
Chapter 2
Positivity Gap

This chapter investigates the gap between positive forms and SOS forms. Conser-
vatism of the LMI relaxations described in Chapter 1 is related to the existence of
positive forms which are not SOS, called PNS forms. a priori conditions for non-
conservatism of these relaxations are presented for some classes of forms. The class
of SMR-tight forms is introduced in order to derive a posteriori tightness condi-
tions. A further contribution of this chapter consists of providing a parametrization
of the set of PNS forms. It is shown that the set of PNS forms is dense in the space
of forms, that each PNS form is the vertex of a cone of PNS forms, and how PNS
forms can be constructed via the SMR.

2.1 Hilbert’s 17th Problem

Is it true that any positive semidefinite form is an SOS form? This question is closely
related to Hilbert’s 17th problem [122], which concerns the possibility of represent-
ing nonnegative polynomials as a sum of squares of rational functions.

The answer to the former question is negative. This fact was discovered by
Hilbert himself in 1888 via a non-constructive proof [118]. In 1967, Motzkin pro-
vided an example of form which is positive semidefinite but not SOS. This form has
degree 6 in 3 scalar variables, and is given by [122]

hMot(x) = x4
1x2

2 + x2
1x4

2 + x6
3 −3x2

1x2
2x2

3. (2.1)

Indeed, it can be verified that hMot(x) is positive semidefinite and hMot(x) is not
SOS. In particular, one has that

µ(hMot) = 0, λ (hMot) = −0.0070.

Hence, there are forms that are positive semidefinite but not SOS. The following
result, found by Artin in 1927, states that any positive semidefinite form is the ratio
of two SOS forms [70].
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40 2 Positivity Gap

Theorem 2.1. A form h ∈ Ξn,2m is positive semidefinite if and only if there exist
h1 ∈ Σn,2(a+m) and h2 ∈ Σn,2a for some integer a ≥ 0, such that

h(x) =
h1(x)
h2(x)

. (2.2)

The following result, found by Polya in 1928, characterizes the forms that are
positive on the simplex [70].

Theorem 2.2. A form h ∈ Ξn,d is positive on the simplex ϒn in (1.68) if and only if
there exists an integer k ≥ 0 such that the coefficients of

h(x)

(
n

∑
i=1

xi

)k

(2.3)

are positive.

In the sequel we will investigate forms that are positive semidefinite but not SOS.
First of all, let us introduce the following definition.

Definition 2.1 (PNS). A form h ∈ Ξn,2m is PNS if it is positive semidefinite but not
SOS.

We will indicate the set of PNS forms of degree 2m in n scalar variables as fol-
lows:

∆n,2m = {h ∈ Ξn,2m : h(x) is PNS} . (2.4)

Therefore, the set Ωn,2m in (1.51) can be expressed as

Ωn,2m = Σn,2m ∪∆n,2m.

An interesting fact is that the set ∆n,2m is empty for some values of n,m. Indeed,
let us define the set

E = {(n,2), n ∈ N}∪{(2,2m), m ∈ N}∪{(3,4)} . (2.5)

The following result states an important property of ∆n,2m for any pair (n,2m) in E .
A formal proof can be found in [70].

Theorem 2.3. Let (n,2m) ∈ E . Then, ∆n,2m = /0, i.e. for all h ∈ Ξn,2m one has

h(x) is positive semidefinite ⇐⇒ λ (h) ≥ 0. (2.6)

The following result provides a further property of the forms in Ξn,2m with (n,2m)
in E , in particular stating that these forms are positive definite if and only if they
admit a positive definite SMR matrix.
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Theorem 2.4. Let (n,2m) ∈ E . Then, for all h ∈ Ξn,2m one has that

h(x) is positive definite ⇐⇒ λ (h) > 0. (2.7)

Proof. (Necessity) Let us suppose that h(x) is positive definite. From Theorem 1.7
this means that µ(h) > 0. Let us define the form

h1(x) = h(x)− µ(h)‖x{m}‖2m. (2.8)

We have that
µ(h1) = min

x∈Cn,m
h1(x)

= min
x∈Cn,m

(
h(x)− µ(h)‖x{m}‖2m

)

= µ(h)− µ(h)
= 0.

From Theorem 1.7 this implies that h1(x) is positive semidefinite. Moreover, (n,2m)
∈ E , and hence from (2.6) it follows that h1(x) is SOS. Therefore, we have that

0 ≤ λ (h1) ≤ µ(h1) = 0

which implies that λ (h1) = 0. From Theorem 1.4, h1(x) can be written as

h1(x) = x{m}′H1x{m}

where H1 ∈ S
σ(n,m) is positive semidefinite. Now, let us express h(x) as h(x) =

x{m}′Hx{m}. It follows from (2.8) that

H = H1 + µ(h)Iσ(n,m)

which implies that
λ (h) = λ (h1)+ µ(h) = µ(h). (2.9)

Since µ(h) > 0, it follows that λ (h) > 0.
(Sufficiency) Let us suppose that λ (h) > 0. From Theorem 1.9 it follows that

µ(h) ≥ λ (h) > 0. From Theorem 1.7 this implies that h(x) is positive definite. �

A direct consequence of Theorem 2.4 is that for forms with (n,2m) ∈ E , the SOS
index coincides with the positivity index.

Corollary 2.1. Let (n,2m) ∈ E . Then,

λ (h) = µ(h) ∀h ∈ Ξn,2m. (2.10)
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Proof. It follows from (2.9) in the proof of Theorem 2.4. �

Example 2.1. Let us consider the form

h(x) = x4
1 + x4

2 + x4
3 −3x2

1x2x3. (2.11)

One has that h ∈ Ξ3,4. By solving the EVP (1.29), one gets λ (h) = −0.0310. By
Theorem 1.4, this implies that h(x) is not SOS. Moreover, since (3,4) ∈ E , we can
conclude from Theorem 2.3 that h(x) is not positive semidefinite, i.e.

∃x ∈ R
3 : h(x) < 0.

Indeed, for x1 = 4/3, x2 = 1, x3 = 1, one has h(x) = −14/81.

Example 2.2. Let us consider

h(x) = x2m
1 + x2m

2 , m ∈ N, m > 0. (2.12)

We have that h ∈ Ξ2,2m. Moreover, it is straightforward to verify that h(x) is posi-
tive definite. Then, since (2,2m) ∈ E for any considered m, one can conclude from
Theorem 2.4 that λ (h) > 0, or in other words, h(x) admits a positive definite SMR
matrix according to Lemma 1.2.

Throughout the book, the results in Theorems 2.3 and 2.4 will be exploited to
formulate a priori conditions, which guarantee that results based on SOS relaxations
of problems involving positivity of forms are not conservative.

As an example, let us consider the problem of checking positivity of a polynomial
over an ellipsoid, addressed in Section 1.7. It can be observed that the LMI condi-
tions in Theorem 1.16 are not only sufficient but also necessary, for some values of
n,m. The next result is a direct consequence of Theorem 2.4.

Theorem 2.5. Let (n,2m) ∈ E . Then, the conditions in Theorem 1.16 are not only
sufficient but also necessary for (1.59) to hold.

Example 2.3. Let us consider the problem to establish whether (1.59) holds with

f (x) = 0.5 + x1 + x2
2, Q = I2, c = 1.

The SOS index of the resulting w(x;c) is negative, in particular λ (w(·;c)) =
−0.7500. Since n = 2 and m = 2 we have that (n,2m) ∈ E . Therefore, from
Theorems 1.16 and 2.5 we have that (1.59) does not hold, i.e. there exists some
x ∈ B(Q,c) such that f (x) ≤ 0.

2.2 Maximal SMR Matrices

In Chapter 1 it has been shown that a form may be represented by different SMR
matrices. This section investigates the SMR matrices whose minimum eigenvalue
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coincides with the SOS index of the form. Roughly speaking, such matrices can
be considered the “most positive definite” SMR matrices of the form. As it will be
explained in the next section, these matrices are useful in order to study the gap
between positive forms and SOS forms.

Definition 2.2 (Maximal SMR Matrix). Let H∗ ∈ S
σ(n,m) be an SMR matrix of

h ∈ Ξn,2m. Then, H∗ is called a maximal SMR matrix of h(x) if

λmin(H∗) = λ (h). (2.13)

Given a form h(x), its maximal SMR matrices can be obtained as

H∗ = H + L(α∗) (2.14)

where α∗ is a value of α for which the maximum in (1.29) is achieved, and H +L(·)
is the complete SMR matrix of h(x) in (1.29).

2.2.1 Minimum Eigenvalue Decomposition

The following definition introduces a key decomposition of symmetric matrices
which will be exploited in the sequel. For ease of presentation, the decomposition is
formulated for a matrix of size σ(n,m), though it can be defined for matrices of any
size.

Definition 2.3 (Minimum Eigenvalue Decomposition). For a matrix H ∈ S
σ(n,m)

we say that the quadruplet 〈λmin(H),β ,V0,Vp〉 is a minimum eigenvalue decompo-
sition of H if

H = V DV ′ (2.15)

where D ∈ S
σ(n,m) is the diagonal matrix

D = λmin(H)Iσ(n,m) + diag

(
0σ(n,m)−r

β

)

(2.16)

with {
β ∈ R

r

β > 0
(2.17)

and V ∈ R
σ(n,m)×σ(n,m) is an orthogonal matrix such that

⎧
⎪⎨

⎪⎩

V =
(

V0 Vp
)

V0 ∈ R
σ(n,m)×(σ(n,m)−r), Vp ∈ R

σ(n,m)×r

VV ′ = V ′V = Iσ(n,m).

(2.18)
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It follows that the diagonal of D contains the eigenvalues of H, V is a matrix of
eigenvectors, and r is an integer satisfying 1 ≤ r ≤ σ(n,m) which represents the
number of eigenvalues of H distinct from λmin(H) (including their multiplicity).

It is useful to observe that 〈λmin(H),β ,V0,Vp〉 is a minimum eigenvalue decom-
position of H if and only if 〈λmin(H),T1β ,V0T2,VpT−1

1 〉 is, for all matrices T1 ∈R
r×r

and T2 ∈ R
(σ(n,m)−r)×(σ(n,m)−r) such that T1 is a permutation matrix and T2 is a non-

singular matrix.

2.2.2 Structure of Maximal SMR Matrices

The following result provides a fundamental property of maximal SMR matrices.

Theorem 2.6. Let h ∈ Ξn,2m, H + L(α) be a complete SMR matrix of h(x), and
〈λmin(H),β ,V0,Vp〉 be a minimum eigenvalue decomposition of H. Let us define

η∗(V0) = max
α : ‖α‖=1

λmin
(
V ′

0L(α)V0
)
. (2.19)

Then, H is a maximal SMR matrix of h if and only if

η∗(V0) ≤ 0. (2.20)

Proof. From (2.13) it follows that H is a maximal SMR matrix if and only if

λmin (H + L(α)) ≤ λmin(H) ∀α

and, hence, if and only if

∀α ∃y,‖y‖ = 1 : y′ (H + L(α))y ≤ λmin(H). (2.21)

Let 〈λmin(H),β ,V0,Vp〉 be a minimum eigenvalue decomposition of H. Then, (2.21)
can be rewritten as

∀α ∃y,‖y‖ = 1 : y′Vp diag(β )V ′
py ≤−y′L(α)y. (2.22)

Let us observe that L(α) depends linearly on α . This means that V ′
py tends to zero

as α tends to zero because
diag(β ) > 0.

Moreover, if (2.22) holds for the pair (y,α), it also holds for the pair (y,cα) for all
c ≥ 1. Therefore, it turns out that H is a maximal SMR matrix if and only if

∀α ∀ε > 0 ∃y,‖y‖ = 1 : ‖V ′
py‖ < ε and y′Vp diag(β )V ′

py ≤−y′L(α)y
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or, equivalently, if and only if

∀α ∃y,‖y‖ = 1 : V ′
py = 0r and y′Vp diag(β )V ′

py ≤−y′L(α)y. (2.23)

Let us observe that
ker(V ′

p) = img(V0) (2.24)

and hence
V ′

py = 0 ⇐⇒ y ∈ img(V0).

Therefore, (2.23) can be rewritten as

∀α ∃y ∈ img(V0),‖y‖ = 1 : y′L(α)y ≤ 0. (2.25)

Let us observe that

y ∈ img(V0) ⇐⇒ y = V0 p, p ∈ R
σ(n,m)−r.

Since y′L(α)y depends linearly on α , the condition (2.25) can be rewritten as

∀α,‖α‖ = 1, ∃p,‖p‖ = 1 : p′V ′
0L(α)V0 p ≤ 0

which is equivalent to (2.20). �

Theorem 2.6 provides a necessary and sufficient condition to establish if a given
SMR matrix H is a maximal SMR matrix. This condition is important because it
states that the property of being a maximal SMR matrix is related only to the matrix
V0 in the minimum eigenvalue decomposition of H, which represents the eigenspace
of the minimum eigenvalue of H. In particular, this eigenspace is given by img(V0).
Hence, Theorem 2.6 provides a way to construct maximal SMR matrices.

Let us observe that the feasible set for α in (2.19) is nonconvex, which makes the
computation of the index η∗(V0) difficult. The following result provides an alterna-
tive way for characterizing maximal SMR matrices.

Theorem 2.7. Let V0 and L(α) be defined as in Theorem 2.6, and define

η(V0) = max {η(V0,1),η(V0,−1)} (2.26)

where
η(V0,z) = sup

α : y′α=z
λmin
(
V ′

0L(α)V0
)

(2.27)

and y ∈ R
ω(n,m)
0 . Then, for all y ∈ R

ω(n,m)
0 , one has

η∗(V0) ≤ 0 ⇐⇒ η(V0) ≤ 0. (2.28)

Proof. (Necessity) Let us assume that η∗(V0)≤ 0 and let us suppose by contradiction
that η(V0) > 0. Then, there exists α̃ ∈ R

ω(n,m) such that |y′α̃ | = 1 and
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λmin
(
V ′

0L(α̃)V0
)

> 0. (2.29)

Let us define
ᾱ = ‖α̃‖−1α̃.

We have that ‖ᾱ‖ = 1 and

λmin
(
V ′

0L(ᾱ)V0
)

= ‖α̃‖−1λmin
(
V ′

0L(α̃)V0
)

> 0.

But this is impossible since we have assumed that η∗(V0) ≤ 0.
(Sufficiency) Let us assume that η(V0) ≤ 0 and let us suppose by contradiction

that η∗(V0) > 0. Then, there exists α̃ ∈ R
ω(n,m) such that ‖α̃‖ = 1 and (2.29) holds.

First, let us suppose that
y′α̃ �= 0 (2.30)

and let us define
ᾱ = |y′α̃|−1

2 α̃.

We have that ‖y′ᾱ‖ = 1 and

λmin
(
V ′

0L(ᾱ)V0
)

= |w′α̃|−1
2 λmin

(
V ′

0L(α̃)V0
)

> 0.

But this is impossible since we have assumed that η(V0) ≤ 0.
Now, let us suppose that

y′α̃ = 0.

Then, for all ε > 0 there exists α̂ ∈ R
ω(n,m) such that ‖α̂‖ = 1 and

‖α̂ − α̃‖ < ε and y′α̂ �= 0.

Since the function λmin (V ′
0L(α)V0) is continuous with respect to α and since α̂ is

arbitrarily close to α̃ which satisfies (2.29), it follows that α̂ can be chosen to satisfy
also the condition λmin (V ′

0L(α̂)V0) > 0. By repeating the proof from (2.30) by using
α̂ instead of α̃ , we finally conclude that (2.28) holds. �

Theorem 2.7 provides an alternative way to establish whether an SMR matrix is
a maximal SMR matrix or not. This is achieved via the index η(V0), which can be
computed through two convex optimizations. In fact, it turns out that η(V0,z) is the
solution of the EVP

η(V0,z) = sup
t,α

t

s.t.

{
y′α − z = 0

V ′
0L(α)V0 − tIσ(n,m)−r ≥ 0.

(2.31)

Let us observe that the free vector y defines two hyperplanes on which the function
λmin (V ′

0L(α)V0) is evaluated.
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Example 2.4. Let us consider the form h(x) in (1.20) and its SMR in (1.21). It can be
verified that a minimum eigenvalue decomposition 〈λmin(H),β ,V0,Vp〉 of the SMR
matrix H in (1.21) is given by

λmin(H) = −0.6180

β = (2.2361,2.6180)′

V0 = (0.5257,−0.8507,0)′

Vp =

(
−0.8507 −0.5257 0

0 0 1.0000

)′
.

By applying (2.26)-(2.27), we find that η(V0) > 0, which implies from Theorem 2.7
that H is not a maximal SMR matrix. This is confirmed by the fact that there exists
another SMR matrix of h(x) whose minimum eigenvalue is larger than the minimum
eigenvalue of H. This SMR matrix is given by H∗ in (2.14) with α∗ = 0.8008, which
is an optimal value of α in the EVP (1.29). Indeed we have:

H∗ =

⎛

⎜
⎝

1.0000 1.0000 −0.8008

� 1.6016 0.0000

� � 2.0000

⎞

⎟
⎠ (2.32)

and
λmin(H∗) = 0.0352, λmin(H) = −0.6180.

Lastly, we test Theorem 2.7 on the SMR matrix H∗. To this end, consider the mini-
mum eigenvalue decomposition of H∗ given by

λmin(H∗) = 0.0352

β ∗ = (1.7895,2.7065)′

V ∗
0 = (0.7972,−0.5089,0.3249)′

V ∗
p =

(
0.1544 0.6920 0.7052

−0.5837 −0.5120 0.6302

)′
.

(2.33)

From (2.26) we find η(V ∗
0 ) = 0.0000 by solving (2.31) with y = 1, which verifies

by Theorems 2.6 and 2.7 that H∗ is a maximal SMR matrix.

2.3 SMR-tight Forms

This section introduces and characterizes a special class of forms, specifically the
forms whose positivity index coincides with their SOS index.

Definition 2.4 (SMR-tight Form). Let us suppose h ∈ Ξn,2m satisfies
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λ (h) = µ(h). (2.34)

Then, h(x) is said to be SMR-tight.

Before proceeding with the characterization of SMR-tight forms, let us make the
following observations:

1. PNS forms are not SMR-tight. In fact, if h(x) is PNS then µ(h)≥ 0 and λ (h) < 0.
2. A form can be SMR-tight even if it is not SOS. This is shown by the following

example.

Example 2.5. Let us consider the form

h(x) = x2
1 + 4x1x2 + x2

2.

We have that a complete SMR of h(x) is given by

x{m} =
(

x1 x2
)′

, H =

(
1 2

� 1

)

, L(α) = 02×2

which implies that the SOS index of h(x) is

λ (h) = λmin(H) = −1.

Then, it can be verified that the positivity index of h(x) is

µ(h) = min
x∈Cn,m

h(x)

= min
x: x2

1+x2
2=1

h(x)

= −1.

Therefore, h(x) is SMR-tight because λ (h) = µ(h). However, h(x) is not SOS: in-
deed, µ(h) is negative, which means that h(x) can take negative values.

2.3.1 Minimal Point Set

A necessary and sufficient condition for establishing whether a form is SMR-tight
can be obtained by searching for power vectors in a linear space. To this end, let us
introduce the following definition.

Definition 2.5 (Minimal Point Set). Let h ∈ Ξn,2m, H ∈ S
σ(n,m) be a maximal SMR

matrix of h(x), and define the linear space

N (H) = ker
(
H −λmin(H)Iσ(n,m)

)
. (2.35)

Then, the set
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mps(h) =
{

x ∈ R
n : ‖x‖ = 1, x{m} ∈ N (H)

}
(2.36)

is called minimal point set of h(x).

The following lemma clarifies the relationship between N (H) and the minimal
eigenvalue decompositions of H.

Lemma 2.1. Let h ∈ Ξn,2m, and H ∈ S
σ(n,m) be a maximal SMR matrix of h(x). Let

〈λmin(H),β ,V0,Vp〉 be a minimum eigenvalue decomposition of H. Then,

N (H) = img(V0). (2.37)

Proof. From Definition 2.3 we have that the columns of V0 are a base of the
eigenspace of the minimum eigenvalue of H, which is N (H) according to (2.35).
Therefore, (2.37) holds. �

It is worthwhile to observe that the minimal point set of h(x) does not depend on
the chosen maximal SMR matrix H. This is explained in the following result.

Theorem 2.8. Let h ∈ Ξn,2m, and for i = 1,2 define

Ai =
{

x ∈ R
n : ‖x‖ = 1, x{m} ∈ N (Hi)

}

where H1,H2 ∈ S
σ(n,m) are any pair of maximal SMR matrices of h(x). Then,

A1 = A2

i.e. mps(h) is independent on the chosen maximal SMR matrix H of h(x).

Proof. Let us suppose by contradiction that there exists x̄ ∈ A1 such that x̄ �∈ A2.
Since x̄ ∈ A1 we have that

0 = x̄{m}′ (H1 −λmin(H1)Iσ(n,m)
)

x̄{m}

= h(x̄)−λmin(H1)
∥∥x̄{m}∥∥2

.
(2.38)

Since H2 is a maximal SMR matrix of h(x) we have that

h(x̄) = x̄{m}′H2x̄{m}

λmin(H1) = λmin(H2)

which, from (2.38), provides

0 = x̄{m}′ (H2 −λmin(H2)Iσ(n,m)
)

x̄{m}.

Moreover,
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H2 −λmin(H2)Iσ(n,m) ≥ 0

which implies that
‖x̄‖ = 1 and x̄{m} ∈ N (H2)

hence contradicting the assumption x̄ �∈ A2. �

The following result states that a necessary and sufficient condition for a form to
be SMR-tight is that the minimal point set of the form is not empty.

Theorem 2.9. Let h ∈ Ξn,2m. Then, h(x) is SMR-tight if and only if

mps(h) �= /0. (2.39)

Proof. (Sufficiency) Let us suppose that mps(h) �= /0. Let x̄ be any vector in mps(h)
and define

x̂ =
x̄

‖x̄{m}‖ .

By letting H ∈ S
σ(n,m) be a maximal SMR matrix of h(x), we have that

0 = x̂{m}′ (H −λmin(H)Iσ(n,m)
)

x̂{m}

= h(x̂)−λmin(H)
∥∥x̂{m}∥∥2

= h(x̂)−λ (h)

which implies that
∃x̂ ∈ Cn,m : h(x̂) = λ (h). (2.40)

By Definition 1.14, µ(h) is the minimum of h(x) over the set Cn,m; moreover, by
Theorem 1.9, λ (h) is a lower bound of µ(h). Therefore, from (2.40) we conclude
that µ(h) = λ (h), i.e. h(x) is SMR-tight.

(Necessity) Let us suppose that h(x) is SMR-tight, i.e. µ(h) = λ (h). Then, (2.40)
is satisfied. Let H ∈ S

σ(n,m) be a maximal SMR matrix of h(x). We have that:

0 = h(x̂)−λ (h)

= h(x̂)−λmin(H)
∥
∥x̂{m}∥∥2

= x̂{m}′ (H −λmin(H)Iσ(n,m)
)

x̂{m}.

Since H −λmin(H)Iσ(n,m) ≥ 0 it follows that there exists x̂ ∈ R
n
0 such that x{m} be-

longs to N (H). Therefore, let us define

x̄ =
x̂
‖x̂‖ .

We have that x̄ ∈ mps(h), and hence (2.39) holds. �
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2.3.2 Rank Conditions

Clearly, it is possible to establish whether mps(h) is empty or not by computing
vectors in mps(h) through the extraction procedure described in Section 1.9. In the
sequel, we aim to provide alternative conditions for establishing whether mps(h) is
empty, which do not require the actual computation of the set mps(h) itself.

Theorem 2.10. Let h ∈ Ξn,2m, H ∈ S
σ(n,m) be a maximal SMR matrix of h(x), and

N (H) be the linear space in (2.35). Let us suppose that one of the following con-
ditions holds:

1. m is odd and dim(N (H)) > σ(n,m)−n;
2. m is even and dim(N (H)) = σ(n,m).

Then, h(x) is SMR-tight.

Proof. Let us suppose that item 1 holds, and let 〈λmin(H),β ,V0,Vp〉 be a minimum
eigenvalue decomposition of H. Let us consider the equation

V ′
px{m} = 0. (2.41)

We have that (2.41) defines a system of σ(n,m)−dim(N (H)) homogeneous equa-
tions of degree m in n scalar variables. In particular, the degree of these homo-
geneous equations is odd, and their number is smaller than the number of scalar
variables because

σ(n,m)−dim(N (H)) < n.

This implies that
∃x ∈ R

n : ‖x‖ = 1, V ′
px{m} = 0.

From Definition 2.3, img(V0) = ker(V ′
p), and hence it immediately follows that

∃x ∈ R
n : ‖x‖ = 1, x{m} ∈ img(V0).

Moreover, by Lemma 2.1, img(V0) = N (H), which implies that there exists x ∈ R
n

such that ‖x‖ = 1 and x{m} ∈ N (H). This means that mps(h) �= /0 from Definition
2.5, and hence h(x) is SMR-tight by Theorem 2.9.

Lastly, let us suppose that item 2 holds. It immediately follows that

N (H) = R
σ(n,m)

and hence
mps(h) = {x ∈ R

n : ‖x‖ = 1}
i.e. mps(h) �= /0 and hence h(x) is SMR-tight by Definition 2.5 and Theorem 2.9. �

Theorem 2.10 provides a simple condition to establish whether a form is SMR-
tight, which consists only in checking whether the dimension of the linear space
N (H) lies in a given range.
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Example 2.6. Let us consider the form h(x) in Example 1.2. A maximal SMR matrix
of h(x) has been found in Example 2.4 and is given by H∗ in (2.32). From Lemma
2.1 and (2.33) we have that the linear space N (H∗) is given by

N (H∗) = img

⎛

⎜
⎝

0.7972

−0.5089

0.3249

⎞

⎟
⎠ .

Since H∗ is constructed with respect to the power vector x{m} = (x2
1,x1x2,x2

2)
′, it can

be verified from Definition 2.5 that

mps(h) =

{

±
(

0.8429

−0.5381

)}

.

Therefore, mps(h) is not empty, and hence h(x) is SMR-tight according to Theorem
2.9.

Example 2.7. Let us consider the form

h(x) = 27x4
1x2

2 −36
√

3x2
1x4

2 + 72x2
1x2

2x2
3 + 36x6

2 −24
√

3x4
2x2

3 + 12x2
2x4

3

+12x4
1x2

3 −24
√

3x2
1x4

3 + 27x4
2x2

3 −36
√

3x2
2x4

3 + 36x6
3.

We have n = 3, m = 3 and σ(n,m) = 10. After computing a maximal SMR matrix
H of h(x), we find that dim(N (H)) = 8. Let us observe that mps(h) cannot be
computed via the extraction procedure described in Section 1.9 because (1.89) does
not hold, indeed 8 = u �≤ (n− 1)(m− 1)+ 2 = 6. Then, let us consider Theorem
2.10. We have that m is odd, and the first condition of the theorem holds since
8 = dim(N (H)) > σ(n,m)−n = 7. This implies that h(x) is SMR-tight and hence
the positivity index µ(h) is equal to the SOS index λ (h), which in this case is equal
to 0.

Example 2.8. Let us consider Motzkin’s form in (2.1). We have n = 3, m = 3 and
σ(n,m) = 10. After computing a maximal SMR matrix H of hMot(x), we find that
dim(N (H)) = 7. Let us observe that mps(h) cannot be computed via the extraction
procedure described in Section 1.9 because (1.89) does not hold, indeed 7 = u �≤
(n−1)(m−1)+2 = 6. Then, let us consider Theorem 2.10. We have that m is odd,
however the first condition of the theorem does not hold since 7 = dim(N (H)) �>
σ(n,m)− n = 7. This means that we cannot conclude that hMot(x) is SMR-tight.
This is in accordance with the fact that hMot(x) cannot be SMR-tight since it is PNS,
which implies λ (hMot) < 0 and µ(hMot) = 0.
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2.4 Characterizing PNS Forms via the SMR

This section investigates the structure of PNS forms through the SMR. In particular,
it is shown that each PNS form is the vertex of a cone of PNS forms. Moreover, a
parametrization of PNS forms is proposed.

2.4.1 Basic Properties of PNS Forms

First of all, let us observe that, while the sets Ωn,2m and Σn,2m are convex, the set
∆n,2m is nonconvex. This is shown by the following example.

Example 2.9. Let us consider Motzkin’s form in (2.1) and Stengle’s form [122]

hSte(x) = x3
1x3

3 +(x2
2x3 − x3

1 − x1x2
3)

2, (2.42)

which are both in ∆3,6. Let us define the form

h(x) =
1
2

(hMot(x)+ hSte(x)) .

It can be verified that
λ (h) = 0

which means that h(x) is SOS. Therefore, h �∈ ∆3,6, which implies that ∆3,6 is not
convex.

For any h ∈ Ξn,m let us define the ball in Ξn,m with radius δ ∈ R centered in h(x)
as

Bδ (h) = {h1 ∈ Ξn,m : d(h1,h) ≤ δ} (2.43)

where d : Ξn,m ×Ξn,m → R is the distance in Ξn,m defined as

d(h1,h) = ‖g1 −g‖ (2.44)

being g1,g ∈ R
σ(n,m) vectors representing respectively h1,h according to the power

vector representation (1.6).
The following result introduces some key properties of ∆n,2m.

Theorem 2.11. Suppose that ∆n,2m �= /0. Then:

1. there exists h ∈ ∆n,2m such that µ(h) > 0;
2. for any h ∈ ∆n,2m such that µ(h) > 0, it follows that

∃δ > 0 : Bδ (h) ⊂ ∆n,2m; (2.45)

3. for any h ∈ ∆n,2m there exists δ > 0 such that

Bδ (h)∩Ωn,2m ⊂ ∆n,2m. (2.46)
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Proof. Consider item 1, and let ∆n,2m �= /0. Then, there exists h ∈ ∆n,2m such that
µ(h) ≥ 0. Let us suppose that µ(h) = 0 and let us define

h1(x) = h(x)+ εx{m}′x{m}.

It follows that
µ(h1) = µ(h)+ ε = ε.

Moreover, let H be an SMR matrix of h(x). We have that

H1 = H + εIσ(n,m)

is an SMR matrix of h1(x). Hence, it follows that

λ (h1) = λ (h)+ ε.

Since λ (h) < 0, by choosing ε ∈ (0,−λ (h)), one gets h1 ∈ ∆n,2m and µ(h1) > 0.
Hence, item 1 holds.

Consider item 2, and let h ∈ ∆n,2m with µ(h) > 0. We have also λ (h) < 0. For
continuity of µ(h) and λ (h) with respect to the coefficients of h(x), it follows that

∃δ > 0 : µ(h1) > 0 and λ (h1) < 0 ∀h1 ∈ Bδ (h)

i.e. (2.45) holds.
Lastly, consider item 3, and let h ∈ ∆n,2m. If µ(h) > 0, then (2.45) holds, which

directly implies (2.46) since ∆n,2m ⊂ Ωn,2m. Hence, let us suppose µ(h) = 0. Simi-
larly to the proof of (2.45) it follows that

∃δ > 0 : λ (h1) < 0 ∀h1 ∈ Bδ (h)

i.e. Bδ (h)∩Σn,2m = /0. Therefore, (2.46) holds. �

Theorem 2.11 states three properties for the set of PNS forms ∆n,2m. The first
says that, if this set is not empty, then it contains positive definite forms. The second
property says that positive definite forms in ∆n,2m are interior points of ∆n,2m. The
third property establishes that every PNS form owns a neighborhood with shape
defined by (2.43)–(2.44) where all positive semidefinite forms are PNS. This means
that arbitrarily small changes of the coefficients of a PNS form cannot turn this form
into an SOS form.

As it has been explained in the previous sections, to establish whether a form
h(x) is PNS amounts to establishing whether µ(h)≥ 0 and λ (h) < 0. The following
result provides a further characterization of PNS forms which turns out to be useful
for their construction.

Theorem 2.12. Let h ∈ ∆n,2m, and H ∈ S
σ(n,m) be a maximal SMR matrix of h(x).

Let 〈λmin(H),β ,V0,Vp〉 be a minimum eigenvalue decomposition of H. Then,

�x ∈ R
n
0 : V ′

px{m} = 0. (2.47)
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Proof. Let us suppose by contradiction that there exists x̃ ∈ R
n
0 such that x̃{m} ∈

ker(V ′
p). Let r be the length of β . Then, we have

h(x̃) = x̃{m}′ (V0 Vp
)
(

λmin(H)Iσ(n,m) + diag

(
0σ(n,m)−r

β

))(
V ′

0

V ′
p

)

x̃{m}

= λmin(H)‖V ′
0x̃{m}‖2.

Let us observe that λmin(H) < 0, because H is a maximal SMR matrix of a PNS
form. Moreover, ‖V ′

0x̃{m}‖> 0, since img(V0) = ker(V ′
p). This implies that h(x̃) < 0,

which is impossible since h(x) is PNS. �

Theorem 2.12 provides a necessary condition for a form to be PNS: the absence
of solutions x ∈ R

n
0 in the homogeneous polynomial system V ′

px{m} = 0. By Defini-
tion 2.3, this condition is equivalent to

�x ∈ R
n
0 : x{m} ∈ img(V0).

2.4.2 Cones of PNS Forms

The following result provides a way to generate a set of PNS forms from a given
PNS form.

Theorem 2.13. Let h ∈ ∆n,2m, H ∈ S
σ(n,m) be a maximal SMR matrix of h(x), and

〈λmin(H),β ,V0,Vp〉 be a minimum eigenvalue decomposition of H. Let us define the
parametrized form

s(x;γ) = x{m}′Vp diag(γ)V ′
px{m} (2.48)

for some γ ∈ R
r, where r is the length of β . Moreover, let us define the set

cone(h) = {h1 ∈ Ξn,2m : h1(x) = h(x)+ s(x;γ), γ > 0} . (2.49)

Then,
cone(h) ⊂ ∆n,2m. (2.50)

Moreover,
∃δ > 0 : µ (h + s(·,γ)) ≥ µ(h)+ δ min

1≤i≤r
γi. (2.51)

Proof. First of all, let us observe that s(x;γ) is SOS for all γ ≥ 0 because a positive
semidefinite SMR matrix of s(x;γ) for all γ ≥ 0 is given by

S(γ) = Vp diag(γ)V ′
p.



56 2 Positivity Gap

In order to prove (2.50), let us observe that

H1 = H + S(γ)

is a maximal SMR matrix of

h1(x) = h(x)+ s(x;γ).

In fact, we have that

H1 =
(

V0 Vp
)
(

λmin(H)Iσ(n,m) + diag

(
0σ(n,m)−r

γ

))(
V ′

0

V ′
p

)

+Vp diag(β )V ′
p

=
(

V0 Vp
)
(

λmin(H)Iσ(n,m) + diag

(
0σ(n,m)−r

β + γ

))(
V ′

0

V ′
p

)

which clearly implies that

〈λmin(H),β + γ,V0,Vp〉 (2.52)

is a minimum eigenvalue decomposition of H1. Since H is a maximal SMR matrix
of h(x), we have from Theorem 2.6 that η∗(V0) ≤ 0, which implies that also H1 is a
maximal SMR matrix.

Now, from the fact that H1 is a maximal SMR matrix and taking into account its
minimum eigenvalue decomposition in (2.52), it follows that

λ (h1) = λmin(H1) = λmin(H) = λ (h).

Moreover, we have that
µ(h1) ≥ µ(h)

because s(x;γ) is SOS. Since h ∈ ∆n,2m we conclude that λ (h1) = λ (h) < 0 and
µ(h1) ≥ µ(h) ≥ 0, which imply that h1(x) is PNS. Therefore, (2.50) holds.

Finally, let us observe that

µ (h + s(·,γ)) ≥ µ(h)+ µ (s(·,γ))

and
s(x;γ) ≥ ‖V ′

px{m}‖2 min
1≤i≤r

γi ∀x ∀γ.

According to Theorem 2.12, we have that V ′
px{m} �= 0 for all x ∈ R

n
0. Hence, (2.51)

holds with δ = µ(h2), where h2(x) is the form h2(x) = ‖V ′
px{m}‖2. �

Theorem 2.13 states that any PNS form h(x) is the vertex of a cone of PNS forms
given by cone(h). In particular, the directions of this cone correspond to the SOS
forms given by s(x;γ) for γ > 0. Let us also observe that, according to (2.51), there
exist PNS forms in this cone whose positivity index is arbitrarily large.
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2.4.3 Parametrization of PNS Forms

Maximal SMR matrices can be exploited to derive a parametrization of all PNS
forms. Let us define the set

Θ P
n,2m(r) =

{
Vp ∈ R

σ(n,m)×r : (2.53)

V ′
pVp = Ir, η∗(cmp(Vp)) ≤ 0, and (2.47) holds

}
.

The notation cmp(Vp) denotes any matrix in R
σ(n,m)×(σ(n,m)−r) whose columns are

an orthonormal base of ker(V ′
p). Hence cmp(Vp) satisfies the conditions

{
cmp(Vp)′ cmp(Vp) = Iσ(n,m)−r

img(cmp(Vp)) = ker(V ′
p).

Now, let us introduce the set

Θn,2m =
⋃

1≤r≤σ(n,m)

Θn,2m(r) (2.54)

where

Θn,2m(r) =
{〈δ ,β ,Vp〉 : δ ∈ (0,1]; β ∈ R

r,β > 0; Vp ∈Θ P
n,2m(r)

}
. (2.55)

For any θ = 〈δ ,β ,Vp〉 ∈ Θn,2m(r), let s(x;β ) = x{m}′Vp diag(β )V ′
px{m} and define

the form
π(x;θ ) = s(x;β )− δ µ (s(·,β ))x{m}′x{m}. (2.56)

The following result provides a parametrization of the set of PNS forms ∆n,2m.

Theorem 2.14. Let Θn,2m be defined by (2.53)–(2.55), and π(x;θ ) be given by
(2.56). Then,

h ∈ ∆n,2m ⇐⇒ ∃θ ∈Θn,2m : h(x) = π(x;θ ). (2.57)

Proof. (Necessity) Let h ∈ ∆n,2m. Let H be a maximal SMR matrix of h(x), and
let 〈λmin(H),β ,V0,Vp〉 be a minimum eigenvalue decomposition of H. Let r be the
length of β . We have that

h(x) = x{m}′ (V0 Vp
)
(

λmin(H)Iσ(n,m) + diag

(
0σ(n,m)−r

β

))(
V ′

0

V ′
p

)

x{m}

= x{m}′ (λmin(H)Iσ(n,m) +Vp diag(β )V ′
p

)
x{m}

= λmin(H)x{m}′x{m} + s(x;β ).

Hence, h(x) = π(x;θ ) where
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θ = 〈δ ,β ,Vp〉
δ = − λmin(H)

µ (s(·,β ))
.

Let us observe that δ ∈ (0,1] because λmin(H) = λ (h) < 0 and λmin(H)+µ (s(·,β ))
= µ(g(x)) ≥ 0. Moreover, β > 0 because 〈λmin(H),β ,V0,Vp〉 is a minimum eigen-
value decomposition of H. Then, by Theorem 2.6 and Theorem 2.12 it follows that
Vp ∈Θ P

n,2m(r).
(Sufficiency) Let θ = 〈δ ,β ,Vp〉 ∈Θn,2m. We have that an SMR matrix of π(x;θ )

is given by

H = Vp diag(β )V ′
p − δ µ (s(·,β )) Iσ(n,m)

=
(

cmp(Vp) Vp
)
(

diag

(
0σ(n,m)−r

β

)

− δ µ (s(·,β )) Iσ(n,m)

)(
cmp(Vp)′

V ′
p

)

.

Since V ′
pVp = Ir and β > 0, it follows that

〈−δ µ (s(·,β )) ,β ,cmp(Vp),Vp〉

is a minimum eigenvalue decomposition of H. Since η∗(cmp(Vp)) ≤ 0, this implies
that H is a maximal SMR matrix from Theorem 2.6. Moreover, from Theorem 2.12
it follows that µ (s(·,β )) > 0. Hence,

λ (π(·,θ )) = −δ µ (s(·,β )) < 0

and
µ (π(·,θ )) = (1− δ )µ (s(·,β )) ≥ 0.

Therefore, (2.57) holds. �

Theorem 2.14 states that ∆n,2m is the image of Θn,2m through the function π(x;θ ).
Hence, this result provides a technique to parametrize and construct all the PNS
forms. This technique amounts to finding matrices Vp in Θ P

n,2m(r) and calculating
the positivity index µ (s(·,β )). Unfortunately, it is difficult to find an explicit rep-
resentation of the set Θ P

n,2m(r). A method to find elements in this set consists of
looking for matrices Vp with a fixed structure, for which the property (2.47) and
the positivity index µ (s(·,β )) can be easily checked, and using the remaining free
parameters to satisfy the condition η∗(cmp(Vp)) ≤ 0.

Example 2.10. We show here the construction of a simple PNS by using Theorem
2.14, in the case with n = 3 and m = 3. Let us choose x{m} as

x{m} = (x3
1,
√

3x2
1x2,

√
3x2

1x3,
√

3x1x2
2

√
6x1x2x3,

√
3x1x2

3,x
3
2,√

3x2
2x3,

√
3x2x2

3,x
3
3)

′.
(2.58)

This choice satisfies (1.9). Then, let us choose
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Vp =
1√
38

⎛

⎜
⎝

2
√

3 0 0 −5 0 1 0 0 0 0

0 1 0 0 0 0 2
√

3 0 −5 0

0 0 −5 0 0 0 0 1 0 2
√

3

⎞

⎟
⎠

′

.

The number of columns of Vp is r = 3. Observe that V ′
pVp = I3. Moreover, by select-

ing y = (1,0, . . . ,0)′ in (2.27), we find that η(cmp(Vp)) =−0.0792, which allows us
to conclude that η∗(cmp(Vp))≤ 0, by Theorem 2.7. Thanks to the structure of Vp, it
is easy to verify the property (2.47) and to compute the positivity index µ (s(·,β )).
In fact,

V ′
px{m} =

√
3

38
(w1(x),w2(x),w3(x))′

where
w1(x) = x1

(
2x2

1 −5x2
2 + x2

3

)

w2(x) = x2
(
x2

1 + 2x2
2 −5x2

3

)

w3(x) = x3
(−5x2

1 + x2
2 + 2x2

3

)
.

It is straightforward to see that

wi(x) = 0 ∀i = 1,2,3 ⇐⇒ x = 03

and hence (2.47) holds. Therefore, Vp ∈Θ P
3,6(3) and

θ = 〈δ ,β ,Vp〉 ∈Θ3,6 ∀δ ∈ (0,1], ∀β ∈ R
3,β > 0.

Moreover, let us select a vector β , for example β = (38/3,38/3,38/3)′. It follows

s(x;β ) =
3

∑
i=1

wi(x)2. (2.59)

In order to compute µ (s(·,β )), we have to find the minimum of s(x;β ) over the set
Cn,m, which coincides with {x : ‖x‖ = 1} due to the choice (2.58). Let us observe
that, since s(x;β ) depends on x2

1,x
2
2,x

2
3, one can first substitute x2

3 = 1− x2
1 − x2

2 in
s(x;β ), and then find the minimum by computing the points where the derivatives of
s(x;β ) with respect to x2

1 and x2
2 vanish. This operation amounts to solving a system

of two quadratic equations in two variables, and can be done by finding the roots of
a polynomial equation of degree four in one variable. We find

µ (s(·,β )) = 0.4360.

Let us define

h0(x) =
3

∑
i=1

wi(x)2

= 4(x6
1 + x6

2 + x6
3)−19(x4

1x2
2 + x4

2x2
3 + x4

3x2
1)+ 29(x4

1x2
3 + x4

2x2
1 + x4

3x2
2)

−30x2
1x2

2x2
3.
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Therefore, from Theorem 2.14 it follows that the form

h(x) = h0(x)−0.4360‖x‖6δ (2.60)

is a PNS form for all δ ∈ (0,1]. Figure 2.1 shows the plot of h(x) on the upper
semi-sphere for δ = 0.5.

1

0.5

0

0.5

1 1

0.5

0

0.5

1
0

1

2

3

4

5

6

x1

x2

h(
x)

Fig. 2.1 Example 2.10: form h(x) in (2.60) plotted with δ = 0.5 for x such that x2
1 + x2

2 ≤ 1

and x3 =
√

1−x2
1 −x2

2

Example 2.11. Let us consider the PNS form in (2.60), and let γ ∈ R
3. From (2.59)

we have that

h(x)+ s(x;γ) =
3

∑
i=1

(1 + γi)wi(x)2 −0.4360‖x‖6δ .

This implies that the cone (2.49) is given by

cone(h) =

{

h1 ∈ Ξ3,6 : h1(x) =
3

∑
i=1

(1 + γi)wi(x)2 −0.4360‖x‖6δ , γ ≥ 0

}

.

According to Theorem 2.13, such a cone contains only PNS forms.



2.5 Notes and References 61

2.5 Notes and References

There is an endless literature on Hilbert’s 17th problem and related issues. The inter-
ested reader is referred to the classical book [70], and to more recent contributions
such as [118, 122, 123] and references therein.

Theorem 2.4 was given in [34]. Maximal SMR matrices and related results in
Section 2.2, as well as the characterization of PNS forms in Section 2.4, have been
provided in [25]. SMR-tight forms have been introduced in [27].

The study of the gap between positive forms and SOS forms is a classical problem
which has recently attracted much interest, see e.g. [9, 86, 25].
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