
Chapter 13
Path-following of Underactuated Underwater
Vehicles

This chapter extends the approach proposed for underactuated surface ships in
Chapter 11 to design a path-following system for six degrees of freedom underac-
tuated underwater vehicles. Although the control design is much more involved in
comparison with that for underactuated surface ships in Chapter 11, it still guaran-
tees that path-following errors asymptotically converge to a ball, with an adjustable
radius, centered on a desired path, and covers both parking and point-to-point navi-
gation problems.

13.1 Control Objective

For the reader’s convenience, we rewrite the mathematical model of an underactu-
ated underwater vehicle, which is described in detail in Section 3.4.2.1, moving in
six degrees of freedom as follows:

P�1 D J1.�2/v1;

M1 Pv1 D �C1.v1/v2 �D1v1 �Dn1.v1/v1 C�1 C�1E ;

P�2 D J2.�2/v2; (13.1)

M2 Pv2 D �C1.v1/v1 �C2.v2/v2 �D2v2 �Dn2.v2/v2 �
g2.�2/C�2 C�2E ;

where J1.�2/ and J2.�2/ are given by

J1.�2/D
2
4

cos. /cos.�/ �sin. /cos.�/C sin.�/sin.�/cos. /
sin. /cos.�/ cos. /cos.�/C sin.�/sin.�/sin. /

�sin.�/ sin.�/cos.�/

sin. /sin.�/C sin.�/cos. /cos.�/
�cos. /sin.�/C sin.�/sin. /cos.�/

cos.�/cos.�/

3
5 ;
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J2.�2/D
2
4
1 sin.�/ tan.�/ cos.�/ tan.�/
0 cos.�/ �sin.�/
0 sin.�/=cos.�/ cos.�/=cos.�/

3
5 : (13.2)

The matrices M1 and M2 are

M1 D
2
4
m11 0 0

0 m22 0

0 0 m33

3
5 ; M2 D

2
4
m44 0 0

0 m55 0

0 0 m66

3
5 : (13.3)

The matrices C1.v1/ and C2.v2/ are

C1.v1/D
2
4

0 m33w �m22v
�m33w 0 m11u

m22v �m11u 0

3
5 ;

C2.v2/D
2
4

0 m66r �m55q
�m66r 0 m44p

m55q �m44p 0

3
5 : (13.4)

The linear and nonlinear damping matrices D1, D2, Dn1.v1/, and Dn2.v2/ are

D1 D
2
4
d11 0 0

0 d22 0

0 0 d33

3
5 ; D2 D

2
4
d44 0 0

0 d55 0

0 0 d66

3
5 ;

Dn1.v1/D
2
4
P3
iD2dui juji�1 0 0

0
P3
iD2dvi jvji�1 0

0 0
P3
iD2dwi jwji�1

3
5 ;

Dn2.v2/D
2
4
P3
iD2dpi jpji�1 0 0

0
P3
iD2dqi jqji�1 0

0 0
P3
iD2dri jr ji�1

3
5 : (13.5)

The restoring force and moment vector g2.�2/ is given by

g2.�2/D

2
664
	grGMT sin.�/cos.�/

	grGML sin.�/

0

3
775 : (13.6)

The propulsion force and moment vectors �1 and �2 are

�1 D
2
4
�u
0

0

3
5 ; �2 D

2
4
�p
�q
�r

3
5 ; (13.7)

which imply that the vehicle under consideration does not have independent actu-
ators in the sway and heave. The environmental disturbance vectors �1E and �2E
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are given by

�1E D
2
4
�Eu.t/

�Ev.t/

�Ew.t/

3
5 ; �2E D

2
4
�Ep.t/

�Eq.t/

�Er .t/

3
5 ; (13.8)

where �Eu.t/, �Ev.t/, �Ew.t/, �Ep.t/, �Eq.t/, and �Er .t/ are the environmental
disturbance forces or moments acting on the surge, sway, heave, roll, pitch, and yaw
axes, respectively.

We assume that these disturbances are bounded as follows:

j�Eu.t/j � �max
Eu <1; j�Ev.t/j � �max

Ev <1; j�Ew.t/j � �max
Ew <1;ˇ̌

�Ep.t/
ˇ̌� �max

Ep <1;
ˇ̌
�Eq.t/

ˇ̌� �max
Eq <1; j�Er .t/j � �max

Er <1: (13.9)

Since the sway and heave control forces are not available in the sway and heave
dynamics, the vehicle model (13.1) is underactuated.

In this chapter, we consider a control objective of designing the control inputs �1

and �2 to force the underactuated vehicle (13.1) to follow a specified path ˝ , see
Figure 13.1. If we are able to drive the vehicle to follow closely a virtual vessel that
moves along the path with a desired speed u0, then the control objective is fulfilled,
i.e., the vessel is in a tube of nonzero diameter centered on the reference path and
moves along the specified path at the speed u0. Roughly speaking, the approach is to
steer the vessel such that it heads toward the virtual one and diminishes the distance
between the real and the virtual vessels.

Virtual vehicleReal vehicle

EO

EZ

EX

EY

A

sA 0u

1a

2a

3a
ed

Figure 13.1 General framework of underwater vehicle path-following
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In Figure 13.1,A is the center of the real vehicle andAs is a point on the reference
path attached to the virtual vehicle. Define the following path-following errors

xe D xd �x;
ye D yd �y;
ze D zd �z;
de D

q
x2e Cy2e Cz2e ; (13.10)

where xd ;yd and zd are the coordinates of As . Then the terms ai ; 1 � i � 3 in
Figure 13.1 are obtained from xe; ye and ze by rotating the body frame around the
earth-fixed frame OEXEYEZE the roll, pitch, and yaw angles, i.e.,

2
4
a1
a2
a3

3
5D J1.�2/

2
4
xe
ye
ze

3
5 : (13.11)

Expanding (13.11) yields

a1 D xeJ
11
1 .�2/CyeJ

21
1 .�2/CzeJ

31
1 .�2/;

a2 D xeJ
12
1 .�2/CyeJ

22
1 .�2/CzeJ

32
1 .�2/;

a3 D xeJ
13
1 .�2/CyeJ

23
1 .�2/CzeJ

33
1 .�2/;

(13.12)

where J ij1 .�2/ is the element of J1.�2/ at the i th row and j th column. Therefore
the path-following orientation errors are defined by the angles ˛ and ˇ. It is noted
that the angles �; ˛, and ˇ are not defined at de D 0 but with the aid of a desired
controller, limk.de ;˛;ˇ/k!0.�; /D .�s; s/with �s and  s being the orientation an-
gles of the virtual vessel. Hence in this chapter, we will design a controller such that
it guarantees de � d�

e with d�
e being an arbitrarily small positive constant to avoid

chattering caused by de D 0. With the above definitions, our control objective can
be mathematically stated as follows:

Path-following Objective. Under Assumption 13.1, design the control inputs �1

and �2 to force the underactuated vehicle (13.1) to follow the path ˝ given by

xd D xd .s/;

yd D yd .s/; (13.13)

zd D zd .s/;

where s is the path parameter variable, such that

lim
t!1de.t/� de; lim

t!1 j˛.t/j � ˛;

lim
t!1 jˇ.t/j � ˇ; lim

t!1 j�.t/j � �;
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with de , �, ˛, and ˇ being arbitrarily small positive constants.

Assumption 13.1. The reference path is regular, i.e. there exist strictly positive con-
stants a3min; a3max; a2min and a2max such that

a3min �
s�

@xd

@s

	2
C
�
@yd

@s

	2
C
�
@zd

@s

	2
� a3max;

a2min �
s�

@xd

@s

	2
C
�
@yd

@s

	2
� a2max: (13.14)

Remark 13.1.

1. We might refer to the above objective as a path-tracking one. However, we use
the term “path-following” since our approach is to make the real vehicle follow
the virtual one, see Figure 13.1.

2. Assumption 13.1 ensures that the path is feasible for the vessel to follow, see
Section 13.3. The condition (13.14) implies that the reference trajectory cannot
contain a vertical straight line to avoid singularity of J2.�2/ at the pitch angle
� D ˙0:5� .

3. If the reference path is not regular, then we can often split it into regular pieces
and consider each of them separately. This is the case of point-to-point naviga-
tion, which will be addressed in Section 13.6.

4. The path parameter, s, is not the arc length of the path in general. For example,
a circle with radius R centered at the origin can be described as xd D Rcos.s/
and yd DR sin.s/.

13.2 Coordinate Transformations

From (13.10) and (13.12), we have the position kinematic error dynamics as follows:

Pde D 1

de

�
xe
@xd

@s
Cye

@yd

@s
Cze

@zd

@s

	
Ps� a1

de
u� a2

de
v� a3

de
w: (13.15)

For the path-following orientation errors, referring to Figure 13.1 and the control
objective stated in the previous section, one can see that the following holds

a1

de
D cos.�/D cos.˛/cos.ˇ/; (13.16)

which in turn implies that

(
lim
t!1˛.t/D 0

lim
t!1ˇ.t/D 0

, lim
t!1�.t/D 0) lim

t!1

�
a1.t/

de.t/

	
D 1: (13.17)
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Hence we can either choose the angles ˛ and ˇ, or the angle � , or the term a1=de as
the orientation coordinates for the control design. We now discuss the above options
and then choose one that results in a simple control design and enhance feasible ini-
tial conditions.

Using Angles ˛ and ˇ. In this case, the path-following orientation errors are defined
as follows, see Figure 13.1:

˛ D e˛ �2�n˛.e˛/;
ˇ D eˇ �2�nˇ .eˇ /; (13.18)

where

e˛ D
8<
:

2arctan

�
a3

a1

	
I .a3;a1/¤ .0;0/;

0I .a3;a1/D .0;0/;

eˇ D

8̂
ˆ̂̂
<̂
ˆ̂̂̂
:̂

2arctan

0
B@ a2q

a21Ca23

1
CA I

�
a2;

q
a21Ca23

	
¤ .0;0/;

0 I
�
a2;

q
a21Ca23

	
D .0;0/:

(13.19)

The functions n˛.e˛/ and nˇ .eˇ / take values in .0;˙1;˙2; :::/ such that ˛ and ˇ
belong to .��;��. Hence ˛ and ˇ are periodic and piecewise continuous functions
with respect to e˛ and eˇ . The reason for introducing (13.18) is to convert all equi-
librium points of ˛ and ˇ to the origin. It is seen from (13.19) that e˛ and eˇ are
discontinuous on the following surfaces:

D˛ D f.a1;a3/ W a3 ¤ 0; a1 D 0g ;
Dˇ D

�
.a1;a2;a3/ W a2 ¤ 0;

q
a21Ca23 D 0


:

(13.20)

It is also seen from (13.18) that ˛ and ˇ are discontinuous on the surfaces:

C˛ D f.a1;a3/ W ˛ D �g ;
Cˇ D f.a1;a2;a3/ W ˇ D �g : (13.21)

We now use (13.18) to transform the kinematic part of (13.1) to

P�˛ˇ D f s
˛ˇ.�/PsCf u

˛ˇ.�/uCf v
˛ˇ.�/vCf w

˛ˇ.�/wCA˛ˇ.�/J2.�2/v2; (13.22)

where
�˛ˇ D �

� ˛ ˇ
�T
;

f s
˛ˇ
.�/D F˛ˇ.�/

�
@xd

@s

@yd

@s

@zd

@s

�T
;
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f u
˛ˇ.�/D �F˛ˇ.�/

�
J 111 .�2/ J

21
1 .�2/ J

31
1 .�2/

�T
;

f v
˛ˇ.�/D �F˛ˇ.�/

�
J 121 .�2/ J

22
1 .�2/ J

32
1 .�2/

�T
;

f w
˛ˇ.�/D �F˛ˇ.�/

�
J 131 .�2/ J

23
1 .�2/ J

33
1 .�2/

�T
;

F˛ˇ.�/D
h
0 f 1

˛ˇ
.�/ f 2

˛ˇ
.�/
iT
; (13.23)

A˛ˇ.�/D
2
4

1 0

�cos.˛/ tan.ˇ/ cos.�/C sin.˛/ tan.ˇ/sin.�/
sin.˛/ sin.�/cos.˛/

0

cos.�/sin.�/C tan.ˇ/.sin.�/cos.˛/� cos.�/sin.˛/cos.�/
�.cos.˛/cos.�/cos.�/C sin.˛/sin.�/

3
5 ;

with

f 1
˛ˇ.�/D 1

de cos.ˇ/

�
cos.˛/J 131 .�2/� sin.˛/J 111 .�2/;

cos.˛/J 231 .�2/� sin.˛/J 211 .�2/;

cos.˛/J 331 .�2/� sin.˛/J 311 .�2/
�
;

f 2
˛ˇ.�/D

�
� sin.ˇ/cos.˛/

de
J 111 .�2/C cos.ˇ/

de
J 121 .�2/� sin.ˇ/sin.˛/

de
J 131 .�2/;

� sin.ˇ/cos.˛/

de
J 211 .�2/C cos.ˇ/

de
J 221 .�2/� sin.ˇ/sin.˛/

de
J 231 .�2/;

� sin.ˇ/cos.˛/

de
J 311 .�2/C cos.ˇ/

de
J 321 .�2/� sin.ˇ/sin.˛/

de
J 331 .�2/

�
:

(13.24)

From (13.23), we calculate the determination of the matrix A˛ˇ.�/ as follows:

det.A˛ˇ.�//D �cos.˛/cos.�/� sin.˛/sin.�/cos.�/�
sin.�/sin.�/ tan.ˇ/: (13.25)

It can be seen from (13.25) that the matrix A˛ˇ.�/ is not globally invertible even
when � D 0 and � ¤ ˙0:5� . It is also observed that if we choose the angles ˛ and
ˇ as the orientation coordinates for control design, there are a number of discontin-
uous surfaces, see (13.19), (13.20), and (13.21), which make the stability analysis
difficult.

Using Angle � . In this case, the path-following orientation error is defined as fol-
lows, see Figure 13.1:

� D e� �2�n� .e� /; (13.26)
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where

e� D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

2arctan

0
B@

q
a22Ca23

a1

1
CA I
�
a1;

q
a22Ca23

	
¤ .0;0/;

0I
�
a1;

q
a22Ca23

	
D .0;0/:

(13.27)

The interpretation of the above expressions is similar to that of (13.18) and (13.19).
It can be seen from (13.27) that e� is discontinuous on the following surface:

D� D
�
.a1;a2;a3/ W

q
a22Ca23 ¤ 0;a1 D 0


: (13.28)

It can also be seen from (13.26) that � is discontinuous on the surface:

C� D f.a1;a2;a3/ W � D �g : (13.29)

Differentiating both sides of (13.26) results in

P� D 1

e2
q
a22Ca23

�
a1a2

�
@a2

@xe
Pxe C @a2

@ye
Pye C @a2

@ze
Pze @a2
@�

P�
	

C

a1a3

�
@a3

@xe
Pxe C @a3

@ye
Pye C @a3

@ze
Pze @a3
@�

P�
	

�
�
a22Ca23

��@a1
@xe

Pxe C @a1

@ye
Pye C @a1

@ze
Pze C @a1

@�
P�
	

C
�
a1

�
a2
@a2

@�
Ca3

@a3

@�

	
� �a22Ca23

� @a1
@�

	
P�C

�
a1

�
a2
@a2

@ 
Ca3

@a3

@ 

	
� �a22Ca23

� @a1
@ 

	
P 
	
: (13.30)

Since

2
664

�
a1

�
a2
@a2

@�
Ca3

@a3

@�

	
� �a22Ca23

� @a1
@�

	

d2e

q
a22Ca23

3
775

2

C

2
664

�
a1

�
a2
@a2

@ 
Ca3

@a3

@ 

	
� �a22Ca23

� @a1
@

	

d2e

q
a22Ca23

3
775

2

¤ 0; (13.31)

for all .xe;ye;ze;�; / 2 R
5 and � 2 Rn ˙0:5� , the angle � can be chosen as the

orientation coordinate for the control design. However (13.30) will result in a very
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complicated control law.

Using a1=de . By defining

ae D
q
x2e Cy2e ;

cos.�1/D ae

de
cos.�/� ze

de
sin.�/; (13.32)

cos.�2/D xe

ae
cos. /C ye

ae
sin. /;

we can write a1=de as follows

a1

de
D cos.�1/C ae

de
cos.�/.cos.�2/�1/: (13.33)

Since
ˇ̌
ˇae

de
cos.�/

ˇ̌
ˇ� 1; 8.xe;ye;ze;�/ 2 R

4, the conditions

lim
t!1�1 D 0;

lim
t!1�2 D 0 (13.34)

imply that limt!1.a1=de/D 1. Furthermore, from (13.32) we can write

�1 D �C�d ;

�2 D  � d ; (13.35)

where �d D arccos .ae=de/ and  d D arccos .xe=ae/ are the desired orientation an-
gles of the vessel in the horizontal and vertical planes, respectively. Hence (13.34)
also implies the orientation control objective. If one differentiates both sides of
(13.35) to obtain P�1 and P�2, there will be discontinuity in the �1- and �2- dynamics
at ze D 0 and/or ye D 0, i.e., on the ae and/or xe axes. This discontinuity will cause
difficulties in applying the backstepping technique. To get around this problem, we
compute P�1 and P�2 based on (13.32) as follows:

P�1 D P�C Pae sin.�/C Pze cos.�/

de cos.�1/
�

Pde sin.�1/

de cos.�1/
;

P�2 D P C Pxe sin. /� Pye cos. /

ae cos.�2/
� Pae sin.�2/

ae cos.�2/
: (13.36)

It can be seen that (13.36) is not defined at �i D ˙0:5�; i D 1;2, and ae D 0; de D 0.
However, our controller will guarantee that j�i .t/j< 0:5� and de.t/� d�

e ; ae.t/�
a�
e ; 8 t � t0 � 0 with arbitrarily small positive constants d�

e and a�
e and for feasible

initial conditions. From (13.36), we can see that P� and P are decoupled. Hence,
designing a controller to achieve the control objective posed in the previous section
by using the orientation coordinate a1=de would be much simpler than using the
angles �; ˛, and ˇ. For convenience of control design, we rewrite the transformed
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system dynamics (13.15) and (13.36) as follows:

Pde D 1

de

�
xe
@xd

@s
Cye

@yd

@s
Cze

@zd

@s

	
Ps� a1

de
u� a2

de
v� a3

de
w;

P�2� D f2�.�/CJ2.�2/v2;

M1 Pv1 D �C1.v1/v2 �D1.v1/v1 C�1 C�1E .t/;

M2 Pv2 D �C1.v1/v1 �C2.v2/v2 �D2.v2/v2 �g2.�2/C�2 C�2E .t/;

(13.37)

where

�2� D Œ� �1 �2�
T ;

f2�.�/D
2
4

0

f s1 PsCf u1 uCf v1 vCf w1 w

f s2 PsCf u2 uCf v2 vCf w2 w

3
5 ;

f s1 D$11

@xd

@s
C$12

@yd

@s
C$13

@zd

@s
;

f u1 D ��$11J
11
1 .�2/C$12J

21
1 .�2/C$13J

31
1 .�2/

�
;

f v1 D ��$11J
12
1 .�2/C$12J

22
1 .�2/C$13J

32
1 .�2/

�
; (13.38)

f w1 D ��$11J
13
1 .�2/C$12J

23
1 .�2/C$13J

33
1 .�2/

�
;

f s2 D$21

@xd

@s
C$22

@yd

@s
;

f u2 D ��$21J
11
1 .�2/C$22J

21
1 .�2/

�
;

f v2 D ��$21J
12
1 .�2/C$22J

22
1 .�2/

�
;

f w2 D ��$21J
13
1 .�2/C$22J

23
1 .�2/

�
;

with

$11 D
�

xe sin.�/

aede cos.�1/
� xe sin.�1/

d2e cos.�1/

	
;

$12 D
�

ye sin.�/

aede cos.�1/
� ye sin.�1/

d2e cos.�1/

	
;

$13 D
�

cos.�/

de cos.�1/
� ze sin.�1/

d2e cos.�1/

	
; (13.39)

$21 D
�

sin. /

ae cos.�2/
� xe sin.�2/

a2e cos.�2/

	
;

$22 D
�

� cos. /

ae cos.�2/
� ye sin.�2/

a2e cos.�2/

	
:

Therefore, we will design the control inputs �1 and �2 for (13.37) to yield the
control objective. In Section 13.3, a procedure to design a stabilizer for the path-
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following error system (13.37) is presented in detail. The structure of (13.37) sug-
gests that we design the actual controls �1 and �2 in two stages. First, we design
the virtual velocity controls for u and v2 and choose Ps to ultimately stabilize de and
�i ; i D 1;2 at the origin. Based on the backstepping technique, the controls �1 and
�2 will then be designed to make the errors between the virtual velocity controls and
their actual values asymptotically tend to a small ball centered at the origin. Since
the vessel parameters are unknown, an adaptation scheme is also introduced in this
step to estimate their values used in the control laws. We split the control design
procedure into two steps. The first step is to design �1 while the second step takes
care of �2. This allows us to simplify the choice of feasible initial conditions.

Since the transformed system (13.37) is not defined at de.t/ D 0, ae.t/ D 0,
�i .t/D ˙0:5�; i D 1;2, we first assume that

de.t/� d�
e ;ae.t/� a�

e ; j�i .t/j< 0:5�; i D 1;2; 8t � t0 � 0; (13.40)

for some positive constants d�
e and a�

e . Our controller design will guarantee (13.40)
for feasible initial conditions.

13.3 Control Design

The de-dynamics have two inputs that can be chosen to stabilize de , namely Ps and
u. We can either choose the input u or Ps and then design the remaining input. If
we fix Ps, then the virtual vessel is allowed to move at a desired speed. The real
vessel will follow the virtual one on the path by the controller, and vice versa. In
this chapter, we choose to fix Ps. This allows us to adjust the initial conditions in
most cases without moving the real vessel, see Section 13.4.

Define
QuD u�ud ; (13.41)

where ud is the intermediate control of u. As discussed above, we choose the inter-
mediate control ud and Ps as follows:

ud D k1.de � ıe/� 1

a1
.a2vCa3w/C 1

de

u0.t;de/

�
xe
@xd

@s
Cye

@yd

@s
Cze

@zd

@s

	

s�
@xd

@s

	2
C
�
@yd

@s

	2
C
�
@zd

@s

	2 ;

(13.42)

Ps D a1

de

u0.t;de/s�
@xd

@s

	2
C
�
@yd

@s

	2
C
�
@zd

@s

	2 ; (13.43)

where k1 and ıe are positive constants to be selected later, and u0.t;de/¤ 0; 8t �
t0 � 0; de.t/ 2 R, is the speed of the virtual vessel on the path. Indeed, one can
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choose this speed to be a constant. However, the time-varying speed and position
path-following error dependence of the virtual vessel on the path is more desirable,
especially when the underwater vehicle starts to follow the path. For example, one
might choose

u0.t;de/D u�
0.1��1e��2.t�t0//e��3de ; (13.44)

where u�
0 ¤ 0; �i > 0; i D 1;2;3; �1 < 1. The choice of u0.t;de/ in (13.44) has the

following desired feature: When the path-following error, de , is large, the virtual
vessel will wait for the real one; when de is small the virtual vessel will move along
the path at the speed closed to u�

0 and the real one follows it within the specified look
ahead distance. This feature is suitable in practice because it avoids using a high-
gain control for large signal de . It is noted that ud is not defined at a1 D 0. Since the
terms a2=a1 and a3=a1 can be written as .a2=de/=.a1=de/ and .a3=de/=.a1=de/,
and recalling that cos.�/ D a1=de , the intermediate control ud is well defined if
(13.40) holds and

j�.t/j< 0:5�; 8t � t0 � 0: (13.45)

We will come back to this issue in Section 13.4.

Remark 13.2.

1. If we design the virtual control ud without canceling the terms a2v and a3w in
the de-dynamics, then the condition (13.45) is not required for ud being well de-
fined. However, an assumption of the sway and heave velocities being bounded is
needed in advance in the stability analysis, i.e. assume stability to prove stability.

2. If the sway and heave velocities are assumed to be bounded by the surge velocity,
the terms a2v and a3w are not required to be canceled either. This controller
can be designed similarly to the one in this chapter. It is noted that the sway
velocity does not require to be bounded by the surge velocity with a relatively
small constant as in [129] for the case of path-following in the horizontal plane.

Substituting (13.42) and (13.43) into the first equation of (13.37) results in

Pde D �k1 a1
de
.de � ıe/� a1

de
Qu: (13.46)

By noticing that under Assumption 13.1, see (13.40) and (13.45), the intermediate
control ud is a smooth function of xe;ye;ze; s;u0;�2;v, and w, differentiating both
sides of (13.41) with (13.42) and (13.43) yields

PQuD m22

m11
vr � m33

m11
wq� d11

m11
u�

3X
iD2

dui

m11
juji�1uC 1

m11
�uC

1

m11
�wu.t/� @ud

@xe
Pxe � @ud

@ye
Pye � @ud

@ze
Pze � @ud

@s
Ps� @ud

@u0
Pu0�

@ud

@�2

P�2 � @ud

@v

 
m33

m22
wp� m11

m22
ur � d22

m22
v�

3X
iD2

dvi

m22
jvji�1 vC
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1

m22
�wv.t/

	
� @ud

@w

�
m11

m33
uq� m22

m33
vp� d33

m33
w�

3X
iD2

dwi

m33
jwji�1wC 1

m33
�ww.t/

!
; (13.47)

where for convenience of choosing u0, the terms @ud

@xe
; @ud

@ye
, and @ud

@ze
do not include

@u0

@xe
; @u0

@ye
and @u0

@ze
, which are lumped into Pu0. From (13.47), we choose the actual

control �1 or �u without canceling useful nonlinear damping terms as

�u D �c1 Qu� O�T1 f1.�/� O�21 tanh

 
Qu O�21
"21

!
� O�22 @ud

@v
tanh

 
@ud

@v

Qu O�22
"22

!
�

O�23 @ud
@w

tanh

 
@ud

@w

Qu O�23
"23

!
; (13.48)

and the update law as

PO�1j D �1j proj
�

Quf1j .�/; O�1j
�
; 1� j � 16;

PO�21 D �21proj
�
j Quj ; O�21

�
;

PO�22 D �22proj

�ˇ̌
ˇ̌ Qu@ud
@v

ˇ̌
ˇ̌ ; O�22

	
; (13.49)

PO�23 D �23proj

�ˇ̌
ˇ̌ Qu@ud
@w

ˇ̌
ˇ̌ ; O�23

	
;

where c1; "2i ; �1j ; �2i ; 1 � i � 3 and 1 � j � 16; are positive constants to be se-
lected later, and f1j .�/ are the j th elements of f1.�/, respectively, with

f1.�/D
�
vr;�wq;�ud ;�jujud ;�u2ud ;�

�
@ud

@xe
Pxe C @ud

@ye
Pye C @ud

@ze
PzeC

@ud

@s
PsC @ud

@u0
Pu0C @ud

@�2

P�2

	
;�@ud

@v
wp;

@ud

@v
ur;

@ud

@v
v;
@ud

@v
jvjv;

@ud

@v
v3;�@ud

@w
uq;

@ud

@w
vp;

@ud

@w
w;
@ud

@w
jwjw; @ud

@w
w3
�T
; (13.50)

O�ij ; 1� i � 2 is the j th element of O�i , which is an estimate of �i with

�1 D
�
m22;m33;d11;du2;du3;m11;

m11m33

m22
;
m211
m22

;
m11d22

m22
;
m11dv2

m22
;

m11dv3

m22
;
m211
m33

;
m11m22

m33
;
m11d33

m33
;
m11dw2

m33
;
m11dw3

m33

�T
;
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�2 D
�
�max
wu ;

m11

m22
�max
wv ;

m11

m33
�max
ww

�T
: (13.51)

The operator, proj, is the Lipschitz continuous projection algorithm repeated here
for the convenience of the reader as follows:

proj.$; O!/D$ if � . O!/� 0;

proj.$; O!/D$ if � . O!/� 0 and� O! . O!/$ � 0;

proj.$; O!/D .1�� . O!//$ if� . O!/ > 0 and� O! . O!/$ > 0;

(13.52)

where � . O!/D O!2�!2
M


2C2
!M
; � O! . O!/D @�. O!/

@ O! , 
 is an arbitrarily small positive con-
stant, O! is an estimate of ! and j!j � !M .

The projection algorithm is such that if PO! D proj($ , O!/ and O!.t0/ � !M and
then

1. O!.t/� !M C ; 80� t0 � t <1;

2. proj($; O!) is Lipschitz continuous,
3. jproj($; O!)j � j$ j ;
4. Q!proj($; O!) � Q!$ with Q! D !� O!.

Substituting (13.48) into (13.47) yields the error dynamics

PQu D � 1

m11

 
c1Cd11C

3X
iD2

dui juji�1
!

QuC 1

m11
�T1 f1.�/�

1

m11
O�T1 f1.�/C

1

m11
�wu.t/� 1

m11
O�21 tanh

 
Qu O�21
"21

!
� @ud

@v

1

m22
�wv.t/� 1

m11
O�22 @ud

@v
�

tanh

 
@ud

@v

Qu O�22
"22

!
� @ud

@w

1

m33
�ww.t/� 1

m11
O�23 @ud

@w
tanh

 
@ud

@w

Qu O�23
"23

!
:

(13.53)

Define
Qv2 D v2 �v2d ; (13.54)

where v2d D Œpd ;qd ; rd �
T is the intermediate control of v2. Recalling that our goal

is to ultimately stabilize �2� D Œ�;�1;�2�
T at the origin, the second equation of

(13.37) suggests that we choose this intermediate control as follows:

v2d D J �1
2 .�2/

��f2�.�/�K2�2�

�
; (13.55)

where K2 D diag.k21;k22;k23/ is a positive definite diagonal matrix. Substituting
(13.54) and (13.55) into the second equation of (13.37) yields

P�2� D �K2�2� CJ2.�2/ Qv2: (13.56)
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To design the actual control �2, we first note that under Assumption 13.1, (13.40)
and (13.45), the intermediate control v2d is a smooth function of xe;ye;ze; s;u0;�2,
and v1. Differentiating both sides of (13.54) and multiplying by M2, along the so-
lutions of the last two equations of (13.37) results in

M2
PQv2 D �C2.v2/ Qv2 �D2.v2/ Qv2 CF .�/�3 CG .�/�4.t/C�2; (13.57)

where

F .�/�3 D �C1.v1/v1 �C2.v2/v2d �D2.v2/v2d �g2.�2/�
M2

�
@v2d

@xe
Pxe C @v2d

@ye
Pye C @v2d

@ze
Pze C @v2d

@s
PsC @v2d

@u0
Pu0C

@v2d

@�2

P�2

	
�M2

@v2d

@v1

M �1
1 .�C1.v1/v2 �D1.v1/v1 C�1/;

G .�/�4.t/D �w2.t/�M2

@v2d

@v1

M �1
1 �w1.t/; (13.58)

with F .�/ 2 R
3�m3 and G .�/ 2 R

3�m4 being the regression matrices, �3 2 R
3�m3

and �4.t/ 2 R
m4 being the vectors of unknown vessel and environmental distur-

bance parameters. For the sake of simplicity, the regression matrices F .�/ and G .�/,
and the vectors �3 and �4.t/ are not written down explicitly. From (13.56) and
(13.57), we choose the actual control �2 and update laws as follows:

�2 D �K3 Qv2 �
�
�T

2�J2.�2/
�T �F .�/ O�3 �G .�/ O�4; (13.59)

PO�3i D �3iproj

 
3P

jD1
Qv2jfj i ; O�3i

!
; 1� i �m3;

PO�4i D �4iproj

 
3P

jD1

ˇ̌ Qv2jgj i
ˇ̌
; O�4i

!
; 1� i �m4;

(13.60)

where "4i >0; 1� i � 3, �3j >0; 1� j �m3, �4l >0; 1� l �m4, K3 D diag.k31,
k32, k33/ is a positive definite diagonal matrix, O�3i is an estimate of the i th element
of �3, and O�4i is an estimate of the maximum value of the i th element of �4.t/. For
simplicity of notation, we have defined

F .�/ O�3 WD

2
6666664

m3P
iD1

f1i O�3i
m3P
iD1

f2i O�3i
m3P
iD1

f3i O�3i

3
7777775
; G .�/ O�4 WD

2
6666664

m4P
iD1

g1i O�4i tanh

�
"�1
41 Qv21

m2P
iD1

g1i O�4i
	

m4P
iD1

g2i O�4i tanh

�
"�1
42 Qv22

m2P
iD1

g2i O�4i
	

m4P
iD1

g3i O�4i tanh

�
"�1
43 Qv23

m2P
iD1

g3i O�4i
	

3
7777775
;

(13.61)
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with fj i ; 1 � j � 3; 1 � i � m3, being the element in j th column and i th row of
the regression matrix F .�/. Similarly gj i ; 1 � j � 3; 1 � i �m4, is the element in
j th column and i th row of the regression matrix G .�/.

Substituting (13.59) into (13.57) yields the error dynamics

M2
PQv2 D �C2.v2/ Qv2 � .K3 CD2.v2// Qv2 �

�
�T

2�J2.�2/
�T CF .�/�3 C

G .�/�4.t/�F .�/ O�3 �G .�/ O�4: (13.62)

We now present the main result of this chapter, the proof of which is given in the
next section.

Theorem 13.1. Assume that

1. the vessel inertia, added mass and damping matrices are diagonal;
2. the environmental disturbances are bounded;
3. the vessel parameters are unknown but constant;
4. the reference path satisfies Assumption 13.1.

If the state feedback control laws (13.48) and (13.59), and the update laws (13.49)
and (13.60) are applied to the vessel system (13.1) then there exist feasible initial
conditions such that the path-following errors .x.t/� xd .t/;y.t/� yd .t/;z.t/�
zd .t/;�1.t/;�2.t// converge to a ball centered on the desired path ˝ asymptoti-
cally. Furthermore, the radius of this ball can be made arbitrarily small by adjusting
the control gains.

13.4 Stability Analysis

To prove Theorem 13.1, we first consider the
�
�2� ; Qv2

�
-subsystem and then the

.de ; Qu/-subsystem.

�
�2� ; Qv2

�
-subsystem

To investigate stability of this subsystem, we consider the following Lyapunov func-
tion

V1 D 1

2
�T

2��2� C 1

2
QvT
2 M2 Qv2 C 1

2

4X
iD3

Q�T
i � �1

i
Q�i ; (13.63)

where Q�i D �i � O�i and �i D diag
�
�ij
�
; 1 � j � m3 for i D 3; 1 � j � m4 for

i D 4. Differentiating both sides of (13.63) along (13.56), (13.60), and (13.62) yields

PV1 � ��T
2�K2�2� � QvT

2 .D20 CK3/ Qv2 C0:2785

3X
iD1

"4i ; (13.64)
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where D20 D diag.d44;d55;d66/ and we have used jxj � x tanh.x=�/ � 0:2785�

for all x 2 R and � > 0. From (13.64), we conclude that �2� and Qv2 are ultimately
asymptotically stable at the origin. To estimate the upper bound of �2� and Qv2, we

subtract and add
1

2

4P
iD3

Q�T
i

� �1
i

Q�i to the right-hand side of (13.64) to obtain

PV1 � ��1V1C	1; (13.65)

where

�1 D min

�
1;2�min .K2/ ;

2�min .D20 CK3/

�max.M2/

	
;

	1 D 1

2

4X
iD3

Q�T
i � �1

i
Q�i C0:2785

3X
iD1

"4i : (13.66)

From (13.65), it is direct to show that

V1.t/� V1.t0/e
��1.t�t0/C 	1

�1
; (13.67)

which further yields



�2�.t/


�p

2V1.t0/e
�
�1

2
.t�t0/C

r
2	1

�1
WD ˛.�/e

�
�1

2
.t�t0/C	;

k Qv2.t/k �
s

2V1.t0/

�min.M2/
e

�
�1

2
.t�t0/C

s
2	1

�1�min.M2/
WD ˛v.�/e

�
�1

2
.t�t0/C	v:

(13.68)

.de; Qu/-subsystem

To analyze the stability of this subsystem more easily, we first consider the Qu-
dynamics and then the de-dynamics.

Qu-dynamics. Consider the following Lyapunov function

V2 D m11

2
Qu2C 1

2

2X
iD1

Q�Ti � �1
i

Q�i ; (13.69)

where Q�i D �i � O�i and �i D diag
�
�ij
�
, 1 � j � 16 for i D 1; 1 � j � 3 for i D 2.

Differentiating both sides of (13.69) along (13.47), (13.48), and (13.49) yields

PV2 � �.c1Cd11/ Qu2C0:2785

3X
iD1

"2i : (13.70)
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Subtracting and adding
1

2

2P
iD1

Q�T
i

� �1
i

Q�i to the right-hand side of (13.70) yields

PV2 � ��2V2C	2; (13.71)

where

�2 D min

�
1;
2.c1Cd11/

mmin
11

	
;

	2 D 1

2

2X
iD1

Q�T
i � �1

i
Q�i C0:2785

3X
iD1

"2i ; (13.72)

with mmin
11 being the minimum value of m11. From (13.71), it is direct to show that

V2.t/� V2.t0/e
��2.t�t0/C 	2

�2
; (13.73)

which further yields

j Qu.t/j �
p
2V2.t0/e

��2=2.t�t0/C
s
2	2

�2
WD ˛u.�/e��2=2.t�t0/C	u: (13.74)

Remark 13.3. It is noted that, due to the use of the projection algorithm, by adjusting
K2, K3, c1, "2i , "4i , �1j , �2i , �3n, �4l , 1 � i � 3, 1 � j � 16, 1 � n � m3, and
1� l �m4, we can make 	u, 	 and 	v arbitrarily small. This observation plays an
important role in the stability analysis of the de-dynamics.

de-dynamics. We first calculate the lower-bound of de . We now show that there
exist initial conditions such that de.t/� d�

e > 0. From (13.46) and (13.16), we have

PQde � �k1 Qde �
�
˛ue

��2=2.t�t0/C	u

�
; (13.75)

where Qde D de � ıe , which with �2 > 2k1 further yields

Qde.t/� Qde.t0/e�k1.t�t0/C ˛u.�/e�k1.t�t0/

�2=2�k1
�
�1C e�.�2=2�k1/.t�t0/

�
�

	u

k1

�
1� e�k1.t�t0/

�
: (13.76)

Therefore, the condition de.t/� d�
e > 0 holds when

�2 > 2k1; ıe � d�
e C 	u

k1
;de.t0/� ˛u.�/

�2=2�k1 C ıe �	u: (13.77)

We will come back to this issue in the next section. We now calculate the upper-
bound of de . We rewrite (13.46) as
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PQde D �k1 Qde � cos.�/ Qu�k1 .cos.�1/�1/C cos.�/.cos.�2/�1// Qde: (13.78)

Since (13.78) and the . Qu;�1;�2/-subsystem are in the cascade form, one might think
that the stability results developed for cascade systems in [17] and [69] can be ap-
plied. However, the stability results in those papers were developed for cascade
systems without nonvanishing disturbances. In fact, nonvanishing disturbances may
destroy the stability of a cascade system that satisfies all conditions stated in the
above papers. Therefore, we will use Lemma 10.1 to investigate the stability of the
system (13.78) by verifying all conditions C1–C4.

Verifying Condition C1. Take the Lyapunov function

V3 D 1

2
d2e : (13.79)

It is direct to show that C1 holds with

c0 D 0; c1 D c2 D 0:5; c3 D 1; c4 D k1: (13.80)

Verifying Condition C2. By noting that
ˇ̌
ˇcos.�/ QuCk1 .cos.�1/�1/C cos.�/.cos.�2/�1// Qde

ˇ̌
ˇ�

j QujCk1 .j�1jC j�2j/
ˇ̌
ˇ Qde
ˇ̌
ˇ ; (13.81)

we have
�1 D 1; �2 D k1: (13.82)

Verifying Condition C3. This condition directly holds from (13.74) and (13.68).

Verifying Condition C4. From (13.80) and (13.82), condition C4 becomes

k1� max.	;	u/.k1C0:25
0/ > 0: (13.83)

From Remark 13.3 and noting that 
0 is an arbitrarily positive constant, we can see
that there always exists k1 such that (13.83) holds. All conditions of Lemma 10.1
have been verified, and we therefore have

jde.t/j � ˛de .�/e��de.t�t0/C	de; (13.84)

where ˛de; �de and 	de are calculated as in Lemma 10.1.

.v;w/-dynamics. Expanding (13.55) gives

qd D ��J 212 .�2/k21�CJ 222 .�2/k22�1CJ 232 .�2/k23�2
��

J 222 .�2/
�
f s1 PsCf u1 u

��J 232 .�2/
�
f s2 PsCf u2 u

���
J 222 .�2/f

v
1 CJ 232 .�2/f

v
2

�
v� �J 222 .�2/f

w
1 CJ 232 .�2/f

w
2

�
w;
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rd D ��J 312 .�2/k21�CJ 322 .�2/k22�1CJ 332 .�2/k23�2
��

J 322 .�2/
�
f s1 PsCf u1 u

��J 332 .�2/
�
f s2 PsCf u2 u

���
J 322 .�2/f

v
1 CJ 332 .�2/f

v
2

�
v� �J 332 .�2/f

w
1 CJ 332 .�2/f

w
2

�
w; (13.85)

where J ij2 .�2/ is the element at the i th row and j th of J �1
2
.�2/. To show that the

sway and heave velocities are bounded, we take the following quadratic function

V4 D 1

2
m222v

2C 1

2
m233w

2; (13.86)

whose derivative along (13.37), (13.54), and (13.85) satisfies

PV4 � �m22dv3v4�m33dw2 jwjw2�m33dw3w4CAmax
3 v2CAmax

4 w2C
1

4"5
Amax
1 C 1

4"6
Amax
2 ; (13.87)

where "i > 0; i D 1;2 , Amax
j ;1� j � 4 is the maximum value of Aj with

A1 D �m11m22u
� Qr �J 312 .�2/k21��J 322 .�2/k22�1�J 332 .�2/k23�2�

J 322 .�2/
�
f s1 PsCf u1 u

��J 332 .�2/
�
f s2 PsCf u2 u

��Cm22�wv.t/;

A2 D m11m33u
� Qq�J 212 .�2/k21��J 222 .�2/k22�1�J 232 .�2/k23�2�

J 222 .�2/
�
f s1 PsCf u1 u

��J 232 .�2/
�
f s2 PsCf u2 u

��Cm33�ww.t/;

A3 D
 

�m22d22�m22dv2 jvjC "5 jA1jC m11m22
ˇ̌
uJ 332 .�2/

�
f w1 Cf w2

�ˇ̌

2
C

m11m33
ˇ̌
uJ 222 .�2/

�
f v1 Cf v2

�ˇ̌

2

!
;

A4 D
 

�m33d33�m33dw2 jwjC "6 jA2jC m11m22
ˇ̌
uJ 332 .�2/

�
f w1 Cf w2

�ˇ̌

2
C

m11m33
ˇ̌
uJ 222 .�2/

�
f v1 Cf v2

�ˇ̌

2

!
: (13.88)

It can be seen from (13.88) that Amax
i exist and are finite since their arguments are

bounded as shown above. Hence (13.87) and (13.86) guarantee a finite upper bound
of the sway and heave velocities.

Initial Conditions for j�.t/j< 	
2
; j�i .t/j< 	

2
; i D 1;2; 8t � t0 � 0. Since j�i .t/j �

�2� .t/



 ; i D 1;2; 8t � t0 � 0, from (13.68), it is direct to show that the condition
j�i .t/j< 0:5�; i D 1;2; 8t � t0 � 0 holds if the initial conditions are such that

p
2V1.t0/C

p
2	1=�1 < 0:5�; (13.89)
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which is further equivalent to

vuut

�2� .t0/


2C�max.M2/k Qv2.t0/k2C

4X
iD1

� �1
i




 Q�i .t0/




2C

r
2
	1

�1
<
�

2
; (13.90)

for all t � t0 � 0. It is noted that the terms
4P
iD1

� �1
i




 Q�i .t0/




2

and 	1 can be made

arbitrarily small, see Remark 13.3.
From (13.33) and (13.16), the condition j�.t/j < 0:5�; 8t � t0 � 0 holds if the

initial conditions are such that

cos.�1.t//C ae.t/

de.t/
cos.�.t//.cos.�2.t/�1/ > 0: (13.91)

Under the assumption that j�.t/j< 0:5�; 8t � t0 � 0, the above condition is equiv-
alent to

cos.�1.t//C cos.�2.t// > 1: (13.92)

From (13.68), the condition (13.92) holds if the initial conditions are such that
vuut

�2�.t0/



2C�max.M2/k Qv2.t0/k2C
4X
iD1

� �1
i




 Q�i .t0/




2C

r
2
	1

�1
< arccos.0:5/; 8t � t0 � 0: (13.93)

Since arccos.0:5/ < 0:5� , the condition (13.93) covers the condition (13.90).

Initial Conditions for ae.t/� a�
e > 0; 8t � t0 � 0. Since a2e D d2e �z2e , we have

�‚…„ƒ
a2e D 2.de .�k1 cos.�/de Ck1 cos.�/ıe � cos.�/ Qu/�

ze

�
@zd

@s
PsC sin.�/u� cos.�/sin.�/v� cos.�/cos.�/w

		

D �2k1 cos.�/a2e C2k1 cos.�/z2e C2k1 cos.�/deıe �2cos.�/de Qu�
2ze

�
@zd

@s
PsC sin.�/u� cos.�/sin.�/v� cos.�/cos.�/w

	
: (13.94)

From (13.94), it is not hard to see that under Assumption 13.1 and de.t/� d�
e > 0,

if there exists a strictly positive constant a0e such that

ae.t0/� a0e ; (13.95)

then there exists a strictly positive constant a�
e such that the condition ae.t/� a�

e >

0; 8t � t0 � 0 holds.
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In summary, the feasible initial conditions are such that the conditions (13.77),
(13.93) and (13.95) hold. Roughly speaking, with the above initial conditions, due
to the underactuated configuration in the sway and heave, the sway and heave ve-
locities are not able to push the vehicle to the point ae D 0 and de D 0.

13.5 Discussion of the Initial Condition

We now discuss how to obtain the initial conditions such that (13.77), (13.93), and
(13.95) hold. A close look at these conditions shows that they are always satisfied
by selecting the initial value, s.t0/, if the vessel heads toward the conical space
containing the initial path to be followed, see Figure 13.2. If the vessel does not,
the surge control should be turned off and the yaw and pitch controls should make
the vessel turn until (13.77), (13.93), and (13.95) hold before applying the proposed
path-following controller. The angle ı0 (see Figure 13.2) should be increased if the
initial velocities v1.t0/ and v2.t0/ are large. Otherwise the vessel might cross the
edge-line of the subspace in question, which might result in �i D ˙0:5� and/or
� D ˙0:5� .

13.6 Parking and Point-to-point Navigation

13.6.1 Parking

Parking Objective. Design the controls �1 and �2 to park the underactuated un-
derwater vehicle (13.1) from the initial position and orientation .x.t0/, y.t0/, z.t0/,
�.t0/, �.t0/,  .t0// to the desired parking position and orientation of .xp , yp , zp ,
�p , �p ,  p/ under the following conditions:

1. There exists a large enough positive constant $p such that

q�
x.t0/�xp

�2C �
y.t0/�yp

�2C �
z.t0/�zp

�2 �$p:

2. The vessel heads toward the feasible cone containing the desired parking orien-
tation, see Section 13.5.

3. At the desired parking position and orientation, the environmental disturbances
are negligible.

The above conditions normally hold for parking practice. However, if the first
two conditions do not hold, one can apply the strategy in Section 13.5 to move the
vessel until they do hold. Having formulated the parking problem as above, one
might claim that the path-following controller proposed in Section 13.3 can be ap-
plied by setting u0 equal zero. However, this will result in an orientation that may
be very different from the desired parking one, at the desired parking position, since
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0

0

Edge line

Feasible cone of initial conditions

Figure 13.2 Feasible initial conditions

our proposed path-following controller is designed to drive de to a small ball, not to
zero for reasons of robustness. To resolve this problem, we first generate a regular
curve, ˝p.xd ;yd ;zd /, which goes via the parking position and its orientation at the
parking position is equal to the desired parking condition. For simplicity of calcu-
lation, the curve can be taken as a straight line in almost all cases of the vessel’s
initial conditions. Then the proposed path-following controller can be used to make
the vessel follow ˝p.xd ;yd ;zd /. In this case, the velocity u0 should be chosen
such that it goes to zero when the virtual vessel tends to the desired parking posi-
tion, i.e., limdep!0u0 D 0 with dep D p

.xd �xp/2C .yd �yp/2C .zd �zp/2. A
simple choice can be taken as

u0 D u�
0.1� e��1dep /e��2de ; (13.96)

where �i > 0; i D 1;2. Special care should be taken to choose the initial values of
.xd .t0/;yd .t0/;zd .t0//, see Section 13.5, and the sign of u0 such that it results in a
short parking time.

Remark 13.4. Once at the desired parking position and orientation, if there are large
environmental disturbances, there will be an oscillatory behavior in the yaw and
pitch dynamics, and the vessel might diverge from its desired position. This phe-
nomenon is well known in ship dynamic positioning.

13.6.2 Point-to-point Navigation

As seen in Section 13.1, the requirement that the reference path be a regular curve
might be too cumbersome in practice, since this curve has to go via desired points
generated by the helmsman and its derivatives are needed in the path-following con-
troller. These restrictions motivate us to consider the point-to-point navigation prob-
lem as follows.
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Point-to-point Navigation Objective. Design the surge force �u and the yaw mo-
ment �r to force the underactuated underwater vehicle (13.1) from the initial po-
sition and orientation, .x.t0/;y.t0/;z.t0/;�.t0/;�.t0/; .t0//, to go via the desired
points generated by a path planner.

To achieve this control objective, we first assume that the path planner gener-
ates desired points, which are feasible for the vehicle to be navigated through. We
then apply the path-following controller proposed in Section 13.3 to each regular
curve segments connecting desired points in sequence. The regular curve segments
can be straight line, arc, or known regular curve ones. It is, however, noted that a
fundamental difference between point-to-point navigation and the proposed smooth
path-following is that there are a finite number of “peaks”, equal to the number of
points, in the orientation errors, �1 and �2. This phenomenon is because the path is
non-smooth in the orientation at the points.

13.7 Numerical Simulations

This section validates the control laws (13.48) and (13.59) by simulating them on
a 5.56 m long underwater vehicle whose parameters are given in Section 12.5. The
values of the vehicle parameters are assumed to be of the real vessel and are es-
timated on-line by the adaptation laws (13.49) and (13.60). We assume that these
parameters fluctuate around the above values ˙15%. This fluctuation is chosen here
for the purpose of calculating the maximum and minimum values used in the choice
of the design constants. Indeed, a different fluctuation of the vehicle parameters re-
sults in different maximum and minimum values used in the choice of the design
constants. In the simulation, we assume that the environmental disturbances are

�wu D 0:2m11d.t/; �wv D 0:2m22d.t/; �ww D 0:2m33d.t/; �wp D 0:2m44d.t/;

�wq D 0:2m55d.t/; �wr D 0:2m66d.t/;

where d.t/ D 1C 0:1sin.0:2t/. This choice results in nonzero-mean disturbances.
In practice, the environmental disturbances may be different. We take the above dis-
turbances for an illustration of the robustness properties of our proposed controller.
It should be noted that only upper bounds of the environmental disturbances are
needed in our proposed controller.

In the simulation, based on Section 13.3 the control parameters and initial con-
ditions are taken as

k1 D 0:5;c1 D 2; K2 D diag.0:05/; K3 D diag.2/;�i D diag.10/; ıe D 0:2;�
�1
T .t0/;�2

T .t0/;v1
T .t0/;v2

T .t0/; s.t0/
�T D

Œ�145;�15;�5;0;0:2;0:5;0;0;0;0;0;0;0�T ;
and all initial values of parameter estimates are taken to be 70% of their as-
sumed true ones. The virtual vessel velocity on the path is taken as u0.t;de/ D
5.1� 0:8e�2t /e�0:5de . The reference path is given by .xd D �90cos.s/, yd D
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90sin.s/;zd D 3s/, i.e., a helix with constant curvature and torsion. Figure 13.3
plots the trajectory of the vessel and the path (dotted line) to be followed in three di-
mensions. The trajectory of the vessel in the horizontal plane and the path following
error are plotted in Figure 13.4. Figure 13.5 plots the control inputs, �u, �r , �p , and
�q . With nonvanishing environmental disturbances, our proposed controller is able
to force the vehicle to follow a predefined path as expected in the control design.
As can be seen in Figure 13.5, de converges to a nonzero small value, i.e., the sway
and heave velocities cannot push the vessel to the point where de D 0. From Figure
13.5, it can be seen that the control inputs are below their limits. Therefore, we can
still further shorten the transient time by increasing the control gains.

13.8 Conclusions

The control scheme developed for path-following of underactuated surface ships
in Chapter 11 was extended to design a path-following system for six degrees of
freedom underactuated underwater vehicles. The key to the development of the pro-
posed path-following system is the proper selection of the coordinate transforma-
tions in Section 13.2. The work presented in this chapter is based on [140, 141].
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Figure 13.5 Simulation results (control inputs): a. Surge force �u [N]; b. Yaw moment �r [Nm];
c. Pitch moment �p [Nm]; d. Roll moment �q [Nm]




