

4 Introduction to Software Complexity

At the end of the previous chapter, five categories of complexity factors that

would serve as a starting point to deterministically evaluate the complexity of pro-

ceduralized tasks were identified. As In this chapter, software complexity meas-

ures will be explained as a theoretical basis for quantifying the complexity of pro-

ceduralized tasks. In this regard, it may be necessary to start this chapter by

examining why software complexity must be considered in order to quantify the

complexity of proceduralized tasks.

4.1 Software Complexity

We live in a very convenient time, and our lives are made easier by various kinds

of computer technologies. For example, (1) we can buy a book from an online

bookstore managed by powerful mainframes as well as sophisticated software, (2)

we can produce merchandise using a fully automated machine controlled by well-

structured software, and (3) we can even operate on a patient using a robot that is

manipulated by precise software. However, in order to enjoy these conveniences

we must secure reliable software that is able to perform all the required functions

we want. For this reason, allied industries have been spending a tremendous

amount of money and other resources to develop reliable software.

From this standpoint, one of the canonical approaches is to manage the com-

plexity of software, because it directly affects software maintainability. Carver

(1987) pointed out that the maintainability of software is a kind of quantitative

measure that makes it possible to evaluate how easy it is to understand given soft-

ware. Similarly, Gibson and Senn (1989) stated that maintainability is defined as

the ease with which systems can be understood and modified (p. 348). Although

there are other definitions about maintainability, it is evident that maintenance is

one of the crucial aspects determining the reliability of software, because it con-

tains all kinds of software engineering activities required after the implementation

of software. Carver (1987) summarized these activities as follows:

These distinct categories of maintenance can be identified: (1) corrective maintenance, (2)

adaptive maintenance, and (3) perfective maintenance. Corrective maintenance is the

diagnosis and correction of latent software errors. It is required when errors undiscovered

during testing and debugging are found. Since a correct program is rare, latent errors are

common. The errors may vary in impact from trivial to critical. In any case, the code must

40 4 Introduction to Software Complexity

be modified to correct the error. Adaptive maintenance is maintenance due to changes in

the external environment of a program. New generations of hardware and later releases of

software are among causes of adaptive maintenance. Perfective maintenance is

maintenance intended to enhance the system to meet the changing needs of the user. It

includes modifications of existing functions, inclusion of general enhancements, and

modifications for improved system performance (p. 299).

Therefore, if a new error is introduced in the course of performing software

maintenance activities, the increase in maintenance costs is unavoidable (Cant et

al. 1995; Carver 1987; Gibson and Senn 1989; Hops and Sherif 1995; Lew et al.

1988; Soi 1985). A more serious problem is that the possibility of undesired con-

sequences will increase in proportion to the increase of the possibility of software

malfunctions. As a result, since the early 1970s, diverse research projects on soft-

ware complexity have been conducted in order to quantitatively control as well as

predict the complexity of software, because it has been revealed that maintenance

personnel are apt to show impaired performance when they have to deal with

complicated software (Curtis et al. 1979; Davis and LeBlanc 1988; Kafura and

Reddy 1987; McCabe and Butler 1989; Rombach 1987).

It is worth emphasizing that one of the major purposes of quantifying the com-

plexity of software is to evaluate its understandability. For example, Gibson and

Senn (1989) stated that the more complex system is, the more difficult it is to un-

derstand, and therefore to maintain (p. 347). Similarly, Carver (1987) pointed out

that “Ease of understanding decreases as program complexity increases. Since

complexity is a measure of the effort to comprehend, to maintain and to test soft-

ware, the level of complexity of a program affects the maintainability of a pro-

gram (p. 299).”

Moreover, Davis and LeBlanc (1988) articulated that “Available evidence and

the opinion of many experts strongly suggest that programmers do not understand

programs on a character by character basis. Rather they assimilate groups of

statements which have a common function (p. 1366).”

This means that a theoretical framework quantifying the complexity of soft-

ware can be used for quantifying the complexity of proceduralized tasks because

(1) software complexity mainly deals with the level of understandability of soft-

ware and (2) understandability in software complexity focuses not on reading

comprehension (i.e., WR, CR and CMP) but on task comprehension, which affects

the performance of tasks to be done by qualified operators (i.e., TP). Actually, this

is not a new idea, because other researchers have already tried to apply software

complexity measures to evaluating the complexity of supervisory control tasks

(Murray and Liu 1994) and vice versa (Darcy et al. 2005). Therefore, it is very

helpful to scrutinize the applicability of software complexity measures to quantify-

ing the complexity of proceduralized tasks.

4.2 Software Complexity Measure

Many kinds of unique measures that are capable of quantifying the complexity of

software from diverse viewpoints have been suggested for several decades. How-

4.2 Software Complexity Measure 41

ever, without loss of generality, software complexity measures fall into one of the

following four categories: (1) those based on the size of the software, (2) those

based on the data structure of the software, (3) those based on the control structure

of the software, and (4) a combination of the first three measures (Carver 1987;

Coskun and Grabowski 2001; Davis and LeBlanc 1988; Fenton and Neil 1999;

Gonzalez 1995; Hops and Sherif 1995; Huang and Lai 1998; Khoshgoftaar et al.

1997; Lakshmanan et al. 1991; Soi, 1985).

First, one of the representative measures belonging to the first category is the

line of code (LOC). This measure is very clear and straightforward because it is

strongly expected that the longer the software source code, the greater the com-

plexity of the software. Another typical measure is Halstead’s E measure, which

considers the frequencies of occurrence of operators as well as operands included

in source code. Figure 4.1 illustrates how to quantify the value of Halstead’s E

measure with respect to an arbitrary source code.

Source code Operator Frequency Operand Frequency

IF (A = 0) THEN

 A = B;

ELSE

 A = C;

; 2 A 3

= 3 B 1

() 1 C 1

IF 1

THEN 1

ELSE 1

9.221)(log
2

)(
212

2

2121 =+
+

= ηη
η

η NNN
E

1η = Number of unique operators = 6

2η = Number of unique operands = 3

1N = Total number of operators = 9

2N = Total number of operands = 5
Fig. 4.1 Quantifying the value of Halstead’s E measure (Park et al. 2001, © Elsevier)

Second, the complexity of software can be quantified from the point of view of

a data structure. Regarding this, it would be interesting to quote Wirth (1985):

Yet, it is abundantly clear that a systematic and scientific approach to program

construction primarily has a bearing in the case of large, complex programs which involve

complicated sets of data. Hence, a methodology of programming is also bound to include

all aspects of data structuring. Programs, after all, are concrete formulations of abstract

algorithms based on particular representations and structures of data (p. 7).

This strongly suggests that complicated software requires complicated data

structures as well as huge amounts of data. Accordingly, the complexity of data

structures should be a good measure for quantifying the complexity of software.

For this reason, many kinds of complexity measures that are able to deal with the

complexity of data structures have been suggested. One of the typical measures is

the depth of a data structure graph (Gonzalez 1995). Here, data structure graph

42 4 Introduction to Software Complexity

means a graph that consists of nodes and arcs, where nodes denote data entities

and arcs represent the relationship between nodes. For example, the hierarchical

level of an arbitrary data structure shown in Fig. 4.2 is three due to the existence

of a linear array (refer to the area surrounded by dotted lines).

Data record Data structure graph

Person = RECORD

 Name: Array of Character;

 Gender: Character;

 Age: Integer;

END

Person

Array

Char-
acter

Name Age

Integer
Data
type

Representing
array

structure

Gender

Char-
acter

Fig. 4.2 Example of a data structure graph

Third, much work has been done considering the effect of a control flow graph

on the complexity of software. Here, control flow graph (also called a program

control graph) means a directed graph that has a unique entry and exit node, which

is very similar to the flowchart of software (Baker 1978; Lakshmanan et al. 1991).

In a control flow graph, each node denotes a block in source code that performs a

specific function, and each arc represents a branch taken between nodes (Rama-

murthy and Melton 1988). Therefore, it is very straightforward to expect that the

complexity of software will be proportional to the complexity of the control flow

graph.

One of the canonical measures belonging to this category is McCabe’s cyclo-

matic complexity (v), which can be calculated by pnev 2+−= . Here, e, n, and p

denote the number of edges (i.e., arcs), the number of nodes, and the number of

connected components included in an arbitrary control flow graph, respectively.

More simply, it was found that v is equal to the number of decision nodes plus

one (McCabe and Butler; 1989). Therefore, from the point of view of McCabe’s

cyclomatic complexity, the complexity of two control flow graphs shown in Fig.

4.3 is identical, because they have two decision nodes.

Lastly, it is possible to measure the complexity of software by combining two

or more complexity measures that belong to the aforementioned categories. For

example, Ramamurthy and Melton (1988) and Curtis et al. (1979) suggested novel

measures based on the integration of Halstead’s E measure with McCabe’s cyclo-

matic complexity. In addition, Bail and Zelkowitz (1988) and Oviedo (1980) sug-

gested software complexity measures by simultaneously considering the control

flow graph and the data structure graph of software.

4.2 Software Complexity Measure 43

Graph G Graph G’

Fig. 4.3 Two control flow graphs with the same McCabe’s cyclomatic complexity

Here, it is important to point out that there is another complexity measure that

belongs to this category. That is, instead of combining several complexity meas-

ures that quantify the complexity of software using different methods, a new

measure can be developed based on the integration of submeasures quantifying the

complexity of software with an identical method. A typical example is a measure

based on the concept of graph entropies because, as illustrated in Figs. 4.2 and 4.3,

many graphic representation techniques have been used to analyze the characteris-

tics of software.

4.3 The Concept of Graph Entropies

Traditionally, the entropy concept has been widely adopted in various research

areas because it is very useful for expressing the degree of complexity (Shannon

1948). For this reason, including a series of works done by Mowshowitz (Mow-

showitz 1968a-d), many researchers have expended considerable effort to quantify

the complexity of software using the concept of graph entropies (Davis and LeB-

lanc 1988; Huang and Lai 1998; Gonzalez 1995; Lew et al.1988). For example, let

us consider the definition of the first-order and the second-order entropy suggested

by Davis and LeBlanc (1988).

In order to quantify the first order entropy, the classes of nodes in a control

flow graph should be identified based on their in- and out-degree as they appear. If

there are nodes that share the same in- and out-degree, then they are regarded as

Start

a b

c

d f

e

End

Decision
node

Decision
node

Start

a d

c

e

b f

End

44 4 Introduction to Software Complexity

nodes belonging to an equivalent class. In this regard, Fig. 4.4 depicts how to

quantify the first-order entropy of two arbitrary graphs shown in Fig. 4.3.

Graph Class In-degree Out-degree Node

Start

a b

c

d f

e

End

I 0 1 {Start}

II 1 1 {b, c, e, f}

III 1 2 {a }

IV 2 0 {End}

V 2 2 {d}

Ai =Number of nodes belonging to the ith distinctive class

N =Total number of nodes in a graph

h =Number of distinctive classes

pi = Estimated probability of the ith distinctive class = Ai/N

The first-order entropy of graph G = H1(G) 2log
h

i 1
i ip p

=

=−∑

000.2)
8

1
(log

8

1
)

8

1
(log

8

1
)

8

1
(log

8

1
)

8

4
(log

8

4
)

8

1
(log

8

1
22222 =







 ++++−=

Start

a d

c

e

b f

End

Class In-degree Out-degree Node

I 0 1 {Start}

II 1 0 {End}

III 1 1 {b, c, e}

IV 1 2 {a}

V 2 1 {f}

VI 2 2 {d}

The first-order entropy of graph G’ = H1(G’)

406.2

)
8

1
(log

8

1
)

8

1
(log

8

1
)

8

1
(log

8

1
)

8

3
(log

8

3
)

8

1
(log

8

1
)

8

1
(log

8

1
222222

=






 +++++−=

Fig. 4.4 The first order entropy of two arbitrary control flow graphs

In Fig. 4.4, it is apparent that all the nodes included in a graph G fall into the

following classes: {Start}, {b, c, e, f}, {a}, {End}, and {d}. Accordingly, the

number of distinctive classes denoted by h is five. In addition, the probability of

each class is 1/8, 4/8, 1/8, 1/8, and 1/8, respectively. In this way, h and the proba-

bility of the associated classes can be calculated with respect to the graph G’. As a

result, the first-order entropy of graphs G and G’ is 2.000 and 2.406, respectively.

From the point of view of the logical entanglement of control flow graphs, the

value of the first-order entropy is very interesting, because the logic structure of

graph G’ seems to be more complicated than that of graph G. Intuitively, this re-

sult is meaningful, because a control flow graph that consists of many equivalent

nodes will tend to have a lower first-order-entropy value. In other words, if there

is a kind of regularity in a control flow graph, it is expected that the value of the

first-order entropy will be reduced because of the repetition of similar execution

4.3 The Concept of Graph Entropies 45

patterns, which results in an increase of the number of nodes belonging to identic-

al node classes. In contrast, the value of the first-order entropy will increase due to

irregular execution patterns, because the number of distinctive classes that are ne-

cessary to express the irregularity of execution patterns will increase. This means

that the effect of logical entanglement on the complexity of software can be quan-

tified by the first-order entropy.

Similarly, the second-order entropy can be calculated except for the class iden-

tification scheme. That is, nodes are considered to be equivalent if they share iden-

tical neighbors within one arc distance. The intention of this classification scheme

is to express the amount of information that is needed to describe each node posi-

tion, since the comprehension of a control flow graph becomes difficult with re-

spect to the increase in the number of distinctive classes. For example, let us con-

sider Table 4.1, which shows the distinctive classes of two control flow graphs G

and G’, which are necessary to calculate the values of the second-order entropy.

Table 4.1 Distinctive classes of two control flow graphs

Graph G Class Graph G’

Node Neighbor node Node Neighbor node

{Start} {a} I {Start} {a}

{a} {Start, b, c} II {a} {Start, b, d}

{b, c} {a, d} III {b} {a, c}

{d} {b, c, e, f} IV {c} {b, d}

{e, f} {d, End} V {d} {a, c, e, f}

{End} {e, f} VI {e} {d, f}

– – VII {f} {d, e, End}

– – VIII {End} {f}

Based on the results of node class identifications summarized in Table 4.1, the

values of the second-order entropy of two graphs can be calculated as below.

The second-order entropy of graph G = H2(G)

2log
6

i 1
i ip p

=

= −∑

500.2)
8

1
(log

8

1
)

8

2
(log

8

2
)

8

1
(log

8

1
)

8

2
(log

8

2
)

8

1
(log

8

1
)

8

1
(log

8

1
222222 =







 +++++−=

The second-order entropy of graph G’ = H2(G’)

2log
8

i 1
i ip p

=

= −∑

000.3

)
8

1
(log

8

1
)

8

1
(log

8

1
)

8

1
(log

8

1
)

8

1
(log

8

1

)
8

1
(log

8

1
)

8

1
(log

8

1
)

8

1
(log

8

1
)

8

1
(log

8

1

2222

2222

=



















++++

+++
−=

46 4 Introduction to Software Complexity

As can be seen from the above results, the value of the second-order entropy

will increase in proportion to the increase in the number of nodes because the

meaning of each node position becomes more unique. This means that more effort

is required to understand the contents of software that consists of many nodes.

Therefore, the second-order entropy of a control flow graph can be used to meas-

ure the effect of size on the complexity of software.

Here, it should be noted that the second-order entropy can be used to quantity

the amount of information pertaining to a data structure graph. In other words, if

the second-order entropy of an arbitrary graph implies the amount of information

needed to understand its contents, the second-order entropy of a data structure

graph can be used to measure the effect of the data structure on the complexity of

the software. Therefore, based on the concept of graph entropies, it is possible to

define a novel measure of software complexity. For example, Lew et al. (1988),

Gonzalez (1995), and Huang and Lai (1998) proposed a novel measure by inte-

grating several complexity measures quantified by the concept of graph entropies.

4.4 Selecting Appropriate Measures

At the end of Sect. 4.1, it was pointed out that software complexity measures

could be used for quantifying the complexity of proceduralized tasks. The easiest

way to do this is to use the associated software complexity measure that is able to

evaluate one of the task complexity factors. For example, let us look at Table 4.2,

which compares five kinds of task complexity factors with the associated software

complexity measures.

Table 4.2 Comparing task complexity factors with the associated software complexity measures

Task complexity factor Software complexity

measure based on

Example

Amount of information Data structure of software The hierarchical level of a data

structure graph

Number of actions Size of software Halstead’s E measure

Logical entanglement Control structure of soft-

ware

McCabe’s cyclomatic com-

plexity

Amount of domain knowledge – –

Level of engineering decision – –

Table 4.2 suggests that we should be able to use Halstead’s E measure to quan-

tify the effect of the number of actions on the complexity of proceduralized tasks,

because this related to the size of software, which would be directly comparable to

the size of proceduralized tasks (i.e., number of actions to be conducted by quali-

fied operators). Similarly, McCabe’s cyclomatic complexity, which evaluates the

logical entanglement of the control structure of software, would be a good alterna-

4.4 Selecting Appropriate Measures 47

tive to quantify the effect of logical entanglement on the complexity of procedura-

lized tasks.

Unfortunately, there are three critical problems in this approach. First, there is

no corresponding software complexity measure that is capable of evaluating the

effect of the amount of domain knowledge on the complexity of proceduralized

tasks. Likewise, there is no appropriate software complexity measure regarding

the level of engineering decision.

Second, even if corresponding software complexity measures were available,

some of them would likely have limited application to the quantification of the

complexity of proceduralized tasks. For example, let us recall the value of the

first-order entropy of two arbitrary graphs G and G’ (Fig. 4.3). From the point of

view of McCabe’s cyclomatic complexity, these two graphs have the same value.

However, it is intuitively evident that the control structure of graph G’ is more

complicated than that of graph G. This means that there are times when McCabe’s

cyclomatic complexity is not appropriate for quantifying the effect of logical en-

tanglement on the complexity of proceduralized tasks. In addition, the result of a

previous study has revealed that Halstead’s E measure has a limitation in applica-

tion to the complexity of proceduralized tasks (Park et al. 2001).

This limitation engenders the third problem, which is related to integrating the

effects of five kinds of task complexity factors. It is very natural to assume that the

overall complexity of proceduralized tasks should be determined based on the in-

tegration of partial contributions originating from five kinds of task complexity

factors. Unfortunately, this is not a valid idea. Let us assume that we quantified the

effects of the number of actions and logical entanglement on the complexity of

proceduralized tasks by using Halstead’s E measure and McCabe’c cyclomatic

complexity, respectively. Nevertheless, combining the value of Halstead’s E

measure with that of McCabe’s cyclomatic complexity is less meaningful because,

as mentioned earlier, there are times when these measures give inappropriate re-

sults about the complexity of proceduralized tasks. In addition, the integration of

heterogeneous measures would become another source of difficulty in quantifying

the complexity of proceduralized tasks.

For the above reasons, a better way to quantify the complexity of procedura-

lized tasks seems to use the concept of graph entropies. That is, if we construct a

series of graphs that are able to represent the nature of five kinds of task complexi-

ty factors, the contribution of each factor can be quantified by either the first-order

entropy or the second-order entropy. In addition, since the technical basis of graph

entropies is homogeneous to some extent (i.e., the entropy value of an arbitrary

graph can be calculated by a set of probabilities obtained from the definition of a

node classification scheme), it is expected that one should be able to integrate the

contributions of five kinds of task complexity factors into a single and meaningful

value.

48 References

References

Bail WG, Zelkowitz MV (1998) Program complexity using hierarchical computers. Comput

Lang 13(3/4):109–123

Baker TP (1978) Natural properties of flowchart step-counting measures. J Comput Syst Sci

16:1–22

Cant SN, Jeffery DR, Henderson-Sellers B (1995) A conceptual model of cognitive complexity

of elements of the programming process. Inf Softw Technol 37(7):351–362

Carver DL (1987) Producing maintainable software. Comput Ind Eng 12(4):299–305

Coskun E, Grabowski M (2001) An interdisciplinary model of complexity in embedded intelli-

gent real-time systems. Inf Softw Technol 43:527–537

Curtis B, Sheppard SB, Milliman P, Borst MA, Love T (1979) Measuring the psychological

complexity of software maintenance tasks with the Halstead and McCabe Metrics. IEEE

Trans Softw Eng 5(2):96–104

Darcy DP, Kemerer CF, Slaughter SA, Tomayko JE (2005) The structural complexity of software:

An experimental test. IEEE Trans Softw Eng 31(11):982–995

Davis JS, LeBlanc RJ (1988) A study of the applicability of complexity measures. IEEE Trans

Softw Eng 14(9):1366–1372

Fenton NE, Neil M (1999) Software metrics: successes, failures and new directions. J Syst Softw

47:149–157

Gibson VR, Senn JA (1989) System structure and software maintenance performance. Commun

ACM 32(3):347–358

Gonzalez RR (1995) A unified metric of software complexity: measuring productivity, quality

and value. J Syst Softw 29:17–37

Hops JM, Sherif JS (1995) Development and application of composite complexity models and a

relative complexity metric in a software maintenance environment. J Syst Softw 31:157–169

Huang SJ, Lai R (1998) On measuring the complexity of an Estelle specification. J Syst Softw

40:165–181

Kafura D, Reddy GR (1987) The use of software complexity metrics in software maintenance.

IEEE Trans Softw Eng 13(3):335–343

Khoshgoftaar TM, Allen EB, Lanning DL (1997) An information theory-based approach to quan-

tifying the contribution of a software metric. J Syst Softw 36:103–113

Lakshmanan KB, Jayaprakash S, Sinha PK (1991) Properties of control-flow complexity meas-

ures. IEEE Trans Softw Eng 17(12):1289–1295

Lew KS, Dillon TS, Forward KE (1988) Software complexity and its impact on software reliabil-

ity. IEEE Trans Softw Eng 14(11):1645–1655

McCabe TJ, Butler CW (1989) Design complexity measurement and testing. Commun ACM

32(12):1415–1425

Mowshowitz A (1968a) Entropy and the complexity of graphs: I. An index of the relative com-

plexity of a graph. Bull Math Biophys 30:175–204

Mowshowitz A(1968b) Entropy and the complexity of graphs: II. The information content of di-

graphs and infinite graphs. Bull Math Biophys 30:225–240

Mowshowitz A (1968c) Entropy and the complexity of graphs: III. Graphs with prescribed in-

formation content. Bull Math Biophys 30:387–414

Mowshowitz A (1968d) Entropy and the complexity of graphs: IV. Entropy measures and graphi-

cal structure. Bull Math Biophys 30:533–546

Murray J, Liu Y (1994) A software engineering approach to assessing complexity in network su-

pervision tasks. In: Proceedings of the IEEE International Conference on Human, Informa-

tion and Technology, San Antonio, TX, 1:25–29

Reference 49

Oviedo EI (1980) Control flow, data flow and program complexity. In: Proceedings on IEEE

COMPSAC, Chicago, pp.146–152,

Park J, Jung W, Ha J (2001) Development of the step complexity measure for emergency operat-

ing procedures using entropy concepts. Reliabil Eng Syst Saf 71:115–130

Ramamurthy B, Melton A (1988) A synthesis of software science measures and the cyclomatic

number. IEEE Trans Softw Eng 14(8):1116–1121

Rombach HD (1987) A controlled experiment on the impact of software structure on maintaina-

bility. IEEE Trans Softw Eng 13(3):344–354

Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379-423/623–

656

Soi IM (1985) Software complexity: an aid to software maintainability. Microelectron Reliabil

25(2):223–228

Wirth N (1985) Algorithms and Data Structures. Prentice Hall, Englewood Cliffs, NJ

