
Chapter 4
Control Properties and Previous Work on
Control of Ocean Vessels

In this chapter, first control properties of ocean vessels are presented. Then, the ex-
isting literature on the control of underactuated ocean vessels is reviewed. Through
the review of the previous work in the areas of stabilization, trajectory-tracking,
path-following, and output feedback control of underactuated ocean vessels, chal-
lenging questions are raised. Illustration of the background and process of solutions
of those questions, as well as an explanation of the solutions in terms of their phys-
ical insights and practical applications are then presented in subsequent chapters.

4.1 Controllability Properties

4.1.1 Acceleration Constraints

The number .mc/ of independent control inputs (the number of nonzero elements
of the propulsion force and moment vector �) is smaller than the number .nc/ of
degrees of freedom to be controlled for a standard model of the ocean vessels. As
such, we remove all zero elements of � and denote the resulting vector by �a. Thus,
if �a 2 R

mc and � 2 R
nc , then mc < nc . For example, for the case of the vessels

with six degrees of freedom to be controlled we have mc < 6, for the case of the
vessels with five degrees of freedom to be controlled mc < 5, and mc < 3 for the
case of the vessels with three degrees of freedom to be controlled. For clarity, we
ignore the environmental disturbance forces and moments to investigate acceleration
constraints on the aforementioned ocean vessels. Let Mu, Cu.v/, Du.v/, and gu.�/

denote the rows of M , C .v/, D.v/, and g.�/ that correspond to those rows without
propulsion forces or moments, i.e.,

Mu Pv CCu.v/v CDu.v/v Cgu.�/D 0: (4.1)
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The above equation describes the acceleration constraints, i.e., second-order con-
straints. The following results give the conditions whether the constraints given in
(4.1) are partially integrable or totally integrable.

Lemma 4.1. The constraints (4.1) are partially integrable if and only if the follow-
ing conditions hold:

1. gu.�/ is a constant vector.
2. .Cu.v/CDu.v// is a constant matrix.
3. The distribution ˝?.�/ D ker ..Cu.v/CDu.v//J

�1.�// is completely inte-
grable.

Proof. See [29]. �

Lemma 4.2. The constraints (4.1) are totally integrable if and only if the following
conditions hold:

1. The constraints are partially integrable.
2. .Cu.v/CDu.v//=0.
3. The distribution �.�/D ker .MuJ �1.�// is completely integrable.

Proof. See [29]. �

The following lemma gives a result on the stabilizability of an underactuated
ocean vessel.

Lemma 4.3. Consider the system (3.31) with �E D 0nc�1. Assume that the elements
of the restoring force and moment vector g.�/ corresponding to the unactuated
dynamics are zero, i.e., the vector g.�/ can be written in the form of

g.�/D
"

ga.�/

0.nc�mc/�1

#
; (4.2)

where ga.�/ 2 R
mc is the restoring force and moment vector corresponding to

the actuated dynamics. Let .�;v/ D .�e ;0nc�mc / be an equilibrium. There is no
C 1 state feedback law ˛.�;v/ W R

nc � R
nc ! R

mc that makes the equilibrium
.�e ;0nc�mc / asymptotically stable.

Proof. See [29]. �

4.1.2 Kinematic Constraints

In this section, we address controllability properties of ocean vessels. Since the ves-
sel under consideration has a number of degrees of freedom to be controlled greater
than control inputs (e.g., underwater vehicles do not have independent actuators in
the heave and sway axes, see Section 3.4.2 and surface ships do not have an indepen-
dent actuator in the sway axis, see Section 3.4.1), we can address the controllability
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issue of the vessel kinematic by considering the kinematics with the linear velocity
vector

v1 D
2
4
u

0

0

3
5 : (4.3)

We analyze controllability properties of six degrees of freedom vessels. The case of
three degrees of freedom vessels can be obtained directly from the results for the six
degrees of freedom vessels. With (4.3), we now write the kinematics of the vessel
as follows:

P� D �1.�/uC�2.�/pC�3.�/qC�4.�/r

m (4.4)

P� D � .�/u;

where

�1.�/D

2
6666664

cos.�/cos. /
cos.�/sin. /

�sin.�/
0

0

0

3
7777775
; �2.�/D

2
6666664

0

0

0

1

0

0

3
7777775
;

�3.�/D

2
6666664

0

0

0

sin.�/ tan.�/
cos.�/

sin.�/sec.�/

3
7777775
; �4.�/D

2
6666664

0

0

0

cos.�/ tan.�/
�sin.�/

cos.�/sec.�/

3
7777775
; (4.5)

and

� .�/D �
�1.�/ �2.�/ �3.�/ �4.�/

�
;

u D Œu p q r�T : (4.6)

From (4.4) and (4.5), a calculation shows that the following nonhonolomic (non-
integrable) constraints are satisfied:

�
cos. /sin.�/sin.�/� sin. /cos.�/

� PxC�
sin. /sin.�/sin.�/C cos. /cos.�/

� PyC cos.�/sin.�/ Pz D 0;�
sin. /sin.�/cos.�/� sin. /sin.�/

� PxC (4.7)�
sin. /sin.�/cos.�/� cos. /sin.�/

� PyC cos.�/cos.�/ Pz D 0:
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Based on (4.4), we will address the following controllability issues: Controlla-
bility about a point (i.e., stabilization) and controllability about a trajectory (i.e.,
trajectory-tracking).

4.1.3 Controllability at a Point

We will first consider a linear approximation of the system (4.4) at an equilibrium
point �e . Let the error associated with the equilibrium point �e be as follows:

Q� D ���e : (4.8)

With (4.8), we can write the tangent linearization of (4.4) at the equilibrium point
�e as

PQ� D � .�e/u; (4.9)

which is not controllable because the rank of the matrix � .�e/ is 4. This implies
that a linear controller will never achieve posture stabilization, not even in a local
sense. In order to study the controllability of the vessel in question, we need to use
some tools (the Lie algebra rank condition and nilpotent concepts) from nonlinear
control theory [4].

Given a set of generators or basis vector fields �1; �2; :::; �mc
, the length of a

Lie product recursively defined as

`f�ig D 1; i D 1; 2; :::;mc

`.ŒA;B�/D `ŒA�C`ŒB�; (4.10)

where A and B are themselves Lie products. Alternatively, `ŒA� is the number of
generators in the expansion for A. A Lie algebra or basis is nilpotent if there exists
an integer k such that all Lie products of length greater than k are zero. The integer
k is called the order of nilpotency. The use of the nilpotent basis eliminates the need
for cumbersome computations as we see that all higher order Lie brackets above
some particular order are zero.

The above concepts and conditions imply that Lie algebra Lf�1; �2; �3;�4g is
nilpotent algebra of order k D 2, i.e., the vector fields �1; �2; �3, and �4 are the
nilpotent basis. Thus all Lie brackets of order greater than two are zero. The only
independent Lie brackets computed from the four basis vector fields are Œ�1;�3� and
Œ�1;�4�. Therefore, for our system the Lie algebra rank condition becomes

rankŒCc �D 6, rankŒ�1;�2;�3;�4; Œ�1;�3�; Œ�1;�4��D 6; (4.11)

where Œ�1;�3� and Œ�2;�4� are the two independent Lie brackets computed from
the four vector fields .�1;�2;�3;�4/ and Cc is called the controllability matrix. For
two vector fields g.x/ and h.x/, a Lie bracket is computed based on the following
formula:
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Œg;h�.x/D @h

@x
g� @g

@x
h: (4.12)

Using the definition (4.12), Lie brackets Œ�1;�3� and Œ�1;�4� are given by

Œ�1;�3�D @�3

@�
�1 � @�1

@�
�3 D

2
6666664

cos. /sin.�/cos.�/C sin. /sin.�/
sin. /sin.�/cos.�/� cos. /sin.�/

cos.�/cos.�/
0

0

0

3
7777775
;

Œ�1;�4�D @�4

@�
�1 � @�1

@�
�4 D

2
6666664

�cos. /sin.�/sin.�/C sin. /cos.�/
�sin. /sin.�/sin.�/� cos. /cos.�/

�cos.�/sin.�/
0

0

0

3
7777775
:

(4.13)

Therefore, the controllability matrix Cc is given by

Cc D

2
6666664

cos. /cos.�/ 0 0 0

sin. /cos.�/ 0 0 0

�sin.�/ 0 0 0

0 1 sin.�/ tan.�/ cos.�/ tan.�/
0 0 cos.�/ �sin.�/
0 0 sin.�/sec.�/ cos.�/sec.�/

cos. /sin.�/cos.�/C sin. /sin.�/
sin. /sin.�/cos.�/� cos. /sin.�/

cos.�/cos.�/
0

0

0

�cos. /sin.�/sin.�/C sin. /cos.�/
�sin. /sin.�/sin.�/� cos. /cos.�/

�cos.�/sin.�/
0

0

0

3
7777775
:

(4.14)

It can be seen that the above matrix Cc has one nonzero minor of order 6. Therefore,
this matrix is full rank provided that � ¤ 	

2
. This implies that the vessel is locally

controllable and also globally controllable as long as the singular condition � ¤ 	
2

is avoided. As for the stabilizability of system (4.4) to a point, the failure of the
previous linear analysis indicates that exponential stability cannot be achieved by
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smooth feedback [21]. Things turn out to be even worse: If smooth (in fact, even
continuous) time-invariant feedback laws are used, Lyapunov stability cannot be
used directly. This negative result is established on the basis of a necessary con-
dition due to Brockett [21], see Section 2.7.4: Smooth stabilizability of a driftless
regular system (i.e., such that the input vector fields are well defined and linearly
independent at �e) requires that the number of inputs be equal to the number of
states. The above difficulty has a deep impact on the control design. In fact, to ob-
tain a posture stabilizing controller it is either necessary to give up the continuity
requirement and/or to resort to time-varying control laws.

4.1.4 Controllability About a Trajectory

For the system (4.4), let the reference trajectory �d and the reference trajectory
input ud be

�d D

2
6666664

xd .t/

yd .t/

zd .t/

�d .t/

�d .t/

 d .t/

3
7777775
; ud D

2
664
ud .t/

pd .t/

qd .t/

rd .t/

3
775 : (4.15)

Indeed, the reference trajectory �d and the reference trajectory input ud should
satisfy the nonhonolomic constraints (4.7), i.e.,
�

cos. d /sin.�d /sin.�d /� sin. d /cos.�d /
� Pxd C�

sin. d /sin.�d /sin.�d /C cos. d /cos.�d /
� Pyd C cos.�d /sin.�d / Pzd D 0;�

sin. d /sin.�d /cos.�d /� sin. d /sin.�d /
� Pxd C�

sin. d /sin.�d /cos.�d /� cos. d /sin.�d /
� Pyd C cos.�d /cos.�d / Pzd D 0:

(4.16)

Let the errors associated with the reference trajectory and the reference input trajec-
tory be

�e D ���d ;

ue D u�ud : (4.17)

Using (4.17), we can write (4.4) as

P� D � .�d C�e/
�
ud Cue

�
: (4.18)

The Taylor series expansion of � .�d C�e/ about the nominal solution �d is given
by
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P� D
�

� .�d ; t /C @� .�/

@�

ˇ̌
ˇ̌
�D�d

�e.t/C HOT

	�
ud .t/Cue.t/

�
: (4.19)

Since the reference trajectory � and the reference input trajectory ud satisfy the
nonholonomic constraints (4.16), we have

P�d D � .�d ; t /ud .t/: (4.20)

Subtracting (4.19) by (4.20) and ignoring the high-order terms (HOT) gives

P�e D
�
@� .�/

@�

ˇ̌
ˇ̌
�D�d

�e.t/

	
ud .t/C� .�d ; t /ue.t/

WD A.t/�e.t/CB.t/ue.t/; (4.21)

where

A.t/D
�
03�3 A1.t/

03�3 A2.t/

�
; B.t/D

�
Jd1.t/ 03�3
03�1 Jd2.t/

�
; (4.22)

with A1 and A2 given by

A1.t/D
2
4
0 �cos. d /sin.�d /ud �sin. d /cos.�d /ud
0 �sin. d /sin.�d /ud cos. d /cos.�d /ud
0 �cos.�d /ud 0

3
5 ;

A2.t/D
2
4

cos.�d / tan.�d /qd � sin.�d / tan.�d /rd
�sin.�d /qd � cos.�d /rd

cos.�d /sec.�d /qd � sin.�d /sec.�d /rd

sin.�d /sec2.�d /qd C cos.�d /sec2.�d /rd 0

0 0

sin.�d /sec.�d / tan.�d /qd C cos.�d /sec.�d / tan.�d /rd 0

3
5 ;

(4.23)

and Jd1.t/ and Jd2.t/ given by

Jd1.t/D
2
4

cos.�d /cos. d /
cos.�d /sin. d /

�sin.�d /

3
5 ;

Jd2.t/D
2
4
1 sin.�d / tan.�d / cos.�d / tan.�d /
0 cos.�d / �sin.�d /
0 sin.�d /sec.�d / cos.�d /sec.�d /

3
5 : (4.24)

In (4.23) and (4.24), the argument t of �d , �d ,  d , ud , pd , and rd is omitted for
simplicity.

The system (4.21) is linear time-varying. The controllability condition becomes
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rankfB;AB;A2B;A3B;A4B;A5Bg D 6: (4.25)

A calculation shows that the above matrix has a nonzero minor of order 6 provided
that (ud ¤ 0, pd ¤ 0, qd ¤ 0, rd ¤ 0) and (�d ¤ 	

2
). Therefore, we conclude

that the kinematic system (4.21) can be locally stabilized by linear feedback about
trajectories consisting of linear or circular or helix paths, which do not collapse to a
point.

4.2 Previous Work on Control of Underactuated Ocean Vessels

This section starts with a brief review on the control of nonholonomic systems, due
to their relevance to the control of underactuated ocean vessels. Next, the existing
methods on control of underactuated ocean vessels are reviewed. Limitations of the
existing methods are then pointed out and hence motivate the contributions of the
book.

4.2.1 Control of Nonholonomic Systems

The term “nonholonomic system” originates from classical mechanics and has its
widely accepted meaning as a “Lagrange system with linear constraints being nonin-
tegrable”. A mechanical system is said to be nonholonomic if its generalized veloc-
ity satisfies an equality condition that cannot be written as an equivalent condition
on the generalized position, see [30]. Control of nonholonomic dynamic systems
has formed an active area in the control community – see surveys by Kolmanovsky
and McClamroch in [31], Canudas de Wit et al. in [15], Murray and Sastry in [32],
and references therein for an overview and interesting introductory examples in this
expanding area.

Nonholonomic systems have inherent difficulties in feedback stabilization at the
origin or at a given equilibrium point since the tangent linearization of these systems
is uncontrollable. In fact, a direct application of Brockett’s necessary condition, see
Section 2.7.4 for more details, for feedback stabilization implies that nonholonomic
systems cannot be stabilized by any stationary continuous state feedback although
they are open loop controllable. As a consequence, the classical smooth control the-
ory cannot be applied. This motivates researchers to seek novel approaches. These
approaches can be roughly classified into discontinuous feedback, see for exam-
ple [33–45] and time-varying feedback, see for example, [15, 32, 46–48]. The dis-
continuous feedback approach often uses the state scaling originated from the � -
process [49] and a switching control strategy to overcome the difficulty due to the
loss of controllability. This approach results in a fast transient response and usu-
ally an exponential convergence can be achieved. The drawback is discontinuity in
the control input. On the other hand, the time-varying feedback approach provides
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a smooth/continuous controller, i.e., no switching is required, however the price is
slow convergence. The stability analysis is often based on linear time-varying sys-
tem theory and Barbalat’s lemma. The backstepping technique [3] is usually used
for high-order chained form systems in both discontinuous and time-varying ap-
proaches. Those aforementioned systems are either driftless or have weak nonlinear
drifts. When nonholonomic systems are perturbed by drifts with uncertainties, ro-
bust and adaptive control approaches are often applied. The robust control design
schemes are based on the size domination concept [50]. The control is conservative
when a priori knowledge of uncertainties is poor. A class of nonholonomic systems
with strong nonlinear uncertainties was recently considered in [51]. Discontinuous
state feedback and output feedback controllers were designed to achieve global ex-
ponential stability. However the x0-subsystem is required to be Lipschitz since a
constant control input u0 is used to get around the difficulty due to the loss of con-
trollability. The adaptive approach [38, 40, 46] provides less conservative control
input but increases the dynamics of the closed loop system. The systems studied
in these papers do not allow drifts in the x0-subsystem. A difficulty in designing
adaptive stabilization controllers for chained systems with drifts is that the state
of the x0-subsystem can have several zero crossings due to transient behavior of
the unknown parameter estimate. This phenomenon causes difficulties in applying
the state scaling. For a solution of the stabilization of nonholonomic systems in a
chained form with strong nonlinear drifts and unknown parameters, the reader is
referred to [52].

4.2.2 Control of Underactuated Ships and Underwater Vehicles

Control of underactuated ships and autonomous underwater vehicles (AUVs) is an
active field due to its important applications such as passenger and goods transporta-
tion, environmental surveying, undersea cable inspection, and offshore oil installa-
tions.

Based on its practical requirement, motion control of underactuated ocean ves-
sels has been divided into three areas: Stabilization, trajectory-tracking, and path-
following. These control problems are challenging due to the fact that the motion
of underactuated surface ships and AUVs possesses more degrees of freedom to
be controlled than the number of the independent controls under some noninte-
grable second-order nonholonomic constraints [29, 53, 54]. In particular, underac-
tuated ships do not usually have an actuator in the sway axis while in the case of
AUVs there are no actuators in the sway and heave directions. This configuration
is by far the most common among marine vessels. Therefore, Brockett’s condition
indicates that any continuous time-invariant feedback control law does not make a
null solution of the underactuated surface ship and AUV dynamics asymptotically
stable in the sense of Lyapunov. Furthermore as observed in [22, 54], the under-
actuated ship and AUV system is not transformable into a standard chain system.
Consequently, existing control schemes [15, 32–48] developed for chained systems
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cannot be applied directly. Nevertheless, in the past decade, stabilization, trajectory-
tracking control, and path-following of underactuated ocean vessels have been stud-
ied separately from different viewpoints.

4.2.2.1 Stabilization

An underactuated ocean vessel belongs to a class of underactuated mechanical sys-
tems subject to some nonintegrable second-order nonholonomic constraints, see
[29,53,54]. Therefore, design of a feedback stabilizer using linear and classical non-
linear control theories is not possible. There are two main approaches to deal with
stabilization of an underactuated ocean vessel. They are (time-invariant and time-
varying) discontinuous feedback and time-varying continuous/smooth feedback. We
here mention some typical results of both approaches.

Time-invariant and Time-varying Discontinuous Approach

A discontinuous state feedback control law was proposed in [55] using the � -process
to exponentially stabilize an underactuated ship at the origin where the ship model
is discontinuously transformed to an extended chained form system. The dynamics
of an underactuated ship is considered in [55], see also Section 3.4.1:

P� D J .�/v;

M Pv D �C .v/v �Dv C�;

� D Œx; y;  �T ; v D Œu; v; r�T ; � D Œ�u; 0; �r �
T ; (4.26)

where .x;y/ denotes the earth-fixed position of the center of mass of the ship,  
denotes the orientation angle, .u;v/ and r are the linear and angular velocities in the
body-fixed frame, and .�u; �r / are the surge force and yaw moment. The matrices
J .�/, M ; C .v/, and D are given by

J .�/D
2
4

cos. / �sin. / 0
sin. / cos. / 0
0 0 1

3
5 ; M D

2
4
m11 0 0

0 m22 0

0 0 m33

3
5 ;

C .v/D
2
4

0 0 �m22v
0 0 m11u

m22v �m11u 0

3
5 ; D D

2
4
d11 0 0

0 d22 0

0 0 d33

3
5 ; (4.27)

where m11, m22, and m33 denote the ship inertia including added mass, and d11,
d22, and d33 are hydrodynamic damping constants, see Chapter 3 for more details.
The control objective is to design the control inputs �u and �r to stabilize (4.26)
asymptotically at the origin. In [55], the coordinate transformation
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2
6666664

x1
x2
x3
x4
x5
x6

3
7777775

D

2
6666664

 

x cos. /Cy sin. /
�x sin. /Cy cos. /

v

r

u

3
7777775

(4.28)

is used to transform the ship model (4.26) to the following system

Px1 D x5;

Px2 D x6Cx3x5;

Px3 D x4�x2x5;
Px4 D �˛x4�ˇx5x6; (4.29)

Px5 D˝1;

Px6 D˝2;

where ˛ D d22=m22, ˇ Dm11=m22, and

˝1 D �r �d33rC .m11�m22/uv
m33

; ˝2 D �uCm22vr �d11u
m11

: (4.30)

It can be seen that the system (4.29) consists of two subsystems, namely .x1;x2;x3;x4/
and .x5;x6/, connected to each other in a strict feedback form [3]. The control de-
sign can be simply carried out in two steps as follows.

Step 1

In this step, the author of [55] considers the first four equations of (4.29), and
.x5;x6/ as controls .v1;v2/. With the assumption of x1 ¤ 0, the coordinate trans-
formation (� -process)

y D x1; z1 D x2; z2 D x3

x1
; z3 D x4

x1
(4.31)

results in

Py D v1;

Pz1 D v2Cyz2v1;

Pz2 D z3� z1Cz2

y
v1; (4.32)

Pz3 D �˛z3� z3Cˇv2

y
v1:

The feedback control law is designed as
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v1 D �k1y;
v2 D �k21z1�k22z2�k23z3; (4.33)

where k1, k21, k22, and k23 are the control gains chosen such that the matrix

A1 D

2
64

�k21 �k22 �k23
k1 k1 1

�k1ˇk21 �k1ˇk22 k1�˛�k1ˇk23

3
75 (4.34)

is Hurwitz.

Step 2

At this step, the last two equations of (4.29) are considered. Using the standard
backstepping technique results in the following control law

˝1 D �k3.x5�v1/�k1x5;
˝2 D �k4.x6�v2/�k21.x6Cx3x5/ (4.35)

�k22 x4�x2x5
x1

Ck23
˛x4Cˇx5x6

x1
Ck22

x3x5

x21
Ck23

x4x5

x21
;

where k3 > k1 and k4 are positive constants. The actual controls �u and �r can
be found from (4.35) and (4.30). In [55] it is shown that if the initial conditions
x1.t0/¤ 0 and x1.t0/.x5.t0/Ck1x1.t0//� 0 then .x1.t/, x2.t/, x3.t/, x4.t/, x5.t/,
x6.t// is bounded for all t � t0 � 0, and exponentially converges to zero. If the above
conditions do not hold, the controls

˝1 D �jx1� �jasign.x1� �/�jx5jbsign.x5/;

˝2 D 0; (4.36)

with � ¤ 0, b 2 .0;1/, and a > b=.2�b/ being constants, can be used to make the
above conditions hold in finite time. For more details, the reader is referred to [55].

Remark 4.1. The aforementioned discontinuous stabilizer provides a fast conver-
gence of the stabilizing errors to zero. However, the control inputs �u and �r are
discontinuous. Moreover, under arbitrarily small nonvanishing environmental dis-
turbances induced by waves, wind, and ocean currents, the closed loop system con-
sisting of (4.35) and (4.29) can be unstable in the sense that the states .x1.t/, x2.t/,
x3.t/, x4.t/, x5.t/, x6.t// can go to infinity exponentially fast.

The work mentioned in [22,53,54,56–58] can also be grouped in the discontinuous
approach. The authors of [22] developed a discontinuous time-varying feedback sta-
bilizer for a nonholonomic system and applied it to underactuated ships. Some local
exponential stabilization results were reported in [53,54] based on the time-varying
homogeneous control approach. An application of averaging and backstepping tech-
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niques was proposed in [59] to design a global practical controller for stabilization
and tracking control of surface ships. Experimental results on dynamic positioning
of underactuated ships were reported in [56]. By transforming the underactuated
ship kinematics and dynamics into the so-called skew form, some dynamic feed-
back results on stabilization were given in [57]. In [58], the authors proposed a
discontinuous solution to the problem of steering an underactuated AUV to a point
with desired orientation using the polar coordinate transformation motivated from
the work in [60].

Time-varying Continuous/Smooth Approach

A typical result on stabilization of the underactuated ship (4.26) in the time-varying
continuous/smooth approach is given in [61]. In [61], the coordinate transformations
(similar to the ones given in (4.30) and (4.28))

z1 D cos. /xC sin. /y;

z2 D �sin. /xC cos. /y;

z3 D  ;

˝1 D �r �d33rC .m11�m22/uv
m33

; (4.37)

˝2 D �uCm22vr �d11u
m11

are first used to transform the ship system (4.26) to

Pz1 D uCz2r;

Pz2 D v�z1r;
Pz3 D r;

PuD˝2; (4.38)

Pv D �cur �dv;
Pr D˝1;

where c D m11=m22 and d D d22=m22. Then the following nontrivial coordinate
transformations

Z2 D z2C v

d
;

uD �d
c
z1� d

c

;

˝2
 D d

c
z1C d

c

�Z2rC v

d
r � c

d
˝2 (4.39)

are applied to (4.38) to obtain the system
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Pz1 D �d
c
z1� d

c

CZ2r � v

d
r;

PZ2 D 
r;

Pz3 D r; (4.40)

Pv D �dvCd.z1C
/r;

P
D˝2
;

Pr D˝1:

Let k2, k3, k
, and kr be strictly positive constants such that 1 � k2 � k3. The
controls ˝1 and ˝2
 are designed in [61] as

˝1 D �kr .r � rf /C Prf ���Z2
f C2Z3C2Z2k2 cos.t/
f
�
;

˝2
 D �k
.
�
f /C P
f ���Z2C2Z3k2 cos.t/
�
r; (4.41)

where

�D 2C k3

3
� k3 sin.2t/

6

2V1CV 21
.1CV1/2

;

Z3 D z3Ck2 cos.t/Z2;

V1 DZ22 C2Z23 ;


f D � sin.t/Z22
2.0:001CZ22/

; (4.42)

rf D �k3Z3Ck2 sin.t/Z2
1Ck2 cos.t/
f

:

In [61], it is proven that the closed loop system consisting of (4.41), (4.39), (4.37),
and (4.26) is GAS at the origin.

Remark 4.2. The design of the feedback given in (4.41) is nontrivial. Overall, con-
vergence of the stabilizing errors to zero is slow. This is a well-known phenomenon
of the continuous/smooth time-varying approach applying not to only underactuated
ships but also to mobile robots. Moreover, since the stabilizer design mentioned
above is nontrivial, it is difficult to extend the control design scheme to solve a
trajectory-tracking problem, see the next section. In addition, the physical meaning
of the feedback is not clear.

In addition to the aforementioned results on stabilization of underactuated ves-
sels, the following results are also related to the topic under discussion. In [62], sev-
eral control configurations were considered, and a technique for synthesizing open
loop controls was given. The first control scheme with the dynamic AUV model
taken into account was proposed in [63]. A kinematic drift free model of the under-
water vehicles with four control inputs was used to design a regulation controller
in [64]. The authors of [65] proposed a controller that is able to stabilize an AUV
to some equilibria based on the interconnection and damping assignment passivity-
based control approach, which has been successfully applied to many other mechan-
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ical systems [66]. See also [67] for stabilization results of underactuated mechanical
systems on Riemannian manifolds.

4.2.2.2 Trajectory-tracking

Trajectory-tracking is here defined as a control problem of forcing an underactuated
surface ship or AUV to track a reference trajectory generated by a suitable vessel
model, i.e., the vessel model that has the same parameters as the real one. There
are two main approaches to solve the trajectory-tracking control problems. The first
approach is based on linear time-varying control system theory while the second
approach relies on the Lyapunov direct method. We here briefly describe typical
results of the two approaches.

Linear Time-varying Approach

A typical work belonging to this approach is given in [68] on a globalK-exponential
tracking result for the underactuated ship (4.26). In [68], the authors consider a prob-
lem of designing the control �u and �r to force the position .x;y/ and orientation
 of the ship (4.26) to track the reference position .xd ;yd / and orientation  d
generated by the reference ship model

P�d D J .�d /vd ;

M Pvd D �C .vd /vd �Dvd C�d ;

�d D
2
4
xd
yd
 d

3
5 ; vd D

2
4
ud
vd
rd

3
5 ; �d D

2
4
�ud
0

�rd

3
5 : (4.43)

In [68], the coordinate transformations
8
<
:
z1 D cos. /xC sin. /y;
z2 D �sin. /xC cos. /y;
z3 D  ;

8
<
:
z1d D cos. d /xd C sin. d /yd ;
z2d D �sin. d /xd C cos. d /yd ;
z3d D  d ;

(4.44)

and the tracking errors

ue D u�ud ; ve D v�vd ; re D r � rd ;
z1e D z1�z1d ; z2e D z2�z2d ; z3e D z3�z3d (4.45)

are used to obtain the tracking error dynamics of a chained form

Pue D m22

m11

�
vere Cverd Cvd re

�� d11

m11
ue C 1

m11
.�u� �ud /;
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Pve D �m11
m22

�
uere Cuerd Cud re

�� d22

m22
ve;

Pre D m11�m22
m33

�
ueve Cuevd Cudve

�� d33

m33
re C 1

m33
.�r � �rd /; (4.46)

Pz1e D ue Cz2ere Cz2erd Cz2d re;

Pz2e D ve �z1ere �z1erd �z1d re;
Pz3e D re:

Assuming that ud , vd , z1d , and z2d are bounded, and that rd .t/ is persistently
exciting, the controls

�u D �ud �k1ue Ck2rdve �k3z1e Ck4rdz2e;

�r D �rd � .m11�m22/.ueve Cvdue Cudve/� (4.47)

k5re �k6z3e;
where the control gains ki , i D 1; : : : ;6 satisfy

k1 > d22�d11;
k2 D m22k4.k4Ck1Cd11�d22/

d22k4Cm11k3
;

0 < k3 < .k1Cd11�d22/ d22
m11

; (4.48)

k4 > 0;

k5 > �d33;
k6 > 0;

make the closed loop system consisting of (4.47), (4.43), and (4.26), that is,

2
66666664

Pue
Pve
Pz1e
Pz2e

3
77777775

D

2
666666664

�k1Cd11

m11

k2Cm22

m11
rd .t/ � k3

m11

k4

m11
rd .t/

�m11
m22

rd .t/ � d22

m22
0 0

1 0 0 rd .t/

0 1 �rd .t/ 0

3
777777775

2
66666666664

ue

ve

z1e

z2e

3
77777777775

C

2
66666664

m22

m11
.ve Cvd / 0

�m11
m22

.ue Cud / 0

z2e Cz2d 0

�.z1e Cz1d / 0

3
77777775

"
re

z3e

#
;
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2
664

Pre
Pz3e

3
775D

2
664

�d33Ck5

m33
� k6

m33

1 0

3
775
"
re

z3e

#
; (4.49)

globallyK-exponentially stable at the origin. Proof ofK-exponential stability of the
above closed loop system is straightforward using the results on stability of cascade
systems in [17] and [69], and those of linear time-varying system theory in [6],
see [68] for details. It should be noted that the persistently exciting condition on the
yaw reference velocity, rd , is required to proveK-exponential stability of the closed
loop system (4.49).

Remark 4.3. The persistent exciting condition on the yaw reference velocity rd ex-
cludes a straight-line reference trajectory. In comparison with the direct Lyapunov
approach summarized below, it is difficult to deal with any external disturbances
and/or actuator dynamics using the linear time-varying approach.

Direct Lyapunov Approach

The direct Lyapunov method has been widely used in designing controllers for un-
deractuated ocean vessels. However, the use of the Lyapunov direct method for de-
signing control systems for underactuated ocean vessels is not straightforward due
to the underactuated nature of ocean vessels. We here describe typical results of
trajectory-tracking control based on the Lyapunov direct method.

Local Trajectory-tracking Results

An application of the recursive technique proposed in [70] for the standard chain-
form systems yields a high-gain based local tracking result in [59] for surface ships.
The experimental results of this proposed controller were reported in [71]. The con-
trol design in [59,71] starts from (4.46) as follows. First of all, the following restric-
tive assumption is made on the yaw reference velocity:

0 < rdmin < jrd .t/j< rdmax; (4.50)

where rdmin and rdmax are strictly positive constants. Motivated by the work in [70],
the authors define new error variables as

!1 D z1e �z2z3e;
!2 D z2e Cz1z3e;

y1 D ve C cuz3e Ck2!2; (4.51)

y2 D ue Ck1!1� k2.d �k2/
crd

!2;

y3 D z3e;
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where c D m11=m22, d D d22=m22, and k2 is a parameter to be determined later.
It should be stressed that the condition (4.50) on the yaw reference velocity, rd is
required so that the error transformations (4.51) are valid. With (4.51), the tracking
error system (4.46) is written in a triangular-like structure as follows:

P!1 D y2�k1!1C k2.d �k2/
crd

!2C!2rd � .v�z1re/y3;
P!2 D y1�k2!2�!1rd C ..1� c/uCz2re/y3;

Py1 D �cy2rd C .ck1�k2/rd!1� .d �k2/y1C .c˝2C cduC
k2..1� c/uCz2re//y3;

Py2 D˝2�˝2d Ck1y2�k21!1C 1

crd
k1k2.d �k2/!2Ck1rd!2C

Prd
cr2
d

k2.d �k2/!2� 1

crd
k2.d �k2/.y1�k2!2� rd!1/�

.k1.v�z1re/C 1

crd
k2.d �k2/..1� c/uCz2re//y3;

Py3 D re;

Pre D˝1�˝1d ; (4.52)

where ˝1 and ˝2 are given in (4.30), and

˝1d D �rd �d33rd C .m11�m22/udvd
m33

;

˝2d D �ud Cm22vd rd �d11ud
m11

: (4.53)

The triangular structure (4.52) allows us to use the backstepping technique [3] to
design the controls ˝1 and ˝2. In [71], the the controls ˝1 and ˝2 are designed as

˝1 D �a3.r �˛r /C P̨r ��y3;
˝2 D �a1y2��!1C cardy1�

�
�˝2d Ck1y2�k21!1C

1

crd
k1k2.d �k2/!2Ck1rd!2C Prd

cr2
d

k2.d �k2/!2� 1

crd
�

k2.d �k2/.y1�k2!2� rd!1/
�
; (4.54)

where

˛r D
�
�C�.!1z1C!2z2/Cak2y1z2Ck1y2z1� 1

crd
k2.d �k2/y2z2

	�1
�

�
�a2y3C�!1v��!2.1� c/u�ay1.c.˝2Cdu/Ck2.1� c/u/C
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k1y2vC 1

crd
k2.d �k2/.1� c/uy2

	
C rd ;

� D �C�!1z1C�!2z2Cak2y1z2Ck1y2z1� 1

crd
k2.d �k2/y2z2: (4.55)

In (4.54) and (4.55), the control parameters k1, k2, a, a1, a2, a3, and � are positive
constants, and are chosen such that

k2 < d; k1 >
k2.d �k2/2
c2r2

dmin

;

1

k2.d �k2/ <
a

�
<

k1.d �k2/
.ck1�k2/2r2dmax

: (4.56)

It is noted that the virtual control ˛r given in (4.55) is solvable if and only if

� > �
�
�!1z1C�!2z2Cak2y1z2Ck1y2z1� 1

crd
k2.d �k2/y2z2

	
: (4.57)

Proof of local exponential stability of the closed loop system consisting of (4.54),
(4.46), and (4.30) can be carried out by using the Lyapunov function

V D 1

2
�!21 C 1

2
�!22 C 1

2
ay21 C 1

2
y22 C �

2
y23 C 1

2
.r �˛r /2: (4.58)

Remark 4.4. There are two limitations of the aforementioned tracking controllers.
These limitations are described in conditions (4.50) and (4.57). The condition (4.50)
implies that the reference yaw velocity rd cannot be zero at any time. This restrictive
condition excludes a straight-line reference trajectory. The condition (4.57) implies
that the aforementioned trajectory-tracking result is inherently local. One can argue
that by the control parameters k1, k2, a, a1, a2, a3, and � may increase the size
of the attraction region. However, it is very hard to ensure this property since the
control parameters must satisfy various conditions specified in (4.56). In fact, this is
true, as said in [71].

Global Trajectory-tracking Results

Based on Lyapunov’s direct method and the passivity approach [72], two restricted
tracking solutions of an underactuated surface ship were proposed in [19]. We here
briefly summarize the result based on the passivity approach in [19]. The result
based on the standard backstepping technique [3] is discussed later. In [19], the
starting point is the tracking error system (4.46). The passivity based method con-
sists of two steps as follows.

Step 1

Design of the surge force �u: This force is designed based on the Lyapunov function
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V1 D 1

2

�
z1e ��1z2erd

�2C 1

2
z22e C �0

2
v2e C 1

2
Nu2e ; (4.59)

where Nue D ue �˛0 with

˛0 D ��2.z1e ��1z2erd /: (4.60)

In (4.59) and (4.60), the control parameters �0, �1 and �2 are chosen such that

c.t/D min

�
2�.�2��1r2d .t//; 2

�
�1r

2
d .t/�

m22

.1� �/�0d22
�
; 2�

d22

m22
; 2c1

	
� c�;

(4.61)

where c1 is a positive constant, 0 < � < 1, and c� is strictly positive. In (4.59) and
(4.60), ˛0 is understood as a virtual control of ue . From the first time derivative of
the Lyapunov function V1 given in (4.59) along the solutions of (4.46), a choice of
the surge force �u

�u D �ud Cm11

�
� m22

m11
.vr �vd rd /C d11

m11
ue � c1.ue C�2.z1e ��1z2erd //�

�
.z1e ��1z2erd /� �0m11

m22
rdve

�
��2.ue Cz2erd Cz2re/C

�1�2 Prdz2e C�1�2rd .ve �z1erd �z1re/
�

(4.62)

gives

PV1 � �c.t/V1C
�
.z1e ��1z2erd /.z2C�1rdz1/�z2ez1� �0m11

m22
veu

�
re; (4.63)

where c.t/ is given in (4.61).

Step 2

Design of the yaw moment �r : This moment is designed based on the Lyapunov
function

V2 D V1C 1

2
z23e C 1

2
Nr2e ; (4.64)

where Nre D re �˛1 and

˛1 D �c2
�
.z1e ��1z2erd /.z2C�1rdz1/�z2ez1� �0m11

m22
veuCz3e

�
; (4.65)

with c2 > 0. From the first time derivative of the Lyapunov function V2 given in
(4.64) along the solutions of (4.46), a choice of the yaw moment
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�r D �rd Cm33

�
� m11�m22

m33
.uv�udvd /C d33

m33
re � c3 Nre C P̨1�

�
.z1e ��1z2erd /.z2C�1rdz1/�z2ez1� �0m11

m22
veuCz3e

	�
(4.66)

where c3 > 0 results in

PV2 � �c.t/V1� c2
�
.z1e ��1z2erd /.z2C�1rdz1/�z2ez1�

�0m11

m22
veuCz3e

	2
� c3 Nr2e : (4.67)

This implies global asymptotic stability of the closed loop system at the origin as
long as the control parameters �0, �1, and �2 are chosen such that (4.61) holds.
Note that this condition is feasible only when the reference yaw velocity rd satisfies
the following restrictive condition

0 < r? � jrd .t/j � r?; (4.68)

where r? and r? are positive constants. In [19], the result based on the standard
backstepping technique also consists of two steps. The first step is to design the
surge force �u. This step is the same as Step 1 mentioned above. The second step
is to design the yaw moment �r . This step is slightly different from Step 2. In this
step, a simple controller to stabilize the .z3e; re/-subsystem, that is the third and last
equations of (4.46), is designed as

�r D �rd Cm33

�
� m11�m22

m33
.uv�udvd /C d33

m33
re �k1z3e �k2re

�
: (4.69)

With the surge force �u and the yaw moment �r designed as in (4.62) and (4.70),
it is proven in [19] that the tracking errors .z1e , z2e , z3e , ue , ve , re/ exponentially
converge (not exponential stability of the closed loop system) to zero as long as the
following restrictive condition on the reference yaw velocity rd holds

Z t

t0

r2d .�/d� � �r .t � t0/; 80� t0 � t <1; (4.70)

where �r is a strictly positive constant.

Remark 4.5. In comparison with the trajectory-tracking results in [71], we see that
the control design in [19] is much simpler and gives global solutions. However, the
restrictive conditions on the yaw reference velocity cannot be relaxed, see (4.68)
and (4.70). Moreover, it is only possible to find the control parameters such that
c.t/ given in (4.61) is strictly positive for vessels with a small ratio m22

d22
, i.e., the

vessels with large damping in the sway axis.
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Remark 4.6. A common restriction of the above results on trajectory-tracking con-
trol of underactuated ships is that the reference yaw velocity has to satisfy various
kinds of persistently exciting conditions. This implies that the reference trajectory
must be curved, and indeed excludes a straight-line reference trajectory, hence, it
substantially limits the practical use of the aforementioned control systems. A cu-
rious question is why all the above controllers suffer from the must-be-curved ref-
erence trajectory restriction. An answer is that the design of the above controllers
starts from the chained form (4.46). The reader will find that this book provides
various solutions for trajectory-tracking control of underactuated ships without im-
posing a persistent exciting condition on the yaw reference velocity. As such, we
will not use the chained form (4.46) but will project the tracking errors, x � xd ,
y�yd , and  � d , on the body-fixed frame.

Apart from the aforementioned results on trajectory-tracking control of under-
actuated ships there are a few more results that are worth reviewing. Using sliding
mode control, output redefinition and results on tracking of nonlinear nonminimum
phase system [73], a path controller for surface ships was proposed in [74]. How-
ever, the convergence of the combined output does not guarantee convergence of its
components. A continuous time-invariant state feedback controller was developed
in [75] to achieve global exponential position tracking under the assumption that
the reference surge velocity is always positive. Unfortunately, the orientation of the
ship was not controlled. In [76, 77], (see also [78]), the authors developed a high-
gain dynamic feedback control law to achieve global ultimate regulation and track-
ing of underactuated ships. The dynamics of the closed loop system is increased
due to the controller designed to make the state of the transformed system track the
auxiliary signals generated by some oscillator. The same approach was extended to
the case of adaptive tracking control in [77]. It is worth mentioning that in [47], a
time-varying velocity feedback controller was proposed to achieve both stabiliza-
tion and tracking of unicycle mobile robots at the kinematics level motivated by the
work in [18]. However this controller cannot be extended directly to the case of un-
deractuated ships or AUVs due to the nonintegrable second-order constraint. Some
related independent work includes [79,80] on localH1 tracking control and output
redefinition, and the trajectory planning approach, see [81, 82].

4.2.2.3 Path-following

Path-following is here defined as a control problem of forcing an underactuated ship
or AUV to follow a specified path at a desired forward speed. Due to the high de-
pendence on the reference model and complicated control laws of the trajectory-
tracking approach, several researchers have studied the path-following problem,
which is more suitable for practical implementation. The problem of path-following
for air and underwater vehicles was introduced in [83] where some local results
were obtained using linearization techniques. In [84], a feedforward cancelation of
simplified vessel dynamics scheme followed by a linear quadratic regulator design
was proposed to obtain local results on “track-keeping”. A fourth-order ship model
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in Serret–Frenet frame was used in [85] to develop a control strategy to track both
a straight line and a circumference under constant ocean current disturbance. The
ocean-current direction was assumed to be known. A path-following controller was
proposed in [86] by using a kinematic model written in polar coordinates, which
is inspired by the solution for mobile robots in [60]. However, the controller was
designed at the kinematic level with an assumption of constant ocean current and its
direction known to be to achieve an adjustable boundedness of the path-following
error. Since ocean vessels do not have direct control over velocities, a static mapping
implementation might result in an unstable closed loop system due to nonvanishing
environmental disturbances. Recently, a path-following controller based on a trans-
formation of the ship kinematics to the Serret–Frenet frame, which was used for
mobile robot control [44], on the path was proposed in [87], where an acceleration
feedback and linearization of ship dynamics were used. It is worth mentioning that
in [88, 89], a simple control scheme was proposed to make mobile robots follow a
specified path using a polar coordinate transformation. Since underactuated surface
ships have fewer numbers of actuators than the to-be-controlled degrees of freedom
and are subject to nonintegrable acceleration constraints, their dynamic models are
not transformable into a system without drifts. Therefore, the above control scheme
is not directly applicable. In [54], a continuous, periodic time-varying feedback con-
trol law was proposed to locally exponentially stabilize an underactuated underwater
vehicle at the origin. When the hydrodynamic restoring force in roll is large enough,
this controller can be used without a roll control torque. However the closed loop
system exhibits undesired oscillatory motions.

In [90], a linearization technique with an assumption of reference trajectories of
underwater vehicles, which are helices parameterized by the vehicles’ linear speed,
yaw rate, and path angle, was introduced to develop the so-called time-invariant
generalized vehicle error dynamics and kinematics. Various controllers were then
designed based on the gain-scheduling technique to yield some local stability result
about the trimming trajectories.

4.2.2.4 Output Feedback

Output feedback control of an underactuated ocean vessel is here defined as a control
problem of forcing the vessel to achieve the aforementioned tasks (stabilization,
trajectory-tracking, and path-following) without using measurements of the vessel’s
velocities for feedback. For ocean vessels, output feedback control usually consists
of two stages. The first stage is to design an observer to reconstruct unmeasured
states. Using the reconstructed states, a controller is designed to achieve control
objectives in the second stage. In the literature, there are two main approaches to
designing an observer for ocean vessels.

The first approach is based on the output-injection method applied directly to
the vessel’s equations of motion. This approach is simple and usually results in a
semiglobal observer due to the quadratic terms of the vessel’s velocities. Belong-
ing to this approach are the results presented in [11, 14, 91–94] on output feedback
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control of fully actuated ocean vessels or Lagrange systems. In addition, the reader
is referred to [93] for an exponential observer and output feedback controller for a
special class of multi-degree of freedom Lagrange systems without cross terms of
quadratic velocities, and to [14, 95–98] for output feedback control of robot manip-
ulators and rigid body without measurements of angular velocities. Another method
to design an observer is the use of contraction theory, see for example, [99, 100].
This method has been applied to Lagrange systems with monotonic velocity terms
but without any quadratic velocity terms. Below, we summarize the aforementioned
results on an observer design. We will show that a standard observer design cannot
be used to obtain a global exponential/asymptotical observer for the ocean vessel
system (1.1). Assume that the vessel velocity vector v is not measurable for feed-
back. We would then design an output injection observer to estimate v as follows:

PO� D J .�/ Ov CK01.�� O�/;
M POv D �C . Ov/ Ov �D. Ov/ Ov �g.�/C� CK02.�� O�/; (4.71)

where O� and Ov are estimates of � and v, respectively, and the positive definite sym-
metric matrices K01 2 R

6�6 and K02 2 R
6�6 are the observer gain matrices. It is

noted that in some of the aforementioned work, the observer gain matrices K01 and
K02 depend on the measurable state �. Letting the observer errors be

Q� D �� O�;
Qv D v � Ov (4.72)

and differentiating (4.72) along the solutions of (1.1) and (4.71) results in

PQ� D �K01 Q�CJ .�/ Qv;
M PQv D �K02 Q��

�
C .v/v �C . Ov/ Ov

�
�
�
D.v/v �D. Ov/ Ov

�
: (4.73)

The term
�
D.v/v �D. Ov/ Ov� does not cause a problem if the damping matrix D.v/

is monotonic, i.e.,
��

v � Ov�T �D.v/v �D. Ov/ Ov� is nonnegative for all v 2 R
6 and

Ov 2 R
6. However, we can see a serious problem with (4.73) because of the Coriolis

matrix, i.e.,
�
v � Ov/T �C .v/v �C . Ov/ Ov� is not nonnegative for all v 2 R

6 and Ov 2 R
6.

Therefore, only a local or semiglobal observer can be obtained.
The second approach involves a nontrivial coordinate transformation to trans-

form the vessel’s equations of motion to a new set of differential equations that are
linear in unmeasured states. Then the output-injection method is used to design an
observer. This approach usually results in a global observer if the nontrivial coor-
dinate transformation can be found. Unfortunately, this coordinate transformation
depends heavily on a solution of a set of partial differential equations, which in
general are hard to solve. The main idea of this approach is to find a coordinate
transformation

X D Q.�/v; (4.74)
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where Q.�/ is an invertible. This matrix is to be determined later. Substituting (4.74)
into (4.26) results in

P� D J .�/Q�1.�/X ;

PX D
h PQ.�/v �Q.�/M �1C .v/v

i
�Q.�/M �1DQ�1X CQ.�/M �1�:

(4.75)

The goal is to determine the matrix Q.�/ such that

PQ.�/v �Q.�/M �1C .v/v D 0; (4.76)

for all � 2 R
3 and v 2 R

3. With (4.76), we can write (4.75) as

P� D J .�/Q�1.�/X ;

PX D �Q.�/M �1DQ�1X CQ.�/M �1�: (4.77)

It is seen that the transformed system (4.77) is linear in the unmeasured state X .
This allows us to design an exponential/asymptotical observer to estimate X . After
that an estimate, Ov, of v can be found from (4.74), i.e.,

Ov D Q�1.�/ OX ; (4.78)

where OX denotes an estimate of X . It is noted that combining the first equation of
(4.26) and (4.76) results in a set of partial differential equations. Finding a solution
to this set of partial differential equations is a hard task. A simple application of the
above idea gives the results in [101–104] for some single degree of freedom La-
grange systems. It is noted that the method of solving the set of partial differential
equations in [101–104] is not applicable for systems of more than one degree of
freedom. For more complicated Lagrange systems, it is hard to find a result in this
approach. However, the reader is referred to [105] where an output eedback con-
trol solution for simultaneous stabilization and tracking control of an underactuated
ODIN is given.

Remark 4.7. The main difficulty in designing an observer-based output feedback
for surface ships and Lagrange systems in general is because of the Coriolis matrix,
which results in cross terms of unmeasured velocities. In addition, the underactua-
tion of surface ships makes the output feedback problem much more challenging.
For example, many solutions proposed for robot control, see [14] and references
therein, cannot directly be applied. The reader will find that a set of special coor-
dinate transformations is derived in this book to transform the ship dynamics to a
system that is linear in unmeasured velocities, and another set of coordinate transfor-
mations that makes it possible to design global output feedback control controllers
for underactuated ships.
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4.3 Conclusions

This chapter presented the main control properties of ocean vessels. The literature on
the control of underactuated ocean vessels including ships and underwater vehicles
was then reviewed. Through this review, several challenging questions were raised.
These questions motivate contributions of the coming chapters of this book.




