Chapter 3
Modeling of Ocean Vessels

In this chapter, we classify the basic motion tasks for ocean vessels and their math-
ematical models, which will be used for the design of various control systems in the
subsequent chapters.

3.1 Introduction

In automatic control, feedback improves system performance by allowing the suc-
cessful completion of a task even in the presence of external disturbances and initial
errors, and inaccuracy of the system parameters. To this end, real-time sensor mea-
surements are used to reconstruct the vehicle state. Throughout this study, the latter
is assumed to be available at every instant, as provided by local/global position and
orientation measurement sensors. In some cases, we also assume that the vehicle
velocities are measurable or constructible from position measurements.

We will concentrate on the case of a vessel workspace free of obstacles. In fact,
we implicitly consider the vessel controller to be embedded in a hierarchical ar-
chitecture in which a higher-level planner solves the obstacle avoidance problem
and provides a series of motion goals to the lower control layer. In this perspective,
the controller deals with the basic issue of converting ideal plans into actual mo-
tion execution. The nonholonomic nature of the ocean vessels is related to the fact
that the vessel does not usually have independent actuators in the sway and heave
axes. This implies the presence of a nonintegrable set of second-order differential
constraints on the configuration variables. While these nonholonomic constraints
reduce the instantaneous motions that the vessel can perform, they still allow almost
global controllability in the configuration space. This feature leads to some chal-
lenging problems in the synthesis of feedback controllers, which parallel the new
research issues arising in nonholonomic motion planning. Indeed, the ocean vessel
application has triggered the search for innovative types of feedback controllers that
can be used also for more general nonlinear systems that describe the motion of
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40 3 Modeling of Ocean Vessels

more complicated vessel systems such as ocean vessels and air vehicles working in
a group.

3.2 Basic Motion Tasks

In order to derive the most suitable feedback controllers for each case, it is conve-
nient to classify the possible motion tasks as follows:

e Point-to-point motion: The vessel must reach a desired goal configuration start-
ing from a given initial configuration, see Figure 3.1a.

e Path-following: The vessel must reach and follow a geometric reference path in
the Cartesian space starting from a given initial configuration (on or off the path),
see Figure 3.1b.

e Trajectory-tracking and path-tracking: The vessel must reach and follow a ref-
erence trajectory/path in the Cartesian space (i.e., a geometric path with an as-
sociated timing law) starting from a given initial configuration (on or off the
trajectory/path), see Figure 3.1c. Trajectory-tracking is referred to as the case
where the reference trajectory is generated by a suitable virtual vessel whereas
the reference path is not required to be generated by a virtual vessel for the path-
tracking.

The above tasks for an ocean vessel are sketched in Figure 3.1. Execution of these
tasks can be achieved using either feedforward commands, or feedback control, or
a combination of the two. Indeed, feedback solutions exhibit an intrinsic degree of
robustness.

Using a more control-oriented terminology, the point-to-point motion task is a
stabilization problem for a (equilibrium) point in the vessel state space. When us-
ing a feedback strategy, the point-to-point motion task leads to a state regulation
control problem for a point in the vessel state space. Posture stabilization is another
frequently used term. Without loss of generality, the goal can be taken as the ori-
gin of the n-dimensional vessel configuration space. Contrary to the usual situation,
trajectory-tracking, path-tracking, and path-following are easier than regulation for
a nonholonomic vessel. An intuitive explanation of this can be given in terms of a
comparison between the number of controlled variables (outputs) and the number
of control inputs. For the ship or underwater vehicle moving in a horizontal plane,
two input commands are available while three variables (position and orientation)
are needed to determine its configuration. Thus, regulation of the surface ship or
the underwater vehicle in a horizontal position to a desired configuration implies
zeroing three independent configuration errors.

In the path-following task, the controller is given a geometric description of the
assigned Cartesian path. This information is usually available in a parameterized
form expressing the desired motion in terms of a path parameter, which may be in
particular the arc length along the path. For this task, time dependence is not relevant
because one is concerned only with the geometric displacement between the vessel
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Reference path

Reference trajectory/path

Figure 3.1 Basic motion tasks for an ocean vessel

and the path. In this context, the time evolution of the path parameter is usually free
and, accordingly, the command inputs can be arbitrarily scaled with respect to time
without changing the resulting vessel path. It is then customary to set the vessel
forward velocity (one of the inputs) to an arbitrary constant or time-varying value,
leaving the other input variables for control. The path-following problem is thus
rephrased as the stabilization to zero of a suitable scalar path error function using
only the rest of the control inputs.

In the trajectory-tracking and path-tracking tasks, the vessel must follow the
desired Cartesian path with a specified timing law. Although the reference trajec-
tory/path can be split into a parameterized geometric path and a timing law for the
parameter, such separation is not strictly necessary. Often, it is simpler to specify
the workspace trajectory as the desired time evolution for the position of some rep-
resentative point of the vessel. The trajectory-tracking and path-tracking problems
consist then in the stabilization to zero of the Cartesian errors using all the available
control inputs.

The point stabilization problem can be formulated in a local or in a global sense,
the latter meaning that we allow for initial configurations that are arbitrarily far
from the destination. The same is true also for path-following, trajectory-tracking,
and path-tracking, although locality has two different meanings in these tasks. For
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path-following, a local solution means that the controller works properly, provided
that we start sufficiently close to the path; for trajectory-tracking and path-tracking,
closeness should be evaluated with respect to the current position of the reference
vessel and a current reference point, which moves on the reference path with a spec-
ified time law, on the reference path, respectively. The amount of information that
should be provided by a high-level motion planner varies for each control task. In
point-to-point motion, information is reduced to a minimum (i.e., the goal configu-
ration only) when a globally stabilizing feedback control solution is available. How-
ever, if the initial error is large, such a control may produce erratic behavior and/or
large control effort, which are unacceptable in practice. On the other hand, a local
feedback solution requires the definition of intermediate subgoals at the task plan-
ning level in order to get closer to the final desired configuration. For the other mo-
tion tasks, the planner should provide a path that is kinematically feasible (namely,
that complies with the nonholonomic constraints of the specific vessel), so as to
allow its perfect execution in nominal conditions. While for a fully or overactuated
vessel in which any path is feasible, some degree of geometric smoothness is in gen-
eral required for nonholonomic vessels. Nevertheless, the intrinsic feedback struc-
ture of the driving commands enables it to recover transient errors due to isolated
path discontinuities. Note also that the infeasibility arising from a lack of continuity
in some higher-order derivative of the path may be overcome by appropriate motion
timing. For example, paths with discontinuous curvature (like the Reeds and Shepp
optimal paths under maximum curvature constraint) can be executed by choosing an
appropriate point on the vessel provided that the vessel is allowed to stop, whereas
paths with discontinuous tangent are not feasible. In this analysis, the selection of
the vessel representative point for path/trajectory planning is critical. The timing
profile is the additional item needed in trajectory-tracking and path-tracking control
tasks. This information is seldom provided by current motion planners, also because
the actual dynamics of the specific vessel are typically neglected at this level. The
above example suggests that it may be reasonable at the planning stage to enforce
requirements such as “move slower where the path curvature is higher”.

3.3 Modeling of Ocean Vessels

Modeling of the ocean vessels is usually based on mechanics, principles of statics
and dynamics. Statics is concerned with the equilibrium of bodies at rest or mov-
ing with a constant velocity. Dynamics deals with bodies having accelerated mo-
tion resulting from disturbances or/and control forces. Since we are interested in a
mathematical model of the ocean vessels for the purpose of designing the control
systems, this section focuses on dynamics of the vessels rather than statics. The fol-
lowing briefly presents the ocean vessel equations of motion based on the results
in [11]. The resulting nonlinear model presented in this section is mainly intended
for designing control systems in the next chapters. For a detailed and comprehensive
derivation of the model, the reader is referred to [11,12,25]. The physical and control
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properties of the model are also presented for control design and stability analysis.
In this section, we use the notation, see Table 3.1 and Figure 3.2, that complies with
the Society of Naval Architects and Marine Engineers (SNAME) [26].

Body-fixed frame

Z, ¥

Figure 3.2 Motion variables for an ocean vessel

For an ocean vessel moving in six degrees of freedom, six independent coordi-
nates are required to determine its position and orientation. The first three coordi-
nates (x, y,z) and their first time derivatives correspond to the position and transla-
tional motion along the x-, y- and z-axes, while the last three coordinates (¢, 6, V)
and their first time derivatives describe orientation and rotational motion.

Table 3.1 SNAME Notation for ocean vessels

Degree of freedom Force and| Linear and |Position and
moment |angular velocity [Euler angles

1 Surge X u X

2 Sway Y v y

3 Heave V4 w z

4 Roll K P ¢

5 Pitch M q 0

6 Yaw N r v

According to SNAME, the six different motion components are defined as surge,
sway, heave, roll, pitch, and yaw. To determine the equations of motion, two refer-
ence frames are considered: the inertial or fixed to earth frame O Xg Yg Z g that
may be taken to coincide with the vessel fixed coordinates in some initial condi-
tion and the body-fixed frame Op XYy, Zj, see Figure 3.2. Since the motion of the
Earth hardly affects ocean vessels (different from air vehicles), the earth-fixed frame
O XgYEZE can be considered to be inertial. For ocean vessels in general, the
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most commonly adopted position for the body-fixed frame is such that it gives hull
symmetry about the Op X3 Zp-plane and approximate symmetry about the Op Yy, Z -
plane. In this sense, the body axes Oy Xp, Op Yy, and Oy, Zp, coincide with the princi-
pal axes of inertia and are usually defined as follows: Op X} is the longitudinal axis
(directed from aft to fore); OpY} is the transverse axis (directed to starboard); and
Oy Zp is normal axis (directed from top to bottom. Based on the notion in Table 3.1,
the general motion of an ocean vessel can be described by the following vectors:

1= [n1n2]", m=[xyz], nz2=1[¢0v]",
v =[v1 vz]T, v1=[uvw]T, v2=[pqr]T,
r=[nr]". wu=XvZzl". n=[KMN]",

where 7 denotes the position and orientation vector with coordinates in the earth-
fixed frame, v denotes the linear and angular velocity vector with coordinates in the
body-fixed frame, and T denotes the forces and moments acting on the vessel in the
body-fixed frame.

In deriving equations of motion of the ocean vessels, we divide the study of
vessel dynamics into two parts kinematics, which treats only geometrical aspects of
motion, and kinetics, which is the analysis of the forces resulting in the motion.

3.3.1 Kinematics

The first time derivative of the position vector #7 is related to the linear velocity
vector vy via the following transformation:

n = Ji(n2)vs, (3.1

where J1(n2) is a transformation matrix, which is related through the functions of
the Euler angles: roll (¢), pitch (), and yaw (). This matrix is given by

cos()cos(f) —sin(y)cos(¢p) + sin(¢p) sin(6) cos(¥r)
J1(n2) = | sin(y¥)cos(f) cos(y)cos(¢p) + sin(¢p) sin(0) sin(yr)
—sin(0) sin(¢) cos(6)

sin(y) sin(¢) + sin(6) cos(y¥) cos(¢p)

—cos(y) sin(¢) + sin(0) sin(¥ ) cos(¢p) |. (3.2)
cos(¢) cos(6)

It is noted that the matrix Jq(#2) is globally invertible since J; Lpp) = JIT (n2).
On the other hand, the first time derivative of the Euler angle vector 53 is related
to the body-fixed velocity vector v, through the following transformation:

2 = J2(n2)v2, (3.3)
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where the transformation matrix J2(#2) is given by

1 sin(¢)tan(f) cos(¢)tan(0)
J2(n2)={ 0 cos(¢) —sin(¢) - (34
0 sin(¢)/ cos(8) cos(¢)/cos(H)

Note that the transformation matrix J2(%2) is singular at 6 = + % However, during
practical operations ocean vessels are not likely to enter the neighborhood of 6 =
+ 7 because of the metacentric restoring forces. For the case where it is essential to
consider a region containing ¢ = 47, a four-parameter description based on Euler
parameters can be used instead. The interested reader is referred to [12] for more
details. Combining (3.1) and (3.3) results in the kinematics of the ocean vessels:

[Z:] - [Jéfff) J23(j732):| [zﬂ < q=Jmv. (3.5)

3.3.2 Kinetics

3.3.2.1 Rigid Body Equations of Motion

Let us define the following vectors:

fob =[X Y Z]T: force decomposed in the body-fixed frame.

mop =[K M N]T: moment decomposed in the body-fixed frame.

vop = [u v w]”: linear velocity decomposed in the body-fixed frame.

a)g »=1[r4q r]T: angular velocity of the body-fixed frame relative to the earth-
fixed frame.

o rop =[xg Vg zg]T: vector from Oy to CG (center of gravity of the vessel) de-
composed in the body-fixed frame.

By the Newton—Euler formulation for a rigid body with a mass of m, we have the
following balancing forces and moments:

. - FE E E E
mlvop +@®@op Xrop+®o, XVop + @5, X (@o, XFon)l = fob.

. E E E . E
Liwg,+ oo, x1owg, +mropx (Vop +@o, Xvop) =mop, 3.6)

where I, is the inertia matrix about Op defined by

Ix Ixy [xz
I=|-I,, I, —I,, |. (3.7)
—1I;x _]zy I,

Here Iy, Iy, and I, are the moments of inertia about the Op X3, OpYp, and OpZy
axes, and Iy = Iyx, Ix; = I, and I, = I, are the products of inertia. These
quantities are defined as
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1x=/(y2+22)pde, Ly =/ xXypmdV,
|4 |4
Iy = f (% +22)ppdV, Iy, = / xzpmdV, (3.8)
|4 14
IZ=/(x2+y2)pde, Izy=/ zypmdV,
|4 |4

where p,, and V are, respectively, the mass density and the volume of the rigid body.
Substituting the definitions of fop, mop, vVop, wgb, and rpp into (3.6) results in
the following equations of motion of a rigid body:

Mgpv+ Crp(v)v = TRB. (3.9)

where v = [uvw p g r]T is the generalized velocity vector decomposed in the
body-fixed frame, Tgp = [X Y Z KM N ]T is the generalized vector of external
forces and moments, the rigid body system inertia matrix M gp is given by

m 0 0 0 mzg —my,
0 m 0 -mzz 0 mxg
. 0 0 m  myg —mxg 0
Mgy = 0 —-mzg myg, Ip —Iyy —I |’ (3.10)
mzg 0 —mxg =L,y I, —Iy;
—myg MXg 0 —I;x -1, I,
and the rigid body Coriolis and centripetal matrix Cgpg (v) is given by
i 0 0 0
0 0 0
0 0 0
CRBEM) =1 (ygqt24r) mygp+w)  mizgp—v)
m(xgq—w) —m(zgr+xgp) m(zgq+u)
mxgr+v)  m(ygr—u) —m(xgp+yeq)

(3.11)
meq+zer)  —mxgg—w)  —m(xgr+v)
—m(ygp+w)  mgr+xgp)  —m(ygr—u)
—mzgp—v)  —mzgg+u)  mep+Yed)

0 —Lyq—Ixzp+1:r Lyr+1xyp—1Iyg
Lyzq+Ixzp—1Izr 0 —Lyzr —Ixyq +Ixp
—Lyzr—Ieyp+1yq Iezr+1Ixyqg—Ixp 0

The generalized external force and moment vector, Tgpg, is a sum of hydrody-
namic force and moment vector T g, external disturbance force and moment vector
T g, and propulsion force and moment vector t. Each of these vectors is detailed in
the following sections.
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3.3.2.2 Hydrodynamic Forces and Moments

In hydrodynamics, it is usually assumed that the hydrodynamic forces and moments
on a rigid body can be linearly superimposed, see [27]. The hydrodynamic forces
and moments are forces and moments on the body when the body is forced to os-
cillate with the wave excitation frequency and there are no incident waves. These
forces and moments can be identified as the sum of three components: (1) added
mass due to the inertia of the surrounding fluid, (2) radiation-induced potential
damping due to the energy carried away by generated surface waves, and (3) restor-
ing forces due to Archimedian forces (weight and buoyancy). The hydrodynamic
force and moment vector Ty is given by

g = —Mgi—Cq()v—D(v)v—g(n). (3.12)

where My is the added mass matrix, C4 (v) is the hydrodynamic Coriolis and cen-
tripetal matrix, D (v) is the damping matrix, and g () is the position and orientation
depending vector of restoring forces and moments.

The added mass matrix My is given by

Xa Xi X Xp X; X;
Yo Y5 Yu Y; Y, Y;
| zi 2y 2y 2 24 24
Ma=—=\ k. Ky Ko K; Ky K; | (3-13)
My My My, My My M;
Na Ny Ny Nj N; N

where the SNAME notation has been used. For example, the hydrodynamic added
mass force Y along the y-axis due to an acceleration # in the x-direction is written
as

ad

Y =Y, Yii= o (3.14)
u

The hydrodynamic Coriolis and centripetal matrix is given by

0 0 0 —das3 dp
0 0 as 0 —dai
0 0 —dy dq 0
—das3 djp 0 —b3 b2
as 0 —dai b3 0 —bl
—dy dai 0 —b2 bl 0

(3.15)

where

a; = Xyu+Xpv+Xyw+Xpp+ Xgq + X,
a=Yyu+Yov+Yyw+Yyp+Ysq+Yir,

azs=Zyu+Zyw+Zyw+Zyp+2Zyq+Zir,
b =Kyu+Kyv+Kyw+Kyp+ Kzq + Kir,
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by = M,;u—}—Ml-,v—}—Mww—i—MI;p—i—qu—i—M;r,
bz = Nyu+ Nyv+ Nyw+ Npp+ Nyq + Nir. (3.16)
In general, hydrodynamic damping for ocean vessels is mainly caused by po-
tential damping, skin friction, wave drift damping, and damping due to vortex shed-

ding. It is difficult to give a general expression of the hydrodynamic damping matrix
D (v). However, it is common to write the hydrodynamic damping matrix D (v) as

D(v) =D + D,(v). (3.17)

Here the linear damping matrix D is given by

X Xy X X, X, X,

Yu Yo Yo Y, Y, Y,

N zuzy 2w 2, 2, 2,
D==1k, k, ku K, K, K, (3.18)

M, M, My, M, M, M,

Ny Ny Ny N, N, N,

The nonlinear damping matrix Dy, (v) is usually modeled by using a third-order Tay-
lor series expansion or modulus functions (quadratic drag). If the xz-plane is a plane
of symmetry (starboard/port symmetry) an odd Taylor series expansion containing
first-order and third-order terms in velocity can be sufficient to describe most ma-
noeuvres. An approximate expression of each of this matrices will be given in the
next section when specific vessels are considered.

3.3.2.3 Restoring Forces and Moments

In this section, a model for g () is described. Let V be the volume of fluid displaced
by the vessel, g the acceleration of gravity (positive downwards), and p the water
density. The submerged weight of the body and buoyancy force are defined as

W =mg,
B =pgV. 3.19)

With the above definition, the restoring force and moment vector g(x) is due to
gravity and buoyancy forces, and is given by

(W — B)sin(6)
—(W — B)cos(0)sin(¢)
2(p) = —(W — B)cos(6)cos(¢)
—(ygW —ypB)cos(0)cos(¢) + (zg W — z, B) cos(8) sin(¢)
(zgW —zpB)sin(0) + (xg W — xp B) cos(0) cos(¢)
—(xg W —xpB)cos(0) sin(¢) — (yg W — yp B) sin(0)

, (3.20)
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where (xp, yp, zp) denote coordinates of the center of buoyancy.

3.3.2.4 Environmental Disturbances

In this section, we detail the vector, Tg, of forces and moments induced by envi-
ronmental disturbances including ocean currents, waves (wind generated) and wind,
i.e., we can write

g =T TR ¥, (3.21)
where 7§, Tg?, and ‘[gi are vectors of forces and moments induced by ocean
currents, waves and wind, respectively.

Current-induced Forces and Moments

The vector 7§ of the current-induced forces and moments is given by

1y = (Mg +My)v. +C (v,)v, —C(v)v+ D (v, )v, — D (v)v, (3.22)

where v, = v —v, and v = [u¢, Ve, we,0,0,0]7 is a vector of irrotational body-

fixed current velocities. Let the earth-fixed current velocity vector be denoted by

wE vE wET. Then, the body-fixed components [u,, v, w]? can be computed as
e uE
ve | =JLm2) | vE |. (3.23)
We wE

Wave-induced Forces and Moments

The vector Tg* of the wave-induced forces and moments is given by

> pgBLT cos(B)si (t)
YN —pgBLTsin(B)s; (1)

T — 8 , (3.24)
0

YN L pgBL(L? - B?)sin(28)s2(t)

where B is the vessel’s heading (encounter) angle, see Figure 3.3, p is the water
density, L is the length of the vessel, B is the breadth of the vessel, and T is the
draft of the vessel. Ignoring the higher-order terms of the wave amplitude, the wave
slope s; (¢) for the wave component i is defined as:
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2w .
si(t) = A; = sin(we;t + ¢;), (3.25)
i
where A; is the wave amplitude, A; is the wave length, w,; is the encounter fre-

quency, and ¢; is a random phase uniformly distributed and constant with time in
[0 27) corresponding to the wave component .

Beam sea

=120°

Quartering sea
p= 30° Bow sea

L =150°

Following sea

p=0 |

Head sea

Figure 3.3 Definition of a vessel’s heading (encounter) angle

Wind-induced Forces and Moments

For the case where the vessel is at rest (zero speed), the vector tgi of the wind-
induced forces and moments is given by

Cx (yw)AFrw
Cy (Yw)ALw
Cz(Yw)AFw
CK(Vw)ALw Hpyw |’
Cm (Yw)AFwHFw
CN (yw)ALw Loa

(3.26)

wi __ 2
TE = 5;PaVy

2

where V), is the wind speed, p, is the air density, A r,, is the frontal projected area,
ALy is the lateral projected area, HF, is the centroid of AF,, above the water line,
Hp,, is the centroid of Ay, above the water line, L, is the over all length of the
vessel, yy, is the angle of relative wind of the vessel bow, see Figure 3.4, and is given
by

Yw =Y —Puw—, (3.27)
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with 8, being the wind direction. All the wind coefficients (look-up tables) Cx (yy ),
Cy (Yw), Cz(Yw), Cxk (Yw), Cy (yw), and Cy (yy ) are computed numerically or by
experiments in a wind tunnel, see [28].

Z, ¥

Figure 3.4 Definition of wind speed and direction

For the case where the vessel is moving, the vector rgi is given by

Cx (Yrw)AFw
Cy (Vrw)ALw
i CZ(er)AFw
B ==paVy 3.28
TE 2,011 rw CK(er)ALwHLw ( )
Cu (er)AFw Hpy
CN (yrw)ALw Loa

Viw = Y u%w +vr2w’

Yrw = —arctan2(Vyy, Ury ), (3.29)

where

with

Upw = U—Vipcos(By — V),
Vpw =V — Vi sin(By — V). (3.30)
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3.3.2.5 Propulsion Forces and Moments

The vector, T, of propulsion forces and moments depends on a specific configuration
of actuators such as propellers, rudders, and water jets on a particular vessel. In the
next section where t is specified, we consider some classes of the ocean vessels that
are common in practice. In this book, we neglect the dynamics of the actuators that
provide the propulsion forces and moments since the response of the actuators such
as hydraulic systems and electrical motors is much faster than the response of the
vessel.

3.3.2.6 Model Summary and its Properties
Body-fixed Representation

Now substituting tgp = Ty + T + 7 into (3.9) and combining it with (3.5) results
in the equations of motion of an ocean vessel in six degrees of freedom as follows:

n=J(m)v,
Mi=-Cwv—-Dwv—gn)+1+7E, (3.3

where

M = Mpgp+My,
C(v) = Crp(v) + Ca(v). (3.32)

Under the assumption that the body is at rest (or at most is moving at low speed) in
ideal fluid, the matrix M is always symmetric positive definite, i.e.,

M=MT>o. (3.33)

For a rigid body moving in fluid, the Coriolis and centripetal matrix C (v) can al-
ways be parameterized such that it is skew-symmetric, i.e.,

C(v)=-CT(v), Vv eRS. (3.34)

For a rigid body moving in an ideal fluid, the hydrodynamic damping matrix D (v)
is real, non-symmetric and strictly positive, i.e.,

D(v)>0, Vv eRE. (3.35)

Earth-fixed Representation

The mathematical model (3.31) can also be written using a representation of the
earth-fixed coordinates by applying the following kinematic transformations (with
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the assumption that J ~1(») exists, i.e., 6 # +7):

v=J"" i,
o= a7 i = g~ ], (3.36)

Now substituting (3.36) into the second equation of (3.31) results in

M*(p)ij=—-C*(w,p)i—D*(w,mi—g* ) +JIJ (P +7E). (337

where

M* () =J =T (MIT ().
C*(.p) = I T )[C@)-MI~ ) J ()]T ().
D*(w.n)=J T (DI ().
g m=JI"TmeMm. (3.38)
Under the same assumptions used in the body-fixed representation, the model (3.37)
using the earth-fixed representation has the following properties:
M* () =M*m)". ¥y RS,
sT[M*(n)—2C*(v.n)|s =0, Vy eR® v e RS, 5 € RS,

D*(v,n) >0, VypeR® v ecRS. (3.39)
Y, (Sway)
YE A
X, (Surge)
Y

; o, w (Yaw)
0, >

E x J%

Figure 3.5 Motion variables for an ocean vessel moving in a horizontal plane
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3.4 Standard Models for Ocean Vessels

In this section, the main results of the previous section are simplified to give a set of
standard models for surface ships and underwater vehicles. These standard models
will be extensively used for the control design in the coming chapters.

3.4.1 Three Degrees of Freedom Horizontal Model

3.4.1.1 Standard Three Degrees of Freedom Horizontal Model

The horizontal motion of a surface ship or an underwater vehicle moving in a hor-
izontal plane is often described by the motion components in surge, sway, and
yaw. Figure 3.5 illustrates the motion variables in this case. Therefore, we choose
n =[xy v]T and v = [u v r]T. This model is obtained from the general model
(3.31) under the following assumption.

Assumption 3.1.

1. The motion in roll, pitch, and heave is ignored. This means that we ignore the
dynamics associated with the motion in heave, roll, and pitch, i.e., z =0, w =0,
¢=0,p=060=0 andq=0.

2. The vessel has homogeneous mass distribution and xz-plane of symmetry so that
Iy =1,,=0. (3.40)

3. The center of gravity C G and the center of buoyancy, CB, are located vertically
on the z-axis.

With Assumption 3.1, the dynamics of a surface ship or an underwater vehicle
moving in a horizontal plane is simplified from the general model (3.31) as follows:

n=Jmv,
Mv=—-C@v—(D+D,(v)v+1+71E, (3.41)

where the matrices J (n), M, C (v), D, and D,(v) are given by

cos(¥) —sin(y) O m— X, 0 0
J(n)=| sin(y) cos(y¥y) O |, M = 0 m—Y; mxg—Y; |,
0 0 1 0 mxg—Y; I,—N;
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0 0

C(v) = 0 0

m(xgr +v)=Y;v—=Y;r —mu+ X,u

—m(xgr +v)+ Ypyv+Yir
mu— Xyu ,
0

X, 0 0
D=—| 0VY,Y |,

0 Ny N,

X|u\u|u| 0 0

Dy(v) =— 0 Yiplvl+ Y lr| Yiuir|v] . (3.42)

0 va\v|v|+N\r\v|r| N\v|r|v|+N\r\r|r|
The propulsion force and moment vector t is given by

Tu

T=| 0 |[. (3.43)

The above propulsion force and moment vector T implies that we are considering
a surface vessel, which does not have an independent actuator in the sway, i.e., an
underactuated vessel is under consideration. Such a vessel can be one equipped with
a pair of water jets or a pair of propellers.

The environmental disturbance vector g is given by

TuE
Tg = | wE |, (3.44)
TrE

where 7,r and t,g are disturbance forces acting in surge and sway respectively,
and 7, is the disturbance moment acting in yaw.

3.4.1.2 Simplified Three Degrees of Freedom Horizontal Model

In some cases, in addition to Assumption 3.1 we ignore the off-diagonal terms of
the matrices M and D, all elements of the nonlinear damping matrix D, (v). These
assumptions hold when the vessel has three planes of symmetry, for which the axes
of the body-fixed reference frame are chosen to be parallel to the principal axis of the
displaced fluid, which are equal to the principal axis of the vessel. Most ships have
port/starboard symmetry, and moreover, bottom/top symmetry is not required for
horizontal motion. Ship fore/aft nonsymmetry implies that the off-diagonal terms
of the inertia and damping matrices are nonzero. However, these terms are small
compared to the main diagonal terms. Furthermore, disturbances induced by waves,
wind, and ocean currents are ignored. Under the just-mentioned assumptions, the
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dynamics of a surface ship or an underwater vehicle moving in a horizontal plane is
simplified from the three degrees of freedom model (3.41) as follows:

n=J(m)v,
Mv=—-C(w)v—Dv+r, (3.45)

where the matrices J (n), M, C (v) and D are given by

cos(y¥) —sin(y) 0 my; 0 O
J(p) = | sin(yy) cos(y¥) O |, M = 0 my 0 |,
0 0 1 0 0 mss
(3.46)
0 0 —MmMa2 vV dll 0 0
C(v)= 0 0 miu s D= 0 d22 0 y
MoV —miu 0 0 0 d33
with
myr =m—Xy, mypy =m—Yy, my3 =1, —N;
d11 =—Xu, d22 =-Y,, d33 =—N;. (3.47)

The propulsion force and moment vector 7 is still given by (3.43), ie., T =
[t 0 7,]7.

3.4.1.3 Spherical Three Degrees of Freedom Horizontal Model
In addition to the assumptions made in Subsection 3.4.1.2, we assume that the vessel

has bottom/top symmetry. An example of this type of vessels is an ODIN moving
in a horizontal plane, see Figure 3.6. In this case, the model is further simplified to

n=J@)v,
Mv=—-C()v—Dv+rt (3.48)

where the matrices J(n), M, C (v) and D are given by

cos(¥) —sin(y) O Mmyy 0 O
J(@) = | sin(y) cos(y) O | . M=| 0 my 0 |,
0 0 1 0 0 ms3
0 0 —mxyv dey 0 0
C(v) = 0 0 myyu |, D=| 0 dy, 0 |, (3.49)
MyyV —Mxyu 0 0 0 diss

with
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Myy =m—Xy =m—Yy, maz=1,—Nj;
dxy = —Xy =—Y,, d3z = —N;,. (3.50)

The propulsion force and moment vector 7 is still given by (3.43), ie. T =
[2. 07,7,

Figure 3.6 An omnidirectional intelligent navigator (ODIN).
Courtesy http://www.math.hawaii.edu/~ryan/STOMP/Photos 200DIN.html

3.4.2 Six Degrees of Freedom Model

3.4.2.1 Standard Model

In addition to the assumptions made in Section 3.3, we assume that the center of
gravity and the center of buoyancy are located vertically on the Op Zp-axis, and that
there are no couplings (off-diagonal terms) in the matrices M, D, and D,(v). In
this case, the model presented in Section 3.3 is simplified to

= Ji(n2)v1,
Myv1 = —C1(v1)v2— D1v1 — Dp1(v1)v1 + 71 + T1E,
N2 = J2(n2)v2,
M3z = —C1(v1)v1 — C2(v2)v2 — D2v2 — Dp2(v2)v2 —
g2(n2) + 12+ 12E, (3.51)
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where J1(52) and J2(52) are given in (3.2) and (3.4). The matrices M1 and M»

are

wh

—mll 0 0 7
M1 = 0 mopo 0
L 0 0 m33_
_I’}’I44 0 0 ]
Mz = 0 mss 0
L 0 0 m66_
ere

miy =m—Xy, myp=m—Y,

maz =m—Zy, myg = I — K
Ns5 = Iy—Mq, Mee = IZ—Nr'.
The matrices C1(v1) and C3(v3) are
[ 0 ms33w —nippv
Cl(’l)]) = | —ms33Ww 0 miu
L mp2V —mi1u 0
[ 0 mesr —mssq
Cr(v2) = | —mesr O Ma4 p
| M55 —Mg44p 0

The linear damping matrices Dy and D are

where

_dll 0 0]
Dq = 0 dy, O
| 0 0 dis
_d44 0 0]
D, = 0 dss O
| 00 des
din = —Xu,
dar ==Yy,
d3z =—Zy,
dss = —Kp,
dss = —M,,

d66 =—N,.

(3.52)

(3.53)

(3.54)
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The nonlinear damping matrices D,1(v1) and Dy2(v2) are

[0 duilul ™! 0 0
Dp1(v1) = 0 S dyi v ! 0 ,
L 0 0 Yo duilw]!
[ >, dpilpl™! 0 0
Dy2(v2) = 0 S dyilg)! 0 . (3.55)
L 0 0 Yo dpilr |

where dy;, dy;, dwi, dpi, dgqi, and d,; with i = 2, 3 are the nonlinear hydrodynamic
damping coefficients.
The restoring force and moment vector g2(#2) is given by

pgVGMT sin(¢) cos(6)
g20n2) = pgVGM| sin(0) , (3.56)
0

where p, g, V, GM7 and GM|, are the water density, gravity acceleration, displaced
volume of water, transverse metacentric height and longitudinal metacentric height,
respectively.

The propulsion force and moment vectors 71 and 72 are

Tu
=0 |, 12=|1|, (3.57)
0

which imply that the vessel under consideration does not have independent actuators
in the sway and heave.
The environmental disturbance vectors T1g and T2 are given by

TEu TEp
T1E=| TEv |. T2E = | TEq |, (3.58)
TEw TEr

where Tgy, TEv, TEw, TEp, TEq, and Tg, are the environmental disturbance forces
or moments acting on the surge, sway, heave, roll, pitch, and yaw axes, respectively.

3.4.2.2 Ignoring Nonlinear Damping Terms and Roll Model
In addition to the assumptions made in Section 3.4.2.1, it is sometimes reasonable

to ignore nonlinear hydrodynamic damping terms and roll, and environmental dis-
turbances. This holds when the vessel is operating at low speed and is equipped with
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independent internal/external roll actuators. As such, the model (3.51) is simplified
to:

1. Kinematics

X = cos(y) cos(8)u —sin(y)v + sin(8) cos (¥ )w,
y = sin(y) cos(8)u + cos(¥)v + sin(8) sin(y ) w,
z = —sin(0)u + cos(f)w,

0=gq,
J=— (3.59)
cos(6) :
2. Kinetics
mao ms3 diy 1
U= —0r——wqg———uU+—71,
mii mii mii miq
mii dx
V= ———ur——u,
mao mao
miy d33
W= —uqg——uw,
m33 m33
m33 —mi dss pgVGMp sin() 1
= UG+ —— 1,
mss mss mss mss
. mi1—ma dee 1
F=——Uv——r+—1,. (3.60)
Mmee Mee Me6

3.5 Conclusions

This chapter sets out material about the basic motion tasks and mathematical mod-
els of the ocean vessels that will be used in the subsequent chapters. More details
on deriving the mathematical models of the ocean vessels are given in [11, 12,25].
It has also been pointed out that regulation/stabilization is much more difficult than

trajectory-tracking, path-tracking, and path-following for underactuated ocean ves-
sels.





