Chapter 6

Simulated Annealing, FCM,
Partition Coefficients and Tabu Search

6.1 Introduction

In 1945 the construction of the first computer caused a revolution in the world. It
was aimed to modify the interactions between Russia and the West. In the academic
and research fields it brought back a mathematical technique known as statistical
sampling, now referred to as the Monte Carlo method. S. Frankel and N. Metropolis
created a model of a thermonuclear reaction for the Electronic Numerical Integra-
tor and Computer (ENIAC), persuaded by the curiosity and interest of John von
Neumann, a prominent scientist in that field.

The results of the model where obtained after the end of the World War I, and
among the reviewers was Stan Ulam, who had an extensive background in mathe-
matics and the use of statistical methods. He knew these techniques were no longer
in use because of the length and tediousness of calculations. His research interest
included pattern development in 2D games played with very simple rules. These
techniques are now used in various industrial applications known as cellular au-
tomata.

Ulam and Neumann sent a proposal of the Monte Carlo method to the theoret-
ical division leader of the Los Alamos Laboratory in New Mexico in 1947, which
included a detailed outline of a possible statistical approach to solve the problem
of neutron diffusion in fissionable material. The basic idea of the method was to
generate a genealogical history of different variables in a process until a statistically
valid picture of each variable was created.

The next step was to generate random numbers; here Neumann proposed a method
called the middle-square digits. Once the random numbers are generated, they must
be transformed into a non-uniform distribution desired for the property of interest.
Solving problems using this method is easier than other approaches like differen-
tial equations, because one needs only to mirror the probability distribution into the
search space of the problem at hand.

In 1947 the ENIAC was moved to the Ballistic Research Laboratory in Maryland,
its permanent home. After the movement, there was an explosion in the use of the
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Monte Carlo method with this computer. The applications solved several questions
of different branches of physics, and by 1949 there was a special symposium held
on the method.

The Monte Carlo method gave birth to modern computational optimization prob-
lems. We can now see, as a natural consequence of electronic computers, the quick
evolution of experimental mathematics, with the Monte Carlo method key to this
achievement. It was at this point that mathematics achieved the twofold aspect of
experiment and theory, which all other sciences enjoy.

As an example of the method, we can imagine a coconut shy. We want to know
the probability of taking 10 shots at the coconut shy and obtain an even number of
hits. The only information that we know is that there is a 0.2 probability of having
a hit with a single shot. Using the Monte Carlo method we can perform a large
number of simulations of taking 10 shots at the coconut shy. Next we can count the
simulations with even number of hits and divide that number over the total number
of simulations. By doing this we will get an approximation of the probability that
we are looking for.

6.1.1 Introduction to Simulated Annealing

A combinatorial optimization problem strives to find the best or optimal solution,
among a finite or infinite number of solutions. A wide variety of combinatorial prob-
lems have emerged from different areas such as physical sciences, computer science,
and engineering, among others. Considerable effort has been devoted to construct
and research methods for solving the performance of the techniques. Integer, linear,
and non-linear programming have been the major breakthroughs in recent times.

Over the years it has been shown that many theoretical and practical problems
belong to the class of NP-complete problems. A large number of these problems
are still unsolved; there are two main options for solving them. On the one hand,
if we strive for optimality the computation time will be very large; these methods
are called optimization methods. On the other hand, we can search quick solutions
with suboptimal performance, called heuristic algorithms. However, the difference
between these methods is not very strict, because some types of algorithm can be
used for both purposes.

Another way to classify algorithms is between general and tailored. While gen-
eral algorithms are applicable to a wide range of problems, failored algorithms use
problem-specific information, restricting their applicability. The intrinsic problem
is that for the former ones, for each type of combinatorial optimization problem,
a new algorithm must be constructed.
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6.1.2 Pattern Recognition

Recognizing and classifying patterns is a fundamental characteristic of human intel-
ligence. It plays a key role in human perception as well as other levels of cognition.
The field of study has evolved since the 1950s. Pattern recognition can be defined
as a process by which we search for structures in data and classify them into cate-
gories such that the degree of association is high among structures of the same kind.
Prototypical categories are usually characterized from past experience, and can be
done by more than one structure.

Classification of objects falls in the category of cluster analysis, which plays
a key role in pattern recognition. Cluster analysis it is not restricted to only pattern
recognition, but is applicable to the taxonomies in biology and other areas, classifi-
cation of information, and social groupings.

Fuzzy set theory has been used in pattern recognition since the mid-1960s. We
can find three fundamental problems in pattern recognition, where most categories
have vague boundaries. In general, objects are represented by a vector of measured
values of r variables: a = [a; .. .a,].

This vector is called a pattern vector, where a; (for each i € N,) is a particu-
lar characteristic of interest. The first problem is concerned with representation of
input data, which is obtained from the objects to be recognized, known as sensing
problems. The second problem concerns the extraction of different features from the
input data, in terms of the dimension of the pattern vector; they are called feature
extraction problems. These features should characterize attributes, which determine
the pattern classes.

The third problem involves the determination of optimal decision procedures for
the classification of given patterns. Most of the time this is done by defining an ap-
propriate discrimination function of patterns by assigning a real number to a pattern
vector. Then, individual pattern vectors are evaluated by discrimination functions,
and the classification is designed by the resulting number.

6.1.3 Introduction to Tabu Search

There are many problems that need to be solved by optimization procedures. Ge-
netic algorithms (GA) or simulated annealing is used for that purpose. Tabu search
(TS) is among the methods found in this field of optimization solutions. As its name
suggests, tabu search is an algorithm performing the search in a region for the min-
imum or maximum solution of a given problem.

Searching is quite complicated because it uses a lot of memory and spends too
much time in the process. For this reason, tabu search is implemented as an intelli-
gent algorithm to take advantage of memory and to search more efficiently.
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6.1.4 Industrial Applications of Simulated Annealing

We will briefly describe some industrial applications of the simulated annealing.
Scheduling is always a difficult problem in the industry. Processes and logistics
must be carefully combined to harmonize and increase production of plants. In 1997
A.P. Reynolds [1] and others presented a paper on simulated annealing for indus-
trial applications. They optimized the scheduling process in order to optimize the
resources of a manufacturing plant to meet the demand of different products.

S. Saika and other researchers [2] from Matsushita at the Advanced LSI Tech-
nology Development Center introduced a high-performance simulated annealing
application to transistor placement. Called widely stepping simulated annealing,
they applied it to the 1D transistor placement optimizations used in several in-
dustrial cells. They claim to have solutions as good as the standard algorithm
and better, with a processing time one-thirtieth that of the normal simulated an-
nealing.

R.N. Bailey, K.M. Garner, and M.F. Hobbs published a paper [3] showing the
application of simulated annealing and GAs to solve staff scheduling problems.
They use the algorithms to solve the scheduling of the work of staff with different
skill levels, which is difficult to achieve because there is a large number of solu-
tions. The results show that both simulated annealing and GAs can produce opti-
mal and near-optimal solutions in a relatively short time for the nurse scheduling
problem.

6.1.5 Industrial Applications of Fuzzy Clustering

Manufacturing firms have increased the use of industrial robots over the years. There
has also been an increase in the number of robot manufacturers, offering a wide
range of products. This is how M. Khouja and D.E. Booth [4] used a fuzzy cluster-
ing technique for the evaluation and selection of industrial robots given a specific
application. They take into consideration real-world data instead to create the model.

B. Moshiri and S. Chaychi [5] use fuzzy logic and fuzzy clustering to model
complex systems and identify non-linear industrial processes. They claim that their
proposed advantage is simple, flexible and of high accuracy, easy to use and auto-
matic. They applied this system to a heat exchanger.

6.1.6 Industrial Applications of Tabu Search

Tabu search has been widely used to optimize several industrial applications. For
example, L. Zhang [6] and his team proposed a tabu search scheme to optimize the
vehicle routing problem, with the objective of finding a schedule that will guarantee
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the safety of all vehicles. Their algorithm proved to be good enough compared with
other more mature algorithms specially designed for the vehicle problem.

Artificial neural networks (ANNSs) based on the tabu search algorithm have also
been used by H. Shuang [7] to create a wind speed prediction model. A backpropa-
gation neural network has its weights optimized using tabu search. Then the neural
network is used as a model to predict the wind speed 1 hour ahead. It improved the
prediction compared with a simple backpropagation neural network.

In 2007 J. Brigitte and S. Sebbah presented a paper [8] in which 3G networks
are optimized. The location of primary bases and the core network link capacity is
optimized. The dimensioning problem is modeled as a mixed-integer program and
solved by a tabu search algorithm; the search criteria includes the signal-to-noise
plus interference ratio. Primary bases are randomly located and after a few iterations
their location is changed and the dimensioning optimized.

This base optimization problem was previously addressed by C.Y. Lee and pub-
lished in a paper in 2000 [9]. He also aimed to minimize the number of base stations
used and its location in an area covered by cellular communications. The results
presented show that a 10 % in cost reduction is achieved, and between a 10 and 20%
of cost reduction in problems with 2500 traffic demand areas with code division
multiple access (CDMA) systems.

6.2 Simulated Annealing

It was in 1982 and 1983 that Kirkpatrick, Gelatt and Vecchi introduced the concepts
of annealing in combinatorial optimization. It was also independently presented in
1985 by Cerny. The concepts are based on the physical annealing process of solids
and the problem of solving large optimization problems.

Annealing is a physical process where a substance is heated and cooled in a con-
trolled manner. The results obtained by this process are strong crystalline structures,
compared to structures obtained by fast untempered cooling, which result in brittle
and defective structures. For the optimization process the structure is our encoded
solution, and the temperature is used to determine how and when new solutions are
accepted. The process contains two steps [4, 10]:

1. Increase temperature of the heat bath to a maximum value at which the solid
melts.

2. Carefully decrease the temperature of the heat bath until particles arrange them-
selves in the ground state of the solid.

When the structure is in the liquid phase all the particles of the solid arrange them-
selves in a random way. In the ground state the particles are arranged in a highly
structured lattice, leaving the energy of the system at its minimum. This ground state
of the solid is only obtained if the maximum temperature is sufficiently high and the
cooling is sufficiently low, otherwise, the solid will be frozen into a metastable state
rather than the ground state.
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Computer simulation methods from condensed matter physics are used to model
the physical annealing process. Metropolis and others introduced a simple algorithm
to simulate the evolution of a solid in a heat bath at thermal equilibrium. This algo-
rithm is based on Monte Carlo techniques, which generate a sequence of states of
the solid.

These states act as the following: given the actual state i of the solid that has en-
ergy E;, the subsequent state j is generated by applying a perturbation mechanism
which transforms the present state into the next state causing a small distortion, like
displacing a particle. For the next state E, if the energy difference E; — E; is less
than or equal to zero, then the j is accepted as the current state. If the energy dif-
ference is greater than zero, then the j state is accepted with a certain probability,

()
givenby: e\ 87/

Here, T' denotes the temperature of the heat bath, and kg is a constant known
as the Boltzmann constant. We will now describe the Metropolis criterion used as
the acceptance rule. The algorithm that goes with it is known as the Metropolis
algorithm.

If the temperature is lowered sufficiently slowly, then the solid will reach ther-
mal equilibrium at each temperature. In the Metropolis algorithm this is achieved by
generating a large number of transitions at a given temperature value. The thermal
equilibrium is characterized by a Boltzmann distribution, which gives the probabil-
ity of the solid being in the state i with an energy E; at temperature 7 :

-mr) ©.1)
Z(T)

where X is a stochastic variable that denotes the state of the solid in its current form,
and Z (T) is a partition function, defined by:

PriX =i} =

E;
Z(T) = Z e(_kTT) ) 6.2)
J
The sum will extend over all the possible states. The simulated annealing algorithm
is very simple and can be defined in six steps [11], as shown in Fig. 6.1.

1. Initial Solution
The initial solution will be mostly a random one and gives the algorithm a base
from which to search for a more optimal solution.

2. Assess Solution
Consists of decoding the current solution and performing whatever action is
necessary to evaluate it against the given problem.

3. Randomly Tweak Solution
Randomly modify the working solution, which depends upon the encoding.

4. Acceptance Criteria
The working solution is compared to the current solution, if the working one has
less energy than the current solution (a better solution) then the working solution
is copied to the current solution and the temperature is reduced. If the working
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solution is worse than the current one, the acceptance criteria is evaluated to
determine what to do with the current solution. The probability is based on (6.3):
P@E)=e T, (6.3)

which means that at higher temperatures poorer solutions are accepted in order
to search in a wider range of solutions.

5. Reduce Temperature
After a certain number of iterations the temperature is decreased. The simplest
way is by means of a geometric function 7;4+; = «aT;, where the constant « is
less than one.

6. Repeat
A number of operations are repeated at a single temperature. When that set is
reduced the temperature is reduced and the process continues until the tempera-
ture reaches zero.

6.2.1 Simulated Annealing Algorithm

We need to assume an analogy between the physical system and a combinatorial
optimization problem, based on the following equivalences:

* Solutions in a combinatorial optimization problem are equivalent to states of
a physical system.
* The energy of a state is the cost of a solution.

The control parameter is the temperature, and with all these features the simulated
annealing algorithm can now be viewed as an iteration of the Metropolis algorithm
evaluated at decreasing values of the control parameters. We will assume the ex-
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istence of a neighborhood structure and a generation mechanism; some definitions
will be introduced.

We will denote an instance of a combinatorial optimization problem by (S, f),
and i and j as two solutions with their respective costs f (i) and f (j). Thus, the
acceptance criterion will determine if j is accepted by i by applying the following
acceptance probability:

1 it f(j) = f @)
P, (accepted j) = (.f(i)fﬂj)
e

. (6.4)
)it Gy > £ )

where here ¢ € R denotes the control parameter. The generation mechanism cor-
responds to the perturbation mechanism equivalent at the Metropolis algorithm and
the acceptance criterion is the Metropolis criterion.

Another definition to be introduced is the one of transition, which is a combined
action resulting in the transformation of a current solution into a subsequent one. For
this action we have to follow the next two steps: (1) application of the generation
mechanism, and (2) application of the acceptance criterion.

We will denote ¢y as the value of the control parameter and Lj as the number
of transitions generated at the kth iteration of the Metropolis algorithm. A formal
version of the simulated annealing algorithm [5] can be written in pseudo code as
shown in Algorithm 6.1.

Algorithm 6.1

SIMULATED ANNEALING
init:
k=0
I = Istart
repeat
for [ =1 to Ly do
GENERATE j from S; :
if f(j)= /(@) theni=j
else
] (.f’(i)c—’,/'(./')) o
if e k > rand [0,1) then i = j
k=k+1
CALCULATE LENGTH (Ly,)
CALCULATE CONTROL (L)
until stopcriterion
end

The probability of accepting perturbations is implemented by comparing the value
of e/ D=/() /¢ with random numbers generated in (0, 1). It should also be obvious
that the speed of convergence is determined by the parameters Ly and ci.
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A feature of simulated annealing is that apart from accepting improvements in
cost, it also accepts, to a limited extent, deteriorations in cost. With large values
of ¢ large deteriorations or changes will be accepted. As the value of ¢ decreases,
only smaller deteriorations will be accepted. Finally, as the value approaches zero,
no perturbations will be accepted at all. This means that the simulated annealing
algorithm can escape from local minima, while it still is simple and applicable.

6.2.2 Sample Iteration Example

Let us say that the current environment temperature is 50 and the current solution
has an energy of 10. The current solution is perturbed, and after calculating the
energy the new solution has an energy of 20. In this case the energy is larger, thus
worse, and we must therefore use the acceptance criteria. The delta energy of this
sample is 10. Calculating the probability we will have:

P =e(-%) = 0.818731. (6.5)

So for this solution it will be very probable that the less ideal solution will be propa-
gated forward. Now taking our schedule at the end of the cycle, the temperature will
be now 2 and the energies of 3 for the current solution, and 7 for the working one.
The delta energy of the sample is 4. Therefore, the probability will be:

P = e(=2) =0.135335. (6.6)

In this case, it is very unlikely that the working solution will be propagated in the
subsequent iterations.

6.2.3 Example of Simulated Annealing
Using the Intelligent Control Toolkit for LabVIEW

We will try to solve the N -queens problem (NQP) [3], which is defined as the place-
ment of N queens on an N x N board such that no queen threatens another queen
using the standard chess rules. It will be solved in a 30 x 30 board.

Encoding the solution. Since each column contains only one queen, an N -element
array will be used to represent the solution.

Energy. The energy of the solution is defined as the number of conflicts that arise,
given the encoding. The goal is to find an encoding with zero energy or no conflicts
on the board.

Temperature schedule. The temperature will start at 30 and will be slowly decreased
with a coefficient of 0.99. At each temperature change 100 steps will be performed.
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Fig. 6.2 Simulated annealing ICTL
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The initial values are: initial temperature of 30, final temperature of 0.5, alpha
of 0.99, and steps per change equal to 100. The VIs for the simulated annealing are
found at: Optimizers >> Simulated Annealing, as shown in Fig. 6.2.

The front panel is like the one shown in Fig. 6.3. We can choose the size of
the board with the MAX LENGTH constant. Once a solution is found the green
LED Solution will turn on. The initial constants that are key for the process are
introduced in the cluster Constants. We will display the queens in a 2D array of
bits. The Current, Working and Best solutions have their own indicators contained
in clusters.

Temperature
]

Fig. 6.3 Front panel for the simulated annealing example
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Fig. 6.4 Block diagram for the generation of the initial solution

Our initial solution can be created very simply; each queen is initialized occu-
pying the same row as its column. Then for each queen the column will be varied
randomly. The solution will be tweaked and the energy computed. Figure 6.4 shows
the block diagram of this process.
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Fig. 6.5 Code for the tweaking process of the solution
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Fig. 6.6 Code for the computation of energy
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Fig. 6.7 Block diagram of the simulated annealing example for the N -queen problem

The tweaking is done by the code shown in Fig. 6.5; basically it randomizes
the position of the queens. The energy is computed with the following code. It will
try to find any conflict in the solution and assess it. It will select each queen on
the board, and then on each of the four diagonals looking for conflicts, which are
other queens in the path. Each time one is found the conflict variable is increased.
In Fig. 6.6 we can see the block diagram. The final block diagram is shown in
Fig. 6.7.

6.3 Fuzzy Clustering Means

In the field of optimization, fuzzy logic has many beneficial properties. In this case,
fuzzy clustering means (FCM), known also as fuzzy c-means or fuzzy k-means, is
a method used to find an optimal clustering of data.

Suppose, we have some collection of data X = {xi,..., x,}, where every ele-
ment is a vector point in the form of x; = (xil, e, xf’ ) € RP. However, data is
spread in the space and we are not able to find a clustering. Then, the purpose of
FCM is to find clusters represented by their own centers, in which each center has
a maximum separation from the others. Actually, every element that is referred to
as clusters must have the minimum distance between the cluster center and itself.
Figure 6.8 shows the representation of data and the FCM action.

At first, we have to make a partition of the input data into ¢ subsets written as
P(X) ={U,...,U.}, where c is the number of partitions or the number of clusters
that we need. The partition is supposed to have fuzzy subsets U;. These subsets must
satisfy the conditions in (6.7) to (6.8):
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Y Uix) =1, VxeX (6.7)

i=1

0< ) Uilxp) <n. (6.8)
k=1

The first condition says that any element x; has a fuzzy value to every subset. Then,
the sum of membership values in each subset must be equal to one. This condition
suggests to elements that it has some membership relation to all clusters, no matter
how far away the element to any cluster. The second condition implies that every
cluster must have at least one element and every cluster cannot contain all elements
in the data collection. This condition is essential because on the one hand, if there
are no elements in a cluster, then the cluster vanishes.

On the other hand, if one cluster has all the elements, then this clustering is trivial
because it represents all the data collection. Thus, the number of clusters that FCM
can return is ¢ = [2,n — 1]. FCM need to find the centers of the fuzzy clusters. Let
v; € R? be the vector point representing the center of the ith cluster, then

> (Ui (er)]™ xk
v="  vi=1,...c, 6.9)
kZ [Ui (xe)]™
=1

where m > 1 is the fuzzy parameter that influences the grade of the membership in
each fuzzy set. If we look at (6.9), we can see that it is the weighted average of the
data in U;. This expression tells us that centers may or may not be any point in the
data collection.

-~

LRp—

i‘\( Data O Cluster Centers

Fig. 6.8 Representation of the FCM algorithm
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Actually, FCM is a recursive algorithm, and therefore needs an objective func-
tion that estimates the optimization process. We may say that the objective function
Jm (P) with grade m of the partition P(X) is shown in (6.10):

In(P) =" Ui xi)]™ e — vill (6.10)

k=1i=1

This objective function represents a measure of how far the centers are from each
other, and how close the elements in each center are. For instance, the smaller the
value of J,,, (P), the better the partition P(X). In these terms, the goal of FCM is to
minimize the objective function.

We present the FCM algorithm developed by J. Bezdek for solving the clustering
data. At first, we have to select a value ¢ = [2, n — 1] knowing the data collec-
tion X. Then, we have to select the fuzzy parameter m = (1, o0). In the initial
step, we select a partition P(X) randomly and propose that J,,(P) — oo. Then,
the algorithm calculates all cluster centers by (6.9). Then, it updates the partition by
the following procedure: for each x; € X calculate

-1

1
c 2 m—1
Ui(xy) = Z(H'xk—”’”) . Vi=1,...c. (6.11)

2
=i\ =i

Finally, the algorithm derives the objective function with values found by (6.9) and
(6.11), and it is compared with the previous objective function. If the difference
between the last and current objective functions is close to zero (we say ¢ > 0
is a small number called the stop criterion), then the algorithm stops. In another
case, the algorithm recalculates cluster centers and so on. Algorithm 6.2 reviews
this discussion. Here n = [2, 00), m = [1, 00), U are matrixes with the membership
functions from every sample of the data set to each cluster center. P are the partition
functions.

Algorithm 6.2 FCM procedure

Step 1 Initialize time £ = 0.
Select numbers ¢ = [2, n — 1] and m = (1, 00).
Initialize the partition P(X) = {Uj,..., U.} randomly.
Set J,,, (P)© — oo.

Step 2 Determine cluster centers by (6.9) and P (X).

Step 3 Update the partition by (6.11).

Step 4 Calculate the objective function J,, (P)¢+D.

Step 5 If J,, (P)® — J,, (P)?+D > g then update £ = ¢ + 1 and go to Step 2.
Else, STOP.

Example 6.1. For the data collection shown in Table 6.1 with 20 samples. Cluster in
three subsets with a FCM algorithm taking m = 2.
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Table 6.1 Data used in Example 6.1

Number X data Number X data Number X data Number X data

1 255 6 64 11 58 16 80
2 67 7 64 12 96 17 80
3 67 8 71 13 96 18 71
4 74 9 71 14 87 19 71
5 74 10 58 15 87 20 62

Fig. 6.9 Block diagram of the Ho e
initialization process = .

Fig. 6.10 Block diagram of
partial FCM algorithm

i@FcM
_
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Solution. The FCM algorithm is implemented in LabVIEW in several steps. First,
following the path ICTL >> Optimizers > FCM > FCM methods > init_fcm.vi.
This VIinitializes the partition. In particular, it needs the number of clusters (for this
example 3) and the size of the data (20). The output pin is the partition in matrix
form. Figure 6.9 shows the block diagram. The 1D array is the vector in which the
twenty elements are located.

Then, we need to calculate the cluster centers using the VI at the path ICTL >
Optimizers > FCM > FCM methods >> centros_fem.vi. One of the input pins is
the matrix U and the other is the data. The output connections are referred to as U?
and the cluster centers Centers. Then, we have to calculate the objective function.
The VI is in ICTL > Optimizers > FCM > FCM methods > fun_obj_fcm.vi.
This VI needs two inputs, the U? and the distances between elements and centers.
The last procedure is performed by the VI found in the path ICTL >> Optimizers
> FCM > FCM methods >> dist_fcm.vi. It needs the cluster centers and the data.
Thus, fun_obj_fem.vi can calculate the objective function with the distance and the
partition matrix powered by two coming from the previous two VIs. In the same
way, the partition matrix must be updated by the VI at the path ICTL > Optimizers
> FCM > FCM methods > new_U_fem.vi. It only needs the distance between
elements and cluster centers. Figure 6.10 shows the block diagram of the algorithm.

Of course, the recursive procedure can be implemented with either a while-loop
or a for-loop cycle. Figure 6.11 represents the recursive algorithm. In Fig. 6.11 we
create a Max Iterations control for number of maximum iterations that FCM could
reach. The Error indicator is used to look over the evaluation of the objective func-
tion and FCM Clusters represents graphically the fuzzy sets of the partition matrix
found. We see at the bottom of the while-loop, the comparison between the last error
and the current one evaluated by the objective function. O
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Fig. 6.11 Block diagram of the complete FCM algorithm

6.4 FCM Example

This example will use previously gathered data and classify it with the FCM al-
gorithm; then we will use T-ANNS to approximate each cluster. The front panel is
shown in Fig. 6.12.

We will display the normal FCM clusters in a graph, the approximated clusters in
another graph and the error obtained by the algorithm in an XY graph. We also need
to feed the program with the number of neurons to be used for the approximation,
the number of clusters and the maximum allowed iterations. Other information can
be displayed like the centers of the generated clusters and the error between the ap-

FCM Clusters MNeuron Mumber Clusters Max erationsStop
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Fig. 6.12 Front panel of the FCM example
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proximated version of the clusters and the normal one. This example can be located
at Optimizers >> FCM > Example_FCM.vi where the block diagram can be fully
inspected, as seen in Fig. 6.13 (with the results shown in Fig. 6.14).

This program takes information previously gathered, then initializes and executes
the FCM algorithm. It then orders the obtained clusters and trains a T-ANNs with

ICTL
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Fig. 6.13 VIs for the FCM technique

Meuron Number Clusters  Max terationsStop
Center of Clusters

oo J350748 {95035 ||168.530 [{248.205

Average Mean | En'or between ANN output and the real function

302133

Error FCM ot N

W M 40
Number of Samples

FCM approximated by ANN's
]_-

Membership Degree

= =
200 300
Number of Samples

Fig. 6.14 The FCM program in execution
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the information of each cluster. After that the T-ANNSs are evaluated, and the average
mean error between the approximated and the real clusters are calculated.

6.5 Partition Coefficients

FCM described in Algorithm 6.1 is very useful in pattern recognition techniques.
However, no matter which application is being developed, FCM has a problem:
what could be the value for the number of clusters? The answer is the partition
coefficient.

Partition coefficient (PC) is a method used to validate how well a clustering algo-
rithm has identified the structure presented in the data, and how it represents it into
clusters. This small algorithm is based on the following:

>3 ()’
PC (Uic) = % (6.12)

C

where U is the partition matrix and u;; is the membership value of the jth element
of the data related to the ith cluster, ¢ is the number of clusters and » is the number
of elements in the data collection. From this equation, it can be noted that the closer
the PC is to 1, the better classified the data is considered to be. The optimal number
of clusters can be denoted at each ¢ by §2. using (6.13):

max [gjzé{PC (U;c)}j| . (6.13)

Algorithm 6.3 shows the above procedure.

Algorithm 6.3 Partition coefficient

Step 1 Initialize ¢ = 2.
Run FCM or any other clustering algorithm.

Step 2 Calculate the partition coefficient by (6.12).

Step 3 Update the value of clusters ¢ = ¢ + 1.

Step 4 Run until no variations at PC are found and obtain the optimal value of
clusters by (6.13).

Step 5 Return the optimal value ¢ and STOP.

Example 6.2. Assume the same data as in Example 6.1. Run the PC algorithm and
obtain the optimal number of clusters.

Solution. The partition coefficient algorithm is implemented in LabVIEW at ICTL
> Optimizers > Partition Coeff. >> PartitionCoefficients.vi. On the inside of this
VI, the FCM algorithm is implemented. So, the only thing we have to do is to con-
nect the array of data and the number of clusters at the current iteration. Figure 6.15
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o less]

Fig. 6.15 Block diagram finding the optimal number of clusters

Fig. 6.16 Front panel of
Example 6.2 showing the
optimal value for clusters

is the block diagram of the complete solution of this example. In this way, we ini-
tialize the number of clusters in 2 and at each iteration, this number is increased.
The number 10 is just for stopping the process when the number of clusters is larger
than this. Finally, in Table we find the evaluated PC at each number of clusters and
clusters indicates the number of optimal clusters for this particular data collection.
Figure 6.16 shows the front panel of this example. The solution for this data collec-
tion is 2 clusters. |

6.6 Reactive Tabu Search

6.6.1 Introduction to Reactive Tabu Search

The word tabu means that something is dangerous, and taking it into account in-
volves a risk. This is not used to avoid certain circumstances, but instead is used in
order to prohibit features, for example, until the circumstances change. As a result,
tabu search is the implementation of intelligent decisions or the responsive explo-
ration in the search space.

The two main properties of tabu search are adaptive memory and responsive
exploration. The first term refers to an adaptation of the memory. Not everything
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is worth remembering, but not everything is worth forgetting either. This property
is frequently used to make some subregion of the search space tabu. Responsive
exploration is a mature decision in what the algorithm already knows, and can be
used to find a better solution. The latter, is related to the rule by which tabu search
is inspired: a bad strategic choice can offer more information than a good random
choice. In other words, sometimes is better to make a choice that does not qualify
as the best one at that time, but it can be used to gather more information than the
better solution at this time.

More precisely, tabu search can be described as a method designed to search in
not so feasible regions and is used to intensify the search in the neighborhood of
some possible optimal location.

Tabu search uses memory structures that can operate in a distinct kind of region,
which are recency, frequency, quality, and influence. The first and the second models
are how recent and at what frequency one possible solution is performed. Thus, we
need to record the data or some special characteristic of that data in order to count
the frequency and the time since the same event last occurred. The third is quality,
which measures how attractive a solution is. The measurement is performed by fea-
tures or characteristics extracted from data already memorized. The last structure is
influence, or the impact of the current choice compared to older choices, looking at
how it reaches the goal or solves the problem. When we are dealing with the direct
data information stored, memory is explicit. If we are storing characteristics of the
data we may say that memory is attributive.

Of course, by the adaptive memory feature, tabu search has the possibility of
storing relevant information during the procedure and forgetting the data that are
not yet of interest. This adaptation is known as short term memory when data is
located in memory for a few iterations; long term memory is when data is collected
for a long period of time.

Other properties of tabu search are the intensification and diversification pro-
cedures. For example, if we have a large search region, the algorithm focuses on
one possible solution and then the intensification procedure explores the vicinity of
that solution in order to find a better one. If in the exploration no more solutions
are optimally found, then the algorithm diversifies the solution. In other words,
it leaves the vicinity currently explored and goes to another region in the search
space. That is, tabu search explores large regions choosing small regions in certain
moments.

6.6.2 Memory

Tabu search has two types of memory: short term and long term-based memories.
In this section we will explain in more detail how these memories are used in the
process of optimizing a given problem.

To understand this classification of memory, it is necessary to begin with a math-
ematical description. Suppose that the search space is V' so x € V' is an element of
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Fig. 6.17 Search space of the
tabu search / \
N(x)

S Y

the solution in the search space. The algorithm searches in the vicinity of x known
as N(x) where N(x) C V. Figure 6.17 shows these terms.

6.6.2.1 Short Term Memory

The first memory used in tabu search is the short term. When we are searching in
the vicinity N(x), and we try to do it as fast as possible. Another method is the
so-called steepest descent method that can be explained as follows: we pick up an
element x, then we take an objective function f(x) and store this value. In the
next iteration we look for an element x’ € N(x) and evaluate the function f(x’).
If f(x’) < f(x) then x’ is the new optimal solution. We repeat until the condition
is not true. Therefore, the solution of that method is known as the local optimum,
because the solution is the optimal one in the vicinity but not in the entire search
space.

This process is very expensive computationally. Therefore, a short term memory
is used. We try to delimit the search space by the vicinity of an element of that space.
Then, we try to minimize as much as possible the search space. How can we do it?
If some features of the solution are really known, then it is easy to deduce that some
solutions are prohibited. For example, the last element evaluated is prohibited from
being selected. This is a simple example, but some other characteristics might be
applied to avoid the selection of these possible solutions. So, there exists a subspace
of the vicinity N (x) that is a tabu list, namely T'. The new vicinity is characterized as
N*(x) = N(x)/T.In this way, tabu search is an algorithm that explores a dynamic
vicinity of the solution.

The tabu list or the tabu space is stored in short term memory. One of the simplest
uses of this memory is in the recent process. If some solution x is evaluated then the
next few iterations are prohibited.

In the same manner, when we talk about iterations of selecting new elements
to evaluate, we are trying to say that the change or the move between the current
solution and the following is evaluated to know if this change is really useful or
not. The dynamic vicinity of movement is distinguished by two classifications: the
vicinity of permissible moves and the tabu moves. Then, by the attributes of the
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elements x we can determine if some move can be added to the permissible vicinity
N*(x) or if the move might be dropped to the T subspace.

In order to assign the time of prohibition of some special element, the tabu tenure
is created. The tabu tenure is a value ¢ in the interval [fnin, fmax] that describes the
number of prohibited iterations remaining until the element will be reused. This
value can be assigned randomly or in a more systematic form.

Example 6.3. Let V. = {9,4,6,1,8,2} be the values of the search space and the
vicinity N(x) = {4, 8, 9} with value x = 6, considering the vicinity with a radius
of 3. Then, assume the tabu list of the entire domain as 7'(V) = {0, 0, 5, 0, 4, 0}.
Suppose that ¢ € [0, 5] and when some element is selected, the tabu tenure is 5
and all the other components of T" are decreased by one. (a) What is the permissible
vicinity N*(6)? (b) What was the last value selected before x = 6? (c) If we are
looking around x = 4 what could be the entire vicinity N (4)?

Solution. (a) Looking at the tabu set, we know that all O values mean that elements
in that position are permitted. So, the possible elements that can be picked up are
N*(V) = {9, 4, 1, 2}. But, we are searching in the vicinity N(6) = {4, 8, 9}.
Then, N*(6) = N*(V)NN(6) = {9, 4, 1, 2}N{4, 8, 9}. Finally, the permissible
set around the element 6 is: N *(6) = {4, 9}.

(b) As we can see, the current element is 6, then in the tabu list this element has
a value of + = 5. This matches with the procedure defined in the example. Actually,
in this way all other values were decreased by one. Therefore, if we are trying to look
before the current value, the tabu list must be 7' (V )vefore_6 = T (V)currenc + 1. In other
words, T'(V)before.6 = {d, d, 0, d, 5, d}, where d is a possible value different
or equal to zero because we are uncertain. Actually, if 5 is the tenure assigned for
the current selection, then the current selection before the 6-element is 8. This is the
reason why in the N *(6), this element does not appear.

(c) Obviously, we just need to look around 4 with a radius of 3. So, the vicinity
is N4) = {1, 2, 6}.

With the quality property, some moves can be reinforced. For example, if some
element is selected, then the tabu tenure is fired and the element will be in the tabu
list. But, if the element has a high quality, then the element could be promoted to
a permissible value. This property of the short term memory is then useful in the
process of tabu search. O

6.6.2.2 Long Term Memory

In the same way as the short term, this type of memory is used in order to obtain
more attributes for the search procedure. However, long term memory is focused on
storing information about the past history.

The first implementation is the frequency dimension of memory. In other words,
we can address some data information (explicitly or attributively) and after some
iterations or movements, try to analyze the frequency with which this data has ap-
peared. In this way, there exists an array of elements named transition measure,
which counts the number of iterations that some element was modified. Another
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array linked with the frequency domain is the residence measure and it stores the
number of iterations that some element has taken part in the solution.

What is the main purpose of long term memory? It is easy to answer: frequency or
what remains the same, transition and residence are measures of how attractive some
element is to be included in the vicinity when the frequency is high. On the other
hand, if the frequency is low, the element related to that measure has to be removed
or placed in the tabu list. Then, long term memory is used to assign attributes to
elements in order to discard or accept those in the dynamic vicinity.

Example 6.4. Let V = {9,4,6, 1, 8,2} be the values of the search space. Suppose
that tr = {0, 2, 5, 2, 1, 4} is the transition array and r = {3, 1, 0, 0, 2, O} is
the residence array. (a) Have any of the elements in V ever been in the best solution
thus far? Which one? (b) How many iterations was the element 8§ taken into account
in the best solution thus far? (c) Can you know at which iteration the best solution
was found?

Solution. (a) Yes. There are three elements that have been in the best solution.
These elements are 9, 4 and 8 because its residence elements are distinct from zero.
In fact, element 9 has been in the solution three times, element 4 has been one time,
and element 8 has been two times.

(b) By the transition array we know that element 1 associated to element 8 refers
to the fact that this element has been in the best solution only one time. Element 6
has been five times in the best solution so far.

(c) Yes, we can know at which iteration the best solution was found. Suppose
that the current iteration is 7. The transition array updates if some element has been
in the best solution, but if the best solution is modified by the best solution so far,
obviously the transition array is initialized. Then, the maximum number of counts
that the current transition array has is 5. So, the best solution so far was found at
iteration fpese = ¢ — 5. O

6.6.2.3 Intensification and Diversification

In the introduction, we said that tabu search is a method that tries to find the best
solution in short periods of time without searching exhaustively. These characteris-
tics are offered in some way by the two types of memory described above and by
the two following procedures.

The first one is intensification. Suppose that we have a search space V', which
has n subspaces W;,Vi = 1,...,n, and that these have no intersection and the two
characteristics apply: (W; N W;) = 0,¥i # jand W; C V. So, V = {W; U
W;),Vi # j. This means that the search space can be divided by n regions. We
can think of one of these subspaces as in the vicinity of an element of V', so-called
W; = N(x;). We also know that tabu search looks in this vicinity in order to find the
local optimum x;. Then, this local optimum is stored in the memory and the process
is repeated in another vicinity N(x;). Suppose now that the algorithm recorded k

local optimum elements {x1, ..., x’/-, ..., X }. The intensification is thus the process
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in which the algorithm visits the vicinity of each of the local optimum elements
recorded by means, and looks at the vicinity N(x}),Vi =1,... k.

In other words, the intensification procedure is a subroutine of the tabu search
that tries to find a better solution in the vicinity of the best solutions (local optimum
values) so far. This means that it intensifies the exploration.

The second procedure is diversification. Let us suppose that we have the same
environment as in the intensification procedure. The question is how the algorithm
explores distinct places in order to record local optimum values. Diversification
is the answer. When some stop searching threshold is fired, the local optimum is
recorded and then the algorithm accepts the option to search in a different region,
because there may be some other solutions (either better or just as good as the local
optimum found so far) placed in other regions.

To make this possible, the algorithm records local optimum values and evaluates
permissible movements in the entire region. Therefore, the tabu list has the local
optimum elements found so far and all the vicinities of these values. In this way,
more local optimum elements mean fewer regions in which other solutions could be
found. Or, in the same way, the set of permissible movements comes to be small.

As we can see, the intensification procedure explores regions in which good so-
lutions were found and the diversification procedure permits the exploration into
unknown regions. Thus, the algorithm searches as much as it can and restricts all
movements when possible to use less time.

6.6.2.4 Tabu Search Algorithm

Tabu search has several modifications in order to get the best solution as fast as
possible. In this way, we explain first the general methodology and then we explain
in more detail the modification known as reactive tabu search.

6.6.2.5 Simple Tabu Search

First, we need a function that describes the solution. This function is constructed
by elements. If the solution has n-dimension size, then the function must have n
elements of the form f = {fi,..., fu}. We refer to the function configuration at
time ¢ with f® = { fl(t), e n(t)}. Then, we aggregate some terminology shown
in Table 6.2.

We associate to each of the elements in f (t), a permissible move referred to as
Wi, Vi = 1,...,n; they are well defined in a set of permissible moves A. All other
moves are known as tabu elements displayed in the set 7. Actually, the complement
of Ais .

First, all movements are permitted, so A is all the search space and ¢ = @. A con-
figuration is selected randomly. In this case, we need a criterion in order to either
intensify the search or to diversify it. The criterion selected here is to know if the
current configuration has been selected before. If the frequency of this configura-
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Table 6.2 Terminology for simple tabu search

179

Symbol Description

Iteration counter

Configuration at time ¢

Set of elementary moves

Last iteration when the move was applied

Last iteration when the configuration was used
Number of times the configuration has been visited during the search
Best configuration known

Best energy known

Set of admissible moves

Chaotic moves

Subset of A

Set of tabu moves, non-admissible moves
Prohibition period

N LARESeREEST

t= 0 and select f©@randomly
Set, f,= f¥and E= E(f®)
Let, 7=

v

Intensification Criterion for determining the Diversification
search procedure

v

Select any i € 4

Determine a vicinity
v

S(i)
Selectall i € 4 Clear all memory data
Modify function to ¥
Calculate E(f ")
Selectalli e §

Modify function to f
Calculate E(f )

Select the local optimum:
I E, N
Movel=uet

v

If E, < E then,
Ex :El’ f/:fl

Y

t=1+1

fer=f,
Decide if it stops

v

Fig. 6.18 Flow chart of the simple tabu search
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tion is high, then the algorithm needs to diversify it; otherwise, the intensification
procedure is defined as the following.
Using the current configuration, we need to evaluate all possible elements. An

energy function E( fi(t)), Vi =1,...,|S]|is evaluated for each of the configurations,
done by selecting all the possible moves (|S| means the cardinality or the number
of elements in the subset of permissible moves S C A). The criterion is to select
the configuration that minimizes the energy function. After that, this configuration
is labeled as the best configuration f, and the energy is stored in a variable named
the best energy known so far E},.

If we need a diversification procedure, the algorithm erases all memory data and
makes a searching process in a distinct region of the search space, which tries to find
a local optimum f,. The best energy and the best configuration is then actualized
with this process.

Finally, the iteration time is incremented and the procedure is done until some
stop criterion is defined. The algorithm is presented in Algorithm 6.4 and shown in
Fig. 6.18.

6.6.2.6 Reactive Tabu Search

In the simple tabu search, the tabu list and permissible moves sets are a function of
the last configuration found (local optimum). This is not a good method for finding
the solution faster because the tabu list must have more elements than the permissi-
ble set when ¢ is large. That is, permissible moves are not enough to be in the current
vicinity, and the local optimum might not be the best one in that place.

An alternative to modifying the tabu tenure 7 is to use the reactive tabu search,
which is a modification that gives the possibility of intensifying the search in re-
gions, depending on the historical values of energy in that place. Thus, this method
reacts with respect to the intensification/diversification procedures.

In this way, the simple tabu search will be the basis of the process. Then, an-
other subroutine is defined in order to satisfy two main principles: (1) select the
intensification/diversification procedure, and (2) modify the tabu tenure.

As in Table 6.1, @ is a function that returns the number of iterations that some
configuration has been visited during the searching procedure, the value is @(f).
When the configuration f® is used, the function IT stores the actual iteration at
which this configuration is evaluated, so the value recorded is IT(f®) = t. The
last function is used to store the last iteration at which the current configuration was
evaluated. Suppose, that the configuration f = fj and this configuration are evalu-
ated at time ¢ = fy. Then, five iterations later the same configuration f t+3) = £,
is evaluated. The last iteration at which this configuration appeared in the searching
process is then IT(f 19 = f3) = 1,.

Finally, this configuration comes from some move p;. As with the configuration,
the moves have an associated function L that returns the last iteration at which
the move was applied in a local optimum and the value recorded is L(u;)® =
t. Let us suppose the same environment as the previous example. Suppose now
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Algorithm 6.4 Simple tabu search

Step 1 Let the iteration time be ¢ = 0.
Initialize the current configuration f () randomly. The best configuration
is assigned as f;, = f© and the best energy as E, = E(f©).
Actually, the set of permissible moves A is all the search space and the
tabu setis T = 0.

Step 2 Select a criterion to decide between intensification (go to Step 3) or diver-
sification (go to Step 6) procedures.
Step 3 With the current configuration £ ) do a modification in one element, the

so-called f[m running i for all permissible elements of A. If it is permitted,

evaluate the energy E ( fl-(”).

Step 4 Select the local optimum configuration temporarily known as f; and its
proper energy E;. Then, the move u that produces f; must be stored in
the tabu list .

Step 5 Compare the temporary energy with respect to the best energy. If the tem-
porary energy is less than the best energy, then Ey, = E; and fi, = f;.
Go to Step 10.

Step 6 Select another region in the permissible moves and store the elements
in a subset S C A. Clear memory data used to select the intensifica-
tion/diversification process.

Step 7 With the current configuration f ) do a modification in one element, so-
called fl-(t) running i for all permissible elements of S. If it is permitted,

evaluate the energy E ( fl-(”).

Step 8 Select the local optimum configuration temporarily known as f; and its
proper energy E;. Then, the move u that produces f; must be stored in
the tabu list T by a period of T iterations.

Step 9 Compare the temporary energy with respect to the best energy. If the tem-
porary energy is less than the best energy, then Ey, = E; and fi, = f;.
Go to Step 10.

Step 10 Increment the iteration = ¢ + 1. Set £ ¢+ = f; and go to Step 2 until
the stop criterion is fired, then STOP.

that the configuration O(ZU) comes from the modification wy (%), then we record

L(j1x)®) = ). Seven iterations later, some other configuration fl(t” *7 comes from
the move py, too. Then, if we need to know the last iteration at which this move was
in some configuration in the searching procedure, we need to apply L ()7 =
to.

Now, the subroutine does the next few steps. At first, we evaluate the last iter-
ation I1(f®) at which the current configuration was evaluated and this value is
assigned to a variable R. Of course, the number of iterations that this configuration
has been in the searching process is updated by the rule @(f) = @(f) + 1. If the
configuration is greater than some value, i.e., REP_MAX, then we store this con-
figuration in a set of configurations named chaos C by the rule C = C U f. With
this method we are able to know if we have to make a diversification procedure be-
cause the number of elements in the set C must be less than some value of threshold
CHAOS. Otherwise, the algorithm can be in the intensification stage.
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On the other hand, we need to be sure that the number of tabu elements is less
than the number of permissible values. This action can be derived with the condition
R < 2(L — 1), which means that the number of the last iteration at which the
configuration was in the searching procedure is at least double the number of the last
iteration at which the move was in the process. Then, we assume that the variable R
can be averaged with the equation R, = 0.1 R + 0.9 R,.. This value controls the
tabu tenure as shown in the Algorithm 6.5. Figure 6.19 shows the flow chart of the
reactive tabu search.

t=0,t=0,T(=1,0=L=0
select f@randomly and f=f, E,= E(f)
Let,t=C=[1=0
SetR =1, REP_MAX, CHAOS, INC, DEC

............................................ }
Yes Was the function No
; visited before?
R=TI(f"),
D(f0) = () + 1 Yy
* R<2(L-1)?
No Yes:
(f®) > REP_MAX? R,=0IR+09R 1, =t
T(t+1) = min {7(7), INC, L-2}
No:
Yes
y No [ =t @ (f9) =1
C=Cufo (t-t)>R, ?
|C|>CHAOS ? Yes:
T(++1) = max {T(r), DEC, 1}, t,=1t
Yes ¢ No: nothing
CcC=0
Intensification <
l Diversification Selectalli € 4
i i o
Selectany i € 4 Mogl]?f z;nctonn t(g f;
Determine a vicinity alculate E(f,")
S(i) v
l Select the local optimum:
Selectalli € § > I E
clectallr e > Movel=pu et
Modify function to f
Calculate E(f ") v
If E, < E, then,
Ez = EI’ fl: fl
v
t=1t+1
f (1) = f[
Decide if it stops

Fig. 6.19 Flow chart of the reactive tabu search
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Algorithm 6.5 Reactive tabu search

Step 1 Let the iteration time be ¢ = 0.

Initialize the current configuration f () randomly. The best configuration
is assigned as f;, = f© and the best energy as E, = E(f©).
Actually, the set of permissible moves A is all the search space, and the
tabu set is T = @. Let the set of chaotic configurations be C = 0.

Set the tabu tenure as T'(¢) = 1 and the last iteration at that point changed
tot7 =0.Set[I=@Pand ® =L = 0.

Initialize the variable R, = 1,

REP MAX, CHAOS, INC, DEC.

Step 2 Evaluate T7(f ). If there is any value set the rules: R = IT(f®) and
D(f D) =D(f D)+ 1. Else, go to Step 5.

Step 3 If &(f D) > REP_MAX then update the chaotic set C = C U £,
Else, go to Step 5.

Step 4 If |C| > CHAOS, then reinitialize C = @ and make a diversification
procedure as done in Step 10. Else, go to Step 5.

Step 5 If R < 2(L — 1) then do the following:

Rye = 0.1R 4+ 0.9R,.

T+ 1) =min{T(@)-INC,L -2}
tr =1t.

Else, follow the next instructions:

II( f(t)) =t

S(fD) =1

Go to Step 6.

Step 6 Evaluate (f — #7) > Ry.. If this is true then update the value of the tabu
tenure T(¢ + 1) = max{T'(¢) - DE C, 1} and record the iteration of this
modification 7 = ¢t and make an intensification procedure as done in
Step 7.

Step 7 With the current configuration £ ) do a modification in one element, so-
called f[(t) running i for all permissible elements of A. If it is permitted,
evaluate the energy E ( fl-(”).

Step 8 Select the local optimum configuration temporarily known as f; and its
proper energy E;. Then, the move u that produces f; must be stored in
the tabu list .

Step 9 Compare the temporary energy with respect to the best energy. If the tem-
porary energy is less than the best energy, then Ey, = E; and fi, = f;.
Go to Step 14.

Step 10 Select another region in the permissible moves and store the elements
in a subset S C A. Clear memory data used to select the intensifica-
tion/diversification process.

Step 11 With the current configuration f ) do a modification in one element, the
so-called fl-(t) running i for all permissible elements of S. If it is permit-
ted, evaluate the energy E ( fl-(t)).

Step 12 Select the local optimum configuration temporarily known as f; and its
proper energy E;. Then, the move & that produces f; must be stored in
the tabu list T by a period of T iterations.

Step 13 Compare the temporary energy with respect to the best energy. If tempo-
rary energy is less than the best energy, then E, = E; and f, = f;.

Go to Step 14.
Step 14 Increment the iteration = ¢ + 1. Set £ ¢+ = f; and go to Step 2 until

the stop criterion is fired, then STOP.
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Table 6.3 Data for Example 6.3, tabu search for fuzzy associated matrices

Left Center Right Motor 1 Motor 2
1 1 1 20 1
1 1 151 1 20
1 1 226 1 17
1 226 151 1 12
1 226 226 1 15
76 1 1 20 1
76 1 76 20 1
76 1 151 1 15
76 226 151 1 15
76 226 226 1 12
151 1 1 20 1
151 1 76 20 1
151 1 151 12 12
151 226 151 1 1
151 226 226 1 4
226 1 1 20 1
226 151 226 3 1
226 226 1 10 1
226 226 151 1 1
226 226 226 1 1

Example 6.5. Tabu search can be implemented in order to optimize the fuzzy asso-
ciated matrix or the membership functions in fuzzy controllers. Take for example an
application on robotics in which we have to optimize four input membership func-
tions. These functions may represent the distance between the robot and some object
measured by an ultrasonic sensor. We have three ultrasonic sensors measuring three
distinct regions in front of the robot.

These sensors are labeled as left, center and right. Assume that the membership
functions have the same shape for all sensors. In addition, we have experimental
results in which we find values of each measure at the first three columns and the
last two columns are the desired values for moving the wheels. Data is shown in
Table 6.3. Use the reactive tabu search to find a good solution for the membership
functions. A prototyping of those functions are shown in Fig. 6.20.

Solution. This example is implemented in LabVIEW following the path ICTL >
Optimizers > RTS > Example RTS.vi. The desired inputs and outputs of the
fuzzy controller are already programmed inside this VI. Then, it is not necessary to
copy Table 6.2. O

We first explain the front panel. On the top-left, are the control variables. Max
Iters is the number of times that the algorithm will be reproduced. If this number is
exceeded, then the algorithm stops. The next one is Execution Delay that refers to
a timer delay between iterations. It is just here if we want to visualize the process
slowly. The Cts cluster has the INC value that controls the increment of the tabu
tenure when the algorithm is evaluating if it needs an intensification or diversifica-
tion process.
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Fig. 6.20 Prototyping of membership functions

DEC is the decrement value of the tabu tenure in the same way as the last one.
CHS is the chaos value. When the cardinality of the chaos set is greater than this
value, then the algorithm makes a diversification process. Finally, the number of
repetitions REP is known as REP_MAX in the algorithm previously described.

The graphs on the left side of the window are Current f and Best f. The first one
shows the actual position of the membership functions. The other one shows the
best configuration of the membership functions found thus far. In the middle of the
window is all the information used to analyze the procedure. This cluster is called
the Information Cluster and it is divided into three clusters.

The first is Arr In that shows the function f in Boolean terms (zeros and ones).
Pi, Phi andA are the sets of the time at which some function was evaluated, the
number of times that the function was evaluated, and the permissible moves, re-
spectively. The Cts is the modified values of the control values.

Finally, on the right side of the window the Error graph history is shown. In
this case, we have a function that determines the square of the error measured by
the difference of the desired outputs and the actual outputs that the fuzzy controller
returns with the actual configuration of the membership functions.

We will explain the basic steps of the reactive tabu search. First, we initialize
a characterization of the configuration with 32 bits selected randomly. Of course,
these bits can only have values of 0 or 1 (Fig. 6.21a). Then, we evaluate this config-
uration and obtain the best error thus far (Fig. 6.21b). Actually, all other values and
sets explained at Step I are initialized, as seen in Fig. 6.22.

Steps 2—6 in Algorithm 6.5 are known as the reaction procedure. These steps are
implemented in LabVIEW in the path ICTL >> Optimizers > RTS >> rts_mbr.vi.
This VI receives three clusters: Var In is the cluster of the initialization values in
Fig. 6.22 on the left side, Arr In is the cluster of the initialization values in Fig. 6.22
on the right side and Cts In is the cluster with the control values (INC, DEC, CHS,
REP). Finally, it needs the configuration f. In addition, this VI returns all modified
values in clusters as Arr Out and Var Out, and it determines if it needs a diversifying
search procedure by the pin Diversify? This can be seen in Fig. 6.23.

If a diversification procedure is selected, it is implemented in the VI located
at ICTL > Optimizers > RTS > rts_dvsm.vi. The input connections are two
clusters (Arr In and Var In explained before) and the actual configuration is known
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Fig. 6.21a,b Reactive tabu search implementation. a Initialization of the configuration with 32
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Fig. 6.22 Initialization of the parameters in tabu search

as current f. The output connectors are the two clusters updated (Var Out and Arr
Out) and the new configuration by the pin new f. Figure 6.24 shows this VI.

Fig. 6.23 Determining con-
nections of the reaction pro-
cedure

Fig. 6.24 Determining con-
nections of the diversifying
procedure

Fig. 6.25 Block diagram of
the intensification procedure

var
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If there is no diversifying procedure, then the intensification procedure is run-
ning. This can be implemented with two VIs following the path ICTL >> Optimizers
> RTS > rts_updt-A.vi. This VI updates the permissible moves with the infor-
mation of Arr In and Var In. Then, Arr Out is the update of the values inside this
cluster, but in fact the A set updating is the main purpose of this VI. The function
then looks for a configuration with this permissible moves and then evaluates the
best move with the VI at the path ICTL >> Optimizers > RTS > rts_bm.vi. This
VI takes Arr In, Var In and the actual configuration current f. This returns Var Out

o .

Fig. 6.26 Block diagram of the RTS example
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Fig. 6.27 Front panel of the RTS example. This is the initialization step
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Fig. 6.29 Front panel of the RTS example at 300 iterations

(as a modification procedure of these values), Energy that is the energy evaluated at
the current configuration, and the new f configuration. This block diagram can be
viewed in Fig. 6.25.

After either intensification or diversification procedures, we have to choose if the
configuration is better than the best configuration found thus far. It is easy to com-
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Fig. 6.30 Front panel of the RTS example at 500 iterations

pare the best configuration up to this point that comes from the Var In cluster and
the actual configuration coming from any of the searching procedures. Figure 6.26
shows a global visualization of the block diagram of this example.

Continuing with the example, let /NC = 1.1, DEC = 09, CHS = 3
and REP = 3. The maximum number of iterations Max Iters = 1000 and
Execution Delay = 250. Finally, we can look at the behavior of this optimiza-
tion procedure in Fig. 6.26 (initialization) and Figs. 6.27-6.30. As we can see, at
around 80 iterations, the best solution was found.
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