
 

 

4 Introduction to Software Complexity 

At the end of the previous chapter, five categories of complexity factors that 

would serve as a starting point to deterministically evaluate the complexity of pro-

ceduralized tasks were identified. As In this chapter, software complexity meas-

ures will be explained as a theoretical basis for quantifying the complexity of pro-

ceduralized tasks. In this regard, it may be necessary to start this chapter by 

examining why software complexity must be considered in order to quantify the 

complexity of proceduralized tasks. 

4.1 Software Complexity 

We live in a very convenient time, and our lives are made easier by various kinds 

of computer technologies. For example, (1) we can buy a book from an online 

bookstore managed by powerful mainframes as well as sophisticated software, (2) 

we can produce merchandise using a fully automated machine controlled by well-

structured software, and (3) we can even operate on a patient using a robot that is 

manipulated by precise software. However, in order to enjoy these conveniences 

we must secure reliable software that is able to perform all the required functions 

we want. For this reason, allied industries have been spending a tremendous 

amount of money and other resources to develop reliable software.  

From this standpoint, one of the canonical approaches is to manage the com-

plexity of software, because it directly affects software maintainability. Carver 

(1987) pointed out that the maintainability of software is a kind of quantitative 

measure that makes it possible to evaluate how easy it is to understand given soft-

ware. Similarly, Gibson and Senn (1989) stated that maintainability is defined as 

the ease with which systems can be understood and modified (p. 348). Although 

there are other definitions about maintainability, it is evident that maintenance is 

one of the crucial aspects determining the reliability of software, because it con-

tains all kinds of software engineering activities required after the implementation 

of software. Carver (1987) summarized these activities as follows: 

These distinct categories of maintenance can be identified: (1) corrective maintenance, (2) 

adaptive maintenance, and (3) perfective maintenance. Corrective maintenance is the 

diagnosis and correction of latent software errors. It is required when errors undiscovered 

during testing and debugging are found. Since a correct program is rare, latent errors are 

common. The errors may vary in impact from trivial to critical. In any case, the code must 
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be modified to correct the error. Adaptive maintenance is maintenance due to changes in 

the external environment of a program. New generations of hardware and later releases of 

software are among causes of adaptive maintenance. Perfective maintenance is 

maintenance intended to enhance the system to meet the changing needs of the user. It 

includes modifications of existing functions, inclusion of general enhancements, and 

modifications for improved system performance (p. 299). 

Therefore, if a new error is introduced in the course of performing software 

maintenance activities, the increase in maintenance costs is unavoidable (Cant et 

al. 1995; Carver 1987; Gibson and Senn 1989; Hops and Sherif 1995; Lew et al. 

1988; Soi 1985). A more serious problem is that the possibility of undesired con-

sequences will increase in proportion to the increase of the possibility of software 

malfunctions. As a result, since the early 1970s, diverse research projects on soft-

ware complexity have been conducted in order to quantitatively control as well as 

predict the complexity of software, because it has been revealed that maintenance 

personnel are apt to show impaired performance when they have to deal with 

complicated software (Curtis et al. 1979; Davis and LeBlanc 1988; Kafura and 

Reddy 1987; McCabe and Butler 1989; Rombach 1987).  

It is worth emphasizing that one of the major purposes of quantifying the com-

plexity of software is to evaluate its understandability. For example, Gibson and 

Senn (1989) stated that the more complex system is, the more difficult it is to un-

derstand, and therefore to maintain (p. 347). Similarly, Carver (1987) pointed out 

that “Ease of understanding decreases as program complexity increases. Since 

complexity is a measure of the effort to comprehend, to maintain and to test soft-

ware, the level of complexity of a program affects the maintainability of a pro-

gram (p. 299).”  

Moreover, Davis and LeBlanc (1988) articulated that “Available evidence and 

the opinion of many experts strongly suggest that programmers do not understand 

programs on a character by character basis. Rather they assimilate groups of 

statements which have a common function (p. 1366).”  

This means that a theoretical framework quantifying the complexity of soft-

ware can be used for quantifying the complexity of proceduralized tasks because 

(1) software complexity mainly deals with the level of understandability of soft-

ware and (2) understandability in software complexity focuses not on reading 

comprehension (i.e., WR, CR and CMP) but on task comprehension, which affects 

the performance of tasks to be done by qualified operators (i.e., TP). Actually, this 

is not a new idea, because other researchers have already tried to apply software 

complexity measures to evaluating the complexity of supervisory control tasks 

(Murray and Liu 1994) and vice versa (Darcy et al. 2005). Therefore, it is very 

helpful to scrutinize the applicability of software complexity measures to quantify-

ing the complexity of proceduralized tasks. 

4.2 Software Complexity Measure 

Many kinds of unique measures that are capable of quantifying the complexity of 

software from diverse viewpoints have been suggested for several decades. How-
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ever, without loss of generality, software complexity measures fall into one of the 

following four categories: (1) those based on the size of the software, (2) those 

based on the data structure of the software, (3) those based on the control structure 

of the software, and (4) a combination of the first three measures (Carver 1987; 

Coskun and Grabowski 2001; Davis and LeBlanc 1988; Fenton and Neil 1999; 

Gonzalez 1995; Hops and Sherif 1995; Huang and Lai 1998; Khoshgoftaar et al. 

1997; Lakshmanan et al. 1991; Soi, 1985).  

First, one of the representative measures belonging to the first category is the 

line of code (LOC). This measure is very clear and straightforward because it is 

strongly expected that the longer the software source code, the greater the com-

plexity of the software. Another typical measure is Halstead’s E measure, which 

considers the frequencies of occurrence of operators as well as operands included 

in source code. Figure 4.1 illustrates how to quantify the value of Halstead’s E 

measure with respect to an arbitrary source code. 

Source code Operator Frequency Operand Frequency 

IF (A = 0) THEN 

 A = B; 

ELSE 

 A = C; 

; 2 A 3 

= 3 B 1 
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IF 1   

THEN 1   

ELSE 1   
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1η = Number of unique operators = 6 

2η = Number of unique operands = 3 

1N = Total number of operators = 9 

2N = Total number of operands = 5  
Fig. 4.1 Quantifying the value of Halstead’s E measure (Park et al. 2001, © Elsevier) 

Second, the complexity of software can be quantified from the point of view of 

a data structure. Regarding this, it would be interesting to quote Wirth (1985):  

Yet, it is abundantly clear that a systematic and scientific approach to program 

construction primarily has a bearing in the case of large, complex programs which involve 

complicated sets of data. Hence, a methodology of programming is also bound to include 

all aspects of data structuring. Programs, after all, are concrete formulations of abstract 

algorithms based on particular representations and structures of data (p. 7).  

This strongly suggests that complicated software requires complicated data 

structures as well as huge amounts of data. Accordingly, the complexity of data 

structures should be a good measure for quantifying the complexity of software. 

For this reason, many kinds of complexity measures that are able to deal with the 

complexity of data structures have been suggested. One of the typical measures is 

the depth of a data structure graph (Gonzalez 1995). Here, data structure graph 
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means a graph that consists of nodes and arcs, where nodes denote data entities 

and arcs represent the relationship between nodes. For example, the hierarchical 

level of an arbitrary data structure shown in Fig. 4.2 is three due to the existence 

of a linear array (refer to the area surrounded by dotted lines). 

Data record Data structure graph 

Person = RECORD 

 Name: Array of Character; 

 Gender: Character; 

 Age: Integer; 

END 

Person

Array

Char-
acter

Name Age

Integer
Data 
type

Representing 
array 

structure

Gender

Char-
acter

  

Fig. 4.2 Example of a data structure graph 

Third, much work has been done considering the effect of a control flow graph 

on the complexity of software. Here, control flow graph (also called a program 

control graph) means a directed graph that has a unique entry and exit node, which 

is very similar to the flowchart of software (Baker 1978; Lakshmanan et al. 1991). 

In a control flow graph, each node denotes a block in source code that performs a 

specific function, and each arc represents a branch taken between nodes (Rama-

murthy and Melton 1988). Therefore, it is very straightforward to expect that the 

complexity of software will be proportional to the complexity of the control flow 

graph.  

One of the canonical measures belonging to this category is McCabe’s cyclo-

matic complexity ( v ), which can be calculated by pnev 2+−= . Here, e, n, and p 

denote the number of edges (i.e., arcs), the number of nodes, and the number of 

connected components included in an arbitrary control flow graph, respectively. 

More simply, it was found that v  is equal to the number of decision nodes plus 

one (McCabe and Butler; 1989). Therefore, from the point of view of McCabe’s 

cyclomatic complexity, the complexity of two control flow graphs shown in Fig. 

4.3 is identical, because they have two decision nodes. 

Lastly, it is possible to measure the complexity of software by combining two 

or more complexity measures that belong to the aforementioned categories. For 

example, Ramamurthy and Melton (1988) and Curtis et al. (1979) suggested novel 

measures based on the integration of Halstead’s E measure with McCabe’s cyclo-

matic complexity. In addition, Bail and Zelkowitz (1988) and Oviedo (1980) sug-

gested software complexity measures by simultaneously considering the control 

flow graph and the data structure graph of software. 
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Graph G Graph G’ 

Fig. 4.3 Two control flow graphs with the same McCabe’s cyclomatic complexity 

Here, it is important to point out that there is another complexity measure that 

belongs to this category. That is, instead of combining several complexity meas-

ures that quantify the complexity of software using different methods, a new 

measure can be developed based on the integration of submeasures quantifying the 

complexity of software with an identical method. A typical example is a measure 

based on the concept of graph entropies because, as illustrated in Figs. 4.2 and 4.3, 

many graphic representation techniques have been used to analyze the characteris-

tics of software. 

4.3 The Concept of Graph Entropies 

Traditionally, the entropy concept has been widely adopted in various research 

areas because it is very useful for expressing the degree of complexity (Shannon 

1948). For this reason, including a series of works done by Mowshowitz (Mow-

showitz 1968a-d), many researchers have expended considerable effort to quantify 

the complexity of software using the concept of graph entropies (Davis and LeB-

lanc 1988; Huang and Lai 1998; Gonzalez 1995; Lew et al.1988). For example, let 

us consider the definition of the first-order and the second-order entropy suggested 

by Davis and LeBlanc (1988).  

In order to quantify the first order entropy, the classes of nodes in a control 

flow graph should be identified based on their in- and out-degree as they appear. If 

there are nodes that share the same in- and out-degree, then they are regarded as 
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nodes belonging to an equivalent class. In this regard, Fig. 4.4 depicts how to 

quantify the first-order entropy of two arbitrary graphs shown in Fig. 4.3. 

Graph Class In-degree Out-degree Node 

Start

a b

c

d f

e

End

 

I 0 1 {Start} 

II 1 1 {b, c, e, f} 

III 1 2 {a } 

IV 2 0 {End} 

V 2 2 {d} 

Ai =Number of nodes belonging to the ith distinctive class 

N =Total number of nodes in a graph 

h =Number of distinctive classes 

pi = Estimated probability of the ith distinctive class = Ai/N 

The first-order entropy of graph G = H1(G) 2log
h
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Class In-degree Out-degree Node 

I 0 1 {Start} 

II 1 0 {End} 

III 1 1 {b, c, e} 

IV 1 2 {a} 

V 2 1 {f} 

VI 2 2 {d} 
 
The first-order entropy of graph G’ = H1(G’) 
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Fig. 4.4 The first order entropy of two arbitrary control flow graphs 

In Fig. 4.4, it is apparent that all the nodes included in a graph G fall into the 

following classes: {Start}, {b, c, e, f}, {a}, {End}, and {d}. Accordingly, the 

number of distinctive classes denoted by h is five. In addition, the probability of 

each class is 1/8, 4/8, 1/8, 1/8, and 1/8, respectively. In this way, h and the proba-

bility of the associated classes can be calculated with respect to the graph G’. As a 

result, the first-order entropy of graphs G and G’ is 2.000 and 2.406, respectively. 

From the point of view of the logical entanglement of control flow graphs, the 

value of the first-order entropy is very interesting, because the logic structure of 

graph G’ seems to be more complicated than that of graph G. Intuitively, this re-

sult is meaningful, because a control flow graph that consists of many equivalent 

nodes will tend to have a lower first-order-entropy value. In other words, if there 

is a kind of regularity in a control flow graph, it is expected that the value of the 

first-order entropy will be reduced because of the repetition of similar execution 
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patterns, which results in an increase of the number of nodes belonging to identic-

al node classes. In contrast, the value of the first-order entropy will increase due to 

irregular execution patterns, because the number of distinctive classes that are ne-

cessary to express the irregularity of execution patterns will increase. This means 

that the effect of logical entanglement on the complexity of software can be quan-

tified by the first-order entropy. 

Similarly, the second-order entropy can be calculated except for the class iden-

tification scheme. That is, nodes are considered to be equivalent if they share iden-

tical neighbors within one arc distance. The intention of this classification scheme 

is to express the amount of information that is needed to describe each node posi-

tion, since the comprehension of a control flow graph becomes difficult with re-

spect to the increase in the number of distinctive classes. For example, let us con-

sider Table 4.1, which shows the distinctive classes of two control flow graphs G 

and G’, which are necessary to calculate the values of the second-order entropy. 

Table 4.1 Distinctive classes of two control flow graphs 

Graph G Class Graph G’ 

Node Neighbor node Node Neighbor node 

{Start} {a} I {Start} {a} 

{a} {Start, b, c} II {a} {Start, b, d} 

{b, c} {a, d} III {b} {a, c} 

{d} {b, c, e, f} IV {c} {b, d} 

{e, f} {d, End} V {d} {a, c, e, f} 

{End} {e, f} VI {e} {d, f} 

– – VII {f} {d, e, End} 

– – VIII {End} {f} 

Based on the results of node class identifications summarized in Table 4.1, the 

values of the second-order entropy of two graphs can be calculated as below. 

The second-order entropy of graph G = H2(G)  
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As can be seen from the above results, the value of the second-order entropy 

will increase in proportion to the increase in the number of nodes because the 

meaning of each node position becomes more unique. This means that more effort 

is required to understand the contents of software that consists of many nodes. 

Therefore, the second-order entropy of a control flow graph can be used to meas-

ure the effect of size on the complexity of software. 

Here, it should be noted that the second-order entropy can be used to quantity 

the amount of information pertaining to a data structure graph. In other words, if 

the second-order entropy of an arbitrary graph implies the amount of information 

needed to understand its contents, the second-order entropy of a data structure 

graph can be used to measure the effect of the data structure on the complexity of 

the software. Therefore, based on the concept of graph entropies, it is possible to 

define a novel measure of software complexity. For example, Lew et al. (1988), 

Gonzalez (1995), and Huang and Lai (1998) proposed a novel measure by inte-

grating several complexity measures quantified by the concept of graph entropies. 

4.4 Selecting Appropriate Measures 

At the end of Sect. 4.1, it was pointed out that software complexity measures 

could be used for quantifying the complexity of proceduralized tasks. The easiest 

way to do this is to use the associated software complexity measure that is able to 

evaluate one of the task complexity factors. For example, let us look at Table 4.2, 

which compares five kinds of task complexity factors with the associated software 

complexity measures. 

Table 4.2 Comparing task complexity factors with the associated software complexity measures 

Task complexity factor Software complexity 

measure based on 

Example 

Amount of information Data structure of software The hierarchical level of a data 

structure graph 

Number of actions Size of software Halstead’s E measure 

Logical entanglement Control structure of soft-

ware 

McCabe’s cyclomatic com-

plexity 

Amount of domain knowledge – – 

Level of engineering decision – – 

Table 4.2 suggests that we should be able to use Halstead’s E measure to quan-

tify the effect of the number of actions on the complexity of proceduralized tasks, 

because this related to the size of software, which would be directly comparable to 

the size of proceduralized tasks (i.e., number of actions to be conducted by quali-

fied operators). Similarly, McCabe’s cyclomatic complexity, which evaluates the 

logical entanglement of the control structure of software, would be a good alterna-
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tive to quantify the effect of logical entanglement on the complexity of procedura-

lized tasks.  

Unfortunately, there are three critical problems in this approach. First, there is 

no corresponding software complexity measure that is capable of evaluating the 

effect of the amount of domain knowledge on the complexity of proceduralized 

tasks. Likewise, there is no appropriate software complexity measure regarding 

the level of engineering decision.  

Second, even if corresponding software complexity measures were available, 

some of them would likely have limited application to the quantification of the 

complexity of proceduralized tasks. For example, let us recall the value of the 

first-order entropy of two arbitrary graphs G and G’ (Fig. 4.3). From the point of 

view of McCabe’s cyclomatic complexity, these two graphs have the same value. 

However, it is intuitively evident that the control structure of graph G’ is more 

complicated than that of graph G. This means that there are times when McCabe’s 

cyclomatic complexity is not appropriate for quantifying the effect of logical en-

tanglement on the complexity of proceduralized tasks. In addition, the result of a 

previous study has revealed that Halstead’s E measure has a limitation in applica-

tion to the complexity of proceduralized tasks (Park et al. 2001). 

This limitation engenders the third problem, which is related to integrating the 

effects of five kinds of task complexity factors. It is very natural to assume that the 

overall complexity of proceduralized tasks should be determined based on the in-

tegration of partial contributions originating from five kinds of task complexity 

factors. Unfortunately, this is not a valid idea. Let us assume that we quantified the 

effects of the number of actions and logical entanglement on the complexity of 

proceduralized tasks by using Halstead’s E measure and McCabe’c cyclomatic 

complexity, respectively. Nevertheless, combining the value of Halstead’s E 

measure with that of McCabe’s cyclomatic complexity is less meaningful because, 

as mentioned earlier, there are times when these measures give inappropriate re-

sults about the complexity of proceduralized tasks. In addition, the integration of 

heterogeneous measures would become another source of difficulty in quantifying 

the complexity of proceduralized tasks. 

For the above reasons, a better way to quantify the complexity of procedura-

lized tasks seems to use the concept of graph entropies. That is, if we construct a 

series of graphs that are able to represent the nature of five kinds of task complexi-

ty factors, the contribution of each factor can be quantified by either the first-order 

entropy or the second-order entropy. In addition, since the technical basis of graph 

entropies is homogeneous to some extent (i.e., the entropy value of an arbitrary 

graph can be calculated by a set of probabilities obtained from the definition of a 

node classification scheme), it is expected that one should be able to integrate the 

contributions of five kinds of task complexity factors into a single and meaningful 

value. 
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