Chapter 9

Way-point Tracking Control of Underactuated
Ships

This chapter presents state feedback and output feedback controllers that force un-
deractuated ships to globally ultimately track a straight line under environmental
disturbances induced by waves, wind, and ocean currents. When there are no en-
vironmental disturbances, the controllers are able to drive the heading angle and
cross-tracking error to zero asymptotically. Based on the backstepping technique
and several technical lemmas introduced for a nonlinear system with nonvanishing
disturbances, a full state feedback controller is first designed. An output feedback
controller is then developed by using a nonlinear observer, which globally exponen-
tially estimates the unmeasured sway and yaw velocities from the measured sway
displacement and the measured yaw angle.

9.1 Control Objective

In addition to the assumptions made in Section 3.4.1.1, we assume that the surge
velocity is controlled by the main propulsion control system. As such, the resulting
mathematical model of the underactuated ship moving in sway and yaw is rewritten
as

y = usin(y) + cos(y¥)v,
v=r

__muu dr

dyi i 1
= v=Y o] T o+ 1y (0). .1
. 11122 naa
i>2
. (my1—ma)u da3
)y =———V— ——7F
ms3 ms3

maa naa

dyi - 1 1
=Y Tt — 1+ ——Twr (1),
o ms3 ms3 ms3

where y, v, ¥, r, and u are sway displacement, sway velocity, yaw angle, yaw veloc-

ity, and forward speed controlled by the main thruster control system, respectively.
Without loss of generality, we assume that the forward speed u is positive and if
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214 9 Way-point Tracking Control of Underactuated Ships

time-varying, has a bounded derivative 1(¢), i.e., 0 < Upin < U(t) < Umax < 00 and
[u(t)] < M < oo, YVt > 0. The positive constant terms m;;, 1 < j < 3 denote the
ship’s inertia including added mass. The positive constant terms d»5, d33, dy; and
dyi,i > 2 represent the hydrodynamic damping in sway and yaw. The bounded
time-varying terms, Ty (¢) and ty,, (¢), are the environmental disturbance moments
induced by wave, wind, and ocean current with an assumption that |ty ()] <
Twymax < 00 and [Ty, (7)| < Twrmax < 00. In this chapter, we study two control
objectives. The first is full state feedback. In this case, we assume that all states
vy, v, ¥, and r are available for feedback. In the design of an output feedback con-
troller, only sway and yaw displacements are measurable. For both full state and
output feedback cases, we design a control law, 7, that forces the ship to track a lin-
ear course with ultimate boundedness, i.e. the tracking errors are globally ultimately
bounded. When there are no environmental disturbances, the sway displacement and
velocity, y and v, yaw angle and velocity, ¥ and r, asymptotically converge to zero.

9.2 Full-state Feedback

9.2.1 Control Design

We define the following coordinate transformation

k
z1 = ¥ +arcsin (ﬁ) , 9.2)

where k is a positive constant to be selected later. Note that the convergence of z;
and y to zero implies that of . Upon application of the coordinate transformation
(9.2), the ship dynamics (9.1) are rewritten as

kuy v u (sin(zy) — (cos(zy) — D)ky)

y=- + +
VI ky)? 1+ (ky)? V1+(ky)?
v((cos(z1)—1)+kysin(zy))
V1+(ky)?
D = _I’I’l11ur — @v_z & |v|i_1 v+ wav(t)a
ma2 maa =2 ma2 ma2
. k2uy kv ku (sin(z1) — (cos(z1) — Dky)
a=r- Szt 213/2 2)3/2 +
(1+(ky)?) (1+(ky)?) 1+ (ky)*)
kv ((cos(zy) —1) +kysin(zy))
(1+ (ky)?)*" ’
_ d d,; : 1 1
g mu—mapu - dss S I T b ——1, (). (93)
ms3 ms3 ms3 mss ms3

i>2
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Therefore the problem of stabilizing (9.1) at the origin becomes that of stabilizing
(9.3) at the origin. The structure of the model (9.3) suggests that we design the
control t, in two stages by applying the popular backstepping technique. At the first
step, we design an intermediate control r; for r and at the second step the actual
control 7, will be designed to eliminate the error between rz and r.

Step 1
Define
Zp=r—rg, 9.4)

where r; is an intermediate control designed as

k2uy kv
(+ky>? 1+ Gy
ku (sin(z1) — (cos(z1) — Dky) kv ((cos(z1) —1) 4+ kysin(zy))
U+hy2” (1+ (ky)?)?"?

ra =—kiz1 +

. 093

where k; is a positive constant to be selected later.

Step 2

With (9.5), the time derivative of (9.4) along the solutions of the last equation of
(9.3)1s

— d dyi i— 1 _1
A D= T LS S
s mys' & ms3 ms3

drg . org 8rd( kuy v
— - —(=k1z +z )_ - + *
du 321( e 2 dy \/1+(kJ’)2 \/1+(ky)2

u (sin(zy) — (cos(z1) — )ky) v ((cos(z1)—1)+ky sin(zl))) B

V14 (ky)? V14 (ky)?

ad d dyi o 1
Td | R, 82, S ity ()] 96)
v Mmoo Mz M2 Mma2
where
0rg k%y k

N - in(z1) — —Dky),
u (14 (ky)?)*? (1+(ky)2)3/2(sm(21) (cos(z1) = Dky)

org ki ku (cos(z1) +kysin(z1)) kv (=sin(z1) +kycos(z1))

T R 1+ k2"

)
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8rd —3k3y (kuy —u (sin(z1) — y(cos(z1) —1))) B

- (1+(ky)*)*?
v ((cos(zy) — 1)+ ysin(zy)) k% (ucos(zy) —vsin(zy))
(14 (k)»)*? (1+(ky)»)*?
aﬁ = —* (cos(z1) + sin(zq)ky). 9.7

W (14 (ky)2)*?

We now choose the actual control without canceling the useful damping terms as

Tr=m33[—21—k222——(m11_m22)u d+2 dri | |l r
masas l>2
d d ary k
arq . +i( k121+22)+_(_ uy v N
e NN

u (sin(z1) —(cos(z1) —Dky) | v((cos(z1) —1) +ky Sin(21)))

+
V14 (ky)? V14 (ky)?
org ( mnu da dvi i1
5 (— r—mzzv—2m22|v| v)— 9.8)

22 i=2

1 2} 1 aryg 8rd Z2
—— Tywr max tanh — —— Twymax — tanh
ms3 P1 ma2 v v 02

where k5, p1, and p, are positive constants to be chosen later. Substituting (9.4),
(9.5), and (9.8) into (9.3) results in the following closed loop system:

kuy v u (sin(z1) — (cos(z1) — Dky)

_\/1+(ky)2+ V1+(ky)? V1+(ky)?
W ((cos(z1) —1) +kysin(zy)),

_ dx dyi =Ty — muu  k*uy —kv
myo = myo my> (1 + (ky)2)3/2
miiu ku )
L (k21 4+ 23— ————— (sin(z1) — (cos(z1) — 1Dky) —
M22 (14 (ky)?)
kv ) 1
e (cos(z1) = )+ Ky sin(z1)) ) + —— Ty (1),
(1+(ky)?) M2z
21 =—kiz1+ 22,
. d dri - 1
h=—z1—kazy— oz —Zi Ir"™ 22 4 — (Twr ()= Twrma
mss mss3 ms33

i>2

1
tanh 2 + — —aﬁl’wv( t)— — orq Twvmax tanh or ord 2 . (99
P1 Mma2 v v M po
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9.2.2 Stability Analysis

The following two lemmas will be used extensively in stability analysis.

Lemma 9.1. Consider the following nonlinear system:

X = ft.x)+g(t,x.8(1)), (9.10)

where x € R", £(t) € R™, f(¢,x) is piecewise continuous in t and locally Lipschitz
in x. If there exist positive constants c;, 1 <i <4, )Lj, 1 <j =<2, 09, €0, Mo, Co, and
a class-K function ag such that the following conditions are satisfied:

C1. There exists a proper function V(t,x) satisfying:

crllxl? < V(t,x) < e llx)1%,

av
8—(1»96) <cs x|,
X
VvV
— 4+ ——f(t.x) < —cs||x|* + co.
ot ox

C2. The vector function g(t,x,£(t)) satisfies:

lg(t.x.§@)I = A1+ A2 IxID (1§D
C3. £(t) globally exponentially converges to a ball centered at the origin:
[EO < a0 (1§ 0[N e~ + 9. V1 219 2 0.
C4. The following gain condition is satisfied:

A1c3g
> 0.

Cq4 — AzC380 —
Ho

Then the solution x (t) of (9.10) globally exponentially converges to a ball centered
at the origin, i.e.,

Ix @) < e (| (x(t0). £ (t0)) [N e~ +6, Vi =10 >0, .11

where € = \Jas/cra; and

ifa; = oy then

ap(s)
90

als) =
o =0.5(a; —d);

(c252 + (asz(s) +ay'ax(s)as) ¢)
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ifa; 3’é 09 then

as(s)
e 90 ajas(s)+asx(s)a
a(s) = (czsz+ 1a3(s) +ax(s) 4)
1 aplay — oo

0 =0.5min(ay,|a; —oyp|);

with

1 ( A1C380)
ay = —|ca—Azrczgo— ,
Co 4/¢L0

as(s) = g—ful + Aa)ato (5,

)L16‘3
4
ag = co+A1c380/h0,
O0<d<ay, ¢=(—19)e 070 Vi>1>0.5>0.

as(s) = ap (5),

When cy = 0 and gy = 0, we have ¢ = 0 and the system (9.10) is globally K-
exponentially stable. Note that a finite value of the constant ¢ exists for an arbitrar-
ily small positive d.

Proof. From conditions C1, C2, and C3, we have

11 4 L1
y=242" v
or T 0+ 58 5@)
< —(ca—Azrc380 —A1c380/4100) ||x||2 +
es ||x] (A1 + s [|x Do (1€ (o) ||) e~O0¢ 0 4

A1czgo o + Co- 9.12)

Upon application of the completing square, (9.12) can be rewritten as
V<-— (a1 —~ aze“’“("’°)) V +aze 00010 4 g, 9.13)

Solving the above differential inequality results in

t

a2 asa az a
V(t) < V(tg)e o e~ a1(t—to) + (a3 + 2 4)6"0 e—a1t+oot0/e(a1—ao)tdf+ _4,
a a

to
9.14)
which yields (9.11) readily. O

Lemma 9.2. Consider the following nonlinear system:

X = ft.x)+g(t.x.8(1)), 9.15)
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where x1 € R", x5 e R"2, x = [x1 x2]T € R"1H72 £(1) e R™, f(¢,x) is piecewise
continuous in t and locally Lipschitz in x. If there exist positive constants cg, C1, C2,
€31, €32, Ai, 0 <1i <2, 09, &9, Co, and a class-K function oy such that the following
conditions are satisfied.

C1. There exists a proper function V(t,x) such that:

crllxl? < V(e.x) < e llx)1?,

Vv IV 3o || %21
E‘i‘af(f,x)f—cn ||X1||2—%+Co,
1+ 4|2
1% Ao || |1
Ha—ga,x,sm) < | ot P + === | IOl
X 2
1+ ca x|

C2. £(t) globally exponentially converges to a ball centered at the origin:
J€@)] < oo (IE (1)) e ™™ 49, Vi 210 2 0.
C3. The following gain conditions are satisfied:
c31—A1&0 >0 and c3p—Azg9 > 0.

C4. x5(t) is bounded:
[x2 ()] < @,

where wis a nondecreasing function of || (x (¢), & (t0))|],

then the solution x (t) of (9.15) globally asymptotically converges to a ball centered
at the origin, i.e.,

[x @) < @ ([ (x(t0), £ (t0))[|) e UxEECNDE=10) 4 o(5) Vi > 15 >0, (9.16)

where g(s) = ‘/% and

ifay(s) = og then

a(s) = \/Cfleaz(s)/ao (c252 + (a3(s) + a7 ()az(s)as) §)
o(s) =0.5(ai(s)—d);

ifay(s) # oo then
a(s) = \/c_leaz(S)/Uo (czs2 + ai(s)as(s) +a2(s)a4)
RV

ai(s) lai(s) — ool

o (s) = 0.5min (ay(s).|a1(s) —ool):
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with

) C32—A280
ai(s) = —min <631 — A&y, —— ],

1

C2 V1+caw2(s)

1
a(s) = C—max(kl,kz)ao (s),

1
as(s) = Aoao ().
as = co+ Aogo,
0<d <ai(s), > (t—10)e 0 Vi>p>0,5>0.

When co = 0 and g9 = 0, we have ¢ = 0 and the system (9.15) is GAS. Note that a
finite value of the constant ¢ exists for an arbitrarily small positive d.

Proof. The proof of this lemma is similar to that of Lemma 9.1. (0

Remark 9.1. It is important to note that the rate 0 > 01in (9.16) and a; depend on the
initial conditions. In addition, around the origin, both o and a; are bounded below
from zero.

We first need to show that the closed loop system (9.9) is forward complete. It is
straightforward to show that the derivative of the function Vo = z? + z3 4+ v2 + y?
along the solutions of the closed loop system (9.9) satisfies Vo < aoVp + bg where
ag and by are nonnegative constants. The inequality Vo <aoVp+ bo implies that the
closed loop system (9.9) is forward complete. We now apply Lemmas 9.1 and 9.2
to analyze the closed loop system (9.9). We view (z1,z3) as £(¢), v as x in Lemma
9.1, and (v, y) as x in Lemma 9.2. Hence it is necessary to verify all the conditions
of Lemmas 9.1 and 9.2.

(z1,22)-subsystem
We take the following quadratic function:
1
Vi = E(zl2 +23), 9.17)

whose time derivative along the solutions of the last two equations of (9.9) satisfies

. d dri : z
2 2 33 2 ri i-1_2 2
Vi= _klzl _k222 - Zy — E |7 z; + (Twr (1) —Twrmax X
ms mss3 mss3

0 0 0
tanh Z_2 + Z_2 _ﬁfwv(t) — Etwvmaxtanh iz_z
P1 map ov v v py
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< —ky2? —kpz? 4 Dormx
ms3
d 0 0
|z2| — z2 tanh 2 + Twomax ﬁzz — ﬂzztanh a2
o1 Moy v v v p2
1 1
=< _klzl kZZz +0. 2785( TwrmaxP1 + —— fwvmaxPZ) s (9.18)
ms33 Mmoo

where we have used |x| — x tanh(x /1) < 0.2785A, Vx € R and A > 0. From (9.17)
and (9.18), it can be shown that

Iz(@0)| < |1z (t0)]| e PY ) 4 gg¥1 > 1> 0, 9.19)
where z = [z; z5]T and

og = min(kl,kz),

e = \/0-2785 (Twr maxP1/M33 + Twymax P2/ M22)
0 — .
0o

(9.20)

Therefore the (z1,z,)-subsystem is globally ultimately stable at the origin. Further-
more, (9.19) implies that £(¢) := (z1,22)T globally exponentially converges to a
ball centered at the origin. The radius of this ball can be made arbitrarily small by
increasing k; and k, and/or reducing p; and ps.

Boundedness of v
To prove that v is bounded, we consider the second equation of (9.9). In order to

apply Lemma 9.1, define x = v, £(t) = [z122]7 and consider y as a function of
time ¢,

d dvi i—
SO === -
Mz 2, M2
k> k 1
miu uy - v - .
m22 \ (1+(ky)?) (1+ (ky)?) M22
(-)——m11 (—kyzy + 20— ©.21)

k (u (sin(zy) — (cos(z1) — Dky) + v ((cos(z1) — 1) + ky sin(zy)))
(1+ (k>

This abuse of notation is introduced for simplicity and is possible because:

0<;<1,0< ky

= < <|l—————=|<1,VyeR,
(1+ (ky)2)*/? (14 (ky)2)*?
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and we have shown that the closed loop system is forward complete. We now verify
all of the conditions of Lemma 9.1.

Verifying Condition C1. We take the function V, = 0.5v% whose time derivative
along the solutions of the differential equation v = f(z,v), see (9.21), satisfies

. d dyi o myuv  k*uy—kv v
sz_ivz_ziw'l 2= . 3z T twe(t)
maa i>2 maa maz (1+ (ky)Z) myp
<_ (@ _ m11KkUmax _ Wlllkll;axul . M1 ) 1)2 i mllkuﬁmx + T'l%)vmax.
map Mmoo mao mas 4p1maa
(9.22)

Hence, the condition C1 is satisfied with

1
= ku? +12,..),c1=c2=05 c3=1,
Co t1m2s (M 11k + Tpmax) » €1 = €2 3
d ku? k
co= 22 T e, T L 9.23)
mop Mmoo mya maa
where (1 > 0 and k > 0 are chosen such that c4 > 0.
Verifying Condition C2. It is directly shown from (9.21) that
lg(t,v,z(t)| < (A1 + A2 o)) [Iz(@)]], 9.24)
where
M 11 Umax 2km Umax
A= R Q) Ap = (9.25)
Mmoo ma2

Verifying Condition C3. This condition follows directly from (9.19).

Verifying Condition C4. It can be shown from (9.20), (9.23), and (9.25) that we
can find positive constant k such that the condition C4 is satisfied, i.e.,

)L16‘380

C4—A2C380 — > 0. (9.26)

Ho

All of the conditions of Lemma 9.1 have been verified, hence the sway velocity is
bounded and satisfies

()] < a1 (|(v(t0), 2(10)) ) €7 ¢ 4 ¢4, 9.27)

where 1, 01, and «; are calculated as in Lemma 9.1, and the constants ¢;, 1 <i <4,
Aj, 1< j <2, 00, €0, o, and cp are given in (9.20), (9.23), and (9.26).
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(v, y)-subsystem

In this section, we will apply Lemma 9.2 to prove global ultimate boundedness of
the (v, y)-subsystem. It can be seen that the first two equations of (9.9) are in the
form of the system in Lemma 9.2 with x; = v, x, = y, £(¢t) = z(¢), and

d22 dvi i—1 miu kzuy kv
_m_zzv_- m_22|vl . maz (14 (ky)2 72 * wv(t)
f(o) = iz2 (I+(ky)?) ’
kuy v
— +
VI+ky)? 1+ (ky)?
myu sm(zl)(u +kvy) + (cos(zy) — 1) (v —kuy)
3/2 +k121—22
m22 (1+(ky)?)

g(e) =
u (sin(zy) — (cos(z1) — )ky) v ((cos(zy)—1) +sin(zy)ky)

V1+(ky)? ! V1+(ky)?

(9.28)

We now need to verify all of the conditions of Lemma 9.2.

Verifying Condition C1. To verify this condition, we take the function V3 =
0.5(v? + y?2). It can be directly shown that this function satisfies condition C1 with
()] < a1 (|(v(10), 2 (t0)) ) ™1 ¢~ + &1 and

2
Co = M,Cl =C(Cy = 0.5,
di3man
dyy M1k Umgx myk?ul "3
1= ————————— —fp— "y —
Mmoo mop map maa
1 mi1k2u?,
C3p = kumin_ - (1 + u) s
4 Mmoo
M 11 Umax "
No = TIMIX (1 gt DRt g) + 8 (9.29)
digamar dps’
miiu 2kmqiu
A = o 2kt Ky + 1) pa+ g,
mop maa

1
Ay=—+ Umax M4 + kttmax + k(al + 81)
dpig

where k > 0 and p, > 0 are chosen such that ¢3; > 0 and c¢32 > 0.

Verifying Condition C2. This condition follows directly from (9.19).

Verifying Condition C3. It can be shown that there exists a positive constant k such
that the condition C3 satisfies, i.e.,
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C31 —/\180 > 0, C3p —1280 > 0. (930)

Verifying Condition C4. From the boundedness of the sway velocity v(¢) proven
in the previous subsection and noting that g9 in (9.19) can be made arbitrarily small,
it is shown that there exists a nondecreasing function @ of || ((v(2o), y(%0)), z (t0))|l
such that |y ()| < w by applying Lemma 9.1 to the first equation of (9.9) with the
Lyapunov function V), = 0.5y2.

All of the conditions of Lemma 9.2 have been verified. Therefore we have

I@@). yO) < a2 ([((W(Eo). y(t0)). 2 (to)) D 724~ + 25, Vi > 19> 0, (9.31)

where €5, 02, and «, are calculated as in Lemma 9.2, and all other constants given
in (9.29). It can be seen that when there are no environmental disturbances, since
&2 =0, (v(t), y(t)) globally asymptotically converges to zero. We have thus proven
the first main result of this chapter.

Theorem 9.1. The full-state feedback control problem stated in Section 9.1 is solved
by the control law (9.8) as long as the design constants k, ky, and k, are chosen
such that (9.26) and (9.30) hold.

9.3 Output Feedback

This section is devoted to the development of an output feedback controller to fulfill
the output feedback control objective. A nonlinear observer is first designed so that
it globally exponentially drives the observer error dynamics to a ball centered at the
origin. When there are no environmental disturbances, the observer error dynam-
ics are GES at the origin. A controller is then designed based on the approach in
the preceding section and the proposed observer. Before designing an observer and
output feedback controller, we impose the following assumption, see [12].

Assumption 9.1. For the ship model (9.1), the matrix

_ dr _mllu
K> = ma2 Mma2 (9.32)
(my—mo)u  dsz
mss3 ms3

is Hurwitz.

The above assumption implies that the ship (when the nonlinear damping terms

> :7’—;‘% |v|i 1y and > ri—gg |r|"~' r are ignored) is dynamic stable in straight-line
i>2 7 i>2

motion. Straight-line stability physically implies that a new path of the ship will
be a straight line after an action in yaw. The direction of the new path will usually

be different from that of the initial path, as mentioned in [12]. On the other hand,
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unstable ships will go into a starboard or port turn without any rudder deflection.
We impose Assumption 9.1 to make our observer design possible. Note that this
assumption does not hold for several types of surface ships such as large tankers
and high-speed crafts with sufficiently small ratios d»5/m,5 and d33/m33, and the
added mass in the sway axis sufficiently larger than the added mass in the surge
axis. Consequently, for these ships the real part of at least one of the eigenvalues of
the matrix K3 is positive.

9.3.1 Observer Design

The ship dynamics (9.1) represent some difficulties for output feedback control de-

sign. These difficulties are mainly due to the nonlinear terms »_ :?11_1;12 |v|i_1
i>2

v and

» rflg ey |r|’ !, the nonlinear kinematic term cos(), and the underactuated situ-
i>2

ation. However we first observe that the nonlinear terms are monotonic, i.e., they
satisfy

d _ dyi i
(v1—wv2) val lvl—Zmi|v2|’ "] 20,V v eRvp €R,
22

i>2 i>2

di 4
(r1—712) E o Ly — E /|| Lyy | >0,Vr €R, 5y €R.
ms3 ms3

i>2 i>2

(9.33)

Based on the structure of the underatuated ship dynamics (9.1) and property (9.33),
we propose the following nonlinear observer:

¥ = usin(y) 4 cos(¥)d + k11 (y — §) + ki (¥ — ),
V=7 kot (v —F) + koo (¥ — ).

_mllu da 5 dyi | |l 1A

.
I

0 +k3(y—9)+ (9.34)

maa m22 ma2

i>2
(k13 +cos(¥))(y — 7).

X (mll—mzz)u d33A Z dri i—1 A

= =Dl

r r+—fr~|-
ms33

l>2

kaz (W =) + (kg + 1) (¥ — ),

where 7, 1@ v, and 7 are the estimate of y, v, v and r respectively. All the constants
k]], klz, k21, kzz, k13, k31, and k42 will be chosen later.
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226
By defining the observer errorsas = y— 9, ¥ =¥ —y, 9 = v—0, and 7 =
r —F, the observer error dynamics can be rewritten as

j}' = _kll_)’;_kIZ‘} _kISﬁ + (k13 +COS(1//))57

& = _k21_)7_k221/~f—k247+ (k24+ 1)f,
d dy; . .
U= —k31)7_£5_2i (|v|’_1 v— |ﬁ|z—1 f;) _ mlluf_
22 i>2 my» Mmoo
- 1
(k13 +cos(¥))y + ——1uu (1),
maa
2 ~ -~ — B d B
r=—k42w—(k24+l)w+—(mll mzz)uv_ﬁr_
ms3 mss
dri . o 1
> (|’|' br— 7| 1r)+—rwr(t). (9.35)
ms33 mss3

i>2
We now show that there exist suitable observer gains ki1, k12, k13, k21, k22,
ka4,k31, and k45 such that the observer error dynamics (9.35) is globally ultimately

stable. Consider the Lyapunov function

Tz (9.36)

N =

Vobs =

where X = | y 1,7/ vr ]T. The time derivative of (9.36) along the solutions of (9.35)

and property (9.33) results in
Vobs < —polIX]1* + o, (9.37)

where
Twvmax Twrmax ) 1

Po = _Amax(A) —Imnax (—7 -,
may  m3z ) 4o

Twvmax Twr max
qgo = max | ———,——— | o, Mo >0,
ma2 mss

—k11 —k12 —k13 0
—ka1 —k2» 0 —ko4
A=

d

ko 42 _muu
nmaa nmaa
- d

0 —kup (my—mp)u  dsz
L ms33 ms3 |

The above matrix A is made negative definite by choosing
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ki3 =koa = k31 = ka2,

—k11 —k12
Kl . [_k21 —k22:| <0, ( )

K>, — KKKy, <0,

where

Kip = [_k” 0 } , (9.39)

and K, is defined in (9.32). Here are details of choosing the observer gains such
that (9.38) holds. The condition (9.38) is expanded as

[ k11 —k1z
<0,
| —k21 —k22
_dn ki3ka _muu  kizkiskag
My kiikaz —kizkai may  kuka—kika | 2o (9.40)
(miy—ma)u  kaskaikis _dsz k3,k11
L ms3 ki1kaa —ki2kzr  maz  kitkos —kiokay

From (9.40), it suffices that

@__ k%3k22 >0,
Moy kitkay —ki2kan
@__ k%“'kll >0,
m3z  kiikar —ki2koy
ki3ki2k
muu 13kizkas ©.41)
Mo ki1kas —ki2koy
(mi1—ma2)u _ kiskaikoa
mss3 ki1kaz —ki2koy’
k11 > 0, k22 > 0,
ki1kas —ki2ks1 > 0.
For simplicity, we choose
ki3 = kaa = p/u,
ki1kas —ki2ka1 = p, (9.42)

where p > 0 is to be selected later. Substituting (9.42) into (9.41) yields

dy d33
O<k22<—,0<k11< s
PUMaxM22 PUMaxM33
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m (my1—ma3)
ki =— 11 ko = 11 22
naa pms3
myy (myg—ma2)
k11k22 > — > . (943)
pPMma2 ms33

Hence, under Assumption 9.1, we can always pick a suitable constant p > 0 such
that (9.43) holds. In summary, the observer gains k11, k12, k13, k21, k22, k24, k31,
and k4, are chosen such that (9.42) and (9.43) hold.

We choose A and p¢ such that py > 0. Hence (9.36) and (9.37) yield

%) < 1% (t0) | e "7 + 1o, ¥t > 19 = 0, (9.44)

with 9 = \/qo/ po and n = pg. When there are no environmental disturbances, we
have 179 = 0. The observer error dynamics (9.35) is thus GES at the origin.

9.3.2 Control Design

We use the coordinate transformation (9.2) to rewrite the ship dynamics (9.3) in
conjunction with (9.34) as follows

kuy 0 u (sin(zy) —ky(cos(zy) — 1))

TR irdr VI (k)2

U ((cos(z1) — 1) +sin(z1)ky) n v

V14 (ky)? V1+(ky)?

k?uy — ki ku (sin(zy) —ky(cos(z;)—1))

y =

(cos(z1) +sin(z1)ky),

H=F4F—
1 (1+ (ky)2) (1+ (ky)2)*
k0 ((cos(zy) — 1) +sin(zy)ky) N kv (cos(zy) + sin(zq)ky)
(1+ (ky)?)*? (1+ (ky)?)*?
bo TG 022 Nt ks + cos())7
maa ma2 i>2 maa

i myy—mop)u . dsaz dri i1 4 1 ~
r:Mv_ir_ZLMl Yo b — 1+ (kan + ks + DY
ms3 ms3 >2m33 ms3

(9.45)

Similarly to the full state feedback case, we design the control law 7, in two steps.

Step 1

Define
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zy =T —"Fq, (9.46)
where 74 is an intermediate control designed as

ku (sin(z1) —kycos(zy)) 3 kv (cos(z1) +sin(zy)ky)
(1+(ky)?)*? (1+ (ky)»)*?

fd I—klZ]— s (947)

with k; being a positive constant to be selected later.

Step 2

The first time derivative of (9.46) along the solutions of the last equation of (9.45)
together with (9.47) is

- d dri . 1
5y = (m11 mzz)u R P T L I
ms3 mss =2 mss3 ms33
8rd Brd
(k42+k24+1)l”——u ——( k1z1+22)—
ard u(sin(zy) —kycos(zy))  0(cos(z1)+sin(z1)ky) 3
ay V14 (ky)? V1+(ky)?
Ta [ ey ooy g ot picig ) (9.48)
a0 mao My M
or k
el —z(cos(zl)—i—sin(zl)ky)ﬁ—}—f —
0z, (1+(k )Y
ard ) . 0Fy -
ky)o— k k ,
o m(eos(zmsm(zl) 27— 52 (st ks +cos() 7
where

g _ k(—cos(zi)ky +sin(z1)) 97g _  k(cos(z1) +sin(z1)ky)

ou 1+ ky»)*? 30 (1+ (ky)2)*?

7y ku(cos(zy) +kysin(zy)) k0 (—sin(zy) +kycos(zy))
L= k- —

921 (1+ (ky)>)*? (1+ (ky)>)*2

g 3Ky (kuy —u(sin(z1) = (y + 9)(cos(z1) = 1)) = vy Slrl(21))
ay (14 (ky)>)*/?

k? (ucos(zy) — 0sin(z1))

(1+ (ky)2)*?

(9.49)

‘We now choose the actual control without canceling the useful damping terms as
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(myy—mau . dzz
T, = m33 (—21 —kozpg— — O+ —Fy+
ms3 mss3

dei 1. OFg . OF
> LR T gL+ 2 (—kizy +22) +
= ms3 ou 021

org (u (sin(z1) —ky cos(z1)) n v (cos(zy) + sin(zl)ky))

dy V1+(ky)? V1+(ky)?

o, d dyi .

Ja | Dty 225 5D gi-tg) ], (9.50)
) Mmoo map i=2 M22

where k5 is a positive constant to be chosen later. Substituting (9.46), (9.47), and
(9.50) into (9.45) results in the following closed loop system:

j=m kuy . 0 u (sin(zy) —ky(cos(z1) — 1))
VIt ky)? 1+ (ky)? V1+(ky)?
U((cos(z1) —1) +sin(z1)ky) ¥ (cos(zy)+sin(zy)ky)

V1+(ky)? V1+(ky)?
fo g N e M
ma» i M22 ma2

ku (sin(z1) —kycos(zy)) B kv (cos(zy) + sin(zq)ky)
(1+(ky)»)*'? (14 (ky)»)*?
(k31 + k13 +cos(¥))y,

z1=—kiz1+zo+ k (cos(z1) +sin(z1)ky) D

(1+ (ky)>)*? ’
X d dr‘ All—
ZZZ_ZI_kZZz_ﬁZZ_Z i |r| 122_
ms3 i>2 ms3
g [ k(cos(z1) + Sm(z;;ky) v +F |+ (ks +hog + 1) P —
0z, (14 (ky)?)

% 1(cos(zy) +sin(zy)ky) v

b T4

or -
%(kal 4 ks +cos(¥))§ — ©9.51)

9.3.3 Stability Analysis

It is not difficult to show that the closed loop system (9.51) is forward complete.
We now use Lemmas 9.1 and 9.2 to prove that the closed loop (9.51) is globally
ultimately stable. From (9.49), it can be seen that the closed loop (9.51) is different
from (9.9) since v enters the (zy,z5)-subsystem. To remove this obstacle, we first
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prove that v is bounded. We then prove the convergence of (z1,z>) and finally v and
y.

Boundedness of 0

To prove that v is bounded, we view the last three equations of (9.51) as the system
studied in Lemma 9.1 with x; = [0 z; 25 ]T as x, X as £(¢) and

X1 = fi(t,x1) +g1(t, x1,X), (9.52)
where
21
Sfit,xy) = —kiz1+ 22 ,
d33 rl i—1
—z1— k2o +—+ z
i ! (2 ms3 122'7733" 2_
(k31 + k13 +cos(y)) ¥
g1(t.x1. %) = k”(cos(zl)+31“3(/221)ky )il (9.53)
(14 (ky)?)
§2,
with
91:_@13_ ﬁwv’—l@_m“u
ma2 i>2 ma2 maa
k (u (sin(z1) —kycos(z1)) + 0 (cos(z1) + sin(z)ky))
—k1z1+ 22— 372 ,
(1+(ky)?)

2 = (kaz+hkoa+ 1) — 821 (k(COS(ZI) +sin(z)ky) v —i—f) -

(1+ (ky)2)*?
8 Fq afd (cos(zy) +sin(zy)ky) v
(k31 +k13+cos(¥))y — 0 )2

where again with abuse of notation, 7 is considered as a function of time. We now
need to verify all of the conditions of Lemma 9.1.

Verifying Condition C1. We take the following Lyapunov function:
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Vi == (02 +81(z§ +23)), (9.54)

N =

where §1 is a positive constant. The first time derivative of (9.54) along the solutions
of the differential equation x; = f1(¢,x1), see (9.52) and (9.53), satisfies

. das dyi . miud
A2 Z Vi | Ai—1 A2 11
I/l = -1 — _|v| v — (_klzl+22_
Mman = M22 Mman

k (u (sin(z1) —ky cos(z1)) + 0 (cos(z1) +sin(z1)ky)) |
(1+(ky)*)*?

d dri .

2 2 33 2 Z riai—1_2

51](121 —81](222—81—22—51 |r| Zy
ms3 ms33

i>2
-_ ( dr n11Umax

M b 4 4k +2kmumx)) 52—
Mmoo Mmoo

M11k1 Umax 11 Umax 5myiku?
(Slkl_ 111 Uma; )212—(81](2— 11Uma )Z%‘F 11 max
4pimas dpimas 2mao

(9.55)

Hence the condition C1 of Lemma 9.1 is verified with

Smyiku?
Cco = —m” umax,cl = —min(1,51),
21’ﬂ22 2

1
Cr = 51’1121)((1,81),63 = max(1,81),

. d M 11 Umax
¢4 = min ((ﬁ — Ry ke g 4 +2kmumx)) :
maa msa

k max max
(51k1 _ u) , (51 ks — u)) , 9.56)
dp1man 4 1man
where (1 > 0 and k > 0 are chosen such that ¢4 > 0.

Verifying Condition C2. To verify this condition of Lemma 9.1, we note from
(9.49) that

or, A

_d Ekl+2k(umax+|v|)’

821

org g > .

7 <2k, |=2| < 3k (umax + 3kUmax + 3k |D]). 9.57)
v

From (9.56) and (9.57), a simple calculation shows that the condition C2 of Lemma
9.1 is satisfied with
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A= 2k +1)(ks1 +kiz+1)+kgp +koa+1+
2k + 1) (k1 + 2kumax +1) +6k2umax(3k +1),
Ao =2k(2k + 1)+ 18Kk3. (9.58)

Verifying Condition C3. This condition follows directly from (9.44).

Verifying Condition C4. It can be shown that there exists a positive constant k such
that the condition C4 of Lemma 9.1 satisfies

A1C380
4o

where ¢4, ¢3, €9, A1, and A, given in (9.44), (9.56) and (9.58).
All of the conditions of Lemma 9.1 have been verified, therefore we have

C4—Az€380 — >0, (9.59)

9] < x1()]| < o1 (|(x1(to), (o) [N e 170 fgy, Vi >15>0,  (9.60)

where o1, 01, and &1 are in the form of «, o, and ¢ in Lemma 9.1 with all constants
given in (9.44), (9.56), and (9.58).

(z1,22)-subsystem

Having proven that v is bounded in the previous section, we now apply Lemma 9.1
to the (z1,z2)-subsystem. It is clear that the last two equations of (9.51) are in the
form of the system studied in Lemma 9.1 with z = [z z5]7 as x, X as £(¢) and

z= fz(t,2) +g:(t,y,2,%), 9.61)

where

—kiz1+ 22
fz(t,2) = d d:
_Zl_(k2+ﬁ+zi|f|l_l 22
Mmss {35 M33
(9.62)
k (cos(zy) +sin(z)ky)v |
;
gz(Ly,Z»i) = (1+(ky)2)3/2
§2;

Proceeding with the same steps as in the previous section, it is shown that all the
conditions of Lemma 9.1 hold with the Lyapunov function V, = 0.5(2% + Z%) and

co=0,c1=c2=0.5, c3=1, ¢4 =min(ky,k3),
A =2k (k13 + ka1 +1)+ Qk 4+ 1)24 2ktmax) + kaz+
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kag + 1+ 6k Upmay (1 + 3k) + (18k> 4 2k (2k 4+ 1)) (a1 +£1).
A =0, (9.63)

where a1 and ¢; are given in (9.60). The condition C4 of Lemma 9.1 becomes

A1c3gg
C —_——

>0, (9.64)
4o

where ¢4, ¢3, &9, and A, are calculated from in (9.44) and (9.63).
All of the conditions of Lemma 9.1 have been verified, therefore we have

Izl < ez (I(z (o). % (t0)) ) 720770 &5, ¥t > 19 >0 (9.65)
where o5, 02, and &, are in the form of «, o, and € in Lemma 9.1 with all constants
given in (9.63).

(y,0)-subsystem

It can be seen that the first two equations of (9.51) are in the form of the system
studied in Lemma 9.2, i.e., x3 = [f) v ]T, X3 = [21 V0 ]T, and

X3 = f3(t,x3) + g3(t, x3,X3), (9.66)
where
. . 200v — kD
_ i>
f3(t,X3)— klly ’l}
- +
VIt Gky? V1K)
(9.67)
- $231
t’ b = b
g3(1,x3,X3) [932]
with
miu ku (sin(z1) —ky(cos(z1)—1
PG ILY (P (sin(z1) —ky( 3/(21) )
2 (1+ (k)
kv ((cos(z1)—1) +sin(zq)k .
((costz)) — 1) 3/2( Vky) + (k31 + k13 +cos(y))y,
1+ (ky)?)
1y = u (sin(zy) —ky(cos(zy) — 1)) n U ((cos(z1) — 1) +sin(z1)ky) L

V1+(ky)? V1+(ky)?

(cos(z1) —sin(zy)ky) v

N
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We now need to verify all conditions of Lemma 9.2 for the system (9.66).

Verifying Condition C1. To verify this condition of Lemma 9.2, we take the fol-
lowing proper function

1
Va=3 (0*+y%). (9.68)

whose time derivative along (9.67) satisfies

2

V3 < —c3102 —C3zy—, (9.69)
V1+cay?
where
d22 mllkumax mllkzuﬁwx
3] =—— ——————— —Hp— ——— U3,
maz maz maa
1 1 k2u?
C32 = kumin____m]] umax’ (970)
dpr  4ps ma
with w, > 0 and u3 > 0 chosen such that c3; > 0 and ¢35 > 0.
From (9.67) and (9.68), it is easy to show that
V3 ~ A2 y2 ~
—83(t,x3,X3)| < [ Ao+ 4107 + A ———— | || %3], 9.71)
'8x3 ( V1+cay?
with
I ((mi1umax
Aop=— (L (k1 + 14 2kvumax) + (k31 + ki3 + 1)+
dpng ma2
Umax + 1 + (051 +81)2) )
M 11 Umax 2m 11Kk U max
A= T o (k1 4 1+ 2ktma) + 2 g (kay + ks + 1),
mao maz
Ay = (k4 jha)Umax +2a + k (@1 + &1 + a2 +€2), 9.72)

where (4 > 0, o1, and £; are given in (9.60), and a» and &, are given in (9.65).

Verifying Condition C2. To verify this condition, we note that

sons| G GDE o

Therefore we can write (9.73) from (9.44) and (9.65) as
1Z3()1| < o3 ([[(2(t0). X (1)) ) €370 + g5, 9.74)

where
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a3 ([[(z(t0). X (o)) ) = [I(z(t0), X (t0)) || + 2 ([|(z (F0), X (F0))|}) .

9.75)
03 = min(7,02), €3 = 1o + &2,
with o, and &5 given in (9.65), 1o and n given in (9.44).
Verifying Condition C3. This condition is satisfied if
c31—A1&3 > 0and c3p —Are3 >0, (9.76)

where c¢31, €32, A1, A2, and e3 are given in (9.72) and (9.75). After some lengthy
but simple calculation, it can be shown that, under the assumption of small enough
environmental disturbances, the condition (9.76) holds for a suitable choice of the
observer gains k11, k12, k13, k21, k22, k24, k31, and k45, and the control gains k,
k1, and k».

Verifying Condition C4. From the boundedness of the sway velocity estimate,
0(t), proven in the previous section and noting that &, in (9.65) can be made
arbitrarily small, it is directly shown that there exists a nondecreasing function
@ of ||((v(t0),¥(t0)),z(to))| such that |y(¢)| < w by applying Lemma 9.1 to the
first equation of (9.51) with the Lyapunov function V;, = 0.5y2.

All of the conditions of Lemma 9.2 have been verified, the closed loop (9.51) is
globally ultimately stable, i.e.,

3 ()| < ota (| (x (t0), & (t0)) ) €470 ey, Vi > 19 > 0, (9.77)

where o4, 04, and g4 are calculated as in Lemma 9.2.

It is noted that when there are no environmental disturbances, ¢ = 0. Therefore
the closed loop (9.51) is GAS. We note that the convergence of z; and z, implies
the convergence of 7 and . The convergence of v and r results from that of ¢ and
7 due to the global exponential property of the observer. We have thus proven the
second main result of this chapter.

Theorem 9.2. Under Assumption 9.1, the output feedback control problem stated in
Section 9.1 is solved by the observer (9.34) and the control law (9.50) as long as the
observer gains k11, k12, k13, k21, k22, ko4, k13, k31, and k4p, and the control gains
k, k1, and ky are chosen such that (9.64), (9.70), (9.76), and (9.43) hold.

Remark 9.2. Due to underactuaction and nonzero-mean environmental disturbances
in the sway dynamic, our controller is only able to force the sway and its velocity
to converge to a ball centered at the origin. The radius of this ball cannot be made
arbitrarily small. This phenomenon should not be surprising since there is no control
force in the sway direction. In addition, the yaw angle cannot be made arbitrarily
small due to the effect of the sway. In fact, to guarantee the sway displacement
bounded under nonzero-mean environmental disturbances acting on the sway dy-
namics, our controller forces the heading angle to a small value. This value together
with the forward speed will prevent the sway from growing unbounded.
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Remark 9.3. The choice of k depends on the ship parameters and forward speed,
which coincides with the steering practice of a helmsman. The helmsman uses the
ship’s course angle to steer the ship toward the straight line rather than use the
sway velocity, which will cause the ship to glide sideways. Furthermore, the design
constant k is reduced when the ship forward speed is large, see (9.2), (9.23), (9.30),
(9.56), and (9.59), otherwise the ship will miss the point on the straight line and
slide in the sway direction.

Remark 9.4. By setting the value of k equal to zero, our proposed controller reduces
to a course-keeping controller. In this case, the heading angle can be made arbi-
trarily small. However the sway will grow linearly unbounded under nonzero-mean
environmental disturbances, see Figures 9.3 and 9.6.

9.4 Simulations

This section validates the control laws (9.8) and (9.50) for both cases of state and
output feedback on a monohull ship with the parameters given in Section 5.4. The
ship surge velocity is chosen as u = 10+ 0.5sin(37) ms™'. The environmental dis-
turbances Ty, (f) and Ty, (7) are taken as Ty, (f) = 10° x 0.5 x (1 4 rand(-)) and
Twr(t) = 1.5x 107 x rand(-), with rand(-) being zero mean random noise with the
uniform distribution on the interval [—0.5 0.5]. We run simulations for both state
feedback and output feedback cases.

9.4.1 State Feedback Simulation Results

The control design parameters are chosen as k = 0.05, k1 = 0.2, k, = 0.5, and
p1 = p2 = 0.05. It can be directly verified that this choice satisfies all the conditions
stated in Theorem 9.1. The initial values are

[¥(0),v(0),¥(0),r(0)] = [15m, 0.2 ms‘l,—O.Srad,O.lrads’l].

Simulation results are plotted in Figure 9.1 for the case without disturbances. In
this case, it can be seen that all sway displacement, sway velocity, and yaw angle
converge to zero as desired. The large control effort is due to the fact that we simu-
late our controllers on a real surface ship but it is within the limit of the maximum
yaw moment. For the case with disturbances, simulation results are plotted in Figure
9.2. In this case, all the states converge to a ball centered at the origin as proven in
Theorem 9.1. To illustrate Remark 9.4, we simulate our controller with the design
constant k = 0. The simulation results for this case are given in Figure 9.3. The
sway displacement y grows linearly unbounded due to nonvanishing environmental
disturbances. It should be noted that all of the course-keeping controllers, see for
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Figure 9.1 State feedback control results without disturbances: a. Sway displacement y; b. Head-
ing angle v¥; ¢. Sway velocity v; d. Yaw velocity r; e. Yaw moment

example [12], which do not take the sway displacement into account, will result in
similar unboundedness of the sway that was pointed out in Remark 9.4.

9.4.2 Output Feedback Simulation Results

The control design parameters are chosen as k = 0.05, k; = 0.2, k, = 0.5, and
p1 = p2 = 0.05. The observer gains are selected as k11 = kop =2, k12 = —%,
ko = %, ka1t = k13 = kos = kar = pﬁ, and p = 0.015. A calculation
shows that this choice satisfies all the conditions stated in Theorem 9.2. The initial
values are

[¥(0),v(0). ¥(0),r(0)] = [15m,0.2 ms™,—0.5rad,0.1rads™'],
[$(0),9(0),¥(0),7(0)] = [10m,0ms™", —0.2rad,0.2rads™" ] .

Simulation results are plotted in Figure 9.4 for the case without disturbances and
in Figure 9.5 for the case with disturbances. From Figure 9.4, it is seen that all
sway displacement, sway velocity, and yaw angle converge to zero asymptotically.
It is also observed that the observer states (dotted lines) exponentially converge to
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Figure 9.2 State feedback control results with disturbances: a. Sway displacement y; b. Heading
angle ¥; ¢. Sway velocity v; d. Yaw velocity r; e. Yaw moment

their unknown estimated ones (solid lines). For the case with disturbances, all the
states converge to a ball centered at the origin as proven in Theorem 9.2. The sim-
ulation results with the design constant £ = 0 are plotted in Figure 9.6. Again, the
sway displacement y grows linearly unbounded due to nonvanishing environmental
disturbances as mentioned in Remark 9.4.

9.5 Conclusions

The control design was based on the idea of an interaction between the ship be-
havior and the action of a helmsman on a linear course. Although our proposed
state feedback controller has been designed by using precise knowledge of the ship
parameters, we can easily change them to an adaptive version to take inaccurate
knowledge of the system parameters into account, see (9.6). However, for the case
of output feedback, an adaptive observer will be required, see (9.34) and (9.45). This
chapter is based on [116, 126, 127].
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Figure 9.3 State feedback control results with disturbances and k = 0: a. Sway displacement y;
b. Heading angle ¢r; c. Sway velocity v; d. Yaw velocity r; e. Yaw moment 7,
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Figure 9.4 Output feedback control results without disturbances: a. Sway displacement y; b

Heading angle v; ¢. Sway velocity v (solid line) and its estimate 0 (dotted line); d. Yaw velocity
r (solid line) and its estimate 7 (dotted line); e. Yaw moment T,
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Figure 9.5 Output feedback control results with disturbances: a. Sway displacement y; b. Heading

angle v; ¢. Sway velocity v (solid) and its estimate U (dot); d. Yaw velocity 7 (solid) and its
estimate 7 (dot); e. Yaw moment T
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Figure 9.6 Output feedback control results with disturbances and k = 0: a. Sway displacement
¥; b. Heading angle v; ¢. Sway velocity v (solid line) and its estimate U (dotted line); d. Yaw
velocity r (solid line) and its estimate 7 (dotted line); e. Yaw moment T,





