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Abstract   Facing the fast growing needs regarding flexibility and adaptability of 
manufacturing systems, the decentralization of manufacturing execution control 
has attained high importance. Hence, in recent years different research and devel-
opment activities have tackled the problem of decentralizing manufacturing exe-
cution control and implementing these decentralized systems within control archi-
tectures. One major result of these activities is a set of design patterns describing 
possibilities for decentralization including the description of major entities and in-
teraction schemas.  
  These activities have also shown that agent systems are an appropriate means 
for the implementation of decentralized manufacturing execution control systems. 
They cope with decentralization by nature and (especially in the case of the Foun-
dation for Intelligent Physical Agents (FIPA) - compliant agents) provide appro-
priate means for the implementation of the internal behavior of entities and entity 
interaction. 
 In this chapter some major design patterns for decentralized manufacturing 
execution control systems are described and mapped to three major approaches 
with Product-Resource-Order-Staff Architecture (PROSA) and MetaMorph (both 
based on Holonic Manufacturing Systems) and PABADIS (Plant Automation 
Based on Distributed Systems), and which finally are compared. Exploiting this 
comparison the PABADIS’PROMISE (PABADIS based Product Oriented Manu-
facturing Systems for Reconfigurable Enterprises) architecture is described as an 
architecture trying to incorporate the advantages of the different approaches and 
avoid its disadvantages.  
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6.1 Introduction 

Conventional centralized control systems face challenges in adapting to the re-
quirements of modern production systems [1]: 

• Unpredictable order flow: customer and production orders are issued dynami-
cally, often when production has already started. 
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• Dynamic shop floor: configuration of the resources on the field level changes 
during production, which makes it difficult to plan the execution of orders. 

• Complexity of the shop floor and orders: modern production systems are char-
acterized by increasing complexity of both the complexity and flexibility re-
quired by production orders as well as the variation in the shop floor configura-
tion. 

Due to their hierarchical nature, centralized systems are highly static and diffi-
cult to adapt to such changes as late modifications of customer orders or 
new/broken field level devices [2]. Additionally, the decision-making process is 
concentrated on the top layer of the automation pyramid [usually Enterprise Re-
source Planning (ERP) and related systems], and therefore the production plan-
ning is hardly able to react to changes or exceptions on the shop floor. 

In environments where high flexibility is required such as highly customized 
small lot production, the absolute optimization of production can be partly ne-
glected in favor of flexibility. The point is that in a permanently changing envi-
ronment, the lack of flexibility would make it impossible to realize any optimiza-
tion mechanisms.  

Distributed control systems aim to solve such problems by providing two gen-
eral mechanisms: 

• Moving the decision-making process from ERP down to the Manufacturing 
Execution Systems (MES) layer, which has a shorter planning horizon and, 
hence, is able to react to the changes faster. 

• Distributing control over a set of independently acting entities that take some 
responsibility for fulfilling the order. This provides concurrent processing and, 
therefore, minimizes the drawbacks of the hierarchical structures. 

In order to provide higher flexibility of production control and planning, the 
paradigm of Distributed Control Systems (DCS) was defined and further devel-
oped into several concepts and architectures. Most notably is the Holonic Manu-
facturing Systems (HMS) [3] concept and its architectures such as Product-
Resource-Order-Staff Architecture (PROSA) [4] and MetaMorph I and II [5]. 

The general idea of DCS is that the decision-making process as well as system 
functionalities are distributed among independently acting entities called “holon” 
in HMS. More commonly the concept of an “agent” can be used [6]. 

Multiagent Systems (MAS) became de facto a standard for DCS applications 
and has found slowly its way into the domain of industrial automation. Neverthe-
less, there are a few challenges the agent systems face in order to adapt to central-
ized and homogenous ERP systems. It seems unrealistic that in the near future the 
ERPs will also be able to adapt to the distributed paradigm. Therefore, the main 
burden for establishing a DCS lies with the MES layer. 
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6.2 Existing MES Solutions 

The whole spectrum of solutions in the distributed automation system developed 
and researched ranges from partly centralized to totally distributed approaches. 
Some of them provide the complete architectures, integrating not only MES but 
also enterprise- and control-level systems. Others provide only supportive mecha-
nisms that allow conventional systems to fit the requirements of the modern indus-
try. 

Most of the distributed MES architectures use multiagent technologies [7] and 
the term “agent” in particular, despite some principal differences in the origins of 
the MAS [6].  

The most known architecture, PROSA, is a holonic reference architecture 
based on three types of basic holons: Product, Order and Resource [8, 9]. Addi-
tionally, typically to all distributed architectures, the need to observe the shop 
floor and provide an interface to enterprise-level systems evolved into the creation 
of a fourth special type of component. In PROSA, the Staff holon assist and su-
pervise the basic holons. Another architecture based on the HMS concept – 
MetaMorph and the follow-up MetaMorph II – uses a mediatorcentric federation 
architecture for intelligent manufacturing [10]. It uses a term mediator that pro-
vides communication mechanisms to different systems and components, and takes 
over some of the functionalities of the MES. Yet it must be noted that the original 
Metamorph is more an integration tool for other systems rather than a complete 
solution.  

Eventually, MetaMorph evolved into other multiagent architectures, that at-
tempt to integrate the functionalities of a manufacturing enterprise within a dis-
tributed environment. For instance, Agent-Based Manufacturing Enterprise Infra-
structure (ABMEI) is a hybrid agent-based architecture combining the mediator 
and the autonomous-agent approaches [11].  

Similar agent-based architectures with slightly different implementation fo-
cuses are Autonomous Agents at Rock Island Arsenal (AARIA) [12] and Manu-
facturing Control Systems Capable of Managing Production Change and Distur-
bances (MASCADA) [13]. Such architectures as HOLOS/MASSIVE [32] and its 
followup Decentralized Decision-Making and Scheduling (DEDEMAS) [14] con-
centrate on decentralized decision making and scheduling.  

Architectures like Advanced Fractal Companies Use Information Supply Chain 
(ADRENALIN) [15, 16] consider agent-based resource brokering functionality 
enabling a decentralized manufacturing order navigation based on local optimiza-
tion strategies. 

Opposite of that, Plant Automation Based on Distributed Systems (PABADIS) 
and its followup PABADIS’PROMISE (PABADIS based Product Oriented Manu-
facturing Systems for Reconfigurable Enterprises) provide agent-based architec-
tures that cover the whole automation pyramid but with a primary goal of distrib-
uted MES [17]. 
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6.3 A Generic Design Pattern for Manufacturing Execution 
Control  

The organization of an MES and its interconnection to the ERP and field control 
layers has some general patterns that are followed by most of the solutions imple-
menting MES in a distributed fashion. As a starting point these basic design pat-
tern exploited in MES system design will be presented and exploited later on for 
the comparison of HMS and PABADIS approaches. 

Design patterns are a widely used design aid in information sciences. They date 
from the initial work of Alexander in 1979. Alexander, who was an architect, 
came to the conclusion that building design always follows the same basic rules 
with culture and geography dependent implementations [18].  

With the emergence of object-oriented programming the idea of design patterns 
as application-independent basic design principles has been adopted to software 
design in information sciences. The main research activity initiating this trend was 
the work of Gamma et al. [19].  

Within the last few years the use of design patterns has been integrated in sev-
eral disciplines including the design of control applications. Within control design 
the application of design patterns as a description of basic design principles has 
been extended to the design of complete control applications including control 
software and hardware, as well as the plant itself. Within this field valuable pro-
gress has been made. Overviews of the reached results are given in [20, 21, 22]. 

Within the field of distributed control systems the application of agents has 
gained wide acceptance [6]. That is why design patterns have act in this field as 
well been recognized and described [23, 24]. This chapter intends to sketch the 
MES-related design pattern briefly and describe how it occurs and is applied 
within the different agent-based approaches.  

Within MES systems there are two main general entities with three categories 
of knowledge that are relevant for the execution process of manufacturing orders. 
These entities are order and resource usually accompanied by the categories prod-
uct knowledge, order knowledge, and resource knowledge.  

Equally, Resource Agents (RAs) are associated with production units of differ-
ent types. Each agent represents one resource with certain production capabilities 
it provides to the agent community containing all resource-related knowledge. It is 
responsible for all resource-related control decisions including resource schedul-
ing (based on cooperative scheduling algorithms) and resource control on the field 
control layer but also supportive actions like maintenance or life cycle activities. 

Facing these entities and knowledge distributions, the overall system behaves 
in the following way. All agents in the system form an agent community contain-
ing all Order Agents (OAs) and RAs. This agent community also contains a spe-
cial registration function for RAs. At startup of an RA it registers its manufactur-
ing capabilities, which are represented by usable production functions, within the 
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agent community. These production functions can then be searched, initialized, 
parameterized, started, and stopped by OA during the OA–RA interaction.  

On the other hand, each OA covers a product order consisting of a set of pro-
duction steps that are necessary to produce the ordered product. These production 
steps can be fulfilled by a set of production processes. The OA then has to negoti-
ate for appropriate manufacturing capabilities offered by the RA to fulfill its order. 
Important and helpful with respect to flexibility, OAs and RAs both handle its 
own schedules and make its own scheduling decisions independently yet in a col-
laborative way. The resulting structure is given in the following class diagram and 
described in what follows (Fig. 6.1). 
 

 
Fig. 6.1 Order-resource pattern 

During the start of an RA, the RA makes itself known within the agent com-
munity. In this way, the agent community is informed about all production func-
tions belonging to and being controllable by the RA. Each OA processes its pro-
duction order step by step following the interaction scheme among OA and RA 
given in the next figure (Fig. 6.2).  

1. The OA selects the production step to be executed next.  
2. The OA determines within the knowledge of the agent community the set of 

RAs containing a production function that can be used for the next production 
step of the OA.  

3. The OA negotiates with the determined RA set the next production function to 
be used and the usage schedule. Therefore, the OA asks all RAs for possible 
schedules, decides about the next production function to be used, and allocates 
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this function. The RA related to the selected production function reserves re-
sources for this within its schedule. 

4. At the agreed upon moment the OA accesses the RA to parameterize and start 
the expected production function. 

5. If the processing is finished, then the processing function provides the process-
ing result to the OA by using the RA. The OA can adjust its list of necessary 
production steps and proceed further with step 1.  

 

Production 
Function 

RA Agent 
Community 

OA 

initialise() 

registerResourceFunction() 
selectResourceFunction()

machineSet

selectStep() 

scheduleProcessing() 
selectResource () 

scheduleProcessing()

schedule&allocation possibilities

ProductionFunction.parameterize()

parameterize() 
ProductionFunction.start ()

start() 
result 

ProductionFunction.result 

selectStep() 

ProductionFunction.allocate()

 
Fig. 6.2 Order and resource agent communication pattern 

6.4 Distributed Approaches Analysis 

Because different MES solutions usually focus on a specific area of implementa-
tion, e.g., scheduling, customer support, resource utilization, system integration, 
they often cannot be compared. For this chapter the focus is on systems that cover 
the complete manufacturing process. Hence HMS-based concepts, such as 
PROSA and METAMORPH, and MAS-based concepts, such as PABADIS and 
PABADIS’PROMISE, that cover wider fields of control systems and focus on the 
vertical integration of all layers of the automation pyramid from the ERP down to 
field control level are compared in the following chapter. 



120      Aleksey Bratukhin, Arndt Lüder and Albert Treytl 

In order to have a unique name for the analysis the terms used by the HMS 
have been chosen because they are widely known. Furthermore, if HMS, which 
does not provide an architecture, lacks the required terms, PROSA terms (Order, 
Resource, and Stuff holons as well as MetaMorph mediators) are used to compare 
with PABADIS architecture with its respective Product, Residential and Plant 
Management Agents (PA, RA, and PMA). 

6.4.1 Resource Holon and Residential Agent 

Generally speaking, there are two main elements of distributed plant automation 
systems: resources and customers represented by orders as given in the above de-
sign pattern. 

Resources in HMSs are represented by Resource Holons, which are responsible 
for machine-level representation. The Resource Holon consists of a physical part, 
namely, a production resource in HMS, and of an information processing part that 
controls the resource. This second part holds the methods to allocate the produc-
tion resources, and the knowledge and procedures to organize, use, and control the 
physical production resources to drive production.  

In terms of PABADIS, Resource Holon is a Co-Operative Manufacturing Unit 
(CMU) which is a building unit of the shop floor. The information processing part 
of the Resource Holon perfectly fits the concept of the Resource Agent, or Resi-
dential Agent as it is called in PABADIS, which represented the CMU and partly 
controls the function.  

The main differences are that in PABADIS the Residential Agent is more or 
less an interface between the agent community and the CMU (machine, function 
unit), and the Residential Agent has a generic interface enabling the integration of 
an arbitrary machine hardware. In HMS the Resource Holon is more than this in-
terface. It is rather a CMU-RA analog, where the whole functionality of the CMU 
(function, control level, agent communication level) is implemented. PABADIS 
distinguishes the standard (logical) part of the control level, which can be used for 
each CMU, from the “machine”-specific part, which has to be implemented by the 
customer of the system. This makes the system more flexible and encapsulates the 
MAS from the control level. That makes the process of adding new functionality 
easier, because the customer (industrial company) has to add a specific plant-
dependent resource to the system and does not care about the interoperability of a 
new component with the existing control system. The customer just follows the in-
terface, and incorporation into the system is provided by the generic Residential 
Agent, which is able to communicate within the system. 

Additionally to this, Resource Holons do not just provide resources, but also 
manage the whole production facility. This means that they are able to communi-
cate between each other in order to find the best use of machines. PABADIS does 
not allow RAs to communicate with each other. This is done in order to make the 
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system product oriented and not machine oriented, which may be the biggest dif-
ference from the HMS concept. The product and its performance are the main goal 
of the system in PABADIS. HMS is more focused on machine utilization, where 
an Order Holon is simplified to a set of product parameters that has to be pro-
duced. 

6.4.2 Order Holon and Product Agent 

Compared to Resource Holons and Residential Agents the difference between 
definitions of the Product Agent in PABADIS and the Order Holon in HMS is 
stronger: 

• A Product Agent is an instance that manages the whole production of a single 
workpiece. It bases its decisions, actions, and knowledge on the so-called Work 
Order (WO), which gives a full specification of the production activities re-
garding the tasks that have to be fulfilled in order to complete the product. At 
the same time, the WO does not assign exact machines; instead it describes the 
function that has to be used to do that. This principle gives the Product Agent 
the freedom to decide what machine to use and introduces the possibility of 
changing the machine during execution. 

• An Order Holon is much simpler. It is more or less the customer request, where 
the requirements to the product are defined. It has an advantage in mass pro-
duction, because an Order Holon is not attached to a single workpiece. An Or-
der Holon does not do scheduling or resource allocation, because it simply does 
not have knowledge about the physical layout of the plant and the product 
specification. 

6.4.3 Product Holon and Product Agent 

The necessity of the Product Holon rides on the technology dependence of the 
product. That means that the Order Holon, representing the workpiece, does not 
have knowledge about the technological properties of the plant. This means that it 
has no information on how to produce the product. Order Holons contact the 
Product Holon in order to get information: how to produce this product. Based on 
the Product Holon’s response, an Order Holon performs the product execution. 

The standardization of the functions provided by the CMU’s concept gives a 
generic description of the functionality that does not depend on the specific tech-
nology.  

In PABADIS no analog to the Product Holon is required. Product Agents in-
corporate both Product Holons and Order Holons. The advantage of the Product 
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Holon is that the new product specification can be added to the system at any time, 
but on the other hand Order Holons cannot adapt their behavior to the unplanned 
changes in the system because they have no knowledge about the product per-
formance. Product Agents have a complete specification of the product execution 
and knowledge how to analyze these data. 

6.4.4 Stuff Holon and Plant Management Agent 

The Stuff Holon fits the definition of the PMA in PABADIS. The main purpose of 
the Stuff Holon is to give the other components an overview of the system. There-
fore, it is often used for supervision or support functionality implementation.  

One of the typical main MES functions represented by this concept is schedul-
ing. For example, PROSA uses a centralized unit called the Scheduler Stuff Holon 
that performs scheduling for the whole plant.  

In PABADIS the scheduling is simplified and distributed in Product Agents. In 
contrast, this approach makes the system more flexible, yet it must be noted that it 
does not provide the optimal solution. In PABADIS, scheduling is done from the 
point of view of a single product, which makes it impossible to guarantee the op-
timum. PA negotiations and the benevolent behavior of Product Agents can in-
crease scheduling performance, but this still does not guarantee the global opti-
mum. 

PABADIS minimizes the number of new instances by using existing basic ar-
chitecture. That makes the components, basically Product Agents, more complex 
but keeps the architecture simple. In contrast, PROSA introduces the new in-
stances and keeps the basic holons simple. 

What is common to both architectures is that they try to avoid centralized units, 
which PMA and Stuff Holon are by definition. 

6.4.5 Aggregation 

Aggregation is a key point in HMS. Aggregation is structuring agents in a hierar-
chy. This is the appropriate solution to tackling complexity of independent 
Holons. This solution avoids complex communication and heavy network load in 
the system, but reverts back to the centralized systems, causing a loss of system 
flexibility and scalability. Aggregation introduces a new layer(s) in the control 
pyramid and makes the logic of holons more complex. In practical implementation 
even communication is not simpler because holons have to communicate on dif-
ferent layers, which brings complexity to the process in general yet simplifies one-
to-one communications. A tradeoff between simpler single communication 
mechanisms and additional overhead due to aggregation has to be found. 
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PABADIS does not use aggregation of agents and tries to avoid the complexity 
of communication via giving the single instances more independence, which de-
creases the necessity of communication. This leads to a reduction in optimization 
yet efficiently increases system flexibility and scalability, which is the main goal 
of PABADIS. 

6.4.6 Mediator 

It is difficult to compare PROSA or PABADIS architectures with the MetaMorph 
approach. Mediators in MetaMorph are powerful tools to connect different sys-
tems together, but can hardly be considered as a manufacturing system architec-
ture. To a certain extent, mediators behave as Staff Holons in HMSs or as PMAs 
in PABADIS. They provide centralized functionality to the system by coordinat-
ing the actions of other agents.  

Mediators can successfully be used in cooperation with other concepts, such as 
PABADIS or PROSA, for the interconnection of different elements and for pro-
viding solutions for problems that require a temporal overview of the system. But 
individually, mediators cannot be a manufacturing-system-oriented architecture 
because they do not have dedicated MES functions (such as scheduling) or do not 
represent different actors in the plant (such as products and resources). 

An attempt to create an architecture (MetaMorph II) is more or less a central-
ized approach with dedicated mediators for each function of the plant automation 
system and a strong hierarchy among them. Perhaps the most important achieve-
ment of the mediator concept is its ability to dynamically group entities into vir-
tual groups according to the needs of the system. This ability can greatly improve 
the flexibility of a system, not only for MES applications. 

6.4.7 Flexibility Versus Optimization 

In conclusion of the previous sections, it can be said that PABADIS architecture is 
particularly usable in a highly turbulent environment where flexibility is crucial to 
system performance; PROSA is more suitable for systems were optimization is 
more important and flexibility is secondary. 

Due to the fully distributed MES layer, PABADIS is more scalable than HMS 
since the latter has the remains of the centralized structure where each function is 
dedicated to a single entity. The same argument can be applied to the MetaMorph 
approach where, instead of distribution of intelligence, the intelligence is focused 
on the function-representation mediators. 

Both PABADIS and PROSA provide comprehensive solutions to the problems 
in existing MES systems face, trying to adapt to modern trends in manufacturing, 
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in particular mass customization. These trends require more flexible production 
management and planning to react to the turbulence in customer demand and shop 
floor configuration. They shift decision making from the level of business systems 
(such as ERP) to the middle layer of the MES. Therefore, they shorten the reaction 
time to changes in the plant and provide vertical integration of the automation 
pyramid, making it possible to bring the strategy made at the top level to the field 
level of control devices.  

Both architectures provide distribution of the MES system but approach this 
problem from different sides. PROSA tries to imitate conventional centralized sys-
tems by providing entities for different functions. In contrast, PABADIS dissolves 
the functions of MES in the community of agents. The actual difference between 
the approaches lies in the balance between optimization and flexibility. It is clear 
that PROSA provides a higher level of optimization compared to PABADIS. It is 
also clear that PABADIS is more adaptive, scalable, and flexible than PROSA. 
PABADIS’PROMISE architecture developed later, attempts to find a balance be-
tween the above-mentioned concepts. 

6.5 PABADIS’PROMISE Hybrid Approach 

PABADIS’PROMISE is the followup of the PABADIS architecture that neverthe-
less combined the key features of all three afore mentioned concepts: 

• General architecture PROSA and PABADIS - Order and Resource concept; 
• Distributed functionality approach of PABADIS; 
• Aggregation of resources of PROSA; 
• Clustering and mediation of resources for scheduling of MetaMorph. 

Being a followup of the PABADIS architecture, PABADIS’PROMISE com-
prises the general notions of Order and Resource agents used by PABADIS but 
improves its functionality by introducing concepts developed by the holonic archi-
tectures of PROSA and MetaMorph. 

6.5.1 Resource Handling 

Hierarchy of resources is a key distinction point of distributed concepts. On the 
one hand, such architectures as PROSA provide strict control of resources over 
each other. It improves resource utilization but makes it complex to implement an 
actual system and has problems in adapting to a changing environment. On the 
other hand, systems such as PABADIS make resources totally independent of each 
other (for instance, PABADIS Residential Agents do not even communicate with 
each other).  
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The PABADIS’PROMISE approach to Resource Agents is similar to the 
MetaMorph approach in terms of scheduling by the usage of clustering of related 
resources and makes it possible for Resource Agents to allocate other resources 
for certain tasks. This approach improves the flexibility of the shop floor com-
pared to PROSA, because there is no direct static connection between two re-
sources, and optimizes system performance by including Resource Agents in the 
decision-making process during scheduling. 

6.5.2 Order Management 

Another important aspect is order management. As with the other topics, there is 
always a balance between optimization and flexibility and the hierarchy of orders 
and management entities related to them. Where PROSA orders are organized in a 
rigid hierarchy and PABADIS has its minimization of interdependencies between 
orders, PABADIS’PROMISE provides what can be called “implicit hierarchy.” 
There is no strict decision making, the organization is implemented via the struc-
ture of the Production Order that possesses interdependencies between different 
production steps (called Process Segments) via so-called node operators. The 
mechanism of order decomposition developed in PABADIS’PROMISE allows  
for the on sign autonomously acting Order Agents to each Process Segment. It is 
similar to the PABADIS approach with the difference that higher-level Order 
Agents can influence the agents responsible for subtask execution. For instance, 
the Order Agent that is responsible for the assembly of a car needs an engine to be 
produced before performing its tasks. Therefore, it assigns the deadlines for the 
engine agent, so the engine is delivered on time to assembly the complete car. 

Another issue is the behavior of agents involved in production. PROSA with its 
hierarchy does not need to pay attention to this topic, but in more distributed sys-
tems such as PABADIS it has greater importance because it can increase perform-
ance efficiency. Product Agents in PABADIS are selfish in their “nature.” As a re-
sult the system has low optimization of order execution compared to PROSA but 
much higher flexibility. PABADIS’PROMISE again tries to combine both bene-
fits by introducing benevolent behavior of agents that is, agents have to obey a 
certain set of rules that benefit not only their local goals (finishing assigned Proc-
ess Segments on time), but also to sacrifice their goals to help agents struggling to 
meet their deadlines. This approach considerably improves optimization without 
dramatically reducing flexibility, which guarantees higher overall system per-
formance and stability. 
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6.5.3 Supervisory and Supporting Functionalities 

As was mentioned above, both PROSA and PABADIS define a special entity 
(Stuff Holon and PMA, respectively) to cover functionality not reflected by order- 
and resource-related agents or holons.  

PABADIS’PROMISE also provides supervision management entities, namely, 
Order and Resource Agent Supervisors (OASs and RASs) to implement functions 
that are centralized by nature such as supervision or reporting. But in contrast to 
the earlier architectures, PABADIS’PROMISE does not define a specific entity 
that deals with such functions as tooling or maintenance. Instead of creating an ex-
tra agent, the concept incorporates support functions via ontology and organiza-
tion of agent communities that allow for implementing tooling or maintenance us-
ing the general mechanism of an order-resource relationship.  

6.5.4 PABADIS’PROMISE Scheduling 

The advantages of PABADIS’PROMISE as a hybrid approach compared to 
PROSA and PABADIS architectures (MetaMorph is more a concept than an ar-
chitecture) can be summarized in the way it approaches scheduling. Instead of the 
single centralized concept of PROSA and the selfish order-oriented approach of 
PABADIS, PABADIS’PROMISE comprises resource-oriented scheduling on the 
shop floor with dynamic clustering for solution finding, and order-oriented be-
nevolent rescheduling on the MES layer. 

 

 
Fig. 6.3 Resource-oriented scheduling 
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Scheduling in PABADIS’PROMISE can be divided into two mechanisms: re-
source-oriented initial scheduling and order-oriented rescheduling [25].  

The first mechanism (Fig. 6.3) consists of the following steps: 

1. OA retrieves its first unscheduled Process Segment (PS); 
2. OA asks the Ability Broker (AB) for an RA with the capability required by the PS; 
3. OA requests an RA for allocation; 
4. RA forms a cluster for scheduling; 
5. RAs perform scheduling and find a solution; 
6. RA sends a proposal to the OA; 
7. OA accepts or rejects the proposal. 

In steps 1 and 2, the initial processes of the OA parsing an order and discover-
ing resources are executed. Steps 4 and 7 are negotiations between an OA and an 
RA. And the actual scheduling algorithm is applied in steps 4-6. Although the 
RAs implement scheduling algorithms for finding a solution to reserving re-
sources, the OA is responsible for decisionmaking. That is in contrast to the 
MetaMorph original concept, where the cluster leader’s decision is final. The rea-
son to shift the decisionmaking to the OA is to provide optimization of the order 
execution and not just of resource utilization. In what followings the seven steps 
of the scheduling procedure are described in more detail. 

6.5.4.1 Order Agent Receives the Production Order and Parses It 

Depending on the “depth” scheduling, meaning the number of PSs scheduled in 
advance, the OA fills in the time schedule to create the framework for the execu-
tion of the Production Order (PO). The reason behind introducing “depth” is to 
avoid the snowball effect of the network overload caused by the rescheduling of 
the previously allocated task due to the requests from the higher-priority OAs. 

6.5.4.2 Order Agent Asks the Ability Broker for Resources 

In the next step, the OA sends a request to the AB that maintains the actual list of 
abilities and resources required by the OA to carry out the order. In 
PABADIS’PROMISE, ability is a certain function that a resource provides. It can 
be a physical operation, computation function, or an action of a human. It reflects 
the definition of a resource in the concept that varies from a robot to the entire 
production line or a plant and can even be a human being. 

 



128      Aleksey Bratukhin, Arndt Lüder and Albert Treytl 

6.5.4.3 Order Agent Asks a Resource Agent for Allocation 

After receiving the RA address that can perform the requested ability, the OA 
sends a scheduling request that contains the Process Segment and the time slot the 
OA desires for the ability execution. 

6.5.4.4 Resource Agent Forms a Cluster for Scheduling 

Upon receiving the request, it is the task of the RA to communicate to other iden-
tical resources and form a resource cluster. This communication can follow the 
sequence of actions as proposed in MetaMorph that is, the leader can first broad-
cast a message to all similar RAs, then in reply the RAs can join in the cluster, and 
this cluster can then participate in the process of scheduling under the leadership 
of this leader. However, the difference from the classical MetaMorph concept is 
that in PABADIS’PROMISE the leader does not have the pointers through which 
other identical resources can be accessed, therefore it needs to find out those 
pointers first. In order to find the similar abilities and respective resources, the 
cluster leader RA contacts the AB and receives the pointers. Then the leader 
broadcasts the request for clustering to the RAs with the same ability. In response, 
all the RAs to which a request was send evaluate the request message and reply to 
the leader about their decision; the request is then either accepted or dropped. The 
decision is based on the availability of a resource, meaning that if a resource is al-
ready allocated for a certain period, then it will not participate in the cluster. After 
that leader receives the responses, it forms a virtual cluster from the resources that 
responded positively. The important feature of the virtual clusters is their dyna-
mism, meaning they are created on demand and are not permanent. A cluster is 
created for an order and then can be broken after completion of the scheduling ac-
tivity of the order. Moreover, it is also possible that an agent that is participating 
as a leader in one cluster will also act as a participant in another cluster. 

6.5.4.5 Resource Agents Perform Scheduling and Find a Solution 

When cluster is formed, the mechanism of finding a quasioptimal solution starts. 
Within this mechanism a task leader asks the agents in the cluster for their propos-
als regarding the requested task execution and evaluates the results. There is also a 
local internal evaluation process at the RAs using the so-called evaluation function 
that considers the availability and costs of resources, as well as tooling and wait-
ing time due to the gaps in the RA schedule [25]. Generally speaking, the evalua-
tion function provides an optimal solution at the particular time for a single ability 
with respect to resource utilization optimization. 
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6.5.4.6 Resource Agent Sends a Proposal to the Order Agent 

After the cluster leader RA receives all the bids from the cluster members, it veri-
fies the proposals, and based on additional parameters given by the OA or general 
for the shop floor, chooses the best solution. 

The general parameters for the shop floor are those that concern the optimiza-
tion of the whole field layer and not focused on the local optimization of a single 
resource. Finally, the RA sends a proposal to the OA that had send the scheduling 
request. 

6.5.4.7 Order Agent Accepts or Rejects the Proposal 

Then it is up to the OA to evaluate the proposal and to accept or reject it. If the 
OA accepts the proposal than it allocates the resource on the proposed conditions. 
If the proposal is not suitable, then the OA can proceed in two possible ways: 

• Starting the process from the beginning, meaning asking the AB for the given 
ability, asking the RA to form a new cluster, and so on. Due to the dynamism 
of the shop floor and of the order flow, the result of the new evaluation can be 
different from the old one. 

• Asking the cluster for other solutions that fit the OA in a better way, but are 
less optimal for the resources. This mechanism depends on the configuration of 
the system that has to evaluate the importance of the shop floor optimization 
compared to the order flow optimization. 

Eventually, if a solution cannot be found within the resource-oriented scheduling 
then the OA has to negotiate with the OAs or OASs to find a solution. This mecha-
nism is based on the benevolence of the OA behavior, assuming that the OAs re-
spect the needs of the others. An exact criterion for evaluation depends on a particu-
lar application, but for the actual implementation of the demonstrator the criterion 
for rescheduling is based on the due deadlines and due dates of the orders. 

OA1 OA2

RA

3
4b

1 2 5 6

4a
 

Fig. 6.4 Order-oriented rescheduling 
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Each order has a deadline and due date that are given to the OA by the ERP 
system and expected to be fulfilled. Each OA estimates the execution time for the 
order in general and for each activity in particular. Therefore, if the activity execu-
tion proposed by the RAs does not fit the deadline/due date, an OA contacts OAs 
that use the resources the RA is interested in. The information about such OAs is 
sent by the RA together with the refusal of allocation within the initial scheduling 
request protocol. Figure 6.4 shows the general communication mechanism of re-
scheduling and consists of the following steps:  

1. OA1 sends a scheduling request with the possible execution time; 
2. If the RA cannot find a solution that fits the required parameters, it responds 

with a message of refusal and informs the OA1 about the reasons for the re-
fusal. In particular, it is the list of OAs (with the resource allocation identifica-
tions) that allocates the requested time slots of the RAs for its own activity exe-
cution; 

3. OA1 sends a request to the OAs that reserved the resources. In the example re-
quest, OA1 asks OA2 to cancel a particular resource allocation and provides 
the deadline/due date of the order of OA1; 

4. Depending on the applied constraints for the plant, OA2 evaluates the possibil-
ity for rescheduling. For instance, if OA1’s deadline is in 1h and deadline 
OA2’s is in 1 day, than the OA2 agrees to cancel a requested reservation. Be-
fore informing OA1, OA2 sends a reservation cancelation request to the RA 
and informs the RA that the cancellation is being done for another OA, namely, 
OA1. Therefore, the RA only allows OA1 to use this time slot; 

5. OA sends a scheduling request to the RA again; 
6. The RA confirms the reservation. 

6.6 Summary 

From a general point of view PABADIS’PROMISE, PROSA, and PABADIS can 
be summarized with respect to the following criteria: 

Autonomy and aggregation: on the one hand, PROSA lacks flexibility due to 
the direct control over aggregated entities, and on the other hand, PABADIS lacks 
optimization because of total distribution. PABADIS’PROMISE defines Produc-
tion Order decomposition as something that establishes rules of controlling 
autonomous entities without dramatically reducing flexibility. 

Cooperation and hierarchy: where PROSA has an explicit hierarchy that 
causes rigidness of order changes, and PABADIS provides no hierarchy that im-
plies overhead in the case of managing complex products, PABADIS’PROMISE 
offers implicit hierarchy (Production Order decomposition; flexible structure of 
orders; dynamic control of resources by resources) that finds a balance between 
two approaches. 



6 Applications of Agent Systems in Intelligent Manufacturing      131 

Decisionmaking: while decision making in PROSA is centralized, meaning 
there is one control entity per functionality, PABADIS supports a completely dis-
tributed decision-making mechanism. PABADIS’PROMISE provides a semi-
distributed approach based on clustering of resources at the shop floor and PO de-
composition at the MES layer. 

Data interoperability: with PROSA having implementation-specific data that 
cause difficulties for the system installation and PABADIS data that virtually do 
not have an established connection to the ERP system, PABADIS’PROMISE on-
tology covers the entire automation pyramid linking all three layers together. 

Control flow: on the one hand, PROSA has a strict vertical control flow that 
lacks feedback to the upper layer of the ERP. PABADIS, on the other hand, has a 
limited feedback to the ERP, providing it only at the end of the production cycle. 
Therefore, PABADIS’PROMISE supports a permanent connection with the ERP 
via planned periodic or event-based reports during the Production Order life cycle. 

Table 6.1 Distributed approaches comparison 

 PROSA PABADIS PABADIS’PROMISE 
Autonomy Low High High 
Aggregation High Low Production order decom-

position 
Cooperation Low High, selfish High, benevolent, dy-

namic resource control  
Hierarchy Explicit No hierarchy Implicit, flexible order 

structure 
Decision-
making 

Centralized Distributed Distributed, shop floor 
clustering 

Data interop-
erability 

Implementa-
tion-specific 
data 

Limited ERP 
connection 

Common ontology 
throughout the system 

Control flow  Vertical Horizontal Bidirectional 
ERP feedback No feedback Limited feed-

back 
Periodic and event-based 
reports 

 
In conclusion PABADIS’PROMISE has achieved a balanced combination of 

the rigid PROSA architecture and the chaotic PABADIS approach with vital con-
tributions from of MetaMorph dynamic optimization. 

All the above-mentioned architectures approach manufacturing automation 
from the conceptual points of view and often overlook the application aspects that 
are brought by the distributed nature of the concepts. In particular, security, prod-
uct identification, and data interoperability are vital aspects for practical imple-
mentation.  

Distributed systems lack single point of control with decision making spread 
over the multiple entities that communicate with each other. This causes higher 
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security risks, due to the intensive communication that such architectures require 
and the fact that there is no single entity that controls the system. 

Another challenge of distributed systems is the lack of general overview of the 
processes and components on the shop floor. It is difficult to keep track of the 
products, work in progress, and materials in the plant, and it is often impossible to 
say where exactly a specific piece is located. Therefore, more advanced identifica-
tion of the workpieces is required to guarantee the efficient operation of the sys-
tem. 

Last but not least, distribution of decision-making functionality requires inter-
operability of information flow over all three layers of the automation pyramid as 
well as mechanisms of distributed databases. Therefore, a common ontology with 
mechanisms of data abstraction for different control entities is required to guaran-
tee the coordination within the system. 

6.7 Practical Implementation Aspects 

In order to address the practical implementation issues raised in the previous sec-
tion, PABADIS’PROMISE defines features of data security, material identifica-
tion, and consistent data management. The following sections describe the chosen 
solutions, namely, a three-zone security architecture, Radio Frequency Identifica-
tion (RFID)-based product tracking, and XML-based automation ontology. 

6.7.1 MES Security Architecture 

Often overlooked by developers as a less important issue, a missing security con-
cept always strikes back when it comes to actual implementation. It is especially 
vital in a distributed environment when the use of standard IT technologies, a col-
laborative agent system, and low-resource RFID devices introduces new threats to 
the usually closed automation environments. Security threats from the agent sys-
tem point of view are: 

• Modification of agent data and code during transmission; 
• Abuse of a platform by a malicious or strayed agents including authentication 

theft;  
• Misuse of resources (unauthorized access) or wrong pairing of entities, i.e., loss 

of origin or untraceable unitary (unauthenticated communication). 

The PABADIS’PROMISE architecture integrates the security needs of the two 
loosely coupled agents with the main focus at the control and MES layers but also 
the interfaces to the surrounding layers. 
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The problem of securing a distributed MES is the use of devices with low re-
sources in the MES layer and the field layer that are not capable of carrying the 
additional load of (strong) security measures. Hence, a hierarchical security con-
cept is applied that is organized in three zones of different mutual trust. This is a 
common approach in industrial automation [26, 27]. 

For the purpose of the PABADIS’PROMISE system a security system with 
three main zones is a suitable solution (Fig. 6.5). The three zones match the three 
functional areas of MES: high-layer components of ERP; manufacturing execution 
with order and Resource Agents, and interfacing between the enterprise layer and 
the MES. Further subzones, called local and functional domains, are introduced 
that encapsulate operations such as real-time communication that conflict with the 
usual security measures. 
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Zone 1 external
EP
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Order Agent 
Supervisor

OA
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Product Data 
Repository

RA

Resource Agent
Supervisor

Ability 
Broker

ResourceRA
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Sec. Notify

RFID Reader

Local Domains Functional Domains
 

Fig. 6.5 Three-zone security model 

The topmost is Zone 1: external meaning outside of the MES layer, including 
some ERP components of the enterprise layer. 

In the middle of the three-zone model is Zone 2: Demilitarized Zone (DMZ). In 
the DMZ are located the supervising entities RAS, OAS, and PDR but also secu-
rity management entities such as a Trusted Third Party (P2_TTP). These entities 
translate the semantics and syntax of the ERP payload to the factory layer. They 
are also responsible for establishing secure connections to the ERP, which is 
mainly based on standard Internet technologies such as SSL/TLS and XML en-
cryption for Web services security to the limited security operations of the factory 
floor. 

At the bottom of the three-zone model is the factory zone is placed. Due to 
hardware limitations of the embedded systems running OAs and RAs they are nei-
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ther capable of doing strong computations nor can deal with high communication 
loads. For example, OAs are usually run on embedded devices that move around 
with their associated products and are often connected only through RFID com-
munications. Hence, within the third zone only less resource consumption and, 
therefore, usually rather week security measures exist for authentication and ac-
cess control. Nevertheless, overall security is maintained since the entrance to the 
zone is protected by strong security measures in the zone(s) above. Each data or 
request for operation must pass all zones on the way to its destination to allow 
weak authentication and encryption inside the inner zone, e.g., a request from the 
ERP first has to pass the Web-service security, then the checks at the OAS, the 
firewall to the factory zone, and the authentication inside the factory zone. If a se-
curity check fails, than the requested operation is not permitted and an exception 
handling takes place that is part of the P2 protocols. 

The PABADIS’PROMISE security model allows one to apply a defense-in-
depth concept that enables the system engineer to integrate weak components such 
as RFID tags and low resource Programmable Logic Controls that are not capable 
of implementing heavy security functions. 

6.7.2 Radio Frequency Information Technology (RFIT) 

The general problem with distributed system architectures is their abstraction from 
the real world, and that comes with a price when applying them to applications. 
One of the main challenges is tracking products, materials, and work-in-process 
pieces that are managed by purely software-based entities, namely, holons or 
agents. 

PABADIS’PROMISE uses RFID tags to track the physical pieces in the plant 
and provides two types of RFID tags (PIT and PAHT): Product Identification Tag 
(PIT) – simple passive RFID tags used for identification of materials – and Prod-
uct and Agent Host Tag (PAHT) – active RFID tag equipped with a Foundation 
for Intelligent Physical Agents (FIPA)-compliant agent platform that is used to 
identify products and host OAs that manage their production. 

In the latter approach, RFID tags not only contain the product identification and 
product data, but also run an agent host providing an agent platform for the OA it 
hosts. It provides an environment for an agent to perform its action on the tag. 
This confers a considerable advantage in performance, because the OA is running 
constantly but also requires more tag resources (memory, processor), due to the 
fact that it has to run an agent host. Because standard agent platforms such as 
JADE [28] require a Java Virtual Machine (JVM) that consumes a lot of memory 
and processor capacity, PABAIDE’PROMISE developed a C-based agent envi-
ronment called CARE (C-Agent Runtime Environment) that provides sufficient 
agent functionalities and is FIPA-compliant [29].  
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The main advantage of PAHT is that RAs do not need to retrieve product iden-
tification or product data at all, because the product and the OA are the same en-
tity. There is no need for product identification at all because OA identification for 
PAHT is sufficient [30]. 

Both the physical and the logical connection of a product and an agent are ar-
chived, which gives a higher level of flexibility to the agent and product. Products 
can be freely moved from one environment to another, without regard to the actual 
location of the associated agent. 

Due to the fact that products and their agents are the same entity, there is no 
need for additional intelligence of a tag other than an agent. That means that the 
tag does not need to analyze data or provide communication mechanisms, but 
rather serves as a database and as an agent host. 

6.7.3 Data Interoperability 

Last but not least is the challenge of data interoperability that many concepts (i.e., 
PROSA) shift to the realm of applications rather than including them in the con-
ceptual core of systems. 

This often leads to integration problems, especially when trying to combine 
ERP systems with shop floor solutions. PABADIS’PROMISE provides an ontol-
ogy that incorporates standard structures that can be filled with specific data and 
can be decomposed in order to optimize performance and utilizes the resources ef-
ficiently. The best example of the PABADIS’PROMISE approach to data han-
dling is the PO that is used by all three layers of the automation pyramid (Fig. 
6.6).  

The structure of the PO is designed to provide the possibility for its further de-
composition as well as possibilities of the concurrent execution. The general de-
scription of the PO contains information about the type of product, its quantity, 
deadlines and due date and additional information specific for a particular instance 
of a product. The rest of the PO is a combination of PS and Node Operators 
(NOs). 

The Process Segment (PS) is a basic construction element of the PO describing 
a single task or operation that the system has to fulfill in order to go further to 
complete the product. Each PS is specific to a PO but can serve as a reusable core. 
An Ability is a recipe of a single operation that is predefined and a set of parame-
ters that are unique for each product or PO. In addition to the Ability description, 
material data are specified in a way that the consumed and produced materials are 
defined for each PS. That makes it possible to decompose the order into a set of 
suborders that can be executed concurrently, based on the principle that there is 
one OA that is responsible for a single piece of material/work in progress/product 
[31]. 
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Finally, NOs are the logical links between different PS and combine them into 
a single hierarchical structure of the PO also facilitating order decomposition. 
There are several types of NOs declaring the type of the operator (Sequence, 
BranchOr, BranchAnd, JoinOr, JoinAnd) as well as input and output. There can be 
multiple inputs and outputs making it possible for different ways to execute the 
PO, which therefore gives extra flexibility to the production system by adaptation 
to the loss of a single type of a machine or transport line. 
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Fig. 6.6 Production order structure 

6.8 Conclusion 

Distributed Control Systems are a state-of-the-art approach. Based on agent tech-
nology, there are several implementations especially for the Manufacturing Execu-
tion Control layer.  

In this chapter the basic structures used within the majority of approaches have 
been described. It has been shown using a comparative approach how they are re-
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flected within the PROSA, the PABADIS, and the MetaMorph architectures. The 
benefits and drawbacks of each approach were discussed. 

The PABADIS’PROMISE architecture has all the advantages of the above-
named approaches, resulting in a new architecture most fitting for recent problems 
in factory automation on the MES layer. 

It has been shown how PABADIS’PROMISE is incorporating the features and 
design decisions of PROSA, PABADIS, and MetaMorph. In addition, approaches 
addressing special requirements are addressed using the most recent technologies 
were presented.  
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