
Chapter 3
Artificial Neural Networks

3.1 Introduction

The human brain is like an information processing machine. Information can be
seen as signals coming from senses, which then runs through the nervous system.
The brain consists of around 100 to 500 billion neurons. These neurons form clusters
and networks. Depending on their targets, neurons can be organized hierarchically
or layered.

In this chapter we present the basic model of the neuron in order to understand
how neural networks work. Then, we offer the classification of these models by their
structures and their learning procedure. Finally, we describe several neural models
with their respective learning procedures. Some examples are given throughout the
chapter.

Biologically, we can find two types of cell groups in the nervous system: the glial
and nervous cells. The nervous cells, also called neurons, are organized in a func-
tional syncytium way. This is a complex distribution, which can be imagined as
a computer network or a telephone system network. Neurons communicate through
an area called a synapse. This region is a contact point of two neurons.

The main components of the neurons are the axon and the dendrite. Each neuron
has only one axon, which is divided into multiple exits on a later stage. The number
of dendrites may vary and each of them is an extension of the neuron’s body, which
increases the number of entries of information collection. The axon is the only exit
point of the neuron and can be up to 120 mm long.

In a simplified way, a neuron functions in a way where none, one or many elec-
trical impulses are received through its dendrites from axons from other neurons.
Those electrical impulses are added in order to have a final potential. This potential
must exceed a certain level to have the neuron generate an electrical impulse on its
axon. If the level required is not met, then the axon of that neuron does not fire its
axon.

In other words, neurons can be divided into dendrites, which are channels of in-
put signals, a core cell that processes all these signals, and axons that transmit output

P. Ponce-Cruz, F. D. Ramirez-Figueroa, Intelligent Control Systems with LabVIEW™ 47
© Springer 2010

48 3 Artificial Neural Networks

Fig. 3.1 Schematic drawing
of a biological neuron

signals of the processed information from dendrites. Figure 3.1 shows a schematic
drawing of a neuron.

Why would we want to look inside neurons? The human brain processes infor-
mation and can react from distinct stimuli. Moreover, the brain can generalize this
information to act when new situations are presented. If we are looking inside neu-
rons, we are in a sense searching the notion of how the human brain learns and
generalizes information.

At this point, neurons can be modeled as follows. Dendrites are connected to
some axons from other neurons, but some links are reinforced when typical actions
occur. However, links are not very strong when these channels are not used. There-
fore, input signals are weighted by this reinforcement (positively or negatively).
All these signals are then summarized and the core cell processes that information.
This process is modeled mathematically by an activation function. Finally, the re-
sult is transmitted by axons and the output signal of the neuron goes to other cells.
Figure 3.2 shows this neural model.

The activation function is the characterization of the neurons’ activities when in-
put signals stimulate them. Then, the activation function can be any kind of function
that describes the neural processes. However, the most common are sigmoidal func-

Fig. 3.2 Neural model

3.1 Introduction 49

Fig. 3.3a–c Graphs of typical activation functions. a Sigmoidal function: fs.x/ D 2
ex C1 � 1.

b Hyperbolic tangent function: ftanh.x/D tanh.x/. c Linear function: flinear.x/D x

tion, linear function, and hyperbolic tangent function. Figure 3.3 shows the graphical
form of these functions.

These functions can be implemented in LabVIEW with the Intelligent Control
Toolkit in the following way. First, open the ICTL and select the ANN (artificial
neural network) section. We can find all the possibilities in ANN as seen in Figs. 3.4
and 3.5. The activation functions are in ICTL 	 ANN 	 Backpropagation 	 NN

Fig. 3.4 Accessing ANNs library in the ICTL

50 3 Artificial Neural Networks

Fig. 3.5 ANNs library in
ICTL

Fig. 3.6 Block diagram of the Sigmoidal function

Methods 	 activationFunction.vi. For instance, we want to plot the sigmoidal
function. Then, we can create a VI like that in Fig. 3.6.

At first, we have a rampVector.vi that creates an array of elements with values
initialized at �5 and runs with a stepsize of 0.1 through to 5. The activation function
VI must be a real-valued matrix. This is the reason why the vector is transformed
into a matrix. Also, the output of this VI is a matrix. Then, we need to get all values
in the first column. Finally, the array in the interval Œ�5; 5� is plotted against values
f .x/ for all x 2 Œ�5; 5�.

The graph resulting from this process is seen in Fig. 3.3. If we want to plot
the other function, the only thing we need to do is change the label Sigmoidal to
Hyperbolic Tangent in order to plot the hyperbolic tangent function, or User Defined
if we need a linear function. Figure 3.7 shows these labels in the block diagram.

Example 3.1. Let X D f0:4; �0:5; 0:2; �0:7g be the input vector and W D f0:1; 0:6;

0:2; 0:3g be the weight vector. Suppose a sigmoidal activation function is the pro-
cessing of the core cell. (a) What is the value of the output signal? (b) What is the
value of the output signal if we change the activation function in (3.1), known as
symmetrical hard limiting?

f .s/ D
� �1 s � 0

1 s > 0
(3.1)

Fig. 3.7 Labels in the activa-
tion function VI

3.1 Introduction 51

Fig. 3.8 Calculations of the output signal

Solution. (a) We need to calculate the inner product of the vector X and W . Then,
the real-value is evaluated in the sigmoidal activation function.

y D fsigmoidal

X

i

wi xi D .0:4/.0:1/ C .�0:5/.0:6/ C .0:2/.0:2/ C .�0:7/.0:3/

D � 0:43

!

D �0:21 (3.2)

This operation can be implemented in LabVIEW as follows. First, we need the NN
(neural network) VI located in the path ICTL 	 ANNs 	 Backpropagation 	 NN
Methods 	 neuralNetwork.vi. Then, we create three real-valued matrices as seen
in Fig. 3.8. The block diagram is shown in Fig. 3.9. In view of this block diagram, we
need some parameters that will be explained later. At the moment, we are interested
in connecting the X-matrix in the inputs connector and W-matrix in the weights
connector. The label for the activation function is Sigmoidal in this example but can
be any other label treated before. The condition 1 in the L � 1 connector comes
from the fact that we are mapping a neural network with four inputs to one output.
Then, the number of layers L is 2 and by the condition L � 1 we get the number 1
in the blue square. The 1D array f4; 1g specifies the number of neurons per layer,
the input layer (four) and the output layer (one). At the globalOutputs the y-matrix
is connected.

From the previous block diagram of Fig. 3.9 mixed with the block diagram of
Fig. 3.6, the connections in Fig. 3.10 give the graph of the sigmoidal function evalu-
ated at �0.43 pictured in Fig. 3.11. Note the connection comes from the neuralNet-

Fig. 3.9 Block diagram of
Example 3.1

52 3 Artificial Neural Networks

Fig. 3.10 Block diagram for plotting the graph in Fig. 3.11

Fig. 3.11 The value �0.43
evaluated at a Sigmoidal
function

work.vi at the sumOut pin. Actually, this value is the inner product or the sum of the
linear combination between X and W . This real value is then evaluated at the acti-
vation function. Therefore, this is the x-coordinate of the activation function and the
y-coordinate is the globalOutput. Of course, these two out-connectors are in matrix
form. We need to extract the first value at the position .0; 0/ in these matrices. This
is the reason we use the matrix-to-array transformation and the index array nodes.
The last block is an initialize array that creates a 1D array of m elements (sizing
from any vector of the sigmoidal block diagram plot) with the value �0.43 for the
sumOut connection and the value �0.21 for the globalOutput link. Finally, we cre-
ate an array of clusters to plot the activation function in the interval Œ�5; 5� and the
actual value of that function.

(b) The inner product is the same as the previous one, �0.43. Then, the activation
function is evaluated when this value is fired. So, the output value becomes �1. This
is represented in the graph in Fig. 3.12. The activation function for the symmetric
hard limiting can be accessed in the path ICTL 	 ANNs 	 Perceptron 	 Trans-

3.1 Introduction 53

Fig. 3.12 The value �0.43
evaluated at the symmetrical
hard limiting activation func-
tion

Fig. 3.13 Block diagram of the plot in Fig. 3.12

fer F. 	 signum.vi. The block diagram of Fig. 3.13 shows the next explanation. In
this diagram, we see the activation function below the NN VI. It consists of the array
in the interval Œ�5; 5� and inside the for-loop is the symmetric hard limiting func-
tion. Of course, the decision outside the neuralNetwork.vi comes from the sumOut
and evaluates this value in a symmetric hard limiting case. ut
Neurons communicate between themselves and form a neural network. If we use
the mathematical neural model, then we can create an ANN. The basic idea behind
ANNs is to simulate the behavior of the human brain in order to define an artificial
computation and solve several problems. The concept of an ANN introduces a sim-
ple form of biological neurons and their interactions, passing information through
the links. That information is essentially transformed in a computational way by
mathematical models and algorithms.

Neural networks have the following properties:

1. Able to learn data collection;
2. Able to generalize information;
3. Able to recognize patterns;

54 3 Artificial Neural Networks

4. Filtering signals;
5. Classifying data;
6. Is a massively parallel distributed processor;
7. Predicting and approximating functions;
8. Universal approximators.

Considering their properties and applications, ANNs can be classified as: supervised
networks, unsupervised networks, competitive or self-organizing networks, and re-
current networks.

As seen above, ANNs are used to generalize information, but first need to be
trained. Training is the process where neural models find the weights of each neuron.
There are several methods of training like the backpropagation algorithm used in
feed-forward networks. The training procedure is actually derived from the need to
minimize errors.

For example, if we are trying to find the weights in a supervised network. Then, we
have to have at least some input and output data samples. With this data, by different
methods of training, ANNs measure the error between the actual output of the neural
network and the desired output. The minimization of error is the target of every train-
ing procedure. If it can be found (the minimum error) then the weights that produce
this minimization are the optimal weights that enable the trained neural network to
be ready for use. Some applications in which ANNs have been used are (general and
detailed information found in [1–14]):
Analysis in forest industry. This application was developed by O. Simula, J. Vesanto,
P. Vasara and R.R. Helminen in Finland. The core of the problem is to cluster the
pulp and paper mills of the world in order to determine how these resources are
valued in the market. In other words, executives want to know the competitiveness
of their packages coming from the forest industry. This clustering was solved with
a Kohonen network system analysis.
Detection of aircraft in synthetic aperture radar (SAR) images. This application in-
volves real-time systems and image recognition in a vision field. The main idea is
to detect aircrafts in images known as SAR and in this case they are color aerial
photographs. A multi-layer neural network perceptron was used to determine the
contrast and correlation parameters in the image, to improve background discrimi-
nation and register the RGB bands in the images. This application was developed by
A. Filippidis, L.C. Jain and N.M. Martin from Australia. They use a fuzzy reasoning
in order to benefit more from the advantages of artificial intelligence techniques. In
this case, neural networks were used in order to design the inside of the fuzzy con-
trollers.
Fingerprint classification. In Turkey, U. Halici, A. Erol and G. Ongun developed
a fingerprint classification with neural networks. This approach was designed in
1999 and the idea was to recognize fingerprints. This is a typical application using
ANNs. Some people use multi-layer neural networks and others, as in this case, use
self-organizing maps. Scheduling communication systems. In the Institute of Infor-
matics and Telecommunications in Italy, S. Cavalieri and O. Mirabella developed
a multi-layer neural network system to optimize a scheduling in real-time commu-
nication systems.

3.2 Artificial Neural Network Classification 55

Controlling engine generators. In 2004, S. Weifeng and T. Tianhao developed a con-
troller for a marine diesel engine generator [2]. The purpose was to implement
a controller that could modify its parameters to encourage the generator with op-
timal behavior. They used neural networks and a typical PID controller structure for
this application.

3.2 Artificial Neural Network Classification

Neural models are used in several problems, but there are typically five main prob-
lems in which ANNs are accepted (Table 3.1). In addition to biological neurons,
ANNs have different structures depending on the task that they are trying to solve.
On one hand, neural models have different structures and then, those can be clas-
sified in the two categories below. Figure 3.14 summarizes the classification of the
ANN by their structures and training procedures.
Feed-forward networks. These neural models use the input signals that flow only in
the direction of the output signals. Single and multi-layer neural networks are typical
examples of that structure. Output signals are consequences of the input signals and
the weights involved.
Feed-back networks. This structure is similar to the last one but some neurons have
loop signals, that is, some of the output signals come back to the same neuron or neu-
rons placed before the actual one. Output signals are the result of the non-transient
response of the neurons excited by input signals.

On the other hand, neural models are classified by their learning procedure. There
are three fundamental types of models, as described in the following:

1. Supervised networks. When we have some data collection that we really know,
then we can train a neural network based on this data. Input and output signals
are imposed and the weights of the structure can be found.

Table 3.1 Main tasks that ANNs solve

Task Description

Function approximation Linear and non-linear functions can be approximated by neural net-
works. Then, these are used as fitting functions.

Classification 1. Data classification. Neural networks assign data to a specific class
or subset defined. Useful for finding patterns.

2. Signal classification. Time series data is classified into subsets or
classes. Useful for identifying objects.

Unsupervised clustering Specifies order in data. Creates clusters of data in unknown classes.
Forecasting Neural networks are used to predict the next values of a time series.
Control systems Function approximation, classification, unsupervised clustering and

forecasting are characteristics that control systems uses. Then, ANNs
are used in modeling and analyzing control systems.

56 3 Artificial Neural Networks

Fig. 3.14a–e Classification of ANNs. a Feed-forward network. b Feed-back network. c Supervised
network. d Unsupervised network. e Competitive or self-organizing network

2. Unsupervised networks. In contrast, when we do not have any information, this
type of neural model is used to find patterns in the input space in order to train
it. An example of this neural model is the Hebbian network.

3. Competitive or self-organizing networks. In addition to unsupervised networks,
no information is used to train the structure. However, in this case, neurons fight
for a dedicated response by specific input data from the input space. Kohonen
maps are a typical example.

3.3 Artificial Neural Networks

The human brain adapts its neurons in order to solve the problem presented. In
these terms, neural networks shape different architectures or arrays of their neu-
rons. For different problems, there are different structures or models. In this section,
we explain the basis of several models such as the perceptron, multi-layer neural
networks, trigonometric neural networks, Hebbian networks, Kohonen maps and
Bayesian networks. It will be useful to introduce their training methods as well.

3.3 Artificial Neural Networks 57

3.3.1 Perceptron

Perceptron or threshold neuron is the simplest form of the biological neuron model-
ing. This kind of neuron has input signals and they are weighted. Then, the activa-
tion function decides and the output signal is offered. The main point of this type of
neuron is its activation function modeled as a threshold function like that in (3.3).
Perceptron is very useful to classify data. As an example, consider the data shown
in Table 3.2.

f .s/ D y D
�

0 s < 0
1 s � 0

(3.3)

We want to classify the input vector X D fx1; x2g as shown by the target y. This
example is very simple and simulates the AND operator. Suppose then that weights
are W D f1; 1g (so-called weight vector) and the activation function is like that
given in (3.3). The neural network used is a perceptron. What are the output values
for each sample of the input vector at this time?
Create a new VI. In this VI we need a real-value matrix for the input vector X and
two 1D arrays. One of these arrays is for the weight vector W and the other is for the
output signal y. Then, a for-loop is located in order to scan the X-matrix row by row.
Each row of the X-matrix with the weight vector is an inner product implemented
with the sum_weight_inputs.vi located at ICTL 	 ANNs 	 Perceptron 	 Neu-
ron Parts 	 sum_weight_inputs.vi. The xi connector is for the row vector of the
X-matrix, the wij is for the weight array and the bias pin in this moment gets the
value 0. The explanation of this parameter is given below. After that, the activation
function is evaluated at the sum of the linear combination.

We can find this activation function in the path ICTL 	 ANNs 	 Perceptron
	 Transfer F. 	 threshold.vi. The threshold connector is used to define in which
value the function is discontinued. Values above this threshold are 1 and values
below this one are 0. Finally, these values are stored in the output array. Figure 3.15
shows the block diagram and Fig. 3.16 shows the front panel.

Table 3.2 Data for perceptron example

x1 x2 y

0.2 0.2 0
0.2 0.8 0
0.8 0.2 0
0.8 0.8 1

Fig. 3.15 Block diagram for evaluating a perceptron

58 3 Artificial Neural Networks

Fig. 3.16 Calculations for the initial state of the perceptron learning procedure

Fig. 3.17 Example of the trained perceptron network emulating the AND operator

As we can see, the output signals do not coincide with the values that we want.
In the following, the training will be performed as a supervised network. Taking
the desired output value y and the actual output signal y0, the error function can be
determined as in (3.4):

E D y � y0 : (3.4)

The rule of updating the weights is in given as:

wnew D wold C �EX ; (3.5)

where wnew is the updated weight, wold is the actual weight, � is the learning rate,
a constant between 0 and 1 that is used to adjust how fast learning is, and X D
fx1; x2g for this example and in general X D fx1; x2; : : :; xng is the input vector.
This rule applies to every single weight participating in the neuron. Continuing with
the example for LabVIEW, assume the learning rate is � D 0:3, then the updating
weights are as in Fig. 3.17.

This example can be found in ICTL 	 ANNs 	 Perceptron 	 Example_Percep
tron.vi. At this moment we know the X-matrix or the 2D array, the desired Y -array.
The parameter etha is the learning rate, and UError is the error that we want to have
between the desired output signal and the current output for the perceptron. To draw

3.3 Artificial Neural Networks 59

the plot, the interval is ŒXinit; XEnd�. The weight array and the bias are selected,
initializing randomly. Finally, the Trained Parameters are the values found by the
learning procedure.

In the second block of Fig. 3.17, we find the test panel. In this panel we can eval-
uate any point X D fx1; x2g and see how the perceptron classifies it. The Boolean
LED is on only when a solution is found. Otherwise, it is off. The third panel in
Fig. 3.17 shows the graph for this example. The red line shows how the neural net-
work classifies points. Any point below this line is classified as 0 and all the other
values above this line are classified as 1.
About the bias. In the last example, the training of the perceptron has an additional
element called bias. This is an input coefficient that preserves the action of trans-
lating the red line displayed by the weights (it is the cross line that separates the
elements). If no bias were found at the neuron, the red line can only move around
the zero-point. Bias is used to translate this red line to another place that makes pos-
sible the classification of the elements in the input space. As with input signals, bias
has its own weight. Arbitrarily, the bias value is considered as one unit. Therefore,
bias in the previous example is interpreted as the weight of the unitary value.

This can be viewed in the 2D space. Suppose, X D fx1; x2g and W D fw1; w2g.
Then, the linear combination is done by:

y D f

X

i

xi wi C b

!

D f .x1w1 C x2w2 C b/ : (3.6)

Then,

f .s/ D
�

0 if � b > x1w1 C x2w2

1 if � b � x1w1 C x2w2
: (3.7)

Then, fw1; w2g form a basis of the output signal. By this fact, W is orthogonal to the
input vector X D fx1; x2g. Finally, if the inner product of these two vectors is zero
then we can know that the equations form a boundary line for the decision process.
In fact, the boundary line is:

x1w1 C x2w2 C b D 0 : (3.8)

Rearranging the elements, the equation becomes:

x1w1 C x2w2 D �b : (3.9)

Then, by linear algebra we know that the last equation is the expression of a plane,
with distance from the origin equal to �b. So, b is in fact the deterministic value that
translates the line boundary more closely or further away from the zero-point. The
angle for this line between the x-axis is determined by the vector W . In general, the
line boundary is plotted by:

x1w1 C : : : C xnwn D �b : (3.10)

We can make perceptron networks with the condition that neurons have an activation
function like that found in (3.3). By increasing the number of perceptron neurons,
a better classification of non-linear elements is done. In this case, neurons form

60 3 Artificial Neural Networks

Fig. 3.18 Representation of
a feed-forward multi-layer
neural network

layers. Each layer is connected to the next one if the network is feed-forward. In
another case, layers can be connected to their preceding or succeeding layers. The
first layer in known as the input layer, the last one is the output layer, where the
intermediate layers are called hidden layers (Fig. 3.18).

The algorithm for training a feed-forward perceptron neural network is presented
in the following:

Algorithm 3.1 Learning procedure of perceptron nets

Step 1 Determine a data collection of the input/output signals (xi , yi).
Generate random values of the weights wi .
Initialize the time t D 0.

Step 2 Evaluate perceptron with the inputs xi and obtain the output signals y0

i
.

Step 3 Calculate the error E with (3.4).
Step 4 If error E D 0 for every i then STOP.

Else, update weight values with (3.5), t t C 1 and go to Step 2.

3.3.2 Multi-layer Neural Network

This neural model is quite similar to the perceptron network. However, the activation
function is not a unit step. In this ANN, neurons have any number of activation
functions; the only restriction is that functions must be continuous in the entire
domain.

3.3.2.1 ADALINE

The easiest neural network is the adaptive linear neuron (ADALINE). This is the
first model that uses a linear activation function like f .s/ D s. In other words, the
inner product of the input and weight vectors is the output signal of the neuron.
More precisely, the function is as in (3.11):

y D f .s/ D s D w0 C
nX

iD1

wixi ; (3.11)

3.3 Artificial Neural Networks 61

where w0 is the bias weight. Thus, as with the previous networks, this neural net-
work needs to be trained. The training of this neural model is called the delta rule.
In this case, we assume one input x to a neuron. Thus, considering an ADALINE,
the error is measured as:

E D y � y0 D y � w1x : (3.12)

Looking for the square of the error, we might have

e D 1

2
.y � w1x/2 : (3.13)

Trying to minimize the error is the same as the derivative of the error with respect
to the weight, as shown in (3.14):

de

dw
D �Ex : (3.14)

Thus, this derivative tells us in which direction the error increases faster. The weight
change must then be proportional and negative to this derivative. Therefore, �w D
�Ex, where � is the learning rate. Extending the updating rule of the weights to
a multi-input neuron is show in (3.15):

wtC1
0 D wt

0 C �E

wtC1
i D wt

i C �Exi : (3.15)

A supervised ADALINE network is used if a threshold is placed at the output signal.
This kind of neural network is known as a linear multi-layer neural network without
saturation of the activation function.

3.3.2.2 General Neural Network

ADALINE is a linear neural network by its activation function. However, in some
cases, this activation function is not the desirable one. Other functions are then used,
for example, the sigmoidal or the hyperbolic tangent functions. These functions are
shown in Fig. 3.3.

In this way, the delta rule cannot be used to train the neural network. Therefore
another algorithm is used based on the gradient of the error, called the backpropa-
gation algorithm. We need a pair of input/output signals to train the neural model.
This type of ANN is then classified as supervised and feed-forward, because the
input signals go from the beginning to the end.

When we are attempting to find the error between the desired value and the actual
value, only the error at the last layer (or the output layer) is measured. Therefore,
the idea behind the backpropagation algorithm is to retro-propagate the error from
the output layer to the input layer through hidden layers. This ensures that a kind of
proportional error is preserved in each neuron. The updating of the weights can then
be done by a variation or delta error, proportional to a learning rate.

62 3 Artificial Neural Networks

First, we divide the process into two structures. One is for the values at the last
layer (output layer) and the other values are from the hidden layers to the input
layers. In these terms, the updating rule of the output weights is

�vj i D
X

j

�
��ı

q
j z

q
i

�
; (3.16)

where vj i is the weight linking the i th actual neuron with the j th neuron in the
previous layer, and q is the number of the sample data. The other variables are given
in (3.17):

z
q
i D f

nX

kD0

wikx
q

k

!

: (3.17)

This value is the input to the hidden neuron i in (3.18):

ı
q
j D

�
o

q
j � y

q
j

�
f 0

mX

kD1

vjkz
q

k

!

: (3.18)

Computations of the last equations come from the delta rule. We also need to un-
derstand that in hidden layers there are no desired values to compare. Then, we
propagate the error to the last layers in order to know how neurons produce the final
error. These values are computed by:

�qwik D ��
@Eq

@wik

D ��
@Eq

@o
q
i

@o
q
i

@wik

; (3.19)

where o
q
i is the output of the i th hidden neuron. Then, o

q
i D z

q
i and

@o
q
i

@wik

D f 0

nX

hD0

wihx
q

h

!

x
q

k
: (3.20)

Now, we obtain the value

ı
q
i D @Eq

@o
q
i

D
gX

jD1

@Eq

@o
q
j

@o
q
j

@o
q
i

; (3.21)

which is related to the hidden layer. Observe that j is the element of the j th output
neuron. Finally, we already know the values @Eq

@o
q

j

and the last expression is:

ı
q
i D f 0i

nX

kD0

wikx
q

k

!
pX

jD1

vij ı
q
j : (3.22)

Algorithm 3.2 shows the backpropagation learning procedure for a two-layer neural
network (an input layer, one hidden layer, and the output layer). This algorithm can

3.3 Artificial Neural Networks 63

be easily extended to more than one hidden layer. The last net is called a multi-
layer or n-layer feed-forward neural network. Backpropagation can be thought of
as a generalization of the delta rule and can be used instead when ADALINE is
implemented.

Algorithm 3.2 Backpropagation

Step 1 Select a learning rate value �.
Determine a data collection of q samples of inputs x and outputs y.
Generate random values of weights wik where i specifies the i th neuron
in the actual layer and k is the kth neuron of the previous layer.
Initialize the time t D 0.

Step 2 Evaluate the neural network and obtain the output values oi .
Step 3 Calculate the error as Eq.w/D 1

2

Pp

iD1 .o
q

i
� y

q

i
/2.

Step 4 Calculate the delta values of the output layer:
ı

q

i
D f 0

i
.
Pn

kD1 vikzk/.o
q

i
� y

q

i
/.

Calculate the delta values at the hidden layer as:
ı

q

i
D f 0

i
.
Pn

kD0 wikx
q

k
/
Pp

j D1 vij ı
q

j
.

Step 5 Determine the change of weights as �w
q

ik
D ��ı

q

i
o

q

k
and update the

parameters with the next rule w
q

ik
 w

q

ik
C�w

q

ik
.

Step 6 If E � e min where e min is the minimum error expected then STOP.
Else, t t C 1 and go to Step 2.

Example 3.2. Consider the points in R2 as in Table 3.3. We need to classify them
into two clusters by a three-layer feed-forward neural network (with one hidden
layer). The last column of the data represents the target f0; 1g of each cluster. Con-
sider the learning rate to be 0.1.

Table 3.3 Data points in R2

Point X-coordinate Y -coordinate Cluster

1 1 2 0
2 2 3 0
3 1 1 0
4 1 3 0
5 2 2 0
6 6 6 1
7 7 6 1
8 7 5 1
9 8 6 1

10 8 5 1

Solution. First, we have the input layer with two neurons; one for the x-coordinate
and the second one for the y-coordinate. The output layer is simply a neuron that
must be in the domain Œ0; 1�. For this example we consider a two-neuron hidden
layer (actually, there is no analytical way to define the number of hidden neurons).

64 3 Artificial Neural Networks

Table 3.4 Randomly initialized weights

Weights between the
first and second layers

Weights between the
second and third layers

0.0278 0.0004
0.0148 0.0025
0.0199
0.0322

We need to consider the following parameters:

Activation function: Sigmoidal

Learning rate: 0:1

Number of layers: 3

Number of neurons per layer: 2 � 2 � 1

Other parameters that we need to consider are related to the stop criterion:

Maximum number of iterations: 1000

Minimum error or energy: 0:001

Minimum tolerance of error: 0:0001

In fact, the input training data are the two columns of coordinates. The output train-
ing data is the last column of cluster targets. The last step before the algorithm will
train the net is to initialize the weights randomly. Consider as an example, the ran-
domizing of values in Table 3.4.

According to the above parameters, we are able to run the backpropagation algo-
rithm implemented in LabVIEW. Go to the path ICTL 	 ANNs 	 Backpropaga-
tion 	 Example_Backpropagation.vi. In the front panel, we can see the window
shown in Fig. 3.19. Desired input values must be in the form of (3.23):

X D

2

6
4

x1
1 : : : xm

1
:::

: : :
:::

x1
n : : : xm

n

3

7
5 ; (3.23)

where xj D fxj
1 ; : : : ; x

j
n gT is the column vector of the j th sample with n elements.

In our example, xj D fXj ; Y j g has two elements. Of course, we have 10 samples of
that data, so j D 1; : : : ; 10. The desired input data in the matrix looks like Fig. 3.20.
The desired output data must also be in the same form as (3.23).

The term yj D fyj
1 ; : : : ; y

j
r gT is the column of the j th sample with r elements. In

our example, we haveyj D fC j g, where C is the corresponding value of the cluster.
In fact, we need exactly j D 1; : : : ; 10 terms to solve the problem. This matrix
looks like Fig. 3.21.

In the function value we will select Sigmoidal. In addition, L is the number of
layers in the neural network. We treated a three-layer neural network, so L D 3. The

3.3 Artificial Neural Networks 65

Fig. 3.19 Front panel of the backpropagation algorithm

Fig. 3.20 Desired input data

Fig. 3.21 Desired output data

n-vector is an array in which each of the elements represents the number of neurons
per layer. Indeed, we have to write the array n-vector D f2; 2; 1g. Finally, maxIter is
the maximum number of iterations we want to wait until the best answer is found.
minEnergy is the minimum error between the desired output and the actual values
derived from the neural network.

Tolerance is the variable that controls the minimum change in error that we want
in the training procedure. Then, if one of the three last values is reached, the proce-
dure will stop. We can use crisp parameters of fuzzy parameters to train the network,
where eta is the learning rate and alpha is the momentum parameter.

As seen in Fig. 3.19, the right window displays the result. Weights values will
appear until the process is finished and there are the coefficients of the trained neural

66 3 Artificial Neural Networks

Table 3.5 Trained weights

Weights between the
first and second layers

Weights between the
second and third layers

0.3822 1.8230
�0.1860 1.8710

0.3840
�0.1882

network. The errorGraph shows the decrease in the error value when the actual
output values are compared with the desired output values. The real-valued number
appears in the error indicator. Finally, the iteration value corresponds to the number
of iterations completed at the moment.

With those details, the algorithm is implemented and the training network (or the
weights) is shown in Table 3.5 (done in 184 iterations and reaching the local minima
at 0.1719). The front panel of the algorithm looks like Fig. 3.22.

In order to understand what this training has implemented, there are graphs of
this classification. In Fig. 3.23, the first graph is the data collection, and the second
graph shows the clusters. If we see a part of the block diagram in Fig. 3.24, only the
input data is used in the three-layer neural network. To show that this neural network
can generalize, other data different from the training collection is used. Looking at
Fig. 3.25, we see the data close to the training zero-cluster. ut

When the learning rate is not selected correctly, the solution might be trapped in
local minima. In other words, minimization of the error is not reached. This can be

Fig. 3.22 Implementation of the backpropagation algorithm

3.3 Artificial Neural Networks 67

Fig. 3.23 The left side shows a data collection, and the right shows the classification of that data

Fig. 3.24 Partial view of the block diagram in classification data, showing the use of the neural
network

Fig. 3.25 Generalization of the data classification

68 3 Artificial Neural Networks

partially solved if the learning rate is decreased, but time grows considerably. One
solution is the modification of the backpropagation algorithm by adding a momen-
tum coefficient. This is used to try to get the tending of the solution in the weight
space. This means that the solution is trying to find and follow the tendency of
the previous updating weights. That modification is summarized in Algorithm 3.3,
which is a rephrased version of Algorithm 3.2 with the new value.

Algorithm 3.3 Backpropagation with momentum parameter

Step 1 Select a learning rate value � and momentum parameter ˛.
Determine a data collection of q samples of inputs x and outputs y.
Generate random values of weights wik where i specifies the i th neuron
in the actual layer and k is the kth neuron of the previous layer.
Initialize the time t D 0.

Step 2 Evaluate the neural network and obtain the output values oi .
Step 3 Calculate the error as Eq.w/D 1

2

Pp

iD1 .o
q

i � y
q

i /2.
Step 4 Calculate the delta values of the output layer:

ı
q

i
D f 0

i
.
Pn

kD1 vikzk/.o
q

i
� y

q

i
/.

Calculate the delta values at the hidden layer as:
ı

q

i
D f 0

i
.
Pn

kD0 wikx
q

k /
Pp

j D1 vij ı
q

j
.

Step 5 Determine the change of weights as �w
q

ik
D ��ı

q

i
o

q

k and up-
date the parameters with the next rule: w

q

ik
 w

q

ik
C �w

q

ik

C˛
�
w

q

ik_act �w
q

ik_last

�
where wact is the actual weight and wlastis the

previous weight.
Step 6 If E � e min where e min is the minimum error expected then STOP.

Else, t t C 1 and go to Step 2.

Example 3.3. Train a three-layer feed-forward neural network using a 0.7 momen-
tum parameter value and all data used in Example 3.2.
Solution. We present the final results in Table 3.6 and the algorithm implemented in
Fig. 3.26. We find the number of iterations to be 123 and the local minima 0.1602,
with a momentum parameter of 0.7. This minimizes in some way the number of
iterations (decreasing the time processing at the learning procedure) and the local
minima is smaller than when no momentum parameter is used. ut

Table 3.6 Trained weights for feed-forward network

Weights between the
first and second layers

Weights between the
second and third layers

0.3822 1.8230
�0.1860 1.8710

0.3840
�0.1882

3.3 Artificial Neural Networks 69

Fig. 3.26 Implementation of the backpropagation algorithm with momentum parameter

3.3.2.3 Fuzzy Parameters in the Backpropagation Algorithm

In this section we combine the knowledge about fuzzy logic and ANNs. In this way,
the main idea is to control the parameters of learning rate and momentum in order
to get fuzzy values and then evaluate the optimal values for these parameters.

We first provide the fuzzy controllers for the two parameters at the same time.
As we know from Chap. 2 on fuzzy logic, we evaluate the error and the change in
the error coefficients from the backpropagation algorithm. That is, after evaluating
the error in the algorithm, this value enters the fuzzy controller . The change in the
error is the difference between the actual error value and the last error evaluated.

Input membership functions are represented as the normalized domain drawn in
Figs. 3.27 and 3.28. Fuzzy sets are low positive (LP), medium positive (MP), and
high positive (HP) for error value E . In contrast, fuzzy sets for change in error CE
are low negative (LN), medium negative (MN), and high negative (HN). Figure 3.29
reports the fuzzy membership functions of change parameter �ˇ with fuzzy sets
low negative (LN), zero (ZE), and low positive (LP). Tables 3.7 and 3.8 have the
fuzzy associated matrices (FAM) to imply the fuzzy rules for the learning rate and
momentum parameter, respectively.

In order to access the fuzzy parameters, go to the path ICTL 	 ANNs 	 Back-
propagation 	 Example_Backpropagation.vi. As with previous examples, we can
obtain better results with these fuzzy parameters. Configure the settings of this VI ex-
cept for the learning rate and momentum parameter. Switch on the Fuzzy-Parameter
button and run the VI. Figure 3.30 shows the window running this configuration.

70 3 Artificial Neural Networks

LP MP

a

HP

Eη

μ(Eη)

LP

0 0.2 0.4 0.6 0.8

MP HP

Eα

μ(Eα)

b

Fig. 3.27a,b Input membership functions of error. a Error in learning parameter. b Error in mo-
mentum parameter

HN MN LN

CEβ

μ(CEβ)

Fig. 3.28 Input membership functions of change in error

Table 3.7 Rules for changing the learning rate

EnCE LN MN HN

LP ZE ZE LN
MP LP ZE ZE
HP LP LP ZE

3.3 Artificial Neural Networks 71

Fig. 3.29 Output membership
functions of change in the
parameter selected ZE LPLN

μ(Δβ)

Δβ

Table 3.8 Rules for changing the momentum parameter

EnCE LN MN HN

LP ZE LN LN
MP ZE LN LN
HP LP ZE ZE

Fig. 3.30 Backpropagation algorithm with parameter adjusted using fuzzy logic

3.3.3 Trigonometric Neural Networks

In the previous neural networks, we saw that supervised and feed-forward neural
models need to be trained by iterative methods. This situation increases the time of
convergence of the learning procedure. In this section, we introduce a trigonometric-
based neural network.

72 3 Artificial Neural Networks

First, as we know, a Fourier series is used to approximate a periodic function
f .t/ with constant period T . It is well known that any function can be approximated
by a Fourier series, and so this type of network is used for periodic signals.

Consider a function as in (3.24):

f .t/ D1

2
a0 C a1 cos !0t C a2 cos 2!0t C : : : C b1sen!0t C b2sen2!0t C : : :

f .t/ D1

2
a0 C

1X

nD1

Œan cos.n!0t/ C bnsen.n!0t/�

f .t/ DC0 C
1X

nD1

Cn cos.n!0t � �n/ : (3.24)

Looking at the neural networks described above, this series is very similar to the
mathematical neural model when the activation function is linear:

y D x0 C
nX

iD1

wixi : (3.25)

Comparing (3.24) and (3.25), we see that they are very close in form, except for the
infinite terms of the sum. However, this is not a disadvantage. On the contrary, if we
truncate the sum to N terms, then we produce an error in the approximation. This is
clearly helpful in neural networks because we do not need them to be memorized.

Thus, a trigonometric neural network (T-ANN) is a Fourier-based net . Fig-
ure 3.30 shows this type of neural model. As we might suppose, T-ANN are able
to compute with cosine functions or with sine functions. This selection is arbi-
trary.

Considering its learning procedure, a Fourier series can be solved analytically by
employing least square estimates (LSE). This process means that we want to find
coefficients that preserve the minimum value of the function

S.a0; a1; : : :; an/ D
mX

iD1

"

yi �

1

2
a0 C

1X

kD1

ak cos .k!0xi /

!#2

; (3.26)

where !0 is the fundamental frequency of the series, xi is the i th input data and
yi is the i th value of the desired output. Then, we need the first derivative of that
function, which is:

ıS

ıap

D
mX

iD1

"

yi �

1

2
a0 C

1X

kD1

ak cos .k!0xi /

!

cos .n!0x/

#

D 0; 8p � 1 :

(3.27)

3.3 Artificial Neural Networks 73

This is a system of linear equations that can be viewed as:

2

6
6
6
6
6
6
6
4

1
2 m

1
2

Pm
iD1 cos .!0xi /

:::

1
2

Pm
iD1 cos .p!0xi /

� � �
� � �
: : :

� � �

Pm
iD1 cos .p!0xi /

Pm
iD1 cos .!0xi / cos .p!0xi /

Pm
iD1 cos .p!0xi / cos .p!xi /

Pm
iD1 cos2 .p!0xi /

3

7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
4

a0

a1

:::

an

3

7
7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
6
4

Pm
iD1 yi

Pm
iD1 yi cos .!0xi /

:::
Pm

iD1 yi cos .p!0xi /

3

7
7
7
7
7
7
7
5

: (3.28)

Then, we can solve this system for all coefficients. At this point, p is the num-
ber of neurons that we want to use in the T-ANN . In this way, if we have a data
collection of the input/output desired values, then we can compute analytically the
coefficients of the series or what is the same, the weights of the net. Algorithm 3.4
is proposed for training T-ANNs ; eventually, this procedure can be computed with
the backpropagation algorithm as well.

Algorithm 3.4 T-ANNs

Step 1 Determine input/output desired samples.
Specify the number of neurons N .

Step 2 Evaluate weights Ci by LSE.
Step 3 STOP.

Example 3.4. Approximate the function f .x/ D x2 C 3 in the interval Œ0; 5� with:
(a) 5 neurons, (b) 10 neurons, (c) 25 neurons. Compare them with the real function.
Solution. We need to train a T-ANN and then evaluate this function in the interval
Œ0; 5�. First, we access the VI that trains a T-ANN following the path ICTL 	 ANNs
	 T-ANN 	 entrenaRed.vi. This VI needs the x-vector coordinate, y-vector co-
ordinate and the number of neurons that the network will have.

In these terms, we have to create an array of elements between Œ0; 5� and we do
this with a stepsize of 0.1, by the rampVector.vi. This array evaluates the function
x2 C 3 with the program inside the for-loop in Fig. 3.31. Then, the array com-
ing from the rampVector.vi is connected to the x pin of the entrenaRed.vi, and
the array coming from the evaluated x-vector is connected to the y pin. Actually,
the pin n is available for the number of neurons. Then, we create a control vari-
able for neurons because we need to train the network with a different number of
neurons.

74 3 Artificial Neural Networks

∑
.
.
.

X

xn
wn

1
()

n

i i
i

f w x
=
∑

0nω .
.
.

COS

na

nbSIN

X

0nω

0aX

Fig. 3.31 T-ANN model

Fig. 3.32 Block diagram of the training and evaluating T-ANN

Fig. 3.33 Block diagram for plotting the evaluating T-ANN against the real function

This VI is then connected to another VI that returns the values of a T-ANN. This
last node is found in the path ICTL 	 ANNs 	 T-ANN 	 Arr_Eval_T-ANN.vi.
This receives the coefficients that were the result of the previous VI named T-ANN
Coeff pin connector. The Fund Freq connector is referred to the fundamental fre-
quency of the trigonometric series !0. This value is calculated in the entrenaRed.vi.
The last pin connector is referred to as Values. This pin is a 1D array with the values
in the x-coordinate, which we want to evaluate the neural network. The result of this
VI is the output signal of the T-ANN by the pin T-ANN Eval. The block diagram of
this procedure is given in Fig. 3.32.

3.3 Artificial Neural Networks 75

Fig. 3.34 Approximation function with T-ANN with 5 neurons

Fig. 3.35 Approximation function with T-ANN with 10 neurons

76 3 Artificial Neural Networks

Fig. 3.36 Approximation function with T-ANN with 25 neurons

To compare the result with the real value we create a cluster of two arrays, one
comes from the rampVector.vi and the other comes from the output of the for-
loop. Figure 3.33 shows the complete block diagram. As seen in Figs. 3.34–3.36,
the larger the number of neurons, the better the approximation. To generate each of
these graphs, we only vary the value of neurons. ut

3.3.3.1 Hebbian Neural Networks

A Hebbian neural network is an unsupervised and competitive net. As unsupervised
networks, these only have information about the input space, and their training is
based on the fact that the weights store the information. Thus, the weights can only
be reinforced if the input stimulus provides sufficient output values. In this way,
weights only change proportionally to the output signals. By this fact, neurons com-
pete to become a dedicated reaction of part of the input. Hebbian neural networks
are then considered as the first self-organizing nets .

The learning procedure is based on the following statement pronounced by Hebb:
As A becomes more efficient at stimulating B during training, A sensitizes B to its
stimulus, and the weight on the connection from A to B increases during training as
B becomes sensitized to A.

3.3 Artificial Neural Networks 77

Steven Grossberg then developed a mathematical model for this sentence, given
in (3.29):

wnew
AB D wold

AB C ˇxBxA ; (3.29)

where wAB is the weight between the interaction of two neurons A and B , xi is the
output signal of the i th neuron, and xBxA is the so-called Hebbian learning term.
Algorithm 3.5 introduces the Hebbian learning procedure.

Algorithm 3.5 Hebbian learning procedure

Step 1 Determine the input space.
Specify the number of iterations iterNum and initialize t D 0.
Generate small random values of weights wi .

Step 2 Evaluate the Hebbian neural network and obtain the outputs xi .
Step 3 Apply the updating rule (3.29).
Step 4 If t D iterNum then STOP.

Else, go to Step 2.

These types of neural models are good when no desired output values are known.
Hebbian learning can be applied in multi-layer structures as well as feed-forward
and feed-back networks.

Example 3.5. There are points in the following data. Suppose that this data is some
input space. Apply Algorithm 3.5 with a forgotten factor of 0.1 to train a Hebbian
network that approximates the data presented in Table 3.9 and Fig. 3.37.

Table 3.9 Data points for the Hebbian example

X-coordinate Y -coordinate

0 1
1 0
2 2
3 0
4 3.4
5 0.2

Solution. We consider a 0.1 of the learning rate value. The forgotten factor ˛ is
applied with the following equation:

wnew
AB D wold

AB � ˛wold
AB C ˇxBxA : (3.30)

We go to the path ICTL 	 ANNs 	 Hebbian 	 Hebbian.vi. This VI has input
connectors of the y-coordinate array, called x pin, which is the array of the desired
values, the forgotten factor a, the learning rate value b, and the Iterations variable.

78 3 Artificial Neural Networks

Fig. 3.37 Input training data

Fig. 3.38 Block diagram for training a Hebbian network

This last value is selected in order to perform the training procedure by this number
of cycles. The output of this VI is the weight vector, which is the y-coordinate of the
approximation to the desired values. The block diagram for this procedure is shown
in Fig. 3.38.

Then, using Algorithm 3.5 with the above rule with forgotten factor, the re-
sult looks like Fig. 3.39 after 50 iterations. The vector W is the y-coordinate ap-
proximation of the y-coordinate of the input data. Figure 3.39 shows the training
procedure. ut

Fig. 3.39 Result of the Hebbian process in a neural network

3.3 Artificial Neural Networks 79

3.3.4 Kohonen Maps

Kohonen networks or self-organizing maps are a competitive training neural net-
work aimed at ordering the mapping of the input space. In competitive learning, we
normally have distributed input x D x.t/ 2 Rn, where t is the time coordinate, and
a set of reference vectors mi D mi .t/ 2 Rn; 8i D 1; : : :; k. The latter are initial-
ized randomly. After that, given a metric d.x; mi / we try to minimize this function
to find a reference vector that best matches the input. The best reference vector is
named mc (the winner) where c is the best selection index. Thus, d.x; mc/ will be
the minimum metric. Moreover, if the input x has a density function p.x/, then, we
can minimize the error value between the input space and the set of reference vec-
tors, so that all mi can represent the form of the input as much as possible. However,
only an iterative process should be used to find the set of reference vectors.

At each iteration, vectors are actualized by the following equation:

mi .t C 1/ D
(

mi .t/ C ˛.t/ � dŒx.t/; mi .t/� i D c

mi .t/ i ¤ c
; (3.31)

where ˛.t/ is a monotonically decreasing function with scalar values between 0
and 1. This method is known as vector quantization (VQ) and looks to minimize the
error, considering the metric as a Euclidean distance with r-power:

E D
Z

kx � mckr p.x/dx : (3.32)

On the other hand, years of studies on the cerebral cortex have discovered two im-
portant things: (1) the existence of specialized regions, and (2) the ordering of these
regions. Kohonen networks create a competitive algorithm based on these facts in
order to adjust specialized neurons into subregions of the input space, and if this
input is ordered, specialized neurons also perform an ordering space (mapping).
A typical Kohonen network N is shown in Fig. 3.40.

If we suppose an n-dimensional input space X is divided into subregions xi , and
a set of neurons with a d -dimensional topology, where each neuron is associated to
a n-dimensional weight mi (Fig. 3.40), then this set of neurons forms a space N .
Each subregion of the input will be mapped by a subregion of the neuron space.
Moreover, mapped subregions will have a specific order because input subregions
have order as well.

Kohonen networks emulate the behavior described above, which is defined in
Algorithm 3.6.

As seen in the previous algorithm, VQ is used as a basis. To achieve the goal of
ordering the weight vectors, one might select the winner vector and its neighbors
to approximate the interesting subregion. The number of neighbors v should be
a monotonically decreasing function with the characteristic that at the first iteration
the network will order uniformly, and then, just the winner neuron will be reshaped
to minimize the error.

80 3 Artificial Neural Networks

Fig. 3.40 Kohonen network N approximating the input space X

Algorithm 3.6 Kohonen learning procedure

Step 1 Initialize the number of neurons and the dimension of the Kohonen net-
work.
Associate a weight vector mi to each neuron, randomly.

Step 2 Determine the configuration of the neighborhood Nc of the weight vector
considering the number of neighbors v and the neighborhood distribution
v.c/.

Step 3 Randomly, select a subregion of the input space x.t/ and calculate the
Euclidean distance to each weight vector.

Step 4 Determine the winner weight vector mc (the minimum distance defines the
winner) and actualize each of the vectors by (3.31) which is a discrete-time
notation.

Step 5 Decrease the number of neighbors v and the learning parameter ˛.
Step 6 Use a statistical parameter to determine the approximation between neu-

rons and the input space. If neurons approximate the input space then
STOP.
Else, go to Step 2.

Moreover, the training function or learning parameter will be decreased. Fig-
ure 3.41 shows how the algorithm is implemented. Some applications of this kind
of network are: pattern recognition, robotics, control process, audio recognition,
telecommunications, etc.

Example 3.6. Suppose that we have a square region in the interval x 2 Œ�10; 10� and
y 2 Œ�10; 10�. Train a 2D-Kohonen network in order to find a good approximation
to the input space.
Solution. This is an example inside the toolkit, located in ICTL 	 ANNs 	 Koho-
nen SOM 	 2DKohonen_Example.vi. The front panel is the same as in Fig. 3.42,
with the following sections.

3.3 Artificial Neural Networks 81

Fig. 3.41 One-dimensional Kohonen network with 25 neurons (white dots) implemented to ap-
proximate the triangular input space (red subregions)

Fig. 3.42 Front panel of the 2D-Kohonen example

82 3 Artificial Neural Networks

We find the input variables at the top of the window. These variables are Dim Size
Ko, which is an array in which we represent the number of neurons per coordinate
system. In fact, this is an example of a 2D-Kohonen network, and the dimension
of the Kohonen is 2. This means that it has an x-coordinate and a y-coordinate.
In this case, if we divide the input region into 400 subregions, in other words, we
have an interval of 20 elements per 20 elements in a square space, then we may say
that we need 20 elements in the x-coordinate and 20 elements in the y-coordinate
dimension. Thus, we are asking for the network to have 400 nodes.

Etha is the learning rate, EDF is the learning rate decay factor, Neighbors rep-
resents the number of neighbors that each node has and its corresponding NDF or
neighbor decay factor. EDF and NDF are scalars that decrease the value of Etha
and Neighbors, respectively, at each iteration. After that we have the Bell/Linear
Neighborhood switch. This switches the type of neighborhood between a bell func-
tion and a linear function. The value Decay is used as a factor of fitness in the bell
function. This has no action in the linear function.

On the left side of the window is the Input Selector, which can select two different
input regions. One is a triangular space and the other is the square space treated in
this example. The value Iterations is the number of cycles that the Kohonen network
takes to train the net. Wait is just a timer to visualize the updating network.

Finally, on the right side of the window is the Indicators cluster. It rephrases
values of the actual Neighbor and Etha. Min Index represents the indices of the
winner node. Min Dist is the minimum distance between the winner node and the

Fig. 3.43 The 2D-Kohonen network at 10 iterations

3.3 Artificial Neural Networks 83

Fig. 3.44 The 2D-Kohonen network at 100 iterations

Fig. 3.45 The 2D-Kohonen network at 1000 iterations

84 3 Artificial Neural Networks

Fig. 3.46 The 2D-Kohonen network at 10 000 iterations

close subregion. RandX is the subregion selected randomly. 2D Ko is a cluster of
nodes with coordinates. Figures 3.42–3.46 represent the current configuration of
the 2D-Kohonen network with five neighbors and one learning rate at the initial
conditions, with values of 0.9999 and 0.9995 for EDF and NDF, respectively. The
training was done by a linear function of the neighborhood. ut

3.3.5 Bayesian or Belief Networks

This kind of neural model is a directed acyclic graph (DAG) in which nodes have
random variables. Basically, a DAG consists of nodes and deterministic directions
between links. A DAG can be interpreted as an adjacency matrix in which 0 ele-
ments mean no links between two nodes, and 1 means a linking between the i th row
and the j th column.

This model can be divided into polytrees and cyclic graphs. Polytrees are models
in which the evidence nodes or the input nodes are at the top, and the children
are below the structure. On the other hand, cyclic models are any kind of DAG,
when going from one node to another node that has at least another path connecting
these points. Figure 3.47 shows examples of these structures. For instance, we only
consider polytrees in this chapter.

3.3 Artificial Neural Networks 85

Fig. 3.47a,b Bayesian or belief networks. a A polytree. b A cyclic structure

Bayesian networks or belief networks have a node Vi that is conditionally in-
dependent from a subset of nodes that are not descendents of Vi given its parents
P.Vi /. Suppose that we have V1; : : :; Vk nodes of a Bayesian network and they are
conditionally independent. The joint probability of all nodes is:

p.V1; : : :; Vk/ D
kY

iD1

p.Vi jP.Vi // : (3.33)

These networks are based on tables of probabilities known as conditional probability
tables (CPT), in which the node is related to its parents by probabilities.

Bayesian networks can be trained by some algorithms, such as the expectation-
maximization (EM) algorithm or the gradient-ascent algorithm. In order to under-
stand the basic idea of training a Bayesian network, a gradient-ascent algorithm will
be described in the following.

We are looking to maximize the likelihood hypothesis ln P.Djh/ in which P is
the probability of the data D given hypothesis h. This maximization will be per-
formed with respect to the parameters that define the CPT. Then, the expression
derived from this fact is:

@ ln P.Djh/

@wij

D
X

d2D

P.Yi D yij ; Ui D uik jd/

wijk

(3.34)

where yij is the j -value of the node Yi , Ui is the parent with the k-value uik , wijk

is the value of the probability in the CPT relating yij with uik , and d is a sample of
the training data D. In Algorithm 3.7 this training is described.

Example 3.7. Figure 3.48 shows a DAG. Represent this graph in an adjacency ma-
trix (it is a cyclic structure).
Solution. Here, we present the matrix in Fig. 3.49. Graph theory affirms that the
adjacency matrix is unique. Therefore, the solution is unique. ut
Example 3.8. Train the network in Fig. 3.48 for the data sample shown in Table 3.10.
Each column represents a node. Note that each node has targets Yi D f0; 1g.

86 3 Artificial Neural Networks

Algorithm 3.7 Gradient-ascent learning procedure for Bayesian networks

Step 1 Generate a CPT with random values of probabilities.
Determine the learning rate �.

Step 2 Take a sample d of the training data D and determine the probability on
the right-hand side of (3.34).

Step 3 Update the parameters with

wijk wijk C �
P

d2D

P.Yi Dyij ;Ui Duik jd/

wijk
.

Step 4 If CP Tt D CP Tt�1 then STOP.
Else, go to Step 2 until reached.

Fig. 3.48 DAG with evidence
nodes 1 and 3, and query
nodes 5 and 6. The others are
known as hidden nodes

6

5

2 4

3

1

Fig. 3.49 Adjacency matrix
for the DAG in Fig. 3.48

Table 3.10 Bayesian networks example

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Frequency

0 1 1 0 1 1 32
0 1 0 1 0 0 94
0 0 1 0 1 1 83
1 1 0 0 1 0 19
0 0 1 1 0 1 22
1 0 0 0 0 1 18
0 1 1 1 1 0 29
0 0 0 0 1 1 12

References 87

6

5

2 4

3

1

Fig. 3.50 Training procedure of a Bayesian network

Solution. This example is located at ICTL 	 ANNs 	 Bayesian 	 Bayes_Example.
vi. Figure 3.50 shows the implementation of Algorithm 3.7. At the top-left side of
the window, we have the adjacency matrix in which we represent the DAG as seen
in Example 3.7. Then, NumberLabels represents all possible labels that the related
node can have. In this case, we have that all nodes can only take values between
0 or 1, then each node has two labels. Therefore, the array is NumberLabels D
f2; 2; 2; 2; 2; 2g. Iterations is the same as in the other examples. Etha is the learning
rate in the gradient-ascent algorithm. SampleTable comes from experiments and mea-
sures the frequency that some combination of nodes is fired. In this example, the table
is the sample data given in the problem.

The Error Graph shows how the measure of error is decreasing when time is
large. Finally, ActualCPT is the result of the training procedure and it is the CPT of
the Bayesian network. For instance, we choose a value of learning rate that equals
0.3 and 50 iterations to this training procedure. As we can see, the training needs
around five iterations to obtain the CPT. This table contains the training probabilities
that relate each node with its immediate parents. ut

References

1. Lakhmi J, Rao V (1999) Industrial applications of neural networks. CRC, Boca Raton, FL
2. Weifeng S, Tianhao T (2004) CMAC Neural networks based combining control for marine

diesel engine generator. IEEE Proceedings of the 5th World Congress on Intelligent Control,
Hangzshou, China, 15–19 June 2004

88 3 Artificial Neural Networks

3. Ananda M, Srinivas J (2003) Neural networks. Algorithms and applications. Alpha Sciences
International, Oxford

4. Samarasinghe S (2007) Neural networks for applied sciences and engineering. Auerbach,
Boca Raton, FL

5. Irwin G, et al. (1995) Neural network applications in control. The Institution of Electrical
Engineers, London

6. Mitchell T (1997) Machine learning. McGraw-Hill, Boston
7. Kohonen T (1990) The self-organizing map. Proceedings of the IEEE 78(9):1464–1480
8. Rojas R (1996) Neural networks. Kohonen networks, Chap 15. Springer, Berlin Heidelberg

New York, pp 391–412
9. Veksler O (2004) Lecture 18: Pattern recognition. University of Western Ontario, Computer

Science Department. http://courses.media.mit.edu/2004fall/mas622j. Accessed on 10 March
2009

10. Jensen F (2001) Bayesian networks and decision graphs. Springer, Berlin Heidelberg New
York

11. Nilsson N (2001) Inteligencia artificial, una nueva síntesis. McGraw-Hill, Boston
12. Nolte J (2002) The human brain: an introduction to its functional anatomy. Mosby, St. Louis,

MO
13. Affi A, Bergman R (2005) Functional neuroanatomy text and atlas. McGraw-Hill, Boston
14. Nguyen H, et al. (2003) A first course in fuzzy and neural control. Chapman & Hall/CRC,

London
15. Ponce P (2004) Trigonometric Neural Networks internal report. ITESM-CCM, México City

Futher Reading

Hertz J, Krogh A, Lautrup B, Lehmann T (1997) Nonlinear backpropagation: doing backprop-
agation without derivatives of the activation function. Neural Networks, IEEE Transactions
8:1321–1327

Loh AP, Fong KF (1993) Backpropagation using generalized least squares. Neural Networks, IEEE
International Conference 1:592–597

McLauchlan LLL, Challoo R, Omar SI, McLauchlan RA (1994) Supervised and unsupervised
learning applied to robotic manipulator control. American Control Conference, 3:3357–3358

Taji K, Miyake T, Tamura H (1999) On error backpropagation algorithm using absolute error func-
tion Systems, Man, and Cybernetics. 1999. IEEE SMC ’99 Conference Proceedings, IEEE
International Conference 5:401–406

