
Chapter 4

Jurdjevic-Quinn Conditions

Abstract The Jurdjevic-Quinn Theorem provides a powerful framework for
guaranteeing globally asymptotic stability, using a smooth feedback of arbi-
trarily small amplitude. It requires certain algebraic conditions on the Lie
derivatives of a suitable non-strict Lyapunov function, in the directions of
the vector fields that define the system. The non-strictness of the Lyapunov
function is an obstacle to proving robustness, since robustness analysis typi-
cally requires strict Lyapunov functions.

In this chapter, we provide a method for overcoming this obstacle. It in-
volves transforming the non-strict Lyapunov function into an explicit global
CLF. This gives a strict Lyapunov function construction for closed-loop
Jurdjevic-Quinn systems with feedbacks of arbitrarily small magnitude. This
is valuable because (a) the non-strict Lyapunov function from the Jurdjevic-
Quinn Theorem is often known explicitly and (b) our methods apply to
Hamiltonian systems, which commonly arise in mechanical engineering. We
illustrate our work using a two-link manipulator model, as well as an integral
input-to-state stability result.

4.1 Motivation

Consider the two-link manipulator system from [5]. This is a fully actuated
system obtained by viewing the robot arm as a segment with length L and
mass M . Letting m denote the mass of the hand, r the position of the hand,
and θ the angle of the arm, we get the Euler-Lagrange equations

⎧
⎪⎨

⎪⎩

(
mr2 + M

L2

3

)
θ̈ + 2Mrṙθ̇ = τ

mr̈ −mrθ̇2 = F ,

(4.1)

where τ and F are forces acting on the system. See Fig. 4.1.
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84 4 Jurdjevic-Quinn Conditions

Fig. 4.1 Linear rotational actuated arm modeled by Euler-Lagrange Eq. (4.1)

It is well-known that (4.1) can be stabilized by bounded control laws.
However, it is not clear how to construct a CLF for the system whose time
derivative along the trajectory is made negative definite by an appropriate
choice of bounded feedback. Let us show how such a CLF can be constructed.

For simplicity, we take

m = M = 1, L =
√

3, x1
.= θ, x2

.= θ̇, x3
.= r, and x4

.= ṙ.

The system (4.1) becomes
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2, ẋ2 = −2x3x2x4

x2
3 + 1

+
τ

x2
3 + 1

,

ẋ3 = x4, ẋ4 = x3x
2
2 + F.

(4.2)

We construct a globally asymptotically stabilizing feedback that is bounded
by 2, and an associated CLF for (4.2). We set

〈p〉 =
1

2
√

1 + p2

for all p ∈ R throughout the sequel.
Consider the positive definite and radially unbounded function

V (x) =
1
2

[
(x2

3 + 1)x2
2 + x2

4 +
√

1 + x2
1 +

√
1 + x2

3 − 2
]

, (4.3)

M

r

m
F

τ

θ
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which is composed of the kinetic energy of the system with additional terms.
With the change of feedback

τ = −x1〈x1〉 + τb , F = −x3〈x3〉 + Fb, (4.4)

the system (4.2) takes the control affine form

ẋ = f(x) + g(x)u, where

f(x) =

⎡

⎢⎢⎢⎢⎣

x2
−2x3x2x4−x1〈x1〉

x2
3+1

x4

x2
2x3 − x3〈x3〉

⎤

⎥⎥⎥⎥⎦
, g(x) =

⎡

⎢⎢⎢⎢⎣

0 0
1

x2
3+1

0

0 0
0 1

⎤

⎥⎥⎥⎥⎦
, and u =

[
τb
Fb

]
.

(4.5)

Next consider the vector field

G(x) = (0, x1, 0, x3)�

and the function

V �(x) = 40[2 + 2V (x)]6 + LGV (x) − 40(26) . (4.6)

One can show that when we choose the feedbacks

τb = −x2〈x2〉 and Fb = −x4〈x4〉, (4.7)

the time derivative of V � along the trajectories of the closed-loop system (4.5)
satisfies

V̇ �(x) ≤ −1
2
[
x2

1〈x1〉 + x2
2〈x2〉 + x2

3〈x3〉 + x2
4〈x4〉

]
, (4.8)

and that V � is proper and positive definite; see Sect. 4.7.2 for details. The
right hand side of this inequality is negative definite, and the feedback (τ, F )
given by (4.4) and (4.7) is bounded in norm by 2, as desired. Also, since the
feedback is 0 and continuous at the origin, the CLF (4.6) satisfies the small
control property. We turn next to a general construction that leads to V � as
a special case.

4.2 Control Affine Case

4.2.1 Assumptions and Statement of Result

We first consider control affine systems

ẋ = f(x) + g(x)u (4.9)
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with state space X = R
n and control set U = R

m, where f : R
n → R

n and
g : R

n → R
n×m are assumed to be smooth, i.e., C∞, and f(0) = 0.1 In Sect.

4.3, we use our arguments for the control affine case to extend our results to
general nonlinear systems ẋ = F(x, u). We assume the following:

Assumption 4.1 There is a storage function V : R
n → [0,∞) such that

LfV (x) ≤ 0 everywhere. Moreover, there is a smooth scalar function ψ such
that if x 
= 0 is such that LfV (x) = 0 and LgV (x) = 0 both hold, then
Lfψ(x) < 0.

We refer to ψ as the auxiliary scalar field; see [41] or Sect. 4.4 below for
general methods for constructing ψ when the Weak Jurdjevic-Quinn Condi-
tions are satisfied. Our main result for (4.9) is:

Theorem 4.1. Let (4.9) be such that Assumption 4.1 is satisfied. Then we
can explicitly construct C1 functions λ and Γ such that

U(x) = λ
(
V (x)

)
ψ(x) + Γ

(
V (x)

)
(4.10)

is a CLF for (4.9) that satisfies the small control property. In fact, for any
smooth everywhere positive function ξ : R

n → (0,∞), we can construct λ
and Γ in such a way that (4.10) is a strict Lyapunov function for (4.9) in
closed-loop with the feedback u(x) = −ξ(x)LgV (x)�.

In particular, we get stabilizing feedbacks of arbitrarily small amplitude.

4.2.2 Main Lemmas

We use the following lemmas to prove Theorem 4.1. We use the notation

N (x) = −min{0, Lfψ(x)} ,
H(x) = −LfV (x) + |LgV (x)|2 , and
S(x) = H(x) + N (x) .

(4.11)

Lemma 4.1. The function S(x) is continuous and positive definite.

Proof. By Assumption 4.1, both H and N are non-negative, so S is non-
negative. On the other hand, if S(x) = 0, then LfV (x) = 0, LgV (x) = 0 and
Lfψ(x) ≥ 0. Then Assumption 4.1 implies that x = 0. �

A key feature of our proof of Theorem 4.1 is that it provides explicit
formulas for functions λ and Γ such that (4.10) is a CLF for (4.9). In fact,
we will prove later that (4.10) is a CLF for (4.9) when

1 The smoothness assumptions in this section can be replaced by the assumption that
the relevant functions are Ck where k is large enough to make the CLF and feedback we
construct C1.
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Γ (r) =
∫ r
0 γ(s)ds,

where γ(s) = 1 + K ′
1(s)s + 3

[
K1(s) + K

3/2
1 (s)

] (4.12)

and K1 and λ satisfy the requirements of the following lemma:

Lemma 4.2. Let Assumption 4.1 hold. Then we can construct a function
λ ∈ K∞ ∩ C1 and a C1 increasing function K1 : [0,∞) → (0,∞) such that
λ(s) ≤ K1(s) everywhere,

λ(v) ≤ v ∀v ≥ 0 , and (4.13)

λ′(V (x))|ψ(x)| + λ(V (x)) ≤ K1(V (x)) , (4.14)

|ψ(x)| ≤ K1(V (x)) , (4.15)

|Lgψ(x)|2 ≤ K1(V (x)) , (4.16)

and
λ(V (x))

[
1 + max{0, Lfψ(x)}] ≤ S(x)K1(V (x)) (4.17)

hold for all x ∈ R
n.

Proof. Since S is positive definite and V is proper and positive definite, we
can find a continuous positive definite function ρ0 so that S(x) ≥ ρ0(V (x))
for all x ∈ R

n (by first finding a positive definite function ρ̃ that is increas-
ing on [0, 1] and decreasing on [1,∞) such that S(x) ≥ ρ̃(|x|) everywhere).
Hence, Lemma A.7 provides λ ∈ K∞ ∩ C1 such that (4.13) is satisfied and
an everywhere positive increasing function K̄ ∈ C1 such that

λ(V (x)) ≤ S(x)K̄(V (x)) ∀x ∈ R
n. (4.18)

We can also find an increasing function κ̄ ∈ C1 such that

1 + max{0, Lfψ(x)} ≤ κ̄
(
V (x)

) ∀x ∈ R
n. (4.19)

Combining (4.18) and (4.19) provides an increasing function κ1 ∈ C1 such
that

λ(V (x))
[
1 + max{0, Lfψ(x)}] ≤ S(x)κ1

(
V (x)

) ∀x ∈ R
n. (4.20)

Next, one can determine everywhere positive increasing functions κi ∈ C1

for i = 2, 3, 4 such that

λ′(V (x))|ψ(x)| + λ
(
V (x)

) ≤ κ2

(
V (x)

)
(4.21)

and
|ψ(x)| ≤ κ3

(
V (x)

)
and |Lgψ(x)|2 ≤ κ4

(
V (x)

)
(4.22)

hold for all x ∈ R
n. Since λ′ ≥ 0, the inequality λ(s) ≤ κ2(s) is satisfied

everywhere. It follows that
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K1(v) =
4∑

i=1

κi(v), (4.23)

is such that the inequalities (4.14)-(4.17) are all satisfied. �
In the sequel, all (in)equalities should be understood to hold for all x ∈ R

n

unless otherwise indicated. The following lemma is a key ingredient in our
proof of the Lyapunov decay condition for (4.10):

Lemma 4.3. Let the functions λ and K1 satisfy the requirements of Lemma
4.2. Then for all x ∈ R

n, the inequality

λ
(
V (x)

)
Lfψ(x) ≤ −λ

(
V (x)

)
S(x) + 2K1

(
V (x)

)
H(x) (4.24)

is satisfied.

Proof. According to the definition of N , we get

Lfψ(x) = −N (x) + max{0, Lfψ(x)}. (4.25)

Therefore, (4.17) from Lemma 4.2 gives

λ(V (x))Lfψ(x) = −λ(V (x))N (x) + λ(V (x))max{0, Lfψ(x)}
≤ −λ(V (x))N (x) + S(x)K1(V (x)). (4.26)

We consider two cases.
Case 1. Lfψ(x) ≤ 0. Then, (4.26) gives

λ(V (x))Lfψ(x) = −λ(V (x))N (x)
= −λ(V (x))S(x) + H(x)λ(V (x)). (4.27)

Case 2. Lfψ(x) > 0. Then, the definition of N in (4.11) gives N (x) = 0,
which implies that S(x) = H(x). This combined with (4.26) yields

λ(V (x))Lfψ(x) ≤ H(x)K1(V (x))
= −λ(V (x))S(x) + H(x)[K1(V (x)) + λ(V (x))]. (4.28)

We deduce that in both cases,

λ(V (x))Lfψ(x) ≤ −λ(V (x))S(x) + H(x) [K1(V (x)) + λ(V (x))] . (4.29)

The result follows because λ(s) ≤ K1(s) everywhere, by (4.14). �

4.2.3 Checking the CLF Properties

Returning to the proof of Theorem 4.1, let Γ be the function defined in (4.12),
and let K1 and λ be the functions provided by Lemma 4.2. We check that
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the resulting function U from (4.10) satisfies the required CLF properties.
Notice that Γ (v) ≥ v +

∫ v
0 [K ′

1(s)s + K1(s)]ds = v + K1(v)v everywhere, so

U(x) ≥ λ
(
V (x)

)
ψ(x) + V (x) + K1

(
V (x)

)
V (x) (4.30)

holds for all x ∈ R
n. From (4.13) and (4.15), we deduce that

U(x) ≥ V (x) (4.31)

so U is positive definite and radially unbounded.
The time derivative of U along the trajectories of (4.9) is

U̇(x) = λ
(
V (x)

)[
Lfψ(x) + Lgψ(x)u

]

+
[
λ′(V (x))ψ(x) + Γ ′(V (x)

)][
LfV (x) + LgV (x)u

]

= λ
(
V (x)

)
Lfψ(x) +

[
λ′(V (x))ψ(x) + Γ ′(V (x))

]
LfV (x)

+Θ(x)u ,

(4.32)

where

Θ(x) = λ(V (x))Lgψ(x) +
{
λ′(V (x))ψ(x) + γ(V (x))

}
LgV (x). (4.33)

Using Lemma 4.3 and the definition of H in (4.11), we deduce that

U̇(x) ≤ −λ
(
V (x)

)
S(x) + 2K1

(
V (x

)[− LfV (x) + |LgV (x)|2]

+
[
λ′(V (x)

)
ψ(x) + Γ ′(V (x)

)]
LfV (x) + Θ(x)u

= −λ
(
V (x)

)
S(x) + 2K1

(
V (x)

)|LgV (x)|2 + Θ(x)u

+
[
λ′(V (x)

)
ψ(x) − 2K1

(
V (x)

)
+ γ

(
V (x)

)]
LfV (x) .

(4.34)

Recalling (4.14) and the facts that γ( ) ≥ 3K1( ) for all  ≥ 0 and LfV (x) ≤ 0
everywhere, we obtain

U̇(x) ≤ �(x) + Θ(x)u , (4.35)

where
�(x) = −λ

(
V (x)

)
S(x) + 2K1

(
V (x)

)|LgV (x)|2 . (4.36)

Consider the control
u = −50Θ(x) . (4.37)

It suffices to show that �(x)−50Θ2(x) is negative definite because (4.35) and
(4.37) combine to give U̇(x) ≤ �(x)−50Θ2(x). To prove that �(x)−50Θ2(x)
is negative definite, we proceed by contradiction. Suppose that there exists
x 
= 0 such that �(x) − 50Θ2(x) ≥ 0, or equivalently,
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−λ
(
V (x)

)
S(x) + 2K1

(
V (x)

)|LgV (x)|2 − 50
[
λ
(
V (x)

)
Lgψ(x)

+
{
λ′(V (x)

)
ψ(x) + γ

(
V (x)

)}
LgV (x)

]2

≥ 0.
(4.38)

Then,

2K1

(
V (x)

)|LgV (x)|2

≥ 50
[
λ
(
V (x)

)
Lgψ(x) +

{
λ′(V (x)

)
ψ(x) + γ

(
V (x)

)}
LgV (x)

]2

.
(4.39)

Therefore, the general relation |a+ b+ c| ≥ |a|− |b|− |c| for any real numbers
a, b, and c gives

√
K1(V (x))|LgV (x)| ≥ 5

∣∣∣∣λ
(
V (x)

)
Lgψ(x)

+
{
λ′(V (x)

)
ψ(x) + γ

(
V (x)

)}
LgV (x)

∣∣∣∣

≥ −5
∣∣λ
(
V (x)

)
Lgψ(x)

∣∣− 5
∣∣λ′(V (x)

)
ψ(x)

∣∣|LgV (x)|
+5γ(V (x))|LgV (x)| .

It follows that

5|λ(V (x)
)
Lgψ(x)|

≥
[
−
√

K1

(
V (x)

) − 5
∣∣λ′(V (x)

)
ψ(x)

∣∣+ 5γ
(
V (x)

)] |LgV (x)| .
(4.40)

From (4.14), we deduce that

5|λ(V (x))Lgψ(x)| ≥
[
−
√

K1

(
V (x)

) − 5K1(V (x)) + 5γ
(
V (x)

)] |LgV (x)|
≥ [− 1 − 6K1

(
V (x)

)
+ 5γ(V (x))

]|LgV (x)| .

Our choice of γ in (4.12) then gives5|λV (x))Lgψ(x)| ≥ 3γ(V (x))|LgV (x)|
and therefore

50K1(V (x)) |λ(V (x))Lgψ(x)|2
9γ2
(
V (x)

) ≥ 2K1

(
V (x)

)|LgV (x)|2 . (4.41)

Since (4.38) implies that λ(V (x))S(x) ≤ 2K1(V (x))|LgV (x)|2, we get

50K1(V (x)) |λ(V (x))Lgψ(x)|2
9γ2(V (x)) ≥ λ

(
V (x)

)
S(x) (4.42)

and then

50K2
1(V (x)) |Lgψ(x)|2

9γ2(V (x))λ(V (x)) ≥ S(x)K1(V (x)) . (4.43)



4.2 Control Affine Case 91

From (4.16), we deduce that

50K3
1(V (x))

9γ2(V (x)) λ(V (x)) ≥ S(x)K1(V (x)) . (4.44)

Recalling our choice of γ in (4.12), we have

50K3
1 (V (x))

9γ2(V (x)) ≤ 50K3
1 (V (x))

9[1+3K
3/2
1 (V (x))]2

≤ 50
81 . (4.45)

It follows that 50
81λ(V (x)) ≥ S(x)K1(V (x)). This contradicts (4.17). We con-

clude that U is a CLF for (4.9) that satisfies the small control property, when
Γ is defined by (4.12).

4.2.4 Arbitrarily Small Stabilizing Feedbacks

In the previous section, we constructed a family of CLFs of the form

U(x) = λ(V (x))ψ(x) +
∫ V (x)

0

γ(r)dr (4.46)

for the control affine system (4.9). We now show that for any smooth function
ξ : R

n → (0,∞), we can choose γ in such a way that (4.46) is a strict
Lyapunov function for (4.9) in closed-loop with

u(x) = −ξ(x)LgV (x)� . (4.47)

This will prove that for any control set U ⊆ R
m containing a neighborhood

of the origin, (4.9) is C1 globally asymptotically stabilizable by a feedback
that takes all of its values in U .

To this end, pick any C1 function γ such that

γ(s) ≥ 1 + K ′
1(s)s + 3

[
K1(s) + K

3/2
1 (s)

]
∀s ≥ 0 (4.48)

and

γ(V (x)) ≥ 4K1(V (x))
ξ(x)

+ 2K1(V (x)) + 2ξ(x)K2
1 (V (x)) ∀x ∈ R

n , (4.49)

where K1 is the function provided by Lemma 4.2. We show that the time
derivative of (4.46) along the solutions of (4.9) in closed-loop with (4.47)
satisfies

U̇(x) ≤ −W (x), (4.50)

where
W (x) =

3
4
λ
(
V (x)

)
S(x) +

1
2
ξ(x)γ

(
V (x))

)∣∣LgV (x)
∣∣2. (4.51)
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Here λ is the function constructed in Lemma 4.2. The result is then immediate
from the smoothness of u and the fact that u(0) = 0, because V , λ, and S
are all positive definite.

To prove the estimate (4.50), first notice that (4.35) and (4.48) give

U̇(x) ≤ �(x) −Θ(x)ξ(x)LgV (x)�

= �(x) − ξ(x)
[
λ
(
V (x)

)
Lgψ(x)LgV (x)�

+
{
λ′(V (x)

)
ψ(x) + γ

(
V (x)

)}∣∣LgV (x)
∣∣2
]
.

(4.52)

Therefore, our choice of � in (4.36) gives

U̇(x) ≤ −λ
(
V (x)

)
S(x) + ξ(x)λ

(
V (x)

)∣∣Lgψ(x)
∣∣∣∣LgV (x)

∣∣

+
[
2K1

(
V (x)

)
+ ξ(x)

{|λ′(V (x)
)
ψ(x)| − γ

(
V (x)

)}]∣∣LgV (x)
∣∣2.

(4.53)

Recalling (4.14) and (4.16) gives

U̇(x) ≤ −λ
(
V (x)

)
S(x) + ξ(x)λ

(
V (x)

)√
K1(V (x))|LgV (x)|

+
[
2K1

(
V (x)

)
+ ξ(x)

{
K1

(
V (x)

)− γ
(
V (x)

)}]∣∣LgV (x)
∣∣2.

(4.54)

The triangle inequality c1c2 ≤ c21 + 1
4c

2
2 for non-negative c1 and c2 gives

ξ(x)λ
(
V (x)

)√
K1(V (x))

∣∣LgV (x)
∣∣

≤ ξ2(x)K2
1

(
V (x)

)∣∣LgV (x)
∣∣2 + 1

4K1(V (x))λ
2
(
V (x)

)
.

Combining with (4.54), we get

U̇(x) ≤ −λ
(
V (x)

)
S(x) + 1

4K1(V (x))λ
2
(
V (x)

)

+
[
2K1

(
V (x)

)
+ ξ(x)

{
K1

(
V (x)

)
+ ξ(x)K2

1

(
V (x)

)

−γ
(
V (x)

)}]∣∣LgV (x)
∣∣2.

(4.55)

Property (4.17) from Lemma 4.2 now gives

1
4K1(V (x))

λ2
(
V (x)

) ≤ 1
4
λ
(
V (x)

)
S(x). (4.56)

Hence, (4.49) and (4.55) give

U̇(x) ≤ − 3
4λ
(
V (x)

)
S(x) − 1

2ξ(x)γ
(
V (x)

)∣∣LgV (x)
∣∣2 (4.57)
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for all x ∈ R
n, which is the desired Lyapunov decay condition. This completes

the proof of Theorem 4.1. �

Remark 4.1. The simplicity of the formula for U depends on the choice for ξ.
For example, if we pick

ξ(x) =
1√

K1(V (x))
,

then (4.49) becomes

γ
(
V (x)

) ≥ 2K1

(
V (x)

)
+ 6K3/2

1

(
V (x)

)
,

so we can satisfy (4.48)-(4.49) by taking

γ(s) = 1 + 3K1(s) + K ′
1(s)s + 6K3/2

1 (s)

to obtain our strict Lyapunov function for the corresponding closed-loop sys-
tem.

4.3 General Case

We now use our results for the control affine system (4.9) to get analogous
constructions for general nonlinear systems

ẋ = F(x, u) (4.58)

evolving on R
n with controls in R

m, where F is assumed to be smooth. We
also assume F(0, 0) = 0.

We can write

F(x, u) = f(x) + g(x)u + h(x, u)u, where

f(x) = F(x, 0), g(x) =
∂F
∂u

(x, 0), and

h(x, u) =
∫ 1

0

[
∂F
∂u

(x, λu) − ∂F
∂u

(x, 0)
]

dλ.

(4.59)

Since F is C2 in u, we can find a continuous function R : [0,∞) × [0,∞) →
(0,∞) that is non-decreasing in both variables such that

|h(x, u)u| ≤ R
(|x|, |u|)|u|2

for all x and u. Hence, we assume in the rest of the subsection that our system
has the form

ẋ = f(x) + g(x)u + r(x, u) (4.60)
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with f(0) = 0 and with r admitting an everywhere positive continuous func-
tion R that is non-decreasing in both variables so that

∣∣r(x, u)
∣∣ ≤ R

(|x|, |u|)|u|2 (4.61)

everywhere. Let Assumption 4.1 hold for the functions f and g in the system
(4.60) and some functions V and ψ. Fix C1 functions λ and K1 satisfying
the requirements of Lemma 4.2 as well as

max
{∣∣∣∣

∂V

∂x
(x)

∣∣∣∣ ,
∣∣∣∣
∂ψ

∂x
(x)

∣∣∣∣ ,
∣∣LgV (x)

∣∣
}

≤ K1

(
V (x)

)
(4.62)

for all x ∈ R
n. We prove the following:

Theorem 4.2. Let Assumption 4.1 hold. Let ξ : R
n → (0,∞) be any smooth

function such that

ξ(x) ≤ min
{

1
K1(V (x))

,
1

4K1(V (x))R(|x|, 1)

}
∀x ∈ R

n. (4.63)

Let γ be any continuous everywhere positive function satisfying (4.48) and
(4.49) and

γ(V (x)) ≥ ξ(x)R
(|x|, 1)K1

(
V (x)

)[
V (x) + K1(V (x))

]

0.5 − ξ(x)K1(V (x))R(|x|, 1)
∀x ∈ R

n . (4.64)

Set
Γ (r) .=

∫ r

0

γ(s)ds,

and let S(x) be as in Lemma 4.1. Then

U(x) = λ(V (x))ψ(x) + Γ (V (x)) (4.65)

is a CLF for (4.60) whose time derivative along trajectories of (4.60) in
closed-loop with

u(x) = −ξ(x)LgV (x)� (4.66)

satisfies

U̇(x) ≤ −3
4
λ
(
V (x)

)
S(x) ∀x ∈ R

n . (4.67)

In particular, U satisfies the small control property, and (4.60) can be ren-
dered GAS to 0 with a smooth feedback u(x) of arbitrary small amplitude.

Proof. Since the requirements from (4.48) and (4.49) are satisfied, we deduce
from (4.57) and (4.61) that for all smooth everywhere positive functions ξ,
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U̇(x) ≤ −3
4
λ
(
V (x)

)
S(x) − 1

2
ξ(x)γ

(
V (x)

)∣∣LgV (x)
∣∣2

+
∂U
∂x

(x)r
(
x,−ξ(x)LgV (x)�

)

≤ −3
4
λ
(
V (x)

)
S(x) − 1

2
ξ(x)γ

(
V (x)

)∣∣LgV (x)
∣∣2

+
∣∣∣∣
∂U
∂x

(x)
∣∣∣∣R
(|x|, |ξ(x)LgV (x)|)∣∣ξ(x)LgV (x)

∣∣2

(4.68)

along all trajectories (4.60) when the controller u is from (4.47).
Next, observe that

∂U
∂x

(x) = λ′(V (x)
)
ψ(x)

∂V

∂x
(x) + λ

(
V (x)

)∂ψ
∂x

(x) + γ
(
V (x)

)∂V
∂x

(x). (4.69)

Recalling (4.13) and (4.14) from Lemma 4.2, as well as the bounds (4.62), we
deduce that

∣∣∣∣
∂U
∂x

(x)
∣∣∣∣ ≤ K2

1

(
V (x)

)
+ V (x)K1

(
V (x)

)
+ γ

(
V (x)

)
K1

(
V (x)

)
. (4.70)

Therefore, (4.68) gives

U̇(x) ≤ − 3
4λ
(
V (x)

)
S(x) − 1

2ξ(x)γ
(
V (x)

)∣∣LgV (x)
∣∣2

+
[
K1

(
V (x)

)
+ V (x) + γ

(
V (x)

)]
R
(|x|, ξ(x)K1(V (x))

)

×ξ2(x)K1

(
V (x)

)∣∣LgV (x)
∣∣2 .

(4.71)

By (4.63),

ξ(x) ≤ 1
K1(V (x))

. (4.72)

Hence,

U̇(x) ≤ − 3
4λ
(
V (x)

)
S(x) − 1

2ξ(x)γ
(
V (x)

)∣∣LgV (x)
∣∣2

+R(|x|, 1)K1

(
V (x)

)[
K1

(
V (x)

)
+ V (x) + γ

(
V (x)

)]

×ξ2(x)
∣∣LgV (x)

∣∣2 .

(4.73)

Finally, our requirement (4.64) on γ gives

U̇ ≤ − 3
4λ
(
V (x)

)
S(x) . (4.74)

This concludes the proof. �
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4.4 Construction of the Auxiliary Scalar Field

Recall that Assumption 4.1 requires an auxiliary scalar field ψ with the fol-
lowing property: If x 
= 0 is such that LfV (x) = 0 and LgV (x) = 0 both
hold, then Lfψ(x) < 0. There are several methods for constructing ψ. In the
next section, we discuss a method for Hamiltonian systems. Here we present
a more general construction that applies to any control affine system

ẋ = f0(x) +
m∑

i=1

fi(x)ui (4.75)

with smooth functions fi : R
n → R

n for i = 0, 1, . . . ,m that satisfies the2

Weak Jurdjevic Quinn Conditions: There exists a smooth function V : R
n →

R satisfying:

1. V is positive definite and radially unbounded;
2. for all x ∈ R

n, Lf0V (x) ≤ 0; and
3. there exists an integer l ≥ 2 such that the set

W (V ) =

⎧
⎨

⎩
x ∈ R

n : ∀k ∈ {1, . . . ,m} and ∀i ∈ {0, . . . , l},
Lf0V (x) = Ladi

f0
(fk)V (x) = 0

⎫
⎬

⎭

equals {0}.
We construct ψ as follows, where we omit the arguments of our functions
when they are clear from the context:

Proposition 4.1. If (4.75) satisfies the Weak Jurdjevic-Quinn Conditions
for some integer l and some storage function V , and if we define G by

G =
l−1∑

i=0

m∑

k=1

λi,kadif0(fk), (4.76)

where

λi,k =
l−1∑

j=i

(−1)j−i+1L
ad

(2j−i+1)
f0

(fk)
V ∀i, k, (4.77)

then the scalar field ψ(x) = LGV (x) satisfies the following property: If x ∈
R
n \ {0}, and if LfiV (x) = 0 for i = 0, 1, . . . ,m, then Lf0ψ(x) < 0.

2 We are using slightly different notation for our control affine systems, to simplify the
statement of the next proposition. Recall that for smooth vector fields f, g : R

n → R
n, we

use the notation

ad0
f (g) = g, adf (g) = [f, g] = g∗f − f∗g, and adk

f (g) = adf

(
adk−1

f (g)
)
,

where the ∗ subscripts indicate gradients.
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Proof. The proof closely follows that of [41, Theorem 4.3]. The fact that

[f0, G] =
l−1∑

i=0

m∑

k=1

(
adif0(fk)Lf0λi,k + λi,kadi+1

f0
(fk)

)
(4.78)

gives

L[f0,G]V =
m∑

k=1

Lf0λ0,kLfk
V +

m∑

k=1

λl−1,kLadl
f0

(fk)V

+
l−2∑

i=0

m∑

k=1

(Lf0λi+1,k + λi,k)Ladi+1
f0

(fk)V.

Recalling our choices (4.77) of the λi,k’s gives

Lf0λi+1,k + λi,k =
l−1∑

j=i+1

(−1)j−iLf0Lad2j−i
f0

(fk)V

+
l−1∑

j=i

(−1)j−i+1Lad2j−i+1
f0

(fk)V

=
l−1∑

j=i+1

(−1)j−i
[
Lf0Lad2j−i

f0
(fk)V − Lad2j−i+1

f0
(fk)V

]

−Ladi+1
f0

(fk)V, i ≤ l − 2 .

For any smooth vector field X and any point x where Lf0V (x) = 0,

L[f0,X]V (x) = Lf0LXV (x), (4.79)

since ∇Lf0V (x) = 0 at points where the non-positive function Lf0V is max-
imized. (We are using the fact that L[f,g] = LfLg − LgLf for smooth vector
fields f and g.) Taking X = G and then

X = ad2j−i
f0

(fk)

in (4.79), we conclude that at all points x where Lf0V (x) = 0, we have

Lf0ψ(x) = Lf0LGV (x) = L[f0,G]V (x) and
Lf0λi+1,k + λi,k = −Ladi+1

f0
(fk)V

if i ≤ l − 2. By our choice of λl−1,k from (4.77), we conclude that

[LfiV (x) = 0 ∀i = 0, 1, . . . ,m] ⇒ Lf0ψ(x) = −
l∑

i=1

m∑

k=1

[
Ladi

f0
(fk)V (x)

]2
.

The result is now immediate from the Weak Jurdjevic-Quinn Conditions. �
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4.5 Hamiltonian Systems

Theorem 4.1 covers an important class of dynamics that are governed by the
Euler-Lagrange equations

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = τ (4.80)

for the motion of mechanical systems. Here q ∈ R
n represents the generalized

configuration coordinates, L = K − P is the difference between the kinetic
energy K and the potential energy P (q) ≥ 0, and τ is the control [183]. In
many applications,

K(q, q̇) =
1
2
q̇�M(q)q̇

where the inertia matrix M(q) is C1 and symmetric and positive definite for
all q ∈ R

n. The generalized momenta ∂L/∂q̇ are then given by

p = M(q)q̇.

Hence, using the state x = (q, p) ∈ R
n × R

n leads to the system

q̇ =
∂H

∂p
(q, p)� = M−1(q)p, ṗ = −∂H

∂q
(q, p)� + τ, (4.81)

where
H(q, p) =

1
2
p�M−1(q)p + P (q) (4.82)

is the total energy of the system. We refer to (4.81) as the Hamiltonian system.
We assume that P is C1 and positive definite.

The Hamiltonian system can be written as the control affine dynamics

ẋ = f(x) + g(x)u

with state space X = R
2n, control set U = R

n,

f(x) =
(

f1(x)
f2(x)

)
, where f1(x) =

∂H

∂p
(q, p)� and f2(x) = −∂H

∂q
(q, p)�,

and

g(x) =
(

O
In

)
∈ R

2n×n , (4.83)

where O ∈ R
2n×n denotes the matrix whose entries are all 0. One readily

checks that the time derivative of H along the trajectories of (4.81) satisfies

Ḣ(q, p) =
∂H

∂p
(q, p)τ (4.84)
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Therefore, if P (q) is positive definite and radially unbounded, then H is a
non-strict Lyapunov function. The radial unboundedness of H would follow
from the continuity of the (positive) eigenvalues of the positive definite ma-
trix M−1(q) as functions of q [161, Appendix A4], which implies that each
compact set S of q values admits a constant cS > 0 such that

p�M−1(q)p ≥ cS |p|2

for all q ∈ S and all p ∈ R
n. However, P is not necessarily positive definite and

radially unbounded. Fortunately, one can determine a real-valued function
Λ ∈ C1 satisfying Λ(0) = 0 such that the function

V (x) = H(q, p) + Λ(q) =
1
2
p�M−1(q)p + Pn(q) (4.85)

with
Pn(q) = P (q) + Λ(q) (4.86)

is positive definite, radially unbounded and C1. In fact, we can assume that
Λ is such that ∣∣∣∣

∂Pn

∂q
(q)
∣∣∣∣ ≥ |q|. (4.87)

For simplicity, we take Λ(q) = 1
2 |q|2 − P (q).

Using the change of feedback

τ = τn − ∂Λ

∂q
(q)�, (4.88)

one can then check readily that the time derivative of V along the trajectories
of (4.81) satisfies

V̇ (q, p) = ∂H
∂p (q, p)τ + ∂Λ

∂q (q)∂H∂p (q, p)�

= p�M−1(q)τ + ∂Λ
∂q (q)M−1(q)p

= p�M−1(q)τn .

(4.89)

After the change of feedback (4.88), the system (4.81) can be rewritten as
⎧
⎨

⎩
q̇ = ∂V

∂p (q, p)�,

ṗ = −∂V
∂q (q, p)� + τn.

(4.90)

Let

fn(x) =

⎛

⎝ f1n(x)

f2n(x)

⎞

⎠ , where

f1n(x) = ∂V
∂p (q, p)� and f2n(x) = −∂V

∂q (q, p)� .

(4.91)
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We now show that Assumption 4.1 is satisfied by (4.90) with the choice

ψ(x) = q�p. (4.92)

We have
LfnV (x) = 0 , (4.93)

LgV (x) = p�M−1(q) , and (4.94)

Lfnψ(x) = q�f2n(x) + p�f1n(x). (4.95)

Therefore, if LfnV (x) = 0 and LgV (x) = 0, then p = 0 and therefore
Lfnψ(x) = q�f2n(x) = −|q|2, so Assumption 4.1 is satisfied.

Since Assumption 4.1 is satisfied, we can construct a CLF that satisfies
the small control property for the system (4.90) and therefore also for the
system (4.81). In the particular case we consider, it turns out that we can
determine a function Γ ∈ C1 ∩ K∞ such that

U(x) = ψ(x) + Γ (V (x)) (4.96)

is a CLF for the system (4.90) that satisfies the small control property. To
stipulate Γ , we first let mi,j(q) denote the (i, j) entry of M−1(q) for all
q ∈ R

n. The construction is as follows:

Proposition 4.2. Fix any non-decreasing everywhere positive C1 function Υ
such that

1 + ||M(q)||4 ≤ Υ (V (x)) (4.97)

and

n2

2
|q| sup

{∣∣∣∣
∂mi,j

∂qk
(q)
∣∣∣∣ : (i, j, k) ∈ {1, ..., n}3

}
≤
√

Υ (V (x)) (4.98)

hold for all x = (q, p) ∈ R
2n. Choose a function α ∈ K∞ ∩C1 with α′(0) > 0

such that
V (x) ≥ α(|p|2 + |q|2)

everywhere.3 Then with the choice

Γ ( ) =
3
2
 + 2

∫ �

0

Υ (r)dr +
1
2
Υ ( )α−1( ) , (4.99)

the function (4.96) is a CLF for the system (4.90) that satisfies the small
control property.

3 Such a function α exists because the positive definiteness of M−1 provides a constant
c0 > 0 such that V (x) ≥ c0|x|2 on B2n. To construct α, first find a function α ∈ K∞ ∩ C1

such that V (x) ≥ α(|x|) for all x ∈ R2n. By reducing c0 as needed without relabeling,
we can assume that c0r ≤ α(

√
r) on [0.5, 1]. Choose a non-decreasing C1 function p :

R → [0, 1] such that p(r) ≡ 0 on [0, 0.5] and p(r) ≡ 1 on [1,∞). We can then take
α(r) = [1 − p(r)]c0r + p(r)α(

√
r). In fact, α′(0) = c0.
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Proof. Choose
τn = −M−1(q)p. (4.100)

Then, along the trajectories of (4.90), we get

V̇ (x) = −|p�M−1(q)|2 and

ψ̇(x) = Lfnψ(x) − Lgψ(x)M−1(q)p.
(4.101)

Therefore,

ψ̇(x) = q�f2n(x) + p�f1n(x) − Lgψ(x)M−1(q)p

= −q�
∂V

∂q
(q, p)� + p�

∂V

∂p
(q, p)� − q�M−1(q)p

= −|q|2 − 1
2
q�
(
p� ∂(M−1(q)p)

∂q

)�
+ p�M−1(q)p

−q�M−1(q)p.

(4.102)

On the other hand,

−q�M−1(q)p ≤ 1
2
|q|2 +

1
2
|M−1(q)p|2, (4.103)

and (4.98) gives
∣∣∣∣∣
1
2
q�
(
p�

∂(M−1(q)p)
∂q

)�∣∣∣∣∣ ≤
√

Υ (V (x))|p|2. (4.104)

Therefore,

ψ̇(x) ≤ − 1
2 |q|2 +

√
Υ (V (x))|p|2

+p�M−1(q)p + 1
2 |M−1(q)p|2

≤ − 1
2 |q|2 +

√
Υ (V (x))|p|2 + ||M(q)|| |M−1(q)p|2

+ 1
2 |M−1(q)p|2 .

(4.105)

Hence, (4.97) gives

ψ̇(x) ≤ − 1
2 |q|2 +

√
Υ (V (x))

√
Υ (V (x))|M−1(q)p|2

+
[
Υ (V (x)) + 1

2

] |M−1(q)p|2
≤ − 1

2 |q|2 +
(
2Υ (V (x)) + 1

2

) |M−1(q)p|2 .

(4.106)



102 4 Jurdjevic-Quinn Conditions

We deduce easily that the derivative of U defined in (4.96) along the trajec-
tories of (4.90), in closed-loop with τn defined in (4.100), satisfies

U̇(x) ≤ − 1
2 |q|2 − |M−1(q)p|2, (4.107)

using the fact that

Γ ′( ) ≥ 3
2

+ 2Υ (l). (4.108)

Next, observe that

U(x) ≥ −|ψ(x)| + Γ
(
V (x)

) ≥ −Υ
(
V (x)

)|q||p| + Γ
(
V (x)

)

≥ − 1
2Υ
(
V (x)

)
α−1

(
V (x)

)
+ Γ

(
V (x)

)
,

(4.109)

by our choice of α and the relation |q||p| ≤ 1
2 |p|2 + 1

2 |q|2. Using the fact that

Γ (v) ≥ v +
1
2
Υ (v)α−1(v), (4.110)

we get
U(x) ≥ V (x) , (4.111)

so U is positive definite and radially unbounded. Moreover,

U̇(x) ≤ −W (x) < 0 ∀x 
= 0 , (4.112)

where
W (x) =

1
2
|q|2 +

∣∣M−1(q)p
∣∣2 . (4.113)

We conclude that we have determined a CLF for the system (4.81) that
satisfies the small control property. Moreover, both U(x) and W (x) are lower
bounded in a neighborhood of the origin by a positive definite quadratic
function. �

Remark 4.2. Systems of the form (4.90) can be globally asymptotically sta-
bilized by using backstepping to design the controls. Therefore, backstep-
ping provides an alternative construction of CLFs satisfying the small con-
trol property. However, this technique provides control laws that remove the
term −∂H

∂q (q, p)�, which may lead to more complicated control laws with
large nonlinearities when the system can be stabilized through arbitrarily
small control laws.

4.6 Robustness

We saw in Theorem 4.1 how to construct a CLF U for
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ẋ = f(x) + g(x)u (4.114)

that has the small control property, provided Assumption 4.1 is satisfied. In
fact, for each ε > 0, we can choose a C1 function K1 satisfying |K1(x)| ≤ ε
for all x ∈ R

n such that U is a strict Lyapunov function for

ẋ = f(x) + g(x)K1(x),

which is therefore GAS to x = 0.
As we saw in previous chapters, ISS is a significant generalization of the

GAS [157]. Recall that for a nonlinear system ẋ = F (x, d) with state space
X = R

n and control set U = R
m, the ISS property says that there exist β ∈

KL and γ ∈ K∞ such that for all measurable essentially bounded functions
d : [0,∞) → R

m, the corresponding trajectories x(t) for

ẋ(t) = F (x(t),d(t)) (4.115)

satisfy
|x(t)| ≤ β

(|x(0)|, t)+ γ(|d|∞) ∀t ≥ 0. (ISS)

Here d represents a disturbance, and | · |∞ is the essential supremum. The
ISS property includes GAS to 0 for the system ẋ = f(x), because in that
case the term γ(|d|∞) in the ISS decay condition is not present. Therefore,
given any constant ε > 0, it may seem reasonable to search for a feedback
K(x) for (4.114) (which could in principle differ from K1) for which

ẋ = F (x, d) .= f(x) + g(x)[K(x) + d] (4.116)

is ISS with respect to the disturbance d, and for which |K(x)| ≤ ε for all
x ∈ R

n. Hence, we would want an arbitrarily small feedback K that renders
(4.114) GAS to x = 0 and that has the additional property that (4.116) is
ISS with respect to the disturbance d.

This objective cannot be met in general, since there is no bounded feedback
K(x) such that the one-dimensional system ẋ = K(x) + d is ISS. Therefore,
instead of using ISS to analyze Jurdjevic-Quinn systems, we use iISS [160].
Recall from Chap. 1 that for a general nonlinear system ẋ = F (x, d) evolving
on R

n × R
m, the iISS condition says: There exist β ∈ KL and α, γ ∈ K∞

such that for all measurable essentially bounded functions d : [0,∞) → R
m

and corresponding trajectories x(t) for (4.115), we have

α(|x(t)|) ≤ β
(|x(0)|, t)+

∫ t

0

γ(|d(s)|)ds ∀t ≥ 0. (iISS)

See Chap. 1 or [8, 9] for the background and further motivation for iISS. To
get our iISS result, we add the following assumption to our system (4.114),
which we assume in addition to Assumption 4.1:
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Assumption 4.2 An everywhere positive non-decreasing smooth function D
such that

1.
∫ +∞
0

1
D(s) ds = +∞; and

2. |LgV (x)| ≤ D(V (x)) for all x ∈ R
n

is known.

Assumption 4.2 holds for the two-link manipulator example we introduced
in Sect. 4.1, because in that case,

|LgV (x)| ≤ 2(V (x) + 1)

for all x ∈ R
n, so we can take

D(s) = 2(s + 1).

In fact, our assumptions hold for a broad class of Hamiltonian systems as
well; see Remark 4.3. We claim that if Assumptions 4.1 and 4.2 both hold,
then for any constant ε > 0 and any C∞ function ξ : R

n → (0,∞) such that

|ξ(x)LgV (x)| ≤ ε ∀x ∈ R
n , (4.117)

the system
ẋ = f(x) + g(x)

[
K(x) + d(t)

]

is iISS with the choice K(x) = −ξ(x)LgV (x)�.
To prove this claim, we begin by applying Theorem 4.1 to ẋ = f(x)+g(x)u,

with ξ : R
n → (0,∞) satisfying (4.117) for an arbitrary prescribed constant

ε > 0. This provides a CLF U satisfying the small control property for (4.114),
which is also a strict Lyapunov function for (4.114) in closed-loop with

K(x) = −ξ(x)LgV (x)�.

Setting
F(x) = f(x) − g(x)ξ(x)LgV (x)�, (4.118)

it follows that W (x) .= −LFU(x) is positive definite.
We can determine a non-decreasing everywhere positive function A ∈ C1

such that
|LgU(x)| ≤ A

(
V (x)

) ∀x ∈ R
n . (4.119)

Since D in Assumption 4.2 is a positive non-decreasing smooth function, we
can easily construct a function Γu ∈ K∞ ∩ C1 such that Γ ′

u is everywhere
positive and increasing and

A
(
V (x)

) ≤ Γ ′
u

(
V (x)

)D(V (x)
) ∀x ∈ R

n. (4.120)

Therefore, for all x ∈ R
n,
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|LgU(x)| ≤ Γ ′
u

(
V (x)

)D(V (x)
)
. (4.121)

Next, consider
Ua(x) = U(x) + Γu

(
V (x)

)
. (4.122)

Then ∣∣LgUa(x)
∣∣ ≤ ∣∣LgU(x)

∣∣ + Γ ′
u

(
V (x)

)∣∣LgV (x)
∣∣.

Using Assumption 4.2 and (4.121), we obtain
∣∣LgUa(x)

∣∣ ≤ 2Γ ′
u

(
V (x)

)D(V (x)
)
. (4.123)

Let
U∗(x) = Γ−1

u

(Ua(x)
)
. (4.124)

Since Γ−1
u ∈ C1 and Γ−1

u is increasing, we have

LgU∗(x) = {Γ−1
u }′(Ua(x)

)
LgUa(x)

=
1

Γ ′
u(Γ−1

u (Ua(x)))
LgUa(x) .

(4.125)

In combination with (4.123), we obtain

|LgU∗(x)| ≤ 2
Γ ′
u(V (x))D(V (x))
Γ ′
u(Γ−1

u (Ua(x)))
. (4.126)

By the definition (4.122) of Ua, we get

Γ−1
u

(Ua(x)
) ≥ V (x) . (4.127)

Since Γ ′
u is non-decreasing, we obtain

Γ ′
u

(
Γ−1
u

(Ua(x)
)) ≥ Γ ′

u(V (x)) , (4.128)

so (4.126) gives
|LgU∗(x)| ≤ 2D(V (x)

)
. (4.129)

Since D is non-decreasing, (4.127) gives

D(V (x)
) ≤ D

(
Γ−1
u

(Ua(x)
))

= D(U∗(x)
)

and therefore
|LgU∗(x)| ≤ 2D(U∗(x)

)
. (4.130)

Then

Ũ(x) =
1
2

∫ U∗(x)

0

dp
D(p)

(4.131)
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satisfies ∣∣∣LgŨ(x)
∣∣∣ ≤ 1 . (4.132)

The function Ũ is again a CLF for our dynamics (4.114) that satisfies the
small control property. Moreover, (4.132) ensures that we can determine a
positive definite function W̃ (x) such that the time derivative of Ũ along the
trajectories of

ẋ = f(x) + g(x)[−ξ(x)LgV (x)� + d] (4.133)

satisfies
˙̃U(x) ≤ −W̃ (x) + |d| (4.134)

for all x and d. Inequality (4.134) says (see [8]) that the positive definite
radially unbounded C1 function Ũ is an iISS Lyapunov function for (4.133).
The fact that (4.133) is iISS now follows from the standard iISS Lyapunov
characterization; see Lemma 2.3 or [8, Theorem 1]. We conclude as follows:

Corollary 4.1. Assume that the system (4.114) satisfies Assumptions 4.1
and 4.2 for some auxiliary scalar field ψ : R

n → R and some storage function
V : R

n → R, and let ε > 0 be given. Then there exists an everywhere positive
function ξ such that (a) the system

ẋ = f(x) + g(x)[K(x) + d] (4.135)

with the feedback
K(x) .= −ξ(V (x))LgV (x)� (4.136)

is iISS and (b) |K(x)| ≤ ε for all x ∈ R
n. Moreover, if U is a CLF satisfying

the requirements of Theorem 4.1, and if Γu ∈ K∞ ∩C1 is such that Γ ′
u is in-

creasing and everywhere positive and satisfies |LgU(x)| ≤ Γ ′
u(V (x))D(V (x))

everywhere, then

Ũ(x) =
1
2

∫ Γ−1
u

(
U(x)+Γu(V (x))

)

0

dp
D(p)

(4.137)

is an iISS Lyapunov function for (4.135).

Remark 4.3. Assumptions 4.1 and 4.2 are satisfied by a broad class of im-
portant systems. For example, assume that the Hamiltonian system (4.90)
satisfies the conditions from Sect. 4.5 and the following additional condition:

R. There exist λ, λ̄ > 0 such that

spectrum{M−1(q)} ⊆ [λ, λ̄]

for all q.

Condition R. means that there are positive constants c and c̄ such that

c|p|2 ≤ p�M(q)p ≤ c̄|p|2
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for all q and p. This is more restrictive than merely saying that M−1 is
everywhere positive definite, since the smallest eigenvalue λmin(q) of M−1(q)
could in principle be such that

lim inf
|q|→+∞

λmin(q) = 0.

Then (4.81) satisfies our Assumptions 4.1-4.2 and so is covered by the pre-
ceding corollary. In fact, we saw in Sect. 4.5 that Assumption 4.1 holds with
x = (q, p) and

V (x) = H(q, p) +
1
2
|q|2 − P (q),

and then Assumption 4.2 follows from Condition R. because

|LgV (x)|2 =
∣∣∣∂H∂p (x)

∣∣∣
2

= |p�M−1(q)|2

≤ λ̄2|p|2
≤ λ̄2

λ p�M−1(q)p ≤ 2 λ̄2

λ V (x)

for all x = (q, p). Therefore, we can take

D(s) .=

√

2
λ̄2

λ
(s + 1)

to satisfy Assumption 4.2.

4.7 Illustrations

We showed how to construct CLFs for systems

ẋ = f(x) + g(x)u (4.138)

that have the form

U(x) = λ
(
V (x)

)
ψ(x) + Γ

(
V (x)

)
(4.139)

for suitable C1 functions λ and Γ , under the Jurdjevic-Quinn Conditions. In
many cases, the construction is simplified because we can take either Γ (v) ≡ v
or λ ≡ 1. For example, the Hamiltonian systems in Sect. 4.5 lead to λ ≡ 1.
We now further illustrate this point in two examples. In the first example, Γ
can be taken to be the identity, so we get a simple weighted sum of V and
ψ(x) = LGV (x). Then we revisit the two-link manipulator, which requires a
more complicated Γ but has λ ≡ 1.
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4.7.1 Two-Dimensional Example

We illustrate Theorem 4.1 using the two-dimensional system
{

ẋ1 = x2

ẋ2 = −x3
1 + u .

(4.140)

In this case, we have

f(x1, x2) =
(

x2

−x3
1

)
and g(x1, x2) =

(
0
1

)
. (4.141)

Let us check that (4.140) satisfies Assumption 4.1.

1. The positive definite radially unbounded function

V (x1, x2) =
1
4
x4

1 +
1
2
x2

2 (4.142)

is not a CLF for (4.140), but it satisfies LfV (x) = 0 on R
2.

2. Choosing the vector field

G(x1, x2) =
(

0
x1

)
(4.143)

gives

LgV (x1, x2) = x2 , LGV (x1, x2) = x1x2, and

LfLGV (x1, x2) = x2
2 − x4

1 .
(4.144)

If LgV (x1, x2) = 0 and (x1, x2) 
= (0, 0), then x2 = 0 and x1 
= 0, so
LfLGV (x1, 0) = −x4

1 < 0.

Therefore Assumption 4.1 is satisfied with (4.142) and ψ(x) = LGV (x), so
Theorem 4.1 applies to the system (4.140). Let us show that with the choice

δ(v) =
v2

8(1 + v)2
, (4.145)

the function

U(x) = V (x) + δ
(
V (x)

)
LGV (x)

=
1
4
x4

1 +
1
2
x2

2 + δ

(
1
4
x4

1 +
1
2
x2

2

)
x1x2

(4.146)

is a CLF for the system (4.140) whose time derivative along the trajectories
of (4.140) in closed-loop with
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u = −LgV (x)� = −x2 (4.147)

is negative definite.
To this end, we first observe that

1
2
x2

1 ≤ 1 +
1
4
x4

1, so |x1x2| ≤ 1 + V (x) ∀x ∈ R
2 . (4.148)

Therefore

U(x) ≥ 1
4
x4

1 +
1
2
x2

2

−
(

1
4x

4
1 + 1

2x
2
2

)2

8
(
1 + 1

4x
4
1 + 1

2x
2
2

)2
(

1 +
1
4
x4

1 +
1
2
x2

2

)

=
1
4
x4

1 +
1
2
x2

2 −
(

1
4x

4
1 + 1

2x
2
2

)2

8
(
1 + 1

4x
4
1 + 1

2x
2
2

)

≥ 1
8
x4

1 +
1
4
x2

2 .

The time derivative of U(x) along the trajectories of (4.140) in closed-loop
with the feedback (4.147) is

U̇ = −x2
2

[
1 +

V (x)
4(1 + V (x))3

x1x2

]

+δ
(
V (x)

)
[−x4

1 − x1x2 + x2
2]

≤ −5
8
x2

2 − δ
(
V (x)

)
x4

1 − δ
(
V (x)

)
x1x2

≤ −3
8
x2

2 − δ
(
V (x)

)
x4

1 + δ2(V (x))x2
1

≤ −3
8
x2

2 − δ
(
V (x)

)
x4

1 + δ
(
V (x)

)
(

1
4x

4
1 + 1

2x
2
2

)
x2

1

8
(
1 + 1

4x
4
1 + 1

2x
2
2

)

≤ −1
4
x2

2 −
1
4
δ
(
V (x)

)
x4

1, (4.149)

where we used (4.148) to get the first and last inequalities, and the second
inequality used (δ(V (x))x1 + 1

2x2)2 ≥ 0. Since the right hand side of this
inequality is negative definite, the result follows.

4.7.2 Two-Link Manipulator Revisited

We show how the CLF (4.6) for the two-link manipulator dynamics follows as
a special case of the construction from Theorem 4.1. Recall that the dynamics
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is the control affine system ẋ = f(x) + g(x)u where

f(x) =

⎡

⎢⎢⎣

x2
−2x3x2x4−x1〈x1〉

x2
3+1

x4

x2
2x3 − x3〈x3〉

⎤

⎥⎥⎦ , g(x) =

⎡

⎢⎢⎣

0 0
1

x2
3+1

0
0 0
0 1

⎤

⎥⎥⎦ , and u =
[
τb
Fb

]
. (4.150)

We show that Assumption 4.1 is satisfied for the system with the choices

V (x) =
1
2

[
(x2

3 + 1)x2
2 + x2

4 +
√

1 + x2
1 +

√
1 + x2

3 − 2
]

(4.151)

and ψ = LGV , where
G(x) = (0, x1, 0, x3)�. (4.152)

Setting

〈p〉 =
1

2
√

1 + p2

for all p ∈ R, simple calculations show that

∇V (x) =
(
x1〈x1〉, x2

[
x2

3 + 1
]
, x3〈x3〉 + x2

2x3, x4

)
.

Hence, along the trajectories of the system, we have

V̇ (x) = x2τb + x4Fb,

and

LGV (x) =
∂V

∂x2
(x)x1 +

∂V

∂x4
(x)x3 = (x2

3 + 1)x2x1 + x4x3. (4.153)

Since

∇(LGV (x)) =
(
x2(x2

3 + 1), x1(x2
3 + 1), x4 + 2x1x2x3, x3

)
,

we have

LfLGV (x) = x2
2(2x

2
3 + 1) + x2

4 − x2
1〈x1〉 − x2

3〈x3〉. (4.154)

Notice that
LfV (x) = 0 and LgV (x) = [x2 x4]

everywhere. Also, if LgV (x) = 0, then x2 = x4 = 0, in which case we get

LfLGV (x) = −x2
1〈x1〉 − x2

3〈x3〉.
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It follows that if x 
= 0 and LgV (x) = 0, then LfLGV (x) < 0. Therefore
Assumption 4.1 is satisfied with

ψ(x) = LGV (x), (4.155)

so Theorem 4.1 applies.
We now derive the CLF whose existence is guaranteed by the theorem. To

this end, first note that

a ≤ 3
{(√

1 + a − 1
)

+
(√

1 + a− 1
)2} ∀a ≥ 0. (4.156)

It follows from the formula for V that

max{x2
1, x

2
3} ≤ 3{2V (x) + 4V 2(x)} and

max{x2
2, x

2
4} ≤ 2V (x) ∀x ∈ R

4.
(4.157)

Combining the triangle inequality, (4.153), and (4.157) gives

|LGV (x)| ≤ 1
2x

4
3 + 1

4x
4
1 + 1

4x
4
2 + 1

2 |x|2
≤ 288V 4(x) + 85V 2(x) + 8V (x).

(4.158)

We readily conclude that the function

V �(x) = 40
[
2 + 2V (x)

]6 + LGV (x) − 40(26) (4.159)

is such that
V �(x) ≥ 3

(
x2

1 + x2
2 + x2

3 + x2
4

)

for all x ∈ R
4, so V � is positive definite and radially unbounded.

Moreover, its time derivative along trajectories of the system satisfies

V̇ �(x) = 480
[
2 + 2V (x)

]5(
x2τb + x4Fb

)
+ x2

2

(
2x2

3 + 1
)

+x2
4 − x2

1〈x1〉 − x2
3〈x3〉 + x1τb + x3Fb ,

(4.160)

since V̇ (x) = x2τb + x4Fb. Hence, the triangle inequality gives

V̇ �(x) ≤ √
1 + x2

1τ
2
b + 480

[
2 + 2V (x)

]5
x2τb + x2

2

(
2x2

3 + 1
)

+
√

1 + x2
3F

2
b + 480

[
2 + 2V (x)

]5
x4Fb

+x2
4 − 1

2x
2
1〈x1〉 − 1

2x
2
3〈x3〉 .

(4.161)

To show that V � is a CLF for the system, we show that the right side of
(4.161) is negative definite when we take
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τb = −x2〈x2〉 and Fb = −x4〈x4〉. (4.162)

This will also show that V � has the small control property.
To this end, we first note that with the choices (4.162), we have

V̇ �(x) ≤ T1(x)x2
2〈x2〉 + T2(x)x2

4〈x4〉
− 1

2

[
x2

1〈x1〉 + x2
2〈x2〉 + x2

3〈x3〉 + x2
4〈x4〉

]
,

(4.163)

where we define the Ti’s by

T1(x) =
√

1 + x2
1 − 480(2 + 2V (x))5 + 2

√
1 + x2

2(2x
2
3 + 1) +

1
2

and
T2(x) =

√
1 + x2

3 − 480(2 + 2V (x))5 + 2
√

1 + x2
4 +

1
2
.

We deduce from (4.157) that T1 and T2 are non-positive and therefore

V̇ �(x) ≤ −1
2
[
x2

1〈x1〉 + x2
2〈x2〉 + x2

3〈x3〉 + x2
4〈x4〉

]
. (4.164)

The right hand side of this inequality is negative definite and the feedbacks
resulting from (4.4) and (4.162) give the small control property.

In fact, our analysis from Sect. 4.6 shows that for any positive constant
c > 0, the scaled feedback

K(x) = −c

(
x1〈x1〉 + x2〈x2〉
x3〈x3〉 + x4〈x4〉

)
(4.165)

renders the system iISS to actuator errors, meaning

ẋ = f(x) + g(x)[K(x) + d(t)]

is iISS. We illustrate this point in the simulation below, where we took the
feedback

K�(x) = −0.005
(

x1〈x1〉 + x2〈x2〉
x3〈x3〉 + x4〈x4〉

)
, (4.166)

the disturbance

d(t) =

⎛

⎝
1

1 + 0.25t2
e−0.25t

⎞

⎠ (4.167)

and the initial state x(0) = (1, 1, 1, 1). While the feedback (4.166) renders
the closed-loop system GAS to 0 when the disturbance is set to 0, the state
components may or may not be driven to zero when there are disturbances
present. In our simulation, the angle of the link x1 converges to zero by time
t = 1000. However, the gripper position x3 has an overshoot caused by the
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disturbance that keeps this component from converging to zero. See Figs. 4.2
and 4.3.

Remark 4.4. An important feature of the preceding analysis is that the strict
Lyapunov function V � has a negative definite time derivative along the closed-
loop trajectories, using a bounded feedback. In fact, for each constant ε >
0, our constructions from the preceding sections provide a strict Lyapunov

Fig. 4.2 Angle of link x1 using feedback (4.166) and disturbance (4.167)

Fig. 4.3 Gripper position x3 using feedback (4.166) and disturbance (4.167)
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function whose time derivative is negative definite using a feedback stabilizer
K� : R

n → εB2 that is bounded by ε. This is done by choosing the function
Γ in our strict Lyapunov function construction appropriately. Moreover, we
see from (4.164) that −V̇ � is proper along the closed trajectories, and the
dynamics are control affine, so we can immediately use control redesign to
get ISS to actuator errors, if we allow unbounded feedbacks. For example,
the combined feedback

K�(x) = −(x1〈x1〉 + x2〈x2〉, x3〈x3〉 + x4〈x4〉)� − LgV
�(x)

renders the system ISS with respect to actuator errors, so we recover the ISS
results for the two-link manipulator from [5].

The properness of V̇ � is essential for the preceding control redesign argu-
ment. In general, if the time derivative of a strict Lyapunov function V is
merely negative definite along the closed-loop trajectories of a given control
affine system, then adding −LgV to the feedback will not necessarily give ISS.
On the other hand, we can always transform V into a new strict Lyapunov
function Va for which −V̇a is proper along the closed-loop trajectories (e.g.,
by arguing as in [157, p.440]), and then we can generate ISS with respect to
actuator errors by subtracting LgVa as above.

4.8 Comments

The Jurdjevic-Quinn Method can be summarized by saying that appropri-
ate controllability conditions and a first integral of the drift vector can be
used to design smooth asymptotically stabilizing control laws. Since Jurdje-
vic and Quinn’s original paper [68], the method has been extended in several
directions [11, 41, 45, 126]. The first general result on global explicit strict
Lyapunov function constructions under the Weak Jurdjevic-Quinn Condi-
tions appears to be [40], whose results are limited to homogenous systems.
Our construction of the auxiliary scalar field in Sect. 4.4 is similar to, but
somewhat simpler than, the one in [41, Theorem 4.3]. This is because [41]
uses a more complicated construction that guarantees that G is homogenous
of degree zero, assuming the original dynamics and given non-strict Lyapunov
function are both homogeneous.

The model (4.1) and accompanying figure are from [165]. There it is shown
that if one takes closed-loop controllers of the form

τ = −k1θ̇ − k2(θ − qd) and F = −k3ṙ − k4(r − rd), (4.168)

then (4.1) in closed-loop with (4.168) is not ISS with respect to (qd, rd).
In particular, bounded signals can destabilize the system, which is called
a nonlinear resonance effect. Our treatment of the two-link manipulator is
based on [102], which provides an alternative CLF construction under the
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Jurdjevic-Quinn conditions that differs from the one we presented in this
chapter.




