Chapter 5
Genetic Algorithms and Genetic Programming

5.1 Introduction

In this chapter we introduce powerful optimization techniques based on evolutionary
computation. The techniques mimic natural selection and the way genetics works.
Genetic algorithms were first proposed by J. Holland in the 1960s. Today, they are
mainly used as a search technique to find approximate solutions to different kinds
of problems. In intelligent control (IC) they are mostly used as an optimization
technique to find minimums or maximums of complex equations, or quasi-optimal
solutions in short periods of time.

N. Cramer later proposed genetic programming in 1985, which is another kind of
evolutionary computation algorithm with string bases in genetic algorithms (GA).
The difference basically is that in GA strings of bits representing chromosomes
are evolved, whereas in genetic programming the whole structure of a computer
program is evolved by the algorithm. Due to this structure, genetic programming
can manage problems that are harder to manipulate by GAs. Genetic programming
has being used in IC optimize the sets of rules on fuzzy and neuro-fuzzy controllers.

5.1.1 Evolutionary Computation

Evolutionary computation represents a powerful search and optimization paradigm.
The metaphor underlying evolutionary computation is a biological one, that of nat-
ural selection and genetics. A large variety of evolutionary computational models
have been proposed and studied. These models are usually referred to as evolution-
ary algorithms. Their main characteristic is the intensive use of randomness and
genetic-inspired operations to evolve a set of solutions.

Evolutionary algorithms involve selection, recombination, random variation and
competition of the individuals in a population of adequately represented potential
solutions. These candidate solutions to a certain problem are referred to as chro-
mosomes or individuals. Several kinds of representations exist such as bit string,

P. Ponce-Cruz, F. D. Ramirez-Figueroa, Intelligent Control Systems with LabVIEW™ 123
© Springer 2010

124 5 Genetic Algorithms and Genetic Programming

real-component vectors, pairs of real-component vectors, matrices, trees, tree-like
hierarchies, parse trees, general graphs, and permutations.

In the 1950s and 1960s several computer scientists started to study evolutionary
systems with the idea that evolution could be applied to solve engineering problems.
The idea in all the systems was to evolve a population of candidates to solve prob-
lems, using operators inspired by natural genetic variations and natural selection.

In the 1960s, I. Rechenberg introduced evolution strategies that he used to opti-
mize real-valued parameters for several devices. This idea was further developed by
H.P. Schwefel in the 1970s. L. Fogel, A. Owens and M. Walsh in 1966 developed
evolutionary programming, a technique in which the functions to be optimized are
represented as a finite-state machine, which are evolved by randomly mutating their
state-transition diagrams and selecting the fittest. Evolutionary programming, evolu-
tion strategies and GAs form the backbone of the field of evolutionary computation.

GAs were invented by J. Holland in the 1960s at the University of Michigan. His
original intention was to understand the principles of adaptive systems. The goal
was not to design algorithms to solve specific problems, but rather to formally study
the phenomenon of adaptation as it occurs in nature and to develop ways in which
the mechanisms of natural adaptation might be ported to computer systems. In 1975
he presented GAs as an abstraction of biological evolution in the book Adaptation
in Natural and Artificial Systems.

Simple biological models based on the notion of survival of the best or fittest
were considered to design robust adaptive systems. Holland’s method evolves a pop-
ulation of candidate solutions. The chromosomes are binary strings and the search
operations are typically crossover, mutation, and (very seldom) inversion. Chromo-
somes are evaluated by using a fitness function.

In recent years there has been an increase in interaction among researchers study-
ing different methods and the boundaries between them have broken down to some
extent. Today the term GA may be very far from Holland’s original concept.

5.2 Industrial Applications

GAs have been used to optimize several industrial processes and applications. F.
Wang and others designed and optimized the power stage of an industrial motor
drive using GAs at the Virginia Polytechnic Institute and State University at Virginia
in 2006 [1]. They analyzed the major blocks of the power electronics that drive an
industrial motor and created an optimization program that uses a GA engine. This
can be used as verification and practicing tools for engineers.

D.-H. Cho presented a paper in 1999 [2] that used a niching GA to design an
induction motor for electric vehicles. Sometimes a motor created to be of the highest
efficiency will perform at a lower level because there are several factors that were not
considered when it was designed, like ease of manufacture, maintenance, reliability,
among others. Cho managed to find an alternative method to optimize the design of
induction motors.

5.3 Biological Terminology 125

GAs have also been used to create schedules in semiconductor manufacturing
systems. S. Cavalieri and others [3] proposed a method to increase the efficiency of
dispatching, which is incredibly complex. This technique was applied to a semicon-
ductor manufacture plant. The algorithm guarantees that the solution is obtained in
a time that is compatible with on-line scheduling. They claim to have increased the
efficiency by 70%.

More recently V. Colla and his team presented a paper [4] where they compare
traditional approaches, and GAs are used to optimize the parameters of the models.
These models are often designed from theoretical consideration and later adapted
to fit experimental data collected from the real application. From the results pre-
sented, the GA clearly outperforms the other optimization methods and fits better
with the complexity of the model. Moreover, it provides more flexibility, as it does
not require the computation of many quantities of the model.

5.3 Biological Terminology

All living organisms consist of cells that contain the same set of one or more chro-
mosomes serving as a blueprint. Chromosomes can be divided into genes, which are
functional blocks of DNA. The different options for genes are alleles. Each gene is
located at a particular locus (position) on the chromosome. Multiple chromosomes
and or the complete collection of genetic material are called the organism’s genome.
A genotype refers to the particular set of genes contained in a genome.

In GAs a chromosome refers to an individual in the population, which is often
encoded as a string or an array of bits. Most applications of GAs employ haploid
individuals, which are single-chromosome individuals.

5.3.1 Search Spaces and Fitness

The term “search space” refers to some collection of candidates to a problem and
some notion of “distance” between candidate solutions. GAs assume that the best
candidates from different regions of the search space can be combined via crossover,
to produce high-quality offspring of the parents. “Fitness landscape” is another im-
portant concept; evolution causes populations to move along landscapes in particular
ways and adaptation can be seen as the movement toward local peaks.

5.3.2 Encoding and Decoding

In a typical application of GAs the genetic characteristics are encoded into bits of
strings. The encoding is done to keep those characteristics in the environment. If
we want to optimize the function f(x) = x? with 0 < x < 32, the parameter of
the search space is x and is called the phenotype in an evolutionary algorithm. In

126 5 Genetic Algorithms and Genetic Programming

Table 5.1 Chromosome encoded information

Decimal number Binary encoded
5 00101
20 10100
7 01011

GAs the phenotypes are usually converted to genotypes with a coding procedure.
By knowing the range of x we can represent it with a suitable binary string. The
chromosome should contain information about the solution, also known as encoding
(Table 5.1).

Although each bit in the chromosome can represent a characteristic in the solu-
tion here we are only representing the numbers in a binary way. There are several
types of encoding, which depend heavily on the problem, for example, permutation
encoding can be used in ordering problems, whereas floating-point encoding is very
useful for numeric optimization.

5.4 Genetic Algorithm Stages

There are different forms of GAs, however it can be said that most methods labeled
as GAs have at least the following common elements: population of chromosomes,
selection, crossover and mutation (Fig. 5.1). Another element rarely used called
inversion is only vaguely used in newer methods. A common application of a GA
is the optimization of functions, where the goal is to find the global maximum or
minimum.

A GA [5] can be divided into four main stages:

* [Initialization. The initialization of the necessary elements to start the algorithm.

» Selection. This operation selects chromosomes in the population for reproduction
by means of evaluating them in the fitness function. The fitter the chromosome,
the more times it will be selected.

Mutation |»[=t+1]>Initialization [»(END)
A ¥
Crossover < Selection

Fig. 5.1 GA main stages

5.4 Genetic Algorithm Stages 127

* Crossover. Two individuals are selected and then a random point is selected and
the parents are cut, then their tails are crossed. Take as an example 100110 and
111001: the 3 position from left to right is selected, they are crossed, and the
offspring is 100001, 111110.

* Mutation. A gene, usually represented by a bit is randomly complemented in
a chromosome, the possibility of this happening is very low because the popula-
tion can fall into chaotic disorder.

These stages will be explained in more detail in the following sections.

5.4.1 Initialization

In this stage (shown in Fig. 5.2) the initial individuals are generated, and the con-
stants and functions are also initiated, as shown in Table 5.2.

Initialization

*Create Fitness Function
*Number of generations (g)
*Population size (m)
*Chromosome length (n)
*Mutation probability (PM)
*Crossover probability (PC)
*Define generational array (BT)

Y

=0
ki
]
. no
Mutation |~ {11+ <i<g
vy Yes
|
Selection
Fig. 5.2 GA initialization stage
Table 5.2 GA initialization parameters
Parameter Description
g The number of generations of the GA.
m Size of the population.
n The length of the string that represents each individual: s = {0, 1}". The
strings are binary and have a constant length.
PC The probability of crossing of 2 individuals.

PM The probability of mutation of every gen.

128 5 Genetic Algorithms and Genetic Programming

5.4.2 Selection

A careful selection of the individuals must be performed because the domination
of a single high-fit individual may sometimes mislead the search process. There are
several methods that will help avoid this problem, where individual effectiveness
plays a very negligible role in selection. There are several selection methods like
scaling transformation and rank-based, tournaments, and probabilistic procedures.

By scaling we mean that we can modify the fitness function values as required
to avoid the problems connected with proportional selection. It may be static or
dynamic; in the latter, the scaling mechanism is reconsidered for each generation.

Rank-based selection mechanisms are focused on the rank ordering of the fitness
of the individuals. The individuals in a population of » size are ranked according to
their suitability for search purposes. Ranking selection is natural for those situations
in which it is easier to assign subjective scores to the problem solutions rather than
to specify an exact objective function.

Tournament selection was proposed by Goldberg in 1991, and is a very popular
ranking method of performing selection. It implies that two or more individuals

Initialization

1 Selection

A

no .
Crossover i<m T

* x =random(0,1)
*k=1

[0

sum =———
m

2. fiby.0)

M0 | select bjr1= by J

*i=i+d

yes

» k=k+1

Fig. 5.3 GA selection stage

5.4 Genetic Algorithm Stages 129

compete for selection. The tournament may be done with or without reinsertion of
competing individuals into the original population.

Finally the roulette-wheel selection process is another popular method used as
selection stage, where the fittest individuals have a higher probability to be selected.
In this method individuals are assigned a probability to be selected, then a random
number is calculated and the probability of individuals is accumulated. Once that
value of the random number is reached, the individual presently used is the one that
is selected.

However, in order to perform selection it is necessary to introduce a measure of
the performance of individuals. By selection we aim to maximize the performance
of individuals. Figure 5.3 shows the diagram of this stage.

Fitness Function

As we already mentioned selection methods need a tool to measure the performance
of individuals. The search must concentrate on regions of the search space where
the best individuals are located. This concentration accomplishes the exploitation
of the best solutions already found, which is exactly the purpose of selection. For
selection purposes a performance value is associated with each individual in the
current population, and represents the fitness of the function.

A fitness function is usually used to measure explicitly the performance of chro-
mosomes, although in some cases the fitness can be measured only in an implicit
way, using information about the performance of systems. Chromosomes in a GA
take the form of bit strings; they can be seen as points in the search space. This
population is processed and updated by the GA, which is mainly driven by a fitness
function, a mathematical function, a problem or in general, a certain task where the
population has to be evaluated.

5.4.3 Crossover

In order to increase population diversity, other operators are used such as the
crossover operation. By perturbing and recombining the existent individuals, the
search operators allow the search process to explore the neighboring regions or to
reach further promising regions.

Crossover operations achieve the recombination of the selected individuals by
combining segments belonging to chromosomes corresponding to parents. Fig-
ure 5.4 shows a diagram of the crossover stage, which creates an information ex-
change between the parent chromosomes. Thus the descendent obtained will pos-
sess features from both parents.

The role of recombination is to act as an impetus to the search progress and
to ensure the exploration of the search space. Various crossover operations have
been proposed, and here we will explain the most employed variant used in binary
encoded frameworks: the one-point crossover. The crossover probability (CP) is

130 5 Genetic Algorithms and Genetic Programming

Crossover

]
|

Mutation

i=1 |~ Selection

yes

ran = random[0,1]

yes

* pos =random([1,...,n-1]
*k = pos +1

* aux = bj . [K]
*biri[K] =bisr ealk]
*bisre1 [k] =aux
*k=k+1

Fig. 5.4 GA crossover stage

compared with a random number between (0,1) and with this, it is determined if is
going to be crossover or not. When a crossover is made, the positions in which the
parents are going to be cut in a random position are then interchanged.

5.4.4 Mutation

In classical genetics, mutation is identified by an altered phenotype, and in molec-
ular genetics mutation refers to any alternation of a segment of DNA. Spontaneous
mutagenesis is normally not adaptive, and mutations normally do not provide a se-
lective advantage. Changes may destroy the genome structure, where other changes
tend to create and integrate new functions.

5.4 Genetic Algorithm Stages 131

Changes representing a selective disadvantage occur considerably more often and
can affect life processes in various degrees. The extreme situation leads to lethality.
Often the alteration of the chromosome remains without immediate consequences
on life processes. This kind of mutations is called natural or silent. Neutral muta-
tions however may play an evolutionary role.

Within the framework of binary encoding mutation is considered the second most
important genetic operator. The effect of this operator is to change a single position
(gene) within a chromosome. If it were not for mutation, other individuals could not

Initialization
t=t+1
|
Mutation
| i=1|—<«{ Crossover
yes
k¥1
v no
A
yes

ran=random (0,1)

no
yes

* invert b; 1 [k]

*k=k+1

L]

Fig. 5.5 Mutation stage

132 5 Genetic Algorithms and Genetic Programming

be generated through other mechanisms, which are then introduced to the popula-
tion. The mutation operator assures that a full range of individuals is available to the
search.

One of the simplest executions of mutation is when the mutation probability (MP)
is compared with a random number between (0,1). If it is going to be a mutation,
a randomly chosen bit of the string is inverted. A diagram showing this stage is in
Fig. 5.5.

Example 5.1. This is an example of a GA using the Intelligent Control Toolkit for
LabVIEW (ICTL). A base algorithm created for searching the maximum and min-
imum in the f(x) = x? function will be explained. This program is included as

& e
= = |\ [E

|L_\‘_- <] Optimizers :
Sl
i o
EXAMPLE_GA... Generic Meth.

Initial
Conditions -
for the GA

Indicators

Variable
Conditions

Fig. 5.7 GA-X squared front panel

5.4 Genetic Algorithm Stages 133

Table 5.3 Initial conditions and variables for the x> example

Variable Description

Generations The number of repetitions of the algorithm.

Population Size The number of individuals per generation, for example 6.

n bits In this case it is how many bits will be in the binary string that represents the

individuals, for example, if the individuals will be numbers from 0 to 31, then
n = 5, because 25 — 1 = 31.

Cross P The crossover probability if CP = 1 every individual selected will get com-
bined with other selected individuals.

Mut P Is the mutation probability and should be small; 0.001 is a good value.

Min/Max Allows us to select if we want to minimize or maximize the function.

a toolkit example but we will explain the development in detail. Figure 5.6 shows
where the GA methods can be found in the ICTL. First we build the front panel
where we will have the controls and indicators of all the variables.

Figure 5.7 shows an image of how to build the front panel. The initial condi-
tions and variables that we will include are shown in Table 5.3. Now we need to
start building the code of our program. First, we need to generate an initial popula-
tion before we start the algorithm, therefore we create a series of random numbers,
depending on the initial conditions. The code is shown in Fig. 5.8.

Basically, a series of random numbers are created, where the top is given by the
number of bits used, and later they are transformed into chains of bits. We also
need a decoding function and a fitness function. The decoding will convert bits to
numbers again and the fitness function will raise those numbers to the second power,
as shown in Fig. 5.9.

Now we need to perform selection, crossover, and mutation, the basic operations
of a GA. As shown in Fig. 5.10, we find the GA methods in the path Optimizers
> GAs Palette > Generic Methods. Our decoded and fitness-evaluated individuals
will be fed to the selection method, later we will start a loop where the selected

- n
i i]

Fig. 5.8 Creation and coding

of initial population [create and code the initial population |
N m L
Fig. 5.9 Decoding and fitness

function

134 5 Genetic Algorithms and Genetic Programming

Fig. 5.10 GA methods in-

cluded in the ICTL [EeTi) GA e
z &
G- Mt Seloct | Sloet

ga_crossovervi ga_mutation.vi ga_selection-... ga_selection.vi

|

| |
! ==
9l G

= e

s | To0® g
b ||
[|

7

1. Initialization 2. Decaodification, fitness
of the GA calculation and selection 3. Crossover
and Mutation

Fig. 5.12 Complete block diagram of the GA-X squared example

individuals will be crossed over and mutated (Fig. 5.11). From this we also see
that we can perform operations in parallel, e. g., the mutation, thus allowing us to
increase the operation time of the program.

The complete code is found in Fig. 5.12. Now we can set the initial conditions
and run our program and see that after 100 generations the maximum of the function
f(x) = x% for 0 < x < 31 has been found; Fig. 5.13 shows some results. With this
simple but powerful example we can apply GAs to other applications; the key will
be in the coding and fitness function. O

5.5 Genetic Algorithms and Traditional Search Methods

There are at least three meanings of search in which we should be interested:

1. Search stored data. The problem to be solved here is to efficiently retrieve stored
information; an example can be search in computer memory. This can be applied
to enormous databases, which nowadays can be found in many forms on the

5.6 Applications of Genetic Algorithms 135

Fig. 5.13 GA-X squared]
showing some results Generations 2°n

8100 E

Popolation Sz Current Generation
o | C
‘nbi'ls Population
\fr)}s

Cross P

‘:)_Io.g
MutP
E}IU-GUI

Min,

=l

THTT]

Internet. For example, what is the best way to search for hotels in a particular
city? Binary search is one method for efficiently finding a desired record in
a database.

. Search paths and goals. This search form can be seen as the movements to go

from a desired initial state to a final state, like the shortest path in a maze.

. Search for solutions. This is a more general search form of the search for paths

and goals. This happens because a path through a search tree can be encoded
as a candidate solution. The idea is to efficiently find a solution to a problem in
a large space of candidate solutions. These are the most common problems to
which GAs are applied.

5.6 Applications of Genetic Algorithms

Even though the foundations of GAs are very simple, certain variations have been
used in a large number of scientific and engineering applications. Some of them are
given below:

Optimization. The optimization of mathematical functions, combinatorial and
numerical problems such as circuit layout and job-shop schedule.

* Automatic programming. Used to evolve computer programs, and to design com-

putational structures.

Machine learning. Classification and prediction tasks, such as weather or protein
structure. GAs have been used to evolve aspects of particular machine learning
systems such as the weights in neural networks, rules for learning classifier sys-
tems, sensors and robots.

Economics. Development of bidding strategies, model processes of innovation,
strategies, emergence of markets.

136 5 Genetic Algorithms and Genetic Programming

* Immune systems. The evolution of evolutionary time in multi-gene families, so-
matic mutation, natural immune systems.

* Ecology. Model ecological phenomena such as symbiosis, host-parasite co-
evolution, and resource flow.

* Evolution and learning. Used in the study of how individual learning and species
evolutions affect one another.

* Social systems. Used to study evolutionary aspects of social systems, like the
evolution of social behavior in insect colonies, and the evolution of cooperation
and communication in multi-agent systems.

5.7 Pros and Cons of Genetic Algorithms

There are numerous advantages to using a GA, such as not depending on analyti-
cal knowledge, robustness, and intuitive operation. All of these characteristics have
made GAs strong candidates in search and optimization problems. However, there
are also several disadvantages to using GAs that have made researchers turn to other
search techniques, such as:

* Probabilistic.

» Expensive in computational resources.

* Prone to premature convergence.

* Difficult to encode a problem in the form of a chromosome.

There are several alternatives that have been found, especially due to the difficulty
of encoding the problems. Messy GAs and genetic programming are two techniques
that are based on the framework of GAs.

5.8 Selecting Genetic Algorithm Methods

The representation, recombination, mutation, and selection are complex balances
between exploitation and exploration. It is a matter of precision to maintain this
balance, thus there are several key factors that can help us correctly choose the
encoding technique.

Encoding. This is a key issue with most evolutionary algorithms, whether to
choose a suitable encoding scheme, which could be binary, floating-point, or gram-
matical. On the one hand, Holland supports the idea of a genome with a smaller
number of alleles with long strings, rather than a numeric scheme with a larger num-
ber of alleles but short (floating-point) strings. On the other hand, M. Mitchell points
out that for real-world applications it is more natural to use decimals or symbolic
representation [6]. The conclusion from Z. Michalewicz about this is that a floating-
point scheme is faster, more consistent between runs, and can provide a higher pre-
cision for large-domain applications.

5.9 Messy Genetic Algorithm 137

Operator choice. There are a few general guidelines to follow when choosing an
operator. Many advantages can be obtained from a two-point crossover operation, by
reducing the disruption of schemas with a long length. The choice of the mutation
depends heavily on the application, a practical alternative is an adaptive mutation
parameterized within the genome.

Elitism. Another common technique in many GAs is to retain the best candidate
in each generation and pass it to the next; this can give a significant boost to the
performance of the GA, although with the risk of reducing diversity.

5.9 Messy Genetic Algorithm

There are several approaches with regard to the modification of certain aspects of
GAs, with the aim of improving their performance. Messy GAs were proposed by
D. Goldberg and co-workers in 1989, where they used variable-length binary en-
codings of chromosomes.

Each gene of the chromosome is represented by a pair (position and value), en-
suring the adaptation of the algorithm to a larger variety of situations. Moreover
this representation prevents the problems generated by recombination. A messy GA
adapts its representation to the problem being solved.

The operators used in this algorithm are generalizations of standard genetic op-
erators that use binary encoding. The main disadvantage against fixed-length repre-
sentations is that they lack dynamic variability; thus, by limiting the string length
the search space is limited. To overcome this, variable-length representations allow
us to deal with partial information or to use contradictory information.

Messy encoding. Chromosome length is variable and genes may be arranged in
any order (messy), where the last characteristic is the one that gives the algorithm
its name. Each gene is represented by a pair of numbers. The first component is
a natural number that encodes the gene location; the second number represents the
gene value, which usually is either O or 1.

Example 5.2. Considering the binary encoded chromosome x = (01101), which
can be transformed into the following sequence: x’ = ((1,0), (2, 1), (3, 1), (4,0),
(5, 1)). The meaning of this chromosome does not change if the pairs are arranged in
a different order, for instance the following chromosome: x” = ((2, 1), (3, 1), (1, 0),
4,0), (5, 1)). O

Incompleteness and ambiguity. As chromosomes have a flexible structure, we may
consider missing one or more genes, which is called an underspecified string. This
allows us to encode and deal with incomplete information. The opposite situation is
overspecification, which occurs when a string contains multiple pairs for the same
gene creating redundant or even contradictory genes.

To deal with overspecification, certain rules can be applied such as the tie-
breaking mechanism that essentially says “first-come, first served,” so that only the
first of the repeated genes is taken into consideration. To deal with underspecified
strings several possibilities exist, like looking for the complete chromosome that is

138 5 Genetic Algorithms and Genetic Programming

OO0 i\ OCCHN
L[. =/ [T oeee

Fig. 5.14 Cut and splice operation

closest to the underspecified string. Another way is to try to approximate the absent
value or to identify the probability p that the missing gene has the value of 1; if
the value is O then the probability will be (1 — p). Another way to do it is by using
competitive templates, considered as locally optimal strings.

Crossover. The classical n-point crossover is replaced by the cut-and-splice opera-
tor, which acts very similarly to a one-point crossover. Two parents are cut in two
and the resulting substrings are recombined. The position for the crossover is cho-
sen with a probability that is uniform to the string length. The difference is that the
crossover points are independent from the two parents.

The splice operation concatenates the substrings obtained through cutting, where
Fig. 5.14 shows this operation. There is no restriction regarding the way in which
substrings are combined. The tie-breaking rule along with competitive templates is
used to handle overspecified and underspecified strings.

Messy GAs have provided results for difficult problems. In the case of deceptive
functions, messy GAs perform better than simple GAs, usually finding the best solu-
tion. An important computational problem within messy algorithms is the dimension
of the search space, i. e., since large chromosomes may appear, the dimension could
be very high. The search space size is a polynomial. In parallel implementations, the
search time is reduced and it is logarithmic with respect to the number of variables of
the search space.

5.10 Optimization of Fuzzy Systems Using Genetic Algorithms

A brief explanation on how GAs can be applied to optimize the performance of
a fuzzy controller is given in this section.

5.10.1 Coding Whole Fuzzy Partitions

There is always knowledge of the desired configuration, for example, the number
of clusters and the labels for each one, where a natural order of the fuzzy sets can
be established. By including the proper constraints, the initial conditions can be
preserved while reducing the number of degrees of freedom in order to maintain the
interpretability of a fuzzy system. Thus, we can encode a whole fuzzy partition as
shown in (5.1), where o is the upper boundary for the size of the offset for example
o0 = (b —a)/2. Figure 5.15 shows the coded triangular membership function.

Co 10,0 (x1) = Ca jo,9] (x2 = x1) ==+ Cpy 0,8 (Xan—2 — X2N—3) . 5.1

5.10 Optimization of Fuzzy Systems Using Genetic Algorithms 139

A

0 Membership Value 1

\/

a=Xy X4 X5 Xon-2 X3 XoN-3

Fig. 5.15 Coded triangular membership functions

5.10.2 Standard Fitness Functions

We define the fitness function as a function that will minimize the distance between
a set of representative inputs and outputs, and the values computed by the next
function, where the sum of quadratic errors is calculated using (5.2):

k
@)= (F@x)—y). (5.2)

i=1

Here, F (v, x;) is the function that computes the output with respect to the parameter
vector, (x;, y;) is the sample data given as a list of couples, 1 <i < k, and k is the
number of samples.

5.10.3 Coding Rule Bases

So far we have explained in which way membership functions can be encoded to
be optimized with GAs, but if we find a proper method to encode rule bases into
a string of fixed lengths we can apply the previously explained GAs to optimize
them without modification.

We must assume that the number of linguistic values of all linguistic variables
are finite. A rule base is represented as a list for one input variable, as a matrix for
two variables, and as a tensor in the case of more than two variables. This rule can
be represented by a matrix as shown in Fig. 5.16. Consider the rule base of the form

140 5 Genetic Algorithms and Genetic Programming

Fig. 5.16 Example decision
table B1...Bn2

A1| Ci1...Cine

An1l CN1.1. . .CN1N2

in (5.3):
IF x; is A; AND x, is B; THEN C; ; . (5.3)

We can now assign indices to the linguistic values associated with elements of the
set {Ci, j}. We can later write the decision table as an integer string, and convert
those numbers to bits, where the previously mentioned GAs are perfectly suitable
to optimize the rule base.

5.11 An Application of the ICTL for the Optimization
of a Navigation System for Mobile Robots

A navigation system based on Bluetooth technology was designed for controlling
a quadruped robot in unknown environments which has ultrasonic sensor as inputs
for avoiding static and dynamic obstacles. The robot Zil I is controled by a fuzzy
logic controller Sugeno Type, which is shown in Fig. 2.24 and Zil I is shown in
Fig. 5.17, the form of the membership functions for the inputs are triangular and the

Fig. 5.17 Robot Zil I was controlled by a Fuzzy Logic Controller adjusted using Genetic Algo-
rithmsC

5.11 ICTL for the Optimization of a Navigation System for Mobile Robots 141

Fig. 5.18 Triangular mem- Very Close Close Far Very Far

bership functions

Degree]

[Membership

50 100 150 200 250[cm]

initial membership function’s domain and shape are shown in Fig. 5.18. The block
diagram of the fuzzy controller is shown in Sect. 5.11 ICTL for the Optimization of
a Navigation System for Mobile Robots.

The navigation system is based on a Takagi—Sugeno controller, which is shown in
Fig. 5.17. The form of the membership function is triangular, and the initial limits are
shown in Fig. 5.18. The block diagram of the fuzzy controller is shown in Fig. 5.19.
Based on the scheme of optimization of fuzzy systems using GAs, the fuzzy con-
troller was optimized. Some initial individuals where created using expert knowledge
and others were randomly created. In Fig. 5.20 we see the block diagram of the GA.

Fig. 5.19 Block diagram of the Takagi—Sugeno controller

3o

Fig. 5.20 Block diagram of the GA

142 5 Genetic Algorithms and Genetic Programming

Inspecting the block diagram we find that the GA created previously, used for the
optimization of the f(x) = x? function, remains the same. The things that change
here are the coding and decoding functions, as well as the fitness function. There
is also some code used to store the best individuals. After running the program for
a while, the form of the membership functions will vary from our initial guess, as
shown in Fig. 5.21, and it will find an optimized solution that will fit the constrains
set by the human expert knowledge and the requirements for the application. The
solutions are shown in Fig. 5.22.

Stop__ Error Graph Fittest | F
- 84.2727

Pp Size Fittest |
:J 10 a a a
Cross P {-120.7 | J|-251.4 J|-108.1
EJ 0.9 b b b

MutP j284.34 N13113 Y136.76
.’-J} 0.001 c c c

ResetE

-

j247.07 W17s.27 Jf140.07

a8 a 3
|-218.03 J|-120.59 §-154.75
b b b
j197.84 Wim.os 25272
(4 ic (4
i8.7371 | lue.e3 | We2.663
a a a
|-70.931 J|-297.81 }-254.18
b b b
§112.92 | Jj185.53 N285.67
c i c

2051 H139.78 H231.85

1 1 1 1 l 1 1 LB
75 100 125 150 175 200 225 255
Centimeters

Fig. 5.21 Results shown by the GA after some generations

Very Close Close Far Very Far
i 3

[Membership
Degree] -

06 34 159 274 [cm]

Fig. 5.22 Optimized membership functions

5.12 Genetic Programming Background 143

5.12 Genetic Programming Background

Evolution is mostly determined by natural selection, which can be described as in-
dividuals competing for all kinds of resources in the environment. The better the
individuals, the more likely they will propagate their genetic material. Asexual re-
production creates individuals identical to their parents; this is done by the encoding
of genetic information. Sexual reproduction produces offspring that contain a com-
bination of information from each parent, and is achieved by combining and re-
ordering the chromosomes of both parents.

Evolutionary algorithms have been applied to many problems such as optimiza-
tion, machine learning, operation research, bioinformatics and social systems, among
many others. Most of the time the mathematical function that describes the system is
not known and the parameters that are known are found through simulation.

Genetic programming, evolutionary programming, evolution strategies and GAs
are usually grouped under the term evolutionary computation, because they all share
the same base of simulating the evolution of individual structures. This process de-
pends on the way that performance is perceived by the individual structures as de-
fined by the problem.

Genetic programming deals with the problem of automatic programming; the
structures that are being evolved are computers programs. The process of problem
solving is regarded as a search in the space of computer programs, where genetic
programming provides a method for searching the fittest program with respect to
a problem. Genetic programming may be considered a form of program discovery.

5.12.1 Genetic Programming Definition

Genetic programming is a technique to automatically create a working computer
program from a high-level statement of the problem. This is achieved by genetically
breeding a population of computer programs using the principles of Darwinian nat-
ural selection and biologically inspired operators. It is the extension of evolutionary
learning into the space of computer programs.

The individual population members are not fixed-length character strings that
encode possible solutions of the problem, they are programs that when executed
are the candidate solutions to the problem. These programs are represented as trees.
There are other important components of the algorithm called terminal and function
sets. The terminal set consists of variables and constants. The function sets are the
connectors and operators that relate the constants and variables.

Individuals evolved from genetic programming are program structures of vari-
able sizes. A user-defined language with appropriate operators, variables, and con-
stants may be defined for the particular problem to be solved. This way programs
will be generated with an appropriate syntax and the program search space limited
to feasible solutions.

144 5 Genetic Algorithms and Genetic Programming

5.12.2 Historical Background

A.M. Turing in 1950, considered the fact that genetic or evolutionary searches could
automatically develop intelligent computer programs, like chess player programs
and other general purpose intelligent machines. Later in 1980, Smith proposed
a classifier system that could find good poker playing strategies using variable-sized
strings that could represent the strategies. In 1985, Cramer considered a tree struc-
ture as a program representation in a genotype. The method uses tree structures and
subtree crossover in the evolutionary process.

Genetic programming was first proposed by Cramer in 1985 [7], and further devel-
oped by Koza [8], as an alternative to fixed-length evolutionary algorithms by intro-
ducing trees of different shapes and sizes. The symbols used to create these structures
are more varied than zeros and ones used in GAs. The individuals are represented by
genotype/phenotype forms, which make them non-linear. They are more like protein
molecules in their complex and unique hierarchical representation. Although parse
trees are capable of exhibiting a great variety of functionalities, they are highly con-
strained due to the form of tree, the branches are the ones that are modified.

5.13 Industrial Applications

Some interesting applications of genetic programming in the industry are mentioned
here. In 2006 J.U. Dolinsky and others [9] presented a paper with an application of
genetic programming to the calibration of industrial robots. They state that most of
the proposed methods address the calibration problem by establishing models fol-
lowed by indirect and often ill-conditioned numeric parameter identification. They
proposed an inverse static kinematic calibration technique based on genetic pro-
gramming, used to establish and identify model parameters.

Another application is the use of genetic programming for drug discovery in
the pharmaceutical industry [10]. W.B. Langdon and S.K. Barrett employed genetic
programming while working in conjunction with GlaxoSmithKline (GSK). They
were invited to predict biochemical activity using their favorite machine learning
technique. Their genetic programming was the best of 12 tested, which marginally
improved the existing system of GSK.

5.14 Advantages of Evolutionary Algorithms

Probably the greatest advantage of evolutionary algorithms is their ability to address
problems for which there are no human experts. Although human expertise is to
be used when available, it has proven less than adequate for automating problem-
solving routines.

A primary advantage of this kind of algorithm is that they are simple to represent.
They can be modeled as a difference equation x [t 4+ 1] = s (r (x [¢])), which can

5.15 Genetic Programming Algorithm 145

be understood as: x [¢] is the population at time ¢ under the representation x, is the
random variation operator and s is the selection operator.

The representation does not affect the performance of the algorithm, in contrast
with other numerical techniques, which are biased on continuous values or con-
strained sets. They offer a framework to easily incorporate known knowledge of
the problem, which could yield in a more efficient exploration and response of the
search space.

Evolutionary algorithms can be combined with simple or complex traditional
optimization techniques. Most of the time the solution can be evaluated in paral-
lel, and only the selection must be processed serially. This is an advantage over
other optimization techniques like tabu search and simulated annealing. Evolution-
ary algorithms can be used to adapt solutions to changing circumstances, because
traditional methods are not robust to dynamic changes and often require a restart to
provide the solution.

5.15 Genetic Programming Algorithm

In 1992, J.R. Koza developed a variation of GAs that is able to automate the gener-
ation of computer programs [8]. Evolutionary algorithms, also known as evolution-
ary computing, are the general principles of natural evolution that can be applied
to completely artificial environments. GAs and genetic programming are types of
evolutionary computing.

Fig. 5.23 Tree representation
of arule

146 5 Genetic Algorithms and Genetic Programming

Genetic programming is a computing method, which provides a system with the
possibility of generating optimized programs or computer codes. In genetic pro-
gramming IF-THEN rules are coded into individuals, which often are represented
as trees. For example, a rule for a wheeled robot may be IF left is far AND center if
far AND right is close THEN turn left. This rule is represented as a tree in Fig. 5.23.

According to W. Banzhaf “genetic programming, shall include systems that con-
stitute or contain explicit references to programs (executable code) or to program-
ming language expressions.”

5.15.1 Length

In GAs the length of the chromosome is fixed, which can restrict the algorithm to
a non-optimal region of the problem in search space. Because of the tree represen-
tation, genetic programming can create chromosomes of almost any length.

5.16 Genetic Programming Stages

Genetic programming uses four steps to solve problems:

1. Generate an initial population of random compositions of functions and termi-
nals of the problem (computer programs).

2. Execute each program in the population and assign it a fitness value according
to how well it solves the problem.

3. Create a new population of computer programs:

a. Copy the best existing programs.
b. Create new programs by mutation.
c. Create new computer programs by crossover.

4. The best computer program that appeared in any generation, the best-so-far so-
lution, is designated the result of genetic programming [8].

Just like in GAs, in genetic programming the stages are initialization, selection,
crossover, and mutation.

5.16.1 Initialization

There are two methods for creating the initial population in a genetic programming
system:

1. Full selects nodes from only the function set until a node is at a specified maxi-
mum depth.

2. Grow randomly selects nodes from the function and terminal set, which are
added to a new individual.

5.16 Genetic Programming Stages 147

5.16.2 Fitness

It could be the case that a function to be optimized is available, and we will just need
to program it. But for many problems it is not easy to define an objective function.
In such a case we may use a set of training examples and define the fitness as an
error-based function. These training examples should describe the behavior of the
system as a set of input/output relations.

Considering a training set of k examples we may have (x;,y;), i = 1,...,k,
where x; is the input of the i th training sample and y; is the corresponding output.
The set should be sufficiently large to provide a basis for evaluating programs over
a number of different significant situations.

The fitness functionmay also be defined as the total sum of squared errors; ithas the
property of decreasing the importance of small deviations from the target outputs. If
we define the erroras e; = (y; — 0,-)2 where y; is the desired output and o; the actual
output, then the fitness will be defined as Zf; 1€k = Zf.;l (yi — 0i)*. The fitness
function may also be scaled, thus allowing amplification of certain differences.

5.16.3 Selection

Selection operators within genetic programming are not specific; the problem under
consideration imposes a particular choice. The choice of the most appropriate selec-
tion operator is one of the most difficult problems, because generally this choice is
problem-dependent. However, the most-used method for selecting individuals in ge-
netic programming is tournament selection, because it does not require a centralized
fitness comparison between all individuals. The best individuals of the generation
are selected.

5.16.4 Crossover

The form of the recombination operators depends on the representation of individu-
als, but we will restrict ourselves to tree-structured representations. An elegant and
rather straightforward recombination operator acting on two parents swaps a subtree
of one parent with a subtree of the other parent.

There is a method proposed by H. Iba and H. Garis to detect regularities in
the tree program structure and to use them as guidance for the crossover opera-
tor. The method assigns a performance value to a subtree, which is used to select
the crossover points. Thus, the crossover operator learns to choose good sites for
CrOSSOVer.

Simple crossover operation. In a random position two trees interchange their
branches, but it should be in a way such that syntactic correctness is maintained.
Each offspring individual will pass to the selection process of the next generation.
In Fig. 5.24 a representation of a crossover is shown.

148 5 Genetic Algorithms and Genetic Programming

75‘;' Crossover position

Parents

Childs

Fig. 5.24 Tree representation of a genetic programming crossover stage

5.16.5 Mutation

There are several mutation techniques proposed for genetic programming. An ex-
ample is the mutation of tree-structured programs; here the mutation is applied to
a single program tree to generate an offspring. If our program is linearly repre-

5.17 Variations of Genetic Programming 149

73 Mutation node

Fig. 5.25 Tree representation of a genetic programming mutation stage

sented, then the mutation operator selects an instruction from the individual chosen
for mutation. Then, this selected instruction is randomly perturbed, or is changed to
another instruction randomly chosen from a pool of instructions.

The usual strategy is to complete the offspring population with a crossover op-
eration. On this kind of population the mutation is applied with a specific mutation
probability. A different strategy considers a separate application of crossover and
mutation. In this case it seems to be emphasized with respect to the previous, stan-
dard technology.

In genetic programming, the generated individuals are selected with a very low
probability of being mutated. When an individual is mutated, one of its nodes is se-
lected randomly and then the current subtree at that point is replaced with a new ran-
domly generated subtree. It is important to state that just as in biological mutation,
in genetic programming mutation the genotype may not change but the resulting
genotype could be completely different (Fig. 5.25).

5.17 Variations of Genetic Programming

Several variations of genetic programming can be found in the literature. Some of
them are linear genetic programming, a variant that acts on linear genomes rather
than trees; gene expression programming, where the genotype (a linear chromo-
some) and the phenotype (expression trees) are different entities that form an indi-
visible whole; multi-expression programming encodes several solutions into a chro-
mosome; Cartesian genetic programming uses a network of nodes (indexed graph)
to achieve an input-to-output mapping; and traceless genetic programming, which
does not store explicitly the evolved computer programs, and is useful when the
relation between the input and output is not important.

150 5 Genetic Algorithms and Genetic Programming

5.18 Genetic Programming in Data Modeling

The main purpose of evolutionary algorithms is to imitate natural selection and evo-
lution, allowing the most efficient individuals to reproduce more often. Genetic pro-
gramming is very similar to GAs; the main difference is that genetic programming
uses different coding of potential solutions. By using knowledge from great amounts
of data collected from different places, we can discover patterns and represent them
in a way that humans can understand them.

By mathematical modeling we understand that certain equations fit some nu-
merical data. It is used in a variety of scientific problems, where the theoretical
foundations are not enough to give answers to experiments. Sometimes using tra-
ditional methods is not enough because these methods assume a specific form of
model. Genetic programming allows the search for a good model in a different and
more “intelligent” way, and can be used to solve highly complex, non-linear, chaotic
problems.

5.19 Genetic Programming Using the ICTL

Here we will continue with the optimization example of fuzzy systems. As we have
mentioned previously, a Takagi—Sugeno is the core controller of a navigation system
that maneuvers the movements of a quadruped robot in order to avoid obstacles. We
have previously optimized the form of the membership functions using GAs and
now we will evolve the form of the rules and modify their operators. The rules for
the controllers used in the quadruped robot have the form of (5.4):

IF Leftis ALi Conn Central is ACi Conn Right is ARi THEN SLeft, SRight ,
(5.4)

where ALi = ACi = ARi are the number of fuzzifying membership functions for
the inputs, in this case they are the same, and Conn is the operation to be performed.
There are four options: (1) min, (2) max, (3) product, and (4) sum. SLeft, SRight are
the speeds used to control the movements of the robot.

Genetic programming will be applied using the following convention to code-
decode the individuals:

* 3 bits that will help us determine if the set is complemented or not. A bi-
dimensional array must be generated with the same form of the CM-A of the
input-combinator-generator.vi that is used to evaluate the different sets of the
possible rule combinations. The first dimension contains the number of rules, the
second the number of inputs to the system.

* 2 bits are used for the premise evaluation. The premises of the next connection
operation are used: (0) min, (1) max, (2) product, and (3) sum.

» 10 bits are used to obtain the outputs of the rule, 5 for each output to obtain
a constant between 0 and 31.

5.19 Genetic Programming Using the ICTL

Table 5.4 Individual rule coding for genetic programming ICTL example

151

Three bits Two bits 10 bits for rule output
1S, IS NOT Conn
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[3Ey
B e
Icn
o] G, |
= = M |2
AN Fuzzylogic Math NewoFuzzy
’E‘ T
k <~ Optimizers i
Optimizers genetic_programming
E‘ vow]ni 44 gen:z!i:_:mgmmu
FCM GA's GP's paletteMeny
fan | =T frn i
e ‘ O™
RTS Example GP.vi Generic Meth, |

Fig. 5.26 Localization of genetic programming methods on the ICTL

GP_Crossove...

paletteMenu
[T [EE]
P-Ca P e

GP_Mutation.vi

The rule in bits is shown in Table 5.4. As shown in Fig. 5.26, the methods for genetic
programming are found at Optimizers > GPs >> Generic Methods. An individual
contains 27 of these rules; the initial_population.vi initializes a population with
random individuals. The code is shown in Fig. 5.27. Fixed individuals may be added
based on human expert knowledge.

Fig. 5.27 Block diagram for
the initialization of random

individuals

N
Rand1
T \j\ ETF]

>

>

Fig. 5.28 Block diagram of fitness function

[

152 5 Genetic Algorithms and Genetic Programming

1
']..- e [. 1.Controls
4o 0 Ptest ind Brror Curment Ind Brvor S *
ror " |I° [e in E° 3 2.Graphical display of
. o— .n S B— the fitness of
ore | [1:3 458 individuals
(. - l'im M4 3.Numerical displays
tane = e 4. Coded fittest
60 T T e T e TRl < individual found so far
p— frochn 4 5.Decoded fittest
e I individual found so far
E : 2=
HE : (m
T : b
t . o :
S s wrsro NI 33) O |

Fig. 5.29 Front panel of the genetic programming example

—_

e

redus Mren

— [=

1. Initialization of population

2. Decodification and calculation of fitness
3. Selection, Crossover, Mutation

4. Selection of the fittest

Fig. 5.30 Block diagram of the genetic programming example

The fitness function (Figs. 5.28-5.30) compares a series of desired inputs and
outputs with the corresponding performance of the controller, calculating the quadra-
tic errors difference with each point, summing them and dividing by the number of
evaluated points to obtain the fitness value for a given individual.

The selection function executes the tournament variation by randomly selecting
a desired number of individuals and selecting the two fittest. This process is repeated
until the same number of initial individuals is obtained.

References 153

Table 5.5 Controlled variables in the genetic programming example

Variable Description

Pop Size The number of individuals in the algorithm.

IinT The number of individuals randomly taken for the tournament selection.
Cr Prob The probability of crossing [0, 1].

Mt Prob The probability of mutation for each bit [0, 1].

The crossover executes a one-stage interchange of tails, by taking two individ-
uals from the mating pool, and depending on the possibility of crossing, the two
individuals will or will not perform the crossover again. This process is repeated
until the same number of initial individuals is obtained.

The mutation process executes a bit-to-bit operation on every one of the rules of
each individual, and depending on the probability of mutation the bit will or will not
change. During the execution of this algorithm, the individual with the best fitness
is always stored to ensure that this information is never lost. Table 5.5 shows the
variables to be controlled.

References

1. Wang F, et al. (2006) Design optimization of industrial motor drive power stage using ge-
netic algorithms. Proceedings of CES/IEEE 5th I nternational Power Electronics and Motion
Control Conference (IPEMC), 1-5 Aug 2006, vol 1, pp 14-16

2. Cho D-H, et al. (2001) Induction motor design of electric vehicle using a niching genetic
algorithm. IEEE Trans Ind Appl USA 37(4):994-999

3. Cavalieri S (1999) A genetic algorithm for job-shop scheduling in a semiconductor manufac-
turing system. Proceedings of the 25th Annual Conference of the IEEE on Industrial Electron-
ics Society IECON) 1999, Italy, 29 Nov to 3 Dec 1999, vol 2, pp 957-961

4. Colla 'V, etal. (1998) Model parameter optimization for an industrial application: a comparison

between traditional and genetic algorithms. Proceedings of the IEEE 2nd UKSIM European
Symposium on Computer Modeling and Simulation, 8-10 Sept 2008, pp 34-39
Haupt RL, Haupt SE (1998) Practical genetic algorithms. Wiley-Interscience, New York
Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge, MA
7. Cramer NL (1985) A representation for the adaptive generation of simple sequential pro-
grams. In: Grefenstette JJ (ed) Proceedings of the First International Conference on Genetic
Algorithms and Their Applications. Erlbaum, Mahwah, NJ

8. Koza JR (1992) Genetic programming: on the programming of computers by means of natural
selection. MIT Press, Cambridge, MA

9. Dolinsky JU, et al. (2007) Application of genetic programming to the calibrating of industrial

robots. ScienceDirect Comput Ind 58(3):255-264

10. Langdon WB, Buxton BF (2003) The application of genetic programming for drug discovery

in the pharmaceutical industry. EPSRC RIAS project with GlaxoSmithKline. London, UK,
September 2003

SN

154 5 Genetic Algorithms and Genetic Programming
Futher Reading

Dumitrescu D, et al. (2000) Evolutionary computation. CRC, Boca Raton, FL
Ghanea-Hercock R (2003) Applied evolutionary algorithms in Java. Springer, Berlin Heidelberg

New York
Nedjah N, et al. (2006) Genetic systems programming theory and experiences. Springer, Berlin

Heidelberg New York
Reeves CR, Rowe JE (2004) Genetic algorithms principles and perspectives: A guide to GA theory.

Kluwer, Dordrecht

