
Chapter 9
Way-point Tracking Control of Underactuated
Ships

This chapter presents state feedback and output feedback controllers that force un-
deractuated ships to globally ultimately track a straight line under environmental
disturbances induced by waves, wind, and ocean currents. When there are no en-
vironmental disturbances, the controllers are able to drive the heading angle and
cross-tracking error to zero asymptotically. Based on the backstepping technique
and several technical lemmas introduced for a nonlinear system with nonvanishing
disturbances, a full state feedback controller is first designed. An output feedback
controller is then developed by using a nonlinear observer, which globally exponen-
tially estimates the unmeasured sway and yaw velocities from the measured sway
displacement and the measured yaw angle.

9.1 Control Objective

In addition to the assumptions made in Section 3.4.1.1, we assume that the surge
velocity is controlled by the main propulsion control system. As such, the resulting
mathematical model of the underactuated ship moving in sway and yaw is rewritten
as

Py D usin. /C cos. /v;
P D r;

Pv D �m11u
m22

r � d22

m22
v�

X
i�2

dvi

m22
jvji�1 vC 1

m22
�wv.t/; (9.1)

Pr D .m11�m22/u
m33

v� d33

m33
r �

X
i�2

dri

m33
jr ji�1 rC 1

m33
�r C 1

m33
�wr .t/;

where y, v, , r , and u are sway displacement, sway velocity, yaw angle, yaw veloc-
ity, and forward speed controlled by the main thruster control system, respectively.
Without loss of generality, we assume that the forward speed u is positive and if
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214 9 Way-point Tracking Control of Underactuated Ships

time-varying, has a bounded derivative Pu.t/, i.e., 0 < umin � u.t/ � umax <1 and
j Pu.t/j � M < 1; 8t � 0. The positive constant terms mjj ; 1 � j � 3 denote the
ship’s inertia including added mass. The positive constant terms d22; d33; dvi and
dri ; i � 2 represent the hydrodynamic damping in sway and yaw. The bounded
time-varying terms, �wv.t/ and �wr .t/, are the environmental disturbance moments
induced by wave, wind, and ocean current with an assumption that j�wv.t/j �
�wvmax < 1 and j�wr .t/j � �wrmax < 1. In this chapter, we study two control
objectives. The first is full state feedback. In this case, we assume that all states
y; v;  , and r are available for feedback. In the design of an output feedback con-
troller, only sway and yaw displacements are measurable. For both full state and
output feedback cases, we design a control law, �r , that forces the ship to track a lin-
ear course with ultimate boundedness, i.e. the tracking errors are globally ultimately
bounded. When there are no environmental disturbances, the sway displacement and
velocity, y and v, yaw angle and velocity,  and r , asymptotically converge to zero.

9.2 Full-state Feedback

9.2.1 Control Design

We define the following coordinate transformation

z1 D  C arcsin

 
kyp

1C .ky/2

!
; (9.2)

where k is a positive constant to be selected later. Note that the convergence of z1
and y to zero implies that of  . Upon application of the coordinate transformation
(9.2), the ship dynamics (9.1) are rewritten as

Py D � kuyp
1C .ky/2

C vp
1C .ky/2

C u.sin.z1/� .cos.z1/�1/ky/p
1C .ky/2

C

v ..cos.z1/�1/Cky sin.z1//p
1C .ky/2

;

Pv D �m11u
m22

r � d22

m22
v�

X
i�2

dvi

m22
jvji�1 vC 1

m22
�wv.t/;

Pz1 D r � k2uy

.1C .ky/2/
3=2

C kv

.1C .ky/2/
3=2

C ku.sin.z1/� .cos.z1/�1/ky/
.1C .ky/2/

3=2
C

kv ..cos.z1/�1/Cky sin.z1//

.1C .ky/2/
3=2

;

Pr D .m11�m22/u
m33

v� d33

m33
r �

X
i�2

dri

m33
jr ji�1 rC 1

m33
�r C 1

m33
�wr .t/: (9.3)
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Therefore the problem of stabilizing (9.1) at the origin becomes that of stabilizing
(9.3) at the origin. The structure of the model (9.3) suggests that we design the
control �r in two stages by applying the popular backstepping technique. At the first
step, we design an intermediate control rd for r and at the second step the actual
control �r will be designed to eliminate the error between rd and r:

Step 1

Define
z2 D r � rd ; (9.4)

where rd is an intermediate control designed as

rd D �k1z1C k2uy

.1C .ky/2/
3=2

� kv

.1C .ky/2/
3=2

�

ku.sin.z1/� .cos.z1/�1/ky/
.1C .ky/2/

3=2
� kv ..cos.z1/�1/Cky sin.z1//

.1C .ky/2/
3=2

; (9.5)

where k1 is a positive constant to be selected later.

Step 2

With (9.5), the time derivative of (9.4) along the solutions of the last equation of
(9.3) is

Pz2 D .m11�m22/u
m33

v� d33

m33
r �

X
i�2

dri

m33
jr ji�1 rC 1

m33
�r C 1

m33
�wr .t/�

@rd

@u
Pu� @rd

@z1
.�k1z1Cz2/� @rd

@y

�
� kuyp

1C .ky/2
C vp

1C .ky/2
C

u.sin.z1/� .cos.z1/�1/ky/p
1C .ky/2

C v ..cos.z1/�1/Cky sin.z1//p
1C .ky/2

	
�

@rd

@v

0
@�m11u

m22
r � d22

m22
v�

X
i�2

dvi

m22
jvji�1 vC 1

m22
�wv.t/

1
A ; (9.6)

where

@rd

@u
D k2y

.1C .ky/2/
3=2

� k

.1C .ky/2/
3=2

.sin.z1/� .cos.z1/�1/ky/ ;

@rd

@z1
D �k1� ku.cos.z1/Cky sin.z1//

.1C .ky/2/
3=2

� kv .�sin.z1/Cky cos.z1//

.1C .ky/2/
3=2

;
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@rd

@y
D �3k3y .kuy�u.sin.z1/�y.cos.z1/�1///

.1C .ky/2/
5=2

�

v ..cos.z1/�1/Cy sin.z1//

.1C .ky/2/
5=2

C k2 .ucos.z1/�v sin.z1//

.1C .ky/2/
3=2

;

@rd

@v
D � k

.1C .ky/2/
3=2

.cos.z1/C sin.z1/ky/ : (9.7)

We now choose the actual control without canceling the useful damping terms as

�r Dm33

�
�z1�k2z2� .m11�m22/u

m33
vC d33

m33
rd C

X
i�2

dri

m33
jr ji�1 rdC

@rd

@u
PuC @rd

@z1
.�k1z1Cz2/C @rd

@y

�
� kuyp

1C .ky/2
C vp

1C .ky/2
C

u.sin.z1/� .cos.z1/�1/ky/p
1C .ky/2

C v ..cos.z1/�1/Cky sin.z1//p
1C .ky/2

	
C

@rd

@v

�
�m11u
m22

r � d22

m22
v�

X
i�2

dvi

m22
jvji�1 v

	
� (9.8)

1

m33
�wrmax tanh

�
z2

	1

	
� 1

m22
�wvmax

@rd

@v
tanh

�
@rd

@v

z2

	2

	�
;

where k2, 	1, and 	2 are positive constants to be chosen later. Substituting (9.4),
(9.5), and (9.8) into (9.3) results in the following closed loop system:

Py D � kuyp
1C .ky/2

C vp
1C .ky/2

C u.sin.z1/� .cos.z1/�1/ky/p
1C .ky/2

C
vp

1C .ky/2
..cos.z1/�1/Cky sin.z1// ;

Pv D � d22

m22
v�

X
i�2

dvi

m22
jvji�1 v� m11u

m22

k2uy�kv
.1C .ky/2/

3=2
�

m11u

m22

�
�k1z1Cz2� ku

.1C .ky/2/
3=2

.sin.z1/� .cos.z1/�1/ky/�

kv

.1C .ky/2/
3=2

..cos.z1/�1/Cky sin.z1//
�

C 1

m22
�wv.t/;

Pz1 D �k1z1Cz2;

Pz2 D �z1�k2z2� d33

m33
z2�

X
i�2

dri

m33
jr ji�1 z2C 1

m33
.�wr .t/��wrmax�

tanh

�
z2

	1

		
C 1

m22

�
�@rd
@v
�wv.t/� @rd

@v
�wvmax tanh

�
@rd

@v

z2

	2

		
: (9.9)
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9.2.2 Stability Analysis

The following two lemmas will be used extensively in stability analysis.

Lemma 9.1. Consider the following nonlinear system:

Px D f .t;x/Cg.t;x;.t//; (9.10)

where x 2 R
n; .t/ 2 R

m, f .t;x/ is piecewise continuous in t and locally Lipschitz
in x. If there exist positive constants ci ; 1� i � 4, �j ; 1� j � 2, �0, "0, 
0, c0, and
a class-K function ˛0 such that the following conditions are satisfied:

C1. There exists a proper function V.t;x/ satisfying:

c1 kxk2 � V.t;x/� c2 kxk2 ;




@V

@x
.t;x/





� c3 kxk ;
@V

@t
C @V

@x
f .t;x/� �c4 kxk2C c0:

C2. The vector function g.t;x;.t// satisfies:

kg.t;x;.t//k � .�1C�2 kxk/k.t/k :
C3. .t/ globally exponentially converges to a ball centered at the origin:

k.t/k � ˛0 .k.t0/k/e��0.t�t0/C "0 ; 8t � t0 � 0:

C4. The following gain condition is satisfied:

c4��2c3"0� �1c3"0

4
0
> 0:

Then the solution x.t/ of (9.10) globally exponentially converges to a ball centered
at the origin, i.e.,

kx.t/k � ˛ .k.x.t0/;.t0//k/e��.t�t0/C "; 8t � t0 � 0; (9.11)

where "Dp
a4=c1a1 and

if a1 D �0 then

˛.s/D

vuute
a2.s/

�0

c1

�
c2s2C �

a3.s/Ca�1
1 a2.s/a4

�
�
�

� D 0:5.a1�d/I
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if a1 ¤ �0 then

˛.s/D

vuute
a2.s/

�0

c1

�
c2s2C a1a3.s/Ca2.s/a4

a1 ja1��0j
	

� D 0:5min.a1; ja1��0j/ I
with

a1 D 1

c2

�
c4��2c3"0� �1c3"0

4
0

	
;

a2.s/D c3

c1
.�1C�2/˛0 .s/ ;

a3.s/D �1c3

4
˛0 .s/ ;

a4 D c0C�1c3"0
0;

0 < d < a1; � � .t � t0/e�d.t�t0/; 8t � t0 � 0;s � 0:

When c0 D 0 and "0 D 0, we have " D 0 and the system (9.10) is globally K-
exponentially stable. Note that a finite value of the constant � exists for an arbitrar-
ily small positive d .

Proof. From conditions C1, C2, and C3, we have

PV D @V

@t
C @V

@x
f .t;x/C @V

@x
g.t;x;.t//

� �.c4��2c3"0��1c3"0=4
0/kxk2C
c3 kxk.�1C�2 kxk/˛0 .k.t0/k/e��0.t�t0/C
�1c3"0
0C c0: (9.12)

Upon application of the completing square, (9.12) can be rewritten as

PV � �
�
a1�a2e��0.t�t0/

�
V Ca3e

��0.t�t0/Ca4: (9.13)

Solving the above differential inequality results in

V.t/� V.t0/e
a2
�0 e�a1.t�t0/C

�
a3C a2a4

a1

	
e

a2
�0 e�a1tC�0t0

tZ

t0

e.a1��0/�d�C a4

a1
;

(9.14)
which yields (9.11) readily. �

Lemma 9.2. Consider the following nonlinear system:

Px D f .t;x/Cg.t;x;.t//; (9.15)
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where x1 2 R
n1 , x2 2 R

n2 , x D Œx1 x2�
T 2 R

n1Cn2 , .t/ 2 R
m, f .t;x/ is piecewise

continuous in t and locally Lipschitz in x. If there exist positive constants c0, c1, c2,
c31, c32, �i , 0� i � 2, �0, "0, c0, and a class-K function ˛0 such that the following
conditions are satisfied.

C1. There exists a proper function V.t;x/ such that:

c1 kxk2 � V.t;x/� c2 kxk2 ;
@V

@t
C @V

@x
f .t;x/� �c31 kx1k2� c32 kx2k2q

1C c4 kx2k2
C c0;






@V

@x
g.t;x;.t//





�

0
B@�0C�1 kx1k2C �2 kx2k2q

1C c4 kx2k2

1
CA k.t/k :

C2. .t/ globally exponentially converges to a ball centered at the origin:

k.t/k � ˛0 .k.t0/k/e��0.t�t0/C "0 ; 8t � t0 � 0:

C3. The following gain conditions are satisfied:

c31��1"0 > 0 and c32��2"0 > 0:
C4. x2.t/ is bounded:

kx2.t/k �$;

where $ is a nondecreasing function of k.x.t0/;.t0//k,

then the solution x.t/ of (9.15) globally asymptotically converges to a ball centered
at the origin, i.e.,

kx.t/k � ˛ .k.x.t0/;.t0//k/e��.k.x.t0/;�.t0//k/.t�t0/C ".s/; 8t � t0 � 0; (9.16)

where ".s/D
q

a4

c1a1.s/
and

if a1.s/D �0 then

˛.s/D
q
c�1
1 ea2.s/=�0

�
c2s2C �

a3.s/Ca�1
1 .s/a2.s/a4

�
�
�

�.s/D 0:5.a1.s/�d/I

if a1.s/¤ �0 then

˛.s/D
s
c�1
1 ea2.s/=�0

�
c2s2C a1.s/a3.s/Ca2.s/a4

a1.s/ ja1.s/��0j
	

�.s/D 0:5min.a1.s/; ja1.s/��0j/ I
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with

a1.s/D 1

c2
min

 
c31��1"0; c32��2"0p

1C c4$2.s/

!
;

a2.s/D 1

c1
max.�1;�2/˛0 .s/ ;

a3.s/D �0˛0 .s/ ;

a4 D c0C�0"0;

0 < d < a1.s/; � � .t � t0/e�d.t�t0/; 8t � t0 � 0; s � 0:

When c0 D 0 and "0 D 0, we have "D 0 and the system (9.15) is GAS. Note that a
finite value of the constant � exists for an arbitrarily small positive d .

Proof. The proof of this lemma is similar to that of Lemma 9.1. �

Remark 9.1. It is important to note that the rate � > 0 in (9.16) and a1 depend on the
initial conditions. In addition, around the origin, both � and a1 are bounded below
from zero.

We first need to show that the closed loop system (9.9) is forward complete. It is
straightforward to show that the derivative of the function V0 D z21 C z22 Cv2Cy2

along the solutions of the closed loop system (9.9) satisfies PV0 � a0V0Cb0 where
a0 and b0 are nonnegative constants. The inequality PV0 � a0V0Cb0 implies that the
closed loop system (9.9) is forward complete. We now apply Lemmas 9.1 and 9.2
to analyze the closed loop system (9.9). We view .z1;z2/ as .t/, v as x in Lemma
9.1, and .v;y/ as x in Lemma 9.2. Hence it is necessary to verify all the conditions
of Lemmas 9.1 and 9.2.

.z1;z2/-subsystem

We take the following quadratic function:

V1 D 1

2
.z21 Cz22/; (9.17)

whose time derivative along the solutions of the last two equations of (9.9) satisfies

PV1 D �k1z21 �k2z22 � d33

m33
z22 �

X
i�2

dri

m33
jr ji�1 z22 C z2

m33
.�wr .t/��wrmax�

tanh

�
z2

	1

		
C z2

m22

�
�@rd
@v
�wv.t/� @rd

@v
�wvmax tanh

�
@rd

@v

z2

	2
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� �k1z21 �k2z22 C �wrmax

m33
�

�
jz2j�z2 tanh

�
z2

	1

		
C �wvmax

m22

�ˇ̌
ˇ̌@rd
@v
z2

ˇ̌
ˇ̌� @rd

@v
z2 tanh

�
@rd

@v

z2

	2

		

� �k1z21 �k2z22 C0:2785

�
1

m33
�wrmax	1C 1

m22
�wvmax	2

	
; (9.18)

where we have used jxj�x tanh.x=�/� 0:2785�; 8x 2 R and � > 0. From (9.17)
and (9.18), it can be shown that

kz.t/k � kz.t0/ke��0.t�t0/C "08t � t0 � 0 ; (9.19)

where z D Œz1 z2�
T and

�0 D min.k1;k2/;

"0 D
s
0:2785.�wrmax	1=m33C �wvmax	2=m22/

�0
: (9.20)

Therefore the .z1;z2/-subsystem is globally ultimately stable at the origin. Further-
more, (9.19) implies that .t/ WD .z1;z2/

T globally exponentially converges to a
ball centered at the origin. The radius of this ball can be made arbitrarily small by
increasing k1 and k2 and/or reducing 	1 and 	2.

Boundedness of v

To prove that v is bounded, we consider the second equation of (9.9). In order to
apply Lemma 9.1, define x D v; .t/ D Œz1z2�

T and consider y as a function of
time t ,

f .	/D � d22

m22
v�

X
i�2

dvi

m22
jvji�1 v�

m11u

m22

 
k2uy

.1C .ky/2/
3=2

� kv

.1C .ky/2/
3=2

!
C 1

m22
�wv.t/;

g.	/D �m11u
m22

.�k1z1Cz2� (9.21)

k .u.sin.z1/� .cos.z1/�1/ky/Cv ..cos.z1/�1/Cky sin.z1///

.1C .ky/2/
3=2

!
:

This abuse of notation is introduced for simplicity and is possible because:

0� 1

.1C .ky/2/
3=2

� 1; 0�
ˇ̌
ˇ̌ ky

.1C .ky/2/
3=2

ˇ̌
ˇ̌< 1; 8 y 2 R;
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and we have shown that the closed loop system is forward complete. We now verify
all of the conditions of Lemma 9.1.

Verifying Condition C1. We take the function V2 D 0:5v2 whose time derivative
along the solutions of the differential equation Pv D f .t;v/, see (9.21), satisfies

PV2 D � d22

m22
v2�

X
i�2

dvi

m22
jvji�1 v2� m11uv

m22

k2uy�kv
.1C .ky/2/

3=2
C v

m22
�wv.t/

� �
�
d22

m22
� m11kumax

m22
� m11ku

2
max
1

m22
� 
1

m22

	
v2C m11ku

2
max C �2wvmax

4
1m22
:

(9.22)

Hence, the condition C1 is satisfied with

c0 D 1

4
1m22

�
m11ku

2
max C �2wvmax

�
; c1 D c2 D 0:5; c3 D 1;

c4 D d22

m22
� m11ku

2
max

m22

1� m11kumax

m22
� 
1

m22
; (9.23)

where 
1 > 0 and k > 0 are chosen such that c4 > 0.

Verifying Condition C2. It is directly shown from (9.21) that

jg.t;v;z.t//j � .�1C�2 jvj/kz.t/k ; (9.24)

where

�1 D m11umax

m22
.1Ck1C2kumax/; �2 D 2km11umax

m22
: (9.25)

Verifying Condition C3. This condition follows directly from (9.19).

Verifying Condition C4. It can be shown from (9.20), (9.23), and (9.25) that we
can find positive constant k such that the condition C4 is satisfied, i.e.,

c4��2c3"0� �1c3"0

4
0
> 0: (9.26)

All of the conditions of Lemma 9.1 have been verified, hence the sway velocity is
bounded and satisfies

jv.t/j � ˛1 .k.v.t0/;z.t0//k/e�1.t�t0/C "1; (9.27)

where "1, �1, and ˛1 are calculated as in Lemma 9.1, and the constants ci , 1� i � 4,
�j , 1� j � 2, �0, "0, 
0, and c0 are given in (9.20), (9.23), and (9.26).
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.v;y/-subsystem

In this section, we will apply Lemma 9.2 to prove global ultimate boundedness of
the .v;y/-subsystem. It can be seen that the first two equations of (9.9) are in the
form of the system in Lemma 9.2 with x1 D v, x2 D y, .t/D z.t/, and

f .	/D

2
66664

� d22

m22
v� P

i�2
dvi

m22
jvji�1 v� m11u

m22

k2uy�kv
.1C .ky/2/

3=2
C 1

m22
�wv.t/

� kuyp
1C .ky/2

C vp
1C .ky/2

3
77775
;

g.	/D

2
66664

m11u

m22

 
k

sin.z1/.uCkvy/C .cos.z1/�1/.v�kuy/
.1C .ky/2/

3=2
Ck1z1�z2

!

u.sin.z1/� .cos.z1/�1/ky/p
1C .ky/2

C v ..cos.z1/�1/C sin.z1/ky/p
1C .ky/2

3
77775
:

(9.28)

We now need to verify all of the conditions of Lemma 9.2.

Verifying Condition C1. To verify this condition, we take the function V3 D
0:5.v2Cy2/. It can be directly shown that this function satisfies condition C1 with
jv.t/j � ˛1 .k.v.t0/;z.t0//k/e��1.t�t0/C "1 and

c0 D �2wvmax

4
3m22
; c1 D c2 D 0:5;

c31 D d22

m22
� m11kumax

m22
�
2� m11k

2u2max

m22

2� 
3

m22
;

c32 D kumin � 1

4
2

�
1C m11k

2u2max

m22

	
;

�0 D m11umax

4
4m22
.1Ck1C2kumax/C umax

4
4
; (9.29)

�1 D m11umax

m22
.2kumax Ck1C1/
4C 2km11umax

m22
C
4;

�2 D 1

4
4
Cumax
4Ckumax Ck.˛1C "1/;

where k > 0 and 
2 > 0 are chosen such that c31 > 0 and c32 > 0.

Verifying Condition C2. This condition follows directly from (9.19).

Verifying Condition C3. It can be shown that there exists a positive constant k such
that the condition C3 satisfies, i.e.,
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c31��1"0 > 0; c32��2"0 > 0: (9.30)

Verifying Condition C4. From the boundedness of the sway velocity v.t/ proven
in the previous subsection and noting that "0 in (9.19) can be made arbitrarily small,
it is shown that there exists a nondecreasing function $ of k..v.t0/;y.t0//;z.t0//k
such that jy.t/j �$ by applying Lemma 9.1 to the first equation of (9.9) with the
Lyapunov function Vy D 0:5y2.

All of the conditions of Lemma 9.2 have been verified. Therefore we have

k.v.t/;y.t//k � ˛2 .k..v.t0/;y.t0//;z.t0//k/e��2.t�t0/C"2; 8t � t0 � 0; (9.31)

where "2, �2, and ˛2 are calculated as in Lemma 9.2, and all other constants given
in (9.29). It can be seen that when there are no environmental disturbances, since
"2 D 0, .v.t/;y.t// globally asymptotically converges to zero. We have thus proven
the first main result of this chapter.

Theorem 9.1. The full-state feedback control problem stated in Section 9.1 is solved
by the control law (9.8) as long as the design constants k, k1, and k2 are chosen
such that (9.26) and (9.30) hold.

9.3 Output Feedback

This section is devoted to the development of an output feedback controller to fulfill
the output feedback control objective. A nonlinear observer is first designed so that
it globally exponentially drives the observer error dynamics to a ball centered at the
origin. When there are no environmental disturbances, the observer error dynam-
ics are GES at the origin. A controller is then designed based on the approach in
the preceding section and the proposed observer. Before designing an observer and
output feedback controller, we impose the following assumption, see [12].

Assumption 9.1. For the ship model (9.1), the matrix

K2 D

2
6664

� d22

m22
�m11u
m22

.m11�m22/u
m33

� d33

m33

3
7775 (9.32)

is Hurwitz.

The above assumption implies that the ship (when the nonlinear damping termsP
i�2

dvi

m33
jvji�1 v and

P
i�2

dri

m33
jr ji�1 r are ignored) is dynamic stable in straight-line

motion. Straight-line stability physically implies that a new path of the ship will
be a straight line after an action in yaw. The direction of the new path will usually
be different from that of the initial path, as mentioned in [12]. On the other hand,



9.3 Output Feedback 225

unstable ships will go into a starboard or port turn without any rudder deflection.
We impose Assumption 9.1 to make our observer design possible. Note that this
assumption does not hold for several types of surface ships such as large tankers
and high-speed crafts with sufficiently small ratios d22=m22 and d33=m33, and the
added mass in the sway axis sufficiently larger than the added mass in the surge
axis. Consequently, for these ships the real part of at least one of the eigenvalues of
the matrix K2 is positive.

9.3.1 Observer Design

The ship dynamics (9.1) represent some difficulties for output feedback control de-
sign. These difficulties are mainly due to the nonlinear terms

P
i�2

dvi

m22
jvji�1 v and

P
i�2

dri

m33
jr ji�1 r , the nonlinear kinematic term cos. /, and the underactuated situ-

ation. However we first observe that the nonlinear terms are monotonic, i.e., they
satisfy

.v1�v2/
0
@X
i�2

dvi

m22
jv1ji�1 v1�

X
i�2

dvi

m22
jv2ji�1 v2

1
A� 0;8 v1 2 R;v2 2 R;

.r1� r2/
0
@X
i�2

dri

m33
jr1ji�1 r1�

X
i�2

dri

m33
jr2ji�1 r2

1
A� 0;8r1 2 R; r2 2 R:

(9.33)

Based on the structure of the underatuated ship dynamics (9.1) and property (9.33),
we propose the following nonlinear observer:

POy D usin. /C cos. / OvCk11.y� Oy/Ck12. � O /;
PO D OrCk21.y� Oy/Ck22. � O /;
POv D �m11u

m22
Or � d22

m22
Ov�

X
i�2

dvi

m22
j Ovji�1 OvCk31.y� Oy/C (9.34)

.k13C cos. //.y� Oy/;
POr D .m11�m22/u

m33
Ov� d33

m33
Or �

X
i�2

dri

m33
j Or ji�1 OrC 1

m33
�r C

k42. � O /C .k24C1/. � O /;
where Oy; O ; Ov, and Or are the estimate of y; ;v and r respectively. All the constants
k11, k12, k21, k22, k13, k31, and k42 will be chosen later.
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By defining the observer errors as Qy D y � Oy, Q D  � O , Qv D v� Ov, and Qr D
r � Or , the observer error dynamics can be rewritten as

PQy D �k11 Qy�k12 Q �k13 QvC .k13C cos. // Qv;
PQ D �k21 Qy�k22 Q �k24 QrC .k24C1/ Qr;
PQv D �k31 Qy� d22

m22
Qv�

X
i�2

dvi

m22

�
jvji�1 v�j Ovji�1 Ov

�
� m11u

m22
Qr �

.k13C cos. // QyC 1

m22
�wv.t/;

PQr D �k42 Q � .k24C1/ Q C .m11�m22/u
m33

Qv� d33

m33
Qr �

X
i�2

dri

m33

�
jr ji�1 r �jOr ji�1 Or

�
C 1

m33
�wr .t/: (9.35)

We now show that there exist suitable observer gains k11, k12, k13, k21, k22,
k24;k31, and k42 such that the observer error dynamics (9.35) is globally ultimately
stable. Consider the Lyapunov function

Vobs D 1

2
QxT Qx (9.36)

where Qx D � Qy Q Qv Qr �T . The time derivative of (9.36) along the solutions of (9.35)
and property (9.33) results in

PVobs � �p0 k Qxk2Cq0; (9.37)

where

p0 D ��max.A/� max

�
�wvmax

m22
;
�wrmax

m33

	
1

4
0
;

q0 D max

�
�wvmax

m22
;
�wrmax

m33

	

0; 
0 > 0;

AD

2
66666666666664

�k11 �k12 �k13 0

�k21 �k22 0 �k24

�k31 0 � d22

m22
�m11u
m22

0 �k42 .m11�m22/u
m33

� d33

m33

3
77777777777775

:

The above matrix A is made negative definite by choosing
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k13 D k24 D k31 D k42;

K1 WD
��k11 �k12

�k21 �k22
�
< 0;

K2�K12K�1
1 K12 < 0;

(9.38)

where

K12 D
"

�k13 0
0 �k24

#
; (9.39)

and K2 is defined in (9.32). Here are details of choosing the observer gains such
that (9.38) holds. The condition (9.38) is expanded as

"
�k11 �k12
�k21 �k22

#
< 0;

2
6664

� d22

m22
C k213k22

k11k22�k12k21 �m11u
m22

� k13k12k24

k11k22�k12k21
.m11�m22/u

m33
� k24k21k13

k11k22�k12k21 � d33

m33
C k224k11

k11k22�k12k21

3
7775< 0: (9.40)

From (9.40), it suffices that

d22

m22
� k213k22

k11k22�k12k21 > 0;
d33

m33
� k224k11

k11k22�k12k21 > 0;
m11u

m22
D � k13k12k24

k11k22�k12k21 ; (9.41)

.m11�m22/u
m33

D k13k21k24

k11k22�k12k21 ;
k11 > 0; k22 > 0;

k11k22�k12k21 > 0:
For simplicity, we choose

k13 D k24 D 	
p
u;

k11k22�k12k21 D 	; (9.42)

where 	 > 0 is to be selected later. Substituting (9.42) into (9.41) yields

0 < k22 <
d22

	umaxm22
; 0 < k11 <

d33

	umaxm33
;
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k12 D � m11

	m22
; k21 D .m11�m22/

	m33
;

k11k22 > � m11

	2m22

.m11�m22/
m33

: (9.43)

Hence, under Assumption 9.1, we can always pick a suitable constant 	 > 0 such
that (9.43) holds. In summary, the observer gains k11, k12, k13, k21, k22, k24, k31,
and k42 are chosen such that (9.42) and (9.43) hold.

We choose A and 
0 such that p0 > 0. Hence (9.36) and (9.37) yield

k Qx.t/k � k Qx.t0/ke�.t�t0/C�0;8t � t0 � 0; (9.44)

with �0 Dp
q0=p0 and �D p0. When there are no environmental disturbances, we

have �0 D 0. The observer error dynamics (9.35) is thus GES at the origin.

9.3.2 Control Design

We use the coordinate transformation (9.2) to rewrite the ship dynamics (9.3) in
conjunction with (9.34) as follows

Py D � kuyp
1C .ky/2

C Ovp
1C .ky/2

C u.sin.z1/�ky.cos.z1/�1//p
1C .ky/2

C

Ov ..cos.z1/�1/C sin.z1/ky/p
1C .ky/2

C Qvp
1C .ky/2

.cos.z1/C sin.z1/ky/ ;

Pz1 D OrC Qr � k2uy�k Ov
.1C .ky/2/

3=2
C ku.sin.z1/�ky.cos.z1/�1//

.1C .ky/2/
3=2

C

k Ov ..cos.z1/�1/C sin.z1/ky/

.1C .ky/2/
3=2

C k Qv .cos.z1/C sin.z1/ky/

.1C .ky/2/
3=2

;

POv D �m11u
m22

Or � d22

m22
Ov�

X
i�2

dvi

m22
j Ovji�1 OvC .k31Ck13C cos. // Qy;

POr D .m11�m22/u
m33

Ov� d33

m33
Or �

X
i�2

dri

m33
j Or ji�1 OrC 1

m33
�r C .k42Ck24C1/ Q :

(9.45)

Similarly to the full state feedback case, we design the control law �r in two steps.

Step 1

Define
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z2 D Or � Ord ; (9.46)

where Ord is an intermediate control designed as

Ord D �k1z1� ku.sin.z1/�ky cos.z1//

.1C .ky/2/
3=2

� k Ov .cos.z1/C sin.z1/ky/

.1C .ky/2/
3=2

; (9.47)

with k1 being a positive constant to be selected later.

Step 2

The first time derivative of (9.46) along the solutions of the last equation of (9.45)
together with (9.47) is

Pz2 D .m11�m22/u
m33

Ov� d33

m33
Or �

X
i�2

dri

m33
j Or ji�1 OrC 1

m33
�r C

.k42Ck24C1/ Q � @ Ord
@u

Pu� @ Ord
@z1

.�k1z1Cz2/�

@ Ord
@y

 
u.sin.z1/�ky cos.z1//p

1C .ky/2
C Ov .cos.z1/C sin.z1/ky/p

1C .ky/2

!
�

@ Ord
@ Ov

0
@�m11u

m22
Or � d22

m22
Ov�

X
i�2

dvi

m22
j Ovji�1 Ov

1
A� (9.48)

@ Ord
@z1

 
k

.1C .ky/2/
3=2
.cos.z1/C sin.z1/ky/ QvC Qr

!
�

@ Ord
@y

1p
1C .ky/2

.cos.z1/C sin.z1/ky/ Qv� @ Ord
@ Ov .k31Ck13C cos. // Qy;

where

@ Ord
@u

D �k .�cos.z1/kyC sin.z1//

.1C .ky/2/
3=2

;
@ Ord
@ Ov D �k .cos.z1/C sin.z1/ky/

.1C .ky/2/
3=2

;

@ Ord
@z1

D �k1� ku.cos.z1/Cky sin.z1//

.1C .ky/2/
3=2

� k Ov .�sin.z1/Cky cos.z1//

.1C .ky/2/
3=2

;

@ Ord
@y

D �3k
3y .kuy�u.sin.z1/� .yC Ov/.cos.z1/�1//� Ovy sin.z1//

.1C .ky/2/
5=2

C

k2 .ucos.z1/� Ov sin.z1//

.1C .ky/2/
3=2

: (9.49)

We now choose the actual control without canceling the useful damping terms as
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�r Dm33

�
�z1�k2z2� .m11�m22/u

m33
OvC d33

m33
OrdC

X
i�2

dri

m33
j Or ji�1 OrdC@ Ord

@u
PuC @ Ord

@z1
.�k1z1Cz2/C

@ Ord
@y

 
u.sin.z1/�ky cos.z1//p

1C .ky/2
C Ov .cos.z1/C sin.z1/ky/p

1C .ky/2

!
C

@ Ord
@ Ov

0
@�m11u

m22
Or � d22

m22
Ov�

X
i�2

dvi

m22
j Ovji�1 Ov

1
A
1
A ; (9.50)

where k2 is a positive constant to be chosen later. Substituting (9.46), (9.47), and
(9.50) into (9.45) results in the following closed loop system:

Py D � kuyp
1C .ky/2

C Ovp
1C .ky/2

C u.sin.z1/�ky.cos.z1/�1//p
1C .ky/2

C

Ov ..cos.z1/�1/C sin.z1/ky/p
1C .ky/2

C Qv .cos.z1/C sin.z1/ky/p
1C .ky/2

;

POv D � d22

m22
Ov�

X
i�2

dvi

m22
j Ovji�1 Ov� m11u

m22
.�k1z1Cz2�

ku.sin.z1/�ky cos.z1//

.1C .ky/2/
3=2

� k Ov .cos.z1/C sin.z1/ky/

.1C .ky/2/
3=2

!
C

.k31Ck13C cos. // Qy;
Pz1 D �k1z1Cz2C k .cos.z1/C sin.z1/ky/ Qv

.1C .ky/2/
3=2

C Qr;

Pz2 D �z1�k2z2� d33

m33
z2�

X
i�2

dri

m33
j Or ji�1 z2�

@ Ord
@z1

 
k .cos.z1/C sin.z1/ky/ Qv

.1C .ky/2/
3=2

C Qr
!

C .k42Ck24C1/ Q �

@ Ord
@ Ov .k31Ck13C cos. // Qy� @ Ord

@y

1.cos.z1/C sin.z1/ky/ Qvp
1C .ky/2

: (9.51)

9.3.3 Stability Analysis

It is not difficult to show that the closed loop system (9.51) is forward complete.
We now use Lemmas 9.1 and 9.2 to prove that the closed loop (9.51) is globally
ultimately stable. From (9.49), it can be seen that the closed loop (9.51) is different
from (9.9) since Ov enters the .z1;z2/-subsystem. To remove this obstacle, we first
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prove that Ov is bounded. We then prove the convergence of .z1;z2/ and finally Ov and
y.

Boundedness of Ov

To prove that Ov is bounded, we view the last three equations of (9.51) as the system

studied in Lemma 9.1 with x1 D � Ov z1 z2
�T

as x, Qx as .t/ and

Px1 D f1.t;x1/Cg1.t;x1; Qx/; (9.52)

where

f1.t;x1/D

2
666666664

˝1

�k1z1Cz2

�z1�
 
k2C d33

m33
C P
i�2

dri

m33
j Or ji�1

!
z2

3
777777775
;

g1.t;x1; Qx/D

2
66666664

.k31Ck13C cos. // Qy
k Qv .cos.z1/C sin.z1/ky/

.1C .ky/2/
3=2

C Qr

˝2

3
77777775
; (9.53)

with

˝1 D � d22

m22
Ov�

X
i�2

dvi

m22
j Ovji�1 Ov� m11u

m22
�

 
�k1z1Cz2� k .u.sin.z1/�ky cos.z1//C Ov .cos.z1/C sin.z1/ky//

.1C .ky/2/
3=2

!
;

˝2 D .k42Ck24C1/ Q � @ Ord
@z1

 
k .cos.z1/C sin.z1/ky/ Qv

.1C .ky/2/
3=2

C Qr
!

�

@ Ord
@ Ov .k31Ck13C cos. // Qy� @ Ord

@y

.cos.z1/C sin.z1/ky/ Qvp
1C .ky/2

;

where again with abuse of notation, Or is considered as a function of time. We now
need to verify all of the conditions of Lemma 9.1.

Verifying Condition C1. We take the following Lyapunov function:
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V1 D 1

2

� Ov2C ı1.z
2
1 Cz22/

�
; (9.54)

where ı1 is a positive constant. The first time derivative of (9.54) along the solutions
of the differential equation Px1 D f1.t;x1/, see (9.52) and (9.53), satisfies

PV1 D � d22

m22
Ov2�

X
i�2

dvi

m22
j Ovji�1 Ov2� m11u Ov

m22
.�k1z1Cz2�

k .u.sin.z1/�ky cos.z1//C Ov .cos.z1/C sin.z1/ky//

.1C .ky/2/
3=2

!
�

ı1k1z
2
1 � ı1k2z22 � ı1 d33

m33
z22 � ı1

X
i�2

dri

m33
j Or ji�1 z22

� �
�
d22

m22
� m11umax

m22
.
1Ck1
1C4kC2k
1umx/

	
Ov2�

�
ı1k1� m11k1umax

4
1m22

	
z21 �

�
ı1k2� m11umax

4
1m22

	
z22 C 5m11ku

2
max

2m22
:

(9.55)

Hence the condition C1 of Lemma 9.1 is verified with

c0 D 5m11ku
2
max

2m22
; c1 D 1

2
min.1;ı1/;

c2 D 1

2
max.1;ı1/;c3 D max.1;ı1/;

c4 D min

��
d22

m22
� m11umax

m22
.
1Ck1
1C4kC2k
1umx/

	
;

�
ı1k1� m11k1umax

4
1m22

	
;

�
ı1k2� m11umax

4
1m22

		
; (9.56)

where 
1 > 0 and k > 0 are chosen such that c4 > 0.

Verifying Condition C2. To verify this condition of Lemma 9.1, we note from
(9.49) that

ˇ̌
ˇ̌@ Ord
@z1

ˇ̌
ˇ̌� k1C2k .umax Cj Ovj/ ;

ˇ̌
ˇ̌@ Ord
@ Ov
ˇ̌
ˇ̌� 2k;

ˇ̌
ˇ̌@ Ord
@y

ˇ̌
ˇ̌� 3k2 .umax C3kumax C3k j Ovj/ : (9.57)

From (9.56) and (9.57), a simple calculation shows that the condition C2 of Lemma
9.1 is satisfied with
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�1 D .2kC1/.k31Ck13C1/Ck42Ck24C1C
.2kC1/.k1C2kumax C1/C6k2umax.3kC1/;

�2 D 2k.2kC1/C18k3: (9.58)

Verifying Condition C3. This condition follows directly from (9.44).

Verifying Condition C4. It can be shown that there exists a positive constant k such
that the condition C4 of Lemma 9.1 satisfies

c4��2c3"0� �1c3"0

4
0
> 0; (9.59)

where c4, c3, "0, �1, and �2 given in (9.44), (9.56) and (9.58).
All of the conditions of Lemma 9.1 have been verified, therefore we have

j Ovj � kx1.t/k � ˛1 .k.x1.t0/; Qx.t0//k/e��1.t�t0/C "1; 8t � t0 � 0; (9.60)

where ˛1, �1, and "1 are in the form of ˛, � , and " in Lemma 9.1 with all constants
given in (9.44), (9.56), and (9.58).

.z1;z2/-subsystem

Having proven that Ov is bounded in the previous section, we now apply Lemma 9.1
to the .z1;z2/-subsystem. It is clear that the last two equations of (9.51) are in the
form of the system studied in Lemma 9.1 with z D Œz1 z2�

T as x; Qx as .t/ and

Pz D fz.t;z/Cgz.t;y;z; Qx/; (9.61)

where

fz.t;z/D

2
664

�k1z1Cz2

�z1�
 
k2C d33

m33
C P
i�2

dri

m33
j Or ji�1

!
z2

3
775 ;

(9.62)

gz.t;y;z; Qx/D

2
64
k .cos.z1/C sin.z1/ky/ Qv

.1C .ky/2/
3=2

C Qr
˝2

3
75 :

Proceeding with the same steps as in the previous section, it is shown that all the
conditions of Lemma 9.1 hold with the Lyapunov function V2 D 0:5.z21 Cz22/ and

c0 D 0; c1 D c2 D 0:5; c3 D 1; c4 D min.k1;k2/;

�1 D 2k .k13Ck31C1/C .2kC1/.2C2kumax/Ck42C
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k24C1C6k2umax.1C3k/C .18k3C2k.2kC1//.˛1C "1/;

�2 D 0; (9.63)

where ˛1 and "1 are given in (9.60). The condition C4 of Lemma 9.1 becomes

c4� �1c3"0

4
0
> 0; (9.64)

where c4; c3; "0, and �2 are calculated from in (9.44) and (9.63).
All of the conditions of Lemma 9.1 have been verified, therefore we have

kz.t/k � ˛2 .k.z.t0/; Qx.t0//k/e��2.t�t0/C "2; 8t � t0 � 0 (9.65)

where ˛2, �2, and "2 are in the form of ˛, � , and " in Lemma 9.1 with all constants
given in (9.63).

.y; Ov/-subsystem

It can be seen that the first two equations of (9.51) are in the form of the system

studied in Lemma 9.2, i.e., x3 D � Ov y �T , Qx3 D �
z1 z2 Qy Qv �T , and

Px3 D f3.t;x3/Cg3.t;x3; Qx3/; (9.66)

where

f3.t;x3/D

2
6664

� d22

m22
Ov� P

i�2
dvi

m22
j Ovji�1 Ov� m11u

m22

k2uy�k Ov
.1C .ky/2/

3=2

� kuyp
1C .ky/2

C Ovp
1C .ky/2

3
7775 ;

(9.67)

g3.t;x3; Qx3/D
�
˝31
˝32

�
;

with

˝31 D �m11u
m22

 
�k1z1Cz2� ku.sin.z1/�ky.cos.z1/�1//

.1C .ky/2/
3=2

�

k Ov ..cos.z1/�1/C sin.z1/ky/

.1C .ky/2/
3=2

!
C .k31Ck13C cos. // Qy;

˝32 D u.sin.z1/�ky.cos.z1/�1//p
1C .ky/2

C Ov ..cos.z1/�1/C sin.z1/ky/p
1C .ky/2

C

.cos.z1/� sin.z1/ky/ Qvp
1C .ky/2

:
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We now need to verify all conditions of Lemma 9.2 for the system (9.66).

Verifying Condition C1. To verify this condition of Lemma 9.2, we take the fol-
lowing proper function

V3 D 1

2

� Ov2Cy2
�
; (9.68)

whose time derivative along (9.67) satisfies

PV3 � �c31 Ov2� c32 y2p
1C c4y2

; (9.69)

where

c31 D d22

m22
� m11kumax

m22
�
2� m11k

2u2max

m22

3;

c32 D kumin � 1

4
2
� 1

4
3

m11k
2u2max

m22
; (9.70)

with 
2 > 0 and 
3 > 0 chosen such that c31 > 0 and c32 > 0.
From (9.67) and (9.68), it is easy to show that

ˇ̌
ˇ̌@V3
@x3

g3.t;x3; Qx3/
ˇ̌
ˇ̌�

 
�0C�1 Ov2C�2

y2p
1C c4y2

!
k Qx3k ; (9.71)

with

�0 D 1

4
4

�
m11umax

m22
.k1C1C2kumax/C .k31Ck13C1/C

umax C1C .˛1C "1/
2
�
;

�1 D m11umax
4

m22
.k1C1C2kumax/C 2m11kumax

m22
C
4.k31Ck13C1/;

�2 D .kC
4/umax C2
4Ck .˛1C "1C˛2C "2/ ; (9.72)

where 
4 > 0, ˛1, and "1 are given in (9.60), and ˛2 and "2 are given in (9.65).

Verifying Condition C2. To verify this condition, we note that

k Qx3.t/k �





�
z1.t/

z2.t/

	



C





� Qv.t/

Qy.t/
	



 : (9.73)

Therefore we can write (9.73) from (9.44) and (9.65) as

k Qx3.t/k � ˛3 .k.z.t0/; Qx.t0//k/ e��3.t�t0/C "3; (9.74)

where
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˛3 .k.z.t0/; Qx.t0//k/ D k.z.t0/; Qx.t0//kC˛2 .k.z.t0/; Qx.t0//k/ ;
�3 D min.�;�2/; "3 D �0C "2;

(9.75)

with ˛2 and "2 given in (9.65), �0 and � given in (9.44).

Verifying Condition C3. This condition is satisfied if

c31��1"3 > 0 and c32��2"3 > 0; (9.76)

where c31, c32, �1, �2, and "3 are given in (9.72) and (9.75). After some lengthy
but simple calculation, it can be shown that, under the assumption of small enough
environmental disturbances, the condition (9.76) holds for a suitable choice of the
observer gains k11, k12, k13, k21, k22, k24, k31, and k42, and the control gains k,
k1, and k2.

Verifying Condition C4. From the boundedness of the sway velocity estimate,
Ov.t/, proven in the previous section and noting that "2 in (9.65) can be made
arbitrarily small, it is directly shown that there exists a nondecreasing function
$ of k..v.t0/;y.t0//;z.t0//k such that jy.t/j � $ by applying Lemma 9.1 to the
first equation of (9.51) with the Lyapunov function Vy D 0:5y2.

All of the conditions of Lemma 9.2 have been verified, the closed loop (9.51) is
globally ultimately stable, i.e.,

kx3.t/k � ˛4 .k.x.t0/;.t0//k/e��4.t�t0/C "4; 8t � t0 � 0; (9.77)

where ˛4;�4, and "4 are calculated as in Lemma 9.2.
It is noted that when there are no environmental disturbances, " D 0. Therefore

the closed loop (9.51) is GAS. We note that the convergence of z1 and z2 implies
the convergence of Or and  . The convergence of v and r results from that of Ov and
Or due to the global exponential property of the observer. We have thus proven the
second main result of this chapter.

Theorem 9.2. Under Assumption 9.1, the output feedback control problem stated in
Section 9.1 is solved by the observer (9.34) and the control law (9.50) as long as the
observer gains k11, k12, k13, k21, k22, k24, k13, k31, and k42, and the control gains
k, k1, and k2 are chosen such that (9.64), (9.70), (9.76), and (9.43) hold.

Remark 9.2. Due to underactuaction and nonzero-mean environmental disturbances
in the sway dynamic, our controller is only able to force the sway and its velocity
to converge to a ball centered at the origin. The radius of this ball cannot be made
arbitrarily small. This phenomenon should not be surprising since there is no control
force in the sway direction. In addition, the yaw angle cannot be made arbitrarily
small due to the effect of the sway. In fact, to guarantee the sway displacement
bounded under nonzero-mean environmental disturbances acting on the sway dy-
namics, our controller forces the heading angle to a small value. This value together
with the forward speed will prevent the sway from growing unbounded.
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Remark 9.3. The choice of k depends on the ship parameters and forward speed,
which coincides with the steering practice of a helmsman. The helmsman uses the
ship’s course angle to steer the ship toward the straight line rather than use the
sway velocity, which will cause the ship to glide sideways. Furthermore, the design
constant k is reduced when the ship forward speed is large, see (9.2), (9.23), (9.30),
(9.56), and (9.59), otherwise the ship will miss the point on the straight line and
slide in the sway direction.

Remark 9.4. By setting the value of k equal to zero, our proposed controller reduces
to a course-keeping controller. In this case, the heading angle can be made arbi-
trarily small. However the sway will grow linearly unbounded under nonzero-mean
environmental disturbances, see Figures 9.3 and 9.6.

9.4 Simulations

This section validates the control laws (9.8) and (9.50) for both cases of state and
output feedback on a monohull ship with the parameters given in Section 5.4. The
ship surge velocity is chosen as u D 10C 0:5sin.3t/ms-1. The environmental dis-
turbances �wv.t/ and �wr .t/ are taken as �wv.t/ D 105 � 0:5� .1C rand.�// and
�wr .t/ D 1:5� 107 � rand.�/, with rand.�/ being zero mean random noise with the
uniform distribution on the interval Œ�0:5 0:5�. We run simulations for both state
feedback and output feedback cases.

9.4.1 State Feedback Simulation Results

The control design parameters are chosen as k D 0:05, k1 D 0:2, k2 D 0:5, and
	1 D 	2 D 0:05. It can be directly verified that this choice satisfies all the conditions
stated in Theorem 9.1. The initial values are

Œy.0/;v.0/; .0/;r.0/�D �
15m;0:2 ms-1;�0:5 rad;0:1 rads-1

�
:

Simulation results are plotted in Figure 9.1 for the case without disturbances. In
this case, it can be seen that all sway displacement, sway velocity, and yaw angle
converge to zero as desired. The large control effort is due to the fact that we simu-
late our controllers on a real surface ship but it is within the limit of the maximum
yaw moment. For the case with disturbances, simulation results are plotted in Figure
9.2. In this case, all the states converge to a ball centered at the origin as proven in
Theorem 9.1. To illustrate Remark 9.4, we simulate our controller with the design
constant k D 0. The simulation results for this case are given in Figure 9.3. The
sway displacement y grows linearly unbounded due to nonvanishing environmental
disturbances. It should be noted that all of the course-keeping controllers, see for
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Figure 9.1 State feedback control results without disturbances: a. Sway displacement y; b. Head-
ing angle  ; c. Sway velocity v; d. Yaw velocity r ; e. Yaw moment �r

example [12], which do not take the sway displacement into account, will result in
similar unboundedness of the sway that was pointed out in Remark 9.4.

9.4.2 Output Feedback Simulation Results

The control design parameters are chosen as k D 0:05, k1 D 0:2, k2 D 0:5, and
	1 D 	2 D 0:05. The observer gains are selected as k11 D k22 D 2, k12 D � m11

�m22
,

k21 D m11�m22

�m33
, k31 D k13 D k24 D k42 D 	

p
u, and 	 D 0:015. A calculation

shows that this choice satisfies all the conditions stated in Theorem 9.2. The initial
values are

Œy.0/;v.0/; .0/;r.0/�D �
15m;0:2 ms-1;�0:5 rad;0:1 rads-1

�
;� Oy.0/; Ov.0/; O .0/; Or.0/�D �

10m;0ms-1;�0:2 rad;0:2 rads-1
�
:

Simulation results are plotted in Figure 9.4 for the case without disturbances and
in Figure 9.5 for the case with disturbances. From Figure 9.4, it is seen that all
sway displacement, sway velocity, and yaw angle converge to zero asymptotically.
It is also observed that the observer states (dotted lines) exponentially converge to
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Figure 9.2 State feedback control results with disturbances: a. Sway displacement y; b. Heading
angle  ; c. Sway velocity v; d. Yaw velocity r ; e. Yaw moment �r

their unknown estimated ones (solid lines). For the case with disturbances, all the
states converge to a ball centered at the origin as proven in Theorem 9.2. The sim-
ulation results with the design constant k D 0 are plotted in Figure 9.6. Again, the
sway displacement y grows linearly unbounded due to nonvanishing environmental
disturbances as mentioned in Remark 9.4.

9.5 Conclusions

The control design was based on the idea of an interaction between the ship be-
havior and the action of a helmsman on a linear course. Although our proposed
state feedback controller has been designed by using precise knowledge of the ship
parameters, we can easily change them to an adaptive version to take inaccurate
knowledge of the system parameters into account, see (9.6). However, for the case
of output feedback, an adaptive observer will be required, see (9.34) and (9.45). This
chapter is based on [116, 126, 127].
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Figure 9.3 State feedback control results with disturbances and k D 0: a. Sway displacement y;
b. Heading angle  ; c. Sway velocity v; d. Yaw velocity r ; e. Yaw moment �r
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Figure 9.4 Output feedback control results without disturbances: a. Sway displacement y; b.
Heading angle  ; c. Sway velocity v (solid line) and its estimate Ov (dotted line); d. Yaw velocity
r (solid line) and its estimate Or (dotted line); e. Yaw moment �r
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Figure 9.5 Output feedback control results with disturbances: a. Sway displacement y; b. Heading
angle  ; c. Sway velocity v (solid) and its estimate Ov (dot); d. Yaw velocity r (solid) and its
estimate Or (dot); e. Yaw moment �r
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Figure 9.6 Output feedback control results with disturbances and k D 0: a. Sway displacement
y; b. Heading angle  ; c. Sway velocity v (solid line) and its estimate Ov (dotted line); d. Yaw
velocity r (solid line) and its estimate Or (dotted line); e. Yaw moment �r




