR and is

a numerical indicator to a fault as shown by Figure 6.56. In Figure 6.56, ẽ1 is a

‘measured’ effort from the real faulty process model. For brevity, in the following,

residual sinks are denoted by rSf or rSe.

As there are no time derivatives of residuals, derivation of equations from the

coupled bond graphs of the faultless and the faulty process model result in a DAE

system. Energy stores may have a nonlinear characteristic. If all of them can take

preferred integral causality, then the system is of the form of a semi-explicit DAE

system

ẋ(t) = f1(t, x(t), w(t)) (6.104a)

0 = f2(t, x(t)) , (6.104b)

or [
1 0
0 0

] [
ẋ
ẇ

]
=

[
f1(t, x(t), w)

f2(t, x(t))

]
, (6.105)

where x denotes the vector of state variables and w the vector of residuals. That

is, the residuals are numerically computed as components of the descriptor vector

[x w]T so that there is no need for establishing continuity equations and for elimi-
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nation of unknown variables in order to obtain ARRs in symbolic form. The DAE

system is of index 2 if

det
(

∂f2
∂x

∂f1
∂w

)
�= 0 . (6.106)

Remark 6.5. The form of Equations 6.104a–6.104b is also known as the Hessenberg

index-2 form. Codes suitable for numerical solution of such DAE systems are, e.g.

DASPK 3.1 [1, 70] (based on the BDF method) and Radau5 [4] (implicit Runge-

Kutta method of order 5).

6.9 Reduction of Model Complexity

For large systems, modelling commonly follows a bottom-up approach. That is, a

model is built by assembling component models taken from libraries as has been

shown in Section 8.3 for multibody systems. This modular approach clearly has a

number of advantages, including the design of a hierarchical model structure, inde-

pendent, concurrent design of reusable submodels and a facilitation of model veri-

fication. However, resulting overall models may not be necessarily computationally

efficient. A reason is that component models kept in libraries have been designed to

serve various applications and purposes. As a result, with regard to a given design

task, they may contain unnecessary complexity. That is, a mathematical model may

be too comprehensive even if redundant equations due to the coupling of compo-

nent models have been eliminated symbolically prior to numerical computation of

the model. Moreover, conceptual efficiency suffers from too many details. Phenom-

ena not relevant with respect to a specific engineering task should be identified and

their representation removed from an overall model composed of library submod-

els. Hence, for handling large systems, reduction of model complexity is essential.

This has been a challenge. Accordingly, different approaches and software support-

ing them are in use to cope with model complexity and to increase computational

efficiency.

6.9.1 Model Partitioning

One approach aims at identifying “weak” two-way signal couplings in order to re-

place them by one-way connections. This is usually known as partitioning. In the

bond graph realm, Rideout and Stein [60] and Rideout, Stein and Louca [61] have

applied this approach to the junction structure of a bond graph aiming at partitioning

a model into driving and driven submodels. Partitioning can be guided by different

criteria, e.g., separation of model parts with fast dynamics from those with slow

dynamics (multi-time scale systems) [73], or partitioning of a model into parts with
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weakly damped dynamics and those with strongly damped dynamics [56]. Partition-

ing, in general, does not follow submodel boundaries. For parallel computation, it is

essential that the communication overhead for exchanging information between pro-

cessors is well below the effort of computing the submodels. In addition, in regard

to computational load balance, model partitions should be of similar scale. Clearly,

a partitioning into fast and slow parts has the advantage that different appropriate

integration algorithms can be simultaneously used.

6.9.2 Model Reduction

Another approach to a reduction of model complexity is model reduction [47, 48]. In

order to increase computational efficiency, a lower-order model is developed that ap-

proximates the dynamic behaviour while capturing essential dynamics. Louca et. al.

introduced and implemented a model reduction algorithm (MORA) at bond graph

level based on a so-called activity metric A that measures the energy flow across

a power bond [49]. It is defined as the accumulated instantaneous power P over a

time interval [t1, t2] along a power bond.

A :=
∫ t2

t1

|P (τ)|dτ =
∫ t2

t1

|e(τ) × f(τ)| dτ (6.107)

Assuming that an element with low activity at its power ports contributes less to the

dynamics of a system, this metric is used for a systematic reduction of a bond graph

model. In MORA, this metric is only applied to external power bonds connected to

1-port storage elements and 1-port dissipator, while in their partitioning approach,

Rideout, Stein and Louca also apply this metric to the internal bonds of junctions.

Obviously, if the activity of a bond connected to a 0-junction is low compared to the

activity of all other bonds connected to it, then the flow of that bond can be neglected

in the sum of flows at the 0-junction. Conversely, if one of the bonds connected to a

1-junction has a low relative activity, its effort can be neglected in the sum of efforts

at the 1-junction. In both cases, the bond with low activity representing a two-way

signal connection can be replaced by a one-way signal connection displayed by

means of a modulated source [61].

Figure 6.57 shows some cases in which a bond has been replaced by a one-

way signal connection. If, in the bond graph of Figure 6.57, part a), the activity of

bond 1 is low compared to the one of the other bonds attached to the 0-junction,

then flow coming from the 1-junction can be neglected in the sum of flows at the

0-junction. Hence, the connection between the two junctions can be replaced as

shown in Figure 6.57, part b). Note that case a) also covers the case of just a bond

connecting both junctions. If in case c) the activity of bond 1 is low compared to

the one of the other bonds connect to the left 1-junction, then the effort coming

from the right-hand side 1-junction can be neglected in the sum of efforts at the

left 1-junction. Accordingly, the flow of the left 1-junction is transformed by the
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modulated gyrator into an effort that affects the right-hand side 1-junction, but not

vice versa. In the bond graph of Figure 6.57, part d), the modulated flow source and

the modulated gyrator can be combined into a modulated effort source. Figure 6.58

shows a case in which the activity of an external bond is low compared to the one of

the other bonds attached to a junction. In Figure 6.58, the letter Z represents either

a storage or an R element. With regard to the search of a lower-order model this

means that the Z element can be removed from the model.

6.9.3 Structural Model Simplification

Finally, the initial complexity of a model can be reduced by simplification with-

out compromising accuracy. For instance, a bond graph model of a mechanism that

moves in a plane can be built by using instances of the general library model of a

rigid body moving freely in space as a building block for multibody system models

(cf. Figure 8.16) and models of the joints (cf. Section 8.3) connecting the limbs of

the mechanism. However, a considerably simplified model may be achieved with-

out compromising accuracy if it is recognised that motion of the mechanism takes

place in a plane. Well known examples of simplification at the equation level are the

elimination of Lagrange multipliers or the pole-zero cancellation in transfer func-

tions. Clearly, if model simplification is performed on the equations derived from

a bond graph, then features of the simplified model are not visible at the graphical

level. In [29], Ersal, Fathy and Stein use the activity metric for identification and

elimination of “inactive” junctions with the aim of a systematic model simplifica-

tion. They consider a junction inactive if all the bonds connected to a junction have

an activity below a user-defined inactivity threshold and consider its removal as a

model simplification that does not compromise accuracy. Clearly, the idea can be

viewed as a generalisation of the fact a 1-junction with a flow equal to zero and a

0-junction with a vanishing effort can be removed from the bond graph. Note that a

single bond with vanishing activity attached to a junction does not necessarily make

the junction a candidate for removal.

In Section 7.1.4, the concept of switching off degrees of freedom by sinks of

invariant causality has been introduced. As an example of application, modelling of

the stick-slip effect between rigid bodies has been considered. If two bodies stick

together and move with a common velocity, then a constraint force (Lagrange mul-

tiplier) can be introduced as depicted in Figure 6.59, which enforces that the relative

velocity between both bodies remains zero during the sticking phase. Obviously, in

the case of two bodies sticking together, the 0-junction representing the vanishing

relative velocity cannot be removed. If an inactive junction is removed from the

bond graph, element and submodel ports become detached. They are also removed.

Note that according to the definition (Equation 6.107), the activity on a power

bond depends on the proper choice of a time window [t1, t2]. Moreover, energy flows

in the model, and hence activities, depend on excitations, parameters and initial

conditions. Once the time window has been chosen, detection of inactive junctions
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requires computation of the initial model still not simplified and the recording of

activities. After having selected an inactivity threshold, inactive junctions can be

identified and eliminated (preserving those inactive junctions that are needed for

generating modulated signals).

Benefits of a simplification of a bond graph model are an improved conceptual

efficiency as well as computational efficiency. The latter is of importance if a model

is to be computed repeatedly, e.g., in an optimisation, or if the model is used in

real-time simulation. In modelling multibody systems, a proper choice of reference

frames is crucial for the complexity of the mathematical model. Commonly, the

rotational dynamics of a rigid body are described with respect to a body fixed co-

ordinate system sitting either in the body’s centre of gravity or in a hinge point.

If coordinate systems are not appropriately oriented and if a modular model has

been built by assembling library models for bodies and joints, the resulting overall

model may allow only for little simplification, while proper orientation of reference
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frames, e.g., in alignment with motions or constraints, may be the key to significant

simplifications of an initial complex model. In [30], Ersal, Fathy and Stein present

a procedure that checks for each rigid body of multibody system if there is an ori-

entation of the body fixed coordinate frame preferred for simplification. If so, the

coordinate transformation in need is found. After this step of coordinate frame re-

orientation, simplification based on the search for inactive junctions is performed.

As reorientations of coordinate frames are locally, the overall model structure still

corresponds to the structure of the physical system.

6.10 Conclusion

It has been the objective of this chapter to demonstrate that bond graphs are a generic

graphical model description that can serve a variety of tasks. The primary purpose

of the bond graph methodology is certainly to guide and to formalise the develop-

ment of a model from initial ideas and engineering experience to a mathematical

model that can be used for experiments on a computer. Not only the dynamic be-

haviour of a real system can be simulated by solving generated equations in time

domain. Moreover, other questions can be addressed as well by analysing a causally

completed bond graph.

For an analysis in the frequency domain, first, it is necessary to determine the

steady state. The equations describing the steady state can be directly derived from

a bond graph after energy stores have been replaced by sinks for which either the

input or the output is equal to zero depending on the approach chosen. Manual

or automatic inspection of the modified and causally completed bond graph can

indicate that there is no steady state or that the equations determining the steady

state have an infinite number of solutions. They can be derived from the bond graph

in the same way as the equations describing the dynamic behaviour. If there is a

unique solution, the bond graph methodology does not give any further help in its

determination, viz. the numerical iteration of the nonlinear equations. The problem

remains to find a start value for the iteration which must be sufficiently close to

the unknown solution if the Newton-Raphson method is used. The problem is well

known in the field of circuit analysis.

Once the steady state is known, the dynamic system equations may be linearised

and transfer functions as well as pole-zero placements can be determined. These re-

sults can be automatically obtained at the level of equations by means of a computer

algebra program, e.g. Maple™.

Alternatively, as Brown has shown in [18] in as early as 1972, loop gains needed

for the symbolic computation of transfer functions according to Mason’s loop rule

can be directly determined from a causal bond graph. For small bond graphs, trans-

fer functions can be manually determined in this way. For larger bond graphs, a

software implementation of this approach is needed as it is available with the com-

puter aided modelling and analysis program ARCHER [5]. In this chapter, the pro-
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cedure has been illustrated by means of two fairly simple bond graphs, one having

a tree-like structure (Figure 6.8) and one including a bond loop (Figure 6.9).

In control engineering, the inverse system with respect to a pair of a given input

and an output variable is of interest. A possible approach is to derive the equations

determining the dynamics of the system and to solve them for the inputs needed

to have the system generate a prescribed response. As shown in this chapter, this

process on equation level can be avoided. Instead, the causal bond graph of a system

can be converted into the bond graph of the inverse system from which equations

can be derived in the same manner as they are derived from the bond graph of

the system. In this transformation, the bond graph retains its structure and only

causalities change. If a pair of an input and an output variable is bound to one and the

same bond attached to a source, in other words, if both variables are collocated, then

the source is simply replaced by its dual and causalities in the graph are readjusted.

A source not only imposes an input onto a system, but at the same time, it is also

a sensor of the power conjugate variable. Because of this dual role, Gawthrop uses

a so-called source-sensor element instead of the usual effort and flow sources if a

bond graph is used in the solution of a control problem. In bond graphs, the source-

sensor element is denoted by the symbol SS [37]. If an input and an output variable

are not collocated, then this case can be reduced to the case of pairs of collocated

variables by taking into account the input into each source and by adding a source

for each output variable that is not connected with a source. This way, the number of

system outputs and sources is increased. If a source is added to the graph, it must not

have an influence on the model. Thus, additional sources must impose an input equal

to zero. After this preparation, causalities at source-sensor elements are reversed as

needed. This reversal of causalities can lead to a change from preferred integral to

derivative causality for some energy stores (cf. Figure 6.13). Consequently, even if

the model of the system is in state space form, generally, this does not hold for the

inverse system. Its equations can only be formulated in the more general descriptor

form.

Other control related questions may also be addressed by inspection of a causal

bond graph. Sueur and Dauphin-Tanguy have formulated conditions for structural
controllability and structural observability that can be easily directly applied to a

causal bond graph [24]. Andry and Rosenberg have given a simple test that allows

one to decide whether a system is not structurally controllable.

In Section 6.5, incremental bond graphs are introduced that can be used to de-

termine unnormalised parameter sensitivities. For linear time-invariant systems, pa-

rameter sensitivities can be derived in symbolic form. For nonlinear systems, the

incremental bond graph is linear time variant so that the equations for the sensitivi-

ties must be solved simultaneously together with the state equations of the system.

Furthermore, it is shown that incremental bond graphs can also be used to deduce

the canonical form of state equations used for robustness analysis. Regarding the

latter objective, Kam and Dauphin-Tanguy presented a different approach based on

uncertainty bond graphs. This approach has been briefly outlined. Although both

approaches serve different purposes and were independently developed, they are

equivalent.
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Finally, bond graph modelling can also serve model-based fault detection. In Sec-

tion 6.8, an approach has been presented that uses residual sinks for coupling a bond

graph model of the faultless system to a bond graph model of the real engineering

system subject to faults. An essential feature of this approach is that there is no need

to set up Analytical Redundancy Relations in symbolic form. Fault indicators are

computed numerically as components of a descriptor vector of a DAE system. Due

to tolerances in manufacturing processes or faulty parameter identification, param-

eter values may vary around nominal values. A natural question is how sensitive

numerically computed fault indicators are to parameter uncertainties and which of

them affect a residual of an ARR most significantly. In [9], a sensitivity pseudo bond

graph is coupled to the model of the faultless process and residuals and sensitivi-

ties of residuals with respect to a parameter are simultaneously computed. In [28],

Djeziri et. al. derive ARRs from an uncertainty bond graph of a system in which

elements are decomposed with regard to the standard interconnection form. As a

result, ARRs can be split into a nominal part and into an uncertain part that is the

subject of a sensitivity analysis.
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Chapter 7
Models of Variable Structure

As explained in the beginning of Chapter 2, bond graph modelling starts from the

intuitive idea that the dynamic behaviour of a system is determined by the energy

exchange between system components. If radiation through empty space is assumed

to be zero, then the energy exchange between system components is bound to real

technical devices, which in most cases connect components permanently. Such con-

nections may be, for example, mechanical shafts and joints, electrical wires, or hy-

draulic pipes or hoses. Since the energy exchange between components is repre-

sented by the edges of a bond graph, first of all, bond graphs are suited to represent

systems of time-invariant structure. Moreover, the fact that an exchange of energy is

bound to real physical links entails that it happens in conjunction with an exchange

of physical quantities, e.g. momentum, mass, or electrical charge. The rate at which

such physical quantities change is a continuous function of the location where the

change happens and of time. In other words, transitions between energetic modes al-

ways need a finite amount of time and do not happen instantaneously. Nevertheless,

given a macroscopic time scale, such an abstraction often is convenient and appro-

priate. For instance, when the piston in a hydraulic valve or in a cylinder hits a stop,

then an energy exchange takes place for a short period of time which, in general, is

not significant for the dynamic behaviour of the valve or the cylinder. In addition,

in this case, the energy exchange does not take place continuously, but repeatedly

during a very short time. Since the transformation of the kinetic energy of the piston

into heat during a negligible oscillation with the stop does not effect the dynamics

of the valve, it is acceptable to assume an abrupt stop of movement in which the

kinetic energy is instantaneously transformed into heat. That is, reaching a limit-

ing position, the piston’s velocity versus time curve discontinuously drops to zero.

Other similar well known examples are mechanical as well as electrical switches,

hydraulic check valves, electrical diodes and thyristors, mechanical clutches and

stick-slip effects between bodies. Such elements or phenomena entail changes of

the model structure. From a macroscopic time scale view, it is appropriate to con-

sider them as discrete time events and to describe them discontinuously. When two

bodies stick together for some time, they may be considered as a single body for that

time. As a result, the structure of the model and its order change. Similarly, open
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switches, reversed biased electrical diodes and hydraulic check valves partition an

electrical or a hydraulic network into subnetworks if it is assumed that in reverse

mode there is no current or volume flow. Since such elements mostly switch very

fast in comparison to the dynamics of the other system components, the abstraction

of an instantaneous discontinuous transition from one mode to another is justified. In

contrast, a physical system modelling approach strictly based on conservation laws

of physics would require a microscopic time scale view. In practice, this, however,

entails a number of disadvantages. Taking into account the dynamics of negligible

and parasitic effects may considerably and unnecessarily increase model complexity

and computational time without significant improvements in accuracy. Moreover, a

more detailed model usually introduces new parameters for which realistic values

may be difficult to obtain. Finally, numerical problems may emerge during the simu-

lation since a microscopic view accounts for transients that are orders of magnitude

faster compared to the overall system behaviour. Such models will result in a stiff

set of equations which are usually more difficult and problematic to solve. Clearly,

the general principle should also hold for bond graph based physical systems mod-

elling that a model should be as simple as possible and, with respect to its purpose,

as detailed as necessary. The question posed is how dynamic systems models in-

cluding some components described discontinuously can be represented in a bond

graph framework. This question has been the topic of numerous publications during

the last decade (see, for instance, [1, 4–6, 8, 11, 12, 18, 25, 29, 32]) and has resulted

in a number of dissertations [19, 28, 31] and the habilitation thesis of Buisson [9].

In the following sections, some approaches will be considered.

7.1 Bond Graph Models with Fixed Causalities

7.1.1 Extending Element Characteristics

If the displacement of a body is limited by a stop, as this is the case in some hydraulic

valves, then a straightforward modelling approach is to model the stop by means

of a spring damper pair. Thus, the contact between the body and the stop can be

represented by the simple bond graph depicted in Figure 7.1.

This bond graph can only be used as long as the body is in contact with the stop.

When the body is freely moving (think of the well known bouncing ball problem)

then there is no C and R element affecting the motion of the body. In other words,

there are two different bond graphs describing the two modes of such a system. If

we wish to have a single bond graph valid for both modes (free motion, or body

in contact with the stop), then this can be achieved by artificially extending the

characteristic of the C energy store such that the spring stiffness is equal to zero

as long as the body is not in contact with the stop. Similarly, the resistance, R, for

the contact has a non-zero value only if the body is in contact with the stop. For
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Fig. 7.1 Bond graph representing the contact between a rigid body and a stop

example, if the body is a spool valve that moves against a biased spring, then the

spring characteristic can be superimposed with the spring characteristic of the stop.

This way, a stop can be approximately modelled without the need for an exten-

sion of the bond graph methodology. If the original model describing the free body

is in state space form, then it remains in state space form if the stop is modelled

by extending the spring characteristics as shown in Figure 7.2. The advantage of

a single set of equations for both modes, however, comes with some considerable

disadvantages. Firstly, the bond graph does not reflect the change in model struc-

ture. The change between modes is hidden in the characteristics of some elements.

Moreover, this modelling approach is not really satisfying. If, in a spool valve, for
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Fig. 7.2 Superposition of the characteristics of a biased spring and a stop
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instance, the spool reaches a stop and is kept in that position for a while by the net

force acting on it, then it is appropriate to represent the valve for this time period

by a model that accounts only for the valves’ orifices. If the stop is taken into ac-

count by an extended spring characteristic, then the stiffness of the C energy store is

significantly increased when the stop is reached. By consequence, a high frequency

oscillation is introduced that is not relevant for the main dynamic behaviour of the

system. In order to assure that these oscillations die out quickly and in order to avoid

unrealistic bouncing of the body at the stop, the parameter value of the resistor must

be appropriately chosen. Modelling a stop by means of a spring damper pair follows

the above mentioned microscopic view and may lead to numerical stiff model equa-

tions. During the high frequency oscillation at the stop, the kinetic energy of the

body is converted into heat. Since these oscillations die out after a very short time, it

is reasonable to assume that it approaches zero, which means that the kinetic energy

of the body is instantaneously converted into heat. This modelling view, however,

cannot be expressed by means of conventional bond graphs. A possible approach is

presented in Section 7.3.

7.1.2 Switching Between System Modes by means of Modulation

If we want to keep the structure of the bond graph unchanged and if we want to

express both system modes (free motion and body in contact with stop) explicitly in

the bond graph, instead of accounting for them in the characteristics of the elements,

it is possible by means of a transformer with a modulus controlled by a Boolean

variable [5, 32]. In this approach one part of the bond graph represents the moving

body and the other one accounts for the stop. Both parts are structurally permanently

connected by the MTF (Figure 7.3). When the body is not in contact with the stop,

then this is merely expressed by a modulus value equal to zero.

1
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Fig. 7.3 Switching a mechanical stop on or off by means of a MTF
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Fig. 7.4 Bond graph of an electrical circuit with an MTF modelling an ideal switch (Strömberg,

Top and Söderman 1993)

The transformer modulated by a Boolean variable has been used by Ducreux,

Dauphin-Tanguy and Rombaut [18] for modelling resistive elements, e.g. electri-

cal diodes as non-ideal switches. The exponential characteristic is approximated by

a piecewise linear function and the Boolean transformer modulus enables one to

switch between a forward and a reverse biased mode . The MTF with Boolean mod-

ulus in Figure 7.3 can be viewed as an ideal switch that connects or disconnects

the two submodels. However, as Strömberg et al. have shown by means of the bond

graph of an electrical circuit reproduced in Figure 7.4 [32], MTFs require special

consideration if used for modelling ideal switches. If the switch is open (m = 0),
the current, f5, through the I energy store and thus the current, f6, into the parallel

connection of the capacitor and the resistor should be zero. From the bond graph,

however, only the condition f5 = f6 can be obtained. Strömberg et al. point out that

this problem is due to the fact that causalities of the MTF do not change with the

switch state.

In devices like electrical diodes and hydraulic check valves, the transition from

one mode into the other takes place very fast in comparison to the dynamic be-

haviour of the whole system. Hence, the assumption of an instantaneous discontin-

uous transition is appropriate. In the following section, a closer look will be taken

at the modelling of hydraulic check valves. Electrical diodes may be modelled in a

similar way. In hydraulic check valves, a biased spring of low stiffness forces a ball

of small mass to close a bore. If the hydraulic pressure at the valve’s entrance ex-

ceeds a set point, ps, determined by the biased spring, then the valve opens very fast

and the fluid flow through the open valve experiences a low resistance Ron. Since

the mass of the valve poppet and the stiffness of the spring are low, the dynamics

can be neglected. Hence, the valve can be modelled as a resistor with a nonlinear

flow characteristic. As for electrical diodes, the characteristic can be approximated

by a piecewise linear relation. Its slope changes at the threshold value ps. If the flow

characteristic is approximated by a piecewise linear curve as depicted in Figure 7.5,

then the resistor representing the valve can only accept conductance causality.

The piecewise linear characteristic implies a switching between switch states

‘closed’ and ‘open’. In the first mode, the valve completely blocks the volume flow.

In the mode ‘open’, there is a small ON-resistance Ron. A change of the switch

state happens if the pressure drop across the valve, |Δp|, exceeds or drops below the

set point ps. If the primary purpose of the bond graph model is not simulation but
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the controller design, Ducreux et al. propose to represent fast switching elements,

e.g. check valves not by a resistor with a piecewise linear characteristic, but to com-

bine a linear resistor with a transformer of Boolean modulus m controlled by the

effort difference across the element (Figure 7.6). For m = 0, the part of the linear

characteristic in the third quadrant is switched off.

The transformer with Boolean modulus explicitly expresses the switching. If the

absolute value of the pressure difference exceeds the set point, then its modulus is

set to one. The ON-resistance then determines the volume flow. If the absolute value

of the pressure difference is below the threshold, then the transformer modulus and

the flow between the two pressures p1 and p2 is equal to zero. In this model, the pres-

sure difference is the input. Since the pressure difference controls the transformer

modulus, we have a model with internal modulation (Definition 4.17). Independent

of the switch state, the output of the model is the flow through the element. Con-

sequently, if it is connected in series with an I energy store, the latter must have
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derivative causality. The linear R element takes into account that real fast switch-

ing elements dissipate free energy. The abstraction of ideal switches is discussed in

Sections 7.1.3, 7.1.4 and 7.2. Since the value of the ON-resistance, Ron, is small in

general, it may lead to small time constants in the linearised model equations. An

advantage of this switch model is that a bond graph can be constructed in the usual

way and that the structure of the bond graph and its causalities remain unchanged

for all switch states. This means that a unique set of model equations can be de-

rived from the bond graph that holds for all configurations of switch states. If, apart

from the fast switching elements, all other elements are linear and if transformers

and gyrators have a constant, time invariant modulus or ratio, then transfer functions

can be determined either from the time domain state equations or directly from the

bond graph. The coefficients of these transfer functions depend on the moduli of the

switches. This approach has been used by Ducreux et al. [18] and by J. Garcia [20]

for the modelling of commutation phenomena in power electronic circuits.

Of course, in Figure 7.6, the model of a switch can also take resistance causality.

If all switches in a circuit are represented according to Figure 7.6 and if conduc-

tance causality is assigned to all switch models, then causal conflicts at 0-junctions

may result as has been shown by Dauphin-Tanguy and Rombaut for the case of an

elementary commutation cell (Figure 7.7) being a basic building block of power

electronic converters [17]. Figure 7.8 displays a bond graph of the elementary com-

mutation cell in which conductance causality has been assigned to both switch mod-

els.

In order to avoid the causal conflict resulting at the 0-junction, Dauphin-Tanguy

and Rombaut suggest to add a C element (or R element) that has no physical mean-

ing. This is justified because if in the equations derived from the causally corrected

bond graph the currents into additional C elements are set to zero, then the modi-

fied equations can be interpreted as those of an equivalent circuit [17]. Motivated by

this observation which was confirmed by a number of examples, Dauphin-Tanguy

and Rombaut proposed to use the model in Figure 7.6 for all switches, to assign

unique static conductance causality to all switch models for all switch states and to

u1

u2

S1
i1

S2

i2

i

Fig. 7.7 Schematic of an elementary commutation cell (Dauhin-Tanguy and Rombaut, 1993)
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Fig. 7.8 Bond of the elementary commutation cell (Dauphin-Tanguy and Rombaut, 1993)

solve resulting causal conflict at 0-junctions by adding a resistor or a capacitor with

a parameter of small value that is suppressed in the mathematical model. That is,

the physical model is slightly modified and the derived mathematical model is to be

manipulated. The result is a unique valid mathematical model covering all switch

stages.

In her dissertation [20], Garcia also takes into account thermal effects in switch-

ing elements. R elements are replaced by RS elements. In an unconventional but

pragmatic way, the RS elements are the interface to pseudo bond graphs that model

heat conduction in semiconductors and in their housing or account for the radiation

of cooling devices. This way, the temperature effect on the electrical operating point

can be taken into account and the design of cooling devices can be improved.

In Figure 7.9, the pseudo bond graph accounting for the thermal behaviour is por-

trayed by means of thin lines. The right upper 0-junction represents the temperature

of the diode relative to the ambient temperature, while Q denotes the heat flow that

corresponds to the losses of electrical energy. The C element takes into account the

heat storage in the semiconductor. Heat conduction to the carrier on which the de-
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Fig. 7.9 Electro-thermal model of a diode (Garcia Gomez, 1997)

vice is mounted is not shown in Figure 7.9. In comparison to the model in Figure 7.6,

it can be seen that there is an additional effort source. Moreover, the ON-resistance

Ron is modulated. Both additional elements take into account that the threshold of

the forward voltage as well as the ON-resistance change with temperature.

7.1.3 Switched Power Junctions

To account for ideal, no power consuming switching in a unique bond graph with

fixed causalities, Umarikar and Umanand introduced so-called switched power junc-
tions (SPJs) [37]. The idea is to allow for more than one bond imposing an effort on

a 0-junction and more than one bond imposing a flow on a 1-junction. However, at

each time instant, only one of these bonds determines the causality passed on by the

junction so that there is no causal conflict. If there are n bonds that want to impose

efforts e1, . . . , en on a 0-junction then, at each time instant, one of these bonds can

be activated while deactivating the remaining n − 1 bonds by expressing the effort

imposed on that 0-junction, e0s
, as a weighted sum of all n efforts e1, . . . , en.

e0s
= b1 × e1 + . . . + bn × en (7.1)
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Fig. 7.10 Switched power junctions with two bonds that want to determine their causality

In Equation 7.1, the variables b1, . . . bn can take values either 0 or 1 and only one

of them can be equal one at a time. In this way, bonds impinging at a junction

can be switched on and off connecting model parts and disconnecting from others.

Figure 7.10 shows a 0- and 1-junction for the case that two bonds want to determine

their causality.

The switching of the junctions is indicated by an activated bond delivering the

signal that switches on one of bonds 1 and 2 while switching of the other. Let f0s

denote the flow at the bond determining the causality at a junction then the equations

of the switched 0-junction in Figure 7.10 are

e0s
= b × e1 + (1 − b) × e2 (7.2a)

f0s
= f4 − f3 . (7.2b)

A closer look at switched power junctions immediately reveals that they can be

reduced to an interconnection of standard bond graph junctions and boolean mod-

ulated transformers as they have been used in the previous section. Apparently, the

switched 0-junction in Figure 7.10 can be equivalently represented by the bond

graph in Figure 7.11. The equivalent representation of a switched 1-junction has the

same structure as in Figure 7.11. Only the 0- and the 1-junctions are interchanged

[22].

Example: The Bouncing Ball Problem

For illustration, the switched power junction approach is applied to the well known

bouncing ball problem. It is assumed that the ball is elastic and touches on a hard

surface that does not move. Clearly, there are two modes of operation. Either the

ball is moving in the air experiencing gravity force only, or it is in contact with the

ground experiencing elastic deformations. Figure 7.12 shows a bond graph model

with fixed causalities for both modes that makes use of two switched power junc-

tions.
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Fig. 7.11 Equivalent representation of the switched 0-junction in Figure 7.10 by standard bond

graph elements

In the bond graph of Figure 7.12, the two modes are taken into account by the

signal b. For b = 1, the bond labelled b is activated, while the bonds labelled b are

switched off. In this mode, the ball is in contact with the ground. The other mode

(ball in the air) is captured by the value b = 0. In this case, the bond labelled b is

switched off and the two bonds labelled b are activated. That is, although there are

two bonds for each of the two switched power junctions that want to determine its

causality, actually only one does at each point in time.

If the two switched junctions are replaced by standard junctions and modulated

transformers according to the equivalent representation of a switched 0-junction in

Figure 7.11, then the result is the bond graph displayed in Figure 7.13. As can be

clearly seen from the bond graph of Figure 7.13, due to boolean modulated trans-

formers, the force fb is either zero (ball in the air) or it is equal to the sum of

spring force and friction force (ball in contact with the ground). Also, due to the

boolean transformers, either the velocity vg − v or the velocity −Fs/r is input into

the right-hand side 1-junction. The latter velocity means that after a reflection from

the ground, the centre of gravity and the former contact point of the elastic ball still

move with different velocities.

For b = 1 (ball in contact with the ground), the bond graph in Figure 7.13 could

be reduced to the one shown in Figure 7.14. The other mode of operation may be

presented by the simplified bond graph shown in Figure 7.15.
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Fig. 7.12 Bond graph model of the bouncing ball problem with fixed causalities for both modes

using two switched power junctions

When the ball hits the ground ,it is deformed and energy is stored in the spring

representing its elasticity. When the downward motion of the ball’s centre of gravity

comes to a halt (v = 0), momentum reverses, the compressed spring starts to expand

and some of its stored energy is lost in the damper. The ball starts to release from the

ground when the normal force Fb (Figure 7.12) becomes zero. When the ball is in

the air again, only the gravity force acts on it. Immediately after the ball has released

from the ground, the spring fully expands and discharges its remaining energy into

the damper. That is, the ball regains its shape.

In conclusion, the generalisation of standard 0- and 1-junctions into switched

power junctions allows for including ideal no power consuming switching into a

compact bond graph representation with fixed causalities for all modes of operation.

Bonds that are relevant for a mode under consideration can be easily identified by

the boolean variable attached to them. Hence, a bond graph with switched junctions

can be read by disregarding parts of it. As has been indicated and illustrated by

means of a bond graph for the bouncing ball problem, switched power junctions can

be replaced by standard 0- and 1-junctions and boolean modulated transformers. In

some cases, the result may be a somewhat less compact bond graph.
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Fig. 7.13 Bond graph model of the bouncing ball problem with fixed causalities for both modes

using standard elements
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Fig. 7.14 Bond graph model of the bouncing ball in contact with the ground

7.1.4 Switching Off Degrees of Freedom by Sinks of Invariant
Causality

In [4], the author proposes another possibility of representing models using the

abstraction of instantaneous mode transitions by means of bond graphs of time-

invariant structure and time-invariant causality. As a result, a single set of equations

can be derived from the bond graph for all configurations of switch states. In this

approach, sinks of fixed causality are used in order to impose an effort or a flow at

the advent of a discrete event such that there is an instantaneous state transition and



318 7 Models of Variable Structure

Sf0 : �� 0

Se : 0

��
F0

��
Fb

1�� v
Im :

Se : mg

��

0 �� C : k

��

R : r

Fig. 7.15 Bond graph model of the bouncing ball moving in the air

the conditions of the new state are met. Using this approach, ideal switches can also

be modelled.

Switches in Electronic Circuits

For illustration of the approach, consider the well known example of two electrical

nodes in an integrated MOS circuit. Each of them has a capacitance to ground.

Both vertices belong to different sub-circuits and are connected by a pass-transistor

(Figure 7.16). The latter can be modelled as an ideal switch. Figure 7.17 shows the

bond graph for Figure 7.16.

The ideal switch has been modelled by a transformer with the Boolean modulus

b and a flow sink. If the switch is open, then the modulus and the current between

two sub-circuits are equal to zero. On the contrary, if the switch is closed (b = 1),
then the sink imposes a current, iS , such that the voltages u1 and u2 across the

�
i1

� �u1







	
i2

� �u2

C1 C2

Fig. 7.16 Ideal switch between two capacitors
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Fig. 7.17 Bond graph for Figure 7.16

capacitors are equal for all currents, i1 and i2, charging the capacitors. Thus, the

current, iS , is not constant. Since an ideal switch is assumed, the voltages across

the capacitors instantaneously jump from their present values to the new common

one when the switch is closed. As a result, the current of the sink exhibits a Dirac

pulse. The electrical energy that is lost at switching time is absorbed by the sink.

For simplicity, consider the special case that the capacitances are equal and that

the capacitors, first, are disconnected. Now, after charging one capacitor while the

other is empty, the switch is closed. Clearly, the charge must be conserved and just

distributes over two capacitors of equal capacitance. As a result, half of the electrical

energy is lost. A simple computation yields the current, iS , that must be imposed to

ensure equality of the voltages u1 and u2. If the currents charging the capacitors,

q̇1 = i1 − iS (7.3a)

q̇2 = i2 + iS , (7.3b)

are integrated with respect to time, then denoting the height of the pulse at time t0
by I0, the charges are

q+
1 − q−1 = −I0 × 1s (7.4a)

q+
2 − q−2 = I0 × 1s , (7.4b)

where

q+
i = lim

t→t0+
q(t) (7.5a)

q−i = lim
t→t0−

q(t) (i = 1, 2) . (7.5b)

The condition

u1 =
1
C1

q+
1 = u2 =

1
C2

q+
2 (7.6)

then yields the height, I0, of the switching pulse

I0 × 1s =
1

C1 + C2
[ C2q

−
1 − C1q

−
2 ] . (7.7)
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In self-switching elements, e.g. electrical diodes, such a pulse does not occur since

these devices switch when the effort or the flow vanishes.

With u̇1 = u̇2 and ui = qi/Ci (i = 1, 2), we obtain from Equations 7.3a and

7.3b for t > 0
iS =

1
C1 + C2

[ C2i1 − C1i2 ] . (7.8)

With this current of the sink, the derivatives of the voltages across the capacitors

read

u̇1 = u̇2

=
1

C1 + C2
[ i1 + i2 ] . (7.9)

The result corresponds to the fact that in the case of an ideal closed switch, both

capacitors can be combined into one. Since in this modelling approach assigned

causalities remain fixed independent of the switch states, this possible simplification

is not expressed in the bond graph. The latter rather suggests the independence of

both energy stores that does not exist any longer after the switch has been closed.

Their interdependence becomes evident only indirectly due to the fact that the sink

is modulated and imposes a current such that the voltages across the capacitors are

equal.

If there are several ideal switches in the model, then the conditions that determine

the currents to be imposed by the sinks may be dependent. As a result, a set of

equations must be solved. For illustration, let us extend the example by adding a

second switch in parallel to the capacitor, C1 (Figure 7.18). The bond graph of the

modified example circuit is shown in Figure 7.19. The switches can be controlled

independently by external signals originating from other parts of the overall circuit.

�
i1

� �u1

��
�

S2

	
i2

� �u2
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�

C2
�
�
���
�

S1

Fig. 7.18 Circuit with two ideal switches



7.1 Bond Graph Models with Fixed Causalities 321

	



�
�S1 ��i1

0

��
q̇1u1

C : C1

�� 1

��

MTF : 1/b2

��

iS2

	MSf

�� 0

��
q̇2u2

C : C2

�� i2

	



�
�S2

��

MTF : 1/b1

��

iS1

MSf 	

Fig. 7.19 Bond graph of the circuit with two ideal switches

Hence, in this case, two constraints can be formulated

b1 × u1 = 0 (7.10a)

b2 × ( u1 − u2 ) = 0 , (7.10b)

where bi = 0 (i = 1, 2) denotes that the ith switch is open, while bi = 1 indicates

that it is closed. For the two capacitors, the following two state equations are derived

from the bond graph

C1 u̇1 = i1 − b1 × iS1 − b2 × iS2 (7.11a)

C2 u̇2 = i2 + b2 × iS2 . (7.11b)

Differentiation of the constraints, Equation 7.10a and Equation 7.10b, and substitu-

tion into the state equations results in an algebraic system that for t > t0 determines

the currents iS1 , iS2 to be imposed by the sinks⎡⎢⎣ b2
1

C1

b1 × b2

C1
b1 × b2

C1

b2
2

C1
+

b2
2

C2

⎤⎥⎦[
IS1

IS2

]
=

⎡⎢⎣ b1

C1
i1

b2

C1
i1 − b2

C2
i2

⎤⎥⎦ . (7.12)

In the case b1 = 0, b2 = 1, i. e., switch S1 is open, while switch S2 is closed, the

above equations give the previously obtained result (Equation 7.8). If both switches

are closed, then both capacitors are short-circuited and the currents through the

switches are
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Fig. 7.20 Characteristic of an ideal diode

iS1 = i1 + i2 (7.13a)

iS2 = −i2 . (7.13b)

The set of equations determining the currents to be imposed by the sinks must be

solved whenever the state of one of the switches and hence the value of its Boolean

variable changes. Let us assume that the switches represent ideal diodes with the

characteristic given in Figure 7.20. Then, the value of the Boolean variable is equal

to one as long as the voltage drop across the diode vanishes and the current is still

positive. When the current becomes zero, the diode enters into the reverse mode and

the value of the Boolean variable becomes zero. This means that a coefficient in the

equations determining the currents of the sinks, has changed. Hence, the currents of

the sinks must be re-evaluated. Thus, there is a control mechanism associated with

each ideal switch that can be hardly expressed in a bond graph. The purpose of bond

graphs is to represent energy flows, not the logic of control algorithms. In a later

section, we will come back to this aspect. For the stepwise numerical integration

of the dynamic model equations, it is important to check after each integration step

whether an event has occurred. If this is the case, the time of the event must be

located and the algebraic output equations of the sinks must be solved again.

This example with ideal switches shows another aspect. The two C energy stores

in the bond graph both have integral causality. Even if there are no derivative causal-

ities or algebraic loops in the models of the subsystems, the resulting mathematical

model is in DAE form. This is because the currents of the sinks are multiplied by a

Boolean variable in the state equations and because for each sink there is an alge-

braic constraint of the form b × uS = 0 where b is a Boolean variable and uS the

voltage drop across the switch. By closing the switches, energy stores may become

dependent. Consequently, the differential index of the DAE system may change with

the structure of the model. If, for instance, each of the subsystems S1 and S2 is a

series connection of a voltage source and a resistance, then the bond graph of Fig-

ure 7.19 has the form shown in Figure 7.21. If the switch is open, then the two RC

low pass filters are connected only by ground and independently operate. That is,
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Fig. 7.21 Bond graph of two RC low pass filters connected by an ideal switch

there are two decoupled state equations for the capacitors and the differentiation

index of the set of equations is zero. If the switch is closed, however, then the ca-

pacitors become dependent and the set of equations for the voltage drops across the

capacitors and the current through the switch is of differential index 2.

⎡⎣C1 0 0
0 C2 0
0 0 0

⎤⎦ ·

⎡⎢⎣ u̇1

u̇2

d

dt
iS

⎤⎥⎦ +

⎡⎢⎢⎢⎣
1

R1
0 b

0
1

R2
−b

b −b 0

⎤⎥⎥⎥⎦ ·
⎡⎣u1

u2

iS

⎤⎦ =

⎡⎢⎢⎣
ue1

R1ue2

R2
0

⎤⎥⎥⎦ (7.14)

Switching Off Degrees of Freedom in Mechanical Systems

The approach of modelling instantaneous state transitions by means of modulated

transformers combined with a controlled sink imposing an effort or flow is not lim-

ited to ideal switches in models of electrical circuits. In mechanical systems, this

approach corresponds to the accounting of constraint forces by means of Lagrange

multipliers [24]. The sinks ensure that some degrees of freedom are switched off as

long as certain conditions hold. The sinks are switched off at the moment when the

system returns into the previous unconstrained state.

Example: The Bouncing Ball Problem

For illustration, let us come back to the well known bouncing ball problem consid-

ered in Section 7.1.1. Figure 7.22 shows the schematic and the corresponding bond

graph.

In the bond graph of Figure 7.22, the upper part models the freely moving rigid

ball, while the lower part represents the elastic upper layer of the floor. The variable

λ denotes the constraint force that ensures that the velocity of the ball is equal to the

one of the floor as long as the ball is in contact with the floor. In that case, the value

of the Boolean transformer modulus is equal to one and the following equations can
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Fig. 7.22 Schematic and bond graph of the bouncing ball problem

be derived from the bond graph.

v̇b =
1
m

[ mg − λ ] (7.15a)

Ḟsp = kw vw (7.15b)

v̇w =
1
M

[ λ − Fsp − Rw vw ] (7.15c)

0 = vb − vw (7.15d)

Differentiation of the velocity constraint yields for the constraint force

λ =
M

m + M
mg +

m

m + M
[ Fsp + Rw vb ] . (7.16)

If the mass of the upper layer of the floor tends to zero (M → 0), then the expression

for the constraint force reduces to the equivalent of the sum of spring force and

damping force. On the contrary, for M → ∞, the contraint force λ equals the

gravitational force mg.

Example: Stick-Slip Friction

The approach of using sinks of fixed causalities can also be used to model the well

known stick-slip effect in dry friction. To demonstrate this, let us consider two rigid

bodies. One of them moves against dry friction on the floor, while the second one is

moving against dry friction on top of the first one as depicted in Figure 7.23.



7.1 Bond Graph Models with Fixed Causalities 325

������������

� m1

� m2

	 F(t)

Fig. 7.23 Stick-slip friction between rigid bodies

The relation between the friction force Ff and the relative velocity between the

two bodies is often approximated by the sign function, which is not defined for

v = 0. The value of the friction force at v = 0 is determined by other elements of

the model and can exceed the slip friction value Fs at v �= 0 (Figure 7.24).

Sometimes the sign characteristic is approximated by the continuous arctan
function having a unique single valued inverse. The disadvantage of both functions

is that they do not properly take into account the sticking behaviour. Moreover, the

steep gradient of the arctan function at v = 0 approximating the signum character-

istic may cause numerical problems in the simulation.

The sticking behaviour can be captured by considering two bodies sticking to-

gether not as one single rigid body, but by assuming a constraint force λ between

them. The latter ensures that the relative velocity between them is equal to zero. This

constraint force is active as long as the absolute value of the net force is below the

breakaway value, FH , of the friction force (cf. Figure 7.24). This view is reflected

in the bond graph of Figure 7.25. In this bond graph, effort sinks account for stick

friction while the (nonlinear) resistors model slip friction. Both the sinks and the

resistors are controlled by the constraint forces λi (i = 1, 2). A pair of modulated

transformers with the Boolean moduli bi and bi = 1 − bi (i = 1, 2) enables one

�

�Ff

FH

−FH

Fs

−Fs

v

Fig. 7.24 Usual dry friction law
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Fig. 7.25 Single bond graph representation of the stick-slip friction problem

to switch between slipping and sticking mode. As in the previous example (Fig-

ure 7.21), the two energy stores have fixed integral causality, although there is only

one degree of freedom during stick condition.

From the bond graph in Figure 7.25, the following equations can be derived.

v10 = v1 − v0 (7.17a)

v12 = v1 − v2 (7.17b)

FR1 = R1(v10) (7.17c)

FR2 = R2(v12) (7.17d)

v̇1 =
1

m1
[ F (t) − b1 × FR1 − b1 × λ1 −

b2 × FR2 − b2 × λ2 ] (7.17e)
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v̇2 = [ b2 × FR2 + b2 × λ2 − Fsp ] (7.17f)

Ḟsp =
1
C

v2 (7.17g)

In these equations, the nonlinear function FR2 is given by the equation

FR2 =
{

Fs2 sign(v12) for |v12| > ε
Fs2 sign(λ2) for |v12| < ε

, (7.18)

where Fs2 denotes the value of the friction force for v12 �= 0 (cf. Equation 7.24)

(Approximations of real numbers in a computer are considered to be equal if the ab-

solute value of their difference drops below a tolerance ε). A similar equation holds

for the resistor R1. The values of the Boolean moduli bi (i = 1, 2) are determined by

a separate control logic associated with the bond graph. If the lower body is sticking,

then b1 = 1 and thus b1 = 0. Equally, b2 = 0 if the upper body is sticking. The four

possible combinations can be combined into the following velocity constraints

b1 × ( v1 − v0 ) = 0 (7.19a)

b2 × ( v1 − v2 ) = 0 . (7.19b)

These two algebraic equations must be added to the equations of motions of both

bodies. They determine the unknown constraint forces λ1 and λ2. The resulting

DAE system describing the motion of both bodies against dry friction is of differen-

tial index 2 (The approach corresponds with the modelling of the two sub-circuits

connected by an ideal switch, cf. Figure 7.19).

For example, consider the special case that the lower body is sliding on the floor,

(b1 = 0, b1 = 1), while the upper body is sticking on the lower one, (b2 = 1, b2 =
0), then the simplified DAE system

v̇1 =
1

m1
[ F (t) − FR1 − λ2 ] (7.20a)

v̇2 =
1

m2
[ λ2 − Fsp ] (7.20b)

Ḟsp =
1
C

v2 (7.20c)

0 = v1 − v2 (7.20d)

results. By differentiation of the velocity constraint, we obtain for the constraint

force λ2

λ2 =
m2

m1 + m2
[ F (t) − FR1 ] +

m1

m1 + m2
Fsp . (7.21)

If both bodies are sliding, (b1 = b2 = 0), then the mathematical model reduces to

two explicit ODEs.

Bond graph modelling of mechanical systems with inherent stick-slip friction has

been subject of several publications [16, 23, 26].
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Mechanical Systems with Multiple Rigid Bodies

The approach illustrated by means of the example of two bodies (Figure 7.23) can

be applied to a system of N rigid bodies, of which some are connected by springs,

while others stick together temporarily. Let vI be the vector of velocities of all

bodies, FC the vector of all spring forces, u the vector of all system inputs and λ
the vector of all Lagrange multipliers. Then, the system is described by the equations

of motions

Mv̇I = f1(vI ,FC ,u) + B1λ (7.22a)

ḞC = C−1 f2(vI ,FC ,u) + B2λ (7.22b)

and some additional velocity constraints

B̃vI = 0 . (7.23)

The velocity constraints are obtained from the bond graph by observing that the

inputs into the sinks representing the constraint forces are zero. Obviously, differen-

tiation of the velocity constraints yields a set of algebraic equations for the Lagrange

multipliers.

B̃M−1B1λ + B̃M−1f1(vI ,FC ,u) + ˙̃BvI = 0 (7.24)

Let x denote the vector of the displacements of all bodies and

f(x) = 0 (7.25)

the holonomic contraints. Then, the constraint forces Q can be written in the form

Q =
∂f
∂x

λ . (7.26)

That is,

B1 =
∂f
∂x

(7.27)

and (
∂f
∂x

)T

︸ ︷︷ ︸
B̃

ẋ = 0 . (7.28)

Algorithm Controlling the Change Between Stick and Slip Mode

When the relative velocity between two bodies is zero, an algorithm associated with

the bond graph checks whether a transition between the slip and the stick mode

has occurred. Since the relative velocity is not exactly zero in stepwise numerical

integration, the check must be performed when the values vn and vn+1 at two suc-



7.1 Bond Graph Models with Fixed Causalities 329

	



�
�begin

���
��     �����   

  vn �= 0

���
��     �����   

  |λ| < FH
���

��     �����   
  vnvn+1>0

locate

root t∗

b = 0

b = 1
locate root t∗

calculate λ

���
��     �����   

  |λ|>Fslip

b = 0

switch to

sliding

remain

sticking

switch to

sticking

keep

on

sliding

tn+1 = t∗ tn+1 = t∗

	



�
�end

�

� �

�

��

�

�

�

�

�

�

�

�

�

���	
�

no yes

no yes no yes

no yes

Fig. 7.26 Algorithm controlling a Boolean variable in the bond graph model of dry friction be-

tween a moving body and a non-moving surface

ceeding discrete times tn and tn+1 differ with respect to their sign. The algorithm is

given in Figure 7.26 for the simple case of a rigid body moving against dry friction

on a surface that does not move.

The algorithm in Figure 7.26 can be easily formulated in a simulation language,

e.g. ACSL [33]. The latter provides a so-called SCHEDULE statement that directs

the simulator to interrupt the computation of the dynamic behaviour when the con-

straint formulated in the SCHEDULE statement is met to locate the time t∗ of the

event and to execute the statements in the DISCRETE section associated with the

event. After this interruption, the simulator continues with the computation of the

dynamic behaviour. Figure 7.27 shows a fragment of the ACSL formulation of the

algorithm. In the DISCRETE sections, the transformer moduli are switched.
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...
DERIVATIVE

...
lambda = ...
...
v12 = v1 - v2
...
SCHEDULE slip2stick .XZ. v12
SCHEDULE stick2slip .XP. (ABS(lambda) - FH)

END ! of DERIVATIVE
!
DISCRETE slip2stick

IF ( ABS(lambda) .LE. Fslip2) b2 = 0
END ! of DISCRETE slip2stick
!
DISCRETE stick2slip

b2 = 1
END ! of DISCRETE stick2slip
...

Fig. 7.27 Fragment of the ACSL formulation of the algorithm controlling the switching between

slip and stick mode

Alternatively, the program DASSLRT, a version of the well known DAE solver

DASSL, can be used. It includes a root finder that can determine the discrete state

event. After modification of the equations, numerical integration of the DAE system

is restarted ([7], p. 135f).

For each pair of rigid bodies that can stick together, a separate algorithm control-

ling the corresponding Boolean transformer moduli must be formulated. Since more

than two bodies may be linked by dry friction, the algorithms may depend on each

other. If velocity constraints change, then the entries in the matrix B̃ (Equation 7.23)

change and the constraint forces must be re-evaluated.

Summary of Features

Finally, the features of the modelling approach discussed in this section may be

summarised as follows:

• A single bond graph of invariant structure and fixed causalities is developed that

holds for all configurations of switch states.

• Similar to the approach of Ducreux et al. [18], parts of the bond graph are ac-

tivated or switched off by changing the values of Boolean transformer moduli

according to the system mode. The bond graph does not directly show which

parts are latent, i. e., which parts do not experience any dynamic changes.

• Controlled sinks impose an effort or a flow. The value of their output meets the

conditions of the state after the transition, e.g., an electrical switch is closed or
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two bodies stick together. Constraints are reflected by the fact that the input into

the controlled sinks is zero. At switching time, the sinks take free energy out

of the system. However, they cannot be replaced by resistors since there is no

relation between the input and the output.

• Since the inputs into the controlled sinks vanish, the mathematical model derived

from the bond graph is a DAE system even if all energy stores show integral

causality. The Boolean transformer moduli accounting for state transitions and

the outputs of the sinks appear in the system equations. If all moduli are equal to

zero, the mathematical model is a set of ODEs. If some moduli are different from

zero, then the differentiation index of the DAE system is two (cf. Equation 7.12).

In this regard, fixed integral causalities at energy stores may be somewhat mis-

leading.

• The approach can be used to model ideal switches in electrical circuits, the tran-

sition between slip and stick mode, or the instantaneous conversion of kinetic

energy into heat at stops in mechanical systems. The controlled sinks correspond

to constraint forces in mechanical systems introduced by means of Lagrange

multipliers.

• The value of a Boolean transformer modulus and thus the instantaneous discon-

tinuous state transition is determined by an algorithm that is separately formu-

lated from the bond graph.

• If the conditions for a discontinuous state transition are met, the time of the event

must be determined, the output of the controlled sinks must be re-evaluated and

the integration must be re-initialised.

7.2 Variable Causality Bond Graphs

7.2.1 Ideal Switches as Another Basic Bond Graph Element

Strömberg et al. prefer a different approach to bond graph representation of models

that use the abstraction of instantaneous state transitions. Following usual electri-

cal circuit schematics, they extend the set of basic bond graph elements by an ideal

switch. They argue that switches like sources represent boundary conditions of a

system and propose the mnemonic symbol Sw ([32], p. 119). In contrast to the stan-

dard bond graph elements, a switch cannot be assigned a time-invariant causality.

If the switch is open, then it corresponds to a sink that imposes a vanishing flow. If

the switch is closed, the flow sink becomes a sink that provides a vanishing effort

(Figure 7.28). Before and after switching time, the energy flow is zero. At switching

time, however, an ideal switch takes free energy out of the system as explained in

Section 7.1.4). This aspect also suggests to represent an ideal switch by a sink in a

bond graph.

The change of causality at switch elements due to the change of its state entails a

change of causalities in parts of the bond graph. That is, a single assignment of fixed
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switch:

Sw ��

open switch:

Sf0 : ��
f ≡ 0

closed switch:

0 : Se ��
e ≡ 0

Fig. 7.28 Bond graph representation of ideal switches

causalities before the simulation is not sufficient. Adaption of causalities must rather

be performed throughout computation of the dynamic system behaviour whenever a

switch changes its state. As a result, if switches close, it may happen that some stor-

age ports must change from preferred integral causality to derivative causality. That

is, the dimension of the state vector is not constant, but can rather change, which may

lead to Dirac pulses if energy stores instantaneously become dependent [10]. If the

ideal switch is accepted as another basic bond graph element, then computational

causality is no longer a time invariant attribute of power ports. Consequently, the

previously considered bond graphs with time invariant causalities are to be replaced

by variable causality bond graphs that can represent models of variable structure.

Following this approach, the concept of computational causality loses some of its

virtue. In [15], p. 55, Cellier takes the following view.

It has been shown that the concept of causality, as propagated throughout the bond graph

literature, is an oversold concept that had its justification at a time when bond graphs were

drawn by hand onto sheets of paper to be translated manually into state-space models before

feeding them to an ODE solver. However, bond graph causality does not represent a physical

property, and its questionable use is limited to analysing fixed structure models. The concept

breaks down entirely when faced with variable structure models.

In order to keep the effect of a causality change at a switch port locally, Asher

[1] proposes the use of a switch element in conjunction with a so-called ‘causality

resistor’ which accounts for the causality change at the switch port such that the rest

of the bond graph is not affected (Figure 7.29).

In [1], Asher denotes the ideal switch by the symbol T and calls the accompany-

ing resistor, R, a ‘causality resistor’. Such a pair of an ideal switch and a resistor is

no longer a model of an ideal switch. In the case of an electrical diode, the causal-

0

Va

�� 1 �� 0

Vb
�
�
���

T






��

R

0

Va

�� 1 �� 0

Vb
�

�
���

T






��

R

Fig. 7.29 Ideal switch with accompanying ‘causality resistor’ (Asher 1993)



7.2 Variable Causality Bond Graphs 333

�a
��
�

��� �b

�a 


 �b

0 �� 1

��

R

�� 1

��

Sw

�� 0

Fig. 7.30 Bond graph representation of an electrical diode by means of a bond graph switch ele-

ment

ity resistor in Figure 7.29 can represent the ON-resistor (of small resistance). If the

ideal switch and the causality resistor are used in a parallel connection, the causality

resistor could represent the diode’s very high resistance in reverse mode. The pa-

rameter value of the causality resistor, in general, can be chosen freely within some

reasonable limits as long as it has no significant effect on the dynamic behaviour.

However, causality resistors can lead to fast transients, i.e., to stiff model equations.

As indicated in Figure 7.29, causalities in the rest of the bond graph, especially

integral causalities at storage ports, remain unaffected.

Diodes in electrical circuits can be modelled by a resistor representing the ON-

resistance and an ideal switch connected in series. If this series connection is rep-

resented in a bond graph by means of the newly introduced switch element (Figure

7.30), then the latter corresponds to a real device.

In bond graphs of mechanical systems, this correspondence between the switch

element and a real device is not always convincing. If, for instance, a body of mass

m is not in contact with a stop, then there is no link between the body and the stop.

Strömberg et al. talk about an ‘invisible component’ ( [32], p. 118). An electrical

diode is always a real connection between two nodes even if it is in reverse mode.

In Figure 7.31, the symbol Ψ besides the switch element denotes the switching

algorithm associated with this element. The latter can be represented by a simple

Petri net with two states and two state transitions as shown in Figure 7.32. In the

Petri net, x12 denotes the distance between the body and the stop (ẋ12 := v1 − v2).

Since the causality at the switch port depends on the switch state, causalities can-

not be completed in the bond graph of Figure 7.31. Depending on the switch state,

the switch can be represented either by a flow or an effort source. Thus, for each
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Fig. 7.31 Bond graph modelling of a mechanical stop using a switch element (Strömberg, Top,

Söderman 1993)

switch state, a causally complete bond graph can be given from which equations

can be derived that hold for this state (see Figure 7.33).

For n switches, there are 2n possible combinations of switch states and as many

system modes. In practice, however, not all are physically feasible. If during the

simulation we do not want to switch between different models of the same system

depending on switch state combinations, then a possible alternative is to characterise

the state of a switch by a variable that takes values either zero or one depending on

the switch state in order to assign causalities in a bond graph as far as possible and

to derive a DAE system in which switch variables bi, (i = 1, . . . n) occur. Let b = 1
characterise an open switch and let b := 1 − b, then the following equations can be

derived from the bond graph in Figure 7.34.

v12 = v1 − v2 (7.29a)

0 = b × F2 + b × v12 (7.29b)
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switch is

open
switch is

closed

�

�

x12 > 0

F2 < 0

Fig. 7.32 Control algorithm of the switch

0 = F2 − FR − Fsp (7.29c)

0 = FR − r v2 (7.29d)

v̇1 =
1
m

[ Fin − F2 ] (7.29e)

Ḟsp = k v2 . (7.29f)

If we reduce the algebraic equations to a set of equations for the unknowns F2 and

v2, the determinant of the latter is always different from zero independent of the

switch state. If the reduced set of algebraic systems is symbolically solved, then

there is the following unique solution for both switch states.

F2 =
b

−br + b
( r × v1 + Fsp ) (7.30a)

v2 =
1

−b r + b
( b × Fsp + b × v1 ) (7.30b)

This, however, is not always possible. In order to show this, consider the simple bond

graph in Figure 7.35. Firstly, we see that the I energy store cannot have preferred

integral causality since this would entail an invariant effort causality at the switch

element. Integral causality at the storage port is only possible when the switch is

closed. In that case, the switch can be represented by an effort source.

From the bond graph of Figure 7.35, the following equations are derived.

0 = b × us + b × i (7.31a)

ue = R i + uL + uS (7.31b)

uL = L
di

dt
(7.31c)
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switch is open:

switch is closed:
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Fig. 7.33 Bond graphs of the system depending on the switch state

Consider the current as a state variable and the voltages uL and uS as unknowns.

Then, the determinant of the set of two algebraic equations is equal to b. That is,

the determinant vanishes when the switch is open. Even in this case, it is possible

to come up with a single model that holds for both switch states by replacing the

current in the equation for the switch by the derivative of the current as shown

by Cellier in [15]. The problem, however, remains because this is not a generally

applicable approach.
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Fig. 7.34 Causally incomplete bond graph of the example in Figure 7.31
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Fig. 7.35 Bond graph of a series connection of a diode and an inductance

7.2.2 Controlled Junctions – Hybrid Bond Graphs

If variable causalities are accepted, then another approach to a bond graph represen-

tation of models of variable structure is not to use an ideal switch element, but to

link 0- and 1-junctions with a control algorithm. The latter defines under which con-

ditions a junction with all its adjacent bonds is switched off or is re-activated [28].

Mosterman and also other authors such as Biswas [3, 30] call such bond graphs

Hybrid Bond Graphs (HBGs).
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In a similar way, Thoma [35] used the concept of time dependent junctions al-

lowing for switching connections between power ports off and on in 1974. In [35]

(p. 107), he denotes such junctions by the symbol tdj.
Mosterman shares the author’s view that switches are not energy processing el-

ements. Therefore, it is not obvious to introduce a switch as another bond graph

element. Switches represent control rather than physical aspects ([28], p. 53). The

control algorithm linked with a controlled junction is represented separately from

the bond graph as a finite state machine (FSM). If a 1-junction is switched off, then

the flow vanishes at all adjacent bonds. Consequently, the energy flow disappears at

all bonds and a disconnection of energetic links between model parts occurs. Since

a 1-junction in a Kirchhoff junction structure is connected to a 0-junction, in gen-

eral, and since the latter does have more than two adjacent bonds, a 1-junction that

has been switched off can be viewed as removed from the bond graph. Moreover,

the flow causality of a 1-junction that has been switched off is not propagated be-

yond adjacent 0-junctions. Similar statements hold for 0-junctions. However, if a

controlled junction changes its switch state, then this can affect the causalities at

element ports via a causal path from the controlled junction. As a result, this mod-

elling approach also relies on variable causalities.

Hybrid Bond Graph for the Bouncing Ball Problem

Using a controlled 0-junction, the well known bouncing ball problem can be repre-

sented by a hybrid bond graph and an associated simple finite state graph as depicted

in Figure 7.36. In Figure 7.36, the R element accounts for friction in the air; the

subscript of the 0-junction identifies its associated finite state automaton. The latter

controls the junction’s behaviour. As the finite state automaton part of the models

shows, the controlled junctions turns on and connects the lower zero value flow

source when the ball touches the floor. That is, the ball velocity becomes zero and

the I element must take derivative causality. When the force Fb becomes negative,

the 0-junction turns off, disconnecting the source from the 1-junction. As a result,

the I element switches back to integral causality. The ball’s momentum reverses and

the ball goes up into the air.

According to the two states, OFF (ball in the air) and ON (ball in contact with the

floor), the two bond graphs shown in Figure 7.37 can be obtained from Figure 7.36.

When the ball is in the air, then the force Fb = 0 and the 0-junction is not active.

In this case, it can be replaced by an effort source (with two ports) that expresses

this boundary condition. The subscript besides the controlled 0-junction points to

the associated finite state machine. When the ball is in contact with the floor, then

the 0-junction is active. It forwards the zero velocity and the causality of the flow

source. As a result, the I energy store takes derivative causality. This switch state

remains activated until the force the ball imposes on the floor, changes its sign.
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Fig. 7.36 Hybrid bond graph with a controlled 0-junction representing the bouncing ball problem

(Mosterman, 1997)
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Fig. 7.37 Bond graphs for the two states OFF (no contact with the floor), ON (ball in contact with

the floor)
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Software for Hybrid Bond Graphs

The concept of junctions controlled by finite state machines and consequently the

approach of changing causalities and of re-initialisations of the model after switch-

ing at run-time has been implemented in the modelling and simulation software

HYBrSIM [27]. This software has been especially developed for the support of

hybrid systems and a continuous-discrete event bond graph modelling approach.

The graphical representation of bond graphs in HYBrSIM has been inspired by the

Java applet for bond graph modelling developed by R. Bajzát at the University of

Miskolc, Hungary [2].

In [3, 30], the authors present an implementation of the hybrid bond graph

paradigm that builds on block diagrams. In this approach, a hybrid bond graph

model is converted into a structurally adaptable block diagram constituting the com-

putational model. Initially and whenever a mode change happens due to the switch-

ing of controlled junctions, causality is assigned and re-assigned to the hybrid bond

graph such that each junction has got a strong causal determination. When a con-

trolled junction changes its state, the block diagram is modified and data flow paths

through the computational model are updated accordingly at run-time. All energy

storage elements of the hybrid bond graph are assumed to have integral causality.

They are implemented by means of standard Simulink® blocks as well as those ele-

ments with fixed causality while the switching of junction states and their implica-

tions on the computational structure are handled by S-functions [34] implementing

elements with variable causality (junctions, resistors, transformers and gyrators).

After a reassignment of causality to the hybrid bond graph, S-functions use the new

determining bonds at junctions to deliver their outputs accordingly, allowing signal

flows to be rerouted dynamically through a structurally static Simulink® model. The

advantage of this approach is that it seamlessly integrates with widely used (com-

mercial) simulation software.

7.3 A Combined Petri Net – Bond Graph Representation of
Variable Structure Models

The approaches to a bond graph representation of models of variable structure con-

sidered in the previous section are similar in the sense that instantaneous discontinu-

ous state transitions are modelled in the bond graph itself either by switch elements,

controlled junctions or by transformers modulated by a Boolean variable. The algo-

rithms controlling instantaneous state transitions are given separately from the bond

graph for each switch or controlled junction. Switching conditions are formulated

only for local variables. The advantage is that local control algorithms can be kept

easy and clear. Moreover, modular models can be developed for large systems.

One can argue that the approach of modelling instantaneous state transitions by

bond graph elements linked with a control algorithm contradicts the concept of bond

graph based physical systems modelling. If controlled junctions, for instance, are
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used, then the junction structure loses its fundamental characteristic of conserving

power. Moreover, by using local control algorithms, it is not clear which states and

which state transitions exist in a system. If in a system with several switches one of

them changes its state, it is not apparent from the associated control algorithm which

other switches are affected and what system state will result. Such considerations

lead to the following approach [6].

• Discrete system states and transitions between them are represented in a global

Petri net for the overall system.

• For each system mode captured in the Petri net, the dynamic system behaviour is

described by one or, if necessary, several disjunct bond graphs using only stan-

dard bond graph elements.

This view immediately gives rise to a number of remarks.

• A standard Petri net description of a system does not take into account whether

a state transition takes place continuously with time or instantaneously.

• The switching between states is not expressed in the bond graph at all. The virtue

of bond graphs is the description of continuous processes.

• There is not a single bond graph of a system, but a given number of them. Each

bond graph model only holds for the time between two discrete events, that is, as

long as the system is in a certain mode. In principle, for each mode, the structure

of the model can be different. Thus, variable structure systems can be modelled.

• The mathematical model is not one single DAE system for all combinations of

switch states in which Boolean moduli appear in some coefficients of the equa-

tions, but a set of initial value problems (IVPs).

• Finally, it is necessary to determine the time of an instantaneous state transition

before switching to another initial value problem.

Example: Two Bodies Moving Against Stick-Slip Friction

Before adding further considerations of this approach, first, it shall be illustrated

by applying it to the problem of two bodies moving against Coulomb friction (Fig-

ure 7.25) already considered in Section 7.1.4. In the following, however, the spring

attached to the upper body is removed so that the latter can fall down from the lower

body (Figure 7.38).

The first task in this modelling approach is to set up a global Petri net. To that end,

the system states listed in Table 7.1 can be identified. The lower body can either slip

or stick on the non-moving surface. Similarly, the upper body can slip or stick on the

lower one. Furthermore, it can fall down from the lower body. In that case, we will

assume that it starts falling down having a horizontal velocity component. Finally,

after falling down from the lower body, the upper body rests permanently on the

floor, while the lower body still can slide or stick. By considering what is physically

feasible under these conditions, we get the Petri net shown in Figure 7.39.

In this Petri net, an attribute cij annotated to a transition symbol ( � �) de-

notes the condition under which the transition fires. Some state transitions can only

take place in one direction, while others are reversible. For instance, if the body of
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� m1

� m2

	 F(t)

Fig. 7.38 Two rigid bodies moving against stick-slip friction

Table 7.1 Discrete system states

No. System state

1 : m1 sticking, m2 sticking

2 : m1 sliding, m2 sticking on m1
3 : m1 sliding, m2 sliding

4 : m1 sticking, m2 sliding

5 : m1 sticking, m2 falling

6 : m1 sliding, m2 falling

7 : m1 sliding, m2 resting on the floor

8 : m1 sticking, m2 resting on the floor

mass m2 is no longer in contact with the lower one, then clearly, only the lower

one can switch from sliding to sticking and vice versa. Hence, transitions, e.g., t36
from state 3 to state 6 are not reversible. On the other hand, if, for instance, both

bodies are sliding (state 3) and if the value of the external force F (t) drops below

the breakaway level FH10 of the Coulomb force between the lower body and the

floor, then the lower body will stick if its velocity is zero at that moment, whereas

the upper body can still continue sliding (state 4). Conversely, if the value of the

external force, F (t), again exceeds the value FH10, while the upper body is still

sliding, the system returns to its previous state (both bodies are sliding). Thus, two

opposite transitions t34 and t43 between system states 3 and 4 can happen. Condi-

tions cij can be formulated straightforward as Boolean expressions. Transition t34,

e.g., is governed by the condition c34

( v1 = 0 ) ∧ ( |F1| < FH10 ) ,

in which F1 is the net force acting on m1. Condition c43 for the reverse transition

t43 reads

|F1| > FH10 .

After having identified all discrete system states and having captured physically fea-

sible state transitions in a global Petri net, bond graph models have to be developed

for each system mode in the second phase of this modelling approach. The Figures

7.40, 7.41, and 7.42 show bond graphs for the system modes 2,3,4,5 and 6.

In contrast to the approach that uses controlled sinks with invariant causality

switching off and on degrees of freedom (Section 7.1.4), bond graphs obtained by
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Fig. 7.39 Petri net indicating system states and possible transitions between them

this approach can be simplified. This has been done for the bond graph correspond-

ing to system mode 2.

Since the bond graphs corresponding to the system modes represented in the

Petri net only use standard bond graph elements, they can be entered into a bond

graph processing program, e.g. CAMP-G [14], in order to automatically generate

the model equations in a simulation language, e.g. ACSL. For small models, they

may be derived even manually. For each system mode depicted in the Petri net, the

dynamic equations derived from the corresponding bond graph go into the DERIVA-

TIVE section of an ACSL model description. Computation of these models depend

on conditions. The switching between models is controlled by the conditions for

firing of the state transitions in the Petri net. These conditions are formulated in the

DERIVATIVE section and are used in SCHEDULE statements, allowing for the de-

termination of the time of a switching event. The proper initialisation of the model
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Fig. 7.40 Bond graphs holding for system modes 2 and 3
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��
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v2x

State 5: m1 sticking, m2 falling

Fig. 7.41 Bond graphs holding for system modes 4 and 5

to be used after the switching event is performed in a DISCRETE section linked

with a SCHEDULE statement via a name.

Clearly, the description of a variable structure model by means of a global Petri

net in combination with a certain number of bond graphs is not bound to the use of

a particular software program. A formulation in ACSL is just one option. Since the

mathematical model is not a single DAE system in which Boolean switching vari-

ables appear, but a set of initial value problems, DAE solvers with an incorporated

root finder, e.g. LSODAR [21] or DASSLRT ([7], p. 135) can be used as well. These

solvers determine the point in time at which switching happens and reset numerical

integration. For models with frequent discontinuities, the efficient implementation

of an implicit Runge-Kutta method, e.g. in the STRIDE code [13] may be an alter-
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Fig. 7.42 Bond graph holding for system mode 6: m1 sliding, m2 falling

native to the often used BDF method implemented, e.g. in DASSLRT. In contrast to

linear multi-step methods, Runga-Kutta methods can restart with high order after a

discontinuity has been located.

Pros and Cons of the Combined Petri Net - Bond Graph Approach

The graphical representation of models including discontinuous state changes pre-

sented in this section has the following advantages.

• Consideration of discrete system modes and transitions between them is clearly

separated from modelling the dynamic behaviour in a certain system mode.

Switching between system modes is not represented at bond graph level. There is

no need to extend the set of basic bond graph elements by an ideal switch element

or by controlled junctions.

• Systematic model development takes place in two steps. In each modelling phase,

a suitable standard graphical model representation formalism is used without any

modification. Each graphical formalism is supported by software.

• The Petri net to be developed does not represent local switch states, but physi-

cally feasible global system modes and transitions between them.

• Since bond graph models representing different system modes may differ with

regard to their structure, changes in the model structure can be taken into account

in this way.

• In contrast to variable causality bond graphs, there is no need for re-assigning

causalities after each discontinuous state transition. Since there is a finite number

of system modes, causalities can be assigned to each bond graph model corre-

sponding to a system mode once prior to simulation.
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These advantages are opposed by the disadvantage that the number of system

modes with the number of switches or discontinuities rapidly increases, making the

development of a global Petri net difficult and error-prone. This aspect is of impor-

tance because in the first modelling phase, the identification of physically feasible

system modes and of transitions between them is hardly supported by any software.

In general, the latter comes into play when an existing Petri net is to be entered by

means of a graphical editor. It is true that all 2n possible combinations of switch

states can be automatically determined, but those physically impossible cannot be

automatically disregarded. This is a general problem in the development of large dis-

crete event models. If system modes and discontinuous transitions between them are

implicitly taken into account by Boolean switching variables appearing in the dy-

namic system equations and by separate local control algorithms, then the modeller

does not have the problem of identifying all global system modes and all transitions

between them.

7.4 Conclusion

The topic of this chapter has been the question as to how the abstraction of instan-

taneous state transitions (useful from the point of view of a macroscopic time scale)

can be included in the framework of bond graph-based physical systems modelling.

Transitions from one energetic system mode to another are caused by the exchange

of energy between system components which takes place during a nonzero time pe-

riod. Therefore, bond graph modelling based on conservation laws from physics,

would require a microscopic time scale. The energy exchange is linked with the

exchange of physical quantities, e.g., mechanical momentum or electrical charge.

Their values as well as the value of power cannot change discontinuously. In re-

ality, switching pulses always have a nonzero width. Nevertheless, in practice, the

abstraction of discontinuous state transitions is indispensable.

Throughout the past decades, a number of solutions have been proposed in the

literature to include this abstraction in a bond graph framework. Some of them have

been discussed in this chapter. All of them have their advantages and disadvantages.

Some approaches appear to be more suitable than others with regard to specific

applications. As a result, in the author’s view, so far there still is no unique answer

to the question.

Three different approaches have been considered in this chapter.

• One option is to use a single bond graph with causalities invariant for all system

modes.

• Another possibility is to relax the concept of computational causalities and to

accept that causalities must be dynamically re-assigned after each discontinuous

state transition.

• The third approach uses Petri nets for representing system modes and transitions

between them and bond graphs for the description of the dynamic system be-

haviour in each system mode.
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Regarding the approaches using bond graphs with invariant causalities, one can

distinguish between those that explicitly model discontinuous state transitions by

means of transformers controlled by Boolean variables (Section 7.1.2) and those that

implicitly account for them by extending element characteristics (Section 7.1.1).

The latter approach is an option if only simple simulation programs are available. It

neither requires one to extend the set of basic bond graph elements nor to restart the

integration algorithm. This approach is of rather historic relevance.

Transformers controlled by Boolean variables have the advantage that discontin-

uous state transitions can be accounted for in bond graphs without introducing any

new bond graph elements. Bond graphs have static, time invariant causalities. Thus,

equations can be derived in the usual manner. Boolean switching variables appear in

the coefficients of the model equations. The model developer does not need to find

out which physical feasible system states and which transitions exist between them.

Ducreux et al. [18] combine the transformer controlled by a Boolean modulus with a

resistor to account for the ON-resistance of real switching elements, e.g., electrical

diodes, or hydraulic check valves. If the resistors accompanying the transformers

are linear (as all other elements in the bond graph), then transfer functions can be

derived from the bond graph for controller design purposes. If transformers con-

trolled by a Boolean modulus are combined with a controlled sink (Section 7.1.4),

then stick-slip effects or the impact of a body on a stop can be described as discon-

tinuous events. The sink activated by the modulus of the transformer imposes an

effort or a flow that meets the conditions of the mode immediately after the switch-

ing. In mechanical systems, these sinks can represent constraint forces introduced

by means of Lagrange multipliers. If they are active, they switch off degrees of

freedom as long as certain constraints are fulfilled.

The representation of ideal switches by transformers controlled by a Boolean

switch variable has the disadvantage that it is not evident from the bond graph which

of its parts are latent. To see this effect, the values of the switch variables must be

known. Their value is determined in control algorithms that are represented sepa-

rately from the bond graph, either in the form of a flow diagram [18], as a Petri net,

or a finite state machine. If controlled sinks are used for switching off degrees of

freedom, then energy stores keep integral causality even when they have become

dependent due to the switching (Causalities once assigned remain invariant). For

models with ideal switches, the differential index of the corresponding DAE system

is not constant because the Boolean switch variables appear in the coefficients of the

equations. In the example of Figure 7.21, the differential index of the corresponding

DAE system is zero if the switch is open and two when it is closed.

Extending the set of basic bond graph elements by an ideal switch implies that

causalities can no longer be invariant attributes of power ports. Whenever a switch

changes its state during simulation, causalities must be re-assigned. Moreover, state

variables must be re-initialised and the integration algorithm must be restarted. That

is, the use of an ideal switch poses significant demands on the simulation program

to be used. In electrical or hydraulic circuits, a switch as a bond graph element

directly corresponds with fast switching devices, e.g. diodes, or hydraulic check

valves. Even if these devices are open, they are a real link between components. In
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mechanical systems, it is not always appropriate to model structural changes by an

ideal switch. If a body is not in contact with a stop, then there is no link between the

body and the stop.

Acausal component models with switches can be composed to a hybrid model of

the entire system according to the system’s structure. In the course of the simulation,

parts of the bond graph decompose, while others are reconnected depending on

which switches open or close.

In [36], Top takes the view that reassignment of causalities and the derivation of

equations from the bond graph after a change of switch states can be performed au-

tomatically during simulation. This would mean that the model developer does not

need to identify all physically feasible combinations of switch states and to develop

a bond graph model for each combination of switch states. On the other hand, the

interruption of the simulation, the reformulation, the compilation and the initiali-

sation of new model equations cause a significant increase in the simulation time.

Reformulation of equations and re-compilation can be avoided if the software imple-

mentation of an element or a submodel accounts for all possible causality patterns at

its ports. As switching may entail a change from integral to derivative causality at an

energy storage port and because numerical differentiation is unwanted, this means

that the mathematical model must be formulated as a DAE system in any case.

Clearly, the more switches exist in a model, the more significant the increase in

simulation time due to dynamic adaption of the model will be.

Instead of the ideal switch element introduced by Strömberg, Top and Söderman

[32], Mosterman [28] uses controlled junctions. At the advent of an event specified

by the control algorithm of a junction, all of its adjacent bonds are switched off. As

a result, submodels are disconnected. That is, there is no energy flow and no prop-

agation of causality information. In contrast, transformers modulated by a Boolean

switch variable even propagate a causality when the modulus is zero. The use of

controlled junctions has the disadvantage that the junction structure of a bond graph

no longer complies with the principle of power conservation.

Furthermore, Umarikar and Umanand introduced switched power junctions that

have been considered in Section 7.1.3.

Finally, Borutzky, Broenink and Wijbrans proposed in [6] to separate the consid-

eration of discrete system states and transitions between them on the one hand and

the modelling of the dynamic behaviour in a system mode on the other hand, and

to use different standard graphical model representation formalisms without mod-

ifications for both tasks. Consequently, for each formalism, available software can

be used. The consideration of a system performing in one system mode can lead to

a simpler bond graph because system parts may be latent. For instance, two bodies

sticking together temporarily may be combined into one body. Since bond graphs for

different system modes may be different, variable structure models can be described

this way. On the other hand, since the number of system modes and transitions be-

tween them rapidly increases with the number of switches, this approach is more

suited for models with a small number of switches, in practice.
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Chapter 8
Multibody Systems

In Chapter 2, the fundamentals of bond graph based physical modelling have been

provided. In the subsequent chapters, several aspects of bond graph modelling have

been discussed in detail. In this chapter, we will consider an extension of the bond

graph methodology that naturally follows from a formal introduction of the bond

graph concept. Since this extension known as multibond graphs, is especially suited

for modelling the three-dimensional (3D) motion of multibody systems (MBS)in

mechanics, its presentation has been postponed to this chapter.

8.1 Brief Survey of Bond Graph Modelling of Multibody Systems

Clearly, modelling of the 3D motion of multibody systems is essential in robotics

as well as for the analysis of vehicle dynamics in the automobile industry. There are

numerous bond graph related publications in each of the two fields. As a comprehen-

sive survey cannot be given in this section, some early pioneering research as well

as some more recent work is referenced. As to bond graph modelling of robots with

bodies assumed to be rigid, early research work has been carried out by Tiernego

and Bos [54]. In 1992, Zeid and Chung reported the development of a library of

bond graph models for three-dimensional joints [60]. Favre and Scavarda consid-

ered bond graph modelling of multibody systems with kinematic loops [16, 17].

Furthermore, several authors allowed parts of a robot to be flexible [31, 39, 58].

In bond graph modelling of vehicle dynamics, early publications are due to Bos

[3] and Falco and Riviezzo [11] (modelling of a motorcycle), Pacejka and his co-

authors [12, 47, 48] (tyre models, dynamics of heavy trucks), Hrovat [20] (automo-

tive power trains) and Karnopp [25]. More recent work can be found, e.g., in [33–

35, 40, 42, 52]. Moreover, as the increasing number of cars with petrol-operated

engines cause increasing problems with regard to petrol consumption and pollu-

tion of the environment, there is an ongoing research for alternatives. Accordingly,

electric vehicles have been the subject of bond graph modelling [15, 26].

353
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In addition to industrial robots and vehicles, the human body [38], mobile robots

such as walking robots [29, 41], or autonomous underwater vehicles [51] and space

robots [49, 50] have also been modelled by bond graphs.

In the following, multibond graphs are introduced. On this basis, the multibond

graph approach to bond graph modelling of multibody systems as introduced by Bos

[3] is presented. The advantage of this clear and systematic approach is that models

of a freely moving rigid body and various types of joints can be assembled accord-

ing to the structure of the multibody system under consideration. Alternatively, it

is shown how bond graph modelling can be used for the joint coordinate method,

popular in modelling multibody systems in order to come up with a reduced set of

equations of motions.

8.2 Multibond Graphs

In the introduction to bond graph modelling, bonds have been combined into so-

called multibonds in order to simplify the general structure of all bond graphs

(Figure 2.8). Moreover, it has already been observed that the vertices of a bond

graph may have several power ports. In that case, they are called multiports (Defi-

nition 2.4). Examples of multiports already mentioned are 1- and 0-junctions. The

fact that the other basic bond graph elements may also have several power ports and

that these ports may be connected by multibonds goes back to an idea of Paynter. To

the author’s knowledge, such a bond graph representation was first used by Bonder-

son [2] for one-dimensional models of distributed parameter systems. He called it a

vector bond graph. Vector bond graphs were taken up by Breedveld and integrated

into a formal concept [6]. In order to avoid the association with oriented physical

quantities, he replaced the term vector bonds by the notion of multibonds. Bos [3]

and Tiernego [54] have used the multibond graph concept developed by Breedveld

to describe the 3D motion of complex systems with rigid bodies in a clear and com-

pact form. A more recent presentation of multibond graph modelling of multibody

systems can be found in [10], Chapter 4.

Multibond graphs have also been used in other application areas (e.g. for thermo-

dynamic systems) [4, 21, 53]. However, the representation of multibond graphs is

not completely uniform in the literature and this compact bond graph representation

is not equally appreciated by authors. Some critical remarks may be found in [14].

We will follow the definitions of the multibond graph language as given by Breed-

veld and will consider some of its features used in practice. In [6], Breedveld also

introduced some less commonly used notions, e.g. fields of multibonds.
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8.2.1 Multibonds and Arrays of Bond Graph Elements

If we consider the bond graphs of Figures. 5.2 and 5.3 in Section 5.2 that were de-

veloped to represent the motion of a mathematical pendulum in a plane, we see that

the velocity of the point mass has been described with respect to a fixed Cartesian

reference frame and that both components of the velocity in the x- and y-directions

have been represented by a 1-junction. In modelling the 3D motion of a body, we

have to account for a third velocity component.

A more compact representation is achieved by combining the 1-junctions into an

array of 1-junctions (Figure 8.2) and adjacent bonds into multibonds (Figure 8.1).

To express that the symbol ‘1’ represents an array of 1-junctions, it is given an

underscore. If required, the dimension of the array can be indicated by an index

attached to the right side of the underscore. The number of bonds combined into a

multibond is shown between the two parallel lines of the multibond. Thus, another

attribute of multibonds in addition to the reference direction of the energy flow is its

dimension. Single bonds can therefore be treated as a one-dimensional multibond.

The dimension of multibonds is usually omitted because it is implicitly known from

the context. For instance, edges in multibond graphs that model the 3D motion of

multibody systems in mechanics usually have dimension three.

��
... n

��

≡ �
�
�

n

Fig. 8.1 Combination of n single bonds into a multibond of dimension n

�� 1 ��

��

... n

�� 1 ��

��

�
�
�

n 1n �
�
�

n

��
�

n

Fig. 8.2 Array of 1-junctions
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�� X

... n

�� X

�
�
�

n Xn

Fig. 8.3 Array of passive 1-port elements of the same type

�� S

... n

�� S

�
�
�

n Sn

Fig. 8.4 Array of 1-port sources of the same type

Similarly, 0-junctions can be combined into arrays and any set of 1-port elements

of the same type (dissipators, energy stores, or sources) can be grouped into a mul-

tiport element as depicted in Figure 8.3 where the symbol ‘X’ stands for a passive

1-port element (R, C, I). Figure 8.4 shows an array of 1-port sources of the same

type, where the general symbol ‘S’ indicates either an Se or Sf source.

Finally, we note that signal arrows (activated bonds (Definition 3.3) usually used

for modulating elements can also be combined (Figure 8.5).

8.2.2 Multiport Energy Storage Elements

The combination of elements of the same type, as described in the previous section,

does not link variables at different bonds. That is, only the jth effort and the jth

flow out of the power variables of a multibond are related by a constitutive equa-

tion of a passive power port. Clearly, if independent sources are combined into an

�

.

.

. n

�

≡ n ��
��

Fig. 8.5 Combination of signal arrows
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�� C �� �� C

Fig. 8.6 C energy store with two power ports and its representation in a multibond graph

array of sources, then no relation exists between them. On the other hand, consti-

tutive equations for devices from different areas, e.g., a lump of a beam assumed

to be massless, a piezo crystal also assumed to be massless, mutually interacting

coils, or a gas filled cylinder, indicate the need to introduce energy stores with sev-

eral power ports where the port variables are related by the stored energy. In bond

graphs with one-dimensional bonds, as many bonds as needed are simply attached

to the storage element. In multibond graphs, all adjacent bonds are combined into

a multibond. If a multibond of dimension n is connected to a power port, we say

that the port has the dimension n. Elements with multibond ports will be depicted

in this chapter by a bold symbol in order to distinguish them from those with ports

for one-dimensional bonds (Figure 8.6). In the bond graph literature, the historical

term field is sometimes used for multiport elements.

If all efforts of a multibond attached to a C energy store are grouped into a vector

e and correspondingly all flows into a vector f , then the amount of power P into the

multiport energy store can be expressed as

P = eT · f , (8.1)

where the superscript T denotes the transposition of the vector. Clearly, from its

equivalence to a 1-port C energy store, a C element with n ports for one-dimensional

bonds is characterised by n functions that establish relations between a single ef-

fort and all generalised displacements. Any combination of integral and derivative

causalities may occur at its power ports. This case cannot be expressed if a single

multibond is used. Instead, the multibond must be split into two multibonds of dif-

ferent dimension and with different causality assigned. In the case when all ports

have derivative causality, the constitutive equation of the C energy store takes the

form

q = ΦC(e) , (8.2)

where q denotes the vector of generalised displacements (cf. Equation 2.35). If E
denotes the energy stored in the multiport C element, then it is a function of the

generalised displacement, as in the case of a 1-port C store.

E = E0 + fE(q) , (8.3)

where E0 denotes the energy stored at initial time t0. The effort at each power port

i is obtained by differentiation of the state function (Equation 8.3) with respect to

time.

ei =
∂E

∂qi
(8.4)
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(i = 1, . . . , n). Since an energy store is energy conservative, it can be shown that

the constitutive equations of a C energy store with n one-dimensional power ports

must comply with Maxwell’s reciprocity condition

∂ei

∂qj
=

∂ej

∂qi
, (8.5)

(i �= j i, j = 1, . . . , n). For a linear constitutive relation, Maxwell’s reciprocity

condition means that the function ΦC in Equation 8.2 must be specified by a sym-
metric matrix.

e = C−1 q (8.6)

In mechanical engineering, the matrix C−1 is known as a stiffness matrix.

Similarly, an I energy store with n power ports (the dual counterpart to the mul-

tiport C store) is characterised by n constitutive equations that relate the flow at port

i (i = 1, . . . , n) to all generalised momenta. Clearly, some ports of a multiport I en-

ergy store can have integral causality while the others have derivative causality. If

all power ports are assigned derivative causality, the constitutive equation is of the

form

p = ΦI(f) , (8.7)

where p denotes the vector of generalised momenta. Again, from the principle of

energy conservation, Maxwell’s reciprocity condition results in the form

∂fi

∂pj
=

∂fj

∂pi
, (8.8)

(i �= j i, j = 1, . . . , n). In mechanics, for example, the linear case of Equation 8.7

gives the relation between angular momentum p and angular velocity Ω

p = I · Ω , (8.9)

where the inertia matrix I is only a diagonal matrix if the axes of the reference frame

are parallel to the principle axes of inertia of a body. In that case, the components of

p are decoupled.

8.2.3 Multiport Transformers and Gyrators

The 2-port transformers and gyrators introduced in Section 2.5.2 can also be ex-

tended into multiport elements. If the adjacent bonds of a transformer with 2n ports

are grouped into two multibonds with a reference direction corresponding to the

energy flow through the element, then the scalar modulus of a 2-port transformer

becomes a n × n matrix T [
e1

f2

]
=

[
0 TT

T 0

] [
f1
e2

]
. (8.10)
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Fig. 8.7 Representation of a multiport transformer
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Fig. 8.8 Representation of a multiport gyrator

Figure 8.7 shows the representation of a multiport transformer with two adjacent

multibonds. Multiport transformers can be used to represent transformations be-

tween reference frames that frequently occur in the modelling of the planar or 3D

motion of mechanical systems [23]. Such multiport transformers can be decom-

posed in a bond graph with one-dimensional bonds that uses 2-port transformers as

well as 1- and 0-junctions as has been shown in Section 5.2 for the transformation

between Cartesian and polar coordinate systems.

Similarly to Equation 8.10, a multiport gyrator is characterised by the equation[
e1

e2

]
=

[
0 GT

G 0

] [
f1
f2

]
, (8.11)

where the matrix G denotes the ratio of the multiport gyrator. If all the one-

dimensional bonds of a multiport transformer (or a multiport gyrator) are combined

into one single multibond with an inward orientation for the reference direction of

the energy flow (Figure 8.8), then the matrix in the constitutive equation of both ele-

ments must be skew-symmetric because both elements must be power conservative.

8.2.4 Rotation of a Rigid Body in Space Described by a Multiport
Gyrator

A well known application of a modulated gyrator described by Karnopp [24] is

the rotation of a rigid body in space according to Euler’s equation. In mechanics,

the rotation of a rigid body with respect to an axis through its centre is usually

described by a body fixed reference frame (x, y, z), while the translational motion
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of the centre of gravity is described with respect to a reference frame (X,Y, Z) fixed

in space. Let

Ω′ be the absolute angular velocity of the body, p′ the angular momentum and

M′ be the moment acting on the body be described in coordinates of the body

fixed moving reference frame. Then, the rotation of the body is described by Euler’s

equation

M′ =
dp′

dt′
+ Ω′ × p′ , (8.12)

where d/dt′ denotes the time derivative in the body fixed frame. The cross product

Ω′ × p′ in Equation 8.12 accounts for the fact that the reference frame is moving.

If the axes of the body fixed coordinate system are parallel to the body’s principle

axes of inertia, then the equation for the angular momentum is of the form⎡⎣p′x
p′y
p′z

⎤⎦ =

⎡⎣J ′
x 0 0
0 J ′

y 0
0 0 J ′

z

⎤⎦
︸ ︷︷ ︸

=: J′

⎡⎣Ω′
x

Ω′
y

Ω′
z

⎤⎦ (8.13)

where the principle momenta of inertia are constant. If the Eulerian equations are

written for each component of the angular moment, then, as has been shown by

Karnopp and Rosenberg [27], they can be elegantly represented as a ring of modu-

lated gyrators (Figure 8.9), which has been called the Eulerian Junction Structure
(EJS).

If Ω̃′ denotes the skew symmetric matrix

Ω̃′ := −
⎡⎣ 0 Ω′

z −Ω′
y

−Ω′
z 0 Ω′

x

Ω′
y −Ω′

x 0

⎤⎦
︸ ︷︷ ︸

=: X(Ω)

, (8.14)

generated by the vector Ω′ = [Ω′
x Ω′

y Ω′
z]

T , then the cross product Ω′ × p′ of

angular velocity Ω′ and angular momentum p′ can be written in the form

Ω′ × p′ = (Ω̃′J′) · Ω′ = −(̃JΩ) · Ω = X(JΩ) · Ω , (8.15)

where Ω̃′ denotes the matrix in Equation 8.14 and J′ the inertia matrix in Equa-

tion 8.13. That is, in extended form, the external product Ω′ × p′ reads

Ω′ × p′ = X(JΩ) · Ω

=

⎡⎣ 0 J ′
zΩ

′
z −J ′

yΩ′
y

−J ′
zΩ

′
z 0 J ′

xΩ′
x

J ′
yΩ′

y −J ′
xΩ′

x 0

⎤⎦ ·
⎡⎣Ω′

x

Ω′
y

Ω′
z

⎤⎦
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Fig. 8.9 Eulerian Junction Structure, EJS, of a rotating body (Karnopp and Rosenberg 1968)

=

⎡⎣ −(J ′
y − J ′

z)Ω
′yΩ′

z

(J ′x − J ′
y)Ω′

xΩ′
z + (J ′

y − J ′
z)Ω

′
xΩ′

z

−(J ′
x − J ′

y)Ω′
xΩ′

y

⎤⎦ . (8.16)

Equation 8.16 gives rise to another bond graph representation of Euler’s equation

displayed in Figure 8.10. This representation without bond loops has been found by

Breedveld. In [7], he shows that it has some advantages over the well known and fre-

quently used Eulerian junction structure. Clearly, if there are any body symmetries,

they immediately affect the bond graph as the moduli of the modulated gyrators in-

clude a difference of moments of inertia. Moreover, a closer look at the signal loops

indicate that rotation around the smallest and the largest axis is stable, while it is

not around the middle axis. This is not reflected by the common Eulerian junction

structure because of its symmetry.

Furthermore, Equation 8.15 means that we can represent Euler’s equation in a

compact way by a multibond graph in which an I field and a modulated multiport

gyrator with the matrix EJS := Ω̃′J′ are attached to an array of 1-junctions (Fig-

ure 8.11).

The modulated multiport gyrator arises because the rotation of the body is de-

scribed with respect to the moving reference frame (x, y, z) and not to a fixed iner-

tial frame (X,Y, Z). Thus, it can be viewed as the result of a change of the reference

frame. Let Ω denote the angular velocity with respect to an inertial frame and Ω′

the angular velocity expressed in coordinates of the moving reference frame, then
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Fig. 8.10 Bond graph representation of Euler’s equation according to Breedveld (1999)
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Fig. 8.11 Multibond graph representation of Euler’s equation of motion

the transformation

Ω = AT Ω′ (8.17)

can be represented by a modulated multiport transformer with the matrix A. Clearly,

since the body fixed coordinate system moves, the coefficients of the matrix A de-

pend on the momentary position of the body in space. Since a transformation be-

tween velocities is power conservative, the torque on the body with respect to the

moving frame and the torque with respect to the inertial system are related by the

equation

M′ = AT M . (8.18)

This transformation and the torque equation

M =
d

dt
(JΩ ) (8.19)

are expressed in the multibond graph of Figure 8.12, where quantities without prime

refer to the inertial system.

If the rotation is described with respect to the body fixed moving reference frame,

then the inertia must be ‘transformed’ over the modulated transformer. From the

simple bond graph of a slider crank mechanism (Figure 4.30), we know that the

transformed inertia is accompanied by a so-called gyristor. Allen [1] chose this no-

tation because the element can be decomposed into a gyrator and into a resistor. If
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Fig. 8.12 Transformation of the angular velocity

the matrix of the multiport transformer represents a transformation between coordi-

nate systems, then the resistor vanishes. In order to see this, we rewrite the relation

between the moments, Equation 8.18, in several steps.

M′ = AT ( J̇Ω + JΩ̇ ) (8.20)

= AT J̇AΩ′ + AT J
d

dt
(AΩ′ ) (8.21)

= (AT d

dt
(JA ) )Ω′ + (AT JA ) Ω̇′ (8.22)

The first term in this sum establishes a relation between an effort and a flow and

describes the gyristor element. The second term represents the inertia with respect to

the moving coordinate system. Now, if A is the matrix of a transformation between

reference frames, then

AT = A−1 (8.23)

and

Ȧ = A Ω̃′ . (8.24)

By using both properties, reformulation of the first term in Equation 8.22 yields,

after a number of steps, the expression ( Ω′J′ ) Ω because Ω̃′Ω′ = 0. In this ex-

pression, J′ is the inertia matrix of the body with respect to the moving reference

frame (J′ = AT JA). Thus, the gyristor reduces to a modulated gyrator.

M′ = J′Ω̇′ + ( Ω̃′J′ ) Ω′ (8.25)

Again, this is Euler’s equation represented by the multibond graph in Figure 8.11.

By looking at the multibond graph of Figure 8.12, we see that the result is indeed a

transformation of the inertia over the modulated transformer for which the gyristor

accompanying the inertia reduces to a modulated gyrator (Figure 8.13).
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Fig. 8.13 Transformation of an inertia over the MTF of a coordinate transformation

8.2.5 Multiport Resistors

Clearly, resistors can also have several power ports. Nonlinear devices, e.g. bipo-

lar transistors, are often described as resistors with several ports if the modelling

context permits a static model. On the other hand, 1-port resistors connected by a

part of the junction structure may be replaced by a multiport resistor if, for instance,

algebraic loops occur in a part of the bond graph. Karnopp and Rosenberg call such

multiport resistors with an internal structure implicit fields [28].

A multiport resistor is characterised by algebraic relations between its effort and

flow variables. Depending on the elements, an R field connected to all of its ports

may have resistance or conductance causality, or some ports may have resistance

causality while the rest have conductance causality. If one of the constitutive re-

lationships is not invertible, then the determination of the causality at that port is

independent of the power port it is connected to.

There is no condition similar to Maxwell’s reciprocity for stores that the algebraic

equations of a multiport resistor must comply with. What can be said is that if a

multiport resistor is an implicit field in which linear 1-port resistors are connected

via 0- and 1-junctions and transformers, then the matrix in the constitutive vector

equation is symmetric in general if the equations of all 1-port resistors are written

in resistance or in conductance causality. In the literature, this is sometimes called

Onsager’s reciprocity.

Furthermore, because the element is dissipative, the matrix of a linear multiport

resistor must be positive definite. Let us assume that all equations can be written

in resistance causality. If all efforts are grouped into a vector e and all flows into

a vector f , then the amount of power, P , into the element can be written as P =
eT f = fT e. The constitutive equation e = Rf yields

P = fT Rf > 0 (8.26)

for all f �= 0. That is, the matrix R is positive definite. Note that it is not always

possible to write the constitutive equations of a linear multiport resistor in Onsager’s

form. Karnopp and Rosenberg ([28] p. 262) give a counter example. However, each

matrix can be split into a symmetric and an antisymmetric part where the latter

does not contribute to the matrix being positive definite. For a multiport resistor in
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Fig. 8.14 Generalisation of the RS element into a RS field

resistance causality, the matrix R can be written in the form

R = Rs + Ra , (8.27)

where Rs = (R + RT )/2, Ra = (R − RT )/2 and

fT Raf = 0 . (8.28)

The matrix Rs describes the irreversible dissipation of free energy. In the case of a

2 × 2 matrix, its antisymmetric part Ra is a gyrator. Accordingly, Breedveld gen-

eralises the definition of a multiport gyrator (Equation 8.11) by considering each

multiport element characterised by an antisymmetric matrix as multiport gyrator

([5], p. 23).

Finally, if in the non-isothermal case, irreversible transformation of non-thermal

energy into heat is represented in a multibond graph, then the multiport resistor must

be replaced by the multiport version of the RS element (Section 2.5.4) introduced by

Thoma. On the non-thermal side, the one-dimensional bond is replaced by a multi-

bond (Figure 8.14). According to Equation 2.67 the RS field is power conservative.

eT f = T × Ṡ (8.29)

Furthermore, eT f > 0 as Ṡ > 0.

8.2.6 Splitting a Multibond

We conclude this section on multibond graphs by considering the splitting of a

multibond into one-dimensional bonds or multibonds of lower dimension as intro-

duced by Breedveld in [6] and called direct sum. Figure 8.15 shows a multibond

of dimension n split into n one-dimensional bonds. Such a splitting of a multibond

allows some of the bonds of a multibond to be connected with element ports and to

express constraints that do not apply for all components of the multibond. We will

make use of this feature in bond graph modelling of the 3D motion of multibody

systems.
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Fig. 8.15 Splitting of an n-dimensional multibond into n one-dimensional bonds

8.3 Bond Graph Modelling of the 3D Motion of Multibody
Systems

The multibond graph fragments introduced in the previous section allow the 3D mo-

tion of multibody systems with rigid bodies to be modelled in a clear and concise

form. The approach of Bos [3] and Tiernego [54] can be applied to develop reusable

models for a freely moving rigid body as well as for several types of joints. In-

stantiations of the rigid body model and of joint models are then simply assembled

according to the structure of the multibody system.

8.3.1 Multibond Graph of a Freely Moving Rigid Body

The multibond graph of a rigid body represents the Newton-Euler equations of mo-

tion. Translational motion of the centre of gravity is described with respect to a

fixed inertial frame while the body’s rotation is related to a body fixed reference

frame with the origin at the body’s centre of gravity. This coincidence of the refer-

ence point on the body with its centre of gravity results in the translational velocity

of the centre of gravity being decoupled from the angular velocity and the forces

being decoupled from torques acting on the body. As a result, the multibond graph

of a rigid body takes a simple symmetric form. If, for simplicity, it is assumed that

two hinge points connect the body to the joints, then the multibond graph of a freely

moving rigid body has the form shown in Figure 8.16 [3].

It serves as a building block in bond graph modelling of multibody systems with

rigid bodies. In the case of robots with a tree-like structure, a hinge point on the

joints linking the robot’s limbs is generally chosen as the origin of the body fixed

reference frame rather than the centre of mass of a body. The resulting multibond

graph of a freely moving body is given in [3]. In this chapter on multibond graph

modelling of multibody systems, it is assumed that a body fixed reference frame

sits in the body’s centre of gravity and that multibody systems have no kinematic

loops. A simple example of a multibody system with a kinematic loop is the well

known four bar mechanism. It consists of four bars that are connected by revolute

joints and can move in a plane. For bond graph modelling of multibody systems

with kinematic loops, refer to [17].
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Fig. 8.16 Multibond graph of a freely moving rigid body with two hinge points (Bos 1986)

A velocity in space has three components with respect to a reference frame. In

a bond graph with one-dimensional bonds, each component must be represented

by a 1-junction. A clearer and more compact model representation is achieved by

combining all three velocity components into a multibond that represents a velocity

in space by a three-dimensional array of 1-junctions (Figure 8.17).

Thus, all 1-junctions with an underscore in the multibond graph of Figure 8.16

represent a velocity in space. In particular, the array of 1-junctions with the annota-

tion vc stands for the translational velocity of the body’s centre of mass with respect

to a fixed inertial frame (X, Y, Z) with the origin O, while the array of 1-junctions

annotated by v′
c represents the absolute velocity of the centre of mass expressed
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Fig. 8.17 Bond graph and multibond graph representation of a velocity in space

in the basis of the body fixed reference frame (x, y, z). The modulated transformer

with the matrix AO,c establishes the transformation from the local body fixed mov-

ing reference frame with its origin in the body’s centre of mass to the inertial frame

with its origin in the fixed point O.

vc = AO,c v′
c (8.30)

Since the body’s centre of mass is moving in space, the coefficients of the trans-

formation matrix depend on the momentary position of the body with respect to

the inertial frame. That is, the coefficients are not constant. Therefore, a modulated

transformer is used in the multibond graph of Figure 8.16. The coefficients can be

expressed by means of Cardan angles or Euler parameters. The latter have the ad-

vantage over Cardan angles that the coefficients of the transformation matrix cannot

become singular [56].

In Figure 8.16, the upper array of 1-junctions with the name Ω′ represents the

body’s absolute angular velocity expressed in coordinates of the local reference

frame with its origin in the body’s centre of mass. The left side and the right side

arrays of 1-junctions with names v′
1 and v′

2 represent the absolute velocities of the

two hinge points expressed in coordinates of the body fixed reference frame. Gen-

erally speaking, all quantities with a prime are expressed in coordinates of the body

fixed reference frame. The sum of efforts at the lower array of 1-junctions accounts

for Newton’s law applied to the body’s centre of mass. From the multibond graph in

Figure 8.16, we derive

(AO,c)T (mv̇c −
⎡⎣ 0

0
−mg

⎤⎦ ) = F′
1 − F′

2 , (8.31)

where F′
1 and F′

2 are external forces acting in the body’s hinge points. The sum of

efforts at the upper array of 1-junctions gives Euler’s equation.

J′ Ω′ + Ω̃′J′Ω′ = M′
1 − M′

2 + (x̃′
1)

T F′
1 − (x̃′

2)
T F′

2 , (8.32)

where x′
1 and x′

2 are the distances of the hinge points from the origin of the body

fixed reference frame in coordinates of that frame. (x̃′
i (i = 1, 2) denotes the skew
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symmetric matrix generated by x′
i (cf. Equation 8.14). M′

1 and M′
2 are external

torques acting on the body.

The left side and the right array of 0-junctions express that the velocity of a hinge

point is the velocity of the centre of mass superimposed by a term x̃′
iΩ

′ = Ω′×x′
i

(i = 1, 2) that is due to the rotation of the body.

v′
i = v′

c + x̃′
iΩ

′ (8.33)

(i = 1, 2)

8.3.2 Connecting Instances of the Rigid Body Model

The external forces and moments in the dynamic equations are expressed in co-

ordinates of the local body fixed reference frame, as are the angular velocity and

the velocities of the hinge points. This means that if the submodels of two bodies

are to be connected, the outputs of one submodel must be transformed to the local

reference frame of the other. The coefficients of the transformation matrix are not

constant. Therefore, the models of the rigid bodies of a multibody system must be

connected by modulated transformers.

In Figure 8.18, the lower index of a velocity denotes the body and the upper index

the reference frame to which the vectors coordinates are related. If A0,i describes

the transformation from the ith body to the inertial frame, then the transformation

from the reference frame of the ith body to that of the (i+1)th body is given by the

matrix

Ai+1,i = (A0,i+1)T A0,i . (8.34)

Now, the rigid bodies of a multibody system are not rigidly coupled as shown in

Figure 8.18, but are connected by joints that are generally of different type. Thus, in

addition to the modulated transformers, a submodel of the joint needs to be inserted

between the submodels of the rigid bodies (Figure 8.19). Joints allow for a number
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Fig. 8.18 Connection of submodels of two rigid bodies via modulated transformers (Tiernego and

Bos 1985)
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of degrees of freedom. The nature of these degrees of freedom depend on the type

of the joint.

Since the purpose of this chapter is to show the potential of multibond graphs for

modelling multibody system in principle, we will confine ourselves to consider a

revolute joint and a prismatic joint and use their models in the example of a simple

robot with three degrees of freedom (cf. Figure 8.22).

8.3.3 Multibond Graph Model of a Revolute Joint

If body 2 can rotate with respect to the x-axis of body 1 against friction, then the an-

gular velocities of both bodies differ only in this component, while the translational

velocities of their centres of mass are the same. The difference in the x-component

of their angular velocity can be expressed by splitting the corresponding multibond

into one-dimensional bonds and by inserting a 0-junction in the one-dimensional

bond representing the angular velocity’s x-component. Thus, two rigid bodies con-

nected by a revolute joint can be represented by a word-bond graph as shown in

Figure 8.19. The submodel of the revolute joint has the structure shown in Fig-

ure 8.20.

The resistor accounts for friction in the joint. In Figure 8.20, v1
21 is the velocity of

the hinge point number 1 of body 2 expressed in coordinates of the reference frame

of body 1. Accordingly, v1
12 is the velocity of hinge point number 2 of body 1 in

coordinates of reference frame 1. Similarly, for the velocities of the hinge points, Ω1
2

means the angular velocity of body 2 expressed in the coordinate frame of body 1.

8.3.4 Multibond Graph Model of a Prismatic Joint

The bond graph model of a prismatic joint has a structure analogous to that of the

revolute joint. Let us assume that body 3 is connected to body 2 and can move along

the y-axis of the reference frame of body 2 as depicted in Figure 8.22. In this case,

the translational velocities of the hinge points of the two bodies differ, while both
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Fig. 8.21 Bond graph model of a prismatic joint

share the same angular velocity. Thus, the bond graph model of the prismatic joint

has the structure shown in Figure 8.21. Again, the resistor represents friction in the

joint.
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Fig. 8.22 Schematic of a robot with three degrees of freedom

8.3.5 Multibond Graph of a Three Degrees of Freedom Robot

Now, by means of the model of a freely moving rigid body (Figure 8.16) and the

models of a revolute joint and a prismatic joint, a multibond graph model can be

composed in a systematic manner for the robot sketched in Figure 8.22 with two

revolute degrees of freedom and one prismatic degree of freedom. Each joint is

driven by a motor.

The resulting multibond graph of the robot is shown in Figure 8.23. In this bond

graph model a load of mass m has been added at the tip of body 3. In Figure 8.23,

velocities equal to 0 are taken into account by sources imposing these boundary

conditions. For instance, body 1 is connected to the floor and can only rotate with

respect to its Z-axis. Thus, the translational velocity of its hinge point number 1 is

equal to zero. Two components of its angular velocity are fixed at zero, while the

body is rotated by a motor with respect to the Z-axis. Therefore, the multibond of

the angular velocity has been split into three one-dimensional bonds.

A simpler version of the robot in Figure 8.22 with the prismatic joint being locked

is considered in Section 12.9. In that case study, the standard form of robot equations

[9] is systematically derived from the multibond graph of the robot.

8.3.6 Causalities in Multibond Graphs

When assigning causalities to a multibond graph of a multibody system, some

multibonds may need to be split because not all of their components can carry the

same causality. Moreover, the joint models will generally result in many dependent

I stores. Several of the six degrees of freedom of a freely moving rigid body may

disappear due to a joint of certain type that links one body to another. The joint

models considered represent ideal rigid joints solely described by kinematic con-

straints. If they connect instantiations of the body model, then the body velocities

become dependent. The resulting derivative causalities at the power ports of I stores
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can be avoided by inserting special controlled sinks into the joint models. Their

effort represents a constraint force or a constraint torque that ensures that the rel-

ative velocity (angular velocity) is zero. This kind of controlled sinks has already

been considered in Sections 5.2 and 5.4. These constraint efforts are introduced by

means of a Lagrange multiplier. Figure 8.24 shows a model of a revolute joint with

controlled sinks for constraint forces and constraint torques. Due to the use of con-

straint forces or constraint torques in the joint models, the ports of all I stores receive

integral causality. Consequently, their ODEs are of explicit form with a right-hand

side that depends on the constraint forces or moments. The kinematic constraints of

the joints, however, establish algebraic dependencies between the state variables of

the inertia that seem to be independent. This semi-explicit state space model can be

solved by means of a code based on the BDF method, although it is a DAE system

of index 2 due to the fact that the constraint forces or moments do not appear in the

algebraic constraints. A program that can process bond graph models of multibody

systems including Lagrange multipliers is BONDYN [18]. It uses the DASSL code

[8].

8.4 The Joint Coordinate Method

The bond graph approach to modelling multibody systems, going back to Bos [3],

enables a multibond graph for a multibody system to be composed in a clear and

systematic manner by using a model of a freely moving rigid body with models for

the different types of joints. In the rigid body model, the translational motion of

the centre of mass is expressed in coordinates of an inertial frame while the body’s

rotation is related to a body fixed reference frame with its origin in a body’s point.

In the previous section, the centre of mass was chosen as the origin of the body

fixed reference frame because it results in a bond graph model with a simple and

symmetric structure. However, another point, e.g. a hinge point, can also be chosen

as a reference point [3].

The advantages of the method are offset by the disadvantage that the set of equa-

tions used is very large compared with the number of degrees of freedom in a multi-

body system, which results in a corresponding high computational effort. If fj de-

notes the number of relative degrees of freedom of a joint, j, then there are six

equations of motion for each body and 6 − fj kinematic constraints on the veloci-

ties at each joint to be derived from the bond graph. The resulting DAE system is of

index 1. If derivative causalities at many inertia ports are removed by accounting for

constraint forces or torques in the joints, then the index of the system is increased

to two. It is true that such a DAE system can be solved by a code based on the BDF

method, but results are less accurate and the computational effort is higher in com-

parison to the case where causal paths between inertia ports are accepted and a DAE

system of index 1 is solved [55].

Still, it is quite common to formulate equations of motions by starting with six

coordinates for each body, adding kinematic constraints and breaking algebraic de-
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pendencies by using constraint forces or moments [46]. However, in mechanics, this

approach has not been traditionally used in combination with bond graphs.

In order to reduce the number of equations, some authors use other generalised

coordinates. For example, the joint coordinate method is well known in mechanics

[43, 45] and will be briefly recalled in its classical form. Subsequently, relations to

bond graph modelling are considered. For simplicity, the presentation is confined

to multibody systems with a tree-like structure. That is, no kinematic loops will be

taken into account.
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8.4.1 Formulation of a Reduced Set of Equations of Motion

The joint coordinate method uses joint coordinates as generalised coordinates and

generalised constraint forces introduced by means of Lagrange multipliers and has

the attractive feature that it leads to a minimal set of equations of motion in which

generalised constraint forces no longer appear. For systems with a tree-like structure,

the number of equations of motions is equal to the number of degrees of freedom.

If generalised constraint forces in the joints are introduced, then Newton-Euler’s

equations of motion can be written in the form

M v̇ − DT λ = g , (8.35)

where the absolute translational velocities and angular velocities of a rigid body are

combined into a vector v. The mass matrix M includes the masses and moments of

inertia of all bodies. The term DT λ represents the generalised constraint forces and

λ is the vector of Lagrange multipliers. Finally, the vector g includes all gyroscopic

accelerations, the forces and torques due to springs and resistors as well as external

forces and torques. The joints impose additional kinematic constraints of the form

Dv = 0 . (8.36)

The essential step in the reduction of the number of equations of motion is to express

absolute Cartesian body coordinates by means of a lower number of independent

relative joint coordinates grouped into a vector w.

v = Bw (8.37)

If the velocity transformation, Equation 8.37, is differentiated with respect to time

and used in the equation of motion, Equation 8.35, we then get

MB ẇ − DT λ = g − MḂ w . (8.38)

Multiplication of Equation 8.38 by the matrix BT now has the interesting effect

that the Lagrange multipliers disappear since the product DB vanishes due to the

kinematic constraints, Equation 8.36, in which the relative joint coordinates w are

independent.

BT MB ẇ = BT g − BT MḂ w (8.39)

Moreover, a symmetric mass matrix, M := BT MB, results, which is generally

densely populated. Their coefficients are strongly nonlinear with respect to the joint

coordinates w. The right-hand side of the equation of motion, Equation 8.39,

f := BT g − BT MḂ w (8.40)

is strongly nonlinear with respect to the joint coordinates w and their time deriva-

tives ẇ.



8.4 The Joint Coordinate Method 377

For systems without kinematic loops (open loop systems), the number of equa-

tions in Equation 8.41

M ẇ = f (8.41)

is equal to the number of degrees of freedom. For the numerical integration, it is of

relevance that instead of the initial set of ODEs (Equation 8.35) and the accompa-

nying set of algebraic constraints (Equation 8.36), the mathematical model now is a

set of first order ODEs for w and the vector q of positions, where q̇ = w.

In [45], Nikravesh and Gim have shown that a modified form of the method is

also applicable to multibody systems with closed kinematic loops. In this generali-

sation of the method, it is best to choose a cut joint in each kinematic loop so that

subsystems with a tree-like structure result. Clearly, this method can be applied to

each subsystem. If the kinematic loops are closed again, then the joint coordinates

are no longer independent. Another transformation step, the so-called closed loop
velocity transformation, can make the Lagrange multipliers disappear.

Eventually, the matrix B in the velocity transformation, Equation 8.36, can be

composed from sub-matrices of the joints in a systematic manner according to the

topology of the entire system. The sub-matrix each joint contributes has a fixed

structure that depends on the joint’s type [44]. As is well known, each element in

an electrical circuit contributes a stamp to the nodal admittance matrix. In a similar

way, the matrix B can be systematically constructed directly from the topology of a

multibody system.

8.4.2 Reduction of the Equations of Motion: Transformation of
I Stores in the Bond Graph

In the following, we will first show that the above reduction of equations of motion

to a minimal number can be interpreted in bond graph terms as the transformation

of inertias over the multiport MTF of the velocity transformation. For this purpose,

the vector of velocities, v, in Equation 8.35 is partitioned into a sub-vector vi of

independent velocities and a sub-vector vd of dependent velocities. The mass matrix

M is partitioned accordingly.

M =
[
Ii 0
0 Id

]
(8.42)

Let T be a matrix relating both sub-vectors. That is, vd = Tvi and let E be the

dim(λ) × dim(λ) unity matrix and g := [ f 0 ]T . Then, the equation of motion,

Equation 8.35, and the kinematic constraints , Equation 8.36, can be written in the

form [
Ii 0
0 Id

] [
v̇i

v̇d

]
−

[−TT

E

]
λ =

[
f
0

]
(8.43)
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[−T E
] [

vi

vd

]
= 0 . (8.44)

The rewritten equations and the velocity transformation, Equation 8.37, can be rep-

resented by the multibond graph in Figure 8.25.

If we write the velocity transformation, Equation 8.37, in the form[
vi

vd

]
=

[
Bi

Bd

]
w , (8.45)

then the direct sum of multibonds and the transformer with the matrix B can be

replaced by two transformers with the matrices Bi and Bd. Now, if the inertia Ii

is transformed over the transformer with the matrix Bi and if, likewise, Id is trans-

formed over the MTF with matrix Bd, then we get the multibond graph shown in

Figure 8.26.

By summing the efforts at the lower array of 1-junctions representing the velocity

vd (Figure 8.26), we get the equality

T (Biw ) = Bd w . (8.46)

If we write this equation in the form

− [−T E
] [

Bi

Bd

]
w = 0 , (8.47)
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Fig. 8.26 Multibond graph after transformation of inertias over MTFs

then it is the constraint

(DB )w = 0 . (8.48)

Since it has been assumed that the multibody system has no kinematic loops, the

relative velocities, w, are independent of each other. Thus, the product DB must

vanish.

Summing the efforts at the right side array of 1-junctions representing the inde-

pendent velocities w yields

0 = (BT
i IiBi) ẇ + (BT

i IiḂi)w + (BT
d IdBd) ẇ +

(BT
d IdḂd)w + BT

i (TT λ − f ) + BT
d (−λ ) . (8.49)

By taking into account the partitioning of the mass matrix M, Equation 8.42, of

the transformation matrix B, Equation 8.45, and of the vector g ( = [ f 0 ]T ), and

by observing that the product DB vanishes, we see that Equation 8.49 is just the

equation of motion (8.39).

8.4.3 Deriving the Reduced Form of Equations of Motion from the
Bond Graph

Once a multibond graph for a multibody system has been constructed, the equations

of motion in reduced form can be derived from the bond graph in a procedure that

is similar to the one proposed by Félez, Vera and Cacho in [19].
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• First, a controlled flow source is attached to each array of 1-junctions represent-

ing a relative velocity of a joint. To ensure that the model is not modified, the

effort into the sources must be zero. Propagation of the causality of these sources

results in derivative causalities. As a result, all velocities become dependent of

the chosen relative velocities of the joints. In this way we get the velocity trans-

formation matrix B.

• Next, all added controlled flow sources are removed and controlled effort sources

are inserted in their place into the joint models to account for constraint forces or

torques. Assigning causalities leads to integral causalities at all inertia ports. With

the multibond graph modified in this way, equations of motion can be derived

in the un-reduced form (Equation 8.35). Thus, in particular, the term g in this

equation is known.

• Finally, if the velocity transformation is symbolically differentiated, then all ma-

trices and vectors needed in the reduced form of equations of motion are avail-

able.

As Bos points out in [3], multiplication of matrices should not be performed sym-

bolically because large expressions for the coefficients may result that will need a

considerable amount of memory to be handled in formula manipulation programs.

Moreover, numerical evaluation of these expressions is inefficient. It is true that

some terms in these expressions will often cancel, but formula manipulation pro-

grams have limited capabilities to identify possible simplifications. In general, sig-

nificant simplification can only be expected for symbolic expressions that are not

too large. Requirements for memory can be reduced and the efficiency of expres-

sion evaluation can be improved by introducing intermediate variables. In doing

this, however, the virtue of symbolic expressions gets somewhat lost because the

meaning of an expression is obscured the more intermediate variables appear in it.

8.4.4 Application of the Procedure to a Planar Pendulum

In the following, the procedure will be illustrated by means of an example. To enable

an easy review and to keep the computational effort reasonably small, we confine

ourselves to the planar pendulum depicted in Figure 8.27. It can be viewed as a body

b′ that is composed of a massless rod of length L and a rigid body b, with mass m
and with moment of inertia J with respect to the z-axis through its centre of mass.

Body b′ has one hinge point that is connected by a revolute joint to the inertial frame.

The distance from the hinge point to the centre of mass is of length L. Again, the

origin of the body fixed reference frame is assumed to be at the centre of mass.

In this example, body b′ has only one hinge point. Its axis of rotation through the

hinge point is perpendicular to the plane in which the body moves, which results in

a simplified multibond graph model of a freely moving body (cf. Figure 8.16). The

modulated gyrator disappears since the cross product Ω′ × (J′Ω′) = (Ω̃′J′)Ω′

vanishes. The model of the revolute joint between the inertial frame and the upper

end of the rod reduces to a resistor that accounts for friction. Thus, the multibond
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Fig. 8.27 Planar pendulum

graph of a freely moving body is easily adapted to the model of the planar pendulum

depicted in Figure 8.28.

The revolute joint allows for only one degree of freedom. Consequently, accord-

ing to the above procedure, we first insert a controlled source in the model of the

joint that prescribes the relative angular velocity ϕ̇. As a result of causality assign-

ment, both inertias get derivative causality (Figure 8.29).

Observing the matrix A

A =
[

cos ϕ − sin ϕ
sin ϕ cos ϕ

]
(8.50)

of the MTF, the following velocity relations are easily obtained from the multibond

graph of Figure 8.29. ⎡⎣ Ω
vX

vY

⎤⎦ =

⎡⎣ 1
L sin ϕ
−L cos ϕ

⎤⎦ [
ϕ̇
]

(8.51)

Thus, the matrix B in the velocity transformation, Equation 8.37, is
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Fig. 8.28 Multibond graph of a planar pendulum

B =

⎡⎣ 1
L sin ϕ
−L cos ϕ

⎤⎦ . (8.52)

The next step is to determine the matrices and vectors needed in the equation of

motion in the reduced form. To this end, we follow the above procedure and derive

a second bond graph from the initial one in Figure 8.28 by adding controlled effort

sources that account for the constraint forces in the revolute joint (The upper end

of the rod has no translational velocity). Assigning causalities to this bond graph

results in integral causality at the inertia ports (Figure 8.30).

Adding up the efforts at the upper 1-junction in the multibond graph of Fig-

ure 8.30, we get the torque balance

− rΩ = JΩ̇ + [0 L] (−λ )
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Fig. 8.29 Multibond graph for the derivation of the velocity transformation

= JΩ̇ + [0 L]
[−λx

−λy

]
= JΩ̇ − Lλy . (8.53)

From the lower array of 1-junctions representing the velocity of the centre of mass,

vc, we derive the balance of forces

Aλ = mv̇c −
[

0
−mg

]
. (8.54)

Both balances can be combined into the form of Equation 8.35, with the matrices

M =

⎡⎣J 0 0
0 m 0
0 0 m

⎤⎦ (8.55)
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and

DT =

⎡⎣ 0 L
cos ϕ − sin ϕ
sin ϕ cos ϕ

⎤⎦ , (8.56)

and the vector g = [−rΩ 0 − mg ]T . By computing the matrix products in

Equation 8.39, we get as expected,

BT DT = 0 (8.57)

BT MB = J + mL2 (8.58)

BT MḂ = 0 . (8.59)

Thus, in the case of a planar pendulum, Equation 8.39 takes the well known form

( J + mL2 ) ϕ̈ + rϕ̇ = mgL cos ϕ (8.60)

or

( J + mL2 ) φ̈ + rφ̇ = −mgL sin φ . (8.61)
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As a result, instead of three ODEs and two kinematic constraints according to the

number of degrees of freedom, we get one second order ODE in the unknown ϕ
(Lagrange equation of the second kind). By observing Ω′ = ϕ̇, the second order

ODE is easily transformed into a set of two first order ODEs.

8.5 Software for Modelling and Simulation of Multibody Systems

As in other disciplines, e.g., circuit simulation, there exist quite a number of special

purpose programs for the simulation of multibody systems. For example, Adams®1

[46], NEWEUL [30] and MESA VERDE [57]. Also, there are some general purpose

modelling and simulation programs, e.g., Dymola®[13], that can generate equations

of motion by using model libraries for multibody systems. However, traditional spe-

cial purpose programs for multibody systems and general purpose programs such

as Dymola®have not been designed to support bond graph modelling. The latter

methodology certainly has the advantage that models of subsystems from other do-

mains, e.g., models for the motors driving the joints of robots, can be easily included

in the modelling of the mechanical multibody system in a uniform manner. Software

programs that support the development of multibond graph models for multibody

system and that are able to process these models are BONDYN [18], already men-

tioned in Section 8.3, and the commercial general modelling and simulation soft-

ware environment 20-sim®. For the planar motion of multibody systems, Marquis-

Favre, Bideaux and Scavarda developed a bond graph library [36, 37] that is used by

the commercial multi-domain modelling and simulation software AMESim or LMS

Imagine.Lab AMESim®2 [32].

8.6 Conclusion

This chapter demonstrates how the bond graph methodology can support the system-

atic modelling of complex systems that are composed of rigid bodies and different

types of joints. The extension of bond graphs representations with one-dimensional

bonds into so-called multibond graphs has been presented.

Among the multiport extensions of the basic bond graph elements, the displace-

ment modulated transformer is of particular importance for modelling the 3D mo-

tion of mechanical systems. It enables a compact description of the transformations

between reference frames commonly used in the modelling of multibody systems.

This is certainly an advantage since relations between generalised velocities sim-

ply result from differentiation of geometric constraints that are obtained by direct

1 Adams is a trademark or registered trademark of MSC Software Corporation, 2 MacArthur Place,

Santa Ana, CA 92707, USA, http://www.mscsoftware.com
2 AMESim® is a registered trademark of LMS International, Research Park Z1, Interleuvenlaan

86, B-3001 Leuven, http://lmsintl.com
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inspection of a system schematic. The importance of power conserving bond graph

transformers has been pointed out in as early as 1969 by Karnopp [23]. It is in-

teresting to note that in the modelling of non-mechanical systems, the modulated

transformer does not play any similar prominent role, especially not in the mod-

elling of electrical systems. This indicates some limitations in the analogy between

mechanical and non-mechanical systems.

Another multiport bond graph element relevant for the modelling of multibody

systems is the modulated gyrator. It can be used to represent gyroscopic forces or

torques that must be taken into account if the motion of a rigid body is described

with respect to a moving reference frame. Since it is common in the modelling of

multibody systems to use body fixed (moving) reference frames, modulated gyra-

tors inevitably occur in corresponding multibond graphs. In bond graphs with one-

dimensional bonds, the modulated multiport gyrator used for representing Euler’s

equation of motion has the well known symmetric ring structure found by Karnopp

and Rosenberg [27] and depicted in Figure 8.9.

Once a multibond graph model of a freely moving rigid body [3] and models

for the different types of joints are available, multibond graph models of multibody

systems can be built in a straightforward systematic manner. The corresponding

mathematical model is a system of six ODEs for each body (Newton-Euler’s equa-

tion of motion) and 6− fJi
additional kinematic constraints for the ith joint, where

fJi
denotes its number of relative degrees of freedom. Due to the kinematic con-

straints, causal paths occur between inertia ports. Thus, the mathematical model is

a DAE system of index 1.

It is common in mechanics to use Lagrange multipliers that take into account

constraint forces introduced in the joints. This removes the dependencies between

inertias. The resulting DAE system is of index 2. Although it can be solved by a

code based on the BDF method, the disadvantage is that the number of equations

with respect to the number of degrees of freedom is too high.

Another option is to relax constraints by assuming that joints are not a perfect

rigid connection between rigid bodies, but show some elasticity and backlash in

addition to friction. Clearly, by inserting C energy stores into joint models [22, 59],

the inertias of the rigid bodies can be decoupled. That is, the kinematic constraints

are replaced by ODEs. However, this increases the order of the model and the result

is a system of stiff ODEs.

As an example of the approaches that aim at a formulation of equations of mo-

tion for a minimal number of generalised coordinates, we considered the well known

joint coordinate method applied to systems with a tree-like structure. Nikravesh and

Gim [45] show that the method is also applicable to systems with closed kinematic

loops. In this chapter, it has been shown that the reduction in the number of equa-

tions of motion can be interpreted in bond graph terms as a transformation of inertias

over MTFs. A three step procedure similar to the one proposed by Félez, Vera and

Cacho [19] has been given for deriving equations of motion in reduced form from

a multibond graph. It has been illustrated by the simple application of a planar pen-

dulum.
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Chapter 9
Bond Graph Approximation of Distributed
Parameter Models

In the previous chapter, bodies have been assumed rigid in the modelling of multi-

body systems. However, there are flexible systems one encounters in every day life.

For example, if we walk or drive across a long bridge, we might feel the vibra-

tions corresponding to the deflections. Many mechanisms are not really rigid either.

Other obvious examples are the chassis and the body of a vehicle or the robotic arm

that moves a load from one place to another. Some parts of multibody systems ex-

perience elastic deformations leading to vibrations that cannot be neglected. Such

vibrations can be noticed, for instance, when looking at the bending of the wings

of a commercial airplane in flight. Clearly, the elasticity of a robot’s arm affects its

dynamics and the accuracy of positioning a tool or a load. Mechanical bodies not

only have an inertia, but are also elastic to some degree. Both physical properties

are continuously spatially distributed. This holds, for instance, for long hydraulic or

acoustic lines.

So far, the spatial distribution of inertia and elasticity has been approximated in

models by assuming that each property can be lumped in certain points in a body.

This has given rise to the introduction of two distinct types of energy stores, viz.

an I element and a C element. All bond graphs considered so far in this text rep-

resent so-called lumped parameter models. While this assumption can be justified

for modelling many mechanical systems or hydraulic circuits without long lines, it

is not sufficient for typical continua like the ones already mentioned. The dynamics

in each point of a continuum are determined by the propagation of waves, their re-

flection at the boundaries of the continuum being part of an overall system and their

superposition. For instance, if an electromagnetic valve connected to a hydraulic

line closes in a very short period of time, then the local pressure change caused by

this closing travels with the speed of sound through the fluid and is reflected at the

ends of the transmission line. In contrast to previous bond graph modelling leading

to ODEs (and algebraic constraints), continua are described by partial differential

equations (PDEs). Since modelling takes into account that physical properties, e.g.

inertia, compliance and friction are spatially distributed, corresponding models are

called distributed parameter models. If we recall that the solution of the wave equa-

tion can be represented in the form of a series, we see that system components

391
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accounted for by a distributed parameter model have an infinite number of degrees

of freedom in contrast to systems represented by lumped parameter models.

For instance, a robot, apart from its arm, can be modelled as a system composed

of rigid bodies while the arm is conceived as a continuum. In that case, a bound-

ary value problem must be solved. However, in contrast to classical boundary value

problems, the boundary conditions in this case are determined by the solution of

the initial value problem for the rest of the robot. It is true that there exist special

solvers for boundary value problems in certain domains, e.g., for fluid-mechanical

problems or electromagnetic fields. Usually, these rely on finite element methods.

On the other hand, there are robust general purpose solvers for DAE systems. How-

ever, a combination of a set of DAEs and a partial differential equation is not pos-

sible with many modelling and simulation programs. Thus, the question arises as to

how a distributed parameter model of a system component, such as a beam, can be

appropriately approximated by a lumped parameter model.

9.1 Approximation of a One-dimensional Distributed Parameter
Model by an Oscillator Chain

A well known and obvious approach to the development of spatially one-dimensional

models is to approximate a continuum by a chain of segments in which one lump is

assumed to be an ideal rigid body, while its neighbour has no inertia but is ideally

compliant. Using this clear approach, the ordinary differential equations for a rigid

segment and its completely compliant neighbour turn into the initial partial differ-

ential equations for the continuum if the thickness of the segments tend to zero.

However, there is a serious disadvantage. If the number of segments is increased,

accuracy does not increase likewise. Within given accuracy boundaries, unfortu-

nately, it cannot easily be determined how many lumps will be needed to reproduce

the dynamic behaviour determined by low natural frequencies. If we disregard cases

with low accuracy requirements, then generally, a high number of segments will be

necessary, leading to an ODE system of high order. Although this will mean con-

siderable computational effort, higher natural frequency modes are captured rather

inaccurately (Of course, if the thickness of the segments tended to zero, then in the

limit, there would be an infinite number of degrees of freedom).

This chapter demonstrates that bond graph modelling can also be used to de-

velop lumped parameter models that appropriately approximate distributed param-

eter models of continua.

Components, e.g., rods or bars with longitudinal vibrations or hydraulic lines,

clearly can be modelled approximately by a chain of lumps in which rigid and fully

compliant segments of thickness Δx alternate. A generic bond graph representation

of such spatial one-dimensional chains of oscillators is shown in Figure 9.1.

For low accuracy requirements, typically, only short oscillator chains are used.

Clearly, causal boundary conditions are imposed by the submodels that connect to
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the lumped parameter approximation of the continuum. They decide which storage

elements are admissible at the ports of the coarse continuum model (Figure 9.2).
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9.2 Brief Survey of Bond Graph Approximations of Distributed
Parameter Models

Further approaches to lumped parameter bond graph approximations of distributed

parameter models have been reported in the literature. Whereas Bonderson proposed

an approach based on finite differences [3] in 1975, modal analysis has been used

by Karnopp [18], Margolis [22] and Lebrun [20]. Elramady and Granda used modal

analysis to develop a bond graph model for the flexible solar panels of a module

of the International Space Station (ISS) [11] by considering the photovoltaic array

panels as Bernoulli-Euler beams (cf. Section 9.3.1). The ISS is clearly a complex

multibody assembly of bodies that can be assumed to be rigid while others must be

considered flexible.

Granda and Kong start from finite element methods in order to model heat con-

duction in one and two dimensions by means of bond graphs [12, 13]. In [29],

Pelegay, Doblaré and Buil demonstrate how bond graph based modelling can be

combined with the finite element method. Further work combining bond graph mod-

elling and the finite element method can be found in [9, 10, 25, 30]. Baliño considers

computational fluid dynamics problems in a bond graph framework [15–17]

Damić [6, 7] and Damić and Čohodar [8] have presented an approach to bond

graph modelling of flexible multi-bodies that is based on co-rotational formulation

[5]. Finally, in [31, 32], Čohodar, Borutzky and Damić compare the finite element

co-rotational formulation to the finite element absolute nodal coordinate formulation

[2] in a bond graph framework. Applications to the well known planar flexible pen-

dulum and the slider crank mechanism indicate that in these cases, the co-rotational

formulation results in computationally less costly simulation runs.

The following two sections illustrate how modal analysis as well as the finite

element method can be used to develop lumped parameter approximations of dis-

tributed parameter models of system components to be used in a bond graph of an

overall multidisciplinary system.

9.3 Modal Analysis

9.3.1 The Bernoulli-Euler Beam

A generic bond graph approximation of one-dimensional distributed parameter

models can be developed using modal analysis. Focussing on fundamental aspects,

let us consider the classical example of a beam assuming the Bernoulli hypothesis

that rotary inertia and shear deformation can be neglected (Bernoulli-Euler beam).

Let us also assume that only transversal forces act on the beam. A more compre-

hensive presentation that also covers the so-called Timoshenko beam may be found,

e.g., in [19, 23, 27].
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If there are two forces acting on the beam, as shown in Figure 9.3, then the

transverse displacement, w(x, t), at position x and time t is given by the partial

differential equation

EI
∂4w

∂x4
+ �A

∂2w

∂t2
= F1δ(x − x1) + F2δ(x − x2) (9.1)

and boundary conditions at both ends. In Equation 9.1, the product of Young’s mod-

ulus, E, and the area moment of inertia, I , represent the bending stiffness of the

beam. It is assumed to be constant. Furthermore, we assume that the cross sec-

tional area A and the mass density � are constant along the beam. The expression

Fiδ(x − xi) using Dirac’s generalised delta function represents the force acting at

position xi (i = 1, 2).
The classical modal analysis assumes that two functions, Y and η, exist such that

the solution of Equation 9.1 can be written in the form

w(x, t) = Y (x) × η(t) . (9.2)

This approach is called the separation of variables and has been well known for a

long time. It leads to an ordinary differential equation (ODE) independent of the

time t for the function Y .

EI
d4Y

dx4
− �Aω2 Y = 0 (9.3)

The assumption that the solution of Equation 9.3 is an exponential function together

with the boundary conditions result in equations for the mode frequencies ωn and

for the corresponding so-called mode shapes or normal modes. That is, the natural

frequencies as well as the mode shape functions depend on the actual boundary

conditions. Strictly speaking, whenever the latter change, the mode frequencies and

the mode shape functions must be re-evaluated. However, as Karnopp has shown in

[18], the solutions in the case of force-free boundary conditions, i.e., there are no

shear forces and no moments at the boundaries
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wxx(0, t) = 0 (9.4a)

wxx(L, t) = 0 (9.4b)

wxxx(0, t) = 0 (9.4c)

wxxx(L, t) = 0 (9.4d)

(free-free modes) can be used to approximate the solution with sufficient accuracy

in the case of other boundary conditions. Therefore, in the following, ωn and Yn

always mean the mode frequencies and the mode shapes for the case of force-free

boundary conditions. In any case, the mode shapes are orthogonal in the sense that∫ L

0

Yn(x) Ym(x) dx = 0 (9.5)

for n, m ∈ N and n �= m. Once the mode shape functions have been determined,

the forced solution of Equation 9.1 is assumed to have the form

w(x, t) =
∞∑

ν=0

Yν(x)ην(t) . (9.6)

If this series is inserted into Equation 9.1, then multiplication by Yμ and subsequent

integration along the beam (observing the orthogonality of mode shape functions)

yields the non-homogenous second order ODE

mμη̈μ + mμω2
μημ = Yμ(x1) × F1 + Yμ(x2) × F2 (9.7)

for the function ημ (μ = 0, 1, 2, . . .), where mμ denotes the modal mass,

mμ := �A

∫ L

0

Y 2
μ (x)dx , (9.8)

and mμω2
μ the modal stiffness. Its reciprocal may be interpreted as a modal compli-

ance Cμ.
1

Cμ
:= mμω2

μ (9.9)

With the mode shape functions Yν and the time dependent functions ην , differentia-

tion of Equation 9.6 with respect to time yields for the bending velocities at positions

xi (i = 1, 2)

ẇ(xi, t) =
∞∑

ν=0

Yν(xi)η̇ν(t) . (9.10)

Hence, the instantaneous power at positions xi (i = 1, 2) and time t is

F (xi)ẇ(xi, t) =
∞∑

ν=0

[ Yν(xi)F (xi) ] η̇ν(t) . (9.11)
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Fig. 9.4 Modal bond graph of the Bernoulli-Euler beam with force-free boundaries (Karnopp,

1968)

9.3.2 A Modal Bond Graph Model of the Bernoulli-Euler Beam

The decoupled Equations 9.7 for the time dependent functions ημ (μ = 1, 2, . . .),
Equation 9.10 for the bending velocities ẇ(xi, t), and Equation 9.11 for the instan-

taneous power at positions xi (i = 1, 2) and time t can be clearly represented in

an easy to remember bond graph building block that goes back to Karnopp [18]

(Figure 9.4). In Figure 9.4, the two 0-junctions represent the imposed forces and

the 1-junctions stand for the modal velocities η̇μ (μ = 0, 1, 2, . . .). Each pair of I

and C energy stores attached to a 1-junction represent a modal oscillator with modal

mass mμ, modal stiffness 1/Cμ and mode frequency ωμ (μ = 2, 3, . . .). There is no

C element attached to the first two left side 1-junctions. The reason is that in the case

of force-free boundary conditions, the equation for the determination of the mode

frequencies has a root ω = 0 that is repeated two times. If the two corresponding

mode shapes called rigid body modes (they are the two possible solutions of the

equation d4Y/dx4 = 0) are chosen to be Y0(x) = 1 and Y1(x) = x − L/2, then

the modal mass m0 equals the mass, m, of the entire beam and the modal mass m1

becomes the moment of inertia, Jc, with respect to an axis of rotation in the beam’s

centre of mass. In fact, for ω0 = 0, Equation 9.7 becomes

m0 η̈0 = F1 + F2 , (9.12)

where m0 = �A
∫ L

0
12dx = m. For ω1 = 0, Equation 9.7 yields

m1 η̈1 = (x1 − L

2
) × F1 + (x2 − L

2
) × F2 , (9.13)

where m1 = �A
∫ L

0
(x − L/2)2dx = mL2/12 =: Jc.

The power conservative transformers transform the external forces at positions

xi (i = 1, 2) into forces that stimulate the modal oscillators. That is, the sum-
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mation of forces at the 1-junctions yields the decoupled second order ODEs (9.7)

for the modal oscillators. Conversely, the transformers supply modal velocities η̇μ

weighted by the mode shapes Yμ(xi) (i = 1, 2). To keep the bond graph clear, trans-

former moduli are not depicted. The summation of weighed modal velocities at the

0-junctions yields the bending velocities ẇ(xi, t) at positions xi (i = 1, 2) given

by Equation 9.10. Since the mode shapes Yμ(xi) (i = 1, 2) only depend on fixed

positions xi, the transformer moduli are constant.

9.3.3 State Space Approximation

It is true that the modal analysis provides an infinite number of mode frequencies

ωμ (μ = 2, . . .). In practice however, only a sufficiently small number is used so

that a low order state space model results. If n modal oscillations are taken into ac-

count, then all modal masses may be combined into a diagonal matrix M , all modal

stiffnesses into a diagonal matrix K , and all mode shapes Yij := Yi(xj) into a

matrix Y = (Yij). Using these matrices and the vectors η̇ = [η̇1 η̇2 . . . η̇n]T ,

F = [F1 F2]T and ẇ = [ẇ1ẇ2]T , the equations of the bond graph in Figure 9.4

may be approximated and the result formulated in compact form.

M η̈ + K η = Y F (9.14a)

ẇ = YT η̇ (9.14b)

The second order ODE for the modal oscillators, Equation 9.14a, and the veloc-

ity transformation, Equation 9.14b, may be represented by the multibond graph in

Figure 9.5.

By introducing a vector of all momenta, p := M η̇, and renaming the modal

displacements, q := η, we get a state space model[
ṗ
q̇

]
=

[
0 −K

M−1 0

]
·
[
p
q

]
+

[
Y
0

] [
F
]

(9.15)

that approximates a distributed parameter model. If the modal displacement η is

eliminated in Equations 9.14a–9.14b, then we obtain a macro-model of the dis-

tributed parameter subsystem relating the external forces acting on the beam and

the corresponding bending velocities ẇ(xi, t) at these positions.

Mẅ + Kw = F (9.16)

The matrices M and K in this macro-model are given by the transformation

M = Y−1M (Y−1)T (9.17a)

K = Y−1K (Y−1)T (9.17b)
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Fig. 9.5 Modal bond graph of a distributed parameter model in multibond graph representation

9.3.4 Features of the Generic Modal Beam Bond Graph Model

The modal analysis approach presented above is characterised by the following fea-

tures.

• It is true that the modal bond graph model in Figure 9.4 has been developed under

some simplifying assumption for the example of a uniform beam. The structure

of the bond graph, however, remains the same for other linear distributed pa-

rameter models, even for planar and 3D-models, although the determination of

mode shapes, mode frequencies and modal masses may become quite difficult as

Karnopp, Margolis and Rosenberg have observed [19].

• The mode shapes and the modal masses may be numerically approximated. How-

ever, numerical approximations of the mode shapes, Yn, n ∈ N, should retain the

fact that mode shapes are orthogonal. (cf. Equation 9.5).

• If there are more than two forces acting in different positions on the distributed

parameter system, then additional corresponding 0-junctions can be added to the

bond graph in Figure 9.4. They must be connected via transformers to all 1-

junctions of the modal velocities. Moreover, the model can be extended to ac-
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count for external moments acting on a distributed parameter subsystem. In the

case of an external moment, the modulus of the transformer converting it into a

modal force is not a mode shape Y (x), but the derivative dY (x)/dx [21].

• External forces and moments are determined by the subsystems that the dis-

tributed parameter system is connected to. In other words, this means that a

lumped parameter model can be established for an overall system including sub-

systems that must be considered distributed parameter systems. For the latter,

the modal bond graph model of Figure 9.4 is used as a generic building block.

The 0-junctions in this model represent the connecting points of the distributed

parameter subsystem to the other subsystems. In particular, this means that by

repeated use of the Bernoulli-Euler beam model, it is possible to set up models

for flexible mechanical structures.

• Finally, it must be pointed out that in contrast to a simple concatenation of spring-

mass pairs considered in the beginning of this chapter, the modal analysis ap-

proach enables one to develop accurate low order models. For instance, in [22],

Margolis reports that the finite difference method applied to the problem of the

interaction between a high speed vehicle and an elevated roadway has resulted in

ten times more equations compared to an approximation based on modal analy-

sis, while the numerical results practically cannot be distinguished.

9.3.5 Further Aspects of the Generic Modal Beam Bond Graph
Model

The modal analysis approach to a representation of distributed parameter models by

bond graphs considered thus far still leaves some questions to be addressed.

The Number of Modal Oscillators

As previously mentioned, in practice, a certain number of the theoretically infinite

number of modal frequencies is used. The question is how many modes must be

taken into account in order to capture the characteristics of the dynamic behaviour

and to obtain sufficiently accurate simulation results. As a rule of thumb, Margolis

suggests to take into account all modal frequencies up to a frequency that is twice

the highest frequency of interest in the model of the overall system ([19], p. 398ff).

However, it is not possible to compute the natural frequencies that determine the

dynamic behaviour of a system prior to a simulation run. Consequently, engineering

experience is required to limit the frequency range of interest and to decide up to

which frequency modal frequencies are to be taken into account. For instance, in

a study of the interaction between a high speed vehicle and an elevated guideway

presented by Margolis in [21], the guideway is considered to be composed of con-

nected uniform Bernoulli-Euler beams. Simulation results of that study showed that

it was sufficient to retain five modes in the generic modal beam model.
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Accounting for Damping

In general, distributed parameter systems are lightly damped. Of course, the loss

of free energy is also spatially distributed. However, it is generally not easy to add

proper damping terms to the partial differential equation of the subsystem. More-

over, the well known separation-of-variables approach, in general, is only applicable

if there is no damping term in the differential equation. In practice, useful results can

be obtained by adding a linear resistor Rμ = 2Dμωμmμ to the two energy stor-

age elements of a modal oscillator connected to a 1-junction where the value of the

mode damping ratio, Dμ, may be guessed based on experimental data.

Velocity Inputs into the Generic Modal Beam Bond Graph Model

Regarding causalities, one can see from the bond graph of Figure 9.4 that forces or

moments imposed on the modal beam model lead to integral causality at all storage

ports. However, if at one point a subsystem imposes a velocity on the distributed

parameter model, then conversely, one of the modal inertias must accept derivative

causality. Consequently, a causal path arises between this modal inertia and each

one of the other modal inertia in integral causality. All these causal paths have in

common the 0-junction at which the external velocity is imposed. That is, the veloc-

ity of the modal inertia in derivative causality depends on all other modal velocities

and the external velocity imposed at the 0-junction (Figure 9.6). In this case, the

mathematical model is of the form of a DAE system of differential index one.

Derivative causalities at modal inertias due to velocity inputs can be removed by

the use of modal compliances Cμ (μ > n)without their accompanying modal inertia

in addition to the n modal oscillators with natural frequencies ων , (ν = 1, 2, . . . n),
[22]. An example with one velocity input is shown in Figure 9.7. In this way, it is
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Fig. 9.7 Modal bond graph with two modal oscillators, one velocity input v2 and an additional

modal compliance C3

possible to assign integral causality to all energy stores. Hence, the mathematical

model approximating the distributed parameter model is of the form of an explicit

state space model. Since the number, n, of modal frequencies has been chosen such

that the highest natural frequency is at least twice the highest frequency that is of

interest in the model of the overall system, further modal oscillations are stimulated

far below their natural frequency. Consequently, accounting for further modal os-

cillators does not result in a significant improvement of simulation results. That is,

they can be omitted. If the C energy stores of further oscillators are included in the

model, then the dynamic behaviour determined by low frequencies is improved.

Significance of Forced High Frequency Modal Oscillations

For illustration of the above considerations, we assume that the μth modal oscillator

is forced by a harmonic input and performs weakly damped oscillations described

by an equation

η̈μ + 2Dμωμη̇μ + ω2
μημ =

1
mμ

YμF , (9.18)

where Dμ is the damping ratio and F the harmonic input of excitation frequency

Ω (F = F0 sin Ωt). If Ω is in the frequency range of interest and if the natural

frequency of the undamped μth modal oscillator, ωμ, is far above this range, i.e.,

Ω � ωμ, then the amplitude ημ0 of the forced oscillation (of frequency ωμ ×√
1 − D2

μ) is
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ημ0 =
1

mμ
Yμ F0 × 1√

(ω2
μ − Ω2)2 + (2DμωμΩ)2

(9.19a)

≈ 1
mμ

Yμ F0 × 1
ω2

μ

, (9.19b)

while the maximum value at resonance (Ω = ωμ ×
√

1 − 2D2
μ) is

ημ max =
1

mμ
Yμ F0 × 1

ω2
μ

× 1

2Dμ

√
1 − D2

μ

. (9.20)

For Dμ � 1, i.e., for weak damping, the amplitude of the forced modal oscillation

is only a fraction of the maximum value at resonance.

ημ0 ≈ 2Dμημ max (9.21)

Combining Additional Modal Compliances into a C-Field

If from all modal oscillators with a natural frequency above a certain value only

the C energy stores are retained, then the latter can be combined into a two-port

C element between the two 0-junctions. Since this C field must accept derivative

causality at its ports, it contributes to the bending velocities at the 0-junctions of the

two point with force inputs.

The equations of the C field in Figure 9.8 can be obtained in the following man-

ner. For each additional C energy store without accompanying inertia, Equation 9.7

reduces to
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Fig. 9.8 Modal bond graph with n modal oscillators and a C field
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1
Cμ

ημ = Yμ1 × F1 + Yμ2 × F2 , (9.22)

where Yμ1 := Yμ(x1) and Yμ2 := Yμ(x2). If we differentiate this sum of forces with

respect to time and insert the result into Equation 9.10 for the velocities at locations

xi, vi = ẇ(xi, t) (i = 1, 2), then we get

vi =
n∑

ν=0

Yνiη̇ν +
∞∑

ν=n+1

Yνi Cν [ Yν1 Ḟ1 + Yν2 Ḟ2 ] . (9.23)

Hence, the constitutive equation of the C field reads[
v′1
v′2

]
=

[
c11 c12

c21 c22

]
︸ ︷︷ ︸

C

[
Ḟ1

Ḟ2

]
, (9.24)

where

c11 =
∞∑

ν=n+1

Cν Y 2
ν1 (9.25a)

c22 =
∞∑

ν=n+1

Cν Y 2
ν2 (9.25b)

c12 = c21 =
∞∑

ν=n+1

Cν Yν1 Yν2 (9.25c)

(The symmetry of the matrix C indicates that the C field is energy conservative).

Thus, taking into account only the C energy store of modal oscillators with a natural

frequency far above the frequency range of interest, derivative causality at the inertia

of a modal oscillator can be removed without affecting the dynamic behaviour.

Algebraic Loops in the Generic Bond Graph Beam Model

If there are two or more velocity inputs, then this method yields algebraic loops

(Definition 4.3) in the junction structure of the modal model (cf. Figure 9.9).

In the bond graph of Figure 9.9, bonds 1−8 build a causal loop (Definition 3.10)

associated with two opposite oriented algebraic loops. Let Yij be the ith mode

shape, (i = 1, . . . 4), at location xj , (j = 1, 2). Then by summing up the flows

at the two 0-junctions, we get a set of two linear algebraic equations for the addi-

tional modal velocities η̇3, η̇4

η̇3 =
1

Y31
( v1 − Y11 η̇1 − Y21 η̇2 − Y41 η̇4 ) (9.26a)

η̇4 =
1

Y42
( v2 − Y32 η̇3 − Y22 η̇2 − Y12 η̇1 ) . (9.26b)
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Fig. 9.9 Bond graph with two modal oscillators, two velocity inputs and an algebraic loop

The determinant of the set of equations

Δ = 1 − Y32

Y42
× Y41

Y31
(9.27)

is different from zero since Yi1 �= Yi2, (i = 3, 4). Thus, the additional modal veloc-

ities η̇3, η̇4 may be expressed in terms of the external velocities v1, v2 and the modal

velocities η̇1, η̇2. As a result, a state space model can be set up. The components of

the state vector are outputs of the energy storage elements in integral causality, i.e.

the modal velocities η̇1, η̇2 and the modal spring forces FC1 , FC2 .

9.3.6 Flexible Mechanical Structures

We conclude these considerations of the modal analysis from a bond graph mod-

elling point of view with some remarks on how to proceed in the case of more com-

plex flexible structures. The above given list of features characterising the modal

analysis approach mentions that the modal bond graph of the Bernoulli-Euler beam

can be considered a generic model. It can be used repeatedly for substructures in or-

der to build a model of a more complex flexible structure. In fact, if we partition an

overall mechanical structure into substructures and use the generic model for each

substructure, then the modal models can be connected by C energy stores. This ap-

proach has been used, e.g., by Margolis [21] as well as by Buil and Pelegay [4]. In

order to ensure that there is no relative motion between the substructures, the springs

between them must be sufficiently stiff. An advantage of coupling the substructures

by springs is that the modal models are excited by external efforts. Hence, all energy

stores in the bond graph model of the entire flexible structure have integral causal-

ity if there is no velocity input otherwise. That is, after linearisation, if necessary, a

state space model of the form
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ṗ
q̇

]
=

[
0 Apq

Aqp 0

] [
p
q

]
+

[
B
0

]
e (9.28)

can be set up for the entire flexible structure or for the entire system if no friction has

to be taken into account and if the system is externally excited by efforts only. In this

equation, the vector p combines the momenta of all inertias while the displacements

of all C energy stores are grouped into the vector q. Input efforts are combined into

the vector e. If the parameters of all inertias are grouped into the diagonal matrix

M, then the state space model can be reduced to the form

Mη̈ + Kη = Be (9.29)

by means of the transformation p = Mη̇ with the symmetric stiffness matrix K =
−ApqAqpM.

In [4], Buil and Pelegay inspect the structure of the matrices Apq, Aqp and point

out that these matrices can be systematically established for the entire system with-

out the need for constructing a bond graph if the flexible mechanical structure is

partitioned into several elements and if a generic modal submodel is used for each

of these distributed parameter subsystems. Once these matrices are available, the

Lagrange equation for the displacements of the inertias can be set up. With its solu-

tions, the bending w(x, t) can be computed for each location x of the entire flexible

structure.

After an eigenvalue analysis of the homogeneous part of Equation 9.29, i.e., after

determination of the natural frequencies and the eigenvectors of the entire system,

Margolis performs another transformation leading to a decoupling of the equations

[24]. If the eigenvectors ri (i = 1, 2, . . . , k) are combined into a the matrix R =
[r1r2 . . . rk], then the transformation

z := R−1η (9.30)

converts Equation 9.29 into a set of decoupled equations of the form

M z̈ + K z = RT Be , (9.31)

where M := RT MR and K := RT KR are diagonal matrices. Thus, after this

second transformation step, the entire flexible structure can be represented in the

same manner as a distributed parameter subsystem by a set of decoupled oscillators

excited by external efforts via transformers. The number of the oscillators in the

overall model is equal to the sum of all modal oscillators in the submodels of the

flexible elements and other oscillators in lumped parameter models that excite the

overall flexible structure.
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9.4 Finite Element Method

Besides modal analysis, the finite element method is another powerful and of-

ten used approach to an approximation of distributed parameter models. This

method is supported by software programs used in industry, e.g. ANSYS®1 [1]

or NASTRAN®2 [28]. Most often, the finite element method (FEM) is applied to

flexible mechanical components, entire structures or to fluids. However, the finite

element method is also used to compute heat transfer problems or magnetic fields.

The applications mentioned indicate that the finite element method is mainly used

to model subsystems or problems within one discipline, whereas bond graphs are

specially suited for modelling multidisciplinary systems or problems. This section

shows that both methods may be suitably combined. The presentation is confined to

mechanical systems.

As it is well known, the starting point of the finite element method is to parti-

tion the geometric shape of a body into parts or regions of appropriate shape and

size called finite elements or simply elements. The latter are coupled with adjacent

elements by means of nodes on their boundaries. As a result, the overall geomet-

ric shape is composed of numerous elements of different shape and size connected

together by nodes on their boundaries. The finite element method enables to set up

systematically a set of equations for the physical unknowns in the nodes. Depend-

ing on the problem under consideration, the latter can be mechanical displacements,

forces, stress, pressures or temperatures.

One reason for the popularity of the finite element method is that real technical

components with complex geometric shapes can be built by composing elements of

simpler geometric shapes according to a unit construction system. For that purpose,

FEM software provides libraries with numerous element types (rods, beams, plates,

etc.). The mass and the stiffness matrices of these elements can be used to system-

atically set up the corresponding matrices in the state space model of the overall

structure. By this way, a (large) set of linear equations results that approximately

describes the overall system. Using (local) refinement of the finite element grid, a

required accuracy can be met at the price that the number of unknowns and conse-

quently the computation time for solving the set of equations significantly increases.

This kind of computational problem, however, has the advantage that its compu-

tation can be distributed over several processors and can be performed in parallel.

In contrast, analytical calculations based on the theory of elasticity are essentially

confined to simple elements. There are quite a number of textbooks on the finite

element method. Although the method is applied to problems in many fields, ap-

plication to multidisciplinary problems still is not easy and not fully supported by

standard FEM software.

1 ANSYS, ANSYS Workbench, AUTODYN, CFX, FLUENT and any all ANSYS, Inc. brand,

product, service and feature names, logos and slogans are registered trademarks or trademarks of

ANSYS, Inc. or its sudsidiaries in the United States or other countries.
2 NASTRAN is a registered trademark of NASA, Suite 5K39 Washington, DC 20546-0001, USA,

http://www.nasa.gov/
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Fig. 9.10 Longitudinal vibrating bar element with two nodes

9.4.1 Classical Finite Element Method Revisited

Before we address a combination of bond graph modelling and the classical finite

element method, some basics of the latter are briefly recalled.

Longitudinal Vibrations in a Bar

For that purpose, consider as basic element a bar of length L, of constant cross sec-

tional area A, uniform density � and Young’s modulus E as depicted in Figure 9.10.

In the bar, longitudinal vibrations may take place and u(x, t) may denote the elon-

gation at location x at time t. Let ul(t), ur(t) be the elongations at the left end and

at the right end side of the bar.

From the balance of forces acting on an infinitesimal small lump of length dx,

the partial differential equation

�A
∂2u

∂t2
=

∂

∂x

(
EA

∂u

∂x

)
(9.32)

results. For a displacement u(x, t) inside the element, that is, 0 < x < L, the finite

element method assumes that it can be approximated by a function

ũ(x, t) := g1(x)ul(t) + g2(x)ur(t) , (9.33)

where g1, g2 are linear independent, still unknown so-called shape functions. Let

d(t) := [ul(t) ur(t) ]T and G(x) := [ g1(x) g2(x) ]. Then, Equation 9.33 can be

written as

ũ(x, t) = G(x) · d(t) . (9.34)

For the kinetic energy, T, of the bar element

T (t) =
1
2

∫ L

0

�A

(
∂ũ

∂t

)2

dx (9.35)
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we get

T (t) =
1
2
ḋT Mḋ , (9.36)

where

M :=
∫ L

0

�AGT (x)G(x)dx (9.37)

denotes the mass matrix . The potential energy, V, of the bar element is equal to the

elastic deformation energy and is given by

V (t) =
1
2

∫ L

0

EA

(
∂ũ

∂x

)2

dx . (9.38)

By means of Equation 9.34, this expression can be written in the form

V (t) =
1
2
dT Kd , (9.39)

where

K :=
∫ L

0

EA (G′)T (x)G′(x)dx (9.40)

is the stiffness matrix. By combining the forces acting on the end nodes into a vec-

tor of node forces, F(t) = [Fl(t), Fr(t) ]T , and substituting it into the Lagrange

equation
∂

∂t

(
∂L

∂u̇

)
− ∂L

∂u
= F , (9.41)

L := T − V , along with the expressions for the kinetic and the potential energy,

we get for the vector u of displacements in the end nodes of the bar the equation of

motion

Md̈(t) + Kd(t) = F(t) . (9.42)

This equation can be represented by the multibond graph in Figure 9.11.

The mass matrix as well as the stiffness matrix are symmetric as their above

given expressions show. Their coefficients are determined by the shape functions.

The latter result from the assumption that the axial stiffness is time-independent

throughout the system (cf. [14], Section 13.4). That is, integration of the requirement

EA
∂2ũ

∂x2
= 0 ∀x ∈ (0, L) (9.43)

with respect to the location x yields

ũ(x, t) = c1(t) x + c2(t) . (9.44)

From the boundary conditions ũ(0, t) = ul(t) and ũ(L, t) = ur(t) we get the

‘constants of integration’.
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Fig. 9.11 Multibond graph representation of a bar element

c1(t) =
ur(t) − ul(t)

L
(9.45a)

c2(t) = ul(t) (9.45b)

Thus, the shape functions are

g1(x) = 1 − x

L
(9.46a)

g2(x) =
x

L
. (9.46b)

With these shape functions, the mass matrix and the stiffness matrix take the form

M =
�AL

6

[
2 1
1 2

]
(9.47a)

K =
E A

L

[
1 −1
−1 1

]
. (9.47b)

Reference Frames

The above computation of the mass matrix and the stiffness matrix of a bar element

assumes a local reference frame sitting in the left side node of the element. However,

if the bar is part of a flexible structure, e.g. a planar triangle built by three rods, then

the bar’s position must be taken into account with reference to global frame. For that

purpose, we assign displacements in a global reference system (x, y) a horizontal

bar over the symbol: u = [ ux, uy ]T . If, for instance, a local reference frame (x, y)
is rotated by an angle α with respect to the global frame, then the transformation of

a displacement u into the corresponding displacement u in the local frame is

u = Tu , (9.48)
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where T denotes the matrix

T :=

⎡⎢⎢⎣
cos α sin α 0 0
− sin α cos α 0 0

0 0 cos α sin α
0 0 − sin α cos α

⎤⎥⎥⎦ . (9.49)

Thus, in the global frame, the equation of motion Equation 9.42 reads

M ü + K u = F , (9.50)

where M = TT MT, K = TT KT and F = TT F. Note that the transforma-

tion matrix T is orthogonal.

Assemblies of Bars

If an equation of motion has been set up for the displacements of each finite element

of an overall flexible structure, then the mass matrix and the stiffness matrix in the

dynamic equation of the entire flexible structure can be constructed in a system-

atic manner from the corresponding matrices of the elements. For that purpose, one

makes use of the simple fact that the displacements of nodes joined together must

be equal and that forces in these nodes must be in balance. In this brief outline of

the finite element method, we will refrain from an illustration how to build the mass

and the stiffness matrix of a flexible structure from the corresponding matrices of its

elements. For details, see e.g. [26].

If a flexible structure can be partitioned into a small number of simple elements,

then an alternative option is to set up the Lagrange function for each element analyt-

ically and to add them up into the Lagrange function of the entire flexible structure.

Its proper differentiation yields the equations of motion for the entire structure. For

instance, assume a cantilever bar that can be divided into three elements with differ-

ent cross sectional areas and different length. Each bar element can be considered

to be a bar with two end nodes for which the Lagrange function is analytically

determined. From the sum of these functions, the Lagrange equations for the dis-

placements of the four nodes can be derived (cf. [14], Example 13.4.3, pp. 297)

Often, it is assumed that the stress inside an element is constant because linear

interpolation is used and the gradients of stress or displacements are constant within

each finite element. This consideration was used above when we determined the

shape functions for a bar element. Since the stress in an element differs from the

one in the neighbouring element, there is a discontinuity in the node connecting

both elements. These discontinuities can be decreased by a refinement of the finite

element grid. The disadvantage, however, is that the computational amount signif-

icantly increases with the number of elements. To avoid this disadvantage and to

improve accuracy, the number of degrees of freedom of each element is increased.

Besides the nodes on the boundary, an element has one or more internal nodes. We

may think that, for example, a rod being part of a flexible structure is itself composed

of rod elements. As an example, Figure 9.12 shows a planar triangle composed of
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Fig. 9.12 Planar triangle composed of three bars and six nodes

three bars. For each of these an internal node in its centre is taken into account.

That is, the triangle has six nodes and 12 degrees of freedom for a two-dimensional

model.

As the simple example of a longitudinal vibrating bar shows, the finite element

method converts the problem of solving the partial differential equation, Equa-

tion 9.32, into the task of solving a linear second order ODE, Equation 9.42, for

the displacements of the nodes on the boundary of an element. This is achieved by

assuming that the displacement, u(x, t), at any location x, 0 < x < L, can be ex-

pressed as a sum of the displacements at the boundary weighted by shape functions,

Equation 9.33, that depend on x. If damping forces due to friction inside the material

are neglected, then the matrices in the resulting ODE are the mass and the stiffness

matrix of the element.

9.4.2 Bond Graph Representation of Finite Element Models

The equations of motion of a flexible structure modelled by finite elements can

be represented by a bond graph if the matrices are considered as the matrices of

an I field or a C field . One field stores kinetic energy while the other one stores

potential energy. Since both matrices are symmetric, their constitutive equations

comply with Maxwell’s reciprocity condition (Equation 8.8 or Equation 8.5). That

is, both fields are energy conserving. The sum of inertia and spring forces according

to Equation 9.42 can be represented by 1-junctions for the node velocities [29].

Hence, a finite element with one internal node can be represented by the multibond

graph in Figure 9.13. The dimension of the multibonds in that graph is equal to the

number of degrees of freedom of the nodes.
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ṗ3

ṗ2

Fig. 9.13 Multibond graph representation of a finite element with three nodes

The structure of the bond graph and its elements are retained, if there is a change

from a local frame to a global one. Only the matrices are to be replaced by the

corresponding transformed ones (cf. Equation 9.50). If the description of each fi-

nite element of a flexible structure is related to a global reference frame, then the

finite element models can be composed to a bond graph model of the overall flex-

ible structure. However, since end nodes of different finite elements have the same

velocity when merged into a node connecting two adjacent finite elements, many of

the ports of the I field of a finite element must accept derivative causality. As can

be seen from Figure 9.13, the 1-junction representing the velocity of a joint node

between two finite elements is connected with the I field of both finite element mod-

els. The problem of many storage ports with derivative causality can be overcome

by lumping the inertia of a flexible structure in the nodes connecting finite elements.

Essential Degrees of Freedom

Furthermore, since a finite element grid with a high number of nodes leads to a cor-

respondingly high number of degrees of freedom, it has become common to distin-

guish between essential and non-essential displacements before an eigenvalue anal-

ysis is performed. Assuming that no external forces act at points with non-essential

displacements, the corresponding degrees of freedom can be removed and the order

of the model can be reduced. If the mass of a flexible structure is condensed into

the nodes connecting adjacent finite elements, then it is obvious to consider internal

nodes of finite elements as candidates of nodes with non-essential displacements

and to eliminate them. Thus, the vector u of nodal displacements can be partitioned

into a sub-vector uc of displacements of coupling nodes and a sub-vector ue of dis-

placements of internal nodes to be eliminated. Consequently, the stiffness matrix K
can be partitioned and in steady-state, Equation 9.42 reads
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Kcc Kce

Kec Kee

] [
uc

ue

]
=

[
Fc

0

]
, (9.51)

where Fc denotes the vector of external forces acting on the coupling nodes. For the

displacements ue to be eliminated, it follows

ue = K−1
ee · Kecuc . (9.52)

Thus,

u = Tuc , (9.53)

where

T =
[

I
−K−1

ee Kec

]
. (9.54)

With this relation, Equation 9.42 reduces to an equation of motion for the essential

degrees of freedom.

TT MTüc + TT KTuc = TT F (9.55)

Thus, if the spatially distributed mass of a flexible structure is condensed into

the nodes that join adjacent finite elements and if displacements of internal finite

element nodes considered non-essential are eliminated, then a finite element can be

represented by the simplified bond graph model depicted in Figure 9.14.

If the displacements of nodes connecting finite elements are expressed in a global

reference frame (cf. Equation 9.50), then, by repeated use of the model in Fig-

ure 9.14, a bond graph model for a flexible structure composed of bar elements can

be assembled. The resulting bond graph model has a reduced number of degrees of

freedom and shows no causal conflicts.

Se Se

1 1

I I

C

��

��

��

��

�� ��u̇1 u̇2

F1 F2

: M1 : M2

Fig. 9.14 Finite element bond graph model after mass condensation and reduction of internal

degrees of freedom
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Bond Graph Representation of a Finite Element Model of a Beam with Transverse
Motion

The bond graph model of Figure 9.14 is not confined to finite elements of longi-

tudinal vibrating bars. For transverse motion of beam elements, the model has the

same structure. To see this, consider the two-dimensional case. Let w(x, t) be the

transverse displacement at location x of a beam of length L and q(x, t) a force load

distributed over the length of the beam element. Under the Bernoulli hypothesis that

there is no shear deformation and that lumps of thickness Δx have no rotary inertia

(Bernoulli-Euler beam), the transverse displacement w(x, t) is determined by the

partial differential equation

� A
∂2w

∂t2
+ EI

∂4w

∂x4
− q = 0 . (9.56)

Like for a longitudinal vibrating bar, this partial differential equation can be con-

verted into a second order ODE for the displacements at both ends of a beam

element. Let the angle ψ denote the rotation of the neutral axis with respect

to a horizontal reference, ψ(x, t) := ∂w/∂x, and let the transverse displace-

ment w(x, t) and the angle ψ have an index l or an index r at the left side or

the right side of the beam. These four displacements are combined into a vector

d(t) := [wl(t) ψl(t) wr(t) ψr(t) ]T .

Similar to the case of a longitudinal vibrating bar, it is assumed that the exact

solution w(x, t) of Equation 9.56 can be approximated by a function

w̃(x, t) := G(x) · d(t) , (9.57)

where the coefficients of the matrix G(x) = [ g1(x) g2(x) g3(x) g4(x) ] are shape

functions to be determined3.

Furthermore, let D1 := ∂2/∂t2 and D2 := ∂4/∂x4 be differential operators and

D := (�A × D1 + EI × D2) such that Equation 9.56 can be written in the form

D(w) = q , (9.58)

for short.

As w̃(x, t) is an approximation of w(x, t),

R(x, t) := D(w̃(x, t)) − q(x, t) �= 0 . (9.59)

Now, according to Galerkin’s weighted residual method, the error or residual,

R(x, t), is multiplied by the functions gj(x) and it is required that

3 Note that the exact solution of Equation 9.56 is approximated by a finite linear combination

of linear independent functions from a set of basis functions {gi(x)} in contrast to the classical

modal analysis where it is assumed that the exact solution can be represented as a series of time

dependent functions ην(t) weighted by functions Yν(x) being solutions of Equation 9.3.
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0

gj(x) R(x, t) dx = 0 j = 1, . . . , 4 . (9.60)

Substituting w̃(x, t) into the functional of Equation 9.60 results in

4∑
i=1

(∫ L

0

�Agi(x)gj(x)dx

)
D1(di(t)) +

4∑
i=1

(∫ L

0

EI × D2(gi(x))gj(x)dx

)
di(t) =

∫ L

0

q(x, t)gj(x)dx . (9.61)

This leads to an equation of motion for the nodal displacements at the ends of the

beam

Md̈(t) + Kd(t) = F(t) . (9.62)

That is, a beam element can also be represented by the multibond graph in Fig-

ure 9.11.

The coefficients in these matrices are

mij := � A

∫ L

0

gi(x) gj(x) dx (9.63a)

kij := EI

∫ L

0

g′′i (x) g′′j (x) dx (9.63b)

where i, j = 1, . . . , 4.

The components of the vector F are given by

Fj(t) :=
∫ L

0

gj(x) q(x, t)dx , (9.64)

where j = 1, . . . , 4.

Now, let us determine the still unknown shape functions gi(x). Assume that there

is no load distributed over the length of the beam. Then, repeated integration of the

ODE

EI
∂4w̃

∂x4
= 0 (9.65)

eventually yields for the tranverse displacement w̃(x, t)

w̃(x, t) = (1 − 3x2

L2
+

2x3

L3
) × wl(t) + (

x

L
− 2x2

L2
+

x3

L3
)L × ψl(t)

+ (
3x2

L2
− 2x3

L3
) × wr(t) + (− x2

L2
+

x3

L3
)L × ψr(t) . (9.66)

Hence, the shape functions to be determined are

g1(x) = 1 − 3x2

L2
+

2x3

L3
(9.67a)
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g2(x) = (
x

L
− 2x2

L2
+

x3

L3
)L (9.67b)

g3(x) =
3x2

L2
− 2x3

L3
(9.67c)

g4(x) = (− x2

L2
+

x3

L3
)L . (9.67d)

Again, assume that the mass of the beam element can be condensed in the left

and the right side points. Then, a beam element with tranverse motion can also be

represented by the bond graph shown in Figure 9.14.

Finally, if longitudinal and tranverse motion are superimposed, then the 1-

junctions represent the derivatives of the nodal displacements di = [ui, wi, ψi ]
(i = 1, 2), where ui denotes the longitudinal displacement of the ith node at the

left or right end of an element. Forces and moments at that node are combined into

a vector Fi.

The stiffness matrix of a beam element results from the evaluation of the integral

in Equation 9.63b using the expressions for the shape functions (Equations 9.67a–

9.67d) and by taking into account the forces and bending moments acting at the left

and the right end of a beam element. The resulting stiffness matrix reads

K =

⎡⎢⎢⎢⎢⎢⎢⎣
EA/L 0 0 −EA/L 0 0

0 12EI/L3 6EI/L2 0 −12EI/L3 6EI/L2

0 6EI/L2 4EI/L 0 −6EI/L2 2EI/L
−EA/L 0 0 EA/L 0 0

0 −12EI/L3 −6EI/L2 0 12EI/L3 −6EI/L2

0 6EI/L2 2EI/L 0 −6EI/L2 4EI/L

⎤⎥⎥⎥⎥⎥⎥⎦ .

(9.68)

Bond Graph Model of a Cantilever Beam

Having developed a bond graph model for longitudinal vibrations of bar elements

and transverse motion of beam elements, let us consider the well known example of

a cantilever beam fixed at its left end as depicted in Figure 9.15.

The external point forces acting at three different locations may be due to other

subsystems of an overall systems. Again, we assume a Bernoulli-Euler beam de-

scribed by Equation 9.56. The beam is divided into three finite elements. If the

mass of the beam is condensed in the nodes coupling the finite elements and if the

displacements of internal element nodes are considered non-essential that can be

eliminated, then a 2D problem with 3 × 2 degrees of freedom results. These de-

grees of freedom are the longitudinal displacement ui, the transverse displacement

wi and the rotation angle ψi of the neutral axis with respect to a horizontal reference

at locations xi, i = 3, 5, 7 (cf. Figure 9.15). Under these assumptions, the generic

bond graph model of Figure 9.14 can be used for each beam element. By concate-

nating the element models and condensing their inertias at the nodes between finite
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Fig. 9.15 Cantilever beam with point forces acting at three locations
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Fig. 9.16 Bond graph model of a cantilever beam with three finite elements and condensation of

the mass into the coupling nodes

elements, we get a bond graph model of the cantilever beam that accounts for its

2D motion (Figure 9.16).

9.5 Conclusion

The previous chapter has shown that in mechanics, bond graph modelling is not con-

fined to one-dimensional translational or rotational motion of rigid bodies, but rather

enables a compact description of more general 3D motion of systems of linked rigid

bodies. In this context, the question has come up as to how mechanical subsystems,

to be considered as a continuum, can be incorporated in a bond graph modelling of

an overall system. In other words, the question has been how a distributed parameter

model can be approximated by a lumped parameter bond graph model. The ques-

tion is of practical relevance because a closer look at some mechanical components

shows that inertia and compliance effects are to be considered spatially distributed
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and lumping them may not be sufficient, depending on the requirements modelling

a particular system has to meet.

The assumption of a distributed parameter model is not confined to mechanical

subsystems. A consequence, however, is that the mathematical model of the overall

system would consist of a boundary value problem for the continuum and an initial

value problem with a set of ordinary differential equations for the rest of the system

where the latter provides the boundary conditions for the partial differential equa-

tions describing the continuum. That is, the boundary conditions cannot be specified

as functions of time, but rather result from the solution of the initial value problem

which, again, needs input from the boundary value problem. Many modelling and

simulation programs do not accept such a combined description, at least not directly.

Thus, the question is how a distributed parameter model of a subsystem can be suf-

ficiently approximated by a lumped parameter model to be represented by a bond

graph.

If the aim is the development of a lumped parameter model, then an obvious ap-

proach is to divide a mechanical continuum along one axis into ideal rigid segments

followed by ideal flexible segments (cf. Figure 9.1). If the thickness of the segments

tended to zero, then their corresponding ordinary differential equations become the

partial differential equations describing the continuous spatial distribution of mass

and compliance. The disadvantage of such a ladder structure model, however, is that

the accuracy of simulation results does not increase accordingly with the number of

lumps. Thus, this approach to a lumped parameter approximation of a distributed

parameter model results in a high number of state equations.

Beyond this simple approach, it has been shown that the results of two classi-

cal methods, namely the normal mode analysis and the finite element method, can

be represented in terms of bond graphs. Consequently, the advantage of the two

methods can be used in bond graph modelling. The relation between modal analy-

sis and the bond graph methodology basically relies on the fact that the equations

resulting from the classical separation of variables approach can be represented

by a power conserving bond graph junction structure connecting external excita-

tions with modal oscillators (Figure 9.4). This important observation goes back to

Karnopp [18].

For practical computation, only a finite number of the infinite degrees of freedom

can be retained. As has been shown, after this step, the model can be clearly repre-

sented by a multibond graph. The number of normal frequencies to be retained de-

pends on the range of frequencies that is of interest with regard to the overall system.

This, however, is not known a priori and must be estimated based on engineering

experience which may be considered a weak point of the approach. However, if sig-

nificant normal frequencies are captured, highly accurate low order models can be

used as Margolis has found in several different projects. As a rule of thumb, he sug-

gests to account for all modal frequencies up to a frequency that is above twice the

highest frequency of interest in an overall system (cf. [22], or [19], p. 398ff). Motion

time histories resulting from models with different numbers of modal frequencies

are given by Margolis and Tabrizi [24].
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The basic model given by Karnopp (Figure 9.4) is generic in the sense that the

structure of the bond graph remains invariant for linear distributed parameter models

of different continua. Only modal masses, stiffnesses and mode shapes appearing in

transformer moduli must be computed according to the geometric shape of the con-

tinuum under consideration. If necessary, this can be done numerically. Neverthe-

less, this can be become difficult at least for 3D models of bodies with complicated

geometric shape. In such cases, an obvious approach is to partition a flexible struc-

ture into substructures in such a way that the overall system model can be built by

repeated use of the generic model (Figure 9.4) for the substructures. Moreover, as

pointed out by Karnopp and Margolis, the force free model can be used to approxi-

mate other boundary value problems.

As long as forces or moments are inputs of the generic model of flexible substruc-

tures, no causal problems occur. Consequently, the distributed parameter model of

an overall flexible structure can be approximated by a state space model. This result

can be achieved by assembling the modal models of substructures in such a way that

models are coupled by C energy stores [4, 21].

To ensure that there is no relative motion between substructures, connecting

springs must be sufficiently stiff. If a velocity is imposed on the modal model of

a flexible substructure by another submodel or by the rest of the overall system

model, then a modal inertia becomes dependent from all other modal inertias (Fig-

ure 9.6). This can be avoided by taking into account only the C energy store of all

modal oscillators with a natural frequency that is beyond a certain frequency range

(Figure 9.7). Since these oscillators do not contribute significantly to the dynamic

response, their inertia can be neglected and their compliance can be combined into

a two-port C element. If the generic modal model of substructure is excited by more

than one velocity input, then algebraic loops arise in its junction structure that are

to be symbolically solved (Figure 9.9).

An essential feature of the finite element method is that a model of a system

component of complex geometric shape can be composed by building blocks for el-

ements of simple geometric shape. Finite element programs come with libraries that

make models for various element types available. With the information about the

geometry and the positions of nodes (relative to a local body fixed reference frame)

about material properties and boundary conditions, stiffness and mass matrices of

finite elements can be set up and composed into the corresponding matrices of the

overall flexible mechanical structure (related to a global reference frame). The result

is a large set of second order ODEs for the displacements of the nodes of the finite

element grid.

The finite element approach can be linked to bond graph modelling by consid-

ering the stiffness and the mass matrix of finite elements as a C-field or an I-field

and by representing the equations of motion for the nodes of an element by a multi-

bond graph (Figure 9.13). The latter can be considered generic like the one resulting

from normal mode analysis because it does not only hold for bars. For other element

types it has the same structure. If this model is related to a global reference frame

(Equation 9.50), then models of finite elements can be composed to a model of a

flexible system component. Since end nodes of adjacent finite elements have the
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same joint velocity, many ports of the I-fields must accept derivative causality. This

problem can be removed by lumping the mass of connected finite elements in their

coupling nodes. Moreover, if displacements of internal nodes of a finite element are

eliminated, then its generic bond graph model simplifies to the one depicted in Fig-

ure 9.14. For illustration, this model has been used to build a bond graph model of

a clamped beam.

Consideration of the modal analysis and of the finite element method from a bond

graph modelling point of view leads to a generic model. By computing the model

parameters for each element and by connecting these submodels, a bond graph of

an overall flexible structure can be constructed that can be used as a submodel in

a bond graph of an overall system. For dividing a flexible system component into

finite elements and for setting up the mass and the stiffness matrix, a standard fi-

nite element program can be used independently of the modelling of the rest of the

system.

The considerations in this chapter show that bond graph methodology can be well

combined with classical methods for distributed parameter models in order to con-

struct low order lumped parameter bond graph models that approximate distributed

parameter models sufficiently accurate. That is, overall system models incorporat-

ing distributed parameter submodels can be uniformly represented by bond graphs

and processed by contemporary bond graph modelling and simulation software.
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Chapter 10
Bond Graph Modelling of Open
Thermodynamic Systems

The basic starting point for the bond graph modelling approach is the exchange

of energy between subsystems or system components. Apart from phenomena like

electromagnetic radiation, energy exchange, in most cases, is bound to real connec-

tions having a mass, e.g. mechanical links or electrical wires. These connections

remain invariant with regard to space and time if there are no switches.

In hydraulic and pneumatic systems, the transport of energy is bound to a mass

flow. That is, in addition to the transport of potential and kinetic energy, convection

of mass, momentum and internal energy must be taken into account. Hence, a bond

graph model should not only comply with the principle of energy conservation, but

also with conservations laws for mass and momentum. As early as 1977, A. Schöne

observed in an introductory article on abstract models of technical systems [33] that

in general, the building blocks of models of thermodynamic systems in process engineering

are connected not only by energy flows but also by mass flows.1

Taking a Lagrangian point of view [21], that is, the reference point is bound to

the motion of a group of particles and the requirement for mass conservation is met

in a trivial way. However, for computing practical problems, such an approach is not

suitable.

Common practice is to introduce a Eulerian control volume of appropriate bound-

ary that can change its size and, if necessary, can move. This consideration is bound

to a reference frame fixed in space. Inside the control volume, inertia and compli-

ance of a fluid are spatially distributed. If the boundary of the control volume is

pervious to mass such that mass flows can enter and leave, then we have a so-called

open system. These convection flows make bond graph modelling more difficult be-

cause the choice of two variables for which the product equals the total energy at an

element port is not straightforward. In hydraulic systems, the product of hydrostatic

pressure and volume flow only approximates the amount of instantaneous power.

In view of these difficulties, it is not surprising that several approaches to bond

graph modelling of open thermodynamic systems have been proposed in the litera-

ture. In the following, two approaches to basic problems shall be considered. This

1 translated from the German source [33]
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chapter focusses on some typical phenomena, viz. the storage of a compressible

fluid in a control volume (of variable size), its flow through a restriction, and flow

forces on spools in hydraulic valves.

Further reading on bond graph modelling in thermal and chemical engineer-

ing may be found, e.g., in [37, 38] exclusively devoted to this topic. Other books

include chapters on bond graph modelling in thermodynamics, see, for instance,

[6, 9, 11, 25, 28] (This list of references is not meant to be exhaustive). A number

of these chapters also present some case studies. With regard to hydraulic systems,

Dransfield used bond graphs in his textbook on hydraulic control systems in as early

as 1981 [13]. A more recent introduction to bond graph modelling of hydraulic and

pneumatic systems by Scavarda can be found in [32]. For the latest journal articles

using bond graphs in thermodynamics, see for instance [5, 12, 18, 19, 26, 30, 31].

10.1 Modelling Thermodynamic Systems by Pseudo Bond
Graphs

The approaches to bond graph modelling of open thermodynamic systems proposed

in the literature can be divided into two categories. One option is to try to develop

true bond graphs. That is, the product of effort and flow equals the instantaneous

total power transmitted between two power ports. This approach has been promoted

especially by the research of Breedveld [8]. By considering a number of idealised

case studies and by specifying an Eulerian control volume, Beaman and Breedveld

[2] showed that for open thermodynamic systems, in principle, true bond graphs can

be developed without introducing ad hoc elements. This has been carried out for

some real-world systems under some simplifying assumptions. Willson and Traver

[39], for instance, performed a control volume analysis of components of a 2-stroke

internal combustion liquid piston pump resulting in a true bond graph model in

which heat transfer has not been taken into account.

Another option is to dismiss this fundamental requirement in favour of more

flexibility. Resulting bond graphs are known as pseudo bond graphs (cf. Section 2.6).

The pseudo bond graph approach to modelling thermodynamic systems has been

used, e.g., by Karnopp [20, 22], by Gawthrop and Smith [15], and by Delgado and

her co-workers for modelling process engineering systems [16].

In both cases, mass flows and the convection of thermal energy are represented

by separate bonds, although mass and energy convection cannot be separated. Ap-

proaches differ in their choice of effort and flow variables. In the following section,

the modelling of thermodynamic systems by pseudo bond graphs is considered.

Apart from the restriction that the product of the variables associated with each

bond does not equal the instantaneous power, pseudo bond graphs share all other

features with true bond graphs.

• Like for true bond graphs, basic elements, e.g. sources, resistors as well as 0- and

1-junctions can be introduced.
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• Pseudo bond graphs can be systematically constructed like true bond graphs.

• The concept of computational causalities is applicable.

• Equations can be automatically derived from causally completed pseudo bond

graphs in the same manner as for causal true bond graphs.

Opposed to a greater flexibility in modelling thermodynamic systems with mass

flows and thermal convection, there are also some disadvantages.

• C elements are not energy conservative.

• Pseudo bond graphs accounting for thermodynamic processes in an engineering

system and true bond graphs for other energy domains cannot be simply coupled

via TF elements.

Remark 10.1. Although C elements in pseudo bond graphs are not energy conserva-

tive, there are still some advantages.

• Variables common in thermodynamics, e.g. the heat flow, Q̇, can be used.

• The accumulation of mass as well as of heat can be expressed explicitly. There-

fore, the C element in pseudo bond graphs is also called an accumulator [24].

10.1.1 Pseudo Bond Graph of a Heated Stirred Tank

As a simple introductory example of an open thermodynamic system, consider an

open topped tank with a mass flow ṁi of temperature Ti entering the tank and a mass

flow ṁo of temperature To leaving it. It is assumed that the direction of the mass

flows does not reverse. The fluid stored in the tank is heated. We assume that stirring

ensures a spatially uniformly distributed temperature T in the tank (Figure 10.1, see

also [15], p. 44). Moreover, we will assume that

• heat losses to the ambient can be neglected,

• the fluid is incompressible and that

• inertia effects can be neglected as well.

For a description of the hydraulic aspects, we choose as effort the hydrostatic

pressure p and as flow the mass flow ṁ. Apparently, the product of these two vari-

ables does not equal power. Hence, the bond graph in Figure 10.2 accounting for the

transport and the accumulation of mass is a pseudo bond graph.

Summation of flow variables at the 0-junction just gives the mass balance

ṁ = ṁi − ṁo . (10.1)

Note that if one takes p/� as effort, then the bond graph in Figure 10.2 becomes a

true bond graph accounting for hydrostatic power.

Since convection of thermal energy is bound to mass flows, we follow Karnopp

[20] or Gawthrop and Smith [15] and choose the enthalpy flow Ḣ as flow and the
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ṁo

�� ��
p ṁ
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Fig. 10.2 Pseudo bond graph accounting for hydraulic aspects

temperature T as effort for modelling the thermodynamic aspects. Again, the prod-

uct of both variables does not equal power. The enthalpy flow rather has the physical

dimension of power.

Enthalpy Flow Through a Short Pipe

For a short, well insulated conduit, the enthalpy flow is

Ḣ = h ṁ (10.2)

= cp T ṁ , (10.3)

where h denotes the enthalpy of a unit mass, cp the specific heat at constant pres-

sure, and T the upstream temperature. Equation 10.3 represents an algebraic relation

between the effort T and the flow Ḣ . Consequently, Gawthrop and Smith consider

it to be the constitutive equation of a thermal resistor with the special features that

• the flow does not depend on an effort difference,

• the resistor is modulated by the mass flow from the hydraulic domain.

Both properties are expressed in Figure 10.3. Since the right side bond connected

to the 1-junction is activated, it is not the temperature difference that is used in the
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Ḣ
1 �

��

MR�
ṁ

Fig. 10.3 Pseudo bond graph fragment representing an enthalpy flow through a short, insulated

pipe segment (Gawthrop and Smith, 1996)

constitutive equation of the R element, but the upstream temperature. The activated

bond propagates the enthalpy flow Ḣ .

Accumulation of Enthalpy

The enthalpy flows entering and leaving the tank, Ḣi or Ḣo, cause a temperature

change inside the tank. Let T denote the temperature inside the tank, then

H = cp m T , (10.4)

and

Ḣ = Ḣi + Q̇ − Ḣo . (10.5)

Equation 10.4 relates the effort T with the generalised displacement H and can

therefore be considered the constitutive equation of a thermal capacitor controlled

by the hydraulic quantity m (Figure 10.4).

In Section 2.5.3, it has been pointed out that modulated energy stores cannot

exist because they violate the principle of energy conservation. However, since in

pseudo bond graphs the product of the two variables associated with a bond does not

necessarily equal the amount of power flowing along the bond and because the C el-

ement is not energy conservative, modulated C elements may be admitted in pseudo
bond graphs. The C element introduced by Equation 10.4 is only an accumulator of

enthalpy.

A Pseudo Bond Graph Model Accounting for Mass and Enthalpy Accumulation

Both effects, namely the accumulation of mass and the accumulation of heat, can be

expressed by the pseudo bond graph in Figure 10.5.

From the pseudo bond graph of Figure 10.5, the following sorted set equations

can be derived in the same manner as equations are derived from a true bond graph

ṁo = fR (p) (10.6a)

ṁ = ṁi − ṁo (10.6b)
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ṗ =
1(
A

g

) ṁ (10.6c)

Ḣi = (cpṁi) Ti (10.6d)

Ḣo = (cpṁo) T (10.6e)

Ḣ = Ḣi − Ḣo + Q̇ (10.6f)

Ṫ =
1

cpm
Ḣ , (10.6g)

where the characteristic of the hydraulic inlet and outlet resistors are given by the

nonlinear function fR. By elimination of algebraic quantities, two state equations

can be established. If the pressure, p, and the temperature, T, are chosen as state

variables, then the state equations are

ṗ =
g

A
[−fR (p) + ṁi ] (10.7a)

Ṫ =
g

cp Ap
[ cpṁiTi − cpfR (p)T + Q̇ ] . (10.7b)

Alternatively, the mass, m, and the enthalpy, H, inside the tank could be chosen as

state variables as well.

A feature of this approach is that hydraulic and thermal aspects can be repre-

sented by two separate pseudo bond graphs that are linked by activated bonds from

the hydraulic to the thermal part. In contrast, in the next section we will use multi-

port elements having hydraulic and thermal ports.

10.1.2 Pseudo Bond Graph of a Variable Pneumatic Control
Volume

Let us modify the example of a stirred tank considered in the previous section a bit

and develop a pseudo bond graph for a tank that stores an amount of gas and that

is topped by a moving piston as shown in Figure 10.6. In practice, it could be a

chamber of a pneumatic cylinder.

In this example, a mass flow ṁi of density �i enters into the control volume

carrying internal and kinetic energy. There is also the convection of momentum

bound to the mass flow. The two mass flows entering and leaving the chamber cause

a change of momentum inside the control volume. Again, we will assume that there

is an instantaneous mixing inside the tank yielding the same temperature T , the same

pressure p, the same density � everywhere in the tank and a uniformly distributed

velocity v. The balances for energy, mass and momentum then read
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U̇ = (hi +
1
2
v2

i )ṁe − ( ho +
1
2
v2

o )ṁo − pV̇ + Q̇ (10.8a)

ṁ = ṁi − ṁo (10.8b)

d

dt
(mv) = Aipi − Aopo + F + ṁivi − ṁovo . (10.8c)

In Equation 10.8a, U denotes the internal energy in the control volume

U = mcvT , (10.9)

where cv is the specific heat at constant volume. The velocity of the gas entering

the control volume is vi. The gas leaves the tank at velocity vo. Moreover, in this

example,

V̇ = Aẋ . (10.10)

It is assumed that inertia effects can be neglected as well as the convected kinetic

energy in comparison to the convected enthalpy. Then, only the reduced energy

equation

U̇ = hiṁi − hoṁo − pV̇ + Q̇ (10.11)

and the mass balance, Equation 10.8b, are to be taken into account.

In addition, there is the well known ideal gas law

pV = mRT , (10.12)

where R is the special gas constant depending on the gas in use (For instance, for

air, this constant has the numerical value 287Nm/(kgK)).
Karnopp suggests to consider the Equations 10.11, 10.8b, 10.9 and the ideal gas

law 10.12 as the constitutive equations of a three-port C element that accumulates
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ṁo
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Fig. 10.7 Pseudo bond graph representation of a variable control volume (Karnopp, 1979)

energy, mass and volume (Figure 10.7). Since it is not energy conservative, he calls

it the thermodynamic accumulator [22]. For this C element, the energy is not a func-

tion of the state variables from which the constitutive equations can be derived by

partial differentiation as in the case of energy conservative C fields. In this pseudo

bond graph representation, the energy itself is a state variable. Since at the hydraulic

(−p, V̇ )-port the product of effort and flow equals the instantaneous power, the ther-

modynamic accumulator can be linked with a bond graph of a mechanical subsystem

via a transformer.

In the pseudo bond graph of Figure 10.7, thermal bonds are highlighted by thin

lines. Summation of flows at the 0-junction connected to the thermal (T, U̇)-port of

the accumulator yields the energy balance of Equation 10.11. The second 0-junction

connected to the material (p, ṁ)-port represents the mass balance of Equation 10.8b.

The controlled flow source attached to thermal 0-junctions accounts for the mechan-

ical work performed by the compressible gas on the control volume surface.

Even though the thermal accumulator is not an energy conservative C field (the

energy balance is expressed separately by the thermal 0-junction), it operates like
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a C energy store. Given integral causality at all three ports, it takes in the rates

U̇ , ṁ and V̇ , produces the respective states and, by using the constitutive equations,

outputs the efforts, viz. the pressure, p, and the temperature T . Both quantities are

given by reformulation of Equations 10.9 and 10.12.

p =
R

cv

U

V
(10.13a)

T =
1
cv

U

m
(10.13b)

The initial values of the state variables are related via the ideal gas law, Equa-

tion 10.12 and Equation 10.9, for the internal energy U .

p0V0 = m0RT0 (10.14a)

U0 = m0cvT0 (10.14b)

This model also holds for control volumes containing a two-phase mixture of a

fluid, e.g. a steam boiler [22]. Assume that the fluid is water and let mw be the mass

of the water, ms the mass of the steam and m the total mass of water and steam. If

the total mass and the total internal energy in the steam boiler of constant volume

V0 are known, then

m = mw + ms (10.15a)

V0 = vwmw + vsms (10.15b)

U = uwmw + usms , (10.15c)

where vw, vs are the specific volumes of water and steam for a unit mass and uw, us

are the corresponding internal energies per unit mass. There are tables for saturated

steam that provide values for volumes and internal energies for given values of tem-

perature or pressure. With tabulated values for vw, vs, uw, us, the masses mw, ms

can be computed by solving Equations 10.15b and 10.15c. The procedure is to be

repeated until both masses satisfy Equation 10.15a. This way, the entry into a table,

viz. the temperature, or the pressure is known. The other variable can be determined

in the same manner. Of course, during simulation of a thermodynamic system, this

iteration process must be carried out after each integration step.

10.1.3 Pseudo Bond Graph of a Compressible Fluid Flow Through
an Orifice

In pneumatic systems, a compressible fluid flow passes orifices as depicted in Fig-

ure 10.8 on its way between chambers. In a pseudo bond graph, the flow of a com-

pressible fluid through an orifice can be represented by the 4-port resistor shown in
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Fig. 10.9 Pseudo bond graph for a compressible fluid flow through an orifice (Karnopp, 1979)

Figure 10.9 with fixed causalities independent of the direction of the fluid flow [22]

(A denotes the cross sectional area of the orifice).

If this R element is used to connect the accumulators of two chambers, then

pressures and temperatures are determined in the accumulator models while the

R element provides the mass flows and enthalpy flows. In Figure 10.8, the variables

pu, Tu denote upstream pressure and upstream temperature. Corresponding down-

stream quantities are marked by a subscript d. In order to compute the mass and the

enthalpy flows, first, it must be determined which of the pressures at both sides of

the orifice is the upstream one.

If p1 > p2 , then pu = p1, Tu = T1, pd = p2 . (10.16a)

If p1 < p2 , then pu = p2, Tu = T2, pd = p1 . (10.16b)

The mass flow ṁ depends on the ratio

r :=
pd

pu
. (10.17)
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This ratio is to be compared with the critical value

rcrit :=
(

2
κ + 1

) κ

κ − 1
, (10.18)

where κ := cp/cv
2.

If r < rcrit , then r = rcrit
3 . (10.19)

After these steps, the absolute value of the mass flow, |ṁ|, through the orifice is

|ṁ| = Cq × Cm × A × pu

T
1/2
u

, (10.20)

where

Cm =
(

2κ

R(κ − 1)

)1/2

×
(
r2/κ − r(κ+1)/κ

)1/2

(10.21)

(cf., e.g. [32]). The discharge coefficient, Cq, takes into account that the downstream

pressure, pd, is used and not the pressure in the vena contracta. It also depends on

the geometry of the orifice. Finally, the mass flow through an orifice is thus

ṁ = |ṁ| × sign(p1 − p2) . (10.22)

Once the mass flow is known, the enthalpy flow is

Ḣ = cpTuṁ . (10.23)

Thus, the R element in Figure 10.9 is completely described. Like the previously

introduced thermodynamic accumulator, it is a basic building block. Thoma uses

the name RECO (Resistor for Convection) for this enthalpy flow conserving four

port resistor describing the basic phenomenon of compressible fluid flow through a

restricted passage [37, 38].

10.1.4 Pseudo Bond Graph of a Pneumatic Bridge Circuit

With both elements, the accumulator and the 4-port resistor, pseudo bond graphs can

be conveniently constructed for a number of practical thermodynamic problems. For

illustration, we come back to the typical example of a hydraulic bridge circuit with

four displacement modulated orifices and a double acting cylinder in the load diag-

onal considered in Section 4.1. Such a bridge circuit results in modelling four-way

2 For air, the value is rcrit = 0, 53
3 In this case, the flow is said to be choked. A reduction of the downstream pressure pd has no

effect on the mass flow.



10.1 Modelling Thermodynamic Systems by Pseudo Bond Graphs 437

�
��

A1

�
��
A2

� ẋ
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Fig. 10.10 Bridge circuit with a pneumatic single rod cylinder in the load diagonal

valves that control the amount and the direction of a fluid flow into and out of a load

cylinder. In this section, we will not assume hydraulic but pneumatic components.

The circuit schematic with a single rod cylinder is shown again in Figure 10.10. If

each chamber of the cylinder is represented by an accumulator and each orifice by

the 4-port R element (Figure 10.9), then the connection of these elements accord-

ing to the structure of the bridge circuit yields a pseudo bond graph of a pneumatic

circuit representing a four-way valve connected to a double acting cylinder.

Figure 10.11 clearly shows that the pseudo bond graph of the pneumatic sub-

system can be connected to a true bond graph of a mechanical subsystem via the

hydraulic (−p, V̇ ) port of the accumulators.

The approach introduced by Karnopp has the advantage that mechanical proper-

ties of a thermodynamic system can be modelled by a true bond graph in a conven-

tional manner, while thermodynamic aspects are intuitively and clearly represented

by a pseudo bond graph making use of variables common in thermodynamics.
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Fig. 10.11 Pseudo bond graph of the pneumatic bridge circuit in Figure 10.10

10.2 True Bond Graph Models of Thermodynamic Systems

As has been shown, pseudo bond graphs are a convenient approach to the modelling

of thermodynamic systems and have some clear advantages. Nevertheless, another

option is to keep the fundamental requirement that the product of variables asso-

ciated with a bond must equal the instantaneous total power transmitted between

ports. In the following, the true bond graph approach shall be considered.

10.2.1 True Bond Graph of a Variable Pneumatic Control Volume

Again, we consider the variable pneumatic control volume depicted in Figure 10.6.

For simplicity, we assume that the inlet of cross sectional area Ai is closed. That is,
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the fluid can only leave the tank through the cross sectional area Ao. Otherwise, we

had to account for the entropy production that results when two amounts of fluid of

different temperature mix. Furthermore, let us assume that the kinetic energy in the

tank can be neglected. Then, the stored energy equals the internal energy U . The

latter is a function, fU , of the quantities entropy S, volume V and the number of

moles, N , of a substance.

U = fU ( S, V, N ) (10.24)

The quantities entropy, volume and the amount of substance are also called extensive
variables because they are proportional to the extent of a thermodynamic system

(cf., e.g. [8], p. 96, or [11], p. 360)). These extensive quantities are the independent

variables of the thermodynamic energy function fU .

The total differential of the internal energy, U , is

dU =
∂U

∂S
dS +

∂U

∂V
dV +

∂U

∂N
dN . (10.25)

In thermodynamics, the following definitions are used.

T :=
∂U

∂S

∣∣∣∣
V,N=const.

(10.26a)

−p :=
∂U

∂V

∣∣∣∣
S,μ=const.

(10.26b)

μ :=
∂U

∂N

∣∣∣∣
S,V =const.

, (10.26c)

where μ denotes the so-called chemical potential (cf. Table 2.4). These physical

quantities defined as a partial derivative of the internal energy with respect to an

extensive variable are called intensive variables in thermodynamics since they do

not depend on the extent of the thermodynamic system. With the above definitions,

the change of internal energy, dU , reads

dU = TdS − pdV + μdN . (10.27)

Equation 10.27 is Gibbs’ well known fundamental equation. If the state of the gas

in the control volume slowly changes, then the power balance reads

dU

dt
= T Ṡ − p V̇ + μ Ṅ . (10.28)

The first term in this power balance can be considered as the power of a heat flow

into the control volume. The second term accounts for the work performed by the

gas on the control volume surface when the control volume changes. The third term

is the power associated with a mass flow into the control volume4. The heat flow is

4 If a compressible fluid is composed of k chemical substances of Ni (i = 1, . . . , k) num-

ber of moles and if μi denotes the power conjugate chemical potential associated with Ṅi, then
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Fig. 10.12 True bond graph of a variable pneumatic control volume (Breedveld, 1985)

due to the conduction across the control surface and the transport of entropy along

with the mass flow.

In his Ph.D. thesis ([8], pp. 106–107), Breedveld proposes to represent Equa-

tion 10.28 by a 3-port C field with a thermal, a hydraulic and a material port (Fig-

ure 10.12).

Due to Equations 10.26a–10.26c, the introduced 3-port C field satisfies Maxwell’s

reciprocity conditions. That is, in contrast to the thermodynamic accumulator in

pseudo bond graphs, it is energy conservative.

∂T

∂V
=

∂

∂V

(
∂U

∂S

)
=

∂

∂S

(
∂U

∂V

)
=

∂(−p)
∂S

(10.29a)

∂T

∂N
=

∂

∂N

(
∂U

∂S

)
=

∂

∂S

(
∂U

∂N

)
=

∂μ

∂S
(10.29b)

∂μ

∂V
=

∂

∂V

(
∂U

∂N

)
=

∂

∂N

(
∂U

∂V

)
=

∂(−p)
∂N

(10.29c)

Equation 10.28 can also be considered as the scalar product of the two vectors e :
= (T, −p, μ)t and f : = (Ṡ, V̇ , Ṅ)t (Since T already denotes the temperature,

the transpose of a vector is indicated by the lower case letter t). Thus, we have two

vector quantities, effort and flow, of which the product is the total power into the

control volume.

U̇ = et · f (10.30)

Figure 10.13 shows the corresponding multibond graph representation. Thus, the

total energy and mass transport into a control volume can be expressed by the prod-

uct of two vector quantities. However, not all of their components can be directly

measured.

the product μ × N in Equation 10.28 must be replaced by the scalar product of vectors μt Ṅ
where μt = (μ1, . . . , μk) and Ṅt = (Ṅ1, . . . , Ṅk). The superscript t of a vector denotes its

transpose.
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Fig. 10.13 Multibond graph representation of variable pneumatic control volume

Constitutive Equations of the 3-Port C Field

In the following, the energy function, fU , and the constitutive equations of the 3-

port C field, representing a variable pneumatic control volume are derived assuming

an ideal gas. The ideal gas law is

pV = NRT , (10.31)

where R is the universal gas constant (R = 8.3145 Jmole−1K−1) and

R = cp − cv . (10.32)

The internal energy is

U = Ncv(T − T0) . (10.33)

If molar quantities (quantities divided by the number, N , of moles) are denoted by

a small letter and a superscript m, then Gibbs fundamental equation reads

um = Tsm − pvm + μ . (10.34)

With Equations 10.31–10.33, we obtain for the chemical potential μ

μ = (cp − sm) T − cvT0 . (10.35)

Substituting Equations 10.33, 10.31, 10.35 into Equation 10.27 yields

cvT dN + cvN dT = T dS − NRT

V
dV + (cp − sm) T dN , (10.36)

which can be written in the form

cv
dT

T
=

dS

N
− S

dN

N2
+ R

dN

N
− R

dV

V
. (10.37)

Integration yields

cv ln
T

T0
=

(
S

N

)
− S0

N0
+ R ln

N

N0
− R ln

V

V0
, (10.38)

where initial values at time t0 are indicated by a subscript 0. Thus, for the tempera-

ture T, we obtain
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T = T0

(
V0 N

N0 V

)R/cv

exp
(

S

N cv
− S0

N0 cv

)
. (10.39)

Substituting this expression into the ideal gas law, Equation 10.31, yields for the

pressure p

p = p0

(
V0 N

N0 V

)
T

T0

= p0

(
V0 N

N0 V

)κ

exp
(

S

N cv
− S0

N0 cv

)
, (10.40)

where κ = cp/cc. Finally, substituting the expression for the temperature T into

Equation 10.35 gives for the chemical potential μ

μ = (cp − sm)T0

(
V N0

NV0

)−R/cc

exp
(

S

N cv
− S0

N0 cv

)
− cvT0 (10.41)

and μ0 = (R − sm
0 )T0.

With Equations 10.33 and 10.39, the energy function fU is

U = NcvT0

[(
V0 N

N0 V

)R/cv

exp
(

S

N cv
− S0

N0 cv

)
− 1

]
. (10.42)

If molar quantities are used in the constitutive Equations 10.39, 10.40, 10.42 and

if S0 = 0 is assumed, then these are identical to those equations given in ([24],

p. 453).

Example: Gas Tank of Variable Volume with an Outlet and Heat Influx

If the influx of heat into the control volume due to conduction (Q̇ in Figure 10.6) is

modelled by an RS element, then a gas filled tank of variable volume with an outlet

can be represented by the true bond graph depicted in Figure 10.14.

In this bond graph, the product, −hmṄ , denotes the power, Ėconv, leaving the

control volume by convection through the outlet. As can be seen from the bond

graph, this power is composed of the part, μṄ , due to the mass flow and the part,

TsmṄ , due to the convection of entropy.

Ėconv = −hmṄ = − ( μṄ + TsmṄ ) (10.43)

If there is no influx of heat due to conduction, then the flow balance at the lower left

0-junction in the bond graph of Figure 10.14 reduces to

Ṡ = smṄ . (10.44)
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Fig. 10.14 True bond graph of a variable pneumatic control volume with an outlet and heat influx

(cf. Figure 10.6)

Hence,

μṄ + T Ṡ = μṄ + TsmṄ = (μ + Tsm)Ṅ = hmṄ . (10.45)

In this case, the 3-port C field and the modulated transformer can be combined into

a 2-port C element as depicted in Figure 10.15.

If the mole flow, Ṅ , is converted into a mass flow, ṁ, then we get the bond graph

given by Karnopp and Rosenberg ([23], p. 377) for the isentropic case (Figure 10.16)

in which M denotes the molar mass of the gas. With Equation 10.34, hm = μ+Tsm

takes the form hm = um + pvm. Consequently, h = u + p/�.
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Fig. 10.16 Isentropic compression of a gas in a variable control volume (Karnopp and Rosenberg,

1975)

Special Cases

The 3-port C field introduced by Breedveld for representation of a compressible

fluid in a variable control volume, in many cases, reduces to a 2-port energy store.

For instance, for closed systems with no mass transport into and of out of the control

volume, i. e. Ṅ = 0, the material port disappears. If the volume remains constant,

then the hydraulic (−p, V̇ ) port is not needed.

The Isothermal Case

In the isothermal case (Ṫ = 0), the power T × Ṡ at the thermal port does not vanish.

Nevertheless, it is common to drop this port. Thus, the two-port C element no longer

represents the storage of internal energy, but the storage of the Helmholtz free energy
F := U −T ×S. The remaining bonds adjacent to the C element represent the flow

of free energy.

− p V̇ + μ Ṅ = U̇ − T Ṡ

= U̇ − T Ṡ − Ṫ S

= U̇ − d

dt
(T S)

= Ḟ (10.46)
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The Isobaric Case

Similarly, in the isobaric case (ṗ = 0), the two-port C element represents the stor-

age of enthalpy and the remaining adjacent bonds express an enthalpy flux into the

control volume.

T Ṡ + μ Ṅ = U̇ + p V̇

= U̇ + p V̇ + ṗ V

= U̇ +
d

dt
(p V )

= Ḣ (10.47)

The Helmholtz free energy is the result of a Legendre transformation (cf. Sec-

tion 5.3) of the internal energy U with respect to the entropy S. The enthalpy H
is obtained by a Legrendre transformation U with respect to the volume V . The

chemical potential μ is the molar Gibbs free energy, gm := G/N , and G is defined

by a double Legrende transformation of U . That is, G := U + pV − TS.

10.2.2 True Bond Graph of a Pneumatic Outlet Orifice

As we know that the storage of internal energy in a pneumatic control volume can

be represented by an energy conservative 3-port C energy store, we want to address

the question of how an orifice in the outlet can be represented in a true bond graph.

Such an outlet orifice neither stores mass nor energy. Thus, the entering mole flow,

Ṅ , equals the one leaving the orifice. Likewise, the power into the orifice is equal

to the one leaving it. Let us assume a steady lossless flow out of the chamber and

that the kinetic energy inside the chamber can be neglected. Let hm
CV denote the

specific molar enthalpy in the control volume, CV, hm
c the molar enthalpy in the

vena contracta and M the molecular mass of the gas. Then, the power balance reads

hm
CV Ṅ = (hm

c +
1
2
Mv2

c ) Ṅ , (10.48)

where vc denotes the velocity of the gas in the vena contracta. With the assumption

hm
CV ≥ hm

c , the velocity vc is

vc =

√
2
M

( hm
CV − hm

c ) . (10.49)

With this result, the mole flow, Ṅ , through the cross sectional area, Ac, of the vena

contracta is

Ṅ =
�

M
Ac

√
2
M

( hm
CV − hm

c ) . (10.50)
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Fig. 10.17 True bond graph of a pneumatic outlet orifice (Beaman and Breedveld, 1988)

Usually, it is assumed that all kinetic energy in the restriction is converted into

heat and that the specific molar enthalpy, hm
c , in the vena contracta equals the am-

bient molar enthalpy hm
o . Thus, Equation 10.50 can be considered the constitutive

equation of a resistor modulated by the fluid density � (Figure 10.17).

In contrast to the pseudo bond graph model of Karnopp, the true bond graph

model given by Beaman and Breedveld [2] does not use the ratio of upstream and

downstream pressure and the upstream temperature, but instead enthalpy. Therefore,

its equation looks simpler. Nonetheless, as Beaman and Breedveld note, it can be

shown that both models are equivalent in the case of an ideal gas. From a practical

point of view, it may be considered a disadvantage that pressures and temperature

as measurable quantities are not directly used in this model.

10.2.3 Further True Bond Graph Approaches to the Modelling of
Thermodynamic Systems

According to Equation 10.48, the power of a fluid line through a cross sectional

area, A, is

(hm +
1
2
Mv2)Ṅ = (h +

1
2
v2)ṁ = (

p

�
+ u +

1
2
v2)ṁ . (10.51)

The rate of kinetic energy, Ėkin, over the entire cross sectional area, A, is

Ėkin =
∫ A

0

1
2
�v2 vdÃ = α

1
2
�v2Q , (10.52)

where v is the mean velocity over the cross sectional area and α, a coefficient that

depends on the shape of the velocity profile. Assuming that the enthalpy is constant

over the cross section, then with h0 := h + αv/2, the so-called stagnation enthalpy
[10], the total power through a cross sectional area A is the product of two variables,
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the stagnation enthalpy h0 and the mass flow ṁ. This result suggests to introduce

them as power conjugate variables associated with the bonds in bond graphs of

thermodynamic systems with compressible fluids. However, the description of the

state of a pure substance requires two independent intensive variables, e.g. pressure

and temperature. Taking this into account, Brown [10] associates two independent

variables with each bond that describe its effort, namely h0 and the pressure. He

calls such a bond a convection bond and distinguishes it from a standard bond by

an additional dashed line on the effort side. In his representation, h0 is the proper

effort. The additional variable p0 qualifies the effort, as Brown terms it. The product

p0 × ṁ apparently is not power. The pressure, p0, however serves as the effort of

that bond with regard to computational causality. That is, in Figure 10.18 the causal

stroke indicates that the pressure, p0, is determined at port B, while the mass flow ṁ
is computed at port A. Using convection bonds, Brown represents the compressible

fluid flow through a restriction by means of an extension of the power conserv-

ing, entropy generating RS element as depicted in Figure 10.19. This figure clearly

shows that the stagnation enthalpy, h0, and the total power remain constant, while a

pressure drop across the orifice occurs. The entropy, however, is not conserved5.

��
p0, h0

ṁ
A B

Fig. 10.18 Convection bond (Brown, 1991)

5 The rate of entropy generation can be determined in the following manner [10]. Assume a steady

flow of an ideal gas through a nozzle. Since the enthalpy remains constant, we write Gibbs’ equa-

tion in the form

d(um + pvm) = dhm = Tdsm + vmdp = 0 . (10.53)

Replacing the molar volume vm by means of the ideal gas law yields

Tdsm +
R

p
dp = 0 . (10.54)

If index 1 denotes the upstream side and index 2 the throat of the nozzle, then the solution of

Equation 10.54 reads

sm
2 − sm

1 = R ln

(
p1

p2

)
. (10.55)

Thus, the rate of the entropy generation, Ṡ, is

Ṡ = (sm
2 − Sm

1 )Ṅ = ṄR ln

(
p1

p2

)
> 0 . (10.56)

The result is in agreement with what we expect. The enthalpy as a function of pressure and entropy

remains constant, while the pressure across the nozzle decreases. Consequently, the entropy must

increase.
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Fig. 10.19 Compressible fluid flow through an orifice (Brown, 1991)

Before considering bond graph modelling of some phenomena in hydraulic sys-

tems, another approach to the modelling of thermodynamic systems by means of

true bond graphs shall be briefly mentioned.

Instead of using one effort at a single bond that accounts for the different contri-

butions to the total power of incompressible fluids, in 1992, Thoma [35] proposed to

use 3-dimensional multibonds. The power conjugate pairs are hydrostatic pressure,

p, and volume flow, V̇ , temperature, T , and entropy flow, Ṡ, chemical potential,

μ, and mass flow ṁ. The product of each pair of variables equals power and the

sum of all three products is the product of specific enthalpy times the mass flow

or the enthalpy flow Ḣ . In his approach, Thoma assumes low fluid velocities such

that the transported kinetic energy can be neglected. Moreover, since he does not

consider phase changes in the fluid, he ignores the chemical potential and indicates

this by an activation of the corresponding bond. Thus, this bond becomes a signal

representing the mass flow, ṁ, only. Thoma also calls his 3-dimensional multibonds

convection bonds. The development of convection bond graphs was influenced by

previous work of Thoma and Atlan [36]. To the author’ s knowledge, it was Thoma

who also coined the term convection bond.

Since restrictions neither store mass nor energy, they are represented by an R el-

ement with three bonds for the influx and another three bonds for the efflux of

enthalpy (cf. Figure 10.20). Like for the four port pseudo bond graph element in-

troduced by Karnopp (Figure 10.9), Thoma considers a compressible fluid flow

and uses standard equations from thermodynamics. For an ideal gas, upstream and

downstream pressures and upstream temperature are given by Equations 10.38 and

10.40. Volume flow and convected entropy flow apparently result from the specific

volume and the specific entropy by multiplication with the mass flow, ṁ, through

the restriction (cf. Equations 10.20 and 10.22). For the determination of upstream

and downstream specific entropy, see [35].

In bond graph models of hydrostatic systems, the compressibility of the oil in

dead spaces or chambers of fixed size is accounted for by a C element attached

to the 0-junction representing the chamber pressure and the sum of flows entering

into the chamber. In his multibond graph approach, Thoma represents volumes of

constant size in the same manner (cf. Figure 10.20). The 0-junction displays the

summation of mass flow, volume flow and entropy flows. The latter balance neglects

the entropy that appear when mass flows of different temperature mix. These flow

variables are inputs into the C element which returns the efforts, viz. the pressure

and the temperature in the chamber (integral causality). Again, it is assumed that

the fluid in the chamber is well mixed such that, instantaneously, a spatially uniform

distribution of pressure and temperature is attained. The chemical potential, μ, is
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not computed. The effort quantities are propagated by the 0-junction according to

the role of a standard 0-junction. The pressure and the temperature can be computed

in the following manner.
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Ṡ1

��
p1

V̇1

R
��

ṁ1

��
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Ṡ

��
p2

V̇2

0
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ṁ3

��
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Ṡ

��
p2

V̇3

��

p2 V̇

��

T2 Ṡ

��

ṁ

C
Fig. 10.20 Multibond graph representation of a pneumatic control volume with an inlet restriction

according to Thoma, 1992

ṁ = ṁ1 − ṁ2 (10.57)

v =
V

m
(10.58)

Ṡ = Ṡ2 − Ṡ3 (10.59)

s =
S

m
(10.60)

p = fp(s, v) (10.61)

T = fT (s, v) , (10.62)

where fp denotes the relation in Equation 10.40. The function fT is given by Equa-

tion 10.39. Since the control volume is assumed to be of fixed size, the volume flow

is not needed for computation of the state of the fluid stored in the control volume.

The C element represents the storage of mass, entropy and volume. Its ports have

integral causality. Hence, they provide the input variables of the R element and vice

versa.

Like Karnopp’s pseudo bond graphs, the multibond graph representation pro-

posed by Thoma clearly reflects the physical structure of a thermofluid system and

uses quantities that are common in thermodynamics. An advantage from a practical
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engineering point of view is that the output flows of the basic multiport R element

and the output efforts of the multiport C element can be determined by using real

data charts or look-up tables.

10.2.4 Bond Graph of a Double Acting Hydraulic Cylinder

In the previous sections, it has been shown how two fundamental phenomena,

namely the accumulation of a gas in a control volume and a gas flow through a

restriction, can be represented in pseudo bond graphs as well as in true bond graphs.

In the following, it is assumed that the fluid is a hydraulic oil. Under the customary

assumption of isothermal conditions, a true bond graph of a hydraulic double acting

cylinder, a basic component in hydraulic system, will be developed. As usual, bonds

representing the transport of thermal energy will be omitted. Strictly speaking, this

means that bond graphs represent the storage and the transport of free energy. In the

following, this difference will not be pointed out any further.

As a matter of fact, hydraulic oil is orders of magnitude less compressible than a

gas. However, it not incompressible. Accordingly, in modelling hydraulic systems,

it is customary to assume an incompressible flow through fixed and variable re-

strictions and to account for the oil compliance in chambers or dead spaces. Due

to the use of a constant mean density, convection of mass and of (free) energy can

be described by means of the volume flow contrary to gases. Following the nomen-

clature frequently used in hydraulics, volume flows will be denoted by the letter Q.

Previously, the letter Q denoted an amount of heat following the convention in ther-

modynamics. In many cases, the dynamic pressure can be neglected in comparison

to the hydrostatic pressure. Moreover, differences in height in a hydraulic system

mostly are not big enough to contribute a significant gravity term to the hydrostatic

pressure. Under these assumptions, the transported free energy can be sufficiently

approximated by the hydrostatic energy.

Oil Compliance in a Chamber of Variable Volume

First, consider a chamber of constant volume and let us assume that the kinetic

energy inside the control volume and energy losses due to turbulences at the inlet

port can be neglected. Under these assumptions, the increase in hydrostatic pressure

in the chamber due to volume flow into the chamber can be described by Hooke’s

law, as discussed in Section 2.7.2. Let ΔV denote the decrease of oil volume, V
the constant volume of the chamber and B the bulk modulus6 of the oil. Then, the

resulting increase in hydrostatic pressure is

6 For a well de-aerated oil, the bulk modulus depending on pressure and temperature is usually

replaced with good accuracy by the typical value B = 1, 6 × 10+9Nm−2.
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Fig. 10.21 Oil filled chamber of variable volume

Δp = B
−ΔV

V
=

1(
V

B

) (−ΔV ) (10.63)

(cf. Equation 2.82).

Since Equation 10.63 establishes a relation between the effort, p, and the gen-

eralised displacement, (−ΔV ), it is considered the constitutive law of a (linear)

1-port C energy store with the hydraulic capacitance C := V/B. In bond graphs

of hydraulic or acoustic systems, such a C element is attached to the 0-junction

representing the hydrostatic pressure in the chamber under consideration.

If this C element is used for representing oil compliance in a hydraulic cylin-

der chamber (Figure 10.21), then there is a problem because the oil filled chamber

volume is not constant but rather depends on the position, x, of the piston.

Let V0 denote the volume corresponding to an initial position x = x0 and let A
be the area of the piston. Then,

Δp =
B

V0 + Ax
(−ΔV ) . (10.64)

Accordingly to Equation 10.64, the factor (V0 +A x)/B is sometimes conceived

as a variable capacitance C(x) depending on the displacement x. Some authors (see,

e.g. [29]) express this dependency in bond graphs of hydraulic systems by adding a

signal arrow to the C element indicating the position, xp, of the piston as reproduced

in Figure 10.22. Other authors [14] account for the piston’s position in the constitu-

tive equation, but use the standard 1-port C energy store representation. In the latter

case, the bond graph representation does not correspond to the mathematical model.

However, as pointed out in Section 2.5.3, there are no signal controlled energy

stores because they violate the principle of energy conservation. Linearisation of

Equation 10.64 does not help since piston displacements are not confined to small

deviations from a constant position x0. A simple obvious remedy is to replace the

varying piston position, x, by an average value. To overcome these problems, the
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ẋ

Fig. 10.23 Representation of an oil filled chamber of variable volume by a 2-port C element

author [4] proposed an energy conservative 2-port C element (Figure 10.23) with a

hydraulic port and a mechanical port representing chambers of variable volume in

hydraulic cylinders.

Constitutive Equations of the 2-Port C-Element of a Variable Chamber

For a derivation of the constitutive equation of the mechanical port of this C ele-

ment, consider the chamber depicted in Figure 10.21. Let V0 be the initial chamber

volume and p0 the hydrostatic chamber pressure at time t0. An external force F0

is in equilibrium with the pressure force A × p0. Now, if a fluid flow enters the

oil filled chamber at volume flow Q, then the oil in the chamber is compressed and

the chamber pressure, p, increases (Part of this inflow of oil into the chamber may

be due to leakage between the two chambers of a hydraulic cylinder through the

clearance between piston and container wall). This means that a force F > F0 is

acting on the piston. As a result, simultaneously, the chamber volume increases. Let

Ṽ :=
∫ t

0
Qdτ , Δp := p − p0 and ΔF := F − F0. Then, the change of energy

stored in the chamber is

dE = (Δp)dṼ − (ΔF )dx . (10.65)

Consider the position of the piston kept virtually fixed for an instant. That is, dx = 0.

Then, the change of potential energy in the chamber is

dE = (Δp)dṼ

= (Δp)d(Ṽ − Ax) = (Δp)d(−ΔV ) . (10.66)

Inserting Equation 10.64 and integrating with respect to (−ΔV ), yields for ΔE(Ṽ , x) :=
E(Ṽ , x) − E0, that is, the deviation of the stored energy from its initial value E0

ΔE(Ṽ , x) =
B

V0 + Ax

(Ṽ − Ax)2

2
. (10.67)

Partial differentiation of the stored potential energy with respect to the piston dis-

placement, x, gives the change in the force, ΔF , resulting in the piston’s motion.
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− (ΔF ) =
∂(ΔE)

∂x

= B

[
− A

(V0 + Ax)2
(Ṽ − Ax)2

2
+

1
(V0 + Ax)

(Ṽ − Ax)(−A)
]

= −A

[
Δp +

1
2B

(Δp)2
]

(10.68)

Finally, the force F at the mechanical port of the 2-port C energy store is

F = A

[
( p0 + (Δp) ) +

(Δp)2

2B

]

= A

[
p +

(Δp)2

2B

]
. (10.69)

Thus, Equations 10.64 and 10.69 are the constitutive equations of a 2-port C el-

ement describing the storage of potential energy in a chamber of variable volume.

Partial differentiation of both equations prove that they fulfil Maxwell’s reciprocity

condition. That is, the 2-port C energy store introduced is actually energy conserva-

tive.
∂(−F )

∂Ṽ
= AB

V0 + Ṽ

(Ṽ + Ax)2
=

∂(Δp)
∂x

=
∂p

∂x
(10.70)

A remarkable difference in Equation 10.69 compared to the usual pressure force

relation F = A × p in the case of an incompressible fluid is the quadratic term

A
(Δp)2

2B
=

AB

2

(
Ṽ − Ax

V0 + Ax

)2

.

It may be considered a force needed to balance an additional spring force acting on

the piston due to the compressibility of the oil (Figure 10.24). For instance, if we

consider the special case of no oil inflow, i. e. Ṽ = 0, we have for the nonlinear

spring force

Fspring =
AB

2

( −Ax

V0 + Ax

)2

. (10.71)

According to what is to be expected, the spring force takes large values if the oil

filled chamber volume tended to zero (x → −V0/A).

It is interesting to note that, in practice, numerical values of the spring force are

negligible. With the typical value B = 1, 6×10+9N/m2 for mineral oils, the ratio

Δp/(2B) is less than 1% for pressure differences up to 320 bar. Thus,



454 10 Bond Graph Modelling of Open Thermodynamic Systems

� ��
�
�

p








p + (Δp)2/2B

� ẋ
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Fig. 10.24 Spring model of oil compressibility

F = A

[
p0 + (Δp)

(
1 +

Δp

2B

)]
(10.72a)

≈ A( p0 + (Δp)) = Ap . (10.72b)

That is, the pressure force relation for the incompressible case is also a good ap-

proximation for the case of a compressible fluid.

If there are unsolved air bubbles in the oil, then it is well known that for low pres-

sures, even a small percentage of unsolved air results in a significant decrease of the

bulk modulus. The quadratic term in Equation 10.69 can still mostly be neglected.

Let E∗ be the elastic modulus of a mixture of oil and air, p0 the atmospheric air

pressure, Vair0 the air volume at pressure p0 and Voil the oil volume at pressure p.

Then, under isothermal condition,

E∗

B
=

1 +
p0

p

Vair0

Voil

1 +
p0

p

Vair0

Voil

B

p

. (10.73)

Assume that there is 1% of unsolved air in the oil, then at a low pressure of 10 bar,

E∗/B ≈ 0.39. For a pressure difference of 10 bar, Δp/(2E∗) ≈ 0, 2%.

However, if the quadratic term is neglected in Equation 10.69, then Equations

10.64–10.69 no longer fulfill Maxwell’s reciprocity condition and cannot be repre-

sented by a 2-port C energy store in a bond graph.

Viscous Friction and Leakage in the Clearance between Piston and Cylinder Wall

There are two effects in the small clearance between piston and container wall,

namely viscous friction and leakage between chambers (cf. Figure 10.25). Only few

authors using bond graphs [1, 4] have considered their interaction. Mostly, they are

simply not taken into account in bond graphs of hydraulic cylinders.

As it is well known, viscous friction due to piston movement is described by

Newton’s law. The shear force is
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FN = η
πDlp

c
vp , (10.74)

where η is the dynamic viscosity, D the piston’s diameter, lp the length of the piston,

Δr the clearance space, and vp the piston’s velocity. The piston is assumed to be

centered in the cylinder. Equation 10.74 establishes a relation between the shear

force, FN , and the piston’s velocity, vp, and thus gives rise to an R element in the

bond graph attached to the 1-junction representing the piston’s velocity. The volume

flow, QN , entrained by the piston’s movement is

QN =
∫ A

0

ẋda =
∫ Δr

0

ẋ(y)dy

= πD
Δr

2
vp , (10.75)

where A is the annular area between piston and the container wall, and ẋ(y) the

velocity of a fluid particle at distance y above the piston in radial direction.

The second effect is a laminar fluid flow through the clearance due to the differ-

ence of chamber pressures across the piston given by the law of Hagen and Pois-

seuille.

QHP =
πD(Δr)3

12ηlp
(pA − pB) (10.76)

This algebraic relation between the difference of the chamber pressures and the

volume flow QHP is taken into account by an R element in a bond graph of a

hydraulic cylinder. The law of Hagen and Poisseuille is derived from the balance of

friction force and pressure force acting on a cylindrical fluid element of diameter 2y
and length l.

τ × π × 2y × l = (pA − pB) × πy2 , (10.77)

where τ is the shear tension. Thus, the laminar flow through the clearance exerts on

the piston the force

FHP = πD
Δr

2
(pA − pB) , (10.78)

lowering the friction effect caused by the viscous flow due to the piston’s movement.

The coefficient πDΔr/2 relating two efforts in Equation 10.78 is the same as in

Equation 10.75, where it relates two flows. This suggests to represent both equations

by a TF element of modulus πDΔr/2.

Assuming a linear superposition of both effects, as indicated in Figure 10.25 by

a plus sign between the two velocity profiles, the volume flow Q of the total steady

fluid flow through the clearance relative to the container wall is

Q = QN + QHP

= πD
Δr

2
vp +

πD(Δr)3

12ηlp
(pA − pB) . (10.79)
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Fig. 10.25 Superposition of viscous flow and laminar flow across the piston

This sum of flows is represented in a bond graph of the hydraulic cylinder by a

0-junction. The balance of forces acting on the piston is

mpv̇p = FA − FB − (−FHP + FN ) − Fload , (10.80)

where FA, FB are the forces acting on the left respectively the right piston land (cf.

[17], vol. 1, p. 109).

Bond Graph Model of a Double Acting Hydraulic Cylinder

All considered effects, viz. viscous friction and leakage in the clearance between

piston and container wall and oil compliance in the cylinder chambers are eventually

represented by the bond graph of Figure 10.26.

The parameters of the linear resistors are Rv := ηπDlK/Δr and RHP :=
12ηlK/πD(Δr)3. The causal paths between the mechanical ports of the C elements

and the I energy store representing the piston’s inertia indicate oscillations in the

cylinder chambers. However, as shown above, the nonlinear part of the forces acting

on the piston (cf. Equation 10.69) is very small compared to its part due to the

hydrostatic pressure. Hence, these oscillations are irrelevant.

10.2.5 Flow Forces in Hydraulic Spool Valves

Concluding this chapter on bond graph modelling of open thermodynamic systems,

it is shown how flow induced forces in hydraulic spool valves can be correctly ac-

counted for in a bond graph of the valve.

As it is well known, a spool control orifice is not only a restriction where hydro-

static energy is partly converted into kinetic energy and into some amount of heat.

Simultaneously, the fluid flow in the spool valve control orifices forms a jet and

exerts a force on the spool. Since servovalves operate as hydraulic amplifiers, it is
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Fig. 10.26 Bond graph model of a hydraulic double acting cylinder (Borutzky, 1993)

important to account for these flow reaction forces in the balance of all forces acting

on the spool in order to avoid a cause for instability and to ensure correct operation

of the valve. Moreover, servovalves not only control the direction of flows, but also

their amount and must meet given accuracy requirements.

Assuming an incompressible fluid flow leaving a valve chamber through a con-

trol orifice, conservation of momentum yields for the axial steady part of the flow

induced force acting on the spool the well known formula

Fflow = −�
Q2

ccA(xsp)
cos ε (10.81)

[27], where cc denotes the jet contraction coefficient, A(xsp) the cross section area

of the orifice modulated by the spool displacement, xsp, and ε the angle between

jet axis and spool axis. Assuming that for xsp = 0 the orifice under consideration
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Fig. 10.27 Bond graph representation of a variable control orifice (Rabie and Lebrun, 1981)

is closed, then, for small spool displacements xsp, a typical value of the angle is

ε = 690.

On the other hand, for a turbulent fluid flow through an orifice of a fixed cross

section area, the well known square root law

Q = cdA

√
2
�

√
|Δp|sign(Δp) (10.82)

holds that can be derived from Bernoulli’s energy equation for an incompressible

steady flow. The empirical discharge coefficient, cd, accounts for energy losses. It

depends on the geometry of the restriction and of the Reynolds number, Re, which

characterises the mode of the flow (Often a constant value for turbulent conditions

is adopted. A typical value is cd = 0.611). In Equation 10.82, A is the cross section

area of the orifice. The sign function accounts for the direction of the flow.

It is obvious to represent Equation 10.82 in bond graphs by a 1-port resistor that

is modulated by the displacement of the valve spool in the case of a valve control

orifice. In order to account for the axial steady flow force at variable control ori-

fices, some authors follow an intuitively obvious method of adding a mechanical

port to the 1-port hydraulic resistor as reproduced in Figure 10.27 [29]. It is true that

the square root law results from Bernoulli’s energy equation for a one-dimensional

incompressible fluid. Its derivation, however, assumes a steady flow. Hence, the stor-

age of kinetic energy due to the motion of the spool has to be neglected. It can be

shown that an ad hoc representation of both equations by a 2-port R element inserted

between the 1-junction representing the volume flow through the control orifice and

the 1-junction representing the velocity of the spool (Figure 10.28) leads to a model

that is inconsistent with the principle of power continuity.

Likewise, for the case of a flapper nozzle subsystem as part of the preamplifier of

a two stage electrohydraulic servovalve, Breedveld [7] has shown that the intuitively

obvious use of a 2-port R element accounting for the force induced by the fluid flow

between nozzle and flapper violates power continuity.

Substituting Equation 10.82 into Equation 10.81 yields

Fflow = −Kf |Δp|xsp , (10.83)
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Fig. 10.28 Incorrect bond graph of a spool valve control orifice

where Kf is approximately a constant. Now, in this form, the equation for the axial

steady flow force formally looks like the constitutive equation of a negative hy-

draulic spring of stiffness Kf |Δp|, which well reflects engineering experience that

steady flow forces, independently of the flow direction, always tend to close valve

ports. However, since the spring’s stiffness depends on the absolute value of the

pressure drop, representation by a C element would mean that it is modulated and

thus violates the principle of energy conservation.

The two possible views show that a more fundamental approach is needed to

come to a correct bond graph model of the interaction between fluid flow and the

motion of the spool. The problem with an ad hoc model of spool valve control

orifices is that fluid dynamics and mechanical effects are tightly coupled, while

bond graph modelling requires a clear separation of energy storage from dissipation

of free energy and from power conservative elements.

It might appear tempting to introduce further elements beyond the set of basic

bond graph elements in order to represent given equations as relations between port

variables of a new element. However, it contradicts the concept of bond graph mod-

elling. Equations 10.82 and 10.83 might give rise to the introduction of an RC ele-

ment. This, however, would mean giving up a clear separation of dissipation of free

energy from energy storage. In view of these difficulties with an ad hoc bond graph

representation of equations frequently used in hydraulics, an approach is presented

in the following that uses an appropriate control volume, some simplifying though

reasonable modelling assumptions and starts from conservation laws for mass, mo-

mentum and energy [3].

For the subsequent analysis, a four-way three-position spool valve with four con-

trol orifices is chosen as depicted in Figure 10.29 (S denotes the supply port, T the

exhaust port, while A and B are load ports). Only for the downstream passage from

load port A to the exhaust port T, a bond graph submodel is developed. The other

control orifices can be modelled in a similar manner.

The control volume under consideration encompasses the oil filled cylindric re-

gion between the spool lands and extends into the vena contracta of the jet up to the
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Fig. 10.29 Four-way three-position spool valve

area A2. The vector perpendicular on that area is parallel to the jet stream axis (Fig-

ure 10.30) In their mathematical modelling of a three-way underlapped hydraulic

spool servovalve, Taft and Twill [34] use a similar control volume.

The control volume we are going to consider moves along with the spool and has

a fixed size. Since oil enters and leaves the control volume, it is an open system with

convection of matter, momentum and energy. Alternatively, the space between the

two spool lands could be divided into two non-moving control volumes that vary

with the motion of the spool.

In order to simplify the modelling process, we will assume:

• A one-dimensional incompressible fluid

• All energy losses can be neglected

• Isothermal conditions

• The internal energy U of the fluid can be neglected, that is, only kinetic energy

is stored in the control volume.

• The fluid flow entering at load port A immediately establishes an average velocity

inside the control volume with stream lines parallel, uniform and directed along

the axis of the spool. The regions where the oil enters and leaves the control

volume are considered small and will be neglected [34].

• The small amount of leakage from the supply port S into the control volume

across the spool can be neglected.

• The angle ε of the jet stream at the exhaust port is considered to be constant

(ε = 690).

• The tank is an infinitely large reservoir.
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Since the flow is assumed to be incompressible and since the control volume is

of constant size, the mass balance reduces to a simple continuity equation for the

volume flows QA and Q2.

0 = QA − Q2 , (10.84)

where QA is the volume flow entering the control volume at control port A and

Q2 is the flow exiting the control volume at the exhaust port T . Inside the control

volume, the entering volume flow QA is superimposed by a flow Qsp := A1 × vsp

due to the motion of the spool, resulting in a volume flow Q1.

Q1 = QA + Qsp (10.85)

Since inside the control volume we assume an average velocity with parallel stream

lines parallel uniform and directed along the spool axis, the equality Q1 = A1 × v1

holds, where v1 is the absolute average velocity inside the control volume with

respect to an inertial frame.

The flow of oil through the control volume exerts a force on it. The momentum

balance yields

F =
∮

ACV

v�v dÃ +
d

dt

∫
V

�vdṼ + mCV v̇sp , (10.86)
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where ACV denotes the surface of the control volume, V its volume and mCV the

fluid mass inside the control volume. The first term in the above sum accounts for

the change of momentum due to the influx and the efflux of momentum through

the control surface. The second term is the rate of change of momentum inside the

control volume moving at velocity vsp. The third term accounts for the acceleration

of the control volume.

If the influx of momentum is neglected compared to the efflux, then by using

Equation 10.85, the axial component of the force acting on the control volume, i. e.

the flow force Fflow reads

Fflow = �v2Q2 cos ε +
d

dt
(�vAV ) + mCV v̇sp

= �v2Q2 cos ε + (�L)Q̇1

= �v2Q2 cos ε + ṗ , (10.87)

where ṗ := (�L)Q̇1.

The rate of change of stored kinetic energy inside the control volume is

Ėkin =
d

dt
(
1
2
mCV v2

1)

= ṗ v1

=
(

ṗ

A1

)
Q1 . (10.88)

Finally, by neglecting the dynamic pressure �v2
A/2 at load port A in comparison to

the dynamic pressure �v2
2/2 at the exhaust port T, the energy balance takes the form

pAQA − (p2 +
1
2
�v2

2)Q2 + Fflowvsp =
(

ṗ

A1

)
Q1 . (10.89)

Equations 10.84, 10.87 and 10.89 can be consistently represented in the bond graph

of Figure 10.31, where msp is the mass of the spool and F is the driving force.

In fact, the bond linking both upper 1-junctions display the assumption of an

incompressible fluid, i. e., the volume flow QA entering the control volume at load

port A equals the exiting flow Q2 in the vena contracta. Thus, the continuity equation

for volume flows, Equation 10.84, is taken into account.

The flow of oil leaves the control volume at total pressure p2 +�v2
2/2. If this sub-

model is used in a bond graph of a hydraulic system in which efforts are hydrostatic

pressures, then the dynamic pressure term �v2
2/2 has to be taken into account by an

element. For that reason, an SR element modulated by the position of the spool has

been attached to the upper 1-junction. It represents convection of kinetic energy out

of the control volume. The fluid flow leaving the control volume at relatively high

velocity v2 gains kinetic energy by a reduction of the hydrostatic pressure. This is

well known from Bernoulli’s equation applied to an orifice.
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Fig. 10.31 Bond graph of the hydraulic mechanical interaction in a spool valve control orifice

(Borutzky, 1992)

Some authors [24] describe this phenomenon by means of a special resistor they

call the Bernoulli-resistor. However, since it is the conversion of hydrostatic energy

into kinetic energy and not the irreversible conversion of energy into heat, we fol-

low Breedveld and use a controlled sink (Breedveld calls this element a Bernoulli

sink [7]). However, usually all energy losses are taken into account by an empirical

discharge coefficient in the square root law for a steady-state flow through orifices.

In this case, the SR element is to be replaced by a true resistor.

The left 1-junction represents the volume flow, Q1, inside the control volume and

the momentum balance, Equation 10.87. The modulated gyrator accounts for the

efflux of momentum due to the volume flow, Q2, exiting the control volume. The

I element attached to the 1-junction of the volume flow Q1 represents the kinetic

energy of the oil inside the control volume sitting on the moving spool.

In order to see that the bond graph correctly reflects the principle of energy con-

servation, consider the power balance at the 1-junction representing the volume flow

QA.

0 = pAQA − (p2 +
1
2
�v2

2)Q2 − Fflow

A1
(Q1 − Qsp) + (

�

A1
v2Q2 cos ε)Q1

(10.90)

If the sum of all efforts at the 1-junction of Q1, i. e., the momentum balance is used,

Equation 10.90 takes the form of the energy balance, Equation 10.89.
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Fig. 10.32 Bond graph of the spool valve control orifice neglecting spool motion

If a steady fluid flow through the control volume is assumed and if the motion of

the spool is neglected, that is ṗ = 0 and vsp ≈ 0, then the bond graph model reduces

to the part depicted in Figure 10.32. The model equations take the simple form

QA = Q2 (10.91a)

Fflow = �v2Q2 cos ε (10.91b)

0 = pAQA − (p2 +
1
2
�v2

2)Q2 . (10.91c)

Energy losses are usually taken into account by means of an empirical discharge

coefficient in the energy equation, Equation 10.91c. Consequently, the Bernoulli

sink modulated by the spool displacement has to be replaced by an R element. Thus,

we come back to the representation of a control orifice by means of a controlled

resistor considered at the beginning of this section. However, the flow force cannot

be represented since the power Fflow×vsp disappears in the quasi static case (ẋsp ≈
0). That is, to reach a correct bond graph representation of the fluid mechanical

interaction in a spool valve control orifice, the motion of the spool must not be

neglected.

10.3 Conclusion

In hydraulic, pneumatic and process engineering systems, the exchange of energy

between subsystems or components is generally bound to mass flows. That is, not

only hydrostatic and kinetic energy are exchanged, but also mass, internal energy

and momentum. Due to the fact that the total power transmitted between two power

ports is the sum of contributions from several energy domains, the most appropriate

choice and the use of two variables, of which the product equals the instantaneous

power, is not obvious. In the special case of hydrostatic systems (usually isother-

mal conditions are assumed), the hydrostatic pressure is chosen as an effort variable

and the volume flow as a flow. Their product approximates the instantaneous power.
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Bond graph modelling of hydrostatic systems corresponds to the bond graph mod-

elling of electrical circuits. Of course, elements in each discipline have their domain

specific characteristics.

In this chapter, the question has been addressed as to how to represent thermo-

dynamic systems by bond graphs. Since there is no unique answer to this question

in the literature, two approaches have been presented and discussed, thereby fo-

cussing on some fundamental problems. In both approaches, the energy transport

between two locations bound to the fluid flow is not represented by a single bond.

One of these two methods, the pseudo bond graph approach, drops the fundamental

requirement that the product of the two variables associated with each bond must

equal the instantaneous amount of transmitted power in favour of more flexibility in

the modelling. Consequently, the C storage element is no longer energy conserva-

tive. It reflects the accumulation of mass and energy.

One approach to bond graph modelling of process engineering systems [15, 20]

is to develop separate pseudo bond graphs for the transport of mass and for the

transport of thermal energy. Elements in the pseudo bond graph representing the

heat transport are modulated by variables from the pseudo bond graph displaying

the mass transport in the system. The advantage of this approach is that each of the

two phenomena can be conveniently described by means of variables commonly

used in thermodynamics, e.g. pressure, mass flow on the one hand and enthalpy and

heat flow on the other hand. Couplings between both pseudo bond graphs are due

to the fact that parameters of elements in the thermal pseudo bond graph depend on

the variables in the pseudo bond graph of mass flows.

In another pseudo bond graph approach introduced by Karnopp, couplings be-

tween thermal and hydraulic or pneumatic quantities take place in multiport ele-

ments. For representing the accumulation of mass, thermal energy and volume in a

gas filled control volume of variable size, Karnopp introduced a 3-port C element

with a material (p, ṁ)-port, a thermal (T, U̇) and a hydraulic (−p, V̇ )-port. Since

this C element is not energy conservative, it is called a thermodynamic accumula-
tor. With this accumulator, the stored energy is not a function of the state variables,

but a state variable itself. At the hydraulic port, the product of port variables equals

power so that this port could be connected via a transformer to a true bond graph of

a mechanical subsystem.

The other fundamental phenomenon is the flow of a compressible fluid through a

nozzle. Karnopp proposes to represent this effect by means of an R element with two

material and two thermal ports with all four of them having conductance causality.

These two elements enable one to develop pseudo bond graphs of pneumatic

systems in a clear and systematic manner. Thus, thermal aspects can be conveniently

modelled by a pseudo bond graph and can also be linked to a bond graph of a

mechanical subsystem via the hydraulic port of the thermodynamic accumulator.

From a pragmatic point of view, the advantages make up for the conceptually weak

point that the product of variables associated with a bond is not equal to the power

across the bond.

On the other hand, as has been demonstrated in particular by Breedveld, ther-

modynamic systems can also be modelled by true bond graphs. Since the starting
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point are fundamental physical principles, e.g. Gibbs’ equations, it is theoretically

more convincing. However, some of the variables used in this approach cannot be

directly measured or are less accessible than usual quantities like temperature and

pressure. Breedveld also represents a gas filled control volume of variable size by

means of 3-port C element. In contrast to Karnopp’s thermodynamic accumulator,

the product of variables at each port equals power and the element is an energy

conservative C energy store. According to Gibb’s equation, the supplied power is

the sum of three parts, namely thermal power due to convection or conduction, hy-

draulic power linked with the change of volume and material power due to a mass

flow in and out of the control volume. The pairs of power conjugate variables are

temperature, T , and the rate of change of entropy, Ṡ, chemical potential, μ, and mole

mass flow, Ṅ as well as pressure, p, and volume flow, V̇ . Out of these six quantities,

the entropy flow, Ṡ, and the chemical potential, μ, for instance, cannot be directly

measured.

A compressible fluid flow through an orifice of constant cross sectional area can

be simply represented by a 1-port resistor if instead of pressures and temperatures,

the enthalpy at the inlet and at the outlet are used. The latter quantities, however,

cannot be directly measured.

Regarding hydraulic systems, it is customary to assume an incompressible oil

when it flows through orifices and to account for its compressibility in dead volumes

or chambers. With regard to the modelling of cylinder chambers, occasionally, this

has led to an ad hoc representation by means of a C element modulated by the

displacement of the piston. Since such an element violates the energy conservation

principle, an energy conservative 2-port C energy store has been proposed in this

chapter that accounts for the change of volume due to the motion of the piston. In

the constitutive equation for its mechanical port, a term appears that assumes small

numerical values in practice. However, if this term is neglected, then the equations

for the pressure at the hydraulic port and the force acting on the piston can no longer

be represented by an energy conservative 2-port C energy store, but by the artefact

of a controlled C element.

The bond graph model developed for a double acting hydraulic cylinder also

describes the viscous flow in the clearance between piston and container due to the

motion of the piston and accounts for leakage between the cylinder chambers across

the piston. Often, this leakage is modelled by a resistor. The superposition of both

effects has been considered rarely in the literature.

The chapter concludes with the development of a small true bond graph model of

the interaction between the flow of oil through a spool valve control orifice assumed

to be incompressible and the motion of the spool. Under some simplifying but rea-

sonable assumptions, the bond graph derived from conservation laws for mass, mo-

mentum and energy accounts for the kinetic energy of the fluid flow and the motion

of the spool. In contrast, in some bond graph models of hydraulic systems reported

in the literature, the 1-port resistor representing energy losses in an orifice is ex-

tended in an intuitive and ad hoc manner by a second mechanical port in order to

account for the flow force on the spool. However, this representation of formulae,
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commonly used in practical analysis of hydraulic control systems, is not consistent

with power continuity.
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[32] S. Scavarda. Systèmes hydrauliques et pneumatiques. In G. Dauphin-Tanguy, editor, Les
bond graphs, chapter 3, pages 111–159. Hermes Science Publications, 2000.
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Chapter 11
Automated Modelling

The previous chapters presented the fundamentals of bond graph methodology and

its potential in tackling some basic problems in various application areas, e.g. mod-

els of variable structure (Chapter 7), lumped parameter approximation of distributed

parameter models (Chapter 9), and open thermodynamic systems (Chapter 10). The

questions this chapter attempts to answer are: how can software support bond graph-

based physical systems modelling and in which phases of the modelling process can

it do so. Before going into details, an important general observation has to be pointed

out.

As we know, once a formalised model description is available, it can be trans-

formed fully automatically into an executable simulation program for the prob-

lem to be analysed. During model development, formal checks, e.g. with regard

to consistency of physical dimensions, can help avoid flaws that otherwise might

be overlooked and that could result in strange simulation results. Moreover, some

knowledge-based software can provide support to some extent when decisions have

to be made during modelling. However, it is the author’s belief that the possible

potential in automating the modelling process will not result in a software-driven,

fully automatic creation of a model that meets the given requirements. Engineering

experience, especially in the phases of specification and conceptual system design,

assessment of both modelling assumptions and simulation results, and creativity will

still remain the essential key to the successful development of a model that is ade-

quate for the problem under consideration. In this sense, the heading of this chapter

is automated modelling.

In his Ph.D. thesis ([81], p. 50), Top poses the question “Modelling: art or algo-
rithm?” and gives the following answer.

We believe to have clarified the source of this dichotomy by identifying the three basic

ingredients of the modelling task: specification of requirements, construction of system

structure and assessment of the system in terms of explicit requirements. Construction and

assessment can largely be automated using the set of explicit requirements, whereas specifi-

cation entails asking the right questions and is therefore under responsibility of the modeller.

An automated modelling system for the development of parsimonious models that

handles modelling assumptions, uses model satisfaction criteria and can revise a

469
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model on the basis of internal considerations is the software package AIM (Artifi-

cially Intelligent Modeller) presented by N. Smith in his Ph.D. thesis [72].

11.1 Continuous System Simulation Languages

With the advent of the first (digital) computers, the procedural programming lan-

guage FORTRAN emerged and was frequently used in subsequent decades to for-

mulate models for the simulation of engineering systems on computers. By follow-

ing causal paths in small bond graphs, equations can be manually and directly de-

rived from the graph in a systematic manner as demonstrated in Section 3.5 by three

small examples. These equations can be transformed with little effort into statements

of a FORTRAN subroutine to be compiled and linked with a simulation program.

For larger bond graphs, a hierarchical modular model structure can be mapped onto

nested calls of subroutines.

Sequential processing of a program on one processor of a computer requires that

statements in a computer program are sorted into a computational order that is not

determined by the engineering problem or the modelling process. Observing the

sequence of statements distracts from modelling considerations and is a potential

source of errors. This problem did not appear when a simultaneous block diagram

was mapped onto an analog computer.

The next step towards better support of model formulation was the development

of declarative simulation languages that enable a simultaneous problem-oriented

description of continuous systems. At this level, a simulation program is needed that

automatically sorts model equations and transforms them into a program formulated

in a procedural programming language, e.g. FORTRAN or C. For these declarative,

so-called Continuous System Simulation Languages (CSSLs), a committee set up

a standard in 1967 [74] that has been supported by numerous simulation programs

developed all over the world. These software programs not only support the CSSL

standard, but also provide some language extensions. One prominent representative

of this class of simulation programs is the program ACSL®1 [76] and its Advanced
Continuous System Simulation Language. This program has been widely used all

over the world in academia as well as in industry. Of course, since then many other

advanced competitive modelling and simulation programs have emerged. Some of

them will be considered in the next section.

Programming of model equations in the simulation language ACSL directly from

a small causal bond graph is made easier because model equations can go into a so-

called DERIVATIVE section in arbitrary order (By this method, the author entered

bond graph models into ACSL® more than 25 years ago, see also Karnopp 1984,

[47]). The syntax of ACSL statements is close to that of FORTRAN. The DERIVA-

TIVE section is part of the DYNAMIC section that encompasses all dynamic model

equations that must be solved in a time loop integration time step by time step. An

1 ACSL, acslX, and PowerBlock are registered trademarks of The AEgis Technologies Group, Inc.,

631 Discovery Drive, Huntsville, AL 35806 USA, http://www.acslx.com
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ACSL model description starts with the keyword PROGRAM and is closed by the

keyword END. In the literature, often the term ACSL program is used.

Using Macros for an ACSL Description of Hierarchical Modular Structured
Models

A hierarchical modular structured model description can be achieved by using pre-

defined functions, by defining so-called MACROS for submodels and by invoking

user-defined FORTRAN subroutines in ACSL®. Calls to MACROS can be nested

in arbitrary depth. When a preprocessor, called translator, transforms the ACSL de-

scription of a model into FORTRAN code, calls to MACROS are replaced by their

corresponding code. MACROS enable one to describe block diagrams such that the

ACSL description clearly reflects their structure.

Example: ACSL Description of a Shunt Motor Model

In order to see how easy it is to formulate model equations in ACSL directly from

a causal bond graph, consider the example of the shunt motor model depicted in

Figure 11.1.

At time t1, the motor experiences an instantaneous increase of the load moment.

As can be seen from the bond graph, the inductance of the field winding has been

neglected. From the bond graph of Figure 11.1, we derive the following equations.

uR = Ra × ia (11.1a)

if =
1

Rf
E (11.1b)

MR = Rm × ω (11.1c)

Ψ = K × if (11.1d)

ua = Ψ × ω (11.1e)

M = Ψ × ia (11.1f)

dia
dt

=
1
La

( E − ua − uR ) (11.1g)

dω

dt
=

1
Jm

( M − MR + Mload ) (11.1h)

Figure 11.2 shows the corresponding ACSL description, which is almost self-

explanatory. In the section starting with the keyword INITIAL parameter values,

initial values and parameters controlling the numerical integration of state equa-

tions are provided. The DERIVATIVE block in the DYNAMIC section includes all

model equations derived from the bond graph. In a time loop, the simulation pro-

gram runs through the DERIVATIVE section for each time t ≤ Tstop until the end

of the interval [0, Tstop] is reached. The TERMINAL section may hold assignment

statements that need to be performed only once after the simulation run in order to

compute output variables or other expressions of interest.
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Fig. 11.1 Schematic and causal bond graph of a shunt motor

When the motor model is part of a large overall system model, it can obviously

be used as a submodel in order to achieve a clear modular textual description that

reflects the structure of a graphical model representation. In ACSL, this is possible

by defining the motor model as a MACRO as shown in Figure 11.3.

The aim of introducing the shunt motor model as an ACSL MACRO is to enable

its multiple reuse. On the other hand, when an ACSL program is processed by the

translator, all MACRO calls are replaced by the model equations. Therefore, all

variables that are not passed on with the argument list of the MACRO must be made

local in order to ensure a global consistency of variable names. This is achieved with

the MACRO REDEFINE directive. Moreover, this MACRO mechanism requires

that all element parameters are passed on with the MACRO argument list. If initial
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PROGRAM Shunt motor
INITIAL

CONSTANT E = 220.0 ! V ! External voltage supply
CONSTANT Ra = 0.875 ! Ohm ! Resistance of armature winding
CONSTANT La = 0.175 ! Vs/A ! Inductance of armature winding
CONSTANT Rf = 5.495 ! Ohm ! Resistance of field winding
CONSTANT K = 0.0307 ! Vs/A ! Transduction coefficient
CONSTANT Jm = 0.8 ! Nmˆ2 ! Moment of inertia of the rotor
CONSTANT Rm = 0.066 ! Nms ! Rotary dashpot coefficient
CONSTANT M01 = 100.0 ! Nm ! Load moment
!
CONSTANT tstop = 5.0 ! s
CONSTANT tz1 = 2.5 ! s
!
! Initial values:
CONSTANT ia0 = 0.0
CONSTANT w0 = 0.0
!
ALGORITHM IALG = 4
NSTEPS NSTP = 1
MAXTERVAL MAXT = 1.0e-3
MINTERVAL MINT = 1.0e-6
CINTERVAL CINT = 0.1

END ! of initial
DYNAMIC
DERIVATIVE

Mload = M01 * STEP(tz1) ! Load moment
MR = Rm*w ! Friction moment
! Resistor of the field winding:
if = E/Rf
! Gyrator equations:
psi = K*if
ua = psi * w ! w : Angular velocity omega
M = psi * ia ! ia: Armature current
! Resistor of the armature winding:
uR = Ra * ia
! State equations:
diadt = (1/La) * ( E - ua - uR )
dwdt = (1/Jm) * ( M + Mload - MR )
!
ia = integ (diadt, ia0)
w = integ (dwdt, w0)

END ! of derivative
TERMT( T .GE. TSTOP )

END ! of dynamic
TERMINAL
!
END ! of terminal

END ! of program

Fig. 11.2 ACSL description of the shunt motor model
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MACRO Motor (E,Mload,i,w,La,Ra,Rf,K,Jm,Rm,ia0,w0)
! input variables : E,Mload

! E : Voltage,
! Mload : Load moment

! output variables : i, w
! i : Current,
! w : Angular velocity

! Parameters : La,Ra,Rf,K,Jm,Rm
! La : Armature inductance
! Ra : Armature resistance
! Rf : Field resistance
! K : Transduction coefficient
! Jm : Total moment of inertia
! Rm : Rotary dashpot coefficient

! internal variables: ia, if,psi,ua,uR,diadt,dwdt,M
! ia : armature current
! if : field current

! initial values: ia0,w0 ! ia0 : initial value of ia
! w0 : initial value of w

MACRO REDEFINE ia,diadt,if,ua,uR,w,dwdt,M
MACRO STANDVAL ia0=0.0,w0=0.0

if = E/Rf
psi = K*if
ua = psi * w
M = psi * ia
uR = Ra * ia
diadt = (1/La) * ( E - ua - uR )
ia = integ(diadt, ia0)
MR = Rm * w
dwdt = (1/Jm) * ( M - MR + Mload )
w = integ(dwdt, w0)
i = if + ia

MACRO END

Fig. 11.3 ACSL MACRO for reuse of the shunt motor model

values of state variables are omitted in a MACRO call, then values provided with

the MACRO STANDVAL directive are used.

It is true that continuous system simulation languages (CSSLs), e.g. ACSL, en-

able the description of large models in a hierarchical and modular way. In order

to facilitate the ACSL description of schematics of mechanical systems in one-

dimensional motion and of bond graphs, Zeid [90] has designed MACROS for basic

mechanical components, e.g. masses, springs, dampers and levers as well as for ba-

sic bond graph elements.

The Requirement for Causality Assignment at Submodel Ports

The problem, however, is that MACROS require computational causalities to be

defined in the model since only so-called assignment statements are allowed,

< V ariable > = < Expression > , (11.2)
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in which the expression on the right-hand side is evaluated and assigned to the vari-

able on the left of the equal sign. In the DYNAMIC section of an ACSL description

of a model, there must be just one assignment statement for each time dependent

variable defining it. This means that the equations in an ACSL program are meant

to describe simultaneous relations. Variables, however, are statically divided into

input and output variables. This requirement is met by block diagrams and by bond

graphs after computational causalities have been eventually assigned. If, however,

submodels are connected according to the physical structure of a system (and this is

common, e.g. for networks of electrical or hydraulic systems as well as for acausal

bond graphs), then variables of submodels can be classified a priori only into those

that are local and those needed for interconnection with other submodels. In bond

graphs, the latter are the power conjugated port variables. Which of the two vari-

ables of a power port assumes the role of an effort such that the conjugate variable

becomes the flow depends on the properties of the partner models a submodel under

consideration is connected to.

The core of a bond graph model of a hydraulic pump, for instance, is a trans-

former because the component transforms mechanical energy into hydraulic energy.

Internal leakage from the high pressure region to the tank can be accounted for by

a resistor. In this case, the hydraulic port of the pump model can have flow causal-

ity. The pump model supplies a fluid flow, Q, according to the angular velocity, ω,

at which the pump is operated. If oil compliance in the high pressure region is ac-

counted for by a C store, then the hydraulic port of the pump model has got preferred

integral causality (Figure 11.4). In the bond graphs of Figure 11.4, Vp denotes the

pump’s volumetric displacement.

ACSL allows for conditional statements in MACRO definitions. If computational

causality at a port is passed as information in the argument list of a MACRO, as-

signment statements for both possible cases of causality assignment can be provided

in the body of the MACRO. From a practical point of view, however, this is conve-

nient only for 1-port elements. The interconnection of submodels according to the

physical structure of a system entails two other problems if a CSSL is used.
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Ql
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R
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Fig. 11.4 Bond graph models of a constant flow pump with different causalities at its hydraulic

port
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Algebraic Dependencies Between State Variables

Due to the interconnection of submodels, state variables in different submodels can

become algebraically dependent. This happens if, for instance, the pump model on

the right side of Figure 11.4 is connected to a line model in which oil compliance

has been lumped into two C energy store at the line’s inlet and outlet (cf. Figure 9.2).

If macros with a static classification of interface variables into inputs and outputs

are introduced in order to come to a clear modular description of larger models,

then the problem of algebraic dependencies between state variables due to the in-

terconnection of submodels can be circumvented by providing several models of a

component with different causalities at their ports. If the hydraulic pump model is

to be connected to a line model, then an algebraic dependency between C energy

stores in both models could be avoided by either not lumping oil compliance at both

ends of the line or by using a joint C element that accounts for oil compliance in the

pump and at the line’s inlet. The equation of this joint C energy store is then used

only in one of the two macros corresponding to the pump and to the line model. If,

however, pre-defined macros are taken from a library to build a CSSL description

of a model of a large system, then it is difficult to see all the implications that can

arise from the choice of macros and their interconnection.

Algebraic Loops

The second problem is that the interconnection of submodels can entail algebraic

loops. In the case of dependent state variables as well as in the case of algebraic

loops, the equations of the overall system model cannot be transformed into ex-

plicit state space form if the algebraic constraints cannot be solved. This, however,

was required by early CSSL processing software. To overcome the problems with

algebraic loops, the language ACSL provides an IMPL operator that enables an it-

erative solution of implicit algebraic equation in one unknown. Furthermore, after

an implementation of the BDF method was included in version 11 of the simula-

tion program ACSL® [76], this programs not only accepts assignment statements

and implicit algebraic equations in one unknown, but also the general case of sets

of differential-algebraic equations. Let x denote the state vector and z the vector of

algebraic unknowns, then a set of differential-algebraic equations in semi-explicit

form

ẋ = f (x, z ) (11.3a)

0 = g (x, z ) (11.3b)

can be formulated in ACSL by means of the integration operator INTVC and the

IMPVC operator denoting the solution of an implicit vector equation by iteration.

x = INTVC ( f, x0 ) (11.4a)

z = IMPVC ( g, z0 ) , (11.4b)
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where f denotes the vector of derivatives and g the vector of residuals g(x, z). In

Equation 11.4a, the vector of derivatives is integrated with respect to time, while

Equation 11.4b demands an iterative computation of the vector of algebraic un-

knowns.

Systems of Implicit Differential-Algebraic Systems

In the case of a fully implicit set of DAEs,

F ( ẋ,x, t ) = 0 , (11.5)

the problem can be formulated in ACSL as the integration of a vector xdot and the

computation of xdot by iteration.

x = INTVC ( xdot, x0 ) (11.6a)

xdot = IMPVC ( F, 0.0 ) (11.6b)

Via a variable indicating the numerical integration algorithm, its default name is

IALG, the DASSL code can be selected.

Features of the language ACSL beyond the CSSL standard and their support by

the simulation program ACSL certainly meet contemporary requirements that arise

from problems in various engineering fields. They are, however, proprietary. If we

disregard such extensions, then the considered problems with CSSL descriptions of

large hierarchical modular models appear because the CSSL standard only covers

assignment statements and the latter are ‘merely’ sorted by the translator of CSSL

programs. The more general form of equations

< Expression > = < Expression > (11.7)

or

< Expression > = 0.0 , (11.8)

expected by solvers of implicit sets of DAEs, are generally not supported.

While CSSLs in general have been confined to the formulation of explicit state

space models, solvers for linear implicit systems in which the matrix can be sin-

gular have been developed in numerical mathematics and have been implemented

in software packages, e.g. ODEPACK [45]. Moreover, the solver DASSL for gen-

eral implicit DAE systems of index < 2 has found wide application. These solvers

expect as input the formulation of model equations in a procedural language to be

compiled and linked to a main program that calls the solver. That is, while many

simulation programs based on the CSSL standard have been confined to explicit

state space models, more advanced solvers from numerical mathematics as the core

of simulation programs are lacking the support of model development.

Consequently, modelling and simulation software environments, e.g. Dymola,

have been developed that are based on a modelling language supporting non-causal
equations in a mathematical sense. These software programs can internally perform
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symbolic reformulation of equations where necessary, and generate a state space

model if this is possible. The latter can be output in the simulation language ACSL.

If a state space model is not possible, then an index one DAE system to be solved

by the DASSL code can be generated.

The model description language excepted by this kind of modern advanced mod-

elling and simulation software can be proprietary like SIDOPS, the underlying lan-

guage of the 20-sim® software [25], or public domain like Modelica [56]. The most

important difference with regard to simulation languages based on the CSSL stan-

dard is that these model description languages support non-causal equation formu-

lation. Consequently, beyond equations sorting, symbolic formulae manipulation

features must be available in supporting programs. In contrast to simulation pro-

grams based on the CSSL standard, such advanced programs not only transform

the model description into a formulation that uses a programming language such

as C. Moreover, they can transform a non-causal model description into a simula-

tion language, e.g. ACSL. The simulation features of such modelling and simulation

software are based on powerful solvers from numerical mathematics.

11.2 Object-Oriented Modelling Languages

When simulation of the dynamic behaviour of engineering systems on (digital) com-

puters came into use, simulation languages were introduced to free model descrip-

tion from the necessity of bringing mathematical equations formulated as FOR-

TRAN assignment statements in a sequential order required by the computer and

not induced by the engineering problem under consideration. Since the early days,

the ever increasing performance of computers enables simulation of systems of in-

creasing size. To cope with an increasing model size, it became necessary to de-

scribe models in a hierarchical and modular way. At the same time, limitations of

the CSSL standard established in 1967 and of CSSL based simulation programs be-

came apparent. This has led to the introduction of languages that support a reliable

development of large models. In order to point out the importance of the modelling

process, the notion modelling languages is commonly used nowadays.

Inspired by the object-oriented programming paradigm supporting the develop-

ment of large software systems [67], modelling languages have come up to sup-

port the development of large engineering systems in a way called object-oriented
physical systems modelling. The characteristics of such a modelling approach have

already been explained in Section 1.3. Here, they are briefly recalled.

• Interconnection of Submodels

Submodels are plugged together according to interconnections of their corre-

sponding components in the real engineering system.

• Model Hierarchy

Physical system models are hierarchical and modularly structured.
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• Encapsulation of Knowledge

Knowledge about a subsystem is encapsulated in the corresponding submodel.

Only the part of information about a submodel needed by other submodels can

be accessed via well defined interfaces. For instance, the body of a submodel

in which its behaviour is described by means of certain characteristics does not

need to be known when submodels are connected.

• Instantiation from Model Classes

Submodels come into existence by instantiation from generic model classes.

• Inheritance of Submodel Properties

If a submodel is used in the declaration of a new submodel, all its properties are

inherited by the submodel.

In the following, these characteristics will be considered more closely from a bond

graph modelling perspective. The discussion will make use of two model descrip-

tion languages, namely SIDOPS (particularly designed to support bond graph-based

physical systems modelling) and Modelica (the outcome of an international effort

to combine features of present object-oriented modelling languages into a unified

language that facilitates exchange and reuse of models). A brief description of mod-

elling languages that explore the concepts of object-oriented physical systems mod-

elling is given in Section 5 of the Modelica Tutorial and Design Rationale, ver-

sion 1.3 of December 19992.

11.2.1 Connection of Submodels According to the Physical
Structure of the System

The interconnection of submodels according to the physical structure of a system,

as is common in bond graph modelling as well as in network modelling, means that

some interface variables of submodels are set to be equal. For instance, if for sev-

eral electronic devices a pin is selected and if all these pins are connected to a joint

circuit node, then all pins have the same potential and currents add up to zero ac-

cording to Kirchhoff’s current law. Generalised to corresponding power variables in

other energy domains, this law holds if, e.g. a hydraulic pump is connected to a line

or if in mechanics two components are linked. Forces acting on the connecting point

add up to zero and both components have the same velocity in that joint point. As

previously explained, it is the connection of two submodels and the properties that

decide whether an interface variable can be computed by means of the equations in

the body of a submodel or the variable has to be provided by a submodel connected

to the submodel. That is, the specific form of equations, Equation 11.2, must be dis-

missed in favour of the more general form, Equation 11.7. In other words, equations

must be declarative or non-causal. Therefore, in Modelica, the constitutive equation

of a linear 1-port C energy store, for instance, can always be given in the form

2 Latest versions of documents on Modelica may be downloaded from http://www.Modelica.org
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C ∗ der(u) = i , (11.9)

independently of the port causality the element assumes in a present context (In

Equation 11.9, der denotes the differentiation operator d/dt). Giving another ex-

ample, Ohm’s law can always be specified in the acausal form

0 = u − R ∗ i , (11.10)

where R denotes the resistance. Consequently, equations cannot be sorted immedi-

ately into a computational order. Rather, first it must be checked which variable is

determined by which equation. This investigation corresponds to causality assign-

ment in bond graph modelling after all submodels have been expanded. If every

unknown is related to one single equation, then the transformation of equations into

a list of sorted CSSL statements corresponding to a state space model depends on

whether subsystems of implicit simultaneous equations are linear in their unknowns

and whether the effort for solving them symbolically is acceptable in practice.

11.2.2 Algebraic Loops

In case algebraic loops appear due to the connection of submodels, then the sub-

system of simultaneous equations can be symbolically solved, as far as it is linear

in its unknowns. In order to avoid long complex symbolic expressions that require

considerable storage, auxiliary variables are usually introduced. In Section 5.4, it

has been shown how the processing of algebraic constraints can be supported by

inserting additional residual sinks into a bond graph indicating tearing variables. As

a result, the set of algebraic constraints can be reduced to one or several small sets

of equations for tearing variables. The latter can be symbolically solved if they are

linear in the tearing variables.

11.2.3 Algebraic Dependencies Between State Variables

If state variables in different submodels become dependent due to the connection

of submodels, then this means that the overall mathematical model has the form

of a DAE, possibly of higher index. As explained in Section 5.2, the index can

be reduced by symbolic differentiation of algebraic constraints. Differentiation in-

troduces new derivatives of variables. Consequently, equations determining these

variables must be differentiated as well. In the modelling and simulation program

Dymola® [29], Pantelides’ algorithm for determination of a set of consistent initial

conditions [61] is used to determine a minimal number of equations that must be dif-

ferentiated symbolically to reduce the index of the DAE system. When discussing

the problem of numerical drift, it has been observed that with regard to stabilisa-
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tion of the numerical solution, it is reasonable to add the initial constraints to the

DAE system of reduced index. This leads to an over-determined set of equations for

the Newton-Raphson iteration. As a remedy of this problem, the so-called dummy
derivative method is applied in the program Dymola®. This method conceives the

derivatives of some variables as new independent algebraic variables. That is, it ig-

nores the fact that they are the derivatives of variables. Thus, it can be achieved that

the number of unknowns equals the number of equations. This approach, however,

requires a decision on which variables are to be considered state variables.

For illustration of this method, consider the well known example of two capaci-

tors connected in parallel (Figure 11.5). Figure 11.6 shows the corresponding bond

graph. The algebraic dependency between the two states u1, u2 is indicated in the

bond graph by a causal path between the power ports of the C stores. By looking at

the causal bond graph, we get the following equations.

i =
1
R

( u0 − u1 ) (11.11a)

u̇1 =
1
C1

( i − C2u̇2 ) (11.11b)

u2 = u1 (11.11c)

These equations are an index 2 DAE system with regard to the three unknowns u1,

u2, i. If the algebraic constraint Equation 11.11c is differentiated with respect to
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time and if the result is added to the equations derived from the bond graph, then we

have four equations for three unknowns. In the bond graph, integral causality at the

C energy store of element C1 apparently leads to derivative causality at the second

C store. Consequently, if u2 is not considered a state variable any more and if it is

ignored that u̇2 is the derivative of u2, then with z := u̇2, we have four equations

for the four unknowns i, u̇1, u2 and z. Since the set of equations⎡⎢⎢⎣
1 0 0 0
−1 C1 0 C2

0 0 1 0
0 1 0 −1

⎤⎥⎥⎦
⎡⎢⎢⎣

i
u̇1

u2

z

⎤⎥⎥⎦ =

⎡⎢⎢⎣
(u0 − u1)/R

0
u1

0

⎤⎥⎥⎦ (11.12)

is linear with a non-singular coefficient matrix, it can be solved symbolically. As a

result, the initial DAE system can be transformed into an explicit state equation for

the single state variable u1. For nonlinear equations, it is generally not possible to

reduce an index 1 DAE system into a state space model.

In Section 5.4, the problem of algebraically dependent stores was reduced to

algebraic loops between port variables of resistors.

11.3 Bond Graph Modelling from an Object-Oriented Point of
View

Bond graphs were introduced by Paynter in as early as 1959 and subsequently elab-

orated into a methodology by Karnopp and Rosenberg [48] at a time when an object-

oriented-approach to physical systems modelling still did not exist. Nevertheless, al-

though notions adopted by object-oriented modelling (OOM) from object-oriented

programming (OOP) in software engineering have not been used in bond graph lan-

guage, features of the object-oriented modelling paradigm can also be found in bond

graph modelling. In fact, from a present-day point of view, bond graph modelling

may be considered a special form of object-oriented physical systems modelling.

This view, shared also, e.g. by Broenink [20], is briefly explained in the following.

• Objects

The notion of an object is uncommon in bond graph language. However, mod-

els of technical components or of basic physical processes are actually used as

objects. From today’s point of view, these models represented by nodes in bond

graphs may be considered objects.

• Interconnection of Submodels

It is an essential feature of bond graphs that submodels are connected accord-

ing to the way their corresponding engineering components exchange energy.

Therefore, the structure of a bond graph shows a strong topological affinity to

the physical structure of a system before the graph is simplified. As a conse-

quence, computational causality at the power ports of a submodel depends on

the connections of a submodel to other submodels. That is, the internal func-
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tional description of the dynamic behaviour of a submodel must be non-causal.
In order to be able to adjust constitutive equations according to computational

causality assigned to the submodel’s power ports, functions establishing the con-

stitutive equations must have a unique single valued inverse and must be suffi-

ciently smooth. As a result, non-causal model description has been a feature of

bond graph modelling long before it was identified by the OOM paradigm as a

need to overcome limitations of CSSLs.

• Model Hierarchy

Hierarchical model structuring is a well known concept to cope with large-scale

systems. It has a long tradition and is used in various formalisms, e.g. iconic

diagrams, networks, block diagrams and in bond graphs. On the hierarchy lev-

els above the level of basic elements, submodels can be represented by words in

bond graphs. Such hierarchical bond graphs are called word bond graphs. Ba-

sic elements are described by means of equations. A submodel above the level of

basic elements is described by a bond graph or may also be given by a set of equa-

tions as well if it is a behavioural model with no internal structure. Word bond
graphs support a systematic top-down design of a structured model of a com-

plex system guided by the consideration of the energy exchange between system

components. Since bonds connecting power ports can carry information about the

reference direction of the energy flow and also information about computational

causality, word bond graphs are not merely iconic diagrams with icons reduced

to an alpha-numeric mnemonic code. Word bond graphs may be regarded rather

an intermediate format between an iconic diagram with application specific icons

and a mathematical model of the system.

• Encapsulation of Knowledge

Submodels in bond graphs representing either system components or elementary

physical processes can be accessed only via their interfaces called power ports or

signal ports. A storage element, for instance, does not pass information about its

state via its power ports to adjacent vertices. That is, the state variable represents

encapsulated information (For convenience, in the model description language

SIDOPS, a store’s state can be accessed via a signal port). Moreover, for inter-

connection of submodels, the constitutive equations in the body of a submodel

description do not need to be known. Bond graph modelling is non-causal. For

causality assignment supporting the organisation of a mathematical model, it is

sufficient to know the type of an element. The exact form of its constitutive equa-

tions is not needed. Hence, what is kept in the body of a submodel description

can be viewed as encapsulated.

• Instantiation from Model Classes

At the lowest hierarchy level, there is a classification of energy processes into

energy storage, power conserving distribution of energy, and transport of energy,

transduction of energy into another form, especially transformation into heat.

The class of each type of element is denoted by a reserved symbol. A node in a

bond graph representing a basic process may be viewed as an instantiation of its

corresponding model class. It is a special member of the class it belongs to. Its

constitutive equations and parameters characterise the particular submodel and



484 11 Automated Modelling

distinguishes it from other instantiations of the model class. If a vertex of a bond

graph represents a component model, most often the latter is an instantiation of

a model class from a library augmented by specific parameters.

• Inheritance of Submodel Properties

The model super class store, for instance, just captures the fundamental prop-

erties of passivity of storing a physical quantity, e.g. electrical charge, and of

being energy conservative. With regard to the constitutive equations, it is only

determined which variables are involved. Moreover, a preferred computational

causality may be assigned to its power ports. This causality restriction at a power

port only means that one of its two conjugate power variables is related to the

integral with respect to time of the other one. The actual functional (linear or

nonlinear) dependency however as well as (additional) parameters are specified

in the model of an energy store under consideration. While the state is encap-

sulated information that is not passed via the ports of a storage element, it can

be inherited from the superclass store for use in the formulation of the store’s

constitutive equations.

As this brief comparison shows, bond graph based physical systems modelling and

object-oriented modelling both have much in common, even though the first ap-

proach is much older. Most importantly, both paradigms support

• domain independent,
• hierarchical,
• non-causal modelling.

In bond graph modelling, the concept of computational causalities supports the gen-

eration of various forms of mathematical models from a generic bond graph model.

11.4 Describing Bond Graphs in SIDOPS

A model description language particularly designed for supporting bond graph

based physical systems modelling is SIDOPS [18]. The acronym stands for Struc-
tured Interdisciplinary Description Of Physical Systems. It is the underlying textual

language of the integrated modelling and simulation environment 20-sim® (Twente

sim) [20]. In the 20-sim® environment, SIDOPS enables the specification of the

functional behaviour of a user-defined element or of a component model, e.g. an

orifice model in hydraulics, to be added to a collection of predefined library models

kept in folders. As to the creation of equation models, SIDOPS is close to common

mathematical formulation. The language supports many mathematical functions by

means of built-in functions. Its use is intuitive. In addition, the 20-sim® equation

editor is language sensitive and syntax violations are highlighted while typing. In

general, however, model development takes place at a graphical level. For that pur-

pose, the graphical user interface (GUI) of 20-sim® supports several graphical for-

malisms.
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In the following, some essential features of SIDOPS will be considered in order

to give an impression of the language’s potential without the need of explaining too

many details of its syntax. For further details of the language, it is referred to the

Reference Manual that can be downloaded from the 20-sim website [25].

SIDOPS supports the development of hierarchical, modular structured mod-

els and encapsulation of knowledge. For hierarchical modular model description,

classes are used. A SIDOPS model class captures all non-changing, permanent prop-

erties of a submodel. Initial conditions and parameters are specified by names. When

a model class is used (instantiated into a particular submodel), a copy is made and

provided with a set of actual parameters. In SIDOPS model classes, the definition

of the interface of an object to its outside world is separated from the description

of the behaviour. The interface definition part may be followed by a list of subclass

definitions.

In the heading of a class definition, a list of static parameters of data type integer,

so-called class parameters, may be specified. This way, it is possible to describe

multiport elements without the need for specifying the number of ports in the model

class declaration. This is important for the declaration of a class for 0- or 1-junctions,

respectively.

The interface declaration part is introduced by the keyword interface. In this

section, power ports are declared by means of the keyword ports, while keywords

inputs, or outputs are used for declaration of signal ports. Constraints with regard

to the power flow reference direction or with respect to causality are treated as port

attributes specified by keywords (Figure 11.7). An instantiation of a model class can

communicate with other models only via the declared interface. The local names of

power variables of a port are prefixed by the port’s name, viz. <Port-Name>.e
or <Port-Name>.f. An exchange of information via global variables is not sup-

ported; the only global variable is the time.

In the subclasses declaration section, starting with the keyword subclasses, all

subclasses used in a class are listed line by line. On each line, the subclass name is

followed by a unique name for the copy of that class where the name is local within

the class.

The body of a class may contain either so-called connection lines that describe

the interconnection of subclasses, or equations. In the first case, the class is called

a topological class and an equation class in the second case. Equation classes can

have several parts for declaration of parameters, constants and local variables and

finally an equation part where constitutive equations are formulated. The latter are

declarative and will be rewritten during model processing if necessary.

As an example, the class declaration of a basic 1-port C energy store is given in

Figure 11.7, where keywords of the language are typeset in bold. As the example

shows, instantiations of the class C1 have got a power port called p and a signal

port that allows access to the state of a C store. For the power port, restrictions

with regard to computational causality and the reference direction of the power flow

can be declared. Preferred integral causality is indicated by the keywords preferred
effort p. Since a C energy store is a passive element, the half arrow indicating

the power reference direction at the adjacent bond is required to point towards the
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class C1 version 1

# C1: 1-port C energy store with 1-dimensional port

interface
ports: p

causality restrictions
preferred effort p

orientation restrictions
fixed in p

outputs: real state

parameters
real C

equations
state = int(p.f)

p.e = (1/C) ∗ state

Fig. 11.7 SIDOPS class declaration of a 1-port C energy store

power port (fixed in p). Restrictions at the power ports of 2-port transformers and

gyrators can be formulated as shown in Figure 11.8. For both types of elements, one

half arrow points towards the element while the other one is oriented away from

it (constraint powerIn notequal powerOut). In the case of a 2-port gyrator,

both causal strokes either point towards the element or away from it (constraint
powerIn equal powerOut).

A SIDOPS class declaration of a 1-junction with the number N of ports as a for-
mal class parameter is given in Figure 11.9. The causality specification constraint
1 effort means that only at one of the N ports the effort variable can be the output

variable. The variable out denotes the flow that enters at one port and is the output

variable at all remaining N −1 ports. In addition to its N power ports, the 1-junction

has a signal port at which the variable out can be accessed (cf. Figure 3.5). During

model processing,

sum ( P[].e ) = 0

in the equations section in Figure 11.9 is expanded into

ei =
N∑

j=1
j �=i

αj × ej

and

identity ( P[].f ) = out

is translated into

fj = fi j = 1, . . . , N, j �= i

out = fi
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class TF1 version 1

# TF1: Transformer with two one-dimensional power ports

interface
ports: powerIn, powerOut

orientation restrictions
constraint powerIn notequal powerOut

causality restrictions
constraint powerIn notequal powerOut

parameters
real n

equations
powerOut.f = n ∗ powerIn.f

powerIn.e = n ∗ powerOut.e

class GY1 version 1

# GY1: Gyrator with two one-dimensional power ports

interface
ports: powerIn, powerOut

orientation restrictions
constraint powerIn notequal powerOut

causality restrictions
constraint powerIn equal powerOut

parameters
real n

equations
powerOut.e = r ∗ powerIn.f

powerIn.e = r ∗ powerOut.f

Fig. 11.8 SIDOPS class declarations of 2-port transformers and gyrators

class one1 (N) version 1

# one1: 1-junction with N one-dimensional bonds attached

# N: number of power ports a-priori not determined

interface
ports: P[N]

causality restrictions
constraint 1 effort P

outputs: real out

equations
sum ( P[ ].e ) = 0

identity ( P[ ].f ) = out

Fig. 11.9 SIDOPS model class of a 1-junction with the number of ports as a formal class parameter

[18]. Note that the value of N is now determined by the number of bonds actu-

ally connected to the 1-junction. According to the power orientation of the adjacent

bonds, the coefficients αj are equal to either +1 or −1. Index i denotes the bond at

which effort ei is the output and fi the input after causality assignment to the bond

graph of a system under consideration (Figure 11.10).



488 11 Automated Modelling

1��
ei

out
��

e1

f1

		

eN fN

��

Fig. 11.10 Bond graph 1-junction

For information processing components of a controlled overall system, it is ap-

propriate to describe their behaviour by a set of assignment statements. In order to

distinguish assignment statements from equalities in a mathematical sense, SIDOPS

has adopted the sign := from Pascal programming language. However, in a sub-

model specified by equations, equalities and assignment statements cannot appear

mixed.

In a topological class the keyword structure starts a list of connection lines. For

each subclass in a model class, there is one connection line. Each of them specifies

in an intuitive form to which ports of other subclasses the ports of a subclass are

connected. That is, these lines correspond with the incidence matrix of a graph.

In addition, connections between subclass ports and class ports must be specified.

Figure 11.11 shows the body of a SIDOPS class description of a simple bond graph

submodel with one power port p as an example. The submodel port p is depicted by

the small left-side rectangle �.

The first connection line in this topological class means that the resistor R1 is

connected to a 1-junction one1 by a multibond of dimension n. The orientation

of that bond is towards the R element as indicated by the symbol < in the textual

description. Causality information can also be coded in an obvious way by means

of the symbol | (third line). Apart from the last line, there are exactly as many lines

as elements where each connection via a bond appears twice. The last line indicates

that there is a connection between the junction one1 in the subclass and the port

p of the submodel class. Information of the power flow reference direction and

the causality at port p are not available. Both attributes are determined when this

submodel class is instantiated and connected to another submodel in the bond graph

of an overall system model.

In this section, some features of SIDOPS have been outlined. Further develop-

ments of this modelling language have been described by Breunese and Broenink

[17]. For instance, to help reduce inconsistencies in models, variables and parame-

ters can be annotated with information that can be checked automatically to ensure

compatibility in equations. Parameters and constants may be assigned a physical

type. For instance, if h denotes a time step, the physical type <<time>> can be

added as an annotation. If values of variables and parameters must be in a certain

range, e.g. a time step apparently must be positive, then this can be specified in a
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1n : one1 �� 0n : zero1 �� I : I1

��

R : R1

		

C : C1

structure
R1 <=n= one1

C1 <=n= zero1

I1 |<=n= zero1

one1 ( =n= p, =n=> R1, =n=> zero1 )

zero1 ( <=n= one1, =n=> C1, =n=>| I1 )

p =n= one1

Fig. 11.11 Multibond graph and corresponding topological class in SIDOPS

constraints section. Moreover, constants can be annotated with their physical units,

e.g. g = 9.81 <<m/s2>>.

Furthermore, models can be described on three levels of abstraction. All three of

them may be combined in the description of an overall model. Thus, multiformalism

is supported. At the highest level of abstraction, a system model can be described as

an interconnection of system components. At the intermediate level of abstraction,

the interactions of physical processes, taking place in the components, are modelled.

Formalisms for graphical representation can be bond graphs, block diagrams, or

iconic diagrams. At the lowest level of abstraction, basic physical processes are to

be described by means of equations.

In order to support modelling of digitally controlled time continuous systems,

the two functions sample and hold are available as language constructs. Ultimately,

the design of the extension of SIDOPS denoted as SIDOPS+ intends to support the

exchange of model information among multiple software tools. With that regard,

SIDOPS+ is neither limited to a particular software nor to special application fields.

A formal definition of the syntax of the language is given by Breunese in appendix

B of his Ph.D. thesis [16].
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11.5 Describing Bond Graphs in Modelica

As mentioned in Section 11.2, the modelling language Modelica is the result of

an international, especially European effort to combine features of several textual

object-oriented modelling languages into a new equation oriented so-called unified

object-oriented modelling (OOM) language. A major goal of the design of Modelica
has been to overcome the limitations of the old CSSL standard with regard to the

development of large scale models, to promote the exchange of physical system

models between various (proprietary) simulation packages and the reuse of models,

and to introduce by that way a new de facto standard.

The core language specifications were completed in December 2000. Further de-

velopment of Modelica and of Modelica libraries is organised by the non-profit,

non-governmental Modelica Association [56]. The language and some libraries are

freely available. The language is supported by the commercial modelling and simu-

lation software Dymola® [29, 31] as well as by the open source software OpenMod-

elica [62] developed at the University of Linköping in Sweden.

Some textbooks on object-oriented physical system modelling with Modelica

have been published [36, 80]. Besides the software, a tutorial and a user’s guide can

be downloaded from the web site of the OpenModelica Project [62]. In December

2007, The OpenModelica Consortium was founded supporting the development and

the promotion of OpenModelica. As a powerful general-purpose OOM language,

Modelica has received much attention in various application areas.

The description of basic bond graph elements and of their interconnection in

a textual object-oriented modelling language like Dymola or Modelica is rather

straightforward [12, 13, 19, 22], although there are also some restrictions. A general-

purpose Modelica bond graph library has been developed by Cellier and Nebot [23].

In the following sections, we will consider features of Modelica relevant for the

description of bond graph power ports, of basic bond graph elements and of hierar-

chical bond graphs [9].

11.5.1 Bond Graph Power Ports and Their Interconnection

With respect to the modelling of energy flows, Modelica relies on the mobility anal-

ogy and the concept of generalised networks. Hence, submodel interfaces to the

outside world are pins, not power ports as in bond graphs. The power variables of

an interface are called across and through variables [33]. They correspond to efforts
and flows as used by bond graph modellers. Correspondences between power vari-

ables in multiple domains according to the mobility analogy are given in Table 11.1.

All information needed for the description of a submodel interface is encapsu-

lated in a special model class called connector. Contrary to bond graph power ports,

connectors in Modelica in addition to power variables may also pass on other quan-

tities like generalised displacements and/or accelerations. Moreover, since Modelica

is network oriented, along with the connection of two interfaces, normally the flows
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Table 11.1 Correspondence of power variables from different energy domains according to the

mobility analogy

Across Through

Velocity Force

Angular velocity Torque

Voltage Current

Pressure Volume flow

Temperature Entropy flow

connector PowerPort ”bond graph power port”

// Version 2:

// Both effort and flow are treated as across variables

Real e ”effort variable”;

Real f ”flow variable”;

end PowerPort ;

Fig. 11.12 Description of a bond graph power port in Modelica

connector PowerPort ”bond graph power port”

// Version 1:

Real e ”effort variable”;

flow Real f ”flow variable”;

end PowerPort ;

Fig. 11.13 Inappropriate declaration of a bond graph power port in Modelica

involved are added up to zero. This is not appropriate for bond graphs because (sepa-

rate from the connection of power ports by bonds) the summation of flows is carried

out in a special bond graph element, the 0-junction. However, Modelica allows for

the suppression of this summation of flow (or through) variables by introducing two

variables of type Real (Figure 11.12), or, in other words, by omitting the keyword

flow usually associated with the declaration of the flow variables of an interface

(Figure 11.13).

This keyword means that with the interconnection of two interfaces, their flow

variables are added up to zero. If the prefix flow is missing, then corresponding

power variables of the two power ports connected together are set to be equal. The

summation of flows is not carried out. If, e.g. Mi.A denotes port A of submodel

Mi (i = 1, 2), then the interconnection of the two power ports M1.A and M2.A is

expressed by the statement

connect(M1.A, M2.A) .

If version 2 of the Modelica declaration of a bond graph power port is used, then

the connect statement merely represents a port to port connection and may be used

to describe the bonds in a bond graph. Otherwise, if version 1 of the Modelica
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Fig. 11.14 Connection of bond graph power ports if the keyword flow is not suppressed in their

declaration

declaration of a bond graph power port is used, the connect statement is equivalent

to the equations

M1.A.e = M2.A.e

0 = M1.A.f + M2.A.f,

which means that the bonds connected to the ports must be connected by a 0-

junction as shown in Figure 11.14.

For the interconnection of more than two power ports, bond graphs provide two

types of junctions corresponding to Kirchhoff’s current law or voltage law. Both

types of junctions allow for a finite, but a-priori not determined number of ports. If

a 0- or 1-junction is used in a bond graph, then its number of ports is determined

by the number of ports of other elements it is connected to. Based on the concept of

generalised networks, the object-oriented modelling language Dymola [30], a ma-

jor predecessor of Modelica, provides an element called node with an undetermined

number of interfaces. Thus, it corresponds to a 0-junction in bond graphs. However,

a built-in model that corresponds to a bond graph 1-junction and that allows for

an undetermined number of ports is not available either in Dymola or in Model-

ica (A separate element that represents Kirchhoff’s voltage law, extended to across

variables, is not needed in generalised networks).

One way to overcome the problem of a missing element corresponding to a bond

graph 1-junction with an undetermined number of ports is to replace a 1-junction

by a 0-junction and to switch the role of the power variables at each adjacent bond

by means of a so-called symplectic gyrator (ratio r = 1) as has been proposed by

Cellier for the language Dymola [22] (Figure 11.15).
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Fig. 11.15 Submodel equivalent to a 3-port 1-junction
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model One3P ”3-port 1-junction”

PowerPort port1, port2, port3;

equation
// all flows are equal

port2.f = port1.f;

port3.f = port1.f;

// all efforts add up to zero

0 = direction(port1) ∗ port1.e +

direction(port2) ∗ port2.e +

direction(port3) ∗ port3.e;

end One3P;

Fig. 11.16 Modelica class of a 3-port 1-junction

However, especially for bond graph modelling of mechanical systems, such an

approach is not functional since a systematic construction of a bond graph model of

a mechanical system starts with representing distinct velocities by 1-junctions. Once

the bond graph development has been completed, all 1-junctions would have to be

replaced by their equivalent according to Figure 11.15. Apparently, this step would

introduce many symplectic gyrators that do not correspond to physical phenomena.

Hence, by this method, the close affinity between the bond graph and a system

schematic as well as the expressiveness of the bond graph are obscured.

Alternatively, a model class may be introduced that depends on the number of

bonds connected to the junction. That is, for each number of power ports, a 1-

junction model class is defined which may be stored in a library [13], although

this approach also is not fully satisfying.

As an example, a Modelica description of a 3-port 1-junction is depicted in Fig-

ure 11.16. In the equation part of the model One3P, direction is a built-in function

that can be used to account for the orientation of a bond. If the bond starts from

port1 and ends at port2, specified by the statement connect(port1, port2), then di-
rection(port1) returns the value −1, and direction(port2) gives the value 1. A more

elegant approach is to define an array of power ports as shown in Figure 11.17. If the

model one of a 1-junction shown in Figure 11.17 is instantiated, then the default

value for the number of adjacent bonds must be replaced by the actual number.

one J1 (N=4) ;

In order to support 1- and 0-junctions for which the number of power ports is deter-

mined by the actual number of adjacent bonds, the dimension of the array of power

ports cannot be determined before the development of the bond graph has been com-

pleted. If another 1-port element is added to the 1-junction J1, the actual number of

adjacent bonds, N, must be updated.

This problem with bond graph 1- and 0-junctions does not appear in the Mod-

elica description of generalised networks. Consider, for instance, the simple circuit

depicted in Figure 11.5 and assume that a class Pin has been declared as shown

in Figure 11.18. If the class Pin is used in the declarations of a resistor and of a
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model one ”1-junction”

/* N : Number of power ports of a 1-junction,

depends on the number of adjacent bonds,

must be at least two.

*/

parameter Integer N = 2;

PowerPort ports[N] ;

Real sum = 0.0;

equation
for i in 1 : N loop
// all flows are equal

ports[i].f := ports[1].f ;

sum := sum + direction(ports[i]) ∗ ports[i].e ;

end for;

// sum of efforts equals zero

sum = 0 ;

end one ;

Fig. 11.17 Modelica class of a 1-junction using an array of power ports

model Pin
Real v ”potential of the pin”;

flow Real i ;

end Pin ;

model Resistor
Pin p, n ; // p: ”positive”, n: ”negative” pin

Real u ”voltage drop across the two pins” ;

Real i ”current through element” ;

parameter Real R (unit=”Ohm”) ”Resistance”

equation
0 = p.i + n.i ; // Positive currents into components

u = p.v - n.v ;

i = p.i ;

u = R ∗ i ;

end Resistor ;

Fig. 11.18 Modelica class of a pin and its use in a resistor model class

capacitor, then the connection of the three elements R, C1 and C2 according to the

circuit of Figure 11.5 is simply expressed by three connect statements.

connect(R.n, C1.p) ;

connect(R.n, C2.p) ;

connect(C1.p, C2.p) ;
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Connectors in Modelica versus Ports in Bond Graphs

As has been mentioned at the beginning of this subsection, connectors in Modelica

can include any variable appropriate for describing the connection of a submodel

interface to another. That is, not only power conjugated variables, but also other

quantities may be passed via connectors from one submodel to another. In [32], for

instance, the authors declare a connector of a mechanical shaft model that passes

an angle (generalised displacement) and a torque (considered as a flow). Moreover,

for the description of multibody systems, it is proposed to pass not only power vari-

ables, but also displacements and accelerations [60]. With this flexibility in the mod-

elling language, quantities needed in the equations of a submodel can be provided

directly. On the other hand, the expressiveness of a graphical model description may

be obscured as there is no clear distinction between power and signal ports. Conse-

quently, it may not be fully clear which information is passed on from which sub-

model. Moreover, by using information passed on in addition to the power variables,

it is possible to use (ad hoc) constitutive equations in a submodel which are not in

accordance with physical conservation laws. If a connector does not pass on both

power variables, power continuity is not ensured by the interconnection mechanism.

In that case, in addition to the evaluation of the constitutive equations, power must

be calculated inside a submodel and passed to submodels connected to it. Energy

flowing into and out of a submodel must be checked.

In contrast, bond graph modelling is more stringent. Power is passed through

power ports and signals through signal ports. It is an essential feature of bond graphs

that power continuity is expressed explicitly by the junction structure. If signal mod-

ulation of elements is used with care, standard bond graph elements and the way they

are allowed to pass information help to avoid setting up model equations that may

violate the energy balance.

From these observations, it appears that not every Modelica description of a dy-

namic system can be translated into a bond graph. The description of a bond graph

model in Modelica is feasible, although the fundamental 1-junction with an undeter-

mined number of ports so far appears to be insufficiently supported. In the following,

it is demonstrated how encapsulation and inheritance can be exploited even in the

definition of basic bond graph models.

11.5.2 Basic Bond Graph Elements

In OOM, the concept of encapsulation of knowledge and inheritance supports the

reliable development of submodels to be stored in libraries and reused for develop-

ing large scale models. For introduction of a submodel, it is not necessary to rewrite

or to modify parts of the definition of another submodel. Joint properties are in-

herited from a superclass and only features that are special for a submodel to be

introduced are added.
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partial model passiveOnePort
PowerPort p;

equation
// ensure that the number of bonds is one

assert(cardinality(p) == 1, ” ”);

// ensure that the orientation of the power flow is inward

assert(direction(p) == 1, ” ”);

end passiveOnePort;

Fig. 11.19 Encapsulation of the property of a passive 1-port element

partial model energeticOnePort
extends passiveOnePort;

Real state ”conserved quantity”;

Real rate ;

equation
// der(state): time derivative of state

der(state) = rate;

end energeticOnePort;

Fig. 11.20 Encapsulation of the energetic property of 1-port energy stores

Both mechanisms can be used favourably even in the definition of the basic bond

graph models. For instance, resistors and energy stores share the property of being

passive. This suggests the encapsulation of this joint property in a superclass that

is inherited in the definition of a resistor or an energy store. In the following, the

presentation is confined to 1-port elements for the sake of simplicity. In bond graphs,

passivity of resistors and energy stores is accounted for by the convention of an

inward positive reference direction of the energy flow at the element port (Energy

flows into the port when the product of both power variables e and f is positive).

A Modelica class capturing the property of a passive 1-port element is shown in

Figure 11.19.

The definition of a model or submodel class starts with the keyword model. Since

constitutive equations are missing, the model class passiveOnePort cannot be

instantiated into the model of a passive element. This is indicated in Modelica by the

keyword partial. In the definition given in Figure 11.19, the keyword assert denotes

a built-in function that evaluates a Boolean expression and returns an error message

in case the value of the expression is false, while the built-in function cardinality
returns the number of connections to a connector p.

The superclass passiveOnePort may be used to introduce a subclass ener-
geticOnePort in which the energetic property of an energy store is encapsulated

in the sense that an energy store conserves a quantity, e.g. charge (Figure 11.20).

The still incomplete model class energeticOnePort inherits the properties

of the superclass passiveOnePort which is expressed by the clause extends.

The keyword corresponds to inherit in the language Dymola. The energetic property

can be inherited by the definition of an energy store. According to the type of the

energy store (either C- or I-element), the internal variables rate and state must be
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model progressiveSpring
// nonlinear one-port C-element

extends energeticOnePort;

parameter Real k = 1.0 ”spring stiffnes”;

equation
rate = p.f;

p.e = k ∗ (state)ˆ3 ;

end progressiveSpring;

Fig. 11.21 Modelica description of a 1-port C energy store using inheritance

partial model PowerConservativeTwoPort
PowerPort PowerIn, PowerOut ;

equation
// ensure that the number of adjacent bonds at port PowerIn is one

assert(cardinality(PowerIn) == 1, ” ”) ;

// ensure an inward reference direction of power at port PowerIn
assert(direction(PowerIn) == +1, ” ”) ;

// ensure that the number of adjacent bonds at port PowerOut is one

assert(cardinality(PowerOut) == 1, ” ”) ;

// ensure an outward reference direction of power at port PowerOut
assert(direction(PowerOut) == −1, ” ”) ;

end PowerConservativeTwoPort ;

Fig. 11.22 Encapsulation of power conservation in a 2-port element

model TF2P ”two-port transformer”

extends PowerConservingTwoPort;

parameter Real m = 1.0 ”modulus”;

equation
PowerIn.e = m ∗ PowerOut.e

PowerOut.f = m ∗ PowerIn.f

end TF2P;

Fig. 11.23 Modelica class of a 2-port transformer

related to the power port variables and the constitutive law of the energy store must

be expressed. As an example, the Modelica description of a 1-port C energy store

representing a mechanical nonlinear spring is shown in Figure 11.21.

Finally, the property of transformers and gyrators being power conservative may

be encapsulated in a joint superclass PowerConservativeTwoPort that is in-

herited in their model definition (Figures 11.22, 11.23).

The Modelica model classes PowerPort, passiveOnePort, energeti-
cOnePort and PowerConservativeTwoPort introduced in this subsection

are available in a package BondGraph that is part of the Modelica standard li-

brary, where package is also a keyword in Modelica. It denotes a special kind of

class as does the keyword connector.



498 11 Automated Modelling

11.5.3 Computational Causality

Bond graph modelling as well as generalised network based modelling support an

interconnection of submodels according to the structure in which corresponding

real subsystems are connected. Consequently, model equations must be non-causal.

Hence, organisation of equations derived from a graph into a form that is suitable

for efficient numerical solution requires symbolic reformulation of some equations

or even the symbolic solution of small linear subsystems of equations. The bond

graph methodology supports this generation of equation systems by means of the

concept of computational causality. It is an essential feature of this concept that

all kinds of information can be obtained directly from a causally completed bond

graph, including information about the form of a mathematical model, information

about structural controllability of a system, or the derivation of transfer functions by

means of Mason’s loop rule. All this has been demonstrated in previous chapters.

In contrast, the philosophy behind Modelica relies on algorithms that operate on

bipartite graphs reflecting the structure of the set of non-causal equations. A first

step is to decide which variable is determined by which equations. This problem is

called finding an assignment or an output set. The next step is to sort the equations

into computational order and to partition the overall set of equations into minimal

sets of equations that can be solved simultaneously. This problem is known of find-

ing the strong components in the associated bipartite graph. The result is a lower

block triangular structural Jacobian matrix. An efficient algorithm for finding the

strong components of a graph has been given by Tarjan [75]. After these algorithms

have been applied, it is known in which order equations are to be solved and which

equation is to be solved for which variable. Subsets of equations that are linear

in their unknowns can be solved symbolically and thus converted into assignment

statements. Obviously, this kind of symbolic preprocessing of a set of non-causal

equations provides information about causalities and algebraic loops.

Since this processing of model equations can be performed automatically, there

is no need for modellers to explicitly specify computational causalities in the Mod-

elica description of a model. Likewise, bond graph software also does not require

the modeller to assign causalities because algorithms for causality assignment and

propagation have been implemented in the software. If the model is of the form of

a set of DAEs, algebraic constraints can be differentiated symbolically with respect

to time in order to reduce the differential index or even to convert the model into

ODE form. As mentioned above, Pantelides [61] developed an efficient algorithm

that can be used to determine which equations are to be differentiated. Mattson and

Söderland [52] proposed an algorithm for the selection of state variables, the so-

called dummy derivative method.

As there are powerful algorithms for fully automatic symbolic processing of a set

of non-causal model equations, Modelica does not support computational causalities

constraints specified as attributes of interfaces as in SIDOPS. Nevertheless, although

the modelling and simulation software Dymola® supports automatic selection of

state variables, the language Modelica enables control of this selection for various

reasons. For instance, as there may be several sets of possible state variables from
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a mathematical point of view, some may necessitate inversion of nonlinear charac-

teristics while others do not. Furthermore, an appropriate choice of state variables

can lead to a model of less complicated form. Eventually, different choices of state

variables can imply that the model has considerably different properties with respect

to its numerical computation.

In Modelica, a variable can be assigned an attribute stateSelect. Its value

indicates whether the variable should be considered a state or not. Possible values

of stateSelect are

always: do use the variable as a state

prefer: prefer the variable as a state over those having the value default
default: if no derivative of the variable appears in the model, do not use it as a

state

avoid: avoid using the variable as a state in favour of those having the value

default
never: do not use variable as state variable

The following declaration illustrates how these values can be specified in Mod-

elica.

Real v(stateSelect = StateSelect.always);

Apparently, if by this way two variables are chosen as states that turn out be-

ing algebraically related, then this leads to an error. Furthermore, if several vari-

ables have been indicated being possible states, stateSelect = StateSe-
lect.prefer, then there is an ambiguity in the selection of states. The value

default indicates that algebraic variables in a model are never used as states. If,

for instance, the kinematic displacement x of a point mass is only used for monitor-

ing purposes, it should not be considered a state. This can be expressed in Modelica

in the following way.

Real x(stateSelect = StateSelect.never);

Real v = der(x);

The operator der denotes differentiation with respect to time. Thus, the kinematic

displacement x is just the integral of the velocity of a point mass, but not a state

variable.

Finally, as demonstrated in the previous subsection, description of basic bond

graph elements in Modelica is fairly straightforward. If a model uses ideal switches,

computational causalities cannot be statically assigned prior to automatic generation

of equations because they dynamically depend on switch states. This has given rise

to several proposals in the literature as how to model hybrid systems properly in

a bond graph framework (cf. Chapter 7). While in variable causality bond graphs

the concept of computational causality loses some of its virtue, variable causality

is easily expressed in the textual modelling languages Dymola and Modelica. One

way of describing an ideal switch in Modelica is shown in Figure 11.24. In the

Modelica model class of an ideal switch, the variable switchstate denotes a

Boolean signal that controls the switch as depicted in Figure 11.25.
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model IdealSwitch ”ideal switch”

PowerPort p;

input Boolean switchstate;

equation
0 = if switchstate then p.f else p.e;

end IdealSwitch;

Fig. 11.24 Description of an ideal switch in Modelica

��
e

f
Sw

�switchstate

Fig. 11.25 The ideal switch as bond graph element of variable causality

11.5.4 Hierarchical Bond Graphs

Once the basic bond graph elements have been described in Modelica and stored

in a bond graph library, it is an obvious step to use them for the description of

bond graph models of standard components in an application area and to store those

descriptions in a library for that application area. Normally, a number of models of

different complexity are provided for standard components accounting for different

aspects. This is a way to make models as accurate as needed in a context under

consideration and to keep them as simple as possible at the same time. A general-

purpose Modelica bond graph library has been developed by Cellier and Nebot and

presented in 2005 [23]. It can be downloaded from the home page of the Modelica

Association [56]. For hydraulic systems, the description of bond graph models of

standard hydraulic devices in Modelica have been briefly presented in [14].

Modelica Description of a Bond Graph Model of a Hydraulic Drive

For illustration of how bond graph models of mechatronic systems can be described

in Modelica, consider the example of a controlled hydraulic drive depicted in Fig-

ure 11.26. The mechanical load connected to the hydraulic actuator may be an appli-

cation specific complex mechanical subsystem and therefore has not been specified

in this example.

Bond Graph Model and Modelica Description of the Hydraulic Pump

A reasonable bond graph model of the hydraulic pump is shown in Figure 11.27.

It accounts for the transformation of mechanical into hydraulic power by means of

the power conserving two-port transformer. Moreover, it takes into account the com-

pressibility of the fluid in the outlet port by means of a C energy store attached to the

0-junction and accounts for internal leakage by means of the R element. If a signal

input port is added and if the transformer is allowed to be a displacement modulated
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Fig. 11.26 Circuit schematic of a hydraulic drive (Borutzky, 2002)
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Fig. 11.27 Bond graph model of a (variable) displacement pump

transformer (MTF) as in Figure 11.27, then the model may even represent a vari-

able displacement pump controlled by the angle, α, of inclination of the swashplate.

Figure 11.28 shows the Modelica description of a model of the hydraulic resistor in

Figure 11.27. It inherits the superclass passiveOnePort. A Modelica descrip-

tion of the pump model using the hydraulic resistor model in Figure 11.27 is given

in Figure 11.29.
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model Orifice ”hydraulic orifice”

extends passiveOnePort;

constant Real rho (final unit=”kg/mˆ3”) = 0.85e+3 ”fluid density”;

parameter Real alpha=0.61 ”flow coefficient (turbulent flow conditions)”;

parameter Real area ”cross section of orifice”;

Real Q ”volume flow”;

Real dp ”pressure difference across the orifice”;

equation
Q = p.f;

dp = p.e;

Q = alpha ∗ area ∗ sqrt(2/rho ∗ abs(dp)) ∗ sign(dp);

end Orifice;

Fig. 11.28 Modelica description of a hydraulic orifice

model DisplacementPump

/* This bond graph model has

- a mechanical power port labeled intake,

- a hydraulic power port labeled outlet which provides the volume flow Q,

- a signal input denoted by alpha controlling the angle of inclination of the swashplate

*/

PowerPort intake, outlet ;

input Real alpha;

/* Type and local name of submodels used */

MTF transformer ;

zero4P p ; // 0-junction represents the load pressure p

C Cp ; // accounts for fluid compressibility in the outlet port

orifice Rl ; // accounts for losses due to internal leakage

/* connectivity of power ports according the bond graph */

equation
transformer.signalIn = alpha ;

connect(intake, transformer.PowerIn) ;

connect(transformer.PowerOut, p.port1) ;

connect(p.port2, Cp.port1) ;

connect(p.port3, outlet) ;

connect(p.port4, Rl.port1) ;

end DisplacementPump ;

Fig. 11.29 Modelica description of a bond graph model of a variable displacement pump

Word Bond Graph and Modelica Description of the Hydraulic Drive

Now suppose that bond graph models have been developed for standard hydraulic

components, described in Modelica and stored in a library. Moreover, assume that

bond graph models described in Modelica are also available for electromechanical

devices, e.g. electric motors, and that a bond graph model for the application spe-

cific mechanical load of the hydraulic drive has been composed of lower level bond

graph models. Then, it is sufficient to translate the system schematic into a hierar-
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Fig. 11.30 Word bond graph of the controlled hydraulic drive

chical bond graph such that for each submodel, a Modelica description is available

from a library. Figure 11.30 shows a word bond graph of the controlled hydraulic

drive. The word bond graph closely corresponds to the physical structure of the sys-

tem as depicted in the schematic. A model of the tank and all bonds corresponding

to the return lines are missing in the word bond graph due to the fact that the return

pressure is usually chosen as a reference. Consequently, the 0-junction representing

the return pressure and all adjacent bonds have been eliminated. The signal into the

controller is generated from signals provided by sensors which monitor the dynam-

ics of the mechanical subsystem.

The word bond graph is not just another graphical representation, but a first step

from a schematic representation towards a non-causal mathematical model. A word

bond graph may be viewed as an intermediate format between a schematic that uses

(standardised) domain specific icons and a mathematical model. A textual object-

oriented description of such a word bond graph is straightforward and rather intu-

itive in a modelling language like Modelica. The result is given in Figure 11.31.

As in the Modelica description of the bond graph of the variable displacement

pump, first, all submodels involved are listed. Each submodel is an instance of a

model class given in the first column. The equation section describes the connec-

tivity of the submodels such that for each power bond and low power signal connec-

tion between the controller and the spool valve, there is a corresponding connect
statement. What still remains to be described are the sensors and the input of the

controller. If all submodels are available from a library, then the equations of the

overall system can already be automatically generated by a model processor.

The objective of this section has been to demonstrate how hierarchical bond

graph models of multidisciplinary systems can be described in Modelica. Of course

alternatively, a generalised network approach can be used. That this, mathemati-
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model HydraulicDrive
// Submodels of all system components

ElectricalMotor electricalmotor;

ConstantFlowPump pump;

ReliefValve reliefvalve;

ThreeWayValve spoolvalve;

DifferentialCylinder actuator;

Zero4P node;

ControllerType controller;

MechLoad load;

// Connectivity of ports according to the schematic

equation
connect(electricalmotor.mech, pump.mech);

connect(pump.hydr, node.port1);

connect(node.port3, reliefvalve.port1);

connect(node.port2, spoolvalve.P);

connect(node.port4, actuator.B);

connect(spoolvalve.A, actuator.A);

connect(actuator.mech, load.port1);

connect(controller.out, spoolvalve.control);

end HydraulicDrive;

Fig. 11.31 Modelica description of the word bond graph (Borutzky, 2002)

cal models of components are formulated in Modelica and submodel interfaces are

plugged together according to the structure of the circuit schematic given in Fig-

ure 11.26. A Modelica description of hydraulic networks is supported by a library

developed by Beater [6].

What is the Role of a Textual Modelling Language in the Light of Graphical Model
Development?

This section closes with the observation that engineering systems are preferably

developed at a graphical level. As a matter of fact, graphical editors being part of

powerful graphical user interfaces (GUIs) together with various model libraries sup-

port the systematic development of hierarchical modularly structured engineering

models and have largely replaced textual simulation languages. Thus, the question

might arise as to what role powerful textual model description language play. Some

answers to this question might be:

• An object-oriented modelling language like Modelica is an appropriate mean for

building non-causal models for various libraries. Inheritance helps avoid incon-

sistencies and errors. Encapsulation can be used to encapsulate general proper-

ties, e.g. being a 1- or 2-port element, being passive, or being energetic. Such

general properties can be inherited from a superclass and need not to be formu-

lated again in a special component model allowing for a safe and elegant way of

consistently defining bond graph models. Model libraries generally support the
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reuse of model knowledge, which is essential to cope with the ever increasing

complexity of systems to be designed.

• Languages like Modelica may serve as a uniform format that backs up several

graphical formalisms.

• Independent of the graphical formalism in use, modellers will need a textual

modelling language for introducing basic component models that are not yet

available in one of the libraries and in particular to specify their nonlinear be-

haviour.

However, is there a need to describe the connectivity of the submodels of a sub-

model in an object-oriented modelling language if this can be simply expressed in

an acausal bond graph being a generic format? Certainly, for composed models,

bond graphs can serve as a core representation from which other representations,

including time domain models as well as frequency domain models, can be derived.

With respect to the exchange of models, it has to be taken into account that not

all modelling and simulation programs that support multiple modelling formalisms

also support bond graphs. By unifying features of several existing object-oriented

modelling languages, Modelica has the potential of serving as an exchange format

between various (proprietary) modelling and simulation software.

11.6 Software for Bond Graph Modelling

In the previous section, two modelling languages have been considered with respect

to bond graph modelling. In this section, some representatives of software for bond

graph modelling falling into three classes will be discussed. Since in many places

in the world, software programs have been developed, are being further developed,

or are presently under development that can be used directly or indirectly for bond

graph modelling, it is neither possible to give a comprehensive survey of relevant

programs, nor even to report in an exhaustive manner all features of one of these

programs. Due to lack of space, the presentation is confined to some programs.

Some others are just referenced. Samantaray has given a list of some bond graph

software along with some brief personal assessments [70]. Some links to bond graph

software can be found in the bond graph compendium assembled by Cellier [21].

The presentation in this section is not meant to be product oriented. The aim is rather

to outline different approaches towards software support of bond graph modelling.

Following the historical evolvement of bond graph software, first, two quite dif-

ferent simulation programs are considered that have been used for a long time by

many bond graph model developers.
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11.6.1 ENPORT™

The simulation or modelling languages ACSL and Modelica are not bound to a

particular modelling methodology. In contrast, while bond graphs devised by Payn-

ter were elaborated into a modelling methodology by his former Ph.D. students

Karnopp and Rosenberg, the latter developed the ENPORT® program with the aim

of supporting the new bond graph methodology. According to the state-of-the-art

at that time, ENPORT® was a simulation program. However, in contrast to CSSL

based programs it did not require assignment statements, but accepted as input a

non-causal description of the structure of a bond graph. To that end, the undirected

edges of an acausal bond graph are enumerated and the incidence matrix of the

graph is entered in alphanumeric form as a so-called line code.

Figure 11.32 shows again the bond graph of the RC circuit in Figure 11.5 and, in

addition, the corresponding ENPORT line code. As can be seen from Figure 11.32,

the keyword GRAPH is followed by a list of fields separated by commas. The first

entry in each field is a node of the graph followed by the numbers of its adjacent

bonds [66]. This form of model input corresponds to the description of electronic

circuits by means of an adjacency matrix. The famous and widely used circuit anal-

ysis program SPICE [58], for instance, accepts a so-called net list description of

a circuit. Each line in the corresponding alphanumeric input file indicates which

element is connected to which nodes in the graph. Of course, with the advent of

powerful graphical user interfaces, an alphanumeric net list no longer is the primary

input but rather an intermediate format. In addition to a mere description of the con-

nectivity, the ENPORT input format enables one to specify reference directions of

the energy flow. This kind of information is started by the keyword POWER. In the

example, the line below the keyword indicates that bond number 3 is oriented from

the 1-junction towards the 0-junction. In a similar way, causality information can be

given. However, specification of energy flow reference directions and computational

causalities is just an option. If not given, they are automatically assigned according

to the rules of Karnopp and Rosenberg.

The information about the structure of a bond graph and the element parameters

are enough for ENPORT (initially developed for linear models only) to build the

matrices of in the linear state space equations in numerical form. In the case of

a linear model, storage ports with derivative causality and causal paths between

resistor ports, that is, dependent states and algebraic loops of auxiliary variables, are

allowed. Due to the linearity of the junction structure equations and the constitutive

equations of the elements, implicit relations can be solved and dependent states can

be eliminated.

The starting point for automatically building a linear state space model is a parti-

tioning of the vectors and the matrix in the matrix equation of the junction structure.

Figure 11.33 shows the well known partitioning of a bond graph.

Let S denote the junction structure matrix, then according to the above partition-

ing of a bond graph, the matrix equation of the junction structure reads

[Ẋi Zd Din V]t = S · [Żi Xd Dout U]t . (11.13)
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Fig. 11.33 Partitioning of bond graph, (Rosenberg, 1971)

Rosenberg describes this fundamental systematic approach of generating state space

equations from a partitioned bond graph for linear models and its extension to non-

linear models in detail in [64].
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A well known and widely used version of the ENPORT program has been its

version 4 [65]. Since then, the program has undergone many modifications. A more

recent description of its capabilities in supporting the modelling process is given in

[44].

11.6.2 TUTSIM™

In contrast to ENPORT, the purpose of the simulation program THTSIM, developed

at the University of Twente, Netherlands, was to enable computation of nonlinear

block diagrams on small computers called mini-computers at that time. This pro-

gram became quite popular in academia and in known industry under the name

TUTSIM™ [54]. It was the predecessor of 20-sim®. If every signal block has only

one output, a block diagram can be described, writing for each block an equation of

the form

Output = Function ( Input1, . . . , Inputn ) , (11.14)

where each input to a signal block apparently must be the output of another signal

block. The assignment statement of each block can be written in a short form if all

signal block outputs are enumerated by positive numbers, if a negative block number

means that the block’s output is multiplied by minus one and if the function of each

block is indicated by a predefined block type. The assignment statement of a block

can then be coded in the form

<Block number> <Block type> <Input 1>, ..., <Input n> .

A description of a block diagram in this form has been called a structure table in

the context of the TUTSIM™ program. A list of lines of the above form captures

the structure of a block diagram in alphanumeric form. At the same time, it is a list

of assignment statements in a concise form since a block diagram, in essence, is

a graphical representation of a system of simultaneous equations. Block diagrams

generally do not reflect the physical structure of a system. Their structure can change

significantly if the physical structure is slightly modified to account for additional

effects.

It has already been demonstrated in Section 3.5 that assignment statements can

be directly derived in a systematic and easy manner from a causal bond graph if

all stores have got integral causality and if there are algebraic loops. For that pur-

pose, a procedure has been given. According to this procedure, first, the equations

of all external sources are written followed by the equations of all resistors. Finally,

the constitutive equations of the stores are set up. By back propagation of causal

paths, inputs into dependent sources and resistors can be expressed by system in-

puts and state variables. This is a variant of a procedure presented in as early as

1977 by van Dixhoorn [83]. The key observation of van Dixhoorn has been that

such a procedure allows processing of causal bond graphs by block-oriented simu-

lation programs like TUTSIM™ given that the underlying mathematical model is of

state space form. Regarding 1- and 0-junctions, the summation of efforts or flows is
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transferred into the element that causally dominates the junction. The output of this

element is distributed by the junction to all adjacent bonds. As a result, junctions

are eliminated.

Example: TUTSIM Structure Table of the Shunt Motor Bond Graph

For illustration of the method, the bond graph of the shunt motor given in Fig-

ure 11.1 has been reproduced in Figure 11.34. Instead of assigning variable names

to some bonds, all bonds are enumerated as required in ENPORT line code.
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Fig. 11.34 Bond graph of the shunt motor model in Figure11.1 with enumerated bonds

1 SE 12

7 R 6

6 I 1 -7 -3

3 MGY 11 8

4 MGY 11 6

5 SE 13

9 R 8

8 I 4 5 -9

10 R 1

11 GAI 10

12 CON

13 PLS

Fig. 11.35 TUTSIM structure table of the causal bond graph in Figure11.34
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8 I 4 5 -9

6 I 1 -7 -3

7 R 6

9 R 8

12 CON

13 PLS

1 SE 12

5 SE 13

10 R 1

11 GAI 10

3 MGY 11 8

4 MGY 11 6

Fig. 11.36 TUTSIM structure table of the causal bond graph in Figure11.34 sorted into computa-

tional order

Figure 11.35 shows the corresponding TUTSIM structure table. The third line in

this structure table means that the inputs into the block of type I are summed up.

According to the constitutive equation of the I store, I : La, with integral causality,

the sum of flow variables into the element is integrated and divided by the parameter

of the element (cf. Figure 3.10). The output of the I element is the effort assigned to

the integer 6. Since in TUTSIM blocks have got only one output, two signal blocks

are necessary for representing the two-port gyrator (Figure 3.9). In the signal block

of type GAI (Gain), the input signal is multiplied by a constant coefficient K > 1.

The block of type CON provides a constant system input signal, while the block of

type PLS provides a pulse.

The TUTSIM™ program checks each line of the structure table with respect to

syntax errors immediately after it has been entered. After the input of a structure

table has been completed, all blocks are sorted into a computational order in which

the blocks are computed in each integration time step. Figure 11.36 shows the lines

of the structure table sorted into computational order.

Obviously, since storage elements include an integrator which has got an initial

value, computation can start with evaluating the outputs of the 1-port stores. The

outputs of external sources depend only on time and can be evaluated when needed.

In case there are algebraic loops in the model, they can be broken up by inserting

a so-called algebraic delay block, ADL, that introduces a delay of one time step. If

stores with derivative causality cannot be avoided, then differentiation of variables

with respect to time must be performed numerically. As many other simulation pro-

grams at that time, TUTSIM™ could only solve explicit state space models.

In contrast to early versions of the ENPORT® program, from the very beginning

TUTSIM™ enabled computation of nonlinear bond graph models. For many years,

it was the preferred simulation program, e.g. of Thoma. In [77], he gives TUTSIM

structure tables for a number of bond graph models. However, the program does not

support the development of hierarchical models and with regard to the numerical

integration of ODEs, only the explicit second order Adams-Bashforth algorithm

is available. That is, even if stores with derivative causality or algebraic loops are
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removed by inserting parasitic elements into the original model, TUTSIM cannot

be used if the resulting ODE system is stiff. As already mentioned, 20-sim® has

emerged as its powerful successor that meets today’s requirements with respect to

the development of large complex models as well as with respect to the automatic

generation of a mathematical model and its numerical computation.

11.6.3 Bond Graph Preprocessors

It is true that object-oriented modelling languages can be used directly for the de-

velopment of hierarchical modular models. However, as has already been remarked,

they are especially important for the development of component models made avail-

able to modellers in libraries. Beyond reliably implemented component models, a

graphical user interface (GUI) is needed for building large hierarchical modular

models at a graphical level. This can be supported in two different ways.

One option are so-called preprocessors that support model development at a

graphical level and can automatically derive a textual model description from the

graphical model representation in one of the simulation or modelling languages

supported by the preprocessor. The advantage is that a modelling program of one

company can be used to produce the input for a simulation program of another com-

pany. This way, capabilities of different software products can be exploited. For in-

stance, the simulation program ACSL® does not have a graphical interface for bond

graphs. However, there is a bond graph preprocessor that can derive equations from

the bond graph and output them as assignment statements in ACSL input format.

An alternative are self-contained, integrated modelling and simulation software

environments. They use a modelling language, e.g. SIDOPS or Modelica, for a tex-

tual intermediate format behind the graphical representation that can be used for

various purposes. Such a textual description could, for instance, be converted into

another format to interface with other software packages or could be converted into

a programming language, e.g. C, or converted into an executable simulation pro-

gram. In the latter case, obviously, a syntax check of the input processor of a target

simulation program is not needed. As an example of an integrated modelling and

simulation particularly suited for bond graph modelling, we will consider some fea-

tures of the 20-sim program.

CAMP-G®

One of the first bond graph preprocessors has been the software program CAMP

developed by Granda in the framework of his Ph.D. project at the University of

California at Davis [43]. Early versions of CAMP required bond graphs to be entered

as a line code as in ENPORT®. Unlike ENPORT, the preprocessor CAMP sets up

the equations for each bond graph node and can output them as an ACSL®input

file. In the course of further development, a graphical user interface was added so
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that bond graphs can be entered graphically. Since that time, the program’s name is

CAMP-G®.

As is customary for many graphical editors, the nodes of the graph can be picked,

placed on a workspace and connected using a rubber band technique. Moreover, se-

lected parts of the graph can be moved around. When a connection of two ports is

drawn, CAMP-G® automatically adds the power reference direction and a causal

stroke to the bond. If the connection to the new element affects causalities so far

assigned to a bond graph under construction, then this is taken into account and

causalities are automatically adapted where necessary. That is, rules for power ref-

erence directions as well as causality assignment and propagation are implemented

in CAMP-G®. Consequently, the program can check for causal conflicts, derivative

causality at storage ports and for algebraic loops. Bonds are highlighted in red as

long as their power reference direction and their causal orientation is still undeter-

mined in an uncompleted bond graph. Derivative causalities at storage ports are also

highlighted.

A further development of CAMP-G® can output an implicit set of equations in

symbolic form for bond graphs with derivative causalities. As it interfaces with

MATLAB® /Simulink®, the capabilities of the MATLAB® Symbolic Math Tool-

box™ can be exploited in order to eliminate dependent state variables and to pro-

duce the matrices of an explicit linear state space equation for linear bond graphs

with derivative causalities [41, 42].

For nonlinear elements, the generated ACSL input file must be directly edited

for specifying their constitutive equations. The CAMP-G user interface does not

provide an equations editor that knows about the syntax of a modelling language

and highlights its keywords. Furthermore, if the overall model is a combination

of a bond graph with a block diagram fragment, then the equations of the latter

must also be added to the generated ACSL file. Alternatively, suppose a linear bond

graph model has been developed for an engineering system which is the plant in a

control loop, then CAMP-G®/MATLAB® can generate the matrices of a multiple

input- multiple output block (MIMO system) to be used in a block diagram of the

engineering system and its closed loop control that can be built in the block diagram

editor of Simulink®. This way of using a bond graph model as a signal block in

a Simulink®block diagram is indicated by Figure 11.37. That is, there is no need

to transform a linear bond graph into a block diagram for use in a block-oriented

simulation program.

On the other hand, CAMP-G® neither supports the development of hierarchical

bond graph models nor does it allow for a multibond graph representation, e.g. of

multibody systems. Furthermore, the model description in ACSL is not optimised in

the sense that the DERIVATIVE section should include a minimum of equations be-

cause these equations must be reevaluated in each integration time step. Redundant

equations of the form variable 1 = variable 2 due to 0- and 1-junctions

are not eliminated, nor are the equations sorted. That is, CAMP-G® depends on the

capabilities of software packages it interfaces with, such as the ACSL® simulation

program and MATLAB®/Simulink®.



11.6 Software for Bond Graph Modelling 513

� �
−

� Controller � Ampl. � INT ��
�

MSe �� 1

��

I : La

		

R : Ra

�� GY

KT..

�� 1

��

I : Jload

		

R : R

�

plant

electrical mechanical

Fig. 11.37 Bond graph model as a signal block in a Simulink block diagram

BAPS®

Another program with a graphical front end that enables the development of hierar-

chical modular bond graph models at a graphical level and that can output a textual

description in various simulation languages is BAPS®, developed by Ruzicka at the

Technical University of Vienna [68] in the framework of his Ph.D. project. Bond

graphs created by means of the graphical front end BAPSDRAW® are first con-

verted into a textual format. At this level, the structure of a bond graph (sub)model

is given as a line code. Moreover, nonlinear constitutive equations as well as non-

linear relations between parameters can be specified in the language BAPS. The

program BAPS® then performs causality assignment checks for algebraic loops and

generates an optimised simulation model in ACSL or in one of the other supported

simulation languages.

ARCHER

Finally, we shall mention the modelling and analysis program ARCHER [4] devel-

oped at l’École Centrale de Lille, France. Regarding its purpose and its capabilities,

it is more than a bond graph preprocessor for a simulation program. It is mentioned

here because it is a software that supports bond modelling at a graphical level, but

does not include simulation routines. It rather enables the generation of transfer

functions in symbolic form directly from linear bond graphs and can set up state

space models in a symbolic form.

A remarkable feature of ARCHER is that it enables the analysis of models with

respect to structural controllability and structural observability. In ARCHER, some

essential research results of the bond graph modelling group at l’École Centrale de

Lille have been implemented.
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11.6.4 Bond Graph Toolboxes

If a software program does not understand bond graphs, then an obvious step is to

develop an appropriate software tool that bridges the gap between the modelling

method and the program. This approach apparently is not confined to simulation

programs. For instance, a large number of so-called toolboxes for various applica-

tion areas have been developed that enhance the features of the basic mathematics

software package MATLAB® [8]. These powerful toolboxes, along with the easy

interactive use of the software and its support in visualisation of results, have es-

sentially contributed to the wide acceptance and use of this program in academia

and industry. Since then, the simulator Simulink® has been added to MATLAB®;

the combination of both software allows the user to analyse and simulate dynamic

systems in various engineering domains.

BondLab

In view of the immense popularity of MATLAB®/Simulink®, it is no surprise that at

ESAT of the Catholic University of Leuven, Belgium, Minten, Vranckx, De Moor

and Vanderwalle developed a MATLAB® toolbox called BondLab [55] that aims to

support the bond graph-based design of mechatronic systems at a graphical level. It

can generate linear and nonlinear state space models in symbolic form and output

them as a MATLAB ∗.m file. Also, transfer functions can be derived in symbolic

form. The graphical user interface allows direct access to simulation and visualisa-

tion facilities. Animation of energy flows on the bond graph is also available.

Bond Graph Toolbox

A similar approach is to provide software tools for graphical entry of bond graphs,

for causality assignment, for equation generation in a toolbox along with some

auxiliary routines for graphical representation of simulation results and to exploit

the comprehensive symbolic and numerical features of classical algebra systems,

e.g. Mathematica®3 [89] , for an interactive symbolic analysis of bond graph-based

models and for reduction of symbolic equations to state space form. One of the first

modelling environment of this kind has been the Bond Graph Toolbox developed

by Nolan at the University College of Galway, Ireland [59]. In a Mathematica ses-

sion, this toolbox allows the user to interactively generate the state matrix as well

as transfer functions in symbolic form for linear systems and to analyse them, e.g.

with respect to stability. In the case of nonlinear systems, the equations derived from

the bond graph can be reduced to state space form given the mathematical model

corresponding to the causal bond graph is of that form. For simulation, it can be

output as a FORTRAN routine. The latter one can be linked with a library routine

for numerical integration of ODEs. For an object-oriented modelling approach, it

3 Mathematica® is a registered trademark of Wolfram Research, Inc., 100 Trade Center Drive,

Champaign, IL 61820-7237, USA, http://www.wolfram.com
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is essential that model equations are non-causal. Consequently, processing of a tex-

tual model description in a modelling language, e.g. SIDOPS, Dymola or Modelica,

also requires symbolic reformulation of equations. However, in the model processor

for one of these languages, this is done automatically, while an algebra system like

Mathematica® allows for an interactive analysis and reformulation of equations.

The Mathematica Bond Graph Toolbox

A bond graph tool box for Mathematica has been developed by N. Venuti [84].

This extension to Mathematica enables the user to graphically enter small bond

graphs in the Mathematica symbolic environment. For creating and editing a bond

graph, a floating palette is available. Relying on the power of Mathematica, this

toolbox offers some advanced features as multiport stores, support of multibonds,

symbolic transformation, analysis with respect to structural observability, removal

of algebraic loops in linear systems, and handling of derivative causality.

Inspired by the work of Nolan, another toolbox called MTT has been developed

by Gawthrop [37] at the University of Glasgow, Scotland. The underlying philoso-

phy of this toolbox will be discussed in Section 11.6.6.

11.6.5 Integrated Modelling and Simulation Environments

An alternative to bond graph preprocessors for simulation programs and mathe-

matics packages is to integrate appropriate support of modelling, simulation and

animation in a self-contained software environment. In this subsection, the software

packages 20-sim®, SYMBOLS Shakti™4 and MS1®5 shall be considered as state-

of-the-art examples of such integrated software environments.

Another powerful integrated modelling and simulation environment introduced

in 2003 by Damić and Montgomery [26] is the software package BondSim®. It

supports systematic hierarchical bond graph modelling and simulation of mecha-

tronic systems. A special component port concept enables component models to be

plugged together according to the structure in which the components of a real sys-

tem are interconnected. Aiming at a separation of model development and model

processing, BondSim® relinquishes the concept of computational causality. Math-

ematical models are automatically generated in the form of DAE systems and are

numerically computed by means of a sophisticated solver. To that end, integrated

symbolic computer algebra methods are used for the generation of Jacobian matri-

ces in symbolic form.

Furthermore, in 2002, Raczynski presented the modelling and simulation soft-

ware system PASION® for continuous, discrete and hybrid processes [63]. This

4 SYMBOLS Shakti™ is a trademark of HighTech Consultants, STEP, I.I.T. Kharagpur - 721 302,

India, http://www.htcinfo.com
5 MS1 is a registered trademark of Lorenz Simulation SA, Rue Jacob-Macoy, 89, B-4000 Liège,

Belgium, http://www.lorsim.be
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software system makes use of an object-oriented, Pascal related simulation language

that is translated to Pascal and includes a module for graphical input of bond graph

models, automatic causality assignment and equations generation.

20-sim®

The modelling and simulation software environment 20-sim® has emerged from the

Ph.D. project of Broenink [18] at the University of Twente, Netherlands. Based on

a completely new design, it has become a powerful next generation successor of

the well known block-oriented TUTSIM™ simulation program also developed at

Twente University. Tested, improved and enhanced by a number of new features

over two decades, 20-sim® has evolved into a reliable, mature and intuitive to use

modelling and simulation software environment particularly suited for bond graph

modelling of mechatronic systems. The software has been presented, e.g. in [20].

For the latest features, see the home page of the program [25].

With regard to modelling, 20-sim® supports the development of hierarchical

models and multiple formalisms for model representation. That is, for representa-

tion of models or submodels, either iconic diagrams, bond graphs, block diagrams,

equations, or a combination of these formalisms can be used.

According to the philosophy of separating the interface definition of a submodel

from its body, the 20-sim graphical user interface provides a window for specifica-

tion of ports and parameters of a submodel and a window for entering its implemen-

tation either as a graph or as a textual description. The latter case is supported by

a SIDOPS language sensitive editor. Moreover, an icon representing the submodel

can be designed by means of a drawing editor. The hierarchy of submodels is dis-

played as a tree-like structure in another window. By clicking on the submodel icons

in this hierarchy tree, the user can switch between the implementations of different

submodels. Figure 11.38 shows a screen shot of the 20-sim 4.0 editor.

The large implementation window in the middle shows the bond graph of the

shunt motor model previously described in ACSL (cf. Figure 11.1). The bottom left

window includes the Interface tab and the Icon tab. In Figure 11.38, the Interface tab

has been selected. It shows that the selected (sub-)model, in this case, the MGY el-

ement, has got two power ports p1 and p2 and a signal port r. Double clicking on

one of the ports p1, p2, or r opens the Interface Editor and enables one to modify

the port’s attributes (Figure 11.39).

Double clicking on the icon MGY on the Icon tab opens the Icon editor. The latter

enables one to design an icon for a submodel. In addition, the Icon editor provides

icons that are standard in various engineering disciplines, e.g. for components in

electrical or hydraulic networks.

The long tall window on the left side comprises the Model tab and the Library tab.

The Model tab provides a survey of the model hierarchy and enables one to browse

through this hierarchy. In the case of the shunt motor example model, there is only

one level of hierarchy. Clicking on one of the items in the list of elements results in

a display of its equations in the large middle window. The Library tab enables one to

browse the comprehensive 20-sim model library organised as part of the Windows
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Fig. 11.38 Screen shot of the 20-sim 4.0 editor

file system. This library provides models for many standard components in various

engineering disciplines, e.g. electrical, mechanical, hydraulic, thermal and control

engineering.

The bottom window displays messages. In case of the shunt motor example, the

item “Check complete model” in the pull down menu “model” has been clicked. By

consequence, 20-sim®has checked whether the model is correct with regard to the

rules of the chosen modelling methodology and has performed some optimisation

steps. The results of these steps are communicated to the model developer in the

Process tab of the bottom window. In this case, no error messages nor warnings

have been produced.

Like the program BONDYN [34, 85], designed for bond graph modelling of

multibody systems, 20-sim® supports multibond graphs at a graphical level. In

SIDOPS, functions on vectors and matrices are available, allowing a formulation

that is close to usual mathematical notation. Recall that equations in a section in-

troduced by the keyword equation are not assignment statements. If equations are

meant to be assignment statements, the symbol ‘:=’ must be used.

Development of hierarchical models at a graphical level means that submodels

are taken from one of the model libraries and are used in a higher level submodel or

must be build if not available in a library.
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Fig. 11.39 20-sim 4.0 Interface editor

In the development of a bond graph model, power reference directions and

causalities are automatically assigned as in CAMP-G® whenever two ports are con-

nected. If causalities already assigned are affected by a new port to port connec-

tion, then causalities are adapted where necessary. Derivative causalities are high-

lighted in red. Causalities can also be set or changed by the user. Since 20-sim®

has symbolic manipulation capabilities and can solve algebraic loops numerically

by iteration and includes an implementation of the BDF method for numerical inte-

gration of DAE systems, the default is that in cases of dependent states or algebraic

loops, only a warning is issued. Normally, 20-sim® will silently try to solve alge-

braic loops symbolically and will try to solve differential equations for dependent

states. Moreover, redundant equations, as they are introduced by 0- and 1-junctions

and by connecting ports of different submodels, are eliminated.

Finally, the structure of the set of equations is optimised. In order to speed up

the simulation, all equations that do not affect the rates of state variables are taken

out of the section of differential and algebraic equations to be evaluated in a loop

during an integration step. Clearly, this set of dynamic equations should be as small

as possible. Once this model processing has been completed, the generated set of

equations can be output in symbolic form for inspection or for use in another pro-
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Fig. 11.40 20-sim 4.0 popup window with equations derived from the bond graph of the shunt

motor model

gram. Figure 11.40 shows a 20-sim 4.0 popup window with equations derived from

the bond graph of the shunt motor model. As can be clearly seen, the set of equations

is structured into sections.

Furthermore, models or submodels can be converted into ANSI C-code by means

of a built-in C-code generator for use in other programs. For instance, for a submodel

selected in a bond graph, C-code can be generated for a Simulink® S-function as

indicated by Figure 11.41.

Finally, a built-in compiler can generate executable simulation code. That is, 20-

sim® is a self-contained modelling and simulation environment. The availability of

a compiler or further software for post-processing of results is not required. Since

model entry, model processing and simulation code generation are integrated into

one software environment, it is possible to perform some error checking already

during model development. Moreover, users can easily switch between model mod-

ification and model processing. The possibility of connecting submodels at a graph-

ical level according to the physical structure of a system, the support of creating

hierarchial models, automatic causality assignment and generation of a simulation

model enables the reliable development of engineering system models in industrial

projects. Furthermore, since the simulator is integrated into this advanced software
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Fig. 11.41 20-sim 4.0 Realtime Toolbox window for generating C-code

environment, it is easy to switch between experiments on the model and modifica-

tion of a model.

20-sim has been used for bond graph modelling and simulation in a number of

books, e.g. [78, 79, 86]. In Chapter 12, 20-sim 3.2 has been used for most of the

case studies.

SYMBOLS Shakti™

Another major state-of-the-art integrated modelling and simulation environment is

SYMBOLS Shakti™ [24] (The abbreviation stands for SYstem Modeling by BOnd-
graph Language and Simulation). This suite of software modules has been devel-

oped by A. Mukherjee and A. Samantaray and has emerged from more than two

decades of research and teaching at the Indian Institute of Technology in Karagpur.
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SYMBOLS Shakti™ and 20-sim® share many features even if both software

environments differ with respect to some conceptual aspects and with respect to

implementation details. SYMBOLS also supports hierarchical modelling of multi-

energy domain systems and allows for several representation formalisms that can

be mixed. The software comes with a large number of submodels for various engi-

neering domains. The developers of SYMBOLS call them capsules. We will come

back to this notion below. Submodels can also be connected according to the struc-

ture of the engineering system to be modelled. Bond graph elements can be picked

from an object window left from the drawing area of the graphical editor. Ports are

connected just by straight lines. That is, bond graph modelling in SYMBOLS starts

with undirected bond graphs. By clicking the corresponding three buttons, bonds in

the graph are numbered, assigned power reference directions and causal strokes. Af-

ter an integrity check of the bond graph, equations can be derived in a reduced form

(state space form) or in an optimised form that makes use of auxiliary variables. The

result is displayed in the equations window below the drawing area.

Algebraic loops and derivative causality at storage ports are tolerated. Algebraic

loops lead to a warning when the software is required to derive equations. The user

is requested to use one of two methods provided for dealing with algebraic loops.

In the case of derivative causalities, the integrity check of the bond graph issues a

warning and asks the user to specify which element parameters are constant because

this information is used to reduce the complexity of equations by setting derivatives

of selected terms to zero.

Like in CAMP-G element, parameters are not assumed constant. After equations

have been derived from a causally augmented bond graph, nonlinear relations be-

tween parameters as well as nonlinear constitutive element equations can be spec-

ified in C++ notation in an expression window below the drawing area. That is,

unlike in 20-sim, transformers and gyrators do not have a signal port. In fact, they

are conceived as two-port elements. The time varying transformer modulus or the

gyrator ratio can be displayed as an annotation. Likewise, nonlinear sources are not

represented as modulated sources. The result is a convenient concise bond graph

representation that is not distracted by block diagram fragments. On the other hand,

algebraic relations can be constructed in the expression window that are not explic-

itly depicted in a combined bond graph - block diagram representation. A depen-

dency check may help to maintain consistency in the set of expressions by removing

all unused variables in a scope and by sorting variables.

For illustration, Figure 11.42 shows a screen shot of the SYMBOLS editor Bond-

pad with a bond graph of the shunt motor model. The little pink dot on bond num-

ber 11 denotes a detector which has been configured to provide the flow f11 (as

a global variable). When the software is commanded to derive equations from the

bond graph in reduced form, it also expresses this non-state variable by means of

inputs and states in addition to the state equations. In this simple example, f11 only

depends on the supply voltage, that is, f11=1/R11*SE1. Now, the modeller can

use this signal variable for modulating the ratio of the gyrator by adding the equa-

tion r=K*f11 in the expressions window (The sun symbol left to variable r means

that it is a global variable).
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Fig. 11.42 Screen shot of the SYMBOLS editor Bondpad with a bond graph of the shunt motor

model

After equations have been derived from the bond graph, the next step towards a

simulation run is to output the generated equations in symbolic form (Figure 11.43),

start the simulator and to require the conversion of the equations in symbolic form

into C++ to be compiled into a Dynamic Link Library (DLL) that is linked with the

solver.

As can be seen from Figure 11.43, the simulation code is grouped into sections

that start and close with a keyword in brackets. The states in this example are the

generalised momenta of the I stores. The variable f11, used for modulating the

gyrator in this example, is classified as a user state. It has no corresponding state

equation.

Capsules in SYMBOLS

While SYMBOLS employs symbolic manipulation in order to support non-causal

modelling at the element implementation level, it uses causal submodels in com-

posed and hierarchical bond graph models. The developers of SYMBOLS Shakti™

use the term capsule. As will be become clear, the concept of capsules is not in

opposition to the concept of non-causal object-oriented modelling. First, in a bond

graph model, any number of instances of a capsule may be used and a capsule may

incorporate other capsules. The body of a capsule may take the form of a bond

graph or a block diagram. In a bond graph implementation, bonds are augmented
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[BASICSTATES=2]
P6
P10
[BASICSTATES]
[USERSTATES=1]
f11
[USERSTATES]
[STATEEQUATIONS]
SE1 = 220; // Volt 
Mload=1;
SE8 = Mload*step(t,5,500); 
M10=0.8; // mechanical inertia 
R9=0.066; // mechanical friction 
R5=0.875; // resistance of armature winding 
M6=0.175;
R11=5.4945; // resistance of field winding 
K=0.0307; // motor torque constant 
r=K*U[0];
dY[0]=SE1-R5*Y[0]/M6-r*Y[1]/M10;
dY[1]=SE8-R9*Y[1]/M10+r*Y[0]/M6;
U[0]=1/R11*SE1;
[STATEEQUATIONS]
[USEREQUATIONS]
SE1 = 220; // Volt 
Mload=1;
SE8 = Mload*step(t,5,500); 
M10=0.8; // mechanical inertia 
R9=0.066; // mechanical friction 
R5=0.875; // resistance of armature winding 
M6=0.175;
R11=5.4945; // resistance of field winding 
K=0.0307; // motor torque constant 
r=K*U[0];
U[0]=1/R11*SE1;
[USEREQUATIONS]

Fig. 11.43 Part of the SYMBOLS simulation code derived from the bond graph of the shunt motor

model

by power reference directions and causal strokes. Ports, called glue ports, consti-

tute a causal interface to the outside world. According to two possible power flow

orientations and two possible causal assignments, the SYMBOLS capsule concept

distinguishes four different types of glue ports. They are denoted effort input glue

ports, flow input glue ports, effort output glue ports and flow output glue port. With

regard to causality, an effort input glue port apparently is equivalent to a flow output

glue port. However, while the power flow reference direction is oriented towards a

flow output glue port, it points away from an effort input glue port.

Non-causal modelling now is supported by generic capsules. These are sets of

equivalent capsules. According to causality requirements partner elements or cap-

sules impose on the glue ports of a capsule, the proper capsule from the group of

equivalent capsules is loaded that fits the causality requirements at its glue ports.

Moreover, members of a generic capsule can have different numbers of states, equa-

tions and parameters as long as they have an equal number of external glue ports.
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Fig. 11.44 SYMBOLS library capsule of a DC shunt motor

The loading of a proper member of a generic capsule is transparent to the model de-

veloper. Obviously, this approach of enabling submodels to be connected together

according to the structure of their corresponding real system components’ connec-

tions may require quite a number of hidden library capsules. However, especially for

nonlinear components, this approach can be more practical than the reformulation of

constitutive equations according to imposed causality requirements. In addition, it

offers the flexibility of using different graph structures and different states, provided

all capsules have the same number of external glue ports.

Example: SYMBOLS Library Capsule of a DC Shunt Motor

As an example, Figure 11.44 shows the capsule of a DC shunt motor that comes

with the SYMBOLS library for the electrical domain. The DC shunt motor capsule

in Figure 11.44 accounts for the inductance of the field winding (bond 8). The glue

port at bond 6 is an effort input glue port and allows connection to a voltage supply.

The port at bond 10 is an effort output glue port. It provides the motor moment

acting on the mechanical load. The transparent mechanism of selecting the proper

member of a generic capsule according to causal boundary conditions of a submodel

is not confined to capsules in libraries that come with the SYMBOLS software. It

also extends to user-defined generic capsules.

Structural Analysis with SYMBOLS

Another feature among the many others of this advanced software supporting hi-

erarchical non-causal modelling of hybrid systems, simulation and control analysis

is the capability for structural analysis. This facility, being an essential feature of
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Fig. 11.45 System with one null mode

the program ARCHER, has also been implemented in SYMBOLS. Figure 11.45

shows the bond graph of the small example of two oscillating masses connected by

a spring previously considered in Section 3.6. The result of the structural analysis

is partly shown in the window below the drawing area. It confirms what has been

demonstrated in Section 3.6. Figure 11.46 shows the result of the structural analysis

of another example that has been considered in Section 6.4 (cf. Figure 6.16).

Furthermore, the software program SYMBOLS™ includes a powerful control

analysis module that enables the derivation of transfer functions in symbolic form

from a bond graph. Recently, a module has been added to SYMBOLS so that the

program does not only support the development of bond graph models and the de-

sign of a control, but also bond graph model-based fault detection and isolation [15].

Some features of SYMBOLS are presented and illustrated by means of examples

in the appendix of [57].

MS1®

We conclude this section on integrated modelling and simulation environments

by briefly considering essential features of the modelling and simulation software

MS1® [49, 51] developed by F. Lorenz, Liège, Belgium, in cooperation with EDF

(Electricité de France) and with the support of INSA de Lyon (Institut National des

Sciences Appliquées de Lyon).
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Fig. 11.46 Structurally controllable system

• Multiformalism

For developing models of system components, several graphical description for-

malisms can be used. MS1 supports bond graphs, block diagrams, linear graphs

and equation models. On the textual level, model description in the Neutral

Model Format, NMF [69] is supported by a language sensitive editor. Submod-

els can be described directly on the algorithmic level either in FORTRAN or C.

However, FORTRAN or C code is not parsed, but just passed to be compiled and

linked with a chosen solver.

• Hierarchical Models

Component models described in different forms can be connected graphically

in order to build an overall system model. The different description forms are

automatically transformed into an internal format.

• Causality Assignment

If a bond graph model of a component has been completed, computational causal-

ities are automatically assigned. Moreover, by clicking on the corresponding but-

tons, the user can have the software check for topological loops and signal paths

between input and and output variables.

• Topological Loops

A feature of MS1® to be pointed out is that these topological loops and signal

paths can be highlighted on the bond graph (cf. Figure 11.47).
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Fig. 11.47 Highlighting of the 2nd order topological loop between the two stores in the bond graph

of the shunt motor model

Once all topological loops and signal paths between input and output variables

have been determined, their corresponding gains can be used in Mason’s rule

in order to derive transfer functions directly from a causal bond graph (cf. Sec-

tion 6.2). Surprisingly, the user cannot have MS1 (version 5.2c) provide the trans-

fer function between a selected output and a selected input variable.

Figure 11.48 shows one of the three loops in the bond graph of the DC motor

model considered in Section 6.2 (cf. Figure 6.8). By clicking on the correspond-

ing button the next loop is displayed.

Fig. 11.48 Highlighting of one of the three topological loops in the bond graph of the DC motor

model (cf. Figure 6.8)
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Fig. 11.49 Highlighting of the topological path between input and output variable (cf. Figure 6.8)

Figure 11.49 depicts the topological path between the input variable, ua, and the

output variable, the current ia, in accordance with Figure 6.8).

• Bicausal Bond Graphs

Furthermore, MS1® supports the concept of bicausality.

• Equations generation

Equations derived from a causal bond graph can be output in the input language

of one of the commercial solvers ACSL®, Maple™6 and MATLAB®, or in C

code as a S-function to be used by Simulink®. In addition, MS1 offers the option

to generate a Modelica description of a model so that it can be further processed,

e.g. in the OpenModelica software [62].

If there are dependent stores in the bond graph or causal paths between resistive

ports, then the mathematical model is formulated according to the features of the

target input language. If, for instance, ACSL® is chosen, then algebraic loops

are taken into account by means of the IMPL operator provided by the language

ACSL ([76], Section 4.46, p. 74). Figure 11.50 shows the highlighting of a zero-

order causal path between two inertias.

The zero-order causal path between the two inertias means that there is an im-

plicit algebraic equation for the effort of the inertia with derivative causality. In

the generated ACSL®output file, this is expressed by means of the IMPL op-

erator (Figure 11.51). Alternatively, Figure 11.52 shows the Maple™ input file

generated by MS1®.

• Animation of Energy Flows

MS1 was one of the first modelling and simulation environments to provide the

user with the ability to animate energy flows directly on a bond graph. To that

end, a contour is drawn on each bond. Its shape is similar to that of two aircraft

wings sitting on the bond. Its height perpendicular to the bond indicates the ef-

6 Maple™ is a trademark of Waterloo Maple Inc., 615 Kumpf Drive, Waterloo, Ontario, Canada

N2V 1K8, http://www.maplesoft.com
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Fig. 11.50 Highlighting of the topological loop between the two inertia I:m1 and I:m2

DERIVATIVE ! NEW 

! FIXED VARIABLES 
    E2 = 1.0 
    E6 = 1.0 

! ALGEBRAIC VARIABLES 
    F3 = P2/1.0 
    F1 = P1/1.0 
    F2 = F1*1.0 

! IMPLICIT ZONE - BEGIN 
    E5 = IMPLC(F3-(F2),0.0) 
! IMPLICIT ZONE - END 

    E4 = E6-E5 
    E3 = E4*1.0 
    E1 = E3-E2 

! INDEPENDENT STATE VARIABLES 
    P2 = INTEG(E5,G2) 
    P1 = INTEG(E1,G1) 

END ! DERIVATIVE NEW 

Fig. 11.51 Derivative section of the ACSL file generated by MS1

fort and its width parallel to the bond represents the flow. Thus, the area inside

this contour measures the instantaneous power along the bond. Moreover, the

contour expresses the direction of the energy flow. If the instantaneous power is

positive, the contour points into the direction given by the half arrow of the bond.

In addition, a convex or concave shaped contour is drawn near each energy store

indicating the stored energy. In the case of a linear energy store, the contour is

either an upside or downside triangle [50].
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# MAPLE MODEL : new 
# MS1 V5.0d8 - licence 01S07-1-E - Thu Feb 19 12:27:12 2004 
#
# ----- DECLARATIONS ----- 
P1:='P1':
E2:='E2':E6:='E6':F1:='F1':F4:='F4':F2:='F2':F5:='F5':P2:='P2':E4:='E4':
E3:='E3':E1:='E1':F6:='F6':F3:='F3':E5:='E5':
#
# ----- EQUATIONS ----- 
#
E2 = 1.0 
E6 = 1.0 
F1 = P1/1.0 
F4 = F1 
F2 = F4*1.0 
F5 = F2 
P2 = F5*1.0 
E5 = D(P2) 
E4 = E6-E5 
E3 = E4*1.0 
E1 = E3-E2 
F6 = F2 
F3 = F1 
D(P1) = E1 

Fig. 11.52 Maple input file generated by MS1

With regard to its capability of generating code for several simulation programs

and to interface with computer algebra systems, MS1®resembles bond graph pre-

processors like CAMP-G. There are also other features inspired by CAMP-G®. For

instance, by double clicking on a bond graph element, its constitutive equations are

displayed in a popup window. However, unlike the CAMP-G, MS1 supports devel-

opment of hierarchical models and multi-formalism. Components of one and the

same system can be described using different formalisms. On the other hand, the

MS1 user interface enables the start of a chosen simulator in a transparent way,

displaying results and animating energy flows on bond graphs. From this point of

view, MS1 can be considered an integrated modelling and simulation environment.

11.6.6 Transformation Between Different Model Description
Forms

The development of models of engineering systems serves different purposes. Simu-

lation of the dynamic behaviour of a system is only one aim among others, although

it is a very frequent one. Other objectives for model development are, for instance,

system identification, the design of a controller or an observer of a dynamic system.

The graphical representation of models often depends on conventions in an engi-

neering domain. In mechanics, it is common to use free body schematics, in control
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theory block diagrams and in electrical engineering networks are used. Software

supporting the modelling process must accept at least one form of a graphical rep-

resentation and be able to convert it into other forms of representation. The required

target form depends on the respective task. For time domain analysis, a system of

ODEs and algebraic constraints, if necessary, is needed, while control analysis needs

the coefficients of state space matrices or transfer functions in symbolic form.

Section 2.7 gives two procedures, one for mechanical systems and the other for

non-mechanical systems, that enable the user to construct in a systematic manner a

bond graph from a schematic. As demonstrated in Chapter 6, not only equations for

simulations can be derived from a causally completed bond graph, but also transfer

functions, equations of an inverse system as well as information about structural

properties, viz. structural controllability and structural observability. Moreover, in

Section 3.2 we noticed that causal bond graphs can be transformed into block dia-

grams if necessary. Thus, it is obvious to use bond graphs as a generic model de-

scription form, from which other forms of representation can be generated according

to the requirements of an actual task.

MTT

This philosophy of physical systems modelling has led to the development of a

set of Model Transformation Tools, MTT, [40] by Gawthrop at the University of

Glasgow [37]. With this approach model, development is considered an order of

transformation steps from one model representation to another. One of these model

representation forms are bond graphs. They take the role of a core model represen-

tation.

The implementation of this toolbox follows the usual UNIX philosophy of de-

veloping software with powerful capabilities by assembling available software tools

dedicated to specific tasks. In MTT, model transformations are performed by soft-

ware tools that are called in script files of the Bourne shell. Each model representa-

tion has two attributes. One of them is an abstract representation form that may be

an acausal bond graph or a DAE system. The other attribute is an implementation

language. First, graphical entry of an acausal bond graph is made possible by the

drawing program xfig available as a UNIX utility. This graphical entry then is trans-

formed into a textual description in the language fig and further into a description in

the language Prolog. By means of rules formulated in Prolog, the initially acausal

bond graph can be transformed into a causal one. Given a causal bond graph and

constitutive element equations formulated in the input language of the formula ma-

nipulation package REDUCE [2], a set of DAEs can be generated in the language

of REDUCE and further converted into the input format of the program Simulink®.

Another option is to derive the matrices of a linearised descriptor equation in

symbolic form from the system of DAEs and to output them in MATLAB® input

format. To that end, symbolic differentiation is performed in REDUCE. Eventually,

transfer functions in symbolic form can be generated from the symbolic matrices of

the linearised descriptor equation (cf. Section 6.2). The formulation of the system of

DAEs as well as the matrices of the linearised descriptor equation in REDUCE can
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be converted into LATEX format for display in usual mathematical form on a monitor

or for output in a document.

The software tools included in the set of MTT enable the transformation between

various model representations and thus allow for different modelling views. The

use of a model representation, however, is left to an independent program that can

process the model representation appropriate for a given task. That is, simulation can

be performed by means of Simulink®, while MATLAB® can be used for a frequency

domain analysis. The concept and the implementation of MTT, however, allow for

using other programs as well. To that end, corresponding transformation tools must

be added to MTT.

One might argue that the execution of transformation tools from a toolbox by

means of UNIX shell scripts is less appealing to a model developer than the use

of an integrated modelling and simulation environment. However, MTT, as a result

of a research project, is a non-commercial software that is mainly built on GNU

tools. Instead of MATLAB®, the free GNU program Octave [1] could be used. Fur-

thermore, MTT is open for inclusion of other tools, e.g. of new powerful numerical

solvers.

Beyond the concept of transforming model representations, MTT offers the fol-

lowing features. It supports

• hierarchical bond graphs,

• hybrid modelling of systems by providing switched I and C components [39],

and

• the concept of bicausalities introduced by Gawthrop [38].

MAX

In the previous consideration of different types of software packages, an obvious

question has been whether and how the software supports bond graph modelling.

Actually, modelling of engineering systems mostly starts with a schematic that is

more intuitive than a strictly formalised and unambiguous graphical representation.

The purpose is to express relations between objects at a conceptual level. These

can stand for a physical effect, a basic building block, or a system component com-

posed of building blocks. A schematic may be considered a graphical representation

of a so-called Ideal Physical Model (IPM) in which physical phenomena are de-

scribed under some idealised assumptions. This idealisation includes, for example,

that physical effects are considered isolated by disregarding other involved effects

and by assuming that they can be spatially lumped.

In schematic system representations, icons are interconnected that may depend

on the application field. Moreover, not every engineering domain uses standardised

symbols as in electrical engineering (IEEE, 1987, [46]). Such (application specific)

symbols are usually called icons. Graphs in which nodes are represented by icons

are called iconic diagrams (see, for instance, [27]). Although symbols in schematics

are not standardised in all application domains, they are quite common in the early

conceptual design phase of the modelling process. A computer aided analysis of

a model, however, requires an unambiguous formalised description. The latter can
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take the form of a bond graph. In Section 2.7, two procedures have been given

for systematically converting a schematic of a mechanical and of a non-mechanical

system into a bond graph.

The modelling environment MAX (Modelling and Analysis eXpert) for the de-

sign of mechatronic systems [27, 28] was developed in a research project around

1994. To the author’s knowledge, the software has not been further developed since

then. MAX supports both levels of abstraction, that is, ideal physical models as well

as bond graphs by corresponding editors [27, 82]. Automatic transformation from

one representation form into the other ensures consistency between both forms. That

is, not only the transformation from a schematic into a bond graph is supported, but

also its back transformation. If a model is changed by using one of the two repre-

sentation forms, changes are automatically and consistently taken into account in

the other representation form. This is achieved by the use of an internal core repre-

sentation.

The model developer can start at the conceptual level and, supported by a

browser, select submodels from a library according to given specifications. First,

one may attempt to achieve a design solution with simple submodels that partially

comply with given requirements. After assessment of simulation results, the mod-

eller must decide which submodels shall account for which further properties. This

way, a model can be developed that is just as complex as necessary in order to meet

the requirements of a given design task. Accounting for further effects step-by-step

and removing others that have proven irrelevant in contrast to expectations helps to

avoid unnecessarily complex models. However, there is no knowledge-based assis-

tance by the software in deciding which of the submodels of a system component

available in the library should be chosen to meet the given requirements. It is the

modeller’s experience that is required to control the selection of submodels of ap-

propriate complexity. As is well known, accounting for some effects in submodels

expected to be relevant for the overall system dynamics can lead to long simulation

runs and even to numerical problems. It is the art of modelling to single out such

effects and to meet the given system requirements.

Once submodels have been chosen according to the given specifications, a bond

graph can be considered an intermediate format in the transformation of an ideal

physical model into a mathematical model.

The Bond Graph Toolbox provides special routines for converting a system

schematic having the form of an electrical circuit into a bond graph. These routines

can be called in Mathematica®.

In MTT, bond graphs are created by means of the drawing tool xfig. Likewise,

iconic diagrams could be created. What is needed is a transformation tool that con-

verts a textual description of the iconic diagram in the language fig into the fig de-

scription of the corresponding bond graph.
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CAMBAS

The automated modelling environment CAMBAS (Computer Aided Model Build-

ing Automation System) developed by Louca and Stein at the University of Michi-

gan supports two levels of abstraction [73].

On the top or component level corresponding to the level of word bond graphs,

components with a fixed number of ports can be connected to interact with other

components. Internally, components are assigned a certain number of models of

increasing complexity. Stein and Louca use the term template. On the second hier-

archical lower element level, each component has a certain bond graph implemen-

tation.

At the top level of abstraction, components are graphically represented by rect-

angular blocks and their power ports by dots. Components are displayed in different

colours according to the energy domain they belong to. Line segments between ports

indicate energy flows between them. Building system models by means of compo-

nents is supported by a library of components, where each component is assigned a

certain number of bond graph models. According to their functionality, components

are grouped into classes. For each component, information about its characteris-

tic features is available. An editor allows the creation of a bond graph model of a

component not available in the library. If the appropriate model of a subsystem is a

distributed parameter model, then it is approximated by a lumped parameter model

based on the modal analysis method. Users can build a model by taking system

components, e.g. a DC motor, a hydraulic pump, a pressure relief valve, etc., from

the library and by connecting them. The result, in the first place, is a word bond

graph model where the complexity of the models of the components still needs to

be defined.

In the modelling environment MAX, a browser helps to navigate through the li-

brary. However, it is up to the user to decide which submodels of which complexity

are appropriate to ensure that the overall system model complies with given speci-

fications with regard to the system dynamics. The essential feature of the template

based approach implemented in CAMBAS is that the software attempts an algorith-

mic solution to the synthesis problem. Wilson and Stein call component models of

minimal complexity that ensure a required system behaviour, proper models [88].

To have the software algorithmically determine these proper models, the user only

has to specify the range that includes natural frequencies of the system. This means

that models must be linear which is of some disadvantage. However, the automatic

iterative determination of component models of minimal complexity with respect to

certain criteria is certainly an extraordinary feature of CAMBAS. A description of

the Model Order Deduction Algorithm (MODA) implemented in CAMBAS is given

in [88]. In order to see how the model of a component changes during the iterative

determination of the proper model, the bond graph of the component can be dis-

played by the graphical editor. Finally, the modeller can have the software output

the bond graph of the overall system model of minimal complexity.
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11.7 Exchange and Reuse of Bond Graph Models

The previous sections of this chapter clearly demonstrate that there are modern mod-

elling languages as well as a whole spectrum of software from mathematical pro-

grams, preprocessors for simulation programs to advanced integrated modelling and

simulation environments that can support bond graph-based physical system mod-

elling of multi-energy domain engineering systems in different ways. Sophisticated

modelling and simulation environments usually support multiformalism and come

with model libraries for a number of application areas. Some of these programs, e.g.

20-sim use an underlying modelling description language such as SIDOPS, while

others support the formulation of user defined component models in a higher pro-

gramming language such as C++ (SYMBOLS).

In the realm of object-oriented modelling, the modelling language Modelica has

emerged from international efforts of unifying features of several object-oriented

modelling languages and to support the exchange of non-causal reusable models.

As shown in Section 11.5, Modelica can be used for describing bond graph models

also, though it is based on the generalised network paradigm. Accordingly, in 2005,

Nebot and Cellier presented a general Modelica library for bond graph modelling

[23]. However, it appears that bond graphs are not widely appreciated as a modelling

formalism in the object-oriented modelling realm, nor is Modelica much used as a

language for the description of bond graph models.

As a matter of fact, bond graph methodology along with various supporting soft-

ware and model libraries are used for modelling and design of engineering systems

in different places in academia and in industry worldwide. However, to the author’s

knowledge, little effort has been undertaken so far to support the exchange and reuse

of bond graph models, to share the associated engineering knowledge and to avoid

redevelopment of bond graph models of building blocks that have been already de-

veloped elsewhere. Bond graph modellers have widely agreed on conventions of

drawing bond graphs, but a widely accepted definition of a format for the descrip-

tion of bond graph models that enables the exchange of bond graph models between

different software for bond graph modelling and the reuse of engineering models is

still missing.

In contrast, XML, the eXtensible Markup Language [87], has become a popular

language for data modelling in various areas including scientific and engineering

disciplines. The language, widely adopted by the computer industry, enables one to

define the content of a document and to separate the content from its presentation.

There are parsers that can validate rules defined in so-called Document Type Defini-

tions (DTDs) or in XML schemas, respectively. Moreover, there are languages and

transformation tools that can be used to extract information from an XML document

in a form required for further processing by a target application software. The rele-

vance of XML for modelling and simulation, in general, has been briefly pointed by

Fishwick in 2002 [35].

Inspired by the use of XML in the computer industry, the author proposed an

XML based schema for bond graphs[10] in the 2005 International Conference on

Bond Graph Modelling and Simulation (ICBGM’ 05), while Bevan in the same
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conference outlined another data model for bond graphs that he and his co-authors

created for use in their Next-Generation Transformation Tools (NTT) project [7] fol-

lowing the open source software environment Model Transformation Tools (MTT)

[5, 40]. In the following, the concept of using XML as a basis of a format that can

support the exchange and reuse of bond graph models is illustrated. For a more

detailed presentation see [11].

11.7.1 Useful XML Features for the Description and Processing of
Bond Graph Models

For the reconstruction of a bond graph from a given textual description and for

its further processing, it is essential to be able to identify objects and relationships

between them, viz. to identify bond graph elements, ports and bonds. XML enables

one to tag items with meta-information of unique meaning in a given context and to

formally describe the data in a document and the document’s structure. As a result,

objects and their relations in a physical system model can be mapped onto XML

elements. In contrast, if a software program would output the information about a

bond graph in a given internal data format, then reconstruction of the bond graph

by another software, clearly, would be difficult and inefficient without any meta

information. Information about an object in the context of bond graph methodology

enclosed by a starting and an ending XML tag will be called an XML element. Such

XML elements, the order in which they can appear, and how they can be nested

inside each other are defined either in a so-called Document Type Definition (DTD)

or in an XML schema. That is,

• XML enables a formal description of the content of a document.

• XML documents can be validated against the rules defined in a DTD or in an

XML schema.

• XML meta-information enables one to perform a content oriented, application

specific processing of XML documents. Consequently, export and import soft-

ware tools can be written that transform internal data formats into XML and vice

versa.

• Furthermore, the Extensible Stylesheet Language (XSL) and the Extensible

Stylesheet Language for Transformation (XSLT) enable one to select informa-

tion in an XML document, to specify the formatting and to output it such that it

can be processed by another application. For this process, there is an XSL pro-

cessor that reads directives from a stylesheet as to how the logical structure of an

XML structure is to be converted into a presentation structure.

• XML, XSL and XSLT have been standardised by the W3 Consortium. Moreover,

there are a number of freely available XML programming interfaces that can be

used to reduce the effort of developing application specific XML processors.

The XML features outlined above suggest that XML is ideally suited for the def-

inition of an exchange format for bond graph models that can be processed auto-
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matically. As XML documents are ASCII files, in principle, they can be read and

manipulated by humans also. However, they tend to increase considerably in length.

11.7.2 Information that an Exchange Format for Bond Graphs
Should Capture

Present day bond graph software provide a graphical front end that supports a graph-

ical construction of bond graph models. With regard to the definition of an exchange

format, it has to be taken into account how model developers are supported and what

information is stored.

• The hierarchy in composed bond graph models and the use of submodels is han-

dled differently in general.

• Should an exchange format provide information about power reference directions

and causal strokes? This information is added automatically by some bond graph

editors.

• Some bond graph software provide an equations editor for specifying nonlin-

earities, while other bond graph programs rely on an ordinary text editor or the

features of a target application software. The preprocessor CAMP-G®, for in-

stance, does not allow one to specify nonlinearities. It is expected that this is

done in MATLAB®.

• Some advanced modelling environments provide a modelling language, while

others require specification of nonlinearities in a programming language such as

C++.

• Some bond graph software does not support multibond graphs.

These observations suggest that a format for exchange and reuse of bond graph

models should include as much information as possible organised in such a manner

that it can be easily and efficiently accessed. Moreover, a truly efficient exchange

format should be flexible enough so that requirements emerging from its application

in different fields can be accounted for by further extensions without the need of a

redesign. As a result, an XML based exchange format for bond graph models should

capture

• the hierarchy of a composed model,

• its topological structure and that of its composed submodels, i.e. which nodes of

which type are connected in which way,

• information about the graphical representation to enable a bond graph to be re-

drawn by another editor or by a browser,

• constitutive relations of elements and of submodels with no internal structure,

• names, numerical values and physical units of parameters and initial conditions

to allow for reproduction of simulation results,

• meta-information about the model and its submodels including submodel name,

version, revision date, revision history and bug-fixes, submodel authors’ names,

and a short description where and how to use a (sub-)model.
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According to an object-oriented modelling approach, the description of the inter-

face of a model component (submodel, or lowest-level element) to its outside world

should be separately formulated from that of the components body.

Depending on its purpose, bond graph related software will not need all of

the above information. Clearly, a bond graph preprocessor, e.g. CAMP-G®, will

not need numerical values of parameters and initial conditions in order to output

equations for processing by the Symbolic Math Toolbox® of MATLAB®. On the

other hand, for an exchange of models between self-contained bond graph mod-

elling and simulation environments, however, all kinds of information listed above

is needed. Furthermore, capabilities of software, not especially designed for sup-

porting bond graphs, e.g. mathematical software such as MATLAB®, Scilab [71],

or Mathematica®, are also used for processing bond graph models in practice. Such

software programs need equations in their mathematical input language, but not the

information about the graphical representation of a bond graph. To that end, an im-

port software tool that derives the equations of a mathematical model from the XML

based description of a bond graph and outputs them so that they can be processed

by a mathematics program, e.g. Scilab, will need information about power orienta-

tion and computational causalities. In contrast, it is the graphical representation of a

bond graph that is essential for an efficient (distant) communication between model

developers.

Finally, the use and the incorporation of submodels developed elsewhere into

a model under construction demands for giving credits to submodel authors and

requires good documentation of each submodel. This is especially true in the devel-

opment of large complex models in an industrial environment where project man-

agement and future maintenance of models is of importance.

11.7.3 A Schema for an XML Based Description of Combined
Bond Graph and Block Diagram Models

Taking into account the previous general considerations, the author developed a

schema for the description of models composed of a bond graph and block diagrams

(The bond graph represents the engineering system or process, block diagram parts

display its control). Inspired by the acronym MathML, an XML application for the

description of mathematical equations, the novel markup language has been termed

BGML. In the following, the BGML schema is briefly illustrated. A more detailed

presentation including information on how the schema is processed in an experi-

mental software environment is given in [11].

The schema has been graphically designed by means of the powerful free soft-

ware Altova XMLSpy®7 [3]. Hence, subsequent illustrations of parts of the schema

make use of the way the software presents relations between XML items. Fig-

7 XMLSPY is a registered trademark of Altova GmbH, Rudolfsplatz 13a/9, A-1010 Wien, Aus-

tria/EU, http://www.altova.com
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Fig. 11.53 Root of the BGML schema and its successors

ure 11.53 shows the root XML element of the schema labeled BGBD-model and

its immediate successors.

The connector between the root element and the perpendicular branch marked

with a line of dots arranging XML elements in an XML schema is called se-
quence. It means that the starting tag of the root XML element BGBD-model must

be followed by the XML elements model name, model version etc. in exactly that

order. That is, the root element of the XML structure is a container element that in-

cludes the bond graph - block diagram (BGBD) model as well as meta-information

about this model. The other type of connector between the most left perpendicu-

lar branch and the XML element flat model, composed-model respectively is called

choice. It means that the XML element model-description may be followed either

by an XML child of type flat-model or of type composed-submodel. In this context,

it has to be recalled that XML elements must not overlap. A starting tag inside an

XML element must be followed by its corresponding closing tag inside that element.

It is a prerequisite of XML documents that they are so-called well-formed.

In BGML, the description of a bond graph - block diagram model (submodel)

must start with general information about the model (submodel) such as model

name, model version etc. The XML element model-description accounts for any

information about the purpose of the model, model assumptions, model features,

etc. This information is expected to be given in XHTML format. The cardinality

attribute (0 . . .∞) attached to the ellipsis with a dashed line and the string any
http://www.w3.org/1999/xhtml means that there may be no such XML element of

type xhtmlType or any number.

The model itself may be either a set of equations or be composed of submod-

els. In the first case, we call the model a flat model and describe its equations in
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MathML. The equations are preceded by a listing of parameters, initial conditions

and variables in that order. In the case of a hierarchical model, it is assumed that

there are at least two submodels and at least one connection. Submodels, in turn,

may be either flat submodels, composed submodels, or either a bond graph or a

block diagram element. Finally, each submodel has a graphical representation. In

order to be able to check the validity of XML descriptions of bond graphs against

the schema without having to specify equations in MathML, the admissible mini-

mum number of equations has been set to zero. Also, to ease a manual development

of XML descriptions of bond graph models for test purposes, information about the

graphical representation of nodes in a graph and specification of parameters may

be omitted. In contrast, the cardinality attribute associated with the XML element

submodel enforces that there are at least two submodels in a composed submodel.

Such requirements may be easily introduced into the XML schema and relaxed for

convenience at a graphical level by using an appropriate tool, e.g. XMLSpy®.

If a submodel is a composed submodel, then it must have at least one port to the

outside world. This port can be either a power or a signal port. In case of a signal

port, a further distinction can be made. Signal generators as well as ordinary junc-

tions only have outgoing signals (signal-generator-port), monitors, or signal detec-

tors allow for ingoing signals only (signal-detector-port). Furthermore, modulated

elements only accept an ingoing signal at their signal port. Connections between

ports may be either bonds or signals (activated bonds). They have an orientation

from a source port to a target port. In the trivial case, a composed submodel may

contain a single submodel connected to the submodel’s port having no further ports.

This has been taken into account by the cardinality attribute of the choice con-

nector following the XML element connections in Figure 11.54.

Children of the XML element BGBD-element can be either bond graph or block

diagram elements. Bond graph elements may be classified into junctions, modulated

elements and such elements that are neither junctions nor modulated elements, viz.

Fig. 11.54 The XML element composed-submodel and its successors
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Fig. 11.55 Part of the XML schema covering bond graph and block diagram elements

a member of the set {Sf, Se, C,I,R,TF,GY}. Subsequent Sections 11.7.4 and 11.7.5

consider how pseudo bond graphs and controlled junctions can be included. First,

Figure 11.55 shows the part of the XML schema that covers bond graph and block

diagram elements.

Clearly, a bond graph junction must have at least two power ports. This is re-

flected by the cardinality attribute of XML element power-port in the most upper

part of Figure 11.55. As the common effort of some 0-junctions or the common flow

of some 1-junctions is needed as an input signal into a signal port, the XML descrip-

tion of a junction may have an optional part describing this port with an outgoing

signal (signal-generator-port). Bond graph elements that are no junctions and are

not modulated must have at least one power port. For energy storage elements, the

energy variable may be an outgoing signal, e.g. in the modelling language SIDOPS.

If a bond graph element is modulated, it must have a port for an ingoing signal
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<xs:element name="BG-element-no-junction-modulated">
<xs:complexType>

<xs:sequence>
<xs:element name="ports">

<xs:complexType mixed="false">
<xs:sequence>

<xs:element name="power-port" type="power-portType" maxOccurs="unbounded"/>
<xs:element name="signal-detector-port" type="signal-portType"/>

</xs:sequence>
                     </xs:complexType>
                   </xs:element>

<xs:element name="parameters" type="parametersType"/>
<xs:element name="variables" type="variablesType"/>
<xs:element name="equations" type="mathmlType"/>

</xs:sequence>
<xs:attribute name="type" use="required">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:pattern value="MR"/>
<xs:pattern value="MSe"/>
<xs:pattern value="MSf"/>
<xs:pattern value="MGY"/>
<xs:pattern value="MTF"/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>

</xs:complexType>
</xs:element>

Fig. 11.56 Listing of the XML element BG-element-no-junction-modulated

(signal-detector-port). Finally, block diagram elements that are no signal genera-

tors nor signal detectors must have at least one port for an ingoing signal and one

port for an outgoing signal.

The classification of elements along with requirements associated with the type

of an element and implemented in the schema helps to exchange bond graph models

that are consistent with the rules of the bond graph methodology because if a BGML

description of a bond graph model does not pass the validation against the schema,

it is rejected. A bond graph description that is syntactically correct with regard to

the bond graph language can even be more enforced by the fact that XML elements

may have attributes for which admissible patterns can be specified. For instance,

if a bond graph element is modulated, its type identifier should be a member of

the set {MSf,MSf,MR,MTF,MGY}. The software Altova XMLSpy® automatically

transforms the graphically designed XML schema into XML. Figure 11.56 shows

the listing of the XML element BG-element-no-junction-modulated and its use of

the attribute type capturing the list of admissible bond graph element types.

As can be seen, modulated storage elements are not admissible as they do not

exist in true bond graphs. Furthermore, the XML element BG-element-no-junction-
modulated makes use of the XML element parameters which is of type parameter-
sType. Admissible attributes of this type are name, value, physical unit. Specification

of this kind of information can be either enforced or released by setting use to re-
quired or optional. It is up to the software processing this information whether it is

correct with regard to syntax and sematic. Finally, Figure 11.57 shows how a power

port can be described in XML.
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<xs:complexType name="power-portType" mixed="false">
<xs:complexContent mixed="false">

<xs:extension base="portType">
<xs:attribute name="domain" use="optional">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="electric"/>
<xs:pattern value="hydraulic"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="causality" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="indifferent"/>
<xs:pattern value="fixed effort out"/>
<xs:pattern value="fixed flow out"/>
<xs:pattern value="preferred effort out"/>
<xs:pattern value="preferred flow out"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:extension>

</xs:complexContent>
</xs:complexType>

Fig. 11.57 Listing of the XML complex type power-port

The complex type power-port uses the complex type power-portType which is an

extension of the type portType and may have an optional attribute domain. For rea-

sons of space limitation, not all admissible strings, e.g. electric, hydraulic, etc. have

been listed. Another important attribute is causality. Specification of causality is

required as some target software needs this information but does not assign causal-

ities itself. The choice of admissible strings for the value of the causality attribute

has been inspired by the modelling language SIDOPS. For instance, a port of an ef-

fort source naturally has a fixed effort out causality, while a port of C element has a

preferred effort out causality. As can be seen from Figure 11.57, the string indif-
ferent is also admissible, allowing one to describe non-causal bond graphs. The

latter attribute value can be used if a BGML description of a bond graph is passed

to an import software tool for an advanced modelling and simulation environment

such as 20-sim which automatically assigns reference directions and computational

causalities when loading a bond graph description in the internally used format. The

causality attribute indifferent is also useful for a BGML description of non-

causal component models stored in a library. Attributes of XML types enable one

to define properties of modelling objects locally without having the need for intro-

ducing further XML elements. As a result, the structure of the schema can be kept
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Fig. 11.58 Example of a simple hierarchical bond graph

simpler which, in turn, can facilitate the development of transformation tools. Only

the XML element BGDB-model, the XML complex types submodel, port, power-
port, signal-port, equations and some other types, e.g. initial-conditions, are defined

globally.

Example: A Simple Hierarchical Bond Graph Model and its BGML Description

XML descriptions, although human readable in principle, tend to be quite long with

many nested elements. Nevertheless, for illustration, an outline of the BGML de-

scription of the simple hierarchical bond graph in Figure 11.58 shall be given. In

the bond graph of Figure 11.58, black squares denote submodel ports. Their names

as well as the enumeration of bonds is relative to the submodel they belong to. Fig-

ure 11.59 shows a coarse outline of the associated BGML description.

As the example bond graph is a composed model, the listing of top-level sub-

models is followed by a listing of their interconnections. The first submodel reduces

to the bond graph element of type Se. The second submodel in that listing is a com-

posed submodel. Hence, first its ports constituting the interface to the outside world

are listed. The description of the submodel’s interface must be followed by a listing

of all submodels and a subsequent listing of all connections inside that submodel.

For clarity and space limitations, only the description of the I element is outlined.

The description of submodel SM1 and of connections have been skipped. The co-

ordinates associated with the name of a submodel are needed for positioning the

name as an annotation in a drawing of the bond graph. As can be seen, BGML also
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<model-name>SampleBG</model-name>

<composed-model>
  <submodels>

<submodel name="Se" x-coord="100" y-coord="200">
<BGBD-element>

<BG-element-no-junction type="Se">
<ports>

<power-port name="p" id="1" orientation="out" dimension="1" causality="fixed effort out"/>
</ports>

</BG-element-no-junction>
</BGBD-element>

</submodel>

<submodel name="SM2" x-coord="200" y-coord="200">
<composed-submodel>

<ports>
<power-port name="p1" id="1" orientation="in" dimension="1" x-coord="100" y-coord="200" domain="power"

causality="preferred flow out"/>
<power-port name="p2" id="2" orientation="out" dimension="1" x-coord="200" y-coord="100"

domain="power" causality="preferred flow out"/>
<signal-port name="p3" id="1" orientation="out" dimension="1" x-coord="300" y-coord="300"/>

</ports>
         <submodels>

<submodel name="I1" x-coord="300" y-coord="200">
<BGBD-element>

<BG-element-no-junction type="I">
<ports>

<power-port name="p" id="1" orientation="in" dimension="1" causality="preferred flow out"/>
<signal-port name="state" id="1" orientation="out" dimension="1"/>

</ports>

</BG-element-no-junction>
</BGBD-element>

</submodel>

         </submodel>
     
</submodels>
<connections>

<bond id="1" dimension="1" effort="E">
<from>Se\p</from>
<to>SM2\p1</to>

</bond>

<signal id="1" dimension="1">
<from>SM2\p3</from>
<to>MONITOR1\sdp</to>

</signal>
</connections>
</composed-model>
</BGBD-model>

Fig. 11.59 Skeleton of the BGML description of the sample hierarchical bond graph in Fig-

ure 11.58

supports multibonds. Ports as well as bonds and signals may have a dimension > 1.

Furthermore, bonds and signals may have a numerical identifier and annotations. In

order to distinguish port names at a hierarchy level, they are preceded by the name

of the submodel they belong to. For instance, at the top level of the hierarchy, bond 1

is points from port p of the effort source to p1 of submodel SM2, while there is a

signal with the identifier 1 from port p3 of submodel SM2 to the signal detector

port, sdp, of submodel MONITOR1.

In the XML listing of Figure 11.59, equation sections have also been skipped

also. The formulation of equations in MathML makes the listing very long.
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11.7.4 Pseudo Bond Graphs in BGML

So far, an XML description of models composed of true bond graphs and block

diagrams have been considered. One of the advantages of the BGML schema is that

rules of the bond graph methodology have been implemented. That is, violations can

be detected while an XML description of a bond graph model is validated against the

schema. For example, modulated storage elements are not admissible bond graph

element types for the XML element BG-element-no-junction-modulated. For the

description of thermo-fluid phenomena, however, pseudo bond graphs have proven

useful and appropriate. As pseudo bonds do not carry power variables modulated

storage elements, violating the principle of energy conservation may be admissible.

Therefore, in the BGML schema, the choice compositor < xsd : choice > below

the XML element BGBD-element allows for a subtree with the root Pseudo-BG-
element (Figure 11.60). Admissible pattern for the type of this XML element are

all bond graph elements including MC- and MI-storage elements. Clearly, pseudo

bond graph elements must have at least one port of type pseudo-power-portType.

They may also have signal ports with an inward orientation accounting for signals

modulating the element (signal-detector-port). The XML element pseudo-power-
port has an attribute domain. Admissible patterns in this case may be pseudo or

pseudothermal. Some pseudo bond graph elements, e.g. the thermal accumulator

introduced by Karnopp may have a true power port. This extension to the BGML

schema ensures that modulated storage elements are allowed only in pseudo bond

graph models. As power ports do have an attribute domain, software for processing

an XML document that contains a bond graph model can check if the domain of two

power ports connected by a bond have the same admissible pattern.

11.7.5 Controlled Junctions in BGML

As to the abstraction of instantaneous changes between modes in a dynamic system

and its appropriate description in bond graph models, one of the extensions to bond

graph methodology proposed by P. Mosterman are controlled junctions (cf. Sec-

tion 7.2.2). In its on-mode, a controlled junction behaves as a normal junction. In its

off-mode, a controlled 0-junction acts as an effort source that provides a vanishing

effort. Accordingly, in its off-mode, a controlled 1-junction acts as a flow source

of value zero. This ideal switching behaviour of controlled junctions is governed

by a local control algorithm for each junction. Clearly, in a simulation program,

ideal switching requires appropriate changes to the control of numerical integration,

e.g. restart and proper re-initialisation. In contrast to ordinary junctions, controlled

junctions must have a signal port with inward orientation. One way to account for

controlled junctions in the BGML schema is to add an XML element BG-junction-
controlled to the compositor <xd:choice> below the XML element BGBD-element
in the BGML tree (Figure 11.61). This new XML element has an attribute type with

admissible patterns XZERO and XONE. The local algorithm controlling a junction
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Fig. 11.60 Accounting for pseudo bond graph elements in the BGML schema

can be mapped onto a block diagram with signal inputs from other parts of the bond

graph and a signal output switching the junction.

11.7.6 Supporting the Exchange and Reuse of Submodels

The previous discussion implicitly focussed on an XML description and the ex-

change of entire bond graph models. However, with the development of large com-

plex models, submodels are likely to come from various designers or groups of

model developers in academia and industry. Consequently, it is important that an

XML schema for bond graph models not only accounts for meta-information about

an entire model, but also for meta-information about each submodel in order to sup-

port project management and future maintenance of large models under construc-

tion. In order to facilitate the exchange of submodels and the (distant) co-operation

of designers, meta-information about submodels should include information such

as the name of the submodel, version, revision date, revision history, bug-fixes, the

submodel authors’ names and a short description of where and how to use a sub-

model.

Figure 11.62 shows the XML elements in the container element submodel that

capture meta-information about a submodel. The XML element model-description
of type XHTMLType can hold any information about a submodel. XHTML has been
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Fig. 11.61 Controlled bond graph junctions in the BGML schema

chosen as a format because some modelling software environments generate model

documentation in HTML and because it has become common to use HTML for

the exchange of documentation and to view it by means of a web-browser. Meta-

information about a submodel could be structured in more detail by means of fur-

ther XML elements. Note that these XML elements do not guarantee that meta-

information about a submodel, in fact, is provided. They can be empty. The schema

only requires that these XML elements occur in the required order. As a submodel

can reduce to a basic bond graph or block diagram element, the BGML schema re-

quires that meta-information or at least their XML tags are even provided for each

basic element.

To support the exchange of submodels or the building of XML based component

model libraries (cf. Section 11.7.8), the XML element submodel is a global element.

That is, besides the XML element BGBD-model, it can be the root of a tree of XML

elements. Consequently, an XML document may contain just the description of a

submodel and it can be validated against the BGML schema.
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Fig. 11.62 XML elements capturing meta-information about a submodel

11.7.7 Transforming the BGML Description of a Bond Graph
Model into a Target Language

Transformation from One XML Description into Another

If there is an XML description of a bond graph (sub-)model, it can be transformed

into another XML format that conforms to a different schema by means of an open

source implementation of the XSLT processor, e.g. Saxon-B, or Xalan. Such soft-

ware processors transform a source XML tree into an XML target tree. In this trans-

formation, the processing of each node of the source tree can be controlled by direc-

tives in an XSL stylesheet. For instance, in BGML, the type of a bond graph element

is an attribute of the XML element introduced for a class of bond graph elements,

e.g. elements that are not a junction and that are not modulated. In another XML

description of bond graph models, the type could be an XML element called BG-
elementType. To achieve such a conversion, an XSL stylesheet would contain the

lines

<xsl:output method="xml"
encoding="ISO-8859-1" indent="yes"/>
...

<BG-elementType>
<xsl:value-of select="@type"/>

</BG-elementType> .
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Due to different schemas, XML descriptions of a model may look quite differ-

ent and an XSL stylesheet controlling the conversion can be lengthy and complex.

However, there are tools that support a visual design of XSL stylesheets, e.g. in the

free Home Edition of Altova XMLSpy® package [3]. The corresponding code is

automatically generated.

Transformation from BGML into SIDOPS

In order to demonstrate the usefulness of an XML description of bond graph models

according to the introduced BGML schema as an exchange format and the feasibil-

ity of transformations, a prototype of a stand alone software processor has been

developed and implemented in Java [53] that can transform an XML description of

a bond graph model according to a first working BGML schema into the modelling

language SIDOPS (cf. Section 11.4). An implementation of a transformation from

BGML into SIDOPS is facilitated in the sense that the transformation does not need

to account for power bond orientations and causalities at power ports. The program

20-sim, when loading a SIDOPS description of a bond graph, automatically adds

this information. Moreover, 20-sim is able to automatically derive a set equations

from the bond graph.

Transformation into a Mathematical Script Language

Furthermore, a comprehensive BGML description of a bond graph model can serve

not only as an exchange format between different bond graph software, but can be

transformed so that software that is not designed to support bond graph modelling

can use the transformed information as well. For instance, the equations of a bond

graph model can be extracted from its BGML description and can be organised so

that the result can be an input into the open source mathematical software Scilab

[71]. In contrast to a transformation from BGML to SIDOPS, the transformation

from BGML into the mathematical input language of Scilab is a more challenging

task. While the constitutive relations of all elements are available in MathML, an

ordered set of equations for the overall model being the body of a Scilab function

has to be derived. Of course, for this task, information about orientations of bonds

and computational causalities at power ports is needed. One of the features of Scilab

useful for simulation is that it provides the most advanced mathematical solvers for

systems of Ordinary Differential Equations (ODEs) or differential-algebraic Equa-

tions (DAEs). Consequently, a transformation from BGML into Scilab mathematical

language could always produce a set of DAEs. For some details of both transforma-

tions see [11].

Transformation by Means of the Query Language XQuery

Another approach to a transformation of a BGML description into a target language

to be mentioned in this most likely incomplete list of options is based on the use of

the query language XQuery [87]. It has also been defined by the W3 Consortium
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and is supported by some software tools, e.g. the free Altova XMLSpy® Home

Edition. XQuery is a functional query language that uses expressions and strictly

uses types. It can conveniently retrieve information from an XML document. For a

depth-first search on the tree underlying an XML document, it uses XPATH. That is,

all descendants of a node are visited first. A node of this tree contains a component

of the XML document. XQuery can combine information from different sources

and restructure it in order to create a new result. To demonstrate the usefulness

of XQuery for the transformation of BGML descriptions of bond graph models, a

prototype of an XQuery script has been written that enables the transformation from

BGML into SIDOPS. Figure 11.63 depicts an outline of the SIDOPS description

of the hierarchical sample bond graph in Figure 11.58 generated by means of this

XQuery script.

As can be seen from the bond graph of Figure 11.58, the interface of submodel

SM2 has three ports, while the interface of SM1 has one. These ports are called

plugs in SIDOPS. Furthermore, an arrow => denotes an interconnection between

two power ports with a reference orientation indicated by the arrow head, while

an arrow -> denotes an interconnection between signal ports. Port P3 of submodel

SM2 and the port of monitor1 are signal ports.

11.7.8 XML Based Bond Graph Component Model Libraries

As mentioned in Section 11.7.6, a file may only contain the BGML description of

a submodel, which can be validated against the BGML schema. By consequence,

not only the exchange and reuse of submodels is supported, but also the building of

XML based Bond Graph component model libraries organised as an ordinary file

system (For comparison, in the 20-sim software environment, model libraries are

organised as directories of the Windows file system and models can be accessed by

a library browser). The XML description of a submodel chosen from an XML based

component model library can be added to the list of submodels of the calling com-
posed submodel either when the icon of the library submodel is picked and placed

onto the working space of the graphical editor, or when the composed submodel or

the overall model is saved to disk and its XML description is generated.

For illustration, Figure 11.64 shows an outline of the BGML description of a

constant hydraulic flow source library submodel, of which the bond graph is de-

picted in Figure 11.65. Note that the BGML description of a library submodel for

internal leakage has been copied into the description of the constant displacement

flow pump submodel. Both submodels can be kept in separate files being entities of

an XML Bond Graph component model library. They can be validated against the

BGML schema and can be passed for exchange and reuse. Finally, a librarian soft-

ware can be designed that can help model developers navigate through component

model features and find a file accordingly.



552 11 Automated Modelling

model 0 0
type Mainmodel
end;
implementation bg
submodels
Se 100 200
MONITOR1 300 200
SM2 200 200
plug p1 100 200 ;
plug p2 200 100 ;
plug p3 300 300 ;
One1 200 200
I1 300 200
R1 200 300
connections
p1 => One1\1
One1\2 => p2
One1\3 => I1\p
One1\4 => R1\p
end;
implementation_end;
SM1 200 100
plug p1 200 300 ;
Zero1 200 200
C1 100 200
R1 300 200
connections
p1 => Zero1\1
Zero1\2 => C1\p
Zero1\3 => R1\p
end;
implementation_end;
end;
connections
Se\p => SM2\p1
SM2\p2 => SM1\p1
SM2\p3 -> MONITOR1\input
end;
implementation_end;

Fig. 11.63 Outline of a SIDOPS description of the sample bond graph in Figure 11.58 generated

by an XQuery script
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<?xml version="1.0" encoding="UTF-8"?>

<submodel name="FlowPump" x-coord="200" y-coord="200"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="C:\BG-XML\BGmodels4-5.xsd">

<submodel-name>FlowPump</submodel-name>

<submodel-version/>

<submodel-author/>

<submodel-author-email/>

<submodel-description/>

<composed-submodel>

<ports>

<power-port name="outlet" orientation="out" causality="fixed flow out">

</power-port>

<signal-detector-port name="signal-in" orientation="in">

</signal-detector-port>

</ports>

<submodels>

<!-- resistor for internal leakage -->

<submodel name="Rleak">

<submodel-name/>

<submodel-version/>

<submodel-author/>

<submodel-author-email/>

<submodel-description/>

<flat-submodel type="R">

<ports>

<power-port name="p" orientation="in" causality="fixed flow out">

</power-port>

</ports>

<parameters/>

<initial-conditions/>

<variables/>

<equations/>

</flat-submodel>

</submodel>

</submodels>

<connections>

<signal id="1" dimension="1">

<from>signal-in</from>

<to>MSf1\in</to>

</signal>

<bond id="2" dimension="1">

<from>MSf1\p</from>

<to>ZERO1\p1</to>

</bond>

<bond id="2" dimension="1" flow="Q">

<from>ZERO1\p2</from>

<to>Rleak\p</to>

</bond>

<bond id="3" dimension="1" flow="Ql">

<from>ZERO1\p3</from>

<to>outlet</to>

</bond>

</connections>

</composed-submodel>

</submodel>

Fig. 11.64 Outline of a BGML description of a constant displacement flow pump library submodel
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11.8 Conclusion

In this chapter, we considered simulation languages at the algorithmic level, contem-

porary higher level model description languages and software packages with respect

to their support of bond graph based physical system modelling. The investigation

has revealed the following results.

It is one option to formulate equations derived from non-hierarchical causal bond

graphs in a simulation language based on the CSSL standard in order to have a gen-

eral purpose simulation program process the simulation model. For small models,

equations can be derived manually from the causal bond graph by following causal

paths and formulated directly in a CSSL. Bond graph preprocessors and some mod-

elling environments, e.g. MS1®, can perform this step automatically. The MACRO

feature of a descriptive CSSL and its ability to include procedures written in a pro-

gramming language can be used to capture the hierarchical and modular structure

of large models.

A major disadvantage of directly using a simulation language of CSSL type,

however, is that equations must be already causal. What the translator of a simu-

lation program essentially does is to sort the assignment statements into computa-

tional order. This limitation of CSSLs to causal equations hampers the development

of reusable submodels and their connection according to the physical structure of

an overall system. To that end, equations must be non-causal and some equations

in some submodels must be reformulated in order to meet requirements due to the

interconnection of submodels.

It is this disadvantage of CSSLs that has been overcome by object-oriented mod-

elling languages. These languages support the definition and non-causal description

of objects and their connection according to the way their corresponding real sys-

tem components are connected. Consequently, this approach requires that equations

are not only sorted into computational order, but are symbolically reformulated also

where necessary. The concepts of object-oriented modelling languages provide the

mechanisms that are needed for the reliable development of large hierarchical mod-
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ular models. In 1967, when the CSSL standard was defined, these mechanisms did

not yet exist.

The paradigm of object-oriented modelling has given rise to the introduction of

a number of new languages with similar features and has lead to the definition of

the unified object-oriented modelling language Modelica. This language aims to

support model reuse and exchange between (proprietary) modelling and simulation

packages.

The developers of the modelling and simulation environment SYMBOLS Shakti™

argue that the use of languages supporting non-causal modelling and consequently

the need for symbolic manipulation of equations is appropriate for linear compo-

nents or subsystems. In order to have nonlinear component models fit into causal

boundaries imposed by other submodels the component is connected to, the SYM-

BOLS Shakti™ developers grouped several causal versions of a submodel into an

object they call capsule and implemented a mechanism that transparently for the

user selects the proper version of a submodel according to the causal requirements

at the ports of a component model. Clearly, more complex component models stored

in libraries require capsules comprising a number of hidden causal submodel in-

stances.

While the model description language SIDOPS has been especially designed to

support bond graph based physical system modelling, Modelica could be used as

well, although the language has been developed with generalised networks in mind.

While engineers concerned with the design of a system prefer graphical model

representations over a textual description, the use of textual modelling languages

mainly serve

• as an internal description form in modelling and simulation environments,

• as an implementation form for models grouped in domain specific libraries that

come with a modelling and simulation software,

• as an excepted format for the exchange of models between proprietary modelling

and simulation tools.

As to the support of bond graph modelling at a graphical level, there are different

approaches. An obvious idea is to have a bond graph preprocessor with a graphical

user interface generate a textual description in a CSSL. An early implementation of

this approach has been the program CAMP-G®. It can automatically derive equa-

tions from a bond graph entered at a graphical level and output them in the simula-

tion language ACSL. A similar approach has been the development of bond graph

toolboxes for software packages supporting mathematics, e.g. Mathematica® and

MATLAB®. Finally, the idea of transforming a bond graph entered at a graphical

level into the textual input of a target software tool has been extended by Gawthrop.

By considering a bond graph of a model as a core representation from which others

can be derived, he provided an open set of model transformation tools.

The advantage of these approaches is that powerful features of different ex-

isting software packages can be used for bond graph modelling. For instance,

Mathematica® or the Symbolic Math Toolbox™ of MATLAB® can be used for set-

ting up transfer functions in symbolic form. To that end, a bond graph preprocessor
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or a toolbox requires a proper software interface. Depending on the design of the

user interface, the access to other tools can be transparent for the bond graph model

developer as it is, for instance, in MS1®.

An attractive alternative to the use of a set of different (proprietary) software

tools are today’s integrated modelling and simulation software environments. They

cover hierarchical, non-causal, multi-domain modelling in a comprehensive man-

ner, they support multi-formalism including multibond graphs and allow the user

to easily switch between graphical model entry, model processing, simulation ex-

periments and model modification. Users of these software environments have to

be concerned with non-causal equations only if they want to define a new build-

ing block to be added to a model library. Generation of the simulation code uses

formula manipulation where necessary. Nonlinear algebraic relations are solved nu-

merically. In 20-sim®, the development of models at the equation level is supported

by the modelling language SIDOPS. Some of the most advanced up-to-date mod-

elling and simulation environments have been considered in this chapter.

As a disadvantage, one might consider that users are confined to the capabilities

an integrated software environment offers. For instance, in general, it is not possi-

ble to add a new advanced integration method from a mathematical library. On the

other hand, most present integrated modelling and simulation environments offer a

number of interfaces to other vendor’s software packages, e.g. to MATLAB®.

Beyond the graphical entry and modification of bond graph models, some soft-

ware packages support modelling at a conceptual level. To that end, the software

MAX, developed in a research framework, provides a bidirectional transformation

between schematic representations using domain specific icons and bond graphs.

Once a model has been designed at a conceptual level, the design engineer can nav-

igate through a model library to find submodel implementations that meet given

specifications.

With regard to simulation run times, it is advisable to start with submodels of

reasonably low complexity and to account for further properties in some submod-

els if suggested by simulation results. The modelling software CAMBAS attempts

an algorithmic solution to the synthesis problem. It uses model order reduction al-

gorithms to determine for each component a model of minimal complexity among

available models of a component such that all natural frequencies of the system are

within a specified frequency range. While advanced (commercial) software for hi-

erarchical modelling and multiple description formalisms along with libraries have

become state-of-the-art, it appears that software aimed at the support of the early

stages of the modelling process have been more a subject of research projects. Some

results of these projects have been briefly addressed in this chapter.
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Chapter 12
Applications

The previous chapters demonstrate the capabilities of the bond graph methodol-

ogy in tackling various basic engineering problems and how various software pro-

grammes support this methodology. In this chapter, application of the methodol-

ogy in various engineering fields is illustrated by considering a number of small

case studies. Some of these examples have been analysed elsewhere in the literature

without making use of bond graphs. Bond graph models of further examples can be

found in text books on bond graph modelling published in various languages and in

many research papers. As to text books, readers are referred to, e.g. [13, 17, 21, 29],

just to mention a few. In most of the following case studies, the integrated mod-

elling and simulation environment 20-sim®[7], version 3.2, has been used. The

open source mathematical software package Scilab [26] and the root finding ver-

sion LSODAR of the ODE solver LSODA [14, 23] as part of Scilab has been used

for the example of a clutch (Section 12.6) and for the example of a quarter vehicle

(Section 12.7).

12.1 Inverted Pendulum

In feedback control of engineering systems, the inverted pendulum is often chosen

as an example in order to show how a controller can be designed for stabilising

an inherently unstable system. The equations of motion are usually set up directly

by considering forces and moments in a free body diagram. In [13], Gawthrop and

Smith gave a library model for the planar motion of a rigid rod and adapted it to

the case of a simple inverted pendulum hinged to a cart. In [29], Vergé and Jaume

applied the general multibond graph approach to modelling rigid multibody sys-

tems. In this section, it is shown how easily a bond graph model can be developed

by graphically representing velocity constraints derived from geometric constraints.

From the completed bond graph with all I energy storage elements in derivative

causality, equations of motion are derived in the form of Lagrange equations of the

second kind.
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Fig. 12.1 Schematic of an inverted pendulum

Development of a Bond Graph Model

Figure 12.1 shows a schematic of the inverted pendulum with a uniform rigid rod

of length 2l, mass m, moment of inertia J about its centre of mass hinged to a rigid

cart of mass M . The cart is pushed by a force F (t).
The schematic provides the following two geometric relations.

x = x1 + l cos ϕ (12.1a)

y = l sin ϕ (12.1b)

Differentiation with respect to time gives

ẋ = ẋ1 − lϕ̇ sin ϕ = (−l sin ϕ)ϕ̇ + ẋ1 (12.2a)

ẏ = lϕ̇ cos ϕ = (l cos ϕ)ϕ̇ . (12.2b)

The velocity constrains 12.2a–12.2b can be represented by the bond graph of Fig-

ure 12.2.

A bond graph of the inverted pendulum is obtained by simply adding effort

sources, I elements and the resistor R : b representing friction between the wheels

of the cart and the ground. For simplicity, a linear friction characteristic is assumed.

The completed bond graph is depicted in Figure 12.3.

Note that derivative causality has been assigned to all I elements. The two flow

sources with a vanishing effort into the source are artificial flow sources introduced

by Karnopp [16]. They resolve the causal conflicts at the 1-junctions they are at-

tached to and indicate the generalised coordinates x1 and ϕ (cf. Section 4.10).
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ẏ
�� I : m

Se : −mg

��

�
�
��





�� MTF

−l sin ϕ
..

�� 0 �� 1

ẋ

�� I : m

��

1

ẋ1
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Deriving Lagrange Equations from the Bond Graph

Clearly, the system has two degrees of freedoms. Summing up all moments at the

left 1-junction representing ϕ̇ gives one of the two Lagrange equations of the second

kind.

0 = Jϕ̈ + l cos ϕ (mÿ + mg) + (−l sin ϕ) mẍ

= Jϕ̈ + ml2 cos ϕ (ϕ̈ cos ϕ − ϕ̇2 sin ϕ) + mgl cos ϕ

− ml sin ϕ [ẍ1 − l(ϕ̈ sin ϕ + ϕ̈2 cos ϕ)]
= (J + ml2)ϕ̈ − ml ẍ1 sin ϕ + mgl cos ϕ (12.3)

Summation of all forces at the 1-junction representing ẋ1 gives the Lagrange equa-

tion for the second degree of freedom.

0 = F (t) − Mẍ1 − m ẍ − b ẋ1

= F (t) − Mẍ1 − m [ẍ1 − (ϕ̈ sin ϕ + ϕ̇2 cos ϕ)] − b ẋ1

F (t) − b ẋ1 = (M + m) ẍ1 − ml ϕ̈ sin ϕ − ml ϕ̇2 cos ϕ (12.4)

Deriving Equations of Motion from the Lagrangian

For comparison, the equations of motion 12.3–12.4 shall be deduced also from the

Lagrangian of the inverted pendulum. As the system has two degrees of freedom,

the following equations are to be formed

d

dt

(
∂L

∂ẋ1

)
− ∂L

∂x1
= F (t) − b ẋ1 (12.5a)

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
= 0 , (12.5b)

where L := T−V is the difference of the kinetic energy, T , and the potential energy

V .

The kinetic energy is

T =
1
2
M ẋ2

1 +
1
2
m [(ẋ1 − lϕ̇ sin ϕ)2 + ( lϕ̇ cos ϕ)2] +

1
2
J ϕ̇2

=
1
2
(M + m) ẋ2

1 +
1
2
m (−2l ẋ1ϕ̇ sin ϕ + l2 ϕ̇2) +

1
2
J ϕ̇2 . (12.6)

The potential energy is

V = −mgl sin ϕ . (12.7)

Hence,

d

dt

(
∂L

∂ẋ1

)
=

d

dt
[(M + m) ẋ1 − ml ϕ̇ sin ϕ]

= (M + m) ẍ1 − ml(ϕ̈ sin ϕ + ϕ̇2 cos ϕ) (12.8)
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and
∂L

∂x1
= 0 . (12.9)

Substitution of Equations 12.8 and 12.9 into Equation 12.5a gives Equation 12.4.

Furthermore,

d

dt

(
∂L

∂ϕ̇

)
=

d

dt
[−mgl ẋ1 sin ϕ + ml2 ϕ̇ + J ϕ̇]

= (J + ml2) ϕ̈ − ml(ẍ1 sin ϕ + ẋ1 ϕ̇ cos ϕ) (12.10)

and
∂L

∂ϕ
= −ml ẋ1 ϕ̇ cos ϕ − mgl cos ϕ . (12.11)

Finally, substitution of Equations 12.10 and 12.11 into Equation 12.5b gives Equa-

tion 12.3.

Transfer Function of the Inverted Pendulum

Now, let ϕ := π/2 + φ. For small φ, viz. small deviations from the vertical position

of the rod, the equations of motion 12.3–12.4 can be linearised.

(J + ml2) φ̈ − ml ẍ1 − mgl φ = 0 (12.12a)

(M + m) ẍ1 − ml φ̈ = F (t) − b ẋ1 (12.12b)

Laplace transform of the linearised equations of motions gives the transfer function

L φ

L F
=

mls2

(M̃J̃ − m2l2)s4 + bJ̃s3 − mglM̃s2 − bmgls
, (12.13)

where M̃ := M + m and J̃ := J + ml2.

As can be seen from the transfer function of Equation 12.13, there is a pole-zero

cancellation at the origin. Furthermore, if the parameter values of Table 12.1 [12]

are used, the transfer function has one positive real pole, p1 = 5.087, in the right-

half of the s-plane. This is in agreement with the fact that the open-loop system is

unstable. Figure 12.4 shows a root locus plot and Figure 12.5 depicts a Nyquist plot

of the uncontrolled cart-pendulum system.

Table 12.1 Parameters of the inverted pendulum

Parameter Value Units Meaning

M 0.7429 kg Cart mass

m 0.21 kg Mass of the rigid rod

2l 0.61 m Pendulum length

b 7.19 Ns/m Friction between cart wheels and ground
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Fig. 12.4 Root locus plot of the uncontrolled cart-pendulum system

If G(s) denotes the open-loop transfer function and H(s) the transfer function

of the feedback component then according to the Nyquist stability criterion, H(s)
has to be designed so that the Nyquist plot of G(s)H(s) has one anti-clockwise

encirclement of the point −1 + j 0. As a result, the number of unstable closed-loop

poles is zero. As the purpose of this section has been the development of a bond

graph model of the inverted pendulum and the derivation of Lagrange equations

of motion from the bond graph, the design of a controller for stabilisation of the

unstable inverted pendulum is not considered. The control of the unstable inverted

pendulum example has been addressed, for instance, in the textbook of F. Brown

[3] (Guided Problem 8.2) and in the online tutorials authored by B. Messner and

D. Tilbury [19].

12.2 Shunt Motor

In Chapter 11, a bond graph model of a shunt motor has been used as a reference

example for illustration of various aspects. In this section, a small simulation study

is carried out to determine the motor’s dynamic response to a sudden increase of the

load torque. For convenience, the schematic and the bond graph model are repro-

duced from Chapter 11 (Figures 12.6 and 12.7).
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Fig. 12.5 Nyquist plot of the uncontrolled cart-pendulum system
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Fig. 12.6 Schematic of a shunt motor

From the causal bond graph in Figure 12.7, the following equations can be de-

rived.

if =
1

Rf
E (12.14a)

uR = Ra × ia (12.14b)

MR = Rm × ω (12.14c)

Ψ = K × if (12.14d)

ua = Ψ × ω (12.14e)

M = Ψ × ia (12.14f)
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Fig. 12.7 Bond graph model of a shunt motor

dia
dt

=
1
La

(E − ua − uR) (12.14g)

dω

dt
=

1
Jm

(M − MR + Mload) (12.14h)

For the simulation study, it is assumed that the motor is driven by a constant voltage

source. Its value is E = 220V . First, the motor’s idling performance is analysed.

Then, after 2.5 s, the motor is subjected to an immediate jump of the load torque

to a constant value of 100 Nm. The parameters used for the simulation are listed in

Table 12.2.

Table 12.2 Parameters of the simulation study

Parameter Value Units Meaning

E 220 V Voltage supply

Rf 5.495 Ω Resistance of the field winding

Ra 0.875 Ω Resistance of the armature winding

Rm 0.066 Nms Friction coefficient

K 0.0307 V s/A Ψ = K × if
La 0.175 H Self-inductance of the armature winding

Jm 0.8 Nms2 Moment of inertia of the flywheel

Mload 100 Nm Load torque effective for t ≥ 2.5 s
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Fig. 12.8 Time evolution of the shaft velocity and the armature current

Simulation Results

Figure 12.8 shows the time evolution of the angular velocity, ω, of the motor shaft

and of the current, ia, through the armature winding. After switching on the voltage

supply of the motor, the angular velocity rises and approches a steady idle speed

value. During the rise time of the angular velocity, the current consumption reaches

a maximum value and peaks off to low values when the angular velocity is around

its steady state value.

Some algebra on the dynamic equations results in the following formulae for the

steady state values i0a and ω0.

i0a =
Rf

K E
Rm ω0 (12.15a)

E =
(

K E

Rf
+ Ra

Rf

K E
Rm

)
ω0 (12.15b)

With the parameters from Table 12.2, i0a and ω0 take the numerical values
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i0a = 9.257 A (12.16a)

ω0 = 172.4 1/s , (12.16b)

which verifies the values obtained by simulation.

When the constant load torque becomes effective at t = 2.5 s, then the angular

velocity drops and the current consumption rise to new steady state values, as to be

expected.

12.3 A Machine with an Unbalanced Rotor

An unbalanced mass has a feedback on the motor of a shaft-driven machine and can

cause unwanted vibrations and noise of a machine mounted on springs. A motor

mounted on springs as sketched in Figure 12.9 has been analysed by Christ in his

dissertation in as early as 1966 [6].

As the differential equations are nonlinear, Hoffmann has chosen this example

for a MATLAB®/Simulink® simulation that starts from given differential equations

[15]. Such a spring mounted vertically moving machine is also briefly considered in

the textbook by Brown ([3], Example 6.8), where a very simple bond graph is given.

Development of a Bond Graph Model

Similar to the case of the previous example of an inverted pendulum, in this section,

the development of a bond graph model starts from considering the position of the

unbalanced mass. Differentiation of its coordinates in a global frame with respect

to time, again, provides velocity constraints that can be represented in a bond graph

fragment. This bond graph for the kinematic constraints can be easily extended into

a full dynamic model from which the equations of motion can be derived.

In a global frame, the position of the unbalanced mass, m2, has the coordinates

�
ẏ1m1

m2 �
+

�
�

�
�
�

	�����̇ϕ
--,,--,,--,,

k/2
b --,,--,,--,,

k/2



















































Fig. 12.9 Schematic of a machine with an unbalanced rotor
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x2 = 0 + e sin ϕ (12.3a)

y2 = y1 + e cos ϕ . (12.3b)

Differentiation with respect to time gives the velocity constraints

ẋ2 = (e cos ϕ) ϕ̇ (12.4a)

ẏ2 = ẏ1 + (−e sin ϕ) ϕ̇ . (12.4b)

As for the rod of the inverted pendulum, the velocity constrains 12.4a–12.4b can be

represented by the bond graph of Figure 12.10.

The bond graph fragment of Figure 12.10 is extended into a dynamic model of

the machine by adding inertia elements to the 1-junctions, a C and an R element for

the spring-damper pair and effort sources accounting for gravitational forces. Fig-

ure12.11 shows the resulting bond graph. The machine is driven by a DC motor with

constant excitation providing a torque Mm. A bond graph of the motor is depicted

in Figure 12.12.

Derivation of Model Equations from the Bond Graph

Summation of all forces at the 1-junction representing ẏ1 gives

m1 ÿ1 = −m1g − b ẏ1 − ky1 − (m2g + m2 ÿ2)
m1 ÿ1 + b ẏ1 + ky1 = −m2 ÿ2 − (m1 + m2)g . (12.5)

1 ϕ̇






 �� MTF
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..

�� 0 �� 1

ẏ2

�
�
� �� MTF

e cos ϕ
..

�� 0 �� 1

ẋ2��

1

ẋ1

Sf0 : ��

��

1 ẏ1

Fig. 12.10 Bond graph representation of the velocity constraints 12.4a–12.4b
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ẋ2��

1

ẋ1
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Fig. 12.12 Bond graph of the DC motor driving the machine with an unbalanced mass
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The sum of flows at the upper 0-junction reads

ẏ2 = (−e sin ϕ) ϕ̇ + ẏ1 . (12.6)

The derivative causality of the I element attached to the 1-junction of ẏ2 requires

differentiation of Equation 12.6. Substitution of the result into Equation 12.5 yields

the equation for the vertical motion of the machine.

(m1 + m2) ÿ1 + bẏ1 + ky1 = m2e(ϕ2 cos ϕ + ϕ̈ sin ϕ) −
(m1 + m2)g (12.7)

If the system is at rest, then the initial position is

y10 = − (m1 + m2)g
k

. (12.8)

If there is no unbalance with eccentricity e, then natural frequency of the undamped

oscillation is

ω0 =
√

k

m1 + m2
. (12.9)

The unbalanced mass m2with the eccentricity e causes the vertical excitation force

Fe = m2e(ϕ2 cos ϕ + ϕ̈ sin ϕ) . (12.10)

Summation of all moments at the 1-junction representing ϕ̇ yields

Mm = J ϕ̈ + rϕ̇ + (−e sin ϕ)(m2 ÿ2 + m2g) +
(e cos ϕ)m2 ẍ2 . (12.11)

Again, summation of all flows at the 0-junctions yields ẏ2 and ẋ2. Derivative causal-

ity at both right-hand side I elements of mass m2 requires differentiation with re-

spect to time. After substitution of these time derivatives, the balance of moments

reads

Mm = (J + m2 e2) ϕ̈ + r ϕ̇ − m2 e ( ÿ1 + g) sin ϕ . (12.12)

From the bond graph of the DC motor in Figure 12.12, the following two equations

are derived.

Mm = kT ia (12.13a)

E = La
dia
dt

+ R ia + kT ϕ̇ (12.13b)
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Table 12.3 Parameters of the machine with an unbalanced mass

Parameter Value Units Meaning

m1 80 kg Mass of the bed and the rotor

m2 20 kg Unbalanced mass

k 1600 N/m Spring stiffness

b 4 Ns/m Friction coefficient for translational motion

r 100 Nms Friction coefficient for rotation

J 9.8 Nms2 Moment of inertia

e 0.1 m Eccentricity of m2
La 1.0 H Inductance of the armature winding

Ra 0.1 Ω Resistance of the armature winding

kT 50 Nm/A Torque constant of the motor

E 100 V Voltage applied to the motor

Simulation of the Machine with an Unbalanced Rotor

For simulation, the parameter values in Table 12.3 [15] have been used. If there is

no eccentricity, then the rotor speed in steady state, ωm, is

ωm = E/(Ra
r

kT
+ kT ) . (12.14)

With the given parameter values, the angular velocity takes the value ωm =
1.992 rad/s. The vertical vibration due to the unbalanced mass causes the angular

velocity of the motor to oscillate around this mean value, as Figure 12.13 shows.

Furthermore, in case there is no eccentricity, the torque provided by the motor in

steady state is

Mm = r × ωm . (12.15)

This steady state value is Mm = 199.2 Nm. As ωm oscillates around a mean value,

so does the motor torque due to the vibration of the spring-mass system caused by

the unbalanced mass m2 (cf. Figure 12.14). Figure 12.15 shows the time evolution

of the vertical oscillation, y1, of the bed due to the unbalance.

Frequency Analysis of the Machine with an Unbalanced Rotor

A FFT of the time evolution of y1 (cf. Figure 12.16) reveals that the vertical exci-

tation force at mean angular frequency, ωm = 1.992 rad/s, stimulates the resonant

frequency, ω0 = 4 rad/s of the undamped spring-mass system, which is undesired.

If y1 is replaced by y1 + y10 in Equation 12.7, then, by observing the expression

for the excitation force Fe, Equation 12.10, the Laplace transform of Equation 12.7

gives

L y1

L Fe
=

1
(m1 + m2) s2 + bs + k

(12.16)
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Fig. 12.13 Angular velocity of the motor

in case of a constant excitation frequency ϕ̇ = ωm = const.
Given the parameter values of Table 12.3, Figure 12.17 depicts the Bode plot of

the transfer function of Equation 12.16. As can been seen, for excitation frequen-

cies well above the natural frequency of the spring-mass system, the amplitude of

the vertical oscillation rapidly decreases and the phase takes the constant value of

−180o degrees due to the system’s inertia.

Reducing the value of the stiffness k of the spring supporting the bed from

1600 N/m to 160 N/m results in a natural frequency, ω0 = 1.25 rad/s of the

undamped spring-mass system that is below the mean excitation frequency of the

motor. Figure 12.18 shows the oscillation of the bed in case of a reduced spring

stiffness. A FFT of the time evolution of y1 shows that in steady state, the frequency

of the vertical oscillation adapts to the excitation frequency (cf. Figure 12.19).

12.4 An Electronic Balance with Displacement Compensation

Figure 12.20 depicts a conceptual schematic of an electronic balance with displace-

ment compensation. If there is no load on the weighing scale, then the gravitational
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Fig. 12.14 Feedback of the unbalance on the motor torque

force of the scale pan and the spring force will be in equilibrium, defining the set

point of the weighing scale’s displacement set point y = 0. No voltage, E, is ap-

plied to the plunger coil and no current is flowing through the coil. Now, a load,

m, causes a deviation from this set point. A current through the plunger coil causes

an electromagnetic force that lifts the scale pan back into its initial position. The

current needed to generate the electromagnetic force for compensation of the scale

pan’s displacement or the voltage applied to the coil can serve as a measure of the

load. The electromechanical energy conversion in the coil can be represented by a

gyrator.

Development of a Bond Graph Model

Construction of a bond graph model inspired by the topology of the schematic in

Figure 12.20 is straightforward. Figure 12.21 shows the result. The lower 1-junction

represents the current through the plunger coil. The attached R and I element ac-

count for its resistance and self-inductance. The upper 1-junction represents the ve-

locity of load and scale pan against a spring and a damper force of the suspension.

Finally, the Se source accounts for the gravitational force of the total mechanical

load.
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Fig. 12.15 Vertical oscillation y1 of the bed due to the unbalance

The velocity of the load is sensed and integrated. The deviation from the set point

is input into a controller. The output signal of the controller is fed into an amplifier

with saturation. The amplifier’s output is a voltage that is applied to the coil.

The sum of all efforts at the upper 1-junction yields the equation of motion for

the mechanical part of the scale with respect to the equilibrium position.

− mg + T i = (m + mb)ÿ + rẏ + k y (12.17)

The sum of all efforts at the lower 1-junction results in an equation for the dynamic

behaviour of the electrical part.

E(t) = L
di

dt
+ Ri + T ẏ (12.18)

The rules for assigning half arrows to the bonds of a bond graph help to ensure

that signs in the model equations derived from the bond graph are consistent. This

consistency is not automatically ensured if a free body diagram is used for the me-

chanical part of an electromechanical system and a conventional network for the

electrical part. If a load m is put on the scale at some time, t, then, in steady state,

the voltage
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Fig. 12.16 Power spectral density of the vertical oscillation y1

Es = R
mg

T
(12.19)

is needed to generate an electromagnetic force that compensates for the scale pan’s

displacement,

ys = −mg

k
. (12.20)

In order to achieve a compensation of the scale’s displacement, a PID controller is

chosen.

Finally, putting a load on the scale at some time means that the mass of the

scale pan is instantaneously increased. However, a rigid body with a time varying

mass cannot be represented by a bond graph I element. That is, the I element in

Figure 12.21 has to be replaced by a functional block implementing an equation of

the form

p.f = int(p.e) / ( mb + m * step(tstart)) . (12.21)

In this equation, p.f and p.e denote the effort and flow variables of port p. The

effort is integrated by the function int and the function step produces a unity step

at time tstart. The mass of the scale pan is mb which is increased by the mass m
of the load.
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Fig. 12.17 Bode plot of the vertical oscillation case of a constant excitation frequency

Simulation of the Electronic Balance with Displacement Compensation

For simulation of the dynamic behaviour, the parameters given in Table 12.4 have

been used [25].

The transfer function of the PID controller is used in the form

U(s) = K

⎡⎢⎣1 +
1

Ti s
+

Td s

1 +
Td

N
s

⎤⎥⎦ E(s) , (12.22)

Table 12.4 Parameters of the controlled balance

Parameter Value Units Meaning

R 1 Ω Resistance of the coil

L 20 mH Self-inductance of the coil

T 5 Vs Transductance of the coil

k 1500 N/m Stiffness of the spring

r 8.5 Ns/m Damping coefficient

mb 0.03 kg Mass of the scale pan

m 0.05 kg Mass of the load
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Fig. 12.18 Vertical oscillation y1 of the bed in case of reduced spring stiffness

where s ∈ C. In Equation 12.22, E and U denote the Laplace transforms of input

and output. As can be seen, the derivative part is approximated. Table 12.5 lists the

controller parameters.

Given the parameters in Table 12.4, the steady state value of the voltage needed

to compensate the scale’s displacement according to Equation 12.19 is

Es = 1 × 0.05 × 9.81
5

= 98.1 mV . (12.23)

If this voltage is not applied to the coil, then the load of m = 0.05 kg would cause

a displacement of

Table 12.5 Parameters of the PID controller

Parameter Value Units Meaning

K 400 Proportional gain

Ti 0.05 s Integral time constant

Td 0.01 s Derivative time constant

N 20 Derivative gain limitation
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Fig. 12.19 Power spectral density of the vertical oscillation y1 in case of reduced spring stiffness

ys = −0.05 × 9.81
1500

= 0.33 mm (12.24)

according to Equation 12.20.

Figure 12.22 shows the time evolution of the current and the scale’s displacement

due to an instantaneous increase of the load from 0 to 0.05 kg at t = 0.2 s. As can

be seen from Figure 12.22, the displacement, in fact, is compensated within about

0.4 s. When the mechanical load jumps from 0.03 kg to 0.08 kg at t = 0.2 s, then

the current just starts from 0 A. and the scale pan is lowered by about 0.2 mm. When

this displacement is reduced to zero at about t = 0.6 s, the current actually reaches

the value of 98.1 mA, which is necessary for generating the electromagnetic force

that compensates the gravitational force of the load.

As an instantaneous increase in the load does not only mean a disturbance of

the gravitational load force but also the movement of a heavier body, the dynamic

behaviour during compensation is different for different loads with respect to fre-

quency and damping. Figure 12.23 depicts the time evolution of the displacement

and the current in the coil for a four times heavier load.
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Fig. 12.20 Conceptual schematic of an electronic balance with displacement compensation (cf.

[15])

12.5 A Piezoelectric Seismometer

This section addresses the bond graph modelling of a piezoelectric transducer and its

use in a seismometer. A piezoelectric crystal can be considered an electromechanical

transducer that mechanically behaves like a spring and electrically like a capacitor,

and both effects are coupled. That is, a force imposed on the crystal produces results

in a (small) voltage drop across the device and vice versa. Piezoelectric crystals

are used, e.g. for sensing vibrations, for converting pressures into voltages, or as

actuators in hydraulic control valves.

Bond Graph Model of the Piezoelectric Crystal

In the following, a one-dimensional model is considered. That is, it is assumed that

mechanical stress or strain is applied in only one direction and the electric field lines

are perpendicular to the parallel conductive surfaces of cross-sectional area A. Let

x0 denote the distance of these surfaces for the unbiased crystal. Let S denote the

mechanical strain, Δx = x0S, the relative displacement of the parallel conductive

surfaces, σ, the tensile stress, F = Aσ, the associated force, Em, the mechanical

modulus of elasticity, E, the electric field strength, up = x0E, the applied voltage,

D the electric displacement, ε, the dielectric constant and dε, the piezoelectric cou-

pling. The constitutive relations of a piezoelectric crystal are assumed to be linear.
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Fig. 12.21 Bond graph model of the electronic balance with displacement compensation

A commonly known form is[
S
D

]
=

[
1/Em dε

dε ε

] [
σ
E

]
. (12.25)

Given the introduced quantities, the constitutive relations can be rewritten as[
Δx
q

]
=

[
1/kp dε

dε Cp

] [
F
up

]
, (12.26)

where kp = EA/x0 denotes the mechanical stiffness of the piezoelectric crystal

and Cp = εA/x0, its electrical capacitance.
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Fig. 12.22 Time evolution of the displacement and the current due to a load added at t = 0.2s

If Equation 12.26 is solved for the vector [F up]t, then the result can be read

as the constitutive relation of a linear energy conservative 2-port C field in integral

causality (cf. Figure 12.24). The linear 2-port C field can be decomposed as depicted

in Figure 12.25, where Δ := cp/kp − d2
ε.

Bond Graph Model of the Piezoelectric Seismometer

In the following, the bond graph of Figure 12.25 is used in the development of a

model of a piezoelectric seismometer as sketched in Figure 12.26.

The casing of the piezoelectric seismometer is placed on the ground, or, e.g., on

a surface of a machine where vibrations u̇(t) are to be sensed. Inside the case, a

piezoelectric crystal is attached to the case. A seismic mass, m, on top of the crystal

is fixed to the case by a spring of stiffness k. The piezoelectric crystal reacts to the

relative motion, ẏr := ẏ − u̇, between the case and the seismic mass. It produces a

small current that is fed into an amplifier to be modelled in a third step.
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Fig. 12.23 Time evolution of the displacement and the current due to a four times heavier load

added at t = 0.2s
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Fig. 12.26 Piezoelectric seismometer

The bond graph modelling of the seismometer is straightforward. The result is

depicted in Figure 12.27. Displacements are relative to the position where gravita-

tional force of the seismic load and the spring force of the crystal are in equilibrium.

From the bond graph of Figure 12.27, the following equation of motion is derived

for the mechanical part of the piezoelectric sensor.

mÿr + rẏr + (k + kp)yr = −mü − dεkpup (12.27)
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Fig. 12.27 Bond graph of the piezoelectric seismometer
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Bond Graph Model of a Charge Amplifier

The current q̇, generated by the piezoelectric crystal, is fed into a charge amplifier of

which a circuit diagram is shown in Figure 12.28. Figure 12.29 shows a bond graph

of the charge amplifier.

� �
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Fig. 12.28 Charge amplifier
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Fig. 12.29 Bond graph of the charge amplifier in Figure 12.28
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From the bond graph of Figure 12.29, a relation between the voltage ua at the

amplifier’s output and the current i = −q̇ into the charge amplifier can be derived.

C(1 +
1
A

)u̇a +
1
R

(1 +
1
A

)ua = q̇ (12.28)

For A � 1, Equation 12.28 reduces to

RCu̇a + ua = Rq̇ . (12.29)

Furthermore, the constitutive equation of the modulated voltage source in the bond

graph of the amplifier (Figure 12.29) is

ua = (−A)(uC + ua) . (12.30)

Hence, as up = uC + ua (cf. Figure 12.27), a high value of the amplification, A,

entails a small voltage, up, across the electrical terminals of the piezoelectric crystal.

up = ua + uC = − 1
A

ua ≈ 0 (12.31)

Consequently,

− q̇ = (−dεkp)(−ẏr) (12.32)

and

mÿr + rẏr + (k + kp︸ ︷︷ ︸
k

)yr = −mü . (12.33)

Frequency Analysis of the Piezoelectric Seismometer-Amplifier System

Combining the Laplace transforms of Equations 12.29, 12.31, and 12.33 yields the

transfer function

L ua

L ü
=

−m

k
m

k︸︷︷︸
1/ω2

0

s2 +
r

k︸︷︷︸
2ζ/ω0

s + 1
(− dεkp︸︷︷︸

T

)
Rs

RC︸︷︷︸
τ

s + 1

=

TR

ω2
0

s[(
s

ω0

)2

+
(

2ζ

ω0

)
s + 1

]
[τs + 1]

. (12.34)

For a Bode plot of the transfer function (Equation 12.34), the parameters in

Table 12.6 have been used (cf. [15]). The frequency domain behaviour of the

seismometer-amplifier system is shown in Figure 12.30.
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Table 12.6 Parameters of the seismometer-amplifier system

Parameter Value Units Meaning

f0 104 1/s ω0 = 2πf0 : eigenfrequency of the undamped seismometer

T 108 As/m T = dεkp : Transduction coefficient of the piezoelectric

crystal

ζ 0.5 Damping coefficient of the seismometer

R 1 Ω Resistance (cf. Figure 12.28)

τ 5 s τ = R × C : Time constant of the amplifier
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Seismometer-amplifier system: Bode plot

Fig. 12.30 Bode plot of the seismometer-amplifier system

As can be seen from Figure 12.30, the system can sense accelerations of the

ground almost up to the eigenfrequency, f0, of the undamped seismometer. The low

frequency behaviour of the system is limited by the high pass filter characteristic of

the charge amplifier and its corner frequency ωc = 0.2 1/s.

12.6 Engagement of a Clutch

In Chapter 7, some approaches to a bond graph representation of variable structure

models have been discussed. If one wants to keep the structure of the bond graph

and the computational causality invariant for all system modes, then one option is
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J1 J2

M1
ω1

M2
ω2

�Fc
� Fc

Fig. 12.31 Schematic of a clutch

to use sinks of fixed causality. At the advent of a discrete event, they impose an

effort or a flow such that there is an instantaneous state transition and the new state

conditions are met (cf. Section 7.1.4). In the following, this approach is used to

model the engagement of a clutch. Another option is to model the clutch by an ideal

switch of variable causality as has been done by Buisson in [4] (cf. also Section 7.2).

In [25], this example has been used for a MATLAB®/Simulink®simulation.

Figure 12.31 shows a schematic of the clutch. Clearly, as long as the clutch is

disengaged, the two disks rotate with their own angular velocity. When they get into

contact, the two of them encounter a friction moment MR. This friction moment

reduces the angular velocity, ω1, on the drive side and simultaneously accelerates

the power-takeoff side against a possible load moment M2. If the value of the contact

force, Fc, is high enough, then the angular velocities of the disks will converge. At

one point in time, they stick together and will continue to rotate as one single body

with one and the same angular velocity ω. That is, there are two system modes.

Bond Graph Model of the Clutch

The approach in Section 7.1.4 leads to the bond graph in Figure 12.32.

MSe






�

��
M
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1 − b..

�� 1 �� MTF

b..
��

MR
Se

��

MSe ��
M1

1 �� 0 �� 1 ��
M2

MSe

��
ω1

I : J1

��
ω2

I : J2

Fig. 12.32 Bond graph of the clutch with invariant structure and invariant computational causality
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In the bond graph of Figure 12.32, M1 and M2 denote the moment on the drive

side and the load moment on the power-takeoff side respectively. According to Sec-

tion 7.1.2, switches have been modelled by modulated transformers. As long as

there is a difference between the two angular velocities on the drive side and on

the power-takeoff side, the modulus b equals 1 and both rotating disks encounter a

friction moment, MR, proportional to the contact force Fc. As in [25], it is assumed

that the initial angular velocity of the engine is ω10 = 200 rad/s, while the trans-

mission side starts from ω20 = 0 rad/sec. When the increasing angular velocity ω2

equals ω1, then the two disks stick together and the modulus b of the right-hand side

MTF is set to zero. Consequently, the upper left part of the bond graph becomes

active. It provides a moment M that ensures that the two disks stick together and

rotate with one and the same angular velocity ω. Note that in both system modes,

the two inertia elements are invariantly in integral causality. However, when the two

disks rotate with a common angular velocity, the set of equations is a DAE system

as there is no differential equation for the moment, M , ensuring that the angular

velocity difference remains zero.

Simulation of the Clutch Behaviour

Given the parameter values in Table 12.7 [25], simulation (by means of Scilab)

yields the time evolution of the angular velocities depicted in Figure 12.33.

Analytical Evaluation of the Clutch Model

Due to the simplifying assumptions, the problem can also be analytically solved.

Hence, essential values obtained by simulation can be checked. For ω2 < ω1 (b =
1), the following two equations for the inertia elements are easily derived from the

bond graph.

ω̇1 =
1
J1

(M1 − MR) (12.35a)

ω̇2 =
1
J2

(MR − M2) (12.35b)

Table 12.7 Parameter values used for simulation of the clutch engagement

Parameter Value Units Meaning

M1 200 Nm Driving torque

M2 0 Nm Load moment

J1 1 kgm2 Moment of inertia on the drive side

J2 5 kgm2 Moment of inertia on the power-takeoff side

Fc 5000 N Contact force

k 0.38 m MR = k × Fc

ω1(0) 200 rad/s Initial angular velocity on the drive side

ω2(0) 0 rad/s Initial angular velocity on the transmission side
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Fig. 12.33 Angular velocities of the clutch disks

Their integration yields

ω1(t) =
M1 − MR

J1
t + ω10 (12.36a)

ω2(t) =
MR − M2

J2
t + ω20 . (12.36b)

If the value of the contact force, Fc, is sufficiently high, the clutch disks stick to-

gether at some time point t = t1 and continue to rotate with one and the same

angular velocity ω. Equality of both angular velocities gives for t1

t1 =
ω10 − ω20

M2 − MR

J2
+

MR − M1

J1

. (12.37)

The parameter values in Table 12.7 result in the value t1 = 7.143 s. The value of the

common angular velocity is ω = 271.43 rad/s. For t > t1, the angular acceleration

ω̇ reads

ω̇ =
M1

J1 + J2
. (12.38)

The numerical value is ω̇ = 33.3 rad/s2.
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For t > t1 (b = 0), the DAE system derived from the bond graph reads

ω̇1 =
1
J1

(M1 − M) (12.39a)

ω̇2 =
1
J2

(M − M2) (12.39b)

0 = ω1 − ω2 . (12.39c)

After differentiation of the algebraic constraint with respect to time, solution of the

resulting ODE system yields for the moment M

M =
J2

J1 + J2
M1 +

J1

J1 + J2
M2 . (12.40)

Given the parameter values in Table 12.7, the value is M = 166.7 Nm. Hence,

for t ≥ t1, the descriptor vector, [ω1, ω2, M ]t, has the initial conditions [271.43,
271.43, 166.7]T . Location of the time point t1 and continuation of the simulation

with the correct initial conditions can be performed by the root finding version of

the widely used numerical integration codes DASSL [2] or ODEPACK [14]. These

solvers are part of, for instance, the open source mathematical software package

Scilab [26].

12.7 Dry Friction in a Suspension Strut of a Car

Another example in which different system modes can be distinguished is the stick-

slip effect in a suspension strut of a car. For the analysis of this effect, the widely

used simple quarter vehicle model depicted in Figure 12.34 is considered.

As long as there is slip friction effective in the strut, the mass of the chassis, mc,

and the mass of the wheel, mw, move up and down with different displacements xc

and xw. If stick friction is effective, there is a holonomic constraint

xw − xc = const. (12.41)

and the view can be taken that one body with the combined mass is moving up and

down. In this mode, one degree of freedom has gone. Once the break value FH of

the sticking force has been overcome, the system returns into the slip mode and the

suppressed degree of freedom is available again. In [18], Kölsch and Ostermeyer

account for the sticking mode and the switching between slip and sticking mode

by a modification of the constraint force between two bodies in the equations of

motion.
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Fig. 12.34 Schematic of a quarter vehicle

Bond Graph Model of the Quarter Vehicle Accounting for Stick-Slip Friction

In the following, the more general bond graph approach using sinks of fixed com-

putational causality described in Section 7.1.4 is applied.

Figure 12.35 shows a bond graph of the quarter vehicle accounting for the slip

and the sticking mode. In the bond graph model of Figure 12.35, the modulated

effort sink provides the constraint force λ. The value of the transformer modulus b
accounts for the system mode. For b = 1, the sticking force Fstick is enabled and,

simultaneously, the slip friction force Fslip is disabled and vice versa for b = 0. That

is, according to the system mode, one part of the bond graph model is switched on

and another one is switched off. Note that computational causalities remain fixed

independent of the system mode.

Derivation of Model Equations from the Bond Graph

The mathematical model to be derived from the bond graph depends on the system

mode. For the slip mode, it is a set of explicit ODEs. For the sticking mode, it is

a DAE system of index 2 that can analytically reduced to an explicit ODE system
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1 ẋ2��Imc :

Fig. 12.35 Bond graph of the quarter vehicle accounting for the slip and the sticking mode

different from the one for the slip mode. Clearly, the control logic that switches the

value of the transformer modulus b cannot be part of the bond graph and has to be

formulated separately. The modulated flow source on the lower left-hand side of the

bond graph models the unevenness of the road surface.

Following causal paths, the two equations of motion can be derived directly from

the bond graph.

mwẍ1 = rw(u̇ − ẋ1) + kw(u − x1) − rc(ẋ1 − ẋ2) − kc(x1 − x2)
−(1 − b) Fslip − b λ (12.42a)

mcẍ2 = rc(ẋ1 − ẋ2) + kc(x1 − x2) + (1 − b)Fslip + b λ (12.42b)

For b = 1, the two equations of motion together with the constraint for the dis-

placement of the two bodies constitute a DAE system of index 2 for the unknowns

x1, x2, λ.

In order to obtain an expression for the constraint force λ, the constraint, Equa-

tion 12.41, is differentiated twice with respect to time. After substitution of the

equations of motion, the result is
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λ = kc(x2 −x1)+ rc(ẋ2 − ẋ1)− kw
mc

mw + mc
(x1 −u)− rc

mc

mw + mc
(ẋ1 − u̇) .

(12.43)

In slip mode (b = 0), the friction force F is

F = Fslip = Fs sign(v1 − v2) . (12.44)

Simulation of the Stick-Slip Problem Using Scilab and LSODAR

Computation of this hybrid model requires the location of times at which the system

mode changes from sliding to sticking or vice versa. This suggests the use of the root

finding version of an ODE solver. For this case study, Scilab and the ODE solver

LSODAR have been used.

Formulation of the model equations as a Scilab function is straightforward. The

result is shown in Figure 12.36. The Scilab function f is an argument of the Scilab

function ode which is an interface to the ODE solvers in the software package

ODEPACK.

// Scilab function of a quarter vehicle
// Suspension with dry friction

function [dy] = f(t,y)

v1 = y(1)
v2 = y(2)
x1 = y(3) // vertical position of the chassis
x2 = y(4) // vertical position of the wheel

u = ramp(t,t0,t1,u1) // unevenness of the road surface
du = pulse(t,t0,t1)

Fslip = Fs*sign(v2 - v1)

lambda = kc*(x2 - x1) + rc*(v2 - v1) - c1*(x1 - u) - c2*(v1 - du)

mwdv1 = -(rw + rc)*v1 + rc*v2 - (kw + kc)*x1 + kc*x2 + kw*u + rw*du
+ (1-b)*Fslip - b*lambda

dv1 = mwdv1 / mw

mcdv2 = rc*v1 - rc*v2 + kc*x1 - kc*x2 - (1-b)*Fslip + b*lambda
dv2 = mcdv2 / mc

dy1 = dv1
dy2 = dv2
dy3 = v1
dy4 = v2

dy = [dy1;dy2;dy3;dy4]

endfunction

Fig. 12.36 Equations of the quarter vehicle model as a Scilab function
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Figure 12.37 shows the Scilab script for a simulation run on the quarter vehicle

model. In the Scilab script of Figure 12.37, the meaning of variables has been ex-

plained by inline comments. The root finding capability of the ODE solver is used

to locate the time points tc at which the system mode may change from sticking

to slipping or vice versa. If the current mode is sticking (b = 1), then integration is

performed up to a time point for which |λ|−FH = 0 holds. Otherwise, if the current

mode is sliding (b = 0), then integration stops at a time point for which v1 = v2.

Both conditions are formulated in the function g. If such a time point tc has been

located, it must be checked if the conditions for a change in the system mode are

met. If the current mode is sticking and the absolute value of the constraint force

reaches the breakaway level, FH , of the friction force F , then both bodies can slip.

On the contrary, if both bodies slide with a common velocity, then there is potential

risk for sticking. Both bodies will stick if the absolute value of lambda falls below

the slip level, Fs, of the friction force F . The system mode is taken into account by

the value of the modulus b, which must be changed appropriately. This is done in

the function change depicted in Figure 12.38. In this manner, integration proceeds

from one discrete event to the next until the final simulation time has been reached.

For simulation runs, parameter values given in [18] have been used (Table 12.8).

As to the velocity excitation of the road, u̇(t), it is assumed that the quarter vehicle

moves up a ramp (Figure 12.39). Furthermore, it is assumed that the strut is in

stiction mode at t = 0. The initial conditions for the simulation run are

v1(0) = v2(0) = 0 (12.45)

and

x1(0) = x2(0) = 0 . (12.46)

The simulation result in Figure 12.40 shows that immediately after the start, the

system changes from initial sticking into the slipping mode, which lasts until about

1.43 s. During this period, there are two short time intervals in which sticking oc-

curs. As can be seen from Figure 12.40, in fact, the difference between the vertical

velocities of the wheel, v1, and of the chassis, v2, vanishes during the sticking peri-

ods. Figure 12.41 shows the time history of the vertical displacements of the wheel,

x1, and of the chassis (x2). According to Figure 12.40, for t > 1.43 s, the wheel

Table 12.8 Parameter values used for simulation of the quarter vehicle

Parameter Value Units Meaning

mw 100 kg Mass of the wheel

rw 126 Ns/m Damping coefficient for the tyre

kw 395 × 103 N/m Stiffness of the tyre

rc 1500 Ns/m Damping coefficient of the suspension

kc 39.5 × 103 N/m Stiffness of the suspension

FH 500 N Breakaway level of the friction force F

Fs 500 N Slip level of the friction force F

mc 1000 kg Mass of the chassis
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// run quarter vehicle model

%ODEOPTIONS=[2,0,0,%inf,0,2,1000,12,5,0,-1,-1];
tf = 5.0; // [sec] tf: final time of the integration
ng = 1;
b = 1; // inital mode is sticking
//
// ’root’: LSODAR from ODEPACK is called
// x0: vector of initial conditions
// t0: initial start time
// f: right-hand side of the set of ODEs: ydot = f(t,y)
// g: integration of ydot = f(t,y) is performed
// until g(t,y) = 0 holds for one component of y
// rd(1): time at which integration stops
// sol: matrix, each row >= 2 contains a component of y at times <= rd(1)
//
[sol,rd] = ode(’root’,x0,t0,tf,f,ng,g);
m = size(sol); // m(2): number of columns
tc = rd(1);
//
bvector=b*ones(1,m(2)); // contains system mode at times <= tc
//
// check if the system mode changes at tc:
//
b = change(sol);
//
// continue the integration as long as tc <= tf:
//
while tc <= tf
//
// use values at tc as new initial conditions xc:
//
xc = [sol(2,m(2));sol(3,m(2));sol(4,m(2));sol(5,m(2))];
//
// continue the integration until the solution crosses
// the surface g(t,y) = 0:
//
[xsol2,rd2] = ode(’root’, xc,tc,tf,f,ng,g);
//
m2 = size(xsol2);
bvector2 = b*ones(1,m2(2));
bvector = [bvector,bvector2];
//
sol = [sol,xsol2];
m = size(sol);
tc = rd2(1);
//
// check if the system mode changes at tc:
//
b = change(sol);

Fig. 12.37 Scilab script for a simulation run on the quarter vehicle model
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// Function change() is called at time point tc
// at which integration has stopped because the conditions
// specified in function g() are met.
// According to the result of the check below function change()
// returns an update of the system mode indicator b used in the
// script that calls change().
// Fs: slip level of the friction force F

function [b] = change(sol)
v1 = sol(2,m(2))
v2 = sol(3,m(2))
x1 = sol(4,m(2))
x2 = sol(5,m(2))

u = ramp(tc,t0,t1,u1)
du = pulse(tc,t0,t1)

lambda = kc*(x2 - x1) + rc*(v2 - v1) - c1*(x1 - u) - c2*(v1 - du)

mode = b; // current system mode
if (mode == 0 & abs(lambda) <= Fs) then b = 1; end
if mode == 1 then b = 0; end

endfunction

Fig. 12.38 Function change changing the system mode indicator b appropriately

�
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t [s]

u(t)

[m]

u1 = 0.1

t1 = 0.1

Fig. 12.39 Roadway unevenness u over time

and the chassis stick together and oscillate with a common frequency of about 3 Hz

and a very small amplitude up and down. This oscillation is lightly damped because

of the low damping coefficient of the tyre.

Finally, Figure 12.42 displays the time evolution of the constraint force λ and of

the slip friction force Fslip = Fs sign(v1 − v2). The simulation results presented in

this case study agree with those given in [18].
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Fig. 12.42 Constraint force λ and slip friction force Fslip

12.8 A Buck Converter

Chapter 7 discusses several approaches to a representation of variable structure

models. As bond graphs are based on the energy exchange between system com-

ponents taking place in time periods not equal to zero, they are best suited for con-

tinuous time models. Accordingly, Section 7.3 proposes to describe discrete system

states and transitions between them by a Petri net and to develop a bond graph model

for each system mode. For illustration of this approach and in order to apply bond

graph modelling to an electronic circuit beyond passive RLC networks, a DC-DC

buck converter as displayed in Fig 12.43 is studied.

E

Q1

D1

L

C R

Fig. 12.43 Schematic of a buck converter
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A DC-DC buck converter is a well known power electronic device [5]. Its purpose

is to reduce a DC input voltage. The use of switching elements enables one to reduce

the energy consumption in comparison to linear regulators. Due to its function and

the use of switching elements, it is also called step-down switch mode power supply.

As the device is superior to linear voltage regulators, they are used in applications

where size and power dissipation matters, e.g. for the low voltage power supply of

processors in laptop computers, or in rechargers.

In the context of bond graph modelling of power electronic circuits, buck con-

verters have been considered by several authors [1, 10, 11, 20]. The transistor Q1
and the diode D are usually modelled as switches with an ON-resistance. In [10, 11],

Garcia-Gomez uses a unique bond graph model for all switch modes and represents

the switches by means of a modulated transformer and a resistor (cf. Figure 7.6,

Section 7.1.2).

System Modes of the Buck Converter

If the transistor and the diode are considered as switches, theoretically, four system

modes as listed in Table 12.9 can be distinguished.

When the transistor switch is in ON state (closed), a current is flowing through

the inductor into the load composed of the resistor R and the capacitor C in parallel,

and the inductor stores energy as highlighted in Figure 12.44. In this system mode,

the diode (displayed in grey in Figure 12.44) is off because it is reverse biased. This

system mode is known as load state.

Table 12.9 Theoretical switch state combinations

System mode Transistor Diode

1 ON OFF

2 OFF ON

3 ON ON

4 OFF OFF

E

Q1

D1

L iL

C R

Fig. 12.44 Buck converter in mode 1 (transistor switch on and diode off)
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E

Q1

D1

L iL

C R

Fig. 12.45 Buck converter in mode 2 (transistor switch off and diode on)

In system mode 2, the transistor switch is off (Figure 12.45). The diode is forward

biased and the energy stored in the inductor discharges into the load. This mode is

called free wheel mode.

If the ON resistance of both switches is neglected, then the third switch state

combination (both switches are closed) would entail a short-circuit of the voltage

source and consequently a disfunction of the circuit. That is, this switch state com-

bination can be discarded. This is reflected by a causal conflict in the bond graph of

Figure 12.46.

In the fourth system mode (both switches are off), the current through the coil

has become zero and the coil does not store any magnetic energy. While the in-

ductor remains empty, the energy of the capacitor discharges via the load resistor

(Figure 12.47). In the literature, this state is sometimes called the rest state. In Fig-

ure 12.47, there is no current in the part of the circuit displayed in grey. In the fol-

lowing, it is assumed that the transistor is switched on and off periodically and that

there are no time periods in which the current through the inductor remains zeros.

In this case, the buck converter is said to operate in continuous mode. Accordingly,

the circuit toggles between the two system modes 1 and 2. This is captured in the

simple Petri net of Figure 12.48. In the Petri net, T denotes the duty cycle of the

Se ��
E

1 ��

��
uQ1

Sw : 0

0��
��

��
uD1

Sw : 0

�� 1

��

I

�� 0

��

C

�� R

Fig. 12.46 Bond graph of the buck converter in case both switches are on
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E

Q1

D1

L

C R

Fig. 12.47 Buck converter in mode 4 (both switches off)

��
��

1 ��
��

2

�
�

�
�

t mod αT = 0

�
�

��

�
�

��

t mod T = 0

� �
�

�

load

mode

free

wheel

mode

Fig. 12.48 Petri net for a periodically switched buck converter

signal switching the transistor on and off. The transistor is on for the period α T
(0 < α < 1), while it is off during the period (1 − α) T (Figure 12.49).

Bond Graph Models of the Buck Converter in Load Mode and in Free Wheel Mode

For both system modes, the construction of a bond graph is straightforward. Fig-

ures 12.50 and 12.51 show the results.

A straightforward way to simulate the behaviour of the buck converter is to al-

ternate between the computation of the two models. For the buck converter under

study, a look at the equations derived from the bond graph models shows that both

models can be combined into one unique bond graph displayed in Figure 12.52. In

the bond graph of Figure 12.52, the transformer modulus m is the OnOff-function
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�

T 2T t

�OnOff

	 �αT

Fig. 12.49 Signal switching the transistor on and off

Se ��
E

1 ��

��

R : Ron

0

��

Sf

iD1

: 0

�� 1

��

iL

I : L

�� 0

��
uC

C : C

�� R : R

Fig. 12.50 Bond graph of the buck converter in load mode

Se ��
E

1 ��

��

iQ1

Sf : 0

0

��

R : Ron

�� 1

��

iL

I : L

�� 0

��
uC

C : C

�� R : R

Fig. 12.51 Bond graph of the buck converter in free wheel mode

in Figure 12.49. This modulus toggles the computation between the sets of model

equations for the two system modes.

Simulation of the Buck Converter Dynamic Behaviour

The simulation study uses the parameters listed in Table 12.10. Figure 12.53 dis-

plays the time evolution of the current, iL, through the inductor as well as its mean

value īL over one duty cycle. Accordingly, Figure 12.54 shows the time evolution

of the voltage drop, uC , across the capacitor as well as its mean value ūC .
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Se ��
E

MTF

1/m
..

�� 1

��

R : Ron

��

iL

I : L

�� 0

��
uC

C : C

�� R : R

Fig. 12.52 Unique bond graph of the buck converter for system modes 1 and 2

Table 12.10 Parameters used in the simulation study

Parameter Value Units

E 100 V

Ron 0.1 Ω
L 50 mH

C 50 μF

R 50 Ω
T 10−3 s

α 0.7 -

Verification of Simulation Results

As the circuit under study is rather simple, simulation results can be checked against

analytical results. From the bond graph of Figure 12.52, the following two state

equations can be derived.

diL
dt

=
1
L

[m E − Ron iL − uC ] (12.47a)

u̇C =
1
C

[iL − 1
R

uC ] (12.47b)

If the ON resistance Ron is neglected and if mE is replaced by the mean value αE,

then for t → ∞, the voltage drop across the capacitor takes the value

ūC = αE = 0.7 × 100 V = 70 V . (12.48)

Accordingly, for t → ∞, the current through the inductor takes the value

īL =
1
R

ūC =
1
50

70 A = 1.4 A . (12.49)

The mean values (t → ∞) obtained from simulation are in good agreement with

these values.
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Fig. 12.53 Time evolution of the current through the inductor
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Fig. 12.54 Time evolution of the voltage drop across the capacitor
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Furthermore, as Figure 12.53 shows, there is a significant ripple on the waveform

of the inductor current. If the ON resistance of the switches is neglected and if the

voltage across the capacitor is replaced by the mean value αE, then Equation 12.47a

reads
diL
dt

=
1
L

[mE − αE] =
m − α

L
E . (12.50)

That is, when the circuit is in load state (m = 1), the current through the inductor

rises linearly while it falls linearly in the free wheel state (m = 0). For m = 1, the

value of the slope is

diL
dt

=
1.0 − 0.7
50 × 10−3

× 100 A/s = 600 A/s . (12.51)

For m = 0, the inclination is

diL
dt

=
−0.7

50 × 10−3
× 100A/s = −1400 A/s . (12.52)

As can be seen from an enlargement of the ripple depicted in Figure 12.55, simula-

tion results agree well with these values.

According to [24], the amplitude ΔI/2 of the ripple on the waveform of the

inductor current iL is

ΔI =
α E(1 − α)

L
T . (12.53)
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Fig. 12.55 Enlargement of the ripple on the waveform of the inductor current
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With the parameters in this case study, the amplitude is 0.21 A. As the mean value

is 1.4, values of the ripple should be within the range

1.19 A = (1.40 − 0.21) A ≤ iL ≤ (1.40 + 0.21) A = 1.61 A .

This can be verified by inspection of Figure 12.55.

The amplitude ΔV/2 of the ripple on the waveform of uC is

ΔV =
ΔI

8C
× T (12.54)

[24]. The parameters in this case study give the result ΔV = 1.05 V . The enlarge-

ment of the ripple on the waveform of uC well confirms this value (Figure 12.56).

The ripple on the waveform of uC oscillates around the mean value of 70 V with an

amplitude of about 0.5 V .
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Fig. 12.56 Enlargement of the ripple on the waveform of the voltage drop across the capacitor
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12.9 A Two Degrees of Freedom Rotary Joint Manipulator

The concise representation of multibond graphs supports the systematic develop-

ment of bond graph models of multibody systems. Library models of a freely mov-

ing rigid body with hinges and various types of joints can be assembled in the same

way the bodies and the joints of the real system are connected. What needs to be

taken into account are transformations between body fixed reference frames repre-

sented by multiport transformers in a multibond graph.

For illustration, a multibond graph of a part of the Stanford arm has been given in

Chapter 8). In the following, it is assumed that the prismatic joint is locked, result-

ing in a simpler rotary joint manipulator with two degrees of freedom. Figure 12.57

depicts a schematic of this manipulator which may be considered a part of the in-

dustrial PUMA robot.

As can be seen from Figure 12.57, body 1 simply rotates on its y1 axis, while

body 2 moves in three dimensions by rotation on an axis through point A that is

parallel to the z1 axis. This axis in turn rotates around the y1 axis. This type of

manipulator has also been considered by Gawthrop and Smith in [13] and by Vergé

and Jaume in [29]. In this case study it is shown that the standard form of robot

equations [8]

M(Θ)Θ̈ + V(Θ, Θ̇) + G(Θ) = τ , (12.55)

can be directly derived from the multibond graph of the robot in all derivative causal-

ity. In Equation 12.55, the vectors Θ, Θ̇, Θ̈ denote the position, the velocity, and the

accelerations of the joints. M(Θ) is the n×n mass matrix, V(Θ, Θ̇) the n×1 vec-

tor of centrifugal and Corriolis terms, and G(Θ) is an n×1 vector of gravity terms.

Torques are combined into the vector τ .

In this study, the Lagrange equations have been manually derived from the multi-

bond graph, reformulated as a set of four ODEs and coded as a Scilab function [26].

With software packages supporting multibond graphs, the equations of motion can

be automatically derived.

Multibond Graph of the Rotary Joint Manipulator

Since there is no translation, the multibond graphs of the two rigid bodies simplify

(cf. to the multibond graph of a freely moving rigid body with two hinge points in

Figure 8.16). The robot’s base, body 0, does not move at all. As a result, Figure 12.58

gives a multibond graph of the rotary joint manipulator.

Derivation of the Standard Form of Robot Equations from the Multibond Graph

In the multibond graph of Figure 12.58, the vector ω1
1 (ω2

2) denotes the angular ve-

locity of body 1 (body 2) with respect to reference frame 0 expressed in coordinates

of reference frame 1 (reference frame 2). Actually,

ω1
1 = ω0

1 = [ 0 Θ̇1 0 ]T (12.56)
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Fig. 12.57 Schematic of a two degrees of freedom rotary joint manipulator
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Fig. 12.58 Multibond graph of the two degrees of freedom rotary joint manipulator

where Θ̇1 denotes the angular velocity of motor 1. Matrix J1
1 (J2

2) denotes the inertia

matrix of body 1 (body 2) with respect to the reference frame sitting in the centre of

gravity of body 1 (body 2). Both matrices are diagonal as the axes of the body fixed

reference frames are parallel to the principal axes of inertia.

The modulated multiport transformer MTF : A2,1 represents the transformation

between the two reference frames of body 1 and body 2. Accordingly, the angular

velocity of body 1 with respect to reference frame 0 expressed in coordinates of

reference frame 2 reads
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ω2
1 =

⎡⎣ cos Θ2 sin Θ2 0
− sin Θ2 cos Θ2 0

0 0 1

⎤⎦
︸ ︷︷ ︸

A2,1

ω1
1 =

⎡⎣ Θ̇1 sin Θ2

Θ̇1 cos Θ2

0

⎤⎦ . (12.57)

Let ω2
2 = [ ωx2 ωy2 ωz2 ]T . Then according to the multibond graph in Fig-

ure 12.58, ⎡⎣ωx2

ωy2

ωz2

⎤⎦ = A2,1

⎡⎣ 0
Θ̇1

Θ̇2

⎤⎦ =

⎡⎣ Θ̇1 sin Θ2

Θ̇1 cos Θ2

Θ̇2

⎤⎦ . (12.58)

In the same way, the matrix A0,2 relates the absolute velocity of the centre of

gravity of body 2, c2, expressed in coordinates of the body fixed reference frame to

the same velocity expressed in coordinates of the inertial frame sitting in the centre

of gravity of body 0.

A0,2 =

⎡⎣ cos Θ2 − cos Θ1 sin Θ2 sin Θ1

sin Θ2 cos Θ2 0
− sin Θ1 cos Θ2 sin Θ1 sin Θ2 cos Θ1

⎤⎦ (12.59)

Furthermore, l2 denotes the distance of the centre of gravity of body 2, c2, from

the hinge point A. The vector from the origin of reference frame 2 to hinge point

A expressed in coordinates of frame 2 is l22 = [−l2 0 0 ]T and l̃22 denotes

the skew symmetric matrix generated by this vector. Consequently, according to the

multibond graph in Figure 12.58, the moment acting on body 2 caused by the force

of gravity is

m2 g

⎡⎣ 0
0

l2 cos Θ2

⎤⎦ =

⎡⎣0 0 0
0 0 l2
0 −l2 0

⎤⎦
︸ ︷︷ ︸

(−l̃22)
T

⎡⎣ c Θ2 s Θ2 −s Θ1c Θ2

−c Θ1s Θ2 c Θ2 s Θ1s Θ2

s Θ1 0 c Θ1

⎤⎦
︸ ︷︷ ︸

(A0,2)T

⎡⎣ 0
m2 g

0

⎤⎦ ,

(12.60)

where c Θ := cos Θ and sΘ := sinΘ.

The moment acting on body 2 contributed by the Eulerian junction structure is

− ω̃2
2 J2

2 ω2
2 = −

⎡⎣ 0 ωz2 −ωy2

−ωz2 0 ωx2

ωy2 −ωx2 0

⎤⎦ ⎡⎣Jx2 0 0
0 Jy2 0
0 0 Jz2

⎤⎦
︸ ︷︷ ︸

:= J2
2

⎡⎣ωx2

ωy2

ωz2

⎤⎦

=

⎡⎣ Jz2 ωy2 ωz2 − Jy2 ωy2 ωz2

Jx2 ωx2 ωz2 − Jz2 ωx2 ωz2

Jy2 ωx2 ωy2 − Jx2 ωx2 ωy2

⎤⎦ . (12.61)
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Let τ = [ τx1 τy1 τz1 ]T . Then, summation of moments at the 1-junction of ω2
2

and transformation across the multiport transformer MTF : A21, gives

τ = (A2,1)T ( J2
2 ω̇2

2 + (−ω̃2
2)J

2
2 ω2

2 + m2 g

⎡⎣ 0
0

l2 cos Θ2

⎤⎦ ) . (12.62)

Finally, summation of torques at the 1-junction of Θ̇2 yields

τ2 = R2Θ̇2 + τz1 . (12.63)

Expanding this equations by using Equations 12.62, 12.61, 12.58 and 12.57 gives

one of the two Lagrange equations describing the motion of the rotary joint manip-

ulator.

τ2 = R2Θ̇2 + Jz2︸︷︷︸
=: m22

Θ̈2 − (Jx2 − Jy2)(sin Θ2 cos Θ2)︸ ︷︷ ︸
=: C21

Θ̇2
1 + m2 g l2 cos Θ2︸ ︷︷ ︸

=: g21

(12.64)

The second Lagrange equation is obtained in the same manner. Summation of

torques on the 1-junction of Θ̇1 gives

τ1 = R1Θ̇1 + Jy1Θ̈1 + τy1 . (12.65)

After evaluation of Equation 12.62, the torque τy1 becomes

τy1 =
[
sin Θ2 cos Θ2 0

]⎛⎝⎡⎣Jx2ω̇x2

Jy2ω̇y2

Jz2ω̇z2

⎤⎦
+

⎡⎣ Jz2 ωy2 ωz2 − Jy2 ωy2 ωz2

Jx2 ωx2 ωz2 − Jz2 ωx2 ωz2

Jy2 ωx2 ωy2 − Jx2 ωx2 ωy2

⎤⎦ + m2 g

⎡⎣ 0
0

l2 cos Θ2

⎤⎦⎞⎠
= Jx2ω̇x2 sin Θ2 + Jy2ω̇y2 cos Θ2

+ (Jz2 − Jy2)ωy2ωz2 sin Θ2

+ (Jx2 − Jz2)ωx2ωz2 cos Θ2 . (12.66)

Finally, observing Equation 12.58, the second Lagrange equation reads

τ1 = R1Θ̇1 + (Jy1 + Jx2 sin2 Θ2 + Jy2 cos2 Θ2)︸ ︷︷ ︸
m11

Θ̈1

+ (2(Jx2 − Jy2) sinΘ2 cos Θ2)︸ ︷︷ ︸
b11

Θ̇1Θ̇2 . (12.67)
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That is, Equation 12.55 takes the form[
m11 0
0 m22

]
︸ ︷︷ ︸

M

[
Θ̈1

Θ̈2

]
+

[
b11

0

]
︸ ︷︷ ︸

B

[
Θ̇1Θ̇2

]
+

[
0 0

c21 0

]
︸ ︷︷ ︸

C

[
Θ̇2

1

Θ̇2
2

]
+

[
0

g21

]
︸ ︷︷ ︸
G(Θ)

=

[
τ1

τ2

]
−

[
R1Θ̇1

R2Θ̇2

]
. (12.68)

Notice that the entries in the matrices B and C are zero when either Θ2 = 0 or

Θ2 = π/2.

Simulation of the Robot’s Motion

For a simulation of the robot’s motion, the parameters listed in Table 12.11 have

been used [29]. In this table, ci denotes the centre of gravity of body i. Given the

parameters in Table 12.11, Figure 12.59 displays the time evolution of the angular

velocities ω1, ω2 and of the angle Θ2. As can be seen from Figure 12.59, with

increasing time, the angular velocity of body 1 takes a steady state value of about

0.66 rad, ω2 becomes zero and consequently, takes a constant value of about −0.1.

These values can be verified. Under the conditions ω1 = const. and ω2 = 0, the

dynamic Equation 12.67 reduces to

ω1 =
τ1

R1
= 1.0/1.5 = 0.66 rad/s . (12.69)

When Θ2 = const., Equation 12.64 reduces to a nonlinear algebraic equation for

Θ2.

τ2 = m2gl2 cos Θ2 − (Jx2 − Jy2)(sinΘ2 cos Θ2)Θ̇1
2

(12.70)

A numerical solution of Equation 12.70 is Θ2 = −0.0999574 rad.

Table 12.11 Parameter values used for simulation of the robot’s motion

Parameter Value Units Meaning

Jy1 6 kgm2 Moment of inertia of body 1 with respect to c1
Jx2 5 kgm2 Moment of inertia of body 2 with respect to c2
Jy2 10 kgm2 Moment of inertia of body 2 with respect to c2
Jy2 10 kgm2 Moment of inertia of body 2 with respect to c2
m2 40 kg Mass of body 2

l2 0.5 m Distance c2 - pivot point A (cf. Figure 12.57)

R1 1.5 Nms/rad Friction between body 0 and body 1

R2 2.0 Nms/rad Friction in pivot point A

τ1 1.0 Nm Torque acting on body 1

τ2 195 Nm Torque acting on body 2
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Fig. 12.59 Time evolution of the angular velocities ω1, ω2 and of the angle Θ2

12.10 Fluid Level Control in a Three Tank System

One of the usual tasks in process engineering systems is to control the fluid level in

tanks. As an example, the system of three coupled tanks depicted in Figure 12.60 is

considered. It is assumed that

• the fluid flow is one way from left to right,

• the fluid inertia can be neglected,

• there is a uniform hydrostatic pressure at the bottom of each tank,

• isothermal conditions apply,

• hydraulic power can be approximated by the product of hydrostatic pressure and

volume flow.

In this example, the task is to control the fluid level in the last right-hand side tank.

To that end, the level is sensed and fed into a PID controller that controls the fluid

flow supply into the first tank as shown in Figure 12.60. In [15], Hoffmann starts

from the equations and presents a MATLAB®/Simulink® simulation of this exam-

ple.
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Fig. 12.60 Schematic of a three tank system

Bond Graph Model of the Three Tank System

Bond graph modelling of this hydraulic plant is straightforward. The valves in the

pipes connecting the tanks are modelled by resistors. Their constitutive relation is

given by Bernoulli’s law. The pressure at the bottom of the tanks is represented by

a 0-junction and the storage of potential energy in the tanks is taken into account by

a C element. Accordingly, Figure 12.61 represents a bond graph model of the three

tank system.

Let Aij be the cross section area of the valve between pressures pi and pj . Ac-

cording to Bernoulli’s law, the volume flow Qij through the valve equals

Qij = Aij sign(Δpij)
√

2
�
|Δpij|

= Aij sign(Δhij)
√

2g|Δhij| . (12.71)
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Fig. 12.61 Bond graph of the three tank system
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Dynamic Equations of the Three Tank System

The dynamic equations are immediately derived from the bond graph of Fig-

ure 12.61.

ṗ1 =
1
C1

(Qs − Q12) (12.72a)

ṗ2 =
1
C2

(Q12 − Q23) (12.72b)

ṗ3 =
1
C1

(Q23 − Q30) (12.72c)

An equal cross section area for all three valves implies that in steady state

h2 = 2h3 (12.73a)

h1 = 3h3 (12.73b)

(as depicted in Figure 12.60) and

Qs = Q12 = Q23 = Q30 . (12.74)

Adopting the values Qs = 1 m3/s and A12 = 0.1 m2 results in the steady state

fluid levels

h1 = 15.29 m , h2 = 10.19 m , h3 = 5.097 m . (12.75)

Simulation of the Uncontrolled Three Tank System

Simulation of the uncontrolled system’s behaviour confirms these steady values (cf.

Figure 12.62 and Figure 12.63). Numerical values used for simulation of the uncon-

trolled systems are listed in Table 12.12.

Simulation of the Controlled Three Tank System

The transfer function of the PID controller is used in the form

Table 12.12 Parameters for simulation of the uncontrolled three tank system

Parameter Value Units Meaning

A1 = A2 = A3 1.999 m2 Cross section area of the tanks

A12 = A23 = A30 0.1 m2 Cross section area of the valves

� 780 kg/m3 Fluid density

Qs 1 m3/s Volume flow of the supply
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Fig. 12.62 Time evolution of fluid levels in the uncontrolled three tank system due to a step of Qs

U(s) = K

⎡⎢⎣1 +
1

Ti s
+

Td s

1 +
Td

N
s

⎤⎥⎦ E(s) , (12.76)

where s ∈ C and E and U denote the Laplace transforms of the input error and the

controller output. Table 12.13 gives the parameters of the PID controller.

If details of the hydraulic power supply subsystem are known, a bond graph can

be developed for the submodel called pump in the bond graph of Figure 12.61.

Otherwise, it may be appropriate and sufficient to approximate the pump’s de-

lay in response to an immediate step in the controller signal by a first order lag

signal element and to account for saturation of the volume flow Qs by a satura-

Table 12.13 Parameters of the PID controller

Parameter Value Units Meaning

K 5 Proportional gain

Ti 50 s Integral time constant

Td 3 s Derivative time constant

N 20 Derivative gain limitation
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Fig. 12.63 Time evolution of volume flows in the uncontrolled three tank system

tion signal block. The first order lag element is described by a transfer function

G(s) := k/(τs+1), where k denotes the proportional gain and τ the time constant.

Parameters of these two signal blocks are given in Table 12.14.

Figure 12.64 shows the time history of the fluid levels in the tanks if all of them

are initially empty and if the set point for the fluid level in the third tank is 1 m.

Again, in steady state, Equations 12.73a–12.73b hold. Figure 12.65 shows the dy-

namics of the volume flows in the controlled system.

According to Equation 12.71 and given the set point of 1 m for the fluid level h3,

a steady state value of

Q30 = A30

√
2g = 0.1

√
2 × 9.81 = 0.4429 m3/s (12.77)

Table 12.14 Parameters of the first order lag element and the saturation block

Parameter Value Units Meaning

kp 1 Proportional gain

τ 1 s Time constant

min 0 m3/s lower bound

max 2.5 m3/s upper bound of the saturation block
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Fig. 12.64 Time evolution of fluid levels in the controlled three tank system

is obtained. This and Equation 12.74 is confirmed by the simulation results in Fig-

ure 12.65. Figure 12.66 shows the history of the volume flows in case the set point

for the fluid level in tank 3 rises linearly to its value of 1 m within a time interval

of 10 s. The simulation results displayed in Figure 12.66 agree with those given in

[15].

For further reading on bond graph modelling of controlled hydraulic systems,

refer to the textbook of Dransfield [9].

12.11 Fault Detection in a Hydraulic Two Tank System

This section illustrates the bond graph model-based approach to FDI introduced

in Section 6.8 by application to the simple hydraulic two tank system displayed

in Figure 6.12 and reproduced in Figure 12.67 for the sake of convenience. It is

assumed that the pressures in both tanks are measured. For simplicity, only the mass

flow is considered. Associated thermal convection is not taken into account.
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Fig. 12.65 Dynamics of the volume rates in the controlled three tank system

Bond Graph Models of the Two Tank System Coupled by Residual Sinks

Figure 12.68 shows a behavioural model of the process subject to faults (lower part

of Figure 12.68) coupled to a model of the faultless process (upper part of Fig-

ure 12.68) by modulated effort sources and residual flow sinks. The measuring of

the tank pressures has been taken into account by effort detectors (De-elements) at-

tached to the 0-junctions. A fault such as leakage from a tank can be introduced into

the model of the real process by switching the modulated flow sinks, MSf, attached

to the 0-junctions of the tank pressures on and off.

A partial blockage of a valve results in a reduction of the valve’s parameter k =
cdAV (t)

√
2/�. Hence, k is a function of time, t, that takes into account the way in

which the valve blocks. This may take place abruptly or progressively. Accordingly,

the valves are represented by modulated resistors in the model of the faulty process.

As a result, the model of the real process differs from that of the faultless model by

these elements allowing, for user introduced faults.

In the integrated model, all energy stores take preferred integral causality. Due to

the residual sinks, the underlying mathematical model is a DAE system.
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Fig. 12.66 History of the volume rates in the controlled three tank system in case the controller’s

set point rise is limited
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�
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�
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Valve 2
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Fig. 12.67 Schematic of a hydraulic two tank system reproduced from Figure 6.12
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Fig. 12.68 Coupling of a faulty process model (lower part) to a faultless process model (upper

part) by means of residual flow sinks

The DAE System Derived from the Coupled Bond Graphs

Derivation of model equations from the causal bond graph in Figure 12.68 is

straightforward. In this case study, they have been formulated in Scilab’s mathemat-

ical input language and stored in a script to be read by Scilab. The Scilab function

of the DAE system of the overall model to be passed in a call to the solver DASSL

is displayed in Figure 12.69.

The application of the solver DASSL requires that all equations are written in

implicit form. In the Scilab script, the residuals r(i), i = 1, . . . , 6, are not to be

confused with the residuals of the ARRs to be computed. The latter variables are

denoted f1, f2. In the behavioural model of the real engineering process, perturbed

power variables are denoted by a name that starts with the letter t standing for tilde.

With xp := [p1, p2, p̃1, p̃2]T and w := [f1, f2] as components of a descriptor

vector, the DAE system of the example, in fact, is a semi-explicit DAE of the form

of Equation 6.105. Its index is 2. In this example, the matrices in Equation 6.106
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// Scilab function including the DAE system of the two tank models
// coupled by two residual flow sinks
function [res, ires] = daesys(t,x,xdot)

// components of the descriptor vector x = [x_p, w]:
// tank pressures (faultless process model):
p1 = x(1)
p2 = x(2)
// tank pressures (faulty process model):
tp1 = x(3)
tp2 = x(4) // x_p := [ p1,p2,tp1,tp2 ]
// residuals:
f1 = x(5)
f2 = x(6) // w := [ f1, f2 ]

// time derivatives of the components of the descriptor vector:
dp1 = xdot(1)
dp2 = xdot(2)
dtp1 = xdot(3)
dtp2 = xdot(4)
df1 = xdot(5)
df2 = xdot(6)

// system inputs: volume flow of the feed pump
Qp = Flow*pulse(t,tstart,tstop)

// no leakage from the two tanks of the real process:
tQl1 = 0.0
tQl2 = 0.0

// volume flows through the valves:
QR1 = orifice(AV1,p1,p2)
QR2 = orifice(AV2,p2,p0)

// partial blockage of valve 1 for 50.0s <= t <= 60.0s:
tQR1 = (1.0 - pulse2(t,50.0,60.0,0.8))*orifice(AV1,tp1,tp2)
tQR2 = orifice(AV2,tp2,p0)

// continuity equations for the tanks in both submodels:
r(1) = Qp - QR1 - C1*dp1 - f1 // p1
r(2) = QR1 - QR2 - C2*dp2 - f2 // p2
r(3) = Qp - tQR1 - tQl1 - C1*dtp1 // tp1
r(4) = tQR1 - tQR2 - tQl2 - C2*dtp2 // tp2

// equations of the residual flow sinks:
r(5) = p1 - tp1 // f1
r(6) = p2 - tp2 // f2

ires = 0 // indicator of successful computation of r
endfunction

Fig. 12.69 Scilab function including the DAE system of the two tank models coupled by residual

flow sinks
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take the form
∂f2
∂xp

=
[

1 0 −1 0
0 1 0 −1

]
(12.78)

and

∂f1
∂w

=

⎡⎢⎢⎣
−1/C1 0

0 −1/C2

0 0
0 0

⎤⎥⎥⎦ . (12.79)

Consequently,

det
(

∂f2
∂xp

∂f1
∂w

)
= det

[−1/C1 0
0 −1/C2

]
=

1
C1C2

�= 0 . (12.80)

Simulation of the Faultless System Behaviour

The numerical solution of a DAE system requires a consistent set of initial condi-

tions for the components of the descriptor vector and their time derivatives. For the

consistent initialisation of a DAE system, the algorithm of Pantelides [22] can be

used. To facilitate the specification of a consistent set of initial conditions, it is as-

sumed that the two tanks are empty at initial time t = 0 and that the pump delivers

a constant volume flow, Qp, for the time period 10.0 s ≤ t ≤ 40.0 s. That is, the

empty tanks are filled for 30 s. Thereafter, they discharge at a rate depending on how

much the valves are open. Figure 12.70 depicts the undisturbed dynamic behaviour.

The parameters of the hydraulic two tank system are given in Table 12.15.
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Fig. 12.70 Time history of the tank pressures in faultless operation mode
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Table 12.15 Parameters of the hydraulic two tank system

Parameter Value Units Meaning

g 9.81 m/s2 Gravitational acceleration

� 780 kg/m3 Oil density

cd 0.61 Discharge coefficient

AT1 = AT2 0.153 m2 Cross sectional area of the tanks

C1 = C2 = AT1/(� g) m3/Pa Capacitances of the tanks

AV1 0.2 · 10−2 m2 Cross sectional area of valve 1

AV2 0.1 · 10−2 m2 Cross sectional area of valve 2

Flow 0.5 · 10−2 m3/s Volume flow of the pump

Ql 0.1 · 10−2 m3/s Leakage from tank 1

p0 0.0 Pa Pressure of the environment

Study of Fault Scenarios

In this case study, two types of faults are considered, namely leakage from the tanks

and partial blockage of the valves. As a first fault scenario, a constant leakage flow

from tank 1 is assumed to be effective for the time period 50 s ≤ t ≤ 60 s, while the

two tanks discharge. As a result, the pressures in the tanks decrease at a higher rate

during this time period. Figure 12.71 shows the time history of the tank pressures in

the case of a leakage from tank 1.

Leakage from tank 1 corresponds to a decrease of the area of its bottom. Accord-

ing to the fault signature matrix of Table 6.5, residual res1 is affected, while residual
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Fig. 12.71 Time history of the tank pressures in the case of a leakage from tank 1
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res2 is not. Figures 12.72 and 12.73 depicting the residuals f1 and f2 validate this

expectation. Note that at t = 60 s, the leakage from tank 1 abruptly stops. The sys-

tem abruptly returns to normal mode operation. Accordingly, residual f1 abruptly

drops to zero.
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Fig. 12.72 Residual f1 in the case of a leakage from tank 1 during the time interval 50 s ≤ t ≤
60 s
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Fig. 12.73 Residual f2 in the case of a leakage from tank 1
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Fig. 12.74 Residuals f1 and f2 in the case of partial blockage of the valve 1 during the time

interval 50 s ≤ t ≤ 60 s

As a second fault scenario, partial blockage of the valve between the two tanks is

assumed to be effective during the time interval 50 s ≤ t ≤ 60 s after the constant

flow pump has been switched off. Consequently, the pressure in tank 1 decreases at

a lower rate, while the pressure in tank 2 decreases at a higher rate. Its outlet is not

affected, but its inlet is chocked. According to the fault signature matrix 6.5, both

residuals should be sensitive to this type of fault. This is verified by Figure 12.74.

12.12 Heated Stirred Tank

Bond graph modelling of thermal systems is the subject of a book by Thoma and

Bouamama [27]. In this section, the simple example of a single heated stirred tank

considered in Section 10.1.1 is taken as a subject of a small modelling and simula-

tion study (cf. [13, 29]). The schematic of the tank and a pseudo bond graph model

are redisplayed in Figure 12.75 and Figure 12.76.

The following assumptions apply.

• The fluid flow is one way from left to right.

• The mass flow can be considered incompressible; inertia effects can be neglected.

• The mass flow ṁi and the temperature Ti at the tank inlet are constant.

• There is a uniform hydrostatic pressure at the bottom of the tank.

• The fluid in the tank is heated. The heat is supplied at constant rate. Stirring

ensures a spatially uniformly distributed temperature T .

• Heat losses to the ambient and the heat capacity of the tank wall can be neglected.
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Fig. 12.75 Heated stirred tank

Constitutive Relations of the Elements

As the pressure at the hydraulic inlet resistor only affects the (ideal) source of hy-

draulic power supply, it can be omitted. The constitutive relation (CR) of the hy-

draulic outlet resistor is

ṁo = k2
√

p . (12.81)

The constitutive realtion of the hydraulic capacitor is

p =
1

Ch
m , (12.82)

where Ch = A/�.

The thermal capacitor’s constitutive relation is

T =
1

Ctherm
H , (12.83)

where Ctherm = c × m.

The constitute relation of the thermal resistors is

Ḣindex = c ṁindex Tindex , (12.84)

where index either denotes the inlet or the outlet resistor.

Table 12.16 gives the parameters of the simulation study (cf. [29]). The fluid flow

enters the tank at a mass flow of 4 kg/s. At time instance t = 1500 s, this value

increases to 4.8 kg/s. That is,
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ṁi ṁo

p ṁ
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Fig. 12.76 Pseudo bond graph of the heated stirred tank

ṁi =
{

4.0 kg/s 0 s ≤ t < 1500 s
4.8 kg/s t ≥ 1500 s

. (12.85)

Simulation Results

Figure 12.77 shows the time evolution of the temperature and the fluid level in the

tank. As can be seen from Figure 12.77, the fluid level as well as the temperature

in the tank increase due to an inflow at constant mass flow and due to constant

heating of the fluid. Then, due to the immediate increase of the mass flow at time

t = 1500 s and a continued unchanged constant heating of the fluid, the fluid level

further increases while the temperature in the tank decreases.
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Table 12.16 Parameters of the simulation study

Parameter Value Units Meaning

g 9.81 m/s2 gravitational acceleration

� 800 kg/m3 Fluid density

cp 200 J/(kg oC) specific heat

A 1.0 m2 Cross section area of the tank

k2 5.824 × 10−2 √
kg m Coefficient of the hydraulic outlet resistor

Ti 20 oC Inlet temperature

Q̇ 40 kW Heat flow

h(0) 0.4 m Initial fluid level in the tank

T (0) 45 oC Initial temperature in the tank

H(0) 2.88 × 106 J Initial enthalpy in the tank
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Fig. 12.77 Time evolution of the temperature and the fluid levels in the tank

The steady state values of fluid level and temperature in the tank obtained by

simulation can be easily manually verified. Summation of mass flows at the upper

0-junction of the bond graph in Figure 12.76 gives

ṗ =
1

Ch
( ṁi − ṁo )
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=
1

Ch
( ṁi − k2

√
p )

=
1

Ch
( ṁi − k2

√
� g h ) . (12.86)

In steady state, the time derivative of the pressure vanishes. Hence,

h =
ṁ2

i

k2
2 � g

. (12.87)

Using numerical values from Table 12.16 gives h(t = 3000 s) = 0.865 m.

The steady state value of the temperature in the tank is obtained accordingly.

Summation of enthalpy flows at the lower 0-junction of the bond graph in Fig-

ure 12.76 in steady state gives

0 =
1

Ctherm
[ cp ṁi Ti − cp ṁo T + Q̇ ] . (12.88)

Hence,

T = Ti +
1

cp ṁo
Q̇ . (12.89)

The numerical result is T (t = 3000 s) = 61.66 oC.

12.13 A Counterflow Heat Exchanger

This section illustrates how the pseudo bond graph approach can be conveniently

used for modelling open thermodynamic systems. The example under study is a

simple counterflow heat exchanger as is depicted in Figure 12.78. In [25], Scherf

directly sets up the equations for a counterflow heat exchanger and uses them for a

MATLAB®/Simulink®simulation. In this case study, the parameters given by Scherf

are used. A bond graph model of a heat exchanger has also been presented by Thoma

and his co-authors [27, 28]. It makes use of a non-standard element they call HEXA

(Heat Exchanger).

The simple counterflow heat exchanger in Figure 12.78 can be considered as a

tube carrying the cooling water with a counterflow hot oil stream passing through an

inner tube. Both tubes have an inlet and an outlet. That is, each tube can be viewed

as a control volume with a mass inflow and a mass outflow and can be presented by

a pseudo bond graph similar to the one of a heated stirred tank in Section 10.1.1.

For simplicity, it is assumed that

• a one-dimensional concentrated parameter model is appropriate,

• no mass is accumulated in both tubes,

• hydraulic losses can be neglected in both tubes, and

• the wall of pipe enclosing the inner tube is perfectly insulating.
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Fig. 12.78 Schematic of a counterflow heat exchanger

A Pseudo Bond Graph Model of the Counterflow Heat Exchanger

According to the pseudo bond graph model of a heated stirred tank (cf. Figure 10.5),

Figure 12.79 shows a pseudo bond graph of the heat exchanger. The upper part of

the pseudo bond graph model represents the outer tube with the cooling water. The

lower part of same structure models the inner pipe carrying the hot oil stream. The

hydraulic part of both submodels reduces to a 1-junction of the mass flow as mass

accumulation and hydraulic losses have been neglected. Both submodels are cou-

pled by a modulated resistor that accounts for the heat conduction from the hot

inner pipe to the enclosing pipe. This R element is modulated by the upstream tem-

peratures of water and oil. Its constitutive equations are

ΔT =
( T oil

i − Tw ) − ( T oil − Tw
i )

ln(T oil
i − Tw ) − ln(T oil − Tw

i )
(12.90a)

Ḣoil = k A ΔT (12.90b)

Ḣw = k A ΔT , (12.90c)

where k denotes the thermal conductance coefficient (assumed to be constant) and

A is the surface of the inner pipe effective in the heat exchange.

As pointed out in Section 10.1.1, the enthalpy flow into and out of each pipe does

not depend on a temperature difference, but on the upstream temperature. Therefore,

the bond with the downstream temperature is activated. Furthermore, the C element

in the thermal part of both submodels is modulated, which is no problem in a pseudo

bond graph.

The cooling water entering the heat exchanger is provided through a valve. In

order to ensure a given constant temperature of the oil at the outlet, the actual tem-
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Fig. 12.79 Pseudo bond graph of the counterflow heat exchanger

perature is measured and compared with a set point value. The difference is fed into

a PID controller that controls the opening of the water inlet valve. If details of the

valve are known, a bond graph model can be developed for the valve. In this study,

the limitation of the opening is taken into account by a signal saturation block. The

dynamics of the valve opening are modelled by a first order lag signal block.

From the pseudo bond graph in Figure 12.79, the equations describing the dy-

namics of the heat exchanger are easily derived by summing up flows at the right-

hand side 0-junctions. They are, in fact, power balances. The enthalpy flow entering

the C element reads

coil moil Ṫ
oil = Ḣoil

i − Ḣoil − Ḣoil
o

= coil ṁoil T
oil
i − k A ΔT −

coil ṁoil T
oil (12.91a)
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Table 12.17 Parameters used for simulation runs

Parameter Value Units Meaning

moil 75 kg Oil mass in the heat exchanger

mw 100 kg Mass of water in the heat exchanger

A 5 m2 Surface of inner pipe effective in heat conductance

k 85 J/(s m2 K) Thermal conductance coefficient

coil 1600 J/(kgK) Specific heat of the oil at constant volume

cw 4200 J/(kgK) Specific heat of the water at constant volume

ṁoil 500 kg/h Oil mass flow

T oil
i 120 oC Oil temperature at the inlet

T w
i 10 oC Water temperature at the inlet

cw mw Ṫw = cw ṁw Tw
i + k A ΔT −

cw ṁw Tw , (12.91b)

where coil and cw denote the specific heat at constant volume of the oil and the

water.

Simulation of the Uncontrolled Counterflow Heat Exchanger

In order to see whether the model correctly reflects the dynamic behaviour of the

heat exchanger, first, the uncontrolled system has been simulated. To that end, the

parameters in Table 12.17 (cf. [25]) have been used.

If in steady state the outlet temperatures are to be Toil = 33.8 oC and Tw =
43.0 oC respectively, then for the cooling water flow, the required mass flow is

ṁw = 0.1382 kg/s. Starting from this steady state, the oil mass flow is increased by

10% at t = 1000 s. Furthermore, at t = 5000 s, the temperature of the oil entering

the heat exchanger rises from 5 oC to 125 oC.

Figure 12.80 shows the step responses of the uncontrolled systems. Both events

cause an increase in the outlet temperatures as to be expected. As can be seen, the

dynamics of the increase are different. At t = 1000 s the outlet temperature of the

oil rises much faster than the one of the water.

Simulation of the Controlled Counterflow Heat Exchanger

The transfer function of the PID controller is

U = K

⎡⎢⎣1 +
1

Ti s
+

Td s

1 +
Td

N
s

⎤⎥⎦ E , (12.91c)

where s ∈ C. E denotes the Laplace transform of the error into the controller and

U the Laplace transform of the controller output. The parameters of the controller

have been adopted from [25] and are given in Table 12.18.
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Fig. 12.80 Step responses of the uncontrolled system

Table 12.18 Parameters of the PID controller

Parameter Value Units Meaning

K -150 Proportional gain

Ti 630 s Integral time constant

Td 63 s Derivative time constant

N 63 Derivative gain limitation

As been mentioned above, the major characteristics of the valve have been mod-

elled by a signal saturation block followed by a first order lag signal block with

the transfer function G(s) := k/(τs + 1). The minimum and the maximum output

bound of the saturation block are 0 and 100 respectively. The proportional gain of

the first order lag block is k = 0.005 so that the output of the valve is limited to

0.5 kg/s. The time constant of the first order lag block is τ = 1 s.

The initial value of the controller’s internal integrator, uI0 = 27.7, is the valve’s

opening that corresponds to the steady state value of the mass flow of the water

flow, ṁw = 0.1385 kg/s, required to maintain a steady state oil temperature Toil =
33.6 oC at the outlet.

Figure 12.81 depicts the oil temperature at the outlet of the controlled heat ex-

changer and the mass flow of the cooling water flow. At t = 1000 s, the set point of
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Fig. 12.81 Oil outlet temperature and mass flow of the cooling water flow for the controlled system

the oil outlet temperature instantly drops from 33.6 oC to 33.0 oC. At t = 4000 s,

the mass flow of the entering oil is increased by 10% and at t = 8000 s, the tem-

perature of the entering oil rises by 5 oC. In all three cases, after a more or less

significant overshoot, the oil outlet temperature returns to the given set point value.

The time evolution of the mass flow of the cooling water flow clearly shows the

saturation of the valve.

12.14 Conclusion

In this chapter, bond graph methodology has been used in a number of small elab-

orated case studies. The aim has been to show that, in fact, bond graph modelling

can cover the whole range of engineering applications from mechanical systems to

electromechanical systems, robots, hydraulic and to open thermodynamic systems

in a unified manner. A further objective of this chapter has been to illustrate the

application of different features of bond graph modelling methodology.

• As to mechanical systems, an intuitive and convient modelling approach is to

start by considering geometric relations, deriving kinematic constraints from
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them and augmenting their bond graph representation so that a model of the

system dynamics is obtained.

• Furthermore, classical Lagrange equations, e.g. for robots can be derived directly

and systematically from a multibond graph representation. Of course, if simula-

tion of the dynamic behaviour is the purpose and if a standard DAE solver is to

be used then these second order ODEs are to be transformed into a set of first

order ODEs.

• Three case studies, the engagement of a clutch (Section 12.6), dry friction in

a suspension strut of a car (Section 12.7) and a DC-DC buck converter (Sec-

tion 12.8) have been chosen to show how hybrid systems including discrete

events can be modelled and simulated in bond graph framework.

• As to hydraulic systems, in general, it is sufficient and appropriate to use a hy-

drostatic approach. That is, the hydrostatic pressure is chosen as an effort and the

amount of hydraulic power is approximated by the product of hydrostatic pres-

sure and volume flow. This assumption has been used in the fluid level control of

a three tank system.

• The bond graph model-based approach to FDI presented in Section 6.8 has been

illustrated by means of the often used hydraulic two tank system.

• Finally, two small examples including the well known heated stirred tank prob-

lem (Section 12.12) and a counterflow heat exchanger (Section 12.13) have been

chosen to illustrate the practical use of the pseudo bond graph approach.

In this presentation of a number of small case studies from various disciplines, em-

phasis has been on bond graph modelling. It has not been the aim to show how ex-

isting software can support bond modelling and simulation of the examples. There

is one exception with the consideration of dry friction in a suspension leg. For this

example, it has been shown in some detail how such a hybrid model, actually, can

be computed by means of the open source mathematical software Scilab and the use

of an ODE solver with root finding capability.

As to large bond graph models of complex systems, it is clearly beneficial to

have some software available that supports a hierarchical modelling approach, pro-

vides component model libraries, can automatically set up model equations and can

manipulate them symbolically before numerical solution is performed. For models

of small up to medium size, an ordered set of model equations can also be derived

manually from a causal bond graph in a systematic manner and can be directly for-

mulated, e.g. in the script language of Scilab.
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Sciences et Technologies de Lille, Lille, France, 1997.

[11] J. Garcia-Gomez, G. Dauphin-Tanguy, and Ch. Rombaut. Average bond graph models of

dc/dc power converters. In J.J. Granda and F.E. Cellier, editors, Proc. of the 1999 Inter-
national Conference on Bond Graph Modeling and Simulation, volume 31(1) of Simulation
Series, pages 338–343. SCS, 1999.

[12] P.J. Gawthrop and E. Ronco. A Sensitivity Bond Graph Approach to Estimation and Control

of Mechatronic Systems. Technical Report CSC-99018, Centre for Systems and Control,

Univ. of Glasgow, Faculty of Engineering, Dec 1999.

[13] P.J. Gawthrop and L. Smith. Metamodelling: Bond Graphs and Dynamic Systems. Prentice

Hall International (UK) Limited, Hemel Hempstead, 1996. ISBN: 0-13-489824-9.

[14] A.C. Hindmarsh. ODEPACK A Systemized Collection of ODE Solvers. Preprint UCRL-

88007, Lawrence Livermore National Laboratory, August 1982.

[15] J. Hoffmann. MATLAB und Simulink – Beispielorientierte Einführung in die Simulation
dynamischer Systeme. Addison-Wesley, 1998.

[16] D.C. Karnopp. Lagrange’s Equations for Complex Bond Graph Systems. ASME Journal of
Dynamic Systems, Measurement, and Control, 99(4):300–306, December 1977.

[17] D.C. Karnopp, D.L. Margolis, and R.C. Rosenberg. System Dynamics - Modeling and Sim-
ulation of Mechatronic Systems. John Wiley & Sons Inc., Fourth edition, 2005. ISBN:

0-471-70965-4.
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Chapter 13
Overall Conclusion and Outlook

The objective of this book has been to present the variety of features, the potential

and the state-of-the-art of the bond graph modelling methodology in a comprehen-

sive way. To keep the size of the book manageable, some topics had to be excluded.

In the beginning of bond graph modelling, it was obvious that some books pointed

out relations between bond graph modelling and more traditional modelling ap-

proaches. Since then, a number of textbooks on bond graph modelling have emerged

from the community of bond graph modellers and this book, among them, is exclu-

sively devoted to the various facets of bond graph methodology.

One of the essential features of bond graph methodology is that it supports the

early phase of conceptual modelling.

• Word bond graphs are able to account for and describe physical effects and their

relations first of all in a qualitative manner.

• Submodel templates, to be specified in more detail, can be connected according

to the way corresponding real subsystems or real system components are linked.

• The stepwise systematic refinement of word bond graphs enables the develop-

ment of hierarchical modular models. Submodels can be built up either from

basic bond graph elements, or by choosing submodels from engineering domain

specific libraries. Once a hierarchical modular model has been composed, several

approaches can be used to remove unnecessary complexity and to come up with

a proper model of reduced complexity that is sufficiently accurate for a given

engineering task.

• The interconnection of bond graph submodels according to the physical struc-

ture of a system anticipates one aspect of object-oriented modelling, namely that

equations describing a submodel must be non-causal and that the classification

of variables into input and output variables results from the interconnection of

submodels.

As a consequence of the latter aspect, many up-to-date software packages support-

ing bond graph modelling perform some formulae manipulation during model pro-

cessing before simulation code is generated. Chapter 11 demonstrated how object-

643



644 13 Overall Conclusion and Outlook

oriented modelling languages can be used for the description of hierarchical modu-

lar bond graph models.

Another essential and powerful feature of bond graph methodology is the con-

cept of computational causality. It appears that this is sometimes underestimated by

those who prefer a network approach and who rely on the symbolic preprocessing

and the numerical solution of DAE systems. Actually, (automatic) assignment of

computational causalities provides considerable insight into features of the model

as demonstrated in Chapters 3–6.

• There are several causality assignment procedures. Depending on the way com-

putational causalities are assigned and depending on the model, either state space

models, equations in descriptor form, or Lagrange equations can be derived.

• Before writing any equations, inspection of a causally completed bond graph can

provide information about the form of the mathematical model. If it will take

the form of a DAE system, inspection of causal paths can reveal information

about its structural index as has been shown by van Dijk. By considering causal

paths and their associated topological loops, modellers can decide whether de-

pendent stores or algebraic loops can be avoided by reasonable modifications of

the models, or if the model should be left for numerical solution by a DAE solver.

Up-to-date advanced modelling and simulation software can handle these cases

to some extent automatically by applying some symbolic formulae manipulation

where possible and by performing numerical iteration where necessary. Conse-

quently, depending on the settings, such software programs mostly will just issue

warnings instead of error messages.

• Chapter 6 shows that a bond graph, in fact, can serve as a core model representa-

tion from which not only equations for time domain analysis can be derived, but

also transfer functions, equations of the inverse system, parameter sensitivities, or

state equations for robustness study. Moreover, inspection of causal bond graphs

can reveal information about structural properties, e.g. structural controllabil-

ity and structural observability. Furthermore, bond graph modelling can support

model-based fault detection and isolation.

In Chapter 5, it is shown that identification of tearing variables in causal bond

graphs can support the partitioning of large sets of algebraic constraints into a num-

ber of coupled smaller sets of equations. If the equations are linear in the tearing

variables, they can be solved symbolically. As a result, a set of ODEs instead of a

DAE system has to be solved. If the resulting ODE system is supposed not to be

stiff, an explicit integration method can be chosen. Otherwise, at least the advantage

remains that at each time, the set of equations to be solved by Newton-Raphson

iteration has been reduced.

The aim of including the abstraction of discontinuous system behaviour into bond

graph modelling has lead to a number of approaches. None of them has prevailed as

a standard method so far. Some authors use the ideal switch as another basic bond

graph element and dismiss the concept of fixed causalities assigned once before

a simulation run. Consequently, after each discrete event, when a switch state has
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changed, the impact of the causality change at this switch on the rest of the bond

graph must be checked [1, 21].

In contrast, Section 7.3 proposes to use (for each system mode given by a certain

configuration of all switch states) a bond graph model and to represent the different

system modes and transitions between by an associated Petri net. A disadvantage

of this and related approaches using Petri nets or finite state machines is that the

number of possible combinational system modes and transitions between them sig-

nificantly increases with the number of switches. However, actually not all combina-

tional modes are physically feasible. Thus, the task remains to identify all physical

feasible system modes and transitions between them. For each system mode, a bond

graph model with standard bond graph elements can be set up in a usual way. As

a result, a system is not represented by one single bond graph, but by a number of

bond graphs and a global Petri net. The approach is feasible and of advantage if the

number of elements is small that give rise to an approximation of their fast transients

by an instantaneous discontinuous change of state.

A possible alternative is to use a single bond graph in which some sources at the

advent of an instantaneous discontinuous change of the system state assume val-

ues such that some degrees of freedom are either switched off or are reestablished.

The consideration of several approaches in Chapter 7 shows that the abstraction of

instantaneous discontinuous changes between states can be included into a bond

graph modelling framework. Yet, some authors consider the concept of computa-

tional causalities oversold with regard to hybrid system models.

Publications of Sueur and Dauphin-Tanguy as well as those of other authors have

shown that inspection of causally completed bond graphs of models with invariant
structure can provide information about structural properties such as structural ob-

servability and structural controllability which are prerequisites of the observability

and controllability of a system.

Samantaray, Bouamama and Staroswiecki as well as other authors have shown

how bond graph modelling can be used for fault detection and isolation (FDI). On

the other hand, several approaches have been proposed on how to deal with the

abstraction of instantaneous state transitions in a bond graph framework. There is

ongoing research to extend the analysis with regard to structural properties [20] as

well as advances regarding fault diagnosis to hybrid systems models [7, 15, 16].

Furthermore, bond graph methodology, in fact, has the potential for a broad appli-

cation across different engineering disciplines and allows for a unified description

of multidisciplinary systems. This becomes evident by the chapters on modelling

multibody systems with rigid bodies, distributed parameter models and on open

thermodynamic systems and by the small case studies from various disciplines in

Chapter 12.

Today’s concurrent system design increasingly considers entire complex con-

trolled systems. Consequently, systems to be designed are inevitably multidisci-

plinary. Thus, methodologies supporting modelling of multidisciplinary dynamic

systems become more and more important. From this point of view, bond graph

methodology, although almost 50 years old, is receiving new additional attention.
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It is true that there are well known software programs, e.g. Adams®, for the com-

putation of mechanical structures and other powerful software for modelling and

simulation of hydraulic systems, or Spice for electronic circuit simulation. How-

ever, these programs require domain specific model descriptions and account for

components from other domains only in a limited way. On the other hand, if a me-

chanical structure with parts to be represented by a distributed parameter model is

driven by hydraulic actuators, then the overall system can be represented uniformly

by a bond graph. Such a model then can be graphically entered and processed in

modelling and simulation environments like SYMBOLS Shakti™ or 20-sim®.

In Chapter 8, first, multibond graph modelling of multibody systems as proposed

by Bos is presented. That is, translational motion of bodies assumed to be rigid is

referred to an inertial frame, while the rotation of a body is described with reference

to a body fixed frame. Moreover, bond graph modelling of multibody systems can

also be used for the joint coordinate method in order to generate a minimal set of

equations of motion for systems with tree-like structure having no kinematic loops.

In Chapter 10 on open thermodynamic systems, two details in hydraulic compo-

nents have been considered that sometimes have given rise to an ad hoc description

in the literature. It has been shown that the energetically incorrect description of an

oil filled variable chamber of a hydraulic cylinder by means of a C element con-

trolled by the displacement of the piston can be replaced by an energy conservative

2-port C energy store. Moreover, under some simplifying assumptions, a bond graph

model of the hydraulic mechanical interaction of the jet stream with the valve in a

spool valve control orifice has been developed that is consistent with conservation

laws for mass, momentum and energy.

This monograph on bond graph methodology aims at a comprehensive and self

contained presentation while at the same time concentrating on a number of topics

in order to deal with them in sufficient depth. Beyond the considered topics, there

are a number of other engineering domains in which bond graph methodology can

be applied as well as areas in which bond graph modelling is a subject of ongoing

research. For instance, bond graph modelling of the complex fluid mechanical, bio-

chemical processes in sewage plants is considered a subject of further research. As

Chapter 10 on open thermodynamic systems has shown, there are different possible

ways to represent intrinsic interactions between mass, energy and momentum. In a

1993 conference paper, Brooks and Cellier [3] expressed their confidence that “bond

graphs do point the way towards the nature of the requisite research”. Since then,

further results have been published (see for instance [4, 14, 23], or [12], Chapter 8

on process systems, or the recent textbook of Samantaray and Bouamama on model-

based process supervision [22]).

Further application areas that are beyond the scope of this book on bond graph

methodology are, e.g. chemical reaction kinetics or qualitative reasoning in the over-

lap of artificial intelligence and engineering disciplines. In his 1991 textbook on

continuous system simulation, Cellier [5] devoted an entire chapter to bond graph-

based modelling of chemical reaction kinetics.

Regarding bond graph modelling of biophysical systems, an article of Oster,

Perelson and Katchalsky [17] was published in as early as 1973. One of the lat-
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est publications in this field is the contribution of V. Diaz and her co-workers [8]

in the 2009 special issue on bond graph modelling of the journal Simulation Mod-
elling Practice and Theory [2]. By connecting a 3D model of the mitral valve to a

bond graph model of the left ventricle, the authors demonstrate that the bond graph

methodology is not only suited for the development and the analysis of mecha-

tronic engineering systems, but also has the potential to even support physiological

modelling with complex mechanical, hydraulic and biochemical interactions. Al-

though the bond graph model is rather simple and modelling in this area certainly

faces considerable challenges, the paper shows that the bond graph methodology is

a promising approach to the development of lumped parameter component models

for physiological systems.

Besides engineering systems such as industrial robots and all kinds of mobile

robots including walking machines, a subject of further research and progress in

bond graph modelling is expected to be the human body musculoskeletal system. In

this area, Selk Ghafari et. al. presented a paper in 2007 [13].

Xia, Linkens and Bennett, for instance, published on the integration of qualitative

reasoning and bond graph modelling [26].

Concluding this monograph on bond graph methodology, we come back to Pro-

fessor Paynter and the vision he expressed in the preface of the proceedings of the

first international conference on bond graph modelling in 1992.

I remain convinced that BG models will play an increasingly important role in the upcom-

ing century, applied to chemistry, electrochemistry and biochemistry, fields whose practical

consequences will have a significance comparable to that of electronics in this century.

Textbooks on thermal and chemical engineering have been authored by Thoma and

Bouamama in 2000 [23] and Thoma and Mocellin in 2006 [24]. Examples of the

latest publications in the area of chemistry and electrochemistry are the Ph.D. thesis

of Franco [11], the paper of Esperilla and his coworkers on bond graph modelling

of lead-acid batteries [9], the article of Couenne and her coauthors on bond graph

modelling of chemical reactors [6], and the Ph.D. thesis of Vijay on true bond graph

modelling, simulation and control of a fuel cell [25].

Another field in which bond graph modelling is anticipated to play an increasing

role is medical engineering as there is an increasing use of micro-scale mechatronic

devices. Recently, Pirvu and her coworkers applied bond graph modelling in the

redesign of a hand held medical instrument that is used for the diagnosis of ear

diseases [19]. In [18], bond graph modelling has been applied in the design of a

behind-the-ear hearing aid. The near future is likely to show further applications of

bond graph modelling in medical engineering.

Beyond miniaturised multi-energy domain systems in medical engineering, a fur-

ther potential area for application of the bond graph methodology are micro-electro-

mechanical systems (MEMS) (see for instance [10]).
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Glossary

In this glossary, some of the notions introduced in the text are listed in alphabetical

order along with their explanation.

Acausal bond graph An acausal bond graph is a directed bond graph. That is,

reference directions for the energy flows have been defined but not computational

causalities. p. 94

Activated bond A bond is called activated if one of its power conjugated variables

is set zero for all time instances. p. 95

Admissible numerical realisation of a structural matrix Let [A] be a structural

matrix. A matrix A is called an admissible numerical realisation of [A] (for short

A ∈ [A]) if all entries of indeterminate value are replaced by entries of particular

numerical values. p. 240

Algebraic loop If the variables of a topological loop dependent algebraically on

themselves, viz. no integration with respect to time is involved, then the topological

loop is called an algebraic loop. p. 132

Bipartite graph In a bipartite graph, variables as well as equations are represented

by nodes. If a variable appears in an equation, their corresponding nodes are con-

nected by an undirected edge. p. 90

Bond loop or mesh A closed cascade of bonds is called a bond loop, a mesh, or a

general mesh. p. 109

Causal bond graph A directed bond graph is called a causal or causally completed

bond graph if a decision with regard to computational causality has been made for

each bond expressed by a perpendicular causal stroke added to one end of each

bond. p. 94

Causal conflict of type 1 In this case, there is no bond that determines the common

variable of the junction. At a 1-junction, the causal stroke of all adjacent bonds point

towards the 1-junction. At a 0-junction, the causal stroke at all adjacent bonds is

pointing away from the junction. p. 164
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Causal conflict of type 2 and degree k If there are k + 1 bonds that want to

determine the common variable of a junction, then there is a causal conflict of type 2

and degree k. That is, at a 1-junction not one, but k+1 flows are input to the junction,

while at a 0-junction, k+1 instead of only one single effort are input to the junction.

p. 164

Causal loop If the bonds of a causal path only connect elements of the junction

structure and if the causal path is closed, then it is called a causal loop. p. 110

Causal loop gain The gain of a causal loop is the loop gain of the two topological

loops of opposite orientation associated of the causal loop. p. 149

Causal mesh A causal mesh is a closed causal path with an odd number of gyra-

tors. p. 110

Causal path A sequence of bonds from one power port of an element to a power

port of another element is called a causal path if there is no 2-port gyrator in between

and if all bonds have their causal stroke at the same end.

A cascade of bonds between two power ports with a gyrator in between is called

a causal path if all bonds on one side of the gyrator have there causal stroke at the

same end, while all bonds on the other side of the gyrator have their causal stroke

on the opposite end. That is, the gyrator switches the direction of efforts on one of

its sides. p. 109

Complete state controllability The state x(t) is said to be controllable at time

t = t0 if there exists a piecewise continuous input function u that causes the state

vector to move to any final value x(tf ) in a finite time tf > t0. If each state x0 is

controllable, then the system is said to be completely state controllable. p. 241

Complete observability A system is said to be completely observable if for each

initial state x(t1) at time instant t1, there is a time t2 > t1 such that x(t1) can be

found from the known input vector u(t) and the output vector y(t) measured over

the interval of time [t1, t2]. p. 245

Dimension of the state vector It is assumed that kinematic displacements are not

needed to describe the dynamic behaviour of a system. Then, the dimension of the

state vector equals the number of I and C ports. p. 119

Directed bond graph A bond graph is called a directed bond graph if a half arrow

has been added to each bond indicating the positive reference direction of the energy

flow across the bond. p. 29

Disjoint causal paths Causal paths that do not share any bonds are called disjoint.
p. 109

Environmental elements All elements that do not belong to the general junction

structure are called environmental elements p. 42
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External bond A bond is called an external bond if it connects a 0- or 1-junction

to a power port of an element that does not belong to the simple junction structure.

p. 35

Flat loop A topological loop is called a flat loop if both opposite signals of each

bond being part of the causal path or causal loop are involved in the signal flow

loop. p. 132

General junction structure A bond graph with nodes of type 0,1, (M)TF, (M)GY

is called General Junction Structure (GJS). p. 42

Index of a matrix A quadratic matrix M is called nilpotent if there is positive

integer k such that Mk = 0.

If M is a nilpotent matrix, then the smallest positive integer ν for which Mν = 0
and Mν−1 �= 0 is called the index of nilpotency. p. 135

Influence coefficient The influence coefficient of a junction structure node is the

ratio of the output variable to the input variable for a particular signal flow loop

fragment associated with two adjacent bonds of opposite causal orientation. p. 148

Internal bond A bond is called an internal bond if it connects a 0- or 1-junction to

another 0- or 1-junction. p. 35

Internal modulation If a bond graph element is modulated by a power variable,

then it is said to be internally modulated. p. 158

Inverse system Let S denote a system; let u be the vector of all inputs to S and y
the vector of outputs of S. Then, the inverse system SI is the system that provides

the signals u as a response yI = u to the input signals uI = y. p. 235

Junction structure A bond graph in which bonds connect only nodes that instan-

taneously transfer or distribute power (without energy storage or conversion into

heat) is called Junction Structure (JS). p. 30

Loop gain of a topological loop The loop gain of a topological loop is the product

of all influence coefficients. p. 149

multiport A bond graph node is called a multiport if it has more than one port.

p. 21

Open loop A topological loop that uses only one of the opposite signals of some

or all bonds in a causal path is called an open loop. p. 132

Order of the set of differential equations The order of the set of differential equa-

tions is equal to the number of independent state variables. p. 119

Order of the model It is assumed that kinematic displacements are not needed to

describe the dynamic behaviour of a system.

If integral causality has been assigned as preferred causality to the power ports

of storage elements, then the order of the model is the number of power ports of

energy stores with integral causality. p. 119
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Order of a topological loop The order of a topological loop denotes the number of

remaining integrators involved in the causal path. If there is no remaining integration

in the causal path, then the topological loop is called a zero-order loop. p. 132

Power port The connection points of a bond graph node that enable the energy

exchange with other nodes across a power bond are called power ports. p. 20

Simple junction structure A bond graph is called a simple junction structure or

Kirchhoff junction structure, if each node is either a 0- or 1-junction. p. 35

Simple even (odd) mesh A simple mesh is called even (odd) if an even (odd)

number of its bonds has the same energy flow reference direction in a clock-wise or

counter-clockwise sense. p. 110

Simple mesh A bond loop is called a simple mesh if it includes no transformers,

no gyrators, and no 2-port energy stores or 2-port resistors. In other words, a simple

mesh is a loop of bonds that interconnect alternately 0- and 1-junctions. p. 109

State variable, System state Suppose there are p inputs u1, . . . , uq to a dynamic

system and n intermediate variables x1, . . . , xn. Moreover, physical laws may yield

n differential equations

ẋi(t) = fi(x1(t), . . . , xn(t);u1(t), . . . , up(t)) i = 1, . . . , n .

Let t0 ≥ 0 an arbitrary time point. For all times t ≥ t0, values u1(t), . . . up(t) of all

p system inputs may be known. Then, n intermediate variables x1(t), . . . , xn(t) are

called state variables if they are uniquely determined for all times t > t0 provided

their initial values x1(t0), . . . xn(t0) are given. The set of all values x1(t), . . . xn(t)
at a time instant t ≥ 0 is called the state of a system. p. 104

Strong (weak) causal determination of a junction A bond imposes a strong
causal determination on a junction J it is connected to if one of its power conju-

gate variables determines the variable common to all remaining adjacent bonds.

Otherwise, the bond gives a weak causal determination to the junction. p. 145

Structurally complete state controllability A linear time-invariant MIMO system

with matrices A and B is said to be structurally completely state controllable if

there is at least one numerical admissible realisation A of the structural matrices

[A] and one admissible realisation B of [B] for which the system is completely

state controllable. p. 241

Structurally complete observability A linear time-invariant MIMO system with

matrices A and C is said to be structurally completely observable if there are nu-

merical admissible realisations A ∈ [A] and C ∈ [C] for which the system is

completely observable. p. 246

Structural matrix A structural matrix [A] is determined by the number and the

position of its non-zero entries. The latter are considered of indeterminate value and

independent of each other. They are denoted by the symbol ∗. p. 240
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Topological loop A topological loop is a signal flow loop along a causal path or a

causal loop. The causal path must not begin or end at an ideal source. p. 131

Topological path A topological path is a part of a topological loop. It is a signal

flow graph fragment that represents bond variables and constitutive relations being

part of a causal path. p. 132

Undirected bond graph An undirected bond graph is an undirected graph whose

vertices denote subsystems, components, or basic elements, while the edges called

(power) bonds represent the instantaneous energy flows between nodes. p. 17

Weighted junction structure A bond graph with with nodes of type 0,1, (M)TF is

called a Weighted Junction Structure (WJS). p. 42

Word bond graph A bond graph is called a word bond graph if its vertices rep-

resent subsystems or components and are denoted by a word or an alphanumeric

symbol. p. 20
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