
Chapter 3

Matrosov Conditions: Simple Case

Abstract In the preceding chapter, we saw two ways to use non-strict Lya-
punov functions to prove asymptotic stability. The first was the LaSalle In-
variance Principle. A second involved Matrosov Theorems, which require a
non-strict Lyapunov function and auxiliary functions that satisfy appropri-
ate decay conditions. In general, the decay conditions in Matrosov type theo-
rems are less restrictive than those in the strict Lyapunov function definition.
Hence, the Matrosov method can be regarded as a way to prove stability with-
out having to find strict Lyapunov functions.

On the other hand, it is very desirable to have explicit strict Lyapunov
functions, even when the Matrosov Conditions are satisfied, because, e.g.,
strict Lyapunov functions make it possible to quantify the effects of uncer-
tainty using the ISS paradigm. In this chapter, we discuss several methods
for constructing strict Lyapunov functions for time-invariant systems that
satisfy appropriate Matrosov Conditions. In Chapters 8 and 12, we gener-
alize to much more complex time-varying systems, including Matrosov type
theorems for hybrid systems.

3.1 Motivation

To motivate our constructions, let us return to the experimental anaerobic
digester model ⎧

⎪⎨

⎪⎩

ṡ = u(sin − s) − kr(s, x)
ẋ = r(s, x) − αux

y = (λr(s, x), s)

(3.1)

we considered in the preceding chapter, where the biomass growth rate r is
any non-negative C1 function that admits everywhere positive functions Δ
and Δ̄ such that

sΔ̄(s, x) ≥ r(s, x) ≥ xsΔ(s, x) (3.2)
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62 3 Matrosov Conditions: Simple Case

for all s ≥ 0 and x ≥ 0; u is the non-negative input (i.e., dilution rate); and the
positive constants α, λ, k, and sin are as defined in Sect. 2.4.6. This includes
the one species chemostat model with a Monod growth rate, as a special case
[107]. This time our objective is to construct a strict Lyapunov-like function
for an appropriate adaptively controlled error dynamics for (3.1).

Arguing as in the previous chapter, we introduce the dynamics γ̇ = y1(γ−
γm)(γM − γ)ν evolving on (γm, γM ), where ν is a function to be selected
that is independent of x and the γi’s are prescribed positive constants. With
u = γy1, the system (3.1) with its dynamic extension becomes

⎧
⎨

⎩

˙̃s = −γs̃ + γ̃v∗
˙̃x = α [−γx̃− γ̃x∗]
˙̃γ = (γ − γm)(γM − γ)ν.

(3.3)

Here s̃ = s−s∗, x̃ = x−x∗, γ̃ = γ−γ∗, s∗ ∈ (0, sin) is the desired equilibrium
substrate level, and

γ∗
.=

k

λ(sin − s∗)
∈ (γm, γM ) and

k

λsin
< γm, (3.4)

where v∗ = sin− s∗ and x∗ = v∗
kα . The dynamics (3.3) follow by applying the

Erdmann transformation

τ =
∫ t

t0

y1(l)dl,

and the state space for (3.3) is D = (−s∗,∞)×(−x∗,∞)×(γm−γ∗, γM−γ∗).
We first consider the subsystem

{ ˙̃s = −γs̃ + γ̃v∗
˙̃γ = (γ − γm)(γM − γ)ν

(3.5)

with state space X = (−s∗,∞) × (γm − γ∗, γM − γ∗).
Let us transform the non-strict Lyapunov-like function

V1(s̃, γ̃) =
1

2γm
s̃2 +

v∗
Kγm

∫ γ̃

0

l

(l + γ∗ − γm)(γM − γ∗ − l)
dl (3.6)

from [89] into a strict Lyapunov-like function for (3.5), where K > 1 is a
tuning parameter. Later in this chapter, we will see how this transformation
process is a special case of a general method for constructing strict Lyapunov-
like functions.

Choosing
ν(s̃) = −Ks̃ (3.7)

as before gives

V̇1 = − γ

γm
s̃2 ≤ −N1(s̃, γ̃), where N1(s̃, γ̃) = s̃2. (3.8)
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Set
V2(s̃, γ̃) = −s̃γ̃. (3.9)

Along the trajectories of (3.5), in closed-loop with (3.7), simple calculations
yield

V̇2 = γs̃γ̃ − γ̃2v∗ + (γ − γm)(γM − γ)Ks̃2.

From the relation

γs̃γ̃ ≤ v�γ̃
2

2
+

γ2s̃2

2v�
and the fact that the maximum value of (γ − γm)(γM − γ) over γ ∈ [γm, γM ]
is (γM − γm)2/4, we get

V̇2 ≤ −N2(s̃, γ̃) +
[
γ2
M

2v�
+

K(γM − γm)2

4

]
N1(s̃, γ̃), (3.10)

where N2(s̃, γ̃) = v∗
2 γ̃2.

Setting

Υ1 = 1 +
[
min

{
1
γm

,
4v∗

Kγm(γM − γm)2

}]−1

, (3.11)

we can use the decay conditions (3.8)-(3.10) to check that

S(s̃, γ̃) = V2(s̃, γ̃) +
[
Υ1 +

2γ2
M

v∗
+ K(γM − γm)2

]
V1(s̃, γ̃) (3.12)

is a strict Lyapunov-like function for (3.5) in closed-loop with (3.7). In fact,

Ṡ ≤ −W (s̃, γ̃), where

W (s̃, γ̃) = N2(s̃, γ̃) + Υ1N1(s̃, γ̃) = v�

2 γ̃2 + Υ1s̃
2

(3.13)

along the closed-loop trajectories of (3.5), and S is also positive definite; see
Sect. 3.6.1 for details and our reasoning behind the choice (3.12) of S.

The fact that the full system (3.3) in closed-loop with (3.7) is GAS to the
origin now follows because (a) its x̃ sub-dynamics is ISS with respect to (s̃, γ̃)
and (b) the asymptotically stable (s̃, γ̃) sub-dynamics does not depend on x̃.
Let us now construct a strict Lyapunov-like function for the full closed-loop
system. We claim that

M(x̃, s̃, γ̃) = ω̄S(s̃, γ̃) + x̃2, where ω̄ =
4αx2

�

γmv�
(3.14)

is a strict Lyapunov-like function for the system (3.3), in closed-loop with
(3.7), for which

Ṁ ≤ −αγmx̃2 − αx2
�

γm
γ̃2 − ω̄Υ1s̃

2 (3.15)
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along the trajectories of (3.3). To see why, first notice that the relation

2αx∗|x̃γ̃| ≤ αγmx̃2 + αx2
�

γ̃2

γm

implies that

d
dt x̃

2 = −2αγx̃2 − 2x̃γ̃αx∗ ≤ −2αγmx̃2 + 2αx∗|x̃γ̃|
≤ −αγmx̃2 +

αx2
�

γm
γ̃2

(3.16)

along the trajectories of (3.3). Then (3.15) follows by adding the inequality

ω̄Ṡ ≤ −ω̄
v�
2

γ̃2 − ω̄Υ1s̃
2

to (3.16). We turn next to a general theory that leads to the preceding analysis
as a special case.

3.2 Continuous Time Theorem

For simplicity, we first state our main result for time-invariant systems

ẋ = f(x) (3.17)

evolving on an open set X ⊆ R
n. Later we generalize to time-varying sys-

tems. In the rest of this section, we assume that the relevant functions are
sufficiently smooth. We also assume:

Assumption 3.1 There exist an integer j ≥ 2; known functions

Vi : X → R,

Ni : X → [0,∞), and
φi : [0,∞) → (0,∞);

and real numbers ai ∈ (0, 1] such that Vi(0) = 0 and Ni(0) = 0 for all i;

∇V1(x)f(x) ≤ −N1(x) ∀x ∈ X ; and (3.18)

∇Vi(x)f(x) ≤ −Ni(x) + φi
(
V1(x)

) i−1∑

l=1

N ai

l (x)V 1−ai
1 (x) (3.19)

for i = 2, . . . , j and all x ∈ X . The function V1 is also assumed to be positive
definite on X .
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Assumption 3.2 The following conditions hold:

1. there exists a function ρ : [0,∞) → (0,∞) such that

j∑

l=1

Nl(x) ≥ ρ
(
V1(x)

)
V1(x) ∀x ∈ X ; and (3.20)

2. there exist functions p2, . . . , pj : [0,∞) → [0,∞) and a positive definite
function p̄ such that for each i ∈ {2, . . . , j}, the following hold: (a) If Vi is
positive definite, then

pi(r) = 0 and |Vi(x)| ≤ p̄
(
V1(x)

)
(3.21)

for all r ≥ 0 and x ∈ X . (b) If Vi is not positive definite, then

|Vi(x)| ≤ pi
(
V1(x)

)
V1(x) (3.22)

holds for all x ∈ X .

Assumptions 3.1 and 3.2 agree with the ones in [106], except that [106]
requires the functions pi to satisfy (3.22) for all i and all x ∈ X (instead
of Condition 2. from Assumption 3.2). We refer to Assumptions 3.1 and 3.2
as our Matrosov Conditions, owing to their use of multiple functions Vi.
However, there are several different sets of conditions that are referred to as
Matrosov Conditions in the control literature. We prove:

Theorem 3.1. Let Assumptions 3.1 and 3.2 be satisfied. Then one can ex-
plicitly determine C1 functions kl, Ωl ∈ K∞ such that the function

S(x) =
j∑

l=1

Ωl

(
kl
(
V1(x)

)
+ Vl(x)

)
(3.23)

satisfies
S(x) ≥ V1(x) (3.24)

and
∇S(x)f(x) ≤ −1

4
ρ
(
V1(x)

)
V1(x) (3.25)

for all x ∈ X .

Remarks on Assumptions

Remark 3.1. If X = R
n and V1 is radially unbounded, then (3.24) implies that

S is a strict Lyapunov function for (3.17). If V1 is not radially unbounded,
then S is not necessarily radially unbounded and therefore one cannot con-
clude from standard Lyapunov theory that the origin is GAS. However, in
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many cases, GAS can be proved through a Lyapunov-like function and extra
arguments, e.g., by proving that any trajectory belongs to a compact set in-
cluded in X . This is often true in biological models that are based on mass
conservation properties, such as the one we discussed in Sect. 3.1.

Remark 3.2. If V1 is also lower bounded by a positive definite quadratic form
in a neighborhood of 0, then (3.25) implies that the time derivative of S
along the trajectories of (3.17) is upper bounded in a neighborhood of 0 by
a negative definite quadratic function. Also, (3.24) gives a positive definite
quadratic lower bound on S near the origin.

3.3 Proof of Continuous Time Theorem

Throughout the sequel, all inequalities should be understood to hold globally
unless otherwise indicated, and we omit the arguments of our functions when
they are clear from the context.

Construction of the ki’s and Ωi’s

Fix j ≥ 2 and functions satisfying Assumptions 3.1 and 3.2. Fix k2, . . . , kj ∈
C1 ∩ K∞ such that

ki(s) ≥ s + pi(s)s and k′
i(s) ≥ 1 (3.26)

for all s ≥ 0 for i = 2, 3, . . . , j. The following simple lemma is key:

Lemma 3.1. The functions {Ui} defined by

U1(x) = V1(x) and Ui(x) = ki
(
V1(x)

)
+ Vi(x) for i ≥ 2

satisfy 2ki
(
V1(x)

)
+ p̄(V1(x)) ≥ Ui(x) ≥ V1(x) for i = 2, . . . , j and all x ∈ X .

Proof. Assumption 3.2 and our choices of the ki’s give

Ui(x) ≥ V1(x) + pi
(
V1(x)

)
V1(x) − pi

(
V1(x)

)
V1(x) = V1(x) and

Ui(x) ≤ ki
(
V1(x)

)
+ pi

(
V1(x)

)
V1(x) ≤ 2ki

(
V1(x)

)

for all indices i ≥ 2 for which Vi is not positive definite. For the other in-
dices, the desired inequalities follow from (3.21) and the non-negativity of
the corresponding functions Vi. This proves the lemma. �

Returning to the proof of the theorem, set k1(s) ≡ s, and define the
functions Ui according to Lemma 3.1. We can recursively define continuous
non-decreasing functions μi : [0,∞) → [1,∞) such that
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μi(V1) ≥ 2Φ(V1)
j∑

l=1+i

μ
1

al

l (2kl(V1) + p̄(V1)) (3.27)

everywhere, where

Φ(V1) = maxi=2,..,j

{
φ

1
ai

i (V1)
[
4(j − 1)(i− 1)

ρ(V1)

](1−ai)/ai
}

(3.28)

for i = 1, 2, . . . , j. For convenience, we set μj(v) ≡ 1, and we introduce the
functions

Ωi(p) =
∫ p

0

μi(r)dr.

Then Ω′
i(s) ≥ 1 for all s ≥ 0 and i, and Lemma 3.1 gives

Ω′
i(Ui) ≥ 2Φ(V1)

j∑

l=1+i

Ω′
l(Ul)

1
al (3.29)

for all i and x ∈ X . In particular, we have Ωj(p) ≡ p.

Stability Analysis

Since Ω′
1(s) ≥ 1 everywhere, we get Ω1(U1(x)) ≥ U1(x) = V1(x) everywhere.

Hence,

S(x) = Ω1(2V1(x)) +
j∑

i=2

Ωi(Ui(x)) (3.30)

satisfies (3.24). To check the decay estimate (3.25), first note that Assumption
3.1 and our choices of the ki’s give

∇S(x)f(x) = 2Ω′
1(2U1)V̇1 +

j∑

i=2

Ω′
i(Ui)

[
k′
i(V1)V̇1 + V̇i

]

≤
j∑

i=1

Ω′
i(Ui)V̇i

≤ −
j∑

i=1

Ω′
i(Ui)Ni

+
j∑

i=2

Ω′
i(Ui)

(
φi(V1)

i−1∑

l=1

N ai

l V 1−ai
1

)

(3.31)

along the trajectories of ẋ = f(x). Define the everywhere positive functions
Γ2, . . . , Γj by
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Γi(x) =
4(j − 1)(i− 1)Ω′

i(Ui(x))φi(V1(x))
ρ(V1(x))

.

For any i ≥ 2 for which 0 < ai < 1, we can apply Young’s Inequality

v1v2 ≤ vp1 + vq2 , with p =
1
ai

, q =
1

1 − ai
,

v1 = Γ 1−ai

i (x)N ai

l (x), and v2 =
{

V1(x)
Γi(x)

}1−ai

to get

N ai

l (x)V 1−ai
1 (x) ≤ Γ

(1−ai)/ai

i (x)Nl(x) +
V1(x)
Γi(x)

for all x ∈ X . The preceding inequality also holds when ai = 1, so we can
substitute it into (3.31) to get

∇S(x)f(x) ≤ −
j∑

i=1

Ω′
i(Ui)Ni

+
j∑

i=2

(
Ω′
i(Ui)φi(V1)Γ

1−ai
ai

i

i−1∑

l=1

Nl

)

+

(
j∑

i=2

Ω′
i(Ui)

φi(V1)(i − 1)
Γi

)
V1

≤ −
j∑

i=1

Ω′
i(Ui)Ni +

1
4
ρ(V1)V1

+
j∑

i=2

(
Ω′
i(Ui)φi(V1)Γ

1−ai
ai

i

i−1∑

l=1

Nl

)

≤ −
j∑

i=1

Ω′
i(Ui)Ni +

1
4
ρ(V1)V1

+Φ(V1)
j∑

i=2

(
Ω′
i(Ui)

1
ai

i−1∑

l=1

Nl

)
,

(3.32)

by our choices of the Γi’s and the formula for Φ in (3.29).
Since Ω′

i ≥ 1 for all i, Assumption 3.2 gives

j∑

i=1

Ω′
i(Ui)Ni ≥ ρ(V1)V1.
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Hence, (3.32) gives

∇S(x)f(x) ≤ − 1
4ρ(V1)V1 − 1

2

j∑

i=1

Ω′
i(Ui)Ni

+Φ(V1)
j∑

i=2

(
Ω′
i(Ui)

1
ai

i−1∑

l=1

Nl

)
.

By reorganizing terms, one can prove that

j∑

i=2

(
Ω′
i(Ui)

1
ai

i−1∑

l=1

Nl

)
=

j−1∑

i=1

(
j∑

l=1+i

Ω′
l(Ul)

1
al

)
Ni . (3.33)

It follows that

∇S(x)f(x) ≤ −1
4
ρ(V1)V1

+
j−1∑

i=1

[
−1

2
Ω′
i(Ui) + Φ(V1)

j∑

l=1+i

Ω′
l(Ul)

1
al

]
Ni .

Since the Ni’s are non-negative, (3.25) now readily follows from (3.29). �

Remark 3.3. When a2 = . . . = aj = 1, Assumption 3.2 can be relaxed by
replacing (3.20) by the assumption that

x 
→
j∑

l=1

Nl(x) (3.34)

is positive definite, in which case we instead conclude that ∇S(x)f(x) is
negative definite. The proof proceeds as in the proof of Theorem 3.1 through
(3.31). Then we can directly apply (3.29) and (3.33) to get

∇S(x)f(x) ≤ −1
2

j∑

i=1

Ω′
i(Ui(x))Ni(x)

everywhere. The result follows because Ω′
i ≥ 1 everywhere for all i.

3.4 Discrete Time Theorem

We turn next to an analog of Theorem 3.1 for the discrete time system

xk+1 = f(xk), xk ∈ X (3.35)



70 3 Matrosov Conditions: Simple Case

where X ⊆ R
n is open and contains the origin. Throughout this subsection,

we make these two assumptions:

Assumption 3.3 There exist a constant a ∈ (0, 1]; an integer j ≥ 2; con-
tinuous functions ν1,Mi, φi : X → [0,∞) for i = 1, 2, . . . , j; and continuous
functions νi : X → R for i = 2, . . . , j such that

ν1(f(x)) − ν1(x) ≤ −M1(x) (3.36)

for all x ∈ X and

νi(f(x)) − νi(x) ≤ −Mi(x) + φi(ν1(x))ν1(x)1−a
i−1∑

l=1

Ma
l (x) (3.37)

for all x ∈ X and i = 2, 3, . . . , j.

Assumption 3.4 There are continuous functions Ck : [0,∞) → (0,∞) for
k = 1, 2, 3, 4 such that the functions from Assumption 3.3 satisfy

j∑

l=1

Ml(x) ≥ C1(ν1(x))|x|2 (3.38)

and
C2(ν1(x))|x|2 ≤ ν1(x) ≤ C3(ν1(x))|x|2 (3.39)

for all x ∈ X and
|νi(x)| ≤ C4(ν1(x))|x|2 (3.40)

for all x ∈ X and i = 2, 3, . . . , j.

Assumption 3.3 is the discrete time analog of the continuous time Matrosov
Condition in Assumption 3.1 except for simplicity, we took all of the ai’s to
be equal. Notice that we are not requiring the auxiliary functions νi to be
non-negative for i ≥ 2, although ν1 is non-negative.

Theorem 3.2. Assume that the system (3.35) satisfies Assumptions 3.3 and
3.4. Then we can explicitly determine non-decreasing everywhere positive C1

functions κl such that the function

S(x) =
j∑

l=1

κl
(
ν1(x)

)
νl(x) (3.41)

satisfies
S(x) ≥ |x|2 (3.42)

and
S(f(x)) − S(x) ≤ −ν1(x) (3.43)

for all x ∈ X . Therefore, S is a strict Lyapunov function when X = R
n.
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Remark 3.4. We have chosen to study the case where the auxiliary functions
ν2, ν3, . . . , νj are bounded from above by a positive definite quadratic func-
tion in a neighborhood of the origin. We made this choice because it leads
to reasonably simple calculations. We strongly conjecture that a strict Lya-
punov function construction can also be carried out without making this local
quadratic upper bound assumption.

3.5 Proof of Discrete Time Theorem

Throughout our proof, all inequalities should be understood to hold for all
x ∈ X unless otherwise indicated. We can easily find a C1 non-decreasing
function Γ : [0,∞) → [1,∞) such that

C4(r)
C2(r)

+ 1 ≤ Γ (r) ∀ r ≥ 0. (3.44)

Hence, (3.36) and the non-negativity of ν1 give

Γ (ν1(f(x)))ν1(f(x)) − Γ (ν1(x))ν1(x) ≤ −Γ (ν1(x))M1(x) (3.45)

for all x ∈ X . Also, (3.39) and (3.40) give

C4(ν1(x))
C2(ν1(x))

ν1(x) + νi(x) ≥ 0. (3.46)

We introduce the functions

ν̄1
.= ν1, and νi(x) .= Γ (ν1(x))ν1(x) + νi(x) for i = 2, 3, . . . , j. (3.47)

Then
νi(x) ≥ ν1(x) ∀i. (3.48)

Also, (3.37) and (3.45) give

νi(f(x)) − νi(x) ≤ −Mi(x) + φi(ν1(x))
i−1∑

l=1

Ma
l (x)ν1−a

1 (x) (3.49)

for i ≥ 2. We define the functions V1, V2, . . . , Vj by

V1(x) = ν1(x) and Vl(x) =
l∑

r=1

νr(x) for l ≥ 2 . (3.50)

Each function Vl is positive definite, because ν1 is positive definite. Moreover,
a simple calculation yields
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Vi(f(x)) − Vi(x) ≤ −Ni(x) + ψi(V1(x))V 1−a
1 (x)N a

i−1(x) (3.51)

for all i ≥ 2, where

Ni(x) =
i∑

r=1

Mr(x) (3.52)

and

ψi(V1(x)) = i

i∑

r=2

φr(V1(x)) (3.53)

everywhere for i = 1, . . . , j. We also set

ψ1(m) = 0 ∀m . (3.54)

We can recursively define everywhere positive non-decreasing C1 functions
αj , αj−1, . . . , α1 that satisfy

αj(r)C1(r)
2C3(r)

≥ 1 (3.55)

and

(2j)
1−a

a
C

1−a
a

3 (s)

C
1−a

a
1 (s)

α
1
a

i+1(s)

α
1−a

a
j (s)

ψ
1
a
i+1(s) ≤ 1

2
αi(s) (3.56)

for i = 1, 2, . . . , j − 1.
Consider the functions

Ui(x) = αi

(
V1(x)

)
Vi(x) for i = 1, 2, ..., j and

U(x) =
j∑

r=1

Ur(x).
(3.57)

Notice that for all i ∈ {1, . . . , j}, we have

Ui

(
f(x)

)− Ui(x) = αi

(
V1

(
f(x)

))
Vi
(
f(x)

)− αi

(
V1(x)

)
Vi(x).

Since V1

(
f(x)

) ≤ V1(x) and each αi is non-decreasing, and since each Vi is
positive definite, we deduce that

Ui(f(x)) − Ui(x) ≤ αi

(
V1(x)

)[
Vi
(
f(x)

)− Vi(x)
]
. (3.58)

It follows from (3.51) that

Ui(f(x)) − Ui(x)

≤ αi

(
V1(x)

)[−Ni(x) + ψi

(
V1(x)

)
V 1−a

1 (x)N a
i−1(x)

]
.

(3.59)
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Therefore,

U(f(x)) − U(x) ≤
j∑

r=1

[
− αr

(
V1(x)

)Nr(x)

+αr

(
V1(x)

)
ψr

(
V1(x)

)
V 1−a

1 (x)N a
r−1(x)

]

≤ −
j∑

r=1

αr

(
V1(x)

)Nr(x)

+
j∑

r=2

[
αr(V1(x))ψr(V1(x))V 1−a

1 (x)N a
r−1(x)

]
,

(3.60)

where the last inequality is from (3.54). We deduce that

U(f(x)) − U(x) ≤ −
j∑

r=1

αr

(
V1(x)

)Nr(x)

+
j−1∑

r=1

αr+1

(
V1(x)

)
ψr+1

(
V1(x)

)
V 1−a

1 (x)N a
r (x).

(3.61)

Using the fact that

j∑

r=1

αr(V1(x))Nr(x) = αj

(
V1(x)

)Nj(x) +
j−1∑

r=1

αr

(
V1(x)

)Nr(x)

≥ αj

(
V1(x)

)
C1(ν1(x))|x|2 +

j−1∑

r=1

αr

(
V1(x)

)Nr(x)

and therefore also

j∑

r=1

αr(V1(x))Nr(x) ≥ αj(V1(x))C1(V1(x))
C3(V1(x))

V1(x)

+
j−1∑

r=1

αr

(
V1(x)

)Nr(x),

(3.62)

we deduce that

U(f(x)) − U(x) ≤ −αj

(
V1(x)

)
C1(V1(x))

C3(V1(x))
V1(x)

+
j−1∑

r=1

[
− αr(V1(x))Nr(x)

+αr+1

(
V1(x)

)
ψr+1

(
V1(x)

)
V 1−a

1 (x)N a
r (x)

]
.

(3.63)
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Setting

Γr(s) =
C

1−a
a

3 (s)

C
1−a

a
1 (s)

α
1
a
r+1(s)

α
1−a

a

j (s)

for r = 1, 2, . . . , j − 1, Young’s Inequality pq ≤ p1/(1−a) + q1/a applied with

p =
α1−a
j (V1(x))C1−a

1 (V1(x))V 1−a
1 (x)

(2j)1−aC1−a
3 (V1(x))

and

q = (2j)1−aψr+1(V1(x))Γ a
r (V1(x))N a

r (x)

for a 
= 1 gives

αr+1(V1(x))ψr+1(V1(x))V 1−a
1 (x)N a

r (x)

≤ αj(V1(x))C1(V1(x))
2jC3(V1(x))

V1(x)

+(2j)
1−a

a Γr(V1(x))ψ
1
a
r+1(V1(x))Nr(x)

(3.64)

for all possible a ∈ (0, 1].
Combined with (3.63), this gives

U(f(x)) − U(x)

≤ −αj(V1(x))C1(V1(x))
2C3(V1(x))

V1(x)

+
j−1∑

r=1

[
−αr(V1(x)) + (2j)

1−a
a Γr(V1(x))ψ

1
a
r+1(V1(x))

]
Nr(x),

(3.65)

for all possible a ∈ (0, 1]. Since our functions αi satisfy (3.56), we get

U(f(x)) − U(x) ≤ −αj(V1(x))C1(V1(x))
2C3(V1(x))

V1(x). (3.66)

Using (3.40), we can determine an increasing C1 function Λ : [0,∞) → [1,∞)
such that

|U(x)| ≤ Λ(V1(x))V1(x) ∀x ∈ X and

Λ(r) ≥ 1
C2(r)

∀r ≥ 0.
(3.67)

We easily deduce that

S(x) = U(x) + 2Λ
(
V1(x)

)
V1(x) (3.68)
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satisfies

S(x) ≥ Λ(V1(x))V1(x) ≥ V1(x)
C2(V1(x))

≥ |x|2 (3.69)

and

S(f(x)) − S(x) ≤ −αj(V1(x))C1(V1(x))
2C3(V1(x))

V1(x). (3.70)

Combined with our condition (3.55) on αj , this proves the theorem. �

3.6 Illustrations

3.6.1 Continuous Time: One Auxiliary Function

Let us show how the strict Lyapunov-like function (3.12) we constructed in
Sect. 3.1 follows as a special case of Theorem 3.1. Choose V1 and V2 as defined
in (3.6) and (3.9), respectively. Then our decay conditions (3.8) and (3.10)
imply that Assumption 3.1 is satisfied with j = 2, N1(s̃) = s̃2, N2(γ̃) = v∗

2 γ̃2,
a2 = 1, and the constant function

φ2(s) ≡ γ2
M

2v�
+

K(γM − γm)2

4
.

Moreover, since V1 is bounded from above by a positive definite quadratic
function near 0, we can find an everywhere positive function ρ so that

ρ(V1)V1 ≤ min
{
1,

v∗
2

}
(s̃2 + γ̃2) ≤

2∑

i=1

Ni(s̃, γ̃)

on X . (In fact, we can choose ρ so that outside a neighborhood of zero,

ρ(v) =
c

1 + v

for a suitable constant c.) Thus, the first part of Assumption 3.2 is also
satisfied.

Next note that because max{(γM − γ)(γ − γm) : γ ∈ [γm, γM ]} = 1
4 (γM −

γm)2, we know that

V1(s̃, γ̃) ≥ 1
2γm

s̃2 +
2v∗

Kγm(γM − γm)2
γ̃2 ≥ 1

2
v(s̃2 + γ̃2),

where

v = min
{

1
γm

,
4v∗

Kγm(γM − γm)2

}
, (3.71)
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holds on X . This and the triangle inequality |s̃γ̃| ≤ 1
2 s̃

2 + 1
2 γ̃

2 give

|V2(s̃, γ̃)| = |s̃γ̃| ≤ V1(s̃, γ̃)
v

.

(Our choice of V2 was motivated by our desire to have the preceding estimate.)
Hence, the second part of Assumption 3.2 is satisfied as well, so Theorem 3.1
applies with the constant function

p2(s) ≡ 1
v
.

We now explicitly build the strict Lyapunov-like function from Theorem 3.1.
Since j = 2 and a2 = 1, we get

k2(s) =
(

1
v

+ 1
)

s,

hence
U2(s̃, γ̃) = Υ1V1(s̃, γ̃) + V2(s̃, γ̃),

where Υ1 is the constant we defined in (3.11). Also, we can take Φ from (3.28)
to be φ2 to get

Ω1(s) =
[
γ2
M

v�
+

K(γM − γm)2

2

]
s and

Ω2(s) ≡ s.

Hence the formula (3.30) for S becomes

S(s̃, γ̃) = U2(s̃, γ̃) + 2
[
γ2
M

v�
+

K(γM − γm)2

2

]
V1(s̃, γ̃)

= V2(s̃, γ̃) +
[
Υ1 +

2γ2
M

v∗
+ K(γM − γm)2

]
V1(s̃, γ̃)

(3.72)

which agrees with (3.12).

3.6.2 Continuous Time: Two Auxiliary Functions

We next consider a case where the function (3.23) constructed in Theorem
3.1 is radially unbounded and therefore is a strict Lyapunov function. We
consider the system {

ẋ1 = x2

ẋ2 = −x1 − x3
2.

(3.73)
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We use the functions

V1(x) = 1
4 (x2

1 + x2
2)

2 , N1(x) = (x2
1 + x2

2)x
4
2 ,

V2(x) = 1
2 (x2

1 + x2
2) , N2(x) = x4

2 ,

V3(x) = 1
2 (x2

1 + x2
2)x1x2 , and N3(x) = 1

2 [x2
1 + x2

2]x
2
1 .

(3.74)

Along the trajectories of (3.73), the functions Vi satisfy

V̇1(x) = −N1(x),
V̇2(x) = −N2(x), and
V̇3(x) = 1

2 [x2
1 + x2

2][x2
2 − x2

1 − x1x
3
2] −N2(x)x1x2.

Therefore, the inequality x1x2 ≤ 1
2x

2
1 + 1

2x
2
2 gives

V̇3(x) ≤ −N3(x) + φ3(V1(x))
√

N2(x)
√

V1(x), (3.75)

where
φ3(r) = 1 + 3

√
r. (3.76)

One can easily check that

3∑

r=1

Nr(x) = (x2
1 + x2

2)x
4
2 + x4

2 + 1
2 [x2

1 + x2
2]x

2
1

≥ ρ(V1(x))V1(x),

(3.77)

where ρ(r) ≡ 1. Also, V1 and V2 are positive definite, and

|V3(x)| ≤ p3(V1(x))V1(x) , (3.78)

where p3(r) ≡ 1. Therefore, Assumptions 3.1 and 3.2 are satisfied with j = 3,
ρ̄(s) =

√
s, φ2 ≡ 1, a2 = 1, and a3 = 1/2. Hence, Theorem 3.1 provides

a strict Lyapunov-like function for (3.73), which turns out to be a strict
Lyapunov function.

Let us construct the strict Lyapunov-like function from the theorem. Since
p2(s) ≡ 0, we can satisfy the conditions (3.26) on the ki’s by taking

k1(s) = k2(s) = s and k3(s) = 2s.

The functions Ui from Lemma 3.1 are therefore

U1(x) = V1(x) , U2(x) = V1(x) + V2(x) , and
U3(x) = 2V1(x) + V3(x). (3.79)

Since a2 = 1 and a3 = 1/2, the function Φ from (3.28) is Φ(s) = 16(1+3
√
s)2.

Therefore, we can satisfy the conditions on the Ωi’s in (3.29) by taking
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Ω3(s) = s , Ω2(s) = 32s + 128s3/2 + 144s2 ,

Ω1(s) = Ω2(s) + 322
(
49s + 105s2 + 80s3

)
, and

S(x) = Ω1(2U1(x)) + Ω2(U2(x)) + U3(x).

(3.80)

With these choices, we obtain

Ṡ(x) ≤ − 1
4V1(x). (3.81)

In conjunction with the properness and positive definiteness of S, this shows
that S is a strict Lyapunov function for (3.73).

Remark 3.5. The parameters in the functions Ω1 and Ω2 in (3.80) are large.
However, we can construct a global strict Lyapunov function for (3.73) with
smaller parameters, by the following direct construction.

We have

U̇1(x) = −N1(x) ,

U̇2(x) = −(N1(x) + N2(x)
)
, and

U̇3(x) ≤ −2N1(x) −N3(x) + φ3

(
V1(x)

)√N2(x)
√

V1(x) .

(3.82)

Therefore,

U̇3(x) + U̇2(x) ≤ −N1(x) −N2(x) −N3(x)

+φ3(V1(x))
√N2(x)

√
V1(x)

≤ −V1(x) + φ3(V1(x))
√N2(x)

√
V1(x)

≤ − 1
2V1(x) + 1

2φ
2
3(V1(x))N2(x)

≤ − 1
2V1(x) + (1 + 9V1(x))N2(x) ,

(3.83)

where the second inequality is by (3.77). Let

S(x) = 2U2(x) + 8U2
2 (x) + U3(x). (3.84)

This function satisfies
Ṡ(x) ≤ −1

2
V1(x) . (3.85)

Moreover, S is positive definite and radially unbounded, because the Ui’s are
bounded below by V1. Therefore S is a strict Lyapunov function for (3.73).
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3.6.3 Discrete Time Context

We illustrate our discrete time Lyapunov function construction from Theorem
3.2 using the system ⎧

⎪⎪⎨

⎪⎪⎩

pk+1 = qk

qk+1 = rk

rk+1 = pk − 3
4

pk

1+p2
k
.

(3.86)

Let x = (p, q, r). We check the assumptions of the theorem using

ν1(x) = 1
2

[
p2 + q2 + r2

]
, ν2(x) = r2, ν3(x) = q2,

M1(x) = 15
32

p2

1+p2 , M2(x) = r2, and M3(x) = q2 .
(3.87)

Notice that

ν1(xk+1) − ν1(xk) = 1
2 [p2

k+1 + q2
k+1 + r2

k+1] − 1
2 [p2

k + q2
k + r2

k]

= 1
2

[(
pk − 3

4
pk

1+p2
k

)2

− p2
k

]

= 1
2

[
− 3

2
p2

k

1+p2
k

+ 9
16

p2
k

(1+p2
k)2

]

≤ −M1(xk).

(3.88)

Also,

ν2(xk+1) − ν2(xk) = r2
k+1 − r2

k

= −M2(xk) +
(
1 − 3

4
1

1+p2
k

)2

p2
k

≤ −M2(xk) + 32
15

(
1 − 3

4
1

1+p2
k

)2

(1 + p2
k)M1(xk)

(3.89)

and

ν3(xk+1) − ν3(xk) = q2
k+1 − q2

k = −M3(xk) + M2(xk). (3.90)

In summary,

ν1(xk+1) − ν1(xk) ≤ −M1(xk)
ν2(xk+1) − ν2(xk) ≤ −M2(xk) + φ2(ν1(xk))M1(xk)
ν3(xk+1) − ν3(xk) = −M3(xk) + φ3(ν1(xk))M2(xk) ,

(3.91)

where
φ2(l) =

32
15

(1 + 2l) and φ3(l) = l . (3.92)
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It follows that Assumption 3.3 is satisfied. Moreover, for all choices of x,

3∑

l=1

Ml(x) =
15
32

p2

1 + p2
+ q2 + r2 ≥ C1(ν1(x))|x|2 ,

C2(ν1(x))|x|2 ≤ ν1(x) ≤ C3(ν1(x))|x|2, and

|νi(x)| ≤ C4(ν1(x))|x|2 for i = 2, 3

(3.93)

where

C1(l) =
15

32(1 + 2l)
, C2(l) = C3(l) =

1
2
, and C4(l) = 1

for all l ≥ 0. Therefore, Assumption 3.4 is satisfied as well, so Theorem 3.2
applies. Hence, we can construct a strict Lyapunov function for the system
(3.86) by arguing as in the proof of Theorem 3.2.

Let us construct a strict Lyapunov function for (3.86) of the type guaran-
teed by the theorem. Since

2ν2(xk+1) − 2ν2(xk) + ν3(xk+1) − ν3(xk)

= −M3(xk) −M2(xk) +
64
15

[1 + 2ν1(xk)]M1(xk),
(3.94)

the radially unbounded positive definite function

S(x) =
94
15
[
1 + 2ν1(x)

]
ν1(x) + 2ν2(x) + ν3(x). (3.95)

satisfies

S(xk+1) − S(xk) ≤ −2
[
1 + 2ν1(xk)

]M1(xk) −M2(xk) −M3(xk)

≤ −ν1(xk) ,
(3.96)

which is the desired decay condition.

3.7 Comments

The recent paper [111] provides an alternative and very general Matrosov
approach for constructing strict Lyapunov-like functions. However the Lya-
punov functions provided by [111] are not in general locally bounded from
below by positive definite quadratic functions, even for globally asymptoti-
cally linear systems, which admit a quadratic strict Lyapunov function. The
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shape of Lyapunov functions, their local properties and their simplicity mat-
ter when they are used to investigate robustness properties and construct
feedbacks and gains.

The differences between Assumptions 3.1 and 3.2 and the assumptions
from [111] are as follows. First, while our Assumption 3.1 ensures that V1

is positive definite but not necessarily proper, [111] assumes that a radially
unbounded non-strict Lyapunov function is known. Second, our Assumption
3.1 is a restrictive version of Assumption 2 from [111]. More precisely, our
Assumption 3.1 specifies the local properties of the functions that correspond
to the χi’s of Assumption 2 in [111]. Finally, our Assumption 3.2 imposes
relations between the functions Ni and V1, which are not required in [111].
An important feature is that we do not require the functions V2, . . . , Vj to be
non-negative.

Our treatment of (3.3) is based on [106]. Since the Matrosov constructions
in [111] assume that the given non-strict Lyapunov function is globally proper
on the whole Euclidean space, and since (3.6) does not satisfy this require-
ment, we cannot construct the required explicit strong Lyapunov function for
(3.3) using the results of [111]. Notice that the strict Lyapunov-like function
(3.72) that we constructed for the anaerobic digester is a simple linear com-
bination of V1 and V2. By contrast, the strong Lyapunov functions provided
by [111, Theorem 3] for the j = 2 time-invariant case have the form

S(x) = Q1

(
V1(x)

)
V1(x) + Q2

(
V1(x)

)
V2(x),

where Q1 is non-negative, and where the positive definite function Q2 needs
to globally satisfy

Q2(V1) ≤ φ−1

(
ω(x)

2ρ(|x|)
)

,

where
∇V2(x)f(x) ≤ −N2(x) + φ

(N1(x)
)
ρ(|x|)

for some φ ∈ K∞ and some everywhere positive non-decreasing function ρ
and the positive definite function ω needs to satisfy N1(x) + N2(x) ≥ ω(x)
everywhere. In particular, we cannot take Q2 to be constant to get a linear
combination of the Vi’s, so the construction of [111] is more complicated than
the one we provide here. Similar remarks apply to the other constructions
in [111]. See Chap. 8 for strict Lyapunov function constructions under more
general Matrosov type conditions.




