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Preface

Control systems are becoming more important every day. At the beginning, the in-
dustry used sequential controls for solving a lot of industrial applications in control
systems, and then the linear systems gave us a huge increase in applying automatic
linear control on industrial application. One of the most recent methods for control-
ling industrial applications is intelligent control, which is based on human behavior
or concerning natural process.

Nowadays, the topic of intelligent control systems has become more than a re-
search subject to the industry. The number of industrial applications is growing ev-
ery day, faster and faster. Thus, new software and hardware platforms are required
in order to design and develop intelligent control systems. The challenge for these
types of systems is to have a novel platform, which allows designing, testing and im-
plementing an intelligent controller system in a short period of time. For the industry
and academy, LabVIEW™ is one of the most important software platforms for de-
veloping engineering applications and could be connected with different hardware
systems, as well as running standalone programs for simulating the controller’s per-
formance (validating the controller by simulation then implementing it). In addition,
LabVIEW is a graphical program that is very easy to learn.

Taking into account these advantages, the software platform described in this
book is LabVIEW from National Instruments™. The book is divided into 7 chapters
and gives all the information required for designing and implementing an intelligent
controller.

Chapter 1 provides an introduction to basic intelligent control concepts and con-
cludes by applying LabVIEW for implementing control systems. Chapter 2 covers
in deep detail the fuzzy logic theory and implementation. This chapter starts with
fundamental fuzzy logic theory for supporting the most important fuzzy logic con-
trollers implemented using LabVIEW.

Chapter 3 deals with artificial neural networks. In this chapter a complete set
of tools for implementing artificial neural networks is presented. Basic examples
of neural networks, such as perceptron, allow the students to understand the most
important topologies in artificial neural networks for modeling and controlling sys-
tems. In Chap. 4 the reader can find neuro-fuzzy controllers, which combine the
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fuzzy inference systems with an artificial neural network topology. Thus, the neuro-
fuzzy controllers are an interesting option for modeling and controlling industrial
applications. Chapter 5 discusses genetic algorithms, which are representations of
the natural selection process. This chapter also examines how generic algorithms
can be used as optimization methods. Genetic programming is also explained in
detail.

Chapters 6 and 7 show different algorithms for optimizing and predicting that
could be combined with the conventional intelligent system methodologies pre-
sented in the previous chapters such as fuzzy logic, artificial neural networks and
neuro-fuzzy systems. The methods presented in Chaps. 6 and 7 are: simulated an-
nealing, fuzzy clustering means, partition coefficients, tabu search and predictors.

Supplemental materials supporting the book are available in the companion
DVD. The DVD includes all the LabVIEW programs (VIs) presented inside the
book for intelligent control systems.

This book would never have been possible without the help of remarkable people
who believed in this project. I am not able to acknowledge all of them here, but I
would like to thank Eloisa Acha, Gustavo Valdes, Jeannie Falcon, Javier Gutierrez
and others at National Instruments for helping us to develop a better book.

Finally, I would like to thank the Instituto Tecnológico de Monterrey campus
Ciudad de México for supporting this research project. I wish to remember all my
friends and colleagues who gave me support during this research journey.

ITESM-CCM Dr. Pedro Ponce-Cruz
México City
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Chapter 1
Intelligent Control for LabVIEW

1.1 Introduction

Intelligent control techniques that emulate characteristics of biological systems of-
fer opportunities for creating control products with new capabilities. In today’s com-
petitive economic environment, these control techniques can provide products with
the all-important competitive edge that companies seek. However, while numerous
applications of intelligent control (IC) have been described in the literature, few ad-
vance past the simulation stage to become laboratory prototypes, and only a handful
make their way into products. The ability of research to impact products hinges not
so much on finding the best solution to a problem, but on finding the right problem
and then solving it in a marketable way [1].

The study of intelligent control systems requires both defining some important
expressions that clarify these systems, and also understanding the desired applica-
tion goals. The following definitions show the considerable challenges facing the
development of intelligent control systems.

Intelligence is a mental quality that consists of the abilities to learn from expe-
rience, adapt to new situations, understand and handle abstract concepts, and use
knowledge to manipulate one’s environment [2]. We can define artificial intelli-
gence as the ability of a digital computer or computer-controlled robot to perform
tasks commonly associated with intelligent beings [2].

Thus, IC is designed to seek control methods that provide a level of intelligence
and autonomy in the control decision that allows for improving the system perfor-
mance. As a consequence, IC has been one of the fastest growing areas in the field of
control systems over the last 10 years. Even though IC is a relatively new technique,
a huge number of industrial applications have been developed. IC has different tools
for emulating the biological behavior that could solve problems as human beings
do. The main tools for IC are presented below:

• Fuzzy logic systems are based on the experience of a human operator, expressed
in a linguistic form (normally IF–THEN rules).

P. Ponce-Cruz, F. D. Ramirez-Figueroa, Intelligent Control Systems with LabVIEW™ 1
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• Artificial neural networks emulate the learning process of biologic neural net-
works, so that the network can learn different patterns using a training method,
supervised or unsupervised.

• Evolutionary methods are based on evolutionary processes such as natural evo-
lution. These are essentially optimization procedures.

• Predictive methods are mathematical methods that provide information about the
future system behavior.

Each one has advantages and disadvantages, but some of the disadvantages can be
decreased by combining two or more methods to produce one system (hybrid sys-
tems). As an example, in the case of fuzzy logic, we can combine this method with
neural networks to obtain a neuro-fuzzy system. For instance, the adaptive neural-
based fuzzy inference system (ANFIS) was proposed in order to utilize the best part
of fuzzy logic inference using an adaptive neural network topology [3].

Different authors have presented many hybrid systems, but the most important
and useful combinations are [4]:

• Neural networks combined with genetic algorithms [5].
• Fuzzy systems combined with genetic algorithms [6].
• Fuzzy systems combined with neural networks [7].
• Various other combinations have been implemented [8, 9].

Since fuzzy logic was first presented by Prof. Lotfi A. Zadeh, the number of fuzzy
logic control applications has increased dramatically. For example, in a conven-
tional proportional, integral, and differential (PID) controller, what is modeled is
the system or process being controlled, whereas in a fuzzy logic controller (FLC),
the focus is the human operator’s behavior. In the PID, the system is modeled ana-
lytically by a set of differential equations, and their solution tells the PID controller
how to adjust the system’s control parameters for each type of behavior required.
In the fuzzy controller, these adjustments are handled by a fuzzy rule-based expert
system, a logical model of the thinking processes a person might go through in the
course of manipulating the system. This shift in focus from the process to the person
involved changing the entire approach to automatic control problems [10].

The search has been ongoing for a controller, of a black box type, which can be
simply plugged into a plant, where control is desired; thus, the controller takes over
from there and sorts everything else out [10].

IC is a good solution for processes where the mathematical model that describes
the system is known only partially. In fact, the PID controller is one of the most
functional solutions used nowadays, because it requires a very short time for im-
plementation and the tuning techniques are well known. We show in this book how
fuzzy systems can be used to tune direct and adaptive fuzzy controllers, as well as,
how these systems can be used in supervisory control.

Although the IC is more complex in structure than the PID controller, the IC
gives a better response if the system changes to a different operation point. It is well
known that linear systems are designed for working around the operation point. In
the case of IC, we will be able to design controllers that work outside the opera-



1.2 Intelligent Control in Industrial Applications 3

Fig. 1.1 Basic sets for
obtaining IC systems

tion point. A global position in control theory of IC is shown in Fig. 1.1, in which
different sets intersect in the IC area.

As it is presented, IC systems are in contrast to analytical control, because soft
computing methodologies mimic consciousness and cognition in several important
ways:

• To learn from experience.
• To be able to universalize into domains where direct experience is absent.
• To run into parallel computer architectures, which simulate biological processes.
• To perform mapping from inputs to the outputs faster than inherently serial ana-

lytical representations.

The trade off, however, is a decrease in accuracy. If a tendency towards imprecision
can be tolerated, then it should be possible to expand the range of the applications
even to those problems where the analytical and mathematical representations are
readily available [11].

1.2 Intelligent Control in Industrial Applications

The number of industrial applications that use IC systems is rapidly increasing,
where one can find IC systems in both large and small industrial applications. An-
other growing area of IC applications is developing household appliances, which
are small but complex control systems. Many systems that use fuzzy logic or neu-
ral networks for control apply these techniques to solve problems that fall outside
the domain of conventional feedback control, e. g., in the case of a washer ma-
chine it is easier to control the duty cycle by a FLC than a PID controller. When
we view fuzzy or neural control as only a non-linear counterpart of conventional
feedback control techniques, the possibilities of using IC are reduced. Thus, a nar-
row conceptual view of IC system application leads to designers not appreciating or
recognizing new areas of opportunities. If you use only the IC systems as a conven-
tional controller the difference is quite small. For instance, using a FLC as a PID
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controller with the error and the change in error as inputs, the fuzzy controllers
look similar to the conventional PID controller except that fuzzy control provides
a non-linear control law. Another case is the use of a neural network applied to the
set-point regulation problem, usually by replacing a conventional controller’s law
and/or plant model with an artificial neural network. However, if we apply IC sys-
tems to standard and non-standard techniques we could handle high-level control
systems. Let us imagine the control system of the train developed in Sendai, Japan
by Hitachi. Here fuzzy logic was used to select the notch position that will best sat-
isfy the multiple, often-conflicting objectives. An additional example is that many
Japanese companies such as Matsushita, Sanyo, Hitachi, and Sharp, have incorpo-
rated neural network technology into a product known as the kerosene fan heater.
In Sanyo’s heater, a neural network learns the daily usage pattern of the consumer,
thus allowing the heater to automatically start to preheat in advance [12]. For many
industrial applications one could complement the conventional controllers by an in-
telligent controller generating a new one, rather than using IC alone. The industrial
challenge is focused on developing control systems that are capable of adapting to
rapidly changing environments and on improving their performance based on their
experience. In other words, modern control systems are being developed that are
capable of learning to improve their performance over time (to learn) much like
humans do [4].

1.3 LabVIEW

LabVIEW is a graphical control, test, and measurement environment development
package. Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is
a graphical programming language that uses icons instead of lines of text to create
programs. It is one of the most widely used software packages for test, measure-
ment, and control in a variety of industries. LabVIEW was first launched in 1986,
but has continued to evolve and extend into targets seemingly out of reach before
for such packages, including field programmable gate arrays (FPGAs), sensors, mi-
crocontrollers and other embedded devices. The introduction of the express virtual
instruments (VIs) allow designers faster and easier development of block diagrams
for any type of data acquisition, analysis, and control application. As a result, Lab-
VIEW simplifies the scientific computation, process control, research, industrial ap-
plication and measurement applications, since it has the flexibility of a programming
language combined with built-in tools designed specifically for test, measurement,
and control. By using the integrated LabVIEW environment, it is now easier to in-
terface with real-world signals, analyze data for meaningful information, and share
results [13, 14].

As we know, there are numerous programs on the market for controlling, analyz-
ing, and processing signals but LabVIEW has a big advantage in its graphical user
interface (GUI). LabVIEW was preferred over other programs by a wide margin for
its easy-to-use GUI capabilities. This feature is an integral part of the LabVIEW
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Fig. 1.2 Block diagram from Intelligent Control Toolkit

VI structure for code development. The other two criteria for which LabVIEW was
slightly preferred included its easier-to-use real-time integration tools and help re-
sources [14]. These advantages were taken into account for selecting LabVIEW as
the main platform in the Intelligent Control Toolkit design. Thus, all of the material
presented in this book was generated by VIs, which are the basic programs in Lab-
VIEW [13]. “Ever since LabVIEW shipped, it had more recognition than NI,” said
Kodosky who is one of the founders of National Instruments [13].

The programs that simulate virtual instruments created in LabVIEW are called
VIs. The VI has three basic components: the front panel, the block diagram, and
the icon connector. The control panel is the user interface and the code is inside the
block diagram that contains the graphical code. Also, one could include a subVI
that must have an icon and a connector pane, where the subVI is generated as a VI.
Figures 1.2 and 1.3 show the block diagram and the front panel from a VI example
of the Intelligent Control Toolkit [15].

In the front panel, one can add the number of inputs and outputs that the system
requires. The basic elements inside the front panel can be classified by controls and
indicators. The general type of numerical data can be integers, floating, and complex
numbers. Another type of data is the Boolean, useful in conditional systems (true
or false), as well as strings, which are a sequence of ASCII characters that give
a platform-independent format for information and data [16].

Using control loops, it is possible to repeat a sequence of programs or to enter the
program conditions. The control loops used are shown in Fig. 1.4. It is also possible
to analyze the outputs of the intelligent systems by a waveform chart or other block,
by plotting the output data. Figure 1.5 shows a waveform chart used for analyzing
output signals.

In the case of inputs, which are representations of physical phenomenon, one
could obtain the information by a data acquisition system. One of the main goals
in the data acquisition system for obtaining a successful system is the selection of
the system, as well as, the transducer and sensors. The data acquisition system plays
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Fig. 1.3 Front panel. Adapted
from [15]

Fig. 1.4 Control block loops

a key role in the control system design. Nowadays National Instruments is one of the
most important companies in the world for providing excellent acquisition systems.
Different acquisition systems are shown in Fig. 1.6.
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Fig. 1.5 Waveform chart

Fig. 1.6a,b Acquisition systems developed by NI [16]. a CompactRIO™. b NI USB DAQ
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Chapter 2
Fuzzy Logic

2.1 Introduction

The real world is complex; this complexity generally arises from uncertainty. Hu-
mans have unconsciously been able to address complex, ambiguous, and uncertain
problems thanks to the gift of thinking. This thought process is possible because hu-
mans do not need the complete description of the problem since they have the capacity
to reason approximately. With the advent of computers and their increase in compu-
tation power, engineers and scientists are more and more interested in the creation of
methods and techniques that will allow computers to reason with uncertainty.

Classical set theory is based on the fundamental concept of a set, in which indi-
viduals are either a member or not a member. A sharp, crisp, and ambiguous distinc-
tion exists between a member and a non-member for any well-defined set of entities
in this theory, and there is a very precise and clear boundary to indicate if an entity
belongs to a set. Thus, in classical set theory an element is not allowed to be in a set
(1) or not in a set (0) at the same time. This means that many real-world problems
cannot be handled by classical set theory. On the contrary, the fuzzy set theory ac-
cepts partial membership values �f 2 Œ0; C1�, and therefore, in a sense generalizes
the classical set theory to some extent.

As Prof. Lotfi A. Zadeh suggests by his principle of incompatibility: “The closer
one looks at a real-world problem, the fuzzier becomes the solution,” and thus, im-
precision and complexity are correlated [1]. Complexity is inversely related to the
understanding we can have of a problem or system. When little complexity is pre-
sented, closed-loop forms are enough to describe the systems. More complex systems
need methods such as neural networks that can reduce some uncertainty. When sys-
tems are complex enough that only few numerical data exist and the majority of this
information is vague, fuzzy reasoning can be used for manipulating this information.

2.2 Industrial Applications

The imprecision in fuzzy models is generally quite high. However, when precision is
apparent, fuzzy systems are less efficient than more precise algorithms in providing

P. Ponce-Cruz, F. D. Ramirez-Figueroa, Intelligent Control Systems with LabVIEW™ 9
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us with the best understanding of the system. In the following examples, we explain
how many industries have taken advantage of the fuzzy theory [2].

Example 2.1. Mitsubishi manufactures a fuzzy air conditioner. While conventional
air conditioners use on/off controllers that work and stop working based on a range
of temperatures, the Mitsubishi machine takes advantage of fuzzy rules; the ma-
chine operates smoother as a result. The machine becomes mistreated by sudden
changes of state, more consistent room temperatures are achieved, and less energy
is consumed. These were first released in 1989. ut
Example 2.2. Fisher, Sanyo, Panasonic, and Canon make fuzzy video cameras.
These have a digital image stabilizer to remove hand jitter, and the video camera
can determine the best focus and lightning. Fuzzy decision making is used to control
these actions. The present image is compared with the previous frame in memory,
stationary objects are detected, and its shift coordinates are computed. This shift is
subtracted from the image to compensate for the hand jitter. ut
Example 2.3. Fujitec and Toshiba have a fuzzy scheme that evaluates the passenger
traffic and the elevator variables to determine car announcement and stopping time.
This helps reduce the waiting time and improves the efficiency and reliability of the
systems. The patent for this type of system was issued in 1998. ut
Example 2.4. The automotive industry has also taken advantage of the theory. Nis-
san has had an anti-lock braking system since 1997 that senses wheel speed, road
conditions, and driving pattern, and the fuzzy ABS determines the braking action,
with skid control [3]. ut
Example 2.5. Since 1988 Hitachi has turned over the control of the Sendai subway
system to a fuzzy system. It has reduced the judgment on errors in acceleration and
braking by 70%. The Ministry of International Trade and Industry estimates that in
1992 Japan produced about $2 billion worth of fuzzy products. US and European
companies still lag far behind. The market of products is enormous, ranging from
fuzzy toasters to fuzzy golf diagnostic systems. ut

2.3 Background

Prof. Lotfi A. Zadeh introduced the seminal paper on fuzzy sets in 1965 [4]. Since
then, many developments have taken place in different parts of the world. Since the
1970s Japanese researchers have been the primary force in the implementation of
fuzzy theory and now have thousands of patents in the area.

The world response to fuzzy logic has been varied. On the one hand, western
cultures are mired with the yes or no, guilty or not guilty, of the binary Aristotelian
logic world and their interpretation of the fuzziness causes a conflict because they
are given a negative connotation. On the other hand, Eastern cultures easily ac-
commodate the concept of fuzziness because it does not imply disorganization and
imprecision in their languages as it does in English.
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2.3.1 Uncertainty in Information

The uncertainties in a problem should be carefully studied by engineers prior to se-
lecting an appropriate method to represent the uncertainty and to solve the problem.
Fuzzy sets provide a way that is very similar to the human reasoning system. In
universities most of the material taught in engineering classes is based on the pre-
sumption that knowledge is deterministic. Then when students graduate and enter
“the real world,” they fear that they will forget the correct formula.

However, one must realize that all information contains a certain degree of un-
certainty. Uncertainty can arise from many factors, such as complexity, randomness,
ignorance, or imprecision. We all use vague information and imprecision to solve
problems. Hence, our computational methods should be able to represent and ma-
nipulate fuzzy and statistical uncertainties.

2.3.2 Concept of Fuzziness

In our everyday language we use a great deal of vagueness and imprecision, that can
also be called fuzziness. We are concerned with how we can represent and manipu-
late inferences with this kind of information. Some examples are: a person’s size is
tall, and their age is classified as young.

Terms such as tall and young are fuzzy because they cannot be crisply defined,
although as humans we use this information to make decisions. When we want to
classify a person as tall or young it is impossible to decide if the person is in a set or
not. By giving a degree of pertinence to the subset, no information is lost when the
classification is made.

2.4 Foundations of Fuzzy Set Theory

Mathematical foundations of fuzzy logic rest in fuzzy set theory, which can be seen
as a generalization of classical set theory. Fuzziness is a language concept; its main
strength is its vagueness using symbols and defining them.

Consider a set of tables in a lobby. In classical set theory we would ask: Is it
a table? And we would have only two answers, yes or no. If we code yes with a 1
and no with a 0 then we would have the pair of answers as {0,1}. At the end we
would collect all the elements with 1 and have the set of tables in the lobby.

We may then ask what objects in the lobby can function as a table? We could
answer that tables, boxes, desks, among others can function as a table. The set is
not uniquely defined, and it all depends on what we mean by the word function.
Words like this have many shades of meaning and depend on the circumstances
of the situation. Thus, we may say that the set of objects in the lobby that can
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function as a table is a fuzzy set, because we have not crisply defined the cri-
teria to define the membership of an element to the set. Objects such as tables,
desks, boxes may function as a table with a certain degree, although the fuzziness
is a feature of their representation in symbols and is normally a property of models,
or languages.

2.4.1 Fuzzy Sets

In 1965 Prof. Lotfi A. Zadeh introduced fuzzy sets, where many degrees of mem-
bership are allowed, and indicated with a number between 0 and 1. The point of
departure for fuzzy sets is simply the generalization of the valuation set from the
pair of numbers {0,1} to all the numbers in [0,1]. This is called a membership func-
tion and is denoted as �A .x/, and in this way we have fuzzy sets.

Membership functions are mathematical tools for indicating flexible membership
to a set, modeling and quantifying the meaning of symbols. They can represent
a subjective notion of a vague class, such as chairs in a room, size of people, and
performance among others. Commonly there are two ways to denote a fuzzy set. If
X is the universe of discourse, and x is a particular element of X , then a fuzzy set
A defined on X may be written as a collection of ordered pairs:

A D f.x; �A .x//g x 2 X ; (2.1)

where each pair .x; �A .x// is a singleton. In a crisp set singletons are only x, but
in fuzzy sets it is two things: x and �A .x/. For example, the set A may be the
collection of the following integers, as in (2.2):

A D f.1; 1:0/; .3; 0:7/; .5; 0:3/g : (2.2)

Thus, the second element of A expresses that 3 belongs to A to a degree of 0.7.
The support set of a fuzzy set A is the set of elements that have a membership
function different from zero. Alternative notations for the fuzzy sets are summa-
tions or integrals to indicate the union of the fuzzy set, depending if the uni-
verse of discourse is discrete or continuous. The notation of a fuzzy set with
a discrete universe of discourse is A D P

xi2X �A .xi /=xi which is the union
of all the singletons. For a continuous universe of discourse we write the set as
A D R

X
�A .x/=x, where the integral sign indicates the union of all �A .x/=x

singletons.
Now we will show how to create a triangular membership function using the

Intelligent Control Toolkit for LabVIEW (ICTL). This triangular function must be
between 0 and 3 with the maximum point at 1.5; we can do this using the triang-
function.vi. To evaluate and graph the function we must use a 1D array that can be
easily created using the rampVector.vi. We can find this VI (as shown in Fig. 2.1)
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Fig. 2.1 Fuzzy function location on the ICTL

Fig. 2.2 Construction and
evaluation of a triangular
membership

in the fuzzy logic palette of the toolkit. The block diagram of the program that
will create and evaluate the triangular function is shown in Fig. 2.2. The triangular
function will be as the one shown in Fig. 2.3.
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Fig. 2.3 Triangular membership function created with the ICTL

2.4.2 Boolean Operations and Terms

The two-valued logic is called Boolean algebra, named after George Boole, a nine-
teenth century mathematician and logician. In this algebra there are only three basic
logic operations: NOT :, AND ^ and OR _. It is also common to use the symbols:
�, �, and C. Boolean algebraic formulas can be described by a truth table, where all
the variables in the formula are the inputs and the value of the formula is the output.
Conversely, a formula can be written from a truth table. For example the truth table
for AND is shown in Table 2.1.

Complex Boolean formulas can be reduced to simpler equivalent ones using
some properties. It is important to note that some rules of the Boolean algebra are
the same as those of the ordinary algebra (e. g., a � 0 D 0, a � 1 D a), but others
are quite different (a C 1 D 1). Table 2.2 shows the most important properties of
Boolean algebra.

Table 2.1 Truth table of the AND Boolean operation

x y x ^ y

0 0 0
0 1 0
1 0 0
1 1 1



2.4 Foundations of Fuzzy Set Theory 15

Table 2.2 The most important properties of Boolean algebra

Laws Formulas

Characteristics a � 0D 0, a � 1D a, aC 0 D a and aC 1 D 1

Commutative law aC b D b C a and a � b D b � a
Associative law aC bC c D aC .bC c/ D .aC b/C c

a � b � c D a � .b � c/ D .a � b/ � c
Distributive law a � .bC c/ D a � b C a � c
Idempotence a � a D a and aC a D a

Negation a D a

Inclusion a � a D 0 and aC a D 1

Absorptive law aC a � b D a and a � .aC b/D a

Reflective law aCa �b D aCb, a �.aC b/D a �b, and a �bCa �b �c D a �bCb �c
Consistency a � bC a � b D a and .aC b/ �

�
aC b

�
D a

De Morgan’s law a � b D aC b and aC b D a � b

2.4.3 Fuzzy Operations and Terms

Operations such as intersection and union are defined through the min .^/ and max
._/ operators, which are analogous to product and sum in algebra. Formally the
min and max of an element, where � stands for “by definition,” are denoted by
(2.3) and (2.4):

�a ^ �b D min .�a; �b/ �
�

�a if and only if �a � �b

�b if and only if �a > �b
(2.3)

�a _ �b D max .�a; �b/ �
�

�a if and only if �a � �b

�b if and only if �a < �b
: (2.4)

The most important fuzzy operations are shown in Table 2.3. The following func-
tions in (2.5) are two fuzzy sets, a triangular and a bell-shaped membership function:

�triangle .x/ D
(

2.x�1/
7 I 1 � x � 9

2

� 2.x�8/
7 I 9

2 � x � 8
�bell .x/ D 1

1 C ˇ
ˇx�0:1

3

ˇ
ˇ6

: (2.5)

The diagrams for the membership functions can be found in Fig. 2.4, a union be-
tween the triangular and bell functions is shown in Fig. 2.5, and an intersection is
shown in Fig. 2.6. The bell function and the complement are shown in Fig. 2.7.
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Fig. 2.4 Diagram of triangular and bell membership functions

Fig. 2.5 Union of functions

Fig. 2.6 Intersection of sets
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Fig. 2.7 Bell and complement of the bell function

Table 2.3 The most important fuzzy operations

Empty fuzzy set It is empty if its membership
function is zero everywhere in
the universe of discourse.

A� ;
if �A .x/D 0;8x 2 X

Normal fuzzy set It is normal if there is at least
one element in the universe of
discourse where its membership
function equals one.

�A .xa/D 1

Union of two fuzzy sets The union of two fuzzy sets A
and B over the same universe
of discourse X is a fuzzy set
A[B in X with a membership
function which is the maximum
of the grades of membership of
every x and A and B:
This operation is related to the
OR operation in fuzzy logic:

�A[B .x/ � �A .x/ _
�B .x/

Intersection of fuzzy sets It is the minimum of the grades
of every x in X to the sets A
and B . The intersection of two
fuzzy sets is related to the AND.

�A\B .x/ � �A .x/ ^
�B .x/

Complement of a fuzzy set The complement of a fuzzy set
A is denoted as NA.

� NA .x/� 1��A .x/

Product of two fuzzy sets A �B denotes the product of two
fuzzy sets with a membership
function that equals the alge-
braic product of the membership
function A and B .

�A�B .x/ � �A .x/ �
�B .x/
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Table 2.3 (continued)

Power of a fuzzy set The ˇ power of A (Aˇ) has
the equivalence to linguistically
modify the set with VERY.

�Aˇ .x/� Œ�A .x/�
ˇ

Concentration Squaring the set is called con-
centration CON.

�CON.ˇ/ .x/� .�A .x//
2

Dilation Taking the square root is called
dilation or DIL.

�DIL.A/ .x/�p�A .x/

2.4.4 Properties of Fuzzy Sets

Fuzzy sets are useful in performing operations using membership functions. Proper-
ties listed in Table 2.4 are valid for crisp and fuzzy sets, although some are specific
for fuzzy sets only. Sets A, B , and C must be considered as defined over a common
universe of discourse X .

All of these properties can be expressed using the membership function of the
sets involved and the definitions of union, intersection and complement. De Mor-
gan’s law says that the intersection of the complement of two fuzzy sets equal the
complement of their union. There are also some properties not valid for fuzzy sets
such as the law of contradiction and the law of the excluded middle.

Table 2.4 The most important fuzzy properties

Double negation law
� NA� D A

Idempotency A[A D A A\A D A

Commutativity A\B D B \A A[B D B [A

Associative property .A[B/[C D A[ .B [C /
.A\B/\C D A\ .B \C /

Distributive property A [ .B \C / D .A[B/ \ .A[C / A \
.B [C /D .A\B/[ .A\C /

Absorption A\ .A[B/ D A
A[ .A\B/ D A

De Morgan’s laws A[B D A\B
A\B D A[B

2.4.5 Fuzzification

This process is mainly used to transform a crisp set to a fuzzy set, although it can
also be used to increase the fuzziness of a fuzzy set. A fuzzifier function F is used to
control the fuzziness of the set. As an example the fuzzy set A can be defined with
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Fig. 2.8 Diagram of the Bell-
Function.vi

Fig. 2.9 Different forms of bell membership functions

the function in (2.6):

�A .x/ D 1

1 C ˇ
ˇx�c

a

ˇ
ˇ2b

; (2.6)

where x is any positive real number, and the parameters a, b, c shape the form of
the bell membership function. The fuzzy set A can be written as:

A �
Z

x

"
1

1 C ˇ
ˇx�c

a

ˇ
ˇ2b

#

=x : (2.7)

This is an example of the bell function with different parameters using the ICTL. We
can use the Bell-Function.vi (shown in Fig. 2.8) to create the membership functions.
The a, b and c parameters can be changed and the form of the function will be
different. The membership functions are shown in Fig. 2.9. The code that generates
the membership functions is shown in Fig. 2.10. Basically, a 1D array is used to
evaluate each one of the bell functions and generate their different forms.

Example 2.6. The productivity of people can be modeled using a bell function. It
will increase depending on their age, then it will remain on the top for several
years and it will decrease when the person reaches a certain age. This model is
shown in the membership function (Triangular function with saturation) given in
Fig. 2.11. ut
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Fig. 2.10 Block diagram for the generation of bell membership functions
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Fig. 2.11 Productivity of people fuzzy model

Why do not we select a conventional triangular membership function? The answer
is because triangular functions reach their maximum at only one number and we are
trying to model a range in which the productivity reaches its maximum. Thus, if we
use triangular functions we would be representing the maximum of the productivity
for a certain age of people (Fig. 2.12).

We can use a shoulder function to model a process, where after a certain level, the
degree of membership remains the same (Fig. 2.13). We may want to model the level
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Fig. 2.12 Productivity of people modeled with a conventional triangular membership function
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Fig. 2.13 Productivity modeled with a shoulder function

of water in a tank, which gets full after a certain number of liters are poured into the
tank. Once we pass beyond that level, the degree of the level of water remains the
same; the same happens if the tank is completely drained.

2.4.6 Extension Principle

This is a mathematical tool used to extend crisp mathematical notions and opera-
tions to the fuzzy realm, by fuzzifying the parameters of a function, resulting in
computable fuzzy sets. Suppose that we have a function f that maps elements x1,
x2, : : :, xn of a universe of discourse X to another universe of discourse Y, and
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a fuzzy set A defined on the inputs of f in (2.8):

y1 D f .x1/

y2 D f .x2/

: : :

yn D f .xn/

A D �A .x1/=x1 C �A .x2/=x2 C � � � C �A .xn/ =xn : (2.8)

What could happen if the input of function f becomes fuzzy? Would the output be
fuzzy? The extension principle then tells us that there is a fuzzy output given by
(2.9):

B D f .B/ D �A .x1/=f .x1/ C �A .x2/=f .x2/ C � � � C �A .xn/ =f .xn/ ; (2.9)

where every single image of xi under f becomes fuzzy to a degree �A .xi /. Most
of the functions out there are many-to-one, meaning several x map the same y. We
then have to decide which of the two or more membership values we should take as
the membership value of the output. The extension principle says that the maximum
of the membership values of these elements of the fuzzy set A should be chosen
as the membership of the desired output. In the other case if no element x in X is
mapped to the output, then the membership value of the set B at the output is zero.

Example 2.7. Suppose that f .x/ D ax C b and a 2 A D f1; 2; 3g and b 2 B D
f2; 3; 5g with x D 6. Then f .x/ D 6A C B D f8; 15; 23g. ut
Example 2.8. Consider the following function y D F .s/ D �2s2 C 1 with domain
S D R and range Y D .�1; 1�. Suppose that Sf D Œ0; 2� is a fuzzy subset with the

1

1

-1

-1

1

10 2 s

R

y

fS

( ) 22 1F s s= − +

( )sμ

a b

Fig. 2.14a,b Extension principle example. a Function: F .s/ D �2s2 C 1. b Fuzzy membership
function of function F .s/D �2s2 C 1
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membership function shown in Fig. 2.14. The fuzzy subset Yf D F
�
Sf

�
is given

by (2.10):

Yf DF
�
Sf

� D F .Œ0; 2�/ D �2 Œ0; 2� � Œ0; 2� C 1

D � 2 Œ0; 4� C 1 D Œ�8; 0�

D Œ�7; 1� : (2.10)

The membership function �Yf
.s/ associated with Yf is determined as follows. Let

y run through from �7 to 1. For each y, find the corresponding s 2 Sf satisfying
y D F .s/, then �Yf

.s/ D sup
sWF .s/Dy

�Sf
.s/. It is clear that for any y 2 Œ�7; 1�,

there is always one s 2 Œ0; 2� satisfying y D F .s/ D �2s2 C 1. Therefore, it can
be easily verified that the membership function is the one shown in Fig. 2.15. ut

1

10 y7-

( )
fY yμ

Fig. 2.15 Resulting function when the extension principle is applied

2.4.7 Alpha Cuts

An alpha cut (˛-cut) is a crisp set of elements of A belonging to the fuzzy set to
a degree ˛. The ˛-cut of a fuzzy set A is the crisp set comprised of all elements x of
universe X for which the membership function of A is greater or equal to ˛ (2.11):

A˛ D fx 2 X j �A .x/ � ˛g ; (2.11)

where ˛ is in the range of 0 < ˛ � 1 and “j” stands for “such that.”

Example 2.9. A triangular membership function with an ˛-cut at 0.4 is shown in
Fig. 2.16. Figure 2.17 shows the block diagram. ut



24 2 Fuzzy Logic

Fig. 2.16 Triangular membership function with alpha cut of 0.4

Fig. 2.17 Block diagram of the triangular membership function with alpha cut of 0.4

2.4.8 The Resolution Principle

This principle offers a way of representing membership to fuzzy sets by means of
˛-cuts as (2.12) denotes:

�A .x/ D _
0<˛�1

Œ˛ � �A˛
.x/� : (2.12)

The maximum is taken over all ˛-cut , and the equation indicates that the mem-
bership function of A is the union of all ˛-cut , after each one of them has been
multiplied by ˛. Figure 2.18 shows these functions.

2.4.9 Fuzziness of Uncertainty

Many kinds of uncertainties arise in the real world and there are many techniques to
model them. Randomness is one kind, which is typically modeled using probability
theory. Outcomes are assumed to be observations of random variables and these
variables have distribution laws. Fuzziness manipulates uncertainty by dealing with
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Fig. 2.18 A triangular function composed of multiple alpha cuts

the boundaries of a set that are not clearly defined. The membership in such classes
is a matter of degree rather than certainty specified by fuzzy sets.

2.4.10 Possibility and Probability Theories

Possibility theory emphasizes the quantification of the semantic or meaning rather
than the measure of information. The theory of possibility is analogous and yet
conceptually different from the theory of probability. Probability is a measure of
frequency of occurrence of an event, which has a physical event basis. Thus, prob-
abilities have a physical event basis and are related to statistical experiments; they
are primarily used for quantifying how frequently a sample occurs in a population.

Possibility theory attempts to quantify how accurately a sample resembles a stereo-
type element of a population. This stereotype is a prototypical class of the population
and is known as a fuzzy set. This theory focuses more on the imprecision intrinsic in
the language, while probability theory focuses more on the uncertainty of events, in
the sense of its randomness in nature.

Probabilistic methods have been the instrument for quantifying equipment and
human reliability as well, in which two concepts are very important: the failure rate
and the error rate. Knowing these concepts and being able to control them leads
to the correct understanding and function of machines, which allows industries to
save money. But the correct estimation of these parameters requires a large amount
of data, thus in practice they are estimated by experts based on their engineering
judgment. Here is where fuzzy probabilities and possibilities can be used to model
these judgments.

Over the years a new concept has emerged: the possibility theory. It is known
as a fuzzy measure which is a function assigning a value between 0 and 1 to each
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crisp set of the universe of discourse that signifies the degree to which a particular
element belongs to a set. Sugeno introduced this concept in 1974 as part of his Ph.D.
dissertation.

Possibility measures are softer than probability measures, and their interpretation
is quite different. On the one hand, probability is used to quantify the frequency
of occurrence of an event, while on the other hand, possibility is used to quantify
the meaning of an event. Possibility is an upper bound of probability, i.e., a higher
degree of possibility does not imply a higher degree of probability. But if an event
is not possible, then it is not probable.

If we attempt to use both probability and possibility theories to describe a similar
thing, we can use the possibility/probability consistency principle as a guide. It will
help us draw the difference between the objectivistic use of probability measures
and subjectivist use of possibility or fuzzy measures.

2.5 Fuzzy Logic Theory

2.5.1 From Classical to Fuzzy Logic

Logic refers to the study of methods and principles of human reasoning. Classical
logic deals with propositions that are either true or false, where each proposition has
an opposite. Thus, classical logic deals with combinations of variables that represent
propositions. As each variable stands for a hypothetical proposition any combination
eventually assumes a truth value (true or false), but never in between the two.

The main content of classical logic is the study of rules that allow new logical
variables to be produced as functions of certain existing variables. An example of
a rule is shown in (2.13):

IF x1 is true AND x2 is false AND : : : AND xn is false THEN y is false : (2.13)

The fundamental assumption upon which the classical logic is based is that every
proposition is either true or false. Now it is well understood that many proposi-
tions are both partially true and false. Multi-valued logic was a first attempt to ex-
tend and generalize classical logic. In the 1930s an n-valued logic was invented by
Lukasiewicz [5], which even allowed for n D 1. More recently, it has been under-
stood that there exists an isomorphism between classical logic and crisp set theory
and similarly between Lukasiewicz and the fuzzy set theory.

2.5.2 Fuzzy Logic and Approximate Reasoning

The ultimate goal of fuzzy logic is to provide foundations for approximate reasoning
using imprecise propositions based on fuzzy set theory, similar to classical reasoning
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using precise propositions based on classical set theory. We will first recall how
classical reasoning works, where the following syllogism is an example of such
reasoning in linguistic terms:

1. Everyone who is 70 years old is old.
2. Hiram is 70 years old and Miriam is 39 years old.
3. Hiram is old but Miriam is not.

This is an example of a precise deductive inference that is correct in the sense of
classical two-valued logic. When the output variable represented by a logical for-
mula is always true regardless of the truth values of the inputs, it is called a tautol-
ogy. If it is the contrary then it is called a contradiction. Various tautologies can be
used for making deductive inferences, and are referred to as inference rules. They
can also be expressed with truth tables. The four most frequent are:

• Modus ponens: .a ^ .a ) b// ) b

• Modus tollens:
�
b ^ .a ) b/

�
) a

• Syllogism: .a ) b/ ^ .b ) c/ ) .a ) c/

• Contraposition: .a ) b/ )
�
b ) a

�
.

We will now consider an example of approximate reasoning in linguistic terms that
cannot be handled by the classical reasoning logic:

1. Everyone who is 60 to 70 years old is old, but very old if 71 years old or above;
everyone who is 20 to 39 is young but very young if 19 years old or below.

2. Hiram is 70 years old and Miriam is 39 years old.
3. Hiram is old but not very old; Miriam is young but not very young.

This is an example of approximate reasoning; in order to deal with an imprecise
inference, fuzzy logic can be employed. It allows imprecise linguistic terms such
as:

• Fuzzy predicates: rare, expensive, fast, high
• Fuzzy quantifiers: few, usually, much, little
• Fuzzy truth values: true, unlikely true, false, and mostly false.

To describe fuzzy logic mathematically, the following concepts and notations are
introduced. Let S be a universe set and A a fuzzy set associated with a membership
function �A.x/, x 2 S. If y D �A .x0/ is a point in Œ0; 1�, representing the truth
value of the proposition “x0 is a,” then the value for “x0 is not a” is:

y D �A .x0 is not a/ D 1 � �A .x0 is a/ D 1 � �A .x0/ D 1 � y : (2.14)

Consequently for n members x1; : : : ; xn in S with n corresponding truth values
yi D �A .xi / in Œ0; 1�, i D 1; : : : ; n by applying the extension principle, the truth
values of “not a” get defined as yi D 1 � yi , i D 1; : : : ; n. We note that n D 1 is
allowed. The same can be applied to other logical operators.

For instance in the modus ponens .a ^ .a ) b// ) b; the inference rule is:
IF �A .a/ > 0 AND �A .a ) b/ D min f1; 1 C � .b/ � � .a/g > 0 THEN
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�B .a/ > 0, where � > 0 is equivalent to � 2 .0; 1�. This fuzzy logic inference
can be interpreted as follows: IF a is true with a certain degree of confidence THEN
b is true with a certain degree of confidence. All of these degrees of confidence can
be quantitatively evaluated by using the corresponding membership functions. This
is a generalized modus ponens, called fuzzy modus ponens.

2.5.3 Fuzzy Relations

In fuzzy relations we consider n-tuples of elements that are related to a degree.
Just as the question of whether some element belongs to a set may be considered
a matter of degree, whether some elements are associated may also be a matter of
degree. Fuzzy relations are fuzzy sets defined on Cartesian products. While fuzzy
sets are defined on a single universe of discourse, fuzzy relations are defined on
higher-dimensional universes of discourse.

If S is the universe set and A and B are subsets, A � B will denote a product
set in the universe S � S. A fuzzy relation is a relation between elements of A and
elements of B , described by a membership function �AxB .a; b/, a 2 A and b 2 B .

A discrete example of a fuzzy relation can be defined as: S D R, A D fa1; a2; a3;

a4g D f1; 2; 3; 4g and B D fb1; b2; b3g D f0; 0:1; 2g. Table 2.5 defines a fuzzy
relation: a is considerably larger than b.

Table 2.5 Definition of relation: a is considerably larger than b

b1 b2 b3

a1 0.6 0.6 0.0
a2 0.8 0.7 0.0
a3 0.9 0.8 0.4
a4 1.0 0.9 0.5

2.5.4 Properties of Relations

Fuzzy relations can be represented in many ways: linguistically, listed, in a directed
graph, tabular, matrix, among others. Crisp and fuzzy relations are classified on
the basis of the mathematical properties they possess. In fuzzy relations, different
properties call for different requirements for the membership function of a relation.
The following are some of the properties that a relation can have:

• Reflexive. We say that a relation R is reflexive if any arbitrary element x in S for
which xRx is valid.
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• Anti-reflexive. A relation R is anti-reflexive if there is no x in S for which xRx

is valid.
• Symmetric. A relation R is symmetric if for all x and y in S , the following is

true: if xRy then yRx is valid also.
• Anti-symmetric. A relation R is anti-symmetric if for all x and y in S , when xRy

is valid and yRx is also valid, then x D y.
• Transitive. A relation R is called transitive if the following for all x; y; z in S : if

xRy is valid and yRx is also valid, then xRz is valid as well.
• Connected. A relation R is connected when for all x; y in S , the following is

true: if x ¤ y, then either xRy is valid or yRx is valid.
• Left unique. A relation R is left unique when for all x; y; z in S the following is

true: if xRy is valid and yRx is also valid, then we can infer that x D y.
• Right unique. A relation R is right unique when for all x; y; z in S the following

is true: if xRy is valid and xRz is also valid, then we can infer that y D z.
• Biunique. A relation R that is both left unique and right unique is called biunique.

2.5.5 Max–Min Composition

Let R; R1; R2; R3 be fuzzy relations defined on the same product set A � A and let
ı be the max–min composition operation for these fuzzy relations. Then:

1. The max–min composition is associative (2.15):

�
R1 ı R2� ı R3 D R1 ı �R2 ı R3� : (2.15)

2. If R1 is reflexive and is arbitrary R2 is arbitrary, then �R2 .a; b/ � �R1ıR2 .a; b/

for all a,b 2 A and �R2 .a; b/ � �R2ıR1 .a; b/ for all a, b 2 A.
3. If R1 and R2 are reflexive, then so are R1 ı R2 and R2 ı R1.
4. If R1 and R2 are symmetric and R1 ı R2 D R2 ı R1, then R1 ı R2 is symmetric.

In particular if R is symmetric then so is R ı R.
5. If R is symmetric and transitive, then �R .a; b/ � �R .a; a/ for all a, b 2 A.
6. If R is reflexive and transitive, then: R ı R D R.
7. If R1 and R2 are transitive and R1 ı R2 D R2 ı R1, then R1 ı R2 is transitive.

An example will show how the max–min composition works for the approximate
reasoning.

Example 2.10. Supposing that we have two relations R1 and R2, we want to com-
pute the max–min composition of the two, R D R1 ı R2. The relationships to be
composed are described in Tables 2.6 and 2.7. ut
To find the new relation we use the definition of the max–min composition: �R1ıR2

.x; z/ D _
y

Œ�R1 .x; y/ ^ �R2 .y; z/�. To make the composition we proceed in the

following manner. First, we fix x and z and vary y. Next we evaluate the following
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Table 2.6 Definition of relation: R1

R1 y1 y2 y3 y4 y5

x1 0.1 0.2 0.0 1.0 0.7
x2 0.3 0.5 0.0 0.2 1.0
x3 0.8 0.0 1.0 0.4 0.3

Table 2.7 Definition of relation: R2

R2 y1 y2 y3 y4

x1 0.9 0.0 0.3 0.4
x2 0.2 1.0 0.8 0.0
x3 0.8 0.0 0.7 1.0
x4 0.4 0.2 0.3 0.0
x5 0.0 1.0 0.0 0.8

pairs of minima, as shown in (2.16):

�R1 .x1; y1/ ^ �R2 .y1; z1/ D 0:1 ^ 0:9 D 0:1
:::

�R1 .x1; y5/ ^ �R2 .y5; z1/ D 0:7 ^ 0:0 D 0:0

: (2.16)

We take the maximum of these terms and obtain the value of the .x1; z1/ element of
the relation as in: �R1ıR2 .x1; z1/ D 0:1 _ 0:2 _ 0:0 _ 0:4 D 0:4. We then determine
the grades of membership for all other pairs and we finally obtain R as shown in
Table 2.8.

Table 2.8 Definition of min–max composition: R

R D R1 ıR2 z1 z2 z3 z4

x1 0.4 0.7 0.3 0.7
x2 0.3 1.0 0.5 0.8
x3 0.8 0.3 0.7 1.0

2.5.6 Max–Star Composition

Different operations can be used in place of min in the max–min composition while
still performing maximization. This type of composition is known as max–star or
max-�-composition. It is defined in (2.17). The integral sign in this equation is re-
placed by summation when the product is discrete.

R1 � R2 �
Z

X�Z

_
y

Œ�R1 .x; y/ � �R2 .y; z/�=.x; z/ : (2.17)
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2.5.7 Max–Average Composition

In a max–average composition the arithmetic sum divided by 2 is used. Thus the
max–average composition of R1 with R2 is a new relation R1 hCi R2 (2.18):

R1 hCi R2 �
Z

X�Z

_
y

�
1

2
.�R1 .x; y/ C �R2 .y; z//

�

=.x; z/ : (2.18)

2.6 Fuzzy Linguistic Descriptions

Fuzzy linguistic descriptions are often called fuzzy systems or linguistic descrip-
tions. They are formal representations of systems made through fuzzy IF–THEN
rules. A linguistic variable is a variable whose arguments are words modeled by
fuzzy sets, which are called fuzzy values. They are an alternative to analytical mod-
eling systems. Informal linguistic descriptions used by humans in daily life as well
as in the performance of skilled tasks are usually the starting point for the devel-
opment of fuzzy linguistic descriptions. Although fuzzy linguistic descriptions are
formulated in a human-like language, they have rigorous mathematical foundations
involving fuzzy sets and relations. The knowledge is encoded in a statement of the
form shown in (2.19):

IF (a set of conditions is satisfied) THEN (a set of consequences can be inferred) :

(2.19)
A general fuzzy IF–THEN rule has the form:

IF a1 is A1 AND : : : AND an is An THEN b is B : (2.20)

Using the fuzzy logic AND operation, this rule is implemented by:

�A .a1/ ^ : : : �An
.an/ ) �B .b/ : (2.21)

Reasoning with Fuzzy Rules

Fuzzy reasoning includes two distinct parts: evaluating the rule antecedent (IF part
of the rule) and implication or applying the result to the consequent, the THEN part
of the rule. While in classical rule-based systems if the antecedent of the rule is true,
then the consequent is also true, but in fuzzy systems the evaluation is different.
In fuzzy systems the antecedent is a fuzzy statement, this means all the rules fire
at some extent. If the antecedent is true in some degree of membership, then the
consequent is also true in some degree.
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Example 2.11. Consider two fuzzy sets, tall men and heavy men represented in
Fig. 2.19. These fuzzy sets provide the basis for a weight estimation model. The
model is based on a relationship between a man’s height and his weight, which can
be expressed with the following rule: IF height is tall, THEN weight is heavy. The
value of the output or the membership grade of the rule consequent can be estimated
directly from a corresponding membership grade in the antecedent. Fuzzy rules can
have multiple antecedents, as the consequent of the rule, which can also include
multiple parts. ut
In general, fuzzy expert systems incorporate not one but several rules that describe
expert knowledge. The output of each rule is a fuzzy set, but usually we need to
obtain a single number representing the expert system output, the crisp solution. To
obtain a single crisp output a fuzzy expert system first aggregates all output fuzzy
sets into a single output fuzzy set, and then defuzzifies the resulting set into a single
number.

Fig. 2.19a,b Fuzzy sets. a Tall men. b Heavy men
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2.7 The Fuzzy Logic Controller

With traditional sets an element either belongs to the set or does not belong to
the set {0,1}, while in fuzzy sets the degree to which the element belongs to
the set is analyzed and it is called the membership degree, giving values in the
range [0,1], where 1 indicates that the element belongs completely to the set. The
fuzzy logic controllers (FLC) make a non-linear mapping between the input and
the output using membership functions and linguistic rules (normally in the form
if__then__).

In order to use a FLC, knowledge is needed and this can be represented as two
different types:

1. Objective information is what can be somehow quantifiable by mathematical
models and equations.

2. Subjective information is represented with linguistic rules and design require-
ments.

2.7.1 Linguistic Variables

Just like in human thinking, in fuzzy logic systems (FLS) linguistic variables are
utilized to give a “value” to the element, some examples are much, tall, cold, etc.
FLS require the linguistic variables in relation to their numeric values, their quan-
tification and the connections between variables and the possible implications.

2.7.2 Membership Functions

In FLS the membership functions are utilized to find the degree of membership of
the element in a given set.

2.7.3 Rules Evaluation

The rules used in the FLS are of the IF–THEN type, for example, IF x1 is big
THEN y1 is small. To define the rules you need an expert, or you must be able to
extract the information from a mathematic formula. The main elements of a FLC
are fuzzification, rules evaluation, and defuzzification, as shown in Fig. 2.20.

Fuzzification Rules Evaluation
if...then...
if...then...

Defuzzification

Fig. 2.20 Elements of the FLC
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2.7.4 Mamdani Fuzzy Controller

The Mamdani is one kind of fuzzy controller. This section gives an introduction to
the Mamdani fuzzy controller.

2.7.5 Structure

This controller consists of three main parts: fuzzification, rules evaluation and de-
fuzzification. The inputs have to be crisp values in order to allow the fuzzification
using membership functions, and the outputs of this controller are also crisp values.
This controller is shown in Fig. 2.21.

FuzzificationCrisp
Inputs

Crisp
Outputs

Defuzzification
Center of Sums

Rules
If - Then

Inference
Engine

Membership Functions

Fig. 2.21 Mamdani block diagram

2.7.6 Fuzzification

For mapping the crisp values to fuzzy ones, you have to evaluate their membership
degree using membership functions. With this you get one fuzzy value for each crisp
input.

An example is presented in Fig. 2.22 where � .a/ is the membership value, and
the crisp values are a0.

a b c d

1

0

( )0a aμ

( )0b aμ

0a

Fig. 2.22 Membership functions (input)
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2.7.7 Rules Evaluation

After getting the membership values of the inputs, they are evaluated using IF–
THEN rules: IF a is x AND b is y AND c is z THEN w, where a, b and c are the
crisp inputs, x, y and z are the fuzzy clusters to which the inputs may correspond,
and w is the output fuzzy cluster used to defuzzify. To be able to obtain the fuzzy
values of the outputs, the system has to use an inference engine. The min–max
composition is used which takes the minimum of the premises and the maximum of
the consequences.

2.7.8 Defuzzification

To defuzzify the outputs we use the center of sums method. In this method we take
the output from each contributing rule, and then we add them. The center of sums
is one of the most popular methods for defuzzificating because it is very easy to
implement and gives good results. With (2.22) we get the crisp value of the outputs,
and Fig. 2.23 shows the graphical discrete representation.

u� D
PN

iD1 ui �PN
iD1 �Ak

.ui /
PN
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kD1 �Ak

.ui /
: (2.22)

Fig. 2.23 Membership func-
tions (output) a
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2.7.9 Tsukamoto Fuzzy Controller

Tsukamoto controllers are like the Mamdani controllers but with monotonic input
and output membership functions. A monotonic function is a function that preserves
the given order. In other words, it increases or decreases, and if its first derivative
(needs not be continuous) does not change in sign.
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2.7.10 Takagi–Sugeno Fuzzy Controller

The Takagi–Sugeno is another kind of fuzzy controller; the following gives an
introduction to this kind of controller. The main difference in Sugeno type is in
the defuzzificatio stage. In this case we do not use membership functions any-
more.

2.7.11 Structure

This controller consists of three main parts: fuzzification, rules evaluation and de-
fuzzification (see Fig. 2.24). The inputs have to be crisp values in order to allow the
fuzzification to use membership functions, and the outputs of this controller are also
crisp values.

FuzzificationCrisp
Inputs

Crisp
OutputsCrisp Outputs

f=g(x.y)
Rules

If - Then

Inference
Engine

Membership Functions

Fig. 2.24 Takagi–Sugeno diagram

2.7.12 Fuzzification

In order to transform the crisp values into fuzzy ones, you have to evaluate those
using membership functions. With this you get one fuzzy value for each crisp input.
The membership functions could be either conventional ones or non-conventional,
the selection of the membership function depends on the specific problem. As result
the first step in fuzzy logic is to select the best membership function for describing
the problem.

2.7.13 Rules Evaluation

After getting the fuzzy values of the inputs, they are evaluated using IF–THEN rules:
IF a is x AND b is y AND c is z THEN u D f .a,b,c/, where a, b and c are the crisp
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inputs, x, y and z are the fuzzy clusters to which the inputs could correspond, and
u = f .a,b,c/ is a polynomial. Instead of evaluating a, b and c, we evaluate in the
polynomial the number of the fired rules.

These polynomials are calculated using regressions in order to adjust them to
the desired output functions. For the inference system we use the minimum of the
premises, but because the consequence of the rule is not fuzzy, the maximum of the
consequences could not be used.

2.7.14 Crisp Outputs

To defuzzify take the product of the sum of the minimum of the antecedents of
every rule fired times the value of the polynomial evaluated in that fired rule, all this
divided by the sum of the minimum of the antecedents of every rule fired:

Output D
Pr

i�1 Œmin.�ix;y;z/u.a; b; c/�
Pr

i�1 min.�ix;y;z/
: (2.23)

2.8 Implementation of the Fuzzy Logic Controllers
Using the Intelligent Control Toolkit for LabVIEW

We will now create a FLC using the Intelligent Control Toolkit for LabVIEW
(ICTL). The fuzzy logic VI includes the following parts:

• Mamdani controller.
• Takagi–Sugeno controller.
• Tsukamoto controller.

It is important to state that there are no limitations on the number of linguistic vari-
ables and linguistic terms, nor on the type of membership functions supported. For
a better understanding of how to use the FLC VIs, the implementation of FLCs in
a mobile robot will be explained step-by-step in the following.

A robot named Wheel sends via Bluetooth® the distance measured by right, cen-
ter, and left ultrasonic distance sensors. It has two servomotors that receive 0 for
no movement, 1 to go clockwise, and 2 for counterclockwise, as in the diagram in
Fig. 2.25.

The robot is driven by a BASIC Stamp® controller, the Bluetooth antenna is an
EmbeddedBlue™ Transceiver from Parallax, and the two servos and three Ping)))™
sensors are also from Parallax. For the computer we use a Belkin Bluetooth antenna.
Figure 2.26 plots the information flow.
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Fig. 2.25 Three-wheeled
robot parts

Sensors

Motored wheels

Support wheel

Bluetooth antenna

Processor

Fig. 2.26 Three-wheeled
robot diagram

Ultrasonic
Sensor

Ultrasonic
Sensor

Ultrasonic
Sensor

Left Motor

Right Motor

Basic
Stamp PSC

LabVIEW

Bluetooth Communications

2.8.1 Fuzzification

We know that the controller for the robot receives three inputs (left, center, and
right) and generates two outputs (sLeft and sRight). With this information we can
calculate the number of rules, which is 32 D 9.
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Fig. 2.27 Function VI blocks

Fig. 2.28 Block diagram of
the membership function

Next thing we need to do is generate the fuzzy membership functions for the
fuzzification of the inputs; as stated before, we will be using two membership func-
tions with the linguistic values of close and far. We can choose from different forms
for the functions in the fuzzification process, as shown in Fig. 2.27.

For our controller we will choose the triangular function, called triang-function.
vi, because we will only have two membership functions per input (Fig. 2.28). We
will use them as shoulder triangular functions, and because our robot is small and
fast we will set the close cluster within the limits of 0 to 20 cm, and the far cluster
limits will be 10 to 30 cm. Because of the programming of the triangular function,
the decreasing or increasing of the functions will begin just between the limit where
the membership value starts to be zero a and the final limit where it starts to be one
b. If a < b the function will be a left shoulder function, otherwise it will be a right
shoulder.

Now we need to create a 2D array from the results obtained from the fuzzification
process. Figure 2.29 shows the wiring part of the code, and Fig. 2.30 shows the
wiring process. Basically for each input an array with their values must be created
and then a second array must be created containing all the input information.
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Fig. 2.29 Complete block diagram of the membership function

Fig. 2.30 Block diagram until
rules evaluation

2.8.2 Rules Evaluation

With this we will have the information of the membership value for left in the row
of the 2D array, the second row will have the information for center, and the third
array will have the information for the right array. For each row, the first value will
be for the close set, and the second value will be for the far set (Table 2.9). This
will be pretty much like creating a table for the evaluation of the inputs. There is
a VI that will automatically generate this table for us: it is the input combinatory
generator and we must feed it the number of inputs and membership functions.

This way we have generated the premise part of the rule: IF left is close AND center
is close AND right is close, THEN: : : Now we need to use the premise_evaluation.vi
to obtain the min operation for each rule. Sometimes we will want to consider that
a rule is activated only if its min value is above a certain level; that is why we have
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Table 2.9 Rules base

Input from the sensors
Left Center Right

Close Close Close
Close Close Far
Close Far Close
Close Far Far
Far Close Close
Far Close Far
Far Far Close
Far Far Far

set the “value” input from the premise VI to 0.1. This part of the code is shown in
Fig. 2.30.

Now we need to generate the combinations that will make the robot move around.
We have previously established that 2 D move forward, 1 D move backward, and
0 D stopped. With this in mind we can generate a table with the consequences of
the rules. In order to obtain the values we must generate 1D arrays for the defuzzi-
fication of each output (Table 2.10).

Table 2.10 Rules of outputs for the Takagi–Sugeno and Tsukamoto controllers

Output for the wheels
Action Left

wheel
Right
wheel

Go backward 2 2
Turn right back 2 0
Go front 1 1
Turn right 2 1
Turn left back 0 2
Go backward 2 2
Turn left 1 2
Go front 1 1

2.8.3 Defuzzification: Crisp Outputs

In order to obtain the crisp outputs for a controller using singleton output func-
tions or a Takagi–Sugeno inference, we must use the defuzzifier_constants.vi that
will help us obtain the final outputs sLeft and sRight. In case we would like to
use equations instead of constants, we would need to evaluate these equations and
pass the constant value to the defuzzifier_constants.vi; this way we are able to
use any kind of equation. Figure 2.31 shows the complete block diagram of Takagi
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Fig. 2.31 Complete block diagram of the Takagi–Sugeno and Tsukamoto controllers

Table 2.11 Rules set for the Takagi–Sugeno and Tsukamoto controllers

Input from the sensors Output for the wheels
Left Center Right Action Left wheel Right wheel

Close Close Close Go backward 2 2
Close Close Far Turn right back 2 0
Close Far Close Go front 1 1
Close Far Far Turn right 2 1
Far Close Close Turn left back 0 2
Far Close Far Go backward 2 2
Far Far Close Turn left 1 2
Far Far Far Go front 1 1

and Tsukamoto controllers. This way we have created a controller that will behave
according to the set of rules shown in Table 2.11.

If we decide to create a Mamdani controller, the premise part is pretty much the
same, only the consequences part will have to change, i.e., instead of using singletons
we will use three triangular functions for the defuzzification process called stopped,
forward, and backward. We have to use the general_defuzzifier_mamdani.vi for
each output that we would like to generate. This VI will take the number of mem-
bership functions that will be used for defuzzification, the same set created with the
desired output for each fired rule and the result of the evaluation of the premises, and
it will return the max for each of the desired sets. With this information we will then
have to create the defuzzifying functions and pass them their respective max value. Fi-
nally we have to combine the results to obtain the desired outputs. Figure 2.32 shows
the complete block diagram of the Mamdani controller. This controller will behave
according to the set of rules shown in Table 2.12.
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Fig. 2.32 Complete block diagram of a Mamdani controller

Table 2.12 Rules set for the Mamdani controller

Input from the sensors Output for the wheels
Left Center Right Action Left wheel Right wheel

Close Close Close Go backward Backward Backward
Close Close Far Turn right back Backward Stopped
Close Far Close Go front Forward Forward
Close Far Far Turn right Backward Forward
Far Close Close Turn left back Stopped Backward
Far Close Far Go backward Backward Backward
Far Far Close Turn left Forward Backward
Far Far Far Go front Forward Forward

2.9 Classical Control Example

Here fuzzy logic is used to control the speed of the discrete model of a direct current
motor. A fuzzy proportional derivative controller was used along with the model of
a direct current motor whose transfer function in continuous time is shown in (2.24):

G .s/ D 2:445

s2 C 6:846s
: (2.24)

The model of the direct current motor was digitalized with a period of 0:1 s and
converted to difference equations, then programmed as shown in Fig. 2.33. The
diagram for the closed-loop controller is shown in Fig. 2.34.

The error and the difference of the error is calculated and sent to the fuzzy con-
troller that will create the appropriate signal to control the speed reference of the
motor. The motor will then react to the control signals of the controller and the
speed will be measured and receive feedback.
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Fig. 2.33 Digital model of the
plant in difference equation
form

Fig. 2.34 Closed-loop diagram of the controller

Fig. 2.35 Membership functions for fuzzification and defuzzification

The proportional derivative fuzzy controller is a Mamdani controller with two
inputs and one output. Three membership functions for fuzzification and defuzzifi-
cation are used of triangular form, as shown in Fig. 2.35. The diagram of the fuzzy
controller is shown and explained in Fig. 2.36.
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Fuzzification of the ErrorLimits of Error M. F.

Limits of D. Error M. F. Fuzzification of the D. Error

Evaluation of the Rules

Defuzzification

Fig. 2.36 Block diagram of fuzzy controller

The fuzzy controller works like this:

1. The limits of the membership functions are set.
2. Then the error and the difference error are evaluated in three triangular mem-

bership functions; their outputs are then gathered in an array to be used.
3. After that the process of evaluation of the rules is complete.
4. Finally three triangular membership functions are used to defuzzify the output

of the controller.

The code for the complete program is shown in Fig. 2.37.

Fig. 2.37 Block diagram of the closed-loop
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Chapter 3
Artificial Neural Networks

3.1 Introduction

The human brain is like an information processing machine. Information can be
seen as signals coming from senses, which then runs through the nervous system.
The brain consists of around 100 to 500 billion neurons. These neurons form clusters
and networks. Depending on their targets, neurons can be organized hierarchically
or layered.

In this chapter we present the basic model of the neuron in order to understand
how neural networks work. Then, we offer the classification of these models by their
structures and their learning procedure. Finally, we describe several neural models
with their respective learning procedures. Some examples are given throughout the
chapter.

Biologically, we can find two types of cell groups in the nervous system: the glial
and nervous cells. The nervous cells, also called neurons, are organized in a func-
tional syncytium way. This is a complex distribution, which can be imagined as
a computer network or a telephone system network. Neurons communicate through
an area called a synapse. This region is a contact point of two neurons.

The main components of the neurons are the axon and the dendrite. Each neuron
has only one axon, which is divided into multiple exits on a later stage. The number
of dendrites may vary and each of them is an extension of the neuron’s body, which
increases the number of entries of information collection. The axon is the only exit
point of the neuron and can be up to 120 mm long.

In a simplified way, a neuron functions in a way where none, one or many elec-
trical impulses are received through its dendrites from axons from other neurons.
Those electrical impulses are added in order to have a final potential. This potential
must exceed a certain level to have the neuron generate an electrical impulse on its
axon. If the level required is not met, then the axon of that neuron does not fire its
axon.

In other words, neurons can be divided into dendrites, which are channels of in-
put signals, a core cell that processes all these signals, and axons that transmit output

P. Ponce-Cruz, F. D. Ramirez-Figueroa, Intelligent Control Systems with LabVIEW™ 47
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Fig. 3.1 Schematic drawing
of a biological neuron

signals of the processed information from dendrites. Figure 3.1 shows a schematic
drawing of a neuron.

Why would we want to look inside neurons? The human brain processes infor-
mation and can react from distinct stimuli. Moreover, the brain can generalize this
information to act when new situations are presented. If we are looking inside neu-
rons, we are in a sense searching the notion of how the human brain learns and
generalizes information.

At this point, neurons can be modeled as follows. Dendrites are connected to
some axons from other neurons, but some links are reinforced when typical actions
occur. However, links are not very strong when these channels are not used. There-
fore, input signals are weighted by this reinforcement (positively or negatively).
All these signals are then summarized and the core cell processes that information.
This process is modeled mathematically by an activation function. Finally, the re-
sult is transmitted by axons and the output signal of the neuron goes to other cells.
Figure 3.2 shows this neural model.

The activation function is the characterization of the neurons’ activities when in-
put signals stimulate them. Then, the activation function can be any kind of function
that describes the neural processes. However, the most common are sigmoidal func-

Fig. 3.2 Neural model
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Fig. 3.3a–c Graphs of typical activation functions. a Sigmoidal function: fs.x/ D 2
ex C1 � 1.

b Hyperbolic tangent function: ftanh.x/D tanh.x/. c Linear function: flinear.x/D x

tion, linear function, and hyperbolic tangent function. Figure 3.3 shows the graphical
form of these functions.

These functions can be implemented in LabVIEW with the Intelligent Control
Toolkit in the following way. First, open the ICTL and select the ANN (artificial
neural network) section. We can find all the possibilities in ANN as seen in Figs. 3.4
and 3.5. The activation functions are in ICTL 	 ANN 	 Backpropagation 	 NN

Fig. 3.4 Accessing ANNs library in the ICTL
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Fig. 3.5 ANNs library in
ICTL

Fig. 3.6 Block diagram of the Sigmoidal function

Methods 	 activationFunction.vi. For instance, we want to plot the sigmoidal
function. Then, we can create a VI like that in Fig. 3.6.

At first, we have a rampVector.vi that creates an array of elements with values
initialized at �5 and runs with a stepsize of 0.1 through to 5. The activation function
VI must be a real-valued matrix. This is the reason why the vector is transformed
into a matrix. Also, the output of this VI is a matrix. Then, we need to get all values
in the first column. Finally, the array in the interval Œ�5; 5� is plotted against values
f .x/ for all x 2 Œ�5; 5�.

The graph resulting from this process is seen in Fig. 3.3. If we want to plot
the other function, the only thing we need to do is change the label Sigmoidal to
Hyperbolic Tangent in order to plot the hyperbolic tangent function, or User Defined
if we need a linear function. Figure 3.7 shows these labels in the block diagram.

Example 3.1. Let X D f0:4; �0:5; 0:2; �0:7g be the input vector and W D f0:1; 0:6;

0:2; 0:3g be the weight vector. Suppose a sigmoidal activation function is the pro-
cessing of the core cell. (a) What is the value of the output signal? (b) What is the
value of the output signal if we change the activation function in (3.1), known as
symmetrical hard limiting?

f .s/ D
� �1 s � 0

1 s > 0
(3.1)

Fig. 3.7 Labels in the activa-
tion function VI
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Fig. 3.8 Calculations of the output signal

Solution. (a) We need to calculate the inner product of the vector X and W . Then,
the real-value is evaluated in the sigmoidal activation function.

y D fsigmoidal

 
X

i

wi xi D .0:4/.0:1/ C .�0:5/.0:6/ C .0:2/.0:2/ C .�0:7/.0:3/

D � 0:43

!

D �0:21 (3.2)

This operation can be implemented in LabVIEW as follows. First, we need the NN
(neural network) VI located in the path ICTL 	 ANNs 	 Backpropagation 	 NN
Methods 	 neuralNetwork.vi. Then, we create three real-valued matrices as seen
in Fig. 3.8. The block diagram is shown in Fig. 3.9. In view of this block diagram, we
need some parameters that will be explained later. At the moment, we are interested
in connecting the X-matrix in the inputs connector and W-matrix in the weights
connector. The label for the activation function is Sigmoidal in this example but can
be any other label treated before. The condition 1 in the L � 1 connector comes
from the fact that we are mapping a neural network with four inputs to one output.
Then, the number of layers L is 2 and by the condition L � 1 we get the number 1
in the blue square. The 1D array f4; 1g specifies the number of neurons per layer,
the input layer (four) and the output layer (one). At the globalOutputs the y-matrix
is connected.

From the previous block diagram of Fig. 3.9 mixed with the block diagram of
Fig. 3.6, the connections in Fig. 3.10 give the graph of the sigmoidal function evalu-
ated at �0.43 pictured in Fig. 3.11. Note the connection comes from the neuralNet-

Fig. 3.9 Block diagram of
Example 3.1
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Fig. 3.10 Block diagram for plotting the graph in Fig. 3.11

Fig. 3.11 The value �0.43
evaluated at a Sigmoidal
function

work.vi at the sumOut pin. Actually, this value is the inner product or the sum of the
linear combination between X and W . This real value is then evaluated at the acti-
vation function. Therefore, this is the x-coordinate of the activation function and the
y-coordinate is the globalOutput. Of course, these two out-connectors are in matrix
form. We need to extract the first value at the position .0; 0/ in these matrices. This
is the reason we use the matrix-to-array transformation and the index array nodes.
The last block is an initialize array that creates a 1D array of m elements (sizing
from any vector of the sigmoidal block diagram plot) with the value �0.43 for the
sumOut connection and the value �0.21 for the globalOutput link. Finally, we cre-
ate an array of clusters to plot the activation function in the interval Œ�5; 5� and the
actual value of that function.

(b) The inner product is the same as the previous one, �0.43. Then, the activation
function is evaluated when this value is fired. So, the output value becomes �1. This
is represented in the graph in Fig. 3.12. The activation function for the symmetric
hard limiting can be accessed in the path ICTL 	 ANNs 	 Perceptron 	 Trans-
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Fig. 3.12 The value �0.43
evaluated at the symmetrical
hard limiting activation func-
tion

Fig. 3.13 Block diagram of the plot in Fig. 3.12

fer F. 	 signum.vi. The block diagram of Fig. 3.13 shows the next explanation. In
this diagram, we see the activation function below the NN VI. It consists of the array
in the interval Œ�5; 5� and inside the for-loop is the symmetric hard limiting func-
tion. Of course, the decision outside the neuralNetwork.vi comes from the sumOut
and evaluates this value in a symmetric hard limiting case. ut
Neurons communicate between themselves and form a neural network. If we use
the mathematical neural model, then we can create an ANN. The basic idea behind
ANNs is to simulate the behavior of the human brain in order to define an artificial
computation and solve several problems. The concept of an ANN introduces a sim-
ple form of biological neurons and their interactions, passing information through
the links. That information is essentially transformed in a computational way by
mathematical models and algorithms.

Neural networks have the following properties:

1. Able to learn data collection;
2. Able to generalize information;
3. Able to recognize patterns;
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4. Filtering signals;
5. Classifying data;
6. Is a massively parallel distributed processor;
7. Predicting and approximating functions;
8. Universal approximators.

Considering their properties and applications, ANNs can be classified as: supervised
networks, unsupervised networks, competitive or self-organizing networks, and re-
current networks.

As seen above, ANNs are used to generalize information, but first need to be
trained. Training is the process where neural models find the weights of each neuron.
There are several methods of training like the backpropagation algorithm used in
feed-forward networks. The training procedure is actually derived from the need to
minimize errors.

For example, if we are trying to find the weights in a supervised network. Then, we
have to have at least some input and output data samples. With this data, by different
methods of training, ANNs measure the error between the actual output of the neural
network and the desired output. The minimization of error is the target of every train-
ing procedure. If it can be found (the minimum error) then the weights that produce
this minimization are the optimal weights that enable the trained neural network to
be ready for use. Some applications in which ANNs have been used are (general and
detailed information found in [1–14]):
Analysis in forest industry. This application was developed by O. Simula, J. Vesanto,
P. Vasara and R.R. Helminen in Finland. The core of the problem is to cluster the
pulp and paper mills of the world in order to determine how these resources are
valued in the market. In other words, executives want to know the competitiveness
of their packages coming from the forest industry. This clustering was solved with
a Kohonen network system analysis.
Detection of aircraft in synthetic aperture radar (SAR) images. This application in-
volves real-time systems and image recognition in a vision field. The main idea is
to detect aircrafts in images known as SAR and in this case they are color aerial
photographs. A multi-layer neural network perceptron was used to determine the
contrast and correlation parameters in the image, to improve background discrimi-
nation and register the RGB bands in the images. This application was developed by
A. Filippidis, L.C. Jain and N.M. Martin from Australia. They use a fuzzy reasoning
in order to benefit more from the advantages of artificial intelligence techniques. In
this case, neural networks were used in order to design the inside of the fuzzy con-
trollers.
Fingerprint classification. In Turkey, U. Halici, A. Erol and G. Ongun developed
a fingerprint classification with neural networks. This approach was designed in
1999 and the idea was to recognize fingerprints. This is a typical application using
ANNs. Some people use multi-layer neural networks and others, as in this case, use
self-organizing maps. Scheduling communication systems. In the Institute of Infor-
matics and Telecommunications in Italy, S. Cavalieri and O. Mirabella developed
a multi-layer neural network system to optimize a scheduling in real-time commu-
nication systems.
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Controlling engine generators. In 2004, S. Weifeng and T. Tianhao developed a con-
troller for a marine diesel engine generator [2]. The purpose was to implement
a controller that could modify its parameters to encourage the generator with op-
timal behavior. They used neural networks and a typical PID controller structure for
this application.

3.2 Artificial Neural Network Classification

Neural models are used in several problems, but there are typically five main prob-
lems in which ANNs are accepted (Table 3.1). In addition to biological neurons,
ANNs have different structures depending on the task that they are trying to solve.
On one hand, neural models have different structures and then, those can be clas-
sified in the two categories below. Figure 3.14 summarizes the classification of the
ANN by their structures and training procedures.
Feed-forward networks. These neural models use the input signals that flow only in
the direction of the output signals. Single and multi-layer neural networks are typical
examples of that structure. Output signals are consequences of the input signals and
the weights involved.
Feed-back networks. This structure is similar to the last one but some neurons have
loop signals, that is, some of the output signals come back to the same neuron or neu-
rons placed before the actual one. Output signals are the result of the non-transient
response of the neurons excited by input signals.

On the other hand, neural models are classified by their learning procedure. There
are three fundamental types of models, as described in the following:

1. Supervised networks. When we have some data collection that we really know,
then we can train a neural network based on this data. Input and output signals
are imposed and the weights of the structure can be found.

Table 3.1 Main tasks that ANNs solve

Task Description

Function approximation Linear and non-linear functions can be approximated by neural net-
works. Then, these are used as fitting functions.

Classification 1. Data classification. Neural networks assign data to a specific class
or subset defined. Useful for finding patterns.

2. Signal classification. Time series data is classified into subsets or
classes. Useful for identifying objects.

Unsupervised clustering Specifies order in data. Creates clusters of data in unknown classes.
Forecasting Neural networks are used to predict the next values of a time series.
Control systems Function approximation, classification, unsupervised clustering and

forecasting are characteristics that control systems uses. Then, ANNs
are used in modeling and analyzing control systems.
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Fig. 3.14a–e Classification of ANNs. a Feed-forward network. b Feed-back network. c Supervised
network. d Unsupervised network. e Competitive or self-organizing network

2. Unsupervised networks. In contrast, when we do not have any information, this
type of neural model is used to find patterns in the input space in order to train
it. An example of this neural model is the Hebbian network.

3. Competitive or self-organizing networks. In addition to unsupervised networks,
no information is used to train the structure. However, in this case, neurons fight
for a dedicated response by specific input data from the input space. Kohonen
maps are a typical example.

3.3 Artificial Neural Networks

The human brain adapts its neurons in order to solve the problem presented. In
these terms, neural networks shape different architectures or arrays of their neu-
rons. For different problems, there are different structures or models. In this section,
we explain the basis of several models such as the perceptron, multi-layer neural
networks, trigonometric neural networks, Hebbian networks, Kohonen maps and
Bayesian networks. It will be useful to introduce their training methods as well.
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3.3.1 Perceptron

Perceptron or threshold neuron is the simplest form of the biological neuron model-
ing. This kind of neuron has input signals and they are weighted. Then, the activa-
tion function decides and the output signal is offered. The main point of this type of
neuron is its activation function modeled as a threshold function like that in (3.3).
Perceptron is very useful to classify data. As an example, consider the data shown
in Table 3.2.

f .s/ D y D
�

0 s < 0
1 s � 0

(3.3)

We want to classify the input vector X D fx1; x2g as shown by the target y. This
example is very simple and simulates the AND operator. Suppose then that weights
are W D f1; 1g (so-called weight vector) and the activation function is like that
given in (3.3). The neural network used is a perceptron. What are the output values
for each sample of the input vector at this time?
Create a new VI. In this VI we need a real-value matrix for the input vector X and
two 1D arrays. One of these arrays is for the weight vector W and the other is for the
output signal y. Then, a for-loop is located in order to scan the X-matrix row by row.
Each row of the X-matrix with the weight vector is an inner product implemented
with the sum_weight_inputs.vi located at ICTL 	 ANNs 	 Perceptron 	 Neu-
ron Parts 	 sum_weight_inputs.vi. The xi connector is for the row vector of the
X-matrix, the wij is for the weight array and the bias pin in this moment gets the
value 0. The explanation of this parameter is given below. After that, the activation
function is evaluated at the sum of the linear combination.

We can find this activation function in the path ICTL 	 ANNs 	 Perceptron
	 Transfer F. 	 threshold.vi. The threshold connector is used to define in which
value the function is discontinued. Values above this threshold are 1 and values
below this one are 0. Finally, these values are stored in the output array. Figure 3.15
shows the block diagram and Fig. 3.16 shows the front panel.

Table 3.2 Data for perceptron example

x1 x2 y

0.2 0.2 0
0.2 0.8 0
0.8 0.2 0
0.8 0.8 1

Fig. 3.15 Block diagram for evaluating a perceptron
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Fig. 3.16 Calculations for the initial state of the perceptron learning procedure

Fig. 3.17 Example of the trained perceptron network emulating the AND operator

As we can see, the output signals do not coincide with the values that we want.
In the following, the training will be performed as a supervised network. Taking
the desired output value y and the actual output signal y0, the error function can be
determined as in (3.4):

E D y � y0 : (3.4)

The rule of updating the weights is in given as:

wnew D wold C �EX ; (3.5)

where wnew is the updated weight, wold is the actual weight, � is the learning rate,
a constant between 0 and 1 that is used to adjust how fast learning is, and X D
fx1; x2g for this example and in general X D fx1; x2; : : :; xng is the input vector.
This rule applies to every single weight participating in the neuron. Continuing with
the example for LabVIEW, assume the learning rate is � D 0:3, then the updating
weights are as in Fig. 3.17.

This example can be found in ICTL 	 ANNs 	 Perceptron 	 Example_Percep
tron.vi. At this moment we know the X-matrix or the 2D array, the desired Y -array.
The parameter etha is the learning rate, and UError is the error that we want to have
between the desired output signal and the current output for the perceptron. To draw
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the plot, the interval is ŒXinit; XEnd�. The weight array and the bias are selected,
initializing randomly. Finally, the Trained Parameters are the values found by the
learning procedure.

In the second block of Fig. 3.17, we find the test panel. In this panel we can eval-
uate any point X D fx1; x2g and see how the perceptron classifies it. The Boolean
LED is on only when a solution is found. Otherwise, it is off. The third panel in
Fig. 3.17 shows the graph for this example. The red line shows how the neural net-
work classifies points. Any point below this line is classified as 0 and all the other
values above this line are classified as 1.
About the bias. In the last example, the training of the perceptron has an additional
element called bias. This is an input coefficient that preserves the action of trans-
lating the red line displayed by the weights (it is the cross line that separates the
elements). If no bias were found at the neuron, the red line can only move around
the zero-point. Bias is used to translate this red line to another place that makes pos-
sible the classification of the elements in the input space. As with input signals, bias
has its own weight. Arbitrarily, the bias value is considered as one unit. Therefore,
bias in the previous example is interpreted as the weight of the unitary value.

This can be viewed in the 2D space. Suppose, X D fx1; x2g and W D fw1; w2g.
Then, the linear combination is done by:

y D f

 
X

i

xi wi C b

!

D f .x1w1 C x2w2 C b/ : (3.6)

Then,

f .s/ D
�

0 if � b > x1w1 C x2w2

1 if � b � x1w1 C x2w2
: (3.7)

Then, fw1; w2g form a basis of the output signal. By this fact, W is orthogonal to the
input vector X D fx1; x2g. Finally, if the inner product of these two vectors is zero
then we can know that the equations form a boundary line for the decision process.
In fact, the boundary line is:

x1w1 C x2w2 C b D 0 : (3.8)

Rearranging the elements, the equation becomes:

x1w1 C x2w2 D �b : (3.9)

Then, by linear algebra we know that the last equation is the expression of a plane,
with distance from the origin equal to �b. So, b is in fact the deterministic value that
translates the line boundary more closely or further away from the zero-point. The
angle for this line between the x-axis is determined by the vector W . In general, the
line boundary is plotted by:

x1w1 C : : : C xnwn D �b : (3.10)

We can make perceptron networks with the condition that neurons have an activation
function like that found in (3.3). By increasing the number of perceptron neurons,
a better classification of non-linear elements is done. In this case, neurons form
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Fig. 3.18 Representation of
a feed-forward multi-layer
neural network

layers. Each layer is connected to the next one if the network is feed-forward. In
another case, layers can be connected to their preceding or succeeding layers. The
first layer in known as the input layer, the last one is the output layer, where the
intermediate layers are called hidden layers (Fig. 3.18).

The algorithm for training a feed-forward perceptron neural network is presented
in the following:

Algorithm 3.1 Learning procedure of perceptron nets

Step 1 Determine a data collection of the input/output signals (xi , yi ).
Generate random values of the weights wi .
Initialize the time t D 0.

Step 2 Evaluate perceptron with the inputs xi and obtain the output signals y0

i
.

Step 3 Calculate the error E with (3.4).
Step 4 If error E D 0 for every i then STOP.

Else, update weight values with (3.5), t  t C 1 and go to Step 2.

3.3.2 Multi-layer Neural Network

This neural model is quite similar to the perceptron network. However, the activation
function is not a unit step. In this ANN, neurons have any number of activation
functions; the only restriction is that functions must be continuous in the entire
domain.

3.3.2.1 ADALINE

The easiest neural network is the adaptive linear neuron (ADALINE). This is the
first model that uses a linear activation function like f .s/ D s. In other words, the
inner product of the input and weight vectors is the output signal of the neuron.
More precisely, the function is as in (3.11):

y D f .s/ D s D w0 C
nX

iD1

wixi ; (3.11)
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where w0 is the bias weight. Thus, as with the previous networks, this neural net-
work needs to be trained. The training of this neural model is called the delta rule.
In this case, we assume one input x to a neuron. Thus, considering an ADALINE,
the error is measured as:

E D y � y0 D y � w1x : (3.12)

Looking for the square of the error, we might have

e D 1

2
.y � w1x/2 : (3.13)

Trying to minimize the error is the same as the derivative of the error with respect
to the weight, as shown in (3.14):

de

dw
D �Ex : (3.14)

Thus, this derivative tells us in which direction the error increases faster. The weight
change must then be proportional and negative to this derivative. Therefore, �w D
�Ex, where � is the learning rate. Extending the updating rule of the weights to
a multi-input neuron is show in (3.15):

wtC1
0 D wt

0 C �E

wtC1
i D wt

i C �Exi : (3.15)

A supervised ADALINE network is used if a threshold is placed at the output signal.
This kind of neural network is known as a linear multi-layer neural network without
saturation of the activation function.

3.3.2.2 General Neural Network

ADALINE is a linear neural network by its activation function. However, in some
cases, this activation function is not the desirable one. Other functions are then used,
for example, the sigmoidal or the hyperbolic tangent functions. These functions are
shown in Fig. 3.3.

In this way, the delta rule cannot be used to train the neural network. Therefore
another algorithm is used based on the gradient of the error, called the backpropa-
gation algorithm. We need a pair of input/output signals to train the neural model.
This type of ANN is then classified as supervised and feed-forward, because the
input signals go from the beginning to the end.

When we are attempting to find the error between the desired value and the actual
value, only the error at the last layer (or the output layer) is measured. Therefore,
the idea behind the backpropagation algorithm is to retro-propagate the error from
the output layer to the input layer through hidden layers. This ensures that a kind of
proportional error is preserved in each neuron. The updating of the weights can then
be done by a variation or delta error, proportional to a learning rate.
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First, we divide the process into two structures. One is for the values at the last
layer (output layer) and the other values are from the hidden layers to the input
layers. In these terms, the updating rule of the output weights is

�vj i D
X

j

�
��ı

q
j z

q
i

�
; (3.16)

where vj i is the weight linking the i th actual neuron with the j th neuron in the
previous layer, and q is the number of the sample data. The other variables are given
in (3.17):

z
q
i D f

 
nX

kD0

wikx
q

k

!

: (3.17)

This value is the input to the hidden neuron i in (3.18):

ı
q
j D

�
o

q
j � y

q
j

�
f 0
 

mX

kD1

vjkz
q

k

!

: (3.18)

Computations of the last equations come from the delta rule. We also need to un-
derstand that in hidden layers there are no desired values to compare. Then, we
propagate the error to the last layers in order to know how neurons produce the final
error. These values are computed by:

�qwik D ��
@Eq

@wik

D ��
@Eq

@o
q
i

@o
q
i

@wik

; (3.19)

where o
q
i is the output of the i th hidden neuron. Then, o

q
i D z

q
i and

@o
q
i

@wik

D f 0
 

nX

hD0

wihx
q

h

!

x
q

k
: (3.20)

Now, we obtain the value

ı
q
i D @Eq

@o
q
i

D
gX

jD1

@Eq

@o
q
j

@o
q
j

@o
q
i

; (3.21)

which is related to the hidden layer. Observe that j is the element of the j th output
neuron. Finally, we already know the values @Eq

@o
q

j

and the last expression is:

ı
q
i D f 0i

 
nX

kD0

wikx
q

k

!
pX

jD1

vij ı
q
j : (3.22)

Algorithm 3.2 shows the backpropagation learning procedure for a two-layer neural
network (an input layer, one hidden layer, and the output layer). This algorithm can



3.3 Artificial Neural Networks 63

be easily extended to more than one hidden layer. The last net is called a multi-
layer or n-layer feed-forward neural network. Backpropagation can be thought of
as a generalization of the delta rule and can be used instead when ADALINE is
implemented.

Algorithm 3.2 Backpropagation

Step 1 Select a learning rate value �.
Determine a data collection of q samples of inputs x and outputs y.
Generate random values of weights wik where i specifies the i th neuron
in the actual layer and k is the kth neuron of the previous layer.
Initialize the time t D 0.

Step 2 Evaluate the neural network and obtain the output values oi .
Step 3 Calculate the error as Eq.w/D 1

2

Pp

iD1 .o
q

i
� y

q

i
/2.

Step 4 Calculate the delta values of the output layer:
ı

q

i
D f 0

i
.
Pn

kD1 vikzk/.o
q

i
� y

q

i
/.

Calculate the delta values at the hidden layer as:
ı

q

i
D f 0

i
.
Pn

kD0 wikx
q

k
/
Pp

j D1 vij ı
q

j
.

Step 5 Determine the change of weights as �w
q

ik
D ��ı

q

i
o

q

k
and update the

parameters with the next rule w
q

ik
 w

q

ik
C�w

q

ik
.

Step 6 If E � e min where e min is the minimum error expected then STOP.
Else, t  t C 1 and go to Step 2.

Example 3.2. Consider the points in R2 as in Table 3.3. We need to classify them
into two clusters by a three-layer feed-forward neural network (with one hidden
layer). The last column of the data represents the target f0; 1g of each cluster. Con-
sider the learning rate to be 0.1.

Table 3.3 Data points in R2

Point X-coordinate Y -coordinate Cluster

1 1 2 0
2 2 3 0
3 1 1 0
4 1 3 0
5 2 2 0
6 6 6 1
7 7 6 1
8 7 5 1
9 8 6 1

10 8 5 1

Solution. First, we have the input layer with two neurons; one for the x-coordinate
and the second one for the y-coordinate. The output layer is simply a neuron that
must be in the domain Œ0; 1�. For this example we consider a two-neuron hidden
layer (actually, there is no analytical way to define the number of hidden neurons).
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Table 3.4 Randomly initialized weights

Weights between the
first and second layers

Weights between the
second and third layers

0.0278 0.0004
0.0148 0.0025
0.0199
0.0322

We need to consider the following parameters:

Activation function: Sigmoidal

Learning rate: 0:1

Number of layers: 3

Number of neurons per layer: 2 � 2 � 1

Other parameters that we need to consider are related to the stop criterion:

Maximum number of iterations: 1000

Minimum error or energy: 0:001

Minimum tolerance of error: 0:0001

In fact, the input training data are the two columns of coordinates. The output train-
ing data is the last column of cluster targets. The last step before the algorithm will
train the net is to initialize the weights randomly. Consider as an example, the ran-
domizing of values in Table 3.4.

According to the above parameters, we are able to run the backpropagation algo-
rithm implemented in LabVIEW. Go to the path ICTL 	 ANNs 	 Backpropaga-
tion 	 Example_Backpropagation.vi. In the front panel, we can see the window
shown in Fig. 3.19. Desired input values must be in the form of (3.23):

X D

2

6
4

x1
1 : : : xm

1
:::

: : :
:::

x1
n : : : xm

n

3

7
5 ; (3.23)

where xj D fxj
1 ; : : : ; x

j
n gT is the column vector of the j th sample with n elements.

In our example, xj D fXj ; Y j g has two elements. Of course, we have 10 samples of
that data, so j D 1; : : : ; 10. The desired input data in the matrix looks like Fig. 3.20.
The desired output data must also be in the same form as (3.23).

The term yj D fyj
1 ; : : : ; y

j
r gT is the column of the j th sample with r elements. In

our example, we haveyj D fC j g, where C is the corresponding value of the cluster.
In fact, we need exactly j D 1; : : : ; 10 terms to solve the problem. This matrix
looks like Fig. 3.21.

In the function value we will select Sigmoidal. In addition, L is the number of
layers in the neural network. We treated a three-layer neural network, so L D 3. The
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Fig. 3.19 Front panel of the backpropagation algorithm

Fig. 3.20 Desired input data

Fig. 3.21 Desired output data

n-vector is an array in which each of the elements represents the number of neurons
per layer. Indeed, we have to write the array n-vector D f2; 2; 1g. Finally, maxIter is
the maximum number of iterations we want to wait until the best answer is found.
minEnergy is the minimum error between the desired output and the actual values
derived from the neural network.

Tolerance is the variable that controls the minimum change in error that we want
in the training procedure. Then, if one of the three last values is reached, the proce-
dure will stop. We can use crisp parameters of fuzzy parameters to train the network,
where eta is the learning rate and alpha is the momentum parameter.

As seen in Fig. 3.19, the right window displays the result. Weights values will
appear until the process is finished and there are the coefficients of the trained neural
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Table 3.5 Trained weights

Weights between the
first and second layers

Weights between the
second and third layers

0.3822 1.8230
�0.1860 1.8710

0.3840
�0.1882

network. The errorGraph shows the decrease in the error value when the actual
output values are compared with the desired output values. The real-valued number
appears in the error indicator. Finally, the iteration value corresponds to the number
of iterations completed at the moment.

With those details, the algorithm is implemented and the training network (or the
weights) is shown in Table 3.5 (done in 184 iterations and reaching the local minima
at 0.1719). The front panel of the algorithm looks like Fig. 3.22.

In order to understand what this training has implemented, there are graphs of
this classification. In Fig. 3.23, the first graph is the data collection, and the second
graph shows the clusters. If we see a part of the block diagram in Fig. 3.24, only the
input data is used in the three-layer neural network. To show that this neural network
can generalize, other data different from the training collection is used. Looking at
Fig. 3.25, we see the data close to the training zero-cluster. ut

When the learning rate is not selected correctly, the solution might be trapped in
local minima. In other words, minimization of the error is not reached. This can be

Fig. 3.22 Implementation of the backpropagation algorithm
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Fig. 3.23 The left side shows a data collection, and the right shows the classification of that data

Fig. 3.24 Partial view of the block diagram in classification data, showing the use of the neural
network

Fig. 3.25 Generalization of the data classification
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partially solved if the learning rate is decreased, but time grows considerably. One
solution is the modification of the backpropagation algorithm by adding a momen-
tum coefficient. This is used to try to get the tending of the solution in the weight
space. This means that the solution is trying to find and follow the tendency of
the previous updating weights. That modification is summarized in Algorithm 3.3,
which is a rephrased version of Algorithm 3.2 with the new value.

Algorithm 3.3 Backpropagation with momentum parameter

Step 1 Select a learning rate value � and momentum parameter ˛.
Determine a data collection of q samples of inputs x and outputs y.
Generate random values of weights wik where i specifies the i th neuron
in the actual layer and k is the kth neuron of the previous layer.
Initialize the time t D 0.

Step 2 Evaluate the neural network and obtain the output values oi .
Step 3 Calculate the error as Eq.w/D 1

2
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iD1 .o
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i � y
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i /2.
Step 4 Calculate the delta values of the output layer:
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Calculate the delta values at the hidden layer as:
ı

q

i
D f 0

i
.
Pn

kD0 wikx
q

k /
Pp

j D1 vij ı
q

j
.
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where wact is the actual weight and wlastis the

previous weight.
Step 6 If E � e min where e min is the minimum error expected then STOP.

Else, t  t C 1 and go to Step 2.

Example 3.3. Train a three-layer feed-forward neural network using a 0.7 momen-
tum parameter value and all data used in Example 3.2.
Solution. We present the final results in Table 3.6 and the algorithm implemented in
Fig. 3.26. We find the number of iterations to be 123 and the local minima 0.1602,
with a momentum parameter of 0.7. This minimizes in some way the number of
iterations (decreasing the time processing at the learning procedure) and the local
minima is smaller than when no momentum parameter is used. ut

Table 3.6 Trained weights for feed-forward network

Weights between the
first and second layers

Weights between the
second and third layers

0.3822 1.8230
�0.1860 1.8710

0.3840
�0.1882
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Fig. 3.26 Implementation of the backpropagation algorithm with momentum parameter

3.3.2.3 Fuzzy Parameters in the Backpropagation Algorithm

In this section we combine the knowledge about fuzzy logic and ANNs. In this way,
the main idea is to control the parameters of learning rate and momentum in order
to get fuzzy values and then evaluate the optimal values for these parameters.

We first provide the fuzzy controllers for the two parameters at the same time.
As we know from Chap. 2 on fuzzy logic, we evaluate the error and the change in
the error coefficients from the backpropagation algorithm. That is, after evaluating
the error in the algorithm, this value enters the fuzzy controller . The change in the
error is the difference between the actual error value and the last error evaluated.

Input membership functions are represented as the normalized domain drawn in
Figs. 3.27 and 3.28. Fuzzy sets are low positive (LP), medium positive (MP), and
high positive (HP) for error value E . In contrast, fuzzy sets for change in error CE
are low negative (LN), medium negative (MN), and high negative (HN). Figure 3.29
reports the fuzzy membership functions of change parameter �ˇ with fuzzy sets
low negative (LN), zero (ZE), and low positive (LP). Tables 3.7 and 3.8 have the
fuzzy associated matrices (FAM) to imply the fuzzy rules for the learning rate and
momentum parameter, respectively.

In order to access the fuzzy parameters, go to the path ICTL 	 ANNs 	 Back-
propagation 	 Example_Backpropagation.vi. As with previous examples, we can
obtain better results with these fuzzy parameters. Configure the settings of this VI ex-
cept for the learning rate and momentum parameter. Switch on the Fuzzy-Parameter
button and run the VI. Figure 3.30 shows the window running this configuration.
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LP MP

a

HP

Eη

μ(Eη)

LP

0 0.2 0.4 0.6 0.8

MP HP

Eα

μ(Eα)

b

Fig. 3.27a,b Input membership functions of error. a Error in learning parameter. b Error in mo-
mentum parameter

HN MN LN

CEβ

μ(CEβ)

Fig. 3.28 Input membership functions of change in error

Table 3.7 Rules for changing the learning rate

EnCE LN MN HN

LP ZE ZE LN
MP LP ZE ZE
HP LP LP ZE
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Fig. 3.29 Output membership
functions of change in the
parameter selected ZE LPLN

μ(Δβ)

Δβ

Table 3.8 Rules for changing the momentum parameter

EnCE LN MN HN

LP ZE LN LN
MP ZE LN LN
HP LP ZE ZE

Fig. 3.30 Backpropagation algorithm with parameter adjusted using fuzzy logic

3.3.3 Trigonometric Neural Networks

In the previous neural networks, we saw that supervised and feed-forward neural
models need to be trained by iterative methods. This situation increases the time of
convergence of the learning procedure. In this section, we introduce a trigonometric-
based neural network.
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First, as we know, a Fourier series is used to approximate a periodic function
f .t/ with constant period T . It is well known that any function can be approximated
by a Fourier series, and so this type of network is used for periodic signals.

Consider a function as in (3.24):

f .t/ D1

2
a0 C a1 cos !0t C a2 cos 2!0t C : : : C b1sen!0t C b2sen2!0t C : : :

f .t/ D1

2
a0 C

1X

nD1

Œan cos.n!0t/ C bnsen.n!0t/�

f .t/ DC0 C
1X

nD1

Cn cos.n!0t � �n/ : (3.24)

Looking at the neural networks described above, this series is very similar to the
mathematical neural model when the activation function is linear:

y D x0 C
nX

iD1

wixi : (3.25)

Comparing (3.24) and (3.25), we see that they are very close in form, except for the
infinite terms of the sum. However, this is not a disadvantage. On the contrary, if we
truncate the sum to N terms, then we produce an error in the approximation. This is
clearly helpful in neural networks because we do not need them to be memorized.

Thus, a trigonometric neural network (T-ANN) is a Fourier-based net . Fig-
ure 3.30 shows this type of neural model. As we might suppose, T-ANN are able
to compute with cosine functions or with sine functions. This selection is arbi-
trary.

Considering its learning procedure, a Fourier series can be solved analytically by
employing least square estimates (LSE). This process means that we want to find
coefficients that preserve the minimum value of the function

S.a0; a1; : : :; an/ D
mX

iD1

"

yi �
 

1

2
a0 C

1X

kD1

ak cos .k!0xi /

!#2

; (3.26)

where !0 is the fundamental frequency of the series, xi is the i th input data and
yi is the i th value of the desired output. Then, we need the first derivative of that
function, which is:

ıS

ıap

D
mX

iD1

"

yi �
 

1

2
a0 C

1X

kD1

ak cos .k!0xi /

!

cos .n!0x/

#

D 0; 8p � 1 :

(3.27)
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This is a system of linear equations that can be viewed as:
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Then, we can solve this system for all coefficients. At this point, p is the num-
ber of neurons that we want to use in the T-ANN . In this way, if we have a data
collection of the input/output desired values, then we can compute analytically the
coefficients of the series or what is the same, the weights of the net. Algorithm 3.4
is proposed for training T-ANNs ; eventually, this procedure can be computed with
the backpropagation algorithm as well.

Algorithm 3.4 T-ANNs

Step 1 Determine input/output desired samples.
Specify the number of neurons N .

Step 2 Evaluate weights Ci by LSE.
Step 3 STOP.

Example 3.4. Approximate the function f .x/ D x2 C 3 in the interval Œ0; 5� with:
(a) 5 neurons, (b) 10 neurons, (c) 25 neurons. Compare them with the real function.
Solution. We need to train a T-ANN and then evaluate this function in the interval
Œ0; 5�. First, we access the VI that trains a T-ANN following the path ICTL 	 ANNs
	 T-ANN 	 entrenaRed.vi. This VI needs the x-vector coordinate, y-vector co-
ordinate and the number of neurons that the network will have.

In these terms, we have to create an array of elements between Œ0; 5� and we do
this with a stepsize of 0.1, by the rampVector.vi. This array evaluates the function
x2 C 3 with the program inside the for-loop in Fig. 3.31. Then, the array com-
ing from the rampVector.vi is connected to the x pin of the entrenaRed.vi, and
the array coming from the evaluated x-vector is connected to the y pin. Actually,
the pin n is available for the number of neurons. Then, we create a control vari-
able for neurons because we need to train the network with a different number of
neurons.
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Fig. 3.31 T-ANN model

Fig. 3.32 Block diagram of the training and evaluating T-ANN

Fig. 3.33 Block diagram for plotting the evaluating T-ANN against the real function

This VI is then connected to another VI that returns the values of a T-ANN. This
last node is found in the path ICTL 	 ANNs 	 T-ANN 	 Arr_Eval_T-ANN.vi.
This receives the coefficients that were the result of the previous VI named T-ANN
Coeff pin connector. The Fund Freq connector is referred to the fundamental fre-
quency of the trigonometric series !0. This value is calculated in the entrenaRed.vi.
The last pin connector is referred to as Values. This pin is a 1D array with the values
in the x-coordinate, which we want to evaluate the neural network. The result of this
VI is the output signal of the T-ANN by the pin T-ANN Eval. The block diagram of
this procedure is given in Fig. 3.32.



3.3 Artificial Neural Networks 75

Fig. 3.34 Approximation function with T-ANN with 5 neurons

Fig. 3.35 Approximation function with T-ANN with 10 neurons
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Fig. 3.36 Approximation function with T-ANN with 25 neurons

To compare the result with the real value we create a cluster of two arrays, one
comes from the rampVector.vi and the other comes from the output of the for-
loop. Figure 3.33 shows the complete block diagram. As seen in Figs. 3.34–3.36,
the larger the number of neurons, the better the approximation. To generate each of
these graphs, we only vary the value of neurons. ut

3.3.3.1 Hebbian Neural Networks

A Hebbian neural network is an unsupervised and competitive net. As unsupervised
networks, these only have information about the input space, and their training is
based on the fact that the weights store the information. Thus, the weights can only
be reinforced if the input stimulus provides sufficient output values. In this way,
weights only change proportionally to the output signals. By this fact, neurons com-
pete to become a dedicated reaction of part of the input. Hebbian neural networks
are then considered as the first self-organizing nets .

The learning procedure is based on the following statement pronounced by Hebb:
As A becomes more efficient at stimulating B during training, A sensitizes B to its
stimulus, and the weight on the connection from A to B increases during training as
B becomes sensitized to A.
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Steven Grossberg then developed a mathematical model for this sentence, given
in (3.29):

wnew
AB D wold

AB C ˇxBxA ; (3.29)

where wAB is the weight between the interaction of two neurons A and B , xi is the
output signal of the i th neuron, and xBxA is the so-called Hebbian learning term.
Algorithm 3.5 introduces the Hebbian learning procedure.

Algorithm 3.5 Hebbian learning procedure

Step 1 Determine the input space.
Specify the number of iterations iterNum and initialize t D 0.
Generate small random values of weights wi .

Step 2 Evaluate the Hebbian neural network and obtain the outputs xi .
Step 3 Apply the updating rule (3.29).
Step 4 If t D iterNum then STOP.

Else, go to Step 2.

These types of neural models are good when no desired output values are known.
Hebbian learning can be applied in multi-layer structures as well as feed-forward
and feed-back networks.

Example 3.5. There are points in the following data. Suppose that this data is some
input space. Apply Algorithm 3.5 with a forgotten factor of 0.1 to train a Hebbian
network that approximates the data presented in Table 3.9 and Fig. 3.37.

Table 3.9 Data points for the Hebbian example

X-coordinate Y -coordinate

0 1
1 0
2 2
3 0
4 3.4
5 0.2

Solution. We consider a 0.1 of the learning rate value. The forgotten factor ˛ is
applied with the following equation:

wnew
AB D wold

AB � ˛wold
AB C ˇxBxA : (3.30)

We go to the path ICTL 	 ANNs 	 Hebbian 	 Hebbian.vi. This VI has input
connectors of the y-coordinate array, called x pin, which is the array of the desired
values, the forgotten factor a, the learning rate value b, and the Iterations variable.
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Fig. 3.37 Input training data

Fig. 3.38 Block diagram for training a Hebbian network

This last value is selected in order to perform the training procedure by this number
of cycles. The output of this VI is the weight vector, which is the y-coordinate of the
approximation to the desired values. The block diagram for this procedure is shown
in Fig. 3.38.

Then, using Algorithm 3.5 with the above rule with forgotten factor, the re-
sult looks like Fig. 3.39 after 50 iterations. The vector W is the y-coordinate ap-
proximation of the y-coordinate of the input data. Figure 3.39 shows the training
procedure. ut

Fig. 3.39 Result of the Hebbian process in a neural network
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3.3.4 Kohonen Maps

Kohonen networks or self-organizing maps are a competitive training neural net-
work aimed at ordering the mapping of the input space. In competitive learning, we
normally have distributed input x D x.t/ 2 Rn, where t is the time coordinate, and
a set of reference vectors mi D mi .t/ 2 Rn; 8i D 1; : : :; k. The latter are initial-
ized randomly. After that, given a metric d.x; mi / we try to minimize this function
to find a reference vector that best matches the input. The best reference vector is
named mc (the winner) where c is the best selection index. Thus, d.x; mc/ will be
the minimum metric. Moreover, if the input x has a density function p.x/, then, we
can minimize the error value between the input space and the set of reference vec-
tors, so that all mi can represent the form of the input as much as possible. However,
only an iterative process should be used to find the set of reference vectors.

At each iteration, vectors are actualized by the following equation:

mi .t C 1/ D
(

mi .t/ C ˛.t/ � dŒx.t/; mi .t/� i D c

mi .t/ i ¤ c
; (3.31)

where ˛.t/ is a monotonically decreasing function with scalar values between 0
and 1. This method is known as vector quantization (VQ) and looks to minimize the
error, considering the metric as a Euclidean distance with r-power:

E D
Z

kx � mckr p.x/dx : (3.32)

On the other hand, years of studies on the cerebral cortex have discovered two im-
portant things: (1) the existence of specialized regions, and (2) the ordering of these
regions. Kohonen networks create a competitive algorithm based on these facts in
order to adjust specialized neurons into subregions of the input space, and if this
input is ordered, specialized neurons also perform an ordering space (mapping).
A typical Kohonen network N is shown in Fig. 3.40.

If we suppose an n-dimensional input space X is divided into subregions xi , and
a set of neurons with a d -dimensional topology, where each neuron is associated to
a n-dimensional weight mi (Fig. 3.40), then this set of neurons forms a space N .
Each subregion of the input will be mapped by a subregion of the neuron space.
Moreover, mapped subregions will have a specific order because input subregions
have order as well.

Kohonen networks emulate the behavior described above, which is defined in
Algorithm 3.6.

As seen in the previous algorithm, VQ is used as a basis. To achieve the goal of
ordering the weight vectors, one might select the winner vector and its neighbors
to approximate the interesting subregion. The number of neighbors v should be
a monotonically decreasing function with the characteristic that at the first iteration
the network will order uniformly, and then, just the winner neuron will be reshaped
to minimize the error.
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Fig. 3.40 Kohonen network N approximating the input space X

Algorithm 3.6 Kohonen learning procedure

Step 1 Initialize the number of neurons and the dimension of the Kohonen net-
work.
Associate a weight vector mi to each neuron, randomly.

Step 2 Determine the configuration of the neighborhood Nc of the weight vector
considering the number of neighbors v and the neighborhood distribution
v.c/.

Step 3 Randomly, select a subregion of the input space x.t/ and calculate the
Euclidean distance to each weight vector.

Step 4 Determine the winner weight vector mc (the minimum distance defines the
winner) and actualize each of the vectors by (3.31) which is a discrete-time
notation.

Step 5 Decrease the number of neighbors v and the learning parameter ˛.
Step 6 Use a statistical parameter to determine the approximation between neu-

rons and the input space. If neurons approximate the input space then
STOP.
Else, go to Step 2.

Moreover, the training function or learning parameter will be decreased. Fig-
ure 3.41 shows how the algorithm is implemented. Some applications of this kind
of network are: pattern recognition, robotics, control process, audio recognition,
telecommunications, etc.

Example 3.6. Suppose that we have a square region in the interval x 2 Œ�10; 10� and
y 2 Œ�10; 10�. Train a 2D-Kohonen network in order to find a good approximation
to the input space.
Solution. This is an example inside the toolkit, located in ICTL 	 ANNs 	 Koho-
nen SOM 	 2DKohonen_Example.vi. The front panel is the same as in Fig. 3.42,
with the following sections.
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Fig. 3.41 One-dimensional Kohonen network with 25 neurons (white dots) implemented to ap-
proximate the triangular input space (red subregions)

Fig. 3.42 Front panel of the 2D-Kohonen example



82 3 Artificial Neural Networks

We find the input variables at the top of the window. These variables are Dim Size
Ko, which is an array in which we represent the number of neurons per coordinate
system. In fact, this is an example of a 2D-Kohonen network, and the dimension
of the Kohonen is 2. This means that it has an x-coordinate and a y-coordinate.
In this case, if we divide the input region into 400 subregions, in other words, we
have an interval of 20 elements per 20 elements in a square space, then we may say
that we need 20 elements in the x-coordinate and 20 elements in the y-coordinate
dimension. Thus, we are asking for the network to have 400 nodes.

Etha is the learning rate, EDF is the learning rate decay factor, Neighbors rep-
resents the number of neighbors that each node has and its corresponding NDF or
neighbor decay factor. EDF and NDF are scalars that decrease the value of Etha
and Neighbors, respectively, at each iteration. After that we have the Bell/Linear
Neighborhood switch. This switches the type of neighborhood between a bell func-
tion and a linear function. The value Decay is used as a factor of fitness in the bell
function. This has no action in the linear function.

On the left side of the window is the Input Selector, which can select two different
input regions. One is a triangular space and the other is the square space treated in
this example. The value Iterations is the number of cycles that the Kohonen network
takes to train the net. Wait is just a timer to visualize the updating network.

Finally, on the right side of the window is the Indicators cluster. It rephrases
values of the actual Neighbor and Etha. Min Index represents the indices of the
winner node. Min Dist is the minimum distance between the winner node and the

Fig. 3.43 The 2D-Kohonen network at 10 iterations
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Fig. 3.44 The 2D-Kohonen network at 100 iterations

Fig. 3.45 The 2D-Kohonen network at 1000 iterations
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Fig. 3.46 The 2D-Kohonen network at 10 000 iterations

close subregion. RandX is the subregion selected randomly. 2D Ko is a cluster of
nodes with coordinates. Figures 3.42–3.46 represent the current configuration of
the 2D-Kohonen network with five neighbors and one learning rate at the initial
conditions, with values of 0.9999 and 0.9995 for EDF and NDF, respectively. The
training was done by a linear function of the neighborhood. ut

3.3.5 Bayesian or Belief Networks

This kind of neural model is a directed acyclic graph (DAG) in which nodes have
random variables. Basically, a DAG consists of nodes and deterministic directions
between links. A DAG can be interpreted as an adjacency matrix in which 0 ele-
ments mean no links between two nodes, and 1 means a linking between the i th row
and the j th column.

This model can be divided into polytrees and cyclic graphs. Polytrees are models
in which the evidence nodes or the input nodes are at the top, and the children
are below the structure. On the other hand, cyclic models are any kind of DAG,
when going from one node to another node that has at least another path connecting
these points. Figure 3.47 shows examples of these structures. For instance, we only
consider polytrees in this chapter.
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Fig. 3.47a,b Bayesian or belief networks. a A polytree. b A cyclic structure

Bayesian networks or belief networks have a node Vi that is conditionally in-
dependent from a subset of nodes that are not descendents of Vi given its parents
P.Vi /. Suppose that we have V1; : : :; Vk nodes of a Bayesian network and they are
conditionally independent. The joint probability of all nodes is:

p.V1; : : :; Vk/ D
kY

iD1

p.Vi jP.Vi // : (3.33)

These networks are based on tables of probabilities known as conditional probability
tables (CPT), in which the node is related to its parents by probabilities.

Bayesian networks can be trained by some algorithms, such as the expectation-
maximization (EM) algorithm or the gradient-ascent algorithm. In order to under-
stand the basic idea of training a Bayesian network, a gradient-ascent algorithm will
be described in the following.

We are looking to maximize the likelihood hypothesis ln P.Djh/ in which P is
the probability of the data D given hypothesis h. This maximization will be per-
formed with respect to the parameters that define the CPT. Then, the expression
derived from this fact is:

@ ln P.Djh/

@wij

D
X

d2D

P.Yi D yij ; Ui D uik jd/

wijk

(3.34)

where yij is the j -value of the node Yi , Ui is the parent with the k-value uik , wijk

is the value of the probability in the CPT relating yij with uik , and d is a sample of
the training data D. In Algorithm 3.7 this training is described.

Example 3.7. Figure 3.48 shows a DAG. Represent this graph in an adjacency ma-
trix (it is a cyclic structure).
Solution. Here, we present the matrix in Fig. 3.49. Graph theory affirms that the
adjacency matrix is unique. Therefore, the solution is unique. ut
Example 3.8. Train the network in Fig. 3.48 for the data sample shown in Table 3.10.
Each column represents a node. Note that each node has targets Yi D f0; 1g.
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Algorithm 3.7 Gradient-ascent learning procedure for Bayesian networks

Step 1 Generate a CPT with random values of probabilities.
Determine the learning rate �.

Step 2 Take a sample d of the training data D and determine the probability on
the right-hand side of (3.34).

Step 3 Update the parameters with

wijk  wijk C �
P

d2D

P.Yi Dyij ;Ui Duik jd/

wijk
.

Step 4 If CP Tt D CP Tt�1 then STOP.
Else, go to Step 2 until reached.

Fig. 3.48 DAG with evidence
nodes 1 and 3, and query
nodes 5 and 6. The others are
known as hidden nodes

6

5

2 4

3

1

Fig. 3.49 Adjacency matrix
for the DAG in Fig. 3.48

Table 3.10 Bayesian networks example

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Frequency

0 1 1 0 1 1 32
0 1 0 1 0 0 94
0 0 1 0 1 1 83
1 1 0 0 1 0 19
0 0 1 1 0 1 22
1 0 0 0 0 1 18
0 1 1 1 1 0 29
0 0 0 0 1 1 12
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Fig. 3.50 Training procedure of a Bayesian network

Solution. This example is located at ICTL 	 ANNs 	 Bayesian 	 Bayes_Example.
vi. Figure 3.50 shows the implementation of Algorithm 3.7. At the top-left side of
the window, we have the adjacency matrix in which we represent the DAG as seen
in Example 3.7. Then, NumberLabels represents all possible labels that the related
node can have. In this case, we have that all nodes can only take values between
0 or 1, then each node has two labels. Therefore, the array is NumberLabels D
f2; 2; 2; 2; 2; 2g. Iterations is the same as in the other examples. Etha is the learning
rate in the gradient-ascent algorithm. SampleTable comes from experiments and mea-
sures the frequency that some combination of nodes is fired. In this example, the table
is the sample data given in the problem.

The Error Graph shows how the measure of error is decreasing when time is
large. Finally, ActualCPT is the result of the training procedure and it is the CPT of
the Bayesian network. For instance, we choose a value of learning rate that equals
0.3 and 50 iterations to this training procedure. As we can see, the training needs
around five iterations to obtain the CPT. This table contains the training probabilities
that relate each node with its immediate parents. ut
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Chapter 4
Neuro-fuzzy Controller Theory and Application

4.1 Introduction

Fuzzy systems allow us to transfer the vague fuzzy form of human reasoning to
mathematical systems. The use of IF–THEN rules in fuzzy systems gives us the
possibility of easily understanding the information modeled by the system. In most
of the fuzzy systems the knowledge is obtained from human experts. However this
method of information acquisition has a great disadvantage given that not every
human expert can and/or want to share their knowledge.

Artificial neural networks (ANNs) can learn from experience but most of the
topologies do not allow us to clearly understand the information learned by the net-
works. ANNs are incorporated into fuzzy systems to form neuro-fuzzy systems,
which can acquire knowledge automatically by learning algorithms of neural net-
works. Neuro-fuzzy systems have the advantage over fuzzy systems that the ac-
quired knowledge, which is easy to understand, is more meaningful to humans.

Another technique used with neuro-fuzzy systems is clustering, which is usually
employed to initialize unknown parameters such as the number of fuzzy rules or the
number of membership functions for the premise part of the rules. They are also
used to create dynamic systems and update the parameters of the system.

An example of neuro-fuzzy systems is the intelligent electric wheelchair. People
confined to wheelchairs may get frustrated when attempting to become more active
in their communities and societies. Even though laws and pressure from several
sources have been made to make cities more accessible to people with disabilities
there are still many obstacles to overcome. At Tecnológico de Monterrey Campus
Ciudad de México an intelligent electric wheelchair with an autonomous navigation
system based on a neuro-fuzzy controller was developed [1, 10].

The basic problem here was that most of the wheelchairs on the market were
rigid and failed to adapt to their users, and instead the users had to adapt to the
possibilities that the chair gave them. Thus the objective of this project was to create
a wheelchair that increased the capabilities of the users, and adapted to every one of
them.

P. Ponce-Cruz, F. D. Ramirez-Figueroa, Intelligent Control Systems with LabVIEW™ 89
© Springer 2010
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4.2 The Neuro-fuzzy Controller

Using a neuro-fuzzy controller , the position of the chair is manipulated so that
it will avoid static and dynamic obstacles. The controller takes information from
three ultrasonic sensors located in different positions of the wheelchair as shown
in Fig. 4.1. Sensors measure the distance from the different obstacles to the chair
and then the controller decides the best direction that the wheelchair must follow in
order to avoid those obstacles.

The outputs of the neuro-fuzzy controller are the voltages sent to a system that
generates a pulse width modulation (PWM) to move the electric motors and the di-
rections in which the wheel will turn. The controller is based on trigonometric neu-
ral networks and fuzzy cluster means. It follows a Takagi–Sugeno inference method
[2], but instead of using polynomials on the defuzzification process it also uses

trigonometric neural networks (T-ANNs). A diagram of the neuro-fuzzy controller
is shown in Fig. 4.2.

Distance Sensors
1.- Left Sensor
2.- Right Sensor
3.- Back Sensor

1

2

3

a b

Fig. 4.1 The electric wheelchair with distance sensors

Crisp
Inputs Predictor Fuzzification

Membership Functions

Tuned with FCM
algorithm

Rules
If - Then

Inference
Engine

Defuzzification Crisp
Outputs

NetworksNeural

Fig. 4.2 Basic diagram of the neuro-fuzzy controller
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4.2.1 Trigonometric Artificial Neural Networks

Consider f .x/ to be periodic and integrable in Lebesgue (for continuous and pe-
riodic functions .2�/ in Œ��; �� or Œ0; 2��; in mathematics, the Lebesgue measure
is the standard form to assign a length, area or volume to the subsets of Euclidean
space). It must be written as f 2 C � Œ��; �� or just f 2 C �. The Fourier series
are associated to f in the point x giving:

f .x/ 
 a0

2
C
1X

nD1

.an cos .nx/ C bn sin .nx// D
1X

kD1

Ak.x/ : (4.1)

The deviation (error) of f 2 C � from the Fourier series at the x point or from
a trigonometric polynomial of order � n is:

En .f / D min
�n

max jf .x/ � �n.x/j D min
�n

kf � �nk
0�x�2�

: (4.2)

Using Favard sums of f falling in its extreme basic property, give the best approx-
imation for trigonometric polynomials of a class (periodic continuous functions) as
follows in (4.3): 	

	f 0
	
	 D max

x

ˇ
ˇf 0.x/

ˇ
ˇ � 1 : (4.3)

Theorem 4.1. IF f 2 C Œa; b� and �n D Pn is a polynomial of degree ı � n; THEN
lim

n!1En .f / D 0.

Using a summation method as in (4.4), where M is a double matrix of infinite num-
bers we have:

M D

0

B
B
B
B
B
B
@

a00 a01 � � � a0n � � �
a10 a11 a1n � � �
:::

:::
: : :

:::

an0 an1 ann � � �
:::

:::
:::

1

C
C
C
C
C
C
A

: (4.4)

For each fSng sequence the f	ng sequence is associated so that 	n D P1
vD0 anvSv;

n D 0; 1; 2; : : : where the series converge for all n if lim
n!1 	n D s. We then say that

the sequence fSng is summable in M to the limit S . The 	n are called the linear
media of fSng. The equation system 	n D U

P
anvSv can be written as 	 D T .S/

and known as a linear transformation . 	n is also called the transformation of Sn

for T . The most important transformations are regulars.
If y .t/ is a function in time (a measured signal) and x .!; t/ is an approximated

function (or rebuilt signal) that continuously depends on the vector ! 2 ˝ and
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of time t , then the problem of decomposition is to find the optimal parameters
!� D 


!�1 ; !�2 ; : : : ; !�n
�

of the approximated function x .!; t/ D PN
iD1 !i ˚i ,

where f˚i .t/g .i D 1; 2; : : : ; N / is a set of basic specific functions. Orthogonal
functions are commonly used as basic functions. An important advantage of us-
ing orthogonal functions is that when an approximation needs to be improved by
increasing the number of basic functions, the !i coefficients of the original basic
functions remain unchanged. Furthermore, the decomposition of the signal of time
in a set of orthogonal functions that are easily generated and defined has many ap-
plications in engineering.

Fourier series have been proven to be able to model any periodical signal [3]. For
any given signal f .x/ it is said to be periodic if f .x/ D f .x C T /, where T is the
fundamental period of the signal. The signal can be modeled using Fourier series :

f .x/ 
 a0

2
C
1X

nD1

.an cos .nx/ C bn sin .nx// D
1X

nD1

Ak.x/ (4.5)

a0 D 1

T

TZ

0

f .x/ dx (4.6)

an D 1

T

TZ

0

f .x/ cos .n!x/dx (4.7)

bn D 1

T

TZ

0

f .x/ sin .n!x/dx : (4.8)

The trigonometric Fourier series consists of the sum of functions multiplied by a co-
efficient plus a constant; a neural network can thus be built based on (4.5)–(4.8).
Figure 4.3 shows the topology of this network, which is composed of two layers.
On the first layer the activation function of the neurons are trigonometric functions.
On the second layer the results of the activation functions multiplied by its weights
plus a constant are summed. This constant is the mean value of the function; the
weights are the coefficients of the Fourier trigonometric series [4].

Fig. 4.3 Topology of T-ANNs
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The advantages of this topology are that the weights of the network can be com-
puted using analytical methods as a linear equation system. The error of the solution
decreases when the number of neurons is augmented, which corresponds to adding
more harmonics according to the Fourier series.

To train the network we need to know the available inputs and outputs. The tradi-
tional approach to training a network is to assign random values to the weights and
then wait for the function to converge using the gradient-descent method . Using this
topology the network is trained using the least squares method, fixing a finite num-
ber of neurons and arranging the system in a matrix form Ax D B . Approximating
the function with even functions we use cosines, and if we want to approximate with
odd functions we use sines.

Considering the sum of squared differences between the values of the output
function, and the ones given by the function f .x; a0; : : : an/ in the corresponding
points, we will choose the parameters a0; : : : an such that the sum will have the
minimum value:

S .a0; : : : an/ D
mX

iD1

Œyi � f .x; a0; : : : an/�2 D min ; (4.9)

using cosines

S .a0; : : : an/ D
mX

iD1

"

yi �
 

1

2
a0 C

1X

kD1

ak cos .k!0x/

!#2

D min : (4.10)

This way the problem is reduced to find the parameters a0; : : : ; an for which
S .a0; : : : ; an/ has a minimum as shown in (4.11) and (4.12).

@S

@a0
� 1

2

mX

iD1

"

yi �
 

1

2
a0 C

1X

kD1

ak cos .k!0x/

!#

D 0 (4.11)

@S

@ap

mX

iD1

"

yi �
 

1

2
a0 C

1X

kD1

ak cos .k!0x/

!

.n!0x/

#

D 0 for p � 1 :

(4.12)

This equation system can be the written in the matrix form Ax D B:

2

6
6
6
6
6
6
6
4

1
2 m � � � Pm

iD1 cos .p!xi /

1
2

Pm
iD1 cos .p!0xi / � � � Pm

iD1 cos .!0xi / cos .p!0xi /

:::
: : :

Pm
iD1 cos .!0xi / cos .p!xi /

1
2

Pm
iD1 cos .p!0xi / � � � Pm

iD1 cos2 .p!0xi /

3

7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
4

a0

a1

:::

an

3

7
7
7
7
7
7
7
5
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D

2

6
6
6
6
6
6
6
4

Pm
iD1 yi

Pm
iD1 yi cos .!0xi /

:::
Pm

iD1 yi cos .p!0xi /

3

7
7
7
7
7
7
7
5

: (4.13)

4.2.1.1 Numerical Example of T-ANNs

The following example shows a numerical approximation made by T-ANNs. Fig-
ure 4.4 shows the ANN icon. The front panel and block diagram of the example
can also be seen in Fig. 4.5. In the block diagram the code related to training and
evaluation of the network is amplified in size.

Four different clusters from representative samples taken by the distance sensors
of the wheelchair are included in the program and can be selected by the user. Also,
the number of neurons can be varied and the response of the network will change.
The code that trains the neural network is shown in Fig. 4.6 and is based on the
algorithm previously described. The response of the network trained with different
number of neurons is shown in Fig. 4.7.

Fig. 4.4 T-ANNs example
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Fig. 4.5a,b T-ANNs example. a Front panel. b Block diagram
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Fig. 4.6 Block diagram of T-ANNs trainer

4.2.2 Fuzzy Cluster Means

Clustering methods split a set of N elements X D fx1; x2 : : : ; xng into a c group
denoted c D ˚

�1; �2; : : : �n
�
. Traditional clustering set methods assume that each

data vector can belong to one and only one class; in practice though, clusters nor-
mally overlap, and some data vectors can belong partially to several clusters. Fuzzy
set theory provides a natural way to describe this situation by fuzzy cluster means
(FCM).

The fuzzy partition matrices M D fU 2 VcN j 1; 2; 3g, for c classes and N data
points were defined by three conditions:

• The first condition: 8 1 � i � c �ik 2 Œ0; 1� ; 1 � k � N .

• The second condition:
cP

kD1
�ik D 1 8 1 � k � N .

• The third condition: 8 1 � i � c 0 <
cP

kD1
�ik < N .

The FCM optimum criteria function has the following form Jm .U; V / D Pc
iD1PN

kD1 �m
ik

d 2
ik

, where dik is an inner product norm defined as d 2
ik

D jjxk � vi jj2
A,

A is a positive definite matrix, and m is the weighting exponent m 2 Œ1; 1/. If m

and c parameters are fixed and define sets then .U; V / may be a global minimum
for Jm .U; V / only if:

8 1 � i � c 1 � k � N

uik D 1
cP

j D1

 
kxk�vikkxk�vj k

!2=.m�1/ (4.14)

8 1 � i � c

vj D
NP

kD1
.uik/mxk

NP

kD1
.uik/m

: (4.15)



4.2 The Neuro-fuzzy Controller 97

Fig. 4.7a,b T-ANN example network. a Using 5 neurons. b Using 20 neurons
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Algorithm 4.1 FCM solution

Step 1 Fix c and m, set p D 0 and initialize U .0/.
Step 2 Calculate fuzzy centers for each cluster V .p/ using (4.15).
Step 3 Update fuzzy partition matrix U.p/ for the pth iteration using (4.14).
Step 4 If jjU.p/ � U.p�1/jj < � then, j  j C 1 and return to the Step 2.

In this algorithm, the parameter mdetermines the fuzziness of the clusters; if m is
large the cluster is fuzzier. For m ! 1 the FCM solution becomes the crisp one, and
for m ! 1 the solution is as fuzzy as possible. There is no theoretical reference for
the selection of m, and usually m D 2 is chosen. After the shapes of the membership
functions are fixed, the T-ANNs learn each one of them.

4.2.3 Predictive Method

Sometimes the controller response can be improved by using predictors, which pro-
vide future information and allow it to respond in advance. One of the simplest yet
most powerful predictors is based on exponential smoothing. A popular approach
used is the Holt method.

Exponential smoothing is computationally simple and fast. At the same time, this
method can perform well in comparison with other more complex methods. The
series used for prediction is considered as a composition of more than one structural
component (average and trend) each of which can be individually modeled. We will
use series without seasonality in the predictor. Such types of series can be expressed
as:

y.x/ D yav.x/ C pytr.x/ C e.x/I p D 0 ; (4.16)

where y.x/, yav.x/, ytr.x/, and e.x/ are the data, the average, the trend and the error
components individually modeled using exponential smoothing. The p-step-ahead
prediction [5] is given by:

yU � .x C pjk/ D yav.x/ C pytr.x/ : (4.17)

The average and the trend components are modeled as:

yav.x/ D .1 � ˛/ y.x/ C ˛ .yav .x � 1/ C ytr .k � 1// (4.18)

ytr.x/ D .1 � ˇ/ ytr .x � 1/ C ˇ .yav.x/ C yav .x � 1// ; (4.19)

where yav.x/ and ytr.x/ are the average and the trend components of the signal,
respectively, and ˛ and ˇ are the smoothing coefficients with values in the range
.0; 1/. The terms yav and ytr can be initialized as:

yav .1/ D y .1/

ytr .1/ D .y .1/ � y .0// C .y .2/ � y .1//

2
: (4.20)
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Fig. 4.8 Block diagram of the neuro-fuzzy controller with one input and one output

The execution of the controller (shown in Fig. 4.8) depends on several VIs (more
information can be found in [6]), which are explained in the following steps:

1. This is a predictor VI based on exponential smoothing, the coefficients ˛ and ˇ

must feed as scalar values. The past and present information must feed in a 1D
array with the newest information in the last element of the array.

2. This VI executes the FCM method. The information of the crisp inputs must
feed as well as stop conditions for the cycle. The program will return the co-
efficients of the trigonometric networks, the fundamental frequency and other
useful information.

3. These three VIs execute the evaluation of the premises. The first on the top
left is generator of the combinations of rules, which depends on the number of
inputs and membership functions. The second one on the bottom left evaluates
the input membership functions. The last one on the right uses the information
on the combinations as well as the evaluated membership functions to obtain the
premises of the IF–THEN rules.

4. This VI creates a 1D array with the number of rules of the system f1; 2; : : : ; ng,
where n is the number of rules. This array is used in the defuzzification process.

5. This VI evaluates a T-ANN on each of the rules.
6. This VI defuzzifies using the Takagi method with the obtained crisp outputs

from the T-ANN.

This version of one input/one output of the controller was modified to have three
inputs and four outputs (Fig. 4.9). Each input is fuzzified with four membership
functions whose form is defined by the FCM algorithm. The crisp distances gathered
by the distance sensors are clustered by FCM and then T-ANNs are trained. As
can be seen in Fig. 4.10, the main shapes of the clusters are learned by the neural
networks and no main information is lost.
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Fig. 4.9 Neuro-fuzzy controller block diagram

Fig. 4.10a,b Input membership functions. a Traditional FCM. b Approximated by T-ANNs

With three inputs and four membership functions there are a total of sixty-
four rules that can be evaluated. These rules are IF–THEN and have the follow-
ing form: IF x1 is �in AND x2 is �in AND x3 is �in THEN P WM Lef t Engine,
Direction Lef t Engine, P WM Right Engine, Direction Right Engine.

The value of each rule is obtained through the inference method min that consists
of evaluating the �in0s and returning the smallest one for each rule. The final system
output is obtained by:

Output D

rP

iD1
Œmin .�i1;2;3/ NN .x1; x2; x3/�

rP

iD1
min .�i1;2;3/

: (4.21)

For the direction of the wheel, three states are used: clockwise (1), counterclock-
wise (�1), and stopped (0). The fuzzy output is rounded to the nearest value and the
direction is obtained.

4.2.4 Results Using the Controller

The wheelchair was set on a human-sized chessboard and the pieces where set in
a maze as shown in Fig. 4.11, with some of the trajectories described by the chair.
The wheelchair always managed to avoid obstacles, but failed to return to the desired
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Fig. 4.11 Wheelchair maze and trajectories

direction. It also failed to recognize if the obstacle is a human being or an object and
thus, had different behaviors to avoid them.

4.2.5 Controller Enhancements

4.2.5.1 Direction Controller

As seen from the previous results the wheelchair will effectively avoid obstacles
but the trajectories that it follows are always different; sometimes it may follow
the desired directions but other times it will not. A direction controller can solve
this problem. For this we need a sensor to obtain a feedback from the direction of
the wheelchair. A compass could be used to sense the direction, either the 1490
(digital) or 1525 (analog) from Images Scientific Instruments [7]. After the electric
wheelchair controller avoids an obstacle the compass sensor will give it information
to return to the desired direction, as shown in Fig. 4.12.
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Fig. 4.12 The wheelchair
recovering the direction with
the direction controller

Fig. 4.13a,b Input membership functions. a Degrees. b Direction

A fuzzy controller that controls the direction can be used in combination with
the obstacle avoidance controller. The directions controller will have as input the
difference between the desired and the current direction of the wheelchair. The di-
rection magnitude tells us how many degrees the chair will have to turn, and the sign
indicates if it has to be done in one direction or the other. The output is the PWM
and the direction that each wheel has to take in order to compensate for that.

Three fuzzifying input membership functions will be used for the degrees and
the turning direction, as shown in Fig. 4.13. The range for the degrees is [0, 360],
and the turning direction is [�180, 180], also in degrees. The form of the rule is
the following: IF degree is Ain AND direction is Bin THEN P WM Left Engine,
Direction Lef t Engine, P WM Right Engine, Direction Right Engine.
Table 4.1 shows the rule base with the nine possible combinations of inputs and
outputs. The outputs are obtained with the rule consequences using singletons, as
illustrated in Fig. 4.14.

The surfaces for the PWM and the direction are shown in Fig. 4.15. For both
PWM outputs the surface is the same, while for the direction the surfaces change
and completely invert from left to right. This controller will act when the distances
recognized by the sensors are very far, because the system will have enough space
to maneuver and recover the direction that it has to follow, otherwise the obstacle
avoidance controller will have control of the wheelchair.
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Table 4.1 The IF–THEN rules for the direction controller

1. IF Degree is Small & Direction is Left THEN PWMR IS Very Few, PWML IS Very Few, DIRR

is CCW, DIRL is CW.
2. IF Degree is Small & Direction is Center THEN PWMR IS Very Few, PWML IS Very Few,

DIRR is NC, DIRL is NC.
3. IF Degree is Small & Direction is Right THEN PWMR IS Very Few, PWML IS Very Few,

DIRR is CW, DIRL is CCW.
4. IF Degree is Medium & Direction is Left THEN PWMR IS Some, PWML IS Some, DIRR is

CCW, DIRL is CW.
5. IF Degree is Medium & Direction is Center THEN PWMR IS Some, PWML IS Some, DIRR

is NC, DIRL is NC.
6. IF Degree is Medium & Direction is Right THEN PWMR IS Some, PWML IS Some, DIRR is

CW, DIRL is CCW.
7. IF Degree is Large & Direction is Left THEN PWMR IS Very Much, PWML IS Very Much,

DIRR is CCW, DIRL is CW.
8. IF Degree is Large & Direction is Center THEN PWMR IS Very Much, PWML IS Very Much,

DIRR is NC, DIRL is NC.
9. IF Degree is Large & Direction is Right THEN PWMR IS Very Much, PWML IS Very Much,

DIRR is CW, DIRL is CCW.

CCW counterclockwise CW clockwise NC no change

Fig. 4.14 Rule base a and output b membership functions for the direction controller

Fig. 4.15a,b Surfaces for outputs. a PWM. b Direction
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4.2.5.2 Obstacle Avoidance Behavior

Cities are not designed with the physically disabled in mind. One of their main
concerns is how to go from one point to another. Large cities are becoming more
and more crowded so navigating the streets with a wheelchair poses a big challenge.

If temperature and simple shape sensors are installed in the wheelchair (Fig. 4.16)
then some kind of behavior can be programmed so that the system can differentiate
between a human being and an object. Additionally, the use of a speaker or horn is
needed to ask people to move out of the way of the chair.

The proposed behavior is based on a fuzzy controller, which has as input the tem-
perature in degrees of the obstacle and as output the time in seconds the wheelchair
will be stopped and a message or horn will be played. It has three triangular fuzzy

Fig. 4.16a,b Wheelchair with temperature sensors for obstacle avoidance. a One possible way to
move. b Humans detected wheelchair moving forward
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Fig. 4.17 Input membership function for temperature

Table 4.2 The IF–THEN rules for the temperature controller

1. IF temperature is low THEN time is few.
2. IF temperature is human THEN time is much.
3. IF temperature is hot THEN time is few.

Fig. 4.18 Singleton outputs
for the temperature controller

input membership functions as shown in Fig. 4.17. Table 4.2 shows the IF–THEN
rules and the output membership functions are two singletons, as seen in Fig. 4.18.
The controller response is shown in Fig. 4.19.
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Fig. 4.19 Time controller response

4.3 ANFIS: Adaptive Neuro-fuzzy Inference Systems

Conventional mathematical modeling tools cannot deal with vague or uncertain in-
formation. Here is where fuzzy systems using IF–THEN rules have the strength and
ability to reason as humans, without employing precise and complete information.
However, a problem arises as to how to transfer human knowledge to fuzzy systems.

Several proposals have been made, such as the combination of ANNs with fuzzy
systems. ANNs have the ability to learn and adapt from experience, thus comple-
menting fuzzy systems. Among the most important techniques is the adaptive neuro-
fuzzy inference system (ANFIS) proposed by Jang [8] in 1993, which generates
fuzzy IF–THEN rule bases and fuzzy membership functions automatically.

ANFIS is based on adaptive networks, which is a super set of feed-forward arti-
ficial neural networks with supervised learning capabilities as stated by Jang [8, 9].
It is a topology of nodes directionally connected, where almost all the nodes de-
pend on parameters that are changed according to certain learning rules that will
minimize error criteria. The most used learning rule is the gradient-descent method;
however, Jang proposed a hybrid learning rule that incorporates least square estima-
tion (LSE).

An adaptive network as shown in Fig. 4.20 is a feed-forward network composed
of layers and nodes. Each node performs a function based on incoming signals
and parameters associated with the node. No weights are associated with the links,
they only indicate flow. Capabilities of the nodes are differentiated by their shape;
a square node is adaptive while a round node is fixed.

If we suppose that an adaptive network has L layers and each layer has k nodes,
we can denote the node in the i th position of the kth layer by .k; i/ and its node func-

tion by Ok
i . Thus we can express a node output based on its input signals

�
Ok�n

#.k�n/

�

and inherent parameters .a; b; c/ as: Ok
i D Ok

i

�
Ok�1

1 ; : : : Ok�1
#.k�1/

; a; b; : : :
�

. For
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Fig. 4.20 Adaptive network

Fig. 4.21a,b ANFIS trainer. a ANFIS trainer VIs. b Block diagram for the training part of the
algorithm
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a given training data set P , the error measure
�
Ep

�
for the pth .1 � p � P / sample

is defined as the sum of squared error: Ep D PL
mD1

�
Dm;p � OL

m;p

�2
, where D is

the set of desired output vectors. The gradient-descent rule is based on the error rate.

The error rate for the output node is @Ep

@OL
i;p

D �2
�
Di;p � OL

i;p

�
, and for the internal

nodes @Ep

@Ok
i;p

D PkC1
mD1

@Ep

@O
kC1
m;p

@O
kC1
m;p

@Ok
i;p

for 1 � k � L � 1. Finally, the parameter ˛

can be updated with a learning rate of � by �˛ D �� @E
@˛

.
Jang proposed the hybrid learning rule, where the last layer of the network is

trained using LSE. The inputs, parameters and outputs are arranged in matrix form
Ax D B , and then the unknown parameters x are computed to minimize the squared
error given by kAx � Bk. Because the system is usually overdetermined, there is

no exact solution, and thus x is calculated with x D �
AT A

��1
AT B . This step is

usually computed once at the beginning of the iteration process so the computational
burden is lowered, but it can also be computed at each iteration.

The VIs anfis_trainer-bell.vi and anfis_trainer-triangular.vi execute the train-
ing algorithm for bell and triangular input membership functions. The programs first
adjust the parameters of the last layer using LSE then perform the gradient-descent
method on the parameters of the inner layers. Figure 4.21 shows the icon and the
block diagram for the bell functions case.

4.3.1 ANFIS Topology

Assuming a fuzzy inference system with two inputs x, y and one output z. A first-
order Sugeno system is shown in Fig. 4.22a and the corresponding ANFIS topology
is illustrated in Fig. 4.22b. A sample from one rule is the following: Rule n: IF x is
An and y is Bn THEN fn D pnx C qny C rn.

Layer 1

Every node in this layer is adaptive with a function O1;i D �Ai
.x/, where x (or y/

is the input to the i th node and Ai (or Bi / is the linguistic label with the node. O1;i

is the membership function of Ai or Bi , usually a bell-shaped function defined by
the function:

�Ai
.x/ D 1

1 C
��

x�ci

ai

�2
�bi

; (4.22)

where ai ; bi ; ci are the parameters that define the form of the bell. Parameters in
this layer are referred to as premise parameters. Figure 4.23 shows the VI for the
evaluation of multiple inputs with multiple number of fuzzy Jang bell functions.
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Fig. 4.22a,b Fuzzy and ANFIS type 3. a Type-3 fuzzy reasoning, corresponding to a Sugeno
system. b Equivalent ANFIS type-3

Fig. 4.23 MIMO VI for fuzzy
Jang bell functions

Layer 2

Nodes in this layer are fixed, whose output is the product of all incoming signals,
representing the firing strength of the rule. Any T-norm operator performing a fuzzy
AND can be used as the node function O2;i D !i D �Ai

.x/�Bi
.x/.
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Fig. 4.24a,b ANFIS execution up to layer 3. a VI ANFIS layer 3. b Block diagram of the VI

Layer 3

This node normalizes the firing strength (N); they are of fixed form and calculate
the ratio of the i th rule firing strength to the sum of firing strength of all rules by:

O3;i D !i D !i
P

r

!r

: (4.23)

There is a VI that executes the algorithm to train an ANFIS up to layer 3, as shown
in Fig. 4.24. The program receives the number of inputs of the system, the number of
membership functions (all inputs have the same number of membership functions)
of the inputs, and the parameters of the functions. It is then evaluated up to the
premise part.

Layer 4

These nodes are called the consequence parameters; they are of the adaptive class.
The node function is O4;i D !i .pxi C qi y C ri /, where .pi ; qi ; ri / are the param-
eters of the node.

Layer 5

This is a fixed node .˙/, which computes the overall output of the system, as the
summation of all signals as:

Output D O5;1 D
X

i

N!i fi D
P

i

!i fi

P

i

!i

: (4.24)
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Fig. 4.25a,b ANFIS output calculator. a VI. b Block diagram of the VI

O l
i D �Ai .x/

�Ai .x/D 1

1C
��

x�ci

ai

�2


bi

�Ai .x/D exp

�

C
�

x�ci

ai

�2


wi D �Ai .x/��Bi .y/; i D 1; 2.

wi D wi

w1Cw2
; i D 1; 2

O4
i
D wi fi D wi .pi x C qi y C ri /

O5
i
D overall output DP

i

wi fi D
P

i

wi fi

P

i

wi

Fig. 4.26 ANFIS architecture

The output of the system (Fig. 4.25) can be calculated using the anfis_evaluator.vi,
which performs the execution of layers 4 and 5. The ANFIS architecture equa-
tions for this system are shown in Fig. 4.26. This network has the functionality
of a Sugeno model. The conversion from Sugeno ANFIS (type-3) to Tsukamoto
(type-1) is straightforward, as illustrated in Fig. 4.27.

For the Mamdani reasoning system (type-2) using max–min composition , a cor-
responding ANFIS can be constructed if discrete approximations are used to replace
the integrals in the centroid defuzzification scheme. However the resulting ANFIS
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Fig. 4.27a,b Fuzzy and ANFIS type-1. a Type-1 fuzzy reasoning. b Equivalent ANFIS type-1

is much more complex than either the Sugeno or Tsukamoto type and does not nec-
essarily imply better learning capabilities.

A slightly more complex Sugeno ANFIS is shown in Fig. 4.28. Three mem-
bership functions are associated with each input, so the input space is partitioned
into nine regions. Figure 4.28b illustrates that each of these regions is governed by
a fuzzy IF–THEN rule. The premise part of the rules defines a fuzzy region, while
the consequent part specifies the output within the region.

Example 4.1. On a control field, an identification system is one of its targets. Sup-
pose that we have a machine, which tends to a sinc function (sampling function). In
order to understand this example, let us suppose that the behavior of that machine is
related to the sinc function in the interval Œ0; 200�. Using a hybrid learning method,
train an ANFIS to approximate this neuro-fuzzy system into the machinery behav-
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Fig. 4.28a,b Two-input type-3 ANFIS with 9 rules. a ANFIS topology. b Corresponding to fuzzy
subspaces

ior. Engineers require five bell membership functions (Gaussian functions) to solve
this problem and constant functions at layer 4. Use a 0.05 learning rate value for any
parameter in bell functions.
Solution. The Intelligent Control Toolkit implements this example following the
path ICTL 	 Neuro-Fuzzy 	 ANFIS 	 Example_ANFIS-Bell.vi. We will first
describe the front panel (Fig. 4.29). At the top-left of the window is the Cycle Pa-
rameters option. In this section, there are the MFs values that control the number
of membership functions that ANFIS will have in layer 1. Also, the Stop Condi-
tions are Min E, referring to the minimum error accepted, and MaxI, referring to the
maximum number of iterations performed by the training procedure. The Training
function options are used to select the function that we want to approximate (sinc
function in this example). If Train? is selected then the ANFIS initializes its learning
procedure; if Cts? is selected then layer 4 are constant functions, or else functions
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Fig. 4.28a,b (continued)

at this layer are adapted and trained by least squares error . Ethas is a cluster with
the learning rate values for each of the parameters that the ANFIS has in its adaptive
nodes. In the last case, membership functions are Gaussian or bell functions that
have three parameters a, b and c; this is the reason why the Ethas cluster has ctea,
cteb and ctec representing the three learning rates.

Below the Cycle Parameters are the Input/Output options. The 2D array Inputs
refers to the input values of the ANFIS, and the Trainer array contains the elements
that ANFIS will try to approximate (sinc function). #Inps returns the number of in-
puts and Iterations shows the actual iteration. Finally, there is the Best Parameters
Found So Far section. In this block of options are the BestB that contains the best
bell function representation by its parameters, BErr returns the value of the mini-
mum error found so far, and Best f refers to the constants that represent the linear
function that produces BErr.
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Fig. 4.29 Front panel of the ANFIS example using bell membership functions

On the right side of Fig. 4.29 is the ANFIS Output graph that represents the
Trainer function (sinc function) and the actual Output of the trained ANFIS. The
Error graph represents the error values at each epoch.

As we know, the bell function in the range Œ0; 1� is represented mathematically
as:

f .x/ D 1
�

x�c
a

�2b C 1
: (4.25)

Then, this VI will adapt the parameters a, b and c from the above equation. The
minimum error and maximum iterations are proposed in Table 4.3. In this example,
the VI delimits the sinc function in the interval Œ0; 200�. Running the program, we
can look at the behavior of the training procedure as in Figs. 4.30–4.32. Remember
to switch on the Train? and Cts? buttons. ut

Example 4.2. We want to control a 12V DC motor in a fan determined by some am-
bient conditions. If the temperature is less than 25 ıC, then the fan is switched off.
If the temperature is greater than 35 ıC, then the fan has to run as fast as possible.
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Table 4.3 ANFIS example 1

MFs 5
Min E 1E–5
MaxI 10 000
Ctea 0.05
Cteb 0.05
Ctec 0.05
Training function Sinc

Fig. 4.30 Initial step in the training procedure for ANFIS

If the temperature is between 25 ıC and 35 ıC, then the fan has to follow a logis-
tic function description. In this way, we know that the velocity of rotation in a DC
motor is proportional to the voltage supplied. Then, the logistic function is an ap-
proximation of the voltage that we want to have depending on the degrees of the
environment. The function is described by (4.26).

f .x/ D 1

e�ax C 1
; 8a 2 R : (4.26)
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Fig. 4.31 Training procedure for ANFIS at 514 epochs

A simple analysis offers that the range of the logistic function is Œ0; 12�, and for lim-
iting the domain of the function, suppose an interval Œ0; 60�. Select a D 2:5. Using
the hybrid learning method, train an ANFIS system selecting four triangular mem-
bership functions with learning rates for all parameters equal to 0.01. Determine
if this number of membership functions is optimal; otherwise propose the optimal
number.
Solution. Following the path ICTL 	 Neuro-Fuzzy 	 ANFIS 	 Example_ANFIS-
Triangular.vi. As in Example 4.1, this VI is very similar except that the adaptive pa-
rameters come from triangular membership functions. Remember that a triangular
membership function is defined by three parameters: a means the initial position of
the function, b is the value at which the function takes the value 1, and c is the param-
eter in which the function finishes.

We need to modify the block diagram. First, add a Case Before in the Case Struc-
ture as shown in Fig. 4.33. Label this new case as “Logistic.” Then, access ICTL 	
ANNs 	 Perceptron 	 Transfer F. 	 logistic.vi. This function needs Input values
coming from the vector node (see Figs. 4.33 and 4.34) and a 2.5 constant is placed
in the alpha connector.
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Fig. 4.32 Training procedure for ANFIS at 977 epochs

Fig. 4.33 Case structure for
the logistic function
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Fig. 4.34 Block diagram showing the corrections in the ANFIS graph

Table 4.4 ANFIS example 2

MFs 4
Min E 1E–5
MaxI 10 000
Ctea 0.01
Cteb 0.01
Ctec 0.01
Training function Logistic

Fig. 4.35 Training procedure for ANFIS at 15 epochs
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Fig. 4.36 Training procedure for ANFIS at 190 epochs

After that, add a new item in the Training Function Combo Box at the front panel.
Label the new item as “Logistic” and click OK. Then, replace the ANFIS Output
Graph with a XY Graph. Looking inside the block diagram, we have to correct the
values of the ANFIS Output as seen in Fig. 4.35. Place a rampVector.vi and run
this node from 0 to 60 with a stepsize of 0.3. These numbers are selected because
they are the domain of the temperature in degrees and the size of the Trainer array.
The first orange line (the top one inside the while-loop) connected to a multiplier
comes from the Trainer line and the second line comes from the Ev-Ots output of
the anfis_evaluator.vi.

Then, the VI is available for use with the indications. At the front panel, select the
values shown in Table 4.4. Remember to switch on the Train? button. Figures 4.35
and 4.36 show the implementation of that program. We can see that the training is
poor. Then, we select 5, 6 and 7 membership functions. Figure 4.37 shows the results
with this membership function at 200 epochs. We see at 5 membership functions an
error of 4.9E–4, at 6 an error of 1.67E–5, and at 7 an error of 1.6E–4. We determine
that the optimal number of membership functions is 6. ut
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Fig. 4.37a–c ANFIS responses at 200 epochs. a With 5 membership functions. b With 6 member-
ship functions. c With 7 membership functions
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Chapter 5
Genetic Algorithms and Genetic Programming

5.1 Introduction

In this chapter we introduce powerful optimization techniques based on evolutionary
computation. The techniques mimic natural selection and the way genetics works.
Genetic algorithms were first proposed by J. Holland in the 1960s. Today, they are
mainly used as a search technique to find approximate solutions to different kinds
of problems. In intelligent control (IC) they are mostly used as an optimization
technique to find minimums or maximums of complex equations, or quasi-optimal
solutions in short periods of time.

N. Cramer later proposed genetic programming in 1985, which is another kind of
evolutionary computation algorithm with string bases in genetic algorithms (GA).
The difference basically is that in GA strings of bits representing chromosomes
are evolved, whereas in genetic programming the whole structure of a computer
program is evolved by the algorithm. Due to this structure, genetic programming
can manage problems that are harder to manipulate by GAs. Genetic programming
has being used in IC optimize the sets of rules on fuzzy and neuro-fuzzy controllers.

5.1.1 Evolutionary Computation

Evolutionary computation represents a powerful search and optimization paradigm.
The metaphor underlying evolutionary computation is a biological one, that of nat-
ural selection and genetics. A large variety of evolutionary computational models
have been proposed and studied. These models are usually referred to as evolution-
ary algorithms. Their main characteristic is the intensive use of randomness and
genetic-inspired operations to evolve a set of solutions.

Evolutionary algorithms involve selection, recombination, random variation and
competition of the individuals in a population of adequately represented potential
solutions. These candidate solutions to a certain problem are referred to as chro-
mosomes or individuals. Several kinds of representations exist such as bit string,
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real-component vectors, pairs of real-component vectors, matrices, trees, tree-like
hierarchies, parse trees, general graphs, and permutations.

In the 1950s and 1960s several computer scientists started to study evolutionary
systems with the idea that evolution could be applied to solve engineering problems.
The idea in all the systems was to evolve a population of candidates to solve prob-
lems, using operators inspired by natural genetic variations and natural selection.

In the 1960s, I. Rechenberg introduced evolution strategies that he used to opti-
mize real-valued parameters for several devices. This idea was further developed by
H.P. Schwefel in the 1970s. L. Fogel, A. Owens and M. Walsh in 1966 developed
evolutionary programming, a technique in which the functions to be optimized are
represented as a finite-state machine, which are evolved by randomly mutating their
state-transition diagrams and selecting the fittest. Evolutionary programming, evolu-
tion strategies and GAs form the backbone of the field of evolutionary computation.

GAs were invented by J. Holland in the 1960s at the University of Michigan. His
original intention was to understand the principles of adaptive systems. The goal
was not to design algorithms to solve specific problems, but rather to formally study
the phenomenon of adaptation as it occurs in nature and to develop ways in which
the mechanisms of natural adaptation might be ported to computer systems. In 1975
he presented GAs as an abstraction of biological evolution in the book Adaptation
in Natural and Artificial Systems.

Simple biological models based on the notion of survival of the best or fittest
were considered to design robust adaptive systems. Holland’s method evolves a pop-
ulation of candidate solutions. The chromosomes are binary strings and the search
operations are typically crossover, mutation, and (very seldom) inversion. Chromo-
somes are evaluated by using a fitness function.

In recent years there has been an increase in interaction among researchers study-
ing different methods and the boundaries between them have broken down to some
extent. Today the term GA may be very far from Holland’s original concept.

5.2 Industrial Applications

GAs have been used to optimize several industrial processes and applications. F.
Wang and others designed and optimized the power stage of an industrial motor
drive using GAs at the Virginia Polytechnic Institute and State University at Virginia
in 2006 [1]. They analyzed the major blocks of the power electronics that drive an
industrial motor and created an optimization program that uses a GA engine. This
can be used as verification and practicing tools for engineers.

D.-H. Cho presented a paper in 1999 [2] that used a niching GA to design an
induction motor for electric vehicles. Sometimes a motor created to be of the highest
efficiency will perform at a lower level because there are several factors that were not
considered when it was designed, like ease of manufacture, maintenance, reliability,
among others. Cho managed to find an alternative method to optimize the design of
induction motors.
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GAs have also been used to create schedules in semiconductor manufacturing
systems. S. Cavalieri and others [3] proposed a method to increase the efficiency of
dispatching, which is incredibly complex. This technique was applied to a semicon-
ductor manufacture plant. The algorithm guarantees that the solution is obtained in
a time that is compatible with on-line scheduling. They claim to have increased the
efficiency by 70%.

More recently V. Colla and his team presented a paper [4] where they compare
traditional approaches, and GAs are used to optimize the parameters of the models.
These models are often designed from theoretical consideration and later adapted
to fit experimental data collected from the real application. From the results pre-
sented, the GA clearly outperforms the other optimization methods and fits better
with the complexity of the model. Moreover, it provides more flexibility, as it does
not require the computation of many quantities of the model.

5.3 Biological Terminology

All living organisms consist of cells that contain the same set of one or more chro-
mosomes serving as a blueprint. Chromosomes can be divided into genes, which are
functional blocks of DNA. The different options for genes are alleles. Each gene is
located at a particular locus (position) on the chromosome. Multiple chromosomes
and or the complete collection of genetic material are called the organism’s genome.
A genotype refers to the particular set of genes contained in a genome.

In GAs a chromosome refers to an individual in the population, which is often
encoded as a string or an array of bits. Most applications of GAs employ haploid
individuals, which are single-chromosome individuals.

5.3.1 Search Spaces and Fitness

The term “search space” refers to some collection of candidates to a problem and
some notion of “distance” between candidate solutions. GAs assume that the best
candidates from different regions of the search space can be combined via crossover,
to produce high-quality offspring of the parents. “Fitness landscape” is another im-
portant concept; evolution causes populations to move along landscapes in particular
ways and adaptation can be seen as the movement toward local peaks.

5.3.2 Encoding and Decoding

In a typical application of GAs the genetic characteristics are encoded into bits of
strings. The encoding is done to keep those characteristics in the environment. If
we want to optimize the function f .x/ D x2 with 0 � x < 32, the parameter of
the search space is x and is called the phenotype in an evolutionary algorithm. In
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Table 5.1 Chromosome encoded information

Decimal number Binary encoded

5 00101
20 10100
7 01011

GAs the phenotypes are usually converted to genotypes with a coding procedure.
By knowing the range of x we can represent it with a suitable binary string. The
chromosome should contain information about the solution, also known as encoding
(Table 5.1).

Although each bit in the chromosome can represent a characteristic in the solu-
tion here we are only representing the numbers in a binary way. There are several
types of encoding, which depend heavily on the problem, for example, permutation
encoding can be used in ordering problems, whereas floating-point encoding is very
useful for numeric optimization.

5.4 Genetic Algorithm Stages

There are different forms of GAs, however it can be said that most methods labeled
as GAs have at least the following common elements: population of chromosomes,
selection, crossover and mutation (Fig. 5.1). Another element rarely used called
inversion is only vaguely used in newer methods. A common application of a GA
is the optimization of functions, where the goal is to find the global maximum or
minimum.

A GA [5] can be divided into four main stages:

• Initialization. The initialization of the necessary elements to start the algorithm.
• Selection. This operation selects chromosomes in the population for reproduction

by means of evaluating them in the fitness function. The fitter the chromosome,
the more times it will be selected.

Fig. 5.1 GA main stages
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• Crossover. Two individuals are selected and then a random point is selected and
the parents are cut, then their tails are crossed. Take as an example 100110 and
111001: the 3 position from left to right is selected, they are crossed, and the
offspring is 100001, 111110.

• Mutation. A gene, usually represented by a bit is randomly complemented in
a chromosome, the possibility of this happening is very low because the popula-
tion can fall into chaotic disorder.

These stages will be explained in more detail in the following sections.

5.4.1 Initialization

In this stage (shown in Fig. 5.2) the initial individuals are generated, and the con-
stants and functions are also initiated, as shown in Table 5.2.

Fig. 5.2 GA initialization stage

Table 5.2 GA initialization parameters

Parameter Description

g The number of generations of the GA.
m Size of the population.
n The length of the string that represents each individual: s D f0; 1gn. The

strings are binary and have a constant length.
P C The probability of crossing of 2 individuals.
PM The probability of mutation of every gen.



128 5 Genetic Algorithms and Genetic Programming

5.4.2 Selection

A careful selection of the individuals must be performed because the domination
of a single high-fit individual may sometimes mislead the search process. There are
several methods that will help avoid this problem, where individual effectiveness
plays a very negligible role in selection. There are several selection methods like
scaling transformation and rank-based, tournaments, and probabilistic procedures.

By scaling we mean that we can modify the fitness function values as required
to avoid the problems connected with proportional selection. It may be static or
dynamic; in the latter, the scaling mechanism is reconsidered for each generation.

Rank-based selection mechanisms are focused on the rank ordering of the fitness
of the individuals. The individuals in a population of n size are ranked according to
their suitability for search purposes. Ranking selection is natural for those situations
in which it is easier to assign subjective scores to the problem solutions rather than
to specify an exact objective function.

Tournament selection was proposed by Goldberg in 1991, and is a very popular
ranking method of performing selection. It implies that two or more individuals

i =1 
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* k = 1
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Fig. 5.3 GA selection stage
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compete for selection. The tournament may be done with or without reinsertion of
competing individuals into the original population.

Finally the roulette-wheel selection process is another popular method used as
selection stage, where the fittest individuals have a higher probability to be selected.
In this method individuals are assigned a probability to be selected, then a random
number is calculated and the probability of individuals is accumulated. Once that
value of the random number is reached, the individual presently used is the one that
is selected.

However, in order to perform selection it is necessary to introduce a measure of
the performance of individuals. By selection we aim to maximize the performance
of individuals. Figure 5.3 shows the diagram of this stage.

Fitness Function

As we already mentioned selection methods need a tool to measure the performance
of individuals. The search must concentrate on regions of the search space where
the best individuals are located. This concentration accomplishes the exploitation
of the best solutions already found, which is exactly the purpose of selection. For
selection purposes a performance value is associated with each individual in the
current population, and represents the fitness of the function.

A fitness function is usually used to measure explicitly the performance of chro-
mosomes, although in some cases the fitness can be measured only in an implicit
way, using information about the performance of systems. Chromosomes in a GA
take the form of bit strings; they can be seen as points in the search space. This
population is processed and updated by the GA, which is mainly driven by a fitness
function, a mathematical function, a problem or in general, a certain task where the
population has to be evaluated.

5.4.3 Crossover

In order to increase population diversity, other operators are used such as the
crossover operation. By perturbing and recombining the existent individuals, the
search operators allow the search process to explore the neighboring regions or to
reach further promising regions.

Crossover operations achieve the recombination of the selected individuals by
combining segments belonging to chromosomes corresponding to parents. Fig-
ure 5.4 shows a diagram of the crossover stage, which creates an information ex-
change between the parent chromosomes. Thus the descendent obtained will pos-
sess features from both parents.

The role of recombination is to act as an impetus to the search progress and
to ensure the exploration of the search space. Various crossover operations have
been proposed, and here we will explain the most employed variant used in binary
encoded frameworks: the one-point crossover. The crossover probability (CP) is
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Fig. 5.4 GA crossover stage

compared with a random number between (0,1) and with this, it is determined if is
going to be crossover or not. When a crossover is made, the positions in which the
parents are going to be cut in a random position are then interchanged.

5.4.4 Mutation

In classical genetics, mutation is identified by an altered phenotype, and in molec-
ular genetics mutation refers to any alternation of a segment of DNA. Spontaneous
mutagenesis is normally not adaptive, and mutations normally do not provide a se-
lective advantage. Changes may destroy the genome structure, where other changes
tend to create and integrate new functions.
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Changes representing a selective disadvantage occur considerably more often and
can affect life processes in various degrees. The extreme situation leads to lethality.
Often the alteration of the chromosome remains without immediate consequences
on life processes. This kind of mutations is called natural or silent. Neutral muta-
tions however may play an evolutionary role.

Within the framework of binary encoding mutation is considered the second most
important genetic operator. The effect of this operator is to change a single position
(gene) within a chromosome. If it were not for mutation, other individuals could not

Fig. 5.5 Mutation stage
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be generated through other mechanisms, which are then introduced to the popula-
tion. The mutation operator assures that a full range of individuals is available to the
search.

One of the simplest executions of mutation is when the mutation probability (MP)
is compared with a random number between (0,1). If it is going to be a mutation,
a randomly chosen bit of the string is inverted. A diagram showing this stage is in
Fig. 5.5.

Example 5.1. This is an example of a GA using the Intelligent Control Toolkit for
LabVIEW (ICTL). A base algorithm created for searching the maximum and min-
imum in the f .x/ D x2 function will be explained. This program is included as

Fig. 5.6 Localization of GA methods on the toolkit

Fig. 5.7 GA-X squared front panel
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Table 5.3 Initial conditions and variables for the x2 example

Variable Description

Generations The number of repetitions of the algorithm.
Population Size The number of individuals per generation, for example 6.
n bits In this case it is how many bits will be in the binary string that represents the

individuals, for example, if the individuals will be numbers from 0 to 31, then
n D 5, because 25� 1 D 31.

Cross P The crossover probability if CP D 1 every individual selected will get com-
bined with other selected individuals.

Mut P Is the mutation probability and should be small; 0.001 is a good value.
Min/Max Allows us to select if we want to minimize or maximize the function.

a toolkit example but we will explain the development in detail. Figure 5.6 shows
where the GA methods can be found in the ICTL. First we build the front panel
where we will have the controls and indicators of all the variables.

Figure 5.7 shows an image of how to build the front panel. The initial condi-
tions and variables that we will include are shown in Table 5.3. Now we need to
start building the code of our program. First, we need to generate an initial popula-
tion before we start the algorithm, therefore we create a series of random numbers,
depending on the initial conditions. The code is shown in Fig. 5.8.

Basically, a series of random numbers are created, where the top is given by the
number of bits used, and later they are transformed into chains of bits. We also
need a decoding function and a fitness function. The decoding will convert bits to
numbers again and the fitness function will raise those numbers to the second power,
as shown in Fig. 5.9.

Now we need to perform selection, crossover, and mutation, the basic operations
of a GA. As shown in Fig. 5.10, we find the GA methods in the path Optimizers
	 GAs Palette 	 Generic Methods. Our decoded and fitness-evaluated individuals
will be fed to the selection method, later we will start a loop where the selected

Fig. 5.8 Creation and coding
of initial population

Fig. 5.9 Decoding and fitness
function
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Fig. 5.10 GA methods in-
cluded in the ICTL

Fig. 5.11 Selection, crossover, and mutation stages code

Fig. 5.12 Complete block diagram of the GA-X squared example

individuals will be crossed over and mutated (Fig. 5.11). From this we also see
that we can perform operations in parallel, e. g., the mutation, thus allowing us to
increase the operation time of the program.

The complete code is found in Fig. 5.12. Now we can set the initial conditions
and run our program and see that after 100 generations the maximum of the function
f .x/ D x2 for 0 � x � 31 has been found; Fig. 5.13 shows some results. With this
simple but powerful example we can apply GAs to other applications; the key will
be in the coding and fitness function. ut

5.5 Genetic Algorithms and Traditional Search Methods

There are at least three meanings of search in which we should be interested:

1. Search stored data. The problem to be solved here is to efficiently retrieve stored
information; an example can be search in computer memory. This can be applied
to enormous databases, which nowadays can be found in many forms on the
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Fig. 5.13 GA-X squared
showing some results

Internet. For example, what is the best way to search for hotels in a particular
city? Binary search is one method for efficiently finding a desired record in
a database.

2. Search paths and goals. This search form can be seen as the movements to go
from a desired initial state to a final state, like the shortest path in a maze.

3. Search for solutions. This is a more general search form of the search for paths
and goals. This happens because a path through a search tree can be encoded
as a candidate solution. The idea is to efficiently find a solution to a problem in
a large space of candidate solutions. These are the most common problems to
which GAs are applied.

5.6 Applications of Genetic Algorithms

Even though the foundations of GAs are very simple, certain variations have been
used in a large number of scientific and engineering applications. Some of them are
given below:

• Optimization. The optimization of mathematical functions, combinatorial and
numerical problems such as circuit layout and job-shop schedule.

• Automatic programming. Used to evolve computer programs, and to design com-
putational structures.

• Machine learning. Classification and prediction tasks, such as weather or protein
structure. GAs have been used to evolve aspects of particular machine learning
systems such as the weights in neural networks, rules for learning classifier sys-
tems, sensors and robots.

• Economics. Development of bidding strategies, model processes of innovation,
strategies, emergence of markets.
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• Immune systems. The evolution of evolutionary time in multi-gene families, so-
matic mutation, natural immune systems.

• Ecology. Model ecological phenomena such as symbiosis, host-parasite co-
evolution, and resource flow.

• Evolution and learning. Used in the study of how individual learning and species
evolutions affect one another.

• Social systems. Used to study evolutionary aspects of social systems, like the
evolution of social behavior in insect colonies, and the evolution of cooperation
and communication in multi-agent systems.

5.7 Pros and Cons of Genetic Algorithms

There are numerous advantages to using a GA, such as not depending on analyti-
cal knowledge, robustness, and intuitive operation. All of these characteristics have
made GAs strong candidates in search and optimization problems. However, there
are also several disadvantages to using GAs that have made researchers turn to other
search techniques, such as:

• Probabilistic.
• Expensive in computational resources.
• Prone to premature convergence.
• Difficult to encode a problem in the form of a chromosome.

There are several alternatives that have been found, especially due to the difficulty
of encoding the problems. Messy GAs and genetic programming are two techniques
that are based on the framework of GAs.

5.8 Selecting Genetic Algorithm Methods

The representation, recombination, mutation, and selection are complex balances
between exploitation and exploration. It is a matter of precision to maintain this
balance, thus there are several key factors that can help us correctly choose the
encoding technique.

Encoding. This is a key issue with most evolutionary algorithms, whether to
choose a suitable encoding scheme, which could be binary, floating-point, or gram-
matical. On the one hand, Holland supports the idea of a genome with a smaller
number of alleles with long strings, rather than a numeric scheme with a larger num-
ber of alleles but short (floating-point) strings. On the other hand, M. Mitchell points
out that for real-world applications it is more natural to use decimals or symbolic
representation [6]. The conclusion from Z. Michalewicz about this is that a floating-
point scheme is faster, more consistent between runs, and can provide a higher pre-
cision for large-domain applications.
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Operator choice. There are a few general guidelines to follow when choosing an
operator. Many advantages can be obtained from a two-point crossover operation, by
reducing the disruption of schemas with a long length. The choice of the mutation
depends heavily on the application, a practical alternative is an adaptive mutation
parameterized within the genome.

Elitism. Another common technique in many GAs is to retain the best candidate
in each generation and pass it to the next; this can give a significant boost to the
performance of the GA, although with the risk of reducing diversity.

5.9 Messy Genetic Algorithm

There are several approaches with regard to the modification of certain aspects of
GAs, with the aim of improving their performance. Messy GAs were proposed by
D. Goldberg and co-workers in 1989, where they used variable-length binary en-
codings of chromosomes.

Each gene of the chromosome is represented by a pair (position and value), en-
suring the adaptation of the algorithm to a larger variety of situations. Moreover
this representation prevents the problems generated by recombination. A messy GA
adapts its representation to the problem being solved.

The operators used in this algorithm are generalizations of standard genetic op-
erators that use binary encoding. The main disadvantage against fixed-length repre-
sentations is that they lack dynamic variability; thus, by limiting the string length
the search space is limited. To overcome this, variable-length representations allow
us to deal with partial information or to use contradictory information.

Messy encoding. Chromosome length is variable and genes may be arranged in
any order (messy), where the last characteristic is the one that gives the algorithm
its name. Each gene is represented by a pair of numbers. The first component is
a natural number that encodes the gene location; the second number represents the
gene value, which usually is either 0 or 1.
Example 5.2. Considering the binary encoded chromosome x D .01101/, which
can be transformed into the following sequence: x0 D ..1; 0/; .2; 1/; .3; 1/; .4; 0/;

.5; 1//. The meaning of this chromosome does not change if the pairs are arranged in
a different order, for instance the following chromosome: x00 D ..2; 1/; .3; 1/; .1; 0/;

.4; 0/; .5; 1//. ut
Incompleteness and ambiguity. As chromosomes have a flexible structure, we may
consider missing one or more genes, which is called an underspecified string. This
allows us to encode and deal with incomplete information. The opposite situation is
overspecification, which occurs when a string contains multiple pairs for the same
gene creating redundant or even contradictory genes.

To deal with overspecification, certain rules can be applied such as the tie-
breaking mechanism that essentially says “first-come, first served,” so that only the
first of the repeated genes is taken into consideration. To deal with underspecified
strings several possibilities exist, like looking for the complete chromosome that is
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Fig. 5.14 Cut and splice operation

closest to the underspecified string. Another way is to try to approximate the absent
value or to identify the probability p that the missing gene has the value of 1; if
the value is 0 then the probability will be (1 � p). Another way to do it is by using
competitive templates, considered as locally optimal strings.
Crossover. The classical n-point crossover is replaced by the cut-and-splice opera-
tor, which acts very similarly to a one-point crossover. Two parents are cut in two
and the resulting substrings are recombined. The position for the crossover is cho-
sen with a probability that is uniform to the string length. The difference is that the
crossover points are independent from the two parents.

The splice operation concatenates the substrings obtained through cutting, where
Fig. 5.14 shows this operation. There is no restriction regarding the way in which
substrings are combined. The tie-breaking rule along with competitive templates is
used to handle overspecified and underspecified strings.

Messy GAs have provided results for difficult problems. In the case of deceptive
functions, messy GAs perform better than simple GAs, usually finding the best solu-
tion. An important computational problem within messy algorithms is the dimension
of the search space, i. e., since large chromosomes may appear, the dimension could
be very high. The search space size is a polynomial. In parallel implementations, the
search time is reduced and it is logarithmic with respect to the number of variables of
the search space.

5.10 Optimization of Fuzzy Systems Using Genetic Algorithms

A brief explanation on how GAs can be applied to optimize the performance of
a fuzzy controller is given in this section.

5.10.1 Coding Whole Fuzzy Partitions

There is always knowledge of the desired configuration, for example, the number
of clusters and the labels for each one, where a natural order of the fuzzy sets can
be established. By including the proper constraints, the initial conditions can be
preserved while reducing the number of degrees of freedom in order to maintain the
interpretability of a fuzzy system. Thus, we can encode a whole fuzzy partition as
shown in (5.1), where 	 is the upper boundary for the size of the offset for example
	 D .b � a/=2. Figure 5.15 shows the coded triangular membership function.

Cn;Œ0;@� .x1/ ! Cn;Œ0;@� .x2 � x1/ � � � Cn;Œ0;@� .x2N�2 � x2N�3/ : (5.1)
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Fig. 5.15 Coded triangular membership functions

5.10.2 Standard Fitness Functions

We define the fitness function as a function that will minimize the distance between
a set of representative inputs and outputs, and the values computed by the next
function, where the sum of quadratic errors is calculated using (5.2):

f .v/ D
kX

iD1

.F .v; xi / � yi /
2 : (5.2)

Here, F .v; xi / is the function that computes the output with respect to the parameter
vector, .xi ; yi / is the sample data given as a list of couples, 1 � i � k, and k is the
number of samples.

5.10.3 Coding Rule Bases

So far we have explained in which way membership functions can be encoded to
be optimized with GAs, but if we find a proper method to encode rule bases into
a string of fixed lengths we can apply the previously explained GAs to optimize
them without modification.

We must assume that the number of linguistic values of all linguistic variables
are finite. A rule base is represented as a list for one input variable, as a matrix for
two variables, and as a tensor in the case of more than two variables. This rule can
be represented by a matrix as shown in Fig. 5.16. Consider the rule base of the form
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Fig. 5.16 Example decision
table B B
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in (5.3):
IF x1 is Ai AND x2 is Bj THEN Ci;j : (5.3)

We can now assign indices to the linguistic values associated with elements of the
set

˚
Ci;j

�
. We can later write the decision table as an integer string, and convert

those numbers to bits, where the previously mentioned GAs are perfectly suitable
to optimize the rule base.

5.11 An Application of the ICTL for the Optimization
of a Navigation System for Mobile Robots

A navigation system based on Bluetooth technology was designed for controlling
a quadruped robot in unknown environments which has ultrasonic sensor as inputs
for avoiding static and dynamic obstacles. The robot Zil I is controled by a fuzzy
logic controller Sugeno Type, which is shown in Fig. 2.24 and Zil I is shown in
Fig. 5.17, the form of the membership functions for the inputs are triangular and the

Fig. 5.17 Robot Zil I was controlled by a Fuzzy Logic Controller adjusted using Genetic Algo-
rithmsC
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Fig. 5.18 Triangular mem-
bership functions

initial membership function’s domain and shape are shown in Fig. 5.18. The block
diagram of the fuzzy controller is shown in Sect. 5.11 ICTL for the Optimization of
a Navigation System for Mobile Robots.

The navigation system is based on a Takagi–Sugeno controller, which is shown in
Fig. 5.17. The form of the membership function is triangular, and the initial limits are
shown in Fig. 5.18. The block diagram of the fuzzy controller is shown in Fig. 5.19.
Based on the scheme of optimization of fuzzy systems using GAs, the fuzzy con-
troller was optimized. Some initial individuals where created using expert knowledge
and others were randomly created. In Fig. 5.20 we see the block diagram of the GA.

Fig. 5.19 Block diagram of the Takagi–Sugeno controller

Fig. 5.20 Block diagram of the GA
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Inspecting the block diagram we find that the GA created previously, used for the
optimization of the f .x/ D x2 function, remains the same. The things that change
here are the coding and decoding functions, as well as the fitness function. There
is also some code used to store the best individuals. After running the program for
a while, the form of the membership functions will vary from our initial guess, as
shown in Fig. 5.21, and it will find an optimized solution that will fit the constrains
set by the human expert knowledge and the requirements for the application. The
solutions are shown in Fig. 5.22.

Fig. 5.21 Results shown by the GA after some generations

Fig. 5.22 Optimized membership functions



5.12 Genetic Programming Background 143

5.12 Genetic Programming Background

Evolution is mostly determined by natural selection, which can be described as in-
dividuals competing for all kinds of resources in the environment. The better the
individuals, the more likely they will propagate their genetic material. Asexual re-
production creates individuals identical to their parents; this is done by the encoding
of genetic information. Sexual reproduction produces offspring that contain a com-
bination of information from each parent, and is achieved by combining and re-
ordering the chromosomes of both parents.

Evolutionary algorithms have been applied to many problems such as optimiza-
tion, machine learning, operation research, bioinformatics and social systems, among
many others. Most of the time the mathematical function that describes the system is
not known and the parameters that are known are found through simulation.

Genetic programming, evolutionary programming, evolution strategies and GAs
are usually grouped under the term evolutionary computation, because they all share
the same base of simulating the evolution of individual structures. This process de-
pends on the way that performance is perceived by the individual structures as de-
fined by the problem.

Genetic programming deals with the problem of automatic programming; the
structures that are being evolved are computers programs. The process of problem
solving is regarded as a search in the space of computer programs, where genetic
programming provides a method for searching the fittest program with respect to
a problem. Genetic programming may be considered a form of program discovery.

5.12.1 Genetic Programming Definition

Genetic programming is a technique to automatically create a working computer
program from a high-level statement of the problem. This is achieved by genetically
breeding a population of computer programs using the principles of Darwinian nat-
ural selection and biologically inspired operators. It is the extension of evolutionary
learning into the space of computer programs.

The individual population members are not fixed-length character strings that
encode possible solutions of the problem, they are programs that when executed
are the candidate solutions to the problem. These programs are represented as trees.
There are other important components of the algorithm called terminal and function
sets. The terminal set consists of variables and constants. The function sets are the
connectors and operators that relate the constants and variables.

Individuals evolved from genetic programming are program structures of vari-
able sizes. A user-defined language with appropriate operators, variables, and con-
stants may be defined for the particular problem to be solved. This way programs
will be generated with an appropriate syntax and the program search space limited
to feasible solutions.
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5.12.2 Historical Background

A.M. Turing in 1950, considered the fact that genetic or evolutionary searches could
automatically develop intelligent computer programs, like chess player programs
and other general purpose intelligent machines. Later in 1980, Smith proposed
a classifier system that could find good poker playing strategies using variable-sized
strings that could represent the strategies. In 1985, Cramer considered a tree struc-
ture as a program representation in a genotype. The method uses tree structures and
subtree crossover in the evolutionary process.

Genetic programming was first proposed by Cramer in 1985 [7], and further devel-
oped by Koza [8], as an alternative to fixed-length evolutionary algorithms by intro-
ducing trees of different shapes and sizes. The symbols used to create these structures
are more varied than zeros and ones used in GAs. The individuals are represented by
genotype/phenotype forms, which make them non-linear. They are more like protein
molecules in their complex and unique hierarchical representation. Although parse
trees are capable of exhibiting a great variety of functionalities, they are highly con-
strained due to the form of tree, the branches are the ones that are modified.

5.13 Industrial Applications

Some interesting applications of genetic programming in the industry are mentioned
here. In 2006 J.U. Dolinsky and others [9] presented a paper with an application of
genetic programming to the calibration of industrial robots. They state that most of
the proposed methods address the calibration problem by establishing models fol-
lowed by indirect and often ill-conditioned numeric parameter identification. They
proposed an inverse static kinematic calibration technique based on genetic pro-
gramming, used to establish and identify model parameters.

Another application is the use of genetic programming for drug discovery in
the pharmaceutical industry [10]. W.B. Langdon and S.K. Barrett employed genetic
programming while working in conjunction with GlaxoSmithKline (GSK). They
were invited to predict biochemical activity using their favorite machine learning
technique. Their genetic programming was the best of 12 tested, which marginally
improved the existing system of GSK.

5.14 Advantages of Evolutionary Algorithms

Probably the greatest advantage of evolutionary algorithms is their ability to address
problems for which there are no human experts. Although human expertise is to
be used when available, it has proven less than adequate for automating problem-
solving routines.

A primary advantage of this kind of algorithm is that they are simple to represent.
They can be modeled as a difference equation x Œt C 1� D s .r .x Œt �//, which can
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be understood as: x Œt� is the population at time t under the representation x, is the
random variation operator and s is the selection operator.

The representation does not affect the performance of the algorithm, in contrast
with other numerical techniques, which are biased on continuous values or con-
strained sets. They offer a framework to easily incorporate known knowledge of
the problem, which could yield in a more efficient exploration and response of the
search space.

Evolutionary algorithms can be combined with simple or complex traditional
optimization techniques. Most of the time the solution can be evaluated in paral-
lel, and only the selection must be processed serially. This is an advantage over
other optimization techniques like tabu search and simulated annealing. Evolution-
ary algorithms can be used to adapt solutions to changing circumstances, because
traditional methods are not robust to dynamic changes and often require a restart to
provide the solution.

5.15 Genetic Programming Algorithm

In 1992, J.R. Koza developed a variation of GAs that is able to automate the gener-
ation of computer programs [8]. Evolutionary algorithms, also known as evolution-
ary computing, are the general principles of natural evolution that can be applied
to completely artificial environments. GAs and genetic programming are types of
evolutionary computing.

Fig. 5.23 Tree representation
of a rule
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Genetic programming is a computing method, which provides a system with the
possibility of generating optimized programs or computer codes. In genetic pro-
gramming IF-THEN rules are coded into individuals, which often are represented
as trees. For example, a rule for a wheeled robot may be IF left is far AND center if
far AND right is close THEN turn left. This rule is represented as a tree in Fig. 5.23.

According to W. Banzhaf “genetic programming, shall include systems that con-
stitute or contain explicit references to programs (executable code) or to program-
ming language expressions.”

5.15.1 Length

In GAs the length of the chromosome is fixed, which can restrict the algorithm to
a non-optimal region of the problem in search space. Because of the tree represen-
tation, genetic programming can create chromosomes of almost any length.

5.16 Genetic Programming Stages

Genetic programming uses four steps to solve problems:

1. Generate an initial population of random compositions of functions and termi-
nals of the problem (computer programs).

2. Execute each program in the population and assign it a fitness value according
to how well it solves the problem.

3. Create a new population of computer programs:

a. Copy the best existing programs.
b. Create new programs by mutation.
c. Create new computer programs by crossover.

4. The best computer program that appeared in any generation, the best-so-far so-
lution, is designated the result of genetic programming [8].

Just like in GAs, in genetic programming the stages are initialization, selection,
crossover, and mutation.

5.16.1 Initialization

There are two methods for creating the initial population in a genetic programming
system:

1. Full selects nodes from only the function set until a node is at a specified maxi-
mum depth.

2. Grow randomly selects nodes from the function and terminal set, which are
added to a new individual.
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5.16.2 Fitness

It could be the case that a function to be optimized is available, and we will just need
to program it. But for many problems it is not easy to define an objective function.
In such a case we may use a set of training examples and define the fitness as an
error-based function. These training examples should describe the behavior of the
system as a set of input/output relations.

Considering a training set of k examples we may have .xi ; yi / ; i D 1; : : : ; k;

where xi is the input of the i th training sample and yi is the corresponding output.
The set should be sufficiently large to provide a basis for evaluating programs over
a number of different significant situations.

The fitness functionmay also be defined as the total sum of squared errors; it has the
property of decreasing the importance of small deviations from the target outputs. If
we define the error as ei D .yi � oi /

2 where yi is the desired output and oi the actual
output, then the fitness will be defined as

Pk
iD1 ek D Pk

iD1 .yi � oi /
2. The fitness

function may also be scaled, thus allowing amplification of certain differences.

5.16.3 Selection

Selection operators within genetic programming are not specific; the problem under
consideration imposes a particular choice. The choice of the most appropriate selec-
tion operator is one of the most difficult problems, because generally this choice is
problem-dependent. However, the most-used method for selecting individuals in ge-
netic programming is tournament selection, because it does not require a centralized
fitness comparison between all individuals. The best individuals of the generation
are selected.

5.16.4 Crossover

The form of the recombination operators depends on the representation of individu-
als, but we will restrict ourselves to tree-structured representations. An elegant and
rather straightforward recombination operator acting on two parents swaps a subtree
of one parent with a subtree of the other parent.

There is a method proposed by H. Iba and H. Garis to detect regularities in
the tree program structure and to use them as guidance for the crossover opera-
tor. The method assigns a performance value to a subtree, which is used to select
the crossover points. Thus, the crossover operator learns to choose good sites for
crossover.

Simple crossover operation. In a random position two trees interchange their
branches, but it should be in a way such that syntactic correctness is maintained.
Each offspring individual will pass to the selection process of the next generation.
In Fig. 5.24 a representation of a crossover is shown.
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Fig. 5.24 Tree representation of a genetic programming crossover stage

5.16.5 Mutation

There are several mutation techniques proposed for genetic programming. An ex-
ample is the mutation of tree-structured programs; here the mutation is applied to
a single program tree to generate an offspring. If our program is linearly repre-
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Fig. 5.25 Tree representation of a genetic programming mutation stage

sented, then the mutation operator selects an instruction from the individual chosen
for mutation. Then, this selected instruction is randomly perturbed, or is changed to
another instruction randomly chosen from a pool of instructions.

The usual strategy is to complete the offspring population with a crossover op-
eration. On this kind of population the mutation is applied with a specific mutation
probability. A different strategy considers a separate application of crossover and
mutation. In this case it seems to be emphasized with respect to the previous, stan-
dard technology.

In genetic programming, the generated individuals are selected with a very low
probability of being mutated. When an individual is mutated, one of its nodes is se-
lected randomly and then the current subtree at that point is replaced with a new ran-
domly generated subtree. It is important to state that just as in biological mutation,
in genetic programming mutation the genotype may not change but the resulting
genotype could be completely different (Fig. 5.25).

5.17 Variations of Genetic Programming

Several variations of genetic programming can be found in the literature. Some of
them are linear genetic programming, a variant that acts on linear genomes rather
than trees; gene expression programming, where the genotype (a linear chromo-
some) and the phenotype (expression trees) are different entities that form an indi-
visible whole; multi-expression programming encodes several solutions into a chro-
mosome; Cartesian genetic programming uses a network of nodes (indexed graph)
to achieve an input-to-output mapping; and traceless genetic programming, which
does not store explicitly the evolved computer programs, and is useful when the
relation between the input and output is not important.
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5.18 Genetic Programming in Data Modeling

The main purpose of evolutionary algorithms is to imitate natural selection and evo-
lution, allowing the most efficient individuals to reproduce more often. Genetic pro-
gramming is very similar to GAs; the main difference is that genetic programming
uses different coding of potential solutions. By using knowledge from great amounts
of data collected from different places, we can discover patterns and represent them
in a way that humans can understand them.

By mathematical modeling we understand that certain equations fit some nu-
merical data. It is used in a variety of scientific problems, where the theoretical
foundations are not enough to give answers to experiments. Sometimes using tra-
ditional methods is not enough because these methods assume a specific form of
model. Genetic programming allows the search for a good model in a different and
more “intelligent” way, and can be used to solve highly complex, non-linear, chaotic
problems.

5.19 Genetic Programming Using the ICTL

Here we will continue with the optimization example of fuzzy systems. As we have
mentioned previously, a Takagi–Sugeno is the core controller of a navigation system
that maneuvers the movements of a quadruped robot in order to avoid obstacles. We
have previously optimized the form of the membership functions using GAs and
now we will evolve the form of the rules and modify their operators. The rules for
the controllers used in the quadruped robot have the form of (5.4):

IF Left is ALi Conn Central is ACi Conn Right is ARi THEN SLeft, SRight ;

(5.4)
where ALi D AC i D ARi are the number of fuzzifying membership functions for
the inputs, in this case they are the same, and Conn is the operation to be performed.
There are four options: (1) min, (2) max, (3) product, and (4) sum. SLeft, SRight are
the speeds used to control the movements of the robot.

Genetic programming will be applied using the following convention to code-
decode the individuals:

• 3 bits that will help us determine if the set is complemented or not. A bi-
dimensional array must be generated with the same form of the CM-A of the
input-combinator-generator.vi that is used to evaluate the different sets of the
possible rule combinations. The first dimension contains the number of rules, the
second the number of inputs to the system.

• 2 bits are used for the premise evaluation. The premises of the next connection
operation are used: (0) min, (1) max, (2) product, and (3) sum.

• 10 bits are used to obtain the outputs of the rule, 5 for each output to obtain
a constant between 0 and 31.
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Table 5.4 Individual rule coding for genetic programming ICTL example

Three bits Two bits 10 bits for rule output
IS, IS NOT Conn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 5.26 Localization of genetic programming methods on the ICTL

The rule in bits is shown in Table 5.4. As shown in Fig. 5.26, the methods for genetic
programming are found at Optimizers 	 GPs 	 Generic Methods. An individual
contains 27 of these rules; the initial_population.vi initializes a population with
random individuals. The code is shown in Fig. 5.27. Fixed individuals may be added
based on human expert knowledge.

Fig. 5.27 Block diagram for
the initialization of random
individuals

Fig. 5.28 Block diagram of fitness function
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Fig. 5.29 Front panel of the genetic programming example

Fig. 5.30 Block diagram of the genetic programming example

The fitness function (Figs. 5.28–5.30) compares a series of desired inputs and
outputs with the corresponding performance of the controller, calculating the quadra-
tic errors difference with each point, summing them and dividing by the number of
evaluated points to obtain the fitness value for a given individual.

The selection function executes the tournament variation by randomly selecting
a desired number of individuals and selecting the two fittest. This process is repeated
until the same number of initial individuals is obtained.
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Table 5.5 Controlled variables in the genetic programming example

Variable Description

Pop Size The number of individuals in the algorithm.
I in T The number of individuals randomly taken for the tournament selection.
Cr Prob The probability of crossing [0, 1].
Mt Prob The probability of mutation for each bit [0, 1].

The crossover executes a one-stage interchange of tails, by taking two individ-
uals from the mating pool, and depending on the possibility of crossing, the two
individuals will or will not perform the crossover again. This process is repeated
until the same number of initial individuals is obtained.

The mutation process executes a bit-to-bit operation on every one of the rules of
each individual, and depending on the probability of mutation the bit will or will not
change. During the execution of this algorithm, the individual with the best fitness
is always stored to ensure that this information is never lost. Table 5.5 shows the
variables to be controlled.
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Chapter 6
Simulated Annealing, FCM,
Partition Coefficients and Tabu Search

6.1 Introduction

In 1945 the construction of the first computer caused a revolution in the world. It
was aimed to modify the interactions between Russia and the West. In the academic
and research fields it brought back a mathematical technique known as statistical
sampling, now referred to as the Monte Carlo method. S. Frankel and N. Metropolis
created a model of a thermonuclear reaction for the Electronic Numerical Integra-
tor and Computer (ENIAC), persuaded by the curiosity and interest of John von
Neumann, a prominent scientist in that field.

The results of the model where obtained after the end of the World War I, and
among the reviewers was Stan Ulam, who had an extensive background in mathe-
matics and the use of statistical methods. He knew these techniques were no longer
in use because of the length and tediousness of calculations. His research interest
included pattern development in 2D games played with very simple rules. These
techniques are now used in various industrial applications known as cellular au-
tomata.

Ulam and Neumann sent a proposal of the Monte Carlo method to the theoret-
ical division leader of the Los Alamos Laboratory in New Mexico in 1947, which
included a detailed outline of a possible statistical approach to solve the problem
of neutron diffusion in fissionable material. The basic idea of the method was to
generate a genealogical history of different variables in a process until a statistically
valid picture of each variable was created.

The next step was to generate random numbers; here Neumann proposed a method
called the middle-square digits. Once the random numbers are generated, they must
be transformed into a non-uniform distribution desired for the property of interest.
Solving problems using this method is easier than other approaches like differen-
tial equations, because one needs only to mirror the probability distribution into the
search space of the problem at hand.

In 1947 the ENIAC was moved to the Ballistic Research Laboratory in Maryland,
its permanent home. After the movement, there was an explosion in the use of the
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Monte Carlo method with this computer. The applications solved several questions
of different branches of physics, and by 1949 there was a special symposium held
on the method.

The Monte Carlo method gave birth to modern computational optimization prob-
lems. We can now see, as a natural consequence of electronic computers, the quick
evolution of experimental mathematics, with the Monte Carlo method key to this
achievement. It was at this point that mathematics achieved the twofold aspect of
experiment and theory, which all other sciences enjoy.

As an example of the method, we can imagine a coconut shy. We want to know
the probability of taking 10 shots at the coconut shy and obtain an even number of
hits. The only information that we know is that there is a 0.2 probability of having
a hit with a single shot. Using the Monte Carlo method we can perform a large
number of simulations of taking 10 shots at the coconut shy. Next we can count the
simulations with even number of hits and divide that number over the total number
of simulations. By doing this we will get an approximation of the probability that
we are looking for.

6.1.1 Introduction to Simulated Annealing

A combinatorial optimization problem strives to find the best or optimal solution,
among a finite or infinite number of solutions. A wide variety of combinatorial prob-
lems have emerged from different areas such as physical sciences, computer science,
and engineering, among others. Considerable effort has been devoted to construct
and research methods for solving the performance of the techniques. Integer, linear,
and non-linear programming have been the major breakthroughs in recent times.

Over the years it has been shown that many theoretical and practical problems
belong to the class of NP-complete problems. A large number of these problems
are still unsolved; there are two main options for solving them. On the one hand,
if we strive for optimality the computation time will be very large; these methods
are called optimization methods. On the other hand, we can search quick solutions
with suboptimal performance, called heuristic algorithms. However, the difference
between these methods is not very strict, because some types of algorithm can be
used for both purposes.

Another way to classify algorithms is between general and tailored. While gen-
eral algorithms are applicable to a wide range of problems, tailored algorithms use
problem-specific information, restricting their applicability. The intrinsic problem
is that for the former ones, for each type of combinatorial optimization problem,
a new algorithm must be constructed.
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6.1.2 Pattern Recognition

Recognizing and classifying patterns is a fundamental characteristic of human intel-
ligence. It plays a key role in human perception as well as other levels of cognition.
The field of study has evolved since the 1950s. Pattern recognition can be defined
as a process by which we search for structures in data and classify them into cate-
gories such that the degree of association is high among structures of the same kind.
Prototypical categories are usually characterized from past experience, and can be
done by more than one structure.

Classification of objects falls in the category of cluster analysis, which plays
a key role in pattern recognition. Cluster analysis it is not restricted to only pattern
recognition, but is applicable to the taxonomies in biology and other areas, classifi-
cation of information, and social groupings.

Fuzzy set theory has been used in pattern recognition since the mid-1960s. We
can find three fundamental problems in pattern recognition, where most categories
have vague boundaries. In general, objects are represented by a vector of measured
values of r variables: a D Œa1 : : : ar �.

This vector is called a pattern vector, where ai (for each i 2 Nr/ is a particu-
lar characteristic of interest. The first problem is concerned with representation of
input data, which is obtained from the objects to be recognized, known as sensing
problems. The second problem concerns the extraction of different features from the
input data, in terms of the dimension of the pattern vector; they are called feature
extraction problems. These features should characterize attributes, which determine
the pattern classes.

The third problem involves the determination of optimal decision procedures for
the classification of given patterns. Most of the time this is done by defining an ap-
propriate discrimination function of patterns by assigning a real number to a pattern
vector. Then, individual pattern vectors are evaluated by discrimination functions,
and the classification is designed by the resulting number.

6.1.3 Introduction to Tabu Search

There are many problems that need to be solved by optimization procedures. Ge-
netic algorithms (GA) or simulated annealing is used for that purpose. Tabu search
(TS) is among the methods found in this field of optimization solutions. As its name
suggests, tabu search is an algorithm performing the search in a region for the min-
imum or maximum solution of a given problem.

Searching is quite complicated because it uses a lot of memory and spends too
much time in the process. For this reason, tabu search is implemented as an intelli-
gent algorithm to take advantage of memory and to search more efficiently.
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6.1.4 Industrial Applications of Simulated Annealing

We will briefly describe some industrial applications of the simulated annealing.
Scheduling is always a difficult problem in the industry. Processes and logistics
must be carefully combined to harmonize and increase production of plants. In 1997
A.P. Reynolds [1] and others presented a paper on simulated annealing for indus-
trial applications. They optimized the scheduling process in order to optimize the
resources of a manufacturing plant to meet the demand of different products.

S. Saika and other researchers [2] from Matsushita at the Advanced LSI Tech-
nology Development Center introduced a high-performance simulated annealing
application to transistor placement. Called widely stepping simulated annealing,
they applied it to the 1D transistor placement optimizations used in several in-
dustrial cells. They claim to have solutions as good as the standard algorithm
and better, with a processing time one-thirtieth that of the normal simulated an-
nealing.

R.N. Bailey, K.M. Garner, and M.F. Hobbs published a paper [3] showing the
application of simulated annealing and GAs to solve staff scheduling problems.
They use the algorithms to solve the scheduling of the work of staff with different
skill levels, which is difficult to achieve because there is a large number of solu-
tions. The results show that both simulated annealing and GAs can produce opti-
mal and near-optimal solutions in a relatively short time for the nurse scheduling
problem.

6.1.5 Industrial Applications of Fuzzy Clustering

Manufacturing firms have increased the use of industrial robots over the years. There
has also been an increase in the number of robot manufacturers, offering a wide
range of products. This is how M. Khouja and D.E. Booth [4] used a fuzzy cluster-
ing technique for the evaluation and selection of industrial robots given a specific
application. They take into consideration real-world data instead to create the model.

B. Moshiri and S. Chaychi [5] use fuzzy logic and fuzzy clustering to model
complex systems and identify non-linear industrial processes. They claim that their
proposed advantage is simple, flexible and of high accuracy, easy to use and auto-
matic. They applied this system to a heat exchanger.

6.1.6 Industrial Applications of Tabu Search

Tabu search has been widely used to optimize several industrial applications. For
example, L. Zhang [6] and his team proposed a tabu search scheme to optimize the
vehicle routing problem, with the objective of finding a schedule that will guarantee
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the safety of all vehicles. Their algorithm proved to be good enough compared with
other more mature algorithms specially designed for the vehicle problem.

Artificial neural networks (ANNs) based on the tabu search algorithm have also
been used by H. Shuang [7] to create a wind speed prediction model. A backpropa-
gation neural network has its weights optimized using tabu search. Then the neural
network is used as a model to predict the wind speed 1 hour ahead. It improved the
prediction compared with a simple backpropagation neural network.

In 2007 J. Brigitte and S. Sebbah presented a paper [8] in which 3G networks
are optimized. The location of primary bases and the core network link capacity is
optimized. The dimensioning problem is modeled as a mixed-integer program and
solved by a tabu search algorithm; the search criteria includes the signal-to-noise
plus interference ratio. Primary bases are randomly located and after a few iterations
their location is changed and the dimensioning optimized.

This base optimization problem was previously addressed by C.Y. Lee and pub-
lished in a paper in 2000 [9]. He also aimed to minimize the number of base stations
used and its location in an area covered by cellular communications. The results
presented show that a 10 % in cost reduction is achieved, and between a 10 and 20%
of cost reduction in problems with 2500 traffic demand areas with code division
multiple access (CDMA) systems.

6.2 Simulated Annealing

It was in 1982 and 1983 that Kirkpatrick, Gelatt and Vecchi introduced the concepts
of annealing in combinatorial optimization. It was also independently presented in
1985 by Černy. The concepts are based on the physical annealing process of solids
and the problem of solving large optimization problems.

Annealing is a physical process where a substance is heated and cooled in a con-
trolled manner. The results obtained by this process are strong crystalline structures,
compared to structures obtained by fast untempered cooling, which result in brittle
and defective structures. For the optimization process the structure is our encoded
solution, and the temperature is used to determine how and when new solutions are
accepted. The process contains two steps [4, 10]:

1. Increase temperature of the heat bath to a maximum value at which the solid
melts.

2. Carefully decrease the temperature of the heat bath until particles arrange them-
selves in the ground state of the solid.

When the structure is in the liquid phase all the particles of the solid arrange them-
selves in a random way. In the ground state the particles are arranged in a highly
structured lattice, leaving the energy of the system at its minimum. This ground state
of the solid is only obtained if the maximum temperature is sufficiently high and the
cooling is sufficiently low, otherwise, the solid will be frozen into a metastable state
rather than the ground state.
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Computer simulation methods from condensed matter physics are used to model
the physical annealing process. Metropolis and others introduced a simple algorithm
to simulate the evolution of a solid in a heat bath at thermal equilibrium. This algo-
rithm is based on Monte Carlo techniques, which generate a sequence of states of
the solid.

These states act as the following: given the actual state i of the solid that has en-
ergy Ei , the subsequent state j is generated by applying a perturbation mechanism
which transforms the present state into the next state causing a small distortion, like
displacing a particle. For the next state Ej , if the energy difference Ej � Ei is less
than or equal to zero, then the j is accepted as the current state. If the energy dif-
ference is greater than zero, then the j state is accepted with a certain probability,

given by: e

�
Ei �Ej

kBT

�

.
Here, T denotes the temperature of the heat bath, and kB is a constant known

as the Boltzmann constant. We will now describe the Metropolis criterion used as
the acceptance rule. The algorithm that goes with it is known as the Metropolis
algorithm.

If the temperature is lowered sufficiently slowly, then the solid will reach ther-
mal equilibrium at each temperature. In the Metropolis algorithm this is achieved by
generating a large number of transitions at a given temperature value. The thermal
equilibrium is characterized by a Boltzmann distribution, which gives the probabil-
ity of the solid being in the state i with an energy Ei at temperature T :

PT fX D ig D 1

Z .T /
e
�
� Ei

kBT

�

; (6.1)

where X is a stochastic variable that denotes the state of the solid in its current form,
and Z .T / is a partition function, defined by:

Z .T / D
X

j

e

�

� Ej
kBT

�

: (6.2)

The sum will extend over all the possible states. The simulated annealing algorithm
is very simple and can be defined in six steps [11], as shown in Fig. 6.1.

1. Initial Solution
The initial solution will be mostly a random one and gives the algorithm a base
from which to search for a more optimal solution.

2. Assess Solution
Consists of decoding the current solution and performing whatever action is
necessary to evaluate it against the given problem.

3. Randomly Tweak Solution
Randomly modify the working solution, which depends upon the encoding.

4. Acceptance Criteria
The working solution is compared to the current solution, if the working one has
less energy than the current solution (a better solution) then the working solution
is copied to the current solution and the temperature is reduced. If the working
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Fig. 6.1 Simulated annealing
algorithm Current Solution Create an Initial Solution

Assess Solution

Randomly Tweak

Assess New Solution

Acceptance Criteria

Reduce Temperature

Working Solution

Best Solution

solution is worse than the current one, the acceptance criteria is evaluated to
determine what to do with the current solution. The probability is based on (6.3):

P .ıE/ D e�
ıE
T ; (6.3)

which means that at higher temperatures poorer solutions are accepted in order
to search in a wider range of solutions.

5. Reduce Temperature
After a certain number of iterations the temperature is decreased. The simplest
way is by means of a geometric function TiC1 D ˛Ti , where the constant ˛ is
less than one.

6. Repeat
A number of operations are repeated at a single temperature. When that set is
reduced the temperature is reduced and the process continues until the tempera-
ture reaches zero.

6.2.1 Simulated Annealing Algorithm

We need to assume an analogy between the physical system and a combinatorial
optimization problem, based on the following equivalences:

• Solutions in a combinatorial optimization problem are equivalent to states of
a physical system.

• The energy of a state is the cost of a solution.

The control parameter is the temperature, and with all these features the simulated
annealing algorithm can now be viewed as an iteration of the Metropolis algorithm
evaluated at decreasing values of the control parameters. We will assume the ex-
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istence of a neighborhood structure and a generation mechanism; some definitions
will be introduced.

We will denote an instance of a combinatorial optimization problem by .S; f /,
and i and j as two solutions with their respective costs f .i/ and f .j /. Thus, the
acceptance criterion will determine if j is accepted by i by applying the following
acceptance probability:

Pc .accepted j / D

8
<̂

:̂

1 if f .j / � f .i/

e
�

f .i/�f .j /
c

�

if f .j / > f .i/
: (6.4)

where here c 2 RC denotes the control parameter. The generation mechanism cor-
responds to the perturbation mechanism equivalent at the Metropolis algorithm and
the acceptance criterion is the Metropolis criterion.

Another definition to be introduced is the one of transition, which is a combined
action resulting in the transformation of a current solution into a subsequent one. For
this action we have to follow the next two steps: (1) application of the generation
mechanism, and (2) application of the acceptance criterion.

We will denote ck as the value of the control parameter and Lk as the number
of transitions generated at the kth iteration of the Metropolis algorithm. A formal
version of the simulated annealing algorithm [5] can be written in pseudo code as
shown in Algorithm 6.1.

Algorithm 6.1

SIMULATED ANNEALING
init:
k D 0
i D istart

repeat
for l D 1 to Lk do
GENERATE j f rom Si W
if f .j / � f .i/ then i D j

else

if e
�

f .i/�f .j /
ck

�

> rand Œ0; 1/ then i D j

k D k C 1
CALCULATE LENGTH .Lk/

CALCULATE CONTROL .Lk/

until stopcri terion

end

The probability of accepting perturbations is implemented by comparing the value
of ef .i/�f .j /=c with random numbers generated in .0; 1/. It should also be obvious
that the speed of convergence is determined by the parameters Lk and ck .
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A feature of simulated annealing is that apart from accepting improvements in
cost, it also accepts, to a limited extent, deteriorations in cost. With large values
of c large deteriorations or changes will be accepted. As the value of c decreases,
only smaller deteriorations will be accepted. Finally, as the value approaches zero,
no perturbations will be accepted at all. This means that the simulated annealing
algorithm can escape from local minima, while it still is simple and applicable.

6.2.2 Sample Iteration Example

Let us say that the current environment temperature is 50 and the current solution
has an energy of 10. The current solution is perturbed, and after calculating the
energy the new solution has an energy of 20. In this case the energy is larger, thus
worse, and we must therefore use the acceptance criteria. The delta energy of this
sample is 10. Calculating the probability we will have:

P D e.� 10
50 / D 0:818731 : (6.5)

So for this solution it will be very probable that the less ideal solution will be propa-
gated forward. Now taking our schedule at the end of the cycle, the temperature will
be now 2 and the energies of 3 for the current solution, and 7 for the working one.
The delta energy of the sample is 4. Therefore, the probability will be:

P D e.� 4
2 / D 0:135335 : (6.6)

In this case, it is very unlikely that the working solution will be propagated in the
subsequent iterations.

6.2.3 Example of Simulated Annealing
Using the Intelligent Control Toolkit for LabVIEW

We will try to solve the N -queens problem (NQP) [3], which is defined as the place-
ment of N queens on an N � N board such that no queen threatens another queen
using the standard chess rules. It will be solved in a 30 � 30 board.
Encoding the solution. Since each column contains only one queen, an N -element
array will be used to represent the solution.
Energy. The energy of the solution is defined as the number of conflicts that arise,
given the encoding. The goal is to find an encoding with zero energy or no conflicts
on the board.
Temperature schedule. The temperature will start at 30 and will be slowly decreased
with a coefficient of 0.99. At each temperature change 100 steps will be performed.
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Fig. 6.2 Simulated annealing
VIs

The initial values are: initial temperature of 30, final temperature of 0.5, alpha
of 0.99, and steps per change equal to 100. The VIs for the simulated annealing are
found at: Optimizers 	 Simulated Annealing, as shown in Fig. 6.2.

The front panel is like the one shown in Fig. 6.3. We can choose the size of
the board with the MAX_LENGTH constant. Once a solution is found the green
LED Solution will turn on. The initial constants that are key for the process are
introduced in the cluster Constants. We will display the queens in a 2D array of
bits. The Current, Working and Best solutions have their own indicators contained
in clusters.

Fig. 6.3 Front panel for the simulated annealing example
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Fig. 6.4 Block diagram for the generation of the initial solution

Our initial solution can be created very simply; each queen is initialized occu-
pying the same row as its column. Then for each queen the column will be varied
randomly. The solution will be tweaked and the energy computed. Figure 6.4 shows
the block diagram of this process.

Fig. 6.5 Code for the tweaking process of the solution

Fig. 6.6 Code for the computation of energy
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Fig. 6.7 Block diagram of the simulated annealing example for the N -queen problem

The tweaking is done by the code shown in Fig. 6.5; basically it randomizes
the position of the queens. The energy is computed with the following code. It will
try to find any conflict in the solution and assess it. It will select each queen on
the board, and then on each of the four diagonals looking for conflicts, which are
other queens in the path. Each time one is found the conflict variable is increased.
In Fig. 6.6 we can see the block diagram. The final block diagram is shown in
Fig. 6.7.

6.3 Fuzzy Clustering Means

In the field of optimization, fuzzy logic has many beneficial properties. In this case,
fuzzy clustering means (FCM), known also as fuzzy c-means or fuzzy k-means, is
a method used to find an optimal clustering of data.

Suppose, we have some collection of data X D fx1; : : :; xng, where every ele-
ment is a vector point in the form of xi D .x1

i ; : : :; x
p
i / 2 Rp. However, data is

spread in the space and we are not able to find a clustering. Then, the purpose of
FCM is to find clusters represented by their own centers, in which each center has
a maximum separation from the others. Actually, every element that is referred to
as clusters must have the minimum distance between the cluster center and itself.
Figure 6.8 shows the representation of data and the FCM action.

At first, we have to make a partition of the input data into c subsets written as
P.X/ D fU1; : : :; Ucg, where c is the number of partitions or the number of clusters
that we need. The partition is supposed to have fuzzy subsets Ui . These subsets must
satisfy the conditions in (6.7) to (6.8):
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cX

iD1

Ui .xk/ D 1; 8xk 2 X (6.7)

0 <

nX

kD1

Ui .xk/ < n : (6.8)

The first condition says that any element xk has a fuzzy value to every subset. Then,
the sum of membership values in each subset must be equal to one. This condition
suggests to elements that it has some membership relation to all clusters, no matter
how far away the element to any cluster. The second condition implies that every
cluster must have at least one element and every cluster cannot contain all elements
in the data collection. This condition is essential because on the one hand, if there
are no elements in a cluster, then the cluster vanishes.

On the other hand, if one cluster has all the elements, then this clustering is trivial
because it represents all the data collection. Thus, the number of clusters that FCM
can return is c D Œ2; n � 1�. FCM need to find the centers of the fuzzy clusters. Let
vi 2 Rp be the vector point representing the center of the i th cluster, then

vi D

nP

kD1
ŒUi .xk/�m xk

nP

kD1
ŒUi .xk/�m

; 8i D 1; : : :; c ; (6.9)

where m > 1 is the fuzzy parameter that influences the grade of the membership in
each fuzzy set. If we look at (6.9), we can see that it is the weighted average of the
data in Ui . This expression tells us that centers may or may not be any point in the
data collection.

Fig. 6.8 Representation of the FCM algorithm
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Actually, FCM is a recursive algorithm, and therefore needs an objective func-
tion that estimates the optimization process. We may say that the objective function
Jm.P / with grade m of the partition P.X/ is shown in (6.10):

Jm.P / D
nX

kD1

cX

iD1

ŒUi .xk/�m kxk � vik2 : (6.10)

This objective function represents a measure of how far the centers are from each
other, and how close the elements in each center are. For instance, the smaller the
value of Jm.P /, the better the partition P.X/. In these terms, the goal of FCM is to
minimize the objective function.

We present the FCM algorithm developed by J. Bezdek for solving the clustering
data. At first, we have to select a value c D Œ2; n � 1� knowing the data collec-
tion X . Then, we have to select the fuzzy parameter m D .1; 1/. In the initial
step, we select a partition P.X/ randomly and propose that Jm.P / ! 1. Then,
the algorithm calculates all cluster centers by (6.9). Then, it updates the partition by
the following procedure: for each xk 2 X calculate

Ui .xk/ D
2

4
cX

jD1

 
kxk � vik2

	
	xk � vj

	
	2

! 1
m�1

3

5

�1

; 8i D 1; : : :; c : (6.11)

Finally, the algorithm derives the objective function with values found by (6.9) and
(6.11), and it is compared with the previous objective function. If the difference
between the last and current objective functions is close to zero (we say " � 0
is a small number called the stop criterion), then the algorithm stops. In another
case, the algorithm recalculates cluster centers and so on. Algorithm 6.2 reviews
this discussion. Here n D Œ2; 1/, m D Œ1; 1/, U are matrixes with the membership
functions from every sample of the data set to each cluster center. P are the partition
functions.

Algorithm 6.2 FCM procedure

Step 1 Initialize time t D 0.
Select numbers c D Œ2; n� 1� and m D .1; 1/.
Initialize the partition P.X/ D fU1; : : :; Ucg randomly.
Set Jm.P /.0/!1.

Step 2 Determine cluster centers by (6.9) and P.X/.
Step 3 Update the partition by (6.11).
Step 4 Calculate the objective function Jm.P /.tC1/.
Step 5 If Jm.P /.t/�Jm.P /.tC1/ > " then update t D t C 1 and go to Step 2.

Else, STOP.

Example 6.1. For the data collection shown in Table 6.1 with 20 samples. Cluster in
three subsets with a FCM algorithm taking m D 2.
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Table 6.1 Data used in Example 6.1

Number X data Number X data Number X data Number X data

1 255 6 64 11 58 16 80
2 67 7 64 12 96 17 80
3 67 8 71 13 96 18 71
4 74 9 71 14 87 19 71
5 74 10 58 15 87 20 62

Fig. 6.9 Block diagram of the
initialization process

Fig. 6.10 Block diagram of
partial FCM algorithm

Solution. The FCM algorithm is implemented in LabVIEW in several steps. First,
following the path ICTL 	 Optimizers 	 FCM 	 FCM methods 	 init_fcm.vi.
This VI initializes the partition. In particular, it needs the number of clusters (for this
example 3) and the size of the data (20). The output pin is the partition in matrix
form. Figure 6.9 shows the block diagram. The 1D array is the vector in which the
twenty elements are located.

Then, we need to calculate the cluster centers using the VI at the path ICTL 	
Optimizers 	 FCM 	 FCM methods 	 centros_fcm.vi. One of the input pins is
the matrix U and the other is the data. The output connections are referred to as U 2

and the cluster centers Centers. Then, we have to calculate the objective function.
The VI is in ICTL 	 Optimizers 	 FCM 	 FCM methods 	 fun_obj_fcm.vi.
This VI needs two inputs, the U 2 and the distances between elements and centers.
The last procedure is performed by the VI found in the path ICTL 	 Optimizers
	 FCM 	 FCM methods 	 dist_fcm.vi. It needs the cluster centers and the data.
Thus, fun_obj_fcm.vi can calculate the objective function with the distance and the
partition matrix powered by two coming from the previous two VIs. In the same
way, the partition matrix must be updated by the VI at the path ICTL 	 Optimizers
	 FCM 	 FCM methods 	 new_U_fcm.vi. It only needs the distance between
elements and cluster centers. Figure 6.10 shows the block diagram of the algorithm.

Of course, the recursive procedure can be implemented with either a while-loop
or a for-loop cycle. Figure 6.11 represents the recursive algorithm. In Fig. 6.11 we
create a Max Iterations control for number of maximum iterations that FCM could
reach. The Error indicator is used to look over the evaluation of the objective func-
tion and FCM Clusters represents graphically the fuzzy sets of the partition matrix
found. We see at the bottom of the while-loop, the comparison between the last error
and the current one evaluated by the objective function. ut
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Fig. 6.11 Block diagram of the complete FCM algorithm

6.4 FCM Example

This example will use previously gathered data and classify it with the FCM al-
gorithm; then we will use T-ANNs to approximate each cluster. The front panel is
shown in Fig. 6.12.

We will display the normal FCM clusters in a graph, the approximated clusters in
another graph and the error obtained by the algorithm in an XY graph. We also need
to feed the program with the number of neurons to be used for the approximation,
the number of clusters and the maximum allowed iterations. Other information can
be displayed like the centers of the generated clusters and the error between the ap-

Fig. 6.12 Front panel of the FCM example
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proximated version of the clusters and the normal one. This example can be located
at Optimizers 	 FCM 	 Example_FCM.vi where the block diagram can be fully
inspected, as seen in Fig. 6.13 (with the results shown in Fig. 6.14).

This program takes information previously gathered, then initializes and executes
the FCM algorithm. It then orders the obtained clusters and trains a T-ANNs with

Fig. 6.13 VIs for the FCM technique

Fig. 6.14 The FCM program in execution
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the information of each cluster. After that the T-ANNs are evaluated, and the average
mean error between the approximated and the real clusters are calculated.

6.5 Partition Coefficients

FCM described in Algorithm 6.1 is very useful in pattern recognition techniques.
However, no matter which application is being developed, FCM has a problem:
what could be the value for the number of clusters? The answer is the partition
coefficient.

Partition coefficient (PC) is a method used to validate how well a clustering algo-
rithm has identified the structure presented in the data, and how it represents it into
clusters. This small algorithm is based on the following:

P C .UI c/ D

nP

jD1

cP

iD1

�
uij

�2

n
; (6.12)

where U is the partition matrix and uij is the membership value of the j th element
of the data related to the i th cluster, c is the number of clusters and n is the number
of elements in the data collection. From this equation, it can be noted that the closer
the PC is to 1, the better classified the data is considered to be. The optimal number
of clusters can be denoted at each c by ˝c using (6.13):

max
c

�

max
˝c2U

fP C .U I c/g
�

: (6.13)

Algorithm 6.3 shows the above procedure.

Algorithm 6.3 Partition coefficient

Step 1 Initialize c D 2.
Run FCM or any other clustering algorithm.

Step 2 Calculate the partition coefficient by (6.12).
Step 3 Update the value of clusters c D cC 1.
Step 4 Run until no variations at PC are found and obtain the optimal value of

clusters by (6.13).
Step 5 Return the optimal value c and STOP.

Example 6.2. Assume the same data as in Example 6.1. Run the PC algorithm and
obtain the optimal number of clusters.
Solution. The partition coefficient algorithm is implemented in LabVIEW at ICTL
	 Optimizers 	 Partition Coeff. 	 PartitionCoefficients.vi. On the inside of this
VI, the FCM algorithm is implemented. So, the only thing we have to do is to con-
nect the array of data and the number of clusters at the current iteration. Figure 6.15
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Fig. 6.15 Block diagram finding the optimal number of clusters

Fig. 6.16 Front panel of
Example 6.2 showing the
optimal value for clusters

is the block diagram of the complete solution of this example. In this way, we ini-
tialize the number of clusters in 2 and at each iteration, this number is increased.
The number 10 is just for stopping the process when the number of clusters is larger
than this. Finally, in Table we find the evaluated PC at each number of clusters and
clusters indicates the number of optimal clusters for this particular data collection.
Figure 6.16 shows the front panel of this example. The solution for this data collec-
tion is 2 clusters. ut

6.6 Reactive Tabu Search

6.6.1 Introduction to Reactive Tabu Search

The word tabu means that something is dangerous, and taking it into account in-
volves a risk. This is not used to avoid certain circumstances, but instead is used in
order to prohibit features, for example, until the circumstances change. As a result,
tabu search is the implementation of intelligent decisions or the responsive explo-
ration in the search space.

The two main properties of tabu search are adaptive memory and responsive
exploration. The first term refers to an adaptation of the memory. Not everything
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is worth remembering, but not everything is worth forgetting either. This property
is frequently used to make some subregion of the search space tabu. Responsive
exploration is a mature decision in what the algorithm already knows, and can be
used to find a better solution. The latter, is related to the rule by which tabu search
is inspired: a bad strategic choice can offer more information than a good random
choice. In other words, sometimes is better to make a choice that does not qualify
as the best one at that time, but it can be used to gather more information than the
better solution at this time.

More precisely, tabu search can be described as a method designed to search in
not so feasible regions and is used to intensify the search in the neighborhood of
some possible optimal location.

Tabu search uses memory structures that can operate in a distinct kind of region,
which are recency, frequency, quality, and influence. The first and the second models
are how recent and at what frequency one possible solution is performed. Thus, we
need to record the data or some special characteristic of that data in order to count
the frequency and the time since the same event last occurred. The third is quality,
which measures how attractive a solution is. The measurement is performed by fea-
tures or characteristics extracted from data already memorized. The last structure is
influence, or the impact of the current choice compared to older choices, looking at
how it reaches the goal or solves the problem. When we are dealing with the direct
data information stored, memory is explicit. If we are storing characteristics of the
data we may say that memory is attributive.

Of course, by the adaptive memory feature, tabu search has the possibility of
storing relevant information during the procedure and forgetting the data that are
not yet of interest. This adaptation is known as short term memory when data is
located in memory for a few iterations; long term memory is when data is collected
for a long period of time.

Other properties of tabu search are the intensification and diversification pro-
cedures. For example, if we have a large search region, the algorithm focuses on
one possible solution and then the intensification procedure explores the vicinity of
that solution in order to find a better one. If in the exploration no more solutions
are optimally found, then the algorithm diversifies the solution. In other words,
it leaves the vicinity currently explored and goes to another region in the search
space. That is, tabu search explores large regions choosing small regions in certain
moments.

6.6.2 Memory

Tabu search has two types of memory: short term and long term-based memories.
In this section we will explain in more detail how these memories are used in the
process of optimizing a given problem.

To understand this classification of memory, it is necessary to begin with a math-
ematical description. Suppose that the search space is V so x 2 V is an element of
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Fig. 6.17 Search space of the
tabu search

the solution in the search space. The algorithm searches in the vicinity of x known
as N.x/ where N.x/ � V . Figure 6.17 shows these terms.

6.6.2.1 Short Term Memory

The first memory used in tabu search is the short term. When we are searching in
the vicinity N.x/, and we try to do it as fast as possible. Another method is the
so-called steepest descent method that can be explained as follows: we pick up an
element x, then we take an objective function f .x/ and store this value. In the
next iteration we look for an element x0 2 N.x/ and evaluate the function f .x0/.
If f .x0/ < f .x/ then x0 is the new optimal solution. We repeat until the condition
is not true. Therefore, the solution of that method is known as the local optimum,
because the solution is the optimal one in the vicinity but not in the entire search
space.

This process is very expensive computationally. Therefore, a short term memory
is used. We try to delimit the search space by the vicinity of an element of that space.
Then, we try to minimize as much as possible the search space. How can we do it?
If some features of the solution are really known, then it is easy to deduce that some
solutions are prohibited. For example, the last element evaluated is prohibited from
being selected. This is a simple example, but some other characteristics might be
applied to avoid the selection of these possible solutions. So, there exists a subspace
of the vicinity N.x/ that is a tabu list, namely T . The new vicinity is characterized as
N �.x/ D N.x/=T . In this way, tabu search is an algorithm that explores a dynamic
vicinity of the solution.

The tabu list or the tabu space is stored in short term memory. One of the simplest
uses of this memory is in the recent process. If some solution x is evaluated then the
next few iterations are prohibited.

In the same manner, when we talk about iterations of selecting new elements
to evaluate, we are trying to say that the change or the move between the current
solution and the following is evaluated to know if this change is really useful or
not. The dynamic vicinity of movement is distinguished by two classifications: the
vicinity of permissible moves and the tabu moves. Then, by the attributes of the
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elements x we can determine if some move can be added to the permissible vicinity
N �.x/ or if the move might be dropped to the T subspace.

In order to assign the time of prohibition of some special element, the tabu tenure
is created. The tabu tenure is a value t in the interval Œtmin; tmax� that describes the
number of prohibited iterations remaining until the element will be reused. This
value can be assigned randomly or in a more systematic form.

Example 6.3. Let V D f9; 4; 6; 1; 8; 2g be the values of the search space and the
vicinity N.x/ D f4; 8; 9g with value x D 6, considering the vicinity with a radius
of 3. Then, assume the tabu list of the entire domain as T .V / D f0; 0; 5; 0; 4; 0g.
Suppose that t 2 Œ0; 5� and when some element is selected, the tabu tenure is 5
and all the other components of T are decreased by one. (a) What is the permissible
vicinity N �.6/? (b) What was the last value selected before x D 6? (c) If we are
looking around x D 4 what could be the entire vicinity N.4/?
Solution. (a) Looking at the tabu set, we know that all 0 values mean that elements
in that position are permitted. So, the possible elements that can be picked up are
N �.V / D f9; 4; 1; 2g. But, we are searching in the vicinity N.6/ D f4; 8; 9g.
Then, N �.6/ D N �.V /\N.6/ D f9; 4; 1; 2g\f4; 8; 9g. Finally, the permissible
set around the element 6 is: N �.6/ D f4; 9g.

(b) As we can see, the current element is 6, then in the tabu list this element has
a value of t D 5. This matches with the procedure defined in the example. Actually,
in this way all other values were decreased by one. Therefore, if we are trying to look
before the current value, the tabu list must be T .V /before_6 D T .V /currentC1. In other
words, T .V /before_6 D fd; d; 0; d; 5; d g, where d is a possible value different
or equal to zero because we are uncertain. Actually, if 5 is the tenure assigned for
the current selection, then the current selection before the 6-element is 8. This is the
reason why in the N �.6/, this element does not appear.

(c) Obviously, we just need to look around 4 with a radius of 3. So, the vicinity
is N.4/ D f1; 2; 6g.

With the quality property, some moves can be reinforced. For example, if some
element is selected, then the tabu tenure is fired and the element will be in the tabu
list. But, if the element has a high quality, then the element could be promoted to
a permissible value. This property of the short term memory is then useful in the
process of tabu search. ut

6.6.2.2 Long Term Memory

In the same way as the short term, this type of memory is used in order to obtain
more attributes for the search procedure. However, long term memory is focused on
storing information about the past history.

The first implementation is the frequency dimension of memory. In other words,
we can address some data information (explicitly or attributively) and after some
iterations or movements, try to analyze the frequency with which this data has ap-
peared. In this way, there exists an array of elements named transition measure,
which counts the number of iterations that some element was modified. Another
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array linked with the frequency domain is the residence measure and it stores the
number of iterations that some element has taken part in the solution.

What is the main purpose of long term memory? It is easy to answer: frequency or
what remains the same, transition and residence are measures of how attractive some
element is to be included in the vicinity when the frequency is high. On the other
hand, if the frequency is low, the element related to that measure has to be removed
or placed in the tabu list. Then, long term memory is used to assign attributes to
elements in order to discard or accept those in the dynamic vicinity.

Example 6.4. Let V D f9; 4; 6; 1; 8; 2g be the values of the search space. Suppose
that t r D f0; 2; 5; 2; 1; 4g is the transition array and r D f3; 1; 0; 0; 2; 0g is
the residence array. (a) Have any of the elements in V ever been in the best solution
thus far? Which one? (b) How many iterations was the element 8 taken into account
in the best solution thus far? (c) Can you know at which iteration the best solution
was found?

Solution. (a) Yes. There are three elements that have been in the best solution.
These elements are 9, 4 and 8 because its residence elements are distinct from zero.
In fact, element 9 has been in the solution three times, element 4 has been one time,
and element 8 has been two times.

(b) By the transition array we know that element 1 associated to element 8 refers
to the fact that this element has been in the best solution only one time. Element 6
has been five times in the best solution so far.

(c) Yes, we can know at which iteration the best solution was found. Suppose
that the current iteration is t . The transition array updates if some element has been
in the best solution, but if the best solution is modified by the best solution so far,
obviously the transition array is initialized. Then, the maximum number of counts
that the current transition array has is 5. So, the best solution so far was found at
iteration tbest D t � 5. ut

6.6.2.3 Intensification and Diversification

In the introduction, we said that tabu search is a method that tries to find the best
solution in short periods of time without searching exhaustively. These characteris-
tics are offered in some way by the two types of memory described above and by
the two following procedures.

The first one is intensification. Suppose that we have a search space V , which
has n subspaces Wi ; 8i D 1; : : :; n, and that these have no intersection and the two
characteristics apply:

�
Wi \ Wj

� D ;; 8i ¤ j and Wi � V . So, V D fWi [
Wj /; 8i ¤ j . This means that the search space can be divided by n regions. We
can think of one of these subspaces as in the vicinity of an element of V , so-called
Wi D N.xi /. We also know that tabu search looks in this vicinity in order to find the
local optimum x0i . Then, this local optimum is stored in the memory and the process
is repeated in another vicinity N.xj /. Suppose now that the algorithm recorded k

local optimum elements fx01; : : :; x0j ; : : :; x0
k
g. The intensification is thus the process
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in which the algorithm visits the vicinity of each of the local optimum elements
recorded by means, and looks at the vicinity N.x0i /; 8i D 1; : : :; k.

In other words, the intensification procedure is a subroutine of the tabu search
that tries to find a better solution in the vicinity of the best solutions (local optimum
values) so far. This means that it intensifies the exploration.

The second procedure is diversification. Let us suppose that we have the same
environment as in the intensification procedure. The question is how the algorithm
explores distinct places in order to record local optimum values. Diversification
is the answer. When some stop searching threshold is fired, the local optimum is
recorded and then the algorithm accepts the option to search in a different region,
because there may be some other solutions (either better or just as good as the local
optimum found so far) placed in other regions.

To make this possible, the algorithm records local optimum values and evaluates
permissible movements in the entire region. Therefore, the tabu list has the local
optimum elements found so far and all the vicinities of these values. In this way,
more local optimum elements mean fewer regions in which other solutions could be
found. Or, in the same way, the set of permissible movements comes to be small.

As we can see, the intensification procedure explores regions in which good so-
lutions were found and the diversification procedure permits the exploration into
unknown regions. Thus, the algorithm searches as much as it can and restricts all
movements when possible to use less time.

6.6.2.4 Tabu Search Algorithm

Tabu search has several modifications in order to get the best solution as fast as
possible. In this way, we explain first the general methodology and then we explain
in more detail the modification known as reactive tabu search.

6.6.2.5 Simple Tabu Search

First, we need a function that describes the solution. This function is constructed
by elements. If the solution has n-dimension size, then the function must have n

elements of the form f D ff1; : : :; fng. We refer to the function configuration at
time t with f .t/ D ff .t/

1 ; : : :; f
.t/

n g. Then, we aggregate some terminology shown
in Table 6.2.

We associate to each of the elements in f .t/, a permissible move referred to as
�i ; 8i D 1; : : :; n; they are well defined in a set of permissible moves A. All other
moves are known as tabu elements displayed in the set � . Actually, the complement
of A is � .

First, all movements are permitted, so A is all the search space and � D ;. A con-
figuration is selected randomly. In this case, we need a criterion in order to either
intensify the search or to diversify it. The criterion selected here is to know if the
current configuration has been selected before. If the frequency of this configura-
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Table 6.2 Terminology for simple tabu search

Symbol Description

t Iteration counter
f Configuration at time t
� Set of elementary moves
L Last iteration when the move was applied
˘ Last iteration when the configuration was used
˚ Number of times the configuration has been visited during the search
fb Best configuration known
Eb Best energy known
A Set of admissible moves
C Chaotic moves
S Subset of A
� Set of tabu moves, non-admissible moves
T Prohibition period

t = 0 and select ƒ(0) randomly
Set, ƒt = ƒ(0) and Et= E(ƒ(0))
Let, τ = ∅

Intensification DiversificationCriterion for determining the
search procedure

Select all i ∈ A
Modify function to ƒt

(t)

Calculate E(ƒt
(t))

Select all i ∈ S
Modify function to ƒt

(t)

Calculate E(ƒt
(t))

Select any i ∈ A
Determine a vicinity

S(i)
Clear all memory data

Select the local optimum:
ƒl , El

Move l = μ ∈ τ

If El < Et then,
Et = El , ƒt = ƒl 

t = t+1
ƒ (t+1) = ƒl

Decide if it stops 

Fig. 6.18 Flow chart of the simple tabu search
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tion is high, then the algorithm needs to diversify it; otherwise, the intensification
procedure is defined as the following.

Using the current configuration, we need to evaluate all possible elements. An
energy function E.f

.t/
i /; 8i D 1; : : :; jS j is evaluated for each of the configurations,

done by selecting all the possible moves (jS j means the cardinality or the number
of elements in the subset of permissible moves S � A/. The criterion is to select
the configuration that minimizes the energy function. After that, this configuration
is labeled as the best configuration fb and the energy is stored in a variable named
the best energy known so far Eb.

If we need a diversification procedure, the algorithm erases all memory data and
makes a searching process in a distinct region of the search space, which tries to find
a local optimum fb. The best energy and the best configuration is then actualized
with this process.

Finally, the iteration time is incremented and the procedure is done until some
stop criterion is defined. The algorithm is presented in Algorithm 6.4 and shown in
Fig. 6.18.

6.6.2.6 Reactive Tabu Search

In the simple tabu search, the tabu list and permissible moves sets are a function of
the last configuration found (local optimum). This is not a good method for finding
the solution faster because the tabu list must have more elements than the permissi-
ble set when t is large. That is, permissible moves are not enough to be in the current
vicinity, and the local optimum might not be the best one in that place.

An alternative to modifying the tabu tenure T is to use the reactive tabu search,
which is a modification that gives the possibility of intensifying the search in re-
gions, depending on the historical values of energy in that place. Thus, this method
reacts with respect to the intensification/diversification procedures.

In this way, the simple tabu search will be the basis of the process. Then, an-
other subroutine is defined in order to satisfy two main principles: (1) select the
intensification/diversification procedure, and (2) modify the tabu tenure.

As in Table 6.1, ˚ is a function that returns the number of iterations that some
configuration has been visited during the searching procedure, the value is ˚.f /.
When the configuration f .t/ is used, the function ˘ stores the actual iteration at
which this configuration is evaluated, so the value recorded is ˘.f .t// D t . The
last function is used to store the last iteration at which the current configuration was
evaluated. Suppose, that the configuration f D f0 and this configuration are evalu-
ated at time t D t0. Then, five iterations later the same configuration f .tC5/ D f0

is evaluated. The last iteration at which this configuration appeared in the searching
process is then ˘.f .tC5/ D f0/ D t0.

Finally, this configuration comes from some move �i . As with the configuration,
the moves have an associated function L that returns the last iteration at which
the move was applied in a local optimum and the value recorded is L.�i /

.t/ D
t . Let us suppose the same environment as the previous example. Suppose now
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Algorithm 6.4 Simple tabu search

Step 1 Let the iteration time be t D 0.
Initialize the current configuration f .0/ randomly. The best configuration
is assigned as fb D f .0/ and the best energy as Eb D E.f .0//.
Actually, the set of permissible moves A is all the search space and the
tabu set is � D ;.

Step 2 Select a criterion to decide between intensification (go to Step 3) or diver-
sification (go to Step 6) procedures.

Step 3 With the current configuration f .t/ do a modification in one element, the
so-called f

.t/

i
running i for all permissible elements of A. If it is permitted,

evaluate the energy E.f
.t/

i /.
Step 4 Select the local optimum configuration temporarily known as fl and its

proper energy El . Then, the move � that produces fl must be stored in
the tabu list � .

Step 5 Compare the temporary energy with respect to the best energy. If the tem-
porary energy is less than the best energy, then Eb D El and fb D fl .
Go to Step 10.

Step 6 Select another region in the permissible moves and store the elements
in a subset S � A. Clear memory data used to select the intensifica-
tion/diversification process.

Step 7 With the current configuration f .t/ do a modification in one element, so-
called f

.t/

i
running i for all permissible elements of S . If it is permitted,

evaluate the energy E.f
.t/

i
/.

Step 8 Select the local optimum configuration temporarily known as fl and its
proper energy El . Then, the move � that produces fl must be stored in
the tabu list � by a period of T iterations.

Step 9 Compare the temporary energy with respect to the best energy. If the tem-
porary energy is less than the best energy, then Eb D El and fb D fl .
Go to Step 10.

Step 10 Increment the iteration t D tC 1. Set f .tC1/ D fl and go to Step 2 until
the stop criterion is fired, then STOP.

that the configuration f
.t0/

0 comes from the modification �x.t0/, then we record

L.�x/.t0/ D t0. Seven iterations later, some other configuration f
.t0C7/

1 comes from
the move �x , too. Then, if we need to know the last iteration at which this move was
in some configuration in the searching procedure, we need to apply L.�x/.t0C7/ D
t0.

Now, the subroutine does the next few steps. At first, we evaluate the last iter-
ation ˘.f .t// at which the current configuration was evaluated and this value is
assigned to a variable R. Of course, the number of iterations that this configuration
has been in the searching process is updated by the rule ˚.f / D ˚.f / C 1. If the
configuration is greater than some value, i.e., REP _MAX , then we store this con-
figuration in a set of configurations named chaos C by the rule C D C [ f . With
this method we are able to know if we have to make a diversification procedure be-
cause the number of elements in the set C must be less than some value of threshold
CHAOS . Otherwise, the algorithm can be in the intensification stage.
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On the other hand, we need to be sure that the number of tabu elements is less
than the number of permissible values. This action can be derived with the condition
R < 2.L � 1/, which means that the number of the last iteration at which the
configuration was in the searching procedure is at least double the number of the last
iteration at which the move was in the process. Then, we assume that the variable R

can be averaged with the equation Rave D 0:1R C 0:9Rave. This value controls the
tabu tenure as shown in the Algorithm 6.5. Figure 6.19 shows the flow chart of the
reactive tabu search.

Intensification

Diversification Select all i ∈ A
Modify function to ƒt

(t)

Calculate E(ƒt
(t))

Select the local optimum:
ƒl , El

Move l = μ ∈ τ

If El < Et then,
Et = El , ƒt = ƒl 

t = t+1
ƒ (t+1) = ƒl

Decide if it stops 

Select any i ∈ A
Determine a vicinity

S(i)

Select all i ∈ S
Modify function to ƒt

(t)

Calculate E(ƒt
(t))

Yes

Yes

Yes

No

No

NoWas the function 
visited before?

R = ∏(ƒ(t)),
Φ(ƒ(t)) = Φ(ƒ(t)) + 1 

Φ(ƒ(t)) > REP_MAX ? 

C = C ∪ ƒ(t) 
|C|>CHAOS ? 

C = ∅

t = 0, tτ = 0, T(t) = 1, Φ = L = 0
select ƒ(0) randomly and ƒt=ƒ(0), Et = E(ƒ(0))

Let, τ = C =  ∏ = ∅
 Set Rave

 = 1, REP_MAX, CHAOS, INC, DEC

R < 2(L–1) ?

Yes:
Rave = 0.1R + 0.9Rave, tT = t
T(t+1) = min {T(t), INC, L–2}
No:
∏(ƒ(t)) = t, Φ (ƒ(t)) = 1
                (t – tT) > Rave ?
Yes:
T(t+1) = max {T(t), DEC, 1}, tT = t
No: nothing

Fig. 6.19 Flow chart of the reactive tabu search
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Algorithm 6.5 Reactive tabu search

Step 1 Let the iteration time be t D 0.
Initialize the current configuration f .0/ randomly. The best configuration
is assigned as fb D f .0/ and the best energy as Eb D E.f .0//.
Actually, the set of permissible moves A is all the search space, and the
tabu set is � D ;. Let the set of chaotic configurations be C D ;.
Set the tabu tenure as T .t/D 1 and the last iteration at that point changed
to tT D 0. Set ˘ D ; and ˚ D L D 0.
Initialize the variable Rave D 1,
REP _MAX; CHAOS; INC; DEC .

Step 2 Evaluate ˘.f .t//. If there is any value set the rules: R D ˘.f .t// and
˚.f .t// D ˚.f .t//C 1. Else, go to Step 5.

Step 3 If ˚.f .t// > REP _MAX then update the chaotic set C D C [ f .t/.
Else, go to Step 5.

Step 4 If jC j > CHAOS , then reinitialize C D ; and make a diversification
procedure as done in Step 10. Else, go to Step 5.

Step 5 If R < 2.L� 1/ then do the following:
Rave D 0:1RC 0:9Rave

T .t C 1/ D minfT .t/ � INC; L� 2g
tT D t:
Else, follow the next instructions:
˘.f .t// D t
˚.f .t// D 1
Go to Step 6.

Step 6 Evaluate .t � tT / > Rave. If this is true then update the value of the tabu
tenure T .t C 1/ D maxfT .t/ �DEC; 1g and record the iteration of this
modification tT D t and make an intensification procedure as done in
Step 7.

Step 7 With the current configuration f .t/ do a modification in one element, so-
called f

.t/

i
running i for all permissible elements of A. If it is permitted,

evaluate the energy E.f
.t/

i
/.

Step 8 Select the local optimum configuration temporarily known as fl and its
proper energy El . Then, the move � that produces fl must be stored in
the tabu list � .

Step 9 Compare the temporary energy with respect to the best energy. If the tem-
porary energy is less than the best energy, then Eb D El and fb D fl .
Go to Step 14.

Step 10 Select another region in the permissible moves and store the elements
in a subset S � A. Clear memory data used to select the intensifica-
tion/diversification process.

Step 11 With the current configuration f .t/ do a modification in one element, the
so-called f

.t/

i
running i for all permissible elements of S . If it is permit-

ted, evaluate the energy E.f
.t/

i /.
Step 12 Select the local optimum configuration temporarily known as fl and its

proper energy El . Then, the move � that produces fl must be stored in
the tabu list � by a period of T iterations.

Step 13 Compare the temporary energy with respect to the best energy. If tempo-
rary energy is less than the best energy, then Eb D El and fb D fl .
Go to Step 14.

Step 14 Increment the iteration t D tC 1. Set f .tC1/ D fl and go to Step 2 until
the stop criterion is fired, then STOP.
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Table 6.3 Data for Example 6.3, tabu search for fuzzy associated matrices

Left Center Right Motor 1 Motor 2

1 1 1 20 1
1 1 151 1 20
1 1 226 1 17
1 226 151 1 12
1 226 226 1 15

76 1 1 20 1
76 1 76 20 1
76 1 151 1 15
76 226 151 1 15
76 226 226 1 12

151 1 1 20 1
151 1 76 20 1
151 1 151 12 12
151 226 151 1 1
151 226 226 1 4
226 1 1 20 1
226 151 226 3 1
226 226 1 10 1
226 226 151 1 1
226 226 226 1 1

Example 6.5. Tabu search can be implemented in order to optimize the fuzzy asso-
ciated matrix or the membership functions in fuzzy controllers. Take for example an
application on robotics in which we have to optimize four input membership func-
tions. These functions may represent the distance between the robot and some object
measured by an ultrasonic sensor. We have three ultrasonic sensors measuring three
distinct regions in front of the robot.

These sensors are labeled as left, center and right. Assume that the membership
functions have the same shape for all sensors. In addition, we have experimental
results in which we find values of each measure at the first three columns and the
last two columns are the desired values for moving the wheels. Data is shown in
Table 6.3. Use the reactive tabu search to find a good solution for the membership
functions. A prototyping of those functions are shown in Fig. 6.20.
Solution. This example is implemented in LabVIEW following the path ICTL 	
Optimizers 	 RTS 	 Example RTS.vi. The desired inputs and outputs of the
fuzzy controller are already programmed inside this VI. Then, it is not necessary to
copy Table 6.2. ut

We first explain the front panel. On the top-left, are the control variables. Max
Iters is the number of times that the algorithm will be reproduced. If this number is
exceeded, then the algorithm stops. The next one is Execution Delay that refers to
a timer delay between iterations. It is just here if we want to visualize the process
slowly. The Cts cluster has the INC value that controls the increment of the tabu
tenure when the algorithm is evaluating if it needs an intensification or diversifica-
tion process.
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μ(Si)

1

0

Fig. 6.20 Prototyping of membership functions

DEC is the decrement value of the tabu tenure in the same way as the last one.
CHS is the chaos value. When the cardinality of the chaos set is greater than this
value, then the algorithm makes a diversification process. Finally, the number of
repetitions REP is known as REP_MAX in the algorithm previously described.

The graphs on the left side of the window are Current f and Best f. The first one
shows the actual position of the membership functions. The other one shows the
best configuration of the membership functions found thus far. In the middle of the
window is all the information used to analyze the procedure. This cluster is called
the Information Cluster and it is divided into three clusters.

The first is Arr In that shows the function f in Boolean terms (zeros and ones).
Pi, Phi andA are the sets of the time at which some function was evaluated, the
number of times that the function was evaluated, and the permissible moves, re-
spectively. The Cts is the modified values of the control values.

Finally, on the right side of the window the Error graph history is shown. In
this case, we have a function that determines the square of the error measured by
the difference of the desired outputs and the actual outputs that the fuzzy controller
returns with the actual configuration of the membership functions.

We will explain the basic steps of the reactive tabu search. First, we initialize
a characterization of the configuration with 32 bits selected randomly. Of course,
these bits can only have values of 0 or 1 (Fig. 6.21a). Then, we evaluate this config-
uration and obtain the best error thus far (Fig. 6.21b). Actually, all other values and
sets explained at Step 1 are initialized, as seen in Fig. 6.22.

Steps 2–6 in Algorithm 6.5 are known as the reaction procedure. These steps are
implemented in LabVIEW in the path ICTL 	 Optimizers 	 RTS 	 rts_mbr.vi.
This VI receives three clusters: Var In is the cluster of the initialization values in
Fig. 6.22 on the left side, Arr In is the cluster of the initialization values in Fig. 6.22
on the right side and Cts In is the cluster with the control values (INC, DEC, CHS,
REP). Finally, it needs the configuration f . In addition, this VI returns all modified
values in clusters as Arr Out and Var Out, and it determines if it needs a diversifying
search procedure by the pin Diversify? This can be seen in Fig. 6.23.

If a diversification procedure is selected, it is implemented in the VI located
at ICTL 	 Optimizers 	 RTS 	 rts_dvsm.vi. The input connections are two
clusters (Arr In and Var In explained before) and the actual configuration is known
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Fig. 6.21a,b Reactive tabu search implementation. a Initialization of the configuration with 32
bits. b Calculation of best error

Fig. 6.22 Initialization of the parameters in tabu search

as current f. The output connectors are the two clusters updated (Var Out and Arr
Out) and the new configuration by the pin new f. Figure 6.24 shows this VI.

Fig. 6.23 Determining con-
nections of the reaction pro-
cedure

Fig. 6.24 Determining con-
nections of the diversifying
procedure

Fig. 6.25 Block diagram of
the intensification procedure
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If there is no diversifying procedure, then the intensification procedure is run-
ning. This can be implemented with two VIs following the path ICTL 	 Optimizers
	 RTS 	 rts_updt-A.vi. This VI updates the permissible moves with the infor-
mation of Arr In and Var In. Then, Arr Out is the update of the values inside this
cluster, but in fact the A set updating is the main purpose of this VI. The function
then looks for a configuration with this permissible moves and then evaluates the
best move with the VI at the path ICTL 	 Optimizers 	 RTS 	 rts_bm.vi. This
VI takes Arr In, Var In and the actual configuration current f. This returns Var Out

Fig. 6.26 Block diagram of the RTS example

Fig. 6.27 Front panel of the RTS example. This is the initialization step
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Fig. 6.28 Front panel of the RTS example at 100 iterations

Fig. 6.29 Front panel of the RTS example at 300 iterations

(as a modification procedure of these values), Energy that is the energy evaluated at
the current configuration, and the new f configuration. This block diagram can be
viewed in Fig. 6.25.

After either intensification or diversification procedures, we have to choose if the
configuration is better than the best configuration found thus far. It is easy to com-
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Fig. 6.30 Front panel of the RTS example at 500 iterations

pare the best configuration up to this point that comes from the Var In cluster and
the actual configuration coming from any of the searching procedures. Figure 6.26
shows a global visualization of the block diagram of this example.

Continuing with the example, let INC D 1:1, DEC D 0:9, CHS D 3
and REP D 3. The maximum number of iterations Max I ters D 1000 and
Execution Delay D 250. Finally, we can look at the behavior of this optimiza-
tion procedure in Fig. 6.26 (initialization) and Figs. 6.27–6.30. As we can see, at
around 80 iterations, the best solution was found.
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Chapter 7
Predictors

7.1 Introduction to Forecasting

Predictions of future events and conditions are called forecasts; the act of making
predictions is called forecasting. Forecasting is very important in many organiza-
tions since predictions of future events may need to be incorporated in the decision-
making process. They are also necessary in order to make intelligent decisions.
A university must be able to forecast student enrollment in order to make decisions
concerning faculty resources and housing availability.

In forecasting events that will occur in the future, a forecaster must rely on infor-
mation concerning events that have occurred in the past. That is why the forecasters
must analyze past data and must rely on this information to make a decision. The
past data is analyzed in order to identify a pattern that can be used to describe it.
Then the pattern is extrapolated or extended to forecast future events. This basic
strategy is employed in most forecasting techniques rest on the assumption that
a pattern that has been identified will continue in the future.

Time series are used to prepare forecasts. They are chronological sequences of
observations of a particular variable. Time series are often examined in hopes of
discovering a historical pattern that can be exploited in the preparation of a forecast.
An example is shown in Table 7.1.

Table 7.1 Data for forecasting example

Time [s] Current
[mA]

0.1 1.1
0.2 0.9
0.3 0.8
0.4 0.65
0.5 0.45

P. Ponce-Cruz, F. D. Ramirez-Figueroa, Intelligent Control Systems with LabVIEW™ 191
© Springer 2010



192 7 Predictors

A time series is a composition of several components, in order to identify pat-
terns:

1. Trend. Refers to the upward or downward movement that characterizes a time
series over a period of time. In other words, it reflects the long-run growth or
decline in the time series.

2. Cycle. Recurring up and down movements around trend levels.
3. Seasonal variations. Periodic patterns in time series that complete themselves

within a period and are then repeated on that basis.
4. Irregular fluctuations. Erratic movements in a time series that follow no rec-

ognizable or regular patterns. These movements represent what is left over in
a time series after the other components have been accounted for. Many of these
fluctuations are caused by unusual events that cannot be forecasted.

These components do not always occur alone, they can occur in any combination or
all together, for this reason no single best forecasting model exists. Thus, one of the
most important problems to be solved in forecasting is that of trying to match the
appropriate model to the model of the available time series data.

7.2 Industrial Applications

Predictors or forecasters are very useful in the industry. Some applications related
to this topic are summarized in the following:

Stock index prediction. Companies or governments need to know about their re-
sources in stock. This is why predictors are constantly used in those places. In gen-
eral, they are looking for some patterns about the potential market and then they
have to offer their products. In these terms, they want to know how many products
could be offered in the next few months. Statistically, this is possible with predictors
or forecasters knowing the behavior of past periods. For example, Shen [1] reports
a novel predictor based on gray models using some neural networks. Actually, this
model was used to predict the monetary changes in Shanghai in the years 2006 and
2007. Other applications in stock index forecasting are reported in [1].

Box–Jenkins forecasting in Singapore. Dealing with construction industry de-
mand, Singapore needed to evaluate the productivity of this industry, its construc-
tion demand, and tend prices in the year 2000. This forecasting was applied with
a Box–Jenkins model. The full account of this approach researched by the School
of Building and Real Estate, National University of Singapore is found in the work
by B.H. Goa and H.P. Teo [2].

Pole assignment controller for practical applications. In the industry, controllers
are useful in automated systems, industry production, robotics, and so on. In these
terms, a typical method known as generalized minimum variance control (GMVC)
is used that aims to self-tune its parameters depending on the application. However,
this method is not implemented easily. In Mexico, researchers designed a practical
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GMVC method in order to make it feasible [3]. They used the minimum variance
control technique to achieve this.

Inventory control. In the case of inventory control, exponential smoothing fore-
casters are commonly used. As an example of this approach, Snyder et al. published
a paper [4] in which they describe an inventory management of seasonal product of
jewelry.

Dry kiln transfer function. In a control field, the transfer function is an important
part of the designing and analyzing procedures. Practical applications have non-
linear relations between their input and output variables. However, transfer functions
cannot be applied in that case because it has an inherent linear property. Forecast-
ing is then used to set a function of linear combinations in statistical parameters.
Blankenhorn et al. [5] implemented a Box–Jenkins method in the transfer function
estimations. Then, classical control techniques could be applied. In Blankenhorn’s
application, they controlled a dry kiln for a wood drying process.

7.3 Forecasting Methods

The two main groups in which forecasting techniques can be divided are qualitative
methods and quantitative methods; they will be further described in the following
section.

7.3.1 Qualitative Methods

They are usually subject to the opinion of experts to predict future events. These
methods are usually necessary when historical data is not available or is scarce.
They are also used to predict changes in historical data patterns. Since the use of
historical data to predict future events is based on the assumption that the pattern of
the historical data will persist, changes in the data pattern cannot be predicted on the
basis of historical data. Thus, qualitative methods are used to predict such changes.

Some of these techniques are:

1. Subjective curve fitting. Depending on the knowledge of an expert a curve is
built to forecast the response of a variable, thus this expert must have a great
deal of expertise and judgment.

2. Delphi method. A group of experts is used to produce predictions concerning
a specific question. The members are physically separated, they have to respond
to a series of questionnaires, and then subsequent questionnaires are accompa-
nied by information concerning the opinions of the group. It is hoped that after
several rounds of questions the group’s response will converge on a consensus
that can be used as a forecast.
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7.3.2 Quantitative Methods

These techniques involve the analysis of historical data in an attempt to predict fu-
ture values of a variable of interest. They can be grouped into two kinds: univariate
and causal models.

The univariate model predicts future values of a time series by only taking into
account the past values of the time series. Historical data is analyzed attempting
to identify a data pattern, and then it is assumed that the data will continue in the
future and this pattern is extrapolated in order to produce forecasts. Therefore they
are used when conditions are expected to remain the same.

Casual forecasting models involve the identification of other variables related to
the one to be predicted. Once the related variables have been identified a statistical
model describing the relationship between these variables and the variable to be
forecasted is developed. The statistical model is used to forecast the desired variable.

7.4 Regression Analysis

Regression analysis is a statistical methodology that is used to relate variables. The
variable of interest or dependent variable .y/ that we want to analyze is to be related
to one or more independent or predictive variables .x/. The objective then is to use
a regression model and use it to describe, predict or control the dependent variables
on the basis of the independent variables.

Regression models can employ quantitative or qualitative independent vari-
ables. Quantitative independent variables assume numerical values corresponding
to points on the real line. Qualitative independent variables are non-numerical. The
models are then developed using observed models of the dependent and independent
variables. If these values are observed over time, the data is called a time series. If
the values are observed at one point in time, the data are called cross-sectional data.

7.5 Exponential Smoothing

Exponential smoothing is a forecasting method that weights the observed time se-
ries values unequally because more recent observations are weighted more heavily
than more remote observations. This unequal weighting is accomplished by one or
more smoothing constants, which determine how much weight is given to each ob-
servation. It has been found to be most effective when the parameters describing the
time series may be changing slowly over time.

Exponential smoothing methods are not based on any formal model or theory;
they are techniques that produce adequate forecasts in some applications. Since
these techniques have been developed without a theoretical background some prac-
titioners strongly object to the term model in the context of exponential smoothing.
This method assumes that the time series has no trend while the level of the time
series may change slowly over time.
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7.5.1 Simple-exponential Smoothing

Suppose that a time series is appropriately described by the no trend equation:
yt D ˇ0 C "t . When ˇ0 remains constant over time it is reasonable to forecast
future values of yt by using regression analysis. In such cases the least squares
point estimate of ˇ0 is

b0 D y D
nX

tD1

yt

n
:

When computing the point estimate b0 we are equally weighting each of the previous
observed time series values of y1; : : : ; yn. When the value of ˇ0 slowly changes over
time, the equal weighting scheme may not be appropriate. Instead, it may be desir-
able to weight recent observations more heavily than remote observations. Simple-
exponential smoothing is a forecasting method that applies unequal weights to the
time series observations. This is accomplished by using a smoothing constant that
determines how much weight is given to the observation.

Usually the most recent is given the most weight, and older observations are
given successively smaller weights. The procedure allows the forecaster to update
the estimate of ˇ0 so that changes in the value of this parameter can be detected and
incorporated into the forecasting system.

7.5.2 Simple-exponential Smoothing Algorithm

1. The time series y1; : : : ; yn is described by the model yt D ˇ0 C "t , where the
average level ˇ0 may be slowly changing over time. Then the estimate a0 .T / of
ˇ0 made in time period T is given by the smoothing equation:

a0 D ˛yT C .1 � ˛/ a0 .T � 1/ ; (7.1)

where ˛ is the smoothing constant between 0 and 1 and a0 .T � 1/ is the esti-
mate of ˇ0 made in time period T � 1.

2. A point forecast or one-step-ahead forecast made in time period T for yTC� is:

OyTC� .T / D a0 .T / : (7.2)

3. A 100 .1 � ˛/% prediction interval computed in time period T for yTC� is:


a0 .T / ˙ zŒ˛=2�1:25� .T /

�
; (7.3)

where � .T / D
TP

tD1
Œyt�a0.T�1/�

T
.

4. If we observe yTC1 in the time period T C 1, we can update a0 .T / and � .T /

to a0 .T C 1/ and � .T C 1/ by:

a0 .T C 1/ D ˛yTC1 C .1 � ˛/ a0 .T / (7.4)

� .T C 1/ D T� .T / C ŒyTC1 � a0 .T /�

T C 1
: (7.5)



196 7 Predictors

Therefore a point forecast made in time period T C 1 for yTC1C� is:


a0 .T C 1/ ˙ zŒ˛=2�1:25� .T C 1/

�
: (7.6)

7.5.2.1 Adaptation of Parameters

Sometimes it is necessary to change the smoothing constants being employed in
exponential smoothing. The decision to change smoothing constants can be made
by employing adaptive control procedures. By using a tracking signal we will have
better results in the forecasting, by realizing that the forecast error is larger than an
accurate forecasting system might reasonably produce.

We will suppose that we have accumulated the T single-period-ahead forecast
errors e1 .˛/ ; : : : ; eT .˛/, where ˛ denotes the smoothing value used to obtain
a single-step-ahead forecast error. Next we define the sum of these forecast errors:
Y .˛; T / D PT

tD1 et .˛/. With that we will have Y .˛; T / D Y .˛; T � 1/CeT .˛/;
and we define the following mean absolute deviation as:

D .˛; T / D

TP

tD1
jet .˛/j
T

: (7.7)

Then the tracking signal is defined as:

TS .˛; T / D
ˇ
ˇ
ˇ
ˇ
Y .˛; T /

D .˛; T /

ˇ
ˇ
ˇ
ˇ : (7.8)

So when TS .˛; T / is large it means that Y .˛; T / is large relative to the mean
absolute deviation of D .˛; T /. By that we understand that the forecasting system is
producing errors that are either consistently positive or negative. It is a good measure
of an accurate forecasting system to produce one-half positive errors and one-half
negative errors.

Several possibilities exist if the tracking system indicates that correction is
needed. Variables may be added or deleted to obtain a better representation of the
time series. Another possibility is that the model used does not need to be altered,
but the parameters of the model need to be. In the case of exponential smoothing,
the constants would have to be changed.

7.5.3 Double-exponential Smoothing

A time series could be described by the following linear trend: yt D ˇ0 C ˇ1t C "t .
When the values of the parameters ˇ0 and ˇ1 slowly change over the time,

double-exponential smoothing can be used to apply unequal weightings to the time
series observations. There are two variants of this technique: the first one em-



7.5 Exponential Smoothing 197

ploys one smoothing constant. It is often called one-parameter double-exponential
smoothing. The second is the Holt–Winters two-parameter double-exponential
smoothing, which employs two smoothing constants. The smoothing constants de-
termine how much weight is given to each time series observation.

The one-parameter double-exponential smoothing employs single and double-
smoothed statistics, denoted as ST and S

Œ2�
T . These statistics are computed by using

two smoothing equations:

ST D ˛yt C .1 � ˛/ ST�1 (7.9)

S
Œ2�
T D ˛St C .1 � ˛/ S

Œ2�
T�1 : (7.10)

Both of these equations use the same smoothing constant ˛, defined between 0
and 1.The first equation smoothes the original time series observations; the second
smoothes the ST values that are obtained by using the first equation. The following
estimates are obtained as shown:

b1 .T / D ˛

1 � ˛

�
ST � S

Œ2�
T

�
(7.11)

b0 .T / D 2ST � S
Œ2�
T � T b1 .T / : (7.12)

With the estimates b1 .T / and b0 .T /, a forecast made at time T for the future value
yTC� is:

OyTC� .T / D b0 .T / C b1 .T / .T C �/ D Œb0 .T / C b1 .T / T � C b1 .T / �

D a0 .T / C b1 .T / � : (7.13)

where a0 .T / is an estimate of the updated trend line with the time origin considered
to be at time T . That is, a0 .T / is the estimated intercept with time origin considered
to be at time 0 plus the estimated slope multiplied by T . It follows:

a0 .T / D b0 .T / Cb1 .T / T D
h
2ST � S

Œ2�
T � T b1 .T /

i
Cb1 .T / T D 2ST � S

Œ2�
T :

(7.14)
Finally the forecast of yTC� .T / is:

OyTC� .T / D a0 .T / C b1 .T / � D 2ST � S
Œ2�
T C ˛

1 � ˛

�
ST � S

Œ2�
T

�
�

D
�

2 C ˛�

1 � ˛

�
ST �

�
1 C ˛�

1 � ˛

�
S

Œ2�
T : (7.15)

7.5.4 Holt–Winter Method

This method is widely used on adaptive prediction and predictive control applica-
tions. It is simple yet a robust method. It employs two smoothing constants. Suppose
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that in time period T � 1 we have an estimate a0 .T � 1/ of the average level of the
time series. In other words, a0 .T � 1/ is an estimate of the intercept of the time
series when the time origin is considered to be time period T � 1.

If we observe yT in time period T , then:

1. The updated estimate a0 .T / of the permanent component is obtained by:

a0 .T / D ˛yT C .1 � ˛/ Œa0 .T � 1/ C b1 .T � 1/� : (7.16)

Here ˛ is the smoothing constant, which is in the range Œ0; 1�.
2. An updated estimate is b1 .T / if the trend component is obtained by using the

following equation:

b1 .T / D ˇ Œa0 .T / � a0 .T � 1/� C .1 � ˇ/ b1 .T � 1/ ; (7.17)

where ˇ is also a smoothing constant, which is in the range Œ0; 1�.
3. A point forecast of future values of yTC� .T / at time T is: yTC� .T / D a0 .T /

Cb1 .T / � .
4. Then we can calculate an approximate 100 .1 � ˛/% prediction interval for

yTC� .T / as

 OyTC� .T / ˙ z˛=2d��.T /

�
, where d� is given by:

d� D 1:25

2

4
1 C 	

.1Cv/3


�
1 C 4v C 5v2

�C 2
 .1 C 3v/ � C 2
2�2
�

1 C 	

.1Cv/3 Œ.1 C 4v C 5v2/ C 2
 .1 C 3v/ � C 2
2�

3

5 :

(7.18)
Here 
 equals the maximum of ˛ and ˇ, v D 1 � 
 , and

� .T / D

TP

tD1
jyt � Œa0 .t � 1/ C b1 .t � 1/�j

T
: (7.19)

5. Observing yTC1 in the time period T C 1, � .T / may be updated to � .T C 1/

by the following equation:

� .T C 1/ D T� .T / C jyTC1 � Œa0 .T / C b1 .T /�j
T C 1

: (7.20)

7.5.5 Non-seasonal Box–Jenkins Models

The classical Box–Jenkins model describes a stationary time series. If the series
that we want to forecast is not stationary we must transform it into one. We say
that a time series is stationary if the statistical properties like mean and variance are
constant through time. Sometimes the non-stationary time series can be transformed
into stationary time series values by taking the first differences of the non-stationary
time series values.
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This is done by: zt D yt � yt�1 where t D 2; : : : ; n. From the experience of
experts in the field, if the original time series values y1; : : : ; yn are non-stationary
and non-seasonal then using the first differencing transformation zt D yt � yt�1

or the second differencing transformation zt D .yt � yt�1/ � .yt�1 � yt�2/ D
yt � 2yt�1 C yt�2 will usually produce stationary time series values.

Once the original time series has been transformed into stationary values the
Box–Jenkins model must be identified. Two useful models are autoregressive and
moving average models.

Moving average model. The name refers to the fact that this model uses past
random shocks in addition to using the current one: at ; at�1; : : : ; at�q . The model
is given as:

zt D ı C at � 
1at�1 � 
2at�2 � � � � � 
qat�q : (7.21)

Here the terms 
1; : : : ; 
n are unknown parameters relating zt to at�1; at�2; : : : ;

at�q . Each random shock at is a value that is assumed to be randomly selected
from a normal distribution, with a mean of zero and the same variance for each and
every time period. They are also assumed to be statistically independent.

Autoregressive model. The model zt D ı C �1zt�1 C : : : C �pzt�p C at is called
the non-seasonal autoregressive model of order p. The term autoregressive refers to
the fact that the model expresses the current time series value zt as a function of
past time series values zt�1 C : : : C zt�p . It can be proved that for the non-seasonal
autoregressive model of order p that:

ı D �
�
1 � �1 � �2 � � � � � �p

�
: (7.22)

7.5.6 General Box–Jenkins Model

In the previous section, Box–Jenkins offers a description of a non-seasonal time
series. Now, it can be rephrased in order to find a forecasting of seasonal time series.
This discussion will introduce the general notation of stationary transformations.

Let B be the backshift operator defined as Byt D yt�1 where yi is the i th time
series observation. This means that B is an operator under the i th observation in
order to get the (i–1)th observation. Then, the operator Bk refers to the .i � k/th
time series observation like Bkyt D yt�k .

Then, a non-seasonal operator r is defined as r D 1 � B and the seasonal
operator rL is rL D 1�BL, where L is the number of seasons in a year (measured
in months).

In this case, if we have either a pre-differencing transformation y�t D f .yt /,
where any function f or not like y�t D yt , then a general stationary transformation
is given by:

zt D rD
L rd y�t (7.23)

zt D .1 � BL/D.1 � B/d y�t ; (7.24)
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where D is the degree of seasonal differencing and d is the degree of non-seasonal
differencing. In other words, it refers to the fact that the transformation is propor-
tional to a seasonal differencing times a non-seasonal differencing.

We are ready to introduce the generalization of the Box–Jenkins model. We say
that the Box–Jenkins model has order .p; P; q; Q/ if it is: �p.B/�P .BL/zt D ı C

q.B/
Q.BL/at . Then, this is called the generalized Box–Jenkins model of order
.p; P; q; Q/, where:

• �p.B/ D .1��1B��2B2�� � ���pBp/ is called the non-seasonal autoregressive
operator of order p.

• �P .BL/ D .1 � �1;LBL � �2;LB2L � � � � � �P;LBPL/ is called the seasonal
autoregressive operator of order P.

• 
q.B/ D .1 � 
1B � 
2B2 � � � � � 
qBq/ is called the non-seasonal moving
average operator of order q.

• 
Q.BL/ D .1 � 
1;LBL � 
2;LB2L � � � � � 
Q;LBQL/ is called the seasonal
moving average operator of order Q.

• ı D ��p.B/�P .BL/ in which � is the true mean of the stationary time series
being modeled.

• All terms �1; : : :; �p ; �1;L; : : :; �P;L; 
1; : : :; 
q; 
1;L; : : :; 
Q;L; ı are unknown
values that must be estimated from sample data.

• at ; at�1; : : : are random shocks assumed statically independent and randomly
selected from a normal distribution with mean value zero and variance equal for
each and every time period t .

7.6 Minimum Variance Estimation and Control

It can be defined in statistics that a uniformly minimum variance estimator is an
estimator with a lower variance than any other unbiased estimator for all possible
values of the parameter. If an unbiased estimator exists, it can be proven that there
is an essentially unique estimator.

A minimum variance controller is based on the minimum variance estimator.
The aim of the standard minimum variance controller is to regulate the output of
a stochastic system to a constant set point. We can express it in optimization terms
in the following.

For each period of time t , choose the control u .t/ that will minimize the output
variance:

J D E


y2 .t C k/

�
; (7.25)

where k is the time delay. The cost junction J involves k because u .t/ will only
affect y .s/ for s � t Ck. J will have the same minimum value for each t (asymptot-
ically) if the controller leads to a closed-loop stability and the output is a stationary
process.

The difference equation has the form y .t/ D ay .t � 1/ C au .t � 1/ C e .t/ C
ce .t � 1/, where e .t/ is zero mean white noise of variance 	2

e . If k D 1 then we
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will have:
y .t C 1/ D ay .t/ C bu .t/ C e .t C 1/ C ce .t/ : (7.26)

Independently from the choice of the controller, u .t/ cannot physically be a func-
tion of y .t C 1/, so that Oy .t C 1jt/ is functionally independent of e .t C 1/. Then
we form the J cost function as:

J D E


y2 .t C 1/

� D E Œ Oy .t C 1jt/ C e .t C 1/�2 D
E Œ Oy .t C 1jt/�2 C E Œe .t C 1/�2 C 2E Œ Oy .t C 1jt/ e .t C 1/� : (7.27)

Then we can assume that the right-hand side vanishes for: (a) any linear controller,
and (b) any non-linear controller, provided e .t/ is an independent sequence (not just
uncorrelated). We know that condition (b) is satisfied by assuming a white common
noise. This will reduce the cost function to: J D E Œ Oy .t C 1jt/� C 	2

e .
Therefore J can be minimized if u .t/ can be chosen to satisfy Oy .t C 1jt/ D

ay .t/ C bu .t/ C ce .t/ D 0. The question arises as to what gives us an im-
plementable control law if e .t/ can only be expressed as a function of available
data, which can be achieved by the process equation e .t/ D y .t/ � ay .t � 1/ �
bu .t � 1/ � ce .t � 1/. This function can be expressed in transfer function terms
as:

e .t/ D 1

1 C cz�1


�
1 � az�1

�
y .t/ � bz�1u .t/

�
: (7.28)

Recursion always requires unknown initial values of the noise signal unless c is
zero. This reconstruction of e .t/ is only valid asymptotically with jcj < 1. This
last condition is weak for processes that are stationary and stochastic. We can write
Oy .t C 1jt/ with the aid of e .t/ in is transfer function as:

Oy .t C 1jt/ D 1

1 C cz�1
Œ.a C c/ y .t/ C bu .t/� : (7.29)

If we set Oy .t C 1jt/ to zero it will yield to a minimum variance (MV) regulator:

u .t/ D �a C c

b
y .t/ : (7.30)

Rewriting some equations as y .t C 1/ D Oy .t C 1jt/ C e .t C 1/, the closed-loop
behavior under u .t/ is then given by y .t C 1/ D e .t C 1/. With this the minimum
achievable variance is 	2

e , but it will not happen if the time delay is greater than
unity.

From the previous equations we can see that the developed control law ex-
ploits the noise structure of the process. Returning to the equation y .t C 1/ D
Oy .t C 1jt/ C e .t C 1/, we note that y .t C 1/ is the sum of two independent terms.
The first is a function of data up to time t with the minimum achievable output
variance 	2

e D E Œy .t C 1/ � Oy .t C 1jt/�2. We find that e .t C 1/ cannot be recon-
structed from the available data. That is why we can interpret Oy .t C 1jt/ as the best
possible estimate at time t .
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A more general framework to minimize the cost function could be with a CARMA
model. Ay .t/ D z�kBu .t/CCe .t/, so we have y .t C k/ D B

A
u .t/C C

A
e .t C k/.

Now we must define the polynomials F , G that will satisfy the equation for C D
AF C z�kG:

F D 1 C f1z�1 C : : : C fk�1z�.k�1/

G D g0 C g1z�1 C : : : C gng
z�ng

ng D max .na � 1; nc � k/ ; (7.31)

where F will represent the first k terms in the expansion of C=A. After developing
the equations a little we will have:

y .t C k/ D
�

BF

C
u .t/ C G

C
y .t/

�

C Fe .t C k/ : (7.32)

where the first term Oy .t C kjt/ D 

BF
C

u .t/ C G
C

y .t/
�

is considered the best pre-
diction given at time t . The output prediction error is Fe .t C k/ D y .t C k/ �
Oy .t C kjt /, which arises from the signals e .t C 1/ ; : : : ; e .t C k/ . These errors
cannot be eliminated by u .t/. The cost function will be of the form:

J D E


y2 .t C k/

� D E Œ Oy .t C kjt/ C Fe .t C k/�2

D E Œ Oy .t C kjt /�2 C �
1 C f 2

1 C : : : C f 2
k�1

�
	2

e ; (7.33)

which can be minimized by the predicted output set equal to zero. This will
yield the following control law of BF u .t/ C Gy .t/ D 0 and the output signal
y .t/ D Fe .t/. This will correspond to the minimum output variance Jmin D�
1 C f 2

1 C : : : C f 2
k�1

�
	2

e .

7.7 Example of Predictors Using the Intelligent Control Toolkit
for LabVIEW (ICTL)

We will now create a program that will contain the exponential smoothing, Box–
Jenkins model, and minimum variance predictors. We will briefly explain the equa-
tions and how they are programmed.

7.7.1 Exponential Smoothing

This is one of the most popular methods, based on time series and transfer function
models. It is simple and robust, where the time series are modeled through a low
pass filter. The signal components may be individually modeled, like trend, average,
periodic component, among others.
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The exponential smoothing is computationally simple and fast, while at the same
time this method can perform well in comparison with other complex methods [6].
These methods are principally based on the heuristic understanding of the underly-
ing process, and both time series with and without seasonality may be treated.

A popular approach for series without seasonality is the Holt method. The se-
ries used for prediction is considered a composition of more than one structural
component (average and trend), each of which can be individually modeled. Such
type of series can be expressed as: y.x/ D yav.x/ C pytr.x/ C e.x/I p D 0 [7, 8],
where y.x/, yav.x/, ytr.x/, and e.x/ are the data, the average, the trend and the error
components individually modeled using exponential smoothing. The p-step-ahead
prediction is given by y� .x C pjk/ D yav.x/ C pytr.x/.

The average and the trend components are modeled as:

yav.x/ D .1 � ˛/ y.x/ C ˛ .yav .x � 1/ C ytr .k � 1// (7.34)

ytr.x/ D .1 � ˇ/ ytr .x � 1/ C ˇ .yav.x/ C yav .x � 1// ; (7.35)

where ˛ and ˇ are the smoothing coefficients, whose values can be between .0; 1/;
typical values range from 0.1 to 0.3 [8, 9]. The terms yav and ytr were initialized as:

yav .1/ D y .1/ (7.36)

ytr .1/ D .y .1/ � y .0// C .y .2/ � y .1//

2
: (7.37)

7.7.2 Box–Jenkins Method

This is one of the most powerful methods of prediction, where the data structures
are transformed and converted to stationary series represented by a transfer function
model. The computational requirements are moderately high but it has been suc-
cessfully applied to a variety of processes. It involves essentially two elements [10]:

1. Transformation of the time series into stationary time series.
2. Modeling and prediction of the transformed data using a transfer function

model.

A discrete-time linear model of the time series is used. The series are transformed
into stationary series to ensure that the probabilistic properties of mean and variance
remain invariant over time.

The process is modeled as a liner filter driven by a white noise sequence. A gen-
eralized model can be expressed as A

�
q�1

�
y .k/ D C

�
q�1

�
e .k/, where:

A
�
q�1

� D1 C a1q�1 C : : : C apq�p

C
�
q�1� D1 C c1q�1 C : : : C crq�s :
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The term fe .k/g is a discrete white noise sequence and fy .k/g is the time series.
The backward shift operator is expressed as q�1. Before the data series can be used
for modeling they may be subjected to non-linear and stationary transformation.

The d th-order differencing for non-seasonal time-differencing is given by Yd .k/

D �
1 � q�1

�d
y .k/, which results in d successive time differences being performed

on the data. A generalized model is given by A
�
q�1

�
�d y .k/ D C

�
q�1

�
e .k/.

This is known as an autoregressive integrated moving average (ARIMA) model
of order (p; q; r). The p are the autoregressive terms, d is the degree of time differ-
ences, and r is the order of the moving average, where the discrete time polynomials
are of order p and r , respectively.

A one-step-ahead minimum mean square error prediction is the conditional expec-
tation of y .k C p/ at time k: y^ .k C 1j k/ D E .y .k C 1/j y .k/; y .k C 1/ : : :/.

The error sequence may be expressed as e .k/ D y .k/�y^ .kj k � 1/ ; : : : Once
the parameters are estimated the predictions can be computed. The prediction of an
ARIMA(1; 1; 1/ process, considers the model:

�
1 � a1q�1��y .k/ D �

1 � c1q�1� e .k/ : (7.38)

The error is the difference between the real value and the prediction. A one-step-
ahead prediction is given by y^ .k C 1j k/ D .1 C a1/ y .k/�a1y .k � 1/�c1e .k/,
where a1 and c1 are the estimated parameter values.

7.7.3 Minimum Variance

This kind of predictor takes the variance of the prediction error 	2
e , as a measure of

the trust in the prediction [11]. A one-step predictor can be obtained considering the
process y .t/ D ay .t � 1/Ce .t/Cce .t � 1/, such as A D 1�az�1; C D 1Ccz�1.
For the one-step predictor k D 1; F D 1:z�1G D C � A D .c C a/ z�1 and

G .z/ D c C a so: y� . t C 1j t/ D
�

c C a

1 C cz�1

�

y .t/ :

Expressed recursively gives y� . t C 1j t / D .c C a/ y .t/ � cy� .t jt � 1 /.
No we will program a double-exponential smoothing prediction system using the

ICTL. We can find the predictor VIs at the Predictors palette, as shown in Fig. 7.1.
We can create a simple linear function, change the slope, and follow it with the

predictor. We can alter the smoothing parameters to see how the prediction changes
and adapts to the systems that it is following. The front panel of the program could
look like the one shown in Fig. 7.2.

The block diagram is shown in Fig. 7.3. Shift registers are used to accumulate
the past and present measurements. These measurements are stored in an array and
inverted so the newest measurement is at the end of the array.
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7.8 Gray Modeling and Prediction

Gray theory is a novel scientific theory originally proposed by J. Deng [12, 13] in
1982. If a system is observed from external references, it is called a black box. If the
parameters and properties are well known, it is called a white system. Thus, a system

Fig. 7.1 Predictors palette at ICTL

1.  Controls for selecting the predictive method and 
their different parameters

2.  Graphical predicted and real data
3.  Separated graphical outputs for the prediction and 

real data
4.  Numerical indicators for the real data and the 

predicted

1
2

34

Fig. 7.2 Front panel for the predictors example
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with partially known data is called a “gray” system. The name gray is defined for
these kinds of systems.

Gray theory treats any variation as gray data in a certain range and random pro-
cesses are considered as gray time-varying in a certain range. It also generates data
to obtain more regular generating sequences from original random data. The gray
prediction employs past and presently known or indeterminate data to establish
a gray model. The model can be used to predict future variations in the tendency
of the output.

A specific feature of gray theory is its use of discrete-time sequences of data to
build up a first-order differential equation. On a particular form, the single-variable
first-order differential equation is used to model the GM .1; 1/, which only uses
a small portion of the data for the modeling process. The GM .1; 1/ model is defined
by the following equation:

dx.1/ .k/

dk
C ax.1/ .k/ D b : (7.39)

7.8.1 Modeling Procedure of the Gray System

The original data is preprocessed using the accumulated generating operation (AGO)
in order to decrease the random behavior of the system and to obtain the modeling
information. Then, the generated data is taken to construct the model.

Algorithm 7.1

1. Let the original data be x.0/: x.0/ D �
x.0/ .1/; x.0/ .2/ ; : : : ; x.0/ .n/

�
n D

4; 5; : : :

1
2

3

1.  Three samples of the signal are used to 
predict

2.  Selector for the desired method
3.  Display of Results

Fig. 7.3 Block diagram of predictors example
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Since the GM prediction is a local curve fitting extrapolation scheme, at least
four data samples are required to obtain an approximate prediction. Five samples
can yield better results. In addition, the prediction accuracy is not proportional to
the number of samples. Additionally a forgetting term can be applied so the most
recent data has more weight than the older one. A linearly increasing weighting
may be applied, but an exponential form is more popular. In that case the original
data series would be transformed as in (7.40), where ˛ is the forgetting factor:

˛x.0/ D
�
˛x.0/ .1/; ˛nx.0/ .2/; : : : ; ˛nx.0/ .n/

�
0 < ˛ < 1 : (7.40)

2. Let x.1/ be the one time AGO (1-AGO) of x.0/: x.1/ D �
x.1/.1/; x.1/.2/; : : : ;

x.1/.n/
�
, where x.1/ .k/ D Pk

mD1 x.0/ .m/ k D1; 2; : : : m.
3. Using least square means the model parameters Oa are calculated as:

Oa D
�

a

b

�

D
�
BT B

��1
BT yn ; (7.41)

where

B D

2

6
6
6
4

�1=2
�
x.1/ .1/ C x.1/ .2/

�
1

�1=2
�
x.1/ .2/ C x.1/ .3/

�
1

:::
:::

�1=2
�
x.1/ .n � 1/ C x.1/ .n/

�
1

3

7
7
7
5

(7.42)

yn D

2

6
6
6
4

x.0/ .2/

x.0/ .3/
:::

x.0/ .n/

3

7
7
7
5

: (7.43)

4. Then the predictive function can be obtained with: Ox.1/ .k/ D
�
x.0/ .1/ � b

a

�
�

e�ak C b
a

.
Then the inverse accumulated generating operation (IAGO) is used to obtain the
predictive series Ox.0/: Ox.0/ D � Ox.0/ .1/; Ox.0/ .2/; : : : ; Ox.0/ .n/

�
,

where Ox.0/ .k/ D Ox.1/ .k/ � Ox.1/ .k � 1/ k D 2; 3; : : : n and Ox.0/ .1/ D
Ox.1/ .1/.

7.9 Example of a Gray Predictor Using the ICTL

The development of an example using a gray predictor is shown in this section. We
first enter the number of samples that are going to be used to create the model and
the points of the signal to be predicted. The front panel is shown in Fig. 7.4.

A 1D interpolator called Automatic_1D-Array_Interpolator.vi is used to cre-
ate information between the introduced points of the signal (Fig. 7.5). We need to
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Fig. 7.4 Front panel of gray predictor example

Fig. 7.5 Diagram of
the Automatic_1D-
Array_Interpolator.vi

Fig. 7.6 Diagram of the
K-Step Gray Prediction.vi

accumulate the desired samples of the signal in order to update the parameters of
the model. Next, we will introduce them to the K-Step Gray Prediction.vi that
executes the prediction, as shown in Fig. 7.6.
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Fig. 7.7 Block diagram of gray example

Fig. 7.8 Gray example program in action

The complete block diagram of the code is shown in Fig. 7.7. The program run-
ning would look like the one in Fig. 7.8. We will be able to see that the predictor
starts taking samples of the signal (the gray one in the background) to be predicted
(white) and reconstructs it.
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