
Chapter 5

Systems Satisfying the Conditions of
LaSalle

Abstract The LaSalle Invariance Principle uses non-strict Lyapunov func-
tions to show asymptotic stability. However, even when a system is known to
be asymptotically stable, it is still desirable to be able to construct a strict
Lyapunov function for the system, e.g., for robustness analysis and feedback
design. In this chapter, we give two more methods for constructing strict Lya-
punov functions, which apply to cases where asymptotic stability is already
known from the LaSalle Invariance Principle.

The first imposes simple algebraic conditions on the higher order Lie
derivatives of the non-strict Lyapunov functions, in the directions of the
vector fields that define the systems. Our second method uses our contin-
uous time Matrosov Theorem from Chap. 3. We illustrate our approach by
constructing a strict Lyapunov function for an appropriate error dynamics
involving the Lotka-Volterra Predator-Prey System.

5.1 Background and Motivation

As we noted in preceding chapters, Lyapunov functions are a vital tool for
the analysis of, and controller design for, nonlinear systems. The two main
types of Lyapunov functions are strict Lyapunov functions (also known as
strong Lyapunov functions, having negative definite time derivatives along
the trajectories of the system) and non-strict Lyapunov functions (whose
time derivatives along the trajectories are negative semi-definite, and which
are also called weak Lyapunov functions).

Strict Lyapunov functions are typically far more useful than non-strict
ones. The key point is that in general, non-strict Lyapunov functions can
only be used to prove stability, via the LaSalle Invariance Principle, while
strict Lyapunov functions can be used to show robustness properties, such
as ISS to actuator errors. Robustness is an essential feature in engineering
applications, largely due to the uncertainty in dynamical models and noise

117



118 5 Systems Satisfying the Conditions of LaSalle

entering into controllers. Many controller design methods, e.g., backstepping
[75], forwarding [113, 149] and universal stabilizing controllers [158], are based
on strict Lyapunov functions. In particular, if V is a global strict Lyapunov
function for ẋ = f(t, x) for which α(x) = inft{−[Vt(t, x) + Vx(t, x)f(t, x)]} is
radially unbounded, with f and g both locally Lipschitz, and with V, f , and g
all periodic in t with the same period T , then ẋ = f(t, x)+g(t, x)[K(t, x)+d]
is ISS if we take the feedback K(t, x) = −Vx(t, x)g(t, x). Consequently, when
an explicit strict Lyapunov function is known, many important stabilization
problems can be solved almost immediately.

In general, it is much easier to obtain non-strict Lyapunov functions than
strict ones, owing to the more restrictive decay condition in the strict Lya-
punov function definition. For instance, when a passive nonlinear system
is stabilized by linear output feedback, the energy (i.e., storage) function
can typically be used as the weak Lyapunov function. This fact is useful
for electro-mechanical systems. Also, when a system is stabilized via the
Jurdjevic-Quinn Theorem, non-strict Lyapunov functions are typically avail-
able, e.g., by taking the Hamiltonian for Euler-Lagrange systems; see Chap.
4 or [41, 68, 102, 127]. This has motivated a significant literature devoted to
transforming non-strict Lyapunov functions into strict Lyapunov functions.

In this chapter, we present two more strict Lyapunov function construc-
tions, both based on transforming non-strict Lyapunov functions into strict
ones under suitable Lie derivative conditions. The assumptions in our first
construction agree with those of [110], but they lead to simpler designs than
the one in [110]. Our second result uses the Matrosov approach in Theorem
3.1. In general, Matrosov’s Method can be difficult to apply because one has
to find suitable auxiliary functions. Here we give simple sufficient conditions
leading to a systematic design of auxiliary functions. This makes it possible
to construct strict Lyapunov functions via Theorem 3.1. We illustrate our
approach by constructing a strict Lyapunov function for an error dynamics
involving the celebrated Lotka-Volterra System, which plays a fundamental
role in bioengineering. Throughout the chapter, all (in)equalities should be
understood to hold globally unless otherwise indicated, and we omit the ar-
guments of our functions when they are clear from the context.

5.2 First Method: Iterated Lie Derivatives

Recall that if f : R
n → R

n is a smooth (i.e., C∞) vector field and V : R
n → R

is a smooth scalar function, the Lie derivatives of V in the direction of f are
defined recursively by

L1
fV (x) .= LfV (x) .= ∂V

∂x (x)f(x) and
Lk
fV (x) .= Lf

(
Lk−1
f V

)
(x) for k ≥ 2 .
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We refer to the functions Lk
fV as iterated Lie derivatives. We next construct

a strict Lyapunov function for the system

ẋ = f(x), x ∈ R
n (5.1)

with f smooth and f(0) = 0, under appropriate Lie derivative assumptions.
Specifically, assume that (5.1) admits a global non-strict Lyapunov function
such that for each p ∈ R

n \ {0}, there is an i ∈ N such that Li
fV (p) = 0.

If LfV (φ(t, x0)) ≡ 0 along some trajectory φ(·, x0) of (5.1), then we can
differentiate repeatedly to get

Lk
fV (φ(t, x0)) ≡ 0 ∀t ≥ 0 and k ∈ N,

so x0 = 0. Hence, GAS follows from the LaSalle Invariance Principle. On the
other hand, it is not obvious how to construct a strict Lyapunov function
in this situation. This motivates our hypotheses in the following theorem, in
which ai(x) .= (−1)iLi

fV (x) for all i:

Theorem 5.1. Assume that there exists a smooth function V : R
n → [0,∞)

such that the following conditions hold:

1. V (·) is a non-strict Lyapunov function for the system (5.1); and
2. there exists a positive integer  ∈ N such that for each x = 0, there exists

an integer i ∈ [1,  ] (possibly depending on x) such that Li
fV (x) = 0.

Then we can construct explicit expressions for functions Fj and G so that

V �(x) =
�−1∑

j=1

Fj

(
V (x)

)
Aj(x) + G(V (x)

)
, where

Aj(x) =
j∑

m=1

am+1(x)am(x)

(5.2)

is a strict Lyapunov function for (5.1).

Proof. Since Condition 2. in Theorem 5.1 is satisfied for some  ≥ 1, it holds
for all larger integers as well, so we assume without loss of generality (to
simplify the proof) that  ≥ 3. Note for later use that ai+1 ≡ −ȧi for all i,
along the trajectories of (5.1).

Condition 2. from Theorem 5.1 guarantees that we can construct a positive
definite continuous function ρ such that

a1(x) +
�∑

m=2

a2
m(x) ≥ ρ(V (x)) ∀x ∈ R

n , (5.3)

e.g.,

ρ(r) = min

{
a1(x) +

�∑

m=2

a2
m(x) : V (x) = r

}
.
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By minorizing ρ as necessary without relabeling and using Lemma A.7, we
can assume that

ρ(r) =
ω(r)
K(r)

(5.4)

for some function ω ∈ K∞ ∩ C1 and some increasing everywhere positive
function K ∈ C1. We can also determine an everywhere positive increasing
function Γ ∈ C1 such that

Γ
(
V (x)

) ≥ ( + 2)|am(x)| + 1 ∀m ∈ {1, ...,  + 1} (5.5)

holds for all x ∈ R
n. For example, take

Γ0(r) = ( + 2)max

{
�+1∑

m=1

|am(x)| + 1 : V (x) ≤ r

}
,

and then majorize by an increasing C1 function.
Let us introduce the following functions:

Mj(x) =
j∑

m=1

am+1(x)am(x) +
∫ V (x)

0

Γ (r)dr, j = 1, 2, . . . ,  − 1 ; (5.6)

N0(x) = a1(x), and Nj(x) =
j+1∑

m=2

a2
m(x) + a1(x), j = 1, 2, . . .  − 1. (5.7)

Since a1(x) ≥ 0 everywhere, (5.5) gives

Ṁ1(x) = ȧ2(x)a1(x) − a2
2(x) − Γ

(
V (x)

)
a1(x)

≤ −a2
2(x) − a1(x)

= −N1(x) .

(5.8)

Also, for each j ∈ {2, ...,  − 1}, we get

Ṁj(x) = −
j∑

m=1

a2
m+1(x) +

j∑

m=1

ȧm+1(x)am(x) − Γ
(
V (x)

)
a1(x)

≤ −
j∑

m=1

a2
m+1(x) +

j∑

m=2

|am+2(x)||am(x)| + |a3(x)|a1(x)

−Γ
(
V (x)

)
a1(x)

≤ −
j∑

m=1

a2
m+1(x) +

j∑

m=2

|am+2(x)||am(x)| + |a3(x)|a1(x)

−[( + 2)|a3(x)| + 1
]
a1(x).

(5.9)
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From this inequality and (5.5), we deduce that for all j ∈ {2, ...,  − 1},

Ṁj(x) ≤ −
j∑

m=1

a2
m+1(x)

+
Γ
(
V (x)

)

 + 2

j∑

m=2

|am(x)| − [
( + 1)|a3(x)| + 1

]
a1(x).

(5.10)

It follows from the Cauchy Inequality that for all j ∈ {2, ...,  − 1},

Ṁj(x) ≤ −
j∑

m=1

a2
m+1(x) + Γ (V (x))

√√√√
j∑

m=2

a2
m(x)

−[( + 1)|a3(x)| + 1
]
a1(x)

= −
j+1∑

m=2

a2
m(x) − a1(x) + Γ (V (x))

√√√√
j∑

m=2

a2
m(x)

−( + 1)|a3(x)|a1(x).

(5.11)

From the definitions of the functions Nj , we deduce that for all j ∈ {2, ...,  −
1},

Ṁj(x) ≤ −Nj(x) + Γ (V (x))
√

Nj−1(x). (5.12)

Set

Ω(v) =
2ω(v)

 Γ 2(v)K(v)
(5.13)

and define the positive definite functions k1, k2, . . . , k�−1 ∈ C1 by

k�−1(v) = 2K(v)ω2�−1
(v) (5.14)

and
kp(v) = k�−1(v)Ω1−2�−p−1

(v) (5.15)

for p = 1, 2, . . . ,  − 2.
Pick a C1 everywhere positive increasing function k0 such that

k0(V (x)) + k′
0(V (x))V (x) ≥

�−1∑

p=1

∣∣k′
p(V (x))Mp(x)

∣∣+ 1. (5.16)

Let

S1(x) .=
�−1∑

p=1

kp
(
V (x)

)
Mp(x) + k0

(
V (x)

)
V (x). (5.17)

Then
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Ṡ1(x) =
�−1∑

p=1

kp
(
V (x)

)
Ṁp(x) +

[
�−1∑

p=1

k′
p

(
V (x)

)
Mp(x)

]
V̇ (x)

+
[
k0

(
V (x)

)
+ k′

0

(
V (x)

)
V (x)

]
V̇ (x).

(5.18)

It follows from (5.16) and the fact that V̇ is non-positive everywhere that

Ṡ1(x) ≤
�−1∑

p=1

kp(V (x))Ṁp(x). (5.19)

Using (5.8) and (5.12), we deduce that

Ṡ1(x) ≤ −k1

(
V (x)

)
N1(x)

+
�−1∑

p=2

kp
(
V (x)

) [−Np(x) + Γ
(
V (x)

)√
Np−1(x)

]

= −
�−1∑

p=1

kp
(
V (x)

)
Np(x) +

�−1∑

p=2

kp
(
V (x)

)
Γ
(
V (x)

)√
Np−1(x).

(5.20)

By (5.3) and (5.4), we deduce that

N�−1(x) ≥ ω(V (x))
K(V (x))

. (5.21)

Therefore,

Ṡ1(x) ≤ −k�−1(V (x))
ω(V (x))
K(V (x))

−
�−2∑

p=1

kp
(
V (x)

)
Np(x)

+
�−2∑

p=1

kp+1

(
V (x)

)
Γ
(
V (x)

)√
Np(x).

(5.22)

From the triangular inequality c1c2 ≤ c21 + 1
4c

2
2 for non-negative values c1

and c2, we deduce that

{√
kp(V (x))Np(x)

}{Γ
(
V (x)

)
kp+1

(
V (x)

)
√

kp(V (x))

}

≤ kp(V (x))Np(x) +
Γ 2(V (x))k2

p+1(V (x))
4kp(V (x))

(5.23)
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for p = 1, 2, . . . ,  − 2 when x = 0. Summing the inequalities in (5.23) over
p = 1, 2, . . . ,  − 2 and combining with (5.22), we deduce that for x = 0,

Ṡ1(x) ≤ −k�−1

(
V (x)

) ω(V (x))
K(V (x))

+
�−2∑

p=1

Γ 2(V (x))k2
p+1(V (x))

4kp(V (x))
. (5.24)

By our choices of the kp’s, we get

Ṡ1(x) ≤ −k�−1

(
V (x)

) ω(V (x))
K(V (x))

+
�−2∑

p=1

Γ 2(V (x))k2
�−1(V (x))Ω2(1−2�−p−2)(V (x))

4k�−1(V (x))Ω1−2�−p−1 (V (x))

= −k�−1

(
V (x)

) ω(V (x))
K(V (x))

+( − 2)
Γ 2(V (x))k�−1(V (x))Ω(V (x))

4
, x = 0 .

(5.25)

Our choice of Ω in (5.13) now gives

Ṡ1(x) ≤ −k�−1

(
V (x)

) ω(V (x))
2K(V (x))

∀x ∈ R
n . (5.26)

Recalling our choice (5.14) of k�−1 now gives

Ṡ1(x) ≤ −ω2�−1+1
(
V (x)

)
. (5.27)

All of the functions kp are C1 and the right hand side of (5.27) is negative
definite. However, S1 is not necessarily a strict Lyapunov function because
S1 is not necessarily positive definite and radially unbounded. To obtain a
strict Lyapunov function, consider

V �(x) = V (x)S1(x) + κ
(
V (x)

)
V (x) , (5.28)

where κ ∈ C1 is an everywhere positive function with an everywhere positive
first derivative such that κ(V (x)) ≥ |S1(x)| + 1 for all x ∈ R

n. Then V � is
positive definite and radially unbounded because V �(x) ≥ V (x) and

V̇ �(x) = V (x)Ṡ1(x) + V̇ (x)S1(x) +
[
κ′(V (x)

)
V (x) + κ

(
V (x)

)]
V̇ (x)

≤ −ω2�−1+1
(
V (x)

)
V (x).

(5.29)

The result readily follows from the formula (5.17) for S1, by collecting the
functions involving V to form the expression for V �. �



124 5 Systems Satisfying the Conditions of LaSalle

5.3 Discussion and Extensions of First Method

5.3.1 Local vs. Global

While stated for systems on R
n, we can also prove the following local version

of Theorem 5.1 [110]: Suppose that all conditions of Theorem 5.1 hold on a
given neighborhood of the origin E ⊆ R

n. Then, there exists a neighborhood
of the origin E1 with E1 ⊆ E and functions Fi and G such that (5.2) is a
strict Lyapunov function for the system (3.17) on the set E1. The proof is
similar to that of Theorem 5.1, by taking E1 to be a suitable open sublevel set
of V . Alternatively, we can prove the local version by using the construction
from [110], which in general leads to a strict Lyapunov function that differs
from the one we gave in Theorem 5.1.

5.3.2 Real Analytic Case

When V and f are real analytic, Theorem 5.1 remains true if its Condition
2. is replaced by the assumption that there exist positive constants B and B̄
such that: There is an integer  ∈ N such that for each x ∈ {p ∈ R

n : 0 <
|p| < B or |p| > B̄}, there is an integer i ∈ [1,  ] such that Li

fV (x) = 0. This
follows from the following simple observation from [110]:

Proposition 5.1. Assume that (5.1) is GAS, f is real analytic, and Condi-
tion 1. of Theorem 5.1 holds with a real analytic function V . Then, for each
compact set E ⊆ R

n that does not contain the origin, there exists  ∈ N such
that each point x ∈ E admits an index i ∈ [1,  ] such that Li

fV (x) = 0.

Hence, to apply the local version of Theorem 5.1, it suffices to check its
Condition 1., and then check its Condition 2. on a set of the form BBn \ {0}
for some constant B > 0. Let us sketch the proof of Proposition 5.1.

Proof. We proceed in two steps.
Step 1. Fix any x0 ∈ E. Since the system is assumed to be GAS, there

must be a time tc > 0 at which LfV (x(tc, x0)) = 0. (This is because if no
such tc existed, then

V
(
x(t, x0)

)
= V (x0) +

∫ t

0

LfV
(
x(r, x0)

)
dr ≡ V (x0)

for all t ≥ 0 would contradict the GAS property.) Since V and f are real
analytic functions, so is t 
→ LfV (φ(t, x0)). Consider its expansion

LfV
(
φ(t, x0)

)
=

∞∑

i=0

Li+1
f V (x0)

ti

i!
(5.30)
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around t = 0. Since t 
→ LfV (φ(t, x0)) is not the zero function, there must
exist an integer i = i(x0) such that Li

fV (x0) = 0.
Step 2. Suppose that the statement of the proposition were false. Then

there would exist a sequence xp ∈ E and a strictly increasing sequence of
positive integers np such that

Li
fV (xp) = 0 ∀i ∈ [1, np − 1] , but L

np

f V (xp) = 0 . (5.31)

Since E is compact, we can assume that xp → x∗ for some non-zero x∗ ∈ E.
(Otherwise, we can pass to a subsequence without relabeling.) By Step 1 of
the proof applied with x0 = x∗, we can find an integer J = J(x∗) such that
LJ
fV (x∗) = 0. Since LJ

fV is continuous, there exists a constant p̄ ∈ N such
that for each p ≥ p̄, we have

LJ
fV (xp) = 0.

This contradicts (5.31) once we pick p so that np > J . The result follows. �

5.3.3 Necessity vs. Sufficiency

Conditions 1. and 2. from Theorem 5.1 are not necessary for GAS of the
system (5.1) [110]. To see why, consider the following example from [127]:

{
ẋ1 = x2

ẋ2 = −x1 − x2B(x2),
(5.32)

where B is the smooth function

B(s) =

{
exp

(
− 1

(s−1)2

)
, s = 1

0, s = 1
.

Then Condition 1. of Theorem 5.1 is satisfied with V (x1, x2) = x2
1 + x2

2 since
V̇ = −2x2

2B(x2), and the LaSalle Invariance Principle implies that (5.32) is
GAS to zero. However, Condition 2. of Theorem 5.1 does not hold since for
x∗ = (0 1)�, we have Li

fV (x∗) = 0 for all i ∈ N.

5.3.4 Recovering Exponential Stability

When (5.1) is locally exponentially stable, the time derivative of (5.2) along
the trajectories of (5.1) will not in general be upper bounded by a negative
definite quadratic function. Moreover, it is not clear how to use (5.2) to
verify local or global exponential stability. However, we can use V � to get
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another strong Lyapunov function W that can be used to verify exponential
stability. For example, if Conditions 1.-2. of Theorem 5.1 hold and (5.1) has
an exponentially stable linearization, then one can construct a Lyapunov
function V � and α1, α2, α3 ∈ K∞ such that

α1(|x|) ≤ V �(x) ≤ α2(|x|) and V̇ � ≤ −α3(|x|)

hold for all x ∈ R
n and, moreover, there exist positive constants δ, a, and b

such that α1(s) = as2 and α3(s) = bs2 for all s ∈ [0, δ] [60, Lemma 10.1.5].

5.4 Second Method: Matrosov Conditions

We again consider a general nonlinear system

ẋ = f(x), x ∈ X (5.33)

evolving on an open positively invariant set X ⊆ R
n that contains the origin,

where f(0) = 0. We use Theorem 3.1 in Chap. 3 to construct strict Lyapunov
functions for (5.33). Recall that Theorem 3.1 is a continuous time Matrosov
Theorem, which requires auxiliary functions, in addition to a non-strict Lya-
punov function. In general, it can be difficult to find appropriate auxiliary
functions to apply the Matrosov Theorem. Hence, our work sheds light on the
Matrosov Theorems as well, because it gives a new mechanism for choosing
auxiliary functions.

However, the most important features of our second method are that (a)
the result applies to systems for which the state space is only a proper subset
of R

n and (b) it may yield Lyapunov functions that are simpler than the ones
obtained from Theorem 5.1, and that also have desirable local properties such
as local boundedness from below by positive definite quadratic functions; see
Sect. 5.5.

To account for the restricted state space for (5.33), we use the following
definitions. A C1 function V : X → R on a general open set X ⊆ R

n con-
taining the origin is called a storage function provided there exist continuous
positive definite functions α1, α2 : X → [0,∞) such that the following hold:

1. for each i, αi(x) → +∞ whenever |x| → +∞ with x remaining in X ; and
2. α1(x) ≤ V (x) ≤ α2(x) for all x ∈ X .

Condition 1. holds vacuously when X is bounded. A storage function V is
called a non-strict (resp., strict) Lyapunov-like function for (5.33) provided
it is C1 and LfV (x) is negative semi-definite (resp., negative definite). If,
in addition, for each i and each q̄ ∈ ∂X , αi(q) → +∞ when q → q̄ then a
non-strict (resp., strict) Lyapunov-like function is called a non-strict (resp.,
strict) Lyapunov function. In the rest of this subsection, we assume:
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Assumption 5.1 There exist a smooth storage function V1 : X → [0,∞);
functions h1, . . . , hm ∈ C∞(Rn) such that hj(0) = 0 for all j; everywhere
positive functions r1, . . . , rm ∈ C∞(Rn) and ρ ∈ C∞(R); and an integer
N > 0 for which

∇V1(x)f(x) ≤ −r1(x)h2
1(x) − ...− rm(x)h2

m(x) (5.34)

and
N−1∑

l=0

m∑

j=1

[
Ll
fhj(x)

]2 ≥ ρ(V1(x))V1(x) (5.35)

hold for all x ∈ X . Moreover, f is defined on R
n and there is a function

Γ ∈ K∞ such that
|f(x)| ≤ Γ (|x|) ∀x ∈ R

n. (5.36)

Also, V1 has a positive definite quadratic lower bound near the origin.

To simplify our notation, we introduce the functions

N1(x) = R(x)
m∑

l=1

h2
l (x)

and Ni(x) =
m∑

l=1

[
Li−1
f hl(x)

]2 (5.37)

for all i ≥ 2, where

R(x) =

m∏

i=1

ri(x)

m∏

i=1

[ri(x) + 1]

for all i ≥ 2. We assume that f is sufficiently smooth.
The following is shown in [105]:

Theorem 5.2. If (5.33) satisfies Assumption 5.1, then one can determine
explicit functions kl, Ωl ∈ K∞ ∩ C1 and an everywhere positive continuous
function ρ0 such that

S(x) =
N∑

l=1

Ωl

(
kl
(
V1(x)

)
+ Vl(x)

)
(5.38)

with the choices

Vi(x) = −
m∑

l=1

Li−2
f hl(x)Li−1

f hl(x) , i = 2, . . . , N (5.39)

satisfies S(x) ≥ V1(x) and ∇S(x)f(x) ≤ −ρ0(x)V1(x) for all x ∈ X . If, in
addition, X = R

n, then the system (5.33) is GAS.
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Proof. Sketch. Since R is everywhere positive and satisfies R(x) ≤ ri(x) for
all x ∈ R

n and all i ∈ {1, ...,m}, we get

∇V1(x)f(x) ≤ −N1 by (5.34), and

∇Vi(x)f(x) ≤ −Ni +
∑m

l=1 |Li−2
f hl||Li

fhl|
(5.40)

for i = 2, . . . , N and x ∈ X . In particular, we have:

∇V2(x)f(x) ≤ −N2(x) +
m∑

l=1

|L2
fhl(x)|
√

R(x)

√
N1(x);

∇Vi(x)f(x) ≤ −Ni(x) +

[
m∑

l=1

|Li
fhl(x)|

]
√Ni−1(x)

for i = 3, 4, . . . , N . Moreover, the fact that V1 is a storage function implies
that there exists a function α ∈ K∞ such that V1(x) ≥ α(|x|) for all x ∈ X .

Therefore, we can use (5.36) to determine a continuous everywhere positive
function φ1 such that

m∑

l=1

|L2
fhl(x)|
√

R(x)
≤ φ1

(
V1(x)

)√
V1(x) (5.41)

and
m∑

l=1

|Li
fhl(x)| ≤ φ1

(
V1(x)

)√
V1(x) (5.42)

for all x ∈ X and i = 3, . . . , N . The construction of φ1 satisfying (5.42) is
as follows; the requirement (5.41) is handled in a similar way. Since Li

fhl is
sufficiently smooth for each i and l and zero at the origin, we have

m∑

l=1

|Li
fhl(x)| ≤ |x|G1(|x|) ≤ κ̄

√
V1(x)G1

(
α−1

(
V1(x)

))

for some increasing everywhere positive function G1 and constant κ̄ > 0 in
some neighborhood O of the origin. We can also find a function G2 ∈ K∞
such that

∑m
l=1 |Li

fhl(x)|/(α(|x|))1/2 ≤ G2(|x|) on R
n\O. Hence, we can take

φ1(r) = 1 + κ̄G1(α−1(r)) + G2(α−1(r)).
It follows that

∇Vi(x)f(x) ≤ −Ni(x) + φ1(V1(x))
√Ni−1(x)

√
V1(x) (5.43)

for i = 2, . . . , N . We can determine an everywhere non-negative function p1

such that |Vi(x)| ≤ p1(V1(x))V1(x) for i = 1, . . . , N for all x ∈ X . Hence,
Theorem 3.1 constructs the necessary strict Lyapunov-like function. �
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5.5 Application: Lotka-Volterra Model

5.5.1 Strict Lyapunov Function Construction

We illustrate Theorem 5.2 using the celebrated Lotka-Volterra Predator-Prey
System ⎧

⎨

⎩
χ̇ = γχ

(
1 − χ

L

)− aχζ

ζ̇ = βχζ −Δζ
(5.44)

with positive constants a, β γ, Δ, and L. System (5.44) is a simple model
of one predator feeding on one prey. The population of the predator is ζ, χ
is the population of the prey, and the constants are related to the birth and
death rates of the predator and prey. We assume that the population levels
are positive.

The time scaling, change of coordinates, and constants

x(t) = 1
Lχ

(
t
γ

)
, y(t) = a

βLζ
(
t
γ

)
,

α = βL
γ and d = Δ

γ

(5.45)

give the simpler Lotka-Volterra system
{

ẋ = x (1 − x) − αxy
ẏ = αxy − dy.

(5.46)

We assume that α > d, and we set

x∗ = d
α and y∗ = 1

α − d
α2 . (5.47)

Then x∗ ∈ (0, 1) and y∗ > 0. Also, the new variables x̃ = x−x∗ and ỹ = y−y∗
have the dynamics ⎧

⎨

⎩
˙̃x = −[x̃ + αỹ](x̃ + x∗)

˙̃y = αx̃(ỹ + y∗) ,
(5.48)

with state space X = (−x∗,∞) × (−y∗,∞). We do our Lyapunov function
construction for (5.48), so we set

f(x̃, ỹ) =
[−[x̃ + αỹ](x̃ + x∗)

αx̃(ỹ + y∗)

]
. (5.49)

Let us check that the assumptions from Theorem 5.2 are satisfied with
m = 1, N = 2, r1 ≡ 1, h1(x̃, ỹ) .= x̃, and

V1(x̃, ỹ) = x̃− x∗ ln
(
1 + x̃

x∗

)
+ ỹ − y∗ ln

(
1 + ỹ

y∗

)
. (5.50)
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One easily checks that V1 : X → [0,∞) is a storage function. Along the
trajectories of (5.48), it has the time derivative

V̇1 =
x̃

x∗ + x̃
˙̃x +

ỹ

y∗ + ỹ
˙̃y

= − x̃

x∗ + x̃
[x̃ + αỹ](x̃ + x∗) +

αỹ

y∗ + ỹ
x̃(ỹ + y∗)

= −x̃[x̃ + αỹ] + αỹx̃ = −x̃2 .

(5.51)

Also,
Lfh1(x̃, ỹ) = −[x̃ + αỹ](x̃ + x∗).

Defining the Ni’s as in (5.37), a simple argument based on the fact that V1

becomes unbounded as x̃ approaches −x∗ or ỹ approaches −y∗ provides a
constant d > 0 such that

2∑

i=1

Ni(x̃, ỹ) ≥ d
V1(x̃, ỹ)

1 + V 2
1 (x̃, ỹ)

(5.52)

on X ; see Appendix A.3. Also, Lemma A.8 provides a positive definite
quadratic lower bound for V1 near 0. Hence, Theorem 5.2 provides the nec-
essary strict Lyapunov function for (5.48).

We now construct the strict Lyapunov function of the type provided by
the theorem. Notice that

N1(x̃, ỹ) = 1
2h

2
1(x̃, ỹ), N2(x̃, ỹ) =

(
Lfh1(x̃, ỹ)

)2
,

V2(x̃, ỹ) = −h1(x̃, ỹ)Lfh1(x̃, ỹ), LfV1(x̃, ỹ) ≤ −N1(x̃, ỹ),

and
LfV2(x̃, ỹ) = −(Lfh1(x̃, ỹ)

)2 − h1(x̃, ỹ)L2
fh1(x̃, ỹ)

= −N2(x̃, ỹ) − h1(x̃, ỹ)L2
fh1(x̃, ỹ).

(5.53)

Simple calculations yield

L2
fh1(x̃, ỹ) = −( ˙̃x + α ˙̃y

)(
x̃ + x∗

)− [
x̃ + αỹ

] ˙̃x

= −(x∗ + 2x̃ + αỹ
) ˙̃x− (

x∗ + x̃
)
α ˙̃y

= −(x∗ + 2x̃ + αỹ
)
Lfh1(x̃, ỹ)

−α2
(
x∗ + h1(x̃, ỹ)

)
h1

(
x̃, ỹ

)(
ỹ + y∗

)
.

(5.54)

Substituting (5.54) into (5.53) gives
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LfV2

(
x̃, ỹ

) ≤ −N2(x̃, ỹ) +
(
x∗ + 2|x̃| + α|ỹ|)∣∣h1

(
x̃, ỹ

)∣∣∣∣Lfh1

(
x̃, ỹ

)∣∣

+α2
(
x∗ + |x̃|)(|ỹ| + y∗

)
h2

1

(
x̃, ỹ

)

≤ −N2

(
x̃, ỹ

)
+
(
x∗ + 2|x̃| + α|ỹ|)∣∣h1

(
x̃, ỹ

)∣∣∣∣Lfh1

(
x̃, ỹ

)∣∣

+α2x∗y∗
(
1 + |x̃|

x∗

)(
1 + |ỹ|

y∗

)
h2

1(x̃, ỹ).

Next, observe that
(

1
x∗

+ 1
y∗

)
V1(x̃, ỹ) ≥

x̃
x∗ − ln

(
1 + x̃

x∗

)
+ ỹ

y∗ − ln
(
1 + ỹ

y∗

)
.

(5.55)

This, Lemma A.8, and the relation 1 + A2 ≥ 1
2 (1 + |A|) give

e(
1

x∗ + 1
y∗ )V1(x̃,ỹ) ≥

(
e

x̃
x∗

1+ x̃
x∗

)(
e

ỹ
y∗

1+ ỹ
y∗

)

≥ 1
36

(
1 + x̃2

x2∗

)(
1 + ỹ2

y2∗

)

≥ 1
144

(
1 + |x̃|

x∗

)(
1 + |ỹ|

y∗

)
.

(5.56)

Hence,

|x̃| ≤ 144x∗e(
1

x∗ + 1
y∗ )V1(x̃,ỹ) and

|ỹ| ≤ 144y∗e(
1

x∗ + 1
y∗ )V1(x̃,ỹ) .

Setting M(r) = (289x∗ + 144αy∗) e(
1

x∗ + 1
y∗ )r therefore gives

LfV2(x̃, ỹ) ≤ −N2(x̃, ỹ)

+2M(
V1(x̃, ỹ)

)√N1(x̃, ỹ)
√N2(x̃, ỹ)

+288α2x∗y∗e(
1

x∗ + 1
y∗ )V1(x̃,ỹ)N1(x̃, ỹ).

Using the triangular inequality, we have

M(V1)
√N1

√N2

≤ 1
4N2 + (289x∗ + 144αy∗)

2
e2( 1

x∗ + 1
y∗ )V1N1

(5.57)

where we omit the dependencies on (x̃, ỹ). Therefore,

LfV2(x̃, ỹ) ≤ −1
2
N2(x̃, ỹ) + φ1(V1(x̃, ỹ))N1(x̃, ỹ), (5.58)

where
φ1(r) = 2

[
(289x∗+144αy∗)

2+144α2x∗y∗
]
e2( 1

x∗ + 1
y∗ )r.

Since V2(x̃, ỹ) = x̃[x̃ + αỹ](x̃ + x∗), we easily get
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|V2(x̃, ỹ)| ≤ 2(x∗ + 1)(1 + α)
[
ỹ4 + |x̃|3 + x̃2 + ỹ2

]
, (5.59)

and Lemma A.8 applied with A = x̃/x∗ gives

∣∣∣∣
x̃

x∗

∣∣∣∣ ≤ 2

{[
V1

x∗

]
+
[
V1

x∗

]2
}1/2

≤ 2
[
max

{
1
x∗

,
1
x2∗

}{
V1 + V 2

1

}]1/2

and similarly for y, where we omit the dependence of V1 on (x̃, ỹ). Combining
these estimates with (5.59) and setting d̄ = 1 + x∗ + y∗, simple algebra gives

|V2(x̃, ỹ)| ≤ 4(x∗+1)(1+α)
∑4

i=2

{
2d̄
√

V1 + V 2
1

}i
≤ p1

(
V1(x̃, ỹ)

)
V1(x̃, ỹ),

where p1(r) = 640(x∗ + 1)(α+ 1)d̄4(1 + r)3, by separately considering points
where V1 ≥ 1 and V1 ≤ 1.

Then the strict Lyapunov function we get is

S(x̃, ỹ) = V2(x̃, ỹ) +
[
p1(V1(x̃, ỹ)) + 1

]
V1(x̃, ỹ) +

∫ V1(x̃,ỹ)

0
φ1(r) dr. (5.60)

In fact, S(x̃, ỹ) ≥ V1(x̃, ỹ) and LfS(x̃, ỹ) ≤ − 1
2 [N1(x̃, ỹ) + N2(x̃, ỹ)] are

satisfied everywhere.

5.5.2 Robustness to Uncertainty

We can use our strict Lyapunov function constructions to quantify the ef-
fects of uncertainty in the Lotka-Volterra dynamics. For simplicity, we only
consider additive uncertainty in the death rate Δ for the predator. Using
the coordinate change and constants (5.45), this means that we replace the
constant d with d + u in the dynamics (5.46), where u : [0,∞) → R is a
measurable essentially bounded uncertainty, and where the constant d > 0
now represents the nominal value of the parameter. Later, we impose bounds
on the allowable values for |u|∞. We continue to use d in the formulas (5.47)
for x∗ and y∗; we do not introduce uncertainty in the equilibrium values.

We first define an appropriately restricted state space for the dynamics.
Along the trajectories of (5.46), with d replaced by d + u, we have ẋ + ẏ =
x(1 − x) − (d + u)y. Hence, if |u|∞ ≤ d/2, then we get ẋ + ẏ < 0 when
x + y > 1 + 2

d (by separately considering the cases x > 1 and x ≤ 1).
Therefore, we restrict to disturbances satisfying |u|∞ ≤ d/2 and the forward
invariant set S = {(x, y) ∈ (0,∞)2 : x + y ≤ B} containing (x∗, y∗), where

B = 1 +
2
d

+ y∗ . (5.61)

The corresponding perturbed error dynamics is
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{
˙̃x = −[x̃ + αỹ](x̃ + x∗)
˙̃y = αx̃(ỹ + y∗) − uy

(5.62)

which we view as having the state space X � = {(x̃, ỹ) : (x, y) ∈ S} and a
control set U we will specify.

To account for the restricted state space, we use the following definitions.
Given an open subset D of a Euclidean space that contains the origin, we
say that a positive definite function ᾱ : D → [0,∞) is a modulus with respect
to D provided ᾱ(p) → +∞ as |p| → +∞ or as dist(p, ∂D) → 0 (with p
remaining in D). We say that (5.62) is ISS with respect to u provided there
exist functions β ∈ KL and γ ∈ K∞, and a modulus with respect to X 0 .=
(−x∗,∞)×(−y∗,∞), such that for each disturbance u : [0,∞) → U and each
trajectory (x̃, ỹ) : [0,∞) → X � of (5.62) corresponding to u, we have

|(x̃, ỹ)(t)| ≤ β
(
ᾱ((x̃, ỹ)(0)), t

)
+ γ(|u|∞) ∀t ≥ 0. (5.63)

We define iISS for (5.62) in an analogous way; see Remark 5.1 below.
To simplify the statements of our results, we use the constants

K0 = 2
[
(3 + α)2

2
+ α2

]
B2, θ = min

{
K0x

2
∗

8
,

K0x
2
∗y

2
∗α

2

8(x∗ + 2
√
K0)2

}
,

K = B2 max
{
(3 + α)2 + 2α2, 2 max{9, 3α2}} ,

K̂ =
min

{
32x∗, x2

∗α
2y∗

}

16[K + B2 max{9, 3α2}] , and Ū =
min{K̂, θ}

4(αB3 + KB)
.

We continue to use the functions V1 and V2 from the preceding subsection.
The following is shown in [105] (but see Sect. 5.5.3 for a specific numerical
example):

Theorem 5.3. The system (5.62) is ISS with respect to disturbances u valued
in the control set ŪB1, and iISS with respect to disturbances u valued in d

2B1.

The proof of Theorem 5.3 entails showing that

UK(x̃, ỹ) = V2(x̃, ỹ) + KV1(x̃, ỹ) (5.64)

is an iISS Lyapunov function for (5.62) when the disturbance u is valued in
d
2B1, and that

UK(x̃, ỹ) = UK(x̃, ỹ)eUK(x̃,ỹ) (5.65)

is an ISS Lyapunov function for (5.62) when u is valued in ŪB1, where V1

and V2 are as defined in Sect. 5.5. It leads to the decay estimates

U̇K ≤ −�
UK(x̃, ỹ)

1 + UK(x̃, ỹ)
+ B|u| , (5.66)
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where
� = min

{
K̂, θ

}

(which implies that UK is an iISS Lyapunov function for the Lotka-Volterra
error dynamics (5.62)) when the disturbance u satisfies the less stringent
bound |u|∞ ≤ d

2 and then

˙UK ≤ −�

4 UK(x̃, ỹ) + B|u| . (5.67)

along the trajectories of (5.62) when u is valued in ŪB1, which gives the ISS
estimate. For a summary of the robustness analysis, see Appendix A.4.

Remark 5.1. A slight variant of the iISS arguments from [8] in conjunction
with (5.66) and the growth properties of UK can be used to show that there
exist functions β ∈ KL and γ ∈ K∞, a constant Ḡ > 0, and a modulus with
respect to X 0, such that for each disturbance u : [0,∞) → [−d/2, d/2] and
each trajectory (x̃, ỹ) : [0,∞) → X � of (5.62) corresponding to u, we have

γ(|(x̃, ỹ)(t)|) ≤ β
(
ᾱ((x̃, ỹ)(0)), t

)
+ Ḡ

∫ t

0

|u(r)|dr ∀t ≥ 0. (5.68)

This is less stringent than the ISS condition (5.63) because it allows the pos-
sibility that a bounded (but non-integrable) disturbance u could give rise
to an unbounded trajectory. However, if u is integrable, then (5.68) guaran-
tees boundedness of the trajectories, and it also quantifies the effects of the
disturbance. We next illustrate these ideas in simulations.

5.5.3 Numerical Validation

To illustrate our findings, we simulated the dynamics (5.62) using the param-
eter values

α = 2, d = 1, x∗ = 0.5, and y∗ = 0.25 , (5.69)

corresponding to the parameter choices

a = γ = β = Δ = 0.5 and L = 2 (5.70)

in the original model. Hence, the dynamics are iISS with respect to distur-
bances that are bounded by 0.5. We chose the disturbance u(t) = 0.49e−t.
In Figs. 5.1 and 5.2, we plot the corresponding levels of predator population
ζ and the prey population χ, which are related to x and y in terms of the
coordinate changes (5.45).

If
x(t) → x∗ = 0.5 and y(t) → y∗ = 0.25,

then the coordinate changes (5.45) give
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ζ(t) → 0.25
βL

a
= 0.5 and χ(t) → 0.5L = 1, (5.71)

which is in fact the behavior we see in the figures. This shows the robustness
of the convergence in the face of the disturbance u.

Fig. 5.1 Population of predator ζ with parameters (5.70) and u(t) = 0.49e−t

Fig. 5.2 Population of prey χ with parameters (5.70) and u(t) = 0.49e−t
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5.6 Comments

Several authors have studied ways to construct strict Lyapunov under appro-
priate conditions on the iterated Lie derivatives, or using non-strict Lyapunov
functions. Two significant results in this direction are [5, 41]. The results of
[5] deal with ISS, and [41] with controller design by using CLFs for systems
that satisfy Jurdjevic-Quinn Conditions. The construction in [5] uses a weak
Lyapunov function and an auxiliary Lyapunov function V2 that satisfies cer-
tain detectability properties of the system with respect to an appropriate
output h(x).

More precisely, [5] assumes that there are two positive definite radially
unbounded functions V1 and V2 and functions α1, α2, γ ∈ K∞ satisfying

V̇1 ≤ −α1(|y|) and V̇2 ≤ −α2(|x|) + γ(|y|) , (5.72)

for all x ∈ R
n, where y = h(x). Note that V1 in (5.72) is typically a weak

Lyapunov function since |h(x)| is often positive semi-definite. The function
V2 in (5.72) is an output-to-state Lyapunov function [73] that characterizes a
particular form of detectability of x from the output y. The strong Lyapunov
function in [5] then takes the form

U(x) = V1(x) + ρ(V2(x)),

where ρ is a suitable K∞ function.
The main difference between our approach from Theorem 5.1 and [5] is

that our conditions appear to be stronger but easier to check than those in
[5]. While very general, the challenge in applying [5] stems from the need to
find V2. The auxiliary function can be found in certain useful cases, but to
our knowledge there is no general procedure for finding V2 in the context of
[5]. This gives a possible advantage in checking the iterated Lie derivative
condition from Theorem 5.1 and then using our construction (5.2). Another
difference between [5] and our methods is that our auxiliary functions are not
required to be radially unbounded or everywhere positive.

By contrast, the strict Lyapunov construction of [41] only uses the given
non-strict Lyapunov function V1 and the iterated Lie derivatives of V1 along
solutions of an auxiliary system with a scaled vector field. The results in [41]
seem more direct than those of [5], but the method of [41] is in general only
applicable to homogenous systems. (The translational oscillator with rotating
actuator or TORA example in [41] is inhomogeneous, but [41] does not give
a systematic method for inhomogenous systems.) To our knowledge, [102]
provides the first general construction for CLFs for general classes of Jurdjevic
Quinn systems that do not necessarily satisfy the homogeneity conditions
from [41].

Conditions 1. and 2. from Theorem 5.1 agree with the assumptions from
the strict Lyapunov function construction in [110, Theorem 3.1]. However,
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our proof of Theorem 5.1 is simpler than the arguments used in [110]. The
construction in [110, Theorem 3.1] proceeds by finding a non-increasing func-
tion λ : [0,∞) → (0,∞) such that the function

U(x) = V (x)

[
1 + V (x) −

�−1∑

i=1

Li
fλ

V (x) ·
(
Li+1
fλ

V (x)
)3i

]
(5.73)

is a strict Lyapunov function for the system (5.1), where

fλ(x) .= λ(V (x))f(x).

In [86, Sect. 3.3], conditions similar to Assumption 5.1 were used to conclude
asymptotic stability of systems which admit a non-strict Lyapunov function,
via an extension of Matrosov’s Theorem. However, no strict Lyapunov func-
tions were constructed in this earlier work.

It is possible to extend Theorem 5.1 to periodic time-varying systems, in
which case we instead take

a1(t, x) = −[Vt(t, x) + Vx(t, x)f(t, x)]

and ai = −ȧi−1 for all i ≥ 2 and consider the non-negative function

�∑

i=2

a2
i (t, x) + a1(t, x),

which is allowed to be zero for some x = 0 on some intervals of positive
length; see [104]. Section 5.4 is based on [104].

Our strict Lyapunov function construction for the Lotka-Volterra system is
based on [104]. The Lotka-Volterra model is used extensively in mathematical
biology. See [58, 79] for an extensive analysis of this model and generalizations
to several predators. While there are many Lyapunov constructions for Lotka-
Volterra models available (based on computing the LaSalle Invariant Set), to
the best of our knowledge, the result we gave in this chapter is original and
significant because we provide a global strict Lyapunov function.




