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Preface

It is well known that a large number of problems relevant to the control field can be
formulated as optimization problems. For long time, the classical approach has been
to look for a closed form solution to the specific optimization problems at hand. The
last decade has seen a noticeable shift in the meaning of “closed form” solution.
The formidable increase of computational power has dramatically changed the feel-
ing of theoreticians as well as of practitioners about what is meant by tractable and
untractable problems. A main issue regards convexity. From a theoretical viewpoint,
there has been a large amount of work in the directions of “convexifying” noncon-
vex problems and studying structural features of convex problems. On the other
hand, extremely powerful algorithms for the solution of convex problems have been
devised in the last two decades. Clearly, the fact that a wide variety of engineer-
ing problems can be formulated as convex problems has strongly motivated efforts
in this direction. The control field is not an exception in this sense: many prob-
lems in robust control, identification and nonlinear control have been recognized as
convex problems. Moreover, convex relaxations of nonconvex problems have been
intensively investigated, as they provide an effective tool for bounding the optimal
solution of the original problem.

As far as robust control is concerned, it is known since long time that several
classes of problems can be reduced to testing positivity of suitable polynomials. Re-
markable examples are: the construction of Lyapunov functions and the evaluation
of the stability margin for systems affected by structured uncertainty; the estima-
tion of the domain of attraction of nonlinear systems; the synthesis of fixed-order
H∞ optimal controllers; the robust disturbance rejection for nonlinear systems, and
many others. In recent years, it has been recognized that positivity of polynomi-
als can be tackled effectively in the framework of linear matrix inequality (LMI)
problems, which are a special class of convex optimizations problems enjoying a
number of appealing properties, like solvability in polynomial time. A fundamental
relaxation consists of replacing the condition for a polynomial to be positive with
the condition that it is a sum of squares of polynomials (SOS). The interest for this
relaxation is motivated by the facts that testing whether a polynomial is SOS boils
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down to an LMI problem, and that the conservatism of this relaxation can be reduced
by suitably increasing the degree of the polynomial.

This book describes some techniques developed recently by the authors and a
number of researchers in the field, in order to address stability and performance
analysis of uncertain systems affected by structured parametric uncertainties. Con-
vex relaxations for different robustness problems are constructed by employing ho-
mogeneous forms (hereafter, simply forms), i.e. polynomials whose terms have the
same degree. Such forms are used to parametrize various classes of Lyapunov func-
tions. The proposed solutions are characterized in terms of LMI problems and show
a number of nice theoretical and practical features, which are illustrated throughout
the book.

Organization of the Book

Chapter 1 introduces the square matricial representation (SMR), which is a powerful
tool for the representation of forms as it allows one to establish whether a form is
SOS via an LMI feasibility test. This tool is then extended to address the representa-
tion of matrix forms and the characterization of SOS matrix forms. It is shown that,
for a given form, an SOS index can be computed by solving an eigenvalue problem
(EVP), which is the minimization of a linear function subject to LMI constraints,
also known as semidefinite program. Moreover, it is shown how the positivity of a
polynomial on an ellipsoid and the positivity of a matrix polynomial on the simplex
can be cast in terms of positivity of suitable forms. The chapter also provides con-
ditions under which vectors related to a given homogeneous polynomial structure
lie in assigned linear spaces. This is useful in order to study the conservatism of
SOS-based relaxations.

Chapter 2 investigates the relationship between convex relaxations for positiv-
ity of forms and Hilbert’s 17th problem, which concerns the existence of positive
forms which are not SOS forms (PNS). The concepts of maximal SMR matrices
and SMR-tight forms are introduced, which allow one to derive a posteriori tight-
ness conditions for LMI optimizations arising in SOS relaxations. Also, this chapter
provides results on Hilbert’s 17th problem based on the SMR, showing that each
PNS form is the vertex of a cone of PNS forms, and providing a parametrization of
the set of PNS forms.

Chapter 3 addresses robust stability and robust performance analysis of time-
varying polytopic systems, i.e. uncertain systems affected by linear dependent time-
varying uncertainties constrained in a polytope. It is shown how robustness prop-
erties can be investigated by using homogeneous polynomial Lyapunov functions
(HPLFs), a non-conservative class of Lyapunov functions whose construction can
be tackled by solving LMI problems such as LMI feasibility tests or generalized
eigenvalue problems (GEVPs), being the latter a class of quasi-convex optimizations
with LMI constraints. Moreover, a priori conditions for tightness of the considered
relaxations are provided. The extension to the case of uncertain systems with ra-
tional dependence on the uncertain parameters is derived through linear fractional
representations (LFRs).
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Chapter 4 investigates robustness analysis of time-invariant polytopic systems by
adopting homogeneous parameter-dependent quadratic Lyapunov functions (HPD-
QLFs), again a non-conservative class of Lyapunov functions. The chapter pro-
vides a posteriori tests for establishing non-conservatism of the bounds obtained
for robust stability margin or robust performance. Alternative conditions for assess-
ing robust stability and instability of time-invariant polytopic systems are provided
through LMI optimizations resulting from classical stability criteria. Moreover, it
is shown how such results can be extended to the case of uncertain systems with
rational dependence on the uncertain parameter, and to the case of discrete-time
systems.

Chapter 5 considers the case of polytopic systems with time-varying uncertainties
and finite bounds on their variation rate, and illustrates how robustness analysis can
be addressed by using homogeneous parameter-dependent homogeneous Lyapunov
functions (HPD-HLFs). This class of functions include all possible forms in the state
variables and uncertain parameters, and therefore recovers the classes of HPLFs and
HPD-QLFs as special cases. The chapter shows how the construction of HPD-QLFs
can be formulated in terms of LMI problems, and highlights the role played by the
degrees of the Lyapunov function in the state variables and uncertain parameters.

Lastly, Chapter 6 treats quadratic distance problems (QDPs), i.e. the computation
of the minimum weighted euclidean distance from a point to a surface defined by a
polynomial equation. This special class of nonconvex optimization problems finds
numerous applications in control systems. It is shown that a lower bound to the
solution of a QDP can be obtained through a sequence of LMI feasibility tests. a
priori and a posteriori necessary and sufficient conditions for tightness of the lower
bound are derived. The proposed technique is applied to the computation of the
parametric stability margin of time-invariant polytopic systems.
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Notation

Basic Sets

N space of natural numbers (including zero)
R space of real numbers
C space of complex numbers
[a,b] {x ∈ R : a ≤ x ≤ b}, with a,b ∈ R

0n n×1 null vector
0m×n m×n null matrix
In n×n identity matrix
R

n
0 R

n \ {0n}
S

n set of n×n real symmetric matrices

Basic Functions and Operators

� lower triangular entries in symmetric matrices
re(λ ) real part of λ ∈ C

im(λ ) imaginary part of λ ∈ C

|λ |
√

re(λ )2 + im(λ )2, with λ ∈ C

xy xy1
1 xy2

2 · · ·xyn
n , with x ∈ R

n, y ∈ R
n

sq(x) (x2
1, . . . ,x

2
n)′, with x ∈ R

n

sqr(x) (
√

x1, . . . ,
√

xn)′, with x ∈ R
n

‖x‖ 2-norm of x ∈ R
n, i.e. ‖x‖ =

√
x′x

‖x‖∞ ∞-norm of x ∈ R
n, i.e. ‖x‖∞ = maxi=1,...,n |xi|

x > 0 xi > 0 ∀i = 1, . . . ,n, with x ∈ R
n

x ≥ 0 xi ≥ 0 ∀i = 1, . . . ,n, with x ∈ R
n

det(X) determinant of X ∈ R
n×n

rank(X) rank of X ∈ R
m×n

X ′ transpose of X ∈ R
m×n

he(X) X + X ′, with X ∈ R
n×n

diag(x) n×n diagonal matrix where the entry (i, i) is xi, with x ∈ R
n
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co{X1, . . . ,Xp} convex hull of matrices X1, . . . ,Xp ∈ R
m×n, i.e.

co{X1, . . . ,Xp} =

{

X =
p

∑
i=1

yiXi, yi ∈ [0,1],
p

∑
i=1

yi = 1

}

img(X) image of X ∈ R
m×n, i.e.

img(X) = {y ∈ R
m : y = Xz, z ∈ R

n}

ker(X) right null space of X ∈ R
m×n, i.e.

ker(X) = {z ∈ R
n : Xz = 0m}

spc(X) set of eigenvalues of X ∈ R
n×n, i.e.

spc(X) = {λ ∈ C : det(λ In −X) = 0}

λmax(X) maximum real eigenvalue of X ∈ R
n×n

λmin(X) minimum real eigenvalue of X ∈ R
n×n

X ⊗Y Kronecker product of matrices X and Y , i.e.

X ⊗Y =

⎛

⎜
⎜
⎝

x1,1Y x1,2Y · · ·
x2,1Y x2,2Y · · ·

...
...

. . .

⎞

⎟
⎟
⎠ , X =

⎛

⎜
⎜
⎝

x1,1 x1,2 · · ·
x2,1 x2,2 · · ·

...
...

. . .

⎞

⎟
⎟
⎠

X [i] i-th Kronecker power, i.e.

X [i] =

{
X ⊗X [i−1] if i > 1

1 if i = 0

X > 0 symmetric positive definite matrix X ∈ S
n, i.e.

X > 0 ⇐⇒ y′Xy > 0 ∀y ∈ R
n
0

X ≥ 0 symmetric positive semidefinite matrix X ∈ S
n, i.e.

X ≥ 0 ⇐⇒ y′Xy ≥ 0 ∀y ∈ R
n



Abbreviations

EVP Eigenvalue problem
GEVP Generalized eigenvalue problem
HPD-HLF Homogeneous parameter-dependent homogeneous Lyapunov function
HPD-QLF Homogeneous parameter-dependent quadratic Lyapunov function
HPLF Homogeneous polynomial Lyapunov function
LFR Linear fractional representation
LMI Linear matrix inequality
PNS Positive non SOS
SMR Square matricial representation
SOS Sum of squares of polynomials



Chapter 1
Positive Forms

This chapter addresses the problem of studying positivity of a form, i.e. a polyno-
mial whose terms have all the same degree. This is a key issue which has many
implications in systems and control theory. A basic tool for the representation of
forms, which is known in the literature as Gram matrix or SMR, is introduced. The
main idea is to represent a form of a generic degree through a quadratic form, by
introducing suitable base vectors and corresponding coefficient matrices, which are
called power vectors and SMR matrices, respectively. It is shown that a positive
semidefinite SMR matrix exists if and only if the form is an SOS form. This allows
one to establish whether a form is SOS via an LMI feasibility test, which is a con-
vex optimization problem. Hence, sufficient conditions for positivity of forms can
be formulated in terms of LMIs. Then, the SMR framework is extended to address
the case of matrix forms. Another contribution of this chapter is to show how some
problems involving positivity of polynomials over special sets, such as ellipsoids or
the simplex, can be cast in terms of unconstrained positivity of a form. Finally, it is
shown how the power vectors belonging to assigned linear spaces can be determined
via linear algebra operations. This is instrumental to the extraction of solutions in
the robustness problems addressed in subsequent chapters.

1.1 Forms and Polynomials

Let us define the set

Qn,d =

{

q ∈ N
n :

n

∑
i=1

qi = d

}

. (1.1)

Definition 1.1 (Form). The function h : R
n → R is a form of degree d in n scalar

variables if
h(x) = ∑

q∈Qn,d

aqxq (1.2)

where x ∈ R
n and aq ∈ R is the coefficient of the monomial xq.

G. Chesi et al.: Homogeneous Polynomial Forms, LNCIS 390, pp. 1–37.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



2 1 Positive Forms

Hence, forms are weighted sums of monomials of the same degree. We define the
set of forms of degree d in n scalar variables as

Ξn,d = {h :Rn → R : (1.2) holds} . (1.3)

Let us now introduce the family of parametrized forms. Let h(x; p) be a form
of degree d in x ∈ R

n for any fixed parameter vector p in some space. Then, the
notation

h(·; p) ∈ Ξn,d

will denote that h(·; p) is a family of forms parametrized by p.
Generic polynomials can be represented by using forms, according to the follow-

ing definition.

Definition 1.2 (Polynomial). The function f : R
n → R is a polynomial of degree

less than or equal to d, in n scalar variables, if

f (x) =
d

∑
i=0

hi(x) (1.4)

where x ∈ R
n and hi ∈ Ξn,i, i = 1, . . . ,d.

This means that polynomials are sums of forms, i.e. forms are special cases of
polynomials. At the same time, any polynomial f (x) can be obtained by restricting
a suitable form ĥ(y) to a subspace, e.g. according to

f (x) = ĥ(y)|yn+1=1,

where y = (x′,1)′ and

ĥ(y) =
d

∑
i=0

hi(x)yd−i
n+1.

1.2 Representation via Power Vectors

Forms can be represented by vectors which contain their coefficients with respect to
an appropriate base. First of all, let us observe that the number of coefficients of any
form in Ξn,d is given by the cardinality of Qn,d , which is equal to

σ(n,d) =
(n + d−1)!
(n−1)!d!

. (1.5)

Definition 1.3 (Power Vector). Let x{d} be any vector in R
σ(n,d) such that, for all

h ∈ Ξn,d , there exists g ∈ R
σ(n,d) satisfying
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h(x) = g′x{d}. (1.6)

Then, x{d} is called a power vector for Ξn,d .

Therefore, x{d} is a vector of forms of degree d in x whose entries are a finite
generating set for Ξn,d , i.e. every form h ∈ Ξn,d can be represented as a linear com-
bination of the elements of x{d}, according to (1.6).

Special choices for x{d} are those where each entry is a monomial. This means
that (

x{d}
)

i
= xϕ(i) (1.7)

where
(
x{d})

i is the i-th entry of x{d}, and ϕ is any bijective function such that

ϕ : {i ∈ N : 1 ≤ i ≤ σ(n,d)}→ Qn,d .

Among these choices, a typical one is

⎛

⎜
⎜
⎜
⎜
⎝

x1

x2

...

xn

⎞

⎟
⎟
⎟
⎟
⎠

{k}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

x1(x1,x2,x3, . . . ,xn)
′{k−1}

x2(x2,x3, . . . ,xn)′
{k−1}

...

xn(xn)′
{k−1}

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

if k > 0

1 otherwise

(1.8)

which yields the lexicographical order of the monomials in x{d}. Other choices of
interest for x{d} are those satisfying the property

x{d}′x{d} = ‖x‖2d. (1.9)

For instance, this can be obtained by weighting the entries of x{d} in (1.7) as follows:

(
x{d}
)

i
=

√
d!

(ϕ(i))1!(ϕ(i))2! · · ·(ϕ(i))n!
xϕ(i). (1.10)

Example 1.1. Let us consider the form

h(x) = x3
1 + 2x2

1x2 −4x3
2.

One has that h ∈ Ξ2,3, i.e. n = 2 and d = 3. Then, h(x) can be written as in (1.6) with

g =

⎛

⎜
⎜
⎜
⎝

1

2

0

−4

⎞

⎟
⎟
⎟
⎠

, x{d} =

⎛

⎜
⎜
⎜
⎝

x3
1

x2
1x2

x1x2
2

x3
2

⎞

⎟
⎟
⎟
⎠
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where the chosen x{3} is a power vector for Ξ2,3. Observe that the dimension of x{d}

is given by (1.5) and it is equal to σ(2,3) = 4. Observe also that this choice for x{3}
does not satisfy (1.9), indeed

x{d}′x{d} = x6
1 + x4

1x2
2 + x2

1x4
2 + x6

2

�= x6
1 + 3x4

1x2
2 + 3x2

1x4
2 + x6

2

= ‖x‖2d.

Alternatively, one can choose x{d} satisfying (1.9), as suggested in (1.10), thus ob-
taining e.g.

g =

⎛

⎜
⎜
⎜
⎝

1

2 ·3− 1
2

0

−4

⎞

⎟
⎟
⎟
⎠

, x{d} =

⎛

⎜
⎜
⎜
⎝

x3
1√

3x2
1x2√

3x1x2
2

x3
2

⎞

⎟
⎟
⎟
⎠

.

1.3 Representation via SMR

Forms of even degree can be also represented via matrices. Indeed, let us observe
that x{m}′Hx{m} is a form of degree 2m in x for all H ∈ S

σ(n,m). This suggests that a
form h ∈ Ξn,2m can be represented via a suitable matrix H ∈ S

σ(n,m).

Definition 1.4 (SMR). Let h ∈ Ξn,2m and H ∈ S
σ(n,m) be such that

h(x) = x{m}′Hx{m}. (1.11)

Then, (1.11) is called a SMR of h(x) with respect to x{m}. Moreover, H is called a
SMR matrix of h(x) with respect to x{m}.

The existence and parametrization of the matrices H fulfilling (1.11) is consid-
ered hereafter.

1.3.1 Equivalent SMR Matrices

The following result clarifies that any form in Ξn,2m can be expressed as in (1.11).

Theorem 1.1. Let h ∈ Ξn,2m. Then, for any power vector x{m} there exists H ∈
S

σ(n,m) such that (1.11) holds.

Proof. Let a(x) ∈ R
σ(n,m) be any power vector for Ξn,m such that its entries are

monomials of degree m in x. One can always write
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h(x) = a(x)′Ba(x) (1.12)

where B ∈ S
σ(n,m). Indeed, let us observe that (a(x))i Bi, j (a(x)) j is a monomial of

degree 2m in x for each pair (i, j). Moreover, for each monomial of degree 2m in
x there exists at least one pair (i, j) such that (a(x))i Bi, j (a(x)) j is equal to this
monomial up to a scalar factor. Therefore, for any h ∈ Ξn,2m the matrix B satisfying
(1.12) can be simply built as follows. First, for each monomial of h(x), set one of
the entries of B corresponding to this monomial equal to its coefficient in h(x) and
set to zero all the other entries of B corresponding to the same monomial. Second,
replace B by he(B)/2.

Now, the matrix H satisfying (1.11) can be obtained from B as

H = (C−1)′BC−1

where C ∈ R
σ(n,m)×σ(n,m) is a nonsingular matrix such that

x{m} = Ca(x). (1.13)

This matrix C clearly exists since x{m} and a(x) are power vectors for the forms of
degree m in x. �

Let us consider the problem of characterizing the set of matrices H satisfying
(1.11). We define such a set as

H (h) =
{

H ∈ S
σ(n,m) : (1.11) holds

}
. (1.14)

The following result states an important property of H (h).

Lemma 1.1. Let h ∈ Ξn,2m. Then, H (h) is an affine space.

Proof. Let H1 and H2 be any matrices in H (h), and let us define H0 = a1H1 +a2H2

for some a1,a2 ∈ R. We have that

x{m}′H0x{m} = x{m}′ (a1H1 + a2H2)x{m}

= a1x{m}′H1x{m} + a2x{m}′H2x{m}

= (a1 + a2)h(x).

This implies that
H0 ∈ H (h) ∀a1,a2 ∈ R : a1 + a2 = 1

which means that H (h) is an affine space. �

Since H (h) is an affine space, its elements can be expressed as the sum between
any element of H (h) itself and an element free to vary in a suitable linear space.
Indeed, one has that

H (h) =
{

H + L, H ∈ S
σ(n,m) such that (1.11) holds, L ∈ Ln,m

}
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where Ln,m is the linear space

Ln,m =
{

L ∈ S
σ(n,m) : x{m}′Lx{m} = 0 ∀x ∈ R

n
}

. (1.15)

The following result characterizes the dimension of Ln,m.

Theorem 1.2. The dimension of Ln,m is given by

ω(n,m) =
1
2

σ(n,m)(1 + σ(n,m))−σ(n,2m). (1.16)

Proof. Let us define

a =
1
2

σ(n,m)(1 + σ(n,m))

and let b ∈ R
a be a vector containing the free entries of a matrix L ∈ S

σ(n,m). Let
C : R

a → S
σ(n,m) be the linear map from b to the corresponding L, i.e.

C(b) = L.

Let us write
x{m}′Lx{m} = x{m}′C(b)x{m}

= (Db)′x{2m}

where D ∈ R
σ(n,2m)×a is a suitable matrix. It follows that

Ln,m = {C(b) : b ∈ ker(D)} .

This implies that

dim(Ln,m) = dim({C(b) : b ∈ ker(D)})
= dim(ker(D))
= a− rank(D).

Now, let us prove that
rank(D) = σ(n,2m).

In fact, let us suppose by contradiction that rank(D) �= σ(n,2m). Since σ(n,2m)≤ a,
one has that rank(D) < σ(n,2m). But this in turn implies that

∃h ∈ Ξn,2m : (Db)′x{2m} �= h(x) ∀b ∈ R
a

or, in other words

∃h ∈ Ξn,2m : x{m}′Lx{m} �= h(x) ∀L ∈ S
σ(n,m)
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which contradicts Theorem 1.1. Therefore, rank(D) = σ(n,2m), and hence the di-
mension of Ln,m is given by ω(n,m) in (1.16). �

It can be verified that Ln,m contains only one matrix in the cases n = 1 for all m,
and m = 1 for all n. Indeed, one has

ω(1,m) = 0

ω(n,1) = 0.

Table 1.1 shows the quantities σ(n,m) and ω(n,m) given by (1.5) and (1.16), re-
spectively, for some values of n,m.

Table 1.1 Quantities σ(n,m) and ω(n,m) for some values of n,m: (a) σ(n,m) ; (b) ω(n,m)

(a) (b)

m = 1 m = 2 m = 3 m = 4 m = 5

n = 1 1 1 1 1 1

n = 2 2 3 4 5 6

n = 3 3 6 10 15 21

n = 4 4 10 20 35 56

n = 5 5 15 35 70 126

m = 1 m = 2 m = 3 m = 4 m = 5

n = 1 0 0 0 0 0

n = 2 0 1 3 6 10

n = 3 0 6 27 75 165

n = 4 0 20 126 465 1310

n = 5 0 50 420 1990 7000

1.3.2 Complete SMR

Let L(α) be a linear parametrization of Ln,m where α ∈ R
ω(n,m) is a free vector.

The set H (h) in (1.14) can be rewritten as

H (h) =
{

H + L(α) : H ∈ S
σ(n,m) satisfies (1.11), α ∈ R

ω(n,m)
}

.

This allows us to derive the following parametrization for forms of even degree.

Definition 1.5 (Complete SMR). Consider any h ∈ Ξn,2m. Let H ∈ S
σ(n,m) be such

that (1.11) holds, and L(α) be a linear parametrization of Ln,m with α ∈ R
ω(n,m).

Then, h(x) can be written as

h(x) = x{m}′ (H + L(α))x{m}. (1.17)

The expression in (1.17) is called a complete SMR of h(x) with respect to x{m}.
Moreover, H + L(α) is called a complete SMR matrix of h(x) with respect to x{m}.
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Algorithms for the construction of the matrices H and L(α) in (1.17) are reported
in Appendix B.

It is worthwhile to observe that the complete SMR matrix H +L(α) is not unique
since the choice for H and L(α) is not unique. Also, H + L(α) depends on the
selected power vector x{m}. The following result characterizes different complete
SMR matrices of h(x).

Theorem 1.3. Consider the complete SMR of h(x) in (1.17). Then,

h(x) = x{m}′ (H̄ + L̄(ᾱ))x{m} (1.18)

with
x{m} = A−1x{m}

H̄ = A′ (H −L(Bβ ))A

L̄(ᾱ) = A′L(Bᾱ)A
ᾱ = B−1α + β

(1.19)

is also a complete SMR of h(x) for all A ∈ R
σ(n,m)×σ(n,m), B ∈ R

ω(n,m)×ω(n,m) and
β ∈ R

ω(n,m), with A and B nonsingular.

Proof. By substituting in (1.18) the expressions of x{m},H̄, L̄(ᾱ) given in (1.19), one
obtains

h(x) = x{m}′ (H̄ + L̄(ᾱ))x{m}

= x{m}′A−1′ (A′ (H −L(Bβ ))A + A′L(α + Bβ )A)A−1x{m}

= x{m}′ (H + L(α))x{m}

and hence the theorem holds. �

Example 1.2. Consider the form

h(x) = x4
1 + 2x3

1x2 + 2x4
2. (1.20)

One has that h ∈ Ξ2,4, i.e. n = 2 and m = 2. Then, h(x) can be written as in (1.17)
with

x{m} =

⎛

⎜
⎝

x2
1

x1x2

x2
2

⎞

⎟
⎠ , H =

⎛

⎜
⎝

1 1 0

� 0 0

� � 2

⎞

⎟
⎠ , L(α) =

⎛

⎜
⎝

0 0 −α1

� 2α1 0

� � 0

⎞

⎟
⎠ . (1.21)

In fact, the dimension of α is given by ω(2,2) = 1, according to (1.16).

Example 1.3. Consider the form

h(x) = x4
1 + 2x4

2 + 3x4
3. (1.22)
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One has n = 3, m = 2, and (1.17) holds with

x{m} =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

x2
1

x1x2

x1x3

x2
2

x2x3

x2
3

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

, H =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

1 0 0 0 0 0

� 0 0 0 0 0

� � 0 0 0 0

� � � 2 0 0

� � � � 0 0

� � � � � 3

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

L(α) =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

0 0 0 −α1 −α2 −α3

� 2α1 α2 0 −α4 −α5

� � 2α3 α4 α5 0

� � � 0 0 −α6

� � � � 2α6 0

� � � � � 0

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.

(1.23)

In the sequel, the power vector x{m} used to define the SMR will be always given
by (1.8), unless otherwise specified.

1.4 SOS Forms

The following definition introduces a key class of forms.

Definition 1.6 (SOS Form). The form h ∈ Ξn,2m is an SOS form if there exist
h1, . . . ,h j ∈ Ξn,m for some integer j ≥ 1 such that

h(x) =
j

∑
i=1

hi(x)2. (1.24)

We denote the set of SOS forms of degree 2m in n scalar variables with the
notation

Σn,2m = {h ∈ Ξn,2m : h(x) is SOS} . (1.25)

As it will be explained in the sequel, this set can be characterized by using the SMR.

1.4.1 SOS Tests Based on the SMR

The SMR allows one to establish whether a form is SOS through a convex optimiza-
tion. This is clarified in the following result.
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Theorem 1.4. Let H + L(α) be a complete SMR matrix of h ∈ Ξn,2m. Then, h(x) is
SOS if and only if

∃α : H + L(α) ≥ 0. (1.26)

Proof. (Necessity) Since h(x) is SOS, there exist h1(x), . . . ,h j(x) such that (1.24)
holds. Let us write each hi(x) as

hi(x) = g′ix
{m}

where g1, . . . ,g j ∈ R
σ(n,m) are suitable vectors of coefficients. It follows that:

h(x) =
j

∑
i=1

hi(x)2 =
j

∑
i=1

x{m}′gig
′
ix
{m} = x{m}′H̄x{m}

where

H̄ =
j

∑
i=1

gig
′
i.

Hence, H̄ is an SMR matrix of g(x). Moreover, it clearly holds that

H̄ ≥ 0.

Since H +L(α) parametrizes all the SMR matrices of h(x), there exists ᾱ such that

H + L(ᾱ) = H̄.

and hence (1.26) holds.
(Sufficiency) Let ᾱ be a value of α satisfying (1.26). Since H + L(ᾱ) ≥ 0, there

exists a Cholesky factor G ∈ R
σ(n,m)×σ(n,m) such that

H + L(ᾱ) = G′G.

Let g′i be the i-th row of G. It follows:

h(x) = x{m}′ (H + L(ᾱ))x{m}

= x{m}′G′Gx{m}

=

⎛

⎜
⎜⎜
⎜
⎜
⎝

g′1x{m}

g′2x{m}

...

g′σ(n,m)x
{m}

⎞

⎟
⎟⎟
⎟
⎟
⎠

′⎛

⎜
⎜⎜
⎜
⎜
⎝

g′1x{m}

g′2x{m}

...

g′σ(n,m)x
{m}

⎞

⎟
⎟⎟
⎟
⎟
⎠

=
σ(n,m)

∑
i=1

hi(x)2 (1.27)
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where hi(x) = g′ix
{m} is a form of degree m for all i = 1, . . . ,σ(n,m). Therefore, h(x)

is SOS. �

From Theorem 1.4 it follows that to establish whether h(x) is SOS is equivalent
to establish whether the inequality (1.26) admits a feasible solution for α . Since
H +L(α) is an affine linear matrix function of the variable α , we have that (1.26) is
an LMI (see Appendix A.1 for details). Therefore, to establish whether h(x) is SOS
amounts to solving an LMI feasibility test, which belongs to the class of convex
optimization problems.

The following corollary is a direct consequence of Theorem 1.4 and provides an
upper bound to the quantity j in (1.24).

Corollary 1.1. Let h ∈ Σn,2m. Then, (1.24) holds with

j ≤ σ(n,m). (1.28)

Proof. Since h(x) is SOS, from Theorem 1.4 there exists ᾱ such that H +L(ᾱ) ≥ 0.

In particular, from (1.27) it turns out that h(x) = ∑σ(n,m)
i=1 hi(x)2. Since hi(x) could be

zero for some i, it follows that (1.28) holds. �

1.4.2 SOS Index

In order to further characterize SOS forms, we introduce the following definition.

Definition 1.7 (SOS Index). Let h ∈ Ξn,2m and define

λ (h) = max
t,α

t

s.t. H + L(α)− tIσ(n,m) ≥ 0
(1.29)

where H +L(α) is a complete SMR matrix of h(x). Then, λ (h) is called SOS index
of h(x).

The optimization problem (1.29) is known in the literature as EVP and turns out
to be convex (see Appendix A.1). Clearly, the SOS index of a form is related to the
positive definiteness of its SMR matrices. This is explained in the following result.

Lemma 1.2. Let H + L(α) be a complete SMR matrix of h ∈ Ξn,2m. Then,

λ (h) > 0 ⇐⇒ ∃α : H + L(α) > 0

λ (h) ≥ 0 ⇐⇒ ∃α : H + L(α) ≥ 0.
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Lemma 1.2 provides necessary and sufficient conditions for establishing whether
a form admits either positive definite or positive semidefinite SMR matrices in terms
of its SOS index. Hence, the SOS index can be used to establish whether a form is
SOS. The following result is a direct consequence of Theorem 1.4 and Lemma 1.2.

Corollary 1.2. Let h ∈ Ξn,2m. Then, h(x) is SOS if and only if

λ (h) ≥ 0. (1.30)

Example 1.4. Let us consider h(x) in (1.20). Then, by solving the EVP (1.29) with
H and L(α) as in (1.21) we find

λ (h) = 0.0352

which implies that h(x) is SOS. In particular, the optimal value of α in (1.29) is
α∗ = 0.8008, and the corresponding decomposition of h(x) in (1.27) is given by

h1(x) = x2
1 + x1x2 −0.8008x2

2

h2(x) = 0.7756x1x2 + 1.0325x2
2

h3(x) = 0.5411x2
2.

Example 1.5. Let us consider h(x) in (1.22). This form is obviously SOS. In par-
ticular, a positive semidefinite SMR matrix of h(x) is the matrix H in (1.23). It is
interesting to observe that the SOS index for this form is strictly positive

λ (h) = 0.7639,

corresponding to the maximizer ᾱ = (0.382,0,0.382,0,0,0.382)′ in (1.29). This
means that h(x) admits a positive definite SMR matrix. The corresponding decom-
position of h(x) in (1.27) is given by

h1(x) = x2
1 −0.3820x2

2−0.3820x2
3 h2(x) = 0.8740x1x2

h3(x) = 0.8740x1x3 h4(x) = 1.3617x2
2−0.3877x2

3

h5(x) = 0.8740x2x3 h6(x) = 1.6443x2
3.

For parametrized forms, the SOS index is defined as follows. Let h(x; p) be a
form of degree 2m in x ∈ R

n, for any fixed parameter p. Then, the SOS index of
h(x; p) is the function of p

λ (h(·; p)) = max
t,α

t

s.t. H(p)+ L(α)− tIσ(n,m) ≥ 0
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where the complete SMR matrix H(p)+ L(α) is computed by considering h(x; p)
as a form in x with coefficients depending on p.

1.5 Matrix Forms

In this section, we introduce matrix forms and their representation.

Definition 1.8 (Matrix Form). The function M : R
n → R

r×r is a matrix form of
degree d in n scalar variables if

Mi, j ∈ Ξn,d ∀i, j = 1, . . . ,r. (1.31)

We denote the set of r× r matrix forms of degree d in n scalar variables as

Ξ �
n,d,r =

{
M : R

n → R
r×r : (1.31) holds

}
(1.32)

and the set of symmetric matrix forms as

Ξn,d,r =
{

M ∈ Ξ �
n,d,r : M(x) = M(x)′ ∀x ∈ R

n
}

. (1.33)

Similarly to what has been done for forms in Definition 1.3, a matrix form M ∈
Ξ �

n,d,r can be written as

M(x) = G
(

x{d} ⊗ Ir

)
(1.34)

where G ∈ R
rσ(n,d)×r is a suitable coefficient matrix.

Example 1.6. Consider the matrix form

M(x) =

(
x3

1 + 3x2
1x2 0

−x1x2
2 2x3

2

)

.

One has M ∈ Ξ �
2,3,2, i.e. n = 2, d = 3 and r = 2. Then, M(x) can be written as in

(1.34) with

G =

(
1 0 3 0 0 0 0 0

0 0 0 0 −1 0 0 2

)

, x{d} =

⎛

⎜
⎜⎜
⎝

x3
1

x2
1x2

x1x2
2

x3
2

⎞

⎟
⎟⎟
⎠

.
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1.5.1 SMR of Matrix Forms

Matrix forms of even degree (i.e., having all elements of even degree) can be rep-
resented by introducing a suitable extension of the SMR formalism. Although this
can be done for any matrix form, in the sequel the treatment will be focused on
symmetric matrix forms. Let us introduce the notation

Φ
(

H,x{m},r
)

=
(

x{m} ⊗ Ir

)′
H
(

x{m} ⊗ Ir

)
. (1.35)

Definition 1.9 (SMR of Matrix Form). Let M ∈ Ξn,2m,r and H ∈ S
rσ(n,m) be such

that
M(x) = Φ

(
H,x{m},r

)
. (1.36)

Then, (1.36) is called a SMR of M(x) with respect to x{m}⊗ Ir. Moreover, H is called
a SMR matrix of M(x) with respect to x{m} ⊗ Ir.

Let us define the set of matrices H satisfying (1.36) as

H (M) =
{

H ∈ S
rσ(n,m) : (1.36) holds

}
. (1.37)

The following result characterizes H (M).

Theorem 1.5. Let M ∈ Ξn,2m,r. Then, H (M) is an affine space. Moreover,

H (M) =
{

H + L : H ∈ S
rσ(n,m) satisfies (1.36), L ∈ Ln,m,r

}
(1.38)

where Ln,m,r is the linear space

Ln,m,r =
{

L ∈ S
rσ(n,m) : Φ

(
L,x{m},r

)
= 0r×r ∀x ∈ R

n
}

(1.39)

whose dimension is given by

ω(n,m,r) =
1
2

r (σ(n,m)(rσ(n,m)+ 1)− (r + 1)σ(n,2m)). (1.40)

Proof. As in the proof of Lemma 1.1, H (M) in (1.37) is an affine space because
a1H1 + a2H2 ∈ H (M) for all H1,H2 ∈ H (M) and for all a1,a2 ∈ R such that
a1 + a2 = 1. This implies that H (M) can be written as in (1.38). Now, observe
that rσ(n,m)(rσ(n,m)+ 1)/2 is the number of distinct entries of a symmetric ma-
trix of dimension rσ(n,m)×rσ(n,m), while r(r+1)σ(n,2m)/2 is the total number
of monomials in the distinct entries of a symmetric matrix form with size r × r
of degree 2m in n scalar variables. The constraints obtained by annihilating these
monomials are linear and independent, according to the same reasoning adopted in
the proof of Theorem 1.2. Therefore, the dimension of Ln,m,r is ω(n,m,r). �
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It can be verified that Ln,m,1 coincides with Ln,m. Indeed, one has ω(n,m,1) =
ω(n,m). Tables 1.2 and 1.3 show the quantities rσ(n,m) and ω(n,m,r) for some
values of n,m,r.

Table 1.2 Quantity rσ(n,m) for some values of n,m,r: (a) r = 2 ; (b) r = 3

(a) (b)

m = 1 m = 2 m = 3 m = 4

n = 1 2 2 2 2

n = 2 4 6 8 10

n = 3 6 12 20 30

n = 4 8 20 40 70

m = 1 m = 2 m = 3 m = 4

n = 1 3 3 3 3

n = 2 6 9 12 15

n = 3 9 18 30 45

n = 4 12 30 60 105

Table 1.3 Quantity ω(n,m,r) for some values of n,m,r: (a) r = 2 ; (b) r = 3

(a) (b)

m = 1 m = 2 m = 3 m = 4

n = 1 0 0 0 0

n = 2 1 6 15 28

n = 3 3 33 126 330

n = 4 6 105 568 1990

m = 1 m = 2 m = 3 m = 4

n = 1 0 0 0 0

n = 2 3 15 36 66

n = 3 9 81 297 765

n = 4 18 255 1326 4575

Let L(α) be a linear parametrization of Ln,m,r, where α ∈ R
ω(n,m,r). The com-

plete SMR of matrix forms is defined as follows.

Definition 1.10 (Complete SMR of Matrix Form). Consider any M ∈ Ξn,2m,r. Let
H ∈ S

rσ(n,m) be such that (1.36) holds, and L(α) be a linear parametrization of
Ln,m,r with α ∈ R

ω(n,m,r). Then, M(x) can be written as

M(x) = Φ
(

H + L(α),x{m},r
)

. (1.41)

The expression in (1.41) is called a complete SMR of M(x) with respect to x{m} ⊗ Ir.
Moreover, H +L(α) is called a complete SMR matrix of M(x) with respect to x{m}.

Algorithms for the construction of the matrices H and L(α) in (1.41) are reported
in Appendix B.
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1.5.2 SOS Matrix Forms

In the sequel, it will be shown how the SOS property introduced in Section 1.4 for
scalar forms can be extended to matrix forms, and how the SMR can be used to
characterize this property via convex optimization.

Definition 1.11 (SOS Matrix Form). Let M ∈ Ξn,2m,r, and suppose there exist

M1, . . . ,Mj ∈ Ξ �
n,m,r for some integer j ≥ 1 such that

M(x) =
j

∑
i=1

Mi(x)′Mi(x). (1.42)

Then, M(x) is said to be a SOS matrix form.

We denote the set of SOS matrix forms as

Σn,2m,r = {M ∈ Ξn,2m,r : M(x) is SOS} . (1.43)

The SMR directly allows one to establish whether a matrix form is SOS or not via
an LMI feasibility test as described in the next result.

Theorem 1.6. Let H + L(α) be a complete SMR matrix of M ∈ Ξn,2m,r. Then, M(x)
is SOS if and only if

∃α : H + L(α) ≥ 0. (1.44)

Proof. Analogous to the proof of Theorem 1.4. �

For any M ∈ Ξn,2m,r we define the SOS index via the solution of an EVP similarly
to (1.29) as follows.

Definition 1.12 (SOS Index of Matrix Form). Let M ∈ Ξn,2m,r and define the EVP

λ (M) = max
t,α

t

s.t. H + L(α)− tIrσ(n,m) ≥ 0
(1.45)

where H + L(α) is a complete SMR matrix of M(x). Then, λ (M) is called SOS
index of M(x).

Corollary 1.3. Let M ∈ Ξn,2m,r. Then, M(x) is SOS if and only if

λ (M) ≥ 0. (1.46)

Corollary 1.3 states that one can establish whether a matrix form M(x) is SOS
via the condition (1.46), which requires the computation of the SOS index (1.45).
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Example 1.7. Consider the matrix form

M(x) =

(
x2

1 + x2
2 −x1x2 + x2

2

� x2
1 + 2x2

2

)

. (1.47)

One has that M ∈ Ξ2,2,2, i.e. n = 2, m = 1 and r = 2. Then, M(x) can be written as
in (1.41) with

x{m} = x, H =

⎛

⎜
⎜
⎜
⎝

1 0 0 −0.5

� 1 −0.5 0

� � 1 1

� � � 2

⎞

⎟
⎟
⎟
⎠

, L(α) =

⎛

⎜
⎜
⎜
⎝

0 0 0 −α1

� 0 α1 0

� � 0 0

� � � 0

⎞

⎟
⎟
⎟
⎠

. (1.48)

In fact, the dimension of α is given by ω(2,1,2) = 1, according to (1.40). We com-
pute the SOS index of M(x) in (1.45), and find that λ (M) = 0.1335 (the optimal
value of α in (1.45) is α∗ = 0.1536). Hence, M(x) is SOS.

Example 1.8. Consider the matrix form

M(x) =

(
x4

1 x1x3
2

� x4
2

)

. (1.49)

One has that M ∈ Ξ2,4,2, i.e. n = 2, m = 2 and r = 2. Then, M(x) can be written as
in (1.41) with

x{m} =

⎛

⎜
⎝

x2
1

x1x2

x2
2

⎞

⎟
⎠ , H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

1 0 0 0 0 0

� 0 0 0 0 0

� � 0 0 0 1

� � � 0 0 0

� � � � 0 0

� � � � � 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

L(α) =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 −α1 −α3 −α2 −α4

� 0 α1 0 α2 −α5

� � 2α3 α4 0 −α6

� � � 2α5 α6 0

� � � � 0 0

� � � � � 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

.

(1.50)

The dimension of α is ω(2,2,2) = 6. For this matrix form we find that λ (M) =
−0.1202, which implies that M(x) is not SOS.
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1.6 Positive Forms

This section illustrates how the SMR can be used for establishing positivity of forms.

1.6.1 Positivity Index

Let us start by introducing the following definition.

Definition 1.13 (Positive Definite Form). A form h ∈ Ξn,2m is positive definite
(resp., semidefinite) if h(x) > 0 (resp., h(x) ≥ 0) for all x �= 0n.

We denote the set of positive semidefinite forms of degree 2m in n scalar variables
by

Ωn,2m = {h ∈ Ξn,2m : h(x) is positive semidefinite} . (1.51)

Positive definiteness of forms can be also expressed via the following index.

Definition 1.14 (Positivity Index). Let h ∈ Ξn,2m and define

µ(h) = min
x∈Cn,m

h(x) (1.52)

where
Cn,m =

{
x ∈ R

n :
∥
∥
∥x{m}

∥
∥
∥= 1

}
. (1.53)

Then, µ(h) is called positivity index of h(x).

Let us observe that, depending on the chosen power vector x{m}, one can obtain
various shapes for the set Cn,m in (1.53). In particular, if x{m} is chosen to satisfy
(1.9), then one has

Cn,m = {x ∈ R
n : ‖x‖ = 1} .

For parametrized forms, the positivity index is defined as follows. Let h(x; p) be
a form of degree 2m in x ∈ R

n for any fixed parameter p. Then, the positivity index
of h(x; p) is the function of p

µ(h(·; p)) = min
x∈Cn,m

h(x; p).

The following result shows that positive definiteness and semidefiniteness of a
form h(x) can be directly established from the positivity index µ(h).

Theorem 1.7. Let h ∈ Ξn,2m. Then,

h(x) is positive definite ⇐⇒ µ(h) > 0

h(x) is positive semidefinite ⇐⇒ µ(h) ≥ 0.
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Proof. Let us observe that Cn,m in (1.53) is a closed hyper-surface in R
n centered

in 0n, and that x{m} is a vector of forms of degree m. For any x ∈ R
n
0, let a(x) =

∥
∥x{m}∥∥−

1
m ; then one has that a(x)x ∈ Cn,m. Moreover, since h(x) is a form of degree

2m, one has that
h(a(x)x) = a(x)2mh(x)

=
∥∥x{m}∥∥−2

h(x)

which implies that, for all x ∈ R
n
0,

h(x) > 0 ⇐⇒ h(a(x)x) > 0

h(x) ≥ 0 ⇐⇒ h(a(x)x) ≥ 0

and hence the theorem holds. �

A property of positive forms that will be useful in the following is given next.

Theorem 1.8. Let h ∈ Ξn,2m and assume that h(x) is positive definite. Then, there
exists ε > 0 such that the form h(x)− ε‖x‖2m is positive definite.

Proof. By Theorem 1.7, one has µ(h) > 0. Let us define

δ = max
x∈Cn,2m

‖x‖2m. (1.54)

Being Cn,2m compact, δ is finite and positive. Now, consider the form h1(x) = h(x)−
ε‖x‖2m. One has

µ(h1) = min
x∈Cn,2m

h(x)− ε‖x‖2m

≥ min
x∈Cn,2m

h(x)− ε max
x∈Cn,2m

‖x‖2m

= µ(h)− εδ .

Then, by choosing ε < δ−1µ(h), one has µ(h1) > 0, and therefore h1(x) is positive
definite. �

1.6.2 Sufficient Condition for Positivity

The SMR can be used to investigate whether a form is either positive definite or
positive semidefinite. Indeed, the following result holds.

Theorem 1.9. Let h ∈ Ξn,2m. Then,

λ (h) ≤ µ(h). (1.55)
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Proof. From (1.29) one has that

H(ᾱ)−λ (h)Iσ(n,m) ≥ 0 (1.56)

for some ᾱ . By pre- and post-multiplying by x{m}′ and x{m} respectively, the relation
(1.56) turns into

h(x)−λ (h)x{m}′x{m} ≥ 0 ∀x ∈ R
n.

Let us consider now this property for x ∈ Cn,m. One has that:

h(x)−λ (h)≥ 0 ∀x ∈ Cn,m.

In particular,
min

x∈Cn,m
h(x)−λ (h)≥ 0

which is equivalent to (1.55), and hence the theorem holds. �

Theorem 1.9 states that a lower bound to the positivity index µ(h) is given by the
SOS index λ (h) in (1.29). The following result is a direct application of Theorems
1.7 and 1.9.

Corollary 1.4. Let h ∈ Ξn,2m. Then:

λ (h) > 0 ⇒ h(x) is positive definite

λ (h) ≥ 0 ⇒ h(x) is positive semidefinite.

Corollary 1.4 provides sufficient conditions to check whether a form is either pos-
itive definite or positive semidefinite, which require to solve a convex optimization
for computing λ (h). The next chapter investigates the necessity of this condition.

Example 1.9. Let us consider the forms in Examples 1.2 and 1.3. In Examples 1.4
and 1.5 it has been found that λ (h) > 0 for these forms, hence Corollary 1.4 implies
that these forms are positive definite.

1.6.3 Positive Matrix Forms

In this section we extend the previous results to the case of matrix forms. First of
all, let us introduce the following definition.

Definition 1.15 (Positive Definite Matrix Form). A matrix form M ∈ Ξn,2m,r is
positive definite (resp., semidefinite) if M(x) > 0 (resp., M(x) ≥ 0) for all x �= 0n.

Similarly to the case of scalar forms, positive definiteness of matrix forms can be
expressed via an appropriate index.
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Definition 1.16 (Positivity Index for Matrix Form). Let M ∈ Ξn,2m,r and define

µ(M) = min
x∈Cn,m

λmin(M(x)). (1.57)

Then, µ(M) is called positivity index of M(x).

The following result explains how positive definiteness and semidefiniteness of a
matrix form M(x) can be directly established from µ(M).

Theorem 1.10. Let M ∈ Ξn,2m,r. Then,

M(x) is positive definite ⇐⇒ µ(M) > 0

M(x) is positive semidefinite ⇐⇒ µ(M) ≥ 0.

Proof. Analogous to the proof of Theorem 1.7. �

The following result states that a lower bound to µ(M) can be obtained by using
the SMR.

Theorem 1.11. Let M ∈ Ξn,2m,r. Then,

λ (M) ≤ µ(M). (1.58)

Moreover,
λ (M) > 0 ⇒ M(x) is positive definite

λ (M) ≥ 0 ⇒ M(x) is positive semidefinite.

Proof. The proof of (1.58) is analogous to the proof of Theorem 1.9. Then, the con-
ditions for positive definiteness or semidefiniteness of M(x) via its SOS index follow
from (1.58) and Theorem 1.10. �

Example 1.10. Let us consider the matrix forms in Examples 1.7 and 1.8. The SOS
index for the matrix form in (1.47) is greater than 0, hence implying by Theorem
1.11 that M(x) is positive definite. On the contrary, for the matrix form in (1.49) one
has an SOS index lesser than 0 and hence positivity cannot be established. Indeed,
for

x =

(
0.5104

0.9187

)

it turns out that the minimum eigenvalue of M(x) is equal to −0.1202.
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1.7 Positive Polynomials on Ellipsoids

In this section we describe a method for investigating positivity of a polynomial
over an ellipsoid. Let f (x) be a polynomial in x ∈ R

n. We consider the problem of
establishing whether

f (x) > 0 ∀x ∈ B(Q,c) (1.59)

where B(Q,c) denotes the ellipsoid

B(Q,c) = {x ∈ R
n : x′Qx = c} (1.60)

for some c ∈ R, c ≥ 0, and Q ∈ S
n, Q > 0. We refer to Q as the shape matrix of the

ellipsoid.
The strategy we will present relies on casting problem (1.59) into the problem of

establishing whether a suitable form is positive definite.

1.7.1 Solution via Positivity Test on a Form

Let us first consider the case in which f (x) is a generic polynomial of degree m.
Without loss of generality, we assume that

f (x̄) > 0, x̄ =
√

c
Q1,1

(1,0, . . . ,0)′. (1.61)

Clearly, if this is not the case, f (x) cannot be positive on the ellipsoid B(Q,c). The
following result provides an alternative to (1.59) based on the positivity of a suitable
symmetric polynomial.

Theorem 1.12. Condition (1.59) holds if and only if

f (x) f (−x) > 0 ∀x ∈ B(Q,c). (1.62)

Proof. (Necessity) Let us assume that (1.59) holds, and suppose by contradiction that
∃y ∈B(Q,c) such that f (y) f (−y)≤ 0. Since f (y) > 0 from (1.59), this implies that
also f (−y) ≤ 0. However, since −y ∈ B(Q,c), this contradicts (1.59).

(Sufficiency) Let us assume that (1.62) holds, and suppose by contradiction that
∃y ∈ B(Q,c) such that f (y) ≤ 0. Let us first consider the case f (y) = 0. This is
not possible because it implies f (y) f (−y) = 0, which contradicts (1.62). Hence, let
us consider the case f (y) < 0. Due to (1.61), being B(Q,c) connected and f (x) a
continuous function, it follows that

∃z ∈ B(Q,c) : f (z) = 0.
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But this implies f (z) f (−z) = 0, which contradicts (1.62). �

Let us observe that the polynomial f (x) f (−x) is symmetric with respect to the
origin, and hence can be written as

f (x) f (−x) =
m

∑
i=0

f̄2i(x) (1.63)

for suitable forms f̄2i(x) ∈ Ξn,2i, i = 0, . . . ,m. Let us introduce the function

w(x;c) =
m

∑
i=0

f̄2i(x)
(

x′Qx
c

)m−i

(1.64)

Notice that
w(x;c) = f (x) f (−x) ∀x ∈ B(Q,c).

Moreover, for any fixed c, w(x;c) is a form in x of degree 2m, i.e. w(·;c) ∈ Ξn,2m is
a parametrized form.

The following result states that the positivity of the polynomial f (x) f (−x) over
the ellipsoid B(Q,c) is equivalent to the positive definiteness of w(x;c).

Theorem 1.13. Condition (1.62) holds if and only if

w(x;c) > 0 ∀x �= 0n. (1.65)

Proof. (Necessity) Let us assume that (1.62) holds, and suppose by contradiction
that ∃y ∈ R

n
0 such that w(y;c) ≤ 0. Let us define z = β y, where β =

√
c(y′Qy)−1.

Then, z ∈ B(Q,c). Moreover,

w(z;c) = β 2mw(y;c)

because w(x;c) is a form of degree 2m in x. Since w(y;c)≤ 0, one also has w(z;c)≤
0. Moreover, w(z;c) = f (z) f (−z) because z ∈ B(Q,c). Therefore,

∃z ∈ B(Q,c) : f (z) f (−z) ≤ 0

which contradicts (1.62).
(Sufficiency) Let us suppose that (1.65) holds. This implies that (1.62) holds since

w(x;c) = f (x) f (−x) for all x ∈ B(Q,c). �

By exploiting Theorems 1.12 and 1.13, one obtains the following result, which
allows one to formulate problem (1.59) as a positivity test on a form.

Theorem 1.14. Condition (1.59) holds if and only if (1.65) holds.
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1.7.2 Even Polynomials

The condition provided by Theorem 1.14 can be simplified if f (x) satisfies the fol-
lowing definition.

Definition 1.17 (Even Polynomial). The function f : R
n →R is an even polynomial

of degree less than or equal to 2m in n scalar variables if

f (x) =
m

∑
i=0

f2i(x) (1.66)

for some f2i(x) ∈ Ξn,2i, i = 0, . . . ,m.

Hence, let us suppose that f (x) is an even polynomial of degree 2m as in (1.66),
and let us define w(x;c) as

w(x;c) =
m

∑
i=0

f2i(x)
(

x′Qx
c

)m−i

. (1.67)

The following result generalizes Theorem 1.14 by including its extension to the case
of even polynomials.

Theorem 1.15. Condition (1.59) holds if and only if one of the following conditions
holds:

1. f (x) is a polynomial of degree m and (1.65) holds with w(x;c) as in (1.63)–
(1.64);

2. f (x) is an even polynomial of degree 2m and (1.65) holds with w(x;c) as in
(1.66)–(1.67).

Proof. Item 1 is just Theorem 1.14. Turning to item 2, let w(x;c) be given by (1.67).
Since w(x;c) ∈ Ξn,2m one has that w(y;c) = β 2mw(x;c) whenever y = β x. With
β =
√

c(x′Qx)−1 one has that y ∈ B(Q,c) and, hence, w(y;c) = f (y). Taking into
account that β > 0, it follows that (1.59) and (1.65) are equivalent. �

Summarizing, the conditions proposed by Theorem 1.15 rely on a suitable ho-
mogenization of the polynomial f (x) and establish that (1.59) is equivalent to the
positivity of the form w(x;c). Notice that w(x;c) is constructed by direct homog-
enization of f (x) if this is an even polynomial, while it comes from homogeniza-
tion of f (x) f (−x) in the general case (thus requiring to double the degree of the
form w(x;c) with respect to that of f (x)). A sufficient condition for positivity of a
polynomial over an ellipsoid can be formulated in terms of the SOS index of the
parametrized form w(x;c).

Theorem 1.16. Condition (1.59) holds if one of the following conditions holds:

1. f (x) is a polynomial of degree m and λ (w(·;c)) > 0 with w(x;c) as in (1.63)–
(1.64);
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2. f (x) is an even polynomial of degree 2m and λ (w(·;c)) > 0 with w(x;c) as in
(1.66)–(1.67).

Proof. It directly follows from Theorem 1.15 and Corollary 1.4. �

Example 1.11. Let us consider the problem to establish whether (1.59) holds with

f (x) = 2 + x1 + x2
2

Q = I2

c = 1.

We have n = 2 and m = 2. By applying (1.63)–(1.64), we get

w(x;c) = 4
(x2

1 + x2
2)

2

c2 +(4x2
2 − x2

1)
x2

1 + x2
2

c
+ x4

2.

Then, we find that λ (w(·;c)) = 3.0000, which implies from Theorem 1.16 that
(1.59) holds.

1.8 Positive Matrix Polynomials on the Simplex

In this section we describe a method for investigating positive definiteness of a ma-
trix of polynomials on the positive octant. Let us introduce the following definitions.

Definition 1.18 (Simplex). The set defined as

ϒn =

{

x ∈ R
n :

n

∑
i=1

xi = 1, xi ≥ 0

}

(1.68)

is called simplex.

Definition 1.19 (Matrix Polynomial). The function N : R
n →R

r×r is a matrix poly-
nomial of degree less than or equal to m in n scalar variables if

N(x) =
m

∑
i=0

Ni(x) (1.69)

with Ni(x)∈ Ξ �
n,i,r, i = 0, . . . ,m. Moreover, if N(x) = N(x)′, then N(x) is a symmetric

matrix polynomial.

The problem considered in this section is formulated as follows: establish whether
a symmetric matrix polynomial N(x) satisfies the condition
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N(x) > 0 ∀x ∈ϒn. (1.70)

In order to address (1.70), let us define

M(x) =
m

∑
i=1

Ni(x)

(
n

∑
j=1

x j

)m−i

. (1.71)

It is straightforward to verify that M ∈ Ξn,m,r, i.e. M(x) is a matrix form. By ob-
serving that N(x) = M(x) for all x ∈ ϒn, condition (1.70) can be reformulated as
follows.

Lemma 1.3. Condition (1.70) holds if and only if

M(x) > 0 ∀x ∈ϒn. (1.72)

Hence, without loss of generality we can consider the problem of establishing
whether (1.72) holds.

Theorem 1.17. Let M ∈ Ξn,m,r. Then, condition (1.72) holds if and only if

M(sq(x)) > 0 ∀x ∈ R
n
0. (1.73)

Proof. (Necessity) Let us assume that (1.72) holds, and suppose by contradiction
that ∃y ∈ R

n
0 such that M(sq(y))�>0. Let us define

z = β sq(y)

β =

(
n

∑
i=1

y2
i

)−1

.

It follows that z ∈ϒn. Moreover,

M(z) = β mM(sq(y))

because M(x) is a matrix form of degree m in x. Since M(sq(y))�>0, then also
M(z)�>0. Therefore, there exists z ∈ϒn such that M(z)�>0, thus contradicting (1.72).

(Sufficiency) Let us assume that (1.73) holds, and suppose by contradiction that
∃y ∈ϒn such that M(y)�>0. Define z = sqr(y). Then, M(sq(z)) = M(y). Therefore,
there exists z �= 0n such that M(sq(z))�>0, thus contradicting (1.73). �

By using the SOS index, it is possible to formulate a sufficient condition for
(1.72) through a convex optimization problem. This is explained in the following
result.
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Theorem 1.18. Let M ∈ Ξn,m,r and define M1(x) = M(sq(x)). Let us suppose that

λ (M1) > 0. (1.74)

Then, condition (1.72) holds.

Proof. Let us suppose that (1.74) holds. This means that M(sq(x)) is positive defi-
nite from Theorem 1.11. Therefore, (1.73) holds, hence implying (1.72). �

Example 1.12. Let us consider the problem of establishing whether (1.70) holds for

N(x) =

(
x1 + 1 x1

� x2 + 1

)

.

Then, M(x) in (1.71) is given by

M(x) =

(
2x1 + x2 x1

� x1 + 2x2

)

.

It turns out that λ (M1) = 0.3820. Therefore, we conclude from Theorem 1.18 that
(1.70) holds.

1.9 Extracting Power Vectors from Linear Spaces

This section investigates the problem of finding power vectors in a linear space, i.e.
determine x ∈ R

n such that
x{m} ∈ V (1.75)

where V ⊆ R
n is a given linear space. As it will become clear in the next chap-

ters, solving this problem is important in order to establish non-conservatism and
optimality of several robustness analysis problems.

First of all, let us observe that x = 0n always satisfies (1.75), and hence this trivial
solution can be neglected. Moreover, we observe that

x{m} ∈ V ⇒ (β x){m} ∈ V ∀β ∈ R

since x{m} is homogeneous and V is a linear space, and hence the search can be
restricted to normalized values of x. Therefore, the problem boils down to finding
the set

X =
{

x ∈ R
n : ‖x‖ = 1, x{m} ∈ img(V )

}
(1.76)

where V ∈ R
σ(n,m)×u is a given matrix satisfying V = img(V ) and

rank(V ) = u = dim(V ). (1.77)
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In the sequel we will adopt the notation

V = (v1, . . . ,vu) (1.78)

where v1, . . . ,vu ∈ R
σ(n,m) are linearly independent vectors.

1.9.1 Basic Procedure

Let us first consider the case where the dimension u in (1.77) satisfies

u ≤ m+ 1. (1.79)

From (1.78), any v ∈ img(V ) can be written as

v =
u

∑
i=1

sivi (1.80)

where s ∈ R
u is a suitable parameter vector. Hence, (1.75) becomes

x{m} =
u

∑
i=1

sivi. (1.81)

Let us select two variables x j and xk with 1≤ j ≤ n, 1≤ k ≤ n, j �= k. Let us consider
the rows r1, . . . ,ru of V corresponding to the monomials xm

k , x jx
m−1
k , . . ., xu−1

j xm−u+1
k

in x{m}. By means of pivot operations, it is possible to obtain a new base for img(V )
by constructing a matrix Ṽ such that the rows r̃i of Ṽ , i = 1, . . . ,u, satisfy

⎛

⎜⎜
⎜
⎜
⎝

r̃u

r̃u−1

...

r̃1

⎞

⎟⎟
⎟
⎟
⎠

= Iu. (1.82)

In this new base, every v ∈ img(V ) can be written as a linear combination of the
column vectors ṽi of Ṽ , with parameter vector s̃. It is straightforward to verify that
in the new base one has

s̃i = xu−i
j xm−u+i

k , 1 ≤ i ≤ u

and hence (1.81) can be rewritten as

x{m} =
u

∑
i=1

xu−i
j xm−u+i

k ṽi. (1.83)
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This allows one to write x{m} as a homogeneous function of the variables x j and xk

only. In this way, by using relations between the monomials of x{m} given by rows
of Ṽ not used yet, one can write a homogeneous equation in the variables x j and xk

that all solutions in X must satisfy.
In order to obtain the equation with lowest degree, one may choose the rows a

and b of (1.83) corresponding to the monomials xhxm−1
k and x jxhxm−2

k , for some
h �= j, h �= k. It turns out that

xhxm−1
k =

u

∑
i=1

xu−i
j xm−u+i

k Ṽa,i (1.84)

x jxhxm−2
k =

u

∑
i=1

xu−i
j xm−u+i+1

k Ṽb,i. (1.85)

By multiplying (1.84) by x j, (1.85) by xk, and equating the right hand sides, one gets

x j

(
u

∑
i=1

xu−i
j xm−u+i

k Ṽa,i

)

=
u

∑
i=1

xu−i
j xm−u+i+1

k Ṽb,i. (1.86)

This equation can be solved in the ratio x jx−1
k by finding the roots of a one-variable

polynomial of degree u. Indeed, one has that (1.86) is equivalent to

Ṽa,1

(
x j

xk

)u

+
u

∑
i=2

(
Ṽa,i − Ṽb,i−1

)
(

x j

xk

)u−i+1

− Ṽb,u = 0. (1.87)

Since (1.83) can be rewritten as

x{m} = xm
k

u

∑
i=1

(
x j

xk

)u−i

ṽi (1.88)

the ratios xhx−1
k , h �= j, can be obtained from the rows of (1.88) corresponding to

monomials xhxm−1
k in x{m}. From the constructed x, the corresponding solution in

X is simply obtained via the normalization x‖x‖−1.
This procedure provides all the elements of X but, in principle, it may also intro-

duce spurious solutions. The feasibility of the solution candidates can be checked by
constructing the vector x̂{m} for every candidate x̂ and testing whether x̂{m} belongs
to img(V ) or not.

If it is not possible to reach the form (1.82), i.e. the pivot procedure stops before
the u-th step, the solutions of X can be found by considering a smaller number of
vectors ṽi and, consequently, by solving an equation of lower degree.

Example 1.13. Consider the problem of computing the set X in (1.76), with n = 2,
m = 2 and

x{m} =

⎛

⎜
⎝

x2
1

x1x2

x2
2

⎞

⎟
⎠ , V =

⎛

⎜
⎝

5 2

3 0

2 −1

⎞

⎟
⎠ .
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Observe that u = 2 and hence the procedure proposed above can be applied, being
u ≤ m + 1. Recall that the aim is to find x ∈ R

n such that (1.81) holds for some
s ∈ R

u.
Let us select j = 1 and k = 2. By performing the pivot procedure on matrix V

with respect to monomials x2
2 and x1x2, one gets the matrix

Ṽ =

⎛

⎜
⎝

3 −2 → row corresponding to x2
1

1 0 → ” x1x2

0 1 → ” x2
2

⎞

⎟
⎠

whose columns form a new base for V . In this new base, Ṽ s̃ = x{m} is satisfied if
and only if

s̃ =

(
x1x2

x2
2

)

.

From the first row, one has the equation

x2
1 = 3x1x2 −2x2

2

which can be written in the form (1.87) as

(
x1

x2

)2

−3

(
x1

x2

)
+ 2 = 0

thus yielding the solutions x1 = x2 and x1 = 2x2. By normalizing the vectors result-
ing from these solutions, one obtains the sought set

X =

{
1√
2

(
1

1

)

,
1√
5

(
2

1

)}

.

It can be easily verified that both elements of X satisfy x{m} ∈ img(V ) as desired.

Example 1.14. Consider the problem of computing the set X in (1.76), with n = 4,
m = 2 and

x{m} =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

x2
1

x1x2

x1x3

x1x4

x2
2

x2x3

x2x4

x2
3

x3x4

x2
4

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

, V =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

0.2405 0.4412

0.1771 0.4150

−0.4999 0.1360

0.0977 0.3823

0.1198 0.3914

−0.4915 0.1395

0.0481 0.3619

−0.4020 0.1763

−0.4810 0.1438

−0.0139 0.3363

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.
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Again, the basic procedure can be applied being u = 2 ≤ m+ 1 = 3.
Let us select j = 3 and k = 4. By performing the pivot procedure on matrix V

with respect to monomials x2
4 and x3x4 one gets

Ṽ =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.5446 1.5446 → row corresponding to x2
1

−0.4089 1.4089 → ” x1x2

1.0404 −0.0404 → ” x1x3

−0.2389 1.2389 → ” x1x4

−0.2863 1.2863 → ” x2
2

1.0225 −0.0225 → ” x2x3

−0.1328 1.1328 → ” x2x4

0.8309 0.1691 → ” x2
3

1.0000 0.0000 → ” x3x4

0.0000 1.0000 → ” x2
4

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

and therefore Ṽ s̃ = x{m} is satisfied if and only if

s̃ =

(
x3x4

x2
4

)

.

By choosing h = 2 and following the same procedure outlined in (1.84)–(1.87), one
obtains the equation

−0.1328

(
x3

x4

)2

+ 0.1103

(
x3

x4

)
+ 0.0225 = 0

which yields the solutions x3 = x4 and x3 =−0.1691x4. The corresponding values of
x1 and x2 can be read directly in the fourth and seventh rows of vectors Ṽ (x3x4,x2

4)
′.

Indeed, for x3 = x4 one has

Ṽ

(
x2

4

x2
4

)

= x2
4

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

⇒ x =

⎛

⎜
⎜⎜
⎝

1.0000

1.0000

1.0000

1.0000

⎞

⎟
⎟⎟
⎠

x4
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while for x3 = −0.1691x4 one gets

Ṽ

(
−0.1691x2

4

x2
4

)

= x2
4

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

1.6367

1.4780

−0.2164

1.2793

1.3347

−0.1954

1.1553

0.0286

−0.1691

1.0000

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

⇒ x =

⎛

⎜
⎜⎜
⎝

1.2793

1.1553

−0.1691

1.0000

⎞

⎟
⎟⎟
⎠

x4.

Then, it can be verified that the above solutions satisfy (1.75). Hence, one can con-
clude that

X =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

⎛

⎜
⎜⎜
⎝

1.0000

1.0000

1.0000

1.0000

⎞

⎟
⎟⎟
⎠

,
1
2

⎛

⎜
⎜⎜
⎝

1.2793

1.1553

−0.1691

1.0000

⎞

⎟
⎟⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

1.9.2 Extended Procedure

When u > m+1, the procedure presented in the previous section cannot be applied,
as it is not possible to express the coefficients si in (1.81) as homogeneous functions
of only two variables. However, in the following it will be shown that if

u ≤ (n−1)(m−1)+ 2 (1.89)

this procedure can be suitably modified so that coefficients si can be written as
rational functions of only one variable. This reduces once again the computation of
X to the solution of a univariate polynomial equation.

To explain the basic idea, let us first consider the case u = m + 2. Let us se-
lect three variables x j, xk and xh with 1 ≤ j ≤ n, 1 ≤ k ≤ n, 1 ≤ h ≤ n, j �= k,
j �= h, k �= h. Let us operate the pivot procedure in order to obtain a new ma-
trix Ṽ satisfying (1.82), where the rows r̃1, . . . , r̃u correspond to the monomials
xm

k ,x jx
m−1
k , . . . ,xm

j ,xhxm−1
k in x{m}. Then, it is straightforward to verify that in the

new base
s̃i = xm+2−i

j xi−2
k , 2 ≤ i ≤ m+ 2

s̃1 = xhxm−1
k .

Hence, any v ∈ img(V ) can be written as
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v = xhxm−1
k ṽ1 +

m+2

∑
i=2

xm+2−i
j xi−2

k ṽi (1.90)

which is as linear combination of the vectors ṽi weighted by xh and powers of x j,xk.
Now, in order to eliminate xh from (1.90), let us consider the a-th row of Ṽ cor-

responding to monomial x jxhxm−2
k . One has

x jxhxm−2
k = Ṽa,1xhxm−1

k +
m+2

∑
i=2

Ṽa,ix
m+2−i
j xi−2

k (1.91)

and hence, assuming x j �= Ṽa,1,

xhxm−2
k =

∑m+2
i=2 Ṽa,ix

m+2−i
j xi−2

k

x j − Ṽa,1xk
(1.92)

which can be substituted into (1.90) (the case x j = Ṽa,1 can be treated separately).
Therefore, each vector v ∈ V can be written as a rational function of the variables

x j and xk only. Proceeding as in Section 1.9.1, one can exploit one relation between
the monomials of x{m} given by some row of Ṽ not used yet (e.g., the one corre-
sponding to monomial x2

hxm−2
k ), to obtain a homogeneous equation in the variables

x j and xk that all solutions of X must satisfy.
Let us turn now to the general case, to see how the above reasoning can be ex-

tended to all situations in which m + 1 < u ≤ (n− 1)(m− 1)+ 2. Without loss of
generality, let us choose j = 1 and let i be the smallest integer less than n such that
u ≤ m + 1 + i(m− 1). Let us operate the pivot procedure in order to obtain a new
matrix Ṽ satisfying (1.82) where the rows r̃1, . . . , r̃u correspond to the monomials

xm
k ,x1xm−1

k , . . . ,xm
1 ,

x2xm−1
k ,x1x2xm−2

k , . . . ,xm−2
1 x2xk,

...

xix
m−1
k ,x1xix

m−2
k , . . . ,xm−2

1 xixk,

xi+1xm−1
k ,x1xi+1xm−2

k , . . . ,xl−1
1 xi+1xm−i−l

k

(1.93)

and l is such that u = m+1+(i−1)(m−1)+ l. Then, in the new base the coefficients
s̃i are polynomial functions of x1 and linear in x2,x3, . . . ,xi+1.

In order to eliminate all variables except x1, thus obtaining s̃ as a function of x1

only, let us consider the rows corresponding to the monomials

xm−1
1 x2, xm−1

1 x3, . . . , xl
1xi+1xm−i−l−1

k .

From these rows, following the same reasoning as in (1.91), it is easy to obtain the
equation

A(x1,xk)z+ B(x1,xk) = 0 (1.94)
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where A(x1,xk) ∈ R
i×i and B(x1,xk) ∈ R

i are homogeneous functions of x1 and xk,
and

z = (x2,x3, . . . ,xi+1)′. (1.95)

From (1.94)–(1.95) it is possible to express x2,x3, . . . ,xi+1 as rational functions of
x1 and xk in the following way:

z = −A−1(x1,xk)B(x1,xk) (1.96)

(again, one can check separately the values of x1 and xk for which A(x1,xk) is not
invertible).

Then, each vector v ∈ img(V ) can be written as a rational homogeneous function
of the variables x1 and xk only, by exploiting (1.95)–(1.96). Using one relation be-
tween the monomials of x{m}, given by some row of Ṽ not used yet, one can write a
polynomial equation in the ratio x1xm−1

k that all solutions of X must satisfy.
Clearly, the above procedure can be applied only if the number of monomials in

(1.93) is sufficient to cover all coefficients in s̃, or equivalently if u satisfies

u ≤ m+ 1 + i(m−1)

for some i < n− 1. Therefore, it is easy to see that the maximum dimension of
img(V ) for which the procedure can be applied is obtained with i = n− 2, which
provides (1.89).

It is worth remarking that in the general case u > (n−1)(m−1)+2, the problem
of finding a power vector within a given linear space requires the solution of a
system of homogeneous polynomial equations. Nevertheless, such a case occurs
rarely in practice, as we will see in the following chapters.

Example 1.15. Consider n = 4, m = 2 and

x{m} =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

x2
1

x1x2

x1x3

x1x4

x2
2

x2x3

x2x4

x2
3

x3x4

x2
4

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

, V =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0.0320 0.2831 0.1991 −0.2245

0.4811 0.5080 0.2440 −0.0695

−0.0796 0.2890 0.2520 0.1191

−0.2840 0.3611 0.2328 −0.0471

−0.2216 0.2625 −0.1472 −0.7363

−0.5497 −0.3413 0.4525 −0.1866

0.1828 −0.1742 0.7382 0.0528

0.2855 −0.4235 −0.0196 −0.4143

0.4623 −0.2279 0.1059 −0.2426

0.0240 0.0305 0.0081 −0.3438

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

.

The problem is to compute the set X in (1.76).
Observe that u = 4 and hence the basic procedure cannot be applied being u >

m+ 1. However, u ≤ (n−1)(m−1)+ 2 = 5 and hence the extended procedure can
be employed.
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Let us select j = 3, k = 4 and h = 2. By performing the pivot procedure on matrix
V with respect to monomials x4, x3x4, x2

3 and x2x4, one gets

Ṽ =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

0.1611 −0.8934 0.4840 1.4128 → x2
1

−0.1064 −2.4058 2.4998 1.3209 → x1x2

0.2788 −0.8774 0.2288 0.5924 → x1x3

0.3389 −0.6887 −0.3901 1.2943 → x1x4

−0.1611 −0.1066 −0.4840 2.5872 → x2
2

1.0621 1.9078 −2.8073 0.3880 → x2x3

1.0000 0.0000 0.0000 0.0000 → x2x4

0.0000 1.0000 0.0000 0.0000 → x2
3

0.0000 0.0000 1.0000 0.0000 → x3x4

0.0000 0.0000 0.0000 1.0000 → x2
4

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

and hence one has

x{m} = Ṽ

⎛

⎜
⎜
⎜
⎝

x2x4

x2
3

x3x4

x2
4

⎞

⎟
⎟
⎟
⎠

. (1.97)

From the sixth row in (1.97), one gets

x2x3 = 1.0621x2x4 + 1.9078x2
3−2.8073x3x4 + 0.3380x2

4

and hence

x2 =
1.9078x2

3 −2.8073x3x4 + 0.3380x4

x3 −1.0621x4
(1.98)

which clearly corresponds to (1.92). Hence, each v ∈ img(V ) can be expressed as a
rational function in x3 and x4. By considering the fifth row in (1.97), one has

x2
2 = −0.1611x2x4 −0.1066x2

3−0.4840x3x4 + 2.5872x2
4.

Substituting x2 from (1.98), one finds

3.7465x4
3 −10.1470x3

3x4 + 5.0879x2
3x2

4 + 4.4060x3x3
4 −2.8344x4

4

(x3 −1.0621x4)2 = 0

which gives the following solutions for x3:

x3 ∈ {1.5280x4,1.2107x4,0.6245x4,−0.6548x4} .

The corresponding solutions for x2 are immediately obtained from (1.98). Then,
in order to find x1, one has just to compute the vector x{m} as in (1.97) for each of the
four found pairs (x2,x3), and read the fourth entry corresponding to x1x4. Finally,
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one has just to verify that these solutions satisfy (1.75). This gives the following
solution for X :

X =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.4472

⎛

⎜⎜
⎜
⎝

−0.5077

1.1864

1.5280

1.0000

⎞

⎟⎟
⎟
⎠

, 0.4472

⎛

⎜⎜
⎜
⎝

−0.6760

−1.4412

1.2107

1.0000

⎞

⎟⎟
⎟
⎠

,

0.4472

⎛

⎜⎜
⎜
⎝

1.2630

1.4194

0.6245

1.0000

⎞

⎟⎟
⎟
⎠

, 0.4472

⎛

⎜⎜
⎜
⎝

0.6536

−1.7732

−0.6548

1.0000

⎞

⎟⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

1.10 Notes and References

The potential of forms in system and control theory has been recognized since long
time, see e.g. [19, 13]. In recent years, this topic has gained a renewed interest,
motivated by the strong connection with SDP and convex optimization techniques
[15, 98].

The SMR of forms was introduced in [50, 51]. In the literature, it is also known
as Gram matrix, see for instance [53] and references therein. Algorithms for the
computation of the SMR have been provided in [36]. The SMR of matrix forms has
been proposed in [35].

The use of SOS forms for studying positivity of forms has been widely investi-
gated in the mathematical literature, see e.g. [121, 131, 129, 118, 53, 113, 132, 97].
The characterization of SOS forms via LMIs was proposed in [50, 51] and in
[106, 107]. An alternative approach based on the theory of moments of a proba-
bility measure, also known in the literature as lifting, has been introduced in [85]. In
terms of the resulting convex optimization problems, there is a duality relationship
between the moments approach and the SOS-based approach. Conditions for a form
to be SOS, not based on LMIs, have been given in [87].

Characterization of SOS matrix forms via LMIs have been proposed in [35] and
in [77]. Alternative approaches for studying positivity of matrix forms have been
proposed via the theory of moments [74] and via slack variables [110].

SOS-based relaxations are largely exploited in control systems, see for instance
the tutorials [81, 105], the book [71], the special issue [45], and references therein. A
large number of applications can be found in robust control [75, 78, 74, 127], analy-
sis and design of nonlinear control systems [137, 130, 22, 21, 117, 39, 135, 138, 47],
time-delay systems [104, 111], hybrid systems [115, 114], and many others. SOS
forms have been employed also in other fields such as computer vision [44, 46, 28],
robotics [30], and systems biology [61, 49].

The technique for investigating positivity of a polynomial over an ellipsoid, de-
scribed in Section 1.7, was first proposed in [51] and then exploited in [52, 36]. The
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approach for establishing positivity of matrix polynomials on the simplex, described
in Section 1.8, has been adopted in different contexts, see e.g. [22] and [42]. Differ-
ent relaxations for the minimization of forms on the simplex have been investigated
in [57].

The extraction of power vectors from linear spaces described in Section 1.9 has
been proposed in [33] where it is shown how one can compute the solutions of
systems of polynomial equations via LMIs. An alternative technique for extracting
power vectors from linear spaces has been presented within the moments framework
in [73], which relies on a result in [55].

There are several software tools which allow one to formulate and solve convex
optimization problems relevant to positivity of forms and polynomials, see e.g. [134,
116, 72, 91].



Chapter 2
Positivity Gap

This chapter investigates the gap between positive forms and SOS forms. Conser-
vatism of the LMI relaxations described in Chapter 1 is related to the existence of
positive forms which are not SOS, called PNS forms. a priori conditions for non-
conservatism of these relaxations are presented for some classes of forms. The class
of SMR-tight forms is introduced in order to derive a posteriori tightness condi-
tions. A further contribution of this chapter consists of providing a parametrization
of the set of PNS forms. It is shown that the set of PNS forms is dense in the space
of forms, that each PNS form is the vertex of a cone of PNS forms, and how PNS
forms can be constructed via the SMR.

2.1 Hilbert’s 17th Problem

Is it true that any positive semidefinite form is an SOS form? This question is closely
related to Hilbert’s 17th problem [122], which concerns the possibility of represent-
ing nonnegative polynomials as a sum of squares of rational functions.

The answer to the former question is negative. This fact was discovered by
Hilbert himself in 1888 via a non-constructive proof [118]. In 1967, Motzkin pro-
vided an example of form which is positive semidefinite but not SOS. This form has
degree 6 in 3 scalar variables, and is given by [122]

hMot(x) = x4
1x2

2 + x2
1x4

2 + x6
3 −3x2

1x2
2x2

3. (2.1)

Indeed, it can be verified that hMot(x) is positive semidefinite and hMot(x) is not
SOS. In particular, one has that

µ(hMot) = 0, λ (hMot) = −0.0070.

Hence, there are forms that are positive semidefinite but not SOS. The following
result, found by Artin in 1927, states that any positive semidefinite form is the ratio
of two SOS forms [70].

G. Chesi et al.: Homogeneous Polynomial Forms, LNCIS 390, pp. 39–61.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Theorem 2.1. A form h ∈ Ξn,2m is positive semidefinite if and only if there exist
h1 ∈ Σn,2(a+m) and h2 ∈ Σn,2a for some integer a ≥ 0, such that

h(x) =
h1(x)
h2(x)

. (2.2)

The following result, found by Polya in 1928, characterizes the forms that are
positive on the simplex [70].

Theorem 2.2. A form h ∈ Ξn,d is positive on the simplex ϒn in (1.68) if and only if
there exists an integer k ≥ 0 such that the coefficients of

h(x)

(
n

∑
i=1

xi

)k

(2.3)

are positive.

In the sequel we will investigate forms that are positive semidefinite but not SOS.
First of all, let us introduce the following definition.

Definition 2.1 (PNS). A form h ∈ Ξn,2m is PNS if it is positive semidefinite but not
SOS.

We will indicate the set of PNS forms of degree 2m in n scalar variables as fol-
lows:

∆n,2m = {h ∈ Ξn,2m : h(x) is PNS} . (2.4)

Therefore, the set Ωn,2m in (1.51) can be expressed as

Ωn,2m = Σn,2m ∪∆n,2m.

An interesting fact is that the set ∆n,2m is empty for some values of n,m. Indeed,
let us define the set

E = {(n,2), n ∈ N}∪{(2,2m), m ∈ N}∪{(3,4)} . (2.5)

The following result states an important property of ∆n,2m for any pair (n,2m) in E .
A formal proof can be found in [70].

Theorem 2.3. Let (n,2m) ∈ E . Then, ∆n,2m = /0, i.e. for all h ∈ Ξn,2m one has

h(x) is positive semidefinite ⇐⇒ λ (h) ≥ 0. (2.6)

The following result provides a further property of the forms in Ξn,2m with (n,2m)
in E , in particular stating that these forms are positive definite if and only if they
admit a positive definite SMR matrix.
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Theorem 2.4. Let (n,2m) ∈ E . Then, for all h ∈ Ξn,2m one has that

h(x) is positive definite ⇐⇒ λ (h) > 0. (2.7)

Proof. (Necessity) Let us suppose that h(x) is positive definite. From Theorem 1.7
this means that µ(h) > 0. Let us define the form

h1(x) = h(x)− µ(h)‖x{m}‖2m. (2.8)

We have that
µ(h1) = min

x∈Cn,m
h1(x)

= min
x∈Cn,m

(
h(x)− µ(h)‖x{m}‖2m

)

= µ(h)− µ(h)
= 0.

From Theorem 1.7 this implies that h1(x) is positive semidefinite. Moreover, (n,2m)
∈ E , and hence from (2.6) it follows that h1(x) is SOS. Therefore, we have that

0 ≤ λ (h1) ≤ µ(h1) = 0

which implies that λ (h1) = 0. From Theorem 1.4, h1(x) can be written as

h1(x) = x{m}′H1x{m}

where H1 ∈ S
σ(n,m) is positive semidefinite. Now, let us express h(x) as h(x) =

x{m}′Hx{m}. It follows from (2.8) that

H = H1 + µ(h)Iσ(n,m)

which implies that
λ (h) = λ (h1)+ µ(h) = µ(h). (2.9)

Since µ(h) > 0, it follows that λ (h) > 0.
(Sufficiency) Let us suppose that λ (h) > 0. From Theorem 1.9 it follows that

µ(h) ≥ λ (h) > 0. From Theorem 1.7 this implies that h(x) is positive definite. �

A direct consequence of Theorem 2.4 is that for forms with (n,2m) ∈ E , the SOS
index coincides with the positivity index.

Corollary 2.1. Let (n,2m) ∈ E . Then,

λ (h) = µ(h) ∀h ∈ Ξn,2m. (2.10)
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Proof. It follows from (2.9) in the proof of Theorem 2.4. �

Example 2.1. Let us consider the form

h(x) = x4
1 + x4

2 + x4
3 −3x2

1x2x3. (2.11)

One has that h ∈ Ξ3,4. By solving the EVP (1.29), one gets λ (h) = −0.0310. By
Theorem 1.4, this implies that h(x) is not SOS. Moreover, since (3,4) ∈ E , we can
conclude from Theorem 2.3 that h(x) is not positive semidefinite, i.e.

∃x ∈ R
3 : h(x) < 0.

Indeed, for x1 = 4/3, x2 = 1, x3 = 1, one has h(x) = −14/81.

Example 2.2. Let us consider

h(x) = x2m
1 + x2m

2 , m ∈ N, m > 0. (2.12)

We have that h ∈ Ξ2,2m. Moreover, it is straightforward to verify that h(x) is posi-
tive definite. Then, since (2,2m) ∈ E for any considered m, one can conclude from
Theorem 2.4 that λ (h) > 0, or in other words, h(x) admits a positive definite SMR
matrix according to Lemma 1.2.

Throughout the book, the results in Theorems 2.3 and 2.4 will be exploited to
formulate a priori conditions, which guarantee that results based on SOS relaxations
of problems involving positivity of forms are not conservative.

As an example, let us consider the problem of checking positivity of a polynomial
over an ellipsoid, addressed in Section 1.7. It can be observed that the LMI condi-
tions in Theorem 1.16 are not only sufficient but also necessary, for some values of
n,m. The next result is a direct consequence of Theorem 2.4.

Theorem 2.5. Let (n,2m) ∈ E . Then, the conditions in Theorem 1.16 are not only
sufficient but also necessary for (1.59) to hold.

Example 2.3. Let us consider the problem to establish whether (1.59) holds with

f (x) = 0.5 + x1 + x2
2, Q = I2, c = 1.

The SOS index of the resulting w(x;c) is negative, in particular λ (w(·;c)) =
−0.7500. Since n = 2 and m = 2 we have that (n,2m) ∈ E . Therefore, from
Theorems 1.16 and 2.5 we have that (1.59) does not hold, i.e. there exists some
x ∈ B(Q,c) such that f (x) ≤ 0.

2.2 Maximal SMR Matrices

In Chapter 1 it has been shown that a form may be represented by different SMR
matrices. This section investigates the SMR matrices whose minimum eigenvalue
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coincides with the SOS index of the form. Roughly speaking, such matrices can
be considered the “most positive definite” SMR matrices of the form. As it will be
explained in the next section, these matrices are useful in order to study the gap
between positive forms and SOS forms.

Definition 2.2 (Maximal SMR Matrix). Let H∗ ∈ S
σ(n,m) be an SMR matrix of

h ∈ Ξn,2m. Then, H∗ is called a maximal SMR matrix of h(x) if

λmin(H∗) = λ (h). (2.13)

Given a form h(x), its maximal SMR matrices can be obtained as

H∗ = H + L(α∗) (2.14)

where α∗ is a value of α for which the maximum in (1.29) is achieved, and H +L(·)
is the complete SMR matrix of h(x) in (1.29).

2.2.1 Minimum Eigenvalue Decomposition

The following definition introduces a key decomposition of symmetric matrices
which will be exploited in the sequel. For ease of presentation, the decomposition is
formulated for a matrix of size σ(n,m), though it can be defined for matrices of any
size.

Definition 2.3 (Minimum Eigenvalue Decomposition). For a matrix H ∈ S
σ(n,m)

we say that the quadruplet 〈λmin(H),β ,V0,Vp〉 is a minimum eigenvalue decompo-
sition of H if

H = V DV ′ (2.15)

where D ∈ S
σ(n,m) is the diagonal matrix

D = λmin(H)Iσ(n,m) + diag

(
0σ(n,m)−r

β

)

(2.16)

with {
β ∈ R

r

β > 0
(2.17)

and V ∈ R
σ(n,m)×σ(n,m) is an orthogonal matrix such that

⎧
⎪⎨

⎪⎩

V =
(

V0 Vp
)

V0 ∈ R
σ(n,m)×(σ(n,m)−r), Vp ∈ R

σ(n,m)×r

VV ′ = V ′V = Iσ(n,m).

(2.18)
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It follows that the diagonal of D contains the eigenvalues of H, V is a matrix of
eigenvectors, and r is an integer satisfying 1 ≤ r ≤ σ(n,m) which represents the
number of eigenvalues of H distinct from λmin(H) (including their multiplicity).

It is useful to observe that 〈λmin(H),β ,V0,Vp〉 is a minimum eigenvalue decom-
position of H if and only if 〈λmin(H),T1β ,V0T2,VpT−1

1 〉 is, for all matrices T1 ∈R
r×r

and T2 ∈ R
(σ(n,m)−r)×(σ(n,m)−r) such that T1 is a permutation matrix and T2 is a non-

singular matrix.

2.2.2 Structure of Maximal SMR Matrices

The following result provides a fundamental property of maximal SMR matrices.

Theorem 2.6. Let h ∈ Ξn,2m, H + L(α) be a complete SMR matrix of h(x), and
〈λmin(H),β ,V0,Vp〉 be a minimum eigenvalue decomposition of H. Let us define

η∗(V0) = max
α : ‖α‖=1

λmin
(
V ′

0L(α)V0
)
. (2.19)

Then, H is a maximal SMR matrix of h if and only if

η∗(V0) ≤ 0. (2.20)

Proof. From (2.13) it follows that H is a maximal SMR matrix if and only if

λmin (H + L(α)) ≤ λmin(H) ∀α

and, hence, if and only if

∀α ∃y,‖y‖ = 1 : y′ (H + L(α))y ≤ λmin(H). (2.21)

Let 〈λmin(H),β ,V0,Vp〉 be a minimum eigenvalue decomposition of H. Then, (2.21)
can be rewritten as

∀α ∃y,‖y‖ = 1 : y′Vp diag(β )V ′
py ≤−y′L(α)y. (2.22)

Let us observe that L(α) depends linearly on α . This means that V ′
py tends to zero

as α tends to zero because
diag(β ) > 0.

Moreover, if (2.22) holds for the pair (y,α), it also holds for the pair (y,cα) for all
c ≥ 1. Therefore, it turns out that H is a maximal SMR matrix if and only if

∀α ∀ε > 0 ∃y,‖y‖ = 1 : ‖V ′
py‖ < ε and y′Vp diag(β )V ′

py ≤−y′L(α)y
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or, equivalently, if and only if

∀α ∃y,‖y‖ = 1 : V ′
py = 0r and y′Vp diag(β )V ′

py ≤−y′L(α)y. (2.23)

Let us observe that
ker(V ′

p) = img(V0) (2.24)

and hence
V ′

py = 0 ⇐⇒ y ∈ img(V0).

Therefore, (2.23) can be rewritten as

∀α ∃y ∈ img(V0),‖y‖ = 1 : y′L(α)y ≤ 0. (2.25)

Let us observe that

y ∈ img(V0) ⇐⇒ y = V0 p, p ∈ R
σ(n,m)−r.

Since y′L(α)y depends linearly on α , the condition (2.25) can be rewritten as

∀α,‖α‖ = 1, ∃p,‖p‖ = 1 : p′V ′
0L(α)V0 p ≤ 0

which is equivalent to (2.20). �

Theorem 2.6 provides a necessary and sufficient condition to establish if a given
SMR matrix H is a maximal SMR matrix. This condition is important because it
states that the property of being a maximal SMR matrix is related only to the matrix
V0 in the minimum eigenvalue decomposition of H, which represents the eigenspace
of the minimum eigenvalue of H. In particular, this eigenspace is given by img(V0).
Hence, Theorem 2.6 provides a way to construct maximal SMR matrices.

Let us observe that the feasible set for α in (2.19) is nonconvex, which makes the
computation of the index η∗(V0) difficult. The following result provides an alterna-
tive way for characterizing maximal SMR matrices.

Theorem 2.7. Let V0 and L(α) be defined as in Theorem 2.6, and define

η(V0) = max {η(V0,1),η(V0,−1)} (2.26)

where
η(V0,z) = sup

α : y′α=z
λmin
(
V ′

0L(α)V0
)

(2.27)

and y ∈ R
ω(n,m)
0 . Then, for all y ∈ R

ω(n,m)
0 , one has

η∗(V0) ≤ 0 ⇐⇒ η(V0) ≤ 0. (2.28)

Proof. (Necessity) Let us assume that η∗(V0)≤ 0 and let us suppose by contradiction
that η(V0) > 0. Then, there exists α̃ ∈ R

ω(n,m) such that |y′α̃ | = 1 and
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λmin
(
V ′

0L(α̃)V0
)

> 0. (2.29)

Let us define
ᾱ = ‖α̃‖−1α̃.

We have that ‖ᾱ‖ = 1 and

λmin
(
V ′

0L(ᾱ)V0
)

= ‖α̃‖−1λmin
(
V ′

0L(α̃)V0
)

> 0.

But this is impossible since we have assumed that η∗(V0) ≤ 0.
(Sufficiency) Let us assume that η(V0) ≤ 0 and let us suppose by contradiction

that η∗(V0) > 0. Then, there exists α̃ ∈ R
ω(n,m) such that ‖α̃‖ = 1 and (2.29) holds.

First, let us suppose that
y′α̃ �= 0 (2.30)

and let us define
ᾱ = |y′α̃|−1

2 α̃.

We have that ‖y′ᾱ‖ = 1 and

λmin
(
V ′

0L(ᾱ)V0
)

= |w′α̃|−1
2 λmin

(
V ′

0L(α̃)V0
)

> 0.

But this is impossible since we have assumed that η(V0) ≤ 0.
Now, let us suppose that

y′α̃ = 0.

Then, for all ε > 0 there exists α̂ ∈ R
ω(n,m) such that ‖α̂‖ = 1 and

‖α̂ − α̃‖ < ε and y′α̂ �= 0.

Since the function λmin (V ′
0L(α)V0) is continuous with respect to α and since α̂ is

arbitrarily close to α̃ which satisfies (2.29), it follows that α̂ can be chosen to satisfy
also the condition λmin (V ′

0L(α̂)V0) > 0. By repeating the proof from (2.30) by using
α̂ instead of α̃ , we finally conclude that (2.28) holds. �

Theorem 2.7 provides an alternative way to establish whether an SMR matrix is
a maximal SMR matrix or not. This is achieved via the index η(V0), which can be
computed through two convex optimizations. In fact, it turns out that η(V0,z) is the
solution of the EVP

η(V0,z) = sup
t,α

t

s.t.

{
y′α − z = 0

V ′
0L(α)V0 − tIσ(n,m)−r ≥ 0.

(2.31)

Let us observe that the free vector y defines two hyperplanes on which the function
λmin (V ′

0L(α)V0) is evaluated.
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Example 2.4. Let us consider the form h(x) in (1.20) and its SMR in (1.21). It can be
verified that a minimum eigenvalue decomposition 〈λmin(H),β ,V0,Vp〉 of the SMR
matrix H in (1.21) is given by

λmin(H) = −0.6180

β = (2.2361,2.6180)′

V0 = (0.5257,−0.8507,0)′

Vp =

(
−0.8507 −0.5257 0

0 0 1.0000

)′
.

By applying (2.26)-(2.27), we find that η(V0) > 0, which implies from Theorem 2.7
that H is not a maximal SMR matrix. This is confirmed by the fact that there exists
another SMR matrix of h(x) whose minimum eigenvalue is larger than the minimum
eigenvalue of H. This SMR matrix is given by H∗ in (2.14) with α∗ = 0.8008, which
is an optimal value of α in the EVP (1.29). Indeed we have:

H∗ =

⎛

⎜
⎝

1.0000 1.0000 −0.8008

� 1.6016 0.0000

� � 2.0000

⎞

⎟
⎠ (2.32)

and
λmin(H∗) = 0.0352, λmin(H) = −0.6180.

Lastly, we test Theorem 2.7 on the SMR matrix H∗. To this end, consider the mini-
mum eigenvalue decomposition of H∗ given by

λmin(H∗) = 0.0352

β ∗ = (1.7895,2.7065)′

V ∗
0 = (0.7972,−0.5089,0.3249)′

V ∗
p =

(
0.1544 0.6920 0.7052

−0.5837 −0.5120 0.6302

)′
.

(2.33)

From (2.26) we find η(V ∗
0 ) = 0.0000 by solving (2.31) with y = 1, which verifies

by Theorems 2.6 and 2.7 that H∗ is a maximal SMR matrix.

2.3 SMR-tight Forms

This section introduces and characterizes a special class of forms, specifically the
forms whose positivity index coincides with their SOS index.

Definition 2.4 (SMR-tight Form). Let us suppose h ∈ Ξn,2m satisfies
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λ (h) = µ(h). (2.34)

Then, h(x) is said to be SMR-tight.

Before proceeding with the characterization of SMR-tight forms, let us make the
following observations:

1. PNS forms are not SMR-tight. In fact, if h(x) is PNS then µ(h)≥ 0 and λ (h) < 0.
2. A form can be SMR-tight even if it is not SOS. This is shown by the following

example.

Example 2.5. Let us consider the form

h(x) = x2
1 + 4x1x2 + x2

2.

We have that a complete SMR of h(x) is given by

x{m} =
(

x1 x2
)′

, H =

(
1 2

� 1

)

, L(α) = 02×2

which implies that the SOS index of h(x) is

λ (h) = λmin(H) = −1.

Then, it can be verified that the positivity index of h(x) is

µ(h) = min
x∈Cn,m

h(x)

= min
x: x2

1+x2
2=1

h(x)

= −1.

Therefore, h(x) is SMR-tight because λ (h) = µ(h). However, h(x) is not SOS: in-
deed, µ(h) is negative, which means that h(x) can take negative values.

2.3.1 Minimal Point Set

A necessary and sufficient condition for establishing whether a form is SMR-tight
can be obtained by searching for power vectors in a linear space. To this end, let us
introduce the following definition.

Definition 2.5 (Minimal Point Set). Let h ∈ Ξn,2m, H ∈ S
σ(n,m) be a maximal SMR

matrix of h(x), and define the linear space

N (H) = ker
(
H −λmin(H)Iσ(n,m)

)
. (2.35)

Then, the set
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mps(h) =
{

x ∈ R
n : ‖x‖ = 1, x{m} ∈ N (H)

}
(2.36)

is called minimal point set of h(x).

The following lemma clarifies the relationship between N (H) and the minimal
eigenvalue decompositions of H.

Lemma 2.1. Let h ∈ Ξn,2m, and H ∈ S
σ(n,m) be a maximal SMR matrix of h(x). Let

〈λmin(H),β ,V0,Vp〉 be a minimum eigenvalue decomposition of H. Then,

N (H) = img(V0). (2.37)

Proof. From Definition 2.3 we have that the columns of V0 are a base of the
eigenspace of the minimum eigenvalue of H, which is N (H) according to (2.35).
Therefore, (2.37) holds. �

It is worthwhile to observe that the minimal point set of h(x) does not depend on
the chosen maximal SMR matrix H. This is explained in the following result.

Theorem 2.8. Let h ∈ Ξn,2m, and for i = 1,2 define

Ai =
{

x ∈ R
n : ‖x‖ = 1, x{m} ∈ N (Hi)

}

where H1,H2 ∈ S
σ(n,m) are any pair of maximal SMR matrices of h(x). Then,

A1 = A2

i.e. mps(h) is independent on the chosen maximal SMR matrix H of h(x).

Proof. Let us suppose by contradiction that there exists x̄ ∈ A1 such that x̄ �∈ A2.
Since x̄ ∈ A1 we have that

0 = x̄{m}′ (H1 −λmin(H1)Iσ(n,m)
)

x̄{m}

= h(x̄)−λmin(H1)
∥∥x̄{m}∥∥2

.
(2.38)

Since H2 is a maximal SMR matrix of h(x) we have that

h(x̄) = x̄{m}′H2x̄{m}

λmin(H1) = λmin(H2)

which, from (2.38), provides

0 = x̄{m}′ (H2 −λmin(H2)Iσ(n,m)
)

x̄{m}.

Moreover,
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H2 −λmin(H2)Iσ(n,m) ≥ 0

which implies that
‖x̄‖ = 1 and x̄{m} ∈ N (H2)

hence contradicting the assumption x̄ �∈ A2. �

The following result states that a necessary and sufficient condition for a form to
be SMR-tight is that the minimal point set of the form is not empty.

Theorem 2.9. Let h ∈ Ξn,2m. Then, h(x) is SMR-tight if and only if

mps(h) �= /0. (2.39)

Proof. (Sufficiency) Let us suppose that mps(h) �= /0. Let x̄ be any vector in mps(h)
and define

x̂ =
x̄

‖x̄{m}‖ .

By letting H ∈ S
σ(n,m) be a maximal SMR matrix of h(x), we have that

0 = x̂{m}′ (H −λmin(H)Iσ(n,m)
)

x̂{m}

= h(x̂)−λmin(H)
∥∥x̂{m}∥∥2

= h(x̂)−λ (h)

which implies that
∃x̂ ∈ Cn,m : h(x̂) = λ (h). (2.40)

By Definition 1.14, µ(h) is the minimum of h(x) over the set Cn,m; moreover, by
Theorem 1.9, λ (h) is a lower bound of µ(h). Therefore, from (2.40) we conclude
that µ(h) = λ (h), i.e. h(x) is SMR-tight.

(Necessity) Let us suppose that h(x) is SMR-tight, i.e. µ(h) = λ (h). Then, (2.40)
is satisfied. Let H ∈ S

σ(n,m) be a maximal SMR matrix of h(x). We have that:

0 = h(x̂)−λ (h)

= h(x̂)−λmin(H)
∥
∥x̂{m}∥∥2

= x̂{m}′ (H −λmin(H)Iσ(n,m)
)

x̂{m}.

Since H −λmin(H)Iσ(n,m) ≥ 0 it follows that there exists x̂ ∈ R
n
0 such that x{m} be-

longs to N (H). Therefore, let us define

x̄ =
x̂
‖x̂‖ .

We have that x̄ ∈ mps(h), and hence (2.39) holds. �
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2.3.2 Rank Conditions

Clearly, it is possible to establish whether mps(h) is empty or not by computing
vectors in mps(h) through the extraction procedure described in Section 1.9. In the
sequel, we aim to provide alternative conditions for establishing whether mps(h) is
empty, which do not require the actual computation of the set mps(h) itself.

Theorem 2.10. Let h ∈ Ξn,2m, H ∈ S
σ(n,m) be a maximal SMR matrix of h(x), and

N (H) be the linear space in (2.35). Let us suppose that one of the following con-
ditions holds:

1. m is odd and dim(N (H)) > σ(n,m)−n;
2. m is even and dim(N (H)) = σ(n,m).

Then, h(x) is SMR-tight.

Proof. Let us suppose that item 1 holds, and let 〈λmin(H),β ,V0,Vp〉 be a minimum
eigenvalue decomposition of H. Let us consider the equation

V ′
px{m} = 0. (2.41)

We have that (2.41) defines a system of σ(n,m)−dim(N (H)) homogeneous equa-
tions of degree m in n scalar variables. In particular, the degree of these homo-
geneous equations is odd, and their number is smaller than the number of scalar
variables because

σ(n,m)−dim(N (H)) < n.

This implies that
∃x ∈ R

n : ‖x‖ = 1, V ′
px{m} = 0.

From Definition 2.3, img(V0) = ker(V ′
p), and hence it immediately follows that

∃x ∈ R
n : ‖x‖ = 1, x{m} ∈ img(V0).

Moreover, by Lemma 2.1, img(V0) = N (H), which implies that there exists x ∈ R
n

such that ‖x‖ = 1 and x{m} ∈ N (H). This means that mps(h) �= /0 from Definition
2.5, and hence h(x) is SMR-tight by Theorem 2.9.

Lastly, let us suppose that item 2 holds. It immediately follows that

N (H) = R
σ(n,m)

and hence
mps(h) = {x ∈ R

n : ‖x‖ = 1}
i.e. mps(h) �= /0 and hence h(x) is SMR-tight by Definition 2.5 and Theorem 2.9. �

Theorem 2.10 provides a simple condition to establish whether a form is SMR-
tight, which consists only in checking whether the dimension of the linear space
N (H) lies in a given range.
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Example 2.6. Let us consider the form h(x) in Example 1.2. A maximal SMR matrix
of h(x) has been found in Example 2.4 and is given by H∗ in (2.32). From Lemma
2.1 and (2.33) we have that the linear space N (H∗) is given by

N (H∗) = img

⎛

⎜
⎝

0.7972

−0.5089

0.3249

⎞

⎟
⎠ .

Since H∗ is constructed with respect to the power vector x{m} = (x2
1,x1x2,x2

2)
′, it can

be verified from Definition 2.5 that

mps(h) =

{

±
(

0.8429

−0.5381

)}

.

Therefore, mps(h) is not empty, and hence h(x) is SMR-tight according to Theorem
2.9.

Example 2.7. Let us consider the form

h(x) = 27x4
1x2

2 −36
√

3x2
1x4

2 + 72x2
1x2

2x2
3 + 36x6

2 −24
√

3x4
2x2

3 + 12x2
2x4

3

+12x4
1x2

3 −24
√

3x2
1x4

3 + 27x4
2x2

3 −36
√

3x2
2x4

3 + 36x6
3.

We have n = 3, m = 3 and σ(n,m) = 10. After computing a maximal SMR matrix
H of h(x), we find that dim(N (H)) = 8. Let us observe that mps(h) cannot be
computed via the extraction procedure described in Section 1.9 because (1.89) does
not hold, indeed 8 = u �≤ (n− 1)(m− 1)+ 2 = 6. Then, let us consider Theorem
2.10. We have that m is odd, and the first condition of the theorem holds since
8 = dim(N (H)) > σ(n,m)−n = 7. This implies that h(x) is SMR-tight and hence
the positivity index µ(h) is equal to the SOS index λ (h), which in this case is equal
to 0.

Example 2.8. Let us consider Motzkin’s form in (2.1). We have n = 3, m = 3 and
σ(n,m) = 10. After computing a maximal SMR matrix H of hMot(x), we find that
dim(N (H)) = 7. Let us observe that mps(h) cannot be computed via the extraction
procedure described in Section 1.9 because (1.89) does not hold, indeed 7 = u �≤
(n−1)(m−1)+2 = 6. Then, let us consider Theorem 2.10. We have that m is odd,
however the first condition of the theorem does not hold since 7 = dim(N (H)) �>
σ(n,m)− n = 7. This means that we cannot conclude that hMot(x) is SMR-tight.
This is in accordance with the fact that hMot(x) cannot be SMR-tight since it is PNS,
which implies λ (hMot) < 0 and µ(hMot) = 0.
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2.4 Characterizing PNS Forms via the SMR

This section investigates the structure of PNS forms through the SMR. In particular,
it is shown that each PNS form is the vertex of a cone of PNS forms. Moreover, a
parametrization of PNS forms is proposed.

2.4.1 Basic Properties of PNS Forms

First of all, let us observe that, while the sets Ωn,2m and Σn,2m are convex, the set
∆n,2m is nonconvex. This is shown by the following example.

Example 2.9. Let us consider Motzkin’s form in (2.1) and Stengle’s form [122]

hSte(x) = x3
1x3

3 +(x2
2x3 − x3

1 − x1x2
3)

2, (2.42)

which are both in ∆3,6. Let us define the form

h(x) =
1
2

(hMot(x)+ hSte(x)) .

It can be verified that
λ (h) = 0

which means that h(x) is SOS. Therefore, h �∈ ∆3,6, which implies that ∆3,6 is not
convex.

For any h ∈ Ξn,m let us define the ball in Ξn,m with radius δ ∈ R centered in h(x)
as

Bδ (h) = {h1 ∈ Ξn,m : d(h1,h) ≤ δ} (2.43)

where d : Ξn,m ×Ξn,m → R is the distance in Ξn,m defined as

d(h1,h) = ‖g1 −g‖ (2.44)

being g1,g ∈ R
σ(n,m) vectors representing respectively h1,h according to the power

vector representation (1.6).
The following result introduces some key properties of ∆n,2m.

Theorem 2.11. Suppose that ∆n,2m �= /0. Then:

1. there exists h ∈ ∆n,2m such that µ(h) > 0;
2. for any h ∈ ∆n,2m such that µ(h) > 0, it follows that

∃δ > 0 : Bδ (h) ⊂ ∆n,2m; (2.45)

3. for any h ∈ ∆n,2m there exists δ > 0 such that

Bδ (h)∩Ωn,2m ⊂ ∆n,2m. (2.46)
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Proof. Consider item 1, and let ∆n,2m �= /0. Then, there exists h ∈ ∆n,2m such that
µ(h) ≥ 0. Let us suppose that µ(h) = 0 and let us define

h1(x) = h(x)+ εx{m}′x{m}.

It follows that
µ(h1) = µ(h)+ ε = ε.

Moreover, let H be an SMR matrix of h(x). We have that

H1 = H + εIσ(n,m)

is an SMR matrix of h1(x). Hence, it follows that

λ (h1) = λ (h)+ ε.

Since λ (h) < 0, by choosing ε ∈ (0,−λ (h)), one gets h1 ∈ ∆n,2m and µ(h1) > 0.
Hence, item 1 holds.

Consider item 2, and let h ∈ ∆n,2m with µ(h) > 0. We have also λ (h) < 0. For
continuity of µ(h) and λ (h) with respect to the coefficients of h(x), it follows that

∃δ > 0 : µ(h1) > 0 and λ (h1) < 0 ∀h1 ∈ Bδ (h)

i.e. (2.45) holds.
Lastly, consider item 3, and let h ∈ ∆n,2m. If µ(h) > 0, then (2.45) holds, which

directly implies (2.46) since ∆n,2m ⊂ Ωn,2m. Hence, let us suppose µ(h) = 0. Simi-
larly to the proof of (2.45) it follows that

∃δ > 0 : λ (h1) < 0 ∀h1 ∈ Bδ (h)

i.e. Bδ (h)∩Σn,2m = /0. Therefore, (2.46) holds. �

Theorem 2.11 states three properties for the set of PNS forms ∆n,2m. The first
says that, if this set is not empty, then it contains positive definite forms. The second
property says that positive definite forms in ∆n,2m are interior points of ∆n,2m. The
third property establishes that every PNS form owns a neighborhood with shape
defined by (2.43)–(2.44) where all positive semidefinite forms are PNS. This means
that arbitrarily small changes of the coefficients of a PNS form cannot turn this form
into an SOS form.

As it has been explained in the previous sections, to establish whether a form
h(x) is PNS amounts to establishing whether µ(h)≥ 0 and λ (h) < 0. The following
result provides a further characterization of PNS forms which turns out to be useful
for their construction.

Theorem 2.12. Let h ∈ ∆n,2m, and H ∈ S
σ(n,m) be a maximal SMR matrix of h(x).

Let 〈λmin(H),β ,V0,Vp〉 be a minimum eigenvalue decomposition of H. Then,

�x ∈ R
n
0 : V ′

px{m} = 0. (2.47)
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Proof. Let us suppose by contradiction that there exists x̃ ∈ R
n
0 such that x̃{m} ∈

ker(V ′
p). Let r be the length of β . Then, we have

h(x̃) = x̃{m}′ (V0 Vp
)
(

λmin(H)Iσ(n,m) + diag

(
0σ(n,m)−r

β

))(
V ′

0

V ′
p

)

x̃{m}

= λmin(H)‖V ′
0x̃{m}‖2.

Let us observe that λmin(H) < 0, because H is a maximal SMR matrix of a PNS
form. Moreover, ‖V ′

0x̃{m}‖> 0, since img(V0) = ker(V ′
p). This implies that h(x̃) < 0,

which is impossible since h(x) is PNS. �

Theorem 2.12 provides a necessary condition for a form to be PNS: the absence
of solutions x ∈ R

n
0 in the homogeneous polynomial system V ′

px{m} = 0. By Defini-
tion 2.3, this condition is equivalent to

�x ∈ R
n
0 : x{m} ∈ img(V0).

2.4.2 Cones of PNS Forms

The following result provides a way to generate a set of PNS forms from a given
PNS form.

Theorem 2.13. Let h ∈ ∆n,2m, H ∈ S
σ(n,m) be a maximal SMR matrix of h(x), and

〈λmin(H),β ,V0,Vp〉 be a minimum eigenvalue decomposition of H. Let us define the
parametrized form

s(x;γ) = x{m}′Vp diag(γ)V ′
px{m} (2.48)

for some γ ∈ R
r, where r is the length of β . Moreover, let us define the set

cone(h) = {h1 ∈ Ξn,2m : h1(x) = h(x)+ s(x;γ), γ > 0} . (2.49)

Then,
cone(h) ⊂ ∆n,2m. (2.50)

Moreover,
∃δ > 0 : µ (h + s(·,γ)) ≥ µ(h)+ δ min

1≤i≤r
γi. (2.51)

Proof. First of all, let us observe that s(x;γ) is SOS for all γ ≥ 0 because a positive
semidefinite SMR matrix of s(x;γ) for all γ ≥ 0 is given by

S(γ) = Vp diag(γ)V ′
p.
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In order to prove (2.50), let us observe that

H1 = H + S(γ)

is a maximal SMR matrix of

h1(x) = h(x)+ s(x;γ).

In fact, we have that

H1 =
(

V0 Vp
)
(

λmin(H)Iσ(n,m) + diag

(
0σ(n,m)−r

γ

))(
V ′

0

V ′
p

)

+Vp diag(β )V ′
p

=
(

V0 Vp
)
(

λmin(H)Iσ(n,m) + diag

(
0σ(n,m)−r

β + γ

))(
V ′

0

V ′
p

)

which clearly implies that

〈λmin(H),β + γ,V0,Vp〉 (2.52)

is a minimum eigenvalue decomposition of H1. Since H is a maximal SMR matrix
of h(x), we have from Theorem 2.6 that η∗(V0) ≤ 0, which implies that also H1 is a
maximal SMR matrix.

Now, from the fact that H1 is a maximal SMR matrix and taking into account its
minimum eigenvalue decomposition in (2.52), it follows that

λ (h1) = λmin(H1) = λmin(H) = λ (h).

Moreover, we have that
µ(h1) ≥ µ(h)

because s(x;γ) is SOS. Since h ∈ ∆n,2m we conclude that λ (h1) = λ (h) < 0 and
µ(h1) ≥ µ(h) ≥ 0, which imply that h1(x) is PNS. Therefore, (2.50) holds.

Finally, let us observe that

µ (h + s(·,γ)) ≥ µ(h)+ µ (s(·,γ))

and
s(x;γ) ≥ ‖V ′

px{m}‖2 min
1≤i≤r

γi ∀x ∀γ.

According to Theorem 2.12, we have that V ′
px{m} �= 0 for all x ∈ R

n
0. Hence, (2.51)

holds with δ = µ(h2), where h2(x) is the form h2(x) = ‖V ′
px{m}‖2. �

Theorem 2.13 states that any PNS form h(x) is the vertex of a cone of PNS forms
given by cone(h). In particular, the directions of this cone correspond to the SOS
forms given by s(x;γ) for γ > 0. Let us also observe that, according to (2.51), there
exist PNS forms in this cone whose positivity index is arbitrarily large.
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2.4.3 Parametrization of PNS Forms

Maximal SMR matrices can be exploited to derive a parametrization of all PNS
forms. Let us define the set

Θ P
n,2m(r) =

{
Vp ∈ R

σ(n,m)×r : (2.53)

V ′
pVp = Ir, η∗(cmp(Vp)) ≤ 0, and (2.47) holds

}
.

The notation cmp(Vp) denotes any matrix in R
σ(n,m)×(σ(n,m)−r) whose columns are

an orthonormal base of ker(V ′
p). Hence cmp(Vp) satisfies the conditions

{
cmp(Vp)′ cmp(Vp) = Iσ(n,m)−r

img(cmp(Vp)) = ker(V ′
p).

Now, let us introduce the set

Θn,2m =
⋃

1≤r≤σ(n,m)

Θn,2m(r) (2.54)

where

Θn,2m(r) =
{〈δ ,β ,Vp〉 : δ ∈ (0,1]; β ∈ R

r,β > 0; Vp ∈Θ P
n,2m(r)

}
. (2.55)

For any θ = 〈δ ,β ,Vp〉 ∈ Θn,2m(r), let s(x;β ) = x{m}′Vp diag(β )V ′
px{m} and define

the form
π(x;θ ) = s(x;β )− δ µ (s(·,β ))x{m}′x{m}. (2.56)

The following result provides a parametrization of the set of PNS forms ∆n,2m.

Theorem 2.14. Let Θn,2m be defined by (2.53)–(2.55), and π(x;θ ) be given by
(2.56). Then,

h ∈ ∆n,2m ⇐⇒ ∃θ ∈Θn,2m : h(x) = π(x;θ ). (2.57)

Proof. (Necessity) Let h ∈ ∆n,2m. Let H be a maximal SMR matrix of h(x), and
let 〈λmin(H),β ,V0,Vp〉 be a minimum eigenvalue decomposition of H. Let r be the
length of β . We have that

h(x) = x{m}′ (V0 Vp
)
(

λmin(H)Iσ(n,m) + diag

(
0σ(n,m)−r

β

))(
V ′

0

V ′
p

)

x{m}

= x{m}′ (λmin(H)Iσ(n,m) +Vp diag(β )V ′
p

)
x{m}

= λmin(H)x{m}′x{m} + s(x;β ).

Hence, h(x) = π(x;θ ) where
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θ = 〈δ ,β ,Vp〉
δ = − λmin(H)

µ (s(·,β ))
.

Let us observe that δ ∈ (0,1] because λmin(H) = λ (h) < 0 and λmin(H)+µ (s(·,β ))
= µ(g(x)) ≥ 0. Moreover, β > 0 because 〈λmin(H),β ,V0,Vp〉 is a minimum eigen-
value decomposition of H. Then, by Theorem 2.6 and Theorem 2.12 it follows that
Vp ∈Θ P

n,2m(r).
(Sufficiency) Let θ = 〈δ ,β ,Vp〉 ∈Θn,2m. We have that an SMR matrix of π(x;θ )

is given by

H = Vp diag(β )V ′
p − δ µ (s(·,β )) Iσ(n,m)

=
(

cmp(Vp) Vp
)
(

diag

(
0σ(n,m)−r

β

)

− δ µ (s(·,β )) Iσ(n,m)

)(
cmp(Vp)′

V ′
p

)

.

Since V ′
pVp = Ir and β > 0, it follows that

〈−δ µ (s(·,β )) ,β ,cmp(Vp),Vp〉

is a minimum eigenvalue decomposition of H. Since η∗(cmp(Vp)) ≤ 0, this implies
that H is a maximal SMR matrix from Theorem 2.6. Moreover, from Theorem 2.12
it follows that µ (s(·,β )) > 0. Hence,

λ (π(·,θ )) = −δ µ (s(·,β )) < 0

and
µ (π(·,θ )) = (1− δ )µ (s(·,β )) ≥ 0.

Therefore, (2.57) holds. �

Theorem 2.14 states that ∆n,2m is the image of Θn,2m through the function π(x;θ ).
Hence, this result provides a technique to parametrize and construct all the PNS
forms. This technique amounts to finding matrices Vp in Θ P

n,2m(r) and calculating
the positivity index µ (s(·,β )). Unfortunately, it is difficult to find an explicit rep-
resentation of the set Θ P

n,2m(r). A method to find elements in this set consists of
looking for matrices Vp with a fixed structure, for which the property (2.47) and
the positivity index µ (s(·,β )) can be easily checked, and using the remaining free
parameters to satisfy the condition η∗(cmp(Vp)) ≤ 0.

Example 2.10. We show here the construction of a simple PNS by using Theorem
2.14, in the case with n = 3 and m = 3. Let us choose x{m} as

x{m} = (x3
1,
√

3x2
1x2,

√
3x2

1x3,
√

3x1x2
2

√
6x1x2x3,

√
3x1x2

3,x
3
2,√

3x2
2x3,

√
3x2x2

3,x
3
3)

′.
(2.58)

This choice satisfies (1.9). Then, let us choose
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Vp =
1√
38

⎛

⎜
⎝

2
√

3 0 0 −5 0 1 0 0 0 0

0 1 0 0 0 0 2
√

3 0 −5 0

0 0 −5 0 0 0 0 1 0 2
√

3

⎞

⎟
⎠

′

.

The number of columns of Vp is r = 3. Observe that V ′
pVp = I3. Moreover, by select-

ing y = (1,0, . . . ,0)′ in (2.27), we find that η(cmp(Vp)) =−0.0792, which allows us
to conclude that η∗(cmp(Vp))≤ 0, by Theorem 2.7. Thanks to the structure of Vp, it
is easy to verify the property (2.47) and to compute the positivity index µ (s(·,β )).
In fact,

V ′
px{m} =

√
3

38
(w1(x),w2(x),w3(x))′

where
w1(x) = x1

(
2x2

1 −5x2
2 + x2

3

)

w2(x) = x2
(
x2

1 + 2x2
2 −5x2

3

)

w3(x) = x3
(−5x2

1 + x2
2 + 2x2

3

)
.

It is straightforward to see that

wi(x) = 0 ∀i = 1,2,3 ⇐⇒ x = 03

and hence (2.47) holds. Therefore, Vp ∈Θ P
3,6(3) and

θ = 〈δ ,β ,Vp〉 ∈Θ3,6 ∀δ ∈ (0,1], ∀β ∈ R
3,β > 0.

Moreover, let us select a vector β , for example β = (38/3,38/3,38/3)′. It follows

s(x;β ) =
3

∑
i=1

wi(x)2. (2.59)

In order to compute µ (s(·,β )), we have to find the minimum of s(x;β ) over the set
Cn,m, which coincides with {x : ‖x‖ = 1} due to the choice (2.58). Let us observe
that, since s(x;β ) depends on x2

1,x
2
2,x

2
3, one can first substitute x2

3 = 1− x2
1 − x2

2 in
s(x;β ), and then find the minimum by computing the points where the derivatives of
s(x;β ) with respect to x2

1 and x2
2 vanish. This operation amounts to solving a system

of two quadratic equations in two variables, and can be done by finding the roots of
a polynomial equation of degree four in one variable. We find

µ (s(·,β )) = 0.4360.

Let us define

h0(x) =
3

∑
i=1

wi(x)2

= 4(x6
1 + x6

2 + x6
3)−19(x4

1x2
2 + x4

2x2
3 + x4

3x2
1)+ 29(x4

1x2
3 + x4

2x2
1 + x4

3x2
2)

−30x2
1x2

2x2
3.
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Therefore, from Theorem 2.14 it follows that the form

h(x) = h0(x)−0.4360‖x‖6δ (2.60)

is a PNS form for all δ ∈ (0,1]. Figure 2.1 shows the plot of h(x) on the upper
semi-sphere for δ = 0.5.

1

0.5

0

0.5

1 1

0.5

0

0.5

1
0

1

2

3

4

5

6

x1

x2

h(
x)

Fig. 2.1 Example 2.10: form h(x) in (2.60) plotted with δ = 0.5 for x such that x2
1 + x2

2 ≤ 1

and x3 =
√

1−x2
1 −x2

2

Example 2.11. Let us consider the PNS form in (2.60), and let γ ∈ R
3. From (2.59)

we have that

h(x)+ s(x;γ) =
3

∑
i=1

(1 + γi)wi(x)2 −0.4360‖x‖6δ .

This implies that the cone (2.49) is given by

cone(h) =

{

h1 ∈ Ξ3,6 : h1(x) =
3

∑
i=1

(1 + γi)wi(x)2 −0.4360‖x‖6δ , γ ≥ 0

}

.

According to Theorem 2.13, such a cone contains only PNS forms.
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2.5 Notes and References

There is an endless literature on Hilbert’s 17th problem and related issues. The inter-
ested reader is referred to the classical book [70], and to more recent contributions
such as [118, 122, 123] and references therein.

Theorem 2.4 was given in [34]. Maximal SMR matrices and related results in
Section 2.2, as well as the characterization of PNS forms in Section 2.4, have been
provided in [25]. SMR-tight forms have been introduced in [27].

The study of the gap between positive forms and SOS forms is a classical problem
which has recently attracted much interest, see e.g. [9, 86, 25].



Chapter 3
Robustness with Time-varying Uncertainty

This chapter addresses robust stability of time-varying systems affected by struc-
tured parametric uncertainty, a fundamental problem in robust control. It is shown
that the problem can be tackled by employing Lyapunov functions which are forms
in the state variables and are referred as HPLFs. Thanks to the tools for checking
positivity of forms introduced in Chapters 1 and 2, the construction of such Lya-
punov functions can be formulated in terms of special convex optimizations prob-
lems. Both polytopic systems and LFRs are considered. Several robustness perfor-
mance measures are also investigated.

3.1 Polytopic Systems with Time-varying Uncertainty

Let us start by introducing linear systems affected by time-varying structured para-
metric uncertainty.

Definition 3.1 (Time-varying Polytopic System). Consider the continuous-time
system described by the state equations

ẋ(t) = A(p(t))x(t) (3.1)

where t ∈ R is the time, x(t) ∈ R
n is the state vector, ẋ(t) = dx(t)

dt , p(t) ∈ R
q is an

uncertain parameter vector, and A(p(t)) ∈ R
n×n is given by

A(p(t)) = A0 +
q

∑
i=1

pi(t)Ai (3.2)

where A0, . . . ,Aq ∈ R
n×n are given matrices. It is assumed that p(t) satisfies the

constraint
p(t) ∈ P, ∀t ≥ 0 (3.3)

being P ⊂ R
q the polytope defined as

G. Chesi et al.: Homogeneous Polynomial Forms, LNCIS 390, pp. 63–97.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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P = co{p(1), . . . , p(r)} (3.4)

for some given vectors p(1), . . . , p(r) ∈ R
q. Then, the system (3.1)–(3.4) is called

time-varying polytopic system.

The vector p(t) represents the time-varying parametric uncertainty which affects
affinely the system dynamics. This vector can be any piecewise continuous function
of time t, provided that p(t)∈P . The set P is the polytope described by the convex
hull of the vectors p(1), . . . , p(r).

A fundamental problem for time-varying polytopic systems is to establish
whether the following property holds.

Definition 3.2 (Robust Stability for Time-varying Polytopic System). The sys-
tem (3.1)–(3.4) is said robustly stable if the following conditions hold:

1. ∀ε > 0 ∃δ > 0 : ‖x(0)‖ < δ ⇒‖x(t)‖ ≤ ε ∀t ≥ 0, ∀p(t) ∈ P ;
2. lim

t→∞
x(t) = 0n ∀x(0) ∈ R

n, ∀p(t) ∈ P .

According to the previous definition, the system (3.1) is robustly stable when-
ever its origin is a globally asymptotically stable equilibrium point for all possible
parametric uncertainties satisfying (3.3)–(3.4).

In the sequel the dependence on the time t will be omitted for ease of presentation,
unless it is required by the context.

3.1.1 Homogeneous Polynomial Lyapunov Functions

In the following, we will show that robustness issues relevant to time-varying poly-
topic systems such as the robust stability property in Definition 3.2 can be investi-
gated by using Lyapunov functions which are forms in the state variables. The next
definition introduces this class of Lyapunov functions.

Definition 3.3 (HPLF). Let v : R
n → R be a function satisfying

⎧
⎪⎨

⎪⎩

v ∈ Ξn,2m

v(x) > 0 ∀x ∈ R
n
0

v̇(x) < 0 ∀x ∈ R
n
0 ∀p ∈ P

(3.5)

where

v̇(x) =
dv(x)

dt

∣
∣
∣
∣
ẋ=A(p)x

. (3.6)

Then, v(x) is a HPLF of degree 2m for the system (3.1)–(3.4).

Hence, HPLFs are forms allowing one to prove robust global asymptotic stability
of the origin of (3.1)–(3.4). These Lyapunov functions can be represented via the
SMR according to (1.11), as
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v(x) = x{m}′Vx{m} (3.7)

where V ∈ S
σ(n,m).

In the next sections it will be explained how to verify that a given form is an
HPLF and how to construct HPLFs by solving convex optimization problems.

3.1.2 Extended Matrix

In order to address robustness analysis via HPLFs, we first need to introduce the
notion of extended matrix.

Definition 3.4 (Extended Matrix). Let us consider the system

ẋ = Ax

where x ∈ R
n and A ∈ R

n×n. Let m ≥ 1 be an integer, and let A# ∈ R
σ(n,m)×σ(n,m) be

the matrix satisfying the relation

dx{m}

dt
=

∂x{m}

∂x
Ax

= A#x{m}.
(3.8)

The matrix A# is called extended matrix of A.

An expression of the extended matrix is provided below in terms of Kronecker’s
products.

Theorem 3.1. Let Km ∈ R
nm×σ(n,m) be the matrix satisfying

x[m] = Kmx{m} (3.9)

where x[m] denotes the m-th Kronecker power of x. Then, A# is given by

A# = (K′
mKm)−1K′

m

(
m−1

∑
i=0

Inm−1−i ⊗A⊗ Ini

)

Km. (3.10)

Proof. From (3.8) and (3.9) it follows that

KmA#x{m} =
∂x[m]

∂x
Ax

=

(
m−1

∑
j=0

x[ j] ⊗ In ⊗ x[m−1− j]

)

Ax.

Then, for any j = 0, . . . ,m−1 one has that
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(
x[ j]⊗ In ⊗ x[m−1− j]

)
Ax = x[ j]⊗Ax⊗ x[m−1− j]

= (In j ⊗A⊗ Inm−1− j)x[m]

= (In j ⊗A⊗ Inm−1− j)Kmx{m}

and hence (3.10) holds. �

Example 3.1. Let us consider

A =

(
−1 1

−2 −1

)

.

Then, for m = 2 with x{2} = (x2
1,x1x2,x2

2)
′, one obtains from (3.8) the extended

matrix

A# =

⎛

⎜
⎝

−2 2 0

−2 −2 1

0 −4 −2

⎞

⎟
⎠

whereas for m = 3, with x{3} = (x3
1,x

2
1x2,x1x2

2,x
3
2)

′, one has

A# =

⎛

⎜
⎜
⎜
⎝

−3 3 0 0

−2 −3 2 0

0 −4 −3 1

0 0 −6 −3

⎞

⎟
⎟
⎟
⎠

.

The following result provides a key property of the extended matrix A# that will
be exploited in the sequel.

Theorem 3.2. For i = 0, . . . ,q let A#
i denote the extended matrix of Ai, and let A(p)#

denote the extended matrix of A(p). Then,

A(p)# = A#
0 +

q

∑
i=1

piA
#
i ∀p ∈ R

q. (3.11)

Proof. From the definition of the extended matrix in (3.8) it follows that A# depends
linearly on A, and hence (3.11) holds. �

3.2 Robust Stability

This section investigates robust stability of the system (3.1)–(3.4) by using HPLFs
and the results derived in Chapters 1 and 2.
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Let us start by showing that a sufficient condition for establishing the existence
of an HPLF can be obtained through the SOS index introduced in (1.29).

Theorem 3.3. Let v ∈ Ξn,2m. Assume that

{
0 < λ (v)
0 < λ (−di) ∀i = 1, . . . ,r

(3.12)

where di ∈ Ξn,2m is defined as

di(x) = v̇(x)|p=p(i) . (3.13)

Then, v(x) is an HPLF for the system (3.1)–(3.4).

Proof. Let us suppose that (3.12) holds. Then, from Corollary 1.4 one has that v(x)
is positive definite and d1(x), . . . ,dr(x) are negative definite. Now, from (3.11) one
has that

v̇(x) =
r

∑
i=1

ci(p)di(x)

where c1(p), . . . ,cr(p) ∈ R are the coefficients which allow one to express p ∈ P
as a convex combination of the vertices of P , i.e.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r

∑
i=1

ci(p)p(i) = p

r

∑
i=1

ci(p) = 1

ci(p) ≥ 0 ∀i = 1, . . . ,r.

In particular, ∀p∈P there exists at least one integer i, 1≤ i≤ r, such that ci(p) > 0,
and hence v̇(x) < 0 for all x ∈ R

n
0 and for all p ∈P . Therefore, (3.5) holds, i.e. v(x)

is an HPLF for the system (3.1)–(3.4). �

Theorem 3.3 can be used for constructing an HPLF by solving an LMI feasibility
test. Indeed, for i = 1, . . . ,r let us define the matrices

Âi = A(p(i))

and let Â#
i denote the extended matrix of Âi.

Theorem 3.4. Let m ≥ 1 be an integer, and L(·) be a linear parametrization of Ln,m

in (1.15). Let us suppose that there exist V ∈ S
σ(n,m) and α(1), . . . ,α(r) ∈ R

ω(n,m)

satisfying the following system of LMIs:
{

0 < V

0 > he
(
VÂ#

i

)
+ L(α(i)), i = 1, ...,r.

(3.14)
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Then, v(x) defined as in (3.7) is an HPLF of degree 2m for the system (3.1)–(3.4).

Proof. By (3.13) and (3.8), one has

di(x) = 2x{m}′V
∂x{m}

∂x
Âix

= x{m}′ he
(
V Â#

i

)
x{m}.

Therefore, the existence of V,α(1), . . . ,α(r) such that (3.14) holds, is equivalent to
condition (3.12). �

Notice that the scalar variables in (3.14) are the elements of the matrix V and
vectors α(1), . . . ,α(r), and therefore their number is equal to

1
2

σ(n,m)(σ(n,m)+ 1)+ rω(n,m).

Table 3.1 shows this number for some values of n,m,r. Let us observe that V,α(1),
. . . ,α(r) are defined up to a positive scalar factor since the inequalities in (3.14) are
linear in these variables.

Table 3.1 Number of scalar variables in the LMI feasibility test (3.14) for some values of
n,m,r: (a) r = 2; (b) r = 3

(a) (b)

m = 1 m = 2 m = 3 m = 4

n = 1 1 1 1 1

n = 2 3 8 16 27

n = 3 6 33 109 270

n = 4 10 95 462 1560

m = 1 m = 2 m = 3 m = 4

n = 1 1 1 1 1

n = 2 3 9 19 33

n = 3 6 39 136 345

n = 4 10 115 588 2025

A natural question that arises is whether the conservatism of the sufficient con-
dition provided by Theorem 3.4 is nonincreasing with the degree of the HPLF. The
following result provides an answer to this question.

Theorem 3.5. If condition (3.14) of Theorem 3.4 holds for some integer m ≥ 1, then
it holds also for km where k is any integer satisfying k ≥ 1.

Proof. Let V,α(1), . . . ,α(r) be such that (3.14) holds for a given m, and consider any
integer k ≥ 1. We now show that there exist Ṽ , α̃(1), . . . , α̃(r) such that (3.14) holds
with m replaced by km. Let us define v(x) as in (3.7). We have that (3.5) holds. Then,
let us introduce the form

ṽ(x) = v(x)k.
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We have that (3.5) holds with v(x) and m replaced by ṽ(x) and km respectively, i.e.
ṽ(x) is an HPLF of degree 2km for the system (3.1)–(3.4). Now, let us define

Ṽ = T ′V [k]T (3.15)

where T is the matrix satisfying

(
x{m}
)[k]

= Tx{km} ∀x.

We have that
ṽ(x) = x{km}′Ṽ x{km}.

Being V > 0 and T full column rank, from (3.15) one has Ṽ > 0. Then, let us define

Wi = T ′
(

V [k−1] ⊗
(

he
(
VÂ#

i

)
+ L(α(i))

))
T

for i = 1, . . . ,r. We have that

dṽ(x)
dt

∣∣
∣
∣
ẋ=Âix

= x{km}′Wix
{km}

and by (3.14), Wi < 0. By exploiting (3.8), one has

dṽ(x)
dt

∣
∣∣
∣
ẋ=Âix

= x{km}′ he
(
ṼXi
)

x{km}

where Xi is the extended matrix of Âi defined by (3.8), with m replaced by km.
Hence, there exist α̃(i), i = 1, . . . ,r, such that

he
(
ṼXi
)
+ L(α̃(i)) = Wi

because he
(
ṼXi
)

and Wi are SMR matrices of the same form. �

For some special values of the dimension n of x and the degree 2m of v(x), the
sufficient condition provided by Theorem 3.4 is also necessary for the existence of
an HPLF for the system (3.1)–(3.4). This is explained by the following result.

Theorem 3.6. Let us suppose that (n,2m) belongs to E in (2.5). Then, there ex-
ists an HPLF of degree 2m for the system (3.1)–(3.4) if and only if there exist
V,α(1), . . . ,α(r) such that (3.14) holds.

Proof. Obviously, it must be proven only that if (n,2m) ∈ E and there exists an
HPLF v(x) of degree 2m for (3.1)–(3.4), then (3.14) admits a feasible solution. By
assumption, we have that v(x) is positive definite and −v̇(x) is positive definite for
all p ∈ P . Hence, due to Theorem 2.4, there exist V,V1, . . . ,Vr such that
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 < V

0 < Vi, i = 1, . . . ,r

v(x) = x{m}′Vx{m}

−di(x) = x{m}′Vix{m}, i = 1, . . . ,r.

Completeness of the SMR parametrization (1.17) implies that there exist α(1), . . . ,
α(r) such that

−Vi = he
(
VÂ#

i

)
+ L(α(i)), i = 1, ...,r.

Therefore, (3.14) admits a feasible solution. �

A general converse theorem for HPLFs has been proven in [8] and is reported
next. Unfortunately, the degree of the resulting HPLF can be arbitrarily high.

Theorem 3.7. If the system (3.1)–(3.4) is robustly stable, then there exists an integer
m ≥ 1 and a matrix V ∈ S

σ(n,m) such that v(x) = x{m}′Vx{m} is an HPLF for the
system (3.1)–(3.4).

Proof. It is a direct consequence of Theorem 3.2 in [8]. �

Example 3.2. Let us consider the system (3.1)–(3.4) with x ∈ R
2, p ∈ R and

A0 =

(
−1 1

−2 −1

)

, A1 =

(
0 0

1 0

)

, p(1) = 0, p(2) = 1.

Let us define the function
v(x) = x4

1 + x4
2.

Then, v(x) is an HPLF of degree 4 for this system. Indeed, (3.14) holds with

V =

⎛

⎜
⎝

1 0 −0.5

� 1 0

� � 1

⎞

⎟
⎠ , α(1) = −0.7165, α(2) = −0.2003.

3.3 Robust Performance

This section investigates some robust performance properties of the system (3.1),
specifically the �∞ stability margin and the best transient performance index.
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3.3.1 Polytopic Stability Margin

In the analysis of the time-varying polytopic system (3.1), a key problem consists of
finding the largest value of a positive scalar γ for which the system is robustly stable
for all uncertainties belonging to the scaled perturbation set γP , which is defined
as

γP = co
{

γ p(1), . . . ,γ p(r)
}

.

Hence, the problem is formulated as the computation of the following robust stabil-
ity margin [143, 5].

Definition 3.5 (Polytopic Stability Margin). Let us define

γP = sup {γ ∈ R : (3.1) is robustly stable for all p(t) ∈ γP}.

Then, γP is called polytopic stability margin for the system (3.1).

In the following, we will investigate the polytopic stability margin via HPLFs.
In particular, we define the polytopic stability margin guaranteed by the class of
HPLFs of degree 2m as follows.

Definition 3.6 (2m-HPLF Polytopic Stability Margin). Let us define

γP
2m = sup {γ ∈ R : ∃v ∈ Ξn,2m HPLF for (3.1) with p(t) ∈ γP}. (3.16)

Then, γP
2m is called 2m-HPLF polytopic stability margin for the system (3.1).

Clearly, the 2m-HPLF polytopic stability margin is a lower bound of the sought
polytopic stability margin, indeed

γP
2m ≤ γP ∀m ≥ 1.

A special instance of the problem formulated above occurs when the polytope P
is the unit �∞ box, i.e. P = B∞(1) where

B∞(γ) = {p ∈ R
q : ‖p‖∞ ≤ γ} . (3.17)

In this case, the stability margins in Definitions 3.5 and 3.6 are referred to as �∞
stability margin and 2m-HPLF �∞ stability margin, and denoted by γ∞ and γ∞

2m,
respectively.

For ease of presentation, we address the problem of estimating γ∞
2m (the results

given next are immediately extended to γP
2m). Let us denote by u(1), . . . ,u(2q) the

vertices of the unit �∞ ball B∞(1), introduce the matrices

Ãi = A(u(i))−A0, i = 1, . . . ,2q

and let Ã#
i , i = 0, . . . ,2q, denote the extended matrix of Ãi. The following result

shows that a lower bound to the 2m-HPLF �∞ stability margin γ∞
2m can be computed

by solving a quasi-convex optimization problem.
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Theorem 3.8. Let m ≥ 1 be an integer, and L(·) be a linear parametrization of Ln,m

in (1.15). Let us define

γ̂∞
2m =

1
z∗

(3.18)

where z∗ is the solution of

z∗ = inf
z∈R, V∈Sσ(n,m), α(0),...,α(2q)∈Rω(n,m)

z

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 < z

0 < V

0 < −he
(
VA#

0

)−L(α(0))

0 < z
(
−he
(
VA#

0

)−L(α(0))
)
−he
(
VÃ#

i

)−L(α(i)),

i = 1, ...,2q.

(3.19)

Then, γ̂∞
2m ≤ γ∞

2m.

Proof. The second constraint in (3.19) provides that v(x) = x{m}′V x{m} is positive
definite. The time derivative of v(x) evaluated for p = z−1u(i) is given by

v̇(x)|p=z−1u(i) = x{m}′ he
(
V
(
A#

0 + z−1Ã#
i

))
x{m}

= z−1x{m}′ (z he
(
VA#

0

)
+ he
(
VÃ#

i

))
x{m}.

Let us observe that, for all α(0),α(i) ∈ R
ω(n,m), one has that

v̇(x)|p=z−1u(i) = z−1x{m}′
(

z
(

he
(
VA#

0

)
+ L(α(0))

)
+ he
(
VÃ#

i

)
+ L(α(i))

)
x{m}

due to the definition of Ln,m in (1.15). Hence, the last constraint in (3.19) guarantees
that

v̇(x)|p=z−1u(i) is negative definite for all i = 1, ...,2q.

This clearly implies that v̇(x) is negative definite for all p ∈ B∞(z−1). Hence,
γ̂∞

2m ≤ γ∞
2m. �

Problem (3.19) is a GEVP, which belongs to the class of quasi-convex optimiza-
tion problems (see Appendix A.1). Let us observe that the third LMI constraint in
(3.19) guarantees that the matrix multiplying the generalized eigenvalue z is posi-
tive definite, which ensures quasi-convexity. The number of scalar variables in the
GEVP (3.19) is equal to

1
2

σ(n,m)(σ(n,m)+ 1)+ (2q + 1)ω(n,m).

The lower bound provided by Theorem 3.8 can be guaranteed to be tight a priori,
for special values of n,m. This is explained in the following result.
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Theorem 3.9. Let us suppose that (n,2m) belongs to E in (2.5). Then, γ̂∞
2m defined

by (3.18)–(3.19) satisfies γ̂∞
2m = γ∞

2m.

Proof. From (3.16) it follows that, for any z such that z−1 < γ∞
2m, there exists a form

v(x) of degree 2m in x such that v(x) is positive definite and −v̇(x) is positive definite
for all p ∈ B∞(z−1). Let us suppose that (n,2m) ∈ E . From Theorem 2.4 it follows
that v(x) and −v̇(x) admit positive definite SMR matrices for any p ∈ B∞(z−1).
Hence, the constraint in problem (3.19) admits a feasible solution for any z−1 < γ∞

2m.
Therefore, γ̂∞

2m = γ∞
2m. �

A simpler version of Theorem 3.8 can be obtained for the special case of a seg-
ment of matrices. Since the problem is widely addressed in the literature, and will
be considered in several examples in Section 3.5, we work out the details. Consider
the system {

ẋ = (A0 + pA1)x

p ∈ [0,κ ].
(3.20)

The aim is to compute the largest value of κ for which the system (3.20) is robustly
stable, i.e.

κ∞ = sup {κ ∈ R : (3.20) is robustly stable for all p(t) ∈ [0,κ ]}. (3.21)

Clearly, one can define κ∞
2m as the largest value of κ for which there exists an HPLF

of degree 2m for the system (3.20). Then, the following result easily follows from
Theorems 3.8 and 3.9.

Corollary 3.1. Let m≥ 1 be an integer, and L(·) be a linear parametrization of Ln,m

in (1.15). Let us define

κ̂∞
2m =

1
z∗

where

z∗ = inf
z∈R, V∈Sσ(n,m), α(1),α(2)∈Rω(n,m)

z

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

0 < V

0 < −he
(
VA#

0

)−L(α(1))

0 < z
(
−he
(
VA#

0

)−L(α(1))
)
−he
(
VA#

1

)
+ L(α(2)).

(3.22)

Then, κ̂∞
2m ≤ κ∞

2m. Moreover, if (n,2m) belongs to E in (2.5), then κ̂∞
2m = κ∞

2m.

3.3.2 Best Transient Performance

Another problem of interest in robustness analysis of uncertain systems consists of
determining the Lyapunov function that achieves the best transient performance. For
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a given Lyapunov function v(x) proving robust stability of the system (3.1)–(3.4),
one can define the transient performance index as

γT (v) = sup
x∈Rn

0

sup
p∈P

v̇(x)
v(x)

. (3.23)

From (3.23) one has
v(x(t)) ≤ v(x(t0))eγT (v)(t−t0)

thus establishing the rate of decrease of v(x). Therefore, it is natural to select among
all feasible Lyapunov functions the one that minimizes γT (v), in order to obtain the
fastest transient. We introduce the following definition.

Definition 3.7 (Best Transient Performance Index). Let us define

γT = inf
v

γT (v). (3.24)

Then, γT is called best transient performance index for the system (3.1)–(3.4).

In this section the aim is to investigate the best transient performance index via
HPLFs. We hence introduce the following definition.

Definition 3.8 (2m-HPLF Best Transient Performance Index). Let us define

γT
2m = inf

v∈Ξn,2m
γT (v). (3.25)

Then, γT
2m is called 2m-HPLF best transient performance index for the system (3.1)–

(3.4).

Clearly, the 2m-HPLF best transient performance index provides an upper bound
to the sought best transient performance index, indeed

γT
2m ≥ γT ∀m ≥ 1.

The following result shows that an upper bound to γT
2m can be obtained by solving a

GEVP.

Theorem 3.10. Let m ≥ 1 be an integer, and L(·) be a linear parametrization of
Ln,m in (1.15). Let us define the GEVP

γ̂T
2m = inf

z∈R, V∈Sσ(n,m), α(i)∈Rω(n,m), i=1,...,r
z

s.t.

{
0 < V

0 < zV −he
(
VÂ#

i

)−L(α(i)), i = 1, . . . ,r.

(3.26)

Then, γ̂T
2m ≥ γT

2m. Moreover, if (n,2m) belongs to E in (2.5), then γ̂T
2m = γT

2m.
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Proof. Let us assume that there exists z ∈ R and V ∈ S
σ(n,m) satisfying the con-

straint in (3.26), for some vectors α(1), . . . ,α(r) ∈ R
ω(n,m). Then, by setting v(x) =

x{m}′Vx{m} one has for all x ∈ R
n
0 and for all i = 1, . . . ,r,

v̇(x)
v(x)

∣∣
∣
∣

p=p(i)
=

x{m}′ he
(
VÂ#

i

)
x{m}

x{m}′Vx{m}

=
x{m}′
(

he
(
V Â#

i

)
+ L(α(i))

)
x{m}

x{m}′Vx{m}
≤ z.

Therefore, by exploiting convexity of P , one can conclude that

v̇(x)
v(x)

< z ∀x �= 0n ∀p ∈ P (3.27)

which implies that γT
2m ≤ z.

Now, let us suppose that (n,2m) ∈ E . From (3.25) we have that for any z > γT
2m

there exists a form v(x) of degree 2m in x such that v(x) is positive definite and
(3.27) holds. Then, Theorem 2.4 implies that v(x) and zv(x)− v̇(x) admit positive
definite SMR matrices for any p∈P , and therefore the constraint in problem (3.26)
admits a feasible solution for any z > γT

2m. �

3.4 Rational Parametric Uncertainty

In this section we address the case of time-varying systems affected by rational para-
metric uncertainty. Specifically, we consider the continuous-time system described
by

ẋ(t) = Arat(p(t))x(t) (3.28)

where the uncertain parameter vector p(t) is supposed to satisfy
{

p(t) ∈ P, ∀t ≥ 0

P = co{p(1), . . . , p(r)} (3.29)

for some given vectors p(1), . . . , p(r) ∈R
q, and the matrix function Arat(p(t))∈R

n×n

has the form

Arat(p(t)) =
1

a2(p(t))
A1(p(t)) (3.30)

where A1(p(t)) ∈ R
n×n and a2(p(t)) ∈ R are respectively a matrix polynomial and

a scalar polynomial in the parameters p(t).

Example 3.3. Let us consider the system
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⎧
⎨

⎩

ẋ1(t) = x2(t)

ẋ2(t) = −1 + 2p2(t)
1 + p2(t)

x1(t)− 1
1 + p2(t)

x2(t).

This system can be expressed as in (3.28) with

A1(p(t)) =

(
0 1 + p2(t)

−1−2p2(t) −1

)

a2(p(t)) = 1 + p2(t).

Robustness properties of the system (3.28) can be investigated in several ways.
A first possibility consists of computing a convex polytope of matrices A bounding
the set of matrices Arat(p(t)) in (3.28), i.e. satisfying

A ⊇ {Arat(p(t)) : p(t) ∈ P} (3.31)

and to employ robustness analysis techniques developed in the previous sections for
time-varying polytopic systems. However, since Arat(p(t)) depends rationally on
p(t), this approach leads in general to conservative results.

In the following, we take a different approach based on an LFR of the system
(3.28). More specifically, by exploiting LFRs, the system (3.28) can be equivalently
rewritten in the following form.

Definition 3.9 (Time-varying LFR System). Consider the continuous-time system
described by ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ By(t)
z(t) = Cx(t)+ Dy(t)
y(t) = E(p(t))z(t)

E(p(t)) =

⎛

⎜
⎝

p1(t)Is1

. . .
pq(t)Isq

⎞

⎟
⎠

(3.32)

where x(t) ∈ R
n is the state vector; y(t),z(t) ∈ R

d are auxiliary vectors with d =
s1 + · · ·+sq and nonnegative integers s1, . . . ,sq; p(t) is an uncertain parameter vector
supposed to satisfy (3.29) for some given vectors p(1), . . . , p(r) ∈ R

q; and A ∈ R
n×n,

B ∈ R
n×d , C ∈ R

d×n, D ∈ R
d×d are given matrices. Then, (3.32) is called time-

varying LFR system.

For the system (3.32) we define the LFR degree as

dLFR = max {s1, . . . ,sq}. (3.33)

We also introduce the polytope of matrices

PE =
{

E(p(t)) ∈ S
d : p(t) ∈ P

}
(3.34)
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whose vertices are given by

Ei = E(p(i)), i = 1, . . . ,r. (3.35)

The problem of constructing a Lyapunov function for the system (3.28) is hence
cast into the problem of constructing a Lyapunov function for the system (3.32).

Example 3.4. Let us consider the system in Example 3.3. It can be verified that this
system can be expressed as in (3.32) with q = 1, s1 = 2 and

A =

(
0 1

−1 −1

)

, B =

(
0 0

1 0

)

, C =

(
0 0

−1 1

)

, D =

(
0 1

−1 0

)

.

In the sequel it will be assumed that the polytope P contains the origin, i.e.
0q ∈P . This means that there is no loss of generality in considering that the matrix
A is Hurwitz. In the following, the dependence on the time t will be omitted for ease
of presentation.

3.4.1 SMR for LFR Systems

In order to illustrate the main idea, let us first observe that from (3.32) one can write

dx{m}

dt
=

∂x{m}

∂x
(Ax + BE(p)z)

= A#x{m} + B1(p)
(

z⊗ x{m−1}
) (3.36)

where A# is the extended matrix of A defined by (3.8) and B1(p) is a suitable matrix
independent of x,z. Now, let us consider the form v(x) = x{m}′Vx{m} for some V ∈
S

σ(n,m). It turns out that

v̇(x) = 2
(

x{m}′VA#x{m} + x{m}′VB1(p)
(

z⊗ x{m−1}
))

.

This means that v̇(x) can be written as a quadratic form in the vector f (x,z) ∈
R

σLFR(n,d,m)

f (x,z) =

(
x{m}

z⊗ x{m−1}

)

where
σLFR(n,d,m) = σ(n,m)+ dσ(n,m−1). (3.37)

Indeed,

v̇(x) = f (x,z)′
(

he
(
VA#
)

VB1(p)
� 0

)

f (x,z). (3.38)
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The representation (3.38) is a sort of SMR with respect to the vector f (x,z). Simi-
larly to the SMR introduced in Chapter 1, the matrix representing v̇(x) in (3.38) is
not unique, and the set of such matrices is an affine space. In order to parametrize
this set, let us define

L LFR
n,d,m =

{
L ∈ S

σLFR(n,d,m) : f (x,z)′L f (x,z) = 0 ∀x ∈ R
n ∀z ∈ R

d
}

. (3.39)

The following result characterizes the set L LFR
n,d,m.

Theorem 3.11. The set L LFR
n,d,m is a linear space of dimension

ωLFR(n,d,m) =
1
2

σLFR(n,d,m)(σLFR(n,d,m)+ 1)−σ(n,2m)

−dσ(n,2m−1)− 1
2

d(d + 1)σ(n,2m−2).
(3.40)

Proof. The first right hand side term in (3.40) is the number of distinct components
of a symmetric matrix with size σLFR(n,d,m)×σLFR(n,d,m), while the absolute
value of the sum of the three negative terms is the number of distinct monomials in
the form f (x,z)′L f (x,z) (which have degree 2m in the pair (x,z)). Since the coeffi-
cients of the form depend linearly on the components of L, we hence obtain a system
of linear equations, which can be shown to be independent, by following the same
reasoning as in the proof of Theorem 1.2. Therefore, it follows that the dimension
of L LFR

n,d,m is given by (3.40). �

According to Theorem 3.11, L LFR
n,d,m admits a linear parametrization L(α), where

α ∈ R
ωLFR(n,d,m) is a free vector. This parametrization can be computed by applying

standard algorithms of linear algebra, similar to that reported in Appendix B for
scalar forms. As it will be shown in the following, such a parametrization plays
a key role in deriving sufficient conditions for establishing robust stability of the
system (3.32) because it allows one to take into account the degrees of freedom in
the representation (3.38). In particular, let us observe that

σLFR(n,d,1) = n + d

ωLFR(n,d,1) = 0

i.e. in the case of quadratic Lyapunov functions (which correspond to the choice
m = 1) the quantity σLFR(n,d,m) is the sum of the number of states n and the size
d of the uncertainty block E(p), while L(α) is identically zero. Tables 3.2 and 3.3
show σLFR(n,d,m) and ωLFR(n,d,m) for some values of n,d,m.

In order to work out the conditions to enforce negative definiteness of v̇(x) in
(3.38), we need to introduce the following matrices.

Definition 3.10 (Extended Matrices for LFR System). Let B# ∈R
σ(n,m)×dσ(n,m−1),

C# ∈R
dσ(n,m−1)×σ(n,m) and D# ∈R

dσ(n,m−1)×dσ(n,m−1) be the matrices satisfying the
relations
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Table 3.2 Quantity σLFR(n,d,m) for some values of n,d,m: (a) m = 2 ; (b) m = 3

(a) (b)

d = 1 d = 2 d = 3 d = 4

n = 1 2 3 4 5

n = 2 5 7 9 11

n = 3 9 12 15 18

n = 4 14 18 22 26

d = 1 d = 2 d = 3 d = 4

n = 1 2 3 4 5

n = 2 7 10 13 16

n = 3 16 22 28 34

n = 4 30 40 50 60

Table 3.3 Quantity ωLFR(n,d,m) for some values of n,d,m: (a) m = 2 ; (b) m = 3

(a) (b)

d = 1 d = 2 d = 3 d = 4

n = 1 0 0 0 0

n = 2 3 6 10 15

n = 3 14 25 39 56

n = 4 40 66 98 136

d = 1 d = 2 d = 3 d = 4

n = 1 0 0 0 0

n = 2 10 21 36 55

n = 3 72 138 225 333

n = 4 290 519 813 1172

∂x{m}

∂x
Bz = B#

(
z⊗ x{m−1}

)

Cx⊗ x{m−1} = C#x{m}

Dz⊗ x{m−1} = D#
(

z⊗ x{m−1}
)
.

(3.41)

for all x ∈ R
n and for all z ∈ R

d . Then, B#,C#,D# are called extended matrices for
LFR systems of the matrices B,C,D respectively.

The next result provides explicit formulae for the extended matrices B#,C#,D#

analogously to the one given in (3.10) for the extended matrix A# defined by (3.8).

Theorem 3.12. The matrices B#,C#,D# in (3.41) are given by

B# =
(
K′

mKm
)−1

K′
m

(
m−1

∑
i=0

(In j ⊗B)Fi ⊗ Inm−1−i

)

(Id ⊗Km−1) (3.42)

C# =
(

C⊗ (K′
m−1Km−1

)−1
K′

m−1

)
Km (3.43)

D# = D⊗ Iσ(n,m−1) (3.44)

where Km and Km−1 are defined by (3.9), and Fi ∈ R
dni×dni

is given by

Fi =
(

Id ⊗ e(ni)
1 , . . . , Id ⊗ e(ni)

ni

)′
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being e(k)
j the j-th column of Ik.

Proof. Let us consider (3.42). From (3.41) and (3.9) it follows that

KmB#
(

p⊗ x{m−1}
)

=
∂x[m]

∂x
Bz

=

(
m−1

∑
i=0

x[i] ⊗ In ⊗ x[m−1−i]

)

Bz.

For any i = 0, . . . ,m−1 it turns out that
(

x[i] ⊗ In ⊗ x[m−1−i]
)

Bz = x[i] ⊗Bz⊗ x[m−1−i]

= (Ini ⊗B⊗ Inm−1−i)
(

x[i]⊗ z⊗ x[m−1−i]
)

= (Ini ⊗B⊗ Inm−1−i)
(

Fi

(
z⊗ x[i]

)
⊗ x[m−1−i]

)

= (Ini ⊗B⊗ Inm−1−i)(Fi ⊗ Inm−1−i)
(

z⊗ x[m−1]
)

= ((Ini ⊗B)Fi ⊗ Inm−1−i)
(

z⊗ x[m−1]
)

.

Then, (3.42) follows by observing that

z⊗ x[m−1] = (Id ⊗Km−1)
(

z⊗ x{m−1}
)

.

Let us consider (3.43). From (3.41), (3.9) and the equation above, it follows that

(Id ⊗Km−1)C#x{m} = Cx⊗ x[m−1]

= (C⊗ Inm−1)x[m]

= (C⊗ Inm−1)Kmx{m}.

Therefore,

C# =
((

Id ⊗K′
m−1

)
(Id ⊗Km−1)

)−1 (
Id ⊗K′

m−1

)
(C⊗ Inm−1)Km

=
(

Id ⊗
(
K′

m−1Km−1
)−1
)(

Id ⊗K′
m−1

)
(C⊗ Inm−1)Km

=
(

C⊗ (K′
m−1Km−1

)−1
K′

m−1

)
Km.

Finally, (3.44) follows from (3.41) and properties of the Kronecker’s product. �
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3.4.2 Conditions for Robust Stability

For the system (3.32) we define the property of robust stability analogously to what
has been done in Definition 3.2 for the time-varying polytopic system (3.1)–(3.4).
The next theorem provides a sufficient condition for establishing robust stability in
terms of an infinite number of LMIs.

Theorem 3.13. Let L(·) be a linear parametrization of L LFR
n,d,m in (3.39). Let us

suppose that there exists V ∈ S
σ(n,m) such that, for any E ∈ PE , there exist

GE ∈ R
σ(n,m)×dσ(n,m−1), HE ∈ R

dσ(n,m−1)×dσ(n,m−1) and αE ∈ R
ωLFR(n,d,m) satis-

fying {
0 < V

0 > R(V,GE ,HE ,E)+ L(αE)
(3.45)

where

R(V,GE ,HE ,E) = U(V,E)+V(GE ,HE ,E)

U(V,E) =
(

he(VA#) V (BE)#

� 0dσ(n,m−1)×dσ(n,m−1)

)

V (GE ,HE ,E) =
(

he(GEC#) GE(DE)# −GE +(HEC#)′
� he(HE(DE)# −HE)

)

and (BE)# and (DE)# denote the extended matrices of BE and DE, respectively,
defined according to (3.42) and (3.44). Then, the system (3.32) is robustly stable.

Proof. Let us suppose that (3.45) holds for some V and for some GE ,HE ,αE which
depend on E . Let us define v(x) = x{m}′V x{m}. Since V > 0 we have that v(x) is
positive definite. Then, from (3.32), (3.36) and (3.41) one has

v̇(x) = f (x,z)′U(V,E) f (x,z).

By (3.32), one has z = Cx + DE(p)z. Then, from (3.41) it follows that for any GE

and HE one can write

x{m}′GE
(
z⊗ x{m−1}) = x{m}′GE

(
C#x{m} +(DE)#

(
z⊗ x{m−1}))

(
z⊗ x{m−1})′ HE

(
z⊗ x{m−1}) =

(
z⊗ x{m−1})′ HE

(
C#x{m} +(DE)#

(
z⊗ x{m−1}))

or, equivalently,
f (x,z)′V (GE ,HE ,E) f (x,z) = 0.

Since f (x,z)′L(αE) f (x,z) = 0 for any αE , we can also write that

v̇(x) = f (x,z)′ (U(V,E)+V(GE ,HE ,E)+ L(αE)) f (x,z)

or, equivalently,

v̇(x) = f (x,z)′ (R(V,GE ,HE ,E)+ L(αE)) f (x,z).
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Hence, for all E ∈ PE we have that v̇(x) is negative definite. Therefore, the system
(3.32) is robustly stable. �

Theorem 3.13 requires to solve an infinite number of LMIs because the matrices
GE and HE are allowed to change for different E ∈ PE . Sufficient conditions for
robust stability based on a finite number of LMIs can be derived via a suitable choice
of GE and HE . The case of constant matrices is considered next.

Theorem 3.14. Let L(·) be a linear parametrization of L LFR
n,d,m in (3.39). Let us sup-

pose that there exist V ∈ S
σ(n,m), G ∈ R

σ(n,m)×dσ(n,m−1), H ∈ R
dσ(n,m−1)×dσ(n,m−1)

and α(i) ∈ R
ωLFR(n,d,m), i = 1, . . . ,r, such that

{
0 < V

0 > R(V,G,H,Ei)+ L(α(i)), i = 1, . . . ,r.
(3.46)

Then, the system (3.32) is robustly stable.

Proof. Let us consider any E ∈ PE . Since PE is the convex hull of the matrices
E1, . . . ,Er in (3.35), we have that E can be written as

E =
r

∑
i=1

ci(E)Ei

where c1(E), . . . ,cr(E) ∈ R are such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r

∑
i=1

ci(E)Ei = E

r

∑
i=1

ci(E) = 1

ci(E) ≥ 0 ∀i = 1, . . . ,r.

(3.47)

Let us define

αE =
r

∑
i=1

ci(E)α(i).

Following the same reasoning as in the proof of Theorem 3.13, we choose v(x)) =
x{m}′Vx{m}. Then, we have

v̇(x) = f (x,z)′R(V,G,H,E) f (x,z)
= f (x,z)′ (R(V,G,H,E)+ L(αE)) f (x,z)

=
r

∑
i=1

ci(E)gi(x)

where
gi(x) = f (x,z)′

(
R(V,G,H,Ei)+ L(α(i))

)
f (x,z).
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Since gi(x) < 0 by (3.46) and ci(E) satisfies (3.47), it follows that v̇(x) is negative
definite. �

In the LFR degree is dLFR = 1, a less stringent condition can be obtained as stated
next.

Theorem 3.15. Suppose that dLFR = 1, and let L(·) be a linear parametrization of
L LFR

n,d,m in (3.39). Let us suppose that there exist V ∈ S
σ(n,m), Gi ∈ R

σ(n,m)×dσ(n,m−1),

Hi ∈ R
dσ(n,m−1)×dσ(n,m−1) and α(i) ∈ R

ωLFR(n,d,m), i = 1, . . . ,r, such that
{

0 < V

0 > R(V,Gi,Hi,Ei)+ L(α(i)), i = 1, . . .r.
(3.48)

Then, the system (3.32) is robustly stable.

Proof. Let us define v(x) = x{m}′Vx{m}. Since the system (3.32) can be rewritten as
ẋ = Ā(E(p))x where

Ā(E) = A + BE(I−DE)−1C,

it follows that
v̇(x) = x{m}′ he

(
VĀ(E)#)x{m}

where Ā(E)# is the extended matrix of Ā(E), defined according to (3.8). From the
proof of Theorem 3.13, (3.48) implies

v̇(x)|E=Ei
< 0 ∀x �= 0n ∀i = 1, . . .r.

One also has

v̇(x)|E=Ei
= x{m}′ he

(
VĀ(Ei)#)x{m}, i = 1, . . .r

where Ā(Ei)# is the extended matrix of Ā(Ei), defined according to (3.8). Since
dLFR = 1, it turns out that (see e.g. [16])

co
{

Ā(Ei), i = 1, . . . ,r
}

=
{

Ā(E), E ∈ co{E1, . . . ,Er}
}

.

This implies that Ā(E)# can be expressed as a convex combination of Ā(E1)#, . . . ,
Ā(Er)# for any admissible E . Moreover, since v̇(x) is linear in Ā(E)#, it follows that

v̇(x) < 0 ∀x �= 0n ∀E ∈ co{E1, . . . ,Er}

i.e. the system (3.32) is robustly stable. �

The LMI feasibility test (3.46) involves a number of scalar variables equal to

σ(n,m)
(

σ(n,m)+ 1
2

+ dσ(n,m−1)
)

+ d2σ2(n,m−1)+ rωLFR(n,d,m)
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while this number for the LMI feasibility test (3.48) is given by

σ(n,m)
(

σ(n,m)+ 1
2

+ drσ(n,m−1)
)

+ d2rσ2(n,m−1)+ rωLFR(n,d,m).

The previous results extend to the HPLFs setting the results obtained in [144] by
using quadratic Lyapunov functions, which correspond to the case m = 1. The next
theorem clarifies that HPLFs are guaranteed to provide less conservative results than
quadratic Lyapunov functions.

Theorem 3.16. If condition (3.45) of Theorem 3.13 holds for m = 1, then it holds
also for any integer m > 1.

Proof. Let V̄ ,ḠE ,H̄E be the matrices V,GE ,HE satisfying (3.45) for m = 1. First of
all, let us observe that L LFR

n,d,1 is empty, i.e. L(αE) = 0 in (3.45). Therefore, we can
write

R(V̄ ,ḠE ,H̄E ,E) < 0.

Let us consider m = 2 for simplicity, and let us select

V = K′
2V̄ [2]K2

where K2 is defined by (3.9). Since K2 has full column rank, and, by assumption,
V̄ > 0, it follows that V > 0. Let us select

{
GE = 2K2(ḠE ⊗ V̄)
HE = 2H̄E ⊗ V̄ .

Then, from Theorem 3.13 it turns out that
⎧
⎪⎨

⎪⎩

R(V,GE ,HE ,E) = 2X

X =
(

K2

Idn

)′ (
R(V̄ ,ḠE ,H̄E ,E)⊗ V̄

)
(

K2

Idn

)
.

Therefore, it follows that
R(V,GE ,HE ,E) < 0

i.e. the sufficient condition of Theorem 3.13 is satisfied also for m = 2. The same
reasoning can be repeated for any m > 2. �

The proof of Theorem 3.16 clarifies that the same reasoning can be applied for
any choice of matrices GE and HE , and therefore a similar result holds also for
Theorems 3.14 and 3.15.
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3.4.3 Robust Stability Margin for LFR Systems

The aim of this section is to show how Theorem 3.14 and Theorem 3.15 can be
exploited for computing a lower bound of the polytopic stability margin, for sys-
tem (3.32). In particular, we denote by LFR stability margin for such a system, the
quantity

γPR = sup {γ ∈ R : (3.32) is robustly stable for all p(t) ∈ γP} .

By using HPLFs of degree 2m, we define the lower bound to γPR

γPR
2m = sup {γ ∈ R : ∃v ∈ Ξn,2m HPLF for (3.32), with p(t) ∈ γP}

which we refer to as 2m-HPLF LFR stability margin. The following result shows
how a lower bound to γPR

2m can be computed by solving a GEVP.

Theorem 3.17. Let m ≥ 1 be an integer, and L(·) be a linear parametrization of
L LFR

n,d,m in (3.39). Let us define

γ̂PR
2m =

1
z∗

where z∗ is the solution of the GEVP

z∗ = inf
z ∈ R, V ∈ S

σ(n,m),

G ∈ R
σ(n,m)×dσ(n,m−1),

H ∈ R
dσ(n,m−1)×dσ(n,m−1),

α (0), . . . ,α (r) ∈ R
ωLFR(n,d,m)

z

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 < V

0 < −R(V,G,H,0)−L(α(0))

0 < z
(
−R(V,G,H,0)−L(α(0))

)
−R(V,G,H,Ei)

+R(V,G,H,0)−L(α(i)), i = 1, . . . ,r.

(3.49)

Then, γ̂PR
2m ≤ γPR

2m .

Proof. Let us consider any γ ≤ γ̂PR
2m and define α̂(i) = γα(i) +α(0), for i = 1, . . . ,r. It

follows that

R(V,G,H,γEi)+ L(α̂(i))

= γ
(

R(V,G,H,Ei)−R(V,G,H,0)+ L(α(i))
)

+ R(V,G,H,0)+ L(α(0))

< 0

i.e. (3.46) holds with Ei and α(i) replaced by γEi and α̂(i) respectively. Hence, the
result follows from Theorem 3.14. �
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It is worth observing that the constraint −R(V,G,H,0)−L(α(0)) > 0 in (3.49),
which is required in order to ensure that (3.49) is a GEVP, is not restrictive because
PE includes the origin.

In the case when the LFR degree is dLFR = 1, a tighter lower bound with respect
to that provided by Theorem 3.17 can be obtained as follows.

Theorem 3.18. Let m ≥ 1 be an integer, and L(·) be a linear parametrization of
L LFR

n,d,m in (3.39). Let us define

γ̂PRO
2m =

1
z∗

where z∗ is the solution of the GEVP

z∗ = inf
z ∈ R, V ∈ S

σ(n,m),

Gi ∈ R
σ(n,m)×dσ(n,m−1),

Hi ∈ R
dσ(n,m−1)×dσ(n,m−1),

α (i), α̂ (i) ∈ R
ωLFR(n,d,m), i = 1, . . . , r

z

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 < V

0 < −R(V,Gi,Hi,0)−L(α(i)), i = 1, . . . ,r

0 < z
(
−R(V,Gi,Hi,0)−L(α(i))

)
−R(V,Gi,Hi,Ei)

+R(V,Gi,Hi,0)−L(α̂(i)), i = 1, . . . ,r.

(3.50)

Then, γ̂PRO
2m ≤ γPR

2m .

Proof. The proof follows from Theorem 3.15 and arguments analogous to the proof
of Theorem 3.17. �

The GEVP (3.49) involves a number of scalar variables equal to

σ(n,m)
(

σ(n,m)+ 1
2

+ dσ(n,m−1)
)

+ d2σ2(n,m−1)+ (r + 1)ωLFR(n,d,m)

while this number for the GEVP (3.50) is given by

σ(n,m)
(

σ(n,m)+ 1
2

+ drσ(n,m−1)
)

+ d2rσ2(n,m−1)+ 2rωLFR(n,d,m).

3.5 Examples

In this section we present some examples in which the proposed conditions for ro-
bustness analysis of uncertain systems with time-varying parametric uncertainty are
applied.
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3.5.1 Example HPLF-1

Let us assume we want to compute the stability margin κ∞
2m defined in (3.21) for the

segment of matrices (3.20), with

A0 =

(
0 1

−2 −1

)

, A1 =

(
0 0

−1 0

)

.

Since in this example we have n = 2, the lower bound provided by (3.22) is tight,
i.e. κ̂∞

2m = κ∞
2m, according to Corollary 3.1.

Table 3.4 shows values of κ∞
2m obtained by solving the GEVP (3.22) for different

values of m and the corresponding number of scalar variables.

Table 3.4 Example HPLF-1: stability margin κ∞
2m and number of scalar variables in (3.22)

m 1 2 3 4 5 6 7 8 9 10

κ∞
2m 3.8284 5.7393 6.2135 6.3982 6.6469 6.6580 6.7800 6.7961 6.8412 6.8649

# variables 4 9 17 28 42 59 79 102 128 157

In order to illustrate the main features of HPLFs, let us consider in more detail
the case m = 3. The power vector x{3} and the matrix L(α) are chosen as

x{3} =

⎛

⎜
⎜
⎜
⎝

x3
1

x2
1x2

x1x2
2

x3
2

⎞

⎟
⎟
⎟
⎠

, L(α) =

⎛

⎜
⎜
⎜
⎝

0 0 −α1 −α2

� 2α1 α2 −α3

� � 2α3 0

� � � 0

⎞

⎟
⎟
⎟
⎠

.

Hence, the extended matrices of A0 and A1 are equal to

A#
0 =

⎛

⎜⎜
⎜
⎝

0 3 0 0

−2 −1 2 0

0 −4 −2 1

0 0 −6 −3

⎞

⎟⎟
⎟
⎠

, A#
1 =

⎛

⎜⎜
⎜
⎝

0 0 0 0

−1 0 0 0

0 −2 0 0

0 0 −3 0

⎞

⎟⎟
⎟
⎠

.

The matrix V obtained by solving (3.22) for m = 3 turns out to be

V =

⎛

⎜
⎜
⎜
⎝

1.0000 0.1524 −0.1965 −0.0174

� 1.2187 0.2086 −0.0280

� � 0.2938 0.0231

� � � 0.0099

⎞

⎟
⎟
⎟
⎠

corresponding to the HPLF
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v(x) = x6
1 + 0.3048x5

1x2 + 0.8258x4
1x2

2 + 0.3825x3
1x3

2 + 0.2378x2
1x4

2

+0.0463x1x5
2 + 0.0099x6

2.
(3.51)

Figures 3.1a and 3.1b show the trajectories of the system for, respectively,
p(t)≡ 0 and p(t)≡ 6.2135. Figures 3.2a and 3.2b show level curves of the quadratic
Lyapunov function v(x) = x2

1 +0.2555x1x2 +0.2555x2
2, guaranteeing robust stability

for κ < 3.8284, and of the HPLF in (3.51) achieving κ∞
6 = 6.2135.

It is worth recalling that this example has been tackled in the literature by adopt-
ing a number of techniques employing different classes of Lyapunov functions.
In [148], it has been observed that a quadratic Lyapunov function exists only for
κ < 3.82, and that this bound can be improved to κ < 5.73 by using a quartic Lya-
punov function. In [7], a polyhedral Lyapunov function has been constructed, guar-
anteeing asymptotic stability for κ = 6. In [146], a piecewise quadratic Lyapunov
function achieving stability for κ = 6.2, has been obtained via a sequence of LMI
problems and a grid search over two free parameters. As it can be seen from Table
3.4, these bounds are improved by all the HPLFs of degree greater than 2.

Lastly, it is useful observing that the exact value of κ∞ for this example has
been found in [92] which proposes a necessary and sufficient conditions for robust
stability in the case of second-order systems, and is equal to κ∞ = 6.8951.

3.5.2 Example HPLF-2

In this example, we want to compute the stability margin κ∞
2m for the segment of

matrices (3.20), with

A0 =

⎛

⎜
⎝

0 1 0

0 0 1

−1 −2 −4

⎞

⎟
⎠ , A1 =

⎛

⎜
⎝

−2 0 −1

1 −10 3

3 −4 2

⎞

⎟
⎠ . (3.52)

Quadratic stability is guaranteed only for κ ≤ 1.9042. Let us consider an HPLF of
degree 4. Being n = 3 and m = 2 it follows that d = 6 and ω(n,m) = 6. Then, the
power vector x{2} and the matrix L(α) are given by

x{2} =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

x2
1

x1x2

x1x3

x2
2

x2x3

x2
3

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

, L(α) =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0 0 0 −α1 −α2 −α3

� 2α1 α2 0 −α4 −α5

� � 2α3 α4 α5 0

� � � 0 0 −α6

� � � � 2α6 0

� � � � � 0

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.

The GEVP (3.22) returns the lower bound κ̂∞
4 = 75.1071 and the corresponding

matrix V given by
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Fig. 3.1 Example HPLF-1: (a) trajectories for p(t) ≡ 0; (b) trajectories for p(t) ≡ 6.2135
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Fig. 3.2 Example HPLF-1: (a) level curves of the quadratic Lyapunov function; (b) level
curves of the HPLF in (3.51)
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V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

1.0000 0.2119 0.8931 −0.2173 −0.2577 0.1695

� 3.9362 −0.7602 1.4424 2.3656 −0.7126

� � 2.3577 −0.5290 −1.4494 1.0428

� � � 1.6931 1.0471 −0.4101

� � � � 3.5386 −1.1038

� � � � � 0.7053

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.

Moreover, since (n,2m) = (3,4) ∈ E , from Corollary 3.1 we have that κ̂∞
4 = κ∞

4 .
Using the approach proposed in [148], one finds that the maximum κ for which

robust stability is guaranteed is equal to 17.8347. The remarkable difference with
respect to our approach is due to the fact that the parametrization of forms adopted in
[148] is not complete. Specifically, it is easy to see that in [148] only the parameters
α1,α3,α6 in the matrix L(α) are considered.

It is worth remarking that in [69] it has been observed that duality can be fruit-
fully exploited when addressing robust stability of extended systems. In particular,
if one reformulates the robust stability problem in this example by considering the
extended matrices of A′

0 and A′
1, instead of those of A0 and A1 in (3.52), the resulting

stability margin for an HPLF of degree 4 turns out to be κ̂∞
4 = +∞.

3.5.3 Example HPLF-3

Let us consider the differential equation

ξ̈ (t)+ ξ̇(t)+ k(t)ξ (t) = 0, k(t) ∈ [0,κ ]

and assume that we want to compute the maximum κ such that the solution remains
bounded. By following the reasoning proposed in [18], one finds that the maximum
value of κ satisfies

⎧
⎨

⎩

0 =
√

κea −1

a = − 1√
4κ −1

(
π − arctan(

√
4κ −1)

)

and hence is equal to κ∞ = 3.0448.
Clearly, the problem can be easily tackled in the framework of HPLF by solving

(3.21) with

A0 =

(
0 1

−ε −1

)

, A1 =

(
0 0

−1 0

)

where the scalar ε > 0 is introduced in order to guarantee that A0 is Hurwitz, which
is a necessary condition for ensuring asymptotical stability. Table 3.5 shows val-
ues of κ∞

2m obtained from (3.22) for different values of m with ε = 10−5. Notice
that these values exhibit a growth towards κ∞. On the other hand, Theorem 3.7
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guarantees that for any κ < κ∞ there exists an HPLF of suitable degree which is
also an SOS form; hence it is expected that κ∞

2m converges to κ∞ as m approaches
infinity.

Table 3.5 Example HPLF-3: stability margin κ∞
2m (see Table 3.4 for the number of variables)

m 2 3 4 5 6 7 8 9 10 11 12

κ∞
2m 1.5095 2.0121 2.3060 2.4106 2.5158 2.6196 2.6686 2.7042 2.7541 2.7811 2.7898

Another interesting byproduct of the treatment in [18] is that one can calculate
the worst-case sequence k(t) for κ = κ∞, which prevents the solution ξ (t) from
converging to zero, consists of suitable switchings between k = 0 and k = κ∞. The
resulting trajectory ξ (t) of the system is dashed in Figure 3.3b and represents the
limit cycle towards which the level surfaces of the Lyapunov functions are expected
to tend. This is confirmed by Figure 3.3a, where the level curves of the obtained
HPLFs are depicted for different values of m. Figure 3.3b indeed shows that the
HPLF corresponding to m = 12 is very close to the limit trajectory predicted by the
theory. On the other hand, being the limit trajectory nondifferentiable, it appears
clear that the degree of the HPLF can become arbitrarily high as κ approaches κ∞.

3.5.4 Example HPLF-4

Let us consider system (3.1) with

A0 =

(
0 1

−1 −1

)

, A1 =

(
0 0

1 0

)

.

The aim is to compute the 2m-HPLF �∞ stability margin γ∞
2m. Notice that A0 + A1 is

not asymptotically stable, which implies that

γ∞
2m ≤ 1 ∀m ≥ 1.

By applying Theorem 3.8 for different values of m, one can construct HPLFs of
increasing degree, trying to improve the value of the stability margin. Observe that
the lower bound provided by (3.19) always coincides with γ∞

2m because n = 2.
For m = 2, one obtains γ∞

4 = 0.9771, but for m ≥ 3 the result returned by the
GEVP is γ∞

2m = 1, which means that it is possible to construct an HPLF of degree 6
(or more) for |p(t)| ≤ γ and γ arbitrarily close to 1.

In particular, for m = 3 the following matrix V has been obtained:
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Fig. 3.3 Example HPLF-3: (a) level curves of v(x) for m = 1, . . . ,12, with m increasing from
the most inner curve to the most outer; (b) level curve of the HPLF for m = 12 (solid line)
and limit trajectory (dashed line)
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V =

⎛

⎜
⎜⎜
⎝

1.0000 2.9987 1.9974 0.2491

� 14.1343 12.4475 2.1782

� � 14.5114 3.5064

� � � 1.3106

⎞

⎟
⎟⎟
⎠

corresponding to γ∞
6 = 1 and the HPLF

v(x) = x6
1 + 5.9974x5

1x2 + 18.1291x4
1x2

2 + 25.3932x3
1x3

2 + 18.8678x2
1x4

2

+7.0128x1x5
2 + 1.3106x6

2.

In [119], it has been shown that quadratic Lyapunov functions can achieve γ∞
2 =√

3/2. In [6], stability for |p(t)| ≤ 0.98 has been ensured via a polyhedral Lyapunov
function whose level sets have 30 vertices.

3.5.5 Example HPLF-5

This example concerns the computation of the best transient performance index γT

introduced in Definition 3.7. Let us consider the helicopter model originally pro-
posed in [96], and the robust controller designed in [20]. The resulting closed-loop
uncertain system is given by ẋ(t) = A(p(t))x(t), where

A(p)=

⎛

⎜
⎜
⎝

−0.1027 0.1762 0.1995 −0.3446

−0.7275−0.1640p3 −1.4280+0.2699p3 2.1852+0.4511p3 0.7218+0.4308p3

1.1689 −0.4446+ p1 −3.6757 −3.0841+ p2

0 0 1 0

⎞

⎟
⎟
⎠

with

|p1(t)| ≤ 0.2192, |p2(t)| ≤ 1.2031, |p3(t)| ≤ 2.0673 ∀t ≥ 0.

The system can be easily written in form (3.1)–(3.2) with r = 8. By solving the
GEVP problem (3.26) with m = 2, one obtains the HPLF

v(x) = x4
1 + 0.2184x3

1x2 −2.8083x3
1x3 −4.0483x3

1x4 + 1.1458x2
1x2

2

+0.1831x2
1x2x3 + 0.3233x2

1x2x4 + 9.7670x2
1x2

3 + 16.4758x2
1x3x4

+9.7066x2
1x2

4 + 0.0283x1x3
2 −2.5961x1x2

2x3 −3.9673x1x2
2x4

−0.1303x1x2x2
3 −3.6305x1x2x3x4 −3.3848x1x2x2

4 −14.8574x1x3
3

−37.3189x1x2
3x4 −31.4426x1x3x2

4 −11.2239x1x3
4 + 0.1064x4

2

+0.1657x3
2x3 + 0.2465x3

2x4 + 2.1908x2
2x2

3 + 5.1952x2
2x3x4

+4.2363x2
2x2

4 −0.0017x2x3
3 + 3.0142x2x2

3x4 + 6.4605x2x3x2
4

+3.4452x2x3
4 + 8.8681x4

3 + 29.0364x3
3x4 + 36.5118x2

3x2
4

+20.6917x3x3
4 + 5.8479x4

4

achieving γ̂T
4 = −0.8889.
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In [101], the problem of computing the quadratic Lyapunov function achieving
the best transient performance, defined as in (3.24), has been addressed. The value
obtained was γ̂T

2 = −0.3839.

3.5.6 Example HPLF-6

Let us consider the LFR system (3.28)–(3.30) with

Arat(p(t)) =

⎛

⎝
0 1

−3−4p2(t) −2 + p1(t)+ 2p1(t)p2(t)
2− p1(t)

⎞

⎠

P = co

{(
0

0

)

,

(
1

3

)

,

(
1

−1

)}

.

(3.53)

This system can be cast into the LFR (3.32) where

A =

(
0 1

−3 −1

)

, B =

(
0 0

1 1

)

, C =

(
0 −1

−4 0

)

D =

(
0.5 0

1 0

)

, E(p) =

(
p1 0

� p2

)

.

It hence follows that n = 2, d = 2 and dLFR = 1. Table 3.6 shows the lower bounds
γ̂PR

2m and γ̂PRO
2m provided by Theorems 3.17 and 3.18 (the latter exploiting a less strin-

gent condition due to dLFR = 1), and the number of scalar variables in the cor-
responding GEVPs. As we can see, right from m = 2 there is a significant im-
provement with respect to the use of quadratic Lyapunov functions (correspond-
ing to m = 1). Figure 3.4 shows, for the same values of m, the level curves of
v(x) = x{m}′Vx{m} for the matrices V corresponding to γ̂PRO

2m .
For the sake of comparison, we consider an alternative approach which consists

of establishing robust stability of (3.53) over γ̂PRO
10 P by using the techniques for

constructing HPLFs in the case of time-varying polytopic systems. Let us define

A1 =
{

Arat(p) : p ∈ γ̂PRO
10 P

}
.

A polytope ˆA1 bounding the set A1 can be obtained as

ˆA1 =

{(
0 1

c1 c2

)

:

(
c1

c2

)

∈ ˆA2

}

where ˆA2 is a polytope bounding the set A2 defined as
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Table 3.6 Example HPLF-6: (a) lower bound γ̂PR
2m and number of variables in (3.49) ; (b)

lower bound γ̂PRO
2m and number of variables in (3.50)

(a) (b)

m γ̂PR
2m # variables

1 0.4198 11

2 0.5969 58

3 0.6547 154

4 0.6784 299

5 0.6820 493

m γ̂PRO
2m # variables

1 0.4267 27

2 0.6147 126

3 0.6958 316

4 0.7167 597

5 0.7216 969
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Fig. 3.4 Example HPLF-6: level curves of v(x) corresponding to γ̂PRO
2m for m = 1, . . . ,5, with

m increasing from the most inner curve to the most outer

A2 =

{(
c1

c2

)

: c1 = −3−4p2, c2 = −2 + p1 + 2p1p2

2− p1
, p ∈ γ̂PRO

10 P

}

.

It has been found that robust stability of the time-varying polytopic system

ẋ(t) = A(t)x(t), A(t) ∈ ˆA1

cannot be proved, not only by using an HPLF of degree 10 but also by using an
HPLF of degree 20, although the bounding polytope ˆA2 is only slightly larger than
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A2 (see Figure 3.5). In particular, by using an HPLF of degree 20, the robust stability
margin that can be guaranteed with this strategy is equal to 0.6662.

12 10 8 6 4 2 0
5

4.5

4

3.5

3

2.5

2

1.5

1

c1

c 2

Fig. 3.5 Example HPLF-6: set A2 (dashed region) and boundary of the polytope ˆA2 (solid
line)

3.6 Notes and References

The potential of Lyapunov functions in robustness analysis of uncertain systems
affected by parametric uncertainty has been recognized since long time [139, 95].
Robust stability and performance of systems affected by time-varying structured
uncertainty has been originally studied via quadratic Lyapunov functions, see for
instance [150, 16, 101, 144]. In order to reduce the conservatism, several classes of
nonquadratic Lyapunov functions have been intensively investigated, such as piece-
wise quadratic Lyapunov functions [146, 83, 1, 80], polyhedral Lyapunov functions
[17, 6], and HPLFs [19, 148, 32, 82].

The robustness analysis via HPLFs presented in this chapter was proposed in
[34] for polytopic systems and in [38] for LFR systems. It is worth mentioning
that HPLFs have been exploited in several problems, including the estimation of
stability regions for nonlinear systems [62], the evaluation of the minimum dwell
time in switching systems [29], and the simultaneous stabilization of linear systems
[2]. Piecewise HPLFs have been employed to assess stability of piecewise affine
systems [147]. Duality properties of HPLFs have been studied in [69]. Convexity of
HPLFs has been investigated in [48].



Chapter 4
Robustness with Time-invariant Uncertainty

Chapter 3 has investigated robust stability and performance of systems with time-
varying uncertainties. Another class of fundamental problems in systems engineer-
ing concerns robustness analysis of systems affected by time-invariant uncertainties.
Such problems arise, for example, when one has to establish whether all systems
contained in a given set are stable, or they achieve a guaranteed level of perfor-
mance. Although the techniques presented in Chapter 3 can be used to address also
time-invariant uncertainties, they turn out to be conservative. Actually, the use of
parameter-dependent Lyapunov functions can significantly reduce the conservatism
of Lyapunov-based robustness analysis techniques.

This chapter describes how robust properties of polytopic systems with time-
invariant uncertainties can be investigated by using HPD-QLFs: namely, Lyapunov
functions that are quadratic in the state variables and whose dependence on the
uncertain parameters is expressed as a matrix form. A key property of this class
of Lyapunov functions is that they allow one to formulate robustness conditions in
terms of convex optimizations, by adopting the SMR of matrix forms introduced in
Chapter 1 and the techniques for characterizing their positivity described in Chapter
2. Another nice feature of HPD-QLFs is that they are non-conservative, in the sense
that if a polytopic system is robustly stable, there always exists an HPD-QLF that
certifies such a robustness property. Robust stability, as well as evaluation of robust
H∞ performance and parametric stability margin, are addressed for continuous-time
polytopic systems. Extensions to discrete-time systems and to systems affected by
rational parametric uncertainty are also presented. a posteriori tests for establishing
non-conservatism of the results are provided. In particular, it is shown how one can
establish whether bounds on robust performance indices are tight, or if a polytopic
system is unstable for some values of the uncertain parameters.

G. Chesi et al.: Homogeneous Polynomial Forms, LNCIS 390, pp. 99–132.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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4.1 Polytopic Systems with Time-invariant Uncertainty

Let us introduce linear systems affected by time-invariant structured parametric un-
certainty.

Definition 4.1 (Time-invariant Polytopic System). Consider the continuous-time
system described by

ẋ(t) = A(p)x(t) (4.1)

where x(t) ∈ R
n is the state, p ∈ R

q is an uncertain parameter vector supposed to
satisfy

p ∈ϒq (4.2)

where ϒq is the simplex in (1.68), and A(p) ∈ R
n×n is given by

A(p) =
q

∑
i=1

piAi (4.3)

where A1, . . . ,Aq ∈ R
n×n are given matrices. The system (4.1)–(4.3) is called time-

invariant polytopic system.

In the system (4.1), the vector p represents the time-invariant parametric uncer-
tainty which affects linearly the system dynamics. The vector p can take any value in
ϒq, but it is known to be constant in time. The basic problem addressed in this chap-
ter is to establish whether A(p) is Hurwitz for all admissible values of p, according
to the following definition (see Appendix A.2 for definition of Hurwitz matrices).

Definition 4.2 (Robust Stability for Time-invariant Polytopic System). Let us
suppose that

A is Hurwitz ∀A ∈ A (4.4)

where
A =

{
A(p) ∈ R

n×n : p ∈ϒq
}

. (4.5)

Then, A is said Hurwitz, and the system (4.1)–(4.3) is said robustly stable.

Therefore, the system (4.1)–(4.3) is robustly stable whenever

re(λ ) < 0 ∀λ ∈ spc(A), ∀A ∈ A .

In the sequel the dependence on the time t will be omitted for ease of notation, unless
it is required by the context. In order to investigate the robust stability property (4.4),
we introduce the following class of Lyapunov functions.

Definition 4.3 (HPD-QLF). Let v : R
n ×ϒq → R be a function satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v(·, p) ∈ Ξn,2 ∀p ∈ϒq

v(x, ·) ∈ Ξq,s ∀x ∈ R
n

v(x, p) > 0 ∀x ∈ R
n
0, ∀p ∈ϒq

v̇(x, p) < 0 ∀x ∈ R
n
0, ∀p ∈ϒq

(4.6)
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where

v̇(x, p) =
dv(x, p)

dt

∣
∣
∣
∣
ẋ=A(p)x

. (4.7)

Then, v(x, p) is said a HPD-QLF of degree s for the system (4.1)–(4.3).

Hence, HPD-QLFs are parameter-dependent quadratic Lyapunov functions prov-
ing robust stability of the system (4.1)–(4.3) for all admissible values of the uncer-
tainty parameter vector p. The dependence of these functions on p is expressed in
terms of forms. In particular, s represents the degree of v(x, p) as a form in p for any
fixed x, while the degree of v(x, p) as a form in x is 2 for any fixed p. Clearly, v(x, p)
turns out to be a form of degree s+ 2 in both x and p.

HPD-QLFs can be represented in several ways. One possibility is by the vector
of coefficients, according to

v(x, p) = v′
(

x{2} ⊗ p{s}
)

(4.8)

where x{2} ⊗ p{s} ∈ R
σ(n,2)σ(q,s) represents a power vector for the class of HPD-

QLFs, and v ∈ R
σ(n,2)σ(q,s) is the vector of coefficients of v(x, p) with respect to this

power vector. Equivalently, HPD-QLFs can be formulated via the matrix represen-
tation

v(x, p) = x′V (p)x (4.9)

where V ∈ Ξq,s,n is a symmetric matrix form of degree s. The following example
illustrates these representations.

Example 4.1. Consider the system (4.1)–(4.3) with n = 2, q = 2, and

A(p) =

(
0 p1 + p2

−2p1 −2p2 −2p1 − p2

)

. (4.10)

Then, the function

v(x, p) = (3p1 + 2p2)x2
1 + p2x1x2 +(p1 + p2)x2

2

is an HPD-QLF for this system, with s = 1. This HPD-QLF can be written according
to (4.8), with

v =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

3

2

0

1

1

1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

, x{2} =

⎛

⎜
⎝

x2
1

x1x2

x2
2

⎞

⎟
⎠ , p{1} =

(
p1

p2

)

or according to (4.9), with
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V (p) =

(
3p1 + 2p2 0.5p2

� p1 + p2

)

.

We recall that V (p), being a symmetric matrix form, can be expressed via the
SMR as in (1.36). This fact will be exploited in the sequel in order to derive condi-
tions for the existence of HPD-QLFs.

The robust stability property in Definition 4.2 can be investigated via HPD-QLFs.
Let us first observe that by expressing v(x, p) as in (4.9), we have that v̇(x, p) can be
written as

v̇(x, p) = x′ he(V (p)A(p))x. (4.11)

The following result states that HPD-QLFs are non-conservative for establishing
whether the system (4.1)–(4.3) is robustly stable.

Theorem 4.1. Let us define

µ =
1
2

n(n + 1)−1. (4.12)

The system (4.1)–(4.3) is robustly stable if and only if there exists a matrix form
V ∈ Ξq,s,n, with s ≤ µ , such that

{
0 < V (p)
0 > he(V (p)A(p))

∀p ∈ϒq. (4.13)

Proof. (Sufficiency) Let us suppose that there exists V ∈Ξq,s,n such that (4.13) holds,
and let us define v(x, p) as in (4.9). By taking into account (4.11), it follows that
v(x, p) satisfies the condition (4.6), and hence A is Hurwitz.

(Necessity) Let us suppose that the system (4.1)–(4.3) is robustly stable, and let
Ẽ ∈ Ξq,s̃,n be any symmetric matrix form of degree s̃ such that

Ẽ(p) > 0 ∀p ∈ϒq

and consider the Lyapunov equation

he
(
Ṽ (p)A(p)

)
= −Ẽ(p). (4.14)

Being A Hurwitz, the solution of (4.14) is a symmetric matrix function Ṽ (p) which
is positive definite for all p ∈ ϒq and which depends rationally on p. Indeed, by
stacking the n(n + 1)/2 entries of Ṽ (p) and Ẽ(p) into the vectors ṽ(p) and ẽ(p),
respectively, one can rewrite (4.14) as

M(p)ṽ(p) = ẽ(p) (4.15)

where the entries of M(p) are linear in p. Therefore, the entries of the solution ṽ(p)
of (4.15) can be expressed as
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ṽ j(p) =
ñ j(p)
d(p)

, j = 1, . . . ,
1
2

n(n + 1)

where ñ j(p) and d(p) are forms whose degree is at most n(n + 1)/2− 1 + s̃ and
n(n + 1)/2, respectively. Moreover, being Ṽ (p) > 0 for all p ∈ ϒq, one has that
d(p) > 0 for all p ∈ϒq. By defining

V (p) = d(p)Ṽ (p) (4.16)

one has that V (p) satisfies (4.13), in particular

he(V (p)A(p)) = −d(p)Ẽ(p).

Finally, by (4.16) the degree s of V (p) is the same as that of the forms ñ j(p), and
hence

s ≤ 1
2

n(n + 1)−1 + s̃.

Since s̃ is arbitrary, one can select s̃ = 0, and hence one gets s ≤ µ with µ given by
(4.12). �

4.2 Robust Stability

In this section, conditions for robust stability of the system (4.1)–(4.3) are provided
in terms of LMI problems.

4.2.1 Parametrization of HPD-QLFs

The aim is to find an HPD-QLF as in Definition 4.3, described by the matrix rep-
resentation (4.9), with V (p) satisfying conditions (4.13) in Theorem 4.1. The first
condition to be enforced is the positive definiteness of the HPD-QLF matrix V (p)
within the set ϒq, i.e. the first inequality in (4.13). In this respect, a parametrization
of positive matrix forms V (p), for p belonging to ϒq, is provided next. The second
inequality in (4.13) will be addressed in Section 4.2.2.

From Theorem 1.17 one has that V (p) is positive definite for all p ∈ ϒq if and
only if V (sq(p)) is positive definite for all p ∈ R

q
0. Let us observe that V (sq(p)) can

be written by using the notation introduced in (1.35) as

V (sq(p)) = Φ
(

S, p{s},n
)

(4.17)

for some suitable matrix S ∈ Sq,s,n where
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Sq,s,n =
{

S ∈ S
nσ(q,s) : Φ

(
S, p{s},n

)
does not

contain monomials pi1
1 pi2

2 . . . p
iq
q with any odd i j

}
.

(4.18)

In fact, it is straightforward to verify that (4.17) holds for some symmetric matrix S
if and only if this matrix S belongs to the set Sq,s,n. Hence, due to (4.17), one has
that

S > 0 ⇒ V (sq(p)) > 0 ∀p ∈ R
q
0.

Moreover, due to Theorem 1.17, one has that

S > 0 ⇒ V (p) > 0 ∀p ∈ϒq.

In order to increase the degrees of freedom in the selection of V (p), one can
exploit the fact that the matrix S in (4.17) is not unique. Indeed, the following result
provides a characterization of the set Sq,s,n.

Theorem 4.2. The set Sq,s,n is a linear space of dimension

τ(q,s,n) =
1
2

n(σ(q,s)(nσ(q,s)+ 1)− (n + 1)(σ(q,2s)−σ(q,s))). (4.19)

Proof. It is immediate to check that if S1,S2 ∈ Sq,s,n, then a1S1 + a2S2 ∈ Sq,s,n for
all a1,a2 ∈ R. Then, let us observe that nσ(q,s)(nσ(q,s)+ 1)/2 is the number of
distinct entries of a symmetric matrix of dimension nσ(q,s)× nσ(q,s), whereas
n(n + 1)(σ(q,2s)−σ(q,s))/2 is the total number of monomials in Φ

(
S, p{s},n

)

containing at least one odd power. The constraints obtained by annihilating these
monomials are linear and independent, similarly to the proof of Theorem 1.2. There-
fore, the dimension of Sq,s,n is given by τ(q,s,n) in (4.19). �

The following result summarizes the strategy for generating matrix forms V (p)
satisfying the first inequality in (4.13), and stems directly from the definition of
Sq,s,n and from Theorem 1.17.

Theorem 4.3. Let S(β ) be a linear parametrization of Sq,s,n in (4.18), with β ∈
R

τ(q,s,n). Let V (p;β ) be the parametrized matrix form defined by

V (sq(p);β ) = Φ
(

S(β ), p{s},n
)

. (4.20)

Then,
V ∈ Ξq,s,n ⇐⇒ ∃β : V (p) = V (p;β ).

Moreover,
∃β : S(β ) > 0 ⇒ V (p;β ) > 0 ∀p ∈ϒq.
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4.2.2 Conditions for Robust Stability

In the following, a condition for the solution of the robust stability problem is pro-
vided by enforcing the second condition in (4.13). To this purpose, let us define

Q(p;β ) = he(V (p;β )A(p)) . (4.21)

We have that Q(·;β )∈ Ξq,s+1,n for all β , i.e. Q(p;β ) is a matrix form of degree s+1
in p ∈ R

q, linearly parametrized by β . Let us express Q(sq(p);β ) as

Q(sq(p);β ) = Φ
(

R(β ), p{s+1},n
)

(4.22)

where R(β ) ∈ S
nσ(q,s+1) is an SMR matrix of Q(sq(p);β ). Let us observe that R(β )

depends linearly on β , because Q(sq(p);β ) depends linearly on V (sq(p);β ), which
in turn depends linearly on β . The following result yields a condition for robust
stability of the system (4.1)–(4.3) via HPD-QLFs.

Theorem 4.4. The system (4.1)–(4.3) is robustly stable if there exist an integer s≥ 0,
α ∈ R

ω(q,s+1,n) and β ∈ R
τ(q,s,n) such that
{

0 < S(β )
0 > R(β )+ L(α)

(4.23)

where S(β ) is a linear parametrization of Sq,s,n in (4.18), L(α) is a linear
parametrization of Lq,s+1,n in (1.39), and R(β ) is defined according to (4.21)–
(4.22).

Proof. Let α and β be such that (4.23) holds. Let us select V ∈ Ξq,s,n as

V (p) = V (p;β )

with V (p;β ) defined according to (4.20). From the first inequality in (4.23) and
Theorem 4.3 one has that V (p) > 0 for all p ∈ϒq, and hence the first condition in
(4.13) holds. Then, by (4.21)–(4.22) one has that

Φ
(
R(β )+ L(α), p{s+1},n

)
= Φ
(
R(β ), p{s+1},n

)

= he(V (sq(p))A(sq(p))) .

By the second inequality in (4.23), this implies that

he(V (sq(p))A(sq(p))) < 0 ∀p ∈ R
q
0.

As a consequence, one has from Theorem 1.17 that he(V (p)A(p)) < 0 for all p∈ϒq,
and hence also the second condition in (4.13) holds. Therefore, the system is ro-
bustly stable. �
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Theorem 4.4 provides a condition for robust stability of the system (4.1)–(4.3)
which amounts to solving an LMI feasibility test. In particular, the number of scalar
variables in (4.23) is given by

τ(q,s,n)+ ω(q,s+ 1,n)

where τ(·, ·, ·) and ω(·, ·, ·) are defined in (4.19) and (1.40), respectively. Table 4.1
shows this number for some values of n,s,q.

Table 4.1 Number of scalar variables in the LMI feasibility test (4.23) for some values of
n,s,q: (a) q = 2 ; (b) q = 3

(a) (b)

s = 0 s = 1 s = 2 s = 3

n = 2 4 13 30 55

n = 3 9 30 69 126

n = 4 16 54 124 226

s = 0 s = 1 s = 2 s = 3

n = 2 6 45 177 486

n = 3 15 108 414 1122

n = 4 28 198 750 2020

A question that naturally arises is whether there exists a relationship between
families of HPD-QLFs of different degrees. The following result clarifies that the
conservatism of the condition in Theorem 4.4 does not increase with s.

Theorem 4.5. If condition (4.23) of Theorem 4.4 holds for some integer s ≥ 0, then
it holds also for s+ 1.

Proof. Let us first rewrite (4.23) with s replaced by s+ 1 as
{

0 < S̃(β̃ )

0 > R̃(β̃ )+ L̃(α̃)
(4.24)

where S̃(β̃ ) is a linear parametrization of Sq,s+1,n with β̃ ∈ R
s(q,s+1,n); L̃(α̃) is

a linear parametrization of Lq,s+2,n with α̃ ∈ R
ω(q,s+2,n); R̃(β̃ ) is a linear matrix

function such that
Q̃(sq(p); β̃ ) = Φ

(
R̃(β̃ ), p{s+2},n

)
(4.25)

with

Q̃(p; β̃ ) = he
(

Ṽ (p; β̃ )A(p)
)

(4.26)

Ṽ (sq(p); β̃ ) = Φ
(

S̃(β̃ ), p{s+1},n
)

. (4.27)

Let α and β be such that (4.23) holds. From the proof of Theorem 4.4 we have that
there exists V ∈ Ξq,s,n such that V (p) > 0 and he(V (p)A(p)) < 0 for all p ∈ϒq. Let
us define now
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Ṽ (p) = V (p)
q

∑
i=1

pi.

It follows that
Ṽ (p) > 0 ∀p ∈ϒq.

Moreover,

he
(
Ṽ (p)A(p)

)
= he(V (p)A(p))

q

∑
i=1

pi

and hence
he
(
Ṽ (p)A(p)

)
< 0 ∀p ∈ϒq.

This implies that (4.13) is satisfied also when s is replaced by s + 1, i.e. ṽ(x, p) =
x′Ṽ (p)x is an HPD-QLF of degree s+ 1.

Now, let us show that Ṽ (sq(p)) admits a positive definite SMR matrix, i.e. there
exists S̃(β̃ ) > 0 such that (4.27) holds. Let Ts+1 be the matrix satisfying

p⊗ p{s} = Ts+1 p{s+1} ∀p ∈ R
q. (4.28)

Then,

Ṽ (sq(p)) =

(
q

∑
i=1

p2
i

)

Φ
(

S(β ), p{s},n
)

= p′pΦ
(
S(β ), p{s},n

)

= Φ
(
Iq ⊗S(β ), p⊗ p{s},n

)

= Φ
(
Iq ⊗S(β ),Ts+1p{s+1},n

)

= Φ
(
Š, p{s+1},n

)

(4.29)

where
Š = (Ts+1 ⊗ In)

′ (Iq ⊗S(β ))(Ts+1 ⊗ In)
= Φ (Iq ⊗S(β ),Ts+1,n)

and the latter equality exploits (with a slight abuse of notation) the parametrization
of symmetric matrix forms introduced in (1.35). Since S(β ) > 0 and Ts+1 is a matrix
with full column rank, it follows that Š > 0. Moreover, from (4.29) one has that
Š ∈ Sq,s+1,n, and hence there exists β̃ such that S̃(β̃ ) = Š in (4.27).

Let us now turn the attention to the second inequality in (4.24). We want to show
that he

(
Ṽ (sq(p))A(sq(p))

)
admits a negative definite SMR matrix, i.e. (4.25) holds

for some R̃(β̃ ) satisfying (4.24). By following the same development as in (4.29),
one gets

he
(
Ṽ (sq(p))A(sq(p))

)
= Φ
(

Ř, p{s+2},n
)

where
Ř = Φ (Iq ⊗ (R(β )+ L(α)) ,Ts+2,n) .

The result follows by observing that R̃(β̃ ) in (4.25) and Ř are SMR matrices of the
same matrix form. Therefore, there exists α̃ such that R̃(β̃ )+ L̃(α̃) = Ř, and the



108 4 Robustness with Time-invariant Uncertainty

second inequality in (4.24) holds since R(β )+ L(α) < 0 and Ts+2 is a matrix with
full column rank. �

The following result states that the condition for robust stability provided by
Theorem 4.4 is not only sufficient but also necessary for some sufficiently large
integer s.

Theorem 4.6. Let us suppose that the system (4.1)–(4.3) is robustly stable. Then,
there exists an integer ν ≥ 0 such that condition (4.23) of Theorem 4.4 holds for
s = ν .

Proof. Let us suppose that A is Hurwitz. Then, from Theorem 4.1 there exists V ∈
Ξq,s,n such that (4.13) is satisfied. By using Theorem 1.17 this implies that V (p)
satisfies also {

0 < V (sq(p))
0 > he(V (sq(p))A(sq(p)))

∀p ∈ R
q
0. (4.30)

Pre- and post-multiplying the inequalities in (4.30) by x′ and x respectively, we
obtain {

0 < v(x,sq(p))
0 > v̇(x,sq(p))

∀x ∈ R
n
0, ∀p ∈ R

q
0. (4.31)

Moreover, since v(x,sq(p)) is positive definite and v̇(x,sq(p)) is negative definite,
by a trivial extension of Theorem 1.8 it follows that there exist ε1 > 0 and ε2 > 0
such that

{
0 < v(x,sq(p))− ε1‖x‖2‖p‖2s

0 > v̇(x,sq(p))+ ε2‖x‖2‖p‖2(s+1) ∀x ∈ R
n
0, ∀p ∈ R

q
0. (4.32)

From Theorem 2.1 we have that any positive semidefinite form can be written as the
ratio of two SOS forms. Hence, condition (4.32) holds if and only if there exist SOS
forms z1(x,sq(p)), . . . ,z4(x,sq(p)) such that

v(x,sq(p))− ε1‖x‖2‖p‖2s =
z1(x,sq(p))
z2(x,sq(p))

v̇(x,sq(p))+ ε2‖x‖2‖p‖2(s+1) = − z3(x,sq(p))
z4(x,sq(p))

.

(4.33)

Now, v(x,sq(p))− ε1‖x‖2‖p‖2s is quadratic in x, and any quadratic form is positive
if and only if it is SOS, by Theorem 2.3. Hence,

v(x,sq(p))− ε1‖x‖2‖p‖2s =
n0

∑
i=1

(
ai(p)′x

)2
(4.34)

for some functions ai(p) ∈ R
n. Therefore, from (4.33) and (4.34) we can conclude

that z1(x,sq(p)) and z2(x,sq(p)) can be selected quadratic and constant in x, re-
spectively. Moreover, v(x, p)− ε1‖x‖2‖p‖s is positive definite for all p ∈ϒ , which
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implies from Theorem 2.2 that z2(x, p) can be selected as a form with positive co-
efficients. The same reasoning applies also to v̇(x,sq(p))+ ε2‖x‖2‖p‖2(s+1), hence
implying that z1(x,sq(p)), . . . ,z4(x,sq(p)) can be expressed as

z j(x,sq(p)) =
n j

∑
i=1

(
b j,i(p)′x

)2
, j = 1,3

z j(x,sq(p)) = b j(sq(p)), j = 2,4

b j(sq(p)) = p{δ j}′D j p{δ j}, j = 2,4

where δ1, . . . ,δ4 are nonnegative integers, b1,i(p) and b3,i(p) are forms of degree δ1

and δ3 respectively, and D2 and D4 are diagonal positive definite matrices.
Let us define the function

ṽ(x,sq(p)) = b2(sq(p))b4(sq(p))v(x,sq(p)) (4.35)

of degree 2ν in p, where
ν = s+ δ2 + δ4.

This function is an HPD-QLF because
{

0 < ṽ(x,sq(p))
0 > ˙̃v(x,sq(p))

∀x ∈ R
n
0, ∀p ∈ R

q
0

where the first inequality is obvious and the second one holds due to

˙̃v(x,sq(p)) = b2(sq(p))b4(sq(p))v̇(x,sq(p))

and (4.31). Moreover, ṽ(x,sq(p)) and ˙̃v(x,sq(p)) can be expressed as

ṽ(x,sq(p)) = x′Ṽ (sq(p))x
˙̃v(x,sq(p)) = x′Q̃(sq(p))x

where

Ṽ (sq(p)) = ε1c(sq(p))In + b4(sq(p))
n1

∑
i=1

b1,i(p)b1,i(p)′ (4.36)

Q̃(sq(p)) = ε2‖p‖2c(sq(p))In + b2(sq(p))
n3

∑
i=1

b3,i(p)b3,i(p)′ (4.37)

c(sq(p)) = ‖p‖2sb2(sq(p))b4(sq(p)). (4.38)

From (4.36)–(4.38) we have that
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Ṽ (sq(p)) = ε1c(sq(p))In +
n5

∑
i=1

b5,i(p)b5,i(p)′

Q̃(sq(p)) = ε2‖p‖2c(sq(p))In +
n6

∑
i=1

b6,i(p)b6,i(p)′

where each entry of the vectors b5,i(p) and b6,i(p) is a form. Then, by expressing
b5,i(p) and b6,i(p) as

b5,i(p) = b̂′5,i

(
p{ν} ⊗ In

)

b6,i(p) = b̂′6,i

(
p{ν+1}⊗ In

)

where b̂5,i and b̂6,i are suitable vectors, we get

Ṽ (sq(p)) = Φ
(
S̃, p{ν},n

)

Q̃(sq(p)) = Φ
(
R̃, p{ν+1},n

) (4.39)

where

S̃ = ε1 (F1 ⊗ In)+
n5

∑
i=1

b̂5,ib̂
′
5,i

R̃ = ε2 (F2 ⊗ In)+
n6

∑
i=1

b̂6,ib̂
′
6,i

F1 = K′
ν (Es ⊗D2 ⊗D4)Kν

F2 = K′
ν+1 (Es+1 ⊗D2 ⊗D4)Kν+1

(4.40)

where Kν and Kν+1 are defined by (3.9) for x replaced by p, and Eδ is the diagonal
positive definite matrix satisfying

p{δ}′Eδ p{δ} = ‖p‖2δ .

Hence, F1 > 0, F2 > 0, and therefore from (4.40) it follows that S̃ > 0 and R̃ > 0.
Finally, S̃ ∈ Sq,ν,n, and hence there exists β such that S(β ) = S̃ where S(β ) is a
linear parametrization of Sq,ν,n. Similarly, for any SMR matrix R(β ) of Q̃(sq(p)),
by (4.39) one has

Φ
(

R(β )− R̃, p{ν+1},n
)

= 0n×n

and hence there exists α such that R(β ) + L(α) = R̃, where L(α) is a linear
parametrization of Lq,ν+1,n. Therefore, Theorem 4.4 is satisfied with s = ν . �
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4.2.3 Detecting Instability

In the previous sections it has been shown how a sufficient condition for robust
stability of the system (4.1)–(4.3) can be formulated as an LMI feasibility test, and
that this condition is also necessary for some degree of the HPD-QLF.

Now, let us suppose that the system is unstable for some uncertainty vector p.
Then, the LMI condition will be never satisfied, and since the degree of the HPD-
QLF required to achieve necessity is unknown and can be arbitrarily high, then one
can not conclude that the system is not robustly stable. The following result proposes
a strategy to address this problem.

Theorem 4.7. Let us suppose that the system (4.1)–(4.3) is not robustly stable, and
let us define the EVP

z∗ = sup
z∈R, β∈Rτ(q,s,n), α∈Rω(q,s+2,n)

z

s.t.

{
0 < S(β )
0 > R(β )+ L(α)+ zI

(4.41)

where S(β ) is a linear parametrization of Sq,s,n in (4.18), L(α) is a linear
parametrization of Lq,s+1,n in (1.39), and R(β ) is defined according to (4.21)–
(4.22). Let

M = R(β ∗)+ L(α∗) (4.42)

where β ∗,α∗ are optimal values of β ,α in (4.41). Then, there exist p̂∈ϒq and x̂∈R
n
0

such that A(p̂) is not Hurwitz and

(
sqr(p̂){s+1} ⊗ x̂

)′
M
(

sqr(p̂){s+1} ⊗ x̂
)
≥ 0. (4.43)

Proof. Let us define

V (p) = Φ
(

S(β ∗),sqr(p){s},n
)

.

It follows that
he(V (p)A(p)) = Φ

(
M,sqr(p){s+1},n

)
. (4.44)

Let p̂ be any vector in ϒq such that A(p̂) is not Hurwitz. Since S(β ∗) > 0 it follows
that V (p̂) > 0, which in turn implies he(V (p̂)A(p̂)) �<0. This means that there exists
x ∈ R

n
0 such that

x̂′ he(V (p̂)A(p̂)) x̂ ≥ 0.

Taking into account (4.44) we have

0 ≤ x̂′Φ
(

M,sqr(p̂){s+1},n
)

x̂

=
(

sqr(p̂){s+1} ⊗ x̂
)′

M
(

sqr(p̂){s+1} ⊗ x̂
)

and hence the theorem holds. �
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Theorem 4.7 characterizes the situation in which the system (4.1)–(4.3) is not
robustly stable, in terms of the matrix M in (4.43), which is obtained by solving
(4.41). Let us observe that a necessary condition for (4.43) to hold is that λmax(M)≥
0, or equivalently z∗ in (4.41) satisfies

z∗ ≤ 0.

Then, one has to look for vectors p̂ ∈ϒq and x̂ ∈ R
n
0 such that (4.43) holds. This is

not an easy problem, as it amounts to detecting values of the variables that fulfill
a polynomial inequality. Nevertheless, a simpler instability test can be formulated
by restricting the set of admissible vectors sqr(p̂){s+1} ⊗ x̂ to a given domain, e.g.
a linear space. In this respect, a possible choice is the eigenspace of the largest
eigenvalue of M. Hence, the problem becomes to find the vectors p̂ ∈ϒq and x̂ ∈ R

n
0

such that (
sqr(p̂){s+1} ⊗ x̂

)
∈ ker(M + z∗I). (4.45)

Let us denote the set of such vectors p̂ as

PM =
{

p̂ ∈ϒq : (4.45) holds for some x̂ ∈ R
n
0

}
. (4.46)

Then, one may look for vectors p̂ such that A(p̂) is not Hurwitz, within the set of
candidates PM. Strategies for finding a solution of problem (4.45) will be proposed
in Section 4.3.1 (see Theorem 4.11 and the subsequent discussion).

4.3 Robust Performance

In this section, we use HPD-QLFs to tackle some robust performance problems
involving systems affected by time-invariant parametric uncertainty.

4.3.1 Robust H∞ Performance

In the following, we investigate the use of HPD-QLFs for evaluating robust H∞
performance. Specifically, let us consider the time-invariant polytopic system

⎧
⎪⎨

⎪⎩

ẋ(t) = A(p)x(t)+ B(p)w(t)
y(t) = C(p)x(t)+ D(p)w(t)
p ∈ϒq

(4.47)

where x ∈ R
n is the state, w ∈ R

r is the input, y ∈ R
g is the output, and p ∈ R

q is
the parametric uncertainty vector. The matrices A(p) ∈ R

n×n, B(p) ∈ R
n×r, C(p) ∈

R
g×n and D(p) ∈ R

g×r are linear functions of p according to
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A(p) =
q

∑
i=1

piAi, B(p) =
q

∑
i=1

piBi

C(p) =
q

∑
i=1

piCi, D(p) =
q

∑
i=1

piDi

(4.48)

where Ai ∈ R
n×n,Bi ∈ R

n×r,Ci ∈ R
g×n,Di ∈ R

g×r, i = 1, . . . ,q, are given matrices.
For any p ∈ϒq, the transfer function from w to y is given by

H(δ , p) = C(p)(δ In −A(p))−1 B(p)+ D(p).

For a fixed p, the H∞ norm of H(δ , p) is given by

‖H(·, p)‖∞ = sup
ω∈R

‖H( jω , p)‖∞.

This norm can be computed through the bounded real lemma in the following way
(see for instance [14]):

‖H(·, p)‖∞ = inf
γ∈R, V∈Sn

γ

s.t.

⎧
⎨

⎩

0 < V

0 > E(V, p)+
1
γ2 F(p)

(4.49)

where

E(V, p) =

(
he(VA(p)) VB(p)

� −Ir

)

(4.50)

F(p) =
(

C(p)′
D(p)′

)
(

C(p) D(p)
)
. (4.51)

The problem we address is the computation of the worst-case H∞ norm of system
(4.47)–(4.48) defined hereafter.

Definition 4.4 (Robust H∞ Performance). Let us define

γH∞ = sup
p∈ϒq

‖H(·, p)‖∞. (4.52)

Then, γH∞ is the robust H∞ performance of the system (4.47)–(4.48).

An upper bound to γH∞ can be computed by employing a common quadratic Lya-
punov function. This can be done by solving an EVP like (4.49), where the second
LMI constraint is enforced in all the vertices of the simplex ϒq (see [14, pp. 91-92]).
Unfortunately, such an upper bound is generally very conservative. It is well-known
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that one can reduce the conservatism by employing parameter-dependent Lyapunov
functions. However, direct use of (4.49) is not possible anymore, because the prob-
lem turns out to be nonconvex, and therefore suitable convex relaxations must be
devised.

In the following, we tackle the computation of the worst-case H∞ norm by em-
ploying HPD-QLFs, such as v(x, p) = x′V (p)x. Being such Lyapunov functions
quadratic in the state, (4.49) can be immediately extended to HPD-QLFs by re-
placing V by the matrix form V (p). Specifically, we define the H∞ cost guaranteed
by HPD-QLFs of a given degree s as follows.

Definition 4.5 (s-HPD-QLF Robust H∞ Performance). Let us define

γH∞
s = inf

γ∈R, V∈Ξq,s,n
γ

s.t.

⎧
⎨

⎩

0 < V (p)

0 > E(V (p), p)+
1
γ2 F(p)

∀p ∈ϒq.
(4.53)

Then, γH∞
s is said s-HPD-QLF robust H∞ performance of the system (4.47)–(4.48).

Let us observe that γH∞
s is an upper bound of γH∞ for any possible s, i.e.

γH∞
s ≥ γH∞ ∀s ≥ 0.

However, (4.53) is not a convex problem and we need to introduce a convex relax-
ation. Hereafter, it is shown how upper bounds to γH∞

s can be computed through
convex optimizations, by employing the same machinery used in Section 4.2 to
study robust stability problems. To this purpose, let V (p;β ) be defined by (4.20),
and let us introduce

Q(p;β ,z) = E(V (p;β ), p)+ zF(p)

(
q

∑
i=1

pi

)s−1

+ G(p) (4.54)

where β ∈ R
τ(q,s,n), z ∈ R, V (p;β ) is defined by (4.20), and

G(p) =

(
0n×n 0n×r

�
(

1− (∑q
i=1 pi
)s+1
)

Ir

)

. (4.55)

We have that Q(·;β ,z) ∈ Ξq,s+1,l where

l = n + r

i.e. Q(p;β ,z) is a matrix form of degree s+1 in p∈R
q for any fixed β and z. Notice

that, due to the constraint p ∈ϒq in (4.47), one has
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Q

(
p;β ,

1
γ2

)
= E(V (p;β ), p)+

1
γ2 F(p) ∀p ∈ϒq.

Let us write
Q(sq(p);β ,z) = Φ

(
R(β ,z), p{s+1}, l

)
(4.56)

where R(β ,z)∈ S
lσ(q,s+1) is any SMR matrix of Q(sq(p);β ,z). Observe that R(β ,z)

depends affinely on β and z. Now we are ready to formulate a convex optimization
problem whose solution provides an upper bound to γH∞

s .

Theorem 4.8. Let S(β ) be a linear parametrization of Sq,s,n in (4.18), L(α) a lin-
ear parametrization of Lq,s+1,l in (1.39), and R(β ,z) defined according to (4.54)–
(4.56). Let

γ̂H∞
s =

1√
z∗

(4.57)

where z∗ is the solution of the EVP

z∗ = sup
z∈R, β∈Rτ(q,s,n), α∈Rω(q,s+1,l)

z

s.t.

{
0 < S(β )
0 > R(β ,z)+ L(α).

(4.58)

Then, γ̂H∞
s ≥ γH∞

s .

Proof. Let α and β be such that the LMIs in (4.58) are satisfied. Let us define
V (p) = V (p;β ) with V (p;β ) defined according to (4.20). From the first LMI in
(4.58) and Theorem 4.3 one has that V (p) > 0 for all p ∈ ϒq, and hence the first
condition in (4.53) holds. Then, by (4.56) and (4.54) one has

Φ
(
R(β ,z)+ L(α), p{s+1},n

)

= Φ
(
R(β ,z), p{s+1},n

)

= E(V (sq(p);β ),sq(p))+ zF(sq(p))
(
∑q

i=1 p2
i

)s−1 + G(sq(p)).

From the second LMI of (4.58) this implies that

E(V (sq(p);β ),sq(p))+ zF(sq(p))

(
q

∑
i=1

p2
i

)s−1

+ G(sq(p)) < 0 ∀p ∈ R
q
0.

As a consequence, one has from Theorem 1.17 that

E(V (p;β ), p)+ zF(p)

(
q

∑
i=1

pi

)s−1

+ G(p) < 0 ∀p ∈ϒq

which is equivalent to
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E(V (p;β ), p)+ zF(p) < 0 ∀p ∈ϒq.

Hence, the second condition in (4.53) is satisfied for z = γ−2. �

Theorem 4.8 provides an upper bound of γH∞
s through the EVP (4.58). The num-

ber of scalar variables in the LMI constraint is given by

τ(q,s,n)+ ω(q,s+ 1, l)+ 1.

Table 4.2 shows this number for some values of n,s,q,r.

Table 4.2 Number of scalar variables in the EVP (4.58) for some values of n,s,q,r: (a) q = 2
and r = 1 ; (b) q = 3 and r = 1

(a) (b)

s = 0 s = 1 s = 2 s = 3

n = 2 7 23 52 94

n = 3 13 44 100 181

n = 4 21 72 164 297

s = 0 s = 1 s = 2 s = 3

n = 2 13 94 349 922

n = 3 25 178 658 1738

n = 4 41 289 1066 2816

The next issue we address is whether there exists a relationship between the upper
bound obtained by using HPD-QLFs of degree s and that provided by HPD-QLFs
of degree s + 1. The following result clarifies that, if the condition of Theorem 4.8
is satisfied for s, then it is satisfied also for s+ 1.

Theorem 4.9. Let s ≥ 0 be an integer, and γ̂H∞
s be defined according to (4.57)–

(4.58). Then,
γ̂H∞

s ≥ γ̂H∞
s+1. (4.59)

Proof. Let us rewrite the LMIs in (4.58) with s replaced by s+ 1 as
{

0 < S̃(β̃ )

0 > R̃(β̃ ,z)+ L̃(α̃)
(4.60)

where S̃(β̃ ) and L̃(α̃) are linear parametrizations of Sq,s+1,n and Lq,s+2,l, respec-
tively; R̃(β̃ ,z) ∈ S

lσ(q,s+2) is an SMR matrix of Q̃(sq(p); β̃ ,z), and Q̃(p; β̃ ,z) is
defined according to (4.54)–(4.55), with s replaced by s+1 and V (p;β ) replaced by

Ṽ (p; β̃ ) = Φ
(

S̃(β̃ ),sqr(p){s+1},n
)

.

Let us suppose that there exist z,α,β such that the LMI constraints in (4.58) are
satisfied. From the proof of Theorem 4.8 we have that V (p;β )> 0 and Q(p;β ,z) < 0
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for all p ∈ϒq. In order to select β̃ , let us define

Ṽ (p) = V (p;β )
q

∑
i=1

pi

and let us show that Ṽ (sq(p)) admits a positive definite SMR matrix. Let Ts+1 be
the matrix defined in (4.28). Then,

Ṽ (sq(p)) =

(
q

∑
i=1

p2
i

)

Φ
(

S(β ), p{s},n
)

= p′pΦ
(
S(β ), p{s},n

)

= Φ
(
Iq ⊗S(β ), p⊗ p{s},n

)

= Φ
(
Iq ⊗S(β ),Ts+1p{s+1},n

)

= Φ
(
Š, p{s+1},n

)

(4.61)

where
Š = (Ts+1 ⊗ In)′ (Iq ⊗S(β ))(Ts+1 ⊗ In)

= Φ (Iq ⊗S(β ),Ts+1,n) .

Since S(β ) > 0 and Ts+1 is a matrix with full column rank, it follows that Š > 0.
Moreover, from (4.61), it is clear that Š ∈ Sq,s+1,n, and hence there exists β̃ such
that S̃(β̃ ) = Š.

Now, let us observe that, being p ∈ϒq, it is possible to write

Q̃(p; β̃ ,z) = Q(p;β ,z)
q

∑
i=1

pi. (4.62)

Following the same development as in (4.61), one gets from (4.62)

Q̃(sq(p); β̃ ,z) = Φ
(

Ř, p{s+2}, l
)

where
Ř = Φ (Iq ⊗ (R(β ,z)+ L(α)) ,Ts+2, l) .

Since R(β ,z)+L(α) < 0, one has Ř < 0. Moreover, being Ř and R̃(β̃ ,z) SMR matri-
ces of the same matrix form, it follows that there exists α̃ such that R̃(β̃ ,z)+ L̃(α̃) =
Ř. Therefore, (4.60) holds, which then yields (4.59). �

The next result shows that it is possible to establish whether the upper bound
provided by Theorem 4.8 is tight.

Theorem 4.10. Suppose that the upper bound γ̂H∞
s in (4.57)–(4.58) is finite. Then,

γ̂H∞
s = γH∞ (4.63)
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if and only if there exist p̂ ∈ϒq and x̂ ∈ R
l
0 satisfying

‖H(·, p̂)‖∞ = γ̂H∞
s (4.64)

and (
sqr(p̂){s+1} ⊗ x̂

)
∈ ker(M) (4.65)

where
M = R(β ∗,z∗)+ L(α∗) (4.66)

being z∗,β ∗,α∗ optimal values of z,β ,α in (4.58), and R(·, ·)+ L(·) the complete
SMR matrix in (4.58).

Proof. (Sufficiency) Let us suppose that (4.64)–(4.65) hold. Then, (4.63) holds be-
cause γ̂H∞

s is an upper bound of γH∞ and because this upper bound is achieved in
p̂ ∈ϒq.

(Necessity) Let us suppose that (4.63) holds. Then, there exists p̂ ∈ϒq such that
(4.64) holds because ϒq is a compact set. In order to prove (4.65), let us adopt the
same argument as in the proof of Theorem 4.8 and observe that

Φ
(

M,sqr(p̂){s+1}, l
)

= Q(p̂;β ∗,z∗).

Since M ≤ 0 due to (4.58), and since p̂ is the point where γH∞ is attained, one has

0 ≥ Q(p̂;β ∗,z∗)
0 = det(Q(p̂;β ∗,z∗)) .

Indeed, if one assumes by contradiction that Q(p̂;β ∗,z∗) is nonsingular, then γH∞ is
not the H∞ norm of H(δ , p) due to (4.49). Hence, there exists x̂ ∈ R

l
0 such that

x̂ ∈ ker
(

Φ
(

M,sqr(p̂){s+1}, l
))

.

Therefore, one can write

0 = x̂′Φ
(

M,sqr(p̂){s+1}, l
)

x̂

=
(

sqr(p̂){s+1} ⊗ x̂
)′

M
(

sqr(p̂){s+1} ⊗ x̂
)

and hence (4.65) holds since M is negative semidefinite. �

Theorem 4.10 provides a necessary and sufficient condition for establishing tight-
ness of the upper bound γ̂H∞

s . According to this condition, one has to find the vectors
p̂ ∈ϒq and x̂ ∈ R

l
0 such that (4.65) holds. Then, one has to verify if at least one of

these vectors p̂ verifies (4.64), for example by using (4.49). The latter step is trivial.
In order to perform the first step, let us observe that the vectors p̂ and x̂ satisfy

sqr(p̂){s+1} ⊗ x̂ = Nv (4.67)
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where N ∈ R
lσ(q,s+1)×w is a matrix whose columns form a base of ker(M), and v ∈

R
w. The following result suggests a possible way to find vectors p̂ and x̂ satisfying

(4.67).

Theorem 4.11. The vectors p̂∈ϒq, x̂∈R
l
0 and v∈R

w for which (4.67) holds, satisfy
also

x̂isqr(p̂){s+1} = Jiv ∀i = 1, . . . , l (4.68)

and
rank(H) < w. (4.69)

The matrix Ji is defined as

Ji =
(
Iσ(q,s+1)⊗ e′i

)
N

where ei is the i-th column of Il . The matrix H is defined as

H =

⎛

⎜
⎜
⎜
⎜
⎝

√
p̂bH0 −

√
p̂aH1√

p̂bH1 −
√

p̂aH2

...√
p̂bHs −

√
p̂aHs+1

⎞

⎟
⎟
⎟
⎟
⎠

where a,b ∈ [1,q] are integers, Hi is given by

Hi =
(
diag( fh(i))⊗ Il

)
N,

f j is the j-th column of Iσ(q,s+1), and h(i) is the position of the monomial p̂s+1−i
a p̂i

b

in the power vector p{s+1}.

Proof. The condition (4.68) is obtained by multiplying both sides of (4.67) by
Iσ(q,s+1)⊗e′i. Similarly, the condition (4.69) is obtained by multiplying both sides of

(4.67) by
(
diag( fh(i))⊗ Il

)
, which provides (p̂m+1−i

a p̂i
b)

1/2x̂ = Hiv. By eliminating
x̂ the rank condition on the matrix H follows. �

Theorem 4.11 provides two possible strategies to compute the vectors p̂, x̂ satis-
fying (4.65). In particular, since x̂ is defined up to a scale factor, one can set x̂i = 1
for some i, and then (4.68) can be used to compute p̂ by adopting the approach
proposed in Section 1.9 to extract power vector from linear spaces. As an alterna-
tive, the condition (4.69) provides a way to compute the ratio between p̂a and p̂b. In
fact, the rank condition rank(H) < w can be enforced by annihilating the principal
minors of H, thus allowing one to compute the entries of p̂ by solving polynomial
equations in one variable (namely, the square root of the ratio p̂a p̂−1

b ).
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4.3.2 Parametric Stability Margin

Here we consider the problem of computing the robust parametric stability margin
for a time-invariant polytopic system. Let γ ∈ R and consider the system

{
ẋ(t) = A(p,γ)x(t)
p ∈ϒq

(4.70)

with

A(p,γ) =
q

∑
i=1

piAi(γ)

Ai(γ) = Ā0 + γĀi, i = 1, . . . ,q

(4.71)

where Ā0, . . . , Āq are given matrices, and Ā0 is Hurwitz.

Definition 4.6 (Parametric Stability Margin). Let us define

γPA = sup
{

γ̄ ∈ R : A(p,γ) is Hurwitz for all p ∈ϒq, for all γ ∈ [0, γ̄]
}

. (4.72)

Then, γPA is called parametric stability margin for the system (4.70)–(4.71).

The robust stability margin can be studied through a one-parameter sequence
of robust stability problems, in particular for each fixed value of γ the problem is to
establish whether A(p,γ) is Hurwitz for all p ∈ϒq. We hence define the lower bound
of γPA guaranteed by HPD-QLFs as follows.

Definition 4.7 (s-HPD-QLF Parametric Stability Margin). Let

γ̂PA
s = sup {γ̄ ∈ R : condition (4.23) in Theorem 4.4

holds for A(p) = A(p,γ), for all γ ∈ [0, γ̄]} .
(4.73)

Then, γ̂PA
s is called s-HPD-QLF parametric stability margin for the system (4.70)–

(4.71).

Clearly, γ̂PA
s ≤ γPA. The following result provides a necessary and sufficient con-

dition for establishing tightness of γ̂PA
s .

Theorem 4.12. Let us suppose that γ̂PA
s in (4.73) is finite. Let

M = R(β ∗)+ L(α∗) (4.74)

where β ∗,α∗ are optimal values of β ,α in (4.41) and the LMIs in (4.41) are con-
structed for A(p) = A(p, γ̂PA

s ). Then, γ̂PA
s = γPA if and only if there exist p̂ ∈ϒq and

x̂ ∈ R
n
0 such that (

sqr(p̂){s+1} ⊗ x̂
)
∈ ker(M) (4.75)

and
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max
λ∈spc(A( p̂,γ̂PA

s ))
re(λ ) = 0. (4.76)

Proof. (Necessity) Let us suppose that γ̂PA
s = γPA. Then, there exists p̂ ∈ϒq such that

(4.76) holds. Moreover, let us define

V (p) = Φ
(

S(β ∗),sqr(p){s},n
)

and v(x, p) = x′V (p)x. Due to (4.76), there exists x̂ ∈R
n
0 such that v̇(x̂, p̂) = 0. More-

over, let us observe that by construction of M in (4.74) one has

v̇(x, p) = x′Φ
(

M,sqr(p){s+1},n
)

x

and M ≥ 0 (in fact, z∗ = 0 in (4.41) due to the assumption γ̂PA
s = γPA). Then, (4.75)

holds.
(Sufficiency) Direct consequence of γ̂PA

s ≤ γPA and (4.76). �

The condition provided by Theorem 4.12 requires to search for vectors p̂∈ϒq and
x̂ ∈ R

n
0 such that (4.75) holds. Notice that (4.75) is analogous to (4.65) in Theorem

4.10. Therefore, one can apply the techniques proposed in Section 4.3.1, according
to Theorem 4.11, in order to check tightness of the lower bound γ̂PA

s .

4.4 Rational Parametric Uncertainty

In this section we want to show that the proposed technique for robustness analysis
of time-invariant systems can be applied also when the dependence of A(p) on the
uncertain parameter vector p is rational. In particular, consider the system

{
ẋ(t) = Arat(p)x(t)
p ∈ϒq

(4.77)

where Arat(p) ∈ R
n×n has the form

Arat(p) =
1

a2(p)
A1(p) (4.78)

where A1(p) ∈ R
n×n is a matrix polynomial and a2(p) ∈ R is a polynomial. Let us

assume that
a2(p) > 0 ∀p ∈ϒq. (4.79)

Assumption (4.79) is not restrictive, because if a2(p) = 0 for some p ∈ϒq, Arat(p)
cannot be Hurwitz unless there are suitable cancellations between the zeros of A1(p)
and a2(p). Let us express A1(p) as
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A1(p) =
u

∑
i=0

A1,i(p)

where u is the degree of A1(p), and A1,i ∈ Ξ �
q,i,n, i = 1, . . . ,u. Then, define

A3(p) =
u

∑
i=0

A1,i(p)

(
q

∑
j=0

p j

)u−i

. (4.80)

We have that A3 ∈ Ξ �
q,u,n is a matrix form of degree u. Moreover, the following result

holds.

Theorem 4.13. Let us suppose that (4.79) holds. Then,

Arat(p) is Hurwitz for all p ∈ϒq

if and only if
A3(p) is Hurwitz for all p ∈ϒq.

Proof. For all p ∈ϒq, one has that

A3(p) = A1(p) = a2(p)Arat(p)

and the result holds by (4.79). �

As a consequence of Theorem 4.13, one has that the Theorems 4.1, 4.4, 4.5 and
4.6, can be used for studying robust stability of the system (4.77)–(4.79). This sim-
ply requires to replace A(p) with A3(p), and observe that the time derivative of the
HPD-QLF v(x, p) = x′V (p)x of degree s in p, along the trajectories of the system
(4.77), is now a form of degree s+ u rather than s+ 1 in p, namely

v̇(x, p) = x′ he(V (p)A3(p))x.

In particular, the upper bound to the degree of the HPD-QLF in Theorem 4.1 ob-
tained by replacing A(p) with A3(p) is given by

µ =
1
2

n(n + 1)u−1.

Similar extensions can be formulated for the robust H∞ performance of systems
with rational parametric dependence.
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4.5 Robustness Analysis via Hurwitz Determinants

In this section we derive stability and instability conditions for systems affected by
rational parametric uncertainty, by employing a different technique that does not
involve Lyapunov functions. Let us consider system (4.77)–(4.79). Let A3(p) be the
matrix form in (4.80) and define the forms

zi(p) = yi(sq(p)) ∀i = 1,2 (4.81)

where
y1(p) = det(−A3(p))
y2(p) = h̄n−1(A3(p))

(4.82)

and h̄n−1(A3(p)) denotes the (n − 1)-th Hurwitz determinant of A3(p) (see Ap-
pendix A.2 for details). We have the following result.

Theorem 4.14. Let us consider the system (4.77)–(4.79), and let us suppose that

A3(p̄) is Hurwitz, p̄ = (1,0, . . . ,0)′ (4.83)

where A3(p) is the matrix form in (4.80). Then, the system (4.77)–(4.79) is robustly
stable if and only if

zi(p) is positive definite for all i = 1,2. (4.84)

Proof. From (4.82) it follows that y1(p) is the product of the eigenvalues of −A3(p),
while y2(p) satisfies (A.4) in Appendix A.2. Hence, due to the continuity of the
eigenvalues of A3(p) with respect to p and to assumption (4.83), one has that the
system (4.77)–(4.79) is robustly stable if and only if

yi(p) > 0 ∀p ∈ϒq, ∀i = 1,2.

Therefore, we conclude that the theorem holds by using Theorem 1.17. �

Let us observe that the assumption (4.83) is clearly not restrictive because, if this
assumption does not hold, then A3(p) cannot be Hurwitz for all p ∈ϒq.

It is interesting to observe that one can establish whether (4.84) holds via LMI
feasibility tests in a non-conservative way. This is described by the following result.

Theorem 4.15. Let zi(p) be defined as in (4.81). Then, the system (4.77)–(4.79) is
robustly stable if and only if there exists forms h1(p),h2(p) such that

{
0 < λ (hi)
0 < λ (wi)

∀i = 1,2 (4.85)

where
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wi(p) = hi(p)zi(p).

Proof. It follows from Theorem 4.14, Theorem 2.1, and Definition 1.7. �

Let us observe that the condition (4.85) defines a system of two LMIs in the
coefficients of h1(p),h2(p) and in the variables α required to assess positivity of
the SOS index.

The following theorem provides a necessary and sufficient condition to estab-
lish whether the system (4.77)–(4.79) is unstable for some admissible values of the
uncertain parameter.

Theorem 4.16. Let zi(p) be defined as in (4.81). Then, the system (4.77)–(4.79) is
not robustly stable if and only if

∃i ∈ {1,2} : λ (zi) ≤ 0 and zi(p) is SMR-tight. (4.86)

Moreover, A(p) is not Hurwitz for all p ∈ Zi where

Zi =

⎧
⎨

⎩
p : p = p̃

(
q

∑
j=1

p̃ j

)−1

and p̃ ∈ mps(zi), p̃ j ≥ 0 ∀ j = 1, . . . ,q

⎫
⎬

⎭
, (4.87)

mps(zi) is the set introduced in Definition 2.5, and i is the integer for which (4.86)
holds.

Proof. It follows from Theorem 4.14 and the definitions of SOS index and SMR-
tight form. �

Example 4.2. Let us consider

A(p) = p1A1 + p2A2 + p3A3

with

A1 =

⎛

⎜
⎝

−5 −1 4

0 −1 5

−2 −2 −2

⎞

⎟
⎠ , A2 =

⎛

⎜
⎝

−5 −1 0

0 −9 5

−6 −2 −2

⎞

⎟
⎠ , A3 =

⎛

⎜
⎝

−5 1 4

0 −1 −1

4 2 −2

⎞

⎟
⎠ .

The problem consists of establishing whether the system (4.77)–(4.79) is robustly
stable or not.

We find that λ (z1) = −5.0484 and hence we cannot conclude that the system
is robustly stable. Therefore, we attempt to establish instability by using Theorem
4.16. We find that the dimension of the null space in (2.35) is 2. The minimal points
set in (2.36) is
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mps(z1) =

⎧
⎪⎨

⎪⎩
0.5132

⎛

⎜
⎝

1.0000

0.0000

−1.6726

⎞

⎟
⎠ , 0.5132

⎛

⎜
⎝

1.0000

0.0000

1.6726

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
.

Since mps(z1) is not empty, we can conclude from Theorem 2.9 that z1(p) is SMR-
tight. Hence, according to Theorem 4.16, we can finally conclude that the system is
not robustly stable.

In particular, the set Z1 in (4.87) is given by

Z1 =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

0.3742

0.0000

0.6258

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

and the eigenvalues of A(p) for p ∈ Z1 are −6.5571,−1.5136,0.0707.

4.6 Discrete-time Systems

In this section, we address robust stability and performance problems for discrete-
time systems affected by time-invariant parametric uncertainty.

Let us first consider the system
⎧
⎪⎨

⎪⎩

x(t + 1) = A(p)x(t)
p ∈ϒq

A(p) = ∑q
i=1 piAi

(4.88)

where t ∈ N is the time, x(t) ∈ R
n is the state vector, p is the uncertainty parameter

vector, and A1, . . . ,Aq ∈ R
n×n are given matrices. The problem addressed hereafter

consists of establishing whether A(p) is Schur for all admissible values of p, accord-
ing to the following definition (see Appendix A.2 for definition of Schur matrices).

Definition 4.8 (Robust Stability for Discrete-Time Polytopic System). Let us
suppose that

A is Schur ∀A ∈ A (4.89)

where A is as in (4.5). Then, A is said Schur, and the system (4.88) is said robustly
stable.

Therefore, the system (4.88) is robustly stable whenever the matrix A(p) satisfies

|λ | < 1 ∀λ ∈ spc(A), ∀A ∈ A .

The following result is the counterpart of Theorem 4.1.

Theorem 4.17. Let us define

µ = n(n + 1)−1.
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The system (4.88) is robustly stable if and only if there exists V ∈ Ξq,s,n, with s ≤ µ ,
such that {

0 < V (p)
0 > A(p)′V (p)A(p)−V(p)

∀p ∈ϒq.

In order to derive the LMI condition for robust stability, let V (p;β ) be defined
by (4.20), and let us introduce

Q(p;β ) = A′(p)V (p;β )A(p)−V(p;β )

(
q

∑
i=1

pi

)2

. (4.90)

We have that Q(·,β ) ∈ Ξq,s+2,n for all β . Moreover, let us observe that

Q(p;β ) = A′(p)V (p;β )A(p)−V(p;β ) ∀p ∈ϒq.

Let R(β ) ∈ S
nσ(q,s+2) be any SMR matrix of Q(sq(p);β ), i.e. satisfying

Q(sq(p);β ) = Φ
(

R(β ), p{s+2},n
)

. (4.91)

Then, Theorems 4.4, 4.5, 4.6 and 4.7 hold for the discrete-time system (4.88) by
performing the following modifications:

1. R(β ) is defined according to (4.91);
2. L(α) is a linear parametrization of Lq,s+2,n, with α ∈ R

ω(q,s+2,n);
3. the term “Hurwitz” is replaced by “Schur”.

HPD-QLFs can be also used to investigate robust H∞ performance for discrete-
time systems. Indeed, let us consider

{
x(t + 1) = A(p)x(t)+ B(p)w(t)

y(t) = C(p)x(t)+ D(p)w(t)
(4.92)

where x ∈ R
n is the state, w ∈ R

r is the input, y ∈ R
g is the output, p ∈ ϒq is the

parametric uncertainty vector, and A(p) ∈ R
n×n, B(p) ∈ R

n×r, C(p) ∈ R
g×n and

D(p) ∈ R
g×r are as in (4.48). For any p ∈ϒq, the transfer function from w to y is

given by
H(δ , p) = C(p)(δ In −A(p))−1 B(p)+ D(p).

For a fixed p, the H∞ norm of H(δ , p) is given by

‖H(·, p)‖∞ = sup
ω∈[0,2π ]

‖H(e jω , p)‖∞. (4.93)

The robust H∞ performance of the system (4.92) is defined by γH∞ in (4.52) with
‖H(·, p)‖∞ as in (4.93). The upper bound of γH∞ provided by HPD-QLFs of degree
s is defined by γH∞

s in (4.53) with E(V (p), p) given by
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E(V, p) =

(
A(p)′VA(p)−V A(p)′VB(p)

� B(p)′VB(p)− Ir

)

. (4.94)

Let V (p;β ) be defined by (4.20), and let us introduce

Q(p;β ,z) = E(V (p;β ), p)+ z

(
q

∑
i=1

pi

)s

F(p)+ G(p) (4.95)

where E(V (p;β ), p) is defined by (4.94), F(p) is as in (4.51), and

G(p) =

(
0n×n 0n×r

�
(

1− (∑q
i=1 pi
)s+2
)

Ir

)

. (4.96)

We have that Theorems 4.8, 4.9 and 4.10 hold for the discrete-time system (4.92)
by performing the following changes:

1. R(β ,z), is an SMR matrix of Q(sq(p);β ,z), defined according to (4.95);
2. L(α) is a linear parametrization of Lq,s+2,l, with α ∈ R

ω(q,s+2,l).

Lastly, we address the case of discrete-time systems with rational parametric de-
pendence. Let us consider

x(t + 1) = Arat(p)x(t) (4.97)

where Arat(p) is as in (4.78). Let us define the forms

zi(p) = yi(sq(p)) ∀i = 1,2,3 (4.98)

where
y1(p) = det(In −A3(p))
y2(p) = det(In + A3(p))
y3(p) = det(Id −Q(A3(p))) ,

(4.99)

d = 1
2 n(n− 1), and Q(A(p)) is the matrix defined in Appendix A.2. We have that

Theorems 4.13, 4.14, 4.15 and 4.16 hold for the discrete-time system (4.97) by
performing the following changes:

1. the term “Hurwitz” is replaced by “Schur”;
2. the index i goes from 1 to 3;
3. zi(p) is defined as in (4.98)–(4.99).
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4.7 Examples

In this section, numerical examples are presented to illustrate the proposed tech-
niques for robustness analysis of time-invariant polytopic systems.

4.7.1 Example HPD-QLF-1

Let us start with a very simple example, in order to show how the LMIs involved
in robust stability analysis are generated. Let us consider system (4.70)–(4.71) with
q = 2, n = 2 and

Ā0 =

(
0 1

−2 −2

)

, Ā1 =

(
−1 0

0 5

)

, Ā2 =

(
1 0

0 −5

)

.

We want to compute the parametric stability margin (4.72), and hence we calculate
its lower bound in (4.73) guaranteed by an HPD-QLF of degree s.

Let us first consider s = 0, which means that a common Lyapunov function is
sought for all the matrices of the polytope A (in other words, the Lyapunov func-
tion does not depend on the uncertain parameter). The LMI feasibility test (4.23)
involves the matrices

S(β ) =

(
β1 β2

� β3

)

, R(β ) =

⎛

⎜
⎜
⎜
⎝

r1 r2 0 0

� r3 0 0

� � r4 r5

� � � r6

⎞

⎟
⎟
⎟
⎠

, L(α) =

⎛

⎜
⎜
⎜
⎝

0 0 0 −α1

� 0 α1 0

� � 0 0

� � � 0

⎞

⎟
⎟
⎟
⎠

where

r1 = 2γβ1 + 4β2, r2 = −β1 −2(2γ −1)β2 + 2β3

r3 = −2β2 −2(5γ −2)β3, r4 = −2γβ1 + 4β2

r5 = −β1 + 2(2γ + 1)β2 + 2β3, r6 = 2−β2 + 2(5γ + 2)β3.

Hence, the number of scalar variables is 4, and the 0-HPD-QLF parametric stability
margin provided by (4.73) is γ̂PA

0 = 0.3209.
Let us consider now the case s = 1, which corresponds to choosing a linearly

parameter-dependent quadratic Lyapunov function. In this case, the matrices in-
volved in (4.23) are
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S(β ) =

⎛

⎜
⎜
⎜
⎝

β1 β2 0 −β7

� β3 β7 0

� � β4 β5

� � � β6

⎞

⎟
⎟
⎟
⎠

, R(β ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

r1 r2 0 0 0 0

� r3 0 0 0 0

� � r7 r8 0 0

� � � r9 0 0

� � � � r4 r5

� � � � � r6

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

,

L(α) =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

0 0 0 −α1 α3 −α2 −α4

� 0 α1 0 α2 −α5

� � 2α3 α4 0 −α6

� � � 2α5 α6 0

� � � � 0 0

� � � � � 0

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

,

where r1, . . . ,r6 are as in the case s = 0, while

r7 = −2γβ1 + 4β2 + 2γβ4 + 4β5

r8 = −β1 + 2(2γ + 1)β2 + 2β3−β4 −2(2γ −1)β5 + 2β6

r9 = −2β2 + 2(5γ + 2)β3−2β5 −2(5γ −2)β6.

The number of scalar variables is hence increased to 13, and the 1-HPD-QLF para-
metric stability margin provided by (4.73) is γ̂PA

1 = 0.4633. From Theorem 4.12 we
find that this lower bound is tight, indeed

ker(M) = img

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0.2347 −0.0000

0.9683 −0.0000

−0.0000 −0.0000

−0.0000 −0.0000

0.0367 0.9073

0.0771 −0.4204

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

and conditions (4.76)–(4.75) hold with

p̂ =

(
0.0000

1.0000

)

, x̂ =

(
0.9073

−0.4204

)

in particular
spc
(
A(p̂, γ̂PA

1 )
)

= {0.0000,−3.8533}.

Therefore,
γPA = γ̂PA

0 = 0.4633.
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It is worth observing that, for this example, γPA can be computed analytically, and
one finds γPA = (

√
11−1)/5 = 0.4633.

4.7.2 Example HPD-QLF-2

Consider the problem of computing the robust parametric margin γPA defined in
(4.72), for the system (4.70)–(4.71) with q = 3, n = 4 and

Ā0 =

⎛

⎜⎜
⎜
⎝

−2.4 −0.6 −1.7 3.1

0.7 −2.1 −2.6 −3.6

0.5 2.4 −5.0 −1.6

−0.6 2.9 −2.0 −0.6

⎞

⎟⎟
⎟
⎠

, Ā1 =

⎛

⎜⎜
⎜
⎝

1.1 −0.6 −0.3 −0.1

−0.8 0.2 −1.1 2.8

−1.9 0.8 −1.1 2.0

−2.4 −3.1 −3.7 −0.1

⎞

⎟⎟
⎟
⎠

Ā2 =

⎛

⎜⎜
⎜
⎝

0.9 3.4 1.7 1.5

−3.4 −1.4 1.3 1.4

1.1 2.0 −1.5 −3.4

−0.4 0.5 2.3 1.5

⎞

⎟⎟
⎟
⎠

, Ā3 =

⎛

⎜⎜
⎜
⎝

−1.0 −1.4 −0.7 −0.7

2.1 0.6 −0.1 −2.1

0.4 −1.4 1.3 0.7

1.5 0.9 0.4 −0.5

⎞

⎟⎟
⎟
⎠

.

The lower bounds in (4.73) are:

γ̂PA
0 = 1.0191, γ̂PA

1 = 1.9680, γ̂PA
2 = 2.2238.

The number of scalar variables in the LMI feasibility test (4.23) for these lower
bounds is equal to 29, 199 and 751, respectively (see also Table 4.1).

From Theorem 4.12 we find that γ̂PA
2 is tight, i.e. γ̂PA

2 = γPA, indeed conditions
(4.76)–(4.75) hold with

p̂ =

⎛

⎜
⎝

0.0000

1.0000

0.0000

⎞

⎟
⎠ , x̂ =

⎛

⎜
⎜
⎜
⎝

0.7469

−0.3988

−0.2786

0.4534

⎞

⎟
⎟
⎟
⎠

in particular

spc
(
A(p̂, γ̂PA

2 )
)

= {0.0000±7.5856i,−5.6059±1.2008i}.

4.7.3 Example HPD-QLF-3

In this example we want to show how HPD-QLFs can be used to detect instability,
by using Theorem 4.7. Let us consider the system (4.1)–(4.3) with q = 3, n = 3 and
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A1 =

⎛

⎜
⎝

−2.5 0.0 −0.5

1.0 −3.0 1.0

1.0 1.0 −1.0

⎞

⎟
⎠ , A2 =

⎛

⎜
⎝

−0.5 0.0 1.0

0.0 −3.0 2.0

0.0 0.5 −1.0

⎞

⎟
⎠ ,

A3 =

⎛

⎜
⎝

−0.5 0.0 −0.5

0.0 −3.0 2.0

1.0 2.0 −1.0

⎞

⎟
⎠ .

Let us use an HPD-QLF with s = 1. We find that z∗ in (4.41) satisfies z∗ ≤ 0, and
that the set PM in (4.46) contains the vector p̂ = (0.0236,0.4710,0.5054)′. It turns
out that A(p̂) is not Hurwitz, indeed one has

spc(A(p̂)) = {0.0245,−0.6911,−3.8806}.

Therefore, the system is not robustly stable.

4.7.4 Example HPD-QLF-4

Here we consider the problem of studying robust H∞ performance. Let us consider
the system (4.47)–(4.48) with q = 2 and

A1 = Â0 + κÂ1, A2 = Â0 −κÂ1

where κ ∈ R and

Â0 =

⎛

⎜
⎝

−2.0 1.0 −1.0

2.5 −3.0 0.5

−1.0 1.0 −3.5

⎞

⎟
⎠ , Â1 =

⎛

⎜
⎝

−0.7 −0.5 −2.0

−0.8 0.0 0.0

1.5 2.0 2.4

⎞

⎟
⎠ .

The matrices Bi, Ci and Di are given by

Bi =

⎛

⎜
⎝

1

0

0

⎞

⎟
⎠ , Ci =

⎛

⎜
⎝

0

0

1

⎞

⎟
⎠

′

, Di = 0

for i = 1,2. Table 4.3 shows the upper bounds to the robust H∞ performance γH∞ ,
for some values of κ (the semi-length of the segment of matrices A(p)), provided by
Theorem 4.8 with s = 1 (linear dependence) and s = 2 (quadratic dependence). The
tightness of each computed upper bound is investigated through Theorem 4.10. As
it can be seen from Table 4.3, the upper bound γ̂H∞

2 always turns out to be tight; in
particular, the value of p̂ satisfying the condition of Theorem 4.10 is shown. Notice
that the maximum value of κ for which A(p) is Hurwitz is κ = 3.552, which has
been computed by exploiting Theorems 4.4 and 4.12.
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Table 4.3 Example HPD-QLF-4: upper bounds γ̂H∞
s for some values of s,κ

κ γ̂H∞
1 tight γ̂H∞

2 tight p̂ for γ̂H∞
2

1.6 1.5673 yes 1.5673 yes (0.1403,0.8597)′

1.8 1.5673 yes 1.5673 yes (0.1803,0.8197)′

2.0 1.6160 no 1.5673 yes (0.2122,0.7878)′

2.2 2.2608 yes 2.2608 yes (1.0000,0.0000)′

2.4 3.5001 yes 3.5001 yes (1.0000,0.0000)′

2.6 5.2545 no 5.2320 yes (1.0000,0.0000)′

2.8 7.9907 no 6.2009 yes (0.9979,0.0021)′

3.0 15.5001 no 6.2009 yes (0.9647,0.0353)′

3.2 398.5428 no 6.2009 yes (0.9356,0.0644)′

3.4 ∞ no 6.2009 yes (0.9100,0.0900)′

3.5 ∞ no 6.2009 yes (0.8984,0.1016)′

4.8 Notes and References

Robustness analysis of uncertain systems affected by time-invariant structured para-
metric uncertainty has been the subject of an intense research activity in the last four
decades, see for instance the books [139, 3, 5] and references therein. Unfortunately,
while for robust stability of polytopes of polynomials results have been found which
lead to a significant reduction in the computational complexity, this is not the case
for polytopes of matrices [54]. Therefore, sufficient conditions for robust stability
have been derived by exploiting Lyapunov stability theory.

Common quadratic Lyapunov functions have been largely employed, see e.g.
[79, 140, 112], but they are known to be conservative. In order to reduce conser-
vatism, parameter-dependent quadratic Lyapunov functions have been proposed, see
[3]. Among the very large number of contributions, we recall [56, 99, 58, 108, 120,
90, 59] for Lyapunov functions with linear dependence on the uncertain parame-
ters. Polynomial dependence on the uncertainty has been considered in [10, 11] for
systems with parameters constrained in a hypercube, and in [149, 124, 63] for sys-
tems with single parameter. Convex relaxations for Lyapunov functions with poly-
nomial parameter dependence have been devised by employing SOS-based tech-
niques [77, 126, 127, 128, 88], matrix dilation approaches [109, 125, 100], and
moments theory [60].

HPD-QLFs have been introduced in [42]. Most results reported in this chapter
have been presented in [40, 41, 24, 26]. Further results on robustness analysis via
HPD-QLFs can be found in [12, 103]. LMI-based robustness conditions based on
Lyapunov functions which are polynomial functions of the uncertain system matri-
ces, have been proposed in [102]. The conditions for robust stability and instability
based on Hurwitz determinants have been proposed in [23, 27].



Chapter 5
Robustness with Bounded-rate Time-varying
Uncertainty

This chapter addresses robustness analysis of polytopic systems affected by time-
varying uncertainties with known bounds on their variation rate. The analysis is
conducted by introducing the class of HPD-HLFs, i.e. Lyapunov functions that are
forms in both the state and the uncertain parameters, which includes the classes of
HPLFs and HPD-QLFs as special cases. It is shown that the construction of HPD-
HLFs for assessing robust stability as well as computing robust stability margins
can be tackled via convex optimizations constrained by LMIs through the use of the
SMR of matrix forms.

5.1 Polytopic Systems with Bounded-rate Time-varying
Uncertainty

Let us start by considering linear systems affected by linear dependent time-varying
parametric uncertainty with bounds on the variation rate.

Definition 5.1 (Bounded-rate Time-varying Polytopic System). Let us consider
the continuous-time system described by

ẋ(t) = A(p(t))x(t) (5.1)

where x(t) ∈ R
n is the state vector, A(p(t)) ∈ R

n×n is a linear function expressed as

A(p(t)) =
q

∑
i=1

pi(t)Ai

and A1, . . . ,Aq ∈ R
n×n are given matrices. The uncertain parameter vector p(t) ∈

R
q is supposed to be a continuously differentiable function of time, satisfying the

constraints {
p(t) ∈ϒq

ṗ(t) ∈ D
(5.2)

G. Chesi et al.: Homogeneous Polynomial Forms, LNCIS 390, pp. 133–153.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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where ϒq is the simplex in (1.68), ṗ(t) = d p(t)
dt is the time derivative of p(t), D is a

polytope given by

D = co
{

d(1), . . . ,d(h)
}

(5.3)

with d(1), . . . ,d(h) ∈ R
q given vectors such that
⎧
⎪⎨

⎪⎩

0q ∈ D
q

∑
i=1

d( j)
i = 0 ∀ j = 1, . . . ,h.

(5.4)

Then, the system (5.1)–(5.4) is called bounded-rate time-varying polytopic system.

Let us observe that the second constraint in (5.2) imposes bounds on the variation
rate of the uncertain vector p(t). These bounds are expressed via the set D that, for
reasons that will become clear in the sequel, is chosen as a polytope.

The first condition in (5.4) is included in order to consider arbitrarily slow varia-
tion rates. Instead, the second condition in (5.4) is necessary in order to ensure that
the system (5.1) is well posed. Indeed, since p(t) has to belong to ϒq according to
the first constraint in (5.2), one has that

q

∑
i=1

pi(t) = 1

which implies that
q

∑
i=1

ṗi(t) = 0.

Moreover, since ṗ(t) has to belong to D according to the second constraint in (5.2),
one has that

ṗ(t) =
h

∑
j=1

c j(t)d( j)

where c1(t), . . . ,ch(t) ∈ R are such that

⎧
⎪⎨

⎪⎩

h

∑
j=1

c j(t) = 1

c j(t) ≥ 0 ∀ j = 1, . . . ,h.

Hence:
q

∑
i=1

ṗi(t) =
h

∑
j=1

c j(t)
q

∑
i=1

d( j)
i = 0

which is ensured by the second condition in (5.4).
It is useful to observe that the model (5.1)–(5.4) contains as special cases the

models introduced in Chapters 3 and 4. Indeed:



5.1 Polytopic Systems with Bounded-rate Time-varying Uncertainty 135

1. the model (4.1)–(4.3) for time-invariant polytopic systems is obtained by select-
ing h = 1 and d(1) = 0q in (5.1)–(5.4);

2. the model (3.1)–(3.4) for time-varying polytopic system is obtained by selecting
q equal to the number of vertices r of the polytope P in (3.4), and A1, . . . ,Aq

equal to the matrices A(p(i)), . . . ,A(p(r)) in (3.2)–(3.4). In this case, D is given
by R

q.

A fundamental problem for bounded-rate time-varying polytopic systems is to
establish whether the uncertain system is robustly stable with respect to the admis-
sible uncertainty.

Definition 5.2 (Robust Stability for Bounded-rate Time-varying Polytopic Sys-
tem). The system (5.1)–(5.4) is said robustly stable if the following conditions hold:

1. ∀ε > 0 ∃δ > 0 : ‖x(0)‖ < δ ⇒‖x(t)‖ ≤ ε ∀t ≥ 0, ∀p(t) ∈ P, ∀ṗ(t) ∈ D ;
2. lim

t→∞
x(t) = 0n ∀x(0) ∈ R

n, ∀p(t) ∈ P, ∀ṗ(t) ∈ D .

Hence, the system (5.1)–(5.4) is robustly stable whenever its origin is a globally
asymptotically stable equilibrium point for all admissible parametric uncertainties.
In the sequel, the dependence of matrices and vectors on time t will be omitted for
conciseness unless specified otherwise.

In order to investigate robust stability of the system (5.1)–(5.4), we introduce the
following class of parameter-dependent Lyapunov functions.

Definition 5.3 (HPD-HLF). Let v : R
n ×ϒq → R be a function satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v(·, p) ∈ Ξn,2m ∀p ∈ϒq

v(x, ·) ∈ Ξq,s ∀x ∈ R
n

v(x, p) > 0 ∀x ∈ R
n
0, ∀p ∈ϒq

v̇(x, p) < 0 ∀x ∈ R
n
0, ∀p ∈ϒq, ∀ṗ ∈ D

(5.5)

where

v̇(x, p) =
dv(x, p)

dt

∣
∣
∣
∣
ẋ=A(p)x

. (5.6)

Then, v(x, p) is said an HPD-HLF of degree 2m in x ∈ R
n and degree s in p ∈ R

q

for the system (5.1)–(5.4).

Hence, HPD-HLFs are forms proving stability of the origin of the system (5.1)–
(5.4), for all admissible values of the uncertain vector and its time derivative.

A HPD-HLF can be written as

v(x, p) = ∑
i ∈ N

q : ∑q
k=1 ik = s

j ∈ N
n : ∑n

k=1 jk = 2m

ai, j p
ix j (5.7)

where ai, j ∈ R are coefficients. Such a class of Lyapunov functions can be seen as
a generalization of the HPLFs introduced in Chapter 3 for time-varying uncertainty,
and the HPD-QLFs introduced in Chapter 4 for time-invariant uncertainty. Indeed:
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1. HPLFs are recovered from HPD-HLFs with the choice s = 0;
2. HPD-QLFs are recovered from HPD-HLFs with the choice m = 1.

Let us also observe that affine parameter-dependent quadratic Lyapunov functions
are singled out for s = 1 and m = 1.

It is worth noticing that the choice of Lyapunov functions v(x, p) homogeneous in
the uncertain vector p is not conservative with respect to a more general polynomial
dependence. This is due to the fact that in the system (5.1)–(5.4), the uncertain
vector p belongs to the simplex. Indeed, the following result holds.

Lemma 5.1. Let v1(x, p) be a form of degree 2m in x for any fixed p, and a polyno-
mial of degree s in p for any fixed x, and let us suppose that v1(x, p) is a Lyapunov
function for the system (5.1)–(5.4), i.e.:

1. v1(0n; p) = 0 and v1(x, p) > 0 ∀x ∈ R
n
0, ∀p ∈ϒq;

2. v̇1(x, p) < 0 ∀x ∈ R
n
0, ∀p ∈ϒq, ∀ṗ ∈ D .

Then, there exists an HPD-HLF for the system (5.1)–(5.4).

Proof. Let us write v1(x, p) as

v1(x, p) = ∑
i ∈ N

q : ∑q
k=1 ik ≤ s

j ∈ N
n : ∑n

k=1 jk = 2m

a1,i, j p
ix j

for some coefficients a1,i, j ∈ R. Then, let us define the function

v(x, p) = ∑
i ∈ N

q : ∑q
k=1 ik ≤ s

j ∈ N
n : ∑n

k=1 jk = 2m

a1,i, j

(
q

∑
k=1

pk

)s−∑q
k=1 ik

pix j.

It follows that v(x, p) = v1(x, p) for all p ∈ϒq, and hence v(x, p) is an HPD-HLF for
the system (5.1)–(5.4). �

5.2 Robust Stability

This section investigates robust stability of the system (5.1)–(5.4) by using HPD-
HLFs and the results derived in Chapters 1–2.

5.2.1 Parametrization of HPD-HLFs

The aim is to find an HPD-HLF as in (5.7) for chosen degrees 2m and s. The condi-
tions to be satisfied are the positive definiteness of v(x, p) and negative definiteness
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of v̇(x, p) with respect to x, for all p ∈ϒq and ṗ ∈ D . In this respect, a parametriza-
tion of functions fulfilling this property is provided next.

Theorem 5.1. Let v(x, p) be a form in x for any fixed p and a form in p for any fixed
x. Then, v(x, p) is an HPD-HLF for the system (5.1)–(5.4) if and only if

{
v(x,sq(p)) > 0

v̇(x,sq(p)) < 0
∀x ∈ R

n
0, ∀p ∈ R

q
0, ∀ṗ ∈ D . (5.8)

Proof. By Theorem 1.17, it follows that (5.8) is equivalent to the conditions in (5.5),
and hence the theorem holds. �

Theorem 5.1 states that one can get rid of the constraint p ∈ϒq in the problem of
investigating positivity and negativity of v(x, p) and v̇(x, p), respectively, by consid-
ering these functions evaluated in sq(p) rather than in p.

Hence, let us first consider the first condition in (5.8) (the second condition will
be addressed in the next subsection). We want to find a suitable representation for
the function v(x,sq(p)), which is a form of degree 2m in x for any fixed p, and a
form of degree 2s in p for any fixed x. To this aim, we can exploit the SMR. Indeed,
let us introduce the notation

Ψ
(

S, p{s},x{m}
)

=
(

p{s} ⊗ x{m}
)′

S
(

p{s} ⊗ x{m}
)

(5.9)

for some S ∈ S
σ(q,s)σ(n,m). It follows that v(x,sq(p)) can be represented as

v(x,sq(p)) = Ψ
(

S, p{s},x{m}
)

(5.10)

for a suitable S ∈ S
σ(q,s)σ(n,m). Such a matrix S is said an SMR matrix of v(x,sq(p))

with respect to the vector p{s} ⊗ x{m}.
Clearly, the matrix S in (5.10) must have a special structure, in particular it has to

belong to the set

Sq,s,n,m =
{

S ∈ S
σ(q,s)σ(n,m) : Ψ

(
S, p{s},x{m}

)
does not contain

monomials pi1
1 . . . p

iq
q x j1

1 . . .x jn
n with any odd i1, . . . , iq

}
.

(5.11)

In fact, it is straightforward to verify that (5.10) holds for some symmetric matrix
S if and only if such a matrix S belongs to the set Sq,s,n,m. Hence, due to (5.10), one
has that

S > 0 ⇒ v(x,sq(p)) > 0 ∀x ∈ R
n
0, ∀p ∈ R

q
0.

Moreover, due to Theorem 5.1, one has that

S > 0 ⇒ v(x, p) > 0 ∀x ∈ R
n
0, ∀p ∈ϒq.
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In order to increase the degrees of freedom in the selection of v(x, p), one can
exploit the fact that the matrix S in (5.10) is not unique. Indeed, the following result
provides a characterization of the set Sq,s,n,m.

Theorem 5.2. The set Sq,s,n,m is a linear space of dimension

τ(q,s,n,m) =
1
2

σ(q,s)σ(n,m)(σ(q,s)σ(n,m)+ 1)

−(σ(q,2s)−σ(q,s))σ(n,2m).
(5.12)

Proof. If S1,S2 ∈ Sq,s,n,m, then a1S1 + a2S2 ∈ Sq,s,n,m for all a1,a2 ∈ R, hence im-
plying that Sq,s,n,m is a linear space. Now, let us consider (5.12), and let us observe
that 1

2 σ(q,s)σ(n,m)(σ(q,s)σ(n,m)+ 1) is the number of distinct entries of a sym-
metric matrix of size σ(q,s)σ(n,m), whereas (σ(q,2s)−σ(q,s))σ(n,2m) is the
total number of monomials in Ψ

(
s, p{s},x{m}) containing at least one odd power of

the variables p1, . . . , pq. The constraints obtained by annihilating these monomials
are linear and independent similarly to the proof of Theorem 1.2. Therefore, the di-
mension of Sq,s,n,m is given by τ(q,s,n,m). �

Table 5.1 reports τ(q,s,n,m) for some values of q,s,n,m.

Table 5.1 τ(q,s,n,m) for some values of q,s,n,m: (a) q = 2 and n = 2 ; (b) q = 2 and n = 3

(a) (b)

s = 1 s = 2 s = 3 s = 4

m = 1 7 15 27 43

m = 2 16 35 63 100

m = 3 29 64 115 182

m = 4 46 102 183 289

s = 1 s = 2 s = 3 s = 4

m = 1 15 33 60 96

m = 2 63 141 255 405

m = 3 182 409 736 1163

m = 4 420 945 1695 2670

Now, we ask how to generate HPD-HLF candidates: the following result, which
stems from the definition of Sq,s,n,m and Theorem 5.1, provides an answer to this
question.

Theorem 5.3. Let S(β ) be a linear parametrization of Sq,s,n,m in (5.11), with β ∈
R

τ(q,s,n,m). Let v(x, p;β ) be the function defined according to

v(x,sq(p);β ) = Ψ
(

S(β ), p{s},x{m}
)

. (5.13)

Then,

v(·; p) ∈ Ξn,2m and v(x; ·) ∈ Ξq,s ⇐⇒ ∃β : v(x, p) = v(x, p;β ).
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Moreover,

∃β : S(β ) > 0 ⇒ v(x, p;β ) > 0 ∀x ∈ R
n
0, ∀p ∈ϒq.

5.2.2 Robust Stability Condition

In the following, a sufficient condition for the solution of the robust stability problem
is provided. To this purpose, let us consider v(x, p;β ) defined according to (5.13)
and write it as

v̇(x, p;β ) =
dv(x, p;β )

dt

∣
∣
∣∣
ẋ=A(p)x

=
∂v(x, p;β )

∂x
A(p)x +

∂v(x, p;β )
∂ p

ṗ.

(5.14)

Define the function

w(x, p;β ) =
∂v(x, p;β )

∂x
A(p)x +

(
q

∑
i=1

pi

)2
∂v(x, p;β )

∂ p
ṗ. (5.15)

We have that w(x, p;β ) is a parametrized form of degree 2m in x and degree s+1 in
p. Moreover, it clearly follows that

v̇(x, p;β ) = w(x, p;β ) ∀p ∈ϒq. (5.16)

If we choose v(x, p;β ) as candidate Lyapunov function, condition (5.8) in Theorem
5.1 can be rewritten as

{
0 < v(x,sq(p);β )
0 > w(x,sq(p);β )

∀x ∈ R
n
0, ∀p ∈ R

q
0, ∀ṗ ∈ D . (5.17)

Let us consider now w(x,sq(p);β ). Let R1(β ) and R2(β , ṗ) be suitable symmet-
ric matrices such that

Ψ
(
R1(β ), p{s+1},x{m}) =

∂v(x,sq(p);β )
∂x

A(sq(p))x

Ψ
(
R2(β , ṗ), p{s+1},x{m}) =

∂v(x,σ ;β )
∂σ

∣
∣
∣
∣
σ=sq(p)

(
q

∑
i=1

p2
i

)2

ṗ.
(5.18)

We hence have that R1(β )+ R2(β , ṗ) is an SMR matrix of w(x,sq(p);β ) with re-
spect to the vector p{s+1} ⊗ x{m}, i.e.
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w(x,sq(p);β ) = Ψ
(

R1(β )+ R2(β , ṗ), p{s+1},x{m}
)

. (5.19)

Let us also observe that R1(β ) depends linearly on β , while R2(β , ṗ) is bilinear in
β and ṗ, i.e. it is linear in β for fixed ṗ and vice versa.

At this point we need to notice that the chosen SMR matrix R1(β )+ R2(β , ṗ) is
generally not unique. Indeed, one can also write

w(x,sq(p);β ) = Ψ
(

R1(β )+ R2(β , ṗ)+ L, p{s+1},x{m}
)

(5.20)

where L is any matrix belonging to the set Lq,s+1,n,m, where

Lq,s,n,m =
{

L ∈ S
σ(q,s)σ(n,m) : Ψ

(
L, p{s},x{m}

)
= 0 ∀x ∈ R

n, ∀p ∈ R
q
}

.

(5.21)
The next result characterizes Lq,s,n,m.

Theorem 5.4. The set Lq,s,n,m is a linear space of dimension

ω(q,s,n,m) =
1
2

σ(q,s)σ(n,m)(σ(q,s)σ(n,m)+ 1)−σ(q,2s)σ(n,2m). (5.22)

Proof. Analogous to the proof of Theorem 1.2. �

Table 5.1 reports ω(q,s,n,m) for some values of q,s,n,m. We are now ready to
give a condition for establishing whether the robust stability property in Definition
5.2 holds.

Table 5.2 ω(q,s,n,m) for some values of q,s,n,m: (a) q = 2 and n = 2 ; (b) q = 2 and n = 3

(a) (b)

s = 1 s = 2 s = 3 s = 4

m = 1 6 15 28 45

m = 2 20 43 75 116

m = 3 43 87 147 223

m = 4 75 147 244 366

s = 1 s = 2 s = 3 s = 4

m = 1 15 36 66 105

m = 2 96 195 330 501

m = 3 325 624 1023 1522

m = 4 810 1515 2445 3600

Theorem 5.5. The system (5.1)–(5.4) is robustly stable if there exist integers s ≥ 0
and m ≥ 1, β ∈ R

τ(q,s,n,m) and α(1), . . . ,α(h) ∈ R
ω(q,s+1,n,m) such that

{
0 < S(β )

0 > R1(β )+ R2(β ,d(i))+ L(α(i)), i = 1, . . . ,h
(5.23)

where S(β ) is a linear parametrization of Sq,s,n,m in (5.11), L(·) is a linear
parametrization of Lq,s+1,n,m in (5.21), and R1(β ), R2(β , ·) satisfy (5.18).
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Proof. Let β ,α(1), . . . ,α(h) be such that (5.23) holds. Let us define v(x, p;β ) as in
(5.13). From the first inequality of (5.23) and Theorem 5.3 one has that v(x, p;β ) > 0
for all x ∈ R

n
0 for all p ∈ϒq. Then, from (5.15), (5.18) and the second inequality in

(5.23) one has that

w(x,sq(p);β ) < 0 ∀x ∈ R
n
0, ∀p ∈ R

q
0, ∀ṗ ∈

{
d(1), . . . ,d(h)

}
.

Since w(x,sq(p);β ) is affine in ṗ, and being D the convex hull of d(1), . . . ,d(h), it
follows that

w(x,sq(p);β ) < 0 ∀x ∈ R
n
0, ∀p ∈ R

q
0, ∀ṗ ∈ D .

Hence, from Theorem 5.1 one can conclude that v(x, p;β ) is an HPD-HLF for the
system (5.1)–(5.4), which is therefore robustly stable. �

The total number of scalar variables involved in the LMI feasibility test (5.23) is
equal to

τ(q,s,n,m)+ hω(q,s+ 1,n,m).

Table 5.3 shows this quantity for some system dimensions.

Table 5.3 Total number of scalar parameters involved in (5.23) for some values of q,n,m,s:
(a) q = 2 and n = 2 ; (b) q = 2 and n = 3

(a) (b)

s = 1 s = 2 s = 3 s = 4

m = 1 19 45 83 133

m = 2 56 121 213 332

m = 3 115 238 409 628

m = 4 196 396 671 1021

s = 1 s = 2 s = 3 s = 4

m = 1 45 105 192 306

m = 2 255 531 915 1407

m = 3 832 1657 2782 4207

m = 4 2040 3975 6585 9870

Example 5.1. Let us consider the system (5.1)–(5.4) with

A1 =

(
−1 1

−2 −1

)

, A2 =

(
0 1

−2 −1

)

, d(1) =

(
1

−1

)

, d(2) =

(
−1

1

)

.

Notice that (5.4) holds. Let us choose m = 2 and s = 1. The matrices involved in the
robust stability condition (5.23) are
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S(β ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

β1 β2 β3 0 −β13 −β14 −β15

� β4 β5 β13 β14 −β16

� � β6 β15 0 β16

� � � β7 β8 β9

� � � � β10 β11

� � � � � β12

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

L(α) =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 −α1 0 −α2 −α3−α6 −α10 −α4−α11 −l1
� 2α1 0 α2 α3 −α7 α4 α5 −α9 −α14

� � 0 α6 α7 0 α8 α9 −α17

� � � 2α10 α11 α12 0 −α15 −α16−α18

� � � � 2α13 α14 α15 α16 −α19

� � � � � 2α17 α18 α19 0

� � � � � � 0 0 −α20

� � � � � � � 2α20 0

� � � � � � � � 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

l1 = α5 + α8 + α12 + α13

R1(β ) =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

r1 r2 r3 0 0 0 0 0 0

� 0 r4 0 0 0 0 0 0

� � r5 0 0 0 0 0 0

� � � r6 r7 r8 0 0 0

� � � � 0 r9 0 0 0

� � � � � r10 0 0 0

� � � � � � r11 r12 r13

� � � � � � � 0 r14

� � � � � � � � r15

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

R2(β ,d(i)) = (−1)i−1

⎛

⎜
⎝

1 0 0

� 2 0

� � 1

⎞

⎟
⎠⊗

⎛

⎜
⎝

r16 r17 r18

� 0 r19

� � r20

⎞

⎟
⎠

r1 = −4β1 −2β2 r2 = 2β1 −2β2 −2β3−2β4

r3 = 1.5β2 −2β3−2β4 −3β5 r4 = β3 + β4 −2β5−4β6

r5 = β5 −4β6 r6 = −2β2 −4β7−2β8

r7 = 2β1 −0.5β2−2β3 −2β4 + 2β7 −2β8−2β9 −2β10

r8 = 1.5β2 −β3 −β4 −3β5 + 1.5β8−2β9 −2β10−3β11

r9 = β3 + β4 −1.5β5−4β6 + β9 + β10 −2β11−4β12

r10 = β5 −4β6 + β11 −4β12
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r11 = −2β8 r12 = 2β7 −0.5β8−2β9 −2β10

r13 = 1.5β8 −β9 −β10 −3β11 r14 = β9 + β10 −1.5β11−4β12

r15 = β11 −4β12 r16 = β1 −β7

r17 = 0.5(β2 −β8) r18 = 0.5(β3 −β9 + β4 −β10)
r19 = 0.5(β5 −β11) r20 = β6 −β12.

The LMIs in (5.23) are feasible, and the found solution for β provides the HPD-HLF

v(x, p) = p1(1.0000x4
1 + 0.2936x3

1x2 + 1.0116x2
1x2

2 −0.2816x1x3
2 + 0.5812x4

2)
+p2(3.3074x4

1 + 4.2908x3
1x2 + 3.5611x2

1x2
2 + 0.6306x1x3

2 + 0.6776x4
2).

The following theorem states that the conservativeness of the condition of Theo-
rem 5.5 does not increase by suitably increasing m and s.

Theorem 5.6. If condition (5.23) of Theorem 5.5 holds for some integers m ≥ 1 and
s ≥ 0, then it also holds with m and s replaced by km and ks+ l respectively, for all
integers k ≥ 1 and l ≥ 0.

Proof. First, we prove the theorem for l = 0. Let β ,α(1), . . . ,α(h) be such that (5.23)
holds for given m and s, and let v(x, p;β ) be the corresponding HPD-HLF, defined
according to (5.13). We want to show that there exist β̃ , α̃(1), . . . , α̃(h) satisfying
(5.23) with m and s replaced by km and ks, respectively. Let us introduce the new
candidate Lyapunov function

ṽ(x, p) = v(x, p;β )k

which is a form of degree 2km in x and ks in p. One has that

ṽ(x,sq(p)) = Ψ
(
S(β ), p{s},x{m})k

= Ψ
(
X1, p{ks},x{km})

where
X1 = T ′

1S(β )[k]T1

and T1 is the matrix satisfying the relation

(
p{s} ⊗ x{m}

)[k]
= T1

(
p{ks} ⊗ x{km}

)

for all x, p. Let us observe that X1 ∈ Sq,s,n,m, as ṽ(x,sq(p)) does not contain mono-
mials in p with odd powers. Moreover, X1 > 0 because S(β ) > 0 and T1 is full
column rank. Hence, there exists β̃ such that

ṽ(x,sq(p)) = Ψ
(

S(β̃), p{ks},x{km}
)

with S(β̃ ) = X1, and therefore the first inequality in (5.23) holds.
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Let us consider now the time derivative in each vertex d(i) of the polytope D . By
following the same reasoning as in (5.14)-(5.19), one gets

˙̃v(x,sq(p)) = Ψ
(

R1(β̃ )+ R2(β̃ ,d(i)), p{ks+1},x{km}
)
. (5.24)

On the other hand, by using properties of Kronecker’s products, one has that

˙̃v(x,sq(p)) = kΨ
(
S(β ), p{s},x{m})k−1Ψ

(
M(i), p{s+1},x{m}

)

= k
((

p{s} ⊗ x{m})′ S(β )
(

p{s} ⊗ x{m})
)k−1

Ψ
(

M(i), p{s+1},x{m}
)

= k
(

p{s} ⊗ x{m})[k−1]′
S(β )[k−1](p{s} ⊗ x{m})[k−1]Ψ

(
M(i), p{s+1},x{m}

)

= k
((

p{s} ⊗ x{m})[k−1]⊗ (p{s+1} ⊗ x{m})
)′(

S(β )[k−1]⊗M(i)
)

((
p{s} ⊗ x{m})[k−1] ⊗ (p{s+1} ⊗ x{m})

)

=Ψ
(

Y (i)
1 , p{ks+1},x{km}

)

(5.25)
where

M(i) = R1(β )+ R2(β ,d(i))+ L(α(i))

Y (i)
1 = kT ′

2

(
S(β )[k−1] ⊗M(i)

)
T2

and T2 is the matrix satisfying the relation

(
p{s} ⊗ x{m}

)[k−1]⊗
(

p{s+1} ⊗ x{m}
)

= T2

(
p{ks+1} ⊗ x{km}

)

for all x, p. Hence, we have Y (i)
1 < 0 because S(β )> 0, M(i) < 0 and T2 is full column

rank. Therefore, by (5.24) and (5.25) there exists α̃(i) satisfying

R1(β̃ )+ R2(β̃ ,d(i))+ L(α̃(i)) = Y (i)
1 , i = 1, . . . ,h

and the second inequality in (5.23) holds for every vertex d(i).
Now, we prove that the theorem holds also for l > 0. This can be done by showing

that, if the condition of Theorem 5.5 is satisfied for m̃ and s̃, then it is also satisfied
for m̃ and s̃ + 1. Let β ,α(1), . . . ,α(h) be the parameter vectors satisfying (5.23) for
given m̃ and s̃, and be v(x, p;β ) the corresponding HPD-HLF. Let us define the new
Lyapunov function

ṽ(x, p) = v(x, p;β )

(
q

∑
i=1

pi

)

which is clearly a form of degree 2m̃ in x and s̃+ 1 in p. It follows that
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ṽ(x,sq(p)) = Ψ
(

S(β ), p{s̃},x{m̃}
)
(

q

∑
i=1

p2
i

)

= Ψ
(
X2, p{s̃+1},x{m̃})

where X2 = U ′
1 (S(β )⊗ Iq)U1 and Ur is the matrix satisfying the relationship

p{s̃+r−1} ⊗ x{m̃} ⊗ p = Ur

(
p{s̃+r} ⊗ x{m̃}

)

for all x, p. Let us observe that X2 ∈ Sq,s̃+1,n,m, since ṽ(x,sq(p)) does not contain
monomials in p with odd powers, and X2 > 0 because S(β )> 0 and U1 is full column
rank. Hence, there exists β̃ satisfying the first inequality of (5.23).

Finally, let us consider the time derivative in the vertex d(i). By using the second
condition in (5.4), one has

˙̃v(x,sq(p)) = Ψ
(

M(i), p{s̃+1},x{m̃}
)

p′p + ṽ(x,sq(p))
q

∑
j=1

d(i)
j

= Ψ
(

M(i), p{s̃+1},x{m̃}
)

p′p

= Ψ
(

Y (i)
2 , p{s̃+2},x{m̃}

)

where Y (i)
2 = U ′

2(M
(i)⊗ Iq)U2. We have that Y (i)

2 < 0, because M(i) < 0 and U2 is full
column rank. Therefore, there exists α̃(i) satisfying the second inequality of (5.23)
in the vertex d(i). This concludes the proof. �

Several remarks can be made on the results provided by Theorems 5.5 and 5.6.
The condition of Theorem 5.5 is based on the parametrizations (5.10)–(5.11)

and (5.20)–(5.21), and exploit the representation of the Lyapunov function and its
time derivative via their SMR matrices. Since all possible SMR matrices of these
two functions are considered by the introduced parametrization, the only source
of conservatism in the resulting condition (5.23) originates from the gap between
positive forms and SOS forms.

Theorem 5.6 guarantees that the conservatism of condition (5.23) in Theorem 5.5
does not increase, when one increases s for a fixed m. However, one can get more
conservative results, if m is increased for a fixed s ≥ 1 (see Example HPD-HLF-2 in
Section 5.4).

Finally, it can be observed that conservatism is generally reduced by suitably
increasing both m and s. This is guaranteed by Theorem 5.6, if both m and s are
increased by the same factor (see also Example HPD-HLF-1 in Section 5.4). This
confirms that it is useful to increase the degree of HPD-HLFs in both the state vari-
ables and the parameters when considering bounded-rate time-varying parametric
uncertainty. Notice that this is not the case if the time derivative of the parame-
ter p(t) is unbounded, because in that case it is necessary to employ a common
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Lyapunov function (i.e., parameter-independent, which corresponds to the case
s = 0), as done in Chapter 3.

5.3 Robust Stability Margin

Hereafter we consider the problem of computing the robust stability margin defined
as the maximum scaling factor of the polytope D for which robust stability is still
guaranteed. Indeed, let us introduce

D(γ) = co
{

γd(1), . . . ,γd(h)
}

. (5.26)

We have the following definition.

Definition 5.4 (Maximum Variation Rate). Let us define

γVR = sup
{

γ ∈ R : (5.1) is robustly stable for all p(t) ∈ϒq and ṗ(t) ∈ D(γ)
}

.
(5.27)

Then, γVR is called maximum variation rate for the system (5.1).

The aim is to investigate γVR via HPD-HLFs. In particular, we define the maxi-
mum variation rate guaranteed by the class of HPD-HLFs of degree 2m in the state
and degree s in the parameters as follows.

Definition 5.5 ((2m,s)-HPD-HLF Maximum Variation Rate). Let us define

γVR
2m,s = sup {γ ∈ R : ∃v(x, p) HPD-HLF of degree 2m in x and s in p ,

for system (5.1), with p(t) ∈ϒq, ṗ(t) ∈ D(γ)
}

.
(5.28)

Then, γVR
2m,s is called (2m,s)-HPD-HLF maximum variation rate for the system (5.1).

Clearly, γVR
2m,s is a lower bound of the sought maximum variation rate for all pos-

sible m,s, indeed
γV R

2m,s ≤ γVR ∀m ≥ 1, ∀s ≥ 0. (5.29)

The following result provides a strategy for computing a lower bound of γVR
2m,s.

Theorem 5.7. Let s ≥ 0 and m ≥ 1 be integers, S(β ) a linear parametrization of
Sq,s,n,m in (5.11), and L(·) a linear parametrization of Lq,s+1,n,m in (5.21). Let us
define

γ̂V R
2m,s =

1
z∗

(5.30)

where z∗ is the solution of the GEVP
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z∗ = inf
z∈R, β∈Rτ(q,s,n,m), α(0),...,α(h)∈Rω(q,s+1,n,m)

z

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 < S(β )

0 < −R1(β )−L(α(0))

0 < −z
(

R1(β )+ L(α(0))
)
−R2(β ,d(i))−L(α(i)),

i = 1, . . . ,h.

(5.31)

Then, γ̂VR
2m,s ≤ γVR

2m,s.

Proof. Similarly to the proof of Theorem 5.5, the first constraint in (5.31) provides
v(x, p;β ) > 0 for all x ∈ R

n
0 for all p ∈ϒq. Then, one has

v̇(x,sq(p);β )| ṗ=z−1d(i) = Ψ
(

R1(β )+ z−1R2(β ,d(i)), p{s+1},x{m}
)

= z−1Ψ
(

zR1(β )+ R2(β ,d(i)), p{s+1},x{m}
)

.

Since L(α(0)), . . . ,L(α(h)) ∈ Lq,s+1,n,m, it follows that

v̇(x,sq(p);β )| ṗ=z−1d(i)

= z−1Ψ
(

z
(

R1(β )+ L(α(0))
)
−R2(β ,d(i))−L(α(i)), p{s+1},x{m}

)

and hence the third constraint in (5.31) ensures that

v̇(x,sq(p);β )| ṗ=z−1d(i) < 0 ∀x ∈ R
n
0, ∀p ∈ R

q
0.

From Theorem 1.17 one can hence conclude that

v̇(x, p;β ) < 0 ∀x ∈ R
n
0, ∀p ∈ϒq, ∀ṗ ∈ z−1D

and therefore γ̂VR
2m,s ≤ γVR

2m,s. �

Theorem 5.7 states that a lower bound to γVR
2m,s can be computed through the

GEVP (5.31), which is a quasi-convex optimization problem. This is therefore a
lower bound also to the actual maximum variation rate γVR due to (5.29). It is worth
observing that the second inequality in (5.31), which is required in order to guar-
antee that the optimization is a GEVP, does not reduce the set of feasible α since
0q ∈ D .

5.4 Examples

In this section we present some examples concerning robustness of uncertain sys-
tems with time-varying structured parametric uncertainty and bounded variation
rate.
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5.4.1 Example HPD-HLF-1

Let us consider the following system, which is quite popular in the literature ([148,
146, 1, 34, 93]),

ẋ(t) =

(
0 1

−2− r(t) −1

)

x(t), 0 ≤ r(t) ≤ k, |ṙ(t)| ≤ γ. (5.32)

We want to compute the maximum value of γ such that (5.32) is asymptotically
stable for all admissible functions r(t), for a given value of k.

Let us start by rewriting the system (5.32) as in (5.1)-(5.4), for γ = 1. This can be
done by selecting

A1 =

(
0 1

−2 −1

)

, A2 =

(
0 1

−2− k −1

)

d(1) =
1
k

(
1

−1

)

, d(2) =
1
k

(
−1

1

)

.

The problem boils down to the computation of the maximum variation rate γVR in
(5.27). Lower bounds of γV R can be computed by using HPD-HLFs and Theorem
5.7. Figures 5.1a–b and 5.2a show the results obtained with m = 1,2,3 and s =
0,1,2,3 for some values of k.

We also observe that robust stability against unbounded ṗ(t) can be guaranteed
for k = 6.8649 by using an HPD-HLF with m = 10 and s = 0, i.e. an HPLF (see
Example HPLF-1 in Chapter 3).

As one can see, the conservativeness of the condition of Theorem 5.5 does not
increase by increasing s for a fixed m, but may increase by increasing m for a fixed
s. This is clearly shown in Figure 5.2b which reports the lower bounds for s = 1 and
m = 1,2,3.

5.4.2 Example HPD-HLF-2

In order to show another feature of HPD-HLFs, let us consider system (5.32) for
k = 110 and ṙ(t) ≡ 0, which is obviously asymptotically stable. Its robust stability
can be ensured by using Theorem 5.5 with m = 1 and s = 1, in particular an HPD-
HLF is v(x, p) = x′(p1V1 + p2V2)x with

V1 =

(
1 0.1429

� 0.4286

)

, V2 =

(
47.6085 0.0206

� 0.4325

)

.

However, robust stability cannot be established by any HPD-HLF with m = 2 and
s = 1. Indeed, there does not even exist any linearly parameter-dependent quartic
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Fig. 5.1 Example HPD-HLF-1, lower bound γ̂V R
2m,s versus parameter bound k for s = 0,1,2,3:

(a) m = 1; (b) m = 2
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Fig. 5.2 Example HPD-HLF-1, lower bound γ̂V R
2m,s versus parameter bound k: (a) m = 3 for

s = 0,1,2,3; (b) s = 1 for m = 1,2,3
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Lyapunov function simultaneously verifying the stability of the matrix pencil A(p)
at the points

p(1) =

(
1

0

)

, p(2) =
1
2

(
1

1

)

, p(3) =

(
0

1

)

.

In fact, let us write such a candidate Lyapunov function as

v(x, p) = x{2}′ (p1Ṽ1 + p2Ṽ2
)

x{2}

where Ṽ1,Ṽ2 ∈ R
3×3 are symmetric matrices. Then, v(x, p) should satisfy the fol-

lowing conditions:
{

0 < v(x, p)
0 > v̇(x, p)

∀x �= 0n, ∀p ∈
{

p(1), p(2), p(3)
}

(5.33)

where

v̇(x, p) = x{2}′R(p)x{2}

R(p) = p2
1 he
(
Ṽ1A#

1

)
+ p1 p2 he

(
Ṽ1A#

2 + Ṽ2A#
1

)
+ p2

2 he
(
Ṽ2A#

2

)

being A#
i ∈ R

3×3 the extended matrix of Ai defined by (3.8) for m = 2. For a fixed
p, v(x, p) and v̇(x, p) are forms of degree 4 in two variables (x1 and x2). Such forms
are positive if and only if they admit a positive definite SMR matrix according
to Theorem 2.4. Therefore, (5.33) is satisfied if and only if there exist Ṽ1,Ṽ2 and
α(1),α(2),α(3) ∈ R such that

⎧
⎪⎨

⎪⎩

0 < Ṽi ∀i = 1,2

0 > he
(
ṼiA#

i

)
+ L(α(i)) ∀i = 1,2

0 > he
((

Ṽ1 + Ṽ2
)(

A#
1 + A#

2

))
+ L(α(3))

(5.34)

where L(·) is a linear parametrization of L2,4 in (1.15). Since it can be checked
that the set of LMIs (5.34) is infeasible, one can conclude that the sought linearly
parameter-dependent quartic Lyapunov function satisfying (5.33) does not exist.

5.4.3 Example HPD-HLF-3

Let us consider the following system, borrowed from [93, 14],

ẋ(t) =

((
8 −9

120 −18

)

+

(
−108 9

−120 17

)

p(t)

)

x(t), 0 ≤ p(t) ≤ 1, |ṗ(t)| ≤ γ.

We want to find the maximum value of γ such that the system is asymptotically
stable for all admissible functions p(t).
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The problem requires to compute the maximum variation rate γVR in (5.27). By
using Theorem 5.7 for m = 2 and s = 0 we find

γ̂VR = +∞ = γVR.

On the other hand, for m = 1 and s = 1 we find γ̂VR = 63.25. This clearly shows that
homogenous polynomial Lyapunov functions (even with no parameter dependence)
can provide better results than affine parameter dependent quadratic Lyapunov
functions.

5.4.4 Example HPD-HLF-4

Let us consider the system

ẋ(t) = A(p(t),k),x(t), p(t) ∈ϒq, ṗ(t) ∈ D

where

A(p,k) =
3

∑
i=1

piĀi(k), Āi(k) = Ā0 + kĀi

and the matrices Ā0, . . . , Ā3 are chosen as

Ā0 =

⎛

⎜⎜
⎜
⎝

−2.4 −0.6 −1.7 3.1

0.7 −2.1 −2.6 −3.6

0.5 2.4 −5 −1.6

−0.6 2.9 −2 −0.6

⎞

⎟⎟
⎟
⎠

, Ā1 =

⎛

⎜⎜
⎜
⎝

1.1 −0.6 −0.3 −0.1

−0.8 0.2 −1.1 2.8

−1.9 0.8 −1.1 2

−2.4 −3.1 −3.7 −0.1

⎞

⎟⎟
⎟
⎠

Ā2 =

⎛

⎜
⎜
⎜
⎝

0.9 3.4 1.7 1.5

−3.4 −1.4 1.3 1.4

1.1 2 −1.5 −3.4

−0.4 0.5 2.3 1.5

⎞

⎟
⎟
⎟
⎠

, Ā3 =

⎛

⎜
⎜
⎜
⎝

−1 −1.4 −0.7 −0.7

2.1 0.6 −0.1 −2.1

0.4 −1.4 1.3 0.7

1.5 0.9 0.4 −0.5

⎞

⎟
⎟
⎟
⎠

.

The set D in given by (5.3) with

d(1) =

⎛

⎜
⎝

1

0

−1

⎞

⎟
⎠ , d(2) =

⎛

⎜
⎝

−1

0

1

⎞

⎟
⎠ .

Notice that this corresponds to the constraints

|ṗ1| ≤ 1, ṗ2 = 0, |ṗ3| ≤ 1, ṗ1 + ṗ3 = 0
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i.e., one time-invariant parameter and two time-varying parameters on the unit sim-
plex. The aim is to compute the maximum variation rate γVR in (5.27) for different
values of k.

The lower bound γ̂VR
2m,s provided by HPD-HLFs with m = s = 1 (348 LMI param-

eters) are plotted against k in Figure 5.3. Figure 5.3 reports also the curve corre-
sponding to HPD-HLFs with m = 1, s = 2 (1290 LMI parameters), which confirms
the benefits of increasing the degree s of the form in the uncertain parameter p.
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Fig. 5.3 Example HPD-HLF-4, lower bound γ̂VR
2m,s versus k, for m = 1 and s = 1,2

5.5 Notes and References

HPD-HLFs have been introduced in [37]. The main robust stability results in this
chapter have been presented in [43]. The model (5.1)–(5.4) for systems affected by
bounded-rate time-varying uncertainty is the same considered in [68], and it can be
seen as an extension of the models adopted in previous works such as [65] and [94].

Robust stability conditions for polytopic systems affected by time-varying un-
certainties with bounds on the variation rate, have been derived by several authors.
In [65], affine parameter-dependent quadratic Lyapunov functions have been em-
ployed, while in [94, 11, 145, 68, 12] different relaxations based on quadratic
Lyapunov functions with polynomial dependence on the parameters have been
proposed.



Chapter 6
Distance Problems with Applications to Robust
Control

This chapter presents further results for robustness analysis of uncertain systems
based on forms. It is shown how the problem of computing the euclidean distance
from a point to a surface described by a polynomial equation, can be solved via LMI
feasibility tests. This problem has numerous applications in systems and control
theory. In this respect, we consider the computation of the l2 parametric stability
margin of systems affected by time-invariant uncertainty.

6.1 Quadratic Distance Problems

Let us start by introducing the following definition.

Definition 6.1 (QDP). Let f (x) be a polynomial of degree m, and let Q ∈ R
n×n be

a positive definite matrix. Then, the optimization problem

cmin = inf
x∈Rn

x′Qx

s.t. f (x) = 0
(6.1)

is called a QDP.

From a geometric point of view, a QDP consists of the computation of the mini-
mum weighted euclidean distance of the origin from a surface defined by the poly-
nomial constraint f (x) = 0. Equivalently, it amounts to find the largest ellipsoid
centered in the origin, with shape matrix Q, contained in the region bounded by
f (x) = 0.

Without loss of generality, we can assume

f (0n) �= 0. (6.2)

Indeed, if the origin is feasible for the constraint f (x) = 0, then the solution of the
QDP (6.1) is trivially cmin = 0 and one can solve the problem by simply checking

G. Chesi et al.: Homogeneous Polynomial Forms, LNCIS 390, pp. 155–175.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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whether f (0n) = 0 or not. Let us observe that, being f (x) a continuous function,
(6.2) implies that we can assume without loss of generality that f (x) is locally pos-
itive definite, i.e.

∃δ > 0 : f (x) > 0 ∀x ∈ R
n, ‖x‖ < δ . (6.3)

Obviously, if f (x) is locally negative definite, one can simply redefine f (x) as − f (x)
without altering the solution of (6.1).

Notice that QDPs are in general nonconvex optimization problems. This means
that they may admit different locally optimal solutions, as shown in the following
example.

Example 6.1. Let us consider problem (6.1) with

f (x) = 1 + x1− x2
2 + 2x2

1x2

Q = I2.

Figure 6.1 shows the feasible set corresponding to the constraint f (x) = 0, the glob-
ally optimal solution corresponding to the smallest circle, and a locally optimal
solution corresponding to the largest circle.

2 1.5 1 0.5 0 0.5 1 1.5 2
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1.5

1

0.5

0
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1.5

2

x1

x 2

Fig. 6.1 Example 6.1: constraint f (x) = 0 (solid line), global minimum (inner dashed circle),
and local minimum (outer dashed circle)
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In the following, it will be shown how QDPs can be solved by exploiting the
results of Section 1.7 on positive polynomials on ellipsoids. Let B(Q,c) be the
ellipsoid defined in (1.60), and observe that, for sufficiently small c, assumption
(6.3) ensures that B(Q,c) does not intersect the constraint set {x : f (x) = 0}. This
suggests that the solution of a QDP can be computed via a one-parameter family of
“cutting” tests. Specifically, the following lemma holds.

Lemma 6.1. The solution cmin of problem (6.1) is given by

cmin = sup {ĉ ∈ R : f (x) > 0 ∀x ∈ B(Q,c), ∀c ∈ (0, ĉ]} . (6.4)

Proof. Due to assumption (6.3), f (x) > 0 for all x ∈ B(Q,c), for sufficiently small
c. Moreover, since the constraint set f (x) = 0 does not intersect ellipsoids B(Q,c)
with c < cmin, it follows that f (x) is strictly positive on these level surfaces. �

Lemma 6.1 asserts that cmin can be found by solving a one-parameter family of
positivity tests on polynomial f (x), for x belonging to a given ellipsoid B(Q,c).
Notice that the constrained positivity condition in (6.4) is exactly the same as in
(1.59). By using Theorem 1.15 one can get rid of the set B(Q,c) and obtain cmin by
performing positivity tests on unconstrained forms w(x;c), i.e.

cmin = sup {ĉ ∈ R : w(x;c) > 0 ∀x ∈ R
n
0, ∀c ∈ (0, ĉ]} (6.5)

where w(x;c) takes on either one of the following expressions:

1. if f (x) is a generic polynomial (not even),

w(x;c) =
m

∑
i=0

f̄2i(x)
(

x′Qx
c

)m−i

(6.6)

where f̄2i ∈ Ξn,2i satisfy

f (x) f (−x) =
m

∑
i=0

f̄2i(x); (6.7)

2. if f (x) is an even polynomial,

w(x;c) =
m

∑
i=0

f2i(x)
(

x′Qx
c

)m−i

(6.8)

where f2i ∈ Ξn,2i satisfy

f (x) =
m

∑
i=0

f2i(x). (6.9)

Then, by using Theorem 1.16 one can obtain a lower bound on cmin via LMI feasi-
bility tests as described in the following result.
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Theorem 6.1. Let us define

ĉmin = sup {ĉ : either condition 1 or condition 2 in

Theorem 1.16 holds, ∀c ∈ (0, ĉ]} .
(6.10)

Then, ĉmin ≤ cmin.

Proof. First notice that (1.61) holds for all c < cmin, otherwise cmin is not the solution
of (6.1). Hence, the treatment in Section 1.7 can be applied: in particular, conditions
1 or 2 in Theorem 1.16 guarantee that f (x) > 0 for all x ∈ B(Q,c), for a given c.
Therefore, the result follows by Lemma 6.1. �

Theorem 6.1 suggests that a lower bound to the minimum in (6.1) can be ap-
proximated within the desired precision by solving a one-parameter family of LMI
feasibility tests, generated by performing a sweeping with respect to the parameter
c. Indeed, let us make the following assumption

∃ε > 0 : ∀c̃ ∈ (cmin,cmin + ε), ∃x ∈ B(Q, c̃) such that f (x) < 0

i.e., we assume that the constraint f (x) takes negative values on ellipsoids B(Q, c̃),
with c̃ in a right neighborhood of cmin. Then, by performing a sweeping on c with
step smaller than ε , the one-parameter family of LMI feasibility tests resulting from
(6.10) provides a guaranteed lower bound to cmin, according to Theorem 6.1.

Example 6.2. Let us consider the QDP in Example 6.1. We have that f (x) is a poly-
nomial of degree m = 3, hence we use condition 1 in Theorem 1.16 and we find

ĉmin = 0.4901.

Figure 6.2 shows the corresponding circle x2
1 + x2

2 = ĉmin. Let us observe also that
this curve is tangent to the constraint f (x) = 0, hence implying that the found lower
bound is tight. Figure 6.3 shows the constraint f (x) f (−x) = 0 used to generate the
parametrized form w(x;c) according to (6.6)–(6.7).

6.2 Special Cases and Extensions

In this section, we consider a special class of QDPs and we extend the proposed
techniques to maximum distance problems.
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Fig. 6.2 Example 6.2: constraint f (x) = 0 (solid line) and set B(Q, ĉmin) (dashed line)
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Fig. 6.3 Example 6.2: constraint f (x) f (−x) = 0 (solid line) and set B(Q, ĉmin) (dashed line)
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6.2.1 The Two-form Case

A special case of the QDP (6.1) occurs when the constraint function f (x) is given
by the sum of two forms of different degrees. Indeed, in this case the lower bound
ĉmin given by (6.10) can be computed through a single LMI problem.

Before proceeding, let us observe that the case in which f (x) is itself a form does
not need to be considered. In fact, since (6.3) holds, it directly follows that f (x) > 0
for all x, and hence the constraint in QDP (6.1) does not admit any feasible solution.

Let us reformulate the problem as in (6.1), by expressing f (x) as

{
f (x) = h2a(x)+ h2a+b(x)
a ≥ 0, b > 0

(6.11)

where a,b are integers, h2a ∈ Ξn,2a, and h2a+b ∈ Ξn,2a+b. It is assumed that h2a(x) is
positive definite. Clearly, there is no loss of generality in introducing this assumption
since (6.3) holds and h2a(x) contains the monomials of lowest degree of f (x).

Let us first consider the case in which b is odd.

Theorem 6.2. Suppose that f (x) is as in (6.11) with b odd, and let us denote the
degree of f (x) by m = 2a+b. Let W1 and W2 +L(α) be respectively an SMR matrix
of h2a(x)2 (x′Qx)b and a complete SMR matrix of h2a+b(x)2, built with respect to the
same power vector x{m}, i.e.

h2a(x)2 (x′Qx
)b = x{m}′W1x{m} (6.12)

h2a+b(x)2 = x{m}′ (W2 + L(α))x{m}. (6.13)

Let us define the EVP

z∗ = inf
z∈R, α∈Rω(n,m)

z

s.t. zW1 −W2 −L(α) > 0.
(6.14)

Then, ĉmin in (6.10) is given by

ĉmin = z∗−
1
b . (6.15)

Proof. We first observe that the form w(x;c) in (6.6) boils down to

w(x;c) = h2a(x)2
(

x′Qx
c

)b

−h2a+b(x)2.

Hence, it follows that the condition λ (w(·;c)) > 0 in Theorem 1.16 holds if and
only if there exists α such that
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W1

cb −W2 −L(α) > 0

and therefore one gets (6.14)–(6.15). �

For the case in which b is even we have the following result.

Theorem 6.3. Suppose that f (x) is as in (6.11) with b even, and let us denote the
degree of f (x) by 2m = 2a+b. Let W1 and W2 +L(α) be respectively an SMR matrix

of h2a(x)(x′Qx)
b
2 and a complete SMR matrix of h2a+b(x), built with respect to the

same power vector x{m}, i.e.

h2a(x)
(
x′Qx
) b

2 = x{m}′W1x{m} (6.16)

h2a+b(x) = x{m}′ (W2 + L(α))x{m}. (6.17)

Let us define the EVP

z∗ = inf
z∈R, α∈Rω(n,m)

z

s.t. zW1 +W2 + L(α) > 0.
(6.18)

Then, ĉmin in (6.10) is given by

ĉmin = z∗−
2
b . (6.19)

Proof. Similar to the proof of Theorem 6.2 by observing that the form w(x;c) in
(6.8) boils down to

w(x;c) = h2a(x)
(

x′Qx
c

) b
2

+ h2a+b(x) (6.20)

and that the condition λ (w(·;c)) > 0 in Theorem 1.16 holds if and only if there
exists α such that

W1

c
b
2

+W2 + L(α) > 0.

Therefore, ĉmin is given (6.18)–(6.19). �

Example 6.3. Let us consider problem (6.1) with

f (x) = 1 + x3
1−2x2

1x2 + 3x1x2
2 −4x3

2

Q =

(
1 0.5

� 2

)

.

Observe that f (x) is as in (6.11) for
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a = 0, b = 3

h2a(x) = 1

h2a+b(x) = x3
1 −2x2

1x2 + 3x1x2
2 −4x3

2.

We solve the EVP (6.14) and find from (6.15) the solution

ĉmin = 0.4219.

Figure 6.4 shows the constraint f (x) = 0 and the ellipse B(Q, ĉmin). Observe that
the found lower bound is tight.
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Fig. 6.4 Example 6.3: constraint f (x) = 0 (solid line) and set B(Q, ĉmin) (dashed line)

6.2.2 Maximum QDPs

All the treatment described in the previous sections for addressing QDPs, can be
extended to QDPs where the target is computing the maximum rather than the min-
imum of the function x′Qx, i.e.
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cmax = sup
x∈Rn

x′Qx

s.t. f (x) = 0
(6.21)

where Q is a positive definite matrix and f (x) is a polynomial of degree m.
From a geometric point of view, problem (6.21) consists of computing the small-

est ellipsoid centered in the origin, with shape matrix Q, that contains the surface
defined by the polynomial constraint f (x) = 0.

Without loss of generality, we can assume that f (x) satisfies the following defi-
niteness property:

∃δ > 0 : f (x) > 0 ∀x ∈ R
n, ‖x‖ > δ−1. (6.22)

In fact, if this assumption does not hold, then either one of the following situations
occur:

1. for all δ > 0 there exists x ∈R
n such that ‖x‖> δ−1 and f (x) = 0, which implies

that the solution of (6.21) is cmax = ∞ ;
2. there exists δ > 0 such that f (x) < 0 for all x∈R

n with ‖x‖> δ−1, which implies
that one can redefine f (x) as − f (x) in order to fulfill (6.22) without altering the
solution of (6.21).

By using the same arguments as in Section 6.1, one obtains

cmax = inf {ĉ ∈ R : f (x) > 0 ∀x ∈ B(Q,c), ∀c ∈ [ĉ,∞)} . (6.23)

The following result provides the counterpart of Theorem 6.1 for the maximum QDP
(6.21), and shows how an upper bound of cmax can be obtained via LMI feasibility
tests.

Theorem 6.4. Let us define

ĉmax = inf {ĉ : either condition 1 or condition 2 of

Theorem 1.16 holds, ∀c ∈ [ĉ,∞)} .
(6.24)

Then, ĉmax ≥ cmax.

Example 6.4. Let us consider problem (6.21) with

f (x) = −1− x2
1 + 2x1x2 + x2

2 + x4
1 + x4

2

Q =

(
2 −0.5

� 1

)

.

We have that f (x) is an even polynomial of degree m = 4, hence we use condition 2
in Theorem 1.16 and we find

ĉmax = 6.2320.
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Figure 6.5 shows the corresponding ellipse B(Q, ĉmax) and the constraint f (x) = 0.
It can be observed that the curve is tangent to the constraint f (x) = 0, hence implying
that the found upper bound is tight.

3 2 1 0 1 2 3
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1

0

1

2

3

x1

x 2

Fig. 6.5 Example 6.4: constraint f (x) = 0 (solid line) and B(Q, ĉmax) (dashed line)

Also for maximum QDPs it is possible to simplify the computation of the sought
bound if f (x) is given by the sum of two forms of different degrees. Indeed, let us
suppose that {

f (x) = h2a−b(x)+ h2a(x)
2a−b ≥ 0, b > 0

(6.25)

where a,b are integers, h2a−b ∈ Ξn,2a−b, and h2a ∈ Ξn,2a. It is assumed that h2a(x) is
positive definite. Again, there is no loss of generality in introducing this assumption
since (6.22) holds and h2a(x) contains the monomials of highest degree of f (x).

Depending on the parity of b, we have the following two results, whose proof are
analogous to those of Theorems 6.2 and 6.3.

Theorem 6.5. Suppose that f (x) is as in (6.25) with b odd, and let us denote the
degree of f (x) by m = 2a. Let W1 and W2 + L(α) be respectively an SMR matrix of
h2a(x)2 and a complete SMR matrix of h2a−b(x)2 (x′Qx)b, built with respect to the
same power vector x{m}, i.e.
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h2a(x)2 = x{m}′W1x{m}

h2a−b(x)2 (x′Qx)b = x{m}′ (W2 + L(α))x{m}.

Let us define the EVP

z∗ = inf
z∈R, α∈Rω(n,m)

z

s.t. zW1 −W2 −L(α) > 0.
(6.26)

Then, ĉmax in (6.24) is given by

ĉmax = z∗
1
b . (6.27)

Theorem 6.6. Suppose that f (x) is as in (6.25) with b even, and let us denote the
degree of f (x) by 2m = 2a. Let W1 and W2 + L(α) be respectively an SMR matrix

of h2a(x) and a complete SMR matrix of h2a−b(x)(x′Qx)
b
2 , built with respect to the

same power vector x{m}, i.e.

h2a(x) = x{m}′W1x{m}

h2a−b(x)(x′Qx)
b
2 = x{m}′ (W2 + L(α))x{m}.

Let us define the EVP

z∗ = inf
z∈R, α∈Rω(n,m)

z

s.t. zW1 +W2 + L(α) > 0.
(6.28)

Then, ĉmax in (6.24) is given by

ĉmax = z∗
2
b . (6.29)

Example 6.5. Let us consider problem (6.21) with

f (x) = −x2
1 + x1x2 + 2x2

2 + 2x4
1 − x3

1x2 + 3x2
1x2

2 − x1x3
2 + x4

2

Q = I2.

Observe that f (x) is as in (6.11) for

a = 2, b = 2

h2a(x) = −x2
1 + x1x2 + 2x2

2

h2a+b(x) = 2x4
1 − x3

1x2 + 3x2
1x2

2 − x1x3
2 + x4

2.

From (6.29) we obtain the solution
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ĉmax = 0.5119.

Figure 6.6 shows the constraint f (x) = 0 and the circle B(I2, ĉmax), from which we
can deduce that the found upper bound is tight.
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Fig. 6.6 Example 6.5: constraint f (x) = 0 (solid line) and B(I2, ĉmax) (dashed line)

6.3 Conservatism Analysis

As shown in the previous section, a lower bound of cmin in (6.1) and an upper bound
of cmax in (6.21) can be computed by solving LMI problems. Clearly, an important
question concerns the possibility of establishing whether these bounds are tight.

6.3.1 a posteriori Test for Tightness

The following result allows one to devise a procedure for testing tightness of the
lower bound ĉmin for the solution of the QDP (6.1), provided either by Theorem 6.1
or Theorems 6.2 and 6.3.
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Theorem 6.7. Let ĉmin be defined as in (6.10) and W ∗ be a maximal SMR matrix of
w(x; ĉmin). Then, ĉmin = cmin if and only if

∃x̂ ∈ R
n
0 : x̂{m} ∈ ker(W ∗). (6.30)

Moreover, if (6.30) holds, an optimal point of problem (6.1) is given by

xmin = γ x̂

√
ĉmin

x̂′Qx̂
(6.31)

where γ ∈ {−1,1} is such that

f (xmin) = 0. (6.32)

Lastly, if w(x;c) is given by (6.8)–(6.9), then (6.31) holds with γ = 1.

Proof. (Necessity) Let us assume that ĉmin = cmin and let x∗ ∈R
n be an optimal point

of (6.1). Then,
x∗′Qx∗ = ĉmin

f (x∗) = 0

and hence
w(x∗; ĉmin) = 0.

Since w(x; ĉmin) is SOS and W ∗ is a maximal SMR matrix of w(x; ĉmin), it follows
that W ∗ is positive semidefinite according to Definition 2.2. Hence, x̂ = x∗ satisfies
(6.30). Moreover, (6.31) holds with xmin = x∗ and γ = 1.

(Sufficiency) Let us assume there exists x̂ ∈ R
n
0 such that x̂{m} ∈ ker(W ∗), and let

us define

x̃ = x̂

√
ĉmin

x̂′Qx̂
.

We have by construction x̃′Qx̃ = ĉmin and

w(x̃; ĉmin) = 0.

If w(x;c) is defined according to (6.6)–(6.7), this implies that

f (x̃) f (−x̃) = 0.

By observing that xmin in (6.31) satisfies

xmin = γ x̃

one has that (6.32) hold with γ ∈ {−1,1}, which implies that xmin is feasible. Being
ĉmin ≤ cmin by construction, we can conclude that ĉmin = cmin and (6.31) holds.
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If w(x;c) is defined according to (6.8)–(6.9), one has that w(x;c) = f (x) for all
x ∈ B(Q,c), and hence f (x̃) = 0. Therefore, the same reasoning adopted above im-
plies that (6.31) holds with γ = 1. �

Theorem 6.7 provides a necessary and sufficient condition for establishing tight-
ness of the computed lower bound. This condition consists of the existence of a
nonzero vector x̂ such that x̂{m} belongs to the linear space ker(W ∗). Checking
whether this condition is satisfied can be done by adopting the technique described
in Section 1.9. Moreover, if such a vector x̂ exists, then the simple scaling in (6.31)
provides an optimal point for the problem (6.1).

A similar result holds for testing tightness of the upper bound ĉmax defined for
the maximum QDP (6.21).

Let us show how the optimality test provided in Theorem 6.7 can be used in the
previous examples.

Example 6.6. Let us consider the QDP in Example 6.1 with the lower bound ĉmin =
0.4901 found in Example 6.2. We find that ker(W ∗) is a linear space of dimension
1 for which a base is given by the vector

u = (0.6929,0.5235,0.3956,0.2989)′.

Since the power vector x{m} has been chosen as

x{m} = (x3
1,x

2
1x2,x1x2

2,x
3
2)

′

we find that (6.30) holds with, e.g.,

x̂ =

(
1.0000

0.7556

)

.

This implies that the found lower bound ĉmin is tight, by Theorem 6.7. Moreover,
from (6.31) we have that

xmin = γ

(
0.5586

0.4220

)

is an optimal point of (6.1) for some γ ∈ {−1,1}. In order to select the value of γ ,
we evaluate f (xmin) and we find that (6.32) holds with γ = −1. In Figure 6.2 xmin is
indicated by the square mark.

6.3.2 a priori Conditions for Tightness

It has been shown that the tightness of the lower bound ĉmin for the QDP (6.1) and
upper bound ĉmax for (6.21) can be checked a posteriori through a numerical test.
However, there exist structural conditions on the polynomial f (x) ensuring a priori
the tightness of the bounds. These conditions will be detailed in the following.
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Theorem 6.8. Let us suppose that (n,2m) ∈ E for the QDP in Definition 6.1, with
E given by (2.5). Then, the bounds ĉmin and ĉmax are tight, i.e.

ĉmin = cmin, ĉmax = cmax. (6.33)

Proof. Let (n,2m) ∈ E . Then, from Theorem 2.4, for any given c one has that

w(x;c) > 0 ∀x ∈ R
n
0 ⇐⇒ λ (w(·;c)) > 0

because w(x;c) ∈ Ξn,2m. Therefore, (6.10) is equivalent to (6.4), and (6.24) is equiv-
alent to (6.23). �

Example 6.7. For all the QDPs considered in Examples 6.1–6.5, one has (n,2m) ∈
E , which implies that the bounds achievable by the described techniques are known
a priori to be tight, by Theorem 6.8.

6.3.3 An Example of Nontight Lower Bound

In the following, an example is presented for which the lower bound ĉmin does not
coincide with the solution of the QDP. Let us consider problem (6.1) with

f (x) = 1 +
(
10gMot(x)− (x2

1 + x2
2 + x2

3)
3
)

Q = I3

where gMot(x) ∈ Ξ3,6 is the Motzkin form in (2.1). It can be easily verified that the
resulting form w(x;c) is given by

w(x;c) = 10gMot(x)+
1− c3

c3 ‖x‖6.

Since gMot(x) is positive semidefinite, from (6.4) one has cmin ≥ 1. Moreover, f (x) =
0 for x = 1√

3
(1,1,1)′. Therefore, the solution of (6.1) is cmin = 1. However,

w(x;1) = 10gMot(x)

which implies that w(x;1) is PNS because gMot(x) is itself PNS. Hence, ĉmin < cmin

from Theorem 6.1. Indeed, it can be checked that ĉmin = 0.9851.
Let us observe that the lower bound provided by the described approach can be

made tight for the considered QDP by suitably increasing the degree of the polyno-
mial f (x). In fact, as explained in Theorem 2.1, each PNS form can be expressed
as the ratio of two SOS forms, which means that non-conservatism can be achieved
by multiplying f (x) by a suitable SOS form. Indeed, let us define the equivalent
polynomial constraint
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f̃ (x) = f (x)(x2
1 + x2

2 + x2
3 + 1).

In this case, we find that ĉmin = 1, i.e. the lower bound is tight. This is due to the
fact that the corresponding form w̃(x;c) satisfies

w̃(x;1) = 20gMot(x)(x2
1 + x2

2 + x2
3)

and it turns out to be an SOS form.

6.4 l2 Parametric Stability Margin

The parametric stability margin is an important measure of the robustness of control
systems affected by time-invariant parametric uncertainty. Roughly speaking, such
margin identifies the largest region of a given shape in the parameter space, where
stability of the nominal control system is preserved. For linear systems it turns out
that, when such a shape is defined in terms of an euclidean norm, the computation
of the parametric stability margin amounts to solving a QDP.

6.4.1 Continuous-time Systems

Let us consider the continuous-time time-invariant uncertain system

ẋ(t) = A(p)x(t) (6.34)

where x(t) ∈ R
n is the state vector, p ∈ R

q is an uncertain parameter vector, and
A(p) has the form

A(p) = A0 +
q

∑
i=1

piAi. (6.35)

The matrix A0 ∈ R
n×n represents the nominal control system and is assumed to be

Hurwitz, while the matrices Ai ∈ R
n×n, i = 1, . . . ,q, model the uncertainty structure.

We introduce the following definition.

Definition 6.2 (l2 Parametric Stability Margin). Let us define

γPQ = sup {γ ∈ R : A(p) is Hurwitz ∀p : ‖p‖ ≤ γ} . (6.36)

Then, γPQ is said l2 parametric stability margin of the system (6.34)–(6.35).

In order to compute γPQ, let us observe that

0 ∈ spc(A(p)) ⇐⇒ det(A(p)) = 0.

Moreover,
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A(p) is Hurwitz ⇒ h̄n−1(A(p)) �= 0

and
∃ω ∈ R0 : jω ∈ spc(A(p)) ⇒ h̄n−1(A(p)) = 0

where h̄n−1(A(p)) is the (n− 1)-th Hurwitz determinant of the matrix A(p) (see
Appendix A.2 for details). Hence, it is straightforward to verify that γPQ can be
computed as follows

γPQ = min {√γI ,
√

γII} (6.37)

where
γI = inf

p∈Rq
‖p‖2

s.t. det(A(p)) = 0
(6.38)

and
γII = inf

p∈Rq
‖p‖2

s.t. h̄n−1 (A(p)) = 0.
(6.39)

Problem (6.38) (resp. (6.39)) is a QDP, once that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cmin = γI (resp. γII)
x = p

Q = Iq

f (x) = det(A(p)) (resp. h̄n−1(A(p)))
n = q

m = mI (resp. mII)

(6.40)

where mI (resp. mII) denotes the degree of det(A(p)) (resp. h̄n−1 (A(p))). In partic-
ular, one has

mI ≤ n (6.41)

mII ≤ n(n−1)
2

. (6.42)

Example 6.8. Let us consider the problem of computing γPQ for the matrix

A(p) =

⎛

⎜
⎝

−1 p1 1

1 p1 −2 p2

0 1 p2 −1

⎞

⎟
⎠ .

Let us consider first γI . We have that the constraint of the QDP is defined by

det(A(p)) = −1 + 2p1 + 3p2 −2p1p2.

From (6.10) we find the lower bound γ̂I = 0.0897, shown in Figure 6.7. Observe
that this lower bound is tight, and it must be according to Theorem 6.8. Theorem
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6.7 provides the optimal point

pmin =

(
0.1429

0.2631

)

.

Now, let us consider γII . We have that the constraint of the QDP is defined by the
polynomial

h̄n−1(A(p)) = −19 + 15p1 + 18p2−3p2
1 −9p1p2 −4p2

2 + p2
1p2 + p1 p2

2.

From (6.10) we find the lower bound γ̂II = 1.9586, shown in Figure 6.8. Also this
lower bound is tight in accordance with Theorem 6.8. The optimal point provided
by Theorem 6.7 is

pmin =

(
0.8333

1.1244

)

.

Lastly, from (6.37) we conclude that γPQ = γI = 0.0897.
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Fig. 6.7 Example 6.8: constraint det(A(p)) = 0 (solid line) and global minimum γ̂I (dashed
line)
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3 2 1 0 1 2 3
3

2

1

0

1

2

3

p1

p 2

Fig. 6.8 Example 6.8: constraint h̄n−1(A(p)) = 0 (solid line) and global minimum γ̂II (dashed
line)

6.4.2 Discrete-time Systems

Let us consider the discrete-time time-invariant uncertain system

x(t + 1) = A(p)x(t) (6.43)

where t ∈ N, x(t) ∈ R
n is the state vector, and p ∈ R

q is an uncertain parameter
vector. The matrix A(p) has the form in (6.35) for some matrices A0, . . . ,Aq ∈ R

n×n.
The l2 parametric stability margin for the system (6.43) is defined as follows.

Definition 6.3 (l2 Parametric Stability Margin for Discrete-time Systems). Let
us define

γPQ = sup {γ ∈ R : A(p) is Schur, ∀p : ‖p‖ ≤ γ} . (6.44)

Then, γPQ is said l2 parametric stability margin of the system (6.43).

In order to compute γPQ, let us observe that

±1 ∈ spc(A(p)) ⇐⇒ det(In ∓A(p)) = 0.

Moreover,
A(p) is Schur ⇒ det(Id −Q(A(p))) �= 0 (6.45)
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and
∃ω ∈ (0,π) : e jω ∈ spc(A(p)) ⇒ det(Id −Q(A(p))) = 0

where d = 1
2 n(n− 1) and Q(A(p)) is the matrix defined according to (A.5) in Ap-

pendix A.2. Hence, it is straightforward to verify that γPQ can be computed as fol-
lows:

γPQ = min {√γI ,
√

γII ,
√

γIII} (6.46)

where
γI = inf

p∈Rq
‖p‖2

s.t. det(In −A(p)) = 0
(6.47)

γII = inf
p∈Rq

‖p‖2

s.t. det(In + A(p)) = 0
(6.48)

and
γIII = inf

p∈Rq
‖p‖2

s.t. det(Id −Q(A(p))) = 0.
(6.49)

Problems (6.47)–(6.49) are QDPs, once that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cmin = γI (resp. γII) (resp. γIII)
x = p

Q = In

f (x) = det(In −A(p)) (resp. det(In + A(p))) (resp. det(Id −Q(A(p))))
n = q

m = mI (resp. mII) (resp. mIII)

where mI , mII and mIII denote the degrees of det(In −A(p)), det(In + A(p)) and
det(Id −Q(A(p))), respectively. In particular, one has

mI ≤ n

mII ≤ n

mIII ≤ 2d.

6.5 Notes and References

The solution of QDPs via LMI feasibility tests was first proposed in [51, 50]. The
main results reported in this chapter have been presented in [52, 36].

A number of problems relevant to system analysis and design can be cast as
QDPs. Just to mention a few: the estimation of the domain of attraction of equilibria
of nonlinear systems via quadratic Lyapunov functions [67]; the D-stability of real
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matrices [76], which plays a key role in the analysis of singularly perturbed systems
[84]; the computation of the region of validity of optimal linear H∞ controllers for
nonlinear systems [141]; the characterization of the frequency plots of an ellipsoidal
family of rational functions [31].

The l2 stability margin of a control system affected by parametric uncertainty is
a key problem in robust control [5]. The approach based on Hurwitz determinants,
exploited in Section 4.5, is quite popular in the literature, see e.g. [136, 143] and
references therein.

Other LMI-based relaxations for the solution of QDPs, and of more general
classes of polynomial optimization problems, have been formulated by exploiting
Stengle’s Positivstellensatz (see e.g. [133, 106, 137, 89]), the theory of moments
[85, 74], and the slack variable approach [110]. An equivalence result between two
different relaxations for QDPs has been given in [66].



Appendix A
Basic Tools

A.1 LMI Optimizations

We provide some basic notions about the convex optimization problems considered
in the book. The interested reader is referred to [14, 15] for an extensive treatment.

Definition A.1 (Linear Matrix Function). The function A(X) : R
n×m → R

p×q is a
linear matrix function if

A(αX + βY ) = αA(X)+ β A(Y) ∀X ,Y ∈ R
n×m ∀α,β ∈ R. (A.1)

Moreover, if A(X) = A(X)′, then A(X) is said a symmetric linear matrix function.

Definition A.2 (LMI). Let A(X) : R
n×m → S

p be a symmetric linear matrix func-
tion, and let A0 ∈ S

p be a constant symmetric matrix. Then, the constraint

A(X)+ A0 ∗ 0

is an LMI for any symbol ∗ in the set {>,<,≥,≤}.

Definition A.3 (LMI Feasibility Set). For i = 1, . . . ,k let Ai(X) : R
n×m → S

pi be a
symmetric linear matrix function, and let A0,i ∈ S

pi be a constant symmetric matrix.
Let us define the set of LMIs

Ai(X)+ A0,i ∗ 0 ∀i = 1, . . . ,k. (A.2)

Then, the set {
X ∈ R

n×m : Ai(X)+ A0,i ∗ 0 ∀i = 1, . . . ,k
}

is the feasibility set of the set of LMIs (A.2).

The feasibility set of a set of LMIs is a convex set [14].
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Definition A.4 (LMI Feasibility Test). For i = 1, . . . ,k let Ai(X) : R
n×m → S

pi be a
symmetric linear matrix function, and let A0,i ∈ S

pi be a constant symmetric matrix.
The problem of establishing whether

∃X ∈ R
n×m : Ai(X)+ A0,i ∗ 0 ∀i = 1, . . . ,k (A.3)

is an LMI feasibility test.

Solving an LMI feasibility test amounts to solving a convex optimization problem
[14].

Definition A.5 (EVP). For i = 1, . . . ,k let Ai(X) : R
n×m → S

pi be a symmetric
linear matrix function, and let A0,i ∈ S

pi be a constant symmetric matrix. Let
c(X) : R

n×m → R be a linear function. The optimization problem

inf
X

c(X)

s.t. Ai(X)+ A0,i ∗ 0 ∀i = 1, . . . ,k

is an EVP.

An EVP is a convex optimization problem [14]. EVPs are also known as semidef-
inite programs [142].

Definition A.6 (GEVP). For i = 1, . . . ,k let Ai(X),Bi(X) : R
n×m → S

pi and Ci(X) :
R

n×m → S
qi be symmetric linear matrix functions, and let A0,i,B0,i ∈ S

pi and C0,i ∈
S

qi be constant symmetric matrices. The optimization problem

inf
t,X

t

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t (Bi(X)+ B0,i)−Ai(X)−A0,i > 0

Bi(X)+ B0,i > 0

Ci(X)+C0,i ∗ 0

i = 1, . . . ,k

is a GEVP.

A GEVP is a quasiconvex optimization problem [14].

A.2 Hurwitz/Schur Matrices

Definition A.7 (Hurwitz Matrix). A matrix A ∈ R
n×n is said Hurwitz if all eigen-

values of A lie on the left open complex half-plane, i.e.

re(λ ) < 0 ∀λ ∈ spc(A).
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Definition A.8 (Schur Matrix). A matrix A ∈ R
n×n is said Schur if all eigenvalues

of A lie inside the open unit disc of the complex plane, i.e.

|λ | < 1 ∀λ ∈ spc(A).

Definition A.9 (Hurwitz Determinant). Let us consider A ∈ R
n×n. The Hurwitz

determinants of A are defined as

h̄1(A) = pn−1

h̄2(A) = det

(
pn−1 pn−3

1 pn−2

)

h̄3(A) = det

⎛

⎜
⎝

pn−1 pn−3 pn−5

1 pn−2 pn−4

0 pn−1 pn−3

⎞

⎟
⎠

...

h̄n(A) = det

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

pn−1 pn−3 pn−5 . . . 0

1 pn−2 pn−4 . . . 0

0 pn−1 pn−3 . . . 0

0 1 pn−2 . . . 0
...

0 . . . p0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

where p0, . . . , pn−1 ∈ R are the coefficients of the characteristic polynomial p(x) of
A, which is given by

p(x) = det(xIn −A) = xn +
n−1

∑
i=0

pix
i.

In particular, h̄i(A) is the i-th Hurwitz determinant of A.

As explained in [64], it turns out that h̄n−1(A) is a polynomial in the elements of
A of degree

d =
1
2

n(n−1).

Moreover,
h̄n−1(A) = (−1)d ∏

i=1,...,n−1
j=i+1,...,n

(λi(A)+ λ j(A)) (A.4)

where λ1(A), . . . ,λn(A) ∈ C are the eigenvalues of A.
Let us consider A ∈ R

n×n. Let us define the matrix
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Q(A) =

⎛

⎜
⎜
⎜
⎜
⎝

q(p1, p1) q(p1, p2) · · · q(p1, pd)
q(p2, p1) q(p2, p2) · · · q(p2, pd)

...
...

. . .
...

q(pd, p1) q(pd, p2) · · · q(pd, pd)

⎞

⎟
⎟
⎟
⎟
⎠

(A.5)

where p1, p2, . . . , pd are the pairs

(1,2),(1,3), . . . ,(1,n),(2,3),(2,4), . . . ,(2,n),(3,4), . . . ,(n−1,n),

q(pi, p j) is the function

q(pi, p j) = det

(
Ax1,y1 Ax1,y2

Ax2,y1 Ax2,y2

)

, pi = (x1,x2), p j = (y1,y2),

and

d =
1
2

n(n−1).

It turns out

spc(Q(A)) =
{

z = λi(A)λ j(A) : i = 1, . . . ,n−1, j = i+ 1, . . . ,n
}

where λ1(A), . . . ,λn(A) ∈ C are the eigenvalues of A (see e.g. [4]).



Appendix B
SMR Algorithms

Let ind(a(x),x{m}) be the position of the monomial a(x) in x{m}. Tables B.1–B.4
provide algorithms for the construction of the matrices involved in the complete
SMR of forms (1.17) and the complete SMR of matrix forms (1.41).

Table B.1 Algorithm 1: computation of an SMR matrix H in (1.17)

Step Instruction

1 choose x{m} and x{2m} as in (1.7)
2 let g ∈ R

σ(n,2m) be such that h(x) = g′x{2m}
3 set H = 0σ(n,m)×σ(n,m)
4 for i = 1, . . . ,σ(n,m) and j = i, . . . ,σ(n,m)
5 set a = ind

(
(x{m})i(x{m}) j,x{2m}

)
and Hi, j = Hi, j +ga

6 endfor
7 set H = 0.5he(H)

Table B.2 Algorithm 2: computation of an SMR matrix H for matrix forms in (1.41)

Step Instruction

1 choose x{m} and x{2m} as in (1.7)
2 set H = 0rσ(n,m)×rσ(n,m)
3 for i = 1, . . . ,r and j = 1, . . . ,r
4 let G be an SMR matrix of Mi, j(x) with respect to x{m} (e.g., built via Algorithm 1)
5 for k = 1, . . . ,σ(n,m) and l = 1, . . . ,σ(n,m)
6 set a = r(k−1)+ i and b = r(l −1)+ j
7 set Ha,b = Ha,b +Gk,l
8 endfor
9 endfor
10 set H = 0.5he(H)
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Table B.3 Algorithm 3: computation of an SMR parametrization L(α) in (1.17)

Step Instruction

1 choose x{m} and x{2m} as in (1.7)
2 set A = 0σ(n,2m)×3 and b = 0 and define the variable α ∈ R

ω(n,m)

3 for i = 1, . . . ,σ(n,m) and j = i, . . . ,σ(n,m)

4 set a = ind
(
(x{m})i(x{m}) j,x{2m}

)
and Aa,1 = Aa,1 +1

5 if Aa,1 = 1
6 set Aa,2 = i and Aa,3 = j
7 else
8 set b = b+1 and G = 0σ(n,m)×σ(n,m) and Gi, j = 1
9 set k = Aa,2 and l = Aa,3 and Gk,l = Gk,l −1
10 set L(α) = L(α)+αbG
11 endif
12 endfor
13 set L(α) = 0.5he(L(α))

Table B.4 Algorithm 4: computation of an SMR parametrization L(α) for matrix forms in
(1.41)

Step Instruction

1 choose x{m} and x{2m} as in (1.7)
2 set A = 0σ(n,2m)σ(r,2)×3 and b = 0 and define the variable α ∈ R

ω(n,m,r)

3 for i = 1, . . . ,σ(n,m) and j = i, . . . ,r
4 set c = r(i−1)+ j
5 for k = i, . . . ,σ(n,m) and l = max{1, j + r(i−k)}, . . . ,r
6 set d = r(k−1)+ l and f = ind

(
(x{m})i(x{m})k,x{2m}

)

7 set g = ind
(

y jyl ,y
{2}
)

and a = f σ(r,2)+g and Aa,1 = Aa,1 +1

8 if Aa,1 = 1
9 set Aa,2 = c and Aa,3 = d
10 else
11 set b = b+1 and G = 0rσ(n,m)×rσ(n,m) and Gc,d = 1
12 set h = Aa,2 and p = Aa,3 and Gh,p = Gh,p −1
13 set L(α) = L(α)+αbG
14 endif
15 endfor
16 endfor
17 set L(α) = 0.5he(L(α))
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neria of the Università di Firenze in 1997. He is in the Editorial Board of the IEEE
Conference on Decision and Control and other international conferences, moreover
he is Associate Editor of Automatica, Associate Editor of the IEEE Transactions on
Automatic Control, and Guest Editor of the Special Issue on Positive Polynomials
in Control of the IEEE Transactions on Automatic Control. He is the first author
of more than 90 technical publications. He is the Founder and Chair of the Tech-
nical Committee on Systems with Uncertainty of the IEEE Control Systems Soci-
ety. His research interests include computer vision, nonlinear systems, optimization,
robotics, robust control, and systems biology.

Dr. Graziano Chesi
Department of Electrical and Electronic Engineering
University of Hong Kong
Pokfulam Road, Hong Kong
Phone: +852-22194362
Fax: +852-25598738
Email: chesi@eee.hku.hk
Homepage: http://www.eee.hku.hk/˜chesi

chesi@eee.hku.hk
http://www.eee.hku.hk/~chesi


192 Authors’ Biography

Andrea Garulli

Andrea Garulli was born in Bologna, Italy, in 1968. He received the Laurea in Elec-
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