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Preface

During the past fifteen years, there have been many exciting developments at
the interface of mathematical control theory and control engineering. Many
of these developments were based on Lyapunov methods for analyzing and
controlling nonlinear systems. Constructing strict Lyapunov functions is a
challenging, central problem. By contrast, non-strict Lyapunov functions are
often readily constructed from passivity, backstepping, or forwarding (espe-
cially in the time-varying context), or by using the Hamiltonian in Euler-
Lagrange systems. Roughly speaking, strict Lyapunov functions are charac-
terized by having negative definite time derivatives along all trajectories of
the system, while non-strict Lyapunov functions have negative semi-definite
derivatives along the trajectories. Even when a system is known to be globally
asymptotically stable, one often still needs an explicit strict Lyapunov func-
tion, e.g., to build feedbacks that provide input-to-state stability to actuator
errors.

One important research direction involves finding necessary and sufficient
conditions for various kinds of stability, in terms of the existence of Lya-
punov functions, such as Lyapunov characterizations for hybrid systems, or
for systems with outputs and measurement uncertainty. Converse Lyapunov
function theory guarantees the existence of strict Lyapunov functions for
many globally asymptotically stable nonlinear systems. However, the Lya-
punov functions provided by converse theory are often abstract and non-
explicit, because they involve suprema or infima over infinite sets of trajec-
tories, so they may not always lend themselves to feedback design. Explicit
strict Lyapunov functions are also useful for quantifying the effects of uncer-
tainty, since for example they can be used to construct the comparison func-
tions in the input-to-state stability estimate, or to guarantee that a model
reduction based on singular perturbation analysis can be done. In fact, once
an appropriate global strict Lyapunov function has been constructed, sev-
eral important robustness and stabilization problems can be solved almost
immediately, through standard arguments.
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viii Preface

In some cases, non-strict Lyapunov functions are sufficient, because they
can be used in conjunction with Barbalat’s Lemma or the LaSalle Invariance
Principle to prove global stability. In other situations, it is enough to analyze
the system near an equilibrium point, or around a reference trajectory, so
linearizations and simple local quadratic Lyapunov functions suffice. How-
ever, it has become clear in the past two decades that non-strict Lyapunov
functions and linearizations are insufficient to analyze general nonlinear time-
varying systems. Non-strict Lyapunov functions are not well suited to robust-
ness analysis, since their negative semi-definite derivatives along trajectories
could become positive under arbitrarily small perturbations of the dynamics.
Moreover, there are important nonlinear systems (e.g., chemostat models)
that naturally evolve far from their equilibria. This has motivated a great
deal of significant research on methods to explicitly construct global strict
Lyapunov functions.

One approach to building explicit strict Lyapunov functions, which has
received a considerable amount of attention in recent years, is the so-called
strictification method. This involves transforming given non-strict Lyapunov
functions into strict Lyapunov functions. Strictification reduces strict Lya-
punov function construction problems to oftentimes much easier non-strict
Lyapunov function construction problems. This book brings together a broad
but unifying repertoire of strictification based methods. Much of this work
appears here for the first time. We cover many important classes of nonlinear
dynamics, including Jurdjevic-Quinn systems, time-varying systems satisfy-
ing LaSalle or Matrosov Conditions, adaptively controlled dynamics, slowly
and rapidly time-varying systems, and hybrid time-varying systems. In fact,
under a very mild extra assumption, we show how strict Lyapunov functions
can be constructed for systems satisfying the conditions of the LaSalle In-
variance Principle. The simplicity of our constructions makes them suitable
for quantifying the effects of uncertainty, and for feedback design, including
cases where only an output is available for measurement. We illustrate this
in several applications that are of compelling engineering interest.

This work complements several books on nonlinear control theory, such
as [149] by Sepulchre, Janković, and Kokotović. While many texts include
Lyapunov function constructions, our work provides a systematic, design-
oriented approach to building global strict Lyapunov functions, including
simplified constructions that are more amenable to feedback design and ro-
bustness analysis. In fact, many of the systems covered by our approaches
are beyond the scope of the well-known explicit strict Lyapunov construc-
tions. Our book will be easily understood by readers who are familiar with
the nonlinear control theory in the textbooks of Khalil [70] and Sontag [161].
We review much of the prerequisite material in the first two chapters. The
remaining chapters can be used as supplemental reading in a first graduate
control systems theory, or for a second course on Lyapunov based methods.
Engineers and applied mathematicians interested in nonlinear control will
also find our book useful.
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Chapter 1

Background on Nonlinear Systems

Abstract We review some basic concepts from the theory of ordinary differ-
ential equations and nonlinear control systems, as well as several notions of
stability, including the input-to-state stability paradigm. An important fea-
ture is the distinction between uniform and non-uniform stability for time-
varying systems. We also include an overview of the problem of stabilization
of nonlinear systems, including the “virtual” obstacles to stabilization im-
posed by Brockett’s Necessary Condition. Brockett’s Criterion motivates our
use of time-varying feedbacks to stabilize both autonomous and time-varying
systems. We illustrate these notions in several examples. In later chapters,
we revisit these notions using strict Lyapunov functions.

1.1 Preliminaries

Throughout this book, we use the following standard notation and classical
results. We let N denote the set of natural numbers {1, 2, . . .}, Z the set of
all integers, and Z≥0 = N∪{0}. Also, R (resp., R

n) denotes the set of all real
numbers (resp., real n-tuples for any n ∈ N). We use the following norms for
vectors x = (x1, ..., xn) ∈ R

n:

|x|∞ = max
1≤i≤n

|xi|, |x|1 =
n∑

i=1

|xi|, and |x|2 =

(
n∑

i=1

|xi|2
)1/2

.

Unless we indicate otherwise, the norm on R
n is | · |2 which we often denote

by | · |. For a measurable essentially bounded1 function u : I → R
p on

an interval I ⊆ R, we let |u|I denote its essential supremum, which we

1 Readers who are not familiar with Lebesgue measure theory can replace “measurable
essentially bounded” with “bounded and piecewise continuous” throughout our work, in
which case the essential supremum is just the sup norm.

3
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indicate by |u|∞ when I = R. For real matrices A, we use the matrix norm
||A|| = sup{|Ax| : |x| = 1}, and In ∈ R

n×n is the identity matrix. Given an
interval I ⊆ R and a function x : I → R

n that is differentiable (Lebesgue)
almost everywhere, we use ẋ or ẋ(t) to denote its derivative dx

dt (t).
For each k ∈ Z≥0 ∪{∞}, a real-valued function defined on an open subset

of Euclidean space is called Ck provided its partial derivatives exist and are
continuous up to order k. A C0 function is one that is continuous, and a C∞

function is one that is a smooth function, that is, it has continuous partial
derivatives of any finite order. We use the same Ck notation for vector fields
on R

n. We present all of our results under those differentiability assumptions
that lead to the shortest and clearest proofs. Throughout the book, increasing
means strictly increasing and similarly for decreasing.

If f : R
n → R

n is a smooth vector field and h : R
n → R is smooth, the

Lie derivatives of h in the direction of f are defined recursively by

Lfh(x) .=
∂h

∂x
(x)f(x) and Lk

fh(x) = Lf (Lk−1
f h)(x) ∀k ≥ 2.

Recall the following classes of comparison functions. We say that a C0 func-
tion γ : [0,∞) → [0,∞) belongs to class K and write γ ∈ K provided it is
increasing and γ(0) = 0. We say that it belongs to class K∞ if, in addition,
γ(r) → ∞ as r → ∞. We say that a C0 function β : [0,∞)× [0,∞) → [0,∞)
is of class KL provided for each fixed s ≥ 0, the function β(·, s) belongs to
class K, and for each fixed r ≥ 0, the function β(r, ·) is non-increasing and
β(r, s) → 0 as s → ∞. The following lemma is well-known:

Lemma 1.1. (Barbalat’s Lemma) If φ : R → R is uniformly continuous on
[0,∞) and

lim
t→∞

∫ t

0

φ(m) dm

exists and is finite, then limt→∞ φ(t) = 0.

We also use Young’s Inequality, which says that

ab ≤ 1
p
|a|p +

p− 1
p

|b|q

for all a ∈ R and b ∈ R, and all p > 1 and q > 1 satisfying 1
p + 1

q = 1.

1.2 Families of Nonlinear Systems

The basic families of dynamics are autonomous systems, nonautonomous
systems, and systems with inputs. We review these basic families next for
the case where the dynamics are given by families of ordinary differential
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equations. We then discuss their analogs in discrete time. In later chapters,
we consider more general systems with multiple time scales, such as hybrid
time-varying systems. In general, we allow nonlinear systems, meaning the
dynamics are nonlinear in the state variable.

1.2.1 Nonautonomous Systems

A general nonautonomous ordinary differential equation consists of a finite
number of first-order one-dimensional differential equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = f1(t, x1, x2, ..., xn)
ẋ2 = f2(t, x1, x2, ..., xn)

...
ẋn = fn(t, x1, x2, ..., xn)

(1.1)

where t is the time, and each function fi is in general nonlinear in all of its
arguments. The variables xi are called states, and n is called the dimension of
the system. The differential equations characterize the evolution of the states
with respect to time. Frequently, we write (1.1) more compactly as

ẋ = f(t, x). (1.2)

The state vector x = (x1, x2, ..., xn) is valued in a given open set X ⊆ R
n.

Given a constant t0 ≥ 0, x0 ∈ X , and a constant tmax > t0, the corresponding
initial value problem IVP(tmax, t0, x0) for (1.2) is that of determining an
absolutely continuous function y : [t0, tmax) → X such that ẏ(t) = f(t, y(t))
for almost all t ∈ [t0, tmax) and y(t0) = x0. We assume that the vector field
f : [0,∞) × X → R

n is measurable in t and of class C1 in x, meaning the
function x 
→ f(t, x) is C1 for each t ≥ 0. We further assume that for each
compact set K ⊆ X , there is a locally integrable function αK so that

∣∣∣∣
∂f

∂x
(t, x)

∣∣∣∣ ≤ αK(t) for all x ∈ K and t ≥ 0.

By classical results (reviewed, e.g., in [161]), these properties ensure that
for each t0 ≥ 0 and x0 ∈ X , there exists a tmax > t0 so that IVP(tmax, t0, x0)
has a solution t 
→ x(t, t0, x0) with the following uniqueness and maximality
property: If t̃ > t0 and IVP(t̃, t0, x0) admits a solution z(t), then t̃ ≤ tmax

and z(t) = x(t, t0, x0) for all t ∈ [t0, t̃). If x(t, t0, x0) can be uniquely defined
for all t ≥ t0 for all initial conditions x(t0, t0, x0) = x0, then we call (1.1)
forward complete. Since f depends on time, the systems (1.2) are also called
time-varying systems.

An equilibrium point x∗ = (x∗
1, ..., x

∗
n) of (1.2) is defined to be a vector

in R
n for which f(t, x∗) = 0 for all t ≥ 0. Frequently, the equilibrium point
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is the origin x∗ = 0. If a system Ẋ = g(t,X) admits a solution Xs(t), then,
through the time-varying change of variable x = X−Xs(t), we can transform
the system Ẋ = g(t,X) into a new time-varying x dynamics

ẋ = f(t, x), where f(t, x) = g(t, x + Xs(t)) − Ẋs(t)

which admits x∗ = 0 as an equilibrium point. This transformation is used to
analyze the asymptotic behavior of a system with respect to a specific solu-
tion Xs(t), i.e., tracking. Frequently, the time-varying systems in engineering
applications are periodic with respect to t, meaning there is a constant w > 0
(called a period) such that f satisfies

f(t + w, x) = f(t, x)

for all (t, x) in its domain.

1.2.2 Autonomous Systems

If the right side of (1.1) or (1.2) is independent of the time variable t, then
the systems are called autonomous or time-invariant systems. Naturally, they
are written in compact form as

ẋ = f(x) (1.3)

and their flow maps are denoted by x(t, x0). In this case, we view t 
→ x(t, x0)
as being defined on some maximal interval I ⊆ R, possibly depending on the
initial state x0. If t 
→ x(t, x0) is uniquely defined on R for all x0 ∈ X ,
then we call (1.3) complete. The family of systems (1.3) is the simplest we
consider in this book. However, the behavior of the solutions of (1.3) is a
very general subject and by no means simple. No general prediction of the
asymptotic behavior of the solutions exists as soon as the dimension n of the
system is larger than 2. Rather, such a classification exists only for systems of
dimension 1 and 2, by the celebrated Poincaré-Bendixson Theorem [23, 153].

1.2.3 Systems with Inputs

The general time-varying continuous time control system is

ẋ = f(t, x, u) (1.4)

or, equivalently,
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = f1(t, x1, x2, ..., xn, u1, ...up)

ẋ2 = f2(t, x1, x2, ..., xn, u1, ...up)
...

ẋn = fn(t, x1, x2, ..., xn, u1, ...up).

(1.5)

The variables u1, ..., up are called inputs. The state and input vectors are
valued in a given open set X ⊆ R

n and a given set U ⊆ R
p, respectively. When

discussing systems with inputs, we assume that [0,∞)×X ×U � (t, x, u) 
→
f(t, x, u) ∈ R

n is piecewise continuous in t and of class C1 in (x, u). We
refer to the preceding conditions as our usual (or standing) assumptions on
(1.5). We also let M(U) denote the set of all measurable essentially bounded
functions u : [0,∞) → U ; i.e., inputs that are bounded in | · |∞. Solutions of
(1.5) are obtained by replacing (u1, u2, . . . , up) with an element u ∈ M(U).
For all u ∈ M(U), x0 ∈ X , and t0 ≥ 0, we let x(t, t0, x0, u) denote the
solution of (1.4) with u as input that satisfies x(t0, t0, x0, u) = x0, defined on
its maximal interval [t0, b). If t 
→ x(t, t0, x0, u) is uniquely defined on [t0,∞)
for all t0 ≥ 0, x0 ∈ X , and u ∈ M(U), then we call (1.4) forward complete.
By an equilibrium state of (1.4), we mean a vector x∗ ∈ R

n that admits a
vector u∗ ∈ U such that f(t, x∗, u∗) = 0 for all t ≥ 0. If the system (1.5) can
be written in the form

ẋ = F(t, x) + G(t, x)u

for some vector fields F and G, then we say that (1.5) is affine in controls or
control affine.

Inputs are essential in nonlinear control theory. One of the principal aims
of control theory is to provide functions u(t, x) such that all or some of
the solutions of the system ẋ = f(t, x, u(t, x)) possess a desired property.
In this situation, we refer to u(t, x) as a controller or a feedback, and the
feedback controlled system ẋ = f(t, x, u(t, x)) as a closed-loop system. Inputs
can also represent disturbances, which are uncertainties that may modify the
behavior of the solutions (often in an undesirable way). Then, the problem
of quantifying the effect of disturbances u(t) on the solutions of (1.4) arises.

1.2.4 Discrete Time Dynamics

The general family of time-varying discrete time systems with inputs admits
the representation

xk+1 = f(k, xk, uk) (1.6)

or, equivalently,
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xk+1,1 = f1(k, xk,1, xk,2, . . . , xk,n, uk,1, ...uk,p)

xk+1,2 = f2(k, xk,1, xk,2, . . . , xk,n, uk,1, ...uk,p)
...

xk+1,n = fn(k, xk,1, xk,2, . . . , xk,n, uk,1, ...uk,p).

(1.7)

The variables u = (u1, ..., up) are again called inputs, which are now sequences
uk = (uk,1, ...uk,p) that take their values in some subset U ⊆ R

p for each time
k ∈ {0, 1, 2, . . .}. We use k for the time indices to emphasize that they are
discrete instants rather than being on a continuum. We let D(U) denote the
set of all such input sequences. The state vector xk = (xk,1, xk,2, . . . , xk,n) at
each instant k is assumed to be valued in a given open set X ⊆ R

n.
Since the solutions of (1.7) are given recursively, there is no need to impose

the regularity on f that we assumed in the continuous time case. However,
when discussing discrete time systems, we always assume that the recursion
defining the solutions is forward complete, meaning that solutions of (1.7)
exist for all integers k ≥ 0, all initial conditions x(k0) = x0 ∈ X , and all
u ∈ D(U). As in the continuous time case, x(k, k0, x0, u) then denotes the
unique solution of (1.4) that satisfies x(k0, k0, x0, u) = x0 for all u ∈ D(U),
x0 ∈ X , and k ≥ k0 ≥ 0. We define equilibrium states for (1.6) and time-
invariant discrete time systems analogously to the definitions for continuous
time systems.

Discrete time dynamics are of significant interest in engineering applica-
tions. In fact, when time-varying continuous time systems with inputs are
implemented in labs, this is often done using sampling, which leads to dy-
namics of the form (1.6). Discrete time systems are also important from the
theoretical point of view, including cases where (1.6) is a sub-dynamics of a
larger hybrid time-varying system that has mixtures of continuous and dis-
crete parts and prescribed mechanisms for switching between the parts.

It is possible to define time-varying systems in a unifying, behavioral way
that includes both continuous and discrete time systems. This was done in
[161, Chap. 2]. However, strict Lyapunov function constructions for continu-
ous and discrete time systems are often very different, so we treat continuous
time and discrete time systems separately in most of the sequel.

1.3 Notions of Stability

Stability, instability, asymptotic stability, exponential stability and input-
to-state stability are of utmost importance for nonlinear control systems.
Stability formalizes the following intuition: an equilibrium point of a system
is stable if any solution with any initial state close to the equilibrium point
stays close to the equilibrium point forever. Asymptotic stability formalizes
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the following: an equilibrium point is asymptotically stable if it is stable and
all solutions starting near the equilibrium point converge to the equilibrium
point as time goes to infinity.

An equilibrium point of a system is exponentially stable if it is asymptoti-
cally stable and if the solutions are smaller in norm than a positive function
of time that exponentially decays to zero. Finally, input-to-state stability
roughly says that an equilibrium point of a system with inputs is asymptot-
ically stable for the zero input and, in the presence of a bounded input, the
solutions are bounded and asymptotically smaller in norm than a function of
the sup norm of the input. We use the following abbreviations and acronyms:

LAS local asymptotic stability
UGAS uniform global asymptotic stability
GAS global asymptotic stability
LES local exponential stability
GES global exponential stability
UGES uniform global exponential stability
ISS input-to-state stability

We also use ISS to mean input-to-state stable, and similarly for the other
stability notions. We now make the various stability notions mathematically
precise. We focus on continuous time systems but one can define these notions
for discrete time systems in an analogous way. For any constants ρ > 0, r ∈ N,
and q ∈ R

r, we use the notation ρBr(q)
.= {x ∈ R

r : |x − q| ≤ ρ}, which we
denote simply by ρBr when q = 0.

1.3.1 Stability

Assume that the system (1.2) admits the origin 0 as an equilibrium point.
This equilibrium point is stable provided for each constant ε > 0, there exists
a constant δ(ε) > 0 such that for each initial state x0 ∈ X ∩ δ(ε)Bn and each
initial time t0 ≥ 0, the unique solution x(t, t0, x0) satisfies |x(t, t0, x0)| ≤ ε
for all t ≥ t0. Otherwise we call the equilibrium unstable.

1.3.2 Asymptotic and Exponential Stability

Assume that the system (1.2) admits the origin 0 as an equilibrium point.
Uniform globally asymptotic stability (UGAS) of the equilibrium 0 means
that there exists a function β ∈ KL such that for each initial state x0 ∈ X
and each initial time t0 ≥ 0, the solution x(t, t0, x0) for (1.2) satisfies

∣∣x(t, t0, x0)
∣∣ ≤ β

(|x0|, t− t0
) ∀t ≥ t0 ≥ 0. (1.8)



10 1 Background on Nonlinear Systems

In this case, we also say that the system is UGAS to 0, or simply UGAS, and
similarly for the other stability notions. When the system is autonomous, this
property is called global asymptotic stability (GAS). If there exists a function
β ∈ KL and a constant c̄ > 0 independent of t0 such that (1.8) holds for all
initial conditions x0 ∈ c̄Bn ∩X , then we call the system uniformly asymptot-
ically stable. Hence, uniform asymptotic stability of the equilibrium implies
that it is stable and that there exists a constant c̄ > 0 such that for each
initial state x0 ∈ X ∩ c̄Bn and each initial time t0 ≥ 0, the solution x(t, t0, x0)
satisfies limt→+∞ x(t, t0, x0) = 0. When the system is time-invariant, we call
the preceding property (local) asymptotic stability (LAS).

When (1.2) admits the origin 0 as an equilibrium point, we call the equilib-
rium point uniformly exponentially stable provided there exist positive con-
stants K1,K2, and r such that for each initial state x0 ∈ X∩rBn and each t0 ≥
0, the corresponding solution x(t, t0, x0) satisfies |x(t, t0, x0)| ≤ K1e

−K2(t−t0)

for all t ≥ t0. When the system is autonomous, we call this property local
exponential stability (LES) or, if r can be taken to be +∞, global exponential
stability (GES). The special case of uniformly exponentially stability where
we can take r = +∞ is called uniform global exponential stability (UGES).
More generally, we say that an equilibrium point x∗ of (1.2) (which may or
may not be zero) is GES provided the dynamics of x(t) − x∗ is GES, and
similarly for the other stability notions.

1.3.3 Input-to-State Stability

The input-to-state stability (ISS) condition for (1.4) is the requirement that
there exist functions β ∈ KL and γ ∈ K such that for each u ∈ M(U) and
each initial condition x(t0) = x0 ∈ X , the solution x(t, t0, x0, u) of (1.4) with
input vector u satisfies

∣∣x(t, t0, x0, u)
∣∣ ≤ β

(|x0|, t− t0
)

+ γ
(|u|[t0,t]

) ∀t ≥ t0 . (1.9)

The ISS paradigm plays a fundamental role in nonlinear control, as do its
extensions to systems with outputs; see [165] for an extensive discussion.

One immediate consequence of (1.9) is that if (1.4) admits an input
u ∈ M(U) and an initial condition for which the corresponding trajectory is
unbounded, then the system cannot be ISS. This gives a method for testing
whether a system is ISS. In Chap. 2, we use this alternative method:

Lemma 1.2. Assume that (1.4) has state space X = R
n. Let δ ∈ M(U)

be any non-zero input, let L ∈ R
n×n be invertible, and set z(t, t0, z0) =

Lx(t, t0, L−1z0, δ) for each t ≥ t0 ≥ 0 and z0 ∈ R
n. If there is an in-

dex k ∈ {1, 2, . . . , n} such that the kth component zk of z(t, t0, z0) satisfies
∂
∂tzk(t, t0, z0) = 0 for all t ≥ t0 ≥ 0 and all z0 ∈ R

n, then (1.4) is not ISS.
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Proof. Suppose the contrary. Then the dynamics

ż = Lf(t, L−1z, u) (1.10)

is easily shown to be ISS as well.2 Pick β ∈ KL and γ ∈ K∞ such that
∣∣z(t, t0, z0)

∣∣ ≤ β
(|z0|, t− t0

)
+ γ

(|δ|∞
)

(1.11)

along all trajectories of (1.10). By assumption,
∣∣z(t, t0, z0)

∣∣ ≥ ∣∣zk(t, t0, z0)
∣∣ =

∣∣z0,k

∣∣

for all t ≥ t0 ≥ 0 and z0 ∈ R
n, so we get a contradiction by picking

z0,k = 2γ(|δ|∞)

and letting t → +∞ in (1.11). �

If a system (1.4) is ISS, then necessarily the system

ẋ = f(t, x, 0) (1.12)

is UGAS. However, if (1.12) is UGAS, then it does not follow that (1.4) is
ISS. The one-dimensional system

ẋ = − arctan(x) + u (1.13)

illustrates this. When u = 0, the system (1.13) becomes ẋ = − arctan(x)
which is GAS. However, (1.13) is not ISS because the bounded input u = 2
results in the system

ẋ = 2 − arctan(x)

which has unbounded solutions.
On the other hand, the system (1.13) is integral input-to-state stable (iISS)

[160]. For a general nonlinear system (1.4), the iISS condition says that there
exist functions γ, γ̄ ∈ K∞ and β ∈ KL such that for each u ∈ M(U) and
each initial condition x(t0) = x0, the unique solution x(t, t0, x0, u) of (1.4)
with input vector u satisfies

γ(|x(t, t0, x0, u)|) ≤ β(|x0|, t − t0) +
∫ t
t0

γ̄(|u(m)|)dm (1.14)

for all t ≥ t0. The fact that (1.13) is iISS will follow from the Lyapunov char-
acterizations for ISS and iISS that we discuss in Chap. 2.3 The ISS property
is essentially global. Indeed, any system (1.4) such that the corresponding

2 For example, if (1.4) has the ISS Lyapunov function V , then (1.10) has the ISS Lyapunov
function Ṽ (t, z)

.
= V (t, L−1z); see Chap. 2 for the relevant definitions.

3 In fact, (1.13) admits the iISS Lyapunov function V (x) = x arctan(x) and therefore is
iISS.
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system (1.12) admits the origin as a locally uniformly asymptotically stable
equilibrium point is locally ISS, meaning there exists a neighborhood G of
the equilibrium so that an ISS estimate holds along trajectories remaining in
G; this follows from the local Lipschitzness of the dynamics in the state.4

1.3.4 Linear Systems and Linearizations

Stability analysis is considerably simpler for linear systems than for nonlinear
systems. For example, for a linear system

ẋ = Ax (1.15)

with a constant matrix A, the properties GAS, LAS, GES, and LES are all
equivalent, and they are satisfied if and only if all eigenvalues of A have
negative real parts, in which case A is called Hurwitz. The solutions of (1.15)
have the form x(t) = eAtx0. Frequently, the local behavior of a nonlinear
system ẋ = f(x) can be analyzed using the fact that an equilibrium point
x∗ of a time-invariant nonlinear system is LES if and only if its variational
matrix A

.= Df(x∗) is Hurwitz [161]. This can be equivalently formulated by
saying that the equilibrium point of a nonlinear system is LES if and only if
its linear approximation at the equilibrium point is LES.

Even when the variational matrix is not Hurwitz, the linearization can still
provide important information. One important result in that direction is the
following one from [131, p.120]:

Theorem 1.1. (Hartman-Grobman Theorem) Let X ⊆ R
n be a neighborhood

of the origin, and let f : X → R
n be C1 with equilibrium point 0. Assume

that A
.= Df(0) has no eigenvalue with zero real part. Then we can find a

homeomorphism H of an open neighborhood V1 of the origin into an open
neighborhood V2 of 0 such that for each x0 ∈ V1, there is an interval I
containing 0 for which H(x(t, x0)) = eAtH(x0) for all t ∈ I.

Here x(t, x0) is the flow of ẋ = f(x) in the usual ODE sense.

1.3.5 Uniformity vs. Non-uniformity

For time-varying systems, asymptotic stability and uniform asymptotic sta-
bility are different. The one-dimensional linear time-varying system

4 Given n, p ∈ N, an interval I ⊆ R, and a subset X ⊆ Rn, we say that a function
g : I × X → Rp is locally Lipschitz in x ∈ X provided for each compact subset K ⊆ X ,
there is a constant LK so that |g(t, x) − g(t, x′)| ≤ LK |x − x′| for all t ∈ I and x, x′ ∈ K.
If LK can be chosen independently of K, then we say that g is Lipschitz in x ∈ X .
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ẋ = − x
1+t (1.16)

is GAS in the sense that its solutions are

x(t, t0, x0) = x0
1 + t0
1 + t

and therefore go to zero when t goes to infinity. However, it is not UGAS. To
prove this, we proceed by contradiction. Suppose that there exists a function
β ∈ KL such that for all t ≥ t0 ≥ 0, the inequality

∣∣x(t, t0, x0)
∣∣ ≤ β

(|x0|, t− t0
)

(1.17)

is satisfied. Choosing x0 = 1 and t = 2t0 + 1, we have

1
2

=
1 + t0
2 + 2t0

≤ β(1, t0 + 1). (1.18)

Since β(1, t0 + 1) goes to zero when t0 goes to infinity, the inequality (1.18)
leads to a contradiction.

1.3.6 Basin of Attraction

The region of attraction (also called the basin of attraction) of a LAS equilib-
rium point of a system is the set of all initial states that generate solutions of
the system that converge to the equilibrium point. Often, it is not sufficient
to determine that a given system has an asymptotically stable equilibrium
point. Rather, it is important to find the region of attraction or an approx-
imation of this region. Such approximations can be found using Lyapunov
functions. We revisit the problem of estimating the basin of attraction in
Sect. 2.5.

1.4 Stabilization

Consider the classical problem of constructing a control law us(t, x) such that
the origin of (1.4) is asymptotically stable. Later, we will see how this problem
can often be handled by Lyapunov function constructions. When the problem
is restricted to local stabilization, techniques based on the stabilization of the
linear approximation of (1.4) at the origin are frequently used.

However, when UGAS is desirable, linear techniques usually cannot be
used. Then, nonlinear design techniques called backstepping and forwarding
apply, provided the system admits a special structure. Backstepping applies
to lower triangular systems
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = f1(t, x1, x2)
ẋ2 = f2(t, x1, x2, x3)

...
ẋn = fn(t, x1, ..., xn, u).

(1.19)

These systems are called feedback systems. Forwarding applies to systems
having the upper triangular form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = f1(t, x1, ..., xn, u)
ẋ2 = f2(t, x2, ..., xn, u)

...
ẋn = fn(t, xn, u)

(1.20)

which are called feedforward systems. We discuss backstepping in detail in
Chap. 7.

When a nonlinear system admits a linear approximation around an equi-
librium point that is not exponentially stabilizable, it may not be easy to
tell whether the equilibrium point is locally asymptotically stabilizable. Be-
sides, in some cases, an equilibrium point is asymptotically stabilizable by a
C1 time-varying feedback but not stabilizable by a C1 time-invariant state
feedback. For example, this phenomenon occurs for the origin of

{
ẋ1 = u1

ẋ2 = u2u1.
(1.21)

The fact that the origin of this system is not asymptotically stabilizable by
a C1 time-invariant feedback can be proven using the following necessary
condition from [18]:

Theorem 1.2. (Brockett’s Stabilization Theorem) Consider a system

ẋ = f(x, u) (1.22)

with f ∈ C1. Assume that there exist an equilibrium point x∗ and a C1

feedback us(x) such that the system

ẋ = f
(
x, us(x)

)

admits x∗ as a LAS equilibrium point. Then the image of the map f contains
some neighborhood of x∗.

The system (1.21) does not satisfy the necessary condition of Brockett’s
Theorem at the origin, because for any ε 
= 0, there is no pair (x, u) such
that

(u1, u2u1) = (0, ε)

and for any open neighborhood of the origin V ⊆ R
2, there exists ε 
= 0

such that (0, ε) ∈ V . On the other hand, it can be globally stabilized by a
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time-varying C1 feedback; see p.19. These considerations show one reason
why time-varying systems are important.

1.5 Examples

In many cases, one can use Lyapunov functions to establish the various stabil-
ity properties. However, in the following examples, we establish the stability
properties using other techniques. In later chapters, we primarily use Lya-
punov function methods to establish stability. As we will see later, strict
Lyapunov functions have the advantage that they can also be used to quan-
tify the effects of uncertainty, especially when they are given in explicit closed
form.

1.5.1 Stable System

An example of a nonlinear system that is stable but not asymptotically stable
is given by the two-dimensional pendulum dynamics

{
θ̇ = ω
ω̇ = − g

l sin(θ)
(1.23)

where g and l are positive real numbers. To simplify, we assume

g

l
= 1.

The local stability of the origin can be proved as follows. Let ε ∈ (
0, 1

4

]
.

Consider the non-negative function

H(θ, ω) = 1 − cos(θ) +
1
2
ω2.

Let δ(ε) = 1
8ε

2. Take any solution (θ(t), ω(t)) of (1.23) with any initial con-
dition satisfying |(θ(0), ω(0))|∞ ≤ δ(ε). Since δ(ε) ≤ 1/128, we get

H
(
θ(0), ω(0)

) ≤ |θ(0)| + 1
2
ω2(0) ≤ 2δ(ε).

Simple calculations yield

d

dt
H
(
θ(t), ω(t)

)
= 0 ∀t ≥ 0.
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Hence, (1.23) cannot be asymptotically stable. On the other hand, since H
is constant along the trajectories of (1.23),

1 − cos
(
θ(t)

)
+

1
2
ω2(t) = H

(
θ(t), ω(t)

) ≤ 1
4
ε2 ≤ 1

64

for all t ≥ 0. Therefore, |ω(t)| ≤ ε for all t ≥ 0. Also, since 1− cos(θ(t)) ≤ 1
64

for all t ≥ 0 and |θ(0)| ≤ π/4, we deduce that |θ(t)| ≤ π/4 for all t ≥ 0, which
implies that

1
4
θ2(t) ≤ 1 − cos(θ(t)) ≤ 1

4
ε2

for all t ≥ 0. This gives |(θ(t), ω(t))|∞ ≤ ε for all t ≥ 0, which is the desired
stability estimate.

Remark 1.1. One can also construct unstable autonomous systems all of
whose trajectories converge to the origin. An example of this phenomenon is

ẋ1 =
x2

1(x2 − x1) + x5
2

(x2
1 + x2

2)(1 + (x2
1 + x2

2)2)
, ẋ2 =

x2
2(x2 − 2x1)

(x2
1 + x2

2)(1 + (x2
1 + x2

2)2)
. (1.24)

For the proof that (1.24) satisfies the requirements, see [54, pp. 191-194].

1.5.2 Locally Asymptotically Stable System

When a friction term is added to (1.23), the system becomes
⎧
⎨

⎩
θ̇ = ω

ω̇ = −g

l
sin(θ) − k

m
ω

(1.25)

where k and m are positive real numbers. The origin of (1.25) is a LES equilib-
rium point that is not GAS because the system admits multiple equilibrium
points.

The proof that the origin of (1.25) is LES is a consequence of the fact that
its linear approximation at the origin is

⎧
⎨

⎩
θ̇e = ωe

ω̇e = −g

l
θe − k

m
ωe ,

(1.26)

which is an exponentially stable linear system because the eigenvalues of the
matrix ⎡

⎣
0 1

−g

l
− k

m

⎤

⎦ (1.27)



1.5 Examples 17

have negative real parts.

1.5.3 Globally Asymptotically Stable System

The two-dimensional system
⎧
⎪⎪⎨

⎪⎪⎩

Ṡ = D(Se − S) − KS

L + S
x

ẋ =
(

KS

L + S
−D

)
x

(1.28)

with positive constant parameters D,K,L, and Se has the invariant domain
X = (0,∞) × (0,∞). It is a simplified model of a bio-reactor with dilution
rate D, input nutrient concentration Se, and Monod growth rate

μ(S) =
KS

L + S
;

see [153] for generalizations. Assume that

K > D and Se >
DL

K −D
. (1.29)

We show that the equilibrium point

(S∗, x∗) =
(

DL

K −D
,Se − DL

K −D

)
(1.30)

for (1.28) is GAS and LES.
The variable Z = S + x− Se satisfies

Ż = −DZ. (1.31)

We easily deduce that all of the trajectories of (1.28) enter

B = (0, 2Se) × (0, 2Se).

One can readily check that (S∗, x∗) and (Se, 0) are the unique equilibrium
points of (1.28) in the closure B of B. Also, (S∗, x∗) is the unique LES
equilibrium point in B (by considering the linearization of (1.28) around
(S∗, x∗), and using (1.29) to show that (Se, 0) is not an asymptotically stable
equilibrium, because ẋ > 0 when S > Se and S is near Se).

We next consider any trajectory (S(t), x(t)) of (1.28) with any initial con-
dition in B and prove that it converges asymptotically to (S∗, x∗). This will
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show that (S∗, x∗) is a GAS equilibrium of (1.28) with state space X = B. Our
analysis uses basic results from dynamic systems theory; see, e.g., [53, 153].

Let Ω denote the ω-limit set of this trajectory. One can easily prove that
Ω 
= {(Se, 0)} because

KSe
L + Se

−D > 0.

We claim that (Se, 0) /∈ Ω. To prove this claim, we proceed by contradic-
tion. Suppose that (Se, 0) ∈ Ω. Since Ω 
= {(Se, 0)}, the well-known Butler-
McGehee Theorem (e.g., from [153, p.12]), applied to the hyperbolic rest
point (Se, 0), provides a value Sc 
= Se such that (Sc, 0) belongs to Ω. This
is impossible because

Z(t) = S(t) + x(t) − Se → 0.

Therefore (Se, 0) /∈ Ω. Similarly, one can prove that there is no point of the
form (Sp, 0) ∈ B in Ω.

Therefore, we deduce from the Poincaré-Bendixson Trichotomy [153, p.9]
that either Ω = {(S∗, x∗)} or it is a periodic orbit which does not contain
any point of the form (Sp, 0). Suppose Ω is a periodic orbit, and set

f1(S, ξ) = D(Se − S) − KS

L + S
eξ and f2(S, ξ) =

KS

L + S
−D.

Then, the system {
Ṡ = f1(S, ξ)
ξ̇ = f2(S, ξ) ,

(1.32)

which is deduced from (1.28) through the change of coordinate ξ = lnx, also
admits a periodic trajectory. On the other hand,

∂f1

∂S
(S, ξ) +

∂f2

∂ξ
(S, ξ) < 0,

so Dulac’s Criterion [53] implies that (1.32) admits no periodic orbit. This
contradiction shows that Ω is reduced to (S∗, x∗), as claimed.

1.5.4 UGAS Time-Varying System

The one-dimensional linear time-varying system

ẋ = − sin2(t)x (1.33)

admits the origin as a UGAS equilibrium point. For all t ≥ t0 and initial
states x0, its solutions are
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x(t, t0, x0) = exp
(
−
∫ t

t0

sin2(m)dm
)

x0 ,

which satisfy

|x(t, t0, x0)| = exp
(
−1

2
(t − t0) +

1
4
(sin(2t) − sin(2t0))

)
|x0|

≤ β(|x0|, t− t0)
(1.34)

with β(r, s) = e−
1
2 s+

1
2 r. The function β is of class KL.

1.5.5 Systems in Chained Form

We have seen that the origin of the system (1.21) is not asymptotically sta-
bilizable by any feedback of class C1 that is independent of t. However, the
origin of this system can be globally uniformly asymptotically stabilized by
time-varying control laws of class C1. To prove this, let us choose

u1 = −x1 + sin(t)[cos(t)x1 + x2]
u2 = − sin(t) − cos(t). (1.35)

This choice yields the chained form system
⎧
⎨

⎩
ẋ1 = −x1 + sin(t)

[
cos(t)x1 + x2

]

ẋ2 =
[− sin(t) − cos(t)

][− x1 + sin(t)(cos(t)x1 + x2)
]
.

(1.36)

It follows that the time derivative of ζ
.= cos(t)x1 + x2 satisfies

ζ̇ = − sin(t)x1 + cos(t)
[− x1 + sin(t)(cos(t)x1 + x2)

]

+
[− sin(t) − cos(t)

][− x1 + sin(t)(cos(t)x1 + x2)
]

= − sin2(t)ζ.

(1.37)

We showed in Sect. 1.5.4 that for all t ≥ t0 and any initial state (x10, x20),

|ζ(t, t0, ζ0)| ≤ exp
(
−1

2
(t− t0) +

1
2

)
|ζ0| , (1.38)

where ζ0 = cos(t0)x10 + x20. On the other hand, we have

ẋ1 = −x1 + sin(t)ζ. (1.39)

We deduce that for all t ≥ t0 and any initial condition (x10, x20),
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|ζ(t, t0, ζ0)| ≤ e−
1
2 (t−t0)+

1
2 |ζ0| and

|x1(t, t0, x10, x20)| ≤ e−(t−t0)|x10|
+2e

1
2

(
e−

1
2 (t−t0) − e−(t−t0)

)
|ζ0|.

(1.40)

Therefore,

|x2(t, t0, x10, x20)| ≤ e−(t−t0)|x10| + 3e
1
2 e−

1
2 (t−t0)(|x10| + |x20|), (1.41)

because |x2| ≤ |x1| + |ζ| everywhere. These inequalities give the announced
result.

1.6 Comments

The ISS paradigm was first announced by Sontag in [156]. This was a signifi-
cant development, because it merged the state space framework of Lyapunov
with the input-output operator approach of Zames. ISS enjoys invariance
under coordinate changes, and can be stated in various equivalent forms in-
cluding energy-like estimates that generalize the standard Lyapunov decay
condition. Sontag and Wang characterized ISS by proving that a system is
ISS if and only if it admits an ISS Lyapunov function [169]; see our discussion
on ISS Lyapunov functions in the next chapter. This characterization simpli-
fies the task of checking that a system is ISS. Another important property of
ISS is the following ISS superposition principle [168]:

Theorem 1.3. A time-invariant system

ẋ = f(x, u), x ∈ R
n, u ∈ R

m (1.42)

is ISS if and only if the following are true: its zero-system ẋ = f(x, 0) is
stable and (1.42) satisfies the asymptotic gain property.

The asymptotic gain property is the requirement that there exists a func-
tion γ ∈ K∞ such the flow map x(t, x0, u) of (1.42) satisfies

lim sup
t→+∞

|x(t, x0, u)| ≤ γ(|u|∞)

for all x0 ∈ R
n and u ∈ M(Rm). It is tempting to surmise that the GAS

property of ẋ = f(x, 0) (i.e., 0-GAS of (1.42)) guarantees boundedness of all
trajectories of (1.42) under disturbances that converge to 0. This is true if
(1.42) is a linear time-invariant system ẋ = Ax + Bu. In fact, 0-GAS linear
time-invariant systems satisfy the converging-input converging state (CICS)
property which says that trajectories converge to zero when the inputs do
[165]. However, this does not carry over to nonlinear systems because as
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noted in [165], the system ẋ = −x + (x2 + 1)u has divergent solutions when
u(t) = (2t + 2)−1/2.

One can also give a superposition principle for iISS, using the following
bounded energy frequently bounded state (BEFBS) property :

∃σ ∈ K∞ such that :
∫ +∞

0

σ(|u(s)|)ds < ∞ ⇒ lim inf
t→+∞ |x(t, x0, u)| < ∞.

(BEFBS)

In fact, (1.42) is iISS if and only if it satisfies the BEFBS property and is
0-GAS [6].

During the past ten years, ISS has been generalized in several different
directions. There are now notions of ISS for hybrid systems, which involve
discrete and continuous subsystems and rules for switching between the sub-
systems [47, 48]. There are also analogs of ISS for systems with outputs

ẋ = f(x, u), y = H(x), (1.43)

such as input-to-output stability (IOS), which is the requirement that there
exist functions β ∈ KL and γ ∈ K∞ such that

|y(t)| ≤ β
(|x(0)|, t)+ γ

(|u|[0,t]
)

along all trajectories of the system [171]. One then shows that a system is
IOS if and only if it admits an IOS Lyapunov function; see Sect. 6.7 for
the relevant definitions and results on constructing explicit IOS Lyapunov
functions for time-varying systems.

Some other output stability concepts for (1.43) include input/output-to-
state stability (IOSS) and output-to-state stability (OSS) which are the re-
quirements that there are functions γi ∈ K∞ and β ∈ KL such that

|x(t)| ≤ β
(|x(0)|, t)+ γ1

(|u|[0,t]
)

+ γ2

(|y|[0,t]
)

(IOSS)

and
|x(t)| ≤ β

(|x(0)|, t)+ γ3

(|y|[0,t]
)

(OSS)

along all trajectories of (1.43), respectively. The IOSS and OSS properties can
be characterized in terms of the existence of Lyapunov functions as well [73].
Input-measurement-to-error stability (IMES) is a significant generalization
of ISS for systems

ẋ = f(x, u), y = h(x), w = g(x) (1.44)

with error outputs y = h(x) and measurement outputs w = g(x) [165]. The
IMES property says that there exist β ∈ KL and functions σ, γ ∈ K such
that

|y(t)| ≤ β
(|x(0)|, t)+ σ

(|w|[0,t]
)

+ γ
(|u|[0,t]

)
(IMES)
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along all trajectories of (1.44). However, to our knowledge, there is no smooth
Lyapunov characterization for IMES available.

Backstepping is discussed in detail in [149]. See also Chap. 7. Some pio-
neering results on backstepping include [19, 31, 179].

The proof of Brockett’s Stabilization Theorem uses basic facts from degree
theory, combined with a homotopy argument. Here is a sketch of the proof;
see [161, Sect. 5.9] for details. Using degree theory results from [15], one first
proves the following:

Lemma 1.3. Let ρ > 0 be a given constant and H : [0, 1] × ρBn → R
n be a

continuous function such that the following hold:

1. H(1, x) = −x for all x; and
2. H(t, x) 
= 0 for all x ∈ boundary(ρBn).

Then there is a constant ε > 0 such that the image of ρBn � x 
→ H(0, x)
contains εBn.

Brockett’s Theorem follows by applying Lemma 1.3 to

H(t, x) .=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(x, us(x)), if t = 0

−x, if t = 1
1
t

[
φ
(

t
1−t , x

)
− x

]
, if 0 < t < 1

where φ is the flow map for the closed-loop system ẋ = f(x, us(x)) and ρ > 0
is chosen so that ρBn is in the domain of attraction of the closed-loop system.
Brockett’s Criterion is a far reaching result because it implies that no system
of the form

ẋ = u1g1(x) + . . . + umgm(x) = G(x)u

with m < n and
rank[g1(0), . . . , gm(0)] = m

admits a C1 pure state stabilizing feedback us(x); see [163] for the simple
proof. Hence, no totally nonholonomic mechanical system is C1 stabilizable
by a pure state feedback.

In [146], Samson provided important general results that use time-varying
feedback to help overcome the obstructions imposed by Brockett’s Crite-
rion. See also [65], which uses backstepping to build a time-varying feedback
stabilizer for a two degrees-of-freedom mobile robot. By [27], the system
ẋ = f(x, u) is stabilizable by a time-varying continuous feedback u = k(t, x)
when it is drift free (meaning f(x, 0) ≡ 0) and completely controllable.

Another approach to stabilizing the system is to look for a dynamic sta-
bilizer, meaning a locally Lipschitz dynamics

ż = A(z, x)

and a locally Lipschitz function k(z, x) such that the combined system



1.6 Comments 23

⎧
⎨

⎩
ẋ = f(x, k(z, x))

ż = A(z, x)

is GAS. See [160] for a detailed discussion on dynamic stabilizers for linear
systems. However, a dynamic feedback for ẋ = f(x, u) may fail to exist, even
if the system is completely controllable. An example from [173] where this
happens is

ẋ = f(x, u) =
[

(4 − x2
2)u2

2

e−x1 + x2 − 2e−x1 sin2(u1)

]
, x ∈ R

2, u ∈ R
2. (1.45)

The fact that (1.45) is completely controllable (and therefore GAC to
A = {0}) was shown in [173], which also shows that it is impossible to pick
paths converging to the origin in such a way that this selection is continuous
as a function of the initial states. Since the flow map of any dynamic sta-
bilizer would give a continuous choice of paths converging to 0, no dynamic
stabilizer for (1.45) can exist, even if we drop the requirement that the state
of the regulator converges to zero. As a special case, (1.45) cannot admit a
continuous time-varying feedback u = k(t, x). This does not contradict the
existence theory [27] for time-varying feedbacks because (1.45) has drift.

Yet another approach to circumventing the “virtual obstacles” to feedback
stabilization imposed by Brockett’s Condition involves nonsmooth analysis
and discontinuous feedbacks. See for example [94] where a nonsmooth (but
time-invariant) feedback was constructed for Brockett’s Nonholonomic Inte-
grator using a generalized Lie derivative, which involves a proximal subgra-
dient [22] and a semi-concave control-Lyapunov function (CLF). Discontinu-
ous feedbacks complicate the analysis because they give differential equations
with discontinuous right hand sides. Discontinuous dynamics can sometimes
be handled using Filippov solutions, sample-and-hold solutions, or Euler so-
lutions [94, 162].

In addition to “virtual” obstacles, there are also “topological” obstacles to
time-invariant feedback stabilization. If a time-invariant system ẋ = f(x, u)
evolving on some manifold M is globally asymptotically controllable to a
singleton equilibrium and has a continuous stabilizing feedback k(x), then
Milnor’s Theorem [115] implies that M is diffeomorphic to Euclidean space.
This follows because k(x) would guarantee the existence of a smooth CLF
that could be taken as a Morse function with a unique critical point, and
manifolds admitting such Morse functions are known to be diffeomorphic to
Euclidean space [163].



Chapter 2

Review of Lyapunov Functions

Abstract We turn next to some of the basic notions of Lyapunov functions.
Roughly speaking, a Lyapunov function for a given nonlinear system is a
positive definite function whose decay along the trajectories of the system
can be used to establish a stability property of the system. In general, one
also requires Lyapunov functions to be proper, but one can prove stability
using non-proper Lyapunov-like functions as well. Even when a system is
known to be stable, one often still needs explicit strict Lyapunov functions,
e.g., to design stabilizing feedbacks, or to find closed form expressions for the
comparison functions in the ISS condition.

Non-strict Lyapunov functions cannot in general be used for these pur-
poses. As we will see, strict Lyapunov functions are also important when
estimating domains of attraction and L2 gains. We also address the issue
of whether a given time-invariant system admits a Lyapunov function that
has a globally bounded gradient. This is important, because the existence
of such a Lyapunov function guarantees robustness with respect to additive
uncertainty in the dynamics. We illustrate these ideas in several examples.

2.1 Strict Lyapunov Function

2.1.1 Definition

A strict Lyapunov function is a CLF for a system with no controls. Strict
Lyapunov functions are also called strong Lyapunov functions. We therefore
begin by defining CLFs. In the rest of this section, we consider only contin-
uous time nonlinear systems

ẋ = f(t, x, u) (2.1)

25
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under the assumptions of the previous chapter, where the state x and input
vector u are valued in an open set X ⊆ R

n and a set U ⊆ R
p, respectively.

We discuss analogs for discrete time systems in Sect. 2.3.
We assume that the system (2.1) has equilibrium state 0. Let V : [0,∞)×

X → [0,∞). We say that V is proper provided the set {x ∈ X : supt V (t, x) ≤
L} is compact for each constant L > 0; we call it positive definite provided
inft V (t, x) = 0 if and only if x = 0. When V is C1, we use the notation

V̇ (t, x, u) .=
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x, u).

A C1, proper, positive definite function V : [0,∞)×X → [0,∞) is then called
a CLF for the system (2.1) provided for each x ∈ X \{0}, there exists a value
u ∈ U such that

V̇ (t, x, u) < 0

for all t ≥ 0. When the system has no controls, we indicate this decay con-
dition by V̇ (t, x) < 0. Also, when X = R

n, we use the term radially bounded
to mean properness, which in this case gives the condition that

lim
|x|→+∞

inf
t

V (t, x) = +∞.

For the special case of time-invariant control affine systems

ẋ = ϕ1(x) + ϕ2(x)u (2.2)

with X = R
n, a positive definite time-invariant function V (x) is a CLF for

(2.2) provided the following hold:

1. V is radially unbounded; and
2. Lϕ1V (x) ≥ 0 ⇒ [x = 0 or Lϕ2V (x) 
= 0].

We say that a CLF for (2.2) has the small control property provided: For
each ε > 0, there is a δ > 0 such that if 0 
= |x| < δ, then there is a u ∈ U
such that |u| < ε and ∇V (x)ϕ1(x) + ∇V (x)ϕ2(x)u < 0. A special case of
Artstein’s Theorem [10] says the following: Let V (x) be a positive definite
radially unbounded function. There exists a continuous feedback K(x) so that
V is a strict Lyapunov function for (2.2) in closed-loop with u = K(x) if and
only V is a CLF for (2.2) that satisfies the small control property.

Specializing to systems with no controls and X = R
n, the strict Lyapunov

function decay condition V̇ (t, x) < 0 for all x 
= 0 and all t ≥ 0 means that

d

dt
V (t, x(t, t0, x0)) < 0 (2.3)

for all t ≥ t0 ≥ 0 as long as the trajectory x(t, t0, x0) is not at 0. The decay
condition (2.3) is equivalent to the existence of a positive definite function α
such that
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V̇ (t, x) ≤ −α(|x|) ∀x ∈ R
n and ∀t ≥ 0;

this is shown in [157] for time-invariant systems but the generalization to
time-varying systems is straightforward. Using suitable transformations Γ (V )
of the Lyapunov function gives different possible functions α. In fact, a slight
variant of an argument from [141, Sect. 4] shows that a suitable transforma-
tion V1 = Γ (V ) that is C1 on R

n \ {0}, proper, and positive definite satisfies
V̇1(t, x) ≤ −V1(t, x) for all x and t. We then call V1 an exponential decay
Lyapunov function, although the norm of the trajectories will not in general
decay exponentially.

It is sometimes useful to relax the properness requirement on Lyapunov
functions. A positive definite function that satisfies all of the requirements
for being a strict Lyapunov function except properness is called a strict
Lyapunov-like function. Strict Lyapunov-like functions were constructed in
[106], under Matrosov Conditions; see Chap. 3. Throughout the chapter, we
use the convention that all (in)equalities should be understood to hold glob-
ally unless otherwise indicated, and we leave out the arguments of our func-
tions when they are clear from the context.

2.1.2 Lemmas

The existence of a strict Lyapunov function for our system

ẋ = f(t, x), x ∈ X (2.4)

is sufficient for the system to be UGAS. Strict Lyapunov-like functions can
be used to prove asymptotic stability as well. The following result from [70,
Sect. 4.5] illustrates these points:

Lemma 2.1. Let 0 be an equilibrium for (2.4), and V : [0,∞)×X → [0,∞)
be a C1 function that admits continuous positive definite functions Wi so that
the following conditions hold:

1. W1(x) ≤ V (t, x) ≤ W2(x); and
2. V̇ (t, x) ≤ −W3(x) for all t ≥ 0 and x ∈ X .

Then 0 is a uniformly asymptotically stable equilibrium for (2.4). If the pre-
ceding conditions hold with X = R

n and W1 is radially unbounded, then 0 is
a UGAS equilibrium for (2.4). In the special case where there exist positive
constants ci and p so that the preceding assumptions hold with Wi(x) = ci|x|p
and X = R

n, then the equilibrium is GES.

The preceding theorem reduces the stability analysis to a search for an
appropriate Lyapunov function. On the other hand, even if a system (2.4) is
known to be UGAS, it is often important to be able to go in the converse
direction, by constructing a strict Lyapunov function for the system. As a
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simple time-invariant example, assume that we know that a control affine
system (2.2) is rendered GAS to the origin by a given feedback us(x). In
general, there is no reason to expect the closed-loop system

ẋ = φ1(x) + φ2(x)[K(x) + d] (2.5)

with the disturbance d to be ISS when we pick K(x) = us(x).1 On the other
hand, if we know a strict Lyapunov function V for the closed-loop system

ẋ = f(x) .= φ1(x) + φ2(x)us(x) (2.6)

for which −LfV is radially unbounded, then (2.5) is ISS if we choose

K(x) = us(x) − (Lφ2V (x))� . (2.7)

Standard converse Lyapunov function theory guarantees the existence of a
strict Lyapunov function for the GAS system (2.6).

However, to have an implementable stabilizer (2.7), we need an explicit
expression for the Lie derivative Lφ2V (x), hence an explicit strict Lyapunov
function V . The strict Lyapunov functions provided by converse Lyapunov
theory are usually not explicit, even if the system is UGES. The following
result from [70, Sect. 4.7] illustrates this point:

Lemma 2.2. Assume that there exist constants D > 1 and λ > 0 such that
all trajectories of (2.4) satisfy the UGES condition

|x(t, t0, x0)| ≤ D|x0|e−λ(t−t0) ∀x0 ∈ X and ∀t ≥ t0 ≥ 0 (2.8)

and that there exists a constant K > λ such that
∣∣∣∣
∂f

∂x
(t, x)

∣∣∣∣ ≤ K ∀x ∈ R
n and ∀t ∈ [0,∞). (2.9)

Then the function

V (t, ξ) = 2
∫ t+δ

t

|x(τ, t, ξ)|2dτ, where δ =
ln(2D2)

2λ
(2.10)

admits constants c1, c2, c3 > 0 such that

c1|ξ|2 ≤ V (t, ξ) ≤ c2|ξ|2 , |Vξ(t, ξ)| ≤ c3|ξ| , and
Vt(t, ξ) + Vξ(t, ξ)f(t, ξ) ≤ −|ξ|2 (2.11)

hold for all t ∈ [0,∞) and ξ ∈ R
n, and therefore is a strict Lyapunov function

for the system.

1 For example, ẋ = − arctan(x)+u is GAS when we choose u ≡ 0, but ẋ = − arctan(x)+d
is not ISS, because the bounded disturbance d ≡ 2 produces unbounded trajectories.
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Formula (2.10) is non-explicit, because the flow map in the integrand can-
not ordinarily be obtained in closed form, except in basic cases where (2.4)
is linear and time-invariant. In Chap. 10, we explicitly construct strict Lya-
punov functions for a class of nonlinear time-varying systems that satisfy
the conclusions of Lemma 2.2. Lemma 2.2 can be extended to time-varying
systems that are not necessarily exponentially stable. For example, we have
the following from [70, Chap. 4, p.167]:

Theorem 2.1. Assume that (2.4) is UGAS to the origin, and that f :
[0,∞) × X → R

n is C1. Let r > 0 be any constant such that rBn ⊆ X ,
and assume that ∂f

∂x is bounded on [0,∞) × rBn. Let β ∈ KL and the con-
stant r0 > 0 be such that r0 ≤ r, β(r0, 0) < r and

|x(t, t0, x0)| ≤ β(|x0|, t− t0) ∀t ≥ t0 ≥ 0 and x0 ∈ X . (2.12)

Then the following conclusions hold: (a) There exist a C1 function V :
[0,∞) × (r0Bn) → R and continuous positive definite increasing functions
αi : [0, r0] → [0,∞) such that the following hold on [0,∞) × r0Bn:

α1(|x|) ≤ V (t, x) ≤ α2(|x|);
∂V

∂t
+

∂V

∂x
f(t, x) ≤ −α3(|x|); and

∣∣∣∣
∂V

∂x
(t, x)

∣∣∣∣ ≤ α4(|x|).
(2.13)

(b) If X = R
n and ∂f

∂x is bounded, then we can find a C1 function V and
functions α1, . . . α4 ∈ K∞ such that (2.13) hold for all t ≥ 0 and x ∈ R

n.
If, in addition, the system (2.4) is time-invariant, then V can be taken to
be time-invariant; while if (2.4) is periodic in t, then V can be taken to be
periodic in t as well.

The strict Lyapunov function in the proof of Theorem 2.1 is also expressed
in terms of the flow map and so is non-explicit; see Appendix B.1 for the main
ideas from the proof. The challenge is to obtain explicit formulas for global
strict Lyapunov functions that do not involve the flow map.

2.1.3 ISS Lyapunov Function

Consider the system with inputs

ẋ = f(t, x, u), x ∈ X , u ∈ U (2.14)

satisfying our standing assumptions from the previous chapter. For simplicity,
we assume in the rest of this subsection that the state space X for (2.14) is
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all of R
n. When X = R

n, we call a function V : [0,∞) × X → [0,∞) a
storage function provided that there exist α1, α2 ∈ K∞ so that α1(|x|) ≤
V (t, x) ≤ α2(|x|) everywhere; in this case, we also say that V is uniformly
proper and positive definite, or of class UPPD. For systems with inputs, we
typically make the following more stringent assumption on V : A C1 function
V : [0,∞)×R

n → [0,∞) is said to be of class UBPPD (written V ∈ UBPPD)
provided (i) it is a storage function and (ii) its gradient is uniformly bounded
in t, meaning there exists a function α3 ∈ K∞ such that for all t ≥ 0 and
x ∈ R

n, we have
|∇V (t, x)| ≤ α3(|x|). (2.15)

Notice that (2.15) is redundant when V ∈ C1 is periodic in t. The corre-
sponding notions of iISS and ISS Lyapunov functions are as follows:

Definition 2.1. Assume that V : [0,∞) × R
n → [0,∞) is a C1 storage

function. We say that V is an iISS Lyapunov function for (2.14) provided
there exist a positive definite function α3 and a function γ ∈ K∞ such that

V̇ (t, x, u) ≤ −α3(|x|) + γ(|u|) (2.16)

for all x ∈ R
n, t ≥ 0, and u ∈ U . If, in addition, α ∈ K∞, then we call V an

ISS Lyapunov function.

The following was established by Sontag and Wang in [169] for time-
invariant ISS systems but the time-varying systems version can be shown
by similar arguments [39]. The iISS statement was shown in [8].

Lemma 2.3. Let (2.14) be periodic in t. The system (2.14) is iISS (resp.,
ISS) if and only if it admits a C1 iISS (resp., ISS) Lyapunov function.

As in the case where there are no controls, the converse parts of this lemma
do not in general lead to explicit Lyapunov functions. On the other hand,
if we know an explicit ISS Lyapunov function for (2.14), then we can use
standard arguments to derive explicit formulas for the functions β ∈ KL and
γ ∈ K in the ISS estimate. Let us sketch the derivation.

Let V be an ISS Lyapunov function for (2.14). Choose α1, α2 ∈ K∞ so that
α1(|x|) ≤ V (t, x) ≤ α2(|x|) everywhere, and let the functions α3, γ ∈ K∞
satisfy the requirements of Definition 2.1. Setting α(s) = min{s, α3 ◦α−1

2 (s)}
gives

V̇ ≤ −α(V ) + γ(|u|∞)

along all trajectories of (2.14). Hence, along any trajectory of (2.14),

V ≥ α−1
(
2γ(|u|∞)

) ⇒ V̇ ≤ − 1
2α(V ).

Let u ∈ M(U), x0 ∈ X , and t0 ≥ 0 be given, and let x(t) denote the
corresponding trajectory of (2.14) satisfying x(t0) = x0.

Arguing as in [82, Lemma 4.4, p.135] with the function y(r) = V (t0 +
r, x(t0 + r)) shows that if V̇ ≤ −0.5α(V ) on any interval [t0, t̄], then
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V (t, x(t)) ≤ βα(V (t0, x(t0)), t− t0)

on that interval, where βα ∈ KL is

βα(s, t) =

⎧
⎨

⎩
0, if s = 0

s + Φ−1(Φ(s) + t), if s > 0
(2.17)

and

Φ(s) =

⎧
⎨

⎩
+∞, if s = 0

−2
∫ s
1

dr
α(r) , if s > 0

. (2.18)

The fact that Φ(s) → ∞ as s → 0+ is used to show that β(s, t) → 0 as s → 0+

for each t ≥ 0 [82]. A standard invariance argument that is analogous to the
one used in [157] shows that if

V (t, x(t)) ≤ α−1
(
2γ(|u|∞)

)

for a given trajectory x(t)) of (2.14) at a given time t = t̃, then this inequality
remains true for all t ≥ t̃. Hence, we can take

β(s, t) = α−1
1 ◦ βα

(
α2(s), t

)
and γ(r) = α−1

1 ◦ α−1
(
2γ(r)

)

to satisfy our requirements.
This makes it possible to explicitly quantify the effects of the disturbance,

while at the same time obtaining the decay rate on the norm of the state,
which is valuable in applications. See Sect. 2.4.2 for a specific example where
β and γ are computed. Analogous arguments can be carried out for the iISS
case; see [8]. This motivates our search for explicit iISS Lyapunov functions
as well.

2.2 Non-strict Lyapunov Function

Our main building blocks for strict Lyapunov functions will be non-strict
Lyapunov functions (which are also called weak Lyapunov functions). Non-
strict Lyapunov functions V are defined in exactly the same way as strict
Lyapunov functions except instead of the decay condition V̇ < 0 outside
the equilibrium state, we have V̇ ≤ 0. A positive definite function V that
satisfies all requirements for being a (non-)strict Lyapunov function except for
properness is called a (non-)strict Lyapunov-like function. In this subsection,
we discuss three contexts in which non-strict Lyapunov functions naturally
arise. In Chapters 3-5, we provide systematic mechanisms for building strict
Lyapunov functions in each of these contexts.
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2.2.1 Matrosov Theorems

Matrosov’s Theorem [97] provides a Lyapunov approach to proving stability
without having to construct a strict Lyapunov function. In its original formu-
lation, it concludes uniform asymptotic stability of time-varying systems by
using a non-strict Lyapunov function and an auxiliary function whose time
derivative along trajectories is non-zero at all points x ∈ R

n \ {0} where the
derivative of the non-strict Lyapunov function is zero. There are various gen-
eralizations of the original Matrosov result, involving an arbitrary number
of auxiliary functions [86]. These generalizations are referred to as Matrosov
Theorems, and they prove uniform asymptotic stability as well.

While the original motivation for Matrosov’s Theorem was to eliminate
the need for a strict Lyapunov function, it is still important to be able to
construct explicit strict Lyapunov functions for systems satisfying Matrosov’s
Conditions [111]. However, the proofs in [86, 97] do not construct strict Lya-
punov functions. Instead, they conclude uniform asymptotic stability by di-
rectly analyzing the trajectories of the system. One standard formulation is
the following result from [145], where we maintain our standing assumptions
on (2.4) from the previous chapter:

Theorem 2.2. Assume that there are constants R̄ > R > 0 and L > 0,
functions α, ᾱ ∈ K, and continuous functions

V1 : [0,∞) × int(R̄Bn) → R,

V2 : [0,∞) × int(R̄Bn) → R, and

W : R̄Bn → R

for which V̇1(t, x) and V̇2(t, x) are continuous and the following hold:

1. V1(t, 0) = V̇1(t, 0) = 0 for all t ≥ 0;

2. max{|V2(t, x)|, |f(t, x)|} ≤ L for all (t, x) ∈ [0,∞) ×RBn;

3. α(|x|) ≤ V1(t, x) ≤ ᾱ(|x|) for all (t, x) ∈ [0,∞) ×RBn;

4. V̇1(t, x) ≤ W (x) ≤ 0 for all (t, x) ∈ [0,∞) ×RBn; and

5. V̇2(t, x) is non-zero definite on {x ∈ RBn : W (x) = 0}.
Then limt→+∞ x(t, t0, x0) = 0 for each solution x(·, t0, x0) of (2.4) that re-
mains in RBn for all t ≥ t0.

For the proof, see [145]. By non-zero definiteness of a function G : [0,∞)×
R̄Bn → R on a closed set M ⊆ R̄Bn, we mean that for each pair of constants
(ν, ε) for which 0 < ν < ε ≤ R̄, there are values γ, δ > 0 such that:

[{
ν ≤ |x| ≤ ε

}
and

{|x|M < γ} and
{
t ∈ [0,∞)

}] ⇒ ∣∣G(t, x)
∣∣ > δ,
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where |x|M .= inf{|x − q| : q ∈ M} is the distance of x from M . When G is
independent of t, non-zero definiteness simply says that G is bounded away
from zero on the part of any annulus around 0 that is close enough to M .

2.2.2 LaSalle Invariance Principle

Recall that a set M ⊆ R
n is called positively invariant for a forward complete

time-invariant dynamics
ẋ = f(x) (2.19)

evolving on an open set X provided for each x0 ∈ M , the corresponding
solution t 
→ x(t, x0) remains in M for all times t ≥ 0. The set M is called
invariant for (2.19) if the system is complete and each such trajectory is in
M for all t ∈ R. LaSalle’s Invariance Theorem is the following result, which
is shown, e.g., in [70, Sect. 4.2]:

Lemma 2.4. Let the compact set Ω ⊆ X be positively invariant for (2.19),
and V : X → R be a C1 function for which LfV (x) ≤ 0 on Ω. Let M be the
largest invariant subset of

E
.= {x ∈ Ω : LfV (x) = 0}

for (2.19). Then every solution of (2.19) converges to M as t → +∞. If
the preceding assumptions hold except with Ω = R

n and f(0) = 0, and if
no solution of (2.19) can stay in E for all times t ≥ 0 except for the trivial
solution x(t) ≡ 0, then the origin is GAS.

The preceding result can be extended to time-varying systems. For exam-
ple, we have the following from [148, Sect. 5.4]:

Lemma 2.5. Consider the system (2.4) with state space X = R
n. Assume

that f(t, x) and V (t, x) have the same period T > 0 in t, where V is a C1

storage function. If V̇ (t, x) ≤ 0 for all t ≥ 0 and all x ∈ R
n, and if the largest

invariant set for (2.4) in

S
.=
{
x ∈ R

n : V̇ (t, x) = 0 ∀t ≥ 0
}

is {0}, then 0 is a UGAS equilibrium for (2.4).

See also [148, Sect. 5.5] for generalized LaSalle Theorems for time-varying
systems that are not necessarily periodic in time. LaSalle Invariance provides
another method for proving stability without having to find a strict Lyapunov
function, but it is of limited use when the system is subject to disturbances.
This is because small perturbations of the dynamics can cause V̇ (t, x) to
become positive at some pairs (t, x).
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2.2.3 Jurdjevic-Quinn Theorem

Consider a general control affine system

ẋ = f(x) + g(x)u , where g(x) = (g1(x), . . . , gp(x)) (2.20)

evolving on R
n in which the vector fields f : R

n → R
n and gi : R

n → R are
smooth and f(0) = 0. We use the standard Lie bracket notation

ad0
f (g) = g, adf (g) = [f, g] = g∗f − f∗g,

and adkf (g) = adf
(
adk−1

f (g)
)

for all k > 1 and all smooth vector fields f, g : R
n → R

n, where the star sub-
script indicates a Jacobian. In [68], Jurdjevic and Quinn proved the following
single input result:

Theorem 2.3. (Jurdjevic-Quinn Theorem) Consider the system (2.20) with
state space X = R

n and p = 1. Assume the following:

1. f(x) = Ax for some skew symmetric matrix A; and 2

2. for all x ∈ R
n \ {0}, we have span{(adkf (g))(x) : k = 0, 1, 2, . . .} = R

n.

Then the feedback u(x) = −x�g(x) renders (2.20) GAS to zero.

Proof. By a simple calculation,

d

dt
|x(t, x0)|2 = −2u2

(
x(t, x0)

) ≤ 0

for all t ≥ 0 and x0 ∈ R
n along all trajectories t 
→ x(t, x0) of the closed-loop

system, because x�Ax = 0 for all x. We show that no solution can stay in
E

.= {x : u(x) = 0} except for the trivial solution. The GAS property will
then follow from the LaSalle Invariance Principle.

Fix x0 ∈ E and consider the function Γ (t) .= 〈etAx0, g(etAx0)〉. Since
x(t, x0) = etAx0 ∈ E for all t ≥ 0, we get Γ (t) = 0 for all t ≥ 0. A simple
inductive argument gives

0 =
dk

dtk
Γ (t) =

〈
x0, e

−tAadkf (g)(etAx0)
〉

for all t ≥ 0. Evaluating these higher time derivatives at t = 0 shows that
〈x0, (adkf (g))(x0)〉 = 0 for all k ≥ 0. Hence, x0 = 0, by Assumption 2. �
2 A slight variant of the argument that we are about to give applies if the skew symmetry
assumption on A is replaced by the assumption that there is an invertible matrix M such
that MAM−1 = MAM� = J is skew symmetric, by showing that the dynamics for
y = Mx is GAS to the origin with the feedback u(y) = −〈y, Mg(M�y)〉. In fact, the
dynamics are ẏ = F (y) + G(y)u, where F (y) = Jy and G(y) = Mg(M�y), so the proof
follows from the relations (adk

F (G))(y) = M(adk
f (g))(M�y).
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The Jurdjevic-Quinn Theorem has been generalized in several works. In
general, conditions that provide a smooth asymptotically stabilizing control
law using a first integral of the drift vector field, under some controllabil-
ity conditions, are now called Jurdjevic-Quinn Conditions. A general set of
Jurdjevic-Quinn Conditions for cases where the vector field f in (2.20) is not
required to be linear is as follows.

Definition 2.2. We say that (2.20) satisfies the (Weak) Jurdjevic-Quinn
Conditions provided there exists a smooth function V : R

n → R satisfying:

1. V is positive definite and radially unbounded;
2. for all x ∈ R

n, LfV (x) ≤ 0; and
3. there exists an integer l such that the set

W (V ) =
{

x ∈ R
n : ∀k ∈ {1, . . . , p} and i ∈ {0, . . . , l},

LfV (x) = Ladi
f (gk)V (x) = 0

}

equals {0}.
If (2.20) satisfies the Weak Jurdjevic-Quinn Conditions, then it is globally
asymptotically stabilized by any feedback

u = −ξ(x)LgV (x)�,

where ξ is any everywhere positive function of class C1 [41]. The proof of this
result also follows from the LaSalle Invariance Principle. However, it is far
from clear how to construct CLFs for systems satisfying the Weak Jurdjevic
Quinn Conditions. We address this CLF construction problem in Chap. 4.

2.3 Discrete Time Lyapunov Function

The preceding definitions have analogs for discrete time systems

xk+1 = f(k, xk, uk) (2.21)

with equilibrium state 0 by replacing the continuous time t ≥ 0 with the
discrete time k ∈ {0, 1, 2, . . .} and replacing the time derivative V̇ (t, x, u) of
the Lyapunov function along trajectories with the first difference

ΔV (k, x, u) = V
(
k + 1, f(k, x, u)

)− V (k, x) (2.22)

in the conditions defining Lyapunov functions.
The definition of discrete time Lyapunov functions does not require V to

be C1 because there are no derivatives of V in (2.22). Also, discrete time strict
Lyapunov functions have the property that along each trajectory sequence
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{xk} of (2.21), the sequence V (k, xk) is decreasing in k, as long as xk 
= 0.
If instead V is only a non-strict Lyapunov function, then V (k, xk) is non-
increasing. We focus on continuous time systems in much of the sequel, but
most of the results to follow have discrete time analogs.

2.4 Illustrations

2.4.1 Strict Lyapunov Function

Let us again consider the system
{

ẋ1 = u1

ẋ2 = u2u1
(2.23)

from Sect. 1.4. In closed-loop with the stabilizing feedbacks

u1 = −x1 + sin(t)(cos(t)x1 + x2)
u2 = − sin(t) − cos(t), (2.24)

the system becomes
⎧
⎨

⎩
ẋ1 = −x1 + sin(t)

[
cos(t)x1 + x2

]

ẋ2 =
[− sin(t) − cos(t)

][− x1 + sin(t)
(
cos(t)x1 + x2

)]
.

(2.25)

We now show that (2.25) admits the global strict Lyapunov function

Vs(t, x) =
1
2
x2

1 +
(
4 +

π

2
− 2 sin(t) cos(t)

)
[cos(t)x1 + x2]2. (2.26)

In later chapters, we provide general methods for constructing global strict
Lyapunov functions.

Since

[cos(t)x1 + x2]2 ≥ cos2(t)x2
1 + x2

2 −
(

3
4
x2

2 +
4
3

cos2(t)x2
1

)

≥ −1
3
x2

1 +
1
4
x2

2,

one easily checks that the inequalities

1
6
[x2

1 + x2
2] ≤ Vs(t, x) ≤ 17[x2

1 + x2
2] (2.27)

are satisfied everywhere. Also, the time derivative of Vs along trajectories of
(2.25) is
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V̇s(t, x) = −x2
1 + sin(t)x1[cos(t)x1 + x2]

+2
(
sin2(t) − cos2(t)

)
[cos(t)x1 + x2]2

+2
(
4 + π

2 − 2 sin(t) cos(t)
)
[cos(t)x1 + x2]

×[− sin(t)x1 + cos(t)ẋ1 + ẋ2].

(2.28)

Setting ζ = cos(t)x1 + x2, we obtain

V̇s(t, x) = −x2
1 + sin(t)x1ζ + 2

(
sin2(t) − cos2(t)

)
ζ2

+2
(
4 + π

2 − 2 sin(t) cos(t)
)
ζ

× [− sin(t)x1 + cos(t)(−x1 + sin(t)ζ)

+{− sin(t) − cos(t)}(−x1 + sin(t)ζ)]

= −x2
1 + sin(t)x1ζ + 2

(
sin2(t) − cos2(t)

)
ζ2

−2
(
4 + π

2 − 2 sin(t) cos(t)
)
sin2(t)ζ2

= −x2
1 + sin(t)x1ζ

+
[−2 − (4 + π) sin2(t) + 4 sin3(t) cos(t)

]
ζ2

≤ − 1
2x

2
1 − ζ2

= − 1
2x

2
1 − (cos(t)x1 + x2)2 ≤ − 1

6 [x2
1 + x2

2],

(2.29)

where the first inequality used the relation

sin(t)x1ζ ≤ 1
2
x2

1 +
1
2
ζ2

and the second inequality used

−(cos(t)x1 + x2)2 ≤ − cos2(t)x2
1 − x2

2 +
4
3

cos2(t)x2
1 +

3
4
x2

2.

Since V̇s(t, x) has a negative definite upper bound, it follows from (2.27) that
Vs is a strict Lyapunov function for the system (2.25).

2.4.2 ISS Lyapunov Function

We next consider the case where there is additive noise in the u1 input in
(2.23). We show that the resulting closed-loop system
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⎧
⎨

⎩
ẋ1 = −x1 + sin(t)[cos(t)x1 + x2] + δ1(t)

ẋ2 = [− sin(t) − cos(t)][−x1 + sin(t)(cos(t)x1 + x2) + δ1(t)]
(2.30)

with the controllers (2.24) is ISS with respect to the disturbance δ1. Our
strategy is to show that (2.26) is an ISS Lyapunov function for (2.30), which
will lead to explicit functions β and γ in the ISS estimate.

To this end, first note that (2.26) satisfies

max
i=1,2

∣∣∣∣
∂Vs
∂xi

(t, x)
∣∣∣∣ ≤ 17|x|1 ∀x = (x1 x2) ∈ R

2 and t ≥ 0. (2.31)

Hence, the last inequality of (2.29) implies that the time derivative of Vs
along the trajectories of (2.30) satisfies

V̇s(t, x) ≤ − 1
6 |x|2 + 51|x|1|δ1(t)|

≤ − 1
6 |x|2 + {|x|}{102|δ1(t)|}

≤ − 1
12 |x|2 + 3 × 1022δ2

1(t),

(2.32)

by the triangle inequality

pq ≤ 1
2εp

2 + ε
2q

2

applied to the terms in braces with p = |x|, q = 102|δ1(t)|, and ε = 6. This
and the proper positive definiteness condition (2.27) imply that Vs is an ISS
Lyapunov function for (2.30). As we saw in Sect. 2.1.3, explicit ISS Lyapunov
functions lead to explicit expressions for the functions β ∈ KL and γ ∈ K∞ in
the ISS estimate. We derive these expressions next for the dynamics (2.30).

Combining (2.32) with the inequalities (2.27) gives

V̇s(t, x) ≤ − 1
204Vs(t, x) + 3 × 1022δ2

1(t). (2.33)

By integrating this inequality, we deduce that for any initial condition x(t0) =
x0, the corresponding trajectories satisfy

Vs(x(t), t) ≤ e−
t−t0
204 Vs(x(t0), t0) + 612 × 1022|δ1|2[t0,t]. (2.34)

Combining (2.34) with (2.27), and then using the relation
√

p + q ≤ √
p +

√
q

for p, q ≥ 0 gives the desired ISS estimate

|x(t, t0, x0, u)| ≤ β(|x0|, t− t0) + γ(|δ1|∞)

with the choices β(r, s) = 11re−s/408 and γ(r) = 102
√

3672r.



2.4 Illustrations 39

2.4.3 iISS Lyapunov Function

If we allow additive disturbances in both the u1 and u2 channels in the dy-
namics (2.23) and use the feedbacks (2.24) as before, then the corresponding
closed-loop system

{
ẋ1 = −x1 + sin(t)ζ + δ1(t)
ẋ2 = [− sin(t) − cos(t) + δ2(t)][−x1 + sin(t)ζ + δ1(t)]

(2.35)

where
ζ = cos(t)x1 + x2

is not ISS with respect to the disturbance δ = (δ1, δ2). This follows by ap-
plying Lemma 1.2 with the disturbance

δ = (0, sin(t) + cos(t) + 1),

Lx = (x2 − x1, x2), and k = 1. On the other hand, (2.35) is iISS with
respect to δ. We show this next using the strict Lyapunov function (2.26).
Our arguments are a time-varying analog of those of [8, pp.1091-2].

Using (2.31) and the first inequality in (2.32) gives

V̇s(t, x) ≤ − 1
6 |x|2 + 51|x|1|δ| + 17|x|1(2|x|1 + |δ|)|δ|

≤ −α3(|x|) + λ(|x|)Δ(|δ|),
(2.36)

and
α1(|x|) ≤ Vs(t, x) ≤ α2(|x|)

everywhere, where

α1(r) = α3(r) = 1
6r

2, α2(r) = 17r2,

λ(r) = 136(r + r2), and Δ(r) = r + r2.

Taking

W (t, x) = Π(Vs), where Π(r) =
∫ r
0

ds
1 + χ(s)

and

χ(s) = λ ◦ α−1
1 (s) = 136

√
6s + 816s,

it follows that

Ẇ (t, x) ≤ −ρ(|x|) + Δ(|δ|), where ρ(r) =
α3(r)

1 + λ(α−1
1 (α2(r))

.

Moreover, W is also proper and positive definite, and ρ is positive definite.
Therefore, W is an iISS Lyapunov function for (2.35). It follows from Lemma
2.3 that (2.35) is iISS.
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2.4.4 LaSalle Invariance Principle

Consider the system {
ẋ1 = x2

ẋ2 = −x1 − x3
2

(2.37)

with x ∈ R
2. The function

V (x) =
1
2
[x2

1 + x2
2] (2.38)

satisfies
V̇ (x) = −W (x), (2.39)

where W (x) = x4
2. However, this is not enough to conclude that the system

is GAS to 0 because W is non-negative definite but not positive definite.
Instead, we use W in conjunction with the LaSalle Invariance Principle to
show the GAS property for (2.37).

Let x(t) be any solution of (2.37) with any initial state x0. By (2.39),

x(t) ∈ Ωx0 = {x ∈ R
2 : |x| ≤ |x0|} ∀t ≥ 0.

We deduce from Lemma 2.4 that x(t) converges to the largest invariant set
S contained in

Ex0 = {x ∈ Ωx0 : x2 = 0}.
We show that S = {0}. Let z(t) = (z1(t) z2(t)) be any solution of the system
(2.37) with initial condition z0 ∈ S. Since S is positively invariant, we have
z2(t) = 0 for all t ≥ 0. Therefore ż2(t) = 0 for all t ≥ 0, so

−z1(t) − z3
2(t) = 0

for all t ≥ 0. It follows that z1(t) = 0 for all t ≥ 0. We deduce that S = {0}
which implies that all the solutions of (2.37) converge to the origin, by LaSalle
Invariance.

2.4.5 Matrosov Theorems

The GAS of the origin of (2.37) can be established through the version of
the Matrosov Theorem we gave in Theorem 2.2, as follows. We show that for
all positive constants R, all solutions of the system with initial states in RB2

remain in RB2 and converge to 0 as t → +∞. We apply the theorem with

V1(x) = 1
2 [x2

1 + x2
2] , V2(x) = x1x2 , and

W (x) = −x4
2.

(2.40)
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The conditions are verified as follows:

1. V1(0) = V̇1(0) = 0 along the trajectories of (2.37);

2. for all x ∈ RB2, we have max{|V2(x)|, |f(x)|} ≤ |x|2 +
√

x2
2 + (x1 + x3

2)2 ≤
R2 + (R2 + (R + R3)2)1/2;

3. α(|x|) ≤ V1(x) ≤ ᾱ(|x|) for all x when we choose ᾱ(r) = α(r) = 1
2r

2;

4. V̇1(x) = W (x) = −x4
2 ≤ 0 for all x ∈ RB2; and

5. V̇2(x) = ẋ1x2 + x1ẋ2 = x2
2 + x1(−x1 − x3

2) so for any constants ν, ε > 0,
we can find a constant γ > 0 so that |V̇2(x)| is bounded away from zero
on {x ∈ R

2 : ν ≤ |x| ≤ ε, |x2| < γ}. Hence, V̇2 is non-zero definite on
{x ∈ RB2 : x4

2 = 0}.
We conclude from Matrosov’s Theorem and the fact that V̇1 ≤ 0 that every

solution of (2.37) with initial condition in RB2 remains in RB2 and converges
to 0 as t → +∞. We deduce that the origin of (2.37) is GAS.

2.4.6 Non-strict Lyapunov-Like Function

Consider an experimental anaerobic digester used to treat waste water [16, 89,
172]. This process degrades a polluting organic substrate s with the anaerobic
bacteria x and produces a methane flow rate y1. The methane and substrate
can generally be measured, so the system with output y is

⎧
⎨

⎩

ṡ = u(sin − s) − kr(s, x)
ẋ = r(s, x) − αux
y = (λr(s, x), s)

(2.41)

where the biomass growth rate r is any non-negative C1 function that admits
everywhere positive functions Δ and Δ̄ such that

sΔ̄(s, x) ≥ r(s, x) ≥ xsΔ(s, x) (2.42)

for all s ≥ 0 and x ≥ 0; u is the non-negative input (i.e., the dilution rate); α
is a known positive real number representing the fraction of the biomass in the
liquid phase; and λ, k, and sin are positive constants representing methane
production and substrate consumption yields and the influent substrate con-
centration, respectively. Hence, the methane flow rate is y1 = λr(s, x). This
includes the single species undisturbed chemostat model from Sect. 1.5.3, in
which case r(s, x) is the product of the species concentration and the Monod
growth rate function, namely,

r(s, x) =
Asx

B + s
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for appropriate positive constants A and B. However, (2.42) is far more gen-
eral because it allows other growth laws such as those of Haldane and Cantois;
see [14] for details.

Assume now that s∗ ∈ (0, sin) is a given constant. We wish to regulate s
to s∗. We assume that there are known constants γM > γm > 0 such that

γ∗
.=

k

λ(sin − s∗)
∈ (γm, γM ) and

k

λsin
< γm (2.43)

and we use the notation

v∗ = sin − s∗ and x∗ =
v∗
kα

in the sequel.
The work [89] leads to a non-strict Lyapunov-like function and an adaptive

controller for an error dynamics associated with (2.41). We next review these
earlier results. We treat adaptive control in detail in Chap. 9. Later, we will
see how the constructions from [89] lead to a strict Lyapunov-like function
for the error dynamics of (s̃, x̃) = (s − s∗, x− x∗).

We introduce the dynamics

γ̇ = y1(γ − γm)(γM − γ)ν

evolving on (γm, γM ), where ν is a function to be selected that is independent
of x. With u = γy1, the system (2.41) with its dynamic extension becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ṡ = y1

[
γ(sin − s) − k

λ

]

ẋ = y1α
[

1
αλ − γx

]

γ̇ = y1(γ − γm)(γM − γ)ν

(2.44)

by the definition of y1, with the same output y as before. The dynamics
(2.44) evolves on the invariant domain E = (0,∞)× (0,∞)× (γm, γM ). The
following is easily checked:

Lemma 2.6. For each initial value (s(t0), x(t0), γ(t0)) ∈ E, there is a com-
pact set K0 ⊆ (0,∞)2 so that the corresponding solution of (2.44) is such
that (s(t), x(t)) ∈ K0 for all t ≥ t0.

It follows from Lemma 2.6 and (2.42) that we can re-parameterize (2.44)
in terms of the Erdmann Transformation

τ =
∫ t

t0

y1(l) dl .

Doing so and setting

x̃ = x− x∗, s̃ = s − s∗, and γ̃ = γ − γ∗
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yields the error dynamics
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̃s = −γs̃ + γ̃v∗
˙̃x = α [−γx̃− γ̃x∗]

˙̃γ = (γ − γm)(γM − γ)ν

(2.45)

for t 
→ (s̃, x̃, γ̃)(τ−1(t)). The state space of (2.45) is

D = (−s∗,∞) × (−x∗,∞) × (γm − γ∗, γM − γ∗).

The system (2.45) has an uncoupled triangular structure; i.e., its (s̃, γ̃)-
subsystem does not depend on x̃ (because ν is independent of x), and the
x̃-subsystem is globally input-to-state stable with respect to γ̃ with the ISS
Lyapunov function x̃2. Therefore, (2.45) is GAS to 0 if the system

⎧
⎨

⎩
˙̃s = −γs̃ + γ̃v∗
˙̃γ = (γ − γm)(γM − γ)ν

(2.46)

with state space

X = (−s∗,∞) × (γm − γ∗, γM − γ∗)

is GAS to 0. Hence, we may limit our analysis to (2.46) in the following
analysis.

For a given tuning parameter K > 0, the non-strict Lyapunov-like function
for (2.46) provided by [89] is

V1(s̃, γ̃) =
1

2γm
s̃2 +

v∗
Kγm

∫ γ̃

0

l

(l + γ∗ − γm)(γM − γ∗ − l)
dl, (2.47)

which is positive definite on X . In fact,

V̇1 =
1
γm

[−γs̃2 + s̃γ̃v∗
]
+

v∗
Kγm

γ̃ν

along the trajectories of (2.46), so choosing

ν(s̃) = −Ks̃ (2.48)

gives
V̇1 = − γ

γm
s̃2 ≤ −s̃2.

This follows because γ(t) ∈ (γm, γM ) for all t. Using the LaSalle Invariance
Principle, it follows [89] that (2.46) is globally asymptotically stable to 0
when we make the choice (2.48).
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2.5 Basin of Attraction Revisited

Strict Lyapunov functions can be used to estimate the basins of attractions
for locally asymptotically stable time-varying nonlinear systems

ẋ = f(t, x). (2.49)

Let us review how this can be done. Assume that we know a C1 storage
function V : [0,∞) × R

n → [0,∞), a continuous positive definite function
W : R

n → [0,∞), and an open set D ⊆ R
n containing x = 0 such that

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −W (x) ∀t ≥ 0 and x ∈ D . (2.50)

Choose functions α1, α2 ∈ K∞ such that

α1(|x|) ≤ V (t, x) ≤ α2(|x|) ∀t ≥ 0 and x ∈ R
n . (2.51)

For convenience, we continue to write

V̇ :=
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) .

Since D is an open set that contains the origin, there exists a constant r > 0
such that rBn ⊆ D. The non-decreasing function γ : [0, r] → [0,∞) defined
by

γ(s) = inf
{ξ∈rBn:|ξ|≥s}

W (ξ)

then satisfies γ(0) = 0 and γ(s) > 0 for all s ∈ (0, r), because W is positive
definite. Moreover, for all t ≥ 0 and x ∈ rBn, we have

V̇ ≤ −γ(|x|) . (2.52)

Also, (2.51) in combination with the facts that α2 ∈ K∞ and γ is non-
decreasing give

0 ≤ γ
(
α−1

2

(
V (t, x)

)) ≤ γ(|x|) ∀t ≥ 0 and x ∈ rBn (2.53)

Combining (2.52) and (2.53) yields

V̇ ≤ −γ
(
V (t, x)

) ∀t ≥ 0 and x ∈ rBn (2.54)

where γ(s) = γ(α−1
2 (s)).

Let us now consider the set Er = {x ∈ rBn : V (t, x) < α1(r) ∀t ≥ 0}.
One readily checks that Er is a positively invariant set for (2.49). To see why,
let x0 ∈ Er and t0 ≥ 0, and let x(t) denote the solution of (2.49) such that
x(t0) = x0. Suppose that there exists a time t1 > t0 such that V (t1, x(t1)) =
α1(r) and V (t, x(t)) < α1(r) for all t ∈ [t0, t1). Then (2.51) implies that
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α1(|x(t)|) < α1(r) for all t ∈ [t0, t1), i.e., x ∈ rBn for all t ∈ [t0, t1). This
allows us to conclude from (2.54) that

V (t1, x(t1)) ≤ V (t0, x(t0)) < α1(r),

which is a contradiction. We deduce that for all t ≥ t0, V (t, x(t)) < α1(r) and
|x(t)| < r, which gives the positive invariance of Er. Moreover, (2.54) implies
that all solutions of the system starting in Er converge to the origin. Also,
0.5α−1

2 (α1(r))Bn ⊆ Er and α−1
2 (α1(r)) > 0. Therefore Er is a non-empty

subset of the basin of attraction of (2.49). Hence, knowing a strict Lyapunov
function for the system leads to an approximation of the basin of attraction.

2.6 L2 Gains

2.6.1 Basic Theorem

Strict Lyapunov functions can also help estimate the effect of a disturbance on
a specific output. For instance, consider a locally Lipschitz forward complete
nonlinear control affine system with output

ẋ = f(x) + g(x)u, y = h(x) ∈ R
q (2.55)

with x ∈ R
n and u ∈ R

p. We wish to determine a constant γ > 0 and a
function Γ ∈ K∞ such that for any continuous input u(t) and any initial
state x0, the corresponding solution x(t) of (2.55) satisfies

√∫ T

0

|y(s)|2 ds ≤ γ

√∫ T

0

|u(s)|2 ds + Γ (|x0|) (2.56)

for all constants T > 0. Here is a useful result in that direction from [70]:

Theorem 2.4. Consider the system with output (2.55). Assume that f , g, h
are Lipschitz continuous and f(0) = 0 and h(0) = 0. Assume that there is a
C1 function V : R

n → [0,∞) such that

LfV (x) +
1

2γ2

∂V

∂x
(x)g(x)

(
∂V

∂x
(x)g(x)

)�
+

1
2
h(x)�h(x) ≤ 0 (2.57)

for all x ∈ R
n. Then for all x0 ∈ R

n, the inequality
√∫ T

0

|y(s)|2 ds ≤ γ

√∫ T

0

|u(s)|2 ds +
√

2V (x0) (2.58)

is satisfied for all T ≥ 0.
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Proof. The time derivative of V along the trajectories of (2.55) satisfies

V̇ = LfV (x) +
∂V

∂x
(x)g(x)u

= LfV (x) +
1

2γ2

∂V

∂x
(x)g(x)

(
∂V

∂x
(x)g(x)

)�
+

1
2
h(x)�h(x)

−γ2

2
u�u +

∂V

∂x
(x)g(x)u − 1

2γ2

∂V

∂x
(x)g(x)

(
∂V

∂x
(x)g(x)

)�

+
γ2

2
u�u− 1

2
h(x)�h(x)

(2.59)

From (2.57) and the fact that

−γ2

2
u�u +

∂V

∂x
(x)g(x)u − 1

2γ2

∂V

∂x
(x)g(x)

(
∂V

∂x
(x)g(x)

)�

= −1
2

∣∣∣∣γu
� − 1

γ

∂V

∂x
(x)g(x)

∣∣∣∣
2

≤ 0,

it follows that

V̇ ≤ γ2

2
|u|2 − 1

2
|y|2. (2.60)

By integrating (2.60) over [0, T ], we obtain

V (x(t)) − V (x0) ≤ γ2

2

∫ T

0

|u(s)|2 ds − 1
2

∫ T

0

|y(s)|2 ds (2.61)

Using the non-negativity of V (x(t)), we get

1
2

∫ T

0

|y(s)|2 ds ≤ V (x0) + γ2

2

∫ T

0

|u(s)|2 ds (2.62)

and therefore (2.58) follows from the relation
√
a + b ≤ √

a+
√
b for nonneg-

ative values a and b. �

2.6.2 Illustration

The L2 gain of the system (2.55) is defined to be the infimum of the set of
all constants γ > 0 such that the inequality (2.58) holds for all x0, u, and
T . Theorem 2.4 provides constants γ that are larger than the L2 gain of the
system (2.55). The constants depend on the function V selected. Moreover,
there are cases where the L2 gain is a finite number, but where an inadequate
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Lyapunov function V does not allow us to determine an approximate upper
bound for this gain.

We illustrate this using the simple one-dimensional nonlinear system
{

ẋ = −x− x3 + u
y = x .

(2.63)

If we choose Va(x) = 1
2x

2, then the inequality (2.57) becomes

−x4 +
1 − γ2

2γ2
x2 ≤ 0 (2.64)

and 1 is the smallest value of γ such that (2.64) holds for all x. If we instead
choose Vb(x) = x2, then the inequality (2.57) becomes

4 − 3γ2

2γ2
x2 − 2x4 ≤ 0 (2.65)

and 2/
√

3 is the smallest γ such that (2.64) holds for all x. Finally, if we take
Vc(x) = 1

4x
4, then the inequality (2.57) reads

−x4 − x6 +
1

2γ2
x6 +

1
2
x2 ≤ 0 , (2.66)

which cannot be satisfied for all values of x. Hence, we cannot use Vc to get
an upper bound for the L2 gain of the system (2.55).

This provides yet another reason for wanting explicit Lyapunov functions.
Indeed, no estimate for the L2 gain of a system (2.55) can be deduced from
the mere existence of a strict Lyapunov function, as provided by the converse
Lyapunov theorem.

2.7 Lyapunov Functions with Bounded Gradients

The converse Lyapunov theorem ensures that UGAS systems admit global
strict Lyapunov functions. However, it does not in general give information
on the type of Lyapunov function that is associated with a given UGAS sys-
tem, e.g., whether or not the gradient of the Lyapunov function is uniformly
bounded in norm. This is a shortcoming of converse theory.

In fact, if V (x) is a strict Lyapunov function for a system ẋ = f(x), and
if ∇V (x) is known to be globally bounded, then V is also an iISS Lyapunov
function for ẋ = f(x) + d with disturbance d, and then the iISS estimate
bounds the trajectories if d is exponentially decaying to zero. This is yet
another motivation for constructing strict Lyapunov functions. Many UGAS
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systems admit strict Lyapunov functions with globally bounded gradients;
see Sect. 4.6 for related results.

2.7.1 Effect of Exponentially Decaying Disturbances

It is possible to construct a UGAS system that has unbounded trajectories in
the presence of an additive exponentially decaying disturbance, and therefore
cannot admit a strict Lyapunov function with a globally bounded gradient.
For example, consider the following system from [177]:

{
ẋ1 = g(x1x2)x1

ẋ2 = −2x2 + d ,
(2.67)

where x = (x1, x2) ∈ R
2, d ∈ R is a disturbance, and the function g is such

that:

1. g is Lipschitz continuous;
2. |g(s)| ≤ 1 for all s;
3. g(s) = −1 for all s ∈ (−∞, 1

2

] ∪ [ 3
2 ,∞

)
; and

4. g(1) = 1.

The system (2.67) has the additional property of being globally exponentially
stable when d = 0. In fact, we can prove:

Proposition 2.1. When d ≡ 0, the solutions of (2.67) satisfy

|x(t)| ≤ e4e−t|x(0)| (2.68)

for all t ≥ 0 and all initial states x(0) ∈ R
2.

Proof. Let

P (r) =
∫ r

0

H(m) dm (2.69)

where

H(m) =

⎧
⎪⎨

⎪⎩

1 + g(m)
m[2 − g(m)]

, if m 
= 0

0, if m = 0 .

Then
0 ≤ P (r) ≤ 4 (2.70)

for all r ∈ R. We introduce the variable

ξ = x1x2 . (2.71)

Then



2.7 Lyapunov Functions with Bounded Gradients 49

⎧
⎪⎨

⎪⎩

ẋ1 = g(ξ)x1

ẋ2 = −2x2

ξ̇ = [−2 + g(ξ)]ξ .

(2.72)

Let
Z1 = eP (ξ)x1 . (2.73)

Then

Ż1 =
(
g(ξ) + H(ξ)

[− 2 + g(ξ)
]
ξ

)
Z1

= −Z1 .

(2.74)

Hence,
|Z1(t)| ≤ e−t|Z1(0)| and |x2(t)| ≤ e−2t|x2(0)| (2.75)

for all x(0) ∈ R
2 and all t ≥ 0. We deduce that

|x1(t)| ≤ e−P (ξ(t))e−teP (x1(0)x2(0))|x1(0)| . (2.76)

Finally, from (2.70), we conclude that (2.68) holds, as claimed. �

Remark 2.1. In [177], it is proved that

|x(t)| ≤ 9e−t|x(0)|

along all trajectories of (2.67). We establish the inequality (2.68) because its
proof relies on a slightly different technique from the one given in [177] that
will be useful later to establish complementary results.

The next result establishes that the behavior of the solutions of the system
(2.67) may change drastically in the presence of a decaying disturbance.

Proposition 2.2. When

x1(0) 
= 0, x2(0) = x1(0)−1, and d(t) = x2(0)e−t, (2.77)

the solutions of (2.67) satisfy

x1(t) = etx1(0) (2.78)

for all t ≥ 0.

Proof. The functions

x1(t) = etx1(0) and x2(t) = x2(0)e−t

are such that {
ẋ1 = x1

ẋ2 = −2x2 + x2(0)e−t .
(2.79)
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Since g(1) = 1 and d(t) = x2(0)e−t, we have
{

ẋ1 = g(1)x1

ẋ2 = −2x2 + d(t) .
(2.80)

In addition, for all t, we get x1(t)x2(t) = etx1(0)x2(0)e−t = x1(0)x2(0) = 1.
Therefore, {

ẋ1 = g(x1x2)x1

ẋ2 = −2x2 + d(t) .
(2.81)

This proves the proposition. �

An immediate consequence of Propositions 2.1 and 2.2 is:

Proposition 2.3. If V (x) is a strict Lyapunov function for the system (2.67)
with the disturbance d ≡ 0, then there does not exist a constant C > 0 such
that ∣∣∣∣

∂V

∂x
(x)

∣∣∣∣ ≤ C (2.82)

for all x ∈ R
2.

Proof. Suppose the contrary. Since V satisfies (2.82) for some constant C,
the time derivative of V along the trajectories of (2.67) satisfies

V̇ ≤ C|d(t)| . (2.83)

In particular, the choices (2.77) give

V̇ ≤ C|x2(0)e−t| . (2.84)

By integrating this inequality we deduce that

V (x(t)) ≤ V (x(0)) + C|x2(0)| (2.85)

for all t ≥ 0. According to Proposition 2.2, x1(t) = etx1(0) for all t ≥ 0, so

lim
t→+∞ V (x(t)) = +∞.

This and (2.85) yield a contradiction. �

2.7.2 Dependence on Coordinates

We next show that the property of having no strict Lyapunov function with
a bounded gradient is coordinate dependent.
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Proposition 2.4. Let P be as defined in (2.69). Then the variables

Z1 = eP (x1x2)x1 and Z2 = x2 (2.86)

define a global change of coordinates that transforms (2.67) with d ≡ 0 into
{

Ż1 = −Z1

Ż2 = −2Z2 .
(2.87)

Hence, (2.67) is globally linearizable.

Proof. Routine calculations yield

∂Z1
∂x1

(x) = eP (x1x2) [1 + x1x2P
′(x1x2)]

= eP (x1x2)

[
1 +

1 + g(x1x2)
2 − g(x1x2)

]
= eP (x1x2)

3
2 − g(x1x2)

> 0 .

(2.88)

We deduce that (2.86) defines a global change of coordinates that transforms
the system (2.67) with d ≡ 0 into the linear system (2.87). �
Remark 2.2. Notice that V(Z) = ln(1+Z2

1 +Z2
2 ) is a strict Lyapunov function

for (2.87) that has a bounded gradient.

2.7.3 Strictification

It is tempting to surmise that non-strict Lyapunov functions with globally
bounded gradients can be transformed into strict Lyapunov functions with
globally bounded gradients. The following result shows how such a strictifi-
cation transformation can sometimes be carried out:

Proposition 2.5. Let
ẋ = f(t, x) (2.89)

be a UGAS system that is periodic in t and admits a non-strict Lyapunov
function V such that

∣∣∣∣
∂V

∂t
(t, x)

∣∣∣∣ ≤ 1 and
∣∣∣∣
∂V

∂x
(t, x)

∣∣∣∣ ≤ 1 (2.90)

for all t ∈ R and x ∈ R
n. Assume that ∂f

∂x is bounded. Then the system (2.89)
admits a strict Lyapunov function U such that

∣∣∣∣
∂U

∂t
(t, x)

∣∣∣∣ ≤ 1 and
∣∣∣∣
∂U

∂x
(t, x)

∣∣∣∣ ≤ 1 (2.91)

for all t ∈ R and x ∈ R
n.
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Proof. By Theorem 2.1, there exists a C1 function ν(t, x), a positive definite
function w(x), and functions γ1, γ2, γ3 ∈ K∞ such that

γ1(|x|) ≤ ν(t, x) ≤ γ2(|x|) and (2.92)

max
{∣∣∣∣

∂ν

∂t
(t, x)

∣∣∣∣ ,
∣∣∣∣
∂ν

∂x
(t, x)

∣∣∣∣

}
≤ γ3(|x|) (2.93)

hold for all t ∈ R and x ∈ R
n, and such that the time derivative of ν(t, x)

along the trajectories of (2.89) satisfies

ν̇(t, x) ≤ −w(x) . (2.94)

Let Γ : [0,∞) → [1,∞) be a continuous increasing function such that

1 + γ3(γ−1
1 (s)) ≤ Γ (s) (2.95)

for all s ≥ 0. By (2.92), we have

|x| ≤ γ−1
1 (ν(t, x)),

so (2.95) with the choice s = ν(t, x) gives

1 + γ3(|x|) ≤ 1 + γ3(γ−1
1 (ν(t, x))) ≤ Γ (ν(t, x))

everywhere. This inequality and (2.93) imply that
∣∣∣∣
∂ν

∂t
(t, x)

∣∣∣∣ ≤ Γ (ν(t, x)) and
∣∣∣∣
∂ν

∂x
(t, x)

∣∣∣∣ ≤ Γ (ν(t, x)) (2.96)

everywhere.
Next, consider the function

U(t, x) =
1
2

[
V (t, x) +

∫ ν(t,x)

0

1
Γ (m)

dm

]
. (2.97)

Then
∣∣∣∣
∂U

∂t
(t, x)

∣∣∣∣ ≤ 1
2

[∣∣∣∣
∂V

∂t
(t, x)

∣∣∣∣+
1

Γ (ν(t, x))

∣∣∣∣
∂ν

∂t
(t, x)

∣∣∣∣

]
≤ 1 (2.98)

everywhere, by (2.90) and (2.96). Similarly, one can show that
∣∣∣∣
∂U

∂x
(t, x)

∣∣∣∣ ≤ 1 . (2.99)

Finally, observe that
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1
2
V (t, x) ≤ U(t, x) ≤ 1

2
[V (t, x) + ν(t, x)] (2.100)

implies that
1
2
α1(|x|) ≤ U(t, x) ≤ 1

2
[α2(|x|) + γ2(|x|)] , (2.101)

where α1, α2 ∈ K∞ are from the proper and positive definite conditions on V .
Therefore, U is a global strict Lyapunov for (2.89) with a bounded gradient.
This proves the proposition. �

2.8 Comments

Throughout our work, we assume that our (control) Lyapunov functions are
at least C1. One can generalize the definitions to allow Lyapunov functions
that are continuous but not necessarily differentiable; see, e.g., the books [17,
184] for some early results. Nonsmooth analysis provides a unifying method
for the analysis of nondifferentiable functions [22]. One pioneering result [155]
by Sontag showed that a system ẋ = f(x, u) evolving on R

n is asymptotically
controllable to the origin if and only if it admits a continuous positive definite
proper function V that satisfies: For each x ∈ R

n, there exists a relaxed
control w such that V̇w(x) < 0. Moreover, there exist positive constants k and
η such that w can be chosen to satisfy ||w|| < k whenever |x| < η. Here

V̇w(x) = lim inf
t→0+

1
t
{V (φ(t, x, w)) − V (x)}

is the lower Dini Derivative, φ is the flow map of the system, and relaxed
controls are measurable mappings of [0,∞) into the set of all probability
measures on the control set U . Also, ||w|| is the infimum of the set of all r’s
so that w is supported in rBm. One motivation for using nonsmooth analysis
in control theory is that a system ẋ = f(x, u) admits a C1 control Lyapunov
function V (x) if and only if it is C1 stabilizable by a time-invariant feedback
us(x), so C1 control Lyapunov functions cannot exist unless Brockett’s Con-
dition is satisfied. This motivation becomes less important when we allow
time-varying feedback stabilizers.

The system (2.67) is important because it shows how a globally exponen-
tially stable system can be destabilized by an exponentially decaying dis-
turbance that is arbitrarily small in the L1 norm. See [166] for an earlier
example of a time-invariant GAS system ẋ = f(x) that admits an integrable
disturbance d for which ẋ = f(x) + d has unbounded solutions.

One can also develop Lyapunov function theory for retarded functional
differential equations, which have the form

ẋ(t) = f(t, xt) (2.102)
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where x(t) ∈ R
n, f : R × Cn([−r, 0]) → R

n for a given choice of the constant
r > 0, the function xt is defined by xt(θ) = x(t + θ) for all θ ∈ [−r, 0], and
the initial value is φ ∈ Cn([−r, 0]). In this context, Cn(I) is the set of all
continuous functions φ : I → R

n on any interval I ⊆ R. We assume that f
has enough regularity to guarantee the existence and uniqueness of a maximal
solution for each initial condition; see [109] for sufficient conditions for the
existence of maximal solutions. Equations of this type are also called (time)
delayed differential equations. Their study is an important subject that is
best considered in books devoted only to systems with delays [51, 114, 124].
Here we only summarize some Lyapunov results for delay systems.

Lyapunov related functions are key for the stability analysis and control de-
sign for systems with delay. Two important theorems for delayed systems are
the Razumikhin Theorem and the Lyapunov-Krasovski Theorem. Both rely
on delayed Lyapunov functions or functionals, which are often constructed by
first building Lyapunov functions for the corresponding undelayed systems
(obtained by setting the delays equal to zero). For a given constant r > 0,
the Razumikhin Theorem is the following [52]:

Theorem 2.5. (Razumikhin Theorem) Let f : R × Cn([−r, 0]) → R
n map

R×(bounded subsets of Cn([−r, 0])) into bounded subsets of R
n. Let u, v, w :

[0,∞) → [0,∞) be continuous non-decreasing functions for which u and v
are positive definite and v is increasing. Assume the following:

1. There exists a continuously differentiable function V : R× R
n → R whose

time derivatives along the solutions x(t) of (2.102) satisfy

V̇ (t, x(t)) ≤ −w(|x(t)|) (2.103)

whenever
V (t + θ, x(t + θ)) ≤ V (t, x(t)) (2.104)

for all θ ∈ [−r, 0]. Also, u(|x|) ≤ V (t, x) ≤ v(|x|) everywhere.

Then the system (2.102) is uniformly stable. If, in addition,

2. w(s) > 0 for all s > 0 and there exists a continuous non-decreasing func-
tion p such that p(s) > s for all s > 0, and such that

V̇ (t, x(t)) ≤ −w(|x(t)|) (2.105)

whenever
V (t + θ, x(t + θ)) ≤ p(V (t, x(t))) (2.106)

for all θ ∈ [−r, 0].

then the system (2.102) is uniformly asymptotically stable. If 1. and 2. hold
and

lim
s→+∞ u(s) = +∞,

then the system (2.102) is UGAS.
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The stability concepts for (2.102) are defined as in the undelayed case,
except that the initial state x0 ∈ R

n is replaced by an initial function φ ∈
Cn([−r, 0]). The Lyapunov-Krasovski Theorem is the following, where we use
the notation

V̇ (t, φ) =
d

dt
V (t, xt)|t=τ,xt=φ

for any C1 function V : R × Cn([−r, 0]) → R [52]:

Theorem 2.6. (Lyapunov-Krasovski Theorem) Let f : R × Cn([−r, 0]) →
R
n map R×(bounded subsets of Cn([−r, 0])) into bounded subsets of R

n. Let
u, v, w : [0,∞) → [0,∞) be continuous non-decreasing functions for which u
and v are positive definite and v is increasing. Assume the following:

1. There exists a continuously differentiable function V : R×Cn([−r, 0]) → R

such that
u(|φ(0)|) ≤ V (t, φ) ≤ v(|φ|[−r,0]) (2.107)

and
V̇ (t, φ) ≤ −w(|φ(0)|) (2.108)

for all φ ∈ Cn([−r, 0]) and t ∈ R.

Then the trivial solution of (2.102) is uniformly stable. If, in addition,

2. w(s) > 0 for all s > 0,

then (2.102) is uniformly asymptotically stable. Finally, if 1. and 2. hold and
if we also have

lim
s→+∞ u(s) = +∞,

then the system (2.102) is UGAS.

Over the last two decades, Lyapunov-Krasovski functionals have been used
extensively for the analysis of linear systems. For linear systems, Lyapunov-
Krasovski functionals give stability criteria in terms of linear matrix inequal-
ities, which can be analyzed through numerical methods; see for instance
[125].

The ISS paradigm can be extended to delayed systems, using either the
Razumikhin Theorem (as was done, e.g., in [62, 175]) or Lyapunov-Krasovski
functionals (as in [109, 130]). For example, if we consider

ẋ(t) = f
(
x(t), t

)
+ g(x(t), t)

[
us
(
ξτ (t), t

)
+ d(t)

]
, x(t) ∈ R

n (2.109)

with
ξτ (t) =

(
x1(t − τ1), x2(t − τ2), · · · , xn(t − τn)

)

and constant delays τ = (τ1, τ2, . . . , τn) satisfying 0 ≤ τi ≤ τ̄ for all i for any
bound τ̄ ≥ 0, and with unknown but bounded disturbances d and a known
feedback us, an appropriate notion of Lyapunov-Krasovski functionals is as
follows:
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Definition 2.3. A continuous functional U : [0,∞)×Cn(R) → [0,∞) is called
an ISS Lyapunov-Krasovski functional (ISS-LKF) for (2.109) provided that
for all τ ∈ (0, τ̄ ]n and all trajectories x(t) .= x(t; t0, x0, d, τ) of (2.109) (corre-
sponding to all possible initial conditions x(t0) = x0 and measurable essen-
tially bounded disturbances d), the function t 
→ U(t, xt) is locally absolutely
continuous and there exist functions αi ∈ K∞ for i = 1, 2, 3, 4 and κ ∈ N such
that for all φ ∈ Cn([−κτ̄ , 0]), all trajectories x(t) of (2.109), and all t ≥ t0+κτ̄ ,
we have (a) α1(|φ(0)|) ≤ U(t, φ) ≤ α2(|φ|[−κτ̄ ,0]) and (b) the time derivative
DtU(t, xt) of U(t, xt) satisfies DtU(t, xt) ≤ −α3(U(t, xt))+α4(|d|[t0,t]) almost
everywhere.

In this context, κ ∈ N represents the length of the time lag. The key
ingredient in the ISS-LKF definition is that instead of being defined for points
in the state space, U(t, φ) is evaluated at continuous R

n-valued functions
φ ∈ Cn(R) defined on the real line and times t ≥ 0, hence the term functional
instead of function in the definition.

The explicit construction of ISS-LKFs is a challenging problem. One such
construction in [109] shows that (2.109) admits an ISS-LKF of the form

U(t, xt) = V
(
t, x(t)

)
+

1
4τ̄

∫ t

t−2τ̄

(∫ t

r

σ2(
√
n|x(l)|)dl

)
dr (2.110)

where the proper positive definite function V , the undelayed dynamics

ẋ = F (t, x, us)
.= f(t, x) + g(t, x)us(t, x),

and the function σ satisfy appropriate conditions, including the decay condi-
tion

Vt(l, x) + Vx(l, x)F (l, x, us) ≤ −σ2
(√

n|x|) .
The function σ is of class K∞, making V a strict Lyapunov function for the
undelayed dynamics. In particular, us is assumed to stabilize the undelayed
dynamics. The Lyapunov-Krasovski functional is valid when the delay bound
τ̄ is small enough, but one can take any desired positive constant bound τ̄
when the drift term f in (2.109) is identically zero; see [109] for the explicit
computation of the admissible delay bound τ̄ for (2.109). Using (2.110), we
can get an explicit ISS decay estimate for (2.109) which is analogous to the
usual ISS estimate, except with an initial function replacing the initial state.
Therefore, we can quantify the combined effects of feedback delays τi and
uncertainty d on the stability performance of the feedback us. Lyapunov
functions are also useful for partial differential equations [28, 29, 76] and
stochastic systems [72]. This book will focus on deterministic ODE systems
without delays, although it would be of interest to extend many of the results
to time-varying delayed systems or stochastic PDEs.

Stabilization problems for biological dynamics such as (2.41) have been
studied by numerous authors. Many of the results are based on the (local)
linearization approach [57] or linearizing state controllers that assume perfect
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knowledge of the model. For an alternative approach to uncertain biosystems
based on interval observers, see [49]. Our biosystems analysis assumes that the
reactor is well mixed, meaning all organisms have equal access to the nutrient;
dropping this assumption leads to PDE models. Our approach takes the non-
negativity of the state components into account and leads to an explicit strict
Lyapunov function; see Sect. 3.1 for details.



Part II

Time-Invariant Case



Chapter 3

Matrosov Conditions: Simple Case

Abstract In the preceding chapter, we saw two ways to use non-strict Lya-
punov functions to prove asymptotic stability. The first was the LaSalle In-
variance Principle. A second involved Matrosov Theorems, which require a
non-strict Lyapunov function and auxiliary functions that satisfy appropri-
ate decay conditions. In general, the decay conditions in Matrosov type theo-
rems are less restrictive than those in the strict Lyapunov function definition.
Hence, the Matrosov method can be regarded as a way to prove stability with-
out having to find strict Lyapunov functions.

On the other hand, it is very desirable to have explicit strict Lyapunov
functions, even when the Matrosov Conditions are satisfied, because, e.g.,
strict Lyapunov functions make it possible to quantify the effects of uncer-
tainty using the ISS paradigm. In this chapter, we discuss several methods
for constructing strict Lyapunov functions for time-invariant systems that
satisfy appropriate Matrosov Conditions. In Chapters 8 and 12, we gener-
alize to much more complex time-varying systems, including Matrosov type
theorems for hybrid systems.

3.1 Motivation

To motivate our constructions, let us return to the experimental anaerobic
digester model ⎧

⎪⎨

⎪⎩

ṡ = u(sin − s) − kr(s, x)
ẋ = r(s, x) − αux

y = (λr(s, x), s)

(3.1)

we considered in the preceding chapter, where the biomass growth rate r is
any non-negative C1 function that admits everywhere positive functions Δ
and Δ̄ such that

sΔ̄(s, x) ≥ r(s, x) ≥ xsΔ(s, x) (3.2)

61
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for all s ≥ 0 and x ≥ 0; u is the non-negative input (i.e., dilution rate); and the
positive constants α, λ, k, and sin are as defined in Sect. 2.4.6. This includes
the one species chemostat model with a Monod growth rate, as a special case
[107]. This time our objective is to construct a strict Lyapunov-like function
for an appropriate adaptively controlled error dynamics for (3.1).

Arguing as in the previous chapter, we introduce the dynamics γ̇ = y1(γ−
γm)(γM − γ)ν evolving on (γm, γM ), where ν is a function to be selected
that is independent of x and the γi’s are prescribed positive constants. With
u = γy1, the system (3.1) with its dynamic extension becomes

⎧
⎨

⎩

˙̃s = −γs̃ + γ̃v∗
˙̃x = α [−γx̃− γ̃x∗]
˙̃γ = (γ − γm)(γM − γ)ν.

(3.3)

Here s̃ = s−s∗, x̃ = x−x∗, γ̃ = γ−γ∗, s∗ ∈ (0, sin) is the desired equilibrium
substrate level, and

γ∗
.=

k

λ(sin − s∗)
∈ (γm, γM ) and

k

λsin
< γm, (3.4)

where v∗ = sin− s∗ and x∗ = v∗
kα . The dynamics (3.3) follow by applying the

Erdmann transformation

τ =
∫ t

t0

y1(l)dl,

and the state space for (3.3) is D = (−s∗,∞)×(−x∗,∞)×(γm−γ∗, γM−γ∗).
We first consider the subsystem

{ ˙̃s = −γs̃ + γ̃v∗
˙̃γ = (γ − γm)(γM − γ)ν

(3.5)

with state space X = (−s∗,∞) × (γm − γ∗, γM − γ∗).
Let us transform the non-strict Lyapunov-like function

V1(s̃, γ̃) =
1

2γm
s̃2 +

v∗
Kγm

∫ γ̃

0

l

(l + γ∗ − γm)(γM − γ∗ − l)
dl (3.6)

from [89] into a strict Lyapunov-like function for (3.5), where K > 1 is a
tuning parameter. Later in this chapter, we will see how this transformation
process is a special case of a general method for constructing strict Lyapunov-
like functions.

Choosing
ν(s̃) = −Ks̃ (3.7)

as before gives

V̇1 = − γ

γm
s̃2 ≤ −N1(s̃, γ̃), where N1(s̃, γ̃) = s̃2. (3.8)
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Set
V2(s̃, γ̃) = −s̃γ̃. (3.9)

Along the trajectories of (3.5), in closed-loop with (3.7), simple calculations
yield

V̇2 = γs̃γ̃ − γ̃2v∗ + (γ − γm)(γM − γ)Ks̃2.

From the relation

γs̃γ̃ ≤ v�γ̃
2

2
+

γ2s̃2

2v�
and the fact that the maximum value of (γ − γm)(γM − γ) over γ ∈ [γm, γM ]
is (γM − γm)2/4, we get

V̇2 ≤ −N2(s̃, γ̃) +
[
γ2
M

2v�
+

K(γM − γm)2

4

]
N1(s̃, γ̃), (3.10)

where N2(s̃, γ̃) = v∗
2 γ̃2.

Setting

Υ1 = 1 +
[
min

{
1
γm

,
4v∗

Kγm(γM − γm)2

}]−1

, (3.11)

we can use the decay conditions (3.8)-(3.10) to check that

S(s̃, γ̃) = V2(s̃, γ̃) +
[
Υ1 +

2γ2
M

v∗
+ K(γM − γm)2

]
V1(s̃, γ̃) (3.12)

is a strict Lyapunov-like function for (3.5) in closed-loop with (3.7). In fact,

Ṡ ≤ −W (s̃, γ̃), where

W (s̃, γ̃) = N2(s̃, γ̃) + Υ1N1(s̃, γ̃) = v�

2 γ̃2 + Υ1s̃
2

(3.13)

along the closed-loop trajectories of (3.5), and S is also positive definite; see
Sect. 3.6.1 for details and our reasoning behind the choice (3.12) of S.

The fact that the full system (3.3) in closed-loop with (3.7) is GAS to the
origin now follows because (a) its x̃ sub-dynamics is ISS with respect to (s̃, γ̃)
and (b) the asymptotically stable (s̃, γ̃) sub-dynamics does not depend on x̃.
Let us now construct a strict Lyapunov-like function for the full closed-loop
system. We claim that

M(x̃, s̃, γ̃) = ω̄S(s̃, γ̃) + x̃2, where ω̄ =
4αx2

�

γmv�
(3.14)

is a strict Lyapunov-like function for the system (3.3), in closed-loop with
(3.7), for which

Ṁ ≤ −αγmx̃2 − αx2
�

γm
γ̃2 − ω̄Υ1s̃

2 (3.15)
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along the trajectories of (3.3). To see why, first notice that the relation

2αx∗|x̃γ̃| ≤ αγmx̃2 + αx2
�

γ̃2

γm

implies that

d
dt x̃

2 = −2αγx̃2 − 2x̃γ̃αx∗ ≤ −2αγmx̃2 + 2αx∗|x̃γ̃|
≤ −αγmx̃2 +

αx2
�

γm
γ̃2

(3.16)

along the trajectories of (3.3). Then (3.15) follows by adding the inequality

ω̄Ṡ ≤ −ω̄
v�
2

γ̃2 − ω̄Υ1s̃
2

to (3.16). We turn next to a general theory that leads to the preceding analysis
as a special case.

3.2 Continuous Time Theorem

For simplicity, we first state our main result for time-invariant systems

ẋ = f(x) (3.17)

evolving on an open set X ⊆ R
n. Later we generalize to time-varying sys-

tems. In the rest of this section, we assume that the relevant functions are
sufficiently smooth. We also assume:

Assumption 3.1 There exist an integer j ≥ 2; known functions

Vi : X → R,

Ni : X → [0,∞), and
φi : [0,∞) → (0,∞);

and real numbers ai ∈ (0, 1] such that Vi(0) = 0 and Ni(0) = 0 for all i;

∇V1(x)f(x) ≤ −N1(x) ∀x ∈ X ; and (3.18)

∇Vi(x)f(x) ≤ −Ni(x) + φi
(
V1(x)

) i−1∑

l=1

N ai

l (x)V 1−ai
1 (x) (3.19)

for i = 2, . . . , j and all x ∈ X . The function V1 is also assumed to be positive
definite on X .
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Assumption 3.2 The following conditions hold:

1. there exists a function ρ : [0,∞) → (0,∞) such that

j∑

l=1

Nl(x) ≥ ρ
(
V1(x)

)
V1(x) ∀x ∈ X ; and (3.20)

2. there exist functions p2, . . . , pj : [0,∞) → [0,∞) and a positive definite
function p̄ such that for each i ∈ {2, . . . , j}, the following hold: (a) If Vi is
positive definite, then

pi(r) = 0 and |Vi(x)| ≤ p̄
(
V1(x)

)
(3.21)

for all r ≥ 0 and x ∈ X . (b) If Vi is not positive definite, then

|Vi(x)| ≤ pi
(
V1(x)

)
V1(x) (3.22)

holds for all x ∈ X .

Assumptions 3.1 and 3.2 agree with the ones in [106], except that [106]
requires the functions pi to satisfy (3.22) for all i and all x ∈ X (instead
of Condition 2. from Assumption 3.2). We refer to Assumptions 3.1 and 3.2
as our Matrosov Conditions, owing to their use of multiple functions Vi.
However, there are several different sets of conditions that are referred to as
Matrosov Conditions in the control literature. We prove:

Theorem 3.1. Let Assumptions 3.1 and 3.2 be satisfied. Then one can ex-
plicitly determine C1 functions kl, Ωl ∈ K∞ such that the function

S(x) =
j∑

l=1

Ωl

(
kl
(
V1(x)

)
+ Vl(x)

)
(3.23)

satisfies
S(x) ≥ V1(x) (3.24)

and
∇S(x)f(x) ≤ −1

4
ρ
(
V1(x)

)
V1(x) (3.25)

for all x ∈ X .

Remarks on Assumptions

Remark 3.1. If X = R
n and V1 is radially unbounded, then (3.24) implies that

S is a strict Lyapunov function for (3.17). If V1 is not radially unbounded,
then S is not necessarily radially unbounded and therefore one cannot con-
clude from standard Lyapunov theory that the origin is GAS. However, in
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many cases, GAS can be proved through a Lyapunov-like function and extra
arguments, e.g., by proving that any trajectory belongs to a compact set in-
cluded in X . This is often true in biological models that are based on mass
conservation properties, such as the one we discussed in Sect. 3.1.

Remark 3.2. If V1 is also lower bounded by a positive definite quadratic form
in a neighborhood of 0, then (3.25) implies that the time derivative of S
along the trajectories of (3.17) is upper bounded in a neighborhood of 0 by
a negative definite quadratic function. Also, (3.24) gives a positive definite
quadratic lower bound on S near the origin.

3.3 Proof of Continuous Time Theorem

Throughout the sequel, all inequalities should be understood to hold globally
unless otherwise indicated, and we omit the arguments of our functions when
they are clear from the context.

Construction of the ki’s and Ωi’s

Fix j ≥ 2 and functions satisfying Assumptions 3.1 and 3.2. Fix k2, . . . , kj ∈
C1 ∩ K∞ such that

ki(s) ≥ s + pi(s)s and k′
i(s) ≥ 1 (3.26)

for all s ≥ 0 for i = 2, 3, . . . , j. The following simple lemma is key:

Lemma 3.1. The functions {Ui} defined by

U1(x) = V1(x) and Ui(x) = ki
(
V1(x)

)
+ Vi(x) for i ≥ 2

satisfy 2ki
(
V1(x)

)
+ p̄(V1(x)) ≥ Ui(x) ≥ V1(x) for i = 2, . . . , j and all x ∈ X .

Proof. Assumption 3.2 and our choices of the ki’s give

Ui(x) ≥ V1(x) + pi
(
V1(x)

)
V1(x) − pi

(
V1(x)

)
V1(x) = V1(x) and

Ui(x) ≤ ki
(
V1(x)

)
+ pi

(
V1(x)

)
V1(x) ≤ 2ki

(
V1(x)

)

for all indices i ≥ 2 for which Vi is not positive definite. For the other in-
dices, the desired inequalities follow from (3.21) and the non-negativity of
the corresponding functions Vi. This proves the lemma. �

Returning to the proof of the theorem, set k1(s) ≡ s, and define the
functions Ui according to Lemma 3.1. We can recursively define continuous
non-decreasing functions μi : [0,∞) → [1,∞) such that
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μi(V1) ≥ 2Φ(V1)
j∑

l=1+i

μ
1

al

l (2kl(V1) + p̄(V1)) (3.27)

everywhere, where

Φ(V1) = maxi=2,..,j

{
φ

1
ai

i (V1)
[
4(j − 1)(i− 1)

ρ(V1)

](1−ai)/ai
}

(3.28)

for i = 1, 2, . . . , j. For convenience, we set μj(v) ≡ 1, and we introduce the
functions

Ωi(p) =
∫ p

0

μi(r)dr.

Then Ω′
i(s) ≥ 1 for all s ≥ 0 and i, and Lemma 3.1 gives

Ω′
i(Ui) ≥ 2Φ(V1)

j∑

l=1+i

Ω′
l(Ul)

1
al (3.29)

for all i and x ∈ X . In particular, we have Ωj(p) ≡ p.

Stability Analysis

Since Ω′
1(s) ≥ 1 everywhere, we get Ω1(U1(x)) ≥ U1(x) = V1(x) everywhere.

Hence,

S(x) = Ω1(2V1(x)) +
j∑

i=2

Ωi(Ui(x)) (3.30)

satisfies (3.24). To check the decay estimate (3.25), first note that Assumption
3.1 and our choices of the ki’s give

∇S(x)f(x) = 2Ω′
1(2U1)V̇1 +

j∑

i=2

Ω′
i(Ui)

[
k′
i(V1)V̇1 + V̇i

]

≤
j∑

i=1

Ω′
i(Ui)V̇i

≤ −
j∑

i=1

Ω′
i(Ui)Ni

+
j∑

i=2

Ω′
i(Ui)

(
φi(V1)

i−1∑

l=1

N ai

l V 1−ai
1

)

(3.31)

along the trajectories of ẋ = f(x). Define the everywhere positive functions
Γ2, . . . , Γj by
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Γi(x) =
4(j − 1)(i− 1)Ω′

i(Ui(x))φi(V1(x))
ρ(V1(x))

.

For any i ≥ 2 for which 0 < ai < 1, we can apply Young’s Inequality

v1v2 ≤ vp1 + vq2 , with p =
1
ai

, q =
1

1 − ai
,

v1 = Γ 1−ai

i (x)N ai

l (x), and v2 =
{

V1(x)
Γi(x)

}1−ai

to get

N ai

l (x)V 1−ai
1 (x) ≤ Γ

(1−ai)/ai

i (x)Nl(x) +
V1(x)
Γi(x)

for all x ∈ X . The preceding inequality also holds when ai = 1, so we can
substitute it into (3.31) to get

∇S(x)f(x) ≤ −
j∑

i=1

Ω′
i(Ui)Ni

+
j∑

i=2

(
Ω′
i(Ui)φi(V1)Γ

1−ai
ai

i

i−1∑

l=1

Nl

)

+

(
j∑

i=2

Ω′
i(Ui)

φi(V1)(i − 1)
Γi

)
V1

≤ −
j∑

i=1

Ω′
i(Ui)Ni +

1
4
ρ(V1)V1

+
j∑

i=2

(
Ω′
i(Ui)φi(V1)Γ

1−ai
ai

i

i−1∑

l=1

Nl

)

≤ −
j∑

i=1

Ω′
i(Ui)Ni +

1
4
ρ(V1)V1

+Φ(V1)
j∑

i=2

(
Ω′
i(Ui)

1
ai

i−1∑

l=1

Nl

)
,

(3.32)

by our choices of the Γi’s and the formula for Φ in (3.29).
Since Ω′

i ≥ 1 for all i, Assumption 3.2 gives

j∑

i=1

Ω′
i(Ui)Ni ≥ ρ(V1)V1.
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Hence, (3.32) gives

∇S(x)f(x) ≤ − 1
4ρ(V1)V1 − 1

2

j∑

i=1

Ω′
i(Ui)Ni

+Φ(V1)
j∑

i=2

(
Ω′
i(Ui)

1
ai

i−1∑

l=1

Nl

)
.

By reorganizing terms, one can prove that

j∑

i=2

(
Ω′
i(Ui)

1
ai

i−1∑

l=1

Nl

)
=

j−1∑

i=1

(
j∑

l=1+i

Ω′
l(Ul)

1
al

)
Ni . (3.33)

It follows that

∇S(x)f(x) ≤ −1
4
ρ(V1)V1

+
j−1∑

i=1

[
−1

2
Ω′
i(Ui) + Φ(V1)

j∑

l=1+i

Ω′
l(Ul)

1
al

]
Ni .

Since the Ni’s are non-negative, (3.25) now readily follows from (3.29). �

Remark 3.3. When a2 = . . . = aj = 1, Assumption 3.2 can be relaxed by
replacing (3.20) by the assumption that

x 
→
j∑

l=1

Nl(x) (3.34)

is positive definite, in which case we instead conclude that ∇S(x)f(x) is
negative definite. The proof proceeds as in the proof of Theorem 3.1 through
(3.31). Then we can directly apply (3.29) and (3.33) to get

∇S(x)f(x) ≤ −1
2

j∑

i=1

Ω′
i(Ui(x))Ni(x)

everywhere. The result follows because Ω′
i ≥ 1 everywhere for all i.

3.4 Discrete Time Theorem

We turn next to an analog of Theorem 3.1 for the discrete time system

xk+1 = f(xk), xk ∈ X (3.35)
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where X ⊆ R
n is open and contains the origin. Throughout this subsection,

we make these two assumptions:

Assumption 3.3 There exist a constant a ∈ (0, 1]; an integer j ≥ 2; con-
tinuous functions ν1,Mi, φi : X → [0,∞) for i = 1, 2, . . . , j; and continuous
functions νi : X → R for i = 2, . . . , j such that

ν1(f(x)) − ν1(x) ≤ −M1(x) (3.36)

for all x ∈ X and

νi(f(x)) − νi(x) ≤ −Mi(x) + φi(ν1(x))ν1(x)1−a
i−1∑

l=1

Ma
l (x) (3.37)

for all x ∈ X and i = 2, 3, . . . , j.

Assumption 3.4 There are continuous functions Ck : [0,∞) → (0,∞) for
k = 1, 2, 3, 4 such that the functions from Assumption 3.3 satisfy

j∑

l=1

Ml(x) ≥ C1(ν1(x))|x|2 (3.38)

and
C2(ν1(x))|x|2 ≤ ν1(x) ≤ C3(ν1(x))|x|2 (3.39)

for all x ∈ X and
|νi(x)| ≤ C4(ν1(x))|x|2 (3.40)

for all x ∈ X and i = 2, 3, . . . , j.

Assumption 3.3 is the discrete time analog of the continuous time Matrosov
Condition in Assumption 3.1 except for simplicity, we took all of the ai’s to
be equal. Notice that we are not requiring the auxiliary functions νi to be
non-negative for i ≥ 2, although ν1 is non-negative.

Theorem 3.2. Assume that the system (3.35) satisfies Assumptions 3.3 and
3.4. Then we can explicitly determine non-decreasing everywhere positive C1

functions κl such that the function

S(x) =
j∑

l=1

κl
(
ν1(x)

)
νl(x) (3.41)

satisfies
S(x) ≥ |x|2 (3.42)

and
S(f(x)) − S(x) ≤ −ν1(x) (3.43)

for all x ∈ X . Therefore, S is a strict Lyapunov function when X = R
n.
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Remark 3.4. We have chosen to study the case where the auxiliary functions
ν2, ν3, . . . , νj are bounded from above by a positive definite quadratic func-
tion in a neighborhood of the origin. We made this choice because it leads
to reasonably simple calculations. We strongly conjecture that a strict Lya-
punov function construction can also be carried out without making this local
quadratic upper bound assumption.

3.5 Proof of Discrete Time Theorem

Throughout our proof, all inequalities should be understood to hold for all
x ∈ X unless otherwise indicated. We can easily find a C1 non-decreasing
function Γ : [0,∞) → [1,∞) such that

C4(r)
C2(r)

+ 1 ≤ Γ (r) ∀ r ≥ 0. (3.44)

Hence, (3.36) and the non-negativity of ν1 give

Γ (ν1(f(x)))ν1(f(x)) − Γ (ν1(x))ν1(x) ≤ −Γ (ν1(x))M1(x) (3.45)

for all x ∈ X . Also, (3.39) and (3.40) give

C4(ν1(x))
C2(ν1(x))

ν1(x) + νi(x) ≥ 0. (3.46)

We introduce the functions

ν̄1
.= ν1, and νi(x) .= Γ (ν1(x))ν1(x) + νi(x) for i = 2, 3, . . . , j. (3.47)

Then
νi(x) ≥ ν1(x) ∀i. (3.48)

Also, (3.37) and (3.45) give

νi(f(x)) − νi(x) ≤ −Mi(x) + φi(ν1(x))
i−1∑

l=1

Ma
l (x)ν1−a

1 (x) (3.49)

for i ≥ 2. We define the functions V1, V2, . . . , Vj by

V1(x) = ν1(x) and Vl(x) =
l∑

r=1

νr(x) for l ≥ 2 . (3.50)

Each function Vl is positive definite, because ν1 is positive definite. Moreover,
a simple calculation yields
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Vi(f(x)) − Vi(x) ≤ −Ni(x) + ψi(V1(x))V 1−a
1 (x)N a

i−1(x) (3.51)

for all i ≥ 2, where

Ni(x) =
i∑

r=1

Mr(x) (3.52)

and

ψi(V1(x)) = i

i∑

r=2

φr(V1(x)) (3.53)

everywhere for i = 1, . . . , j. We also set

ψ1(m) = 0 ∀m . (3.54)

We can recursively define everywhere positive non-decreasing C1 functions
αj , αj−1, . . . , α1 that satisfy

αj(r)C1(r)
2C3(r)

≥ 1 (3.55)

and

(2j)
1−a

a
C

1−a
a

3 (s)

C
1−a

a
1 (s)

α
1
a

i+1(s)

α
1−a

a
j (s)

ψ
1
a
i+1(s) ≤ 1

2
αi(s) (3.56)

for i = 1, 2, . . . , j − 1.
Consider the functions

Ui(x) = αi

(
V1(x)

)
Vi(x) for i = 1, 2, ..., j and

U(x) =
j∑

r=1

Ur(x).
(3.57)

Notice that for all i ∈ {1, . . . , j}, we have

Ui

(
f(x)

)− Ui(x) = αi

(
V1

(
f(x)

))
Vi
(
f(x)

)− αi

(
V1(x)

)
Vi(x).

Since V1

(
f(x)

) ≤ V1(x) and each αi is non-decreasing, and since each Vi is
positive definite, we deduce that

Ui(f(x)) − Ui(x) ≤ αi

(
V1(x)

)[
Vi
(
f(x)

)− Vi(x)
]
. (3.58)

It follows from (3.51) that

Ui(f(x)) − Ui(x)

≤ αi

(
V1(x)

)[−Ni(x) + ψi

(
V1(x)

)
V 1−a

1 (x)N a
i−1(x)

]
.

(3.59)
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Therefore,

U(f(x)) − U(x) ≤
j∑

r=1

[
− αr

(
V1(x)

)Nr(x)

+αr

(
V1(x)

)
ψr

(
V1(x)

)
V 1−a

1 (x)N a
r−1(x)

]

≤ −
j∑

r=1

αr

(
V1(x)

)Nr(x)

+
j∑

r=2

[
αr(V1(x))ψr(V1(x))V 1−a

1 (x)N a
r−1(x)

]
,

(3.60)

where the last inequality is from (3.54). We deduce that

U(f(x)) − U(x) ≤ −
j∑

r=1

αr

(
V1(x)

)Nr(x)

+
j−1∑

r=1

αr+1

(
V1(x)

)
ψr+1

(
V1(x)

)
V 1−a

1 (x)N a
r (x).

(3.61)

Using the fact that

j∑

r=1

αr(V1(x))Nr(x) = αj

(
V1(x)

)Nj(x) +
j−1∑

r=1

αr

(
V1(x)

)Nr(x)

≥ αj

(
V1(x)

)
C1(ν1(x))|x|2 +

j−1∑

r=1

αr

(
V1(x)

)Nr(x)

and therefore also

j∑

r=1

αr(V1(x))Nr(x) ≥ αj(V1(x))C1(V1(x))
C3(V1(x))

V1(x)

+
j−1∑

r=1

αr

(
V1(x)

)Nr(x),

(3.62)

we deduce that

U(f(x)) − U(x) ≤ −αj

(
V1(x)

)
C1(V1(x))

C3(V1(x))
V1(x)

+
j−1∑

r=1

[
− αr(V1(x))Nr(x)

+αr+1

(
V1(x)

)
ψr+1

(
V1(x)

)
V 1−a

1 (x)N a
r (x)

]
.

(3.63)
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Setting

Γr(s) =
C

1−a
a

3 (s)

C
1−a

a
1 (s)

α
1
a
r+1(s)

α
1−a

a

j (s)

for r = 1, 2, . . . , j − 1, Young’s Inequality pq ≤ p1/(1−a) + q1/a applied with

p =
α1−a
j (V1(x))C1−a

1 (V1(x))V 1−a
1 (x)

(2j)1−aC1−a
3 (V1(x))

and

q = (2j)1−aψr+1(V1(x))Γ a
r (V1(x))N a

r (x)

for a 
= 1 gives

αr+1(V1(x))ψr+1(V1(x))V 1−a
1 (x)N a

r (x)

≤ αj(V1(x))C1(V1(x))
2jC3(V1(x))

V1(x)

+(2j)
1−a

a Γr(V1(x))ψ
1
a
r+1(V1(x))Nr(x)

(3.64)

for all possible a ∈ (0, 1].
Combined with (3.63), this gives

U(f(x)) − U(x)

≤ −αj(V1(x))C1(V1(x))
2C3(V1(x))

V1(x)

+
j−1∑

r=1

[
−αr(V1(x)) + (2j)

1−a
a Γr(V1(x))ψ

1
a
r+1(V1(x))

]
Nr(x),

(3.65)

for all possible a ∈ (0, 1]. Since our functions αi satisfy (3.56), we get

U(f(x)) − U(x) ≤ −αj(V1(x))C1(V1(x))
2C3(V1(x))

V1(x). (3.66)

Using (3.40), we can determine an increasing C1 function Λ : [0,∞) → [1,∞)
such that

|U(x)| ≤ Λ(V1(x))V1(x) ∀x ∈ X and

Λ(r) ≥ 1
C2(r)

∀r ≥ 0.
(3.67)

We easily deduce that

S(x) = U(x) + 2Λ
(
V1(x)

)
V1(x) (3.68)
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satisfies

S(x) ≥ Λ(V1(x))V1(x) ≥ V1(x)
C2(V1(x))

≥ |x|2 (3.69)

and

S(f(x)) − S(x) ≤ −αj(V1(x))C1(V1(x))
2C3(V1(x))

V1(x). (3.70)

Combined with our condition (3.55) on αj , this proves the theorem. �

3.6 Illustrations

3.6.1 Continuous Time: One Auxiliary Function

Let us show how the strict Lyapunov-like function (3.12) we constructed in
Sect. 3.1 follows as a special case of Theorem 3.1. Choose V1 and V2 as defined
in (3.6) and (3.9), respectively. Then our decay conditions (3.8) and (3.10)
imply that Assumption 3.1 is satisfied with j = 2, N1(s̃) = s̃2, N2(γ̃) = v∗

2 γ̃2,
a2 = 1, and the constant function

φ2(s) ≡ γ2
M

2v�
+

K(γM − γm)2

4
.

Moreover, since V1 is bounded from above by a positive definite quadratic
function near 0, we can find an everywhere positive function ρ so that

ρ(V1)V1 ≤ min
{
1,

v∗
2

}
(s̃2 + γ̃2) ≤

2∑

i=1

Ni(s̃, γ̃)

on X . (In fact, we can choose ρ so that outside a neighborhood of zero,

ρ(v) =
c

1 + v

for a suitable constant c.) Thus, the first part of Assumption 3.2 is also
satisfied.

Next note that because max{(γM − γ)(γ − γm) : γ ∈ [γm, γM ]} = 1
4 (γM −

γm)2, we know that

V1(s̃, γ̃) ≥ 1
2γm

s̃2 +
2v∗

Kγm(γM − γm)2
γ̃2 ≥ 1

2
v(s̃2 + γ̃2),

where

v = min
{

1
γm

,
4v∗

Kγm(γM − γm)2

}
, (3.71)
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holds on X . This and the triangle inequality |s̃γ̃| ≤ 1
2 s̃

2 + 1
2 γ̃

2 give

|V2(s̃, γ̃)| = |s̃γ̃| ≤ V1(s̃, γ̃)
v

.

(Our choice of V2 was motivated by our desire to have the preceding estimate.)
Hence, the second part of Assumption 3.2 is satisfied as well, so Theorem 3.1
applies with the constant function

p2(s) ≡ 1
v
.

We now explicitly build the strict Lyapunov-like function from Theorem 3.1.
Since j = 2 and a2 = 1, we get

k2(s) =
(

1
v

+ 1
)

s,

hence
U2(s̃, γ̃) = Υ1V1(s̃, γ̃) + V2(s̃, γ̃),

where Υ1 is the constant we defined in (3.11). Also, we can take Φ from (3.28)
to be φ2 to get

Ω1(s) =
[
γ2
M

v�
+

K(γM − γm)2

2

]
s and

Ω2(s) ≡ s.

Hence the formula (3.30) for S becomes

S(s̃, γ̃) = U2(s̃, γ̃) + 2
[
γ2
M

v�
+

K(γM − γm)2

2

]
V1(s̃, γ̃)

= V2(s̃, γ̃) +
[
Υ1 +

2γ2
M

v∗
+ K(γM − γm)2

]
V1(s̃, γ̃)

(3.72)

which agrees with (3.12).

3.6.2 Continuous Time: Two Auxiliary Functions

We next consider a case where the function (3.23) constructed in Theorem
3.1 is radially unbounded and therefore is a strict Lyapunov function. We
consider the system {

ẋ1 = x2

ẋ2 = −x1 − x3
2.

(3.73)
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We use the functions

V1(x) = 1
4 (x2

1 + x2
2)

2 , N1(x) = (x2
1 + x2

2)x
4
2 ,

V2(x) = 1
2 (x2

1 + x2
2) , N2(x) = x4

2 ,

V3(x) = 1
2 (x2

1 + x2
2)x1x2 , and N3(x) = 1

2 [x2
1 + x2

2]x
2
1 .

(3.74)

Along the trajectories of (3.73), the functions Vi satisfy

V̇1(x) = −N1(x),
V̇2(x) = −N2(x), and
V̇3(x) = 1

2 [x2
1 + x2

2][x2
2 − x2

1 − x1x
3
2] −N2(x)x1x2.

Therefore, the inequality x1x2 ≤ 1
2x

2
1 + 1

2x
2
2 gives

V̇3(x) ≤ −N3(x) + φ3(V1(x))
√

N2(x)
√

V1(x), (3.75)

where
φ3(r) = 1 + 3

√
r. (3.76)

One can easily check that

3∑

r=1

Nr(x) = (x2
1 + x2

2)x
4
2 + x4

2 + 1
2 [x2

1 + x2
2]x

2
1

≥ ρ(V1(x))V1(x),

(3.77)

where ρ(r) ≡ 1. Also, V1 and V2 are positive definite, and

|V3(x)| ≤ p3(V1(x))V1(x) , (3.78)

where p3(r) ≡ 1. Therefore, Assumptions 3.1 and 3.2 are satisfied with j = 3,
ρ̄(s) =

√
s, φ2 ≡ 1, a2 = 1, and a3 = 1/2. Hence, Theorem 3.1 provides

a strict Lyapunov-like function for (3.73), which turns out to be a strict
Lyapunov function.

Let us construct the strict Lyapunov-like function from the theorem. Since
p2(s) ≡ 0, we can satisfy the conditions (3.26) on the ki’s by taking

k1(s) = k2(s) = s and k3(s) = 2s.

The functions Ui from Lemma 3.1 are therefore

U1(x) = V1(x) , U2(x) = V1(x) + V2(x) , and
U3(x) = 2V1(x) + V3(x). (3.79)

Since a2 = 1 and a3 = 1/2, the function Φ from (3.28) is Φ(s) = 16(1+3
√
s)2.

Therefore, we can satisfy the conditions on the Ωi’s in (3.29) by taking
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Ω3(s) = s , Ω2(s) = 32s + 128s3/2 + 144s2 ,

Ω1(s) = Ω2(s) + 322
(
49s + 105s2 + 80s3

)
, and

S(x) = Ω1(2U1(x)) + Ω2(U2(x)) + U3(x).

(3.80)

With these choices, we obtain

Ṡ(x) ≤ − 1
4V1(x). (3.81)

In conjunction with the properness and positive definiteness of S, this shows
that S is a strict Lyapunov function for (3.73).

Remark 3.5. The parameters in the functions Ω1 and Ω2 in (3.80) are large.
However, we can construct a global strict Lyapunov function for (3.73) with
smaller parameters, by the following direct construction.

We have

U̇1(x) = −N1(x) ,

U̇2(x) = −(N1(x) + N2(x)
)
, and

U̇3(x) ≤ −2N1(x) −N3(x) + φ3

(
V1(x)

)√N2(x)
√

V1(x) .

(3.82)

Therefore,

U̇3(x) + U̇2(x) ≤ −N1(x) −N2(x) −N3(x)

+φ3(V1(x))
√N2(x)

√
V1(x)

≤ −V1(x) + φ3(V1(x))
√N2(x)

√
V1(x)

≤ − 1
2V1(x) + 1

2φ
2
3(V1(x))N2(x)

≤ − 1
2V1(x) + (1 + 9V1(x))N2(x) ,

(3.83)

where the second inequality is by (3.77). Let

S(x) = 2U2(x) + 8U2
2 (x) + U3(x). (3.84)

This function satisfies
Ṡ(x) ≤ −1

2
V1(x) . (3.85)

Moreover, S is positive definite and radially unbounded, because the Ui’s are
bounded below by V1. Therefore S is a strict Lyapunov function for (3.73).
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3.6.3 Discrete Time Context

We illustrate our discrete time Lyapunov function construction from Theorem
3.2 using the system ⎧

⎪⎪⎨

⎪⎪⎩

pk+1 = qk

qk+1 = rk

rk+1 = pk − 3
4

pk

1+p2
k
.

(3.86)

Let x = (p, q, r). We check the assumptions of the theorem using

ν1(x) = 1
2

[
p2 + q2 + r2

]
, ν2(x) = r2, ν3(x) = q2,

M1(x) = 15
32

p2

1+p2 , M2(x) = r2, and M3(x) = q2 .
(3.87)

Notice that

ν1(xk+1) − ν1(xk) = 1
2 [p2

k+1 + q2
k+1 + r2

k+1] − 1
2 [p2

k + q2
k + r2

k]

= 1
2

[(
pk − 3

4
pk

1+p2
k

)2

− p2
k

]

= 1
2

[
− 3

2
p2

k

1+p2
k

+ 9
16

p2
k

(1+p2
k)2

]

≤ −M1(xk).

(3.88)

Also,

ν2(xk+1) − ν2(xk) = r2
k+1 − r2

k

= −M2(xk) +
(
1 − 3

4
1

1+p2
k

)2

p2
k

≤ −M2(xk) + 32
15

(
1 − 3

4
1

1+p2
k

)2

(1 + p2
k)M1(xk)

(3.89)

and

ν3(xk+1) − ν3(xk) = q2
k+1 − q2

k = −M3(xk) + M2(xk). (3.90)

In summary,

ν1(xk+1) − ν1(xk) ≤ −M1(xk)
ν2(xk+1) − ν2(xk) ≤ −M2(xk) + φ2(ν1(xk))M1(xk)
ν3(xk+1) − ν3(xk) = −M3(xk) + φ3(ν1(xk))M2(xk) ,

(3.91)

where
φ2(l) =

32
15

(1 + 2l) and φ3(l) = l . (3.92)
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It follows that Assumption 3.3 is satisfied. Moreover, for all choices of x,

3∑

l=1

Ml(x) =
15
32

p2

1 + p2
+ q2 + r2 ≥ C1(ν1(x))|x|2 ,

C2(ν1(x))|x|2 ≤ ν1(x) ≤ C3(ν1(x))|x|2, and

|νi(x)| ≤ C4(ν1(x))|x|2 for i = 2, 3

(3.93)

where

C1(l) =
15

32(1 + 2l)
, C2(l) = C3(l) =

1
2
, and C4(l) = 1

for all l ≥ 0. Therefore, Assumption 3.4 is satisfied as well, so Theorem 3.2
applies. Hence, we can construct a strict Lyapunov function for the system
(3.86) by arguing as in the proof of Theorem 3.2.

Let us construct a strict Lyapunov function for (3.86) of the type guaran-
teed by the theorem. Since

2ν2(xk+1) − 2ν2(xk) + ν3(xk+1) − ν3(xk)

= −M3(xk) −M2(xk) +
64
15

[1 + 2ν1(xk)]M1(xk),
(3.94)

the radially unbounded positive definite function

S(x) =
94
15
[
1 + 2ν1(x)

]
ν1(x) + 2ν2(x) + ν3(x). (3.95)

satisfies

S(xk+1) − S(xk) ≤ −2
[
1 + 2ν1(xk)

]M1(xk) −M2(xk) −M3(xk)

≤ −ν1(xk) ,
(3.96)

which is the desired decay condition.

3.7 Comments

The recent paper [111] provides an alternative and very general Matrosov
approach for constructing strict Lyapunov-like functions. However the Lya-
punov functions provided by [111] are not in general locally bounded from
below by positive definite quadratic functions, even for globally asymptoti-
cally linear systems, which admit a quadratic strict Lyapunov function. The
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shape of Lyapunov functions, their local properties and their simplicity mat-
ter when they are used to investigate robustness properties and construct
feedbacks and gains.

The differences between Assumptions 3.1 and 3.2 and the assumptions
from [111] are as follows. First, while our Assumption 3.1 ensures that V1

is positive definite but not necessarily proper, [111] assumes that a radially
unbounded non-strict Lyapunov function is known. Second, our Assumption
3.1 is a restrictive version of Assumption 2 from [111]. More precisely, our
Assumption 3.1 specifies the local properties of the functions that correspond
to the χi’s of Assumption 2 in [111]. Finally, our Assumption 3.2 imposes
relations between the functions Ni and V1, which are not required in [111].
An important feature is that we do not require the functions V2, . . . , Vj to be
non-negative.

Our treatment of (3.3) is based on [106]. Since the Matrosov constructions
in [111] assume that the given non-strict Lyapunov function is globally proper
on the whole Euclidean space, and since (3.6) does not satisfy this require-
ment, we cannot construct the required explicit strong Lyapunov function for
(3.3) using the results of [111]. Notice that the strict Lyapunov-like function
(3.72) that we constructed for the anaerobic digester is a simple linear com-
bination of V1 and V2. By contrast, the strong Lyapunov functions provided
by [111, Theorem 3] for the j = 2 time-invariant case have the form

S(x) = Q1

(
V1(x)

)
V1(x) + Q2

(
V1(x)

)
V2(x),

where Q1 is non-negative, and where the positive definite function Q2 needs
to globally satisfy

Q2(V1) ≤ φ−1

(
ω(x)

2ρ(|x|)
)

,

where
∇V2(x)f(x) ≤ −N2(x) + φ

(N1(x)
)
ρ(|x|)

for some φ ∈ K∞ and some everywhere positive non-decreasing function ρ
and the positive definite function ω needs to satisfy N1(x) + N2(x) ≥ ω(x)
everywhere. In particular, we cannot take Q2 to be constant to get a linear
combination of the Vi’s, so the construction of [111] is more complicated than
the one we provide here. Similar remarks apply to the other constructions
in [111]. See Chap. 8 for strict Lyapunov function constructions under more
general Matrosov type conditions.



Chapter 4

Jurdjevic-Quinn Conditions

Abstract The Jurdjevic-Quinn Theorem provides a powerful framework for
guaranteeing globally asymptotic stability, using a smooth feedback of arbi-
trarily small amplitude. It requires certain algebraic conditions on the Lie
derivatives of a suitable non-strict Lyapunov function, in the directions of
the vector fields that define the system. The non-strictness of the Lyapunov
function is an obstacle to proving robustness, since robustness analysis typi-
cally requires strict Lyapunov functions.

In this chapter, we provide a method for overcoming this obstacle. It in-
volves transforming the non-strict Lyapunov function into an explicit global
CLF. This gives a strict Lyapunov function construction for closed-loop
Jurdjevic-Quinn systems with feedbacks of arbitrarily small magnitude. This
is valuable because (a) the non-strict Lyapunov function from the Jurdjevic-
Quinn Theorem is often known explicitly and (b) our methods apply to
Hamiltonian systems, which commonly arise in mechanical engineering. We
illustrate our work using a two-link manipulator model, as well as an integral
input-to-state stability result.

4.1 Motivation

Consider the two-link manipulator system from [5]. This is a fully actuated
system obtained by viewing the robot arm as a segment with length L and
mass M . Letting m denote the mass of the hand, r the position of the hand,
and θ the angle of the arm, we get the Euler-Lagrange equations

⎧
⎪⎨

⎪⎩

(
mr2 + M

L2

3

)
θ̈ + 2Mrṙθ̇ = τ

mr̈ −mrθ̇2 = F ,

(4.1)

where τ and F are forces acting on the system. See Fig. 4.1.

83
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Fig. 4.1 Linear rotational actuated arm modeled by Euler-Lagrange Eq. (4.1)

It is well-known that (4.1) can be stabilized by bounded control laws.
However, it is not clear how to construct a CLF for the system whose time
derivative along the trajectory is made negative definite by an appropriate
choice of bounded feedback. Let us show how such a CLF can be constructed.

For simplicity, we take

m = M = 1, L =
√

3, x1
.= θ, x2

.= θ̇, x3
.= r, and x4

.= ṙ.

The system (4.1) becomes
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2, ẋ2 = −2x3x2x4

x2
3 + 1

+
τ

x2
3 + 1

,

ẋ3 = x4, ẋ4 = x3x
2
2 + F.

(4.2)

We construct a globally asymptotically stabilizing feedback that is bounded
by 2, and an associated CLF for (4.2). We set

〈p〉 =
1

2
√

1 + p2

for all p ∈ R throughout the sequel.
Consider the positive definite and radially unbounded function

V (x) =
1
2

[
(x2

3 + 1)x2
2 + x2

4 +
√

1 + x2
1 +

√
1 + x2

3 − 2
]

, (4.3)

M

r

m
F

τ

θ



4.2 Control Affine Case 85

which is composed of the kinetic energy of the system with additional terms.
With the change of feedback

τ = −x1〈x1〉 + τb , F = −x3〈x3〉 + Fb, (4.4)

the system (4.2) takes the control affine form

ẋ = f(x) + g(x)u, where

f(x) =

⎡

⎢⎢⎢⎢⎣

x2
−2x3x2x4−x1〈x1〉

x2
3+1

x4

x2
2x3 − x3〈x3〉

⎤

⎥⎥⎥⎥⎦
, g(x) =

⎡

⎢⎢⎢⎢⎣

0 0
1

x2
3+1

0

0 0
0 1

⎤

⎥⎥⎥⎥⎦
, and u =

[
τb
Fb

]
.

(4.5)

Next consider the vector field

G(x) = (0, x1, 0, x3)�

and the function

V �(x) = 40[2 + 2V (x)]6 + LGV (x) − 40(26) . (4.6)

One can show that when we choose the feedbacks

τb = −x2〈x2〉 and Fb = −x4〈x4〉, (4.7)

the time derivative of V � along the trajectories of the closed-loop system (4.5)
satisfies

V̇ �(x) ≤ −1
2
[
x2

1〈x1〉 + x2
2〈x2〉 + x2

3〈x3〉 + x2
4〈x4〉

]
, (4.8)

and that V � is proper and positive definite; see Sect. 4.7.2 for details. The
right hand side of this inequality is negative definite, and the feedback (τ, F )
given by (4.4) and (4.7) is bounded in norm by 2, as desired. Also, since the
feedback is 0 and continuous at the origin, the CLF (4.6) satisfies the small
control property. We turn next to a general construction that leads to V � as
a special case.

4.2 Control Affine Case

4.2.1 Assumptions and Statement of Result

We first consider control affine systems

ẋ = f(x) + g(x)u (4.9)
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with state space X = R
n and control set U = R

m, where f : R
n → R

n and
g : R

n → R
n×m are assumed to be smooth, i.e., C∞, and f(0) = 0.1 In Sect.

4.3, we use our arguments for the control affine case to extend our results to
general nonlinear systems ẋ = F(x, u). We assume the following:

Assumption 4.1 There is a storage function V : R
n → [0,∞) such that

LfV (x) ≤ 0 everywhere. Moreover, there is a smooth scalar function ψ such
that if x 
= 0 is such that LfV (x) = 0 and LgV (x) = 0 both hold, then
Lfψ(x) < 0.

We refer to ψ as the auxiliary scalar field; see [41] or Sect. 4.4 below for
general methods for constructing ψ when the Weak Jurdjevic-Quinn Condi-
tions are satisfied. Our main result for (4.9) is:

Theorem 4.1. Let (4.9) be such that Assumption 4.1 is satisfied. Then we
can explicitly construct C1 functions λ and Γ such that

U(x) = λ
(
V (x)

)
ψ(x) + Γ

(
V (x)

)
(4.10)

is a CLF for (4.9) that satisfies the small control property. In fact, for any
smooth everywhere positive function ξ : R

n → (0,∞), we can construct λ
and Γ in such a way that (4.10) is a strict Lyapunov function for (4.9) in
closed-loop with the feedback u(x) = −ξ(x)LgV (x)�.

In particular, we get stabilizing feedbacks of arbitrarily small amplitude.

4.2.2 Main Lemmas

We use the following lemmas to prove Theorem 4.1. We use the notation

N (x) = −min{0, Lfψ(x)} ,
H(x) = −LfV (x) + |LgV (x)|2 , and
S(x) = H(x) + N (x) .

(4.11)

Lemma 4.1. The function S(x) is continuous and positive definite.

Proof. By Assumption 4.1, both H and N are non-negative, so S is non-
negative. On the other hand, if S(x) = 0, then LfV (x) = 0, LgV (x) = 0 and
Lfψ(x) ≥ 0. Then Assumption 4.1 implies that x = 0. �

A key feature of our proof of Theorem 4.1 is that it provides explicit
formulas for functions λ and Γ such that (4.10) is a CLF for (4.9). In fact,
we will prove later that (4.10) is a CLF for (4.9) when

1 The smoothness assumptions in this section can be replaced by the assumption that
the relevant functions are Ck where k is large enough to make the CLF and feedback we
construct C1.
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Γ (r) =
∫ r
0 γ(s)ds,

where γ(s) = 1 + K ′
1(s)s + 3

[
K1(s) + K

3/2
1 (s)

] (4.12)

and K1 and λ satisfy the requirements of the following lemma:

Lemma 4.2. Let Assumption 4.1 hold. Then we can construct a function
λ ∈ K∞ ∩ C1 and a C1 increasing function K1 : [0,∞) → (0,∞) such that
λ(s) ≤ K1(s) everywhere,

λ(v) ≤ v ∀v ≥ 0 , and (4.13)

λ′(V (x))|ψ(x)| + λ(V (x)) ≤ K1(V (x)) , (4.14)

|ψ(x)| ≤ K1(V (x)) , (4.15)

|Lgψ(x)|2 ≤ K1(V (x)) , (4.16)

and
λ(V (x))

[
1 + max{0, Lfψ(x)}] ≤ S(x)K1(V (x)) (4.17)

hold for all x ∈ R
n.

Proof. Since S is positive definite and V is proper and positive definite, we
can find a continuous positive definite function ρ0 so that S(x) ≥ ρ0(V (x))
for all x ∈ R

n (by first finding a positive definite function ρ̃ that is increas-
ing on [0, 1] and decreasing on [1,∞) such that S(x) ≥ ρ̃(|x|) everywhere).
Hence, Lemma A.7 provides λ ∈ K∞ ∩ C1 such that (4.13) is satisfied and
an everywhere positive increasing function K̄ ∈ C1 such that

λ(V (x)) ≤ S(x)K̄(V (x)) ∀x ∈ R
n. (4.18)

We can also find an increasing function κ̄ ∈ C1 such that

1 + max{0, Lfψ(x)} ≤ κ̄
(
V (x)

) ∀x ∈ R
n. (4.19)

Combining (4.18) and (4.19) provides an increasing function κ1 ∈ C1 such
that

λ(V (x))
[
1 + max{0, Lfψ(x)}] ≤ S(x)κ1

(
V (x)

) ∀x ∈ R
n. (4.20)

Next, one can determine everywhere positive increasing functions κi ∈ C1

for i = 2, 3, 4 such that

λ′(V (x))|ψ(x)| + λ
(
V (x)

) ≤ κ2

(
V (x)

)
(4.21)

and
|ψ(x)| ≤ κ3

(
V (x)

)
and |Lgψ(x)|2 ≤ κ4

(
V (x)

)
(4.22)

hold for all x ∈ R
n. Since λ′ ≥ 0, the inequality λ(s) ≤ κ2(s) is satisfied

everywhere. It follows that
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K1(v) =
4∑

i=1

κi(v), (4.23)

is such that the inequalities (4.14)-(4.17) are all satisfied. �
In the sequel, all (in)equalities should be understood to hold for all x ∈ R

n

unless otherwise indicated. The following lemma is a key ingredient in our
proof of the Lyapunov decay condition for (4.10):

Lemma 4.3. Let the functions λ and K1 satisfy the requirements of Lemma
4.2. Then for all x ∈ R

n, the inequality

λ
(
V (x)

)
Lfψ(x) ≤ −λ

(
V (x)

)
S(x) + 2K1

(
V (x)

)
H(x) (4.24)

is satisfied.

Proof. According to the definition of N , we get

Lfψ(x) = −N (x) + max{0, Lfψ(x)}. (4.25)

Therefore, (4.17) from Lemma 4.2 gives

λ(V (x))Lfψ(x) = −λ(V (x))N (x) + λ(V (x))max{0, Lfψ(x)}
≤ −λ(V (x))N (x) + S(x)K1(V (x)). (4.26)

We consider two cases.
Case 1. Lfψ(x) ≤ 0. Then, (4.26) gives

λ(V (x))Lfψ(x) = −λ(V (x))N (x)
= −λ(V (x))S(x) + H(x)λ(V (x)). (4.27)

Case 2. Lfψ(x) > 0. Then, the definition of N in (4.11) gives N (x) = 0,
which implies that S(x) = H(x). This combined with (4.26) yields

λ(V (x))Lfψ(x) ≤ H(x)K1(V (x))
= −λ(V (x))S(x) + H(x)[K1(V (x)) + λ(V (x))]. (4.28)

We deduce that in both cases,

λ(V (x))Lfψ(x) ≤ −λ(V (x))S(x) + H(x) [K1(V (x)) + λ(V (x))] . (4.29)

The result follows because λ(s) ≤ K1(s) everywhere, by (4.14). �

4.2.3 Checking the CLF Properties

Returning to the proof of Theorem 4.1, let Γ be the function defined in (4.12),
and let K1 and λ be the functions provided by Lemma 4.2. We check that
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the resulting function U from (4.10) satisfies the required CLF properties.
Notice that Γ (v) ≥ v +

∫ v
0 [K ′

1(s)s + K1(s)]ds = v + K1(v)v everywhere, so

U(x) ≥ λ
(
V (x)

)
ψ(x) + V (x) + K1

(
V (x)

)
V (x) (4.30)

holds for all x ∈ R
n. From (4.13) and (4.15), we deduce that

U(x) ≥ V (x) (4.31)

so U is positive definite and radially unbounded.
The time derivative of U along the trajectories of (4.9) is

U̇(x) = λ
(
V (x)

)[
Lfψ(x) + Lgψ(x)u

]

+
[
λ′(V (x))ψ(x) + Γ ′(V (x)

)][
LfV (x) + LgV (x)u

]

= λ
(
V (x)

)
Lfψ(x) +

[
λ′(V (x))ψ(x) + Γ ′(V (x))

]
LfV (x)

+Θ(x)u ,

(4.32)

where

Θ(x) = λ(V (x))Lgψ(x) +
{
λ′(V (x))ψ(x) + γ(V (x))

}
LgV (x). (4.33)

Using Lemma 4.3 and the definition of H in (4.11), we deduce that

U̇(x) ≤ −λ
(
V (x)

)
S(x) + 2K1

(
V (x

)[− LfV (x) + |LgV (x)|2]

+
[
λ′(V (x)

)
ψ(x) + Γ ′(V (x)

)]
LfV (x) + Θ(x)u

= −λ
(
V (x)

)
S(x) + 2K1

(
V (x)

)|LgV (x)|2 + Θ(x)u

+
[
λ′(V (x)

)
ψ(x) − 2K1

(
V (x)

)
+ γ

(
V (x)

)]
LfV (x) .

(4.34)

Recalling (4.14) and the facts that γ( ) ≥ 3K1( ) for all  ≥ 0 and LfV (x) ≤ 0
everywhere, we obtain

U̇(x) ≤ �(x) + Θ(x)u , (4.35)

where
�(x) = −λ

(
V (x)

)
S(x) + 2K1

(
V (x)

)|LgV (x)|2 . (4.36)

Consider the control
u = −50Θ(x) . (4.37)

It suffices to show that �(x)−50Θ2(x) is negative definite because (4.35) and
(4.37) combine to give U̇(x) ≤ �(x)−50Θ2(x). To prove that �(x)−50Θ2(x)
is negative definite, we proceed by contradiction. Suppose that there exists
x 
= 0 such that �(x) − 50Θ2(x) ≥ 0, or equivalently,
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−λ
(
V (x)

)
S(x) + 2K1

(
V (x)

)|LgV (x)|2 − 50
[
λ
(
V (x)

)
Lgψ(x)

+
{
λ′(V (x)

)
ψ(x) + γ

(
V (x)

)}
LgV (x)

]2

≥ 0.
(4.38)

Then,

2K1

(
V (x)

)|LgV (x)|2

≥ 50
[
λ
(
V (x)

)
Lgψ(x) +

{
λ′(V (x)

)
ψ(x) + γ

(
V (x)

)}
LgV (x)

]2

.
(4.39)

Therefore, the general relation |a+ b+ c| ≥ |a|− |b|− |c| for any real numbers
a, b, and c gives

√
K1(V (x))|LgV (x)| ≥ 5

∣∣∣∣λ
(
V (x)

)
Lgψ(x)

+
{
λ′(V (x)

)
ψ(x) + γ

(
V (x)

)}
LgV (x)

∣∣∣∣

≥ −5
∣∣λ
(
V (x)

)
Lgψ(x)

∣∣− 5
∣∣λ′(V (x)

)
ψ(x)

∣∣|LgV (x)|
+5γ(V (x))|LgV (x)| .

It follows that

5|λ(V (x)
)
Lgψ(x)|

≥
[
−
√

K1

(
V (x)

) − 5
∣∣λ′(V (x)

)
ψ(x)

∣∣+ 5γ
(
V (x)

)] |LgV (x)| .
(4.40)

From (4.14), we deduce that

5|λ(V (x))Lgψ(x)| ≥
[
−
√

K1

(
V (x)

) − 5K1(V (x)) + 5γ
(
V (x)

)] |LgV (x)|
≥ [− 1 − 6K1

(
V (x)

)
+ 5γ(V (x))

]|LgV (x)| .

Our choice of γ in (4.12) then gives5|λV (x))Lgψ(x)| ≥ 3γ(V (x))|LgV (x)|
and therefore

50K1(V (x)) |λ(V (x))Lgψ(x)|2
9γ2
(
V (x)

) ≥ 2K1

(
V (x)

)|LgV (x)|2 . (4.41)

Since (4.38) implies that λ(V (x))S(x) ≤ 2K1(V (x))|LgV (x)|2, we get

50K1(V (x)) |λ(V (x))Lgψ(x)|2
9γ2(V (x)) ≥ λ

(
V (x)

)
S(x) (4.42)

and then

50K2
1(V (x)) |Lgψ(x)|2

9γ2(V (x))λ(V (x)) ≥ S(x)K1(V (x)) . (4.43)
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From (4.16), we deduce that

50K3
1(V (x))

9γ2(V (x)) λ(V (x)) ≥ S(x)K1(V (x)) . (4.44)

Recalling our choice of γ in (4.12), we have

50K3
1 (V (x))

9γ2(V (x)) ≤ 50K3
1 (V (x))

9[1+3K
3/2
1 (V (x))]2

≤ 50
81 . (4.45)

It follows that 50
81λ(V (x)) ≥ S(x)K1(V (x)). This contradicts (4.17). We con-

clude that U is a CLF for (4.9) that satisfies the small control property, when
Γ is defined by (4.12).

4.2.4 Arbitrarily Small Stabilizing Feedbacks

In the previous section, we constructed a family of CLFs of the form

U(x) = λ(V (x))ψ(x) +
∫ V (x)

0

γ(r)dr (4.46)

for the control affine system (4.9). We now show that for any smooth function
ξ : R

n → (0,∞), we can choose γ in such a way that (4.46) is a strict
Lyapunov function for (4.9) in closed-loop with

u(x) = −ξ(x)LgV (x)� . (4.47)

This will prove that for any control set U ⊆ R
m containing a neighborhood

of the origin, (4.9) is C1 globally asymptotically stabilizable by a feedback
that takes all of its values in U .

To this end, pick any C1 function γ such that

γ(s) ≥ 1 + K ′
1(s)s + 3

[
K1(s) + K

3/2
1 (s)

]
∀s ≥ 0 (4.48)

and

γ(V (x)) ≥ 4K1(V (x))
ξ(x)

+ 2K1(V (x)) + 2ξ(x)K2
1 (V (x)) ∀x ∈ R

n , (4.49)

where K1 is the function provided by Lemma 4.2. We show that the time
derivative of (4.46) along the solutions of (4.9) in closed-loop with (4.47)
satisfies

U̇(x) ≤ −W (x), (4.50)

where
W (x) =

3
4
λ
(
V (x)

)
S(x) +

1
2
ξ(x)γ

(
V (x))

)∣∣LgV (x)
∣∣2. (4.51)
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Here λ is the function constructed in Lemma 4.2. The result is then immediate
from the smoothness of u and the fact that u(0) = 0, because V , λ, and S
are all positive definite.

To prove the estimate (4.50), first notice that (4.35) and (4.48) give

U̇(x) ≤ �(x) −Θ(x)ξ(x)LgV (x)�

= �(x) − ξ(x)
[
λ
(
V (x)

)
Lgψ(x)LgV (x)�

+
{
λ′(V (x)

)
ψ(x) + γ

(
V (x)

)}∣∣LgV (x)
∣∣2
]
.

(4.52)

Therefore, our choice of � in (4.36) gives

U̇(x) ≤ −λ
(
V (x)

)
S(x) + ξ(x)λ

(
V (x)

)∣∣Lgψ(x)
∣∣∣∣LgV (x)

∣∣

+
[
2K1

(
V (x)

)
+ ξ(x)

{|λ′(V (x)
)
ψ(x)| − γ

(
V (x)

)}]∣∣LgV (x)
∣∣2.

(4.53)

Recalling (4.14) and (4.16) gives

U̇(x) ≤ −λ
(
V (x)

)
S(x) + ξ(x)λ

(
V (x)

)√
K1(V (x))|LgV (x)|

+
[
2K1

(
V (x)

)
+ ξ(x)

{
K1

(
V (x)

)− γ
(
V (x)

)}]∣∣LgV (x)
∣∣2.

(4.54)

The triangle inequality c1c2 ≤ c21 + 1
4c

2
2 for non-negative c1 and c2 gives

ξ(x)λ
(
V (x)

)√
K1(V (x))

∣∣LgV (x)
∣∣

≤ ξ2(x)K2
1

(
V (x)

)∣∣LgV (x)
∣∣2 + 1

4K1(V (x))λ
2
(
V (x)

)
.

Combining with (4.54), we get

U̇(x) ≤ −λ
(
V (x)

)
S(x) + 1

4K1(V (x))λ
2
(
V (x)

)

+
[
2K1

(
V (x)

)
+ ξ(x)

{
K1

(
V (x)

)
+ ξ(x)K2

1

(
V (x)

)

−γ
(
V (x)

)}]∣∣LgV (x)
∣∣2.

(4.55)

Property (4.17) from Lemma 4.2 now gives

1
4K1(V (x))

λ2
(
V (x)

) ≤ 1
4
λ
(
V (x)

)
S(x). (4.56)

Hence, (4.49) and (4.55) give

U̇(x) ≤ − 3
4λ
(
V (x)

)
S(x) − 1

2ξ(x)γ
(
V (x)

)∣∣LgV (x)
∣∣2 (4.57)
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for all x ∈ R
n, which is the desired Lyapunov decay condition. This completes

the proof of Theorem 4.1. �

Remark 4.1. The simplicity of the formula for U depends on the choice for ξ.
For example, if we pick

ξ(x) =
1√

K1(V (x))
,

then (4.49) becomes

γ
(
V (x)

) ≥ 2K1

(
V (x)

)
+ 6K3/2

1

(
V (x)

)
,

so we can satisfy (4.48)-(4.49) by taking

γ(s) = 1 + 3K1(s) + K ′
1(s)s + 6K3/2

1 (s)

to obtain our strict Lyapunov function for the corresponding closed-loop sys-
tem.

4.3 General Case

We now use our results for the control affine system (4.9) to get analogous
constructions for general nonlinear systems

ẋ = F(x, u) (4.58)

evolving on R
n with controls in R

m, where F is assumed to be smooth. We
also assume F(0, 0) = 0.

We can write

F(x, u) = f(x) + g(x)u + h(x, u)u, where

f(x) = F(x, 0), g(x) =
∂F
∂u

(x, 0), and

h(x, u) =
∫ 1

0

[
∂F
∂u

(x, λu) − ∂F
∂u

(x, 0)
]

dλ.

(4.59)

Since F is C2 in u, we can find a continuous function R : [0,∞) × [0,∞) →
(0,∞) that is non-decreasing in both variables such that

|h(x, u)u| ≤ R
(|x|, |u|)|u|2

for all x and u. Hence, we assume in the rest of the subsection that our system
has the form

ẋ = f(x) + g(x)u + r(x, u) (4.60)
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with f(0) = 0 and with r admitting an everywhere positive continuous func-
tion R that is non-decreasing in both variables so that

∣∣r(x, u)
∣∣ ≤ R

(|x|, |u|)|u|2 (4.61)

everywhere. Let Assumption 4.1 hold for the functions f and g in the system
(4.60) and some functions V and ψ. Fix C1 functions λ and K1 satisfying
the requirements of Lemma 4.2 as well as

max
{∣∣∣∣

∂V

∂x
(x)

∣∣∣∣ ,
∣∣∣∣
∂ψ

∂x
(x)

∣∣∣∣ ,
∣∣LgV (x)

∣∣
}

≤ K1

(
V (x)

)
(4.62)

for all x ∈ R
n. We prove the following:

Theorem 4.2. Let Assumption 4.1 hold. Let ξ : R
n → (0,∞) be any smooth

function such that

ξ(x) ≤ min
{

1
K1(V (x))

,
1

4K1(V (x))R(|x|, 1)

}
∀x ∈ R

n. (4.63)

Let γ be any continuous everywhere positive function satisfying (4.48) and
(4.49) and

γ(V (x)) ≥ ξ(x)R
(|x|, 1)K1

(
V (x)

)[
V (x) + K1(V (x))

]

0.5 − ξ(x)K1(V (x))R(|x|, 1)
∀x ∈ R

n . (4.64)

Set
Γ (r) .=

∫ r

0

γ(s)ds,

and let S(x) be as in Lemma 4.1. Then

U(x) = λ(V (x))ψ(x) + Γ (V (x)) (4.65)

is a CLF for (4.60) whose time derivative along trajectories of (4.60) in
closed-loop with

u(x) = −ξ(x)LgV (x)� (4.66)

satisfies

U̇(x) ≤ −3
4
λ
(
V (x)

)
S(x) ∀x ∈ R

n . (4.67)

In particular, U satisfies the small control property, and (4.60) can be ren-
dered GAS to 0 with a smooth feedback u(x) of arbitrary small amplitude.

Proof. Since the requirements from (4.48) and (4.49) are satisfied, we deduce
from (4.57) and (4.61) that for all smooth everywhere positive functions ξ,
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U̇(x) ≤ −3
4
λ
(
V (x)

)
S(x) − 1

2
ξ(x)γ

(
V (x)

)∣∣LgV (x)
∣∣2

+
∂U
∂x

(x)r
(
x,−ξ(x)LgV (x)�

)

≤ −3
4
λ
(
V (x)

)
S(x) − 1

2
ξ(x)γ

(
V (x)

)∣∣LgV (x)
∣∣2

+
∣∣∣∣
∂U
∂x

(x)
∣∣∣∣R
(|x|, |ξ(x)LgV (x)|)∣∣ξ(x)LgV (x)

∣∣2

(4.68)

along all trajectories (4.60) when the controller u is from (4.47).
Next, observe that

∂U
∂x

(x) = λ′(V (x)
)
ψ(x)

∂V

∂x
(x) + λ

(
V (x)

)∂ψ
∂x

(x) + γ
(
V (x)

)∂V
∂x

(x). (4.69)

Recalling (4.13) and (4.14) from Lemma 4.2, as well as the bounds (4.62), we
deduce that

∣∣∣∣
∂U
∂x

(x)
∣∣∣∣ ≤ K2

1

(
V (x)

)
+ V (x)K1

(
V (x)

)
+ γ

(
V (x)

)
K1

(
V (x)

)
. (4.70)

Therefore, (4.68) gives

U̇(x) ≤ − 3
4λ
(
V (x)

)
S(x) − 1

2ξ(x)γ
(
V (x)

)∣∣LgV (x)
∣∣2

+
[
K1

(
V (x)

)
+ V (x) + γ

(
V (x)

)]
R
(|x|, ξ(x)K1(V (x))

)

×ξ2(x)K1

(
V (x)

)∣∣LgV (x)
∣∣2 .

(4.71)

By (4.63),

ξ(x) ≤ 1
K1(V (x))

. (4.72)

Hence,

U̇(x) ≤ − 3
4λ
(
V (x)

)
S(x) − 1

2ξ(x)γ
(
V (x)

)∣∣LgV (x)
∣∣2

+R(|x|, 1)K1

(
V (x)

)[
K1

(
V (x)

)
+ V (x) + γ

(
V (x)

)]

×ξ2(x)
∣∣LgV (x)

∣∣2 .

(4.73)

Finally, our requirement (4.64) on γ gives

U̇ ≤ − 3
4λ
(
V (x)

)
S(x) . (4.74)

This concludes the proof. �
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4.4 Construction of the Auxiliary Scalar Field

Recall that Assumption 4.1 requires an auxiliary scalar field ψ with the fol-
lowing property: If x 
= 0 is such that LfV (x) = 0 and LgV (x) = 0 both
hold, then Lfψ(x) < 0. There are several methods for constructing ψ. In the
next section, we discuss a method for Hamiltonian systems. Here we present
a more general construction that applies to any control affine system

ẋ = f0(x) +
m∑

i=1

fi(x)ui (4.75)

with smooth functions fi : R
n → R

n for i = 0, 1, . . . ,m that satisfies the2

Weak Jurdjevic Quinn Conditions: There exists a smooth function V : R
n →

R satisfying:

1. V is positive definite and radially unbounded;
2. for all x ∈ R

n, Lf0V (x) ≤ 0; and
3. there exists an integer l ≥ 2 such that the set

W (V ) =

⎧
⎨

⎩
x ∈ R

n : ∀k ∈ {1, . . . ,m} and ∀i ∈ {0, . . . , l},
Lf0V (x) = Ladi

f0
(fk)V (x) = 0

⎫
⎬

⎭

equals {0}.
We construct ψ as follows, where we omit the arguments of our functions
when they are clear from the context:

Proposition 4.1. If (4.75) satisfies the Weak Jurdjevic-Quinn Conditions
for some integer l and some storage function V , and if we define G by

G =
l−1∑

i=0

m∑

k=1

λi,kadif0(fk), (4.76)

where

λi,k =
l−1∑

j=i

(−1)j−i+1L
ad

(2j−i+1)
f0

(fk)
V ∀i, k, (4.77)

then the scalar field ψ(x) = LGV (x) satisfies the following property: If x ∈
R
n \ {0}, and if LfiV (x) = 0 for i = 0, 1, . . . ,m, then Lf0ψ(x) < 0.

2 We are using slightly different notation for our control affine systems, to simplify the
statement of the next proposition. Recall that for smooth vector fields f, g : R

n → R
n, we

use the notation

ad0
f (g) = g, adf (g) = [f, g] = g∗f − f∗g, and adk

f (g) = adf

(
adk−1

f (g)
)
,

where the ∗ subscripts indicate gradients.
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Proof. The proof closely follows that of [41, Theorem 4.3]. The fact that

[f0, G] =
l−1∑

i=0

m∑

k=1

(
adif0(fk)Lf0λi,k + λi,kadi+1

f0
(fk)

)
(4.78)

gives

L[f0,G]V =
m∑

k=1

Lf0λ0,kLfk
V +

m∑

k=1

λl−1,kLadl
f0

(fk)V

+
l−2∑

i=0

m∑

k=1

(Lf0λi+1,k + λi,k)Ladi+1
f0

(fk)V.

Recalling our choices (4.77) of the λi,k’s gives

Lf0λi+1,k + λi,k =
l−1∑

j=i+1

(−1)j−iLf0Lad2j−i
f0

(fk)V

+
l−1∑

j=i

(−1)j−i+1Lad2j−i+1
f0

(fk)V

=
l−1∑

j=i+1

(−1)j−i
[
Lf0Lad2j−i

f0
(fk)V − Lad2j−i+1

f0
(fk)V

]

−Ladi+1
f0

(fk)V, i ≤ l − 2 .

For any smooth vector field X and any point x where Lf0V (x) = 0,

L[f0,X]V (x) = Lf0LXV (x), (4.79)

since ∇Lf0V (x) = 0 at points where the non-positive function Lf0V is max-
imized. (We are using the fact that L[f,g] = LfLg − LgLf for smooth vector
fields f and g.) Taking X = G and then

X = ad2j−i
f0

(fk)

in (4.79), we conclude that at all points x where Lf0V (x) = 0, we have

Lf0ψ(x) = Lf0LGV (x) = L[f0,G]V (x) and
Lf0λi+1,k + λi,k = −Ladi+1

f0
(fk)V

if i ≤ l − 2. By our choice of λl−1,k from (4.77), we conclude that

[LfiV (x) = 0 ∀i = 0, 1, . . . ,m] ⇒ Lf0ψ(x) = −
l∑

i=1

m∑

k=1

[
Ladi

f0
(fk)V (x)

]2
.

The result is now immediate from the Weak Jurdjevic-Quinn Conditions. �
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4.5 Hamiltonian Systems

Theorem 4.1 covers an important class of dynamics that are governed by the
Euler-Lagrange equations

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = τ (4.80)

for the motion of mechanical systems. Here q ∈ R
n represents the generalized

configuration coordinates, L = K − P is the difference between the kinetic
energy K and the potential energy P (q) ≥ 0, and τ is the control [183]. In
many applications,

K(q, q̇) =
1
2
q̇�M(q)q̇

where the inertia matrix M(q) is C1 and symmetric and positive definite for
all q ∈ R

n. The generalized momenta ∂L/∂q̇ are then given by

p = M(q)q̇.

Hence, using the state x = (q, p) ∈ R
n × R

n leads to the system

q̇ =
∂H

∂p
(q, p)� = M−1(q)p, ṗ = −∂H

∂q
(q, p)� + τ, (4.81)

where
H(q, p) =

1
2
p�M−1(q)p + P (q) (4.82)

is the total energy of the system. We refer to (4.81) as the Hamiltonian system.
We assume that P is C1 and positive definite.

The Hamiltonian system can be written as the control affine dynamics

ẋ = f(x) + g(x)u

with state space X = R
2n, control set U = R

n,

f(x) =
(

f1(x)
f2(x)

)
, where f1(x) =

∂H

∂p
(q, p)� and f2(x) = −∂H

∂q
(q, p)�,

and

g(x) =
(

O
In

)
∈ R

2n×n , (4.83)

where O ∈ R
2n×n denotes the matrix whose entries are all 0. One readily

checks that the time derivative of H along the trajectories of (4.81) satisfies

Ḣ(q, p) =
∂H

∂p
(q, p)τ (4.84)
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Therefore, if P (q) is positive definite and radially unbounded, then H is a
non-strict Lyapunov function. The radial unboundedness of H would follow
from the continuity of the (positive) eigenvalues of the positive definite ma-
trix M−1(q) as functions of q [161, Appendix A4], which implies that each
compact set S of q values admits a constant cS > 0 such that

p�M−1(q)p ≥ cS |p|2

for all q ∈ S and all p ∈ R
n. However, P is not necessarily positive definite and

radially unbounded. Fortunately, one can determine a real-valued function
Λ ∈ C1 satisfying Λ(0) = 0 such that the function

V (x) = H(q, p) + Λ(q) =
1
2
p�M−1(q)p + Pn(q) (4.85)

with
Pn(q) = P (q) + Λ(q) (4.86)

is positive definite, radially unbounded and C1. In fact, we can assume that
Λ is such that ∣∣∣∣

∂Pn

∂q
(q)
∣∣∣∣ ≥ |q|. (4.87)

For simplicity, we take Λ(q) = 1
2 |q|2 − P (q).

Using the change of feedback

τ = τn − ∂Λ

∂q
(q)�, (4.88)

one can then check readily that the time derivative of V along the trajectories
of (4.81) satisfies

V̇ (q, p) = ∂H
∂p (q, p)τ + ∂Λ

∂q (q)∂H∂p (q, p)�

= p�M−1(q)τ + ∂Λ
∂q (q)M−1(q)p

= p�M−1(q)τn .

(4.89)

After the change of feedback (4.88), the system (4.81) can be rewritten as
⎧
⎨

⎩
q̇ = ∂V

∂p (q, p)�,

ṗ = −∂V
∂q (q, p)� + τn.

(4.90)

Let

fn(x) =

⎛

⎝ f1n(x)

f2n(x)

⎞

⎠ , where

f1n(x) = ∂V
∂p (q, p)� and f2n(x) = −∂V

∂q (q, p)� .

(4.91)
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We now show that Assumption 4.1 is satisfied by (4.90) with the choice

ψ(x) = q�p. (4.92)

We have
LfnV (x) = 0 , (4.93)

LgV (x) = p�M−1(q) , and (4.94)

Lfnψ(x) = q�f2n(x) + p�f1n(x). (4.95)

Therefore, if LfnV (x) = 0 and LgV (x) = 0, then p = 0 and therefore
Lfnψ(x) = q�f2n(x) = −|q|2, so Assumption 4.1 is satisfied.

Since Assumption 4.1 is satisfied, we can construct a CLF that satisfies
the small control property for the system (4.90) and therefore also for the
system (4.81). In the particular case we consider, it turns out that we can
determine a function Γ ∈ C1 ∩ K∞ such that

U(x) = ψ(x) + Γ (V (x)) (4.96)

is a CLF for the system (4.90) that satisfies the small control property. To
stipulate Γ , we first let mi,j(q) denote the (i, j) entry of M−1(q) for all
q ∈ R

n. The construction is as follows:

Proposition 4.2. Fix any non-decreasing everywhere positive C1 function Υ
such that

1 + ||M(q)||4 ≤ Υ (V (x)) (4.97)

and

n2

2
|q| sup

{∣∣∣∣
∂mi,j

∂qk
(q)
∣∣∣∣ : (i, j, k) ∈ {1, ..., n}3

}
≤
√

Υ (V (x)) (4.98)

hold for all x = (q, p) ∈ R
2n. Choose a function α ∈ K∞ ∩C1 with α′(0) > 0

such that
V (x) ≥ α(|p|2 + |q|2)

everywhere.3 Then with the choice

Γ ( ) =
3
2
 + 2

∫ �

0

Υ (r)dr +
1
2
Υ ( )α−1( ) , (4.99)

the function (4.96) is a CLF for the system (4.90) that satisfies the small
control property.

3 Such a function α exists because the positive definiteness of M−1 provides a constant
c0 > 0 such that V (x) ≥ c0|x|2 on B2n. To construct α, first find a function α ∈ K∞ ∩ C1

such that V (x) ≥ α(|x|) for all x ∈ R2n. By reducing c0 as needed without relabeling,
we can assume that c0r ≤ α(

√
r) on [0.5, 1]. Choose a non-decreasing C1 function p :

R → [0, 1] such that p(r) ≡ 0 on [0, 0.5] and p(r) ≡ 1 on [1,∞). We can then take
α(r) = [1 − p(r)]c0r + p(r)α(

√
r). In fact, α′(0) = c0.
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Proof. Choose
τn = −M−1(q)p. (4.100)

Then, along the trajectories of (4.90), we get

V̇ (x) = −|p�M−1(q)|2 and

ψ̇(x) = Lfnψ(x) − Lgψ(x)M−1(q)p.
(4.101)

Therefore,

ψ̇(x) = q�f2n(x) + p�f1n(x) − Lgψ(x)M−1(q)p

= −q�
∂V

∂q
(q, p)� + p�

∂V

∂p
(q, p)� − q�M−1(q)p

= −|q|2 − 1
2
q�
(
p� ∂(M−1(q)p)

∂q

)�
+ p�M−1(q)p

−q�M−1(q)p.

(4.102)

On the other hand,

−q�M−1(q)p ≤ 1
2
|q|2 +

1
2
|M−1(q)p|2, (4.103)

and (4.98) gives
∣∣∣∣∣
1
2
q�
(
p�

∂(M−1(q)p)
∂q

)�∣∣∣∣∣ ≤
√

Υ (V (x))|p|2. (4.104)

Therefore,

ψ̇(x) ≤ − 1
2 |q|2 +

√
Υ (V (x))|p|2

+p�M−1(q)p + 1
2 |M−1(q)p|2

≤ − 1
2 |q|2 +

√
Υ (V (x))|p|2 + ||M(q)|| |M−1(q)p|2

+ 1
2 |M−1(q)p|2 .

(4.105)

Hence, (4.97) gives

ψ̇(x) ≤ − 1
2 |q|2 +

√
Υ (V (x))

√
Υ (V (x))|M−1(q)p|2

+
[
Υ (V (x)) + 1

2

] |M−1(q)p|2
≤ − 1

2 |q|2 +
(
2Υ (V (x)) + 1

2

) |M−1(q)p|2 .

(4.106)
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We deduce easily that the derivative of U defined in (4.96) along the trajec-
tories of (4.90), in closed-loop with τn defined in (4.100), satisfies

U̇(x) ≤ − 1
2 |q|2 − |M−1(q)p|2, (4.107)

using the fact that

Γ ′( ) ≥ 3
2

+ 2Υ (l). (4.108)

Next, observe that

U(x) ≥ −|ψ(x)| + Γ
(
V (x)

) ≥ −Υ
(
V (x)

)|q||p| + Γ
(
V (x)

)

≥ − 1
2Υ
(
V (x)

)
α−1

(
V (x)

)
+ Γ

(
V (x)

)
,

(4.109)

by our choice of α and the relation |q||p| ≤ 1
2 |p|2 + 1

2 |q|2. Using the fact that

Γ (v) ≥ v +
1
2
Υ (v)α−1(v), (4.110)

we get
U(x) ≥ V (x) , (4.111)

so U is positive definite and radially unbounded. Moreover,

U̇(x) ≤ −W (x) < 0 ∀x 
= 0 , (4.112)

where
W (x) =

1
2
|q|2 +

∣∣M−1(q)p
∣∣2 . (4.113)

We conclude that we have determined a CLF for the system (4.81) that
satisfies the small control property. Moreover, both U(x) and W (x) are lower
bounded in a neighborhood of the origin by a positive definite quadratic
function. �

Remark 4.2. Systems of the form (4.90) can be globally asymptotically sta-
bilized by using backstepping to design the controls. Therefore, backstep-
ping provides an alternative construction of CLFs satisfying the small con-
trol property. However, this technique provides control laws that remove the
term −∂H

∂q (q, p)�, which may lead to more complicated control laws with
large nonlinearities when the system can be stabilized through arbitrarily
small control laws.

4.6 Robustness

We saw in Theorem 4.1 how to construct a CLF U for
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ẋ = f(x) + g(x)u (4.114)

that has the small control property, provided Assumption 4.1 is satisfied. In
fact, for each ε > 0, we can choose a C1 function K1 satisfying |K1(x)| ≤ ε
for all x ∈ R

n such that U is a strict Lyapunov function for

ẋ = f(x) + g(x)K1(x),

which is therefore GAS to x = 0.
As we saw in previous chapters, ISS is a significant generalization of the

GAS [157]. Recall that for a nonlinear system ẋ = F (x, d) with state space
X = R

n and control set U = R
m, the ISS property says that there exist β ∈

KL and γ ∈ K∞ such that for all measurable essentially bounded functions
d : [0,∞) → R

m, the corresponding trajectories x(t) for

ẋ(t) = F (x(t),d(t)) (4.115)

satisfy
|x(t)| ≤ β

(|x(0)|, t)+ γ(|d|∞) ∀t ≥ 0. (ISS)

Here d represents a disturbance, and | · |∞ is the essential supremum. The
ISS property includes GAS to 0 for the system ẋ = f(x), because in that
case the term γ(|d|∞) in the ISS decay condition is not present. Therefore,
given any constant ε > 0, it may seem reasonable to search for a feedback
K(x) for (4.114) (which could in principle differ from K1) for which

ẋ = F (x, d) .= f(x) + g(x)[K(x) + d] (4.116)

is ISS with respect to the disturbance d, and for which |K(x)| ≤ ε for all
x ∈ R

n. Hence, we would want an arbitrarily small feedback K that renders
(4.114) GAS to x = 0 and that has the additional property that (4.116) is
ISS with respect to the disturbance d.

This objective cannot be met in general, since there is no bounded feedback
K(x) such that the one-dimensional system ẋ = K(x) + d is ISS. Therefore,
instead of using ISS to analyze Jurdjevic-Quinn systems, we use iISS [160].
Recall from Chap. 1 that for a general nonlinear system ẋ = F (x, d) evolving
on R

n × R
m, the iISS condition says: There exist β ∈ KL and α, γ ∈ K∞

such that for all measurable essentially bounded functions d : [0,∞) → R
m

and corresponding trajectories x(t) for (4.115), we have

α(|x(t)|) ≤ β
(|x(0)|, t)+

∫ t

0

γ(|d(s)|)ds ∀t ≥ 0. (iISS)

See Chap. 1 or [8, 9] for the background and further motivation for iISS. To
get our iISS result, we add the following assumption to our system (4.114),
which we assume in addition to Assumption 4.1:
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Assumption 4.2 An everywhere positive non-decreasing smooth function D
such that

1.
∫ +∞
0

1
D(s) ds = +∞; and

2. |LgV (x)| ≤ D(V (x)) for all x ∈ R
n

is known.

Assumption 4.2 holds for the two-link manipulator example we introduced
in Sect. 4.1, because in that case,

|LgV (x)| ≤ 2(V (x) + 1)

for all x ∈ R
n, so we can take

D(s) = 2(s + 1).

In fact, our assumptions hold for a broad class of Hamiltonian systems as
well; see Remark 4.3. We claim that if Assumptions 4.1 and 4.2 both hold,
then for any constant ε > 0 and any C∞ function ξ : R

n → (0,∞) such that

|ξ(x)LgV (x)| ≤ ε ∀x ∈ R
n , (4.117)

the system
ẋ = f(x) + g(x)

[
K(x) + d(t)

]

is iISS with the choice K(x) = −ξ(x)LgV (x)�.
To prove this claim, we begin by applying Theorem 4.1 to ẋ = f(x)+g(x)u,

with ξ : R
n → (0,∞) satisfying (4.117) for an arbitrary prescribed constant

ε > 0. This provides a CLF U satisfying the small control property for (4.114),
which is also a strict Lyapunov function for (4.114) in closed-loop with

K(x) = −ξ(x)LgV (x)�.

Setting
F(x) = f(x) − g(x)ξ(x)LgV (x)�, (4.118)

it follows that W (x) .= −LFU(x) is positive definite.
We can determine a non-decreasing everywhere positive function A ∈ C1

such that
|LgU(x)| ≤ A

(
V (x)

) ∀x ∈ R
n . (4.119)

Since D in Assumption 4.2 is a positive non-decreasing smooth function, we
can easily construct a function Γu ∈ K∞ ∩ C1 such that Γ ′

u is everywhere
positive and increasing and

A
(
V (x)

) ≤ Γ ′
u

(
V (x)

)D(V (x)
) ∀x ∈ R

n. (4.120)

Therefore, for all x ∈ R
n,
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|LgU(x)| ≤ Γ ′
u

(
V (x)

)D(V (x)
)
. (4.121)

Next, consider
Ua(x) = U(x) + Γu

(
V (x)

)
. (4.122)

Then ∣∣LgUa(x)
∣∣ ≤ ∣∣LgU(x)

∣∣ + Γ ′
u

(
V (x)

)∣∣LgV (x)
∣∣.

Using Assumption 4.2 and (4.121), we obtain
∣∣LgUa(x)

∣∣ ≤ 2Γ ′
u

(
V (x)

)D(V (x)
)
. (4.123)

Let
U∗(x) = Γ−1

u

(Ua(x)
)
. (4.124)

Since Γ−1
u ∈ C1 and Γ−1

u is increasing, we have

LgU∗(x) = {Γ−1
u }′(Ua(x)

)
LgUa(x)

=
1

Γ ′
u(Γ−1

u (Ua(x)))
LgUa(x) .

(4.125)

In combination with (4.123), we obtain

|LgU∗(x)| ≤ 2
Γ ′
u(V (x))D(V (x))
Γ ′
u(Γ−1

u (Ua(x)))
. (4.126)

By the definition (4.122) of Ua, we get

Γ−1
u

(Ua(x)
) ≥ V (x) . (4.127)

Since Γ ′
u is non-decreasing, we obtain

Γ ′
u

(
Γ−1
u

(Ua(x)
)) ≥ Γ ′

u(V (x)) , (4.128)

so (4.126) gives
|LgU∗(x)| ≤ 2D(V (x)

)
. (4.129)

Since D is non-decreasing, (4.127) gives

D(V (x)
) ≤ D

(
Γ−1
u

(Ua(x)
))

= D(U∗(x)
)

and therefore
|LgU∗(x)| ≤ 2D(U∗(x)

)
. (4.130)

Then

Ũ(x) =
1
2

∫ U∗(x)

0

dp
D(p)

(4.131)
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satisfies ∣∣∣LgŨ(x)
∣∣∣ ≤ 1 . (4.132)

The function Ũ is again a CLF for our dynamics (4.114) that satisfies the
small control property. Moreover, (4.132) ensures that we can determine a
positive definite function W̃ (x) such that the time derivative of Ũ along the
trajectories of

ẋ = f(x) + g(x)[−ξ(x)LgV (x)� + d] (4.133)

satisfies
˙̃U(x) ≤ −W̃ (x) + |d| (4.134)

for all x and d. Inequality (4.134) says (see [8]) that the positive definite
radially unbounded C1 function Ũ is an iISS Lyapunov function for (4.133).
The fact that (4.133) is iISS now follows from the standard iISS Lyapunov
characterization; see Lemma 2.3 or [8, Theorem 1]. We conclude as follows:

Corollary 4.1. Assume that the system (4.114) satisfies Assumptions 4.1
and 4.2 for some auxiliary scalar field ψ : R

n → R and some storage function
V : R

n → R, and let ε > 0 be given. Then there exists an everywhere positive
function ξ such that (a) the system

ẋ = f(x) + g(x)[K(x) + d] (4.135)

with the feedback
K(x) .= −ξ(V (x))LgV (x)� (4.136)

is iISS and (b) |K(x)| ≤ ε for all x ∈ R
n. Moreover, if U is a CLF satisfying

the requirements of Theorem 4.1, and if Γu ∈ K∞ ∩C1 is such that Γ ′
u is in-

creasing and everywhere positive and satisfies |LgU(x)| ≤ Γ ′
u(V (x))D(V (x))

everywhere, then

Ũ(x) =
1
2

∫ Γ−1
u

(
U(x)+Γu(V (x))

)

0

dp
D(p)

(4.137)

is an iISS Lyapunov function for (4.135).

Remark 4.3. Assumptions 4.1 and 4.2 are satisfied by a broad class of im-
portant systems. For example, assume that the Hamiltonian system (4.90)
satisfies the conditions from Sect. 4.5 and the following additional condition:

R. There exist λ, λ̄ > 0 such that

spectrum{M−1(q)} ⊆ [λ, λ̄]

for all q.

Condition R. means that there are positive constants c and c̄ such that

c|p|2 ≤ p�M(q)p ≤ c̄|p|2
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for all q and p. This is more restrictive than merely saying that M−1 is
everywhere positive definite, since the smallest eigenvalue λmin(q) of M−1(q)
could in principle be such that

lim inf
|q|→+∞

λmin(q) = 0.

Then (4.81) satisfies our Assumptions 4.1-4.2 and so is covered by the pre-
ceding corollary. In fact, we saw in Sect. 4.5 that Assumption 4.1 holds with
x = (q, p) and

V (x) = H(q, p) +
1
2
|q|2 − P (q),

and then Assumption 4.2 follows from Condition R. because

|LgV (x)|2 =
∣∣∣∂H∂p (x)

∣∣∣
2

= |p�M−1(q)|2

≤ λ̄2|p|2
≤ λ̄2

λ p�M−1(q)p ≤ 2 λ̄2

λ V (x)

for all x = (q, p). Therefore, we can take

D(s) .=

√

2
λ̄2

λ
(s + 1)

to satisfy Assumption 4.2.

4.7 Illustrations

We showed how to construct CLFs for systems

ẋ = f(x) + g(x)u (4.138)

that have the form

U(x) = λ
(
V (x)

)
ψ(x) + Γ

(
V (x)

)
(4.139)

for suitable C1 functions λ and Γ , under the Jurdjevic-Quinn Conditions. In
many cases, the construction is simplified because we can take either Γ (v) ≡ v
or λ ≡ 1. For example, the Hamiltonian systems in Sect. 4.5 lead to λ ≡ 1.
We now further illustrate this point in two examples. In the first example, Γ
can be taken to be the identity, so we get a simple weighted sum of V and
ψ(x) = LGV (x). Then we revisit the two-link manipulator, which requires a
more complicated Γ but has λ ≡ 1.
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4.7.1 Two-Dimensional Example

We illustrate Theorem 4.1 using the two-dimensional system
{

ẋ1 = x2

ẋ2 = −x3
1 + u .

(4.140)

In this case, we have

f(x1, x2) =
(

x2

−x3
1

)
and g(x1, x2) =

(
0
1

)
. (4.141)

Let us check that (4.140) satisfies Assumption 4.1.

1. The positive definite radially unbounded function

V (x1, x2) =
1
4
x4

1 +
1
2
x2

2 (4.142)

is not a CLF for (4.140), but it satisfies LfV (x) = 0 on R
2.

2. Choosing the vector field

G(x1, x2) =
(

0
x1

)
(4.143)

gives

LgV (x1, x2) = x2 , LGV (x1, x2) = x1x2, and

LfLGV (x1, x2) = x2
2 − x4

1 .
(4.144)

If LgV (x1, x2) = 0 and (x1, x2) 
= (0, 0), then x2 = 0 and x1 
= 0, so
LfLGV (x1, 0) = −x4

1 < 0.

Therefore Assumption 4.1 is satisfied with (4.142) and ψ(x) = LGV (x), so
Theorem 4.1 applies to the system (4.140). Let us show that with the choice

δ(v) =
v2

8(1 + v)2
, (4.145)

the function

U(x) = V (x) + δ
(
V (x)

)
LGV (x)

=
1
4
x4

1 +
1
2
x2

2 + δ

(
1
4
x4

1 +
1
2
x2

2

)
x1x2

(4.146)

is a CLF for the system (4.140) whose time derivative along the trajectories
of (4.140) in closed-loop with
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u = −LgV (x)� = −x2 (4.147)

is negative definite.
To this end, we first observe that

1
2
x2

1 ≤ 1 +
1
4
x4

1, so |x1x2| ≤ 1 + V (x) ∀x ∈ R
2 . (4.148)

Therefore

U(x) ≥ 1
4
x4

1 +
1
2
x2

2

−
(

1
4x

4
1 + 1

2x
2
2

)2

8
(
1 + 1

4x
4
1 + 1

2x
2
2

)2
(

1 +
1
4
x4

1 +
1
2
x2

2

)

=
1
4
x4

1 +
1
2
x2

2 −
(

1
4x

4
1 + 1

2x
2
2

)2

8
(
1 + 1

4x
4
1 + 1

2x
2
2

)

≥ 1
8
x4

1 +
1
4
x2

2 .

The time derivative of U(x) along the trajectories of (4.140) in closed-loop
with the feedback (4.147) is

U̇ = −x2
2

[
1 +

V (x)
4(1 + V (x))3

x1x2

]

+δ
(
V (x)

)
[−x4

1 − x1x2 + x2
2]

≤ −5
8
x2

2 − δ
(
V (x)

)
x4

1 − δ
(
V (x)

)
x1x2

≤ −3
8
x2

2 − δ
(
V (x)

)
x4

1 + δ2(V (x))x2
1

≤ −3
8
x2

2 − δ
(
V (x)

)
x4

1 + δ
(
V (x)

)
(

1
4x

4
1 + 1

2x
2
2

)
x2

1

8
(
1 + 1

4x
4
1 + 1

2x
2
2

)

≤ −1
4
x2

2 −
1
4
δ
(
V (x)

)
x4

1, (4.149)

where we used (4.148) to get the first and last inequalities, and the second
inequality used (δ(V (x))x1 + 1

2x2)2 ≥ 0. Since the right hand side of this
inequality is negative definite, the result follows.

4.7.2 Two-Link Manipulator Revisited

We show how the CLF (4.6) for the two-link manipulator dynamics follows as
a special case of the construction from Theorem 4.1. Recall that the dynamics
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is the control affine system ẋ = f(x) + g(x)u where

f(x) =

⎡

⎢⎢⎣

x2
−2x3x2x4−x1〈x1〉

x2
3+1

x4

x2
2x3 − x3〈x3〉

⎤

⎥⎥⎦ , g(x) =

⎡

⎢⎢⎣

0 0
1

x2
3+1

0
0 0
0 1

⎤

⎥⎥⎦ , and u =
[
τb
Fb

]
. (4.150)

We show that Assumption 4.1 is satisfied for the system with the choices

V (x) =
1
2

[
(x2

3 + 1)x2
2 + x2

4 +
√

1 + x2
1 +

√
1 + x2

3 − 2
]

(4.151)

and ψ = LGV , where
G(x) = (0, x1, 0, x3)�. (4.152)

Setting

〈p〉 =
1

2
√

1 + p2

for all p ∈ R, simple calculations show that

∇V (x) =
(
x1〈x1〉, x2

[
x2

3 + 1
]
, x3〈x3〉 + x2

2x3, x4

)
.

Hence, along the trajectories of the system, we have

V̇ (x) = x2τb + x4Fb,

and

LGV (x) =
∂V

∂x2
(x)x1 +

∂V

∂x4
(x)x3 = (x2

3 + 1)x2x1 + x4x3. (4.153)

Since

∇(LGV (x)) =
(
x2(x2

3 + 1), x1(x2
3 + 1), x4 + 2x1x2x3, x3

)
,

we have

LfLGV (x) = x2
2(2x

2
3 + 1) + x2

4 − x2
1〈x1〉 − x2

3〈x3〉. (4.154)

Notice that
LfV (x) = 0 and LgV (x) = [x2 x4]

everywhere. Also, if LgV (x) = 0, then x2 = x4 = 0, in which case we get

LfLGV (x) = −x2
1〈x1〉 − x2

3〈x3〉.
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It follows that if x 
= 0 and LgV (x) = 0, then LfLGV (x) < 0. Therefore
Assumption 4.1 is satisfied with

ψ(x) = LGV (x), (4.155)

so Theorem 4.1 applies.
We now derive the CLF whose existence is guaranteed by the theorem. To

this end, first note that

a ≤ 3
{(√

1 + a − 1
)

+
(√

1 + a− 1
)2} ∀a ≥ 0. (4.156)

It follows from the formula for V that

max{x2
1, x

2
3} ≤ 3{2V (x) + 4V 2(x)} and

max{x2
2, x

2
4} ≤ 2V (x) ∀x ∈ R

4.
(4.157)

Combining the triangle inequality, (4.153), and (4.157) gives

|LGV (x)| ≤ 1
2x

4
3 + 1

4x
4
1 + 1

4x
4
2 + 1

2 |x|2
≤ 288V 4(x) + 85V 2(x) + 8V (x).

(4.158)

We readily conclude that the function

V �(x) = 40
[
2 + 2V (x)

]6 + LGV (x) − 40(26) (4.159)

is such that
V �(x) ≥ 3

(
x2

1 + x2
2 + x2

3 + x2
4

)

for all x ∈ R
4, so V � is positive definite and radially unbounded.

Moreover, its time derivative along trajectories of the system satisfies

V̇ �(x) = 480
[
2 + 2V (x)

]5(
x2τb + x4Fb

)
+ x2

2

(
2x2

3 + 1
)

+x2
4 − x2

1〈x1〉 − x2
3〈x3〉 + x1τb + x3Fb ,

(4.160)

since V̇ (x) = x2τb + x4Fb. Hence, the triangle inequality gives

V̇ �(x) ≤ √
1 + x2

1τ
2
b + 480

[
2 + 2V (x)

]5
x2τb + x2

2

(
2x2

3 + 1
)

+
√

1 + x2
3F

2
b + 480

[
2 + 2V (x)

]5
x4Fb

+x2
4 − 1

2x
2
1〈x1〉 − 1

2x
2
3〈x3〉 .

(4.161)

To show that V � is a CLF for the system, we show that the right side of
(4.161) is negative definite when we take
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τb = −x2〈x2〉 and Fb = −x4〈x4〉. (4.162)

This will also show that V � has the small control property.
To this end, we first note that with the choices (4.162), we have

V̇ �(x) ≤ T1(x)x2
2〈x2〉 + T2(x)x2

4〈x4〉
− 1

2

[
x2

1〈x1〉 + x2
2〈x2〉 + x2

3〈x3〉 + x2
4〈x4〉

]
,

(4.163)

where we define the Ti’s by

T1(x) =
√

1 + x2
1 − 480(2 + 2V (x))5 + 2

√
1 + x2

2(2x
2
3 + 1) +

1
2

and
T2(x) =

√
1 + x2

3 − 480(2 + 2V (x))5 + 2
√

1 + x2
4 +

1
2
.

We deduce from (4.157) that T1 and T2 are non-positive and therefore

V̇ �(x) ≤ −1
2
[
x2

1〈x1〉 + x2
2〈x2〉 + x2

3〈x3〉 + x2
4〈x4〉

]
. (4.164)

The right hand side of this inequality is negative definite and the feedbacks
resulting from (4.4) and (4.162) give the small control property.

In fact, our analysis from Sect. 4.6 shows that for any positive constant
c > 0, the scaled feedback

K(x) = −c

(
x1〈x1〉 + x2〈x2〉
x3〈x3〉 + x4〈x4〉

)
(4.165)

renders the system iISS to actuator errors, meaning

ẋ = f(x) + g(x)[K(x) + d(t)]

is iISS. We illustrate this point in the simulation below, where we took the
feedback

K�(x) = −0.005
(

x1〈x1〉 + x2〈x2〉
x3〈x3〉 + x4〈x4〉

)
, (4.166)

the disturbance

d(t) =

⎛

⎝
1

1 + 0.25t2
e−0.25t

⎞

⎠ (4.167)

and the initial state x(0) = (1, 1, 1, 1). While the feedback (4.166) renders
the closed-loop system GAS to 0 when the disturbance is set to 0, the state
components may or may not be driven to zero when there are disturbances
present. In our simulation, the angle of the link x1 converges to zero by time
t = 1000. However, the gripper position x3 has an overshoot caused by the
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disturbance that keeps this component from converging to zero. See Figs. 4.2
and 4.3.

Fig. 4.2 Angle of link x1 using feedback (4.166) and disturbance (4.167)

Fig. 4.3 Gripper position x3 using feedback (4.166) and disturbance (4.167)

Remark 4.4. An important feature of the preceding analysis is that the strict
Lyapunov function V � has a negative definite time derivative along the closed-
loop trajectories, using a bounded feedback. In fact, for each constant ε >
0, our constructions from the preceding sections provide a strict Lyapunov
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function whose time derivative is negative definite using a feedback stabilizer
K� : R

n → εB2 that is bounded by ε. This is done by choosing the function
Γ in our strict Lyapunov function construction appropriately. Moreover, we
see from (4.164) that −V̇ � is proper along the closed trajectories, and the
dynamics are control affine, so we can immediately use control redesign to
get ISS to actuator errors, if we allow unbounded feedbacks. For example,
the combined feedback

K�(x) = −(x1〈x1〉 + x2〈x2〉, x3〈x3〉 + x4〈x4〉)� − LgV
�(x)

renders the system ISS with respect to actuator errors, so we recover the ISS
results for the two-link manipulator from [5].

The properness of V̇ � is essential for the preceding control redesign argu-
ment. In general, if the time derivative of a strict Lyapunov function V is
merely negative definite along the closed-loop trajectories of a given control
affine system, then adding −LgV to the feedback will not necessarily give ISS.
On the other hand, we can always transform V into a new strict Lyapunov
function Va for which −V̇a is proper along the closed-loop trajectories (e.g.,
by arguing as in [157, p.440]), and then we can generate ISS with respect to
actuator errors by subtracting LgVa as above.

4.8 Comments

The Jurdjevic-Quinn Method can be summarized by saying that appropri-
ate controllability conditions and a first integral of the drift vector can be
used to design smooth asymptotically stabilizing control laws. Since Jurdje-
vic and Quinn’s original paper [68], the method has been extended in several
directions [11, 41, 45, 126]. The first general result on global explicit strict
Lyapunov function constructions under the Weak Jurdjevic-Quinn Condi-
tions appears to be [40], whose results are limited to homogenous systems.
Our construction of the auxiliary scalar field in Sect. 4.4 is similar to, but
somewhat simpler than, the one in [41, Theorem 4.3]. This is because [41]
uses a more complicated construction that guarantees that G is homogenous
of degree zero, assuming the original dynamics and given non-strict Lyapunov
function are both homogeneous.

The model (4.1) and accompanying figure are from [165]. There it is shown
that if one takes closed-loop controllers of the form

τ = −k1θ̇ − k2(θ − qd) and F = −k3ṙ − k4(r − rd), (4.168)

then (4.1) in closed-loop with (4.168) is not ISS with respect to (qd, rd).
In particular, bounded signals can destabilize the system, which is called
a nonlinear resonance effect. Our treatment of the two-link manipulator is
based on [102], which provides an alternative CLF construction under the
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Jurdjevic-Quinn conditions that differs from the one we presented in this
chapter.



Chapter 5

Systems Satisfying the Conditions of
LaSalle

Abstract The LaSalle Invariance Principle uses non-strict Lyapunov func-
tions to show asymptotic stability. However, even when a system is known to
be asymptotically stable, it is still desirable to be able to construct a strict
Lyapunov function for the system, e.g., for robustness analysis and feedback
design. In this chapter, we give two more methods for constructing strict Lya-
punov functions, which apply to cases where asymptotic stability is already
known from the LaSalle Invariance Principle.

The first imposes simple algebraic conditions on the higher order Lie
derivatives of the non-strict Lyapunov functions, in the directions of the
vector fields that define the systems. Our second method uses our contin-
uous time Matrosov Theorem from Chap. 3. We illustrate our approach by
constructing a strict Lyapunov function for an appropriate error dynamics
involving the Lotka-Volterra Predator-Prey System.

5.1 Background and Motivation

As we noted in preceding chapters, Lyapunov functions are a vital tool for
the analysis of, and controller design for, nonlinear systems. The two main
types of Lyapunov functions are strict Lyapunov functions (also known as
strong Lyapunov functions, having negative definite time derivatives along
the trajectories of the system) and non-strict Lyapunov functions (whose
time derivatives along the trajectories are negative semi-definite, and which
are also called weak Lyapunov functions).

Strict Lyapunov functions are typically far more useful than non-strict
ones. The key point is that in general, non-strict Lyapunov functions can
only be used to prove stability, via the LaSalle Invariance Principle, while
strict Lyapunov functions can be used to show robustness properties, such
as ISS to actuator errors. Robustness is an essential feature in engineering
applications, largely due to the uncertainty in dynamical models and noise

117
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entering into controllers. Many controller design methods, e.g., backstepping
[75], forwarding [113, 149] and universal stabilizing controllers [158], are based
on strict Lyapunov functions. In particular, if V is a global strict Lyapunov
function for ẋ = f(t, x) for which α(x) = inft{−[Vt(t, x) + Vx(t, x)f(t, x)]} is
radially unbounded, with f and g both locally Lipschitz, and with V, f , and g
all periodic in t with the same period T , then ẋ = f(t, x)+g(t, x)[K(t, x)+d]
is ISS if we take the feedback K(t, x) = −Vx(t, x)g(t, x). Consequently, when
an explicit strict Lyapunov function is known, many important stabilization
problems can be solved almost immediately.

In general, it is much easier to obtain non-strict Lyapunov functions than
strict ones, owing to the more restrictive decay condition in the strict Lya-
punov function definition. For instance, when a passive nonlinear system
is stabilized by linear output feedback, the energy (i.e., storage) function
can typically be used as the weak Lyapunov function. This fact is useful
for electro-mechanical systems. Also, when a system is stabilized via the
Jurdjevic-Quinn Theorem, non-strict Lyapunov functions are typically avail-
able, e.g., by taking the Hamiltonian for Euler-Lagrange systems; see Chap.
4 or [41, 68, 102, 127]. This has motivated a significant literature devoted to
transforming non-strict Lyapunov functions into strict Lyapunov functions.

In this chapter, we present two more strict Lyapunov function construc-
tions, both based on transforming non-strict Lyapunov functions into strict
ones under suitable Lie derivative conditions. The assumptions in our first
construction agree with those of [110], but they lead to simpler designs than
the one in [110]. Our second result uses the Matrosov approach in Theorem
3.1. In general, Matrosov’s Method can be difficult to apply because one has
to find suitable auxiliary functions. Here we give simple sufficient conditions
leading to a systematic design of auxiliary functions. This makes it possible
to construct strict Lyapunov functions via Theorem 3.1. We illustrate our
approach by constructing a strict Lyapunov function for an error dynamics
involving the celebrated Lotka-Volterra System, which plays a fundamental
role in bioengineering. Throughout the chapter, all (in)equalities should be
understood to hold globally unless otherwise indicated, and we omit the ar-
guments of our functions when they are clear from the context.

5.2 First Method: Iterated Lie Derivatives

Recall that if f : R
n → R

n is a smooth (i.e., C∞) vector field and V : R
n → R

is a smooth scalar function, the Lie derivatives of V in the direction of f are
defined recursively by

L1
fV (x) .= LfV (x) .= ∂V

∂x (x)f(x) and
Lk
fV (x) .= Lf

(
Lk−1
f V

)
(x) for k ≥ 2 .
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We refer to the functions Lk
fV as iterated Lie derivatives. We next construct

a strict Lyapunov function for the system

ẋ = f(x), x ∈ R
n (5.1)

with f smooth and f(0) = 0, under appropriate Lie derivative assumptions.
Specifically, assume that (5.1) admits a global non-strict Lyapunov function
such that for each p ∈ R

n \ {0}, there is an i ∈ N such that Li
fV (p) 
= 0.

If LfV (φ(t, x0)) ≡ 0 along some trajectory φ(·, x0) of (5.1), then we can
differentiate repeatedly to get

Lk
fV (φ(t, x0)) ≡ 0 ∀t ≥ 0 and k ∈ N,

so x0 = 0. Hence, GAS follows from the LaSalle Invariance Principle. On the
other hand, it is not obvious how to construct a strict Lyapunov function
in this situation. This motivates our hypotheses in the following theorem, in
which ai(x) .= (−1)iLi

fV (x) for all i:

Theorem 5.1. Assume that there exists a smooth function V : R
n → [0,∞)

such that the following conditions hold:

1. V (·) is a non-strict Lyapunov function for the system (5.1); and
2. there exists a positive integer  ∈ N such that for each x 
= 0, there exists

an integer i ∈ [1,  ] (possibly depending on x) such that Li
fV (x) 
= 0.

Then we can construct explicit expressions for functions Fj and G so that

V �(x) =
�−1∑

j=1

Fj

(
V (x)

)
Aj(x) + G(V (x)

)
, where

Aj(x) =
j∑

m=1

am+1(x)am(x)

(5.2)

is a strict Lyapunov function for (5.1).

Proof. Since Condition 2. in Theorem 5.1 is satisfied for some  ≥ 1, it holds
for all larger integers as well, so we assume without loss of generality (to
simplify the proof) that  ≥ 3. Note for later use that ai+1 ≡ −ȧi for all i,
along the trajectories of (5.1).

Condition 2. from Theorem 5.1 guarantees that we can construct a positive
definite continuous function ρ such that

a1(x) +
�∑

m=2

a2
m(x) ≥ ρ(V (x)) ∀x ∈ R

n , (5.3)

e.g.,

ρ(r) = min

{
a1(x) +

�∑

m=2

a2
m(x) : V (x) = r

}
.
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By minorizing ρ as necessary without relabeling and using Lemma A.7, we
can assume that

ρ(r) =
ω(r)
K(r)

(5.4)

for some function ω ∈ K∞ ∩ C1 and some increasing everywhere positive
function K ∈ C1. We can also determine an everywhere positive increasing
function Γ ∈ C1 such that

Γ
(
V (x)

) ≥ ( + 2)|am(x)| + 1 ∀m ∈ {1, ...,  + 1} (5.5)

holds for all x ∈ R
n. For example, take

Γ0(r) = ( + 2)max

{
�+1∑

m=1

|am(x)| + 1 : V (x) ≤ r

}
,

and then majorize by an increasing C1 function.
Let us introduce the following functions:

Mj(x) =
j∑

m=1

am+1(x)am(x) +
∫ V (x)

0

Γ (r)dr, j = 1, 2, . . . ,  − 1 ; (5.6)

N0(x) = a1(x), and Nj(x) =
j+1∑

m=2

a2
m(x) + a1(x), j = 1, 2, . . .  − 1. (5.7)

Since a1(x) ≥ 0 everywhere, (5.5) gives

Ṁ1(x) = ȧ2(x)a1(x) − a2
2(x) − Γ

(
V (x)

)
a1(x)

≤ −a2
2(x) − a1(x)

= −N1(x) .

(5.8)

Also, for each j ∈ {2, ...,  − 1}, we get

Ṁj(x) = −
j∑

m=1

a2
m+1(x) +

j∑

m=1

ȧm+1(x)am(x) − Γ
(
V (x)

)
a1(x)

≤ −
j∑

m=1

a2
m+1(x) +

j∑

m=2

|am+2(x)||am(x)| + |a3(x)|a1(x)

−Γ
(
V (x)

)
a1(x)

≤ −
j∑

m=1

a2
m+1(x) +

j∑

m=2

|am+2(x)||am(x)| + |a3(x)|a1(x)

−[( + 2)|a3(x)| + 1
]
a1(x).

(5.9)
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From this inequality and (5.5), we deduce that for all j ∈ {2, ...,  − 1},

Ṁj(x) ≤ −
j∑

m=1

a2
m+1(x)

+
Γ
(
V (x)

)

 + 2

j∑

m=2

|am(x)| − [
( + 1)|a3(x)| + 1

]
a1(x).

(5.10)

It follows from the Cauchy Inequality that for all j ∈ {2, ...,  − 1},

Ṁj(x) ≤ −
j∑

m=1

a2
m+1(x) + Γ (V (x))

√√√√
j∑

m=2

a2
m(x)

−[( + 1)|a3(x)| + 1
]
a1(x)

= −
j+1∑

m=2

a2
m(x) − a1(x) + Γ (V (x))

√√√√
j∑

m=2

a2
m(x)

−( + 1)|a3(x)|a1(x).

(5.11)

From the definitions of the functions Nj , we deduce that for all j ∈ {2, ...,  −
1},

Ṁj(x) ≤ −Nj(x) + Γ (V (x))
√

Nj−1(x). (5.12)

Set

Ω(v) =
2ω(v)

 Γ 2(v)K(v)
(5.13)

and define the positive definite functions k1, k2, . . . , k�−1 ∈ C1 by

k�−1(v) = 2K(v)ω2�−1
(v) (5.14)

and
kp(v) = k�−1(v)Ω1−2�−p−1

(v) (5.15)

for p = 1, 2, . . . ,  − 2.
Pick a C1 everywhere positive increasing function k0 such that

k0(V (x)) + k′
0(V (x))V (x) ≥

�−1∑

p=1

∣∣k′
p(V (x))Mp(x)

∣∣+ 1. (5.16)

Let

S1(x) .=
�−1∑

p=1

kp
(
V (x)

)
Mp(x) + k0

(
V (x)

)
V (x). (5.17)

Then
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Ṡ1(x) =
�−1∑

p=1

kp
(
V (x)

)
Ṁp(x) +

[
�−1∑

p=1

k′
p

(
V (x)

)
Mp(x)

]
V̇ (x)

+
[
k0

(
V (x)

)
+ k′

0

(
V (x)

)
V (x)

]
V̇ (x).

(5.18)

It follows from (5.16) and the fact that V̇ is non-positive everywhere that

Ṡ1(x) ≤
�−1∑

p=1

kp(V (x))Ṁp(x). (5.19)

Using (5.8) and (5.12), we deduce that

Ṡ1(x) ≤ −k1

(
V (x)

)
N1(x)

+
�−1∑

p=2

kp
(
V (x)

) [−Np(x) + Γ
(
V (x)

)√
Np−1(x)

]

= −
�−1∑

p=1

kp
(
V (x)

)
Np(x) +

�−1∑

p=2

kp
(
V (x)

)
Γ
(
V (x)

)√
Np−1(x).

(5.20)

By (5.3) and (5.4), we deduce that

N�−1(x) ≥ ω(V (x))
K(V (x))

. (5.21)

Therefore,

Ṡ1(x) ≤ −k�−1(V (x))
ω(V (x))
K(V (x))

−
�−2∑

p=1

kp
(
V (x)

)
Np(x)

+
�−2∑

p=1

kp+1

(
V (x)

)
Γ
(
V (x)

)√
Np(x).

(5.22)

From the triangular inequality c1c2 ≤ c21 + 1
4c

2
2 for non-negative values c1

and c2, we deduce that

{√
kp(V (x))Np(x)

}{Γ
(
V (x)

)
kp+1

(
V (x)

)
√

kp(V (x))

}

≤ kp(V (x))Np(x) +
Γ 2(V (x))k2

p+1(V (x))
4kp(V (x))

(5.23)
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for p = 1, 2, . . . ,  − 2 when x 
= 0. Summing the inequalities in (5.23) over
p = 1, 2, . . . ,  − 2 and combining with (5.22), we deduce that for x 
= 0,

Ṡ1(x) ≤ −k�−1

(
V (x)

) ω(V (x))
K(V (x))

+
�−2∑

p=1

Γ 2(V (x))k2
p+1(V (x))

4kp(V (x))
. (5.24)

By our choices of the kp’s, we get

Ṡ1(x) ≤ −k�−1

(
V (x)

) ω(V (x))
K(V (x))

+
�−2∑

p=1

Γ 2(V (x))k2
�−1(V (x))Ω2(1−2�−p−2)(V (x))

4k�−1(V (x))Ω1−2�−p−1 (V (x))

= −k�−1

(
V (x)

) ω(V (x))
K(V (x))

+( − 2)
Γ 2(V (x))k�−1(V (x))Ω(V (x))

4
, x 
= 0 .

(5.25)

Our choice of Ω in (5.13) now gives

Ṡ1(x) ≤ −k�−1

(
V (x)

) ω(V (x))
2K(V (x))

∀x ∈ R
n . (5.26)

Recalling our choice (5.14) of k�−1 now gives

Ṡ1(x) ≤ −ω2�−1+1
(
V (x)

)
. (5.27)

All of the functions kp are C1 and the right hand side of (5.27) is negative
definite. However, S1 is not necessarily a strict Lyapunov function because
S1 is not necessarily positive definite and radially unbounded. To obtain a
strict Lyapunov function, consider

V �(x) = V (x)S1(x) + κ
(
V (x)

)
V (x) , (5.28)

where κ ∈ C1 is an everywhere positive function with an everywhere positive
first derivative such that κ(V (x)) ≥ |S1(x)| + 1 for all x ∈ R

n. Then V � is
positive definite and radially unbounded because V �(x) ≥ V (x) and

V̇ �(x) = V (x)Ṡ1(x) + V̇ (x)S1(x) +
[
κ′(V (x)

)
V (x) + κ

(
V (x)

)]
V̇ (x)

≤ −ω2�−1+1
(
V (x)

)
V (x).

(5.29)

The result readily follows from the formula (5.17) for S1, by collecting the
functions involving V to form the expression for V �. �
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5.3 Discussion and Extensions of First Method

5.3.1 Local vs. Global

While stated for systems on R
n, we can also prove the following local version

of Theorem 5.1 [110]: Suppose that all conditions of Theorem 5.1 hold on a
given neighborhood of the origin E ⊆ R

n. Then, there exists a neighborhood
of the origin E1 with E1 ⊆ E and functions Fi and G such that (5.2) is a
strict Lyapunov function for the system (3.17) on the set E1. The proof is
similar to that of Theorem 5.1, by taking E1 to be a suitable open sublevel set
of V . Alternatively, we can prove the local version by using the construction
from [110], which in general leads to a strict Lyapunov function that differs
from the one we gave in Theorem 5.1.

5.3.2 Real Analytic Case

When V and f are real analytic, Theorem 5.1 remains true if its Condition
2. is replaced by the assumption that there exist positive constants B and B̄
such that: There is an integer  ∈ N such that for each x ∈ {p ∈ R

n : 0 <
|p| < B or |p| > B̄}, there is an integer i ∈ [1,  ] such that Li

fV (x) 
= 0. This
follows from the following simple observation from [110]:

Proposition 5.1. Assume that (5.1) is GAS, f is real analytic, and Condi-
tion 1. of Theorem 5.1 holds with a real analytic function V . Then, for each
compact set E ⊆ R

n that does not contain the origin, there exists  ∈ N such
that each point x ∈ E admits an index i ∈ [1,  ] such that Li

fV (x) 
= 0.

Hence, to apply the local version of Theorem 5.1, it suffices to check its
Condition 1., and then check its Condition 2. on a set of the form BBn \ {0}
for some constant B > 0. Let us sketch the proof of Proposition 5.1.

Proof. We proceed in two steps.
Step 1. Fix any x0 ∈ E. Since the system is assumed to be GAS, there

must be a time tc > 0 at which LfV (x(tc, x0)) 
= 0. (This is because if no
such tc existed, then

V
(
x(t, x0)

)
= V (x0) +

∫ t

0

LfV
(
x(r, x0)

)
dr ≡ V (x0)

for all t ≥ 0 would contradict the GAS property.) Since V and f are real
analytic functions, so is t 
→ LfV (φ(t, x0)). Consider its expansion

LfV
(
φ(t, x0)

)
=

∞∑

i=0

Li+1
f V (x0)

ti

i!
(5.30)
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around t = 0. Since t 
→ LfV (φ(t, x0)) is not the zero function, there must
exist an integer i = i(x0) such that Li

fV (x0) 
= 0.
Step 2. Suppose that the statement of the proposition were false. Then

there would exist a sequence xp ∈ E and a strictly increasing sequence of
positive integers np such that

Li
fV (xp) = 0 ∀i ∈ [1, np − 1] , but L

np

f V (xp) 
= 0 . (5.31)

Since E is compact, we can assume that xp → x∗ for some non-zero x∗ ∈ E.
(Otherwise, we can pass to a subsequence without relabeling.) By Step 1 of
the proof applied with x0 = x∗, we can find an integer J = J(x∗) such that
LJ
fV (x∗) 
= 0. Since LJ

fV is continuous, there exists a constant p̄ ∈ N such
that for each p ≥ p̄, we have

LJ
fV (xp) 
= 0.

This contradicts (5.31) once we pick p so that np > J . The result follows. �

5.3.3 Necessity vs. Sufficiency

Conditions 1. and 2. from Theorem 5.1 are not necessary for GAS of the
system (5.1) [110]. To see why, consider the following example from [127]:

{
ẋ1 = x2

ẋ2 = −x1 − x2B(x2),
(5.32)

where B is the smooth function

B(s) =

{
exp

(
− 1

(s−1)2

)
, s 
= 1

0, s = 1
.

Then Condition 1. of Theorem 5.1 is satisfied with V (x1, x2) = x2
1 + x2

2 since
V̇ = −2x2

2B(x2), and the LaSalle Invariance Principle implies that (5.32) is
GAS to zero. However, Condition 2. of Theorem 5.1 does not hold since for
x∗ = (0 1)�, we have Li

fV (x∗) = 0 for all i ∈ N.

5.3.4 Recovering Exponential Stability

When (5.1) is locally exponentially stable, the time derivative of (5.2) along
the trajectories of (5.1) will not in general be upper bounded by a negative
definite quadratic function. Moreover, it is not clear how to use (5.2) to
verify local or global exponential stability. However, we can use V � to get
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another strong Lyapunov function W that can be used to verify exponential
stability. For example, if Conditions 1.-2. of Theorem 5.1 hold and (5.1) has
an exponentially stable linearization, then one can construct a Lyapunov
function V � and α1, α2, α3 ∈ K∞ such that

α1(|x|) ≤ V �(x) ≤ α2(|x|) and V̇ � ≤ −α3(|x|)

hold for all x ∈ R
n and, moreover, there exist positive constants δ, a, and b

such that α1(s) = as2 and α3(s) = bs2 for all s ∈ [0, δ] [60, Lemma 10.1.5].

5.4 Second Method: Matrosov Conditions

We again consider a general nonlinear system

ẋ = f(x), x ∈ X (5.33)

evolving on an open positively invariant set X ⊆ R
n that contains the origin,

where f(0) = 0. We use Theorem 3.1 in Chap. 3 to construct strict Lyapunov
functions for (5.33). Recall that Theorem 3.1 is a continuous time Matrosov
Theorem, which requires auxiliary functions, in addition to a non-strict Lya-
punov function. In general, it can be difficult to find appropriate auxiliary
functions to apply the Matrosov Theorem. Hence, our work sheds light on the
Matrosov Theorems as well, because it gives a new mechanism for choosing
auxiliary functions.

However, the most important features of our second method are that (a)
the result applies to systems for which the state space is only a proper subset
of R

n and (b) it may yield Lyapunov functions that are simpler than the ones
obtained from Theorem 5.1, and that also have desirable local properties such
as local boundedness from below by positive definite quadratic functions; see
Sect. 5.5.

To account for the restricted state space for (5.33), we use the following
definitions. A C1 function V : X → R on a general open set X ⊆ R

n con-
taining the origin is called a storage function provided there exist continuous
positive definite functions α1, α2 : X → [0,∞) such that the following hold:

1. for each i, αi(x) → +∞ whenever |x| → +∞ with x remaining in X ; and
2. α1(x) ≤ V (x) ≤ α2(x) for all x ∈ X .

Condition 1. holds vacuously when X is bounded. A storage function V is
called a non-strict (resp., strict) Lyapunov-like function for (5.33) provided
it is C1 and LfV (x) is negative semi-definite (resp., negative definite). If,
in addition, for each i and each q̄ ∈ ∂X , αi(q) → +∞ when q → q̄ then a
non-strict (resp., strict) Lyapunov-like function is called a non-strict (resp.,
strict) Lyapunov function. In the rest of this subsection, we assume:
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Assumption 5.1 There exist a smooth storage function V1 : X → [0,∞);
functions h1, . . . , hm ∈ C∞(Rn) such that hj(0) = 0 for all j; everywhere
positive functions r1, . . . , rm ∈ C∞(Rn) and ρ ∈ C∞(R); and an integer
N > 0 for which

∇V1(x)f(x) ≤ −r1(x)h2
1(x) − ...− rm(x)h2

m(x) (5.34)

and
N−1∑

l=0

m∑

j=1

[
Ll
fhj(x)

]2 ≥ ρ(V1(x))V1(x) (5.35)

hold for all x ∈ X . Moreover, f is defined on R
n and there is a function

Γ ∈ K∞ such that
|f(x)| ≤ Γ (|x|) ∀x ∈ R

n. (5.36)

Also, V1 has a positive definite quadratic lower bound near the origin.

To simplify our notation, we introduce the functions

N1(x) = R(x)
m∑

l=1

h2
l (x)

and Ni(x) =
m∑

l=1

[
Li−1
f hl(x)

]2 (5.37)

for all i ≥ 2, where

R(x) =

m∏

i=1

ri(x)

m∏

i=1

[ri(x) + 1]

for all i ≥ 2. We assume that f is sufficiently smooth.
The following is shown in [105]:

Theorem 5.2. If (5.33) satisfies Assumption 5.1, then one can determine
explicit functions kl, Ωl ∈ K∞ ∩ C1 and an everywhere positive continuous
function ρ0 such that

S(x) =
N∑

l=1

Ωl

(
kl
(
V1(x)

)
+ Vl(x)

)
(5.38)

with the choices

Vi(x) = −
m∑

l=1

Li−2
f hl(x)Li−1

f hl(x) , i = 2, . . . , N (5.39)

satisfies S(x) ≥ V1(x) and ∇S(x)f(x) ≤ −ρ0(x)V1(x) for all x ∈ X . If, in
addition, X = R

n, then the system (5.33) is GAS.
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Proof. Sketch. Since R is everywhere positive and satisfies R(x) ≤ ri(x) for
all x ∈ R

n and all i ∈ {1, ...,m}, we get

∇V1(x)f(x) ≤ −N1 by (5.34), and

∇Vi(x)f(x) ≤ −Ni +
∑m

l=1 |Li−2
f hl||Li

fhl|
(5.40)

for i = 2, . . . , N and x ∈ X . In particular, we have:

∇V2(x)f(x) ≤ −N2(x) +
m∑

l=1

|L2
fhl(x)|
√

R(x)

√
N1(x);

∇Vi(x)f(x) ≤ −Ni(x) +

[
m∑

l=1

|Li
fhl(x)|

]
√Ni−1(x)

for i = 3, 4, . . . , N . Moreover, the fact that V1 is a storage function implies
that there exists a function α ∈ K∞ such that V1(x) ≥ α(|x|) for all x ∈ X .

Therefore, we can use (5.36) to determine a continuous everywhere positive
function φ1 such that

m∑

l=1

|L2
fhl(x)|
√

R(x)
≤ φ1

(
V1(x)

)√
V1(x) (5.41)

and
m∑

l=1

|Li
fhl(x)| ≤ φ1

(
V1(x)

)√
V1(x) (5.42)

for all x ∈ X and i = 3, . . . , N . The construction of φ1 satisfying (5.42) is
as follows; the requirement (5.41) is handled in a similar way. Since Li

fhl is
sufficiently smooth for each i and l and zero at the origin, we have

m∑

l=1

|Li
fhl(x)| ≤ |x|G1(|x|) ≤ κ̄

√
V1(x)G1

(
α−1

(
V1(x)

))

for some increasing everywhere positive function G1 and constant κ̄ > 0 in
some neighborhood O of the origin. We can also find a function G2 ∈ K∞
such that

∑m
l=1 |Li

fhl(x)|/(α(|x|))1/2 ≤ G2(|x|) on R
n\O. Hence, we can take

φ1(r) = 1 + κ̄G1(α−1(r)) + G2(α−1(r)).
It follows that

∇Vi(x)f(x) ≤ −Ni(x) + φ1(V1(x))
√Ni−1(x)

√
V1(x) (5.43)

for i = 2, . . . , N . We can determine an everywhere non-negative function p1

such that |Vi(x)| ≤ p1(V1(x))V1(x) for i = 1, . . . , N for all x ∈ X . Hence,
Theorem 3.1 constructs the necessary strict Lyapunov-like function. �
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5.5 Application: Lotka-Volterra Model

5.5.1 Strict Lyapunov Function Construction

We illustrate Theorem 5.2 using the celebrated Lotka-Volterra Predator-Prey
System ⎧

⎨

⎩
χ̇ = γχ

(
1 − χ

L

)− aχζ

ζ̇ = βχζ −Δζ
(5.44)

with positive constants a, β γ, Δ, and L. System (5.44) is a simple model
of one predator feeding on one prey. The population of the predator is ζ, χ
is the population of the prey, and the constants are related to the birth and
death rates of the predator and prey. We assume that the population levels
are positive.

The time scaling, change of coordinates, and constants

x(t) = 1
Lχ

(
t
γ

)
, y(t) = a

βLζ
(
t
γ

)
,

α = βL
γ and d = Δ

γ

(5.45)

give the simpler Lotka-Volterra system
{

ẋ = x (1 − x) − αxy
ẏ = αxy − dy.

(5.46)

We assume that α > d, and we set

x∗ = d
α and y∗ = 1

α − d
α2 . (5.47)

Then x∗ ∈ (0, 1) and y∗ > 0. Also, the new variables x̃ = x−x∗ and ỹ = y−y∗
have the dynamics ⎧

⎨

⎩
˙̃x = −[x̃ + αỹ](x̃ + x∗)

˙̃y = αx̃(ỹ + y∗) ,
(5.48)

with state space X = (−x∗,∞) × (−y∗,∞). We do our Lyapunov function
construction for (5.48), so we set

f(x̃, ỹ) =
[−[x̃ + αỹ](x̃ + x∗)

αx̃(ỹ + y∗)

]
. (5.49)

Let us check that the assumptions from Theorem 5.2 are satisfied with
m = 1, N = 2, r1 ≡ 1, h1(x̃, ỹ) .= x̃, and

V1(x̃, ỹ) = x̃− x∗ ln
(
1 + x̃

x∗

)
+ ỹ − y∗ ln

(
1 + ỹ

y∗

)
. (5.50)
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One easily checks that V1 : X → [0,∞) is a storage function. Along the
trajectories of (5.48), it has the time derivative

V̇1 =
x̃

x∗ + x̃
˙̃x +

ỹ

y∗ + ỹ
˙̃y

= − x̃

x∗ + x̃
[x̃ + αỹ](x̃ + x∗) +

αỹ

y∗ + ỹ
x̃(ỹ + y∗)

= −x̃[x̃ + αỹ] + αỹx̃ = −x̃2 .

(5.51)

Also,
Lfh1(x̃, ỹ) = −[x̃ + αỹ](x̃ + x∗).

Defining the Ni’s as in (5.37), a simple argument based on the fact that V1

becomes unbounded as x̃ approaches −x∗ or ỹ approaches −y∗ provides a
constant d > 0 such that

2∑

i=1

Ni(x̃, ỹ) ≥ d
V1(x̃, ỹ)

1 + V 2
1 (x̃, ỹ)

(5.52)

on X ; see Appendix A.3. Also, Lemma A.8 provides a positive definite
quadratic lower bound for V1 near 0. Hence, Theorem 5.2 provides the nec-
essary strict Lyapunov function for (5.48).

We now construct the strict Lyapunov function of the type provided by
the theorem. Notice that

N1(x̃, ỹ) = 1
2h

2
1(x̃, ỹ), N2(x̃, ỹ) =

(
Lfh1(x̃, ỹ)

)2
,

V2(x̃, ỹ) = −h1(x̃, ỹ)Lfh1(x̃, ỹ), LfV1(x̃, ỹ) ≤ −N1(x̃, ỹ),

and
LfV2(x̃, ỹ) = −(Lfh1(x̃, ỹ)

)2 − h1(x̃, ỹ)L2
fh1(x̃, ỹ)

= −N2(x̃, ỹ) − h1(x̃, ỹ)L2
fh1(x̃, ỹ).

(5.53)

Simple calculations yield

L2
fh1(x̃, ỹ) = −( ˙̃x + α ˙̃y

)(
x̃ + x∗

)− [
x̃ + αỹ

] ˙̃x

= −(x∗ + 2x̃ + αỹ
) ˙̃x− (

x∗ + x̃
)
α ˙̃y

= −(x∗ + 2x̃ + αỹ
)
Lfh1(x̃, ỹ)

−α2
(
x∗ + h1(x̃, ỹ)

)
h1

(
x̃, ỹ

)(
ỹ + y∗

)
.

(5.54)

Substituting (5.54) into (5.53) gives
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LfV2

(
x̃, ỹ

) ≤ −N2(x̃, ỹ) +
(
x∗ + 2|x̃| + α|ỹ|)∣∣h1

(
x̃, ỹ

)∣∣∣∣Lfh1

(
x̃, ỹ

)∣∣

+α2
(
x∗ + |x̃|)(|ỹ| + y∗

)
h2

1

(
x̃, ỹ

)

≤ −N2

(
x̃, ỹ

)
+
(
x∗ + 2|x̃| + α|ỹ|)∣∣h1

(
x̃, ỹ

)∣∣∣∣Lfh1

(
x̃, ỹ

)∣∣

+α2x∗y∗
(
1 + |x̃|

x∗

)(
1 + |ỹ|

y∗

)
h2

1(x̃, ỹ).

Next, observe that
(

1
x∗

+ 1
y∗

)
V1(x̃, ỹ) ≥

x̃
x∗ − ln

(
1 + x̃

x∗

)
+ ỹ

y∗ − ln
(
1 + ỹ

y∗

)
.

(5.55)

This, Lemma A.8, and the relation 1 + A2 ≥ 1
2 (1 + |A|) give

e(
1

x∗ + 1
y∗ )V1(x̃,ỹ) ≥

(
e

x̃
x∗

1+ x̃
x∗

)(
e

ỹ
y∗

1+ ỹ
y∗

)

≥ 1
36

(
1 + x̃2

x2∗

)(
1 + ỹ2

y2∗

)

≥ 1
144

(
1 + |x̃|

x∗

)(
1 + |ỹ|

y∗

)
.

(5.56)

Hence,

|x̃| ≤ 144x∗e(
1

x∗ + 1
y∗ )V1(x̃,ỹ) and

|ỹ| ≤ 144y∗e(
1

x∗ + 1
y∗ )V1(x̃,ỹ) .

Setting M(r) = (289x∗ + 144αy∗) e(
1

x∗ + 1
y∗ )r therefore gives

LfV2(x̃, ỹ) ≤ −N2(x̃, ỹ)

+2M(
V1(x̃, ỹ)

)√N1(x̃, ỹ)
√N2(x̃, ỹ)

+288α2x∗y∗e(
1

x∗ + 1
y∗ )V1(x̃,ỹ)N1(x̃, ỹ).

Using the triangular inequality, we have

M(V1)
√N1

√N2

≤ 1
4N2 + (289x∗ + 144αy∗)

2
e2( 1

x∗ + 1
y∗ )V1N1

(5.57)

where we omit the dependencies on (x̃, ỹ). Therefore,

LfV2(x̃, ỹ) ≤ −1
2
N2(x̃, ỹ) + φ1(V1(x̃, ỹ))N1(x̃, ỹ), (5.58)

where
φ1(r) = 2

[
(289x∗+144αy∗)

2+144α2x∗y∗
]
e2( 1

x∗ + 1
y∗ )r.

Since V2(x̃, ỹ) = x̃[x̃ + αỹ](x̃ + x∗), we easily get
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|V2(x̃, ỹ)| ≤ 2(x∗ + 1)(1 + α)
[
ỹ4 + |x̃|3 + x̃2 + ỹ2

]
, (5.59)

and Lemma A.8 applied with A = x̃/x∗ gives

∣∣∣∣
x̃

x∗

∣∣∣∣ ≤ 2

{[
V1

x∗

]
+
[
V1

x∗

]2
}1/2

≤ 2
[
max

{
1
x∗

,
1
x2∗

}{
V1 + V 2

1

}]1/2

and similarly for y, where we omit the dependence of V1 on (x̃, ỹ). Combining
these estimates with (5.59) and setting d̄ = 1 + x∗ + y∗, simple algebra gives

|V2(x̃, ỹ)| ≤ 4(x∗+1)(1+α)
∑4

i=2

{
2d̄
√

V1 + V 2
1

}i
≤ p1

(
V1(x̃, ỹ)

)
V1(x̃, ỹ),

where p1(r) = 640(x∗ + 1)(α+ 1)d̄4(1 + r)3, by separately considering points
where V1 ≥ 1 and V1 ≤ 1.

Then the strict Lyapunov function we get is

S(x̃, ỹ) = V2(x̃, ỹ) +
[
p1(V1(x̃, ỹ)) + 1

]
V1(x̃, ỹ) +

∫ V1(x̃,ỹ)

0
φ1(r) dr. (5.60)

In fact, S(x̃, ỹ) ≥ V1(x̃, ỹ) and LfS(x̃, ỹ) ≤ − 1
2 [N1(x̃, ỹ) + N2(x̃, ỹ)] are

satisfied everywhere.

5.5.2 Robustness to Uncertainty

We can use our strict Lyapunov function constructions to quantify the ef-
fects of uncertainty in the Lotka-Volterra dynamics. For simplicity, we only
consider additive uncertainty in the death rate Δ for the predator. Using
the coordinate change and constants (5.45), this means that we replace the
constant d with d + u in the dynamics (5.46), where u : [0,∞) → R is a
measurable essentially bounded uncertainty, and where the constant d > 0
now represents the nominal value of the parameter. Later, we impose bounds
on the allowable values for |u|∞. We continue to use d in the formulas (5.47)
for x∗ and y∗; we do not introduce uncertainty in the equilibrium values.

We first define an appropriately restricted state space for the dynamics.
Along the trajectories of (5.46), with d replaced by d + u, we have ẋ + ẏ =
x(1 − x) − (d + u)y. Hence, if |u|∞ ≤ d/2, then we get ẋ + ẏ < 0 when
x + y > 1 + 2

d (by separately considering the cases x > 1 and x ≤ 1).
Therefore, we restrict to disturbances satisfying |u|∞ ≤ d/2 and the forward
invariant set S = {(x, y) ∈ (0,∞)2 : x + y ≤ B} containing (x∗, y∗), where

B = 1 +
2
d

+ y∗ . (5.61)

The corresponding perturbed error dynamics is
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{
˙̃x = −[x̃ + αỹ](x̃ + x∗)
˙̃y = αx̃(ỹ + y∗) − uy

(5.62)

which we view as having the state space X � = {(x̃, ỹ) : (x, y) ∈ S} and a
control set U we will specify.

To account for the restricted state space, we use the following definitions.
Given an open subset D of a Euclidean space that contains the origin, we
say that a positive definite function ᾱ : D → [0,∞) is a modulus with respect
to D provided ᾱ(p) → +∞ as |p| → +∞ or as dist(p, ∂D) → 0 (with p
remaining in D). We say that (5.62) is ISS with respect to u provided there
exist functions β ∈ KL and γ ∈ K∞, and a modulus with respect to X 0 .=
(−x∗,∞)×(−y∗,∞), such that for each disturbance u : [0,∞) → U and each
trajectory (x̃, ỹ) : [0,∞) → X � of (5.62) corresponding to u, we have

|(x̃, ỹ)(t)| ≤ β
(
ᾱ((x̃, ỹ)(0)), t

)
+ γ(|u|∞) ∀t ≥ 0. (5.63)

We define iISS for (5.62) in an analogous way; see Remark 5.1 below.
To simplify the statements of our results, we use the constants

K0 = 2
[
(3 + α)2

2
+ α2

]
B2, θ = min

{
K0x

2
∗

8
,

K0x
2
∗y

2
∗α

2

8(x∗ + 2
√
K0)2

}
,

K = B2 max
{
(3 + α)2 + 2α2, 2 max{9, 3α2}} ,

K̂ =
min

{
32x∗, x2

∗α
2y∗

}

16[K + B2 max{9, 3α2}] , and Ū =
min{K̂, θ}

4(αB3 + KB)
.

We continue to use the functions V1 and V2 from the preceding subsection.
The following is shown in [105] (but see Sect. 5.5.3 for a specific numerical
example):

Theorem 5.3. The system (5.62) is ISS with respect to disturbances u valued
in the control set ŪB1, and iISS with respect to disturbances u valued in d

2B1.

The proof of Theorem 5.3 entails showing that

UK(x̃, ỹ) = V2(x̃, ỹ) + KV1(x̃, ỹ) (5.64)

is an iISS Lyapunov function for (5.62) when the disturbance u is valued in
d
2B1, and that

UK(x̃, ỹ) = UK(x̃, ỹ)eUK(x̃,ỹ) (5.65)

is an ISS Lyapunov function for (5.62) when u is valued in ŪB1, where V1

and V2 are as defined in Sect. 5.5. It leads to the decay estimates

U̇K ≤ −�
UK(x̃, ỹ)

1 + UK(x̃, ỹ)
+ B|u| , (5.66)
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where
� = min

{
K̂, θ

}

(which implies that UK is an iISS Lyapunov function for the Lotka-Volterra
error dynamics (5.62)) when the disturbance u satisfies the less stringent
bound |u|∞ ≤ d

2 and then

˙UK ≤ −�

4 UK(x̃, ỹ) + B|u| . (5.67)

along the trajectories of (5.62) when u is valued in ŪB1, which gives the ISS
estimate. For a summary of the robustness analysis, see Appendix A.4.

Remark 5.1. A slight variant of the iISS arguments from [8] in conjunction
with (5.66) and the growth properties of UK can be used to show that there
exist functions β ∈ KL and γ ∈ K∞, a constant Ḡ > 0, and a modulus with
respect to X 0, such that for each disturbance u : [0,∞) → [−d/2, d/2] and
each trajectory (x̃, ỹ) : [0,∞) → X � of (5.62) corresponding to u, we have

γ(|(x̃, ỹ)(t)|) ≤ β
(
ᾱ((x̃, ỹ)(0)), t

)
+ Ḡ

∫ t

0

|u(r)|dr ∀t ≥ 0. (5.68)

This is less stringent than the ISS condition (5.63) because it allows the pos-
sibility that a bounded (but non-integrable) disturbance u could give rise
to an unbounded trajectory. However, if u is integrable, then (5.68) guaran-
tees boundedness of the trajectories, and it also quantifies the effects of the
disturbance. We next illustrate these ideas in simulations.

5.5.3 Numerical Validation

To illustrate our findings, we simulated the dynamics (5.62) using the param-
eter values

α = 2, d = 1, x∗ = 0.5, and y∗ = 0.25 , (5.69)

corresponding to the parameter choices

a = γ = β = Δ = 0.5 and L = 2 (5.70)

in the original model. Hence, the dynamics are iISS with respect to distur-
bances that are bounded by 0.5. We chose the disturbance u(t) = 0.49e−t.
In Figs. 5.1 and 5.2, we plot the corresponding levels of predator population
ζ and the prey population χ, which are related to x and y in terms of the
coordinate changes (5.45).

If
x(t) → x∗ = 0.5 and y(t) → y∗ = 0.25,

then the coordinate changes (5.45) give
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Fig. 5.1 Population of predator ζ with parameters (5.70) and u(t) = 0.49e−t

Fig. 5.2 Population of prey χ with parameters (5.70) and u(t) = 0.49e−t

ζ(t) → 0.25
βL

a
= 0.5 and χ(t) → 0.5L = 1, (5.71)

which is in fact the behavior we see in the figures. This shows the robustness
of the convergence in the face of the disturbance u.
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5.6 Comments

Several authors have studied ways to construct strict Lyapunov under appro-
priate conditions on the iterated Lie derivatives, or using non-strict Lyapunov
functions. Two significant results in this direction are [5, 41]. The results of
[5] deal with ISS, and [41] with controller design by using CLFs for systems
that satisfy Jurdjevic-Quinn Conditions. The construction in [5] uses a weak
Lyapunov function and an auxiliary Lyapunov function V2 that satisfies cer-
tain detectability properties of the system with respect to an appropriate
output h(x).

More precisely, [5] assumes that there are two positive definite radially
unbounded functions V1 and V2 and functions α1, α2, γ ∈ K∞ satisfying

V̇1 ≤ −α1(|y|) and V̇2 ≤ −α2(|x|) + γ(|y|) , (5.72)

for all x ∈ R
n, where y = h(x). Note that V1 in (5.72) is typically a weak

Lyapunov function since |h(x)| is often positive semi-definite. The function
V2 in (5.72) is an output-to-state Lyapunov function [73] that characterizes a
particular form of detectability of x from the output y. The strong Lyapunov
function in [5] then takes the form

U(x) = V1(x) + ρ(V2(x)),

where ρ is a suitable K∞ function.
The main difference between our approach from Theorem 5.1 and [5] is

that our conditions appear to be stronger but easier to check than those in
[5]. While very general, the challenge in applying [5] stems from the need to
find V2. The auxiliary function can be found in certain useful cases, but to
our knowledge there is no general procedure for finding V2 in the context of
[5]. This gives a possible advantage in checking the iterated Lie derivative
condition from Theorem 5.1 and then using our construction (5.2). Another
difference between [5] and our methods is that our auxiliary functions are not
required to be radially unbounded or everywhere positive.

By contrast, the strict Lyapunov construction of [41] only uses the given
non-strict Lyapunov function V1 and the iterated Lie derivatives of V1 along
solutions of an auxiliary system with a scaled vector field. The results in [41]
seem more direct than those of [5], but the method of [41] is in general only
applicable to homogenous systems. (The translational oscillator with rotating
actuator or TORA example in [41] is inhomogeneous, but [41] does not give
a systematic method for inhomogenous systems.) To our knowledge, [102]
provides the first general construction for CLFs for general classes of Jurdjevic
Quinn systems that do not necessarily satisfy the homogeneity conditions
from [41].

Conditions 1. and 2. from Theorem 5.1 agree with the assumptions from
the strict Lyapunov function construction in [110, Theorem 3.1]. However,
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our proof of Theorem 5.1 is simpler than the arguments used in [110]. The
construction in [110, Theorem 3.1] proceeds by finding a non-increasing func-
tion λ : [0,∞) → (0,∞) such that the function

U(x) = V (x)

[
1 + V (x) −

�−1∑

i=1

Li
fλ

V (x) ·
(
Li+1
fλ

V (x)
)3i

]
(5.73)

is a strict Lyapunov function for the system (5.1), where

fλ(x) .= λ(V (x))f(x).

In [86, Sect. 3.3], conditions similar to Assumption 5.1 were used to conclude
asymptotic stability of systems which admit a non-strict Lyapunov function,
via an extension of Matrosov’s Theorem. However, no strict Lyapunov func-
tions were constructed in this earlier work.

It is possible to extend Theorem 5.1 to periodic time-varying systems, in
which case we instead take

a1(t, x) = −[Vt(t, x) + Vx(t, x)f(t, x)]

and ai = −ȧi−1 for all i ≥ 2 and consider the non-negative function

�∑

i=2

a2
i (t, x) + a1(t, x),

which is allowed to be zero for some x 
= 0 on some intervals of positive
length; see [104]. Section 5.4 is based on [104].

Our strict Lyapunov function construction for the Lotka-Volterra system is
based on [104]. The Lotka-Volterra model is used extensively in mathematical
biology. See [58, 79] for an extensive analysis of this model and generalizations
to several predators. While there are many Lyapunov constructions for Lotka-
Volterra models available (based on computing the LaSalle Invariant Set), to
the best of our knowledge, the result we gave in this chapter is original and
significant because we provide a global strict Lyapunov function.
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Time-Varying Case



Chapter 6

Strictification: Basic Results

Abstract In the last three chapters, we gave general methods for construct-
ing strict Lyapunov functions for time-invariant systems. Several of these
methods have analogs for time-varying systems. In general, these involve
replacing the negative semi-definite function of the state in the right side
of the non-strict Lyapunov decay condition with a product of a negative
semi-definite function of the state and a suitable time-varying parameter.
We assume that the time-varying parameter satisfies a persistency of excita-
tion (PE) condition. The challenge is then to transform non-strict Lyapunov
functions satisfying this more complicated decay condition into explicit strict
Lyapunov functions. In this chapter, we provide methods for solving this
and related problems, including the construction of ISS Lyapunov functions
for time-varying systems. We apply our work to stabilization problems for
rotating rigid bodies and underactuated ships.

6.1 Background

As we noted in previous chapters, there are many situations where it is very
helpful to have explicit constructions for global strict Lyapunov functions.
For example, Lyapunov functions make it possible to estimate the basins
of attraction for attractive equilibria, and one often needs strict Lyapunov
functions for the subsystems in backstepping and forwarding. Also, a CLF
satisfying the small control property can be used with Sontag’s Universal
Formula to obtain an explicit asymptotically stabilizing feedback that is op-
timal when the CLF is viewed as the value function [149, 158]. Moreover,
strict Lyapunov functions are a key tool for robustness analysis.

In general, it is more difficult to construct strict Lyapunov functions for
time-varying systems than it is for time-invariant systems. In fact, when
the usual non-strict Lyapunov function construction methods are used for
time-varying systems, the right hand sides of the Lyapunov decay condition

141
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typically end up being identically zero for some values of t, which precludes
the use of the usual time-invariant strictification techniques. A simple one-
dimensional example of this phenomenon is the case where ẋ = − sin2(t)x,
where the obvious candidate Lyapunov function V (x) = |x|2 gives V̇ ≤
−2 sin2(t)x2 along trajectories. On the other hand, the right hand side is
only zero for times t in the “thin” set {kπ : k ∈ Z}, so it is reasonable to
expect the system to exhibit some stability properties. We will make this
thinness notion precise later in the chapter, using the idea of PE.

This chapter provides systematic methods for transforming non-strict Lya-
punov functions for time-varying systems into strict Lyapunov functions. We
refer to this transformation process as (time-varying) strictification. The idea
of using non-strict Lyapunov functions to study stability has been pursued
by many authors. For example, we saw in Sect. 2.2.2 how to use time-varying
versions of the LaSalle Invariance Principle in conjunction with non-strict
Lyapunov functions to prove stability; see [13, 77] for more details. In [119],
Narendra and Annaswamy proved that if a (possibly non-periodic ) system

ẋ = f(t, x), x ∈ R
n (6.1)

admits a uniformly proper and positive definite function V , a constant T > 0,
and an increasing continuous function γ : [0,∞) → [0,∞) such that

1. ∂V
∂t (t, x(t)) + ∂V

∂x (t, x(t))f(t, x(t)) ≤ 0; and
2. V (t + T, x(t + T )) − V (t, x(t)) ≤ −γ(|x(t)|)
hold along all trajectories x(t) for (6.1) for all t ≥ 0, then (6.1) is uniformly
asymptotically stable. See [1, 2] for generalizations that relax the requirement
that the time derivative of V along the trajectories is negative semi-definite.

An alternative approach was pursued in [98]. The main result of [98] con-
structs an explicit global strict Lyapunov function for (6.1) provided one
knows a storage function V , a periodic function q, and an appropriate non-
negative function W(q(t), x) such that

V̇ (t, x) .=
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −W(q(t), x) (6.2)

for all x ∈ R
n and t ≥ 0. It assumes that W(q(t), x) is positive definite in

x for all t in suitable non-empty open intervals of time; see Sect. 6.3 for the
precise hypotheses. Oftentimes, the function W(q(t), x) takes the form

W(q(t), x) = p(t)W (x) , (6.3)

where the non-negative bounded continuous function p is a PE parameter,
meaning: There are positive constants δ and T such that

∫ t+T

t

p(r)dr ≥ δ (6.4)
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for all t ∈ R. Throughout the sequel, we let P(T, δ, p̄) denote the set of
all continuous functions p : R → [0,∞) that satisfy (6.4) for some positive
constants δ and T and p(t) ≤ p̄ for all t ∈ R. We also set P = ∪{P(T, δ, p̄) :
T, δ, p̄ > 0}.

When a storage function satisfies an estimate of the form (6.2) with W
having the form (6.3), standard arguments imply that the system is UGAS;
see Remark 6.4. However, it is not clear how to construct global strict Lya-
punov functions for (6.1) in this case. Conditions (6.2) and (6.3) are natural,
because they are satisfied in many important cases. For example, consider the
class of nonholonomic systems in chained form, and suppose that we wish to
track a given periodic trajectory. In this case, applying the main result of
[65] often gives a storage function satisfying the preceding conditions.

6.2 Motivating Example

Consider the chained form system
⎧
⎨

⎩

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

(6.5)

with state space X = R
3 and input space U = R

2. We wish to find a feedback
for (6.5) that stabilizes the trajectories of (6.5) to the reference trajectory
xr(t) = (− cos(t), 0, 0), in such a way that the dynamics for the error xe =
(x1e, x2e, x3e) = x − xr is UGAS and locally exponentially stable to 0. We
also want an explicit global strict Lyapunov function for the xe dynamics.

To this end, we pick the feedback component

u1 = sin(t) − x1e (6.6)

to obtain the error dynamics
⎧
⎨

⎩

ẋ1e = −x1e

ẋ2e = u2

ẋ3e = x2e(sin(t) − x1e).
(6.7)

We first consider the reduced system
{

ẋ3e = x2e sin(t)
ẋ2e = u2 .

(6.8)

We apply backstepping with the new coordinate z2e = a sin3(t)x3e + x2e

where a > 0 is any constant, and then use the feedback component
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u2 = −3a sin2(t) cos(t)x3e − a sin3(t)
[−a sin4(t)x3e + z2e sin(t)

]

−az2e − sin(t)x3e
(6.9)

to get the closed-loop system
{

ẋ3e = −a sin4(t)x3e + z2e sin(t)
ż2e = −az2e − sin(t)x3e .

(6.10)

(We discuss backtepping in the next chapter.) The time derivative of

V (t, x3e, z2e) = 1
2

[
x2

3e + z2
2e

]
(6.11)

along the trajectories of (6.10) satisfies

V̇ (t, x3e, z2e) = −a sin4(t)x2
3e − az2

2e ≤ −2a sin4(t)V (t, x3e, z2e) . (6.12)

This is the special case of the decay conditions (6.2) and (6.3) with time-
varying parameter p(t) = 2 sin4(t). However, it is not clear how to transform
(6.11) into a strict Lyapunov function for (6.10).

One consequence of the results of this chapter is that when a = 1, (6.10)
admits the global strict Lyapunov function

U1(t, x3e, z2e) =
[
4π(π + 1) + P (t)

]
V (t, x3e, z2e) (6.13)

where
P (t) = 2

∫ t
t−π

∫ t
s

sin4(r)drds; (6.14)

see Theorem 6.1 and Remark 6.2 with the choices p(t) = 2 sin4(t) and T = π,
and see Sect. 6.4 for other strict Lyapunov function constructions for (6.10)
that use different choices of a to get rate of convergence information. In fact,
we can check directly that

U̇1(t, x3e, z2e) ≤ − 3π
8 V (t, x3e, z2e) (6.15)

along all trajectories of (6.10). Also, U1 is a storage function.
Let us use (6.13) to get a strict Lyapunov function for the full system

(6.7) in closed-loop with the feedback (6.9). We continue to take the tuning
parameter a = 1. Changing variables as before and again using the feedback
(6.9) transforms (6.7) into

⎧
⎨

⎩

ẋ1e = −x1e

ẋ3e = − sin4(t)x3e + z2e sin(t) − x1ex2e

ż2e = −z2e − sin(t)x3e − x1ex2e sin3(t) .
(6.16)

Along the trajectories of (6.16), the time derivative of U1(t, x3e, z2e) satisfies

U̇1(t, x3e, z2e) ≤ − 3π
8 V (t, x3e, z2e)

+2π(3π + 2) [|x3e| + |z2e|] |x2e||x1e| . (6.17)



6.3 Time-Varying Strictification Theorem 145

One readily checks that

2π {|x3e| + |z2e|} {|x2e||x1e|} ≤ π
8(3π+2)V (t, x3e, z2e) + 32π(3π + 2)x2

2ex
2
1e

≤ π
8(3π+2)V (t, x3e, z2e)

+128π(3π + 2)V (t, x3e, z2e)x2
1e,

by applying the triangular inequality pq ≤ cp2 + 1
4cq

2 where p and q are the
terms in braces and c > 0 is an appropriate constant, and then using the facts
that {|x3e| + |z2e|}2 ≤ 4V (t, x3e, z2e) and x2

2e ≤ 2x2
3e + 2z2

2e = 4V (t, x3e, z2e)
everywhere. This and (6.17) give the global inequality

U̇1(t, x3e, z2e) ≤ −π

4
V (t, x3e, z2e) + 128π(3π + 2)2V (t, x3e, z2e)x2

1e .

Since V (t, x3e, z2e) ≤ 1
2πU1(t, x3e, z2e) everywhere, it follows that the time

derivative of

U2(t, x3e, z2e, x1e) = ln(1 + U1(t, x3e, z2e)) +
[
64(3π + 2)2 + 0.5

]
x2

1e

along the trajectories of (6.16) satisfies

U̇2(t, x3e, z2e, x1e) ≤ −π

4
V (t, x3e, z2e)

1 + U1(t, x3e, z2e)
− x2

1e . (6.18)

Since U2 is also a storage function, it follows from (6.18) that U2 is a
strict Lyapunov function for (6.7) in closed-loop with the feedback (6.9).
Also, in a neighborhood of the origin, the right side of (6.18) is bounded
from above by a negative definite quadratic function of (x1e, x3,e, z2e). Since
U2 is bounded from above and below by positive definite quadratic func-
tions of (x1e, x3,e, z2e) near the origin, this shows that the feedbacks (6.6)
and (6.9) globally uniformly and locally exponentially stabilize the reference
trajectory xr(t). We turn next to a general result that leads to the strict
Lyapunov function construction (6.13) and (6.14) as a special case. As be-
fore, all (in)equalities to follow should be understood to hold globally unless
otherwise indicated.

6.3 Time-Varying Strictification Theorem

Statement of Theorem

Throughout the sequel, we understand γ′(0) for functions γ defined on [0,∞)
as a one sided derivative, and continuity of γ′ at 0 to be one sided continu-
ity. The main result from [98] is a general method for converting non-strict
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Lyapunov functions, satisfying decay conditions of the form (6.2)-(6.3), into
global strict Lyapunov functions for the corresponding time-varying systems
(6.1). It assumes the following:

Assumption 6.1 We are given a C1 storage function V for (6.1), a con-
tinuous positive definite function W (x), and a bounded continuous function
p : R → [0,∞) such that

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −p(t)W (x) (6.19)

hold for all t ≥ 0 and x ∈ R
n.

Assumption 6.2 The function p : R → [0,∞) from Assumption 6.1 satisfies
the PE condition (6.4) for some constants δ, T > 0.

We continue to assume that f satisfies the regularity assumptions from
Chap. 1. Notice that any continuous periodic function p : R → [0,∞) that
is not identically zero admits constants T, δ > 0 satisfying (6.4). Assumption
6.2 also allows non-periodic p with arbitrarily large null sets, e.g., for fixed
r > 0, set

pr(t) = max
{

0,
t

1 + |t| sin3

(
t

r

)}
.

Taking large r gives arbitrarily large null sets.

Theorem 6.1. Consider the system (6.1) with state space X = R
n. Let As-

sumptions 6.1 and 6.2 hold. Then one can explicitly construct a function
Γ ∈ C1 ∩ K∞ and a positive definite C1 function λ such that

V �(t, x) = Γ
(
V (t, x)

)
+ λ

(
V (t, x)

) ∫ t

t−T

∫ t

s

p(r)dr ds (6.20)

is a strict Lyapunov function for the system (6.1). If V and p both have period
T in t, then so does (6.20).

Proof of Theorem 6.1

We first find an everywhere positive continuous function γ and λ ∈ K∞ ∩C1

such that
1
4
γ
(
V (t, x)

)
W (x) ≥ Tλ

(
V (t, x)

)
(6.21)

everywhere. For example, first choose λ ∈ K∞ ∩C1 such that Tλ(α2(|x|)) ≤
W (x) on the bounded set α−1

1 (1)Bn, where α1, α2 ∈ K∞ are such that
α1(|x|) ≤ V (t, x) ≤ α2(|x|) for all t ≥ 0 and x ∈ R

n, and then choose
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γ(r) =

⎧
⎨

⎩
sup

{x:0<α1(|x|)≤r}

{
4 max

{
1,

Tλ(α2(|x|))
W (x)

}}
, r 
= 0

4, r = 0 .

Next note that
∫ t

t−T

∫ t

s

p(r)dr ds ≤ T 2p̄ =: PM ∀t ≥ 0, (6.22)

where p̄ is a global bound of the PE function p(t). It follows that the function
Γ (r) = 2PMλ(r) +

∫ r
0 γ(s)ds satisfies the following conditions for all v ≥ 0,

t ≥ 0, and x ∈ R
n:

Γ (v) ≥ 2PMλ(v) and (6.23)

1
4
Γ ′(V (t, x)

)
W (x) ≥ Tλ

(
V (t, x)

)
. (6.24)

We now show that (6.20) with the preceding choices of Γ and λ satisfies the
requirements of the theorem.

To check that V � is a storage function, first note that our choice of PM in
(6.22) gives the inequalities

V �(t, x) ≤ Γ
(
V (t, x)

)
+ PMλ

(
V (t, x)

)
. (6.25)

Combining (6.25) with (6.23) gives

Γ
(
V (t, x)

) ≤ V �(t, x) ≤ 3
2
Γ
(
V (t, x)

)
. (6.26)

Hence, V � is a storage function because V is a storage function and Γ ∈
K∞ ∩ C1.

The time derivative of V �(t, x) along the trajectories of (6.1) satisfies

V̇ �(t, x) = Γ ′(V (t, x)
)
V̇ (t, x) +

[
−
∫ t

t−T

p(s)ds + Tp(t)
]
λ
(
V (t, x)

)

+P (t)λ′(V (t, x)
)
V̇ (t, x) ,

(6.27)

where

P (t) =
∫ t

t−T

∫ t

s

p(r)dr ds. (6.28)

Since we have P (t) ≥ 0, λ′(V (t, x)) ≥ 0, and V̇ (t, x) ≤ 0 everywhere, condi-
tion (6.27) gives

V̇ �(t, x) ≤ −Γ ′(V (t, x))p(t)W (x)

+
[
−
∫ t

t−T

p(s)ds + Tp(t)
]
λ
(
V (t, x)

)
.

(6.29)
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Combined with (6.24), this gives

V̇ �(t, x) ≤ − 3
4Γ

′(V (t, x)
)
p(t)W (x) −

(∫ t

t−T

p(s)ds
)

λ
(
V (t, x)

)
. (6.30)

Since λ and Γ are both increasing, we conclude from Assumption 6.2 that

V̇ �(t, x) ≤ −δλ
(
α1(|x|)

)
< 0 ∀x 
= 0 , (6.31)

which is the desired strict Lyapunov function decay condition. �

Remarks on Theorem 6.1

Remark 6.1. If p(·) is a bounded continuous everywhere non-negative function
for which there exist constants Tp > 0 and cp > 0 such that

p(t) + p(t− Tp) ≥ cp

for all t ∈ R, then the formula (6.20) can be simplified by replacing the double
integral ∫ t

t−T

∫ t

s

p(r)dr ds

in the formula (6.20) for the strict Lyapunov function with

∫ t

t−Tp

p(r)dr.

To see why, choose λ ∈ C1 ∩ K∞ and a C1 everywhere positive definite
function γ such that (6.21) is satisfied with T = 1, and define Γ as before.
Then the new formula for V � gives

V̇ �(t, x) ≤ p(t)
[− Γ ′(V (t, x))W (x) + λ(V (t, x))

]

−p(t− Tp)λ
(
V (t, x)

)

≤ −3p(t)Γ ′(V (t, x)
)
W (x) − p(t − Tp)λ

(
V (t, x)

)
.

(6.32)

We easily deduce the negative definiteness of the right side of (6.32) from the
facts that p(t) + p(t − Tp) ≥ cp for all t ∈ R and Γ ′(r) > 0 for all r > 0.

Remark 6.2. The formula (6.20) can be simplified when V (t, x) ≡ W (x). In
fact, in that case, we can take

λ(r) = r, γ(r) ≡ 4T, and Γ (r) = (2PM + 4T )r.
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More generally, we can take Γ (r) = r if W is proper and positive definite;
see the first part of the proof of Theorem 6.2, specialized to the case where
the disturbance is identically zero.

Remark 6.3. As noted in [98], we can extend Theorem 6.1 to cases where the
non-strict Lyapunov function V satisfies the more general decay condition
(6.2). One way to do this is to assume the following additional conditions:

1. V, q, and f are all periodic in t with the same period T ;

2. V ∈ C1 is a storage function; and

3. W is everywhere non-negative, and there are two constants τ1 and τ2 with
0 ≤ τ1 < τ2 ≤ T and a positive definite function W so that W(q(t), x) ≥
W (x) for all t ∈ [τ1, τ2] and all x ∈ R

n.

Then we can again construct an explicit strict Lyapunov function for (6.1).
This can be done by applying Theorem 6.1 using any continuous periodic
function p(t) of period T (which in general will be different from q) such that

∫ t
0 p(s)ds > 0, p(r) ∈ (0, 1] ∀r ∈ [τ1, τ2], and

p(r) ≡ 0 on [0, T ] \ [τ1, τ2].

The proof is the same as before.

Remark 6.4. Notice that Theorem 6.1 goes beyond establishing that the sys-
tem (6.1) is UGAS, because it constructs an explicit strict global Lyapunov
function for the system. If we merely want to establish UGAS under the as-
sumptions of Theorem 6.1, then we can use the following argument from [139],
assuming there is a K function α such that W (x) ≥ α(|x|) for all x ∈ R

n.
The details are as follows. By arguing as in [139, Proposition 13], we can find
a function ρ ∈ C1 ∩ K∞ such that the function V̄

.= ρ(V ) satisfies

V̄t(t, x) + V̄x(t, x)f(t, x) ≤ −p(t)V̄ (t, x) (6.33)

everywhere. We now argue as in [64]. Letting t ≥ t0 ≥ 0 and k be the largest
integer kT ≤ t, we get

∫ t0+t

t0

p(s)ds ≥
∫ t0+kT

t0

p(s)ds ≥ kδ ≥
(

t

T
− 1

)
δ .

Integrating (6.33) therefore gives

V̄
(
t + t0, x(t + t0, t0, x0)

) ≤ V̄ (t0, x0)e−( t
T −1)δ ≤ V̄ (t0, x0)De−δt/T

where D = eδ. Since V̄ is again a storage function, this gives the UGAS
condition. However, it is not clear from the preceding arguments how to
construct an explicit strict Lyapunov function for (6.1), which is one of our
motivations for studying strictification methods for time-varying systems.
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6.4 Remarks on Rate of Convergence

In our analysis of the dynamics (6.5), we found that for any constant a > 0,
we can find a change of coordinates so that the time derivative of

V (t, x3e, z2e) =
1
2
[
x2

3e + z2
2e

]
(6.34)

along the trajectories of the system (6.10) in the new coordinates satisfies

V̇ (t, x3e, z2e) ≤ −2a sin4(t)V (t, x3e, z2e) . (6.35)

This can be shown to imply that (6.10) can be made exponentially stable
to the origin with arbitrary fast rate of convergence. We can carry out our
strictification approach in such a way that the rate of convergence information
is reflected in the strict Lyapunov function decay rate. One general result in
this direction is as follows.

We again consider our system (6.1) under our standing assumptions, and
we assume that there exists a weak Lyapunov function such that along the
trajectories of (6.1), we get

V̇ (t, x) ≤ −ap(t)V (t, x), (6.36)

with a > 0 a given constant and p a PE parameter that is bounded by a
constant p̄. Choose δ and T so that the PE condition (6.4) is satisfied.

Let

V(t, x) = eR(t)V (t, x), where R(t) =
a

T

∫ t

t−T

(∫ t

l

p(m)dm
)

dl . (6.37)

Reasoning as we did to get (6.27) gives

Ṙ(t) = ap(t) − a
T

(∫ t

t−T

p(m)dm
)

(6.38)

and therefore
V̇(t, x) = eR(t)

[
V̇ (t, x) + Ṙ(t)V (t, x)

]

≤
[
−ap(t) + Ṙ(t)

]
V(t, x)

≤ − a
T

(∫ t

t−T

p(m)dm
)
V(t, x)

≤ − δ
T aV(t, x),

(6.39)

where the last inequality is from (6.4). The Lyapunov function V decays
exponentially to zero with the decay rate δ

T a, as desired.
An immediate consequence of (6.39) and the expression (6.37) for V is that

if there exist an integer k ≥ 1 and positive constants c1 and c2 such that



6.4 Remarks on Rate of Convergence 151

c1|x|k ≤ V (t, x) ≤ c2|x|k (6.40)

for all (t, x) ∈ [0,∞)×R
n, then the solutions of (6.1) exponentially converge

to zero with decay rate δ
kT a, by the following argument. Integrating (6.39)

on [t0, t] along any trajectory of (6.1) gives

V(t, x(t)
) ≤ e−

δ
T a(t−t0)V(t0, x(t0)

)
. (6.41)

Therefore,
V
(
t, x(t)

) ≤ e−
δ
T a(t−t0)eR(t0)−R(t)V

(
t0, x(t0)

)

≤ e−
δ
T a(t−t0)e

aT
2 pV

(
t0, x(t0)

)
,

(6.42)

where the last inequality used

0 ≤ R(t) ≤ aT

2
p. (6.43)

Applying (6.40), dividing by c1, and taking kth roots gives

|x(t)| ≤
[
c2e

aT
2 p

c1

] 1
k

e−
δ

kT a(t−t0)|x(t0)| , (6.44)

which is the desired exponential decay condition.

Remark 6.5. The preceding construction readily generalizes to cases where
one has a non-strict Lyapunov V1, a PE parameter p, and an everywhere
positive C2 function L such that L(0) = 1 and

V̇1(t, x) ≤ −ap(t)
V1(t, x)

L(V1(t, x))
(6.45)

along all trajectories of (6.1), as follows. Without loss of generality, we may
assume that L is non-decreasing. Then, for all v ∈ (0, 1),

∫ v

1

L(m)
m

dm ≤ −
∫ 1

v

L(0)
m

dm = ln(v). (6.46)

We deduce that the continuous function

k(v) =

⎧
⎨

⎩
exp

(∫ v

1

2L(m)
m

dm
)

, v > 0

0, v = 0
(6.47)

is C1 and of class K∞. Indeed, (6.46) gives k(v) ≤ v2 for all v ∈ (0, 1), so
k′(0+) = 0, and

k′(v) = 2k(v)
L(v)
v

≤ 2vL(v) → 0
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as v → 0+.
Next, consider the function

V (t, x) = k(V1(t, x)) . (6.48)

It satisfies V (t, 0) = 0 for all t ≥ 0, and

V̇ (t, x) = 2 exp

(∫ V1(t,x)

1

2L(m)
m

dm

)
L(V1(t, x))
V1(t, x)

V̇1(t, x)

≤ −2 exp

(∫ V1(t,x)

1

2L(m)
m

dm

)
L(V1(t, x))
V1(t, x)

ap(t)
V1(t, x)

L(V1(t, x))

≤ − exp

(∫ V1(t,x)

1

2L(m)
m

dm

)
ap(t)

= −ap(t)V (t, x) , x 
= 0 ,

(6.49)

which is the decay condition we had in (6.36). Hence, applying the previous
result with the choice V (t, x) = k

(
V1(t, x)

)
and k defined by (6.47) gives the

function
W (t, x) = eR(t)V (t, x) , (6.50)

whose time derivative along the trajectories of (6.1) satisfies

Ẇ (t, x) ≤ − δ

T
aW (t, x) . (6.51)

Using the fact that k ∈ K∞, we readily conclude that W is a strict Lyapunov
(6.1). On the other hand, (6.51) does not imply that the solutions of the
system converge exponentially to zero, even when V1 satisfies inequalities of
the type (6.40).

6.5 Input-to-State Stability

We next present extensions of Theorem 6.1 to systems with disturbances
based on ISS, and some further extensions for systems with outputs.

Throughout this section, we will assume that our nonautonomous system

ẋ = f(t, x, u) (6.52)

has state space X = R
n and input set U = R

p, and that it satisfies our
usual assumptions from Chap. 1. For convenience, we also assume that f
is periodic in t, which means that there exists a constant T > 0 such that
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f(t+T, x, u) = f(t, x, u) for all t ≥ 0, x ∈ R
n, and u ∈ R

m. However, most of
the results to follow remain true if the periodicity assumption on f is relaxed
to the requirement that f is uniformly locally bounded in t, meaning, for
each compact subset K ⊆ R

n × R
p, we have

sup
{|f(t, x, u)| : (x, u) ∈ K, t ≥ 0

}
< +∞ . (6.53)

The control functions for our system (6.52) comprise the set of all measurable
essentially bounded functions α : [0,∞) → R

m; we denote this set by M(Rm)
as before. For each t0 ≥ 0, x0 ∈ R

n, and α ∈ M(Rm), we let I � t 
→
x(t, t0, x0, α) denote the unique trajectory of (6.52) for the input α satisfying
x(t0) = x0 and defined on its maximal interval I ⊆ [t0,∞). This trajectory
will be denoted by x(t) when this would not lead to confusion.

Recall that a C1 function V : [0,∞) × R
n → [0,∞) is said to be of class

UBPPD (written V ∈ UBPPD) provided (a) it is a storage function and (b)
its gradient is uniformly bounded in t, i.e., there exists a function α3 ∈ K∞
such that

|∇V (t, x)| ≤ α3(|x|) (6.54)

for all t ≥ 0 and x ∈ R
n, where ∇V = (Vt, Vx). Given a storage function

V ∈ UBPPD and functions α1, α2 ∈ K∞ such that

α1(|x|) ≤ V (t, x) ≤ α2(|x|) ∀t ≥ 0 and x ∈ R
n , (6.55)

we can assume that α1 and α2 are C1, e.g., by taking α2(s) =
∫ s
0
α3(r) dr and

minorizing α1 by a C1 function of class K∞. We continue to use the notation

V̇ (t, x, u) .=
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x, u)

for functions V ∈ UBPPD. We later use the fact that

s 
→ sup
{∣∣V̇ (t, x, u)

∣∣ : t ≥ 0, |x| ≤ χ(s), |u| ≤ s
}

is of class K for each χ ∈ K∞, which follows from (6.53) and (6.54).
For each element p ∈ P , we can define corresponding notions of non-strict

ISS and non-strict ISS Lyapunov functions, as follows:

Definition 6.1. Let p ∈ P . A function V ∈ UBPPD is called an ISS(p)
Lyapunov function for (6.52) provided there exist χ ∈ K∞ and μ ∈ K∞ ∩C1

such that

|x| ≥ χ(|u|) ⇒ V̇ (t, x, u) ≤ −p(t)μ(|x|) ∀t ≥ 0. (6.56)

An ISS(p) Lyapunov function for (6.52) and p(t) ≡ 1 is also called a strict
ISS Lyapunov function.

Condition (6.56) allows
V̇ (t, x, u) = 0
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for those t where p(t) = 0. This corresponds to allowing V to non-strictly
decrease along the solutions of (6.52).

Definition 6.2. Let p ∈ P . We say that (6.52) is ISS(p), or that it is ISS
with decay rate p, provided there exist β ∈ KL and γ ∈ K∞ such that for all
t0 ≥ 0, x0 ∈ R

n, u0 ∈ M(Rm) and h ≥ 0,

|x(t0 + h, t0, x0, u0)| ≤ β

(
|x0|,

∫ t0+h

t0

p(s) ds

)
+ γ

(|u0|[t0,t0+h]

)
. (6.57)

If (6.52) is ISS(p) with p ≡ 1, then we say that (6.52) is ISS.

Notice that ISS(p) systems are automatically forward complete. We also
study dissipation-type decay conditions as follows:

Definition 6.3. Let p ∈ P . A function V ∈ UBPPD is called a non-strict
dissipative Lyapunov function for (6.52) and p, or a DIS(p) Lyapunov func-
tion, provided there exist Ω ∈ K∞ and μ ∈ K∞ ∩ C1 such that

V̇ (t, x, u) ≤ −p(t)μ(|x|) + Ω(|u|) (6.58)

for all t ≥ 0, x ∈ R
n, and u ∈ R

m. A DIS(p) Lyapunov function for (6.52)
and p(t) ≡ 1 is also called a strict DIS Lyapunov function.

As we saw in Sect. 6.3, the decay condition (6.58) in the special case where
the disturbance u is fixed at zero implies the existence of a (possibly different)
storage function that satisfies the standard decay condition

V̇ (t, x, 0) ≤ −μ(|x|),

which gives UGAS. However, it is not clear how to use a DIS(p) or ISS(p)
Lyapunov function to construct a strict ISS Lyapunov function. In the next
section, we show how such constructions can be carried out explicitly. We use
the following elementary observations:

Lemma 6.1. Let T, δ, p̄ > 0 be constants and p ∈ P(T, δ, p̄) be given. Then:

1. 0 ≤ ∫ t
t−T

(∫ t
s
p(r) dr

)
ds ≤ T 2p̄

2 for all t ≥ 0; and

2. the function

[0,∞) � h 
→ p̃(h) = inf
t≥0

∫ t+h

t

p(r) dr

is continuous, non-decreasing, and unbounded.

The proof of Lemma 6.1 is a simple exercise.
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6.6 Equivalent Characterizations of Non-strict ISS

The following theorem from [91] collects the various equivalences among
ISS(p), ISS, and the corresponding non-strict and strict Lyapunov functions:

Theorem 6.2. Let p ∈ P and f be as above. The following are equivalent:

1. f admits an ISS(p) Lyapunov function;

2. f admits a strict ISS Lyapunov function;

3. f admits a DIS(p) Lyapunov function;

4. f admits a strict DIS Lyapunov function;

5. f is ISS(p); and

6. f is ISS.

While the main implications of Theorem 6.2 can be shown in non-explicit
ways (e.g., using Lyapunov characterizations), a significant feature of our
proof is the explicit construction of strict ISS Lyapunov functions

V �(t, x) = V (t, x) + w(V (t, x))
∫ t

t−T

(∫ t

s

p(r) dr
)

ds (6.59)

for an appropriate function w ∈ C1 ∩ K∞. The proof proceeds by showing
the following implications: 1. ⇒ 2. ⇒ 4. ⇒ 1., 3. ⇔ 4., 2. ⇔ 6., and 5. ⇔
6.. For completeness, we provide the parts of the proof that involve strict
Lyapunov function constructions. We then discuss the other parts of the
proof in remarks. Fix T, δ, p̄ > 0 such that p ∈ P(T, δ, p̄).

6.6.1 Proofs of Equivalences

Proof that 1. ⇒ 2. Let V be an ISS(p) Lyapunov function for f . Pick functions
α1, α2 ∈ K∞ ∩C1 satisfying (6.55) and χ ∈ K∞ and μ ∈ K∞ ∩C1 satisfying
(6.56). Set

α̃2(s)
.= max

{
T p̄
2 , 1

}
(α2(s) + μ(s) + s) and

w(s) .= 1
4T μ

(
α̃−1

2 (s)
)
.

(6.60)

Then α̃2, α̃
−1
2 ∈ K∞ ∩ C1. Since V (t, x) ≤ α̃2(|x|) for all t ≥ 0 and x ∈ R

n

and μ ∈ K∞, we get

|x| ≥ χ(|u|) ⇒ V̇ (t, x, u) ≤ −p(t)μ
(
α̃−1

2 (V (t, x))
)
. (6.61)

Note too that w ∈ K∞ ∩ C1 and
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0 ≤ w′(s) =
μ′(α̃−1

2 (s))
4T max{T p̄2 , 1}(α′

2(α̃
−1
2 (s)) + μ′(α̃−1

2 (s)) + 1)

≤ μ′(α̃−1
2 (s))

4T max{T p̄2 , 1}(μ′(α̃−1
2 (s)) + 1)

≤ 1
2T 2p̄

(6.62)

for all s ≥ 0. Consider the UBPPD function

V �(t, x) = V (t, x) + ξ(t)w
(
V (t, x)

)
, (6.63)

where

ξ(t) =
∫ t

t−T

(∫ t

s

p(r) dr
)

ds. (6.64)

Then

V̇ �(t, x, u) =
[
1 + ξ(t)w′(V (t, x)

)]
V̇ (t, x, u)

+
[
Tp(t) − ∫ t

t−T p(r) dr
]
w
(
V (t, x)

)
.

(6.65)

When |x| ≥ χ(|u|), condition (6.61) gives

V̇ �(t, x, u) ≤ −p(t)μ
(
α̃−1

2 (V (t, x))
)

+
[
Tp(t) − ∫ t

t−T
p(r) dr

] 1
4T

μ
(
α̃−1

2

(
V (t, x)

))

≤ −3
4
p(t)μ

(
α̃−1

2

(
V (t, x)

))

−
(∫ t

t−T

p(r) dr
)

1
4T

μ
(
α̃−1

2 (V (t, x))
)

≤ − δ

4T
μ
(
α̃−1

2

(
α1(|x|)

)) ∀t ≥ 0.

Since μ ◦ α̃−1
2 ◦ α1 ∈ C1 ∩ K∞, it follows that V � is a strict ISS Lyapunov

function for (6.52). �
Proof that 2. ⇒ 4. Assume that f admits a strict ISS Lyapunov function V .
Let μ, χ ∈ K∞ satisfy condition (6.56) with p ≡ 1. Then the strict dissipative
condition (6.58) with p ≡ 1 follows by choosing any Ω ∈ K∞ satisfying

Ω(s) ≥ max
{t≥0,|x|≤χ(s),|u|≤s}

{
V̇ (t, x, u) + μ(|x|)

}
∀s ≥ 0.

Such an Ω exists by our conditions (6.53) and (6.55). Therefore, V is itself a
strict DIS Lyapunov function for f . �
Proof that 4. ⇒ 1. Assume that f admits a strict DIS Lyapunov function V .
Let μ,Ω ∈ K∞ satisfy (6.58) with p ≡ 1. If |x| ≥ χ(|u|) .= μ−1(2Ω(|u|)), then
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V̇ (t, x, u) ≤ −1
2
μ(|x|), so V̇ (t, x, u) ≤ −p(t)

2p̄
μ(|x|)

for all t ≥ 0. Therefore, V is also an ISS(p) Lyapunov function for f , so 1. is
satisfied. �
Proof that 3. ⇔ 4. Since p ∈ P is bounded, it is immediate that 4. implies
3.. Conversely, assume V ∈ UBPPD is a DIS(p) Lyapunov function for f
and α1, α2, μ,Ω ∈ K∞ satisfy (6.55) and the DIS(p) requirements. Define
α̃2, w ∈ K∞ ∩C1 and V � by (6.60) and (6.63). As before, when μ̃ = μ ◦ α̃−1

2 ,
we have

V̇ (t, x, u) ≤ −p(t)μ̃
(
V (t, x)

)
+ Ω(|u|)

for all t ≥ 0, x ∈ R
n, u ∈ R

m. It follows from Lemma 6.1 and (6.62) that

1 + ξ(t)w′(V (t, x)
) ∈

[
1,

5
4

]
∀t ≥ 0 and x ∈ R

n. (6.66)

Since w = 1
4T μ̃, we deduce from (6.65) that

V̇ � ≤ −p(t)μ̃
(
V (t, x)

)
+ 5

4Ω(|u|)
+Tp(t)w

(
V (t, x)

) −
(∫ t

t−T
p(r) dr

)
w
(
V (t, x)

)

≤ −δw
(
α1(|x|)

)
+ 5

4Ω(|u|).

Since w ◦α1 ∈ C1∩K∞, it follows that V � is the desired strict DIS Lyapunov
function. �

6.6.2 Remarks on Proof of Equivalences

Remark 6.6. The implication 2. ⇒ 6. is standard. It follows, e.g., from [70,
Theorem 4.19, p.176], generalized to allow controls in M(Rm). The converse
6. ⇒ 2. was noted in [39, Theorem 1], and can be deduced from results in
[12]. For details, see Appendix B.2.

Remark 6.7. The proof that 5. ⇔ 6. is the following straightforward conse-
quence of Lemma 6.1. Assuming 6., there are β ∈ KL such that for all t0 ≥ 0,
x0 ∈ R

n, u0 ∈ M(Rm), and h ≥ 0,

|x(t0 + h, t0, x0, u0)| ≤ β
(|x0|, p̄h

)
+ γ

(|u0|[t0,t0+h]

)

≤ β
(|x0|,

∫ t0+h

t0
p(s) ds

)
+ γ

(|u0|[t0,t0+h]

)
.

Therefore, f is ISS(p) so 6. ⇒ 5.. Conversely, if f is ISS(p), then we can find
β ∈ KL such that for all t0 ≥ 0, x0 ∈ R

n, u0 ∈ M(Rm), and h ≥ 0,
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|x(t0 + h, t0, x0, u0)| ≤ β
(
|x0|,

∫ t0+h

t0
p(s) ds

)
+ γ(|u0|[t0,t0+h])

≤ β (|x0|, p̃(h)) + γ(|u0|[t0,t0+h]),

where p̃ is the function defined in Lemma 6.1. By Lemma 6.1, β̂(s, t) .=
β(s, p̃(t)) ∈ KL, so 5. ⇒ 6., as desired.

Remark 6.8. If the functions V , α2, μ, p are sufficiently smooth, then the
particular function α̃2 in (6.60) we have chosen implies that the function
V �(t, x) is also sufficiently smooth.

Remark 6.9. Our proof of 2. ⇒ 4. in Theorem 6.2 shows that if V is a strict
ISS Lyapunov function for f , then V is also a strict DIS Lyapunov function
for f . The preceding implication is no longer true if our growth requirement
(6.53) on f is dropped, as illustrated by the following example from [39].

Take the one-dimensional single input system

ẋ = f(t, x, u) .= −x + (1 + t)q(u− |x|),

where q : R → R is any C1 function for which q(r) ≡ 0 for r ≤ 0 and q(r) > 0
otherwise. Then V (x) = x2 is a strict ISS Lyapunov function for the system
since

|x| ≥ |u| ⇒ V̇ ≤ −x2,

but V does not satisfy the strict DIS condition (6.58) for any choices of μ
and Ω. This contrasts with the time-invariant case where strict ISS Lyapunov
functions are automatically strict DIS Lyapunov functions.

6.7 Input-to-Output Stability

The ISS property estimates the decay of the state in terms of an overshoot
that depends on the essential supremum of the control. However, in many
applications, the current state may be difficult if not impossible to measure.
Instead, only output measurements are available, which gives the standard
model

ẋ = f(t, x, u) , y = H(x) (6.67)

where f is as before and H is locally Lipschitz. We assume for simplicity in
this section that (6.67) is forward complete and of period T > 0 in t.

Several generalizations of ISS for time-invariant systems with outputs are
used [73, 164, 170, 171]. It is natural to generalize the ISS condition by
assuming a decay of the output (instead of the state) with an overshoot
depending as before on the sup norm of the input. This is made precise in
the following definitions, which generalize the corresponding definitions for
time-invariant systems from [171]. In what follows, we set
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y(t0 + h, t0, x0,u) = H
(
x(t0 + h, t0, x0,u)

)

for all t0 ≥ 0, x0 ∈ R
n, u ∈ M(Rm), and h ≥ 0.

Definition 6.4. We say that (6.67) is input-to-output stable (IOS) provided
there exist β ∈ KL and γ ∈ K∞ such that

∣∣y(t0 + h, t0, x0,u)
∣∣ ≤ β (|x0|, h) + γ

(|u|[t0,t0+h]

)

for all t0 ≥ 0, x0 ∈ R
n, u ∈ M(Rm) and h ≥ 0.

The corresponding Lyapunov function notion is as follows:

Definition 6.5. A smooth V : [0,∞) × R
n → [0,∞) is called a (strict) IOS

Lyapunov function for (6.67) provided there exist functions α1, α2, χ ∈ K∞
and κ ∈ KL such that

α1(|H(x)|) ≤ V (t, x) ≤ α2(|x|) (6.68)

and
V (t, x) ≥ χ(|u|) ⇒ V̇ (t, x, u) ≤ −κ

(
V (t, x), |x|) (6.69)

hold for all t ≥ 0, x ∈ R
n, and u ∈ R

m.

For the equivalence of the IOS property to the existence of an IOS Lya-
punov function for time-invariant systems, see [171, Theorem 1.2]. Let sat{q}
denote the usual projection of q ∈ R onto [−1,+1], namely,

sat(r) =
{

r, |r| ≤ 1
sign(r), otherwise.

The following IOS strictification result was announced in [90]:

Theorem 6.3. Let f and H be as above and assume p ∈ P(T, δ, p̄). Let
V : [0,∞) × R

n → [0,∞) be a C1 function that admits α̂1, α̂2, χ̂ ∈ K∞ and
κ̂ ∈ C1 ∩ K∞ such that

α̂1

(|H(x)|) ≤ V (t, x) ≤ α̂2

(|x|) (6.70)

and
V (t, x) ≥ χ̂(|u|) ⇒ V̇ (t, x, u) ≤ −p(t)κ̂

(
V (t, x)

)
(6.71)

for all x ∈ R
n and t ≥ 0. Define w : [0,∞) → [0,∞) by

w(r) =
1

T 2p̄ + 2T

∫ r

0

sat{κ̂′(s)} ds. (6.72)

Then

V �(t, x) = V (t, x) +
[∫ t

t−T

(∫ t

s

p(l)dl
)

ds
]
w
(
V (t, x)

)

is a strict IOS Lyapunov function for (6.67).
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Proof. Defining ξ by (6.64) as before and choosing w from (6.72) again gives
(6.65). Since Tw(r) ≤ 1

2 κ̂(r) and w′(r) ≥ 0 for all r ≥ 0, it follows that if
V (t, x) ≥ χ̂(|u|), then

V̇ �(t, x, u) ≤ p(t)
[−κ̂

(
V (t, x)

)
+ Tw

(
V (t, x)

)]− w(V (t, x))
∫ t
t−T

p(l)dl

≤ − 1
2p(t)κ̂

(
V (t, x)

)− δw
(
V (t, x)

)

≤ −δw
(
V (t, x)

)
.

Recalling Lemma 6.1 and the structure of V �, and noting that w(r) ≤ r
T 2p̄

for all r ≥ 0, it follows that

V (t, x) ≤ V �(t, x) ≤ 3
2
V (t, x) (6.73)

for all t ≥ 0 and x ∈ R
n. Therefore, if V �(t, x) ≥ 3

2 χ̂(|u|), then V (t, x) ≥
χ̂(|u|), so (6.73) gives

V̇ �(t, x, u) ≤ −δw
(
V (t, x)

) ≤ −δw

(
2V �(t, x)

3

)

for all t ≥ 0. Moreover, α̂1(|H(x)|) ≤ V �(t, x) ≤ 3
2 α̂2(|x|) for all t ≥ 0 and

x ∈ R
n, by (6.70) and (6.73). We conclude that V � satisfies the strict IOS

Lyapunov function requirements with

α1 = α̂1, α2 =
3
2
α̂2, χ =

3
2
χ̂ and κ(r, s) .= δ

w(2r/3)
(1 + s)

which proves the theorem. �

6.8 Illustrations

6.8.1 Rotating Rigid Body

We construct a strict ISS Lyapunov function for a tracking problem for a ro-
tating rigid body. Following Lefeber [78, p.31], we only consider the dynamics
of the velocities, which, after a change of feedback gives

⎧
⎨

⎩

ω̇1 = δ1 + u1

ω̇2 = δ2 + u2

ω̇3 = ω1ω2 ,

(6.74)

where δ1 and δ2 are the inputs and u1 and u2 are the disturbances. We
consider the reference state trajectory
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ωr(t) = (ω1r, ω2r, ω3r)(t) = (sin(t), 0, 0) . (6.75)

The substitution
ω̃i(t) = ωi(t) − ωir(t)

transforms (6.74) into the error equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̃ω1 = δ1 + u1 − cos(t)

˙̃ω2 = δ2 + u2

˙̃ω3 = [ω̃1 + sin(t)]ω̃2 .

(6.76)

By applying the backstepping approach as in [65], or through direct cal-
culations, one shows that the time derivative of the class UBPPD function

V (t, ω̃) =
1
2
[
ω̃2

1 + (ω̃2 + sin(t)ω̃3)2 + ω̃2
3

]
(6.77)

with ω̃ = (ω̃1, ω̃2, ω̃3)� along the trajectories of (6.76) in closed-loop with the
control laws

δ1(t, ω̃) = −ω̃1 − ω̃2ω̃3 + cos(t)

δ2(t, ω̃) = −[1 + sin(t)ω̃1 + sin2(t)
]
ω̃2

−(2 sin(t) + cos(t))ω̃3

(6.78)

satisfies

V̇ = −ω̃2
1 − [ω̃2 + sin(t)ω̃3]

2 − sin2(t)ω̃2
3

+ω̃1u1 + [ω̃2 + sin(t)ω̃3]u2

≤ − 1
2 ω̃

2
1 − 1

2 [ω̃2 + sin(t)ω̃3]
2 − sin2(t)ω̃2

3

+ 1
2 (u2

1 + u2
2)

≤ −p(t)μ̃(V (t, ω̃)) + Ω(|u|)

(6.79)

with u = (u1, u2)� ∈ R
2,

p(t) = sin2(t), μ̃(s) = s, and Ω(s) =
1
2
s2.

Therefore, V is a DIS(p) Lyapunov function for (6.76) in closed-loop with
the control laws (6.78). In this case, p ∈ P(π, π/2, 1). Setting

T = π and w(s) =
1

8T
μ̃(s) =

s

8π
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and defining ξ by (6.64), it follows that (6.66) also holds. Therefore, our proof
of Theorem 6.2 shows that

V �(t, ω̃) = V (t, ω̃) +
[∫ t

t−T

(∫ t
s p(r) dr

)
ds
]
w(V (t, ω̃))

=
[
1 + π

32 − 1
32 sin(2t)

]
V (t, ω̃)

is a strict DIS Lyapunov function and also a strict ISS Lyapunov function
for the system (6.76) in closed-loop with the control laws (6.78).

6.8.2 Stabilization of Underactuated Ships

We next consider a control problem arising from the dynamic positioning of a
ship that has no side thruster, but does have two independent main thrusters.
The thrusters are located at a distance from the center line in order to provide
both surge force and yaw moment. We find feedback laws that stabilize both
the position variables and the orientation around a periodic trajectory, using
only the two available controls. We also seek a strict Lyapunov function for
the corresponding closed-loop error dynamics. To keep our illustration simple,
we select a very simple family of reference trajectories.

6.8.2.1 Ship Model

Following [42], the dynamic equations of the ship are
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u̇ = m22
m11

vr − d11
m11

u + 1
m11

τ1

v̇ = −m11
m22

ur − d22
m22

v

ṙ = m11−m22
m33

uv − d33
m33

r + 1
m33

τ3 .

(6.80)

The variables u, v and r are the velocities in surge, sway and yaw respectively.
The constant parameters mii > 0 are given by the ship inertia and added mass
effects, and the parameters dii > 0 are related to the hydrodynamic damping.
The available controls are the surge control force τ1 and the yaw control
moment τ3. However, we have no available control in the sway direction, and
the problem of controlling the ship in three degrees-of-freedom is therefore
an underactuated control problem.

When modeling the ship, the dynamics associated with the motion in
heave, roll, and pitch and terms of second order at the origin in the hy-
drodynamic terms are assumed to be negligible. We also assume that the
inertia and damping matrices are diagonal. This is true for ships having
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port/starboard and fore/aft symmetry. Most ships have port/starboard sym-
metry. Non-symmetric fore/aft of the ship implies that the off diagonal terms
of the inertia matrix are non-zero, i.e., m23 
= 0 and m32 
= 0, as well as
d23 
= 0 and d32 
= 0 in the damping matrix. These off-diagonal terms will be
small compared with the diagonal elements mii and dii for most ships. Non-
symmetric fore/aft will also give some extra cross-terms, due to Coriolis and
centripetal forces. Control design in the general case where the off-diagonal
terms are also taken into account is relatively simple for a fully actuated ship,
while it is still a topic of future research for the underactuated ship.

The kinematics of the ship are described by
⎧
⎪⎨

⎪⎩

ẋ = cos(ψ)u − sin(ψ)v
ẏ = sin(ψ)u + cos(ψ)v
ψ̇ = r

(6.81)

where (x, y) and ψ give the position and orientation of the ship in the earth
fixed frame, respectively. To obtain simpler, polynomial equations, we use
the global coordinate transformation from [132], namely,

z1 = cos(ψ)x + sin(ψ)y
z2 = − sin(ψ)x + cos(ψ)y
z3 = ψ

(6.82)

which yields ⎧
⎨

⎩

ż1 = u + z2r
ż2 = v − z1r
ż3 = r .

(6.83)

To summarize, the overall system is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = u + z2r

ż2 = v − z1r

ż3 = r

u̇ = m22
m11

vr − d11
m11

u + 1
m11

τ1

v̇ = −m11
m22

ur − d22
m22

v

ṙ = m11−m22
m33

uv − d33
m33

r + 1
m33

τ3 .

(6.84)

6.8.2.2 Trajectory Tracking Problem

We solve the problem of tracking the state reference trajectory

(z1p, z2p, z3p, up, vp, rp)(t) =
(
0, 0,−ε sin(t), 0, 0,−ε cos(t)

)
, (6.85)
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where ε is an arbitrary positive real number, and we also find an explicit
global strict Lyapunov function for the corresponding closed-loop system.

We find it convenient to use the change of feedback

τ1 = m11ν1 −m22vr + d11u

τ3 = m33ν2 − (m11 −m22)uv + d33r ,
(6.86)

where ν1 and ν2 are the new inputs. This gives
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = u + z2r

ż2 = v − z1r

ż3 = r

v̇ = −ρ1ur − ρ2v

u̇ = ν1

ṙ = ν2 ,

(6.87)

where
ρ1 =

m11

m22
and ρ2 =

d22

m22
. (6.88)

We also use the more convenient variables

Z2 = z2 + 1
ρ2

v,

Z3 = z3 + ε sin(t), and

ζ = r + ε cos(t),

(6.89)

which give the time-varying system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = u +
[
Z2 − 1

ρ2
v
]
[ζ − ε cos(t)]

Ż2 = −z1[ζ − ε cos(t)] − ρ1
ρ2

u[ζ − ε cos(t)]

Ż3 = ζ

v̇ = −ρ1u[ζ − ε cos(t)] − ρ2v

u̇ = ν1

ζ̇ = ν2 − ε sin(t) .

(6.90)

To summarize, the problem of tracking the reference trajectory (6.85) for
the system (6.84) is equivalent to the problem of globally uniformly asymp-
totically stabilizing the origin of (6.90). We carry out the stabilization and
Lyapunov function construction for (6.90) in five steps, as follows.
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Step 1. A Reduced System

We first consider the problems of (a) globally uniformly asymptotically sta-
bilizing the origin of

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ż1 = uf +
[
Z2 − 1

ρ2
v
]
[ζf − ε cos(t)]

Ż2 = −z1[ζf − ε cos(t)] − ρ1
ρ2

uf [ζf − ε cos(t)]

Ż3 = ζf

v̇ = −ρ1uf [ζf − ε cos(t)] − ρ2v ,

(6.91)

where uf and ζf are new inputs and (b) finding a strict Lyapunov function
for the closed-loop system (6.91). We later use backstepping to handle the
strict Lyapunov function construction for the original dynamics (6.90).

We choose the feedbacks

uf(t, z1, Z2, Z3) = −ρ2

ρ1
z1− ερ2

ρ1
Z2[cos(t)+Z3] and ζf (Z3) = −εZ3 . (6.92)

They result in
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ż1 = − ρ2
ρ1

z1 − ερ2
ρ1

Z2[cos(t) + Z3] − ε
(
Z2 − 1

ρ2
v
)

[cos(t) + Z3]

Ż2 = −ε2Z2[cos(t) + Z3]2

Ż3 = −εZ3

v̇ = −ερ2

[
z1 + εZ2(cos(t) + Z3)

][
cos(t) + Z3

]− ρ2v ,

(6.93)

or equivalently,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ż1 = − ρ2
ρ1

z1 + ε
ρ2

cos(t)v + h1(t, v, Z2, Z3)

v̇ = −ρ2v − ερ2 cos(t)z1 + h2(t, z1, Z2, Z3)

Ż2 = −ε2Z2

[
cos(t) + Z3

]2

Ż3 = −εZ3 ,

(6.94)

where

h1(t, v, Z2, Z3) =
ε

ρ2
vZ3 − ε

(
1 +

ρ2

ρ1

)
Z2

(
cos(t) + Z3

)

h2(t, z1, Z2, Z3) = −ε2ρ2 cos(t)Z2(cos(t) + Z3)

−ερ2

[
z1 + εZ2(cos(t) + Z3)

]
Z3 .

(6.95)
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Step 2. Strict Lyapunov Function (z1, v)-subsystem

For the (z1, v)-subsystem of (6.94) in the absence of h1 and h2, one can easily
check that the positive definite quadratic function

V1(z1, v) =
1
2
[
ρ2
2z

2
1 + v2

]
(6.96)

is a strict Lyapunov function, since along the trajectories of this subsystem,
we have

V̇1 = ρ2
2z1

[
−ρ2

ρ1
z1 +

ε

ρ2
v cos(t)

]
− ρ2v

2 − vερ2z1 cos(t)

= −ρ3
2

ρ1
z2
1 − ρ2v

2 .

(6.97)

Therefore, when h1 and h2 are present, we have

V̇1 = −ρ3
2

ρ1
z2
1 − ρ2v

2 + ρ2
2z1h1(t, v, Z2, Z3) + vh2(t, z1, Z2, Z3) . (6.98)

Using the triangular inequality, we obtain

V̇1 ≤ − ρ3
2

2ρ1
z2
1 − ρ2

2
v2 +

ρ1ρ2

2
h2

1(t, v, Z2, Z3) +
h2

2(t, z1, Z2, Z3)
2ρ2

. (6.99)

We next construct a global strict Lyapunov function for the system (6.94).

Step 3. Strict Lyapunov Function for (Z2, Z3)-subsystem

We first replace V1 with the function

W1(z1, v) = ln
(
V1(z1, v) + 1

)
,

which is a positive definite and radially unbounded function. Its time deriva-
tive along the trajectories of (6.94) satisfies

Ẇ1 ≤ − ρ3
2

2ρ1(V1(z1, v) + 1)
z2
1 − ρ2

2(V1(z1, v) + 1)
v2

+
ρ1ρ2

2
h2

1(t, v, Z2, Z3)
V1(z1, v) + 1

+
1

2ρ2

h2
2(t, z1, Z2, Z3)
V1(z1, v) + 1

.

(6.100)

Since



6.8 Illustrations 167

∣∣h1(t, v, Z2, Z3)
∣∣ ≤ ε

ρ2
|vZ3| + ε

(
1 + ρ2

ρ1

)
|Z2|

(
1 + |Z3|

)
and

∣∣h2(t, z1, Z2, Z3)
∣∣ ≤ ερ2|z1||Z3| + 2ε2ρ2|Z2|

(
1 + |Z3|

)2
(6.101)

hold everywhere, the inequalities

h2
1(t, v, Z2, Z3)
V1(z1, v) + 1

≤ 4
ε2

ρ2
2

Z2
3 + 2ε2

(
1 +

ρ2

ρ1

)2

Z2
2

(
1 + |Z3|

)2 and

h2
2(t, z1, Z2, Z3)
V1(z1, v) + 1

≤ 4ε2Z2
3 + 8ε4ρ2

2Z
2
2

(
1 + |Z3|

)4
,

(6.102)

are satisfied and therefore

Ẇ1 ≤ − ρ3
2

2ρ1(V1(z1, v) + 1)
z2
1 − ρ2

2(V1(z1, v) + 1)
v2 + K1(ε)Z2

3

+K2(ε)Z2
2

(
1 + |Z3|

)4
,

(6.103)

where

K1(ε) = 2ε2 ρ1 + 1
ρ2

and K2(ε) = ε2ρ1ρ2

(
1 + ρ2

ρ1

)2

+ 4ε4ρ2 . (6.104)

This gives

Ẇ1 ≤ − ρ3
2

2ρ1(V1(z1, v) + 1)
z2
1 − ρ2

2(V1(z1, v) + 1)
v2

+2K1(ε)V2(Z2, Z3)

+2K2(ε)V2(Z2, Z3)
(
1 +

√
2V2(Z2, Z3)

)4
,

(6.105)

where
V2(Z2, Z3) =

1
2
[
Z2

2 + Z2
3

]
. (6.106)

We deduce that

Ẇ1 ≤ − ρ3
2

2ρ1(V1(z1, v) + 1)
z2
1 − ρ2

2(V1(z1, v) + 1)
v2

+2K1(ε)V2(Z2, Z3)

+16K2(ε)
[
1 + 4V 2

2 (Z2, Z3)
]
V2(Z2, Z3) .

(6.107)

Next note that V2 as defined in (6.106) is a positive definite quadratic
function. It is also a weak Lyapunov function for the (Z2, Z3)-subsystem



168 6 Strictification: Basic Results

of the system (6.94), because its derivative along the trajectories of (6.94)
satisfies

V̇2 = −ε2Z2
2

[
cos(t) + Z3

]2 − εZ2
3 . (6.108)

We next construct a strict Lyapunov function for the (Z2, Z3)-subsystem of
(6.94) by using V2. To this end, first note that if |Z3| ≥ 1

2 | cos(t)|, then (6.108)
gives

V̇2 ≤ −ε

4
cos2(t) ≤ − ε2

4(1 + ε)
cos2(t)

V2(Z2, Z3)
1 + V2(Z2, Z3)

(6.109)

while if |Z3| ≤ 1
2 | cos(t)|, then

V̇2 ≤ −ε2

4
Z2

2 cos2(t) − εZ2
3

≤ − ε2

4(1 + ε)
cos2(t)

[
Z2

2 + Z2
3

]

≤ − ε2

4(1 + ε)
cos2(t)

V2(Z2, Z3)
1 + V2(Z2, Z3)

.

(6.110)

Therefore, in either case,

V̇2 ≤ − ε2

8(1 + ε)
cos2(t)

V2(Z2, Z3)
0.5[1 + V2(Z2, Z3)]

(6.111)

for all t, Z2, and Z3.
We can now obtain the strict Lyapunov function for the (Z2, Z3)-subsystem

of (6.94) using the construction from Sect. 6.4. In fact, it follows from Remark
6.5 applied with

T = 2π, p(t) = cos2(t), L(v) = 0.5[1 + v], and a =
ε2

8(1 + ε)

that the time derivative of the function

W2(t, Z2, Z3)

= exp
(
ε2(2π+sin(2t))

32(1+ε)

)
exp

(
V2(Z2, Z3)

)
V2(Z2, Z3)

(6.112)

along the trajectories of (6.94) satisfies

Ẇ2 ≤ − ε2

16(1 + ε)
W2(t, Z2, Z3)

≤ − ε2

16(1 + ε)
exp

(
ε2(π − 1)
32(1 + ε)

)
exp

(
V2(Z2, Z3)

)
V2(Z2, Z3)

≤ − ε2

16(1 + ε)
exp

(
ε2(π − 1)
32(1 + ε)

)[
1 + 1

2V
2
2 (Z2, Z3)

]
V2(Z2, Z3) .

(6.113)
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Hence, W2 is a strict Lyapunov function for the (Z2, Z3)-subsystem of (6.94).

Step 4. Full Reduced System

We now show that

W3(t, z1, v, Z2, Z3) = W1(z1, v) + K3(ε)W2(t, Z2, Z3) (6.114)

is a strict Lyapunov function for the system (6.94) when we choose

K3(ε) =
256(1 + ε)[K1(ε) + 9K2(ε)]

ε2
exp

(
−ε2(π − 1)

32(1 + ε)

)
. (6.115)

To this end, first note that we can find functions γs, γl ∈ K∞ such that

γs
(|(z1, v, Z2, Z3)|

) ≤ W3(t, z1, v, Z2, Z3) ≤ γl
(|(z1, v, Z2, Z3)|

)
(6.116)

for all t, z1, v, Z2, and Z3. We deduce from (6.113) and (6.107) that

Ẇ3 ≤ −Ω(z1, v, Z2, Z3) (6.117)

along the trajectories of (6.94) in closed-loop with (6.92), where

Ω(z1, v, Z2, Z3) =
ρ2

2(V1(z1, v) + 1)

[
ρ2
2

ρ1
z2
1 + v2

]
+ 8K2(ε)

[
Z2

2 + Z2
3

]

is a positive definite function.

Step 5. Backstepping

We now use our results for the reduced system to find stabilizing controls
and associated strict Lyapunov functions for the original system (6.90). We
apply the classical backstepping approach. Omitting arguments of some of
the functions, we can rewrite (6.90) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = uf +
[
Z2 − 1

ρ2
v
]
[ζf − ε cos(t)] + R1

Ż2 = −z1[ζf − ε cos(t)] − ρ1
ρ2

uf [ζf − ε cos(t)] + R2

Ż3 = ζf + R3

v̇ = −ρ1uf [ζf − ε cos(t)] − ρ2v + R4

˙̃u = ν1 + R5

˙̃ζ = ν2 + R6 ,

(6.118)
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where
ũ = u− uf (t, z1, Z2, Z3) , ζ̃ = ζ − ζf (Z3), (6.119)

uf and ζf are defined in (6.92), and the functions Ri are defined as follows:

R1(Z2, v, ũ, ζ̃) = ũ +
[
Z2 − 1

ρ2
v
]
ζ̃ ,

R2(t, z1, Z2, Z3, ũ, ζ̃) = −z1ζ̃ − ρ1
ρ2

[ũζ̃ + uf ζ̃ + ũζf − ũε cos(t)] ,

R3(ζ̃) = ζ̃ ,

R4(t, z1, Z2, Z3, ũ, ζ̃) = −ρ1[ũζ̃ + uf ζ̃ + ũζf ] + ε cos(t)ρ1ũ ,

R5(t, z1, Z2, Z3, ũ, ζ̃) = −u̇f , and

R6(t, Z3) = −ε sin(t) − ζ̇f .

(6.120)

It easily follows from (6.117) that the time derivative of

W4(t, z1, v, Z2, Z3, ũ, ζ̃) = W3(t, z1, v, Z2, Z3) +
1
2

[
ũ2 + ζ̃2

]
(6.121)

along the solutions of (6.118) satisfies

Ẇ4 ≤ −Ω(z1, v, Z2, Z3) +
∂W4

∂z1
R1 +

∂W4

∂Z2
R2 +

∂W4

∂Z3
R3

+
∂W4

∂v
R4 + ũ[ν1 + R5] + ζ̃[ν2 + R6] .

(6.122)

Hence, choosing

ν1 = −ũ−R5 − ∂W4

∂z1
+

∂W4

∂Z2

ρ1

ρ2

[
ζf − ε cos(t)

]

+
∂W4

∂v
ρ1[ζf − ε cos(t)] and

ν2 = −ζ̃ −R6 +
∂W4

∂z1

[
−Z2 + 1

ρ2
v
]

+
∂W4

∂Z2

[
z1 +

ρ1

ρ2
(ũ + uf )

]
− ∂W4

∂Z3
+ ρ1

∂W4

∂v

[
ũ + uf

]

(6.123)

gives
Ẇ4 ≤ −Ω

(
z1, v, Z2, Z3, ũ, ζ̃

)
, (6.124)

where

Ω
(
z1, v, Z2, Z3, ũ, ζ̃

)
= Ω(z1, v, Z2, Z3) + ũ2 + ζ̃2 . (6.125)

The function Ω is a positive definite function of (z1, v, Z2, Z3, ũ, ζ̃) and there
are functions αs, αl ∈ K∞ such that
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Fig. 6.1 z1 component of (6.84)

αs

(|(z1, v, Z2, Z3, ũ, ζ̃)|
) ≤ W4(t, z1, v, Z2, Z3, ũ, ζ̃)

≤ αl

(|(z1, v, Z2, Z3, ũ, ζ̃)|
)
.

(6.126)

Therefore W4 is a strict Lyapunov function for the system (6.90). This com-
pletes the construction.

To validate our feedback design, we simulated (6.118) with the preceding
controllers, the model parameters

ρ1 =
m11

m22
= 0.1 and ρ2 =

d22

m22
= 0.5, (6.127)

the choice ε = 0.1, and the initial state (1, 2, 1, 2, 1, 2). In Figs. 6.1-6.3, we
show the corresponding trajectories for z1, z2, and z3, respectively from the
original transformed system (6.84). Our theory says that we should have

lim
t→∞(z1, z2)(t) = (0, 0) and lim

t→∞ |z3(t) + 0.1 sin(t)| = 0.

This is the type of behavior we obtained in our simulations.

6.9 Comments

The idea of transforming non-strict Lyapunov functions into strict ones has
been explored by several other authors. A very different approach to stric-
tifying was pursued by Angeli, Sontag, and Wang in [8]. There it was as-

Component 1
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2

1

0
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Fig. 6.2 z2 component of (6.84)

Fig. 6.3 z3 component of (6.84)

sumed that the given classical system ẋ = f(x, u) was zero-output (smoothly)
dissipative, meaning there exist a smooth, proper, positive definite function
W : R

n → R and σ ∈ K such that ∇W (x)f(x, u) ≤ σ(|u|) for all x ∈ R
n and

u ∈ R
m. Assuming that the system is also 0-GAS, one then obtains a proper

function V0 and k ∈ K such that V
.= k(V0) satisfies an estimate of the form

∇V (x)f(x, u) ≤ −a(|x|) + b(|u|),
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where a is only positive definite and b ∈ K. The desired iISS Lyapunov
function of the original system is then V1

.= W + V . The approach in [8] is
based on abstract optimal control representations of Lyapunov functions, but
it does not provide ISS Lyapunov functions.

Another method for synthesizing strict Lyapunov functions involves the
“change of supply rates” approach [167]. The idea is to consider supply pairs
for time-invariant systems

ẋ = f(x, u). (6.128)

A supply pair for the system (6.128) is a pair (γ, α) of K∞ functions that
admits a storage function V so that

∇V (x)f(x, u) ≤ γ(|u|) − α(|x|)

for all x ∈ R
n and u ∈ R

m. The main result of [167] is the following: If
(γ, α) is a supply pair for (6.128) and α̃ ∈ K∞ is such that α̃(r) = O[α(r)]
as r → 0+, then there is a function γ̃ ∈ K∞ such that (γ̃, α̃) is also a supply
pair for (6.128). As a corollary, we have the following [167]:

Corollary 6.1. Given two ISS time-invariant systems, we can find functions
α̃1, α̃2, γ̃ ∈ K∞ so that (0.5α̃2, α̃1) is a supply pair for the first system and
(γ̃, α̃2) is a supply pair for the second system.

Applying this corollary to ISS systems ż = f(z, u) and ẋ = g(x, u), and
letting V1(z) and V2(x) denote the corresponding storage functions, it readily
follows that the storage function V (x, z) .= V1(z) + V2(x) satisfies

V̇ (x, z, u) ≤ γ̃(|u|) − 1
2
α̃2(|x|) − α̃1(|z|)

along the trajectories of the cascade interconnection
{

ż = f(z, x)
ẋ = g(x, u) . (6.129)

This gives a way of building strict Lyapunov functions for certain systems
of the form (6.129), assuming V1 and V2 are known. See [121] for analo-
gous change of supply results for discrete time systems, and [61] for related
results for time-varying interconnections satisfying appropriate small gain
conditions.

Definition 6.3 is a nonlinear version of the property used in [85] to ensure
UGAS of certain types of time-varying linear systems. Thus, the explicit
construction of a strict DIS Lyapunov function in terms of a given DIS(p)
Lyapunov function we presented extends [85], where only linear systems are
studied and no strict Lyapunov function is constructed. Our proof of Theorem
6.1 closely follows [98].

There is a large literature on controlling rotating rigid bodies. See [33, 117,
118] for the background and motivation for this problem. One motivation is
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that a given attitude for a rigid spacecraft having two controls cannot be
asymptotically stabilized by a pure state feedback, because Brockett’s Neces-
sary Condition does not hold [117]. The paper [118] gave smooth time-varying
feedbacks based on center manifold theory, Lyapunov techniques, and time
averaging, while [30] proved exponential stability based on a periodic switch-
ing between two control laws. Then [117] refined these results to give local
exponential stability based on a cascaded high-gain control result and a single
control expression. The novelty of our treatment of this model is the explicit
construction of a global strict Lyapunov function for the corresponding error
systems.

Our result for rotating rigid bodies is from [91]. Tracking problems for
underactuated ships have been solved in several works (such as [46, 63, 134]).
Also, tracking and practical stability have been proved in [133], which con-
structs a candidate global Lyapunov function for a suitable averaged closed-
loop system. In [112], global uniform asymptotic stability of the origin of the
ship model is achieved; using our strictification technique, strict Lyapunov
functions can be constructed in that case as well. Our backstepping approach
to the ship model is based on ideas from [31].



Chapter 7

Backstepping for Time-Varying
Systems

Abstract Backstepping is one of the most popular frameworks for designing
controllers for nonlinear systems. Its multiple advantages are well-known. It
leads to a wide family of globally asymptotically stabilizing control laws, and
it makes it possible to address robustness issues and solve adaptive control
problems. This chapter begins with a review of classical backstepping for
time-invariant systems. We then give several extensions that lead to time-
varying strict Lyapunov functions and stabilizing feedbacks for time-varying
systems. We first consider a general class of linear time-varying systems.
Then we provide stronger results for linear systems in feedback form. Finally,
we study nonlinear systems in feedback form and give conditions ensuring
globally uniform stabilizability by bounded control laws.

7.1 Motivation: PVTOL

To motivate our results, we first consider the plane with vertical take off
and landing (PVTOL) model; see, e.g., [149, Chap. 6] or Sect. 7.9 for the
literature on the model. In the absence of disturbances, the equations of the
PVTOL model are ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇1 = ξ2

ξ̇2 = −u1 sin(θ)
ż1 = z2

ż2 = u1 cos(θ) − 1
θ̇ = ω

ω̇ = u2 ,

(7.1)

where ξ1 and z1 are the horizontal and vertical positions of the aircraft cen-
ter of mass, respectively; and θ is the roll angle that the aircraft makes with
the horizon. The control inputs u1 and u2 are the thrust (directed out from

175
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the bottom of the aircraft) and the angular acceleration (a.k.a. rolling mo-
ment), respectively. The coefficient −1 in the z2-dynamics is the normalized
gravitational acceleration.

Assume that we wish to track the following admissible trajectory for (7.1):
(
ξ1,r, ξ2,r, z1,r, z2,r, θr, ωr

)
(t) =

(
0, 0, 2 cos(3t),−6 sin(3t), 0, 0

)
. (7.2)

The inputs corresponding to (7.2) are

u1,r(t) = 1 − 18 cos(3t) and u2,r(t) = 0. (7.3)

Using the variables ξ̃i = ξi − ξi,r(t) and z̃i = zi − zi,r(t) for i = 1, 2, θ̃ =
θ − θr(t), and ω̃ = ω − ωr(t), and the change of feedback

ũ1 = u1 − u1,r(t) , ũ2 = u2 − u2,r(t) (7.4)

gives the error dynamics
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃
ξ1 = ξ̃2
˙̃
ξ2 = −[ũ1 + 1 − 18 cos(3t)

]
sin(θ̃)

˙̃z1 = z̃2

˙̃z2 =
[
ũ1 + 1 − 18 cos(3t)

]
cos(θ̃) − 1 + 18 cos(3t)

˙̃θ = ω̃

˙̃ω = ũ2.

(7.5)

We wish to find feedback stabilizers that render (7.5) UGAS to the origin.
To this end, we first consider the auxiliary system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˙̃
ξ1 = ξ̃2
˙̃ξ2 = −[ũ1 + 1 − 18 cos(3t)

]
sin(v2)

˙̃z1 = z̃2

˙̃z2 =
[
ũ1 + 1 − 18 cos(3t)

]
cos(v2) − 1 + 18 cos(3t)

(7.6)

with ũ1 and v2 as inputs. Assume for the moment that we have constructed
two control laws

ũ1s

(
t, ξ̃1, ξ̃2, z̃1, z̃2

)
and v2s

(
t, ξ̃1, ξ̃2, z̃1, z̃2

)

that have period 2π in t and that render the origin of the system (7.6) UGAS.
Then a variant of classical backstepping (which we review in Sect. 7.2.3) gives
a control law μs(t, ξ̃1, ξ̃2, z̃1, z̃2, θ̃) that also has period 2π in t such that
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃
ξ1 = ξ̃2
˙̃ξ2 = −[ũ1s(t, ξ̃1, ξ̃2, z̃1, z̃2) + 1 − 18 cos(3t)

]
sin(θ̃)

˙̃z1 = z̃2

˙̃z2 =
[
ũ1s(t, ξ̃1, ξ̃2, z̃1, z̃2) + 1 − 18 cos(3t)

]
cos(θ̃) − 1 + 18 cos(3t)

˙̃
θ = μs(t, ξ̃1, ξ̃2, z̃1, z̃2, θ̃)

(7.7)

is also UGAS to the origin. Repeating this argument gives a control law

ũ2s

(
t, ξ̃1, ξ̃2, z̃1, z̃2, θ̃, ω̃

)
,

also having period 2π in t, such that the origin of (7.5) in closed-loop with
ũ1s(t, ξ̃1, ξ̃2, z̃1, z̃2) and ũ2s(t, ξ̃1, ξ̃2, z̃1, z̃2, θ̃, ω̃) is UGAS. However, it is by no
means clear how to construct the necessary control laws ũ1s(t, ξ̃1, ξ̃2, z̃1, z̃2)
and v2s(t, ξ̃1, ξ̃2, z̃1, z̃2) to stabilize (7.6). We will return to this example in
Sect. 7.8, where we construct ũ1s and v2s as a special case of a general back-
stepping theory for time-varying systems.

7.2 Classical Backstepping

Backstepping involves constructing stabilizing controllers for nonlinear sys-
tems having a lower triangular structure called feedback form. The backstep-
ping approach is not a single technique, but rather is a collection of techniques
sharing some key ideas. There is a backstepping technique based on cancela-
tion of nonlinearities, and another involving domination of nonlinearities. We
review these two methods next. Throughout the chapter, all inequalities and
equalities should be understood to hold globally unless otherwise indicated,
and we omit the arguments of our functions when they are clear from the
context. Also, we assume that all of the functions encountered are sufficiently
smooth.

7.2.1 Backstepping with Cancelation

We first recall the most important steps of backstepping by applying a basic
version of backstepping with cancelation (which is also called exact backstep-
ping) to the following family of time-invariant systems:

⎧
⎨

⎩
ẋi = xi+1 + fi(x1, x2, ..., xi), 1 ≤ i ≤ n− 1

ẋn = u + fn(x1, x2, ..., xn)
(7.8)
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where each xi ∈ R, u ∈ R is the input, and each function fi is assumed to be
zero at the origin and C1. Systems of the form (7.8) are said to be in strict
feedback form.

The key feature of (7.8) is that each ẋi depends only on x1, x2, ..., xi+1

and is affine in xi+1. The idea behind backstepping is to consider x2 as a
“pseudo-control” (which is also frequently called a “virtual input”) for the
x1-subsystem. Thus, if it were possible to simply replace x2 with −x1−f1(x1),
then the x1-subsystem would become

ẋ1 = −x1 (7.9)

which has the Lyapunov function V1(x1) = 1
2x

2
1. Since x2 cannot be replaced

with −x1 − f1(x1), we instead use the change of coordinates

z1 = x1

z2 = x2 − α1(x1)
(7.10)

where α1(x1) = −x1 − f1(x1). This change of coordinates transforms the
(x1, x2)-subsystem of (7.8) into

{
ż1 = −z1 + z2

ż2 = x3 + f2(z1, z2) ,
(7.11)

where
f2(z1, z2) = f2(x1, x2) − α′

1(x1)[x2 + f1(x1)].

The time derivative of V1(z1) along the trajectories of (7.11) satisfies

V̇1 = −z2
1 + z1z2 . (7.12)

Assume n ≥ 4. The backstepping now proceeds recursively. We view x3 in
(7.11) as a virtual input, and we use the new coordinate z3 = x3 −α2(z1, z2),
where α2(z1, z2) = −z1 − z2 − f2(z1, z2). This gives the system

⎧
⎨

⎩

ż1 = −z1 + z2

ż2 = z3 + α2(z1, z2) + f2(z1, z2) = z3 − z1 − z2

ż3 = x4 + f3(z1, z2, z3),
(7.13)

where

f3(z1, z2, z3) = f3

(
z1, z2 + α1(z1), z3 + α2(z1, z2)

)− α̇2(z1, z2).

The time derivative of

V2(z1, z2) = V1(z1) +
1
2
z2
2 (7.14)

along the solutions of (7.13) satisfies
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V̇2 = −z2
1 + z1z2 + z2(z3 − z1 − z2) = −z2

1 − z2
2 + z2z3. (7.15)

At the i-th step, the last component of the dynamics is

żi = xi+1 + f i(z1, ..., zi) (7.16)

for a suitable function f i, and we introduce the variable

zi+1 = xi+1 − αi(z1, . . . , zi) , (7.17)

where αi(z1, . . . , zi) = −zi−1 − zi − f i(z1, ..., zi) and

Vi(z1, ..., zi) =
1
2

i∑

r=1

z2
r . (7.18)

Then

żi = zi+1 + αi(z1, . . . , zi) + f i(z1, ..., zi) = zi+1 − zi−1 − zi (7.19)

and the time derivative of Vi along trajectories of the (z1, ..., zi)-subsystem
satisfies

V̇i = −
i∑

r=1

z2
r + zizi+1. (7.20)

At the last step, we have

żn = u + fn(z1, ..., zn) . (7.21)

Choosing
u = αn(z1, ..., zn) .= −zn−1 − zn − fn(z1, ..., zn) (7.22)

and

Vn(z1, ..., zn) =
1
2

n∑

r=1

z2
r (7.23)

gives
żn = −zn−1 − zn (7.24)

and

V̇n = −
n∑

r=1

z2
r . (7.25)

Therefore, the system
⎧
⎪⎨

⎪⎩

ż1 = −z1 + z2

żi = zi+1 − zi−1 − zi, i = 2, 3, . . . , n − 1
żn = −zn−1 − zn

(7.26)
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is GAS. From the definition of the functions αj , it follows that (7.8) in closed-
loop with

u(x) = αn

(
ζ1(x), ..., ζn(x)

)
(7.27)

where x = (x1, .., xn) and

ζ1(x) = x1

ζi+1(x) = xi+1 − αi

(
ζ1(x), . . . , ζi(x)

)
, i = 1, 2, . . . , n− 1

(7.28)

is GAS.

7.2.2 Backstepping with Domination

The control law u(x) in (7.27) depends explicitly on the nonlinear functions
fi(x1, x2, ..., xi) because

αi(z1, . . . , zi) = −zi−1 − zi − f i(z1, ..., zi)

for each i. Consequently, when the functions fi are unknown, the technique
does not apply. In [75, pp. 84-85], it is explained how backstepping can be
adapted to the case where the functions fi are replaced by

fi(t, x1, x2, ..., xi, u) = ϕi(x1, ..., xi)�Δ(t, x, u) , (7.29)

where ϕi(x1, ..., xi) is a (p × 1) vector of known smooth nonlinear functions,
and Δ(t, x, u) is a globally bounded (p× 1) smooth vector of uncertain non-
linearities.

We next provide a variant of [75, pp. 84-85] that constructs a state feedback
to prove UGAS of the uncertain system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = x2 + ϕ1(x1)�Δ1(t, x, u)

ẋi = xi+1 + ϕi(x1, ..., xi)�Δi(t, x, u), i = 2, 3, . . . , n − 1

ẋn = u + ϕn(x1, ..., xn)�Δn(t, x, u)

(7.30)

with state space R
n in feedback form. We do not require the functions Δi to

be bounded. Rather, we assume that they satisfy

∣∣Δi(t, x, u)
∣∣ ≤ ΔM

√√√√
i∑

r=1

x2
r for i = 1, 2, . . . , n (7.31)

for some known positive constant ΔM . Let ϕ be an everywhere positive,
increasing function such that
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|ϕi(x1, ..., xi)| ≤ ϕ

⎛

⎝

√√√√
i∑

r=1

x2
r

⎞

⎠ (7.32)

for each i ∈ {1, 2, . . . , n} and x ∈ R
n. Our backstepping involves a change of

variables, followed by the construction of an appropriate set of dominating
functions.

7.2.2.1 Change of Variables

We introduce the notation ξi = (x1, ..., xi) for i = 1, 2, . . . , n. Given arbitrary
positive constants ci and everywhere positive functions κi ∈ Cn, we use the
variables

z1 = x1

zi = xi − αi−1(ξi−1) ∀i ≥ 2 ,
(7.33)

where

α1(ξ1) = −[c1 + κ1(ξ1)
]
z1 and

αi(ξi) = −[ci + κi(ξi)
]
zi − zi−1 +

i−1∑

r=1

∂αi−1

∂xr
(ξi−1)xr+1

(7.34)

for i = 2, . . . , n, and we let u = αn(ξn). We specify the functions κi later.
Elementary calculations yield
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = z2 + α1(x1) + ϕ1(x1)�Δ1(t, x, u)

żi = zi+1 + αi(ξi) + ϕi(ξi)�Δi(t, x, u)

−
i−1∑

r=1

∂αi−1

∂xr
(ξi−1)ẋr, i = 2, 3, . . . , n− 1

żn = αn(ξn) + ϕn(ξn)�Δn(t, x, u) −
n−1∑

r=1

∂αn−1

∂xr
(ξn−1)ẋr ,

(7.35)

or equivalently,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = −[c1 + κ1(x1)
]
z1 + z2 + ϕ1(x1)�Δ1(t, x, u)

żi = −[ci + κi(ξi)
]
zi − zi−1 + zi+1 + ϕi(ξi)�Δi(t, x, u)

−
i−1∑

r=1

∂αi−1

∂xr
(ξi−1)ϕr(ξr)�Δr(t, x, u), i = 2, 3, . . . , n− 1

żn = −[cn + κn(ξn)
]
zn − zn−1 + ϕn(ξn)�Δn(t, x, u)

−
n−1∑

r=1

∂αn−1

∂xr
(ξn−1)ϕr(ξr)�Δr(t, x, u) .

(7.36)
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The time derivative of the function

Vn(z1, ..., zn) =
1
2

n∑

i=1

z2
i (7.37)

along the trajectories of (7.36) is

V̇n = −
n∑

i=1

[
ci + κi(ξi)

]
z2
i + z1ϕ1(x1)�Δ1(t, x, u)

+
n∑

i=2

zi

[
ϕi(ξi)�Δi(t, x, u) −

i−1∑

r=1

∂αi−1

∂xr
(ξi−1)ϕr(ξr)�Δr(t, x, u)

]
.

From (7.31), we deduce that

V̇n ≤ −
n∑

i=1

[
ci + κi(ξi)

]
z2
i + ΔM |z1||ϕ1(x1)||x1|

+
n∑

i=2

|zi|
[
ΔM |ϕi(ξi)||ξi| + ΔM

i−1∑

r=1

∣∣∣∣
∂αi−1

∂xr
(ξi−1)

∣∣∣∣ |ϕr(ξr)||ξr |
]
.

Using the inequality |ξi| ≥ |ξr| for all r ∈ {1, ..., i} and (7.32) gives

V̇n ≤ −
n∑

i=1

[ci + κi(ξi)]z2
i + ΔM

n∑

i=1

|zi||ξi|ϕ(|ξi|)Γi(ξi) , (7.38)

where Γ1(ξ1) = 1 and

Γi(ξi) = 1 +
i−1∑

r=1

∣∣∣∣
∂αi−1

∂xr
(ξi−1)

∣∣∣∣ for i = 2, . . . , n . (7.39)

If the everywhere positive functions κi are such that

n∑

i=1

κi(ξi)z2
i ≥ ΔM

n∑

i=1

|zi||ξi|ϕ(|ξi|)Γi(ξi) , (7.40)

then we obtain the desirable inequality

V̇n ≤ −
n∑

i=1

ciz
2
i (7.41)

which implies the GAS of the system because Vn is a positive definite
quadratic function and the right side of (7.41) is negative definite. It remains
to construct positive functions κi that satisfy (7.40), which we do next.



7.2 Classical Backstepping 183

7.2.2.2 Construction of the Dominating Functions κi’s

We now construct everywhere positive functions κi that satisfy (7.40), by
induction.

Induction Assumption. For each k ∈ {1, ..., n}, there are k functions κi :
R
i → [1,∞) of class Cn such that

k
n

k∑

i=1

κi(ξi)z2
i ≥ ΔM

k∑

i=1

|zi||ξi|ϕ(|ξi|)Γi(ξi). (7.42)

Step 1. The result holds for k = 1 because we can choose an everywhere
positive function κ1 ∈ Cn such that

1
nκ1(z1)z2

1 ≥ ΔMz2
1ϕ(|z1|). (7.43)

Step k + 1. Assume that the induction assumption is satisfied at step k.
Choose an everywhere positive function κk+1 ∈ Cn such that

1
4nκk+1(ξk+1) ≥ 2nΔ2

M

κk+1(ξk+1)
ϕ2(|ξk+1|)Γ 2

k+1(ξk+1) . (7.44)

The induction assumption gives

k + 1
n

k+1∑

i=1

κi(ξi)z2
i =

k

n

k+1∑

i=1

κi(ξi)z2
i +

1
n

k+1∑

i=1

κi(ξi)z2
i

≥ ΔM

k∑

i=1

|zi||ξi|ϕ(|ξi|)Γi(ξi) +
1
n

k+1∑

i=1

κi(ξi)z2
i

= ΔM

k+1∑

i=1

|zi||ξi|ϕ(|ξi|)Γi(ξi)

+
1
n

k+1∑

i=1

κi(ξi)z2
i

−ΔM |zk+1||ξk+1|ϕ(|ξk+1|)Γk+1(ξk+1).

(7.45)

Using the triangular inequality ab ≤ 1
4a

2 + b2 for suitable nonnegative values
a and b, we deduce that

|zk+1||ξk+1|ϕ(|ξk+1|)Γk+1(ξk+1)

≤ κk+1(ξk+1)z2
k+1

4nΔM
+

ΔMn

κk+1(ξk+1)
|ξk+1|2ϕ2

(|ξk+1|
)
Γ 2
k+1(ξk+1)

and therefore
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k+1
n

k+1∑

i=1

κi(ξi)z2
i ≥ ΔM

k+1∑

i=1

|zi||ξi|ϕ
(|ξi|

)
Γi(ξi) +

1
n

k∑

i=1

κi(ξi)z2
i

+ 3
4nκk+1(ξk+1)z2

k+1

− nΔ2
M

κk+1(ξk+1)
|ξk+1|2ϕ2

(|ξk+1|
)
Γ 2
k+1(ξk+1) .

(7.46)

Since xk+1 = zk+1 + αk(ξk) for all k ≥ 1, we get

|ξk+1|2 = |ξk|2 + (zk+1 + αk(ξk))2 ≤ 2z2
k+1 + |ξk|2 + 2α2

k(ξk),

so our choice (7.44) of κk+1 gives

k+1
n

k+1∑

i=1

κi(ξi)z2
i ≥ ΔM

k+1∑

i=1

|zi||ξi|ϕ
(|ξi|

)
Γi(ξi) +

1
n

k∑

i=1

κi(ξi)z2
i

+ 1
2nκk+1(ξk+1)z2

k+1

− 2nΔ2
M (|ξk|2+|αk(ξk)|2)
κk+1(ξk+1)

ϕ2
(|ξk+1|

)
Γ 2
k+1(ξk+1) .

(7.47)

One can easily prove that there is a function �, depending on the functions
κ1,. . . , κk but not on κk+1, such that

|ξk|2 + 2
∣∣αk(ξk)

∣∣2 ≤ �(|ξk|)
k∑

i=1

z2
i , (7.48)

by induction on the components of ξk. Therefore,

nΔ2
M (|ξk|2+2|αk(ξk)|2)

κk+1(ξk+1)
ϕ2
(|ξk+1|

)
Γ 2
k+1(ξk+1)

≤ nΔ2
M �(|ξk|)

∑k
i=1 z

2
i

κk+1(ξk+1) ϕ2
(|ξk+1|

)
Γ 2
k+1(ξk+1) .

(7.49)

Since ϕ and Γk+1 are also independent of κk+1, we can enlarge κk+1 suffi-
ciently so that

2nΔ2
M (|ξk|2+|αk(ξk)|2)
κk+1(ξk+1)

ϕ2
(|ξk+1|

)
Γ 2
k+1(ξk+1) ≤ 1

n

k∑

i=1

κi(ξi)z2
i . (7.50)

Combining this inequality with (7.47), we obtain

k + 1
n

k+1∑

i=1

κi(ξi)z2
i ≥ ΔM

k+1∑

i=1

|zi||ξi|ϕ
(|ξi|

)
Γi(ξi). (7.51)

This concludes the construction of the functions κi, which establishes (7.41).
This proves the domination result.
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7.2.3 Further Extensions

In the system (7.8), each ẋi depends only on x1, x2, ..., xi+1 and is affine in
xi+1. This assumption can be relaxed. For example, we can extend the result
to systems
⎧
⎨

⎩
ẋi = gi(x1, x2, ...xi)hi(xi+1) + fi(x1, x2, ..., xi), 1 ≤ i ≤ n− 1

ẋn = gn(x1, x2, ...xn)hn(u) + fn(x1, x2, ..., xn) ,
(7.52)

where each xi ∈ R, u ∈ R is the input, each function fi is assumed to be zero
at the origin, each function gi is everywhere positive or everywhere negative,
and each real-valued function hi is a diffeomorphism satisfying hi(0) = 0.
The extension proceeds by choosing new coordinates z1, z2, . . . , zn (which are
different from, but analogous to, the ones we chose in Sect. 7.2.1) that give the
system (7.26). In the first step, we take z1 = x1 and z2 = g1(x1)h1(x2)+x1 +
f1(x1) to get ż1 = −z1+z2 and ż2 = M2(z1, z2)h2(x3)+ f̃2(z1, z2) = z3−z1−
z2 for appropriate functions M2 and f̃2 with M2 being nowhere zero, and in
general, żi = Mi(z1, z2, . . . , zi)hi(xi+1) + f̃i(z1, z2, . . . , zi) = zi+1 − zi−1 − zi
for i = 1, 2, . . . , n− 1 for suitable functions Mi and f̃i. We next give another
backstepping result, to help the reader understand later sections.

Consider a nonlinear time-varying system
{

ẋ = fx(t, x, z)
ż = g(t, x, z)h(u) + fz(t, x, z)

(7.53)

that is periodic with a given period T > 0 in t, where x ∈ R
nx , z ∈ R, u ∈ R,

h is a diffeomorphism satisfying h(0) = 0, and the function g is such that
there exists an everywhere positive continuous function γp such that

γp(x, z) ≤ g(t, x, z) (7.54)

for all t, x, and z. We assume that fx, g, h, and fz are C1, and that there
exists a function zs(t, x) that is periodic of period T in t such that zs(t, 0) ≡ 0,
and such that the system

ẋ = fx
(
t, x, zs(t, x)

)
(7.55)

is UGAS to 0. Finally, we assume that a strict Lyapunov function V1 is known
for the closed-loop system (7.55), with V1 having period T in t. This gives
known functions α1, α2 ∈ K∞ and a known positive definite function W1(x)
such that

α1(|x|) ≤ V1(t, x) ≤ α2(|x|) (7.56)

and
∂V1
∂t (t, x) + ∂V1

∂x (t, x)f(x, zs(t, x)) ≤ −W1(x) (7.57)
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for all (t, x) ∈ R × R
n.

Then
V2(t, x, z) = V1(t, x) + 1

2 [z − zs(t, x)]2 (7.58)

admits functions α3, α4 ∈ K∞ such that

α3(|(x, z)|) ≤ V2(t, x, z) ≤ α4(|(x, z)|) (7.59)

for all t ∈ R and all (x, z) ∈ R
n × R. Also, its time derivative along the

trajectories of (7.53) satisfies

V̇2 = ∂V1
∂t (t, x) + ∂V1

∂x (t, x)fx(t, x, z) −M(t, x, z)

+[z − zs(t, x)][g(t, x, z)h(u) + fz(t, x, z)]

= ∂V1
∂t (t, x) + ∂V1

∂x (t, x)fx(t, x, zs(t, x)) −M(t, x, z)

+∂V1
∂x (t, x)

[
fx(t, x, z) − fx(t, x, zs(t, x))

]

+[z − zs(t, x)][g(t, x, z)h(u) + fz(t, x, z)]

= −W1(x) −M(t, x, z)

+[z − zs(t, x)]
[
∂V1
∂x (t, x)F (t, x, z) + g(t, x, z)h(u) + fz(t, x, z)

]

(7.60)

where

F (t, x, z) =
∫ 1

0

∂fx
∂z

(t, x,m(z − zs(t, x)) + zs(t, x))dm

and M(t, x, z) = [z − zs(t, x)]żs(t, x).
Since g is everywhere positive, the control law

us(t, x, z)

= h−1

(
−[z−zs(t,x)]−∂V1

∂x (t,x)F (t,x,z)−fz(t,x,z)+ż(t,x)

g(t,x,z)

) (7.61)

is well defined and yields

V̇2 = −W2(t, x, z) , where W2(t, x, z) = W1(x) + [z − zs(t, x)]2. (7.62)

Since W2 is periodic in t, we can find a positive definite function α such that
W2(t, x, z) ≥ α(|(x, z)|) everywhere, which gives the UGAS for (7.53).

7.3 Backstepping for Nonautonomous Systems

When adapting the backstepping approach to nonlinear time-varying sys-
tems, it is natural to consider the special case
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{
ẋ = F(t, x, z)
ż = p(t)u + h(t, x, z) (7.63)

of (7.53), where x ∈ R
nx , z ∈ R, u ∈ R is the input, p(t) is a bounded

function, and F(t, x, z) and h(t, x, z) satisfy

F(t, 0, 0) = 0 and h(t, 0, 0) = 0

for all t. There are several cases where strict Lyapunov function methods lead
to control laws that render (7.63) UGAS to the origin. We discuss these cases
next.

7.3.1 Chained Form Systems

One motivation for studying (7.63) involves the system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ̇4 = ξ3v1

ξ̇3 = ξ2v1

ξ̇2 = v2

ξ̇1 = v1

(7.64)

in chained form of order 4 with inputs v1 and v2. Assume that we want ξ1 to
asymptotically track the function sin(t) while ξ2, ξ3, and ξ4 converge to zero.
This is the problem of tracking the reference trajectory

(ξ1r, ξ2r, ξ3r , ξ4r)(t) =
(
sin(t), 0, 0, 0

)
.

The time-varying change of variables

x1 = ξ1 − ξ1r(t) (7.65)

and the change of feedback

v1 = cos(t) + u1 (7.66)

result in ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ̇4 = ξ3(cos(t) + u1)
ξ̇3 = ξ2(cos(t) + u1)
ξ̇2 = v2

ẋ1 = u1.

(7.67)

The system (7.67) can be globally uniformly asymptotically stabilized pro-
vided one knows (a) a control v2(t, ξ2, ξ3, ξ4) that is periodic of period 2π in
t that renders



188 7 Backstepping for Time-Varying Systems

⎧
⎪⎨

⎪⎩

ξ̇4 = ξ3 cos(t)
ξ̇3 = ξ2 cos(t)
ξ̇2 = v2

(7.68)

UGAS and (b) a strict Lyapunov function ν1 for the corresponding closed-
loop system that also has period 2π in t.

Indeed, assume that the control law and strict Lyapunov function ν1 are
known. Then, there exists a positive definite function W1(ξ2, ξ3, ξ4) such that
the time derivative of ν1 along the trajectories of (7.68) in closed-loop with
v2s(t, ξ2, ξ3, ξ4) satisfies

ν̇1 ≤ −W1(ξ2, ξ3, ξ4) . (7.69)

Consequently, the time derivative of

ν2(t, x1, ξ2, ξ3, ξ4) = ν1(t, ξ2, ξ3, ξ4) +
1
2
x2

1

along the trajectories of (7.67) in closed-loop with v2s(t, ξ2, ξ3, ξ4) satisfies

ν̇2 ≤ −W1(ξ2, ξ3, ξ4)

+
[
∂ν1
∂ξ4

(t, ξ2, ξ3, ξ4)ξ3 + ∂ν1
∂ξ3

(t, ξ2, ξ3, ξ4)ξ2 + x1

]
u1 .

(7.70)

The choice

u1(t, x1, ξ2, ξ3, ξ4) =

−
[
∂ν1
∂ξ4

(t, ξ2, ξ3, ξ4)ξ3 + ∂ν1
∂ξ3

(t, ξ2, ξ3, ξ4)ξ2 + x1

] (7.71)

results in
ν̇2 ≤ −W2(t, x1, ξ2, ξ3, ξ4) , (7.72)

where

W2(t, x1, ξ2, ξ3, ξ4) =

W1(ξ2, ξ3, ξ4) +
[
∂ν1
∂ξ4

(t, ξ2, ξ3, ξ4)ξ3 + ∂ν1
∂ξ3

(t, ξ2, ξ3, ξ4)ξ2 + x1

]2
.

(7.73)

Using the periodicity of the relevant functions, we can easily prove that W2

is bounded from above and below by positive definite functions of x1, ξ2, ξ3,
and ξ4. It follows that the origin of (7.67) in closed-loop with v2s(t, ξ2, ξ3, ξ4)
and u1(t, x1, ξ2, ξ3, ξ4) defined in (7.71) is UGAS.

Therefore, it suffices to stabilize the system (7.68) and build a correspond-
ing strict Lyapunov function for the closed-loop system. To globally uniformly
asymptotically stabilize (7.68), it suffices to do backstepping for systems of
the form (7.63). Indeed, if we can construct a globally asymptotically stabi-
lizing 2π periodic feedback for the special case
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{
ẋ4 = x3 cos(t)
ẋ3 = U cos(t) (7.74)

of (7.63) with input U , then the argument from Sect. 7.2.3 provides a control
law that renders (7.68) UGAS to the origin.

7.3.2 Feedback Systems

A more general motivation for studying the systems (7.63) arises from sys-
tems in feedback form. Solving local tracking problems for feedback systems
frequently involves designing exponentially stable controllers for linear sys-
tems of the form (7.63). To understand why, consider the simple family of
systems ⎧

⎨

⎩

ξ̇1 = H1(ξ2)
ξ̇2 = H2(ξ3)
ξ̇3 = u ,

(7.75)

where the functions Hi are not necessarily differomorphisms. Dynamics of
the form (7.75) are said to be in feedback form or feedback systems.

Assume that there exists a bounded periodic trajectory (ξ1,r, ξ2,r, ξ3,r)
such that {

ξ̇1,r(t) = H1(ξ2,r(t))
ξ̇2,r(t) = H2(ξ3,r(t) .

(7.76)

Then the dynamics for the error variables

ξ̃j = ξj − ξj,r(t) , j = 1, ..., 3 (7.77)

has the form ⎧
⎪⎨

⎪⎩

˙̃
ξ1 = H1(ξ̃2 + ξ2,r(t)) −H1(ξ2,r(t))
˙̃
ξ2 = H2(ξ̃3 + ξ3,r(t)) −H2(ξ3,r(t))
˙̃
ξ3 = u− ξ̇3,r(t) .

(7.78)

The linear approximation of (7.78) at the origin is

⎧
⎪⎨

⎪⎩

˙̃ξ1 = H′
1(ξ2,r(t))ξ̃2

˙̃ξ2 = H′
2(ξ3,r(t))ξ̃3

˙̃ξ3 = u.

(7.79)

This system can be stabilized if the time-varying chain of integrators
⎧
⎨

⎩
ẋ1 = H′

1(ξ2,r(t))x2

ẋ2 = H′
2(ξ3,r(t))U

(7.80)
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can be globally uniformly asymptotically stabilized, and (7.80) is also of the
form (7.63). In fact, once we can stabilize (7.80), the argument from Sect.
7.2.3 provides a control law that renders the system (7.79) UGAS to the
origin, as well as a strict Lyapunov function for the corresponding closed-
loop dynamics, assuming (7.80) and its stabilizer have the same period.

7.3.3 Feedforward Systems

Another motivation for studying the systems (7.63) arises from feedforward
systems. As in the case of feedback systems, solving tracking problems for
feedforward systems often involves building exponentially stable controllers
for linear systems of the form (7.63). To understand why, consider the Euler-
Lagrange feedforward system

⎧
⎪⎪⎨

⎪⎪⎩

ξ̇1 = ξ2
ξ̇2 = −ξ1 + ε sin(ξ3)
ξ̇3 = ξ4
ξ̇4 = v

(7.81)

with input v. For definiteness, we take ε = 3
4 . This is the so-called transla-

tional oscillator with rotating actuator (TORA) system [56]. One can readily
check that the trajectory

(ξ1,r, ξ2,r, ξ3,r, ξ4,r)(t) =
(

sin
(

t

2

)
,
1
2

cos
(

t

2

)
,
t

2
,
1
2

)
(7.82)

satisfies ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ̇1,r = ξ2,r

ξ̇2,r = −ξ1,r + 3
4 sin(ξ3,r)

ξ̇3,r = ξ4,r

ξ̇4,r = 0.

(7.83)

Therefore, (7.82) is an admissible trajectory of (7.81). The dynamics for the
error variables ξ̃j = ξj − ξj,r(t) for j = 1, ..., 4 has the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˙̃
ξ1 = ξ̃2
˙̃
ξ2 = −ξ̃1 + 3

4

[
sin(ξ̃3 + ξ3,r(t)) − sin(ξ3,r(t))

]

˙̃
ξ3 = ξ̃4
˙̃ξ4 = v.

(7.84)
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To construct locally uniformly exponentially stabilizing control laws for
the system (7.84), we consider its linear approximation

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˙̃
ξ1 = ξ̃2
˙̃
ξ2 = −ξ̃1 + 3

4 cos
(
ξ3,r(t)

)
ξ̃3

˙̃ξ3 = ξ̃4
˙̃
ξ4 = v

(7.85)

near the origin. Applying the backstepping approach to stabilize this system
involves several steps. In the first step, we find a control law

ξ̃2s(t, ξ̃1)

such that
˙̃ξ1 = ξ̃2s(t, ξ̃1)

is UGAS. We then seek a stabilizing controller for the (ξ̃1, ξ̃2)-subsystem with
ξ̃3 as the fictitious input. Clearly, these two steps are equivalent to considering

{
ẋ1 = x2

ẋ2 = −x1 + 3
4 cos(ξ3,r(t))u = −x1 + 3

4 cos
(
t
2

)
u ,

(7.86)

which again has the structure of (7.63).

7.3.4 Other Important Cases

If the continuous function p(t) in (7.63) is bounded from below by a pos-
itive constant (or bounded from above by a negative constant), then state
feedbacks for (7.63) can be designed by combining the Lyapunov results of
[180, 181, 182]. However, if p(t) is neither everywhere positive nor everywhere
negative, and therefore can take the value 0 (which is the case for the systems
(7.74) and (7.86)), then constructing globally uniformly asymptotically sta-
bilizing feedbacks for systems (7.63) is much more difficult. In this situation,
neither the cancelation method nor the domination method applies, because
when p(t) = 0, the term p(t)u = 0 can neither cancel nor dominate a term
different from 0.

We study two cases where this obstacle can be overcome. The first case
involves time-varying linear systems where p(t) is periodic and takes the
value 0 at discrete instants. We then study nonlinear systems (7.63) whose
x-subsystem with z regarded as a control can be stabilized by a virtual con-
trol having the form zs(t, x) = p2(t)μs(t, x), and whose term h(t, x, z) is of
the form p(t)b(t, x, z). Here both μs and b are C1. We then show how in
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some cases, bounded control laws can be constructed through a variant of the
technique.

7.4 Linear Time-Varying Systems

Consider the linear time-varying system

Ẋ = A(t)X + p(t)Bu + λ(t) , (7.87)

where u ∈ R, X ∈ R
n, A : R → R

n×n is continuous and bounded, B ∈ R
n

is constant, λ : R → R
n is a continuous disturbance, and p : R → R is a

periodic function.
Later, we consider the subfamily of (7.87) consisting of systems
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = a1,1(t)x1 + p1(t)x2 + λ1(t)

ẋ2 = a2,1(t)x1 + a2,2(t)x2 + p2(t)x3 + λ2(t)
...

ẋn = an,1(t)x1 + an,2(t)x2 + ... + an,n(t)xn + pn(t)u + λn(t)

(7.88)

in feedback form, where xi ∈ R, u ∈ R is the input, and the functions λi :
R → R are continuous. Our conditions will ensure that we can construct linear
time-varying feedbacks that render (7.88) ISS with respect to the disturbances
λi.

Assumption and Technical Lemmas

Consider a function p : R → R that satisfies:

Assumption 7.1 The function p is continuous and periodic of some period
Tp > 0. The set H = {t ∈ [0, Tp] : p(t) = 0} is finite and nonempty.

Let the elements of H be denoted by 0 ≤ t1 < ... < tk ≤ Tp. We use the
positive constant

dm =
1
4

min{t2 − t1, ..., tk − tk−1} (7.89)

and the sets

Ed = ∪k
j=1[tj − d, tj + d] ∩ [0, Tp] and Fd = [0, Tp] \ Ed , (7.90)

where d ∈ (0, dm] is a given constant. The next lemma follows because p2(t)
is continuous and positive at each point of the compact set Fd:
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Lemma 7.1. Consider a function p : R → R that satisfies Assumption 7.1.
Let d ∈ (0, dm] be any constant. Then

Cd = min
s∈Fd

p2(s) (7.91)

is a positive real number.

Lemma 7.2. We have

lim
δ→0+

∫ Tp

0

δ

p2(a) + δ
da = 0 (7.92)

for any function p : R → R that satisfies Assumption 7.1.

Proof. Fix any constants ε > 0 and

d ∈
(

0,min
{
dm,

ε

4k

}]
,

where dm is defined in (7.89). Then

∫ Tp

0

δ

p2(a) + δ
da =

∫

Ed

δ

p2(a) + δ
da +

∫

Fd

δ

p2(a) + δ
da

≤ 2kd +
∫

Fd

δ

p2(a) + δ
da

≤ ε
2 + Tp

δ
Cd

,

(7.93)

where the last inequality used the facts that

d ∈
(
0,

ε

4k

]
and p2(a) ≥ Cd

when a ∈ Fd. Therefore,

∫ Tp

0

δ

p2(a) + δ
da ≤ ε ∀δ ∈

(
0, εCd

2Tp

]
(7.94)

which proves the lemma. �

7.4.1 General Result for Linear Time-Varying Systems

Assumptions

Assume that the linear time-varying system (7.87) is such that Assumption
7.1 and the following are both satisfied:



194 7 Backstepping for Time-Varying Systems

Assumption 7.2 There are known positive constants ci and L and C∞ func-
tions L1 : R → R

n, L2 : R → R
n, and Q : R → R

n×n such that Q(t) is
symmetric for all t ∈ R; the function

Q(t,X) = X�Q(t)X (7.95)

is such that
c1|X |2 ≤ Q̄(t,X) ≤ c2|X |2 ∀X ∈ R

n (7.96)

and
|L1(t)| ≤ L and |L2(t)| ≤ c4 (7.97)

hold for all t ∈ R; and the time derivative of Q(t,X) along the trajectories of

Ẋ = A(t)X + Bv + λ(t) (7.98)

in closed-loop with

v = L(t) ·X, where L(t) = L1(t) + p(t)L2(t) (7.99)

satisfies
Q̇ ≤ −c3Q(t,X) + |λ(t)|2 . (7.100)

Remark 7.1. A simple application of the triangle inequality shows that if
Q̄(t, x) takes the form (7.95) for some everywhere symmetric matrix Q(t),
and if there are positive constants ci satisfying (7.96) for all t ∈ R and

˙̄Q ≤ −c3Q̄(t,X)

along all trajectories of Ẋ = A(t)X +Bv in closed-loop with (7.99), then the
time derivative of

Q̄c
.= εQ̄, where ε = c1c3

2c22

along trajectories of (7.98) in closed-loop with the controller (7.99) satisfies

˙̄Qc ≤ −c3
2
Q̄c + |λ|2

for all disturbances λ. To see why, first notice that condition (7.96) gives
spectrum{Q(t)} ⊆ [c1, c2] for all t ∈ R and therefore X�Q(t)Q(t)X ≤
c22Q̄(t,X)/c1 everywhere. Therefore, along the closed-loop trajectories of
(7.98), the triangle inequality gives

˙̄Qc ≤ ε
[−c3Q̄(t,X) + 2X�Q(t)λ(t)

]

≤ ε
[−c3Q̄(t,X) + 2

{
ε
2X

�Q(t)Q(t)X + 1
2ε |λ(t)|2}]

≤ − c3
2 Q̄c(t,X) + |λ(t)|2.

(7.101)

Therefore, by scaling Q̄ and c3, we can take λ ≡ 0 in Assumption 7.2.
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We also assume the following:

Assumption 7.3 The function p(t) in the system (7.87) is C∞ and satisfies
Assumption 7.1.

Statement of Theorem

Theorem 7.1. Assume that the system (7.87) satisfies Assumptions 7.2 and
7.3. Then there exists a constant δ > 0 such that the time derivative of

Q̂(t,X) = eR(t)Q(t,X), where

R(t) = − 1
Tp

∫ t

t−Tp

(∫ t

�

2δ2|B|2L2

c1(p2(a) + δ)2
da
)

d 
(7.102)

along the trajectories of (7.87) in closed-loop with

u(t,X) =
p(t)

p2(t) + δ
L1(t) ·X + L2(t) ·X (7.103)

satisfies
˙̂
Q ≤ −4c3

5
Q̂(t,X) + 2|λ(t)|2. (7.104)

Moreover,

c1exp

(
− 2|B|2L2

c1

∫ t

t−Tp

δ2

[p2(a) + δ]2
da

)
|X |2 ≤ Q̂(t,X) ≤ c2|X |2 (7.105)

for all t ∈ R and X ∈ R
n.

Discussion on Theorem 7.1

Remark 7.2. Assumption 7.2 is satisfied if the pair (A(t), B) is stabilizable by
a feedback K(t)X that is C∞ and uniformly bounded with respect to time,
assuming A and K have the same period. Therefore, this assumption is not
restrictive.

Remark 7.3. We will see in the proof of Theorem 7.1 that (7.104) is satisfied
provided δ satisfies

∫ Tp

0

δ2

(p2(a) + δ)2
da ≤ c1c3Tp

10|B|2L2
. (7.106)

The proof of Lemma 7.2 shows that (7.106) is satisfied provided
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0 < δ ≤ c1c3Cd

20|B|2L2
, (7.107)

where

d = min
{

c3c1Tp
40k|B|2L2

, dm

}
, (7.108)

dm is defined in (7.89), and Cd is defined in (7.91). However, in general, much
larger values for δ can be found, which is important from a practical point of
view if very large controls cannot be used.

For instance, consider the case where p(t) = cos(t) and Tp = 2π. Then,
Appendix A.5 gives

∫ Tp

0

δ2

(p2(a) + δ)2
da =

∫ 2π

0

δ2

(cos2(a) + δ)2
da

= 4δ2

∫ π
2

0

1
(cos2(a) + δ)2

da

≤ π
√

δ(1 + 3δ)
(1 + δ)3/2

.

(7.109)

Hence, (7.106) is satisfied when

δ ≤ δA =
c21c

2
3

225|B|4L4
. (7.110)

On the other hand, we can easily show that dm = π
4 and Cd = sin2(d). By

reducing c1, we can assume that

πc3c1
20k|B|2L2

≤ π

4
= dm . (7.111)

Assuming (7.111), the formula (7.108) for d gives

Cd = sin2(d) = sin2

(
c3c1Tp

40k|B|2L2

)
,

and therefore (7.107) gives

0 < δ ≤ δB =
c1c3

20|B|2L2
sin2

(
πc3c1

20k|B|2L2

)
. (7.112)

Frequently, we have √
c1c3

|B|L ≤ 1,

in which case δA can be significantly larger than δB.
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Remark 7.4. When Assumption 7.2 is satisfied, the decomposition of L(t) in
(7.99) as the sum of a function L1(t) and a function p(t)L2(t) is not unique.
For instance, if L(t) = L1(t) + p(t)L2(t), then we also have

L(t) = L̃1(t) + p(t)L̃2(t),

where L̃1(t) = L1(t) + 5p(t) and L̃2(t) = L2(t) − 5. In particular, the trivial
decomposition L(t) = L1(t) + p(t)L2(t) with L2(t) = 0 and L1(t) = L(t)
is always possible. The flexibility in the choices of L1(t) and L2(t) allows
different possible choices of the feedback (7.103).

Remark 7.5. If the function p(t) satisfies a PE property of the type

∫ Tp

0

p2(a)da > 0 (7.113)

but violates Assumption 7.1, then there might not exist a constant δ > 0
such that (7.106) holds. Therefore, Assumption 7.3 cannot be replaced by
the less restrictive assumption that p(t) is a C∞ function satisfying the PE
property (7.113).

Proof of Theorem 7.1

To simplify the proof, we let L(t) = L1(t) and L2(t) = 0. The case where
L2 
= 0 can be easily handled by performing the preliminary change of control
u = u1 +L2(t) and replacing A(t) with A(t)+Bp(t)L�

2 (t). The system (7.87)
in closed-loop with (7.103) is

Ẋ = A(t)X + B p2(t)
p2(t)+δL(t) ·X + λ(t)

= [A(t) + BL�(t)]X −B
δ

p2(t) + δ
L(t) ·X + λ(t) .

(7.114)

From (7.100) in Assumption 7.2, we immediately deduce that the time
derivative of Q along the trajectories of the system (7.87) in closed-loop with
(7.103) satisfies

Q̇ ≤ −c3Q(t,X) +
∣∣∣∣−B

δ

p2(t) + δ
L(t) ·X + λ(t)

∣∣∣∣
2

≤ −c3Q(t,X) +
2δ2

(p2(t) + δ)2
|B|2L2|X |2 + 2|λ(t)|2 ,

(7.115)

where L is the constant from Assumption 7.2. It follows from (7.96) in As-
sumption 7.2 that
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Q̇ ≤ −c3Q(t,X) +
2δ2|B|2L2

(p2(t) + δ)2
Q(t,X)

c1
+ 2|λ(t)|2 . (7.116)

On the other hand, the time derivative of the function Q̂ defined in (7.102)
along the trajectories of the system (7.87), in closed-loop with (7.103), satis-
fies

˙̂
Q(t,X) = eR(t)

[
Q̇(t,X) + Q(t,X)Ṙ(t)

]
. (7.117)

Moreover,

Ṙ(t) = − 2δ2|B|2L2

c1(p2(t) + δ)2
+

1
Tp

∫ t

t−Tp

2δ2|B|2L2

c1(p2(a) + δ)2
da. (7.118)

Combining (7.116)-(7.118) yields

˙̂
Q(t,X) ≤ eR(t)

[
− c3Q(t,X) + 2|λ(t)|2

+Q(t,X)

(
1
Tp

∫ t

t−Tp

2δ2|B|2L2

c1(p2(a) + δ)2
da

)]

= eR(t)Q(t,X)

[
−c3 +

2|B|2L2

c1Tp

∫ t

t−Tp

δ2

(p2(a) + δ)2
da

]

+2eR(t)|λ(t)|2 .

(7.119)

Using the definition of Q̂ and the non-positivity of R, we get

˙̂
Q(t,X) ≤ Q̂(t,X)

[
−c3 +

2|B|2L2

c1Tp

∫ Tp

0

δ2

(p2(a) + δ)2
da

]

+2|λ(t)|2 .

(7.120)

Using Lemma 7.2 and the inequality

∫ Tp

0

δ2

(p2(a) + δ)2
da ≤

∫ Tp

0

δ

p2(a) + δ
da,

we can choose δ > 0 so that

2|B|2L2

c1Tp

∫ Tp

0

δ2

(p2(a) + δ)2
da ≤ 1

5
c3 . (7.121)

This choice yields

˙̂
Q(t,X) ≤ −4c3

5
Q̂(t,X) + 2|λ(t)|2 . (7.122)
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Finally, one can easily prove (7.105). This proves the theorem. �

Remark 7.6. A more restrictive condition on δ than the one in (7.107) guar-
antees that the time derivative of the storage function

Q̃(t,X) =

[
1 − 1

Tp

∫ t

t−Tp

∫ t

�

2δ2|B|2L2

c1(p2(a) + δ)2
da d 

]
Q(t,X) (7.123)

along the trajectories of (7.87) in closed-loop with (7.103) satisfies

˙̃Q ≤ −cQ̃ + c̄|λ|2 (7.124)

for suitable positive constants c and c̄. The proof of (7.124) combines the
arguments from (7.114)-(7.116) with the formula

d

dt

∫ t

t−Tp

∫ t

�

M(a) da d = TpM(t) −
∫ t

t−Tp

M( )d ,

which is valid for any continuous scalar function M. In some cases, it may
be more convenient to use the Lyapunov function (7.123) instead of (7.102).

7.4.2 Linear Time-Varying Systems in Feedback Form

Notation and Assumptions

We consider the linear time-varying systems (7.88), with the following nota-
tion. Let Λj = (λ1, . . . , λj)� ∈ R

j and Λ = Λn ∈ R
n. Let ξj = (x1, . . . , xj)� ∈

R
j and x = ξn = (x1, . . . , xn)� ∈ R

n. Consider the systems
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = a1,1(t)x1 + p1(t)x2 + λ1(t)
ẋ2 = a2,1(t)x1 + a2,2(t)x2 + p2(t)x3 + λ2(t)

...
ẋj = aj,1(t)x1 + aj,2(t)x2 + ... + aj,j(t)xj + pj(t)xj+1 + λj(t)

(7.125)

for j = 1 to n − 1, which we denote in compact form by

ξ̇j = Aj(t)ξj+1 + Λj(t) . (7.126)

We introduce two assumptions:

Assumption 7.4 Each function ai,j(t) is C∞ and periodic.

Assumption 7.5 Each function pi(t) is C∞ and satisfies Assumption 7.1.

We use Tpi > 0 to denote the period of pi(t) for each i.
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Statement of Main Result

Our main result for (7.88) is as follows:

Theorem 7.2. Assume that (7.88) satisfies Assumptions 7.4-7.5. Then one
can construct n time periodic C∞ functions gi(t), a time periodic everywhere
symmetric C∞ matrix H(t), and constants hi > 0 such that

h1In ≤ H(t) ≤ h2In ∀t ∈ R , (7.127)

and such that the time derivative of the function

V(t, x) = x�H(t)x (7.128)

along the trajectories of the system (7.88) in closed-loop with the feedback

u(t, x) = g1(t)x1 + ... + gn(t)xn (7.129)

satisfies
V̇(t, x) ≤ −V(t, x) + 2|Λ(t)|2 . (7.130)

Remark 7.7. An immediate consequence of (7.130) is that the system (7.88)
in closed-loop with the feedback (7.129) is globally ISS with respect to Λ.
Moreover, the explicit formula for V yields the explicit ISS estimate

|x(t)| ≤
√

h2

h1
e−0.5(t+t0)|x(t0)| + 2|Λ|∞√

h1

(7.131)

for all t ≥ t0 ≥ 0 along the closed-loop trajectories.

Proof of Theorem 7.2

The proof proceeds by induction. We define the step j subsystems by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ̇j−1 = Aj−1(t)ξj + Λj−1(t)

ẋj =
j∑

r=1

aj,r(t)xr + pj(t)wj + λj(t)
(7.132)

if j > 1 and
ẋ1 = a1,1(t)x1 + p1(t)w1 + λ1(t) (7.133)

if j = 1.
Induction Hypothesis. There are j time periodic C∞ functions gi,j(t), a

time periodic everywhere symmetric C∞ matrix Hj(t), and positive real num-
bers h1,j and h2,j such that h1,jIj ≤ Hj(t) ≤ h2,jIj for all t ∈ R for which
the following holds: The time derivative of
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Q̂j(t, ξj) = ξ�j Hj(t)ξj (7.134)

along the trajectories of the step j subsystem in closed-loop with the feedback

wj(t, ξj)
.= g1,j(t)x1 + ... + gj,j(t)xj (7.135)

satisfies
˙̂
Qj(t, ξj) ≤ −5n−j

4n−j
Q̂j(t, ξj) + 2|Λj(t)|2 . (7.136)

Step 1. To show that the induction assumption is satisfied for j = 1,
consider the one-dimensional system

ẋ1 = a1,1(t)x1 + v + λ1(t) (7.137)

with v as the input. Let Q1(t, x1) = 1
2x

2
1 and

v(t, ξ1) = −
[
a1,1(t) +

(
5
4

)n]
x1 . (7.138)

The system (7.137) in closed-loop with (7.138) is

ẋ1(t) = −
(

5
4

)n

x1 + λ1(t). (7.139)

Along the trajectories of (7.139), the time derivative of Q1(t, x1) satisfies

Q̇1(t, x1) = − ( 5
4

)n
x2

1 + λ1(t)x1

= − ( 5
4

)n
x2

1 +
{
λ1(t)

(
4
5

)n/2}{( 5
4

)n/2
x1

}

≤ − ( 5
4

)n
Q1(t, x1) + λ2

1(t) ,

(7.140)

by the triangle inequality c1c2 ≤ 1
2c

2
1 + 1

2c
2
2 applied to the terms in braces.

We deduce that the system (7.133) satisfies Assumption 7.2 with c1 =
c2 = 1

2 , c3 = (5/4)n, L1(t)x = v(t, ξ1) as defined in (7.138), and L2 ≡ 0.
Moreover, Assumption 7.5 ensures that the function p1(t) satisfies Assump-
tion 7.3. Hence, Theorem 7.1 provides a constant δ1 > 0 such that the time
derivative of

Q̂1(t, ξ1) = eR1(t)x2
1 (7.141)

with

R1(t) = − 1
Tp1

∫ t

t−Tp1

(∫ t

�

4δ2
1L2

1

(p1(a)2 + δ1)2
da
)

d (7.142)

and L1 = supt{|a1,1(t) + (5/4)n|} along the trajectories of

ẋ1 = a1,1(t)x1 + p1(t)w1(t, ξ1) + λ1(t) (7.143)
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with

w1(t, ξ1) = g1,1(t)x1 and g1,1(t) = −p1(t)
a1,1(t) +

(
5
4

)n

p2
1(t) + δ1

(7.144)

satisfies
˙̂
Q1(t, ξ1) ≤ − (5

4

)n−1
Q̂1(t, ξ1) + 2λ2

1(t) . (7.145)

Therefore the induction assumption is satisfied at the first step.
Inductive Step. We assume that the induction assumption is satisfied at

some step j ∈ [1, n − 1]. Let us prove that it is satisfied at the step j + 1.
Consider the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ̇j = Aj(t)ξj+1 + Λj(t)

ẋj+1 =
j+1∑

r=1

aj+1,r(t)xr + v + λj+1(t) ,
(7.146)

where v is the input. We can determine a globally asymptotically stabilizing
feedback for (7.146) using the following classical backstepping approach. Let
wj(t, ξj) be the feedback provided by the induction assumption. The change
of coordinates ψ = xj+1 − wj(t, ξj) gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = a1,1(t)x1 + p1(t)x2 + λ1(t)

ẋ2 = a2,1(t)x1 + a2,2(t)x2 + p2(t)x3 + λ2(t)
...

ẋj =
j∑

r=1

aj,r(t)xr + pj(t)[ψ + wj(t, ξj)] + λj(t)

ψ̇ =
j+1∑

r=1

aj+1,r(t)xr + v + λj+1(t) − ẇj .

(7.147)

Therefore, the ψ-subsystem becomes

ψ̇ =
j+1∑

r=1

aj+1,r(t)xr + v + λj+1(t) −
j∑

�=1

ġ�,j(t)x�

−
j∑

�=1

g�,j(t)

(
�∑

r=1

a�,r(t)xr + p�(t)x�+1 + λ�(t)

)

=
j+1∑

r=1

br(t)xr + v + λj+1(t) −
j∑

�=1

g�,j(t)λ�(t)

(7.148)

where
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br(t) = aj+1,r(t) − ġr,j(t) −
j∑

�=r

g�,j(t)a�,r(t)

−pr−1(t)gr−1,j(t)

(7.149)

for r = 2, 3, . . . , j and

br(t) =

⎧
⎨

⎩
aj+1,1(t) − ġ1,j(t) −

∑j
�=1 g�,j(t)a�,1(t), r = 1

aj+1,j+1(t) − pj(t)gj,j(t), r = j + 1 .
(7.150)

Let Q̂j be the function provided by the induction assumption. Then the time
derivative of

Wj+1(t, ξj , ψ) .= Q̂j(t, ξj) +
1
2
ψ2 (7.151)

along the trajectories of (7.147) satisfies

Ẇj+1 ≤ −
(

5
4

)n−j

Q̂j(t, ξj) + 2|Λj(t)|2 +
∂Q̂j

∂xj
(t, ξj)pj(t)ψ

+ψ

[
j+1∑

r=1

br(t)xr + v + λj+1(t) −
j∑

�=1

g�,j(t)λ�(t)

]
.

(7.152)

Choosing

v(t, ξj , ψ) = −
[
2 +

(
5
4

)n−j
]
ψ − ∂Q̂j

∂xj
(t, ξj)pj(t) −

j+1∑

r=1

br(t)xr (7.153)

we obtain

Ẇj+1 ≤ −
(

5
4

)n−j

Q̂j(t, ξj) + 2|Λj(t)|2 −
[
2 +

(
5
4

)n−j
]
ψ2

+ψ

(
λj+1(t) −

j∑

�=1

g�,j(t)λ�(t)

)
.

(7.154)

From the triangular inequality c1c2 ≤ c21 + 1
4c

2
2, we deduce that

Ẇj+1 ≤ − (5
4

)n−j
Q̂j(t, ξj) + 2|Λj(t)|2 −

[
1 +

(
5
4

)n−j
]
ψ2

+ 1
4

(
λj+1(t) −

j∑

m=1

gm,j(t)λm(t)

)2

.
(7.155)

We easily deduce that

Ẇj+1 ≤ − (5
4

)n−j
Wj+1(t, ξj , ψ) + κj+1|Λj+1(t)|2 , (7.156)
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where

κj+1 = 2 + sup
t

(
1 +

j∑

m=1

|gm,j(t)|
)2

. (7.157)

Therefore, the function

Qj+1(t, ξj+1) = Wj+1(t,ξj ,ψ)
1+κj+1

(7.158)

satisfies
Q̇j+1 ≤ − (5

4

)n−j
Qj+1(t, ξj+1) + |Λj+1(t)|2 (7.159)

along the trajectories of (7.146).
Moreover, there exist positive constants γ1 and γ2 and a function Γ : R →

R
(j+1)×(j+1) such that

Qj+1(t, ξj+1) = ξ�j+1Γ (t)ξj+1 and γ1|ξj+1|2 ≤ Qj+1(t, ξj+1) ≤ γ2|ξj+1|2.

The existence of γ1 follows from the periodicity of the functions gi,j(t). We
deduce that the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ̇j = Aj(t)ξj+1 + Λj(t)

ẋj+1 =
j+1∑

r=1

aj+1,r(t)xr + pj+1(t)w + λj+1(t)
(7.160)

satisfies Assumption 7.2 with L2 = 0, and pj+1(t) satisfies Assumption 7.3.
Therefore, Theorem 7.1 applies to the system (7.160). It follows that we

can find a constant δj+1 > 0 such that if we set

Q̂j+1(t, ξj+1)
.= eRj+1(t)Qj+1(t, ξj+1), (7.161)

where

Rj+1(t) = − 1
Tpj+1

∫ t

t−Tpj+1

(∫ t

�

2L2
j+1δ

2
j+1

γ1(pj+1(a)2 + δj+1)2
da

)
d (7.162)

and

Lj+1 = 2 max
t

{
j+1∑

r=1

b2r(t) +
j∑

r=1

8p2
j(t)(Hj)2j,r(t)

2

[
2 +

(
5
4

)n−j
]2 j∑

r=1

(
g2
r,j + 1

)
⎫
⎬

⎭ ,

(7.163)

then the time derivative of Q̂j+1(t, ξj+1) along the trajectories of the system
(7.160) in closed-loop with



7.4 Linear Time-Varying Systems 205

wj+1(t, ξj+1) = g1,j+1(t)x1 + ... + gj+1,j+1(t)xj+1

= − pj+1(t)
p2
j+1(t) + δj+1

[(
2 +

(
5
4

)n−j
)

ψ

+
∂Q̂j

∂xj
(t, ξj)pj(t) +

j+1∑

r=1

br(t)xr

]
(7.164)

satisfies

˙̂
Qj+1 ≤ −

(
5
4

)n−j−1

Q̂j+1(t, ξj+1) + 2|Λj+1(t)|2 . (7.165)

One can easily prove that there exist a function Hj+1(t) and positive con-
stants h1,j+1 and h2,j+1 such that

Q̂j+1(t, ξj+1) = ξ�j+1Hj+1(t)ξj+1 and

h1,j+1Ij+1 ≤ Hj+1(t) ≤ h2,j+1Ij+1 ∀t ∈ R .
(7.166)

Hence, the induction assumption is satisfied at the step j + 1. We conclude
by choosing V(t, x) = Q̂n(t, x).

7.4.3 Illustration: Linear System with PE Coefficients

We use Theorem 7.2 to construct a stabilizing controller and a corresponding
strict Lyapunov function for

⎧
⎨

⎩
ẋ1 = p(t)x2 + λ1(t)

ẋ2 = p(t)u + 1
2x1 + λ2(t) ,

(7.167)

where p(t) = 20 cos(t). This system is of the form (7.88) and since p(t) is C∞

and satisfies Assumptions 7.1, it follows that Assumptions 7.4-7.5 are also
satisfied. Therefore, Theorem 7.2 applies to the system (7.167). Let us now
construct the feedback and strict Lyapunov function guaranteed to exist by
the theorem. First consider the auxiliary system

⎧
⎨

⎩
ẋ1 = p(t)x2 + λ1(t)

ẋ2 = v + 1
2x1 + λ2(t) ,

(7.168)
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where v is an input, and set x = (x1 x2)�. When λ1 = λ2 = 0, one can apply
the classical backstepping approach to obtain exponentially stabilizing linear
control laws, as follows.

Step 1. Classical Backstepping

The time-varying change of coordinates

X2 = x2 + cos3(t)x1 (7.169)

transforms (7.168) into
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = −20 cos4(t)x1 + 20 cos(t)X2 + λ1(t)

Ẋ2 = v + 1
2x1 − 3 cos2(t) sin(t)x1 + 20 cos4(t)

[
X2 − cos3(t)x1

]

+ cos3(t)λ1(t) + λ2(t) .

(7.170)

When λ1 ≡ 0 and λ2 ≡ 0, the time derivative of

G(x1, X2) =
1
2
[x2

1 + X2
2 ] (7.171)

along the trajectories of (7.170) satisfies

Ġ = −20 cos4(t)x2
1

+X2

[
v + 20 cos(t)x1 + 1

2x1 − 3 cos2(t) sin(t)x1

+20 cos4(t)(X2 − cos3(t)x1)
]
.

(7.172)

Choosing

v(t, x1, X2) = −20 cos2(t)X2 − 20 cos(t)x1 − 1
2x1

+3 cos2(t) sin(t)x1 − 20 cos4(t)
(
X2 − cos3(t)x1

) (7.173)

gives

Ġ = −20 cos4(t)x2
1 − 20 cos2(t)X2

2

≤ −20 cos4(t)
[
x2

1 + X2
2

]

≤ −40 cos4(t)G(x1, X2).

(7.174)

Let

H(t, x1, X2) =

(∫ t

t−π
2

cos4(m)dm

)
G(x1, X2). (7.175)

Then
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Ḣ =
[
cos4(t) − cos4(t− π

2 )
]G(x1, X2)

+

(∫ t

t−π
2

cos4(m)dm

)
Ġ(x1, X2)

≤ [
cos4(t) − sin4(t)

]G(x1, X2)

−
(∫ t

t−π
2

cos4(m)dm

)
40 cos4(t)G(x1, X2).

(7.176)

Since ∫ t

t−π
2

cos4(m)dm =
3π
16

+
sin(2t)

2
(7.177)

and sin(2t) ≥ −1 everywhere, it follows that

Ḣ ≤
[
cos4(t) − sin4(t) −

{
15π
2

+ 20 sin(2t)
}

cos4(t)
]
G(x1, X2)

= −
[
sin4(t) +

{
15π
2

− 1 + 20 sin(2t)
}

cos4(t)
]
G(x1, X2)

≤ −
[
sin4(t) +

(
15π − 42

2

)
cos4(t)

]
G(x1, X2).

(7.178)

Step 2. Nonzero Disturbances

It follows that when λ1 and λ2 are present,

Ḣ ≤ −
[
sin4(t) +

{
15π − 42

2

}
cos4(t)

]
G(x1, X2)

+

(∫ t

t−π
2

cos4(m)dm

)
x1λ1(t)

+

(∫ t

t−π
2

cos4(m)dm

)
X2

[
cos3(t)λ1(t) + λ2(t)

]

(7.179)

along the trajectories of (7.170).
Using (7.177) and the global inequalities

15π − 42
2

≥ 1 and sin4(t) + cos4(t) ≥ 1
2
,

we get
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Ḣ ≤ −1
2
G(x1, X2) +

(
3π
16

+
sin(2t)

2

)
|x1λ1(t)|

+
(

3π
16

+
sin(2t)

2

) ∣∣X2[cos3(t)λ1(t) + λ2(t)]
∣∣

≤ −1
4
[x2

1 + X2
2 ]

+
(

3π
16

+
1
2

)
|x1||λ1(t)| +

(
3π
16

+
1
2

)
|X2| (|λ1(t)| + |λ2(t)|) .

(7.180)

From the triangular inequality c1c2 ≤ 2c21 + 1
8c

2
2 for suitable non-negative

values c1 and c2, we get

Ḣ ≤ −1
8
[
x2

1 + X2
2

]
+ 2

(
3π
16

+
1
2

)2

λ2
1(t) + 2

(
3π
16

+
1
2

)2 (|λ1(t)| + |λ2(t)|
)2

.

Next, observing that

1
8
[
x2

1 + X2
2

]
=

1
4
G(x1, X2)

=
H(t, x1, X2)
3π
4 + 2 sin(2t)

≥ H(t, x1, X2)
3π
4 + 2

(7.181)

gives

Ḣ ≤ −H(t, x1, X2)
3π
4 + 2

+ 2
(

3π
16

+
1
2

)2

λ2
1(t)

+2
(

3π
16 + 1

2

)2{|λ1(t)| + |λ2(t)|
}2

≤ −H(t, x1, X2)
3π
4 + 2

+ 6
(

3π
16

+
1
2

)2 [
λ2

1(t) + λ2
2(t)

]
.

(7.182)

We now return to the original coordinates. The feedback

v�(t, x1, x2) = v
(
t, x1, x2 + cos3(t)x1

)

with v defined in (7.173) admits the decomposition

v�(t, x1, x2) = L1(t) · x + 20 cos(t)L2(t) · x , (7.183)

where L1(t) · x = − 1
2x1 and

L2(t) · x = − [cos(t) + cos3(t)
]
x2 +

[
− cos4(t) − 1 +

3
20

cos(t) sin(t)
]
x1 .

Next we consider the function
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Q(t, x1, x2) =
1

12
(

3π
16 + 1

2

)2H
(
t, x1, x2 + cos3(t)x1

)
. (7.184)

By separately considering the possibilities

|x1| ≥ 1√
5
|x2| and |x1| ≤ 1√

5
|x2|,

our choice (7.169) of X2 gives x2
1 + X2

2 ≥ 1
6 |x|2 everywhere. Also,

Q(t, x) ≥ 1

24
(

3π
16 + 1

2

)2

(
3π
16

− 1
2

)[
x2

1 + (x2 + cos3(t)x1)2
]

(7.185)

everywhere. One can then prove that the time derivative of Q(t, x) along the
trajectories of (7.168) in closed-loop with the feedback v�(t, x) satisfies

Q̇ ≤ −c3Q(t, x) + |λ(t)|2, and c1|x|2 ≤ Q(t, x) (7.186)

where x = (x1, x2),

c1 =
3π
16 − 1

2

144
(

3π
16 + 1

2

)2 and c3 =
1

3π
4 + 2

. (7.187)

We deduce from Theorem 7.1 and Remark 7.3 that the feedback

u =
p(t)

p2(t) + δ
L1(t)x + L2(t)x

= − 20 cos(t)
400 cos2(t) + δ

1
2x1 −

[
cos(t) + cos3(t)

]
x2

+
[− cos4(t) − 1 + 3

20 cos(t) sin(t)
]
x1

(7.188)

with δ such that
∫ 2π

0

δ2

(400 cos2(t) + δ)2
dt ≤ 2π

5

3π
16 − 1

2

144
(

3π
8 + 1

)2
1

3π
4 + 2

(7.189)

renders (7.167) ISS with respect to λ; see (7.106). Inequality (7.189) holds if

∫ π
2

0

(
δ
20

)2

(cos2(t) + δ
400 )2

dt ≤ π

23040
(

3π
8 + 1

)3 . (7.190)

Therefore, we can construct an upper bound for the admissible values of δ > 0
using the proof of Lemma 7.2. We leave the construction to the reader as a
simple exercise.
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7.5 Nonlinear Time-Varying Systems

7.5.1 Assumptions and Notation

We consider nonlinear time-varying systems of the form (7.63). Throughout
the section, we assume that all of our functions are sufficiently smooth and:

Assumption 7.6 There is a known continuous function b(t, x, z) such that
h(t, x, z) = p(t)b(t, x, z) holds for all (t, x, z) ∈ R × R

n × R.

Therefore, the system we consider is
⎧
⎨

⎩
ẋ = F(t, x, z)

ż = p(t)[u + b(t, x, z)] .
(7.191)

Assumption 7.7 The functions |p(t)| and |ṗ(t)| are uniformly bounded by
a positive real number P and two positive numbers T and γ such that

∫ t+T

t

p2(s)ds ≥ γ ∀t ∈ R (7.192)

are known. Also, p ∈ C1.

Assumption 7.8 There are known functions V and αi ∈ K∞, a positive
definite function W , and a function μs ∈ C1 such that

|μs(t, x)| ≤ α4(|x|) , (7.193)

α1(|x|) ≤ V (t, x) ≤ α2(|x|) ,

∣∣∣∣
∂V

∂x
(t, x)

∣∣∣∣ ≤ α3(|x|), (7.194)

and
∂V

∂t
(t, x) +

∂V

∂x
(t, x)F(t, x, zs(t, x)) ≤ −W (x) (7.195)

with
zs(t, x) = p2(t)μs(t, x)

hold for all t ∈ R and x ∈ R
n. Also, zs has period T in t.

Assumption 7.9 There exists an everywhere positive non-decreasing func-
tion C such that

∂V

∂x
(t, x)

[F(t, x, a1)−F(t, x, a2)
] ≤ 1

2
W (x)+C([a1−a2]2

)
(a1−a2)2 (7.196)

for all t ∈ R, x ∈ R
n, a1 ∈ R, and a2 ∈ R.
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7.5.2 Main Result and Remarks

Our main result for this subsection is the following:

Theorem 7.3. Assume that the system (7.191) satisfies Assumptions 7.6-7.9
for some constant T . Then for any positive constant Υ , the system is globally
uniformly asymptotically stabilizable by the feedback

us(t, x, z) = −Υp(t)[z − zs(t, x)] − b(t, x, z) + 2ṗ(t)μs(t, x)

+p(t)
[
∂μs
∂t

(t, x) +
∂μs
∂x

(t, x)F(t, x, z)
]

.

(7.197)

A global strict Lyapunov function for the corresponding closed-loop system is

U(t, x, z) = V (t, x) + K

([
T

Υ
+
∫ t

t−T

∫ t

�

p2(s)ds d 
]
Z2

)
, (7.198)

where
Z = z − zs(t, x) (7.199)

and where K ∈ K∞ is any function such that K ′ is non-decreasing and

K ′ (s) ≥ 1
γ
C
(

Υ

T
s

)
+

1
2γ

(7.200)

for all s ≥ 0.

Remark 7.8. Theorem 7.3 has the following important features:

1. It does not make any linear growth assumptions on F . The only growth
restriction on F is Assumption 7.9.

2. The PE property in Assumption 7.7 is not very restrictive; in contrast
with Assumption 7.1, the function p can be equal to zero on intervals of
positive length.

3. The control law zs, its time derivative along the trajectories, and the func-
tion h must be zero when p(t) = 0.

Requirement 3. has no equivalent in Theorems 7.1 and 7.2. We impose it
to allow nonlinearities, and to replace Assumption 7.1 by the weaker PE
property from Assumption 7.7.

Proof of Theorem 7.3

The variable defined in (7.199) gives



212 7 Backstepping for Time-Varying Systems

{
ẋ = F(t, x, Z + zs(t, x))
Ż = p(t)[u + b(t, x, z)] − żs.

(7.201)

Since

żs = 2p(t)ṗ(t)μs(t, x)

+p2(t)
[
∂μs
∂t

(t, x) +
∂μs
∂x

(t, x)F(t, x, Z + zs(t, x))
]

,

(7.202)

the choice u = us from (7.197) gives the closed-loop system
⎧
⎨

⎩
ẋ = F(t, x, zs(t, x)

)
+ F(t, x, Z + zs(t, x)

)−F(t, x, zs(t, x)
)

Ż = −Υp2(t)Z.
(7.203)

Set

ℵ(t, Z) =
[
T

Υ
+
∫ t

t−T

∫ t

�

p2(s)ds d 
]
Z2 . (7.204)

Then the time derivative of

U(t, x, Z) = V (t, x) + K
(ℵ(t, Z)

)
(7.205)

along the trajectories of (7.203) satisfies

U̇ = V̇ − 2K ′(ℵ(t, Z)
) [

T
Υ +

∫ t

t−T

(∫ t

�

p2(s)ds
)

d 
]
Υp2(t)Z2

+K ′(ℵ(t, Z)
) [

Tp2(t) −
∫ t

t−T

p2(s)ds
]
Z2

≤ −W (x) + ∂V
∂x (t, x)[F(t, x, Z + zs(t, x)) −F(t, x, zs(t, x))]

−K ′(ℵ(t, Z)
)
Z2

∫ t

t−T

p2(s)ds ,

(7.206)

by Assumption 7.8. Using Assumptions 7.7 and 7.9, we obtain

U̇ ≤ −W (x) +
1
2
W (x) + C(Z2)Z2 −K ′ (ℵ(t, Z))γZ2 . (7.207)

Since we assumed that K ′ is non-decreasing, we deduce that

U̇ ≤ −1
2
W (x) +

[
C(Z2) −K ′(T

Υ
Z2
)
γ

]
Z2 . (7.208)

Recalling (7.200), we obtain
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U̇ ≤ −1
2
W (x) − 1

2
Z2.

Also, there are two functions α5, α6 ∈ K∞ such that

α5(|(x, z)|) ≤ U(t, x, z) = U(t, x, z − zs(t, x)
) ≤ α6(|(x, z)|)

for all t ∈ R and (x, z) ∈ R
n × R, as desired. �

7.6 Bounded Backstepping

7.6.1 Assumptions and Statement of Result

We next show that when the following additional conditions are imposed, we
can construct bounded stabilizing feedbacks for our systems (7.191):

Assumption 7.10 There is a constant B̄ > 0 such that

|b(t, x, z)| ≤ B̄ , |μs(t, x)| ≤ B̄ , and∣∣∣∣
∂μs
∂t

(t, x) +
∂μs
∂x

(t, x)F(t, x, z)
∣∣∣∣ ≤ B̄(1 + |z|) .

(7.209)

hold for all t ∈ R and all (x, z) ∈ R
n × R, where μs and b are from Assump-

tions 7.6 and 7.8.

Remark 7.9. If μs satisfies Assumption 7.10 and p(t) satisfies Assumption 7.7,
then the choices

M = max
{
1, P 2B̄

}
(7.210)

and zs = p2(t)μs give
|zs(t, x)| ≤ M (7.211)

for all t ∈ R and x ∈ R
n.

We use the function

Ω(s) = sgn(s)
∫ |s|

0

[
1 + max

{
0,

(a − 2M)3

1 + (a − 2M)2

}]
da, (7.212)

where sgn(s) = 1 (resp., −1) if s ≥ 0 (resp., s < 0). The function Ω has the
following key properties:

1. Ω is of class C2;

2. Ω(s) = s when s ∈ [−2M, 2M]; and

3. Ω′(z) ≥ 1 everywhere.
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We prove:

Theorem 7.4. Assume that the system (7.191) satisfies the Assumptions
7.6-7.10, and define M by (7.210). Then for any constant Υ > 0, the system
is globally uniformly asymptotically stabilizable by the feedback

us(t, x, z) = −Υp(t)
Ω(z) − zs(t, x)

Ω′(z)
√

1 + (Ω(z) − zs(t, x))2
− b(t, x, z)

+
2ṗ(t)μs(t, x)

Ω′(z)

+
p(t)
Ω′(z)

[
∂μs
∂t

(t, x) +
∂μs
∂x

(t, x)F(t, x, z)
]
.

(7.213)

A global strict Lyapunov function for the corresponding closed-loop system is

U(t, x, z) = V (t, x) + K
(
νp(t, Ω(z) − zs(t, x))

)
(7.214)

where K ∈ C1 is any K∞ function with a non-decreasing first derivative such
that

K ′(s) ≥ T

2γΥ

[
1 + 128

√
1 + M2C

(
128

√
1 + M2

s√
1 + 2s

)]
(7.215)

for all s ≥ 0,

νp(t, Z) =
1
2
Z2 +

Υ

T

(∫ t

t−T

(∫ t

s

p2(a)da
)

ds
)

Z2

√
1 + Z2

, (7.216)

and
Z = Ω(z) − zs(t, x).

Moreover, the inequality

|us(t, x, z)| ≤ ΥP + B̄ + 2PB̄ + PB̄(4M + 2) (7.217)

holds for all t ∈ R and all (x, z) ∈ R
n × R.

7.6.2 Technical Lemmas

We present two technical lemmas that form the basis for our proof of Theorem
7.4. Consider the one-dimensional system

ξ̇ = −q(t)
ξ√

1 + ξ2
(7.218)
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where q is any everywhere non-negative C1 function.

Lemma 7.3. Assume that there exist positive constants δ1, δ2, and Tq such
that

0 ≤ q(t) ≤ δ1 and
∫ t

t−Tq

q(s)ds ≥ δ2 ∀t ∈ R. (7.219)

Then the time derivative of

νq(t, ξ)
.=

1
2
ξ2 +

1
Tq

(∫ t

t−Tq

∫ t

s

q(a)da ds

)
ξ2

√
1 + ξ2

(7.220)

along the trajectories of (7.218) satisfies

ν̇q ≤ − δ2

Tq

ξ2

√
1 + ξ2

. (7.221)

Proof. The time derivative of νq along the trajectories of (7.218) satisfies

ν̇q ≤ −q(t)
ξ2

√
1 + ξ2

+

(
q(t) − 1

Tq

∫ t

t−Tq

q(a)da

)
ξ2

√
1 + ξ2

= − 1
Tq

(∫ t

t−Tq

q(a)da

)
ξ2

√
1 + ξ2

.

(7.222)

The lemma now follows from our choice of δ2. �

Lemma 7.4. Let M be defined by (7.210). Then for all z ∈ R, t ∈ R, and
x ∈ R

n, we have

[z − zs(t, x)]2 ≤ 64
√

1 + M2
(Ω(z) − zs(t, x))2√

1 + (Ω(z) − zs(t, x))2
. (7.223)

Proof. We consider two cases.
Case 1. |z| ≤ 2M. Then Ω(z) = z, so our bound (7.211) on zs gives

(z − zs(t, x))2 ≤
√

1 + 9M2
(Ω(z) − zs(t, x))2√

1 + (Ω(z) − zs(t, x))2
. (7.224)

Case 2. |z| ≥ 2M. By (7.211), we get

(
z − zs(t, x)

)2 ≤ (|z| + |zs(t, x)|)2 ≤ (|z|+ M)2 ≤ 5
2z

2 . (7.225)

If 2M ≤ |z| ≤ 4M, then

[
z − zs(t, x)

]2 ≤ 25M2 . (7.226)
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On the other hand, since |Ω(z)| ≥ |z| for all z, we have

(
Ω(z) − zs(t, x)

)2 ≥ (|Ω(z)| −M)2 ≥ (|z| −M)2 ≥ M2 . (7.227)

Since the function
Θ(s) .=

s√
1 + s

(7.228)

is increasing on [0,∞) , we get

(Ω(z) − zs(t, x))2√
1 + (Ω(z) − zs(t, x))2

≥ M2

√
1 + M2

, (7.229)

so (7.226) gives

[
z − zs(t, x)

]2 ≤ 25
√

1 + M2
(Ω(z) − zs(t, x))2√

1 + (Ω(z) − zs(t, x))2
. (7.230)

It remains to consider the case where |z| ≥ 4M; in that case,

|Ω(z)| = |z|+
∫ |z|

2M

(m − 2M)3

1 + (m− 2M)2
dm

= |z|+
∫ |z|−2M

0

m3

1 + m2
dm .

(7.231)

It follows that

∣∣Ω(z) − zs(t, x)
∣∣ ≥ |z| −M +

∫ 1
2 |z|

0

m3

1 + m2
dm

≥ 1
2 |z| +

∫ 1
2 |z|

0

m3

1 + m2
dm

≥
∫ 1

2 |z|

0

1 + m2 + m3

1 + m2
dm ≥

∫ 1
2 |z|

0

1
2
(1 + m)dm

(7.232)

and therefore ∣∣Ω(z) − zs(t, x)
∣∣ ≥ 1

4 |z| + 1
16z

2 . (7.233)

Recalling that (7.228) is increasing, we deduce that

(Ω(z) − zs(t, x))2√
1 + (Ω(z) − zs(t, x))2

≥
(

1
4 |z| + 1

16z
2
)2

√
1 +

(
1
4 |z| + 1

16z
2
)2

=

(
1
4 + 1

16 |z|
)2

√
1 +

(
1
4 |z| + 1

16z
2
)2 z

2 .

(7.234)
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Using the inequality

z2 ≥ 1
2
(
z − zs(t, x)

)2
,

(which is valid because |z| ≥ 4M, and therefore 1
2z

2 ≥ 1
2M2 + M|z|), we

obtain

(Ω(z) − zs(t, x))2√
1 + (Ω(z) − zs(t, x))2

≥ (1
4 + 1

16 |z|)2

2
√

1 + (1
4 |z| + 1

16z
2)2

(
z − zs(t, x)

)2
. (7.235)

Moreover, since
Θ(r2) ≥ r

2
on [1,∞),

and since our choice (7.210) of M gives M ≥ 1, we get

(
1
4 + 1

16 |z|
)2

√
1 +

(
1
4 |z| + 1

16z
2
)2 = Θ

([
1
4
|z| + 1

16
z2

]2
)

1
z2

≥ 1
2z2

( |z|
4

+
1
16

z2

)
≥ 1

32

when z 
= 0. It follows that when |z| ≥ 4M, we have

(z − zs(t, x))2 ≤ 64
(Ω(z) − zs(t, x))2√
1 + |Ω(z) − zs(t, x)|2 . (7.236)

Finally, from (7.236), (7.230) and (7.224), we deduce that (7.223) is satisfied
in all three cases. This completes the proof of Lemma 7.4. �

7.6.3 Proof of Bounded Backstepping Theorem

The inequality (7.193) in Assumption 7.8 implies that for any function K of
class K∞, there are two functions α5, α6 ∈ K∞ such that

α5(|(x, z)|) ≤ U(t, x, z) ≤ α6(|(x, z)|) (7.237)

for all t ∈ R and (x, z) ∈ R
n×R. Also, the time-varying change of coordinates

Z = Ω(z) − zs(t, x) (7.238)

transforms the system (7.191) into
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⎧
⎨

⎩
ẋ = F(t, x,Ω−1(Z + zs(t, x))

)

Ż = Ω′(z)p(t)[u + b(t, x, z)] − żs(t, x) .
(7.239)

This system in closed-loop with us(t, x, z) defined in (7.213) yields

Ż = −Υp2(t)
Ω(z) − zs(t, x)√

1 + [Ω(z) − zs(t, x)]2
+ 2ṗ(t)p(t)μs(t, x)

+p2(t)
[
∂μs
∂t

(t, x) +
∂μs
∂x

(t, x)F(t, x, z)
]
− żs(t, x)

= −Υp2(t) Z√
1+Z2 .

(7.240)

Therefore, we have the closed-loop system
⎧
⎨

⎩
ẋ = F(t, x,Ω−1(Z + zs(t, x))

)

Ż = −Υp2(t) Z√
1+Z2 .

(7.241)

According to Assumption 7.8, the time derivative of V along the trajectories
of (7.241) satisfies

V̇ ≤ −W (x)

+∂V
∂x (t, x)

[F(t, x,Ω−1(Z + zs(t, x))) −F(t, x, zs(t, x))
]
.

(7.242)

Using Assumption 7.9, we deduce that

V̇ ≤ − 1
2W (x)

+C ([Ω−1(Z + zs) − zs]2
)
[Ω−1(Z + zs) − zs]2 ,

(7.243)

where we omit the dependence of zs on (t, x).
Next notice that (7.223) gives

(
Ω−1(Z + zs(t, x)) − zs(t, x)

)2 ≤ 64
√

1 + M2
Z2

√
1 + Z2

. (7.244)

Combining this inequality and (7.243), we obtain

V̇ ≤ − 1
2W (x)

+64
√

1 + M2 C
(

64
√

1 + M2
Z2

√
1 + Z2

)
Z2

√
1 + Z2

.
(7.245)

On the other hand, Lemma 7.3 with the choice q(t) = Υp2(t) implies that
the time derivative of νp(t, Z) along the trajectories of (7.241) satisfies
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ν̇p(t, Z) ≤ −γΥ

T

Z2

√
1 + Z2

, (7.246)

where γ is the constant in Assumption 7.7. It follows that the time derivative
of U defined in (7.214) along the trajectories of (7.241) satisfies

U̇ ≤ − 1
2W (x) +

[
64

√
1 + M2 C

(
64

√
1 + M2

Z2

√
1 + Z2

)

−K ′(νp(t, Z)
)γΥ

T

]
Z2

√
1 + Z2

.

(7.247)

Since K ′ is non-decreasing and νp(t, Z) ≥ 1
2Z

2, we have

U̇ ≤ − 1
2W (x) +

[
64

√
1 + M2 C

(
64

√
1 + M2

Z2

√
1 + Z2

)

−K ′
(

1
2
Z2

)
γΥ

T

]
Z2

√
1 + Z2

.

(7.248)

From (7.215), it follows immediately that

U̇ ≤ −1
2

[
W (x) +

Z2

√
1 + Z2

]
. (7.249)

Therefore, the proof of Theorem 7.4 will be complete once we establish
(7.217). It is easy to prove that the first three terms in the right hand side of
(7.213) are bounded by ΥP , B̄, and 2PB̄, respectively. Also, the definition
of Ω gives

Ω′(|z|) ≥ 1 + |z|
4M + 2

∀z ∈ R,

by separately considering the cases |z| ≥ 4M+ 1 and |z| ≤ 4M+ 1 (because
if |z| ≥ 4M + 1, then Ω′(|z|) ≥ 1 + 1

2 (|z| − 2M) ≥ 1 + |z|
4 and Ω′(|z|) ≥ 1

everywhere). This property combined with the last inequality of Assumption
7.10 bounds the last term of the right hand side of (7.213) by PB̄(4M + 2).
This concludes the proof of Theorem 7.4.

7.7 Two-Dimensional Example

The two-dimensional system
{

ẋ = cos(t)z
ż = cos(t)u (7.250)
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satisfies Assumptions 7.6 and 7.7 with b ≡ 0, p(t) = cos(t), γ = π, P = 1,
and T = 2π. Choosing μs(t, x) = − cos(t)x, zs(t, x) = − cos3(t)x, and

V (t, x) = exp

(∫ t

t−π
2

cos2(s)ds

)
1
2
x2 , (7.251)

one can check readily that Assumption 7.8 is satisfied. In particular,

∂V

∂t
(t, x) +

∂V

∂x
(t, x)

[− cos4(t)x
]

= V (t, x)
[
cos(2t) − 2 cos4(t)

]

= −1
2
V (t, x)

[
1 + cos2(2t)

]

≤ −1
2
V (t, x) ≤ −1

4
x2

(7.252)

and
∣∣∂V
∂x (t, x) cos(t)

∣∣ ≤ e
π
2 |x| hold for all (t, x) ∈ R

2. Hence,

∂V

∂x
(t, x) cos(t)(a1 − a2) ≤ 1

8
|x|2 + 2(a1 − a2)2eπ , (7.253)

by the triangle inequality. We easily deduce that Assumption 7.9 is satisfied
with W (x) = 1

4x
2 and C(s) = 2eπ for all s ∈ R.

Therefore, Theorem 7.3 applies. It follows that the control law

us(t, x, z) = − cos(t)[z + cos3(t)x]

+2 sin(t) cos(t)x + cos(t)
[
sin(t)x− cos2(t)z

] (7.254)

globally uniformly asymptotically stabilizes the system (7.250). Taking

K(s) =
(

2
π
eπ +

1
2π

)
s,

a global strict Lyapunov function for the system (7.250) in closed-loop with
(7.254) is

U(t, x, z) = exp

(∫ t

t−π
2

cos2(s)ds

)
1
2
x2

+
4eπ + 1

2π

[
2π +

∫ t

t−2π

(∫ t

�

cos2(s)ds
)

d 

]
[z + cos3(t)x]2

= exp
(

π

4
+

1
2

sin(2t)
)

1
2
x2

+
4eπ + 1

2π

[
2π +

π

2
sin(2t) + π2

]
[z + cos3(t)x]2 .
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7.8 PVTOL Revisited

We now use our results to construct the necessary control laws ũ1s and v2s

to stabilize (7.6). This will complete our stabilizing feedback construction for
the PVTOL model from Sect. 7.1. We prove the following:

Theorem 7.5. Choose any positive constants ε and Υ such that

0 < ε ≤ 1
542

and Υ ≤ tan
(

3
2

)

108
. (7.255)

Then the feedbacks

ũ1s =
[1 − 18 cos(3t)][1 − cos(v2s)] − z̃1 − z̃2

cos(v2s)
and (7.256)

v2s

(
t, ξ̃1, ξ̃2

)
= arctan

⎛

⎜⎜⎝−Υp(t)
Ω(ξ̃2)+εp2(t)

ξ̃1√
1+ξ̃2

1

Ω′(ξ̃2)

√√√√1+

(
Ω(ξ̃2)+εp2(t)

ξ̃1√
1+ξ̃2

1

)2

−ε
ξ̃1√

1 + ξ̃2
1

2ṗ(t)
Ω′(ζ̃2)

− ε
p(t)

Ω′(ξ̃2)(1 + ξ̃2
1)
√

1 + ξ̃2
1

ξ̃2

⎞

⎠

(7.257)

with

Ω(s) = sgn(s)
∫ |s|

0

[
1 + max

{
0,

(a− 2)3

1 + (a − 2)2

}]
da (7.258)

and p(t) = −1 + 18 cos(3t) render (7.6) UGAS to the origin.

The rest of this section is devoted to the proof of Theorem 7.5. We will
presently show that |v2s| ≤ 3

2 everywhere. Assuming this to be true for the
moment, we get cos(v2s) ≥ cos(3

2 ) > 0 and therefore we can select (7.256) in
(7.6) to get ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̃
ξ1 = ξ̃2
˙̃
ξ2 = [−1 + 18 cos(3t) + z̃1 + z̃2] tan(v2s)
˙̃z1 = z̃2

˙̃z2 = −z̃1 − z̃2.

(7.259)

Since the z̃-subsystem of (7.259) is globally exponentially stable and since
|v2s| ≤ 3

2 , this leads us to consider the problem of finding a control law u
bounded by tan

(
3
2

)
and an iISS Lyapunov function Ū for the system
⎧
⎨

⎩

˙̃
ξ1 = ξ̃2
˙̃
ξ2 = [−1 + 18 cos(3t) + d]u

(7.260)
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with disturbance d. Later we use the iISS Lyapunov function to prove UGAS
of the full closed-loop system (7.259).

7.8.1 Analysis of Reduced System

7.8.1.1 Zero Disturbances Case

To find the iISS Lyapunov function Ū for (7.260), we use the simplifying
notation x = ξ̃1 and z = ξ̃2. Moreover, for the time being, let d = 0. Then
we obtain the two-dimensional system

{
ẋ = z
ż = p(t)u. (7.261)

This system is of the form (7.191). Therefore, to determine stabilizing
bounded controls for (7.261), we use Theorem 7.4. Before applying Theo-
rem 7.4 to (7.261), we show that this system satisfies Assumptions 7.6-7.10.

It satisfies Assumption 7.6 with b ≡ 0, and it satisfies Assumption 7.7 with
P = 54, T = 2π and γ = 324π. We choose

μs(t, x) = −ε
x√

1 + x2
and zs(t, x) = −εp2(t)

x√
1 + x2

(7.262)

where ε > 0 is such that (7.255) holds. Let V (t, x) =
√

1 + ν(t, x)− 1, where

ν(t, x) =
1
2
x2 +

1
2π

(∫ t

t−2π

(∫ t

s

εp2(a)da
)

ds
)

x2

√
1 + x2

=
1
2
x2 + εS(t)

x2

√
1 + x2

(7.263)

and
S(t) = 163π + 27 sin(6t) − 12 sin(3t) . (7.264)

According to Lemma 7.3, we have

∂ν

∂t
(t, x) +

∂ν

∂x
(t, x)zs(t, x) ≤ −162ε

x2

√
1 + x2

. (7.265)

It follows that

∂V

∂t
(t, x) +

∂V

∂x
(t, x)zs(t, x) ≤ −81ε

x2

√
1 + x2

√
1 + ν(t, x)

≤ −W (x) ,

(7.266)

where



7.8 PVTOL Revisited 223

W (x) = 81ε
x2

1 + x2
, (7.267)

because |S(t)| ≤ 691 for all t ∈ R, and ε satisfies (7.255). This allows us to
prove that Assumption 7.8 is satisfied. In addition,

∣∣∣∣
∂V

∂x
(t, x)

∣∣∣∣ =

∣∣∣∣∣∣

x
[
1 + εS(t) 2+x2

(1+x2)
√

1+x2

]

2
√

1 + ν(t, x)

∣∣∣∣∣∣

≤ [1 + 691ε]√
1 + 1

2x
2
|x| ≤ 2

√
2√

1 + x2
|x| .

(7.268)

This easily gives

(
∂V

∂x
(t, x)

)2

≤ 8
1 + x2

x2 =
8

81ε
W (x) . (7.269)

Therefore, we deduce from the triangular inequality that

∂V

∂x
(t, x)(a1 − a2) ≤ 1

2
W (x) +

4
81ε

(a1 − a2)2 (7.270)

which implies that Assumption 7.9 is satisfied with C ≡ 4
81ε . Finally, one

can easily prove that Assumption 7.10 is satisfied with B̄ = ε and therefore
Theorem 7.4 applies to the system (7.261).

From Theorem 7.4 and the fact that M = 1 (because (7.255) is satisfied),
it follows that for any Υ > 0 satisfying (7.255), the control law

us(t, x, z) = −Υp(t)
Ω(z) + εp2(t) x√

1+x2

Ω′(z)

√
1 +

(
Ω(z) + εp2(t) x√

1+x2

)2

−ε
x√

1 + x2

2ṗ(t)
Ω′(z)

− ε
p(t)

Ω′(z)(1 + x2)
√

1 + x2
z

(7.271)

with Ω defined by (7.258) globally uniformly asymptotically stabilizes the
origin of the system (7.261). Moreover, the proof of Theorem 7.4 implies that
if we take νp(t, x) as defined in (7.216), namely,

νp(t, Z) =
1
2
Z2 +

Υ

2π

(∫ t

t−2π

(∫ t

s

p2(a)da
)

ds
)

Z2

√
1 + Z2

=
1
2
Z2 + ΥS(t)

Z2

√
1 + Z2

,

(7.272)

S(t) defined in (7.264), and K ∈ K∞ such that
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K ′(s) ≥ 2π
2γΥ

[
1 + 128

√
1 + M2C

(
128

√
1 + M2

s√
1 + 2s

)]

=
1

324Υ

[
1 +

512
√

2
81ε

]
=: K,

(7.273)

then the time derivative of

U(t, x, z) =
√

1 + ν(t, x) − 1 + K
(
νp

(
t, Ω(z) + εp2(t) x√

1+x2

))
(7.274)

along the trajectories of (7.261), in closed-loop with (7.271), satisfies

U̇ ≤ − 1
2

[
W (x) + Z2√

1+Z2

]
, (7.275)

where Z = Ω(z)−zs(t, x). Let us choose K(s) = Ks. By (7.217), the function
us defined in (7.271) satisfies |us(t, x, z)| ≤ 54Υ+433ε. Noting that Υ satisfies
(7.255) and observing that (7.255) implies that

ε ≤ tan
(

3
2

)

542
,

we get

|us(t, x, z)| ≤ tan
(

3
2

)
. (7.276)

We therefore take v2s = arctan(us).

7.8.1.2 Nonzero Disturbances Case

Returning to the system (7.260) when d is present, we immediately deduce
from the previous analysis that the time derivative of

U(t, ξ̃1, ξ̃2) =
√

1 + ν(t, ξ̃1) − 1 + Kνp

(
t, "(t, ξ̃1, ξ̃2)

)
(7.277)

with

"(t, ξ̃1, ξ̃2) = Ω(ξ̃2) + εp2(t)
ξ̃1√

1 + ξ̃2
1

(7.278)

along the solutions of (7.260) in closed-loop with us(t, ξ̃1, ξ̃2) defined in (7.271)
satisfies

U̇ ≤ −1
2
W (ξ̃1) − 1

2
"̂(t, ξ̃1, ξ̃2) +

∂U

∂ξ̃2
(t, ξ̃1, ξ̃2)dus(t, ξ̃1, ξ̃2) , (7.279)

where



7.8 PVTOL Revisited 225

"̂
.=

"2

√
1 + "2

.

We have

∂U

∂ξ̃2
(t, ξ̃1, ξ̃2) = K

∂νp
∂Z

(
t, "

(
t, ξ̃1, ξ̃2

))
Ω′
(
ξ̃2

)

= K

[
1 + ΥS(t)

2 + "2(t, ξ̃1, ξ̃2)
(1 + "2(t, ξ̃1, ξ̃2))

3
2

]

×"(t, ξ̃1, ξ̃2)Ω′(ξ̃2) .

(7.280)

Since S(t)| ≤ 691 everywhere, we deduce that
∣∣∣ ∂U
∂ξ̃2

(t, ξ̃1, ξ̃2)
∣∣∣ ≤ M1|"(t, ξ̃1, ξ̃2)Ω′(ξ̃2)| (7.281)

where M1 = 2K(1 + 691Υ ), and therefore
∣∣∣∣
∂U

∂ξ̃2
(t, ξ̃1, ξ̃2)dus(t, ξ̃1, ξ̃2)

∣∣∣∣ ≤ M2|"(t, ξ̃1, ξ̃2)Ω′(ξ̃2)||d| (7.282)

where M2 = M1 tan (3/2). Next, using (7.255) one can easily prove that
|"(t, ξ̃1, ξ̃2)| ≤ |Ω(ξ̃2)| + 192ε ≤ |Ω(ξ̃2)| + 1.

It follows that
∣∣∣∣
∂U

∂ξ̃2
(t, ξ̃1, ξ̃2)dus(t, ξ̃1, ξ̃2)

∣∣∣∣ ≤ M2

[|Ω(ξ̃2)| + 1
]
Ω′(ξ̃2)|d| . (7.283)

This inequality combined with (7.279) yields

U̇ ≤ −1
2
W (ξ̃1) − 1

2
"̂(t, ξ̃1, ξ̃2) + M2

[|Ω(ξ̃2)| + 1
]
Ω′(ξ̃2)|d| . (7.284)

Therefore, the time derivative of

U(t, ξ̃1, ξ̃2) = ln
(
1 + U(t, ξ̃1, ξ̃2)

)
(7.285)

along the closed-loop trajectories of (7.260) satisfies

U̇ ≤ − 1
2W (ξ̃1) − 1

2 "̂(t, ξ̃1, ξ̃2) + M2[|Ω(ξ̃2)| + 1]Ω′(ξ̃2)|d|
1 + U(t, ξ̃1, ξ̃2)

. (7.286)

Next, observe that

|Ω′(ξ̃2)| = 1 + max

{
0,

(|ξ̃2| − 2M)3

1 + (|ξ̃2| − 2M)2

}
≤ 1 + |ξ̃2| ≤ 1 + |Ω(ξ̃2)| .
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It follows that

U̇ ≤
− 1

2W (ξ̃1)− 1
2 ˆ̺(t, ξ̃1, ξ̃2) +M2[|Ω(ξ̃2)|+ 1]2|d|

1 + U(t, ξ̃1, ξ̃2)
, (7.287)

and therefore

U̇ ≤
− 1

2 W (ξ̃1)− 1
2 ˆ̺(t,ξ̃1,ξ̃2)+M2

[∣∣∣∣∣Ω(ξ̃2)+εp2(t)
ξ̃1√
1+ξ̃2

1

∣∣∣∣∣+εp2(t)+1

]2

|d|

1+U(t,ξ̃1,ξ̃2)

≤ − 1
2 W (ξ̃1)− 1

2 ˆ̺(t,ξ̃1,ξ̃2)+M2[|̺(t,ξ̃1,ξ̃2)|+361ε+1]
2|d|

1+U(t,ξ̃1,ξ̃2)

≤ − 1
2 W (ξ̃1)− 1

2 ˆ̺(t,ξ̃1,ξ̃2)+2M2[̺
2(t,ξ̃1,ξ̃2)+4]|d|√

1+ν(t,ξ̃1)+K

(
1
2 ̺2(t,ξ̃1,ξ̃2)+ΥS(t)

̺2(t,ξ̃1,ξ̃2)√
1+̺2(t,ξ̃1,ξ̃2)

) .

(7.288)

It follows that one can determine a constant M3 such that

U̇ ≤
− 1

2W (ξ̃1)− 1
2 ˆ̺(t, ξ̃1, ξ̃2)√

1 + ν(t, ξ̃1) + K

(
1
2̺2(t, ξ̃1, ξ̃2) + ΥS(t) ̺2(t,ξ̃1,ξ̃2)√

1+̺2(t,ξ̃1,ξ̃2)

)

+M3|d| .

(7.289)

This implies that U is the desired iISS Lyapunov function.

7.8.2 UGAS of Full System

Standard arguments (analogous to those in [8] but generalized to time-varying
periodic systems) now provide α ∈ K∞, β ∈ KL, and a constant M̄ > 0 such
that for each k ∈ N∪ {0} and t0 ≥ 0 and each trajectory ξ̃(t) of (7.260) with
initial time t0, we have the iISS estimate

α
(
|ξ̃(t + 2kπ)|

)
≤ β(|ξ̃(t0 + 2kπ)|, t− t0) + M̄

∫ t+2kπ

t0+2kπ

|d(r)|dr (7.290)

for all t ≥ t0 and all exponentially decaying disturbances d. Specializing to the
case where d = z̃ converges exponentially to zero and k = 0, (7.290) readily
gives a K∞ function M̄ such that |ξ̃(t)| ≤ M̄(|ξ(t0)|) for all t ≥ t0 ≥ 0 along
the closed-loop trajectories. Also, for each pair (ε, b) of positive constants, we
can find a positive integer K̃ such that

∣∣ξ̃(t + 2kπ)
∣∣ < ε when min{t− t0, k} ≥ K̃ and |(ξ̃(t0), z̃(t0))| ≤ b.

Therefore, we get the uniform global attractivity condition |ξ̃(r)| < ε when
r ≥ T + t0 and |(ξ̃(t0), z̃(t0))| ≤ b, where T = K̃(1 + 2π) depends only on ε
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and b. We deduce that the origin of (7.259) in closed-loop with v2s(t, ξ̃1, ξ̃2)
is UGAS. This proves the theorem. �

7.8.3 Numerical Example

To validate our feedback design, we simulated (7.6) in closed-loop with
the feedbacks (7.256) and (7.257), using ε = 1/542 and the initial state
(ζ̃1, ζ̃2, z̃1, z̃2)(0) = (0.5, 0.5, 1, 1). We report the corresponding error trajec-
tories for the positions and velocities in Figs. 7.1 and 7.2. Our simulation
shows the rapid convergence of the tracking error to zero and therefore vali-
dates our findings.

7.9 Comments

Backstepping is a powerful method because it applies to general classes
of nonlinear systems and simultaneously constructs Lyapunov functions
and stabilizing feedbacks. Some pioneering works on backstepping include
[19, 138, 179]; see [75] for other important references. Introductions to back-
stepping can be found in several articles and textbooks. In [70, 183], results
similar to the one we presented in Sect. 7.2.3 are presented. In [148, Chap. 6],
backstepping with cancelation is introduced. In [149, Chap. 6], strict feedback
systems (which comprise a family of systems that is slightly more restrictive
than the family (7.52)) are studied. Time varying versions of backstepping
are given in [181]. A first result on bounded backstepping for time-invariant
systems is in [44]. An extension to time-varying systems is given in [99]. This
last extension borrows some key ideas of [66]. Our approach differs from this
earlier work because of our global strict Lyapunov function constructions.

The literature on the PVTOL model is sizable. Some of this work uses the
more general VTOL model

⎧
⎪⎨

⎪⎩

ẍ = −u1 sin(θ) + εu2 cos(θ)
ÿ = u1 cos(θ) + εu2 sin(θ) − 1
θ̈ = u2 ,

where the positive parameter ε represents the sloping of the wings of the
aircraft. The model appears to have originated in [56], which developed an
approximate input-output linearization method that led to asymptotic stabil-
ity and bounded tracking. For a nonlinear small gain approach to the model,
see [174]; and see [96] for an extension of [56] based on flatness. In [149, Chap.
6], the PVTOL model is stabilized by time-invariant feedback. See also [80],
which uses an optimal control approach to design state feedbacks that give
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Fig. 7.1 Horizontal position and velocity components of (7.6)

robust hovering control of the PVTOL model. For internal model and output
tracking approaches, see [95] and [38], respectively. Finally, see [129] for a
PVTOL set up where the state is measured using a visual system that pro-
duces a delay, and [43] for state feedback designs for PVTOL models with
delays in the input for cases where the velocity variables are not available for
measurement. By contrast, our treatment of the PVTOL model is based on
constructions of global strict Lyapunov functions.
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Fig. 7.2 Vertical position and velocity components of (7.6)

Chained form systems of the type (7.64) have been studied extensively.
See for example [146] where they are used to control nonholonomic wheeled
mobile robots and cars with multiple trailers. The TORA dynamics (7.81)
has been studied by many authors; see for example [149]. The physical model
consists of a platform connected to a fixed frame of reference by a spring.
The platform can oscillate in the horizontal plane, and friction is assumed
to be negligible. There is a rotating eccentric mass on the platform that is
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actuated by a DC motor. The rotating mass yields a force that can be con-
trolled to dampen the oscillations of the platform. The control variable is the
motor torque. There are several stabilizing control designs in the literature,
where stability for the TORA dynamics is shown using non-strict Lyapunov
functions and the LaSalle Invariant Set [149].



Chapter 8

Matrosov Conditions: General Case

Abstract In Chap. 3, we saw how to explicitly construct global, strict Lya-
punov functions for time-invariant systems that satisfy Matrosov type con-
ditions. The strict Lyapunov functions were expressed in terms of given non-
strict Lyapunov functions and the auxiliary functions from the Matrosov
assumptions. The method relied on a special structure for the upper bounds
on the time derivatives of the auxiliary functions.

In this chapter, we present a more general strict Lyapunov function con-
struction for time-varying systems, under less stringent Matrosov Conditions.
We apply the construction to systems that satisfy time-varying versions of
the Jurdjevic-Quinn and LaSalle Conditions. We illustrate our results in a
stabilization problem for a time-varying system with a sign constrained con-
troller.

8.1 Motivation

To motivate our general Matrosov construction, we first consider a specific
dynamics where we require a stabilizing controller and a corresponding global
strict Lyapunov function construction, under a sign constraint on the con-
troller (i.e., an everywhere positive or negative control). There are many re-
sults on sign restricted controllers; see, e.g., [81] for universal controllers for
cases where the feedback stabilizer is constrained to be positive. The papers
[34, 69, 147] provide stabilization results for families of linear systems whose
inputs satisfy a sign constraint. For example, [69] proves that any stable
controllable linear system ẋ = Ax + Bu with det(A) 
= 0 is globally asymp-
totically stabilizable by an everywhere positive (or negative) control. On the
other hand, to the best of our knowledge, there are no explicit global strict
Lyapunov function constructions available in the literature for the associated
closed-loop systems, even for the simple system

231
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{
ẋ1 = x2

ẋ2 = −x1 − |u| . (8.1)

In this section, we construct a nowhere positive globally stabilizing con-
troller, and a corresponding global strict Lyapunov function, for the dynamics

{
ẋ1 = cos2(t)x2

ẋ2 = − cos2(t)x1 + cos4(t)u .
(8.2)

Choosing the C1 controller

u(x) = −max{0, x3
2}, (8.3)

with x = (x1, x2), gives the closed-loop system
{

ẋ1 = cos2(t)x2

ẋ2 = − cos2(t)x1 − cos4(t)max{0, x3
2} .

(8.4)

One can easily check that

V1(x) =
1
2
|x|2 (8.5)

is a weak Lyapunov function for (8.4). In addition, through the LaSalle In-
variance Principle and comparing the dynamics with that of a rotation, one
can conclude that the origin of (8.4) is UGAS, because (8.4) is periodic [148].

However, it is by no means clear how to construct a global strict Lyapunov
function for (8.4). On the other hand, it is possible to show that (8.4) admits
the global strict Lyapunov function

V �(t, x) =
(

5V 2
1 (x)

16 [1 + V 2
1 (x)]

)3 {
Ṽ (t, x) + 5

√
2
√

1 + V1(x)V2(t, x)
}

+
(10

√
2 + 1)4

14
[(1 + V1(x))7 − 1],

(8.6)

where

Ṽ (t, x) = 6V1(x) + V2(t, x) + V3(t, x) + C(t, x),

V2(t, x) = x1, V3(t, x) = cos4(t)x1x2, and

C(t, x) =
1
2π

(∫ t

t−2π

∫ t

m

cos6( )d dm
)

V 2
1 (x)

1 + V 2
1 (x)

.

(8.7)

In fact, the functions V2 and V3 in (8.7) are the auxiliary functions in the
Matrosov Conditions; see Sect. 8.7 for the derivation of (8.6). We now turn
to our general procedure for constructing strict Lyapunov functions under
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more general Matrosov Conditions, which will include the strict Lyapunov
function construction (8.6) as a special case.

8.2 Preliminaries and Matrosov Assumptions

As seen in Chap. 1, the Matrosov Theorem provides a useful framework for
establishing UGAS, using a non-strict Lyapunov function and other auxiliary
functions that satisfy appropriate decay conditions along the trajectories of
the system. As such, Matrosov’s Theorem can be viewed as a way to cir-
cumvent the need for constructing strict Lyapunov functions. However, strict
Lyapunov function constructions are very useful for robustness analysis and
feedback design, which motivates the search for strict Lyapunov functions
under Matrosov’s conditions.

In this chapter, we provide a global, explicit, strict Lyapunov function con-
struction under Matrosov-like assumptions that are more general than those
of Chap. 3. The greater generality comes from our allowing time-varying
systems, as well as less stringent requirements on the time derivatives of
the auxiliary functions. We use the following conventions and notation. Un-
less otherwise stated, we assume throughout the chapter that the functions
encountered are sufficiently smooth. We often omit the arguments of our
functions to simplify notation, and all equalities and inequalities should be
understood to hold globally unless otherwise indicated. We consider the time-
varying nonlinear system

ẋ = f(t, x) (8.8)

with t ∈ R and x ∈ R
n, where we assume that f is locally Lipschitz in x,

uniformly in t. We always assume that (8.8) is forward complete. To simplify
the statements of our results, we use the notation

DV
.=

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x)

when V : R×R
n → R is C1, whenever no confusion can arise. The following

definition is a slightly modified version of [148, Definition 5.14]:

Definition 8.1. A continuous function φ : [0,∞) × R
n → R

p is decrescent
(in norm) provided there exists a function Υ ∈ K∞ such that

|φ(t, x)| ≤ Υ (|x|) (8.9)

holds for all x ∈ R
n and all t ∈ [0,∞).

We use the following assumptions:

Assumption 8.1 The function f in (8.8) satisfies f(t, 0) = 0 for all t ∈ R

and is decrescent, and a non-strict Lyapunov function V1 for (8.8) is known.
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Assumption 8.1 provides two functions α1, α2 ∈ K∞ such that

α1(|x|) ≤ V1(t, x) ≤ α2(|x|) (8.10)

for all x ∈ R
n and all t ∈ [0,∞); we assume that these functions are known.

We refer to the conditions of the next assumption as Matrosov Conditions.

Assumption 8.2 There is an integer j ∈ N, decrescent functions Vi :
[0,∞) × R

n → R for i = 2, 3, . . . , j, positive semi-definite decrescent func-
tions Ni : [0,∞) × R

n → R for i = 1, . . . , j, continuous functions χi :
[0,∞)×R

n×R
i−1 → R for i = 2, . . . , j, and continuous positive semi-definite

functions χ∗i : R
n × R

i−1 → R for i = 2, . . . , j, such that
∣∣χi(t, x, r1, . . . , ri−1)

∣∣ ≤ χ∗i(x, r1, ..., ri−1) (8.11)

for all x ∈ R
n, t ∈ [0,∞) and non-negative values r1, r2, . . . , ri−1,

χ∗i(x, 0, . . . , 0) = 0 (8.12)

for all x ∈ R
n, and

DV1 ≤ −N1(t, x) ,

DV2 ≤ −N2(t, x) + χ2

(
t, x,N1(t, x)

)
,

DV3 ≤ −N3(t, x) + χ3

(
t, x,N1(t, x), N2(t, x)

)
,

...

DVj ≤ −Nj(t, x) + χj

(
t, x,N1(t, x), . . . , Nj−1(t, x)

)
,

(8.13)

hold for all t ∈ [0,∞) and all x ∈ R
n, where V1 is from Assumption 8.1.

The decrescency conditions in the preceding assumption provide a function
Mb ∈ K∞ such that

j∑

i=1

Ni(t, x) +
j∑

i=1

|Vi(t, x)| ≤ Mb(|x|) (8.14)

holds for all t ∈ [0,∞) and all x ∈ R
n.

Remark 8.1. All of the results of the forthcoming sections will use Assump-
tions 8.1 and 8.2, as well as some other conditions. While the function V1

from Assumption 8.1 is a non-strict Lyapunov function and therefore every-
where non-negative, the auxiliary functions V2, . . . , Vj from Assumption 8.2
do not have to be non-negative-valued. Also, the functions χi in the Matrosov
Conditions are quite general, but they give the specific triangular form (8.13)
where χi is independent of Ni, . . . , Nj for each i.
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We use the following lemmas from [111]. For their proofs, see Appendix
A.1.

Lemma 8.1. Let n ≥ 1 and q ≥ 2 be integers and χ∗ : R
n+q−1 → R be a

non-negative continuous function such that

χ∗(x, 0, ..., 0) = 0 ∀x ∈ R
n. (8.15)

Then, one can determine a continuous everywhere positive non-decreasing
function ρ∗ and a function φ∗ ∈ K∞ such that

χ∗(x, r1, ..., rq−1) ≤ φ∗

(
q−1∑

k=1

rk

)
ρ∗(|x|) (8.16)

for all x ∈ R
n and all non-negative values r1, ..., rq−1.

Lemma 8.2. Let w1, w2 : R
n → R be any continuous positive definite func-

tions, and let V : [0,∞) × R
n → R be any storage function. Let N ∈ N be

arbitrary. Then one can construct a real-valued function L ∈ CN such that
L(0) = 0, L(s) > 0 for all s > 0, and

L
(
V (t, x)

) ≤ w1(x) (8.17)

and ∣∣L′(V (t, x)
)∣∣ ≤ w2(x) (8.18)

hold for all (t, x) ∈ [0,∞) × R
n.

Lemma 8.3. Let Ω : R
n → R be a continuous function. Then, the function

ζ : [0,∞) → R defined by

ζ(r) = 1 +
∫ r+1

0

∫ s1+1

0
. . .
∫ sN−1+1

0

[
sup{z∈Rn:|z|≤sN} |Ω(z)|

]
dsN . . . ds1

is everywhere positive, of class CN , and non-decreasing and

|Ω(x)| ≤ ζ(|x|)

for all x ∈ R
n.

8.3 One Auxiliary Function

The objective of this section is to familiarize the reader with the technique
used throughout the chapter. We explicitly construct a family of strict Lya-
punov functions in the simple case where (8.8) satisfies the conditions of the
classical Mastrosov theorem. In this case, Assumption 8.2 is satisfied with a
single auxiliary function V2.
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Theorem 8.1. Assume that (8.8) satisfies Assumptions 8.1 and 8.2 with j =
2. Also, assume that there is a known positive definite function ω such that

N1(t, x) + N2(t, x) ≥ ω(x) (8.19)

for all t ∈ [0,∞) and all x ∈ R
n. Then, one can determine two non-negative

functions p1 and p2 such that the function

W (t, x) .= p1

(
V1(t, x)

)
V1(t, x) + p2

(
V1(t, x)

)
V2(t, x) (8.20)

is a strict Lyapunov function for (8.8).

Proof. Let

Sa(t, x) = V1(t, x) + V2(t, x) and Sb(t, x) = p2

(
V1(t, x)

)
Sa(t, x), (8.21)

where p2 ∈ C1 is a positive definite function to be specified. From Assumption
8.2,

DSa = DV1 + DV2 ≤ −N1 −N2 + χ2(t, x,N1) . (8.22)

Using (8.11) and (8.12) from Assumption 8.2 and Lemma 8.1, one can de-
termine an explicit function φ ∈ K∞ and an explicit everywhere positive
non-decreasing function ρ such that

|χ2(t, x, r1)| ≤ φ(r1)ρ(|x|) (8.23)

for all x ∈ R
n and r1 ≥ 0. This inequality and (8.19) yield

DSa ≤ −ω(x) + φ(N1)ρ(|x|) and

DSb ≤ −p2(V1)ω(x) + p2(V1)φ(N1)ρ(|x|) + p′2(V1)SaDV1

(8.24)

We consider the following two cases:
Case 1. N1 ≤ p2(V1). Since φ is non-decreasing, it follows that the inequal-

ity p2(V1)φ(N1)ρ(|x|) ≤ p2(V1)φ
(
p2(V1)

)
ρ(|x|) is satisfied.

Case 2. N1 ≥ p2(V1). Then p2(V1)φ(N1)ρ(|x|) ≤ N1φ(N1)ρ(|x|) is satisfied.
It follows that

p2(V1)φ(N1)ρ(|x|) ≤ N1φ(N1)ρ(|x|) + p2(V1)φ
(
p2(V1)

)
ρ(|x|) (8.25)

for all x ∈ R
n and t ∈ [0,∞). Letting α1 be the function from (8.10) provided

by Assumption 8.1 and Mb be the function satisfying (8.14), Lemma 8.2
provides a positive definite function p2 such that

p2(V1) ≤ inf
{
φ−1

(
ω(x)

2ρ(|x|)
)

,
α1(|x|)

Mb(|x|) + 1

}
and

|p′2(V1)| ≤ 1
Mb(|x|) + 1

(8.26)
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for all (t, x) ∈ [0,∞) × R
n. For such a choice, (8.25) gives

p2(V1)φ(N1)ρ(|x|) ≤ N1φ(N1)ρ(|x|) +
1
2
p2(V1)ω(x) (8.27)

for all (t, x) ∈ [0,∞) × R
n. Combining (8.24) and (8.27), we obtain

DSb ≤ −1
2
p2(V1)ω(x) + N1φ(N1)ρ(|x|) + p′2(V1)SaDV1 . (8.28)

From (8.14) and (8.26) and the inequality DV1 ≤ −N1, we obtain

DSb ≤ − 1
2p2(V1)ω(x) + N1φ

(
Mb(|x|) + 1

)
ρ(|x|) + |DV1|

≤ − 1
2p2(V1)ω(x) +

[
φ
(
Mb(|x|) + 1

)
ρ(|x|) + 1

]|DV1| .
(8.29)

The function Γ1(s) = φ(Mb(s)+1)ρ(s)+1 defined on [0,∞) is everywhere
positive and non-decreasing over [0,∞). This and (8.10) imply that

DSb ≤ −1
2
p2(V1)ω(x) + Γ1

(
α−1

1 (V1)
)|DV1| . (8.30)

For an arbitrary positive integer N , Lemma 8.3 constructs a non-decreasing
everywhere positive CN function Γ2 such that

max
{
2, Γ1(α−1

1 (r))
} ≤ Γ2(r) ∀r ≥ 0 . (8.31)

Hence, we obtain the inequality

DSb ≤ −1
2
p2(V1)ω(x) + Γ2(V1)|DV1| . (8.32)

The formula for W in (8.20) with

p1(r) =

⎧
⎨

⎩

1
r

∫ r
0
Γ2(l) dl + p2(r), r 
= 0

0, r = 0

and p2 satisfying (8.26) is

W (t, x) =
∫ V1(t,x)

0

Γ2(l) dl + p2

(
V1(t, x)

)
V1(t, x)

+p2

(
V1(t, x)

)
V2(t, x)

=
∫ V1(t,x)

0

Γ2(l) dl + Sb(t, x)

(8.33)

so (8.32) implies that DW ≤ − 1
2p2(V1)ω(x). We deduce from (8.10) that

there exists a positive definite function γ2 such that 1
2p2(V1)ω(x) ≥ γ2(x).
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Moreover, W satisfies W (t, x) ≥ Γ2(0)V1(t, x) + p2(V1(t, x))V2(t, x) for all
t ∈ [0,∞) and x ∈ R

n. Using (8.14) and (8.10), we obtain W (t, x) ≥
Γ2(0)α1(|x|) − p2(V1(t, x))Mb(|x|). From (8.26) and (8.31),

Γ2(0) ≥ 2 and p2

(
V1(t, x)

) ≤ α1(|x|)
Mp(|x|) + 1

,

and therefore W (t, x) ≥ α1(|x|). Finally, one can easily prove that W is
decrescent in norm. It follows that W is a strict Lyapunov function for system
(8.8). This completes the proof. �

8.4 Several Auxiliary Functions

We next extend Theorem 8.1 to the case where instead of only one auxiliary
function, there are several auxiliary functions.

Theorem 8.2. Assume that the system (8.8) satisfies Assumptions 8.1 and
8.2, and that there is a positive definite function ω such that

j∑

i=1

Ni(t, x) ≥ ω(x) ∀x ∈ R
n and t ∈ [0,∞). (8.34)

Then, one can construct non-negative functions pi such that

W (t, x) =
j∑

i=2

pi
(
V1(t, x)

)
Vi(t, x) + p1(V1) (8.35)

is a strict Lyapunov function for system (8.8).

Proof. We prove Theorem 8.2 by induction on the number of auxiliary func-
tions in Assumption 8.2. The case of one auxiliary function follows from
Theorem 8.1. Assume that the result of Theorem 8.2 holds whenever its as-
sumptions are satisfied with j − 2 auxiliary functions with j ≥ 3. Let us
prove that it holds when the assumptions are satisfied with j − 1 auxiliary
functions. To this end, consider a system (8.8) satisfying the assumptions of
Theorem 8.2 with j − 1 auxiliary functions V2, V3, . . . , Vj , where j ≥ 3. We
construct a new set of j − 2 auxiliary functions for which the assumptions of
Theorem 8.2 are satisfied.

By assumption, the non-strict Lyapunov function V1 and the j−1 auxiliary
functions V2, . . . , Vj are known, so we can define the function

Sa(t, x) .=
j∑

i=1

Vi(t, x) . (8.36)
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By Assumption 8.2 and (8.34),

DSa ≤ −
j∑

i=1

Ni +
j∑

i=2

χi(t, x,N1, . . . , Ni−1)

≤ −ω(x) +
j∑

i=2

χi(t, x,N1, . . . , Ni−1) .

(8.37)

Using the inequality (8.11) in Assumption 8.2 and Lemma 8.1, we can con-
struct an explicit function φ ∈ K∞ and a non-decreasing everywhere positive
function ρ such that

∣∣∣∣∣

j∑

i=2

χi(t, x,N1, . . . , Ni−1)

∣∣∣∣∣ ≤ φ

(
j−1∑

i=1

Ni

)
ρ(|x|) . (8.38)

It follows that

DSa ≤ −ω(x) + φ

(
j−1∑

i=1

Ni

)
ρ(|x|) . (8.39)

By following the proof of Theorem 8.1 verbatim from (8.24) to (8.28)
except with N1 replaced by

j−1∑

i=1

Ni,

we can determine a positive definite function p∗ and an everywhere positive
increasing function Γa ∈ C1 such that the time derivative of

Sb(t, x) = p∗(V1(t, x))Sa(t, x) (8.40)

along the trajectories of (8.8) satisfies

DSb ≤ −1
2
p∗(V1)ω(x) +

1
2

(
j−1∑

i=1

Ni

)
Γa(V1) − 1

2
Γa(V1)DV1 . (8.41)

Let
νa(t, x) = Sb(t, x) +

1
2
Γa(V1(t, x))Vj−1(t, x).

Then,

Dνa ≤ − 1
2p∗(V1)ω(x) + 1

2

(
j−1∑

i=1

Ni

)
Γa(V1) − 1

2Γa(V1)DV1

+ 1
2Γ

′
a(V1)Vj−1DV1 + 1

2Γa(V1)DVj−1 .

(8.42)
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We can use (8.10) and (8.14) to determine an everywhere positive increasing
function Γb such that

∣∣∣∣−
1
2
Γa(V1) +

1
2
Γ ′
a(V1)Vj−1

∣∣∣∣ ≤ Γb(V1) . (8.43)

It follows that the time derivative of

νb(t, x) = νa(t, x) +
∫ V1(t,x)

0

Γb(l) dl (8.44)

along the trajectories of (8.8) satisfies

Dνb ≤ − 1
2p∗(V1)ω(x) + 1

2

(
j−1∑

i=1

Ni

)
Γa(V1) + 1

2Γa(V1)DVj−1 . (8.45)

Using Assumption 8.2, we deduce that

Dνb ≤ − 1
2p∗(V1)ω(x) + 1

2

(
j−2∑

i=1

Ni

)
Γa(V1)

+ 1
2Γa(V1)χj−1(t, x,N1, . . . , Nj−2) .

(8.46)

One can easily prove that νb is decrescent in norm, and use (8.14) to determine
a function Mbn ∈ K∞ such that

j−1∑

i=1

Ni(t, x)+
1
2
p∗(V1(t, x))ω(x)+

j−2∑

i=1

|Vi(t, x)|+ |νb(t, x)| ≤ Mbn(|x|) (8.47)

for all (t, x) ∈ [0,∞) × R
n. It follows that the system (8.8) satisfies the

assumptions of Theorem 8.2 with the j − 2 auxiliary functions V2, . . . , Vj−2

and νb. By our induction assumption, we can therefore explicitly construct a
strict Lyapunov function for (8.8). This gives the theorem. �

8.5 Persistency of Excitation

We next weaken the requirement (8.34) by assuming that the function

j∑

i=1

Ni(t, x) (8.48)
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can be equal to zero at some instants t for some choices of x 
= 0. Our strategy
is to replace the positive definite lower bound on (8.48) with a time-varying
lower bound involving PE.

Theorem 8.3. Assume that the system (8.8) satisfies Assumptions 8.1 and
8.2 for some j ≥ 2. Let p̄ : R → R be any continuous everywhere non-negative
function for which there are positive constants τ , pm, and pM satisfying

∫ t

t−τ

p(l) dl ≥ pm and p(t) ≤ pM ∀t ∈ R. (8.49)

Assume that there is a positive definite function μ such that

j∑

i=1

Ni(t, x) ≥ p(t)μ(x) (8.50)

for all x ∈ R
n and t ∈ R. Then, one can construct non-negative functions pi

such that

W (t, x) =
j∑

i=2

pi
(
V1(t, x)

)
Vi(t, x) + p1

(
V1(t, x)

)

+pj+1

(
V1(t, x)

) (∫ t

t−τ

∫ t

s

p(l) dl ds
) (8.51)

is a strict Lyapunov function for system (8.8).

Proof. We construct a function Vj+1 such that the condition (8.34) of Theo-
rem 8.2 is satisfied with the auxiliary functions V2, . . . Vj+1. Since μ is positive
definite, Lemma 8.2 provides a positive definite real-valued function γ ∈ C1

such that
μ(x) ≥ γ

(
V1(t, x)

)
and

∣∣γ′(V1(t, x))
∣∣ ≤ 1 (8.52)

for all (t, x) ∈ [0,∞) × R
n. Consider the function

C(t, x) =
(∫ t

t−τ

∫ t

s

p(l) dl ds
)

γ
(
V1(t, x)

)
, (8.53)

which is decrescent in norm. The time derivative of C along the trajectories
of (8.8) satisfies

DC = τp(t)γ(V1) −
(∫ t

t−τ

p(l) dl
)

γ(V1) +
(∫ t

t−τ

∫ t

s

p(l) dl ds
)

γ′(V1)DV1.

Using (8.49) and (8.52), we deduce that

DC ≤ τp(t)μ(x) − pmγ(V1(t, x)) + τ2pM |DV1| . (8.54)

Next notice that the time derivative of the function
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Vj+1(t, x) .= C(t, x) + τ2pMV1(t, x) + τ

j∑

i=1

Vi(t, x) (8.55)

along the trajectories of (8.8) satisfies

DVj+1 ≤ τp(t)μ(x) − pmγ(V1) + τ2pM |DV1| + τ2pMDV1 + τ

j∑

i=1

DVi .

Using the fact that DV1 is non-positive and Assumption 8.2, we deduce from
(8.50) that

DVj+1 ≤ τp(t)μ(x) − pmγ(V1) − τ

j∑

i=1

Nj

+τ

j∑

i=2

χi

(
t, x,N1, . . . , Ni−1

)

≤ −Nj+1 + τ

j∑

i=2

χi

(
t, x,N1, . . . , Ni−1

)
,

(8.56)

where Nj+1 = pmγ(V1). Moreover, using (8.14) and (8.52), we can easily
determine a function Mbn ∈ K∞ such that

j+1∑

i=1

Ni(t, x) +
j+1∑

i=1

∣∣Vi(t, x)
∣∣ ≤ Mbn(|x|) . (8.57)

It readily follows that Theorem 8.2 applies, so we get a strict Lyapunov
function for the system (8.8) with the features of (8.51). �

8.6 Applications

We next use our general Matrosov constructions to extend the Jurdjevic-
Quinn and LaSalle results from Chapters 4 and 5 to time-varying systems.
For simplicity, we assume that there is a constant T > 0 such that all of the
functions of (t, x) in this section are periodic in t with the same period T .

8.6.1 Jurdjevic-Quinn Theorems

The Jurdjevic-Quinn approach to time-invariant systems applies to control
affine dynamics ẋ = f(x) + g(x)u that admit a storage function V : R

n →
[0,∞) and a smooth scalar function ψ such that
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LfV (x) ≤ 0 ∀x ∈ R
n and

[LfV (x) = 0 and LgV (x) = 0 and x 
= 0] ⇒ Lfψ(x) < 0 .
(8.58)

To extend this work to forward complete time-varying systems

ẋ = f(t, x) + g(t, x)u (8.59)

with t ∈ R, x ∈ R
n, u ∈ R

m, and f(t, 0) = 0 for all t, we assume:

Assumption 8.3 The functions f and g are locally Lipschitz in x, and the
system ẋ = f(t, x) satisfies Assumption 8.1 for some function V = V1. Also,
there exist a C1 decrescent function ψ : [0,∞)×R

n → R, a function φ ∈ K∞,
an everywhere positive non-decreasing function Γ ∈ C1, and a non-positive
function B2(t, x) such that with the choice

B1(x, t) =
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x), (8.60)

we have

∂ψ

∂t
(t, x) +

∂ψ

∂x
(t, x)f(t, x)

≤ B2(t, x) + φ

(
−B1(x, t) +

∣∣∣∣
∂V

∂x
(t, x)g(t, x)

∣∣∣∣
2
)

Γ (|x|)
(8.61)

for all t ∈ [0,∞) and x ∈ R
n.

Remark 8.2. The inequality (8.61) is a time-varying analog of the latter con-
dition in (8.58).

Proposition 8.1. Assume that the system (8.59) satisfies the preceding con-
ditions. Choose the functions

V1(t, x) = V (t, x) , V2(t, x) = ψ(t, x) , (8.62)

N1(t, x) = −B1(x, t) +
∣∣∣∣
∂V

∂x
(t, x)g(t, x)

∣∣∣∣
2

, (8.63)

N2(t, x) = −B2(t, x) , and (8.64)

χ2(t, x, r1) =
∣∣∣∣
∂ψ

∂x
(t, x)g(t, x)

∣∣∣∣
√
r1 + φ (r1)Γ (|x|) . (8.65)

Then (8.59) in closed-loop with the control law

u = −
[
∂V

∂x
(t, x)g(t, x)

]�
, (8.66)

satisfies Assumption 8.2 with the choices (8.62)-(8.65).
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Proof. The time derivatives of V1 and V2 along the trajectories of (8.59) in
closed-loop with (8.66) satisfy V̇1 = −N1(t, x) and

V̇2 =
∂ψ

∂t
(t, x) +

∂ψ

∂x
(t, x)

[
f(t, x) − g(t, x)

[
∂V

∂x
(t, x)g(t, x)

]�]
. (8.67)

We deduce from (8.61) and (8.64) that

V̇2 ≤ −N2(t, x) + φ

(
−B1(x, t) +

∣∣∣∣
∂V

∂x
(t, x)g(t, x)

∣∣∣∣
2
)

Γ (|x|)

+
∣∣∣∣
∂ψ

∂x
(t, x)g(t, x)

∣∣∣∣

∣∣∣∣
∂V

∂x
(t, x)g(t, x)

∣∣∣∣ .

(8.68)

This allows us to conclude. �

Remark 8.3. If the functions V1 and V2 constructed in Proposition 8.1 also
satisfy conditions of Theorem 8.3, then we can construct a strict Lyapunov
function for (8.59) in closed-loop with (8.66).

8.6.2 LaSalle Type Conditions

In Chap. 5, we constructed strict Lyapunov functions for systems whose GAS
can be deduced from LaSalle Invariance. We now extend the results to time-
varying systems, assuming as before that there is a constant T > 0 such that
all of the functions of (t, x) to follow are periodic in t with the same period
T .

Proposition 8.2. Assume that the system (8.8) satisfies Assumption 8.1,
and set

b1(t, x) = DV1(t, x) and bi+1(t, x) = Dbi(t, x) for all i ≥ 1 . (8.69)

Given any integer j ≥ 2, define the functions

Vi(t, x) = −bi−1(t, x)bi(t, x) for all i ∈ {2, . . . , j} , (8.70)

N1(t, x) = −b1(t, x), Ni(t, x) = b2i (t, x) for all i ≥ 2 , (8.71)

and
χi(t, x, r1, ..., ri−1) =

(√
ri−1 + r1

) |bi+1(t, x)| . (8.72)

The preceding functions satisfy the requirements of Assumption 8.2.

Proof. The definition of N1 gives

DV1(t, x) = −N1(t, x) ≤ 0 , (8.73)
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and for all i ≥ 2,

DVi = −b2i (t, x) − bi−1(t, x)bi+1(t, x)

≤ −Ni(t, x) +
(√

Ni−1(t, x) + N1(t, x)
)
|bi+1(t, x)| .

(8.74)

This immediately gives the requirements of Assumption 8.2. �

Remark 8.4. As in the Jurdjevic-Quinn case, if the functions Vi constructed
in Proposition 8.2 also satisfy conditions of Theorem 8.3, then we can use
them to construct a strict Lyapunov function.

8.7 Sign Constrained Controller

Let us show how the strict Lyapunov function construction from Sect. 8.1
follows from our general Matrosov approach. We must show that

V �(t, x) =
(

5V 2
1 (x)

16 [1 + V 2
1 (x)]

)3 {
Ṽ (t, x) + 5

√
2
√

1 + V1(x)V2(t, x)
}

+
(10

√
2 + 1)4

14
[(1 + V1(x))7 − 1],

(8.75)

is a global strict Lyapunov function for
{

ẋ1 = cos2(t)x2

ẋ2 = − cos2(t)x1 − cos4(t)max{0, x3
2} ,

(8.76)

where
Ṽ (t, x) = 6V1(x) + V2(t, x) + V3(t, x) + C(t, x),

V2(t, x) = x1, V3(t, x) = cos4(t)x1x2, and

C(t, x) = 1
2π

(∫ t
t−2π

∫ t
m

cos6( )d dm
)

V 2
1 (x)

1+V 2
1 (x)

.

(8.77)

It is tempting to try to build a strict Lyapunov function for (8.76) from the
arguments of Sect. 8.6.2, using the non-strict Lyapunov function

V1(x) =
1
2
|x|2. (8.78)

However, such an approach would not apply, because the Lie derivative of
V1 along the vector field of (8.76) is identically equal to zero on the set
R×(−∞, 0) and therefore all the successive derivatives of V1 along the trajec-
tories of (8.76) are identically equal to zero on the set R× (−∞, 0). However,
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we can find auxiliary functions satisfying Assumptions 8.2, and then verify
that the assumptions of Theorem 8.3 are satisfied, as follows.

8.7.1 Verifying the Assumptions of the Theorem

Consider the positive definite quadratic function V1(x) in (8.78). Its derivative
along the trajectories of (8.76) satisfies

V̇1 = −N1(t, x) , (8.79)

where
N1(t, x) = cos4(t)x3

2 max {0, x2} ≥ 0 . (8.80)

We next choose the auxiliary functions

V2(t, x) = x1 and V3(t, x) = cos4(t)x1x2 (8.81)

and the non-negative functions

N2(t, x) = − cos2(t)min {0, x2} and N3(t, x) = cos6(t)x2
1 . (8.82)

Along the trajectories of (8.76), we have the time derivatives

V̇2 = cos2(t)max {0, x2} + cos2(t)min {0, x2}
≤ −N2(t, x) + N

1/4
1 (t, x) ,

(8.83)

and

V̇3 = −4 cos3(t) sin(t)x1x2 + cos4(t) cos2(t)x2x2

+ cos4(t)x1(− cos2(t)x1 − cos4(t)max{0, x3
2})

= −N3(t, x) + [−4 cos(t) sin(t)x1 + cos4(t)x2] cos2(t)x2

− cos8(t)x1 max{0, x3
2} .

(8.84)

It follows that

V̇3 ≤ −N3(t, x) + 5|x|| cos2(t)x2| + cos8(t)|x1|max{0, x3
2}

≤ −N3(t, x) + 5
√

2
√

V1(x)| cos2(t)x2| +
√

2
√

V1(x)N3/4
1 (t, x) .

(8.85)

Using

| cos2(t)x2| = | cos2(t)min {0, x2} + cos2(t)max {0, x2} |
≤ N2(t, x) + N

1/4
1 (t, x)

(8.86)
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we obtain
V̇3 ≤ −N3(t, x) + χ3

(
t, x,N1(t, x), N2(t, x)

)
, (8.87)

where

χ3(t, x, r1, r2) =
√

2
√

V1(x)
{
5 +

√
r1

}
r

1
4
1 + 5

√
2
√

V1(x)r2 . (8.88)

Since χ3(t, x, 0, 0) = 0 for all (t, x) ∈ [0,∞)×R
2, it follows that Assumptions

8.1 and 8.2 hold.
In addition,

3∑

i=1

Ni(t, x) = cos4(t)x3
2 max {0, x2}

− cos2(t)min {0, x2} + cos6(t)x2
1

≥ cos6(t)μ(x) ,

(8.89)

in terms of the positive definite function

μ(x) = x2
1 − min {0, x2} + x3

2 max {0, x2}

≥ x2
1 +

|x3
2|

1 + |x3
2|
(− min {0, x2}

)
+

|x3
2|

1 + |x3
2|

max {0, x2}

= x2
1 +

x4
2

1 + |x3
2|

.

(8.90)

Hence, Theorem 8.3 applies and so a strict Lyapunov function can be con-
structed for the system (8.76).

8.7.2 Strict Lyapunov Function Construction

We now construct the strict Lyapunov function whose existence is guaranteed
by the theorem. Set

S(t, x) = V1(x) + V2(t, x) + V3(t, x) and

C(t, x) = 1
2π

(∫ t

t−2π

∫ t

m

cos6( )d dm
)

V 2
1 (x)

1+V 2
1 (x)

,

(8.91)

where V1(x) = 1
2 |x|2, and V2 and V3 are from (8.81). The inequalities (8.83),

(8.87), (8.89), and (8.90) imply that
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Ṡ ≤ − cos6(t)
(
x2

1 +
x4

2

1 + |x3
2|
)

+χ3

(
t, x,N1(t, x), N2(t, x)

)
+ N

1
4
1 (t, x) .

(8.92)

For all x ∈ R
2, we have 2V 2

1 (x) ≤ x4
1 + x4

2, hence also

x2
1 +

x4
2

1 + |x3
2|

≥ x4
1

1 + x4
1

+
x4

2

2 + x4
2

≥ x4
1 + x4

2

2 + x4
1 + x4

2

≥ V 2
1 (x)

1 + V 2
1 (x)

.

This gives

Ṡ ≤ − cos6(t)
V 2

1 (x)
1 + V 2

1 (x)

+χ3

(
t, x,N1(t, x), N2(t, x)

)
+ N

1/4
1 (t, x) .

(8.93)

Also,

Ċ = cos6(t)
V 2

1 (x)
1 + V 2

1 (x)
− 1

2π

(∫ t

t−2π

cos6( )d 
)

V 2
1 (x)

1 + V 2
1 (x)

+
1
2π

(∫ t

t−2π

∫ t

m

cos6( )d dm
)

2V1(x)
(1 + V 2

1 (x))2
V̇1(t, x) ,

hence

Ċ ≤ cos6(t)
V 2

1 (x)
1 + V 2

1 (x)
− 1

2π

(∫ t

t−2π

cos6( )d 
)

V 2
1 (x)

1 + V 2
1 (x)

≤ cos6(t)
V 2

1 (x)
1 + V 2

1 (x)
− 5

16
V 2

1 (x)
1 + V 2

1 (x)
,

(8.94)

since V̇1 ≤ 0 everywhere.
Let S1(t, x) = S(t, x) + C(t, x) and

S2(t, x) = S1(t, x) + 5
√

2
√

1 + V1(x)V2(t, x)

= V1(x) + C(t, x) + cos4(t)x1x2

+
(
1 + 5

√
2
√

1 + V1(x)
)
x1 .

(8.95)

Then

Ṡ1 ≤ − 5
16

V 2
1 (x)

1 + V 2
1 (x)

+ χ3

(
t, x,N1(t, x), N2(t, x)

)
+ N

1/4
1 (t, x) (8.96)

and
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Ṡ2 ≤ − 5
16

V 2
1 (x)

1 + V 2
1 (x)

+ χ3

(
t, x,N1(t, x), N2(t, x)

)
+ N

1/4
1 (t, x)

+5
√

2
V̇1

2
√

1 + V1(x)
V2(t, x) + 5

√
2
√

1 + V1(x)V̇2

≤ − 5
16

V 2
1 (x)

1 + V 2
1 (x)

+
[√

2
√

V1(x)
(
5 +

√
N1(t, x)

)
+ 1

]
N

1/4
1 (t, x)

+5
√

2
√

V1(x)N2(t, x) − 5
√

2
N1(t, x)

2
√

1 + V1(x)
V2(t, x)

+5
√

2
√

1 + V1(x)
[
−N2(t, x) + N

1/4
1 (t, x)

]
.

(8.97)

It follows that

Ṡ2 ≤ − 5
16

V 2
1 (x)

1 + V 2
1 (x)

+
[√

2
√

V1(x)
(
5 +

√
N1(t, x)

)
+ 1

]
N

1/4
1 (t, x)

−5
√

2
N1(t, x)

2
√

1 + V1(x)
V2(t, x) + 5

√
2
√

1 + V1(x)N1/4
1 (t, x)

≤ − 5
16

V 2
1 (x)

1 + V 2
1 (x)

+ 5N1(t, x)

+
[√

2
{√

V1(x)
(
5 +

√
N1(t, x)

)
+ 5

√
1 + V1(x)

}
+ 1

]
N

1/4
1 (t, x),

where the last inequality followed from
∣∣∣∣∣5
√

2
N1(t, x)

2
√

1 + V1(x)
V2(t, x)

∣∣∣∣∣ ≤ 5N1(t, x)

and grouping terms. Using the inequality N1(t, x) ≤ 4V 2
1 (x), we deduce that

Ṡ2 ≤ − 5
16

V 2
1 (x)

1 + V 2
1 (x)

+ 5N1(t, x)

+
[√

2
{√

V1(x)
(
5 + 2V1(x)

)
+ 5

√
1 + V1(x)

}
+ 1

]
N

1/4
1 (t, x) .

This readily gives
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Ṡ2 ≤ − 5
16

V 2
1 (x)

1 + V 2
1 (x)

+ (10
√

2 + 1)
{
1 + V1(x)

} 3
2 N

1/4
1 (t, x) + 5N1(t, x).

Let

S3(t, x) =
(

5
16

V 2
1 (x)

1 + V 2
1 (x)

)3 {
S2(t, x) + 5V1(x)

}
. (8.98)

Then

Ṡ3 ≤ −
(

5
16

V 2
1

1 + V 2
1

)4

+

{(
5
16

V 2
1

1 + V 2
1

)3
}{

(10
√

2 + 1)(1 + V1)3/2N
1/4
1

}

−6
(

5
16

)3
V 5

1

(1 + V 2
1 )4

(S2 + 5V1)N1 .

(8.99)

By Young’s Inequality

ab ≤ 3
4
a

4
3 +

1
4
b4

for a ≥ 0 and b ≥ 0, applied to the terms in braces in (8.99), we deduce that

Ṡ3 ≤ −1
4

(
5
16

V 2
1

1 + V 2
1 (x)

)4

+
1
4

(
(10

√
2 + 1)(1 + V1)

3
2 N

1/4
1

)4

−6
(

5
16

)3
V 5

1

(1 + V 2
1 )4

S2N1 .

Recalling the formula (8.95) for S2, noting that V1(x) + C(t, x) ≥ 0, and
reorganizing terms, we get

Ṡ3 ≤ −1
4

(
5
16

V 2
1

1 + V 2
1

)4

+
1
4
(
10

√
2 + 1

)4 (
1 + V1

)6
N1

+6
(

5
16

)3
V 5

1

(1 + V 2
1 )4

∣∣cos4(t)x1x2 +
(
1 + 5

√
2
√

1 + V1

)
x1

∣∣N1 .

Using ∣∣∣cos4(t)x1x2 + (1 + 5
√

2
√

1 + V1(x))x1

∣∣∣

≤ V1(x) +
(
1 + 5

√
2
√

1 + V1(x)
)√

2
√

V1(x)

≤ 13
(
1 + V1(x)

)
(8.100)

we deduce that
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Ṡ3 ≤ −1
4

(
5
16

V 2
1 (x)

1 + V 2
1 (x)

)4

+

[
1
4
(
10

√
2 + 1

)4
(1 + V1(x))6 + 78

(
5
8

)3
V 5

1 (x)
(1 + V 2

1 (x))3

]
N1(t, x)

≤ −1
4

(
5
16

V 2
1 (x)

1 + V 2
1 (x)

)4

+
1
2
(
10

√
2 + 1

)4 (
1 + V1(x)

)6
N1(t, x) .

.

Let

S4(t, x) = S3(t, x) +
(10

√
2 + 1)4

14
[(1 + V1(x))7 − 1]

=
{

6V1(x) + C(t, x) +
[
1 + 5

√
2
(
1 +

√
V1(x)

)]
x1

+ cos4(t)x1x2

}(
5V 2

1 (x)
16(1 + V 2

1 (x))

)3

+
(10

√
2 + 1)4

14
[
(1 + V1(x))7 − 1

]
.

(8.101)

Then
Ṡ4 ≤ − 1

4

(
5
16

V 2
1 (x)

1+V 2
1 (x)

)4

. (8.102)

Also, the inequalities (a + b)2 ≤ 2a2 + 2b2 and
∣∣∣6V1(x) + C(t, x) +

[
1 + 5

√
2
(
1 +

√
V1(x)

)]
x1 + cos4(t)x1x2

∣∣∣

≤ 8V1(x) + π + 1
2

[
1 + 5

√
2
(
1 +

√
V1(x)

)]2

≤ (
1 + 5

√
2
)2

+ π + 58V1(x) ≤ 125 [1 + V1(x)] ≤ 250
[
1 + V 2

1 (x)
]

and the formula for S4 give

S4(t, x) ≥ −250
(

5
16

)2
V 4

1 (x)
(1 + V 2

1 (x))2
(1 + V 2

1 (x))

+
(10

√
2 + 1)4

14
(
[1 + V1(x)]7 − 1

)

≥ −250V 4
1 (x) +

(10
√

2 + 1)4

14
(
[1 + V1(x)]7 − 1

) ≥ V1(x) .

Since the right side of (8.102) is negative definite, it follows that S4 is a strict
Lyapunov function for the system (8.76). Since S4 agrees with the function
V � defined in (8.75), this proves our assertions. �
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8.8 Comments

The novelty of Matrosov’s Theorem lies in its use of a non-strict Lyapunov
function and a (not necessarily positive definite) auxiliary function to prove
UGAS [97]. Different generalizations of the Matrosov Theorem involving an
arbitrary number of auxiliary functions have been reported [86]. However, the
proofs in [86, 97] do not construct strict Lyapunov functions. Rather, they
conclude uniform asymptotic stability by directly considering the trajectories
of the system. For another application of the Matrosov approach to robot
manipulators, see [128].

This chapter is largely based on [111]. However, the material in Sects. 8.6
and 8.7 appears here for the first time. Sect. 8.6.2 is an extension of the main
result of [110] to time-varying systems. Similar conditions were used in [86,
Sect. 3.3] to conclude uniform asymptotic stability of time-varying systems.



Chapter 9

Adaptively Controlled Systems

Abstract In the preceding chapters, we saw how to transform non-strict
Lyapunov functions into explicit strict Lyapunov functions for cases where
the system dynamics are completely known. However, there are important
cases where the system parameters are unknown, and where the objectives
are to simultaneously (a) design controllers that force the trajectories to track
a prescribed reference trajectory and (b) estimate the unknown parameters.
In this chapter, we present a generalization of strictification that can be used
to meet these two objectives. It involves constructing global strict Lyapunov
functions for an augmented system that includes the tracking error and the
parameter estimation error. Our strict Lyapunov function approach makes it
possible to quantify the effects of other types of uncertainty in the model as
well, using the input-to-state stability framework. We illustrate our results
using Rössler’s dynamics and Lorenz systems.

9.1 Overview of Adaptive Control

This chapter is concerned with nonlinear systems

ẋ = f(t, x, θ, u) (9.1)

having a vector θ of unknown constant parameters. Given a sufficiently
smooth reference trajectory xr(t), the adaptive tracking control problem for
(9.1) involves finding a dynamic feedback controller

u = u(t, x, θ̂),
·
θ̂ = τ(t, x, θ̂) (9.2)

guaranteeing that xr (t) − x (t) → 0 as t → +∞ while keeping all closed-
loop signals bounded. In general, solving the adaptive tracking problem does
not guarantee parameter identification; i.e., the parameter estimate θ̂ might

253
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not converge to θ, and it might not even converge to a constant vector [74].
As a result, one cannot in general prove asymptotic stability for adaptive
closed-loop systems.

The PE concept that we reviewed in Sect. 6.1 has been linked to the
asymptotic stability of adaptive systems [119]. Using PE, it is possible to
give necessary (and sometimes sufficient) conditions for parameter identifica-
tion. Specifically, the regressor matrix needs to satisfy a PE inequality along
the reference trajectory; see Assumption 9.2 or [59]. In many cases, PE guar-
antees that tracking error convergence can only happen when the adaptation
system identifies the true parameters [150]. Connections between parameter
identification, PE, and uniform asymptotic stability were first shown for lin-
ear systems, but there are now also versions for nonlinear systems. On the
other hand, PE is neither necessary nor sufficient for uniform asymptotic
stability in general [119]. Uniformity with respect to initial times is relevant
in robustness analysis, since it yields stability under persistent disturbances
[54] and rate of convergence information [116].

As we noted in previous chapters, even when a controller gives UGAS, the
classical Lyapunov approach does not give explicit strict Lyapunov functions,
which are generally more useful than non-strict ones when computing stability
gains or quantifying the effects of uncertainty. This motivates our search for
global, explicit, strict Lyapunov functions for the error dynamics for adaptive
tracking problems, under PE. One method for finding such functions would
be to use the variants of Matrosov’s approach from the previous chapters.
While very general, the Matrosov approach requires knowledge of appropriate
auxiliary functions, in order to obtain an explicit strict Lyapunov function.

In this chapter, we give explicit formulas for auxiliary functions, so the
Lyapunov functions we design are completely explicit. In fact, the Lyapunov
functions we obtain are far simpler than the ones that would come from
applying the general Matrosov approach. In addition, our Lyapunov functions
are bounded from below by positive definite quadratic functions near the
origin, which is another desirable feature. We also use the notion of weighting
functions, which have been used in other contexts [35, 60, 167]. The global
strict Lyapunov framework can potentially generalize the UGAS proofs for
adaptive systems. The results of this chapter take a first step towards this
generalization, and are largely based on [100, 101].

9.2 Motivating Example

To further motivate our theory, consider the controlled Rössler dynamics
⎧
⎨

⎩

ẋ1 = θ1x1 + x2 + w1

ẋ2 = −x1 − x3 + w2

ẋ3 = θ2 + x3[x2 − θ3] + w3

(9.3)
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with unknown constant parameters θi and control vector w = (w1, w2, w3).
For the case of no controls, this model was introduced in [144], and it has
been extensively studied in the context of chaotic attractors [88]. The system
(9.3) can be written in the form ẋ = ω(x)θ + u by taking the change of
feedback

u = w −
⎡

⎣
0 −1 0
1 0 1
0 −x3 0

⎤

⎦x, ω(x) =

⎡

⎣
x1 0 0
0 0 0
0 1 −x3

⎤

⎦ , and θ =

⎡

⎣
θ1

θ2

θ3

⎤

⎦ . (9.4)

We consider the task of simultaneously estimating the unknown parameter
vector θ and causing the state x(t) to track a prescribed reference trajectory
xr(t). This leads to the augmented dynamics

{
ẋ = ω(x)θ + us(t, x, θ̂)
˙̂
θ = ν(t, x, θ̂) ,

(9.5)

where θ̂ is the estimate for θ. For simplicity, we take the controllers

us(t, x, θ̂) = ẋr(t) − ω(x)θ̂ + e and
ν(t, x, θ̂) = −ω(x)�(xr(t) − x).

(9.6)

This leads to the closed-loop dynamics
{

ė = −ω(x)θ̃ − e
˙̃
θ = ω(x)�e

(9.7)

for the combined error

(e, θ̃) = (xr − x, θ − θ̂),

since θ is constant. It is immediate that

V1(e, θ̃) =
1
2
|(e, θ̃)|2

is a non-strict Lyapunov function for (9.7). However, it is by no means clear
how to construct a global strict Lyapunov function for (9.7), or even whether
(9.7) is UGAS for an arbitrary reference trajectory xr.

To construct a global strict Lyapunov function for (9.7), we assume that
the C1 reference trajectory xr has the form

xr(t) =
(
x1r(t), x2r(t), cos(t)

)
(9.8)

and that it satisfies
max{|xr|∞, |ẋr|∞} ≤ 2 (9.9)
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and ∫ t

t−2π

x2
1r(l) dl ≥ 0.5 ∀t ∈ R. (9.10)

Under the preceding assumptions, we can show that (9.7) admits the global
strict Lyapunov function

V �(t, e, θ̃) = θ̃ω(xr(t))�e + 2
∫ V1(e,θ̃)

0
J(m)dm + 2

√
5V1(e, θ̃)

+ 1
2π θ̃

[∫ t
t−2π

∫ t
m ω(xr( ))�ω(xr( ))d dm

]
θ̃,

(9.11)

where

J(m) = 8π
[√

5
(
2 + 3

√
2m

)
+ 40π

√
1 +

(√
2m + 2

)2
]2

+4
√

5
√

1 +
(√

2m + 2
)2

+ 0.5.
(9.12)

We now turn to our general theory that includes the strict Lyapunov function
construction (9.11) as a special case.

9.3 Assumptions and Main Construction

For a given vector θ ∈ R
p of unknown constant parameters, we consider

dynamical systems of the form

ẋ = ω(x)θ + u (x, u ∈ R
n). (9.13)

Fix a C1 function xr : R → R
n which we call a reference trajectory. Let R

n×p

denote the set of all n × p real matrices. For square matrices M and N of
the same size, M ≥ N means M −N is non-negative definite. We make the
following two assumptions throughout the chapter:

Assumption 9.1 A constant B > 0 such that max{|xr|∞, |ẋr|∞} ≤ B is
known.

Assumption 9.2 The entries ωij of ω = [ωij ] : R
n → R

n×p are C1. Also,
there are known positive constants μ and T such that

μIp ≤
∫ t

t−T

ω(xr(l))�ω(xr(l)) dl

for all t ∈ R.

Assumption 9.2 is the classical PE condition [84]. We use the functions

ω̄(l) = max{||ω(z)|| : |z| ≤ l}
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and

ω̄1(l) = sup
{∣∣∣∣

∣∣∣∣
d

dt
ω(σ(t))

∣∣∣∣

∣∣∣∣
∞

: σ ∈ C1,max
{|σ|∞, |σ̇|∞} ≤ l

}}
,

where || · ||∞ is the induced matrix sup norm. Then Assumption 9.1 gives
|| ddtω(xr(t))||∞ ≤ ω̄1(B).

A function F(t, d, p) is uniformly bounded in p provided there is an every-
where positive increasing function α such that |F(t, d, p)| ≤ α(|p|). Here and
in the sequel, all (in)equalities should be understood to hold globally unless
otherwise indicated. We also omit the arguments of our functions when they
are clear.

Fix a continuous function K : R
n → R

n×n that has positive constants c
and K̄ such that

ξ�K(ξ)ξ ≥ c|ξ|2 and ||K(ξ)|| ≤ K̄ ∀ξ ∈ R
n. (9.14)

Let θ̂ denote the state of the estimator of the unknown parameter θ ∈ R
p in

(9.13), set (e, θ̃) = (xr − x, θ − θ̂), and choose the augmented dynamics
{

ẋ = ω(x)θ + us(t, x, θ̂)
˙̂
θ = ν(t, x, θ̂).

(9.15)

For simplicity, we choose the adaptive controller

us(t, x, θ̂) = ẋr(t) − ω(x)θ̂ + K(e)e

ν(t, x, θ̂) = −ω(x)�(xr(t) − x)
(9.16)

but see Sect. 9.7 for more general K, us, and ν. We then have the closed-loop
error dynamics {

ė = −ω(x)θ̃ −K(e)e
˙̃
θ = ω(x)�e ,

(9.17)

since θ is constant. We will take the non-strict Lyapunov function

V1(e, θ̃) =
1
2
|(e, θ̃)|2. (9.18)

We also set

V4 = V2 + V3, where V2(t, e, θ̃) = θ̃�ω(xr(t))�e and

V3(t, θ̃) =
1
T

θ̃�
[∫ t

t−T

∫ t

m

ω(xr(l))�ω(xr(l)) dl dm
]
θ̃.

(9.19)
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Recalling the constants from Assumptions 9.1 and 9.2, we also use the func-
tions

P5(l) = 2
c

∫ l
0 P4(m) dm + ω̄(B)l, where

P4(l) = T
2μ [P0 + P2(l) + P3(l)]2 + P1(l) + c

2 ,

P3(l) = T ω̄
(√

2l + B
)
ω̄2(B),

P2(l) =
√

2lnp supi,j
{∣∣∣∂ωij(q)

∂q

∣∣∣ : |q| ≤
√

2l + B
}
ω̄(B),

P1(l) = ω̄(B)ω̄
(√

2l + B
)
, and

P0 = max{2ω̄1(B), 2K̄ω̄(B)}.

(9.20)

Note that P5 ∈ C1 on [0,∞), and that

||ω(x)|| ≤ ω̄(|e| + B) and ||ω(xr(t))|| · ||ω(x)|| ≤ P1(V1(e, θ̃)) (9.21)

for all t ∈ R, x ∈ R
n and θ̃ ∈ R

p when e = xr(t) − x. Also, the constant B
depends only on xr , and ω̄ and ω̄1 depend only on ω and xr , so the following
construction from [101] is a global one:

Theorem 9.1. Under the preceding assumptions, we can transform the non-
strict Lyapunov function (9.18) into the explicit, global, strict Lyapunov func-
tion

V5(t, e, θ̃) = V4(t, e, θ̃) + P5

(
V1(e, θ̃)

)
(9.22)

for (9.17) which is therefore UGAS. Also, (9.17) is LES to 0.

Proof. Sketch. Since

|V2(t, e, θ̃)| ≤ ω̄(B)|θ̃||e| ≤ ω̄(B)V1 and P4(l) ≥ c

2
(9.23)

everywhere, and since P4 is non-decreasing, our formula (9.22) readily gives

V5 ≥ V2 +
2
c

∫ V1

0

P4(l) dl + ω̄(B)V1

≥ 1
2
|e|2 + 1

2 |θ̃|2 =: α1(|(e, θ̃)|)

V5 ≤ ω̄(B)|θ̃||e| + T

2
|θ̃|2ω̄2(B) +

2
c

∫ V1

0

P4(m)dm + ω̄(B)V1

≤ ω̄(B)|θ̃||e| + T

2
|θ̃|2ω̄2(B) +

1
2

[
2
c
P4(V1) + ω̄(B)

]
|(e, θ̃)|2

≤ [
ω̄(B)

{
1 + ω̄(B)T

}
+

2
c
P4(|(e, θ̃)|2)

]|(e, θ̃)|2

=: α2(|(e, θ̃)|)

(9.24)
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everywhere. Hence, V5 is uniformly proper and positive definite. Our condi-
tions (9.14) on K and (9.17) readily give

V̇1 = −e�K(e)e ≤ −c|e|2 and

V̇2 = θ̃�ω(xr(t))�[−ω(x)θ̃ −K(e)e] + θ̃� d[ω(xr(t))]
dt

�
e

+e�ω(x)ω(xr(t))�e.

(9.25)

Here and in the sequel, dots indicate time derivatives along the trajectories
of (9.17). By (9.21), we have the global inequality

e�ω(x)ω
(
xr(t)

)�
e ≤ P1(V1)|e|2.

Also,

max

{
−θ̃�ω

(
xr(t)

)�
K(e)e, θ̃�

d[ω(xr(t))]
dt

�
e

}
≤ 1

2
P0|θ̃||e| . (9.26)

Moreover,

||ω(x) − ω(xr(t))|| ≤ |e|√npmax
i,j

{∣∣∣∣
∂ωij(q)

∂x

∣∣∣∣ : |q| ≤
√

2V1 + B

}

gives the estimate

−θ̃�ω(xr(t))�
[
ω(x) − ω(xr(t))

]
θ̃ ≤ P2(V1)|θ̃||e|. (9.27)

(We used
||A|| ≤ √

npmax
i,j

|aij |

for any A = [aij ] ∈ R
n×p, plus the mean value theorem.) Therefore, (9.25)

gives

V̇2 ≤ −θ̃�ω(xr(t))�ω(x)θ̃ + P0|θ̃||e| + P1(V1)|e|2
≤ −θ̃�ω(xr(t))�ω(xr(t))θ̃ +

[
P0 + P2(V1)

]|θ̃||e| + P1(V1)|e|2 .
(9.28)

By (9.17) and the PE condition in Assumption 9.2, we get

V̇3 = 2
T θ̃�

[∫ t
t−T

∫ t
m

ω(xr(l))�ω(xr(l)) dl dm
]
ω(x)�e

+θ̃�ω(xr(t))�ω(xr(t))θ̃

− 1
T θ̃�

[∫ t
t−T

ω(xr(l))�ω(xr(l)) dl
]
θ̃

≤ 2
T θ̃�

[∫ t
t−T

∫ t
m ω(xr(l))�ω(xr(l)) dl dm

]
ω(x)�e

+θ̃�ω(xr(t))�ω(xr(t))θ̃ − μ
T |θ̃|2.

(9.29)
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By Assumption 9.1 and the relations (9.23) and (9.21),

2
T

θ̃�
[∫ t

t−T

∫ t

m

ω(xr(l))�ω(xr(l)) dl dm
]
ω(x)�e ≤ P3(V1)|θ̃||e|. (9.30)

Combining the preceding inequalities and canceling terms, we obtain

V̇4 ≤ −θ̃�ω(xr(t))�ω(xr(t))θ̃

+
[
P0 + P2(V1)

]|θ̃||e| + P1(V1)|e|2
+P3(V1)|θ̃||e| + θ̃�ω(xr(t))�ω(xr(t))θ̃ − μ

T |θ̃|2
=
{
[P0 + P2(V1) + P3(V1)]|e|

}|θ̃|
+P1(V1)|e|2 − μ

T |θ̃|2.

(9.31)

Applying the inequality

a|θ̃| ≤ T

2μ
a2 +

μ

2T
|θ̃|2,

where a is the term in braces in (9.31), gives

V̇4 ≤ T
2μ

[
P0 + P2(V1) + P3(V1)

]2|e|2 + μ
2T |θ̃|2 + P1(V1)|e|2 − μ

T |θ̃|2
≤ P4(V1)|e|2 − μ

2T |θ̃|2.
(9.32)

Since V̇1 ≤ −c|e|2 everywhere, (9.32) and our choice of P5 in (9.20) give

V̇5 = V̇4 +
[

2
cP4(V1) + ω̄(B)

]
V̇1 ≤ V̇4 + 2

cP4(V1)V̇1

≤ V̇4 − 2P4(V1)|e|2 ≤ −P4

(
V1(e, θ̃)

)|e|2 − μ
2T |θ̃|2 .

(9.33)

By (9.24), V5 is uniformly proper and positive definite. Since P4(l) ≥ c/2 for
all l, we conclude that V5 is a global strict Lyapunov function for (9.17). The
local exponential stability follows from (9.24). �

9.4 Robustness

9.4.1 Statement of ISS Theorem

We illustrate the usefulness of our strict Lyapunov function constructions by
showing that when ω has affine growth, the perturbed error dynamics
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{
ė = −ω(x)[θ̃ + δ(t)] −K(e)e
˙̃
θ = ω(x)�e,

(9.34)

obtained by replacing θ with θ+δ(t) in (9.13) and using (9.16), is ISS with re-
spect to suitably bounded uncertainties δ(t). We assume that δ(t) is bounded
in the essential supremum by a constant δ̄ > 0 that we specify shortly, and
that Assumptions 9.1 and 9.2 hold for some positive constants B, μ and T .

We further assume that there are constants ωM ≥ max{1, ω̄(B)} and η > 0
such that the following affine growth condition holds:

||ω(x)|| ≤ ωM + η|x| and
∣∣∣∂ωij

∂x (x)
∣∣∣ ≤ ωM ∀x, i, j. (9.35)

Hence ω̄1(B) ≤ ωM
√
npB. We prove that (9.34) is ISS by explicitly con-

structing an ISS Lyapunov function, which will lead to explicit formulas for
the functions β ∈ KL and γ ∈ K∞ for the ISS estimate; see Remark 9.2. We
take K(e) ≡ cIn, and the constants

Δ1 = T
μω6

M

[
2 max{c, (1 + B)

√
np} + T {1 + η(B + 2)}]2

+ηωM (B + 2) + ω2
M + c

2 ,

C1 = 2T
μ ω4

M

[√
np + ηT

]2 + 2ηωM + 0.5
√
c, and

Δ2 = ωM + 2Δ1
c ,

(9.36)

where the constant c ≥ 1 and the disturbance bound δ̄ are assumed to satisfy

δ̄ ≤ min
{

C1
8ωMη ,

c
8(ωM+η[1+B]) ,

c
C1(ωM+η[1+B]) min

{
0.9Δ1,

μ
3T

}}
. (9.37)

For any constant δ̄ > 0, we can choose the constant c > 0 so that (9.37) is
satisfied, so any disturbance bound δ̄ can be accommodated. The following
is shown in [101]:

Theorem 9.2. Let the preceding assumptions hold. Then (9.34) with uncer-
tainties δ : R → δ̄Bp bounded by δ̄ admits the ISS Lyapunov function

V5(t, e, θ̃) = θ̃�ω(xr(t))�e + Δ2V1

(
e, θ̃

)
+ C1

c V 2
1

(
e, θ̃

)

+ 1
T θ̃�

[∫ t
t−T

∫ t
m

ω(xr(l))�ω(xr(l)) dl dm
]
θ̃

(9.38)

and so is ISS with respect to the uncertainty δ : R → δ̄Bp.

9.4.2 Proof of ISS Theorem

We only sketch the proof; see [101] for details. We use the notation from
Theorem 9.1. We may assume that ωM = ω̄(B) ≥ 1, by enlarging the function
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ω̄ without relabeling. Then the definitions (9.20) of the functions Pi give

P0(l) ≤ 2ωM max{c,√npB},
P1(l) ≤ ω2

M + ηωM

(√
2l + B

)
,

P2(l) ≤ ω2
M

√
2lnp,

P3(l) ≤ TωMP1(l), and

P4(l) ≤ Δ1 + C1l,

(9.39)

by (9.35). By enlarging P4 as necessary without relabeling, we assume that
P4(l) = Δ1 + C1l in the sequel. Therefore, V5 from Theorem 9.1 takes the
form (9.38). One easily checks that Theorem 9.1 remains true when P4 is
enlarged in this way, by our proof of the theorem. Using Assumption 9.1 and
(9.33)-(9.35), we get

V̇5 ≤ −
[
Δ1 + C1V1

(
e, θ̃

)] |e|2 − μ
2T |θ̃|2

+(ωM + ηB + η|e|)
∣∣∣∂V5
∂e (t, e, θ̃)

∣∣∣ |δ(t)| and
∣∣∣∂V5
∂e

(
t, e, θ̃

)∣∣∣ ≤ |ω(xr(t))θ̃| +
[
Δ2 + 2C1

c V1

(
e, θ̃

)] |e|
≤ ωM

∣∣θ̃
∣∣+

[
Δ2 + 2C1

c V1

(
e, θ̃

)] |e|.

(9.40)

We consider two cases.
Case 1. |e| ≥ 1. In this case, dropping −Δ1|e|2 − μ

2T |θ̃|2 in (9.40) gives

V̇5 ≤ − C1

4
(|e|2 + |θ̃|2) − C1

3
V1|e|2 − C1

12
|e|4

+ωM (ωM + ηB)
∣∣θ̃
∣∣|δ(t)|

+ ωMη|e|∣∣θ̃∣∣|δ(t)| + {|e|2}{[ωM + η(1 + B)]Δ2|δ(t)|
}

+ 2
C1

c

(
ωM + η[B + 1]

)
V1|e|2|δ(t)|.

(9.41)

Applying the relations |θ̃||δ(t)| ≤ 1
2ε1

|θ̃|2 + ε1
2 |δ(t)|2 and |θ̃||e| ≤ 1

2 |θ̃|2 + 1
2 |e|2

for a suitable positive constant ε1 to the fourth and fifth terms on the right
side of (9.41), using the relation

ab ≤ C1a
2

12
+

3b2

C1

with a = |e|2 on the terms in braces in (9.41), and recalling our assumption
(9.37) on δ̄ gives
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V̇5 ≤ −C1

40
|(e, θ̃)|2 +

5
2C1

ω2
M (ωM + ηB)2|δ(t)|2

+
3
C1

[
(ωM + ηB)Δ2 + ηΔ2

]2|δ(t)|2.
(9.42)

Case 2. |e| ≤ 1. In this case, (9.40) gives

V̇5 ≤ − [Δ1 + C1V1(e, θ̃)
]|e|2 − μ

2T
|θ̃|2

+ωM (ωM + η[B + 1])|θ̃||δ(t)|

+ (ωM + η[B + 1])
[
Δ2 +

C1

c
(|e|2 + |θ̃|2)

]
|δ(t)|

≤ − Δ1

10
|e|2 − μ

15T
|θ̃|2 +

5T
{
ωM (ωM + η[B + 1])

}2

2μ
|δ(t)|2

+Δ2[ωM + η(B + 1)]|δ(t)|,

(9.43)

where the last inequality followed from the relation |θ̃||δ(t)| ≤ |θ̃|2/(2ε2) +
ε2|δ(t)|2/2 for a suitable positive constant ε2, (9.37), and dropping the term
−C1V1(e, θ̃)|e|2. The result readily follows from (9.42) and (9.43). �

Remark 9.1. The construction from Theorem 9.2 cannot be used to prove
Theorem 9.1 by simply setting the disturbance to zero. This is because its
derivation is based on (9.35) which we do not require in Theorem 9.1. In other
words, Theorem 9.1 applies with more general ω’s that may violate (9.35).

Remark 9.2. The explicit ISS Lyapunov function (9.38) for (9.34) leads to
explicit expressions for β and γ in the ISS estimate for (9.34), as follows.
Define α1, α2, α3, α4, α ∈ K∞ by (9.24),

α3(r) = min
{
C1
40 , μ

15T

}
r2, α(r) = min{r, α3 ◦ α−1

2 (r)}, and

α4(r) =
{

5
2C1

ω2
M (ωM + ηB)2 + 3

C1
[(ωM + ηB)Δ2 + ηΔ2]

2

+ 5Tω2
M (ωM+η[B+1])2

2μ

}
r2

+Δ2[ωM+η(B + 1)]r.

Then
α1(|(e, θ̃)|) ≤ V5(t, e, θ̃) ≤ α2(|(e, θ̃)|) and

V̇5 ≤ −α(V5) + α4(|δ|∞)
(9.44)



264 9 Adaptively Controlled Systems

along all trajectories of (9.34) when δ̄ satisfies (9.37) (by (9.24), (9.42), and
(9.43)), and then the explicit formulas for β and γ in the ISS estimate follow
by the standard argument we gave in Sect. 2.1.3.

9.5 Rössler System Revisited

We illustrate our Lyapunov function constructions using the controlled
Rössler dynamics ⎧

⎨

⎩

ẋ1 = θ1x1 + x2 + w1

ẋ2 = −x1 − x3 + w2

ẋ3 = θ2 + x3[x2 − θ3] + w3

(9.45)

from Sect. 9.2, which has the form ẋ = ω(x)θ + u when the regressor matrix
ω and the unknown parameter vector are chosen according to (9.4).

Let us show that the PE condition from Assumption 9.2 is satisfied for the
class of C1 reference trajectories

xr(t) =
(
x1r(t), x2r(t), cos(t)

)

that satisfies conditions (9.9) and (9.10). The conditions guarantee that

∫ t

t−2π

ω(xr(l))�ω(xr(l)) dl =

⎡

⎢⎣

∫ t
t−2π

x2
1r(l)dl 0 0

0 2π 0
0 0 π

⎤

⎥⎦ .

Also, we can take the upper bound ω̄( ) = 2
√

1 +  2. Hence, Assumption 9.2
and our growth assumption (9.35) hold with B = 2,

T = 2π, μ = 0.5, η = 1, and ωM = 10.

Therefore, for any constant c ≥ 1, the error dynamics for the Rössler system
(9.3) with the adaptive controller (9.16) with K(e) ≡ cIn admits a global
strict Lyapunov function of the form (9.38) and so is UGAS.

We now show how the resulting strict Lyapunov function with the choice
c = 1 agrees with the formula (9.11) from Sect. 9.2. One checks that we can
take ω̄1(2) = 2. Hence, the functions Pi from (9.20) become

P0 = 4
√

5, P1( ) = 4
√

5

√
1 +

[√
2 + 2

]2
,

P2( ) = 6
√

10 , P3( ) = 80π

√
1 +

[√
2 + 2

]2
,

(9.46)

and
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P4( ) = 8π

[
√

5
(
2 + 3

√
2 
)

+ 40π

√
1 +

(√
2 + 2

)2
]2

+4
√

5

√
1 +

[√
2 + 2

]2
+ 0.5.

(9.47)

Since P4 agrees with the formula for J from (9.12), we readily conclude that
the strict Lyapunov function for the Rössler error dynamics takes the form
(9.11), as claimed. Also, Theorem 9.2 shows that (9.38) is an ISS Lyapunov
function when θ is perturbed by time-varying additive uncertainty δ, but in
that case c depends on the choice of the disturbance bound δ̄.

To illustrate the ISS property, we simulated the Rössler error dynamics
with c = 100, i.e., the dynamics

ė = −ω(x)[θ̃ + d] − 100e
˙̃
θ = ω(x)�e ,

where ω(x) =

⎡

⎣
x1 0 0
0 0 0
0 1 −x3

⎤

⎦
(9.48)

for the combined error (e, θ̃) = (xr − x, θ − θ̂), using the disturbance d(t) ≡
(0.05, 0.05, 0.05)�, and obtained the plots in Figs. 9.1 and 9.2 on the following
pages. Our simulation illustrates the robustness of the convergence of the
parameter estimation error to zero in the face of the disturbance d, with an
overshoot determined by the ISS estimate, and so validates the theory.

9.6 Lorenz System

Another interesting example covered by our theory is the fully controlled
Lorenz system ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = θ1(x2 − x1) + w1

ẋ2 = θ2x1 − x2 − x1x3 + w2

ẋ3 = x1x2 − θ3x3 + w3

(9.49)

where θ1, θ2, and θ3 are unknown parameters. The change of feedback

u = w −
⎡

⎣
0 0 0
0 1 x1

−x2 0 0

⎤

⎦x, (9.50)



266 9 Adaptively Controlled Systems

Fig. 9.1 Estimation error θ̃1 (top) and θ̃2 (bottom) for Rössler system with K(e) ≡ 100I3

ω(x) =

⎡

⎣
x2 − x1 0 0

0 x1 0
0 0 −x3

⎤

⎦ , and θ =

⎡

⎣
θ1

θ2

θ3

⎤

⎦ (9.51)

gives the system
ẋ = ω(x)θ + u . (9.52)

Choose any periodic reference trajectory xr(t) = (x1r(t), x2r(t), x3r(t)) of
period 1 such that
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Fig. 9.2 Estimation error θ̃3 for Rössler system with K(e) ≡ 100I3

∫ t
t−1

x2
1r(l) dl ≥ 1 ,

∫ t
t−1

x2
3r(l) dl ≥ 1 ,

and
∫ t
t−1[x1r(l) − x2r(l)]2 dl ≥ 1

(9.53)

hold for all t ∈ R and max{|xr|∞, |ẋr|∞} ≤ 4.
Then ∫ t

t−1
ω(xr(l))�ω(xr(l)) dl ≥ I3 ,

so Assumption 9.2 and our growth assumption (9.35) hold. Again using the
dynamic extension {

ẋ = ω(x)θ + us(t, x, θ̂)
˙̂
θ = ν(t, x, θ̂)

(9.54)

with
us(t, x, θ̂) = ẋr(t) − ω(x)θ̂ + e,

ν(t, x, θ̂) = −ω(x)�(xr(t) − x)
(9.55)

we obtain the dynamics {
ė = −ω(x)θ̃ − e
˙̃θ = ω(x)�e

(9.56)

for the combined error (e, θ̃) = (xr − x, θ − θ̂), since θ is constant. It is
immediate that V1(e, θ̃) = 1

2 |(e, θ̃)|2 is a non-strict Lyapunov function for
(9.56), and we can construct a strict Lyapunov function for the system (9.56).
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However, we will not perform this construction because it is very similar to
the construction we gave for the Rössler dynamics.

9.7 Extension: More General Feedbacks

Theorem 9.1 assumes that the systems are adaptively controlled by (9.16),
and that the known non-strict Lyapunov function V1 is 1

2 |(e, θ̃)|2. Let us show
how these assumptions can be relaxed.

We first assume that Assumptions 9.1 and 9.2 hold, and that there exist a
C1 function ν(t, e, θ̂), a bounded C1 function K(e), a uniformly proper and
positive definite C1 function V1, a positive definite function W1, a continuous
everywhere positive increasing function Pν , and a constant c > 0 such that:

1. |ν(t, e, θ̂)| ≤ Pν(V1)|e| everywhere;

2. V̇1(t, e, θ̃) ≤ −W1(e) along all trajectories of
{

ė = −ω(x)θ̃ −K(e)e
˙̃θ = −ν(t, e, θ̂)

(9.57)

and

3. W1(e) ≥ c|e|2 everywhere,

where e and θ̃ are as before. In other words, we replace ν = −ω(x)�e from
Theorem 9.1 with a general adaptation law that could include, for example,
projection operators, least-squares estimators, and prediction-error-based es-
timators [59, 152]. A slight variant of the proof of Theorem 9.1 constructs
a function P5 so that (9.22) is a global strict Lyapunov function for (9.57)
when 1.-3. are satisfied.

A different generalization is as follows. Let e and θ̃ be as before, and let ω
and xr satisfy Assumptions 9.1 and 9.2. We now also assume:

Assumption 9.3 There exist a (possibly unbounded) matrix function K with
C1 entries, a C1 uniformly proper and positive definite function Va(t, z), a
positive definite function Wa(z), and a continuous everywhere positive func-
tion Δ so that:

1. V̇a(t, z) ≤ −Wa(z) along all trajectories of ż = −K(z + xr(t))z;
2. all the second partial derivatives ∂2Va/∂zi∂zj are uniformly bounded in z;

and
3. Wa(z) ≥ Δ(|z|)|z|2 everywhere.

Taking the augmented dynamics (9.15) as before, and choosing
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us = ẋr(t) − ω(x)θ̂ + K
(
e + xr(t)

)
e, ν = − [∂Va

∂e (t, e)ω(x)
]�

, and

V1(t, e, θ̃) = Va(t, e) + 1
2 |θ̃|2

guarantees that the time derivative of V1 along the trajectories of the closed-
loop error dynamics

{
ė = −ω(x)θ̃ −K

(
e + xr(t)

)
e

˙̃
θ =

[
∂Va

∂e (t, e)ω(x)
]� (9.58)

satisfies V̇1(t, e, θ̃) ≤ −Wa(e). Setting V4 = V2+ 1
2V3 with V2 and V3 as defined

before according to (9.19), we have the following result from [101]:

Theorem 9.3. Let Assumptions 9.1,9.2, and 9.3 hold. Then we can explicitly
construct a function κ4 ∈ K∞ ∩ C1 so that

V5(t, e, θ̃) = κ4

(
V1(t, e, θ̃)

)
+ V4(t, e, θ̃) (9.59)

is a global strict Lyapunov function for the error dynamics (9.58), which is
therefore UGAS.

Proof. Sketch. We only sketch the proof; see [101] for the detailed argument.
First note that

V̇2 = −θ̃�ω(xr(t))�ω(xr(t))θ̃ +
[
∂Va

∂e (t, e)ω(x)
]
ω(xr(t))�e

+θ̃� dω(xr(t))�

dt e

−θ̃�ω(xr(t))�K(e + xr)e − θ̃�ω(xr(t))�[ω(x) − ω(xr(t))]θ̃.

(9.60)

Applying the mean value theorem provides an everywhere positive, increasing
function κ1 such that

[
∂Va

∂e (t, e)ω(xr(t) − e)
]
ω(xr(t))�e ≤ κ1(|e|)|e|2,

−θ̃�ω(xr(t))�K(e + xr)e ≤ κ1(|e|)|θ̃||e|,
(9.61)

and −θ̃�ω(xr(t))�[ω(x) − ω(xr(t))]θ̃ ≤ |ω(xr(t))θ̃|κ1(|e|)|θ̃||e|. We deduce
from (9.60) that

V̇2 ≤ −θ̃�ω(xr(t))�ω(xr(t))θ̃ + κ1(|e|)|e|2 + [ω̄1 + κ1(|e|)]|θ̃||e|
+
{|ω(xr(t))θ̃|

}{
κ1(|e|)|θ̃||e|

}

≤ − 1
2 θ̃

�ω(xr(t))�ω(xr(t))θ̃ + κ1(|e|)|e|2 +
[
ω̄1 + κ1(|e|)

]|θ̃||e|
+ 1

2κ
2
1(|e|)|θ̃|2|e|2,

(9.62)

by applying the relation ab ≤ 1
2a

2 + 1
2b

2 to the terms in braces.
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We can readily construct an increasing everywhere positive function κ2

such that

V̇3 ≤ θ̃�ω(xr(t))�ω(xr(t))θ̃ − 1
T θ̃�

[∫ t
t−T ω(xr(s))�ω(xr(s))ds

]
θ̃

+κ2(|e|)|θ̃||e|
≤ θ̃�ω(xr(t))�ω(xr(t))θ̃ − μ

T |θ̃|2 + 2κ2(|e|)|θ̃||e|,
(9.63)

where the second inequality is by Assumption 9.2. Hence, by applying

ab ≤ μ
4T a2 + T

μ b2

with a = |θ̃|, we deduce from (9.62) and (9.63) that V4 = V2 + 1
2V3 satisfies

V̇4 ≤ − μ
2T |θ̃|2 + κ1(|e|)|e|2

+
{|θ̃|}{[ω̄1 + κ1(|e|) + κ2(|e|) + 1

2κ
2
1(|e|)|e||θ̃|

]|e|}

≤ − μ
4T |θ̃|2 + κ1(|e|)|e|2

+T
μ

[
ω̄1 + κ1(|e|) + κ2(|e|) + 1

2κ
2
1(|e|)|θ̃||e|

]2|e|2.

(9.64)

By assuming without loss of generality that Δ is decreasing, we can con-
struct an increasing everywhere positive continuous function κ3 such that

κ3(V1(t, e, θ̃))Wa(e)

≥ κ1(|e|)|e|2 + T
μ

[
ω̄1 + κ1(|e|) + κ2(|e|) + 1

2κ
2
1(|e|)|θ̃||e|

]2
|e|2. (9.65)

Consequently,
V̇4 ≤ − μ

4T
|θ̃|2 + κ3

(
V1(t, e, θ̃)

)
Wa(e).

One checks that z 
→ inft≥0 Va(t, z) is bounded from below by a positive
definite quadratic function near 0. To obtain this lower bound, let Δ > 0 be a
constant lower bound for Δ on Bn. Let K̄ > 0 be a bound for K on (1+B)Bn.
Reducing Δ, we can assume that all trajectories of ż = −K(z + xr(t))z with
initial conditions z(t0) = z0 ∈ ΔBn stay in Bn, by Assumption 9.3. Along
any such trajectory, it can be shown that

d

dt

[
Va(t, z) − Δ|z|2

4K̄

]
≤ 0, (9.66)

and then the lower bound on ΔBn follows because the term in brackets in
(9.66) converges down to zero as t → +∞.

Hence, we can choose κ4 ∈ K∞ ∩ C1 so that κ′
4 ≥ κ3 + 1, and so that V5

as defined in (9.59) is uniformly proper and positive definite and satisfies
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V̇5 ≤ − μ

4T
|θ̃|2 −Wa(e)

along all trajectories of (9.58), which is the desired decay condition. �

9.8 Comments

The two components of the adaptive tracking problem are (a) making the tra-
jectories track a desired reference trajectory and (b) identifying the unknown
model parameters. Part (a) has been well studied in the robotics literature,
including cases where there are unknown parameters. One important mecha-
nism for solving (a) is the Li-Slotine controller, which was introduced in [151]
in the context of the manipulator dynamics

H(q)q̈ + C(q, q̇) + g(q) = τ

for the joint displacements q. Assuming that the dynamics are linear in the
unknown parameter vector a, the Li-Slotine controller is

τ = Ĥq̈r + Ĉ(q, q̇)q̇r + ĝ(q) −KDs
˙̂a = −ΓY �s,

(9.67)

where Ĥ , Ĉ, and ĝ are obtained by replacing the unknown parameters in H ,
C, and g with the parameter vector estimate â; Γ and KD are appropriate
positive definite matrices; the matrix Y is chosen to satisfy

H̃q̈r + C̃(q, q̇)q̇r + g̃(q) = Y (q, q̇, q̇r, q̈r)ã;

q̇r = q̇d − Λq̃ in terms of the reference trajectory qd and a suitable positive
definite matrix Λ; s = q̇ − q̇r; and ã = a − â [151]. The Li-Slotine controller
and its variants have been used extensively in robotics, the control of ships,
and other applications. The nonlinear dynamics of robot manipulators pro-
vide an important example where PE guarantees asymptotic parameter error
convergence when using the Li-Slotine adaptive controller [150].

Recently, PE was also shown to be both necessary and sufficient for UGAS
of a class of nonlinear systems that encompasses the manipulator dynamics
[84, 87]. This work generalized [150] in that it is not limited to the Slotine-
Li adaptive controller when applied to the manipulator dynamics. Also, [32]
proved global exponential stability for a mechanical system by constructing
the regressor in the adaptive control to satisfy the PE condition. The adaptive
control literature for nonlinear systems largely proceeds by analyzing the
behavior of trajectories, rather than constructing explicit strict Lyapunov
functions. Our global strict Lyapunov function treatment of adaptive control
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in this chapter closely follows [100, 101], where complete proofs of all of the
theorems in this chapter can be found.

The Lorenz dynamics was introduced in [83] to model Rayleigh-Benard
convection. See, e.g., [25, Chap. 13] which studies its omega limit sets.



Part IV

Systems with Multiple Time Scales



Chapter 10

Rapidly Time-Varying Systems

Abstract In the first nine chapters, we considered continuous time and dis-
crete time systems with a single time scale. We turn next to continuous time
systems with two continuous time scales, one faster than the other. Sys-
tems of this kind are called either rapidly time-varying systems or slowly
time-varying systems. The presence of multiple time scales significantly com-
plicates the problem of constructing global strict Lyapunov functions. In this
chapter, we provide a systematic method for rapidly time-varying systems.
Our main method involves transforming Lyapunov functions for the corre-
sponding limiting dynamics into the desired strict Lyapunov functions for
the original rapidly time-varying dynamics. We illustrate our findings using
a one degree-of-freedom mass-spring system.

10.1 Motivation

Consider the following one degree-of-freedom mass-spring system from [36]
with constant parameter α > 0, which arises in the control of mechanical
systems with friction:

⎧
⎪⎨

⎪⎩

ẋ1 = x2

ẋ2 = −σ1(αt)x2 − k(t)x1 + u

−{σ2(αt) + σ3(αt)e−β1μ(x2)
}

sat(x2)

(10.1)

where x1 and x2 are the mass position and velocity, respectively; u is a dis-
turbance; σ1, σ2, and σ3 denote everywhere positive time-varying viscous,
Coulomb, and static friction related coefficients, respectively; β1 is a posi-
tive constant corresponding to the Stribeck effect; μ(·) is a positive definite
function also related to the Stribeck effect; k denotes a positive time-varying
spring stiffness related coefficient; and sat: R → R denotes any continuous
function having these properties:

275
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1. sat(0) = 0;

2. ξ sat(ξ) ≥ 0 ∀ξ ∈ R;

3. limξ→+∞ sat(ξ) = +1; and

4. limξ→−∞ sat(ξ) = −1 .

(10.2)

We model the saturation as the differentiable function

sat(x2) = tanh(β2x2), (10.3)

where β2 is a large positive constant. Note for later use that |sat(x2)| ≤ β2|x2|
for all x2 ∈ R.

We assume that the coefficients σi vary in time faster than the spring
stiffness coefficient so we restrict to cases where α > 1. The constant α
produces a more general class of time-varying systems, in which there are two
continuous time scales, one faster than the other. This captures the realistic
scenario where the wear and tear due to friction is faster than the degradation
of the spring stiffness. Our precise mathematical assumptions for (10.1) are:
k and the σi’s are (globally) bounded C1 functions; μ has a bounded first
derivative; and there exist constants σ̃i with σ̃1 > 0 and σ̃i ≥ 0 for i = 2, 3,
and a o(s) function s 
→ M(s) such that

∣∣∣∣
∫ t2

t1

(σi(t) − σ̃i) dt
∣∣∣∣ ≤ M(t2 − t1), i = 1, 2, 3 (10.4)

for all t1, t2 ∈ R satisfying t2 > t1. Although the σi’s are everywhere positive
for physical reasons, we will not require their positivity in the sequel.

It is natural to ask: Can we find a constant α > 0 and design a class
of functions V [α] such that for each constant α ≥ α, V [α] is an ISS Lya-
punov function for (10.1)? We will answer this question in the affirmative in
Sect. 10.6.3. In fact, our construction of the V [α]’s will follow from a general
constructive approach for rapidly time-varying systems from [108].

10.2 Overview of Methods

A standard method for guaranteeing stability of nonautonomous systems is
the so-called averaging method. In averaging, the exponential stability of an
appropriate autonomous system implies exponential stability of the original
dynamics, when the time variation is sufficiently fast [70]. Such results were
extended to more general rapidly time-varying systems

ẋ = f(t, αt, x), t ∈ R, x ∈ R
n, α > 0 (10.5)
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in [136], where uniform (local) exponential stability of (10.5) was proven for
large values of the constant α > 0, assuming a suitable limiting dynamics

ẋ = f̄(t, x) (10.6)

for (10.5) is uniformly exponentially stable. We specify the choice of f̄ below.
Notice that (10.1) is a special case of (10.5) when the disturbance u is set
to 0. The main arguments of [136] use partial averaging but do not lead to
explicit strict Lyapunov functions for (10.5); see Sect. 10.8 for a more detailed
discussion of the literature.

In this chapter, we discuss a different approach, based on [108]. Instead
of averaging, we explicitly construct a family of global strict Lyapunov func-
tions for (10.5) in terms of more readily available Lyapunov functions for
(10.6), which we again assume is asymptotically stable. We consider the case
where (10.6) is UGAS, in which case our conclusion is that (10.5) is UGAS
(but not necessarily exponentially stable) when the constant α > 0 is suffi-
ciently large. The significance of the problem lies in the ubiquity of rapidly
time-varying systems in a host of engineering applications (involving, e.g.,
suspended pendulums, Raleigh’s Equations, and Duffing’s Equations from
[70, Chapter 10], and systems arising in identification in [136]) and the value
of explicit strict Lyapunov functions in robustness analysis and controller
design. The Lyapunov functions we construct are also ISS or iISS Lyapunov
functions for

ẋ = f(t, αt, x) + g(t, αt, x)u (10.7)

under appropriate conditions on f and g; see Remark 10.2.

10.3 Assumptions and Lemmas

Consider the systems (10.5) and (10.6) where f and f̄ are continuous in time
t ∈ R, C1 in x ∈ R

n, satisfy

f(t, αt, 0) = f̄(t, 0) = 0 ∀t ∈ R, α > 0 , (10.8)

and are forward complete for each constant α > 0. Throughout this chapter,
we assume the following uniform growth condition on f : There exists ρ ∈ K∞
such that |f(t, αt, x)| ≤ ρ(|x|) everywhere, and likewise for f̄ .

Recall the UGAS property, the Converse Lyapunov Function Theorem and
the classes of functions KL, K, K∞, which we reviewed in Chapters 1 and 2.
In particular, we call (10.6) UGAS provided there is a β ∈ KL such that

∣∣φ(t; t0, x0)
∣∣ ≤ β

(|x0|, t− t0
) ∀t ≥ t0 ≥ 0 and x0 ∈ R

n , (10.9)
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where φ is the flow map for (10.6). We call (10.6) uniformly globally expo-
nentially stable (UGES) provided there are constants D > 1 and λ > 0 such
that (10.9) is satisfied along all of its trajectories with the choice

β(s, t) = Dse−λt. (10.10)

Recall Lemma 2.2, which constructed strict Lyapunov functions for exponen-
tially stable time-varying systems ẋ = f(t, x) using an integral of the flow
map. The following compatibility condition is also useful:

Definition 10.1. Given δ ∈ K, the dynamics (10.6) is said to be δ-compatible
provided it admits a function V ∈ C1, functions δ1, δ2 ∈ K∞, and constants
c̄ ∈ (0, 1) and ¯̄c > 0 such that:

1. Vt(t, ξ) + Vξ(t, ξ) f̄(t, ξ) ≤ −c̄ δ2(|ξ|) for all ξ and t;

2. |Vξ(t, ξ)| ≤ δ(|ξ|) and |f̄(t, ξ)| ≤ δ(|ξ|/2) for all ξ and t; and

3. δ(s) ≤ ¯̄cs for all s ≥ 0;

and δ1(|ξ|) ≤ V (t, ξ) ≤ δ2(|ξ|) for all ξ and t.

Remark 10.1. The bounds on |Vξ| and |f̄ | in Condition 2 of Definition 10.1
are asymmetric. If (10.6) satisfies the UGES requirements of Lemma 2.2 for
some positive constants K, c1, c2, and c3, then one easily checks that it is
δ-compatible with δ(s) = (c3 + 2K)s and c̄ = (c3 + 2K)−2, by taking the
V constructed in the lemma. On the other hand, by taking different choices
of δ (including cases where δ is bounded), we can also find non-UGES δ-
compatible dynamics; see Sect. 10.6.1.

We also treat the nonautonomous control system

ẋ = F (t, x, u) (10.11)

which we always assume to be continuous in all variables, C1 in x with
F (t, 0, 0) ≡ 0, and forward complete. Its control set is U = R

m, and its
solution for a given control u ∈ M(Rm) and given initial condition x(t0) = x0

is denoted by t 
→ φ(t; t0, x0,u). Recall the definitions of ISS and iISS from
Chap. 1. If (10.11) is ISS, and if the ISS estimate for (10.11) can be satisfied
with a function β ∈ KL having the form (10.10), then we say that (10.11) is
input-to-state exponentially stable (ISES). We say that a function V : [0,∞)×
R
n → [0,∞) is uniformly positive definite provided there is a positive definite

function α0 such that V (t, x) ≥ α0(|x|) everywhere. We let UPD (resp.,
UBPPD) indicate the class of all uniformly positive definite (resp., uniformly
bounded proper and positive definite) functions V : [0,∞) × R

n → [0,∞).
Recall the ISS and iISS Lyapunov function definitions from Chap. 2.

Since (10.11) has an ISS Lyapunov function when it is ISS (by the ar-
guments of [169]), the proof of [8, Theorem 1] shows that if (10.11) is
ISS and autonomous, then it is also iISS, but not conversely, since e.g.,
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ẋ = − arctan(x) + u is iISS but not ISS. The next lemma follows from argu-
ments used in [8, 39, 157]:

Lemma 10.1. If (10.11) admits an ISS (resp., iISS) Lyapunov function,
then it is ISS (resp., iISS).

A simple application of Fubini’s Theorem gives
∫ t

t−τ

∫ t

s

p(t, l) dl ds =
∫ t

t−τ

(r − t + τ)p(t, r)dr (10.12)

for each continuous function p and each constant τ > 0, which implies:

Lemma 10.2. Let p : R×R → R : (t, l) 
→ p(t, l) be C1 in t and continuous.
Then

d

dt

∫ t

t−τ

∫ t

s

p(t, l) dl ds

= τp(t, t) − ∫ t
t−τ

p(t, l) dl +
∫ t

t−τ

∫ t

s

∂p

∂t
(t, l) dl ds

(10.13)

and ∣∣∣∣
∫ t

t−τ

∫ t

s

p(t, l) dl ds
∣∣∣∣ ≤ τ2

2
max

t−τ≤l≤t
|p(t, l)| (10.14)

hold for all t ∈ R and all constants τ > 0.

For what follows, a function N : [0,∞) → [0,∞) is said to be of class M
(written N ∈ M) provided

lim
η→+∞ ηN(η) = 0. (10.15)

10.4 Main Lyapunov Function Construction

We consider the system

ẋ = f(t, αt, x) + u, x ∈ R
n, u ∈ R

n (10.16)

with constant parameter α > 0, but see Remark 10.2 for results on the more
general control systems (10.7). Our main assumption will be: There exist
δ ∈ K, a UGAS δ-compatible dynamics (10.6), N ∈ M, and a constant
η0 > 0 such that for all x ∈ R

n, all r ∈ R and all constants η > η0,
∣∣∣∣∣

∫ r+ 1
η

r− 1
η

{
f(l, η2l, x) − f̄(l, x)

}
dl

∣∣∣∣∣ ≤ δ

( |x|
2

)
N(η) . (10.17)

The main result in [108] says:
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Theorem 10.11. Given a system (10.5), assume that there exist δ ∈ K, a
δ-compatible UGAS system (10.6), two constants η0 > 0 and K > 1, and a
function N ∈ M such that (10.17) holds whenever η ≥ η0, x ∈ R

n and r ∈ R

and such that:
∣∣∣∂f̄∂x (t, x)

∣∣∣ ≤ K ,
∣∣∣∂f∂x (t, αt, x)

∣∣∣ ≤ K , and

|f(t, αt, x)| ≤ δ
(

|x|
2

)
∀t ∈ R, x ∈ R

n, α > 0.
(10.18)

Then we can construct a constant α > 0 such that the following are true: (a)
For all constants α ≥ α, (10.5) is UGAS and (10.16) is iISS. (b) If δ ∈ K∞,
then (10.16) is ISS for all constants α ≥ α. (c) If (10.6) is UGES, then
(10.5) is UGES for all constants α ≥ α and (10.16) is ISES for all constants
α ≥ α.

By (10.8), the condition

|f(t, αt, x)| ≤ δ

( |x|
2

)

in (10.18) is redundant when δ is of the form δ(s) = r̄s for a constant r̄ > 0,
since r̄ can always be enlarged. Two important features of Theorem 10.11
are that it applies to cases where (10.6) is UGAS but not necessarily UGES
(cf. Sect. 10.6.1), and that its proof leads to explicit global strict Lyapunov
functions for (10.16) in Theorem 10.12. Later we give a variant for cases where
∂f/∂x is not necessarily globally bounded. The strict Lyapunov function
provided by the proof of Theorem 10.11 is as follows:

Theorem 10.12. Let the assumptions of Theorem 10.11 be satisfied for some
δ ∈ K, and V ∈ C1 be a Lyapunov function for (10.6) satisfying the require-
ments of Definition 10.1. Then we can construct a constant α > 0 such that
for all constant values α > α,

V [α](t, ξ) .= V

(
t, ξ −

√
α

2

∫ t
t− 2√

α

∫ t
s
{f(ξ, l, αl)− f̄(ξ, l)} dl ds

)

is a global strict Lyapunov function for (10.5) and an iISS Lyapunov function
for (10.16). If we also have δ ∈ K∞, then V [α] is also an ISS Lyapunov
function for (10.16) for all constant values α > α.

Proofs of Theorems 10.11 and 10.12

We only provide a sketch; see [108] for the complete arguments. Throughout
the sequel, all inequalities and equalities should be understood to hold glob-
ally, unless we indicate otherwise. Let us first outline our method for proving
the theorems. First, we give the proof of Theorem 10.11 for the special case
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where (10.6) is UGAS and δ ∈ K∞ which includes the proof of Theorem 10.12
when δ ∈ K∞. We then indicate the changes needed if δ ∈ K is bounded.
Finally, we specialize to the situation where (10.6) is UGES, in which case
we can take δ(s) = r̄s for some constant r̄ > 0, by Lemma 2.2. This will show
the ISES assertion of Theorem 10.11.

Assume first that (10.6) is UGAS and δ ∈ K∞. We prove the ISS property
for (10.16) for large constants α > 0. Let η0 > 0 be as in the statement of
the theorem, and fix

α = η2

with η ≥ η0, u ∈ M(Rm), and a trajectory x(t) for (10.16) and u, for an
arbitrary initial condition. Set

z(t) = x(t) + Rα(t, x(t)), (10.19)

where

Rα(t, x) = −η

2

∫ t

t−2/η

∫ t

s

{
f(l, η2l, x) − f̄(l, x)

}
dl ds.

Since we are assuming our dynamics to be forward complete, this is well
defined. Taking

p(t, l) = f(l, η2l, x(t)) − f̄(l, x(t)),

(10.13) multiplied through by −η/2 gives

ż(t) = f̄(t, z(t)) +
[
f̄(t, x(t)) − f̄(t, z(t))

]
+ η

2

∫ t

t− 2
η

p(t, l) dl

− η
2

{∫ t

t− 2
η

∫ t

s

(
∂f

∂x
(l, η2l, x(t)) − ∂f̄

∂x
(l, x(t))

)
dl ds

}

× [f(t, η2t, x(t)) + u(t)
]
+ u(t).

(10.20)

Let V , δ1, and δ2 satisfy the requirements of Definition 10.1. Let V̇ denote
the time derivative of V (t, z) along the time-varying map z(t) in (10.19).
Using Condition 1. from Definition 10.1 with ξ = z(t) and (10.20),

V̇ ≤ −c̄ δ2(|z(t)|) + Vξ(t, z(t))
(
f̄(t, x(t)) − f̄(t, z(t))

)

+ η
2Vξ(t, z(t))

∫ t

t−2/η

p(t, l) dl

− η
2Vξ(t, z(t))

[∫ t

t−2/η

∫ t

s

(
∂f

∂x
(l, η2l, x(t)) − ∂f̄

∂x
(l, x(t))

)
dl ds

]

× (f(t, η2t, x(t)) + u(t)
)

+ Vξ(t, z(t))u(t).
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Using (10.17)-(10.19) and Condition 2. from Definition 10.1, we get

V̇ ≤ −c̄ δ2(|z(t)|) + Kδ(|z(t)|)|Rα(t, x(t))| + η
2δ(|z(t)|)N(η) δ(|x(t)|/2)

+ δ(|z(t)|) |u(t)|
+ 2

ηK δ(|z(t)|){δ(|x(t)|/2) + |u(t)|}
≤ −c̄ δ2(|z(t)|) + δ(|z(t)|) |u(t)|

+δ(|z(t)|)
(

4
ηK + η

2N(η)
){

δ
(

|x(t)|
2

)
+ |u(t)|

}
,

where the last inequality used

|Rα(t, x(t))| ≤ η
2

∫ t
t−2/η

∫ t
s |p(t, l)| dl ds ≤ 2

η δ
(

|x(t)|
2

)
. (10.21)

Also, (10.19), (10.21), and Condition 3. from Definition 10.1 give

|z(t)| ≥ |x(t)| − ¯̄c
η |x(t)| ≥ 1

2 |x(t)| (10.22)

when η ≥ max{2¯̄c, η0}. The fact that δ ∈ K now gives

V̇ ≤
(
−c̄ + 4

ηK + η
2N(η)

)
δ2(|z(t)|)

+
(

4
ηK + η

2N(η) + 1
)
δ(|z(t)|)|u(t)|.

(10.23)

Choosing χ(s) = c̄
4δ(s/2) and recalling that c̄ ∈ (0, 1), we get

|u|∞ ≤ χ(|x(t)|) ⇒ |u|∞ ≤ χ(2|z(t)|)
⇒ V̇ ≤

(
− 3c̄

4 + 8
ηK + ηN(η)

)
δ2(|z(t)|).

(10.24)

Setting
V [α](t, x) .= V (t, x + Rα(t, x)) ,

we see that the time derivative V̇ = Vt(t, z)+Vz(t, z)ż of V (t, z) along (10.16)
satisfies

V̇ = V
[α]
t (t, x) + V [α]

x (t, x) {f(t, αt, x) + u(t)}. (10.25)

It follows from (10.15) and (10.24) that when the constant α (and so also η)
is sufficiently large, we get

|u| ≤ χ(|x|) ⇒ V
[α]
t (t, x) + V

[α]
x (t, x) [f(t, αt, x) + u] ≤ − c̄

2δ
2
(

|x|
2

)

and the uniform proper and positive definiteness of V [α] follows from (10.21)
and (10.22). Hence, V [α] is an ISS Lyapunov function for (10.16), so (10.16)
is ISS for large α, by Lemma 10.1, as claimed. The UGAS conclusion is the
special case of the preceding argument where u ≡ 0. When δ is bounded, the
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iISS assertion follows from the part of the preceding argument up through
(10.23), once we bound the coefficient of |u(t)|. Then V [α] is an iISS Lyapunov
function for (10.16) for sufficiently large α, so (10.16) is iISS for large α, by
Lemma 10.1.

It remains to consider the special case where (10.6) is UGES. Choose any
function V that satisfies the requirements of Lemma 2.2 for (10.6) for suitable
constants ci > 0. Choose any trajectory x(t) for (10.16) for any choice of the
control u ∈ M(Rm), starting at an arbitrary initial state x(t0) = x0. Then

|Rα(t, x(t))| ≤ 2K|x(t)|
η

∀t ≥ t0 . (10.26)

Defining z(t) by (10.19) and arguing as before except with the preceding
choice of V gives δ(s) = (c3 + 2K)s, c̄ = (c3 + 2K)−2, and therefore

V̇ ≤
(
− 1

D̄2 + 4
ηK + η

2N(η)
)
D̄2|z(t)|2

+
[

4
ηK + η

2N(η) + 1
]
D̄|z(t)||u(t)|,

where D̄ = c3 + 2K.
Taking χ̃(s) = s

6D̄
, it follows as in the UGAS case that if |u|∞ ≤ χ̃(|x(t)|)

for all t and η is large enough, then (10.22) gives

V̇ ≤ −|z(t)|2
4

≤ −V (t, z(t))
4c2

.

Integrating over t and recalling the properties of c1 and c2 and (10.26) now
gives

|x(t)| ≤
√

4c2
c1

(
1 +

2K
η

)
|x(t0)|exp

(
− t− t0

8c2

)
, (10.27)

so if (10.6) is UGES, then (10.5) is also UGES when the constant α > 0 is
large enough. Also, standard arguments (e.g., from the proof of [169, Lemma
2.14]) imply that (10.16) is ISES. This completes the proof. �

Remark 10.2. A slight variant of the proof of Theorem 10.11 shows the ISS
property for (10.7) under suitable growth assumptions on the matrix-valued
function g : R×R×R

n → R
n×m. Some growth condition on g is needed and

linear growth of g is insufficient, because ẋ = −x+xu is not ISS. One method
for extending the theorem to (10.7) with g ∈ C1 is to add the assumption
that there is a constant c0 > 1 such that

∣∣∣∣g(t, αt, x)
∣∣∣∣ ≤ c0 +

√

δ

( |x|
2

)
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for all t ∈ R, x ∈ R
n, and α > 0, where δ ∈ K∞ satisfies the requirements of

Definition 10.1 for some Lyapunov function V for (10.6). Using the new K∞
function

χ(s) =
c̄ δ(s/2)

4
{
c0 +

√
δ(s/2)

} (10.28)

in the first part of the proof of Theorem 10.11, we conclude as in the earlier
proof that (10.7) is ISS for large enough α > 0. If δ ∈ K is bounded, then
we instead conclude that (10.7) is iISS when the rapidness parameter α is
sufficiently large, using a slight variant of our earlier argument.

10.5 Alternative Strictification Result

The strict Lyapunov function construction from Theorem 10.12 is based on
transforming a strict Lyapunov function for the limiting dynamics (10.6). It
is natural to inquire whether we can instead use a suitable generalization of
the strictification approach from Chap. 6 to transform a non-strict Lyapunov
function for (10.5) into a strict Lyapunov function for (10.5). In this section,
we show how such a strictification can indeed be carried out. The possible
advantages of this alternative result are that:

1. it does not require (10.5) to be globally Lipschitz in the state;
2. it allows the time derivative of the non-strict Lyapunov function to be zero

or even positive at some points; and
3. it does not require any knowledge of limiting dynamics.

See Sect. 10.7.2 below for details. For simplicity, we focus on systems with
no controls. Our key assumption is:

Assumption 10.1 There exist functions V ∈ C1 ∩UBPPD and W ∈ UPD,
a C1 function

Θ : [0,∞) × R
n → R,

a bounded continuous function p : R → R, and positive constants c and T
such that:

1. Vt(t, x) + Vx(t, x)f(t, αt, x) ≤ −W (t, x) + p(αt)Θ(t, x);

2.
∫ (k+1)T

kT p(r)dr = 0;

3. W (t, x) ≥ cmax{|Θ(t, x)|, |Θt(t, x) + Θx(t, x)f(t, αt, x)|}; and

4. V (t, x) ≥ c|Θ(t, x)|

for all t ≥ 0, x ∈ R
n, α > 0, and k ∈ Z.
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For any choices of s ∈ [αt − αT, αt] and t ≥ 0, Condition 2. of Assumption
10.1 gives ∫ αt

s

p(l)dl =
∫ τ̄(s)

s

p(l)dl +
∫ αt

τ(αt)

p(l)dl, (10.29)

where
τ̄ (u) .= min{kT : k ∈ Z, kT ≥ u} and

τ (u) .= max{kT : k ∈ Z, kT ≤ u}.
The proof of (10.29) is based on the facts that both endpoints of the interval
[min{τ̄ (s), τ (αt)},max{τ̄(s), τ (αt)}] are integer multiples of T , and that the
integral of p over any interval whose endpoints are integer multiples of T is
zero.

Our strictification result is as follows:

Theorem 10.13. If Assumption 10.1 holds, then there exists a constant α >
0 such that for each constant α ≥ α,

U [α](t, x) .= V (t, x) − 1
T

(∫ t
t−T

∫ t
s
p(αl) dl ds

)
Θ(t, x) (10.30)

is a global strict Lyapunov function for (10.5). In particular, (10.5) is UGAS
for all constants α ≥ α.

Proof. Set
U̇ [α](t, x) = U

[α]
t (t, x) + U [α]

x (t, x)f(t, αt, x)

for all t ≥ 0, x ∈ R
n, and α > 0. Recalling Conditions 1. and 3. in Assumption

10.1 and using (10.13) with p(t, l) independent of t gives

U̇ [α](t, x) ≤ −W (t, x) + p(αt)Θ(t, x) − p(αt)Θ(t, x)

+ 1
T

(∫ t
t−T

p(αl)dl
)
Θ(t, x)

− 1
T

(∫ t
t−T

∫ t
s p(αl)dl ds

)

×(∂Θ∂x (t, x)f(t, αt, x) + ∂Θ
∂t (t, x)

)

≤ −W (t, x) + 1
T

∣∣∣
∫ t
t−T

p(αl)dl
∣∣∣ 1
cW (t, x)

+ 1
T

∣∣∣
∫ t
t−T

∫ t
s
p(αl)dl ds

∣∣∣ 1
cW (t, x)

(10.31)

along trajectories of (10.5). Taking pmax to be any uniform bound for |p(l)|
over R, we conclude from (10.29) that

∣∣∣∣
∫ αt

s

p(l)dl
∣∣∣∣ ≤ 2Tpmax ∀s ∈ [αt− αT, αt] (10.32)
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for all t ≥ 0 and α > 0.
Hence, ∣∣∣∣

∫ t

t−T

p(αl)dl
∣∣∣∣ =

1
α

∣∣∣∣
∫ αt

αt−αT

p(l)dl
∣∣∣∣ ≤

2Tpmax

α

and
∣∣∣∣
∫ t

t−T

∫ t

s

p(αl) dl ds
∣∣∣∣ = 1

α2

∣∣∣∣
∫ αt

αt−αT

∫ αt

s

p(l) dl ds
∣∣∣∣

≤ T
α sups∈[αt−αT,αt]

∣∣∣∣
∫ αt

s

p(l)dl
∣∣∣∣

≤ 2T 2pmax
α

(10.33)

for all t ≥ 0. These estimates combined with (10.31) give

U̇ [α] ≤ −W (t, x)
2

for all t ≥ 0 and x ∈ R
n, provided

α >
4(T + 1)pmax

c
. (10.34)

Since W ∈ UPD, this gives the desired decay estimate. Also, (10.33) and
Condition 4. in Assumption 10.1 give the uniform proper and positive def-
initeness of U [α] for large enough constants α > 0, hence the conclusion of
the theorem. �

10.6 Illustrations

We illustrate Theorems 10.11 and 10.12 through several examples, starting
with a case where (10.6) is UGAS but not necessarily UGES. We next con-
sider a class of systems (10.5) from identification where the limiting dynam-
ics (10.6) is linear and exponentially stable. For these systems, we provide
formulas for strict Lyapunov functions for (10.5) that have the additional
desirable property that they are also ISS Lyapunov functions for (10.7) for
suitable functions g. In this situation, the strict Lyapunov functions are ex-
pressed in terms of quadratic Lyapunov functions for the limiting dynamics.
Finally, we apply our results to a friction model for a mass-spring dynamics
we discussed in Sect. 10.1. In all three examples, the limiting dynamics has
a simple Lyapunov function, so our results give explicit Lyapunov functions
for the original rapidly time-varying dynamics. The novelty of our treatment
of these examples lies in our global strict Lyapunov function constructions;
see Sect. 10.8 for a detailed comparison with the literature.
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10.6.1 A UGAS Dynamics that Is Not UGES

Consider the following scalar example from [108]:

ẋ = f(t, αt, x) = −σ1(x)
[
2 + sin

(
t + cos(σ2(x))

)]{1 + 10 sin(αt)} (10.35)

where σ1, σ2 : R → R are C1 functions such that σ1 is odd,

sup
{∣∣σ′

1(x)
∣∣+

∣∣σ1(x)σ′
2(x)

∣∣ : x ∈ R
}

< ∞,

σ1 ∈ K on [0,∞), and σ′′
1 (s) ≤ 0 for all s > 0. One easily checks that the

hypotheses of Part (a) of Theorem 10.11 are satisfied, using

f̄(t, x) .= −σ1(x)
[
2 + sin

(
t + cos(σ2(x))

)]
,

V (t, x) ≡ V̄ (x) .=
∫ x

0

σ1(s)ds,

δ(s) .= 33σ1(2s), and N(η) .= 60/η2 for large η.

This allows cases such as σ1(s) = σ2(s) = arctan(s); in that case, the limiting
dynamics (10.6) is UGAS but not UGES because |ẋ(t)| ≤ 2π along all of
its trajectories x(t). Condition 1. from Definition 10.1 is satisfied because
σ1(2s) ≤ 2σ1(s) for all s ≥ 0, which holds because σ′′

1 (s) ≤ 0 for all s ≥ 0.
Theorem 10.12 then gives the following iISS Lyapunov function for (10.16)
for large α > 0:

V̄

(
ξ + 5

√
ασ1(ξ)

∫ t

t− 2√
α

∫ t

s

μ(ξ, l) sin(αl) dl ds

)
, (10.36)

where
μ(ξ, l) .= 2 + sin(l + cos(σ2(ξ))).

It is a global strict Lyapunov function for ẋ = f(t, αt, x), and it is also an
ISS Lyapunov function for (10.16) in the special case where δ ∈ K∞, e.g., if
σ1(s) = sgn(s) ln(1 + |s|) for |s| ≥ 1 and σ2(s) = arctan(s).

10.6.2 System Arising in Identification

We next consider the system

ẋ = f(αt) m̄(t) m̄�(t)x + g(t, αt, x)u, (10.37)

with state x ∈ R
n and inputs u ∈ R

m. We assume:
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Assumption 10.2 The following conditions are satisfied:

1. f : R → R is bounded and continuous and admits a o(s) function M and
a constant f� < 0 for which:

i. f� = limT→+∞ 1
2T

∫ �
−T

f(s)ds; and

ii. | ∫ t2
t1

[f(s) − f�]ds| ≤ M(t2 − t1) if t2 ≥ t1.

2. m̄ : R → R
n is continuous and |m̄(t)| = 1 for all t ∈ R, and there exist

constants α′, β′, c̃ > 0 such that for all t ∈ R, α > 0, and x ∈ R
n, we have:

i. α′In ≤ ∫ t+c̃

t m̄(τ)m̄�(τ)dτ ≤ β′In; and
ii. ||g(t, αt, x)|| ≤ β′{1 +

√|x|}.
3. g : R × R × R

n → R
n×m : (t, l, x) 
→ g(t, l, x) is continuous and is C1 in

x, and there exists a constant K > 1 such that
∣∣∣∣
∂gij
∂x

(t, αt, x)
∣∣∣∣ ≤ K

for all x ∈ R
n, t ≥ 0, and α > 0, and each component gij of g.

The particular case of (10.37) in which

ẋ = −m̄(t) m̄�(t)x

has been extensively studied in systems identification; see Sect. 10.8 for the
historical background. However, the well-known results do not provide ex-
plicit ISS Lyapunov functions for (10.37). To provide ISS Lyapunov functions
of this kind, we use the limiting dynamics

ẋ = f̄(t, x) .= f�m̄(t) m̄�(t)x (10.38)

and the following key lemma from [108]:

Lemma 10.3. Let Assumption 10.2 hold and set

P (t) =
{

c̃

2|f�| +
1

4α′ c̃
4|f�|

}
In +

∫ t

t−c̃

∫ t

s

m̄(l)m̄�(l) dl ds. (10.39)

Then V (t, x) = x�P (t)x is a strict Lyapunov function for (10.38) for which
2V/α′ satisfies the requirements of Lemma 2.2.

For the proof of this lemma, see Appendix A.1. We readily conclude that
the corresponding rapidly varying dynamics

ẋ = f(αt)m̄(t)m̄�(t)x
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Fig. 10.1 First component of state of (10.37) with choices (10.40)

satisfies the hypotheses of Theorem 10.11 with δ of the form δ(s) = r̄s for a
suitable constant r̄ > 0. In fact, we can take the function V we constructed
in the preceding lemma. Remark 10.2 now gives:

Corollary 10.1. Let (10.37) satisfy Assumption 10.2 and let V be as in
Lemma 10.3. Then there exists a constant α0 > 0 such that for each con-
stant α > α0,

V [α](t, x) .= V

(
t,

[
I −

√
α

2

∫ t

t− 2√
α

∫ t

s

(
f(αl) − f�

)
m(l)m�(l) dl ds

]
x

)

is an ISS Lyapunov function for (10.37).

To illustrate the ISS property, we simulated (10.37) with the choices

n = m = 2, m̄(t) = (cos(t), sin(t))�, f(s) = cos(s) − 1
2 ,

g(t, αt, x) ≡ I2, α = 100, and u(t) ≡ (.005, 0)�
(10.40)

and obtained the trajectories in Figs. 10.1 and 10.2. The simulations illustrate
the convergence of the state components to zero, with an overshoot deter-
mined by the ISS overshoot term. Using our explicit ISS Lyapunov function,
we can explicitly compute the functions β ∈ KL and γ ∈ K∞ in the standard
ISS estimate. This allows us to quantify the effects of the uncertainty u.
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Fig. 10.2 Second component of state of (10.37) with choices (10.40)

10.6.3 Friction Example Revisited

We next show how the friction dynamics (10.1) satisfies the assumptions from
Remark 10.2 with δ(s) = r̄s for some constant r̄, when the limiting dynamics
(10.6) is

{
ẋ1 = x2

ẋ2 = −σ̃1x2 −
{
σ̃2 + σ̃3e

−β1μ(x2)
}

sat(x2) − k(t)x1 ,
(10.41)

and the constants σ̃i satisfy the requirements from (10.4). Following [108],
we add the assumption

∃ constants k0, k̄ > 0 s.t. k0 ≤ k(t) ≤ k̄ and k′(t) ≤ 0 ∀t ≥ 0. (10.42)

Conditions (10.42) imply that the spring stiffness is non-increasing. To check
the assumptions from Remark 10.2, set

S
.= σ̃1 + (σ̃2 + σ̃3)β2 and

V (t, x) .= A
[
k(t)x2

1 + x2
2

]
+ x1x2, where

A
.= 1 + 1

k0
+ 1

σ̃1

[
1 + S2

k0

]
.

(10.43)

Noting that Ak̄ ≥ 1 and A ≥ 1, we get

1
2
|x|2 ≤ V (t, x) ≤ 3

2
A2k̄|x|2

20 40 60 80 100
Time

0
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for all x ∈ R
2 and t ≥ 0. Also, the time derivative

V̇ = Vt(t, x) + Vx(t, x)f̄ (t, x)

along trajectories of (10.41) gives

V̇ ≤ Vx(t, x)f̄ (t, x) = [2Ak(t)x1 + x2]x2

−[2Ax2 + x1]{σ̃1x2 +
[
σ̃2 + σ̃3e

−β1μ(x2)
]
sat(x2) + k(t)x1},

since k′ ≤ 0 everywhere. Hence, we can group terms to get

V̇ ≤ −k0x
2
1 − (2Aσ̃1 − 1)x2

2 + S|x1x2| (by (10.2))

≤ −b|x|2 − [
k0
2 x2

1 + (Aσ̃1 − 1/2)x2
2 − S|x1x2|

]

= −b|x|2 − k0
2

(
|x1| − S

k0
|x2|

)2

+
(

S2

2k0
+ 1

2 − Aσ̃1

)
x2

2

≤ −b|x|2, where b
.= min{k0/2, Aσ̃1 − 1/2}.

The preceding analysis says that V/b is a Lyapunov function for (10.41)
that satisfies the conclusions of Lemma 2.2 for the limiting dynamics. The
integral bound (10.17) from Theorem 10.11 follows from (10.4), using the
sublinear growth of tanh, by verifying the integral bound term by term, and
the other bounds from (10.18) are satisfied because sat and μ have uniformly
bounded first derivatives. Hence, the proof of Theorem 10.12 implies that for
large enough constants α > 0, the dynamics (10.1) has the ISS Lyapunov
function

V [α](t, ξ) = V

(
t, ξ1, ξ2 +

√
α

2

∫ t

t− 2√
α

∫ t

s

Γα(l, ξ) dl ds

)

where V is the Lyapunov function (10.43) for the dynamics (10.41),

Γα(l, ξ) .= {σ1(αl) − σ̃1}ξ2 + μα(l, ξ) tanh(β2ξ2), and (10.44)
μα(l, ξ) .= σ2(αl) − σ̃2 + (σ3(αl) − σ̃3)e−β1μ(ξ2). (10.45)

In particular, (10.1) is ISS for large enough constant rapidness parameters
α > 0, by Remark 10.2.

Remark 10.3. The preceding analysis simplifies if σ2 and σ3 in (10.1) are both
positive constants, since in that case, we can take the limiting dynamics

{
ẋ1 = x2

ẋ2 = −σ̃1x2 −
{
σ2 + σ3e

−β1μ(x2)
}

sat(x2) − k(t)x1 .

The ISS Lyapunov function for (10.1) can now be taken to be
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V

(
t, ξ1, ξ2

(
1 +

√
α

2

∫ t

t− 2√
α

∫ t

s

{σ1(αl) − σ̃1} dl ds

))

with V defined by (10.43).

10.7 Further Illustrations: Strictification Approach

One easily checks that Theorem 10.13 applies to (10.35) and (10.37) without
controls (using the V ’s from our earlier discussions of those examples), as-
suming (10.37) satisfies Assumption 10.2 with m̄ having a bounded derivative
and f a suitable periodic function. We next review two examples from [108]
that apply Theorem 10.13 to cases that are not already covered by Theorem
10.11.

10.7.1 Systems with Unknown Functional Parameters

Consider the nonautonomous scalar dynamics

ẋ = p(αt)
x2

1 + x2
+ u, (10.46)

where the rapidly varying parameter p is unknown and u is a controller to be
specified. Our only assumptions on p are that (a) there is a known constant
am > 0 so that |p(l)| ≤ am for all l and (b) there is a known constant T > 0
such that Condition 2. from Assumption 10.1 holds for all k ∈ Z. Let us
show that the saturated state controller

u = −2 arctan(x) (10.47)

makes (10.46) UGAS to the origin. For concreteness, we take am = 10. The
time derivative of V (x) = 1

2x
2 along the trajectories of (10.46), in closed-loop

with (10.47), is then

V̇ = −2x arctan(x) + p(αt)
x3

1 + x2
. (10.48)

Using simple calculations, we can check the assumptions of Theorem 10.13
for this closed-loop system, by taking

W (t, x) ≡ 2x arctan(x), Θ(t, x) ≡ x3

1 + x2
,
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and a small enough constant c > 0. Hence, (10.47) renders (10.46) UGAS to
zero, and the closed-loop system has the strict Lyapunov function

U [α](t, x) =
1
2
x2 − 1

T

(∫ t

t−T

∫ t

s

p(αl) dl ds
)

x3

1 + x2
(10.49)

when the constant α > 0 is sufficiently large. A similar argument can be
used to show that u = −2 arctan(Rx) stabilizes (10.46) for any choice of the
constant R > 1.

10.7.2 Dynamics that Are Not Globally Lipschitz

One easily shows that the one-dimensional dynamics

ẋ = −x3 + 10 cos(αt)
x3

1 + x2
(10.50)

satisfies Assumption 10.1 with

V (t, x) ≡ x4

4 , W (t, x) ≡ x6,

Θ(t, x) ≡ x6

1+x2 , p(t) .= 10 cos(t), T
.= 2π,

and a small enough constant c > 0. Therefore, (10.50) has the global strict
Lyapunov function

U [α](t, x) =
x4

4
− 1

2π

(∫ t

t−2π

∫ t

s

10 cos(αl) dl ds
)

x6

1 + x2

when the constant α > 0 is large enough. On the other hand, (10.50) is not
covered by Theorem 10.11, because it is not globally Lipschitz in the state.

10.8 Comments

There is a significant literature on averaging-based approaches in nonlinear
control. Standard results on averaging approximate solutions of systems of
the form

ẋ = εf(t, x, ε) (10.51)

for small positive constants ε by solving a second system that is obtained by
averaging f(t, x, ε) around ε = 0 [70]. More precisely, (10.51) is assumed to be
periodic for some period T in t, and then the averaged system is ẋ = εfav(x)
where
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fav(x) =
1
T

∫ �

0

f(τ, x, 0)dτ.

The averaging results in [2, 3] say that exponential stability of an appropri-
ate autonomous dynamic ẋ(t) = f̄(x(t)) guarantees that a given time-varying
system ẋ(t) = f(t, x(t)) is exponentially stable as well, provided that the time
variation of the latter is sufficiently fast. Partial averaging is one generaliza-
tion of averaging. A different generalization in [135] shows that the rapid
time variation assumption in averaging can be replaced by a homogeneity
condition on the vector fields.

Yet another approach to averaging was pursued in [122], which proves
uniform semi-global practical ISS of a general class of time-varying systems,
under the assumption that the strong average of the system is ISS. A strong
average of a system ẋ = f(t, x, u) is defined to be a locally Lipschitz function
fsa : R

n ×R
m → R

n for which there exist a function β ∈ KL and a constant
T ∗ > 0 such that
∣∣∣∣∣
1
T

∫ t+T

t

[
fsa

(
x,w(s)

) − f
(
s, x, w(s)

)]
ds

∣∣∣∣∣ ≤ β
(
max{|x|, |w|∞, 1}, T )

for all t ≥ 0, w ∈ M(Rm), and T ≥ T ∗. However, this earlier work does not
provide explicit strict Lyapunov functions.

The system
ẋ = −m̄(t)m̄�(t)x (10.52)

naturally arises in adaptive identification. In that context, one is given a
stable plant transfer function

Π(s) =
n∑

i=1

bis
i−1

(
sn +

n∑

i=1

ais
i−1

)−1

with unknown ai’s and bi’s but known n, and no zero-pole cancelations. The
problem is to find the ai’s and bi’s, based on input and output measurements
for the plant. This problem is solvable when (10.52) is exponentially stable
for a suitable vector m̄; see e.g., Appendix A-I in [4]. Sufficient conditions for
exponential stability of (10.52) are well-known. For example, [4, Theorem 1]
establishes that the system is exponentially stable if and only if the PE in
our Condition 2.i. from Assumption 10.2 holds for some positive constants
α′, β′, and c̃, under the assumption that m is regulated (meaning its finite
one-sided limits exist everywhere).

The paper [136] extends [2, 3] to general classes of rapidly time-varying
systems, by proving a general exponential stability theorem involving the
mixed partial derivatives of a Lyapunov function for the limiting dynamics.
Our system (10.35) in Sect. 10.6.1 is a variant of the scalar example on
[136, p.53]. The conditions on the σi’s in (10.35) cannot be omitted even if
the limiting dynamics (10.6) is UGES [136, Sect. 8.2]. For example, if we
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take σ1(x) = x and σ2(x) = x2, then (10.6) is UGES, but (10.35) can only
shown to be locally exponentially stable for large α > 0 [136]. This does not
contradict our theorem because in that situation, (10.18) would be violated.

The results of [136] assume that (10.6) is uniformly locally exponentially
stable, and establish exponential stability of (10.37) under our Assumption
10.2 (but with g ≡ 0). This generalized a result from [55, pp. 190-5] on a
class of systems (10.5) satisfying certain periodicity or almost periodicity
conditions. By contrast, we assumed in this chapter that (10.6) was UGAS.
Although global exponential and global asymptotic stabilities are equivalent
for autonomous systems under a coordinate change in certain dimensions,
the coordinate changes are not explicit and so do not lend themselves to
explicit Lyapunov function constructions [50]. The novelty of our treatment
is the simple direct construction of a strict global Lyapunov function under
assumptions similar to those of [136, Theorem 3].

The requirement (10.15) on N ∈ M from Theorem 10.11 can be relaxed
the requirement that supη ηN(η) < c̄/4, where c̄ is from Condition 1. from
Definition 10.1. This follows from (10.24).



Chapter 11

Slowly Time-Varying Systems

Abstract In Chap. 10, we discussed methods for building explicit global
strict Lyapunov functions for rapidly time-varying systems. We turn next
to the complementary problem of explicitly constructing strict Lyapunov
functions for slowly time-varying continuous time systems. As in the case of
rapidly time-varying systems, slowly time-varying systems involve two con-
tinuous time scales, one faster than the other. However, the methods for
constructing strict Lyapunov functions for rapidly time-varying systems do
not lend themselves to slowly time-varying systems, so our techniques in this
chapter are completely different from the ones in Chap. 10. Instead of us-
ing limiting dynamics or averaging, we use a “frozen dynamics” approach,
whereby Lyapunov functions for the corresponding frozen dynamics are used
to build strict Lyapunov functions for the original slowly time-varying dy-
namics. We illustrate our results using friction and pendulum models.

11.1 Motivation

To motivate our results for slowly time-varying systems, consider the follow-
ing generalized pendulum dynamics:

{
ẋ1 = x2

ẋ2 = −x1 − [1 + b2(t/α)m̃(t, x)]x2 ,
(11.1)

where:

Assumption 11.1 The following are satisfied:

1. m̃ : R × R
2 → [0, 1] is Lipschitz in x and continuous; and

2. there are constants T > 0 and c > −T such that 5
∫ t
t−T b2(l) dl ≥ c for all

t ∈ R, and b2 : R → (−∞, 0] is globally bounded.

The constant parameter α > 1 is used to produce the slower time scale t/α.

297
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Motivated by our work in Chap. 10, it is natural to ask the following: Can
we find a constant α > 0 and design a class of functions V �

α such that for each
constant α ≥ α, V �

α is a global strict Lyapunov function for (11.1)? We will
answer this question in the affirmative in Sect. 11.6.2. While the model (11.1)
has been studied by several authors, e.g., in [137], the earlier methods do not
address this Lyapunov function construction problem. Moreover, the rapidly
time-varying system that would arise from transforming the system does
not produce a dynamics of the type covered by Chap. 10; see Remark 11.1.
Rather, our construction of the V �

α’s will follow from a general, constructive
Lyapunov function theory from [103] that is specifically designed for slowly
time-varying systems. We turn to this general theory next.

11.2 Overview of Methods

This chapter is devoted to the study of nonlinear slowly time-varying systems
of the form

ẋ = f(t, t/α, x) (11.2)

for large values of the constant α > 1 (but see Sect. 11.7 for the extension to
systems with controls). See Sect. 11.3 for our standing assumptions on (11.2).
Such systems arise in a large variety of important engineering applications
[70, 137, 154], so it is important to develop methods for determining whether
slowly time-varying systems are UGAS with respect to their equilibria. Even
if (11.2) is known to be UGAS, it is still important to have general methods
for constructing explicit closed form Lyapunov functions for (11.2), e.g., to
quantify the effects of uncertainty in the model; see [5, 7, 8, 98, 102, 108] for
discussions on the essentialness of explicit global strict Lyapunov functions
for robustness analysis.

One well-known approach is to first show exponential stability of the cor-
responding “frozen dynamics”

ẋ = f(t, τ, x) (11.3)

for suitable values of the parameter τ , including cases where the exponent
in the exponential decay estimate can take both positive and negative values
for different τ values [70, 137, 154]. The stability of the frozen dynamics then
leads to a proof of stability of (11.2). While useful in some applications, this
standard approach is of limited value for robustness analysis, because it does
not lead to explicit strict Lyapunov functions for (11.2).

The main goals of this chapter are (a) to show how to relax the exponential-
like stability assumptions on (11.3) and allow cases where τ is a vector,
thereby enlarging the class of dynamics to which the frozen dynamics method
can be applied and (b) to show how to use a suitable class of oftentimes
readily available Lyapunov functions for (11.3) to build explicit global strict
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Lyapunov functions for (11.2). In general, the strict Lyapunov functions we
construct for (11.2) comprise a class of functions, parameterized by the con-
stant α > 0. In some cases, we can construct strict Lyapunov functions for
all values of α > 0, while in other cases the construction is only valid when α
is sufficiently large; we illustrate both of these possibilities in Sect. 11.6. We
also show how to extend the results to systems with disturbances, in which
case the strict Lyapunov functions we construct are ISS Lyapunov functions
for the corresponding perturbed slowly time-varying dynamics.

11.3 Assumptions and Lemmas

Recall the comparison function classes K∞ and KL we introduced in Chap.
1. For functions r 
→ p(r) ∈ R

d with differentiable components, we let p′(r)
denote the vector (p′1(r), ...., p′d(r)). When ρ is defined on [0,∞), we interpret
ρ′(0) as a one sided derivative, and continuity at 0 as one sided continuity.

We assume that all of our uncontrolled dynamics

ẋ = h(t, x) (11.4)

(11.4) are sufficiently smooth, forward complete and decrescent (a.k.a. uni-
formly state bounded), meaning there exists αh ∈ K∞ such that |h(t, x)| ≤
αh(|x|) everywhere. In what follows, we often omit the arguments in our func-
tions when they are clear from the context. Also, all (in)equalities should be
interpreted to hold globally unless otherwise indicated.

11.4 Main Lyapunov Construction

For simplicity, we assume that our system (11.2) has the form

ẋ = f
(
t, p(t/α), x

)
, (11.5)

where p : R → R
d is bounded, d is any positive integer, α > 1 is a con-

stant called the slowness parameter, and the components p1, . . . , pd of p have
bounded first derivatives. We set

p̄
.= sup{|p′(r)| : r ∈ R} (11.6)

and
R(p) .= {p(t) : t ∈ R}. (11.7)

Our main assumption is as follows:
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Assumption 11.2 There are known functions α1, α2 ∈ K∞; known positive
constants ca, cb, and T ; a continuous function q : R

d → R; and a C1 function
V : [0,∞) × R

d × R
n → [0,∞) satisfying the following conditions:

1. α1(|x|) ≤ V (t, τ, x) ≤ α2(|x|);
2. Vt(t, τ, x) + Vx(t, τ, x)f(t, τ, x) ≤ −q(τ)V (t, τ, x);
3. |Vτ (t, τ, x)| ≤ caV (t, τ, x); and

4.
∫ t
t−T

q(p(s))ds ≥ cb

hold for all t ≥ 0, x ∈ R
n, and τ ∈ R(p).

Condition 2. is less restrictive than the standard exponential stability prop-
erty of the frozen dynamics, because (a) we do not require α1 or α2 to be
quadratic functions and (b) q(τ) can take non-positive values for some choices
of τ . On the other hand, Condition 4. roughly says that q is positive on av-
erage, along the vector function p(s). The following was shown in [103]:

Theorem 11.1. If (11.5) satisfies Assumption 11.2, then for each positive
constant

α >
2Tcap̄

cb
, (11.8)

the dynamics (11.5) are UGAS and

V �
α(t, x) .= exp

(
α

T

∫ t
α

t
α−T

∫ t
α

s

q(p(l))dl ds

)
V
(
t, p(t/α), x

)
(11.9)

is a global strict Lyapunov function for (11.5).

Proof. Sketch. Consider the function

V̂ (t, x) .= V
(
t, p(t/α), x

)
. (11.10)

By Conditions 2. and 3. in Assumption 11.2 and our choice of p̄, the time
derivative of V̂ along the trajectories of (11.5) is

˙̂
V = Vt(t, p(t/α), x) + Vx(t, p(t/α), x)f(t, p(t/α), x)

+Vτ (t, p(t/α), x)
p′(t/α)

α

≤
[
−q
(
p(t/α)

)
+

cap̄

α

]
V̂ (t, x).

(11.11)

Set

E(t, α) .= exp

(
α

T

∫ t
α

t
α−T

∫ t
α

s

q(p(l)) dl ds

)
. (11.12)

Then
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V �
α(t, x) = E(t, α)V̂ (t, x)

everywhere, and Lemma 10.2 applied with the integrand q(p(t)) gives

V̇ �
α = E(t, α)

[
˙̂
V +

{
q
(
p(t/α)

)− 1
T

∫ t
α

t
α−T

q
(
p(l)

)
dl

}
V̂

]
and

eαTM̄/2 ≥ E(t, α) ≥ e−αTM̄/2

(11.13)

everywhere, where M̄ is any global bound on q(p(t)). Substituting (11.11)
and recalling Condition 4. from Assumption 11.2 now gives

V̇ �
α ≤ E(t, α)

[
cap̄

α
− 1

T

∫ t
α

t
α−T

q
(
p(l)

)
dl

]
V̂

≤ E(t, α)
[ cap̄

α
− cb

T

]
V̂ (t, x).

(11.14)

It follows that if the constant α satisfies (11.8), then (11.14) implies

V̇ �
α(t, x) ≤ − cb

2T
e−αTM̄/2V̂ (t, x) ≤ −α3(|x|), (11.15)

where the function
α3(s) =

cb
2T

e−αTM̄/2α1(s)

is positive definite. Since V �
α is also uniformly proper and positive definite,

the result readily follows. �

Remark 11.1. A different approach to slowly time-varying systems ẋ =
f(t, t/α, x) would be to transform them into rapidly time-varying systems
and to then try to construct a Lyapunov function for the resulting rapidly
time-varying systems using the methods we gave in Chap. 10. The trans-
formation is done by taking y(s) .= x(αs), which produces the new rapidly
time-varying system

y′(s) = g(s, αs, y(s)) .= αf(sα, s, y(s)) (11.16)

with the new rescaled time variable s. However, the system (11.16) is not of
the form we saw in Chap. 10, so the earlier strict Lyapunov functions do not
apply. This is one motivation for our direct construction of strict Lyapunov
functions for slowly time-varying systems.

11.5 More General Decay Rates

We can relax requirements of Theorem 11.1 by assuming the following (where
we continue the notation from Sect. 11.4):
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Assumption 11.3 There are known functions α̃1, α̃2 ∈ K∞ a positive def-
inite C1 function μ; positive constants T , c̃a, and c̃b; a continuous function
q̃ : R

d → R; and a C1 function Ṽ : [0,∞) × R
d × R

n → [0,∞) satisfying

lim
r→+∞

∫ r

1

1
μ(l)

dl = +∞ (11.17)

and

1. α̃1(|x|) ≤ Ṽ (t, τ, x) ≤ α̃2(|x|);
2. Ṽt(t, τ, x) + Ṽx(t, τ, x)f(x, t, τ) ≤ −q̃(τ)μ(Ṽ (t, τ, x));

3. |Ṽτ (t, τ, x)| ≤ c̃aμ(Ṽ (t, τ, x)); and

4.
∫ t
t−T

q̃(p(s))ds ≥ c̃b

hold for all x ∈ R
n, t ≥ 0, and τ ∈ R(p).

Assumption 11.2 is the special case of Assumption 11.3 where μ(l) ≡ l.
Using Theorem 11.1, one can prove the following:

Theorem 11.2. Let (11.5) satisfy Assumption 11.3. Then we can construct a
function k ∈ K∞ such that the requirements of Assumption 11.2 are satisfied
with V

.= k(Ṽ ). Hence, for each sufficiently large choice of the constant α > 1,
the system (11.5) is UGAS and has a global strict Lyapunov function of the
form (11.9).

This follows by taking

k(r) =

⎧
⎪⎨

⎪⎩

exp
(

2B
∫ r

1

1
μ(l)

dl
)

, r > 0

0, r = 0
(11.18)

with the choice B
.= sup{μ′(s) : 0 ≤ s ≤ 1}. The fact that (11.18) satisfies

the requirements is a consequence of

lim
r→0+

∫ r

1

1
μ(l)

dl = −∞. (11.19)

See [103] for the full proof.

11.6 Illustrations

In general, our strict Lyapunov functions are only when the constant parame-
ter α > 0 in (11.5) is sufficiently large. However, in certain cases, the functions
V from Assumption 11.2 are independent of the frozen parameter τ , so our
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proof of Theorem 11.1 shows that the strict Lyapunov function is valid for all
constants α > 1. We illustrate this phenomenon in two examples. We then
provide slowly time-varying dynamics from identification theory and friction
analysis where V depends on τ , and where we can therefore only guarantee
UGAS for large values of α. Throughout this section, we set

V̇ (t, τ, x) .= Vt(t, τ, x) + Vx(t, τ, x)f(t, τ, x)

everywhere.

11.6.1 A Scalar Example

Consider the one-dimensional dynamics

ẋ =
x√

1 + x2

[
1 − 90 cos2

(
t

α

)]
(11.20)

and the uniformly proper and positive definite function

V (t, τ, x) ≡ V̄ (x) .= e
√

1+x2 − e. (11.21)

As noted in [103], Assumption 11.2 is satisfied for this V using the frozen
dynamics

ẋ = f(t, τ, x) .=
x√

1 + x2
[1 − 90τ ] , 0 ≤ τ ≤ 1. (11.22)

To see why, notice that

V̇ (t, τ, x) = e
√

1+x2 x2

1 + x2
− 90τe

√
1+x2 x2

1 + x2
. (11.23)

Simple calculations give

2e
√

2

e− 1
V̄ (x) ≥ x2

1 + x2
e
√

1+x2 ≥ 1
2
V̄ (x) , (11.24)

so (11.23) gives

V̇ (t, τ, x) ≤
[

2e
√

2

e− 1
− 45τ

]
V̄ (x). (11.25)

Also, ∫ t

t−π

[
45 cos2(s) − 2e

√
2

e − 1

]
ds = π

(
45
2

− 2e
√

2

e − 1

)
> 0

for each t ≥ 0.
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Hence, Theorem 11.1 implies that for large enough constants α > 1, the
dynamics (11.20) is UGAS, with the global strict Lyapunov function

exp

(
α
π

∫ t
α

t
α−π

∫ t
α

s

[
45 cos2(l) − 2e

√
2

e− 1

]
dl ds

)
V̄ (x)

= exp

(
45

α

4

[
sin

(
2t
α

)
+ π − 4πe

√
2

45(e− 1)

])
[e

√
1+x2 − e]

(11.26)

where V̄ is in (11.21). In this case V does not depend on τ , so the proof
of Theorem 11.1 says that for any constant α > 0, the system (11.20) is
UGAS and has the strict Lyapunov function (11.26). Notice that (11.20) is
not globally exponentially stable, because its vector field is bounded in norm
by 91.

11.6.2 Pendulum Example Revisited

We now apply our construction to the pendulum example (11.1), under As-
sumption 11.1. For convenience, we express the inequality in the second part
of Assumption 11.1 in the following equivalent way: There are constants
T, cb > 0 such that

T + 5
∫ t

t−T

b2(l) dl ≥ cb ∀t ∈ R.

We denote the corresponding frozen dynamics by

f(t, τ, x) .=
(

x2

−x1 − [1 + τm̃(x, t)]x2

)
.

To build global strict Lyapunov functions for (11.1) for large values of the
constant α > 0, we use the following simple observation from [103]:

Lemma 11.1. The function

V (x) .= x2
1 + x2

2 + x1x2 (11.27)

satisfies ∇V (x)f(t, τ, x) ≤ −[1 + 5τ ]V (x) for all x ∈ R
n, t ∈ R, and τ ≤ 0.

Proof. Sketch. It is easily checked that

∇V (x)f(t, τ, x) = −V (x) − 2τm̃(x, t)x2
2 − τm̃(x, t)x1x2 (11.28)

everywhere, by grouping terms. The desired estimate now readily follows
because
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V (x) ≥ x2
1 + x2

2 − |x1x2| ≥ 1
2
x2

1 +
1
2
x2

2 ≥ |x1x2|
everywhere, using the fact that 0 ≤ m̃(x, t) ≤ 1 everywhere. �

The following is an immediate consequence of Lemma 11.1, the proof of
Theorem 11.1, and the fact that (11.27) only depends on x:

Theorem 11.3. Let (11.1) satisfy Assumption 11.1. Then (11.1) has the
global strict Lyapunov function

V �
α(t, x) .= exp

(
5α
T

∫ t
α

t
α−T

∫ t
α

s

b2(l)dl ds

)
[x2

1 + x2
2 + x1x2] (11.29)

for each constant α > 0. Therefore, (11.1) is UGAS for all constants α > 0.

11.6.3 Friction Example Revisited

We now illustrate Theorem 11.1 using the one degree-of-freedom mass-spring
system from Chap. 10, which arises in the control of mechanical systems in
the presence of friction. However, in contrast with Chap. 10, where the mass-
spring dynamics are rapidly time-varying, here we consider the case where the
dynamics are slowly time-varying. While slowly time-varying dynamics can
be transformed into rapidly time-varying dynamics by rescaling time, doing
so for the slowly time-varying mass-spring system produces a new dynamic
that does not lend itself to the known methods; see Remark 11.1.

The dynamics are
⎧
⎨

⎩

ẋ1 = x2

ẋ2 = −σ1(t/α)x2 − k(t)x1

−{σ2(t/α) + σ3(t/α)e−β1μ(x2)
}

sat(x2) ,
(11.30)

where as in Chap. 10, x1 and x2 are the mass position and velocity, respec-
tively; σi : [0,∞) → (0, 1], i = 1, 2, 3 denote positive time-varying viscous,
Coulomb, and static friction related coefficients, respectively; β1 is a posi-
tive constant corresponding to the Stribeck effect; μ(·) is a positive definite
function also related to the Stribeck effect; k denotes a positive time-varying
spring stiffness related coefficient; and sat is again defined by (10.3), so

|sat(x2)| ≤ β2|x2| ∀x2 ∈ R (11.31)

for a suitable constant β2 > 0. We now assume that the friction coefficients
vary in time more slowly than the spring stiffness coefficient, so we restrict to
cases where α > 1. We prove stability of (11.30) and construct corresponding
global strict Lyapunov functions Vα when the constant α > 0 is sufficiently
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large. Later in this chapter, we use our Lyapunov approach to quantify the
effects of uncertainty in the model using ISS.

Our precise mathematical assumptions on (11.30) are: k and the σi’s are
C1 with bounded derivatives; μ has a bounded first derivative; and there are
positive constants cb and T satisfying

∫ t

t−T

σ1(r)dr ≥ cb ∀t ≥ 0. (11.32)

We also assume this additional condition whose physical implication is that
the spring stiffness is non-increasing in time: ∃k0, k̄ > 0 such that k0 ≤ k(t) ≤
k̄ and k′(t) ≤ 0 for all t ≥ 0.

The frozen dynamics ẋ = f(x, t, τ) for (11.30) are

ẋ1 = x2

ẋ2 = −τ1x2 − k(t)x1 −
{
τ2 + τ3e

−β1μ(x2)
}

sat(x2) ,
(11.33)

where τ = (τ1, τ2, τ3) ∈ [0, 1]3 is now a vector of parameters. As noted in
[103], Theorem 11.1 applies with

p(t) =
(
σ1(t), σ2(t), σ3(t)

)

and the function

V (t, τ, x) = A
(
k(t)x2

1 + x2
2

)
+ τ1x1x2, (11.34)

where

A = 1 +
k0

2
+

(1 + 2β2)2

k0
.

To see why, let us first check the conditions of Assumption 11.2. Since

A ≥ max
{

1,
1
k0

}

and τ1 ≤ 1, we have

1
2
(x2

1 + x2
2) ≤ V (t, τ, x) ≤ 2A2k̄|x|2 (11.35)

everywhere. We now compute V̇ (x, t, τ) for all values τ ∈ [0, 1]3, along the
trajectories of the frozen dynamics (11.33). Since k′(t) ≤ 0 everywhere,

V̇ (t, τ, x) ≤ Vx(t, τ, x)f(t, τ, x)
= [2Ak(t)x1 + τ1x2]x2

−[2Ax2 + τ1x1]
{
τ1x2 + k(t)x1 +

[
τ2 + τ3e

−β1μ(x2)
]
sat(x2)

}
.

It readily follows that
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V̇ (t, τ, x) ≤ −τ1k0x
2
1 − (2Aτ1 − τ1)x2

2 + τ1(1 + 2β2)|x1x2|

≤ −τ1
k0

2
|x|2

−
[
τ1

k0

2
x2

1 + (A− 1/2)τ1x2
2 − τ1(1 + 2β2)|x1x2|

]

= −τ1
k0

2
|x|2 − τ1

k0

2

(
|x1| − 1 + 2β2

k0
|x2|

)2

+
(

τ1(1 + 2β2)2

2k0
+

τ1
2

−Aτ1

)
x2

2

≤ − τ1k0

4A2k̄
V (t, τ, x) .

(11.36)

Hence, Assumption 11.2 of Theorem 11.1 is immediate from (11.32) by choos-
ing

q(τ) =
τ1k0

4A2k̄
and ca = 1.

This gives:

Corollary 11.1. Let the preceding assumptions hold, define V as in (11.34),
and set

b̄ =
k0

4A2k̄
and p(t) =

(
σ1(t), σ2(t), σ3(t)

)
.

Then we can construct a constant α0 > 0 such that for all α > α0,

Vα(t, x) .= exp

(
αb̄

T

∫ t
α

t
α−T

∫ t
α

s

σ1(l)dl ds

)
V
(
t, p(t/α), x

)
(11.37)

is a global strict Lyapunov function for the system (11.30), which is therefore
UGAS to the origin.

11.6.4 Identification Dynamics Revisited

Our strict Lyapunov function design also applies to slowly time-varying dy-
namics of the form

ẋ = h(t/α)m̄(t)m̄�(t)x, x ∈ R
n . (11.38)

As we noted before, the particular case

ẋ = −m̄(t)m̄�(t)x

of (11.38) has been studied by several authors in the context of identification
theory [108, 136]. In the more general case (11.38), we assume:
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Assumption 11.4 There are positive constants T, c̃, α, and ᾱ, with ᾱ ≥ 1,
such that:

1. h : R → [−ᾱ, 0] is continuous with a bounded first derivative and

∫ t

t−T

h(r)dr ≤ −α

for all t ∈ R; and
2. m̄ : R → R

n is continuous and satisfies |m̄(t)| = 1 and

αIn ≤
∫ t+c̃

t

m̄(r)m̄�(r)dr ≤ ᾱIn

for all t ∈ R.

In this setting, for matrices A,B ∈ R
n×n, B−A ≥ 0 means B−A is positive

semi-definite; later we allow the more general perturbed dynamics

ẋ = h(t/α)m̄(t)m̄�(t)x + g(t, t/α, x)u

for suitable matrix-valued functions g.
In Chap. 10, we saw how to build global strict explicit Lyapunov functions

for the analogous rapidly time-varying system ẋ = f(αt)m̄(t)m̄�(t)x for ap-
propriate non-positive functions f and large positive constants α. This was
done using an appropriate limiting dynamics and a variant of partial averag-
ing. However, the rapidly time-varying Lyapunov constructions do not give
explicit Lyapunov functions for the slowly time-varying dynamics (11.38); see
Remark 11.1. Instead, we build strict Lyapunov functions for (11.38) using
the following variant of Lemma 10.3 from Chap. 10:

Lemma 11.2. Assume there are positive constants T , c̃, α, and ᾱ such that
Assumption 11.4 is satisfied. Then for each constant τ ∈ [−ᾱ, 0], the function

V (t, τ, x) = x�P (t, τ)x (11.39)

with the choices

P (t, τ) = κI − τ

∫ t

t−c̃

∫ t

s

m̄(l)m̄�(l) dl ds, (11.40)

and

κ =
c̃

2
+

ᾱ2c̃4

2α
+ c̃2 (11.41)

satisfies Assumption 11.2 for the frozen dynamics

ẋ = f(t, τ, x) = τm̄(t)m̄�(t)x (11.42)

and p(s) = h(s).
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Proof. Sketch. We only sketch the proof; see [103] for more details. By Lemma
10.2 and (11.39), we readily have

∂V

∂t
(t, τ, x) = −τ c̃x�m̄(t)m̄�(t)x + τx�

[∫ t

t−c̃

m̄(l)m̄�(l)dl
]
x

and
∂V

∂x
(t, τ, x)f(t, τ, x) =

2τx�
[
κI − τ

∫ t
t−c̃

∫ t
s m̄(l)m̄�(l) dl ds

]
m̄(t)m̄�(t)x .

Hence, the time derivative of (11.39) along the trajectories of (11.42) sat-
isfies

V̇ ≤ τ
{
(2κ− c̃)(m̄�(t)x)2 + α|x|2}+ τ2|x||m̄�(t)x|c̃2

= τ
{
(2κ− c̃)(m̄�(t)x)2 + α|x|2 + τ |x||m̄�(t)x|c̃2}.

(11.43)

Choosing
ω =

α

2c̃2ᾱ
,

we can use the triangle inequality to get

|m̄�(t)x||x| ≤ ω|x|2 +
1
4ω

|m̄�(t)x|2 .

Therefore, the fact that τ ≤ 0 gives

(2κ− c̃)|m̄�(t)x|2 + α|x|2 + τ |x||m̄�(t)x|c̃2

≥
[
2κ− c̃ +

τ c̃2

4ω

]
|m̄�(t)x|2 + (α + ωτc̃2)|x|2

≥ α|x|2
2

(11.44)

by our choices of κ and ω. Combining (11.43) and (11.44) gives

V̇ ≤ τα

2
|x|2

everywhere. Also, Lemma 10.2, our choice of κ, and the fact that |m̄(t)| ≡ 1
combine to give κ|x|2 ≤ V (t, τ, x) ≤ (κ + c̃2)|x|2 and

∣∣∣∣
∂V

∂τ
(t, τ, x)

∣∣∣∣ ≤ c̃2

2
|x|2 ≤ V (x, t, τ).

It follows that V̇ (t, τ, x) ≤ −q(τ)V (t, τ, x), everywhere, where
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q(τ) .= − τα

2(κ + c̃2)
,

so Assumption 11.2 is satisfied. This proves the lemma. �

Combining Lemma 11.2 and Theorem 11.1, we immediately obtain:

Theorem 11.4. Let (11.38) admit constants T > 0, c̃ > 0, α > 0, and ᾱ > 1
such that Assumption 11.4 is satisfied. Then for any constant

α >
4T (κ + c̃2)

α2
sup{|h′(r)| : r ∈ R}, (11.45)

the function

V �
α(t, x) .= exp

(
− αα

2T (κ + c̃2)

∫ t
α

t
α−T

∫ t
α

s

h(l)dl ds

)
V
(
t, h(t/α), x

)
(11.46)

with the function V (t, τ, x) = x�P (t, τ)x as defined in Lemma 11.2 is a global
strict Lyapunov function for (11.38). In particular, (11.38) is UGAS for all
constants α that satisfy (11.45).

11.7 Input-to-State Stability

As we noted in previous chapters, one important advantage of having explicit
strict Lyapunov functions is that they make it possible to quantify the effects
of uncertainty. We illustrate this by extending our results to slowly time-
varying control affine systems

ẋ = f
(
t, p(t/α), x

)
+ g

(
t, p(t/α), x

)
u (11.47)

evolving on R
n with control values u ∈ R

m, assuming f : [0,∞)×R
d×R

n →
R
n and g : [0,∞)×R

d×R
n → R

n×m are locally Lipschitz functions for which
there exists α4 ∈ K∞ satisfying

∣∣f(t, p(t/α), x)
∣∣+

∣∣g(t, p(t/α), x)
∣∣ ≤ α4(|x|)

everywhere, and where p : R → R
d for some d is globally bounded with a

globally bounded first derivative. As before, the inputs for (11.47) comprise
the set M(Rm) of all measurable essentially bounded functions u : [0,∞) →
R
m with the essential supremum norm | · |∞. Our robustness result will be

based on the ISS paradigm; see Chap. 1 for the ISS related definitions.
We assume throughout this subsection that Assumption 11.2 holds for

some choice of V ∈ C1, and that:
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Assumption 11.5 The function α1 ∈ K∞ and the constant ca > 0 from
Assumption 11.2 also satisfy:

1. |Vx(t, p(t/α), x)| ≤ ca
√

α1(|x|); and

2. |g(t, p(t/α), x)| ≤ ca

(
1 + 4

√
α1(|x|)

)

for all t ≥ 0, α > 0, and x ∈ R
n.

In the particular case where α1(x) = |x|2, Assumption 11.5 stipulates linear
growth on Vx, which will be the case when V has the classical form x�P (t)x
for a suitable bounded everywhere positive definite matrix P . The following
was shown in [103]:

Theorem 11.5. Let (11.5) satisfy Assumptions 11.2 and 11.5 for some
choices of ca, V , and α1. Then for each constant

α >
4Tcap̄

cb
, (11.48)

the dynamics (11.47) are ISS and

V �
α(t, x) .= exp

(
α

T

∫ t
α

t
α−T

∫ t
α

s

q(p(l))dl ds

)
V
(
t, p(t/α), x

)
(11.49)

is an ISS Lyapunov function for (11.47).

Proof. Sketch. The proof is analogous to the proof of Theorem 11.1; we in-
dicate the necessary changes in the earlier proof. Define the function

χ(s) .=
cb
√

α1(s)

2Tc2a

(
1 + 4

√
α1(s)

) ,

where α1 and ca are as in Assumption 11.2. Then χ ∈ K∞. Our assumptions
imply that

∣∣Vx
(
t, p(t/α), x

)
g(t, p(t/α), x)u

∣∣ ≤ cbα1(|x|)
2T

≤ cb
2T

V
(
t, p(t/α), x

)

if |u| ≤ χ(|x|). Choose V̂ as in (11.10) and E(t, α) as in (11.12). Then, along
any trajectory x(t) of (11.47) with inputs u satisfying |u|∞ ≤ χ(|x(t)|) for
all t ≥ 0, we have

˙̂
V = −q

(
p(t/α)

)
V̂ (t, x) +

[cap̄
α

+
cb
2T

]
V̂ (t, x)

everywhere and therefore also
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V̇ �
α ≤ E(t, α)

[
cap̄

α
+

cb
2T

− 1
T

∫ t/α

t/α−T

q
(
p(l)

)
dl

]
V̂ (t, x)

≤ E(t, α)
[ cap̄

α
− cb

2T

]
V̂ (t, x)

≤ −cbE(t, α)
4T

V̂ (t, x)

(11.50)

when (11.48) is satisfied, by reasoning exactly as in the earlier proof. This
gives the necessary ISS Lyapunov function decay condition. Since systems
admitting ISS Lyapunov functions are ISS, the result follows. �

Theorem 11.5 readily applies to our friction example from Sect. 11.6.3,
allowing us to conclude that (11.37) is an ISS Lyapunov function for the
slowly time-varying controlled friction dynamic

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = −σ1(t/α)x2 − k(t)x1 + g(t, t/α, x)u

−{σ2(t/α) + σ3(t/α)e−β1μ(x2)
}

sat(x2)

(11.51)

for any g satisfying the requirements of Assumption 11.5 with α1(s) = s2/2,
assuming the constants ca > 0 and α > 0 are sufficiently large.

To illustrate the ISS property, we simulated (11.51) with the choices

α = 100, σ1(t) = σ2(t) = σ3(t) = k(t) = 1 + e−t,

β1 = 1, μ(x2)
.= arctan2(x2), sat(x2) = tanh(10x2),

g(t, t/α, t) ≡ 1, and u ≡ 0.05.

(11.52)

We report the results in Fig. 11.1. Consistent with the ISS estimate, x1(t)
converges to 0 with an overflow depending on the magnitude of the distur-
bance. Moreover, just as in the rapidly time-varying case, we can use our
strict Lyapunov function to explicitly construct the functions β ∈ KL and
γ ∈ K∞ in the ISS estimate, which makes it possible to precisely quantify
the effects of the uncertainty. Similar ISS results can be obtained for the
identification and pendulum examples we considered above.

11.8 Comments

The stability of slowly time-varying systems is a classical topic. A first result
seems to have been [143], which shows that

ẋ(t) = A(t)x(t) (11.53)
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Fig. 11.1 State of (11.51) with choices (11.52)

is UGAS provided:

Assumption 11.6 The following conditions hold:

1. the bounded matrix A admits a constant σ0 > 0 such that Reλi[A(t)] ≤
−2σ0 for all i and t; and

2. aM
.= supt≥0 ||Ȧ(t)|| is sufficiently small.

Later, [37] noted that Assumption 11.6 implies that (11.53) admits the global
Lyapunov function

V (t, x) = x�[ε1I + P (t)]x
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when ε1 > 0 is a small enough constant and P is computed from the Riccati
equation

A�(t)P (t) + P (t)A(t) = −3I.

In [26], Coppel showed that (11.53) is exponentially stable provided Condition
1. from Assumption 11.6 holds and

||Ȧ|| <
σ2

0

(4M ln(M))2
,

where M satisfies an estimate of the form
∣∣∣∣exp

(
τA(t)

)∣∣∣∣ ≤ Me−σ0τ

for all t ≥ 0 and τ ≥ 0.
The earliest result for systems that violate Condition 1. from Assumption

11.6 seems to be [154], which requires that the eigenvalues of A stay in the left
half plane on average but not necessarily for all times. The frozen dynamics
approach to establishing stability of slowly time-varying nonlinear systems
appeared in the 1996 version of Khalil’s book [70]. The slowly time-varying
pendulum model (11.1) was studied in [137], where it was shown that (11.1)
is UGAS when b2 is periodic for some period T > 0, valued in [−1.5,−0.5],
and right continuous with only finitely many discontinuities on [0, T ]; see [70]
for related results, and [154] for results that are restricted to the linear case.
Our Assumption 11.2 is a variant of those of [137, Theorem 2]. See also [71]
for singular perturbation methods for building strict Lyapunov functions for
systems of the form {

ẋ = f(x, z)
εż = g(x, z)

(11.54)

for small values of the constant parameter ε > 0. The system (11.54) is related
to, but conceptually different from, the transformed system (11.16).

Compared with the known results [70, 137, 154], one novel feature of our
Theorem 11.1 is that we allow general nonlinear systems including cases
where the function q can take both positive and negative values (which cor-
responds to the allowance in [154] of eigenvalues that wander into the right
half plane while remaining in the strict left half plane on average). Moreover,
none of these earlier works gave explicit constructions for strict Lyapunov
functions for general slowly time-varying systems. Also, we provided new
methods for constructing explicit closed form strict ISS Lyapunov functions
for slowly time-varying control systems, in terms of a suitable family of gen-
eralized Lyapunov-like functions for the frozen dynamics. This is significant
because Lyapunov functions play essential roles in robustness analysis and
controller design.

It is reasonable to expect that the results of this chapter can be extended
to systems with measurement errors, or which are components of larger con-
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trolled hybrid dynamical systems. However, to the best of our knowledge, no
such extensions have been carried out. It would also be of interest to cover
slowly time-varying systems with outputs, and to construct corresponding
IOS Lyapunov functions; see [170, 171] for further background on systems
with outputs and Chap. 6 for some first results on explicitly constructing
IOS Lyapunov functions for non-autonomous systems with a single continu-
ous time scale, in terms of given non-strict Lyapunov functions.



Chapter 12

Hybrid Time-Varying Systems

Abstract In previous chapters, we saw how to explicitly construct global
strict Lyapunov functions for continuous and discrete time systems, in terms
of oftentimes readily available non-strict Lyapunov functions. This led to
more explicit formulas for stabilizing feedbacks, as well as explicit quantiza-
tions of the effects of uncertainties, in the context of ISS. However, there are
many cases where continuous and discrete time systems in and of themselves
are inadequate to describe and prescribe the motion of dynamical systems.
Instead, the system is presented in a hybrid way, with continuous and discrete
subsystems and ways to switch between the subsystems. Moreover, standard
constructive nonlinear control methods for continuous and discrete systems
are not applicable to hybrid systems. In this chapter, we present some first
results on constructive nonlinear control for hybrid systems that provide ex-
plicit ISS Lyapunov functions, in terms of given non-strict Lyapunov func-
tions for the continuous and discrete subsystems, as well as a hybrid version
of Matrosov’s Theorem. We illustrate our results using a hybrid version of
the identification dynamics we saw in previous chapters.

12.1 Motivation

Consider the continuous time dynamics

ẋ = −m̄(t)m̄�(t)x (12.1)

where m̄ : [0,∞) → R
n is continuous and admits positive constants a, b, and

c for which
aIn ≤ ∫ t+c

t
m̄(τ)m̄�(τ) dτ ≤ bIn and

|m̄(t)| = 1 ∀t ≥ 0.

317
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This is a special case of the more general identification type dynamics that
we saw in previous chapters, and it is well-known that (12.1) is globally
exponentially stable [136]. Set

λ
.=

c

2
+

c4

4a
.

By reducing a ∈ (0, 1) as needed, we can assume λ > 1 + a.
Next let p : Z → [0, 1] be any bounded function that admits constants

l ∈ Z≥0 and δ ∈ (0, l) such that1

k∑

i=k−l

p(i) ≥ δ ∀k ∈ Z≥0 (12.2)

and pick any discrete time dynamics

x+ = [1 − p(k + 1)]x + p(k + 1)h(k, x, u), (12.3)

where h admits χ ∈ K∞ such that the following holds for all x ∈ R
n and

u ∈ R
m:

{|x| ≥ χ(|u|)} ⇒ |h(k, x, u)| ≤ |x|
6
√
λ
∀k. (12.4)

The dynamics (12.3) freezes x whenever p(k + 1) = 0. Notice that we are
allowing cases such as h(k, x, u) = A(k, x) + B(k, x)u where B is bounded
and |A(k, x)| ≤ |x|/(6λ) everywhere as well as more general systems where
the system might not be affine in the control u; the choice of the bound on
|h(t, k, u)| in (12.4) will become clear in what follows.

Finally, let us consider the combined hybrid system
{

x+ = [1 − p(k + 1)]x + p(k + 1)h(k, x, u), x ∈ D

ẋ = −m̄(t)m̄�(t)x, x ∈ C
(12.5)

for k ∈ Z≥0, t ≥ 0, and controls u ∈ R
d, where C,D ⊆ R

n are given and m̄,
p, and h are as above. The system (12.5) should be understood in terms of
hybrid trajectories on hybrid time domains; see [20] or Sect. 12.2 for precise
definitions. In Chap. 10, we saw how to construct a global strict Lyapunov
function for the continuous part (12.1) of the dynamics, which leads to an
explicit ISS estimate that quantifies the effects of uncertainty in the dynamics.
It is natural to extend ISS to the hybrid system (12.5); see Sect. 12.2 for the
definitions of hybrid ISS and hybrid ISS Lyapunov functions. However, it is
by no means clear how to construct an explicit, closed form ISS Lyapunov
function for the entire hybrid dynamics (12.5).

1 Condition (12.2) is the discrete time analog of the PE condition from preceding chapters.
Therefore, we call a bounded non-negative function satisfying an estimate of the form (12.2)
a (discrete time) PE function.
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Just as in the continuous and discrete time cases, it is important to know
whether hybrid dynamics such as (12.7) are ISS, and then to have explicit
ISS Lyapunov functions for robustness analysis. One consequence of our work
in this chapter will be that (12.5) has the ISS-CLF

V �(t, k, x) .=
{
x�

(
λI +

∫ t

t−c

∫ t

s

m̄(l)m̄�(l) dl ds
)

x

}
×

⎡

⎣2 +
a

2(λ + c2/2)2

⎧
⎨

⎩
1
8

+
1

4(l + 1)

k∑

s=k−l

k∑

j=s

p(j)

⎫
⎬

⎭

⎤

⎦
(12.6)

when λ is large enough, and so is ISS. We prove this in Sect. 12.5 as a special
case of our general CLF constructions.

The dynamics (12.5) is a special case of the hybrid dynamics
{

x+ = F (k, x, u), x ∈ D, k ∈ Z≥0

ẋ = G(t, x, u), x ∈ C, t ∈ [0,∞)
(12.7)

for given sets C,D ⊆ R
n, discrete dynamics F , continuous dynamics G, and

control values u ∈ R
d. The map F describes the jumps of the state x which

occur when x ∈ D, while G describes the flow that occurs when x ∈ C;
see Sect. 12.2.2 for the precise solution concept. There is a sizable litera-
ture on models of the form (12.7), including an abstract converse Lyapunov
function theorem involving strict Lyapunov functions [20]. However, as for
continuous and discrete time systems, the Lyapunov constructions in the
hybrid converse theory are abstract and so may not lend themselves to appli-
cations where explicit closed form expressions for strict Lyapunov functions
and stabilizing feedbacks are desirable. Moreover, it is important to be able
to handle time-varying systems, because there are many applications where
the time-invariant dynamics can be stabilized using time-varying controllers
but cannot be stabilized by time-invariant feedback; see Chap. 1, or [94, 159].
The results of [20] are limited to time-invariant systems.

In this chapter, we address all of these issues by providing general meth-
ods for constructing explicit closed form global strict Lyapunov functions
for time-varying discrete time and hybrid control systems. Our methods are
based on suitable extensions of the strictification approach from Chap. 6.
Roughly speaking, we strictify appropriate non-strict Lyapunov functions for
the continuous and discrete time subsystems separately, and then we show
how to merge the results into a strict Lyapunov function for the entire hy-
brid system. This requires an appropriate compatibility condition involving
the continuous and discrete time non-strict Lyapunov functions, which is sat-
isfied for (12.5) and other cases of interest. The results of this chapter were
announced in [92].
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12.2 Preliminaries

Throughout this chapter, all inequalities and equalities should be understood
to hold globally unless otherwise indicated, and we leave out the arguments
of our functions when no confusion would arise.

12.2.1 ISS and PE in Continuous and Discrete Time

Recall the standard classes of comparison functions K∞ and KL from Chap.
1. We continue to set Z≥0 = {0, 1, 2, . . .}. To define stability for the more
complex hybrid system (12.7), we need the following more general class of
comparison functions that accommodates time pairs (t, k) ∈ [0,∞) × Z. Let
KLL denote the set of all functions β : [0,∞) × [0,∞) × [0,∞) → [0,∞)
such that for each t̄ ≥ 0, the functions (s, t) 
→ β(s, t, t̄) and (s, t) 
→ β(s, t̄, t)
are of class KL. We say that a function Θ : [0,∞) × Z≥0 × R

n × R
d →

R : (t, k, x, u) 
→ Θ(t, k, x, u) (which may be independent of t, k, or u) is
uniformly state-bounded and write Θ ∈ USB provided there exists μ ∈ K∞
such that |Θ(t, k, x, u)| ≤ μ(|x|) for all t ≥ 0, k ∈ Z≥0, x ∈ R

n, and u ∈ R
d.

More generally, a vector-valued function H : [0,∞) × Z≥0 × R
n × R

d →
R
j : (t, k, x, u) 
→ H(t, k, x, u) is of class USB, written H ∈ USB, provided

(t, k, x, u) 
→ |H(t, k, x, u)| is of class USB.
We also say that Θ is uniformly proper and positive definite (UPPD) and

write Θ ∈ UPPD provided there are α1, α2 ∈ K∞ such that α1(|x|) ≤
Θ(t, k, x, u) ≤ α2(|x|) for all t ∈ [0,∞), k ∈ Z≥0, x ∈ R

n, and u ∈ R
d. We

say that Θ is (ω1, ω2)-periodic provided ω1 ∈ [0,∞) and ω2 ∈ Z≥0 satisfy
Θ(t−ω1, k−ω2, x, u) = Θ(t, k, x, u) for all (t, k, x, u) ∈ ×[0,∞)×Z≥0×R

n×
R
d. When Θ is independent of t (resp., k), we define ω2-periodicity (resp.,

ω1-periodicity) analogously. A continuous function α mapping a subset of
Euclidean space containing the origin into [0,∞) is positive definite (written
α ∈ PD) provided α is zero at the origin and positive at all other points in
its domain. We also recall the convention that for a C1 function ρ defined on
[0,∞), we interpret ρ′(0) as a one-sided derivative, and continuity of ρ′ at 0
as one-sided continuity.

To study hybrid systems (12.7), we first deal separately with their contin-
uous and discrete subsystems, which we assume to have state space X = R

n

and control set U = R
m. We study time-varying discrete time systems

xk+1 = F (k, xk, uk) (12.8)

where F ∈ USB and uk is the control value at time k. The system (12.8) is
also denoted by x+ = F (k, x, u). Our continuous time systems take the form

ẋ = G(t, x, u) (12.9)
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where G ∈ USB is locally Lipschitz. The control functions for (12.8) and
(12.9) comprise the set Mp of all bounded piecewise continuous functions u :
[0,∞) → R

d.2 We always assume that (12.9) is forward complete, i.e., for each
x0 ∈ R

n, u ∈ Mp, and t0 ≥ 0, there is a unique solution t 
→ φ(t, t0, x0,u)
for (12.9) defined on [t0,∞) that satisfies φ(t0, t0, x0,u) = x0. We interpret
the solutions of (12.9) in the Lebesgue sense of ẋ(t) = G(t, x(t),u(t)) for
almost all (a.a.) t ≥ 0. We also use k 
→ φ(k, k0, x0,u) to denote the discrete
time solution of (12.8) satisfying φ(k0, k0, x0,u) = x0 whenever no confusion
would result; we always assume that (12.8) is forward complete as well. Given
any function V : [0,∞) × Z≥0 × R

n → R : (t, k, x) 
→ V (t, k, x), we define

ΔkV (t, k, x, u) .= V
(
t, k + 1, F (k, x, u)

)− V (t, k, x)

DV (t, k, x, u) .= ∂V
∂t (t, k, x) + ∂V

∂x (t, k, x)G(t, x, u) ,

where we also assume that (t, x) 
→ V (t, x, k) is C1 for each k ∈ Z≥0 when
defining DV . We write ΔkV (k, x, u) instead of ΔkV (t, k, x, u) when V is
independent of t (and similarly for DV ). In Chapters 1 and 2, we defined
ISS and ISS Lyapunov functions for continuous time systems. We use the
following analogs for (12.8):

Definition 12.1. We define ISS-CLF and ISS as follows:

1. Let V ∈ UPPD. We call V a (strict) ISS CLF for (12.8) provided there
exist χ ∈ K∞ and α3 ∈ PD such that for all x ∈ R

n, u ∈ R
d, and k ∈ Z≥0,

|x| ≥ χ(|u|) ⇒ ΔkV (k, x, u) ≤ −α3(|x|). (12.10)

2. We call (12.8) ISS provided there exist β ∈ KL and γ ∈ K∞ such that for
all x0 ∈ R

n, k0 ∈ Z≥0, and u ∈ Mp, we have

|φ(k, k0, x0,u)| ≤ β(|x0|, k − k0) + γ(|u|∞) (12.11)

for all k ≥ k0.

For the case of no controls, ISS reduces to UGAS; then we refer to an ISS-
CLF simply as a (strict) Lyapunov function. The corresponding CLF, GAS,
and ISS definitions for (12.9) are obtained from Definition 12.1 by replacing
k with t, Z≥0 with [0,∞), and ΔkV with DV . When (12.8) has no controls,
we also write ΔkV (k, x) instead of ΔkV (k, x, u) (and similarly for DV ).

It is worth noting that we do not require α3 in (12.10) to be of class K∞.
However, when α3 ∈ K∞ and F has no controls, the existence of a strict
Lyapunov function V for x+ = F (k, x) is known to imply that this system is
GAS [123, Theorem 8]. In fact, in that case we have ΔkV (k, x) ≤ −α(V (k, x))

2 The piecewise continuity is essential because we need to evaluate u at specific times
u(k) =: uk which would not be possible if we allowed a more general class of measurable
essentially bounded inputs.
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everywhere, where α
.= α3 ◦α−1

2 ∈ K∞ and α2 as in the UPPD condition on
V . On the other hand, by replacing α3(|x|) in (12.10) by

Θ(V (k, x)) .= min
{
α3(s) : α−1

2 (V (k, x)) ≤ s ≤ α−1
1 (V (k, x))

}
,

and minorizing Θ as needed so that it is increasing on [0, 1] and non-increasing
on [1,∞) (as in Lemma A.7) and then C1, we can use Lemma A.6 to get a
strict a Lyapunov function V satisfying ΔkV (k, x) ≤ −α3(|x|) everywhere
with a new α3 ∈ K∞. Combining this with the stability result from [123] and
the invariance argument from [67] to get γ in the ISS estimate gives:

Lemma 12.1. If (12.8) admits a strict ISS-CLF, then it is ISS.

See Lemma 12.3 for a generalization to hybrid systems. We also use the
following PE definitions:

Definition 12.2. We use PE in the following ways:

1. A bounded function p : Z → [0,∞) is of discrete PE type with parameters
l and δ (written p ∈ Pdis(l, δ)) provided l ∈ N and δ ∈ (0, l) are constants
such that

k∑

i=k−l

p(i) ≥ δ ∀k ∈ Z. (12.12)

2. We say that a bounded continuous function q : R → [0,∞) is of continuous
PE type with parameters τ and ε and write q ∈ Pcts(τ, ε) provided the
constants τ ≥ 0 and ε > 0 satisfy

∫ t

t−τ

q(r) dr ≥ ε ∀t ∈ R. (12.13)

3. We set Pdis = ∪{Pdis(l, δ) : l ∈ Z≥0, δ > 0} and Pcts = ∪{Pcts(τ, ε) : τ >
0, ε > 0}.
Elements of Pdis and Pcts are called PE parameters and arise in a variety

of applications [91, 98]. We use the following simple observations:

Lemma 12.2. Let l ∈ N and τ, ε, δ > 0 be constants, and let p ∈ Pdis(l, δ)
and q ∈ Pcts(τ, ε) be bounded above by p̄ and q̄, respectively. Define the func-
tions S : Z → [0,∞) and R : R → [0,∞) by

S(k) .=
k∑

s=k−l

k∑

j=s

p(j) and R(t) .=
∫ t

t−τ

∫ t

z

q(y) dy dz. (12.14)

Then

S(k) ≤ p̄(l + 1)2 ∀k ∈ Z and R(t) ≤ τ2 q̄

2
∀t ∈ R. (12.15)

If p is l-periodic, then so is S. If q is τ-periodic, then so is R.
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The preceding lemma follows from switching the order of the summations,
a simple change of variables, and the formula 1 + 2 + . . .+m = m(m+ 1)/2.

12.2.2 Hybrid Systems

Following [20, 24], we interpret the hybrid system (12.7) in terms of hybrid
trajectories on hybrid time domains. The relevant definitions are as follows.
A compact hybrid time domain is a subset E ⊆ [0,∞) × Z≥0 of the form

∪K−1
k=0

(
[tk, tk+1] × {k})

for some finite sequence 0 = t0 ≤ t1 ≤ . . . ≤ tK . A hybrid time domain is a
subset E ⊆ [0,∞) × Z≥0 with the property that for all (T, J) ∈ E,

E ∩ ([0, T ]× {0, 1, . . . , J})

is a compact hybrid time domain. Therefore, E is a hybrid time domain
provided it is a finite or infinite union of sets of the form [tk, tk+1]×{k} with
{tk} non-decreasing in [0,∞), with a possible additional “last” set having the
form [tk, T ) × {k} with T finite or infinite. To simplify the notation, we use

∪k∈J
(
[tk, tk+1] × {k})

to denote a generic hybrid time domain with the understanding that (i) either
J = Z≥0 or J is a finite set of the form {0, 1, 2, . . . , jmax} and (ii) [tk, tk+1]
may mean [tk, tk+1) if J is finite and k = jmax.

A hybrid arc is a function x(t, k) defined on a hybrid time domain dom(x)
such that t 
→ x(t, k) is locally absolutely continuous for each k. Given sets
C,D ⊆ R

n and F and G satisfying the assumptions above, the solutions of
the corresponding hybrid control system

H .=
{

ẋ = G(t, x, u), x ∈ C
xk+1 = F (k, xk, uk), xk ∈ D

(12.16)

are defined as follows.

Definition 12.3. Given u ∈ Mp, a hybrid trajectory for (12.16) (for the
input u) is a hybrid arc x(t, k) that satisfies:

1. for all k ∈ Z≥0 and a.a. t such that (t, k) ∈ dom(x), we have x(t, k) ∈ C
and ∂

∂tx(t, k) = G(t, x(t, k),u(t)); and
2. if (t, k) ∈ dom(x) and (t, k+1) ∈ dom(x), then x(t, k) ∈ D and x(t, k+1) =

F (k, x(t, k),u(k)).

Notice that continuous time solutions of (12.9) in C, and discrete time
solutions of (12.8) in D starting with k0 = 0, are special cases of hybrid tra-
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jectories of (12.16), with no switchings between the continuous and discrete
subsystems. In the same way, the next definition reduces to Definition 12.1
for discrete time ISS and discrete time ISS-CLFs, in the special case where
C = ∅ and D = R

n:

Definition 12.4. We use ISS in the following ways:

1. Let V ∈ UPPD be C1 in x and t. We call V a (strict) ISS-CLF for H
provided there exist χ ∈ K∞ and a positive definite function α3 such that
for all (t, k, x, u) ∈ [0,∞) × Z≥0 × R

n × R
d, we have

|x| ≥ χ(|u|) ⇒
{

ΔkV (t, k, x, u) ≤ −α3(|x|) if x ∈ D;
and DV (t, k, x, u) ≤ −α3(|x|) if x ∈ C.

(12.17)

If, in addition, there is a constant r > 0 such that

|x| ≥ χ(|u|) ⇒
{

V (t, k + 1, F (k, x, u)) ≤ e−rV (t, k, x) if x ∈ D;
and DV (t, k, x, u) ≤ −rV (t, k, x) if x ∈ C,

(12.18)

for all t ≥ 0, k ∈ Z≥0, x ∈ R
n, and u ∈ R

d, then we call V an exponential
decay ISS-CLF for H.

2. We call H ISS provided there are β ∈ KLL and γ ∈ K∞ such that: For
each u ∈ Mp and each trajectory x(t, k) of H for u defined on each hybrid
time domain ∪k∈J ([tk, tk+1] × {k}), we have

|x(t, k)| ≤ β
(|x(t0, 0)|, k, t− tk

)
+ γ(|u|∞) (12.19)

for all k ∈ J and all t ∈ [tk, tk+1].

We close this section with the following hybrid analog of Lemma 12.1:

Lemma 12.3. If H admits an ISS-CLF V , then it is ISS.

Proof. We first prove the result for the UGAS case where the dynamics do
not depend on u; the result will then follow from a variant of a standard
invariance argument, e.g., the one used in [157]. First note that since α3 in
the decay estimate is independent of k, standard arguments (e.g., those in
[157] applied with a(x) .= α3(|x|)) provide β1 ∈ KL such that

|x(t, k)| ≤ β1

(|x(tk, k)|, t − tk
) ∀k ∈ J, t ∈ [tk, tk+1] (12.20)

for any hybrid trajectory x(t, j) satisfying any initial condition x(t0, 0) = x0

on any hybrid time domain ∪k∈J ([tk, tk+1] × {k}).
Since α3 is also independent of t, we can also find a β2 ∈ KL such that
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|x(tk, k)| ≤ β2(|x0|, k) ∀k ∈ J, (12.21)

by the following construction. Applying Lemma A.6 to the discrete time
decay condition and replacing V with κ ◦ V for a suitable choice of κ ∈
K∞ without relabeling, we can construct a function γ ∈ K∞ such that
ΔkV (t, k, x) ≤ −γ(V (t, k, x)) for all x ∈ D and all (t, k). Since the map-
ping t 
→ V (t, k, x(t, k)) decays on (tk, tk+1) for each k, we get

V
(
tk+2, k + 1, x(tk+2, k + 1)

) ≤ V
(
tk+1, k + 1, x

(
tk+1, k + 1

))

= V
(
tk+1, k + 1, F

(
k, x(tk+1, k)

))
,

and therefore

V (tk+2, k + 1, x(tk+2, k + 1)) − V (tk+1, k, x(tk+1, k))
≤ ΔkV

(
tk+1, k, x(tk+1, k)

)

≤ −γ
(
V
(
tk+1, k, x(tk+1, k)

))

everywhere, assuming tk, tk+1, and tk+2 are all interval endpoints in dom(x).
If we now apply [123, Theorem 8] to k 
→ V (tk+1, k, x(tk+1, k)), the fact that
V is uniformly proper and positive definite provides functions α1, α ∈ K∞
and β̃2 ∈ KL such that

α1(|x|) ≤ V (t, k, x) ≤ α2(|x|) ∀(t, k, x) and
|x(tk+1, k)| ≤ β̃2

(|x(t1, 0)|, k) ∀k;
(12.22)

the function β̃2 is independent of the choice of the trajectory.
The discrete time decay condition therefore gives

|x(tk+1, k)| ≥ α−1
2 ◦ V

(
tk+1, k, x(tk+1, k)

)

≥ α−1
2 ◦ V

(
tk+1, k + 1, x(tk+1, k + 1)

)

≥ α−1
2 ◦ α1

(|x(tk+1, k + 1)|) ∀k ∈ J.

By analogous reasoning, the continuous time decay condition gives

|x(t1, 0)| ≤ α−1
1 ◦ V

(
t1, 0, x(t1, 0)

)

≤ α−1
1 ◦ V

(
t0, 0, x(t0, 0)

) ≤ α−1
1 ◦ α2(|x0|).

Combining the last three estimates, it follows that (12.21) is satisfied with

β2(s, k) .= α−1
1 ◦ α2 ◦ β̃2

(
α−1

1 ◦ α2(s), k
)

+
s

k + 1
,

where the extra term s/(k + 1) is used to cover the case where k = 0. Com-
bining (12.20) and (12.21) shows we can satisfy the requirements of Lemma
12.3 using β(s, t, k) = β1(β2(s, k), t) when there are no controls u.

To extend to the case where there are controls u, notice that the preceding
inequalities remain true when controls are present as long as the current state
x is such that |x| ≥ χ(|u|∞). We can now reason as in the usual proof of the
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continuous time ISS estimate (e.g., as in [157]) to satisfy the ISS requirements
with the same choice β ∈ KLL. It remains to construct the function γ ∈ K∞
in the ISS estimate. The argument from the first part of the proof provides
κ, α4, σ ∈ K∞ such that Ṽ

.= κ(V ) satisfies

ΔkṼ (t, k, x, u) ≤ −α4

(
Ṽ (t, k, x)

)
+ σ(|u|)

for all t ≥ 0, k ∈ Z≥0, x ∈ D, and u ∈ R
d. By reducing α4 ∈ K∞, we can

assume that s 
→ s−α4(s) is increasing [67, Lemma 2.4]. Choose α̃1, α̃2 ∈ K∞
such that

α̃1(|x|) ≤ Ṽ (t, k, x) ≤ α̃2(|x|)
for all (t, k, x).

Choose any u ∈ Mp and any hybrid trajectory x(t, k) for H and u. Define
the set S .= {(t, k) ∈ dom(x) : Ṽ (t, k, x(t, k)) ≤ b̄}, where b̄ = α−1

4 (2σ(|u|∞)).
Set c̄ = α2 ◦χ(|u|∞) where χ is from our ISS Lyapunov function assumption
and α2 ∈ K∞ satisfies (12.22). By enlarging σ from our ISS condition, we
can assume that

V (t, k, x) ≤ c̄ ⇒ Ṽ (t, k, x) ≤ b̄.

Claim: If there is a pair (t̄, k̄) ∈ S, then (t, k) ∈ S whenever dom(x) �
(t, k) � (t̄, k̄) where � is the lexicographical ordering on dom(x).3 To verify
this claim, suppose it were not true. We could then find a pair (t, k) ∈ dom(x)
and a constant ε > 0 such that:

1. (t, k) � (t̄, k̄); and
2. Ṽ

(
t, k, x(t, k)

) ≥ b̄ + ε.

Choose (t′, k′) to be the smallest such pair (t, k) ∈ dom(x) in the ordering
� for this choice of ε. If t′ = tk′ and k′ ≥ 1, then (t′, k′ − 1) ∈ dom(x) and
x(t′, k′ − 1) ∈ D, by Condition 2. in Definition 12.3. Also, (t′, k′ − 1) ∈ S,
because otherwise, we would have V (tk′ , k′ − 1, x(tk′ , k′ − 1)) > c̄, hence
|x(tk′ , k′ − 1)| > χ(|u|∞), so our decay condition on Ṽ would imply that

b̄ + ε ≤ Ṽ
(
tk′ , k′, x(tk′ , k′)

) ≤ Ṽ
(
tk′ , k′ − 1, x(tk′ , k′ − 1)

)
,

contrary to the minimality of (t′, k′). Since (t′, k′ − 1) ∈ S, the argument
from [67, Sect. 2] applied to the dynamics xr+1 = F (r, xr, u(r)) implies that
(t′, k′) ∈ S as well, contradicting our choice of (t′, k′). On the other hand,
if t′ 
= tk′ or k′ = 0, then t′ ∈ (tk′ , tk′+1]. Since Ṽ (t′, k′, x(t′, k′)) > b̄, we
then have V (t′, k′, x(t′, k′)) > c̄, so |x(t′, k′)| > χ(|u|∞). Therefore, prop-
erty 1. from Definition 12.3 and (12.17) give a pair (t�, k′) ∈ dom(x), with
t� < t′ but t� near t′, for which V (t�, k′, x(t�, k′)) ≥ V (t′, k′, x(t′, k′)), which
again contradicts the minimality of (t′, k′). (We are using the fact that Ṽ is
increasing as a function of V .) This proves the claim.

3 The ordering is defined as follows: (t2, k2) � (t1, k1) if and only if either (a) t2 > t1 or
(b) t2 = t1 and k2 ≥ k1.
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By separately considering the cases where the hybrid time set S = ∅ and
S 
= ∅, we can then choose

γ(s) = α̃−1
1 ◦ α−1

4 (2σ(s))

to satisfy the ISS estimate. This proves Lemma 12.3. �

12.3 Strictification for Time-Varying Systems

We next extend our basic strictification results from Chap. 6 to discrete
and hybrid time-varying systems. As in the continuous time case, we express
the non-strict Lyapunov decay conditions in terms of PE parameters, and
the non-strict decay conditions can be used to prove UGAS directly with-
out constructing strict Lyapunov functions. However, it is well appreciated
that explicit strict Lyapunov functions are useful in many applications, e.g.,
for quantifying the effects of uncertainty, which motivates our closed form
expressions for our global strict Lyapunov functions.

12.3.1 Discrete Time Strictification

The following was shown in [93]:

Theorem 12.1. Let l ∈ Z≥0, δ > 0, p ∈ Pdis(l, δ), V ∈ UPPD, χ ∈ K∞,
and Θ ∈ PD satisfy the following for all k ∈ Z≥0, x ∈ R

n, and u ∈ R
d:

|x| ≥ χ(|u|) ⇒
ΔkV (k, x, u) ≤ −p(k + 1)Θ

(
V (k, x)

)
.

(12.23)

Then one can construct functions κ, Γ ∈ K∞ such that

U(k, x) .= κ
(
V (k, x)

)
+

Γ
(
V (k, x)

)

4(l + 1)

k∑

s=k−l

k∑

j=s

p(j) (12.24)

is a strict ISS-CLF for (12.8). In particular, (12.8) is ISS. If p and V are
both l-periodic, then so is U .

Proof. Sketch. We only sketch the proof; see [93] for details. By minorizing
Θ ∈ PD as necessary without relabeling, we can assume that Θ is non-
decreasing on [0, 1] and non-increasing on [1,∞); see Lemma A.7 for details.
The following is shown in exactly the same way as Lemma A.6:
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Lemma 12.4. Let Θ ∈ PD be as above and p ∈ Pdis. Define μ : [0,∞) →
[1,∞), κ, and Ψ by

κ(r) .= 2
∫ r
0
μ(z) dz, Ψ(r) .= Θ(2r)μ(r), and

μ(r) =

⎧
⎪⎪⎨

⎪⎪⎩

1 + 4r2, 0 ≤ r ≤ 1/2

4Θ(1)r
Θ(2r)

, 1/2 ≤ r < ∞
.

(12.25)

Let ν ∈ UPPD and χ ∈ K∞ be such that for all x ∈ R
n, k ∈ Z≥0, and

u ∈ R
d, we have:

|x| ≥ χ(|u|) ⇒ Δkν(k, x, u) ≤ −p(k + 1)Θ(ν(k, x)).

Then κ ∈ K∞, Ψ ∈ K∞, and V
.= κ(ν) ∈ UPPD satisfies the following for

all x ∈ R
n, u ∈ R

d, and k ∈ Z≥0:

|x| ≥ χ(|u|) ⇒ ΔkV (k, x, u) ≤ −p(k + 1)Γ
(
V (k, x)

)
(12.26)

where Γ ∈ K∞ is defined by Γ (s) .= Ψ(κ−1(s)/2).

Returning to the proof of the theorem, we can therefore assume that V
satisfies (12.26) with Γ ∈ K∞, possibly by replacing V with κ(V ) with κ ∈
K∞ defined in Lemma 12.4 without relabeling. Next choose S(k) as in Lemma
12.2 and U as in (12.24) with κ(s) ≡ s. Since Γ is increasing, we readily get

ΔkU(k, x, u) = V
(
k + 1, F (k, x, u)

)

+
S(k + 1)
4(l + 1)

Γ
(
V
(
k + 1, F (k, x, u)

))

−V (k, x) − S(k)
4(l + 1)

Γ
(
V (k, x)

)

= ΔkV (k, x, u) +
1

4(l + 1)
S(k + 1)Δk(Γ ◦ V )(k, x)

+ 1
4(l+1)Γ (V (k, x)) [S(k + 1) − S(k)]

≤ ΔkV (k, x, u)

+
1

4(l + 1)
Γ (V (k, x)) [S(k + 1) − S(k)] ,

(12.27)

for all k ∈ Z≥0, x ∈ R
n, and u ∈ R

d satisfying |x| ≥ χ(|u|). Using the
definition of S(k) and canceling terms gives
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S(k + 1) − S(k) =
k∑

s=k−l

k∑

j=s

p(j) −
k∑

j=k−l

p(j) + (l + 1)p(k + 1)

−
k∑

s=k−l

k∑

j=s

p(j)

= −
k∑

j=k−l

p(j) + (l + 1)p(k + 1) .

Substituting into (12.27) and using (12.12) and (12.26) gives

ΔkU(k, x, u) ≤ ΔkV (k, x, u) +
1

4(l + 1)
Γ
(
V (k, x)

)

×
⎛

⎝(l + 1)p(k + 1) −
k∑

j=k−l

p(j)

⎞

⎠ ,

(12.28)

hence also

ΔkU(k, x, u) ≤ ΔkV (k, x, u) +
p(k + 1)Γ (V (k, x))

4

−Γ
(
V (k, x)

)

4(l + 1)

k∑

j=k−l

p(j)

≤ − δ

4(l + 1)
Γ
(
V (k, x)

)
,

(12.29)

for all k ∈ Z≥0, all x ∈ R
n, and all u ∈ R

d satisfying |x| ≥ χ(|u|). Combined
with the fact that V ∈ UPPD and using the global boundedness of S(k) from
Lemma 12.2, we conclude that U is an ISS-CLF for (12.8). Hence, (12.8) is
ISS, by Lemma 12.1. The assertion on periodicity follows from Lemma 12.2.
This proves the theorem. �

Remark 12.1. A key point in the non-strict decay condition (12.23) is that
the PE condition allows p(k + 1) = 0 and so also ΔkV (k, x, u) = 0 for some
values of k. Also, we do not require Θ in (12.23) to be of class K∞. However,
our proof of Theorem 12.1 shows that we can take κ(s) ≡ s and Θ = Γ in
the special case where Θ ∈ K∞.

12.3.2 Hybrid Strictification

We next extend Theorem 12.1 to the hybrid system (12.16), assuming for
simplicity that Θ in (12.23) and its continuous time analog are Θ(s) = s.
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Theorem 12.2. Let V ∈ UPPD be C1 in x and t. Let δ, ε, τ > 0 and l ∈ N

be given constants. Assume that there exist χ ∈ K∞, r ∈ Pdis(l, δ) and q ∈
Pcts(τ, ε) such that

|x| ≥ χ(|u|) ⇒⎧
⎨

⎩
V (t, k + 1, F (k, x, u)) ≤ e−r(k+1)V (t, x, k) if x ∈ D;

and DV (t, k, x, u) ≤ −q(t)V (t, x, k) if x ∈ C

(12.30)

for all t ≥ 0, k ∈ Z≥0, x ∈ R
n, and u ∈ R

d. Then

V �(t, x, k) =

⎡

⎣2 +
1

4(l + 1)

k∑

s=k−l

k∑

j=s

(
1 − e−r(j)

)

+
1
τ

∫ t

t−τ

∫ t

z

q(y) dy dz
]
V (t, k, x)

(12.31)

is an exponential decay ISS-CLF for (12.16) so (12.16) is ISS. If in addition
V is (τ, l)-periodic and r and q are l-periodic and τ-periodic respectively, then
V � is also (τ, l)-periodic.

Proof. For each k ∈ Z≥0, consider the function

Vcts(t, k, x) .=
[
1 +

1
τ

∫ t

t−τ

∫ t

z

q(y) dy dz
]
V (t, k, x) .

For all t ≥ 0 and k ∈ Z≥0, and for all x ∈ C and u ∈ R
d satisfying |x| ≥ χ(|u|),

we have

DVcts(t, k, x, u) ≤ − ε

τ
V (t, k, x) ≤ − ε

τ(1 + τ q̄)
Vcts(t, k, x),

where q̄ is a global bound on q and we used Lemma 12.2. We next rewrite
the first decay condition in (12.30) as

ΔkV (t, x, u) ≤ −p(k + 1)V (t, k, x)

for all t ∈ [0,∞), k ∈ Z≥0, x ∈ D, and u ∈ R
d satisfying |x| ≥ χ(|u|), where

k 
→ p(k) .= 1 − e−r(k) (12.32)

is again of PE type.
For each t ≥ 0, consider the function

Vdis(t, k, x) .=
[
1 +

S(k)
4(l + 1)

]
V (t, k, x) ,
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where S(k) is defined by (12.14) with the choice (12.32) of p.
Arguing as in the proof of Theorem 12.1 shows that

ΔkVdis(t, k, x, u) ≤ −δV (t, k, x)
4(l + 1)

≤ −δVdis(t, k, x)
4M(l + 1)

for all t ∈ [0,∞), k ∈ Z≥0, x ∈ D, and u ∈ R
d satisfying |x| ≥ χ(|u|), where

M = 1 + 0.25p̄(l + 1) and p̄ is a global bound on p. We can assume that
δ < Ml, in which case the discrete decay condition in (12.30) is satisfied
with

r(k) ≡ ln
(
4M(l + 1)

)− ln
(
4M(l + 1) − δ

)
> 0

and with V replaced by Vdis. When |x| ≥ χ(|u|), t ≥ 0, and k ∈ Z≥0, we have
the following:

1. DV (t, k, x, u) ≤ 0 when x ∈ C; and
2. ΔkV (t, k, x, u) ≤ 0 when x ∈ D.

Hence, DVdis ≤ 0 on C and ΔkVcts ≤ 0 on D when |x| ≥ χ(|u|). We can find
positive constants rc and rd such that

Vcts(t, k, x) ≤ rcVdis(t, k, x) ≤ rdVcts(t, k, x)

everywhere. It follows that

V �(t, k, x) .= Vcts(t, k, x) + Vdis(t, k, x),

i.e., (12.31), is an exponential decay ISS-CLF for H. The periodicity and ISS
assertions follow from Lemmas 12.2 and 12.3. �

Remark 12.2. By taking D = ∅ and C = R
n, Theorem 12.2 includes con-

tinuous time dynamics (with the understanding that the term involving the
double sum in (12.31) is not present). Similarly, by taking C = ∅ and D = R

n,
it includes discrete time dynamics (in which case there is no double integral
term in V �).

12.4 Matrosov Constructions for Time-Varying Systems

In Chapters 3 and 8, we saw how to explicitly construct strict Lyapunov
functions under suitable variants of Matrosov’s Conditions. We next extend
these results to hybrid time-varying systems, including cases where the decay
condition on the non-strict Lyapunov function involves PE parameters. For
simplicity, we only consider the case of one auxiliary function.
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12.4.1 Discrete Time Construction

Consider the discrete time system

xk+1 = F (k, xk) (12.33)

with F ∈ USB. We assume the following discrete time analog of the Matrosov
Theorem conditions from the previous chapters:

Assumption 12.1 There exist V1 ∈ UPPD; V2 ∈ USB, a function φ2 ∈
K∞; everywhere non-negative functions N1, N2 ∈ USB; a function χ :
[0,∞) × Z≥0 × R

n → R; an everywhere positive increasing function φ1;
W ∈ PD; and p ∈ Pdis such that

ΔkV1(k, x) ≤ −N1(k, x);
ΔkV2(k, x) ≤ −N2(k, x) + χ

(
N1(k, x), k, x

)
;∣∣χ

(
N1(k, x), k, x

)∣∣ ≤ φ1(|x|)φ2(N1(k, x)); and
N1(k, x) + N2(k, x) ≥ p(k + 1)W (x)

hold for all x ∈ R
n and k ∈ Z≥0.

As in our earlier Matrosov results, we allow V2 to take both positive and
negative values. Under Assumption 12.1, it is not obvious how to explic-
itly construct corresponding global strict Lyapunov functions. Therefore, we
prove the following result, which was announced in [92, 93]:

Theorem 12.3. If (12.33) satisfies Assumption 12.1, then one can construct
an explicit closed form strict Lyapunov function for (12.33). In particular,
(12.33) is UGAS.

Proof. Let V3 = V1 + V2, and α1, α2 ∈ K∞ satisfy the UPPD requirements
for V1. Consider the positive definite function

λ(s) = min{W (x) : x ∈ R
n, α1(|x|) ≤ s ≤ α2(|x|)},

which is positive definite because W is positive definite. It readily follows
from Assumption 12.1 that

ΔkV3(k, x) ≤ −p(k + 1)W (x) + φ1(|x|)φ2

(
N1(k, x)

)

≤ −p(k + 1)λ
(
V1(k, x)

)
+ φ1(|x|)φ2

(
N1(k, x)

)
.

(12.34)

By minorizing λ as needed without relabeling, we assume that it is non-
decreasing on [0, 1/2], non-increasing on [1/2,∞) and C1. The argument used
to prove Lemma A.6 with the choice Θ(r) .= λ(r/2) gives an increasing con-
tinuous function k1 : [0,∞) → [1,∞) such that Λ1(s)

.= k1(s)λ(s) is K∞.
Let
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V4 = k1(V1)V3.

By (12.34),

ΔkV4(k, x) =
[
k1

(
V1

(
k + 1, F (k, x)

))− k1

(
V1(k, x)

)]

×V3(k + 1, F (k, x))

+k1(V1(k, x))
[
V3(k + 1, F (k, x)) − V3(k, x)

]

≤ [
k1(V1(k + 1, F (k, x))) − k1(V1(k, x))

]

×V3(k + 1, F (k, x))

−k1(V1(k, x))p(k + 1)λ(V1(k, x))

+k1(V1(k, x))φ1(|x|)φ2(N1(k, x)) .

(12.35)

Using the facts that F and V3 are of class USB and V1 ∈ UPPD, we can
easily construct continuous increasing everywhere positive functions Γ and
Λ2 satisfying

ΔkV4(k, x) ≤ [−ΔkV1(k, x)
]
Γ
(
V1(k, x)

)− p(k + 1)Λ1

(
V1(k, x)

)

+Λ2

(
V1(k, x)

)
φ2

(
N1(k, x)

)
.

(12.36)

This can be done by first constructing an increasing everywhere positive
function α̃ such that |k′

1(r)| ≤ α̃(r).
Next consider the function k2(s) = sΓ (s). Then k2 ∈ K∞ and k2(s)/s is

increasing. Hence,
k2(b) − k2(a)

b− a
≥ k2(b)

b

when b > a ≥ 0, which gives k2(b) − k2(a) ≥ (b − a)Γ (b) if b ≥ a ≥ 0.
Specializing to the cases a = V1(k + 1, F (k, x)) and b = V1(k, x) gives

Δk(k2 ◦ V1)(k, x) ≤ ΔkV1(k, x)Γ (V1(k, x))

everywhere. Therefore, the function V5
.= V4 + k2(V1) satisfies

ΔkV5(k, x) ≤ −p(k + 1)Λ1

(
V1(k, x)

)
+ Λ2

(
V1(k, x)

)
φ2

(
N1(k, x)

)
(12.37)

everywhere.
Arguing as in the proof of Theorem 12.1 except with Γ replaced by Λ1

provides V6 such that

ΔkV6(k, x) ≤ − δ

4(l + 1)
Λ1

(
V1(k, x)

)

+Λ2

(
V1(k, x)

)
φ2

(
N1(k, x)

)
.

(12.38)
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A special case of Lemma A.3 provides a function k3 ∈ C1 ∩ PD so that

k3(r) ≤ φ−1
2

(
δ

8(l + 1)
Λ1(r)

1 + Λ2(r)

)
1

1 + Λ2(r)
and |k′

3(r)| ≤ 1 (12.39)

for all r ≥ 0, and therefore also

φ2

(
k3(V1)Λ2(V1)

)
Λ2(V1) ≤ δ

8(l + 1)
Λ1(V1) (12.40)

everywhere. Choose μF , α6 ∈ K∞ such that
∣∣V6(k, x)

∣∣ ≤ α6(|x|) and |F (k, x)| ≤ μF (|x|)

everywhere. Replacing Γ with α6 ◦μF ◦α−1
1 in the argument we used to build

k2 and recalling that ΔkV1(k, x) ≤ 0 allows us to build a function k4 ∈ K∞
satisfying

Δk(k4 ◦ V1)(k, x) ≤ [
α6 ◦ μF ◦ α−1

1 ◦ V1(k, x)
]
ΔkV1(k, x)

≤ α6(μF (|x|))ΔkV1(k, x)

everywhere.
Recalling from (12.39) that |k′

3| ≤ 1 everywhere now gives

∣∣Δk(k3 ◦ V1)(k, x)V6

(
k + 1, F (k, x)

)∣∣ ≤ [−ΔkV1(k, x)]
∣∣V6

(
k + 1, F (k, x)

)∣∣

≤ −α6(μF (|x|))ΔkV1(k, x)

everywhere. Hence, the function V7
.= k3(V1)V6 + k4(V1) is such that

ΔkV7(k, x) ≤ ∣∣Δk(k3 ◦ V1)(k, x)V6

(
k + 1, F (k, x)

)∣∣

+k3

(
V1(k, x)

)
ΔkV6(k, x) + Δk(k4 ◦ V1)(k, x)

≤ − δ
4(l+1)k3(V1)Λ1(V1) + k3(V1)Λ2(V1)φ2

(
N1(k, x)

)
.

(12.41)

Next note that for all functions μ ∈ K∞, we have ab ≤ μ(a)a + μ−1(b)b
for all a, b ≥ 0, by separately considering the cases where μ(a) ≥ b and
μ−1(b) ≥ a. Hence, for all μ ∈ K∞, (12.41) gives

ΔkV7 ≤ − δ
4(l+1)k3(V1)Λ1(V1) + μ

(
k3(V1)Λ2(V1)

)
k3(V1)Λ2(V1)

+μ−1
(
φ2(N1(k, x))

)
φ2(N1(k, x)).

(12.42)

Specializing to the case where μ = φ2, we get
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ΔkV7 ≤ − δ
4(l+1)k3(V1)Λ1(V1) + φ2

(
k3(V1)Λ2(V1)

)
k3(V1)Λ2(V1)

+N1(k, x)φ2(N1)

≤ − δ
8(l+1)k3(V1)Λ1(V1) + N1(k, x)φ2(N1) (by (12.40)).

(12.43)

Recalling that N1 ∈ USB and φ2 ∈ K∞, we can readily construct a function
φ3 ∈ K∞ such that

ΔkV7 ≤ − δ

8(l + 1)
k3(V1)Λ1(V1) + N1(k, x)φ3(V1) . (12.44)

By reasoning as in our construction of k2 above (with Γ replaced by φ3),
we can build a function k5 ∈ K∞ satisfying

Δk(k5 ◦ V1)(k, x) ≤ ΔkV1(k, x)φ3

(
V1(k, x)

)

≤ −N1(k, x)φ3

(
V1(k, x)

)
.

Choosing V8
.= V7 + k5(V1) and the positive definite function

α3(s)
.=

δ

8(l + 1)
min

{
k3(u)Λ1(u) : α1(s) ≤ u ≤ α2(s)

}
,

it follows that

ΔkV8(k, x) ≤ − δ

8(l + 1)
k3(V1(k, x))Λ1

(
V1(k, x)

) ≤ −α3(|x|). (12.45)

This is the desired Lyapunov decay condition, but the function V8 is not
guaranteed to be of class UPPD. However, we can transform V8 into the
desired strict Lyapunov function by arguing as we did at the end of the
proof of Theorem 5.1, as follows. Choose an everywhere positive increasing
C1 function k∗ such that k∗(V1(k, x)) ≥ | supr V8(r, x)| + 1 everywhere; this
can be done because V1 is of class UPPD and V8 is of class USB. One then
shows that V9

.= V1V8 + k∗(V1)V1 is of class UPPD and satisfies

ΔkV9(k, x) =
{
ΔkV1(k, x)V8(k + 1, x) + k∗(V1(k, x))Δk(V1(k, x))

}

+V1(k, x)ΔkV8(k, x) + Δkk∗
(
V1(k, x)

)
V1(k + 1, x)

≤ −V1(k, x)α3(|x|)

where the term in braces is non-positive by our choice of k∗ and we also used
the nonpositivity of Δkk∗(V1(k, x))V1(k + 1, x). Therefore, V9 satisfies the
requirements of the theorem. In conjunction with Lemma 12.1 for the case
of no controls, this proves the theorem. �
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12.4.2 Hybrid Version

We now merge our continuous and discrete time Matrosov constructions to
cover hybrid systems

Hnc
.=
{

ẋ = G(t, x), x ∈ C
xk+1 = F (k, xk), xk ∈ D

(12.46)

assuming F,G ∈ USB and the following:

Assumption 12.2 There exist V1 ∈ UPPD and V2 ∈ USB that are C1

in (t, x); everywhere non-negative N1, N2 ∈ USB; a function χ : [0,∞)2 ×
Z≥0×R

n → R; an everywhere positive increasing φ1; and W ∈ PD, p ∈ Pdis,
φ2 ∈ K∞, and q ∈ Pcts such that the following hold for all t ≥ 0 and k ∈ Z≥0:

1. For all x ∈ D, we have:
ΔkV1(t, k, x) ≤ −N1(t, k, x);
ΔkV2(t, k, x) ≤ −N2(t, k, x) + χ(N1(t, k, x), t, k, x); and
N1(t, k, x) + N2(t, k, x) ≥ p(k + 1)W (x).

2. For all x ∈ C, we have:
DV1(t, k, x) ≤ −N1(t, k, x);
DV2(t, k, x) ≤ −N2(t, k, x) + χ(N1(t, k, x), t, k, x); and
N1(t, k, x) + N2(t, k, x) ≥ q(t)W (x).

3. For all x ∈ R
n, we have:

|χ(N1(t, k, x), t, k, x)| ≤ φ1(|x|)φ2(N1(t, k, x)).

The meaning of Assumption 12.2 is that the continuous and discrete time
subsystems of Hnc satisfy appropriately compatible discrete and continuous
Matrosov Conditions. It applies to discrete time systems by choosing C = ∅
and D = R

n; in that case, its Condition 2. is true vacuously. The following
was announced in [92, 93]:

Theorem 12.4. If Hnc satisfies Assumption 12.2, then one can construct an
explicit closed form strict Lyapunov function for Hnc. In particular, Hnc is
UGAS.

Proof. Take p ∈ Pdis(l, δ) and q ∈ Pcts(τ, ε). We apply the first part of the
proof of Theorem 12.3 for each t ≥ 0, using the functions (k, x) 
→ V1(t, k, x)
and (k, x) 
→ V2(t, k, x). This produces functions V5 and Λ1, Λ2 ∈ C1, with
Λ1 ∈ K∞, such that

ΔkV5(t, k, x) ≤ −p(k + 1)Λ1 (V1(t, k, x))

+Λ2 (V1(t, k, x))φ2(N1(t, k, x))
(12.47)

for all t ≥ 0, k ∈ Z≥0, and x ∈ D. We now use the continuous time analog of
the preceding argument from Lemma A.9 to construct a continuous version
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V cts
5 of V5 for which

DV cts
5 (t, k, x) ≤ −q(t)Λ1 (V1(t, k, x))

+Λ2 (V1(t, k, x))φ2(N1(t, k, x))
(12.48)

for all t ≥ 0, k ∈ Z≥0, and x ∈ C. In fact, by enlarging Γ , we can enlarge k2

in such a way that V cts
5 and V5 have the same formula.

Applying the strictification method of Theorem 12.1 to V5 and recalling
Remark 12.1, we get

V dis
6 (t, k, x) .= V5(t, k, x) +

1
4(l + 1)

S(k)Λ1

(
V1(t, k, x)

)
.

This satisfies (12.38) with V6 replaced by V dis
6 and V1 and N1 also depending

on t. In the same way, we can apply the continuous time strictification ap-
proach from Chap. 6 as we did in the proof of Theorem 12.2 to the function
V cts

5 . This gives a function

V cts
6 (t, k, x) .= V cts

5 (t, k, x) +
1
τ

[∫ t

t−τ

∫ t

z

q(ν) dν dz
]
Λ1

(
V1(t, k, x)

)

for which

DV cts
6 (t, k, x) ≤ − ε

τ
Λ1

(
V1(t, k, x)

)
+ Λ2

(
V1(t, k, x)

)
φ2

(
N1(t, k, x)

)

when x ∈ C. We can assume that

δ

4(l + 1)
< 1

without relabeling, by enlarging l as needed. Setting V6 = V cts
6 + V dis

6 and
recalling that V cts

5 and V5 have the same formula, we can enlarge the function
Λ2 sufficiently in such a way that

ΔkV6(t, k, x) ≤ − δ
4(l+1)Λ1

(
V1(t, k, x)

)

+Λ2

(
V1(t, k, x)

)
φ2

(
N1(t, k, x)

) ∀x ∈ D

DV6(t, k, x) ≤ − δ
4(l+1)Λ1

(
V1(t, k, x)

)

+Λ2

(
V1(t, k, x)

)
φ2

(
N1(t, k, x)

) ∀x ∈ C

(12.49)

hold for all t ≥ 0 and k ∈ Z≥0.
Next, we follow the rest of the proof of Theorem 12.3, applied to V6 for

each choice of t ≥ 0. This produces a function V dis
9 (t, k, x) that satisfies the

conclusion of the proof when x ∈ D. Similarly, we apply the continuous time
analog of that part of the proof to V6 for each k to get a function V cts

9
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satisfying
DV cts

9 (t, k, x) ≤ −α̃(|x|) (12.50)

for all t ≥ 0, k ∈ Z≥0, and x ∈ C for a suitable function α̃ ∈ PD. This
continuous time argument is as in the discrete time case, except with ΔkVi
replaced by DVi for all i. It is similar to the proof we give for Lemma A.9.
By enlarging the functions k4, k5 ∈ K∞ and reducing k3 ∈ PD in the discrete
and continuous versions of the proof, we can assume that they are the same,
which means that V cts

9 and V dis
9 have the same expression (as functions of V6).

Therefore, we can meet the requirements of the theorem with their common
expression. In conjunction with Lemma 12.3, this proves the theorem. �

12.5 Illustrations

Assume that the continuous time system

ẋ = G(t, x, u) (12.51)

admits V ∈ C1, q ∈ Pcts, and Γ, χ, α1, α2 ∈ K∞ satisfying:

1. α1(|x|) ≤ V (t, x) ≤ α2(|x|) for all x ∈ R
n and t ≥ 0;

2. DV (t, x, u) ≤ −q(t)Γ (V (t, x)) for all t ≥ 0, x ∈ R
n and u ∈ R

d satisfying
|x| ≥ χ(|u|); and

3. x 
→ V (t, x) is convex for each t ∈ [0,∞).

The preceding requirements all hold if for example

ẋ = G(t, x, u) ≡ A(t)x (12.52)

is GAS and A(t) is continuous and bounded, in which case we take

V (t, x) .= x�P (t)x (12.53)

for a suitable matrix P (t), e.g, by arguing as in [70, Sect. 4.6]. Given C,D ⊆
R
n and p ∈ Pdis valued in [0, 1], we give conditions on h ∈ USB guaranteeing

that we can construct an ISS-CLF for

Hp
.=

⎧
⎨

⎩
ẋ = G(t, x, u) , x ∈ C

xk+1 = F (k, xk, u) , xk ∈ D
, (12.54)

where
F (k, x, u) .= [1 − p(k + 1)]x + p(k + 1)h(k, x, u).

The construction to follow also works if instead of assuming that V is convex
in x and p is valued in [0, 1], we just assume that p(k) ∈ {0, 1} for all k ∈ Z≥0.
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To find our conditions, first note that by reducing Γ ∈ K∞ as needed
without relabeling, we can assume

Γ ∈ C1 ∩ K∞ and Γ (s) ≤ 1
2
α1

(
α−1

2 (s)
)

for all s ≥ 0. Assume that

|h(k, x, u)| ≤ α−1
2

(
0.5α1(|x|)

)
(12.55)

for all x ∈ D, k ∈ Z≥0, and u ∈ R
d satisfying |x| ≥ χ(|u|), which reduces to

linear growth if V has the form (12.53) and P has globally bounded positive
eigenvalues. Using the facts that V is convex in x and p(k) ∈ [0, 1] everywhere,
we have

V
(
t, F (k, x, u)

)− V (t, x) ≤ [1 − p(k + 1)]V (t, x)

+p(k + 1)V
(
t, h(k, x, u)

)− V (t, x)

≤ p(k + 1)α2

(|h(k, x, u)|)

−p(k + 1)α1(|x|)

(12.56)

and therefore

V
(
t, F (k, x, u)

)− V (t, x) ≤ − 1
2p(k + 1)α1(|x|)

≤ −p(k + 1)Γ
(
α2(|x|)

)

≤ −p(k + 1)Γ
(
V (t, x)

)
(12.57)

whenever |x| ≥ χ(|u|), t ≥ 0, and k ∈ Z≥0. Arguing as in the proof of
Theorem 12.2, we readily obtain an explicit global strict ISS-CLF

V �(t, k, x) .= 2V (t, x) +
[

1
4τ

∫ t

t−τ

∫ t

s

q(r) dr ds
]
Γ
(
V (t, x)

)

+

⎡

⎣ 1
4(l + 1)

k∑

s=k−l

k∑

j=s

p(j)

⎤

⎦Γ
(
V (t, x)

)

for Hp, where l and τ are as in the requirements p ∈ Pdis and q ∈ Pcts, so
Hp is ISS.

We now specialize the preceding construction to our example (12.5). As
we saw in Sect. 10.6.2, its subsystem

ẋ = G(t, x, u) .= −m̄(t)m̄�(t)x

has the strict Lyapunov function
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V (t, x) = x�
(
λI +

∫ t

t−c

∫ t

s

m̄(l)m�(l) dl ds
)

x, (12.58)

where λ and c are defined in Sect. 12.1. In fact,

DV (t, x) ≤ −a

2
|x|2 ≤ −Γ (V (t, x)) (12.59)

everywhere, in terms of the function

Γ (s) =
as

2{λ + c2/2}2

and the constant a from Sect. 12.1. The choice of Γ easily follows from Lemma
12.2.

Taking

α1(s) = λs2 and α2(s) =
(
λ +

c2

2

)
s2,

we can easily check that Γ (s) ≤ 0.5α1(α−1
2 (s)) everywhere. Moreover, we can

use (12.4) to check that condition (12.55) on h is satisfied for large enough
constants λ > 1. Recalling that p ∈ Pdis is valued in [0, 1] and V is convex in
the state, the preceding construction applies with q(t) ≡ 1 and τ = 1. Also,
the strict Lyapunov function V � becomes (12.6). It follows that (12.5) has
the ISS-CLF (12.6) and so is ISS by Lemma 12.3, as we claimed in Sect. 12.1.

12.6 Comments

The hybrid systems framework we used in this chapter was systematically
developed by [20, 24] and has been used extensively by several authors; see
[176] for a recent survey. It is well appreciated that hybrid controllers are
useful for stabilizing nonlinear systems that are not stabilizable by continuous
time state feedbacks; see for example [140] for robust quasi-time optimal
hybrid stabilization for Brockett’s Integrator. Moreover, using the notions of
graphical convergence and set convergence [142], one can characterize when
a collection of arcs converges to a hybrid arc [48].

The hybrid framework of this chapter can incorporate hybrid automata,
as well as switching systems ż = fq(z) with average dwell-time conditions, by
using appropriate choices of the discrete sub-dynamics [176]. There is also a
hybrid version of LaSalle Invariance for cases where the hybrid system (12.7)
is time-invariant with no controls. It is expressed in terms of the functions
uc(x) = 〈∇V (x), G(x)〉 and ud(x) = V (F (x))−V (x), where V ∈ C1 is chosen
so that uc(x) is non-positive on C̄ and ud(x) is non-positive on D̄ [176]. One
can also develop hybrid converse Lyapunov function theory [21].
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However, there has been little systematic work on constructive nonlinear
control for hybrid systems. Our treatment here is based on [93] (which cov-
ers systems with no controls) and [92] (which announced the extensions to
control systems). For an alternative construction of strict Lyapunov func-
tions for discrete time systems with no controls, involving infinite sums of
PE parameter values, see [120].
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Appendix A

Some Lemmas

A.1 Useful Families of Functions

We prove the lemmas needed in several chapters. We maintain our conven-
tion that all functions encountered should be understood to be sufficiently
smooth, and that all (in)equalities should be understood to hold globally
unless otherwise indicated. The first four lemmas we prove are from [111].

While not used explicitly in the main text, we use the following lemma to
prove Lemma A.2:

Lemma A.1. Let F : [0,∞)× [0,∞) → [0,∞) be a continuous function that
admits a non-decreasing continuous function Θ : [0,∞) → (0,∞) such that

F (a, 0) = 0 (A.1)

and
F (a, b) ≤ Θ(a)Θ(b) (A.2)

for all (a, b) ∈ [0,∞) × [0,∞). Then the function Z : [0,∞) → R defined by

Z(b) = sup
α≥0

F (α, b)
(α2 + 1)Θ(α)

(A.3)

is everywhere non-negative and continuous. Moreover, Z(0) = 0 and

F (a, b) ≤ (
a2 + 1

)
Θ(a)Z(b) (A.4)

for all (a, b) ∈ [0,∞)2.

Proof. Let us prove that Z is well defined on [0,∞). To simplify the notation,
we use the function

F (α, b) =
F (α, b)

(α2 + 1)Θ(α)
. (A.5)

Since (A.2) is satisfied, we have

345
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F (α, b) ≤ Θ(α)
(α2 + 1)Θ(α)

Θ(b) ≤ Θ(b) . (A.6)

It follows that Z(b) = sup{F (α, b) : α ∈ [0,∞)} is a finite non-negative real
number for all b ≥ 0. From the definition of Z, (A.1), and (A.2), we deduce
easily that Z is everywhere non-negative, that (A.4) is satisfied, and that
Z(0) = 0. We now prove that this function is continuous. Let bc ≥ 0 and
ε > 0 be given constants. For all b ≥ 0,

Z(b) = max

{
sup

α∈[0,α∗]

F (α, b), sup
α≥α∗

F (α, b)

}
(A.7)

with α∗ =
√

2
εΘ(bc + 1). From (A.6), it follows that

sup
α≥α∗

F (α, b) ≤ sup
α≥α∗

Θ(α)Θ(b)
(α2 + 1)Θ(α)

= sup
α≥α∗

Θ(b)
α2 + 1

≤ Θ(b)
2
εΘ(bc + 1) + 1

(A.8)

for all b ≥ 0. Since Θ is non-decreasing, it follows that

sup
α≥α∗

F (α, b) ≤ ε
2 (A.9)

for all b ∈ [0, bc + 1].
We deduce easily that

sup
α∈[0,α∗]

F (α, b) ≤ Z(b) ≤ sup
α∈[0,α∗]

F (α, b) +
ε

2
(A.10)

for all b ∈ [0, bc + 1]. In particular,

sup
α∈[0,α∗]

F (α, bc) ≤ Z(bc) ≤ sup
α∈[0,α∗]

F (α, bc) +
ε

2
. (A.11)

From (A.10) and (A.11), we deduce that

|Z(b) − Z(bc)| ≤
∣∣∣∣∣ sup
α∈[0,α∗]

F (α, b) − sup
α∈[0,α∗]

F (α, bc)

∣∣∣∣∣+
ε

2
(A.12)

for all b ∈ [0, bc + 1]. The function

b 
→ max
α∈[0,α∗]

F (α, b)

is continuous because [0, α∗] is a compact set. It follows that there exists a
constant δ ∈ (0, 1] such that, for all b ∈ [max{0, bc − δ}, bc + δ],
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∣∣∣∣∣ sup
α∈[0,α∗]

F (α, b) − sup
α∈[0,α∗]

F (α, bc)

∣∣∣∣∣ ≤
ε

2
. (A.13)

From (A.12) and (A.13), we conclude that |Z(b) − Z(bc)| ≤ ε for all b ∈
[max{0, bc − δ}, bc + δ]. Hence, Z is continuous on [0,∞). This finishes the
proof. �

We used the following lemma in Chap. 8:

Lemma A.2. Let n ≥ 1 and q ≥ 2 be integers and χ∗ : R
n+q−1 → R be an

everywhere non-negative continuous function such that

χ∗(x, 0, ..., 0) = 0 ∀x ∈ R
n. (A.14)

Then, one can determine a continuous, everywhere positive, non-decreasing
function ρ∗ and a function φ∗ ∈ K∞ such that

χ∗(x, r1, ..., rq−1) ≤ φ∗

(
q−1∑

k=1

rk

)
ρ∗(|x|) (A.15)

for all x ∈ R
n and all non-negative values r1, ..., rq−1.

Proof. Define F∗ : [0,∞)2 → R by

F∗(s,R) = max
(z,l1,...,lq−1)∈E(s,R)

χ∗(z, l1, . . . , lq−1) , (A.16)

where

E(s,R)
=
{
(z, l1, ..., lq−1) ∈ R

n × [0,∞)q−1 : |z| ≤ s, lk ∈ [0, R] , k = 1, ..., q − 1
}

.

Then

χ∗(x, r1, . . . , rq−1) ≤ F∗

(
|x|,

q−1∑

k=1

rk

)
(A.17)

for all x ∈ R
n and non-negative ri’s. Also, (A.14) gives

F∗(s, 0) = max
(z,l1,...,lq−1)∈E(s,0)

χ∗(z, l1, . . . , lq−1)

= max
{z∈Rn:|z|≤s}

χ∗(z, 0, . . . , 0) = 0.
(A.18)

Moreover, F∗ is everywhere non-negative and non-decreasing with respect to
each of its arguments. This implies that

F∗(s,R) ≤ [F∗(s, s) + 1][F∗(R,R) + 1] (A.19)
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for all s ∈ [0,∞) and R ∈ [0,∞).
Therefore, Lemma A.1 applies to the function F∗ and provides a continuous

everywhere non-negative function Z that is zero at zero and such that

F∗(s,R) ≤ (s2 + 1)[F∗(s, s) + 1]Z(R) (A.20)

for all s ≥ 0 and R ≥ 0. From (A.17), it follows that

|χ∗(x, r1, . . . , rq−1)| ≤ Z

(
q−1∑

k=1

rk

)
ρ∗(|x|) (A.21)

for all x ∈ R
n, r1 ≥ 0,...,rq−1 ≥ 0, where

ρ∗(s) = (s2 + 1)[F∗(s, s) + 1] . (A.22)

This function is everywhere positive and non-decreasing on [0,∞) and

|χ∗(x, r1, . . . , rq−1)| ≤ φ∗

(
q−1∑

k=1

rk

)
ρ∗(|x|) (A.23)

for all x ∈ R
n, r1 ∈ [0,∞),...,rq−1 ∈ [0,∞), where

φ∗(s) = s + sup
l∈[0,s]

Z(l) ∀s ≥ 0 . (A.24)

One can prove easily that φ∗ is of class K∞. This completes the proof of the
lemma. �

Lemma A.3. Let w1, w2 : R
n → R be any continuous positive definite func-

tions, and let V : [0,∞) × R
n → R be any storage function. Let N ∈ N be

arbitrary. Then one can construct a real-valued function L ∈ CN such that
L(0) = 0, L(s) > 0 for all s > 0, and

L
(
V (t, x)

) ≤ w1(x) (A.25)

and ∣∣L′(V (t, x)
)∣∣ ≤ w2(x) (A.26)

hold for all (t, x) ∈ [0,∞) × R
n.

Proof. We will presently construct an everywhere positive increasing CN

function ρ and a function α ∈ K∞ ∩CN such that

α
(
V (t, x)

) ≤ w1(x)ρ
(
V (t, x)

)
(A.27)

and
α
(
V (t, x)

) ≤ w2(x)ρ
(
V (t, x)

)
. (A.28)
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For the time being, we assume that these functions are known and introduce
the function

L(s) .=
∫ s

s
2

α(l)
2(1 + l2)(1 + ρ2(2l))

dl . (A.29)

Then L(0) = 0, L(s) > 0 for all s > 0, and L is of class CN . Also, since both
α and ρ are increasing, we get

L(s) ≤
∫ s

s
2

α(s)

2
(
1 +

(
s
2

)2) (1 + ρ2(s))
dl ≤ α(s)

1 + ρ2(s)
≤ α(s)

ρ(s)
(A.30)

for all s ≥ 0. It follows that

L(V (t, x)) ≤ α(V (t, x))
ρ(V (t, x))

≤ w1(x) . (A.31)

Therefore (A.25) is satisfied. On the other hand,

L′(s) =
α(s)

2(1 + s2)(1 + ρ2(2s))
− α

(
s
2

)

4
(
1 +

(
s
2

)2) (1 + ρ2(s))
∀s ≥ 0 . (A.32)

Since both α and ρ are increasing, it follows that

|L′(s)| ≤ α(s)
2(1 + s2)(1 + ρ2(2s))

+
α
(
s
2

)

4
(
1 +

(
s
2

)2) (1 + ρ2(s))

≤ α(s)
2(1 + ρ2(s))

+
α(s)

4(1 + ρ2(s))

≤ α(s)
ρ(s)

∀s ≥ 0 .

(A.33)

Consequently, the inequalities

∣∣L′(V (t, x)
)∣∣ ≤ α(V (t, x))

ρ(V (t, x))
≤ w2(x) (A.34)

are satisfied, and therefore (A.26) is satisfied.
We end the proof by constructing an everywhere positive, increasing CN

function ρ and a function α ∈ K∞ ∩ CN such that (A.27) and (A.28) are
satisfied. We introduce the four functions

w(x) = min{w1(x), w2(x)} , (A.35)

δl(r) =

{
min

{z:|z|∈[1,r]}
w(z), if r ≥ 1

Wf , if r ∈ [0, 1] ,
(A.36)
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δs(r) =

{
min

{z:|z|∈[r,1]}
w(z), if r ∈ [0, 1]

Wf , if r ≥ 1 ,
(A.37)

and δ(r) =
1

Wf
δs(r)δl(r) , (A.38)

where we use the constant

Wf = min
{z:|z|=1}

w(z) . (A.39)

We have the following two cases:

1. If |x| ≤ 1, then

δ(|x|) =
1

Wf
δs(|x|)δl(|x|) = δs(|x|) = min

{z:|z|∈[|x|,1]}
w(z) ≤ w(x).

2. If |x| ≥ 1, then

δ(|x|) =
1

Wf
δs(|x|)δl(|x|) = δl(|x|) = min

{z:|z|∈[1,|x|]}
w(z) ≤ w(x).

It follows that for all x ∈ R
n,

w(x) ≥ δ(|x|) =
1

Wf
δs(|x|)δl(|x|) . (A.40)

Since w is a positive definite function, δl is an everywhere positive function
on [0,∞). Therefore, (A.40) gives

δs(|x|) ≤ w(x)
Wf

δl(|x|) ∀x ∈ R
n . (A.41)

We introduce the two functions

αa(r) = rδs(r) and ρa(r) =
Wf (1 + r)

δl(r)
. (A.42)

By (A.41),
αa(|x|) ≤ w(x)ρa(|x|) ∀x ∈ R

n . (A.43)

Since w is positive definite and at least continuous, one can prove easily
that δs(0) = 0, δs(r) > 0 if r > 0 and δs is non-decreasing and continuous.
It follows that αa ∈ K∞. For similar reasons, δl is continuous, everywhere
positive and non-increasing. It follows that ρa is everywhere positive and
increasing. Since V is a storage function, we can find functions γ1, γ2 ∈ K∞
such that

γ1(|x|) ≤ V (t, x) ≤ γ2(|x|) (A.44)
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for all t ∈ [0,∞) and x ∈ R
n. Using the properties of αa and ρa and (A.44),

we deduce that

αa(γ−1
2 (V (t, x)) ≤ w(x)ρa(γ−1

1 (V (t, x))) (A.45)

for all (t, x) ∈ [0,∞) × R
n.

As an immediate consequence, we have

V N (t, x)αb(V (t, x)) ≤ w(x)[V (t, x) + 1]Nρb(V (t, x)) , (A.46)

where
αb(r) = αa(γ−1

2 (r)) and ρb(r) = ρa(γ−1
1 (r)). (A.47)

Next consider the functions

α(r) =
∫ r
0

∫ s1
0 . . .

∫ sN−1

0 αb(sN )dsN . . . ds1 (A.48)

and

ρ(r) =
∫ r+1

0

∫ s1+1

0
. . .
∫ sN−1+1

0
(sN + 1)Nρb(sN )dsN . . .ds1 . (A.49)

For all r ≥ 0, we then have

α(r) ≤ rNαb(r) and ρ(r) ≥ (r + 1)Nρb(r) , (A.50)

by replacing the lower bounds in the integrations in (A.49) with r. These
inequalities and (A.46) yield

α
(
V (t, x)

) ≤ w(x)ρ
(
V (t, x)

)
. (A.51)

Since 0 ≤ w(x) ≤ w1(x) and 0 ≤ w(x) ≤ w2(x), we deduce that (A.27)
and (A.28) are satisfied. One can check readily that ρ is everywhere positive,
increasing and CN , and that α ∈ K∞ ∩ CN . This concludes the proof. �

Lemma A.4. Let Ω : R
n → R be a continuous function. Then, the function

ζ : [0,∞) → R defined by

ζ(r) = 1 +
∫ r+1

0

∫ s1+1

0 . . .
∫ sN−1+1

0

[
sup{z∈Rn:|z|≤sN} |Ω(z)|

]
dsN . . .ds1

is everywhere positive, of class CN , and non-decreasing and |Ω(x)| ≤ ζ(|x|)
for all x ∈ R

n.

Proof. From the definition of ζ, it follows immediately that ζ is everywhere
positive, non-decreasing and of class CN . To simplify the notation, we define
the function

Ωs(r) = sup
{z∈Rn:|z|≤r}

|Ω(z)| . (A.52)

The function Ωs is non-decreasing on [0,∞). Therefore, for all sN−1 ≥ 0,
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∫ sN−1+1

0
Ωs(sN )dsN ≥ ∫ sN−1+1

sN−1
Ωs(sN )dsN ≥ Ωs(sN−1) . (A.53)

By integrating both sides of (A.53) over [sN−2, sN−2 + 1] and arguing induc-
tively, we deduce that

∫ r+1

0

∫ s1+1

0

. . .

∫ sN−1+1

0

Ωs(sN )dsN . . .ds1 ≥ Ωs(r) ∀r ≥ 0 , (A.54)

It follows that

ζ(|x|) ≥ Ωs(|x|) = sup
{z∈Rn:|z|≤|x|}

|Ω(z)| ≥ |Ω(x)| (A.55)

for all x ∈ R
n, proving the lemma. �

We used the following lemma from [108], as Lemma 10.3 in Sect. 10.6.2:

Lemma A.5. Let Assumption 10.2 hold and set

P (t) =
{

c̃

2|f�| +
1

4α′ c̃
4|f�|

}
In +

∫ t

t−c̃

∫ t

s

m̄(l)m̄�(l) dl ds. (A.56)

Then V (t, x) = x�P (t)x is a strict Lyapunov function for (10.38) for which
2V/α′ satisfies the conclusions of Lemma 2.2.

Proof. Sketch. Let κ denote the constant in braces in (10.39). Applying
(10.13) and (10.14), we easily check that the time derivative of V along tra-
jectories of (10.38) is

V̇ = (2f�κ + c̃)x�m̄(t)m̄�(t)x

+2f�x�
[∫ t

t−c̃

∫ t
s m̄(l)m̄�(l) dl ds

]
m̄(t)m̄�(t)x

−x�
[∫ t

t−c̃
m̄(l)m̄�(l) dl

]
x

≤ (2f�κ + c̃)|m̄�(t)x|2 + c̃2|f�| |x||m̄�(t)x| − α′|x|2

by Condition 2.i. from Assumption 10.2. Since

c̃2|f�||x||m̄�(t)x| ≤ 1
2
α′|x|2 +

1
2α′ c̃

4|f�|2|m̄�(t)x|2 ,

we get

V̇ ≤
(

2f�κ + c̃ +
1

2α′ c̃
4|f�|2

)
|m̄�(t)x|2 − 1

2
α′|x|2

everywhere. The result is now immediate from the choice of κ and the fact
that |m̄(t)| = 1 everywhere. �
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We used the following lemma from [93] in Chap. 12, where the notation is
from Definition 12.2:

Lemma A.6. Let Θ ∈ PD ∩ C1 be non-decreasing on [0, 1] and non-
increasing on [1,∞), and let p ∈ Pdis. Choose the following functions
μ : [0,∞) → [1,∞), κ, χ, and γ:

κ(r) .= 2
∫ r
0
μ(z) dz, χ(r) .= Θ(2r)μ(r),

γ(s) .= χ
(
κ−1(s)/2

)
, and μ(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + 4r2, 0 ≤ r ≤ 1/2

4Θ(1)r
Θ(2r)

, 1/2 ≤ r < ∞
.

(A.57)

Assume that ν ∈ UPPD is such that

Δkν(k, x) ≤ −p(k + 1)Θ
(
ν(k, x)

)

for all x ∈ R
n and k ∈ Z≥0, along the trajectories of x+ = F (k, x), where

F ∈ USB. Then κ ∈ K∞ ∩ C1, γ ∈ K∞, χ ∈ K∞, and V
.= κ(ν) ∈ UPPD

satisfies
ΔkV (k, x) ≤ −p(k + 1)γ

(
V (k, x)

)
(A.58)

for all x ∈ R
n and k ∈ Z≥0.

Proof. Sketch. Fixing x ∈ R
n and k ∈ Z≥0 and applying the Fundamental

Theorem of Calculus to the function

s 
→ F(s) .= κ
(
sν(k + 1, F (k, x)) + (1 − s)ν(k, x)

)

gives ΔkV (k, x) = F(1) −F(0) =
∫ 1

0
F ′(s) ds, i.e.,

ΔkV (k, x) =
[∫ 1

0

κ′(sν(k + 1, F (k, x)) + (1 − s)ν(k, x)
)
ds
]

×[ν(k + 1, F (k, x)) − ν(k, x)
]

≤ −p(k + 1)
[∫ 1

0

κ′((1 − s)ν(k, x)
)
ds
]
Θ
(
ν(k, x)

)

≤ −p(k + 1)

[∫ 1/2

0

κ′
(

1
2
ν(k, x)

)
ds

]
Θ
(
ν(k, x)

)

= −p(k + 1)μ
(

1
2ν(k, x)

)
Θ
(
ν(k, x)

)
,

where we used the facts that κ and κ′ are non-decreasing. The lemma now
follows from our choices of γ and χ. �
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A.2 Some Useful Inequalities

We used the following simple lemma from [105] on p.120:

Lemma A.7. For each continuous positive definite function ρ : [0,∞) →
[0,∞), we can find a function ω ∈ K∞ ∩ C1 and an increasing everywhere
positive function K ∈ C1 such that

ρ(r) ≥ ω(r)
K(r)

(A.59)

for all r ≥ 0.

Proof. We can assume that ρ is increasing on [0, 1] and non-increasing on
[1,∞); otherwise, replace it with the minorizing function

ρnew(r) =

⎧
⎨

⎩
rmin{ρ(q) : r ≤ q ≤ 1}, 0 ≤ r ≤ 1

min{ρ(q) : 1 ≤ q ≤ r}, r ≥ 1
(A.60)

without relabeling. Notice that

ρ(r) =
ω0(r)
K0(r)

(A.61)

for all r ≥ 0, where

ω0(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ(r)
ρ(1)

, 0 ≤ r ≤ 1

r, r ≥ 1

and K0(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
ρ(1)

, 0 ≤ r ≤ 1,

r

ρ(r)
, r ≥ 1 .

(A.62)

We can then satisfy (A.59) by picking any function ω ∈ K∞ ∩ C1 such that
ω(r) ≤ ω0(r) for all r ≥ 0 and any increasing C1 function K such that
K(r) ≥ K0(r) for all r ≥ 0. This proves the result. �

We used the following simple lemma in Chap. 5:

Lemma A.8. For all A ∈ (−1,∞), the inequalities

eA

1 + A
≥ 1

6
(1 + A2) , (A.63)

A− ln(1 + A) ≥ A2

2(1 + |A|) , and (A.64)

|A| ≤ 2
√

[A− ln(1 + A)] + [A− ln(1 + A)]2 (A.65)

are all satisfied.
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Proof. To prove (A.63), first assume that A ∈ (−1, 0). Then

eA

1 + A
≥ e−1 ≥ 1

6
(1 + A2). (A.66)

If, on the other hand A ≥ 0, then

eA

1 + A
≥ 1 + A + 1

2A
2 + 1

6A
3

1 + A

≥ 1 +
1
2A

2 + 1
6A

3

1 + A

= 1 + A2
1
2 + 1

6A

1 + A

≥ 1 + A2
1
6 + 1

6A

1 + A
= 1 +

1
6
A2.

(A.67)

This proves (A.63).
To prove (A.64), assume first that A ∈ (−1, 0). Then

A− ln(1 + A) =
∫ A

0

m

1 + m
dm ≥ A2

2
.

If on the other hand A ≥ 0, then

A− ln(1 + A) =
∫ A

0

m

1 + m
dm ≥

∫ A

0

m

1 + A
dm =

A2

2(1 + A)
,

which gives (A.64).
To prove (A.65), notice that (A.64) implies that for all A > −1, we have

2[A− ln(1 + A)] + 2|A|[A− ln(1 + A)] ≥ A2. (A.68)

Combining (A.68) with the inequality

2|A|[A− ln(1 + A)] ≤ 1
2
A2 + 2[A− ln(1 + A)]2,

we deduce that

2
√

[A− ln(1 + A)] + [A− ln(1 + A)]2 ≥ |A| (A.69)

which proves (A.65). This completes the proof. �
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A.3 A Lower Bound for the Lotka-Volterra Model

We sketch the proof that the Lotka-Volterra error dynamics (5.48) satisfies
(5.52) for some constant d > 0, hence also (5.35) from Assumption 5.1 for
some positive function ρ ∈ C∞; see [105] for more details. We continue to
use the notation of Sect. 5.5. Consider the function

E(p, q) = p− q ln
(

1 +
p

q

)
,

which is defined for p > −q when q > 0. Then V1(x̃, ỹ) = E(x̃, x∗)+E(ỹ, y∗).
We claim that we can find a constant

δ ∈ (0, 1
2 min{x∗, y∗}

]
(A.70)

so that
2∑

i=1

Ni(x̃, ỹ) = 1
2 x̃

2 +
[
(x̃ + αỹ)(x̃ + x∗)

]2

≥ δ3V1(x̃, ỹ)
1 + V 2

1 (x̃, ỹ)

(A.71)

for all (x̃, ỹ) in the set D = {(x̃, ỹ) ∈ X : x̃ ≤ −x∗ + δ or ỹ ≤ −y∗ + δ}.
To check this claim, first note that for any δ satisfying (A.70),

2∑

i=1

Ni(x̃, ỹ)

is bounded from below on D by a positive constant m(δ) depending on δ.
(Indeed, if x̃ ≤ −x∗ + δ, then

2∑

i=1

Ni(x̃, ỹ) ≥ 1
8
x2
∗.

If on the other hand x̃ ≥ −x∗ + δ, then

2∑

i=1

Ni(x̃, ỹ) ≥ 1
2
δ2x̃2 + δ2(x̃ + αỹ)2.

We can also find a constant c∗ ∈ (0, 1) so that

1
2
x̃2 + (x̃ + αỹ)2 ≥ c∗(x̃2 + ỹ2),

which is bounded below by c∗y2∗/4 when ỹ ≤ −y∗ + δ. Hence,
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2∑

i=1

Ni(x̃, ỹ) ≥ δ2 c∗
8

min{x2
∗, y

2
∗} .= m(δ)

on D.) Reducing δ > 0 guarantees that

δ3V1(x̃, ỹ)
1 + V 2

1 (x̃, ỹ)
≤ m(δ)

on D, as claimed. Fix δ > 0 satisfying the preceding requirements.
We next consider points in X \D. First notice that for each constant q > 0,

we can find a constant c(q) > 1 such that

E(p, q) ≤ c(q)p2 ∀p ≥ −q + δ.

Therefore,

V1(x̃, ỹ) ≤ x̃2

(
E(x̃, x∗)

x̃2

)
+ ỹ2

(
E(ỹ, y∗)

ỹ2

)

≤ [c(x∗) + c(y∗)](x̃2 + ỹ2)

on X \ D when neither x̃ nor ỹ is zero. Similar reasoning gives

V1(x̃, ỹ) ≤ [c(x∗) + c(y∗)](x̃2 + ỹ2)

on all of X \ D (by separately considering points where x̃ = 0 and x̃ 
= 0).
Moreover, we can find a constant c > 0 so that

2∑

i=1

Ni(x̃, ỹ) ≥ c(x̃2 + ỹ2)

on X \ D. Hence,

∑2
i=1 Ni(x̃, ỹ) ≥

(
c

c(x∗) + c(y∗)

)
[c(x∗) + c(y∗)](x̃2 + ỹ2)

≥
(

c

c(x∗) + c(y∗)

)
V1(x̃, ỹ)

on X \ D, so we can take

ρ(r) = min
{

c

c(x∗) + c(y∗)
, δ3

}
1

1 + r2
.

We deduce that the Lotka-Volterra model satisfies Assumption 5.1, as claimed.
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A.4 ISS and iISS for the Lotka-Volterra Model

For completeness, we summarize the robustness arguments from [105] that
are needed to prove Theorem 5.3 on the ISS and iISS of the Lotka-Volterra
error dynamics; see Section 5.5.2 for the notation we employ in the sequel.
The proof involves showing that

UK(x̃, ỹ) = V2(x̃, ỹ) + KV1(x̃, ỹ) (A.72)

is an iISS Lyapunov function for (5.62) when the disturbance u is valued in
d
2B1, and that

UK(x̃, ỹ) = UK(x̃, ỹ)eUK(x̃,ỹ) (A.73)

is an ISS Lyapunov function for (5.62) when u is valued in ŪB1, where V1

and V2 are as defined in Sect. 5.5. The argument proceeds as follows.
Along the trajectories of (5.62) in X �, our choice B = 1 + 2

d + y∗ readily
gives

V̇1 ≤ −x̃2 + B|u| . (A.74)

Also, since V2(x̃, ỹ) = xx̃[x̃ + αỹ], we get

V̇2 = −(x̃ + αỹ)2x2 +
{− x̃(2x̃ + x∗) − αỹx̃

}
(x̃ + αỹ)x

+x̃[α2x̃− αu]xy.

From the triangular inequality, we get

V̇2 ≤ − 1
2

(
x̃ + αỹ

)2
x2 + 1

2

{
x̃(2x̃ + x∗) + αỹx̃

}2

+α2x̃2xy − αx̃uxy .
(A.75)

Since (x, y) ∈ S, we deduce that

V̇2 ≤ − 1
2 (x̃ + αỹ)2x2 + (3+α)2B2

2 x̃2 +
[
α2x̃2 + αB|u|]B2

= − 1
2 (x̃ + αỹ)2x2 +

[
(3+α)2

2 + α2
]
B2x̃2 + αB3|u| .

(A.76)

On the other hand, according to (A.64) with the choices A = x̃/x∗ and
then A = ỹ/y∗, we have

x̃− x∗ ln
(
1 + x̃

x∗

)
≥ x̃2

2(2x∗+x) ,

ỹ − y∗ ln
(
1 + ỹ

y∗

)
≥ ỹ2

2(2y∗+y) ,

(A.77)

and therefore

V1(x̃, ỹ) ≥ x̃2

2(2x∗+x) + ỹ2

2(2y∗+y) ≥ x̃2+ỹ2

6B (A.78)
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for all (x, y) ∈ S. Moreover, for all (x, y) ∈ S, we have

|V2(x̃, ỹ)| ≤ (x̃2 + α|x̃ỹ|)B
≤ B

(
3
2 x̃

2 + α2

2 ỹ2
)

≤ Bmax{ 3,α2

2 } (x̃2 + ỹ2
)
,

(A.79)

so for all (x, y) ∈ S,

|V2(x̃, ỹ)| ≤ B2 max{9, 3α2}V1(x̃, ỹ) . (A.80)

Also,
UK(x̃, ỹ) ≥ [−B2 max{9, 3α2} + K

]
V1(x̃, ỹ) , (A.81)

and our choice of K ≥ K0 gives

UK(x̃, ỹ) ≥ B2 max
{
9, 3α2

}
V1(x̃, ỹ) (A.82)

and
U̇K ≤ −Q(x̃, ỹ) + B|u|, (A.83)

where B = αB3 + KB and

Q(x̃, ỹ) =
1
2
(x̃ + αỹ)2x2 +

K0

2
x̃2 . (A.84)

We consider two cases:
Case 1. Q(x̃, ỹ) ≥ θ. Then

U̇K ≤ −θ
UK(x̃, ỹ)

1 + UK(x̃, ỹ)
+ B|u| . (A.85)

Case 2. Q(x̃, ỹ) ≤ θ. Then

|x̃| ≤
√

2
K0

θ (A.86)

and therefore our choice of θ implies that

x∗
2

≤ x . (A.87)

Moreover,
|x̃ + αỹ|x ≤

√
2θ . (A.88)

One can also use (A.87) to show that

|ỹ| ≤ 2
x∗α

√
2θ +

1
α
|x̃| . (A.89)

We deduce from (A.86) that
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|ỹ| ≤ 2
x∗α

√
2θ +

1
α

√
2
K0

θ ≤ y∗
2

, (A.90)

by our choice of θ.
Next, one can easily prove that for all A ∈ [− 1

2 ,
1
2

]
,

A− ln(1 + A) ≤ A2 (A.91)

and therefore, when |x̃| ≤ x∗
2 and |ỹ| ≤ y∗

2 , we have

V1(x̃, ỹ) ≤ x̃2

x∗
+

ỹ2

y∗
. (A.92)

Since the definition of UK and (A.80) imply that

UK(x̃, ỹ) ≤ (
K + B2 max

{
9, 3α2

})
V1(x̃, ỹ),

we get

UK(x̃, ỹ) ≤ K

[
x̃2

x∗
+

ỹ2

y∗

]
, (A.93)

where K̄ = K + B2 max
{
9, 3α2

}
. Also, (A.87) implies that

Q(x̃, ỹ) ≥ x2
∗
8

(x̃ + αỹ)2 +
K0

2
x̃2 . (A.94)

By separately considering the possibilities |x̃| ≥ 1
4α|ỹ| and |x̃| ≤ 1

4α|ỹ| and
noting that K0 ≥ 9B2 ≥ 9, it follows that

Q(x̃, ỹ) ≥ x2
∗

16
α2ỹ2 + 2x̃2

≥ min
{

x2
∗

16
α2y∗, 2x∗

}[
x̃2

x∗
+

ỹ2

y∗

]
.

(A.95)

Combining (A.93) and (A.94) yields

UK(x̃, ỹ) ≤ K Q(x̃,ỹ)

min

{
2x∗,

x2∗
16 α

2y∗
} . (A.96)

From (A.83), we deduce that U̇K ≤ −K̂UK(x̃, ỹ) + B|u|.
Hence, in both cases,

U̇K ≤ −�
UK(x̃, ỹ)

1 + UK(x̃, ỹ)
+ B|u| , (A.97)

where � = min{K̂, θ}. This shows that UK is an iISS Lyapunov function for
the Lotka-Volterra errors dynamics (5.62) when the disturbance u satisfies
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the less stringent bound |u|∞ ≤ d
2 . To prove the ISS assertion, notice that

˙UK = eUK(x̃,ỹ) [1 + UK(x̃, ỹ)] U̇K
≤ eUK(x̃,ỹ)

[{−� + B|u|}UK(x̃, ỹ) + B|u|] .
(A.98)

Therefore, when |u|∞ ≤ �

2B , we have

˙UK ≤ eUK(x̃,ỹ)
[−�

2 UK(x̃, ỹ) + B|u|]

≤ −�

2 UK(x̃, ỹ) + B|u| [eUK(x̃,ỹ) − 1
]
+ B|u| .

(A.99)

Using the inequalities ea − 1 ≤ aea and B|u| ≤ �

4 , we therefore obtain

˙UK ≤ −�

4 UK(x̃, ỹ) + B|u| . (A.100)

The desired ISS inequality now follows from standard arguments. �

A.5 Useful Integral

For a given constant δ > 0, let

I =
∫ π

2

0

1
(cos2(a) + δ)2

da . (A.101)

Then the double angle formula gives

I = 4
∫ π

2

0

1
(cos(2a) + 1 + 2δ)2

da . (A.102)

Set β = 1 + 2δ. Then

I = 4
∫ π

2

0

1
(cos(2a) + β)2

da = 2
∫ π

0

1
(cos(r) + β)2

dr

= 2
∫ π

2

0

1
(cos(r) + β)2

dr + 2
∫ π

π
2

1
(cos(r) + β)2

dr

= 2
∫ π

2

0

1
(cos(r) + β)2

dr + 2
∫ π

2

0

1
(− cos(r) + β)2

dr ,

(A.103)

where the last integral is from the relation cos(r) = − cos(π − r) and the
substitution y = π − r. Let
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t = tan
( r

2

)
.

Then cos(r) = 1−t2

1+t2 , so (A.103) gives

I ≤ 2
∫ 1

0

1
(

1−t2

1+t2 + β
)2

2
1 + t2

dt + 2
∫ 1

0

1
(
− 1−t2

1+t2 + β
)2

2
1 + t2

dt

= 4

[∫ 1

0

1 + t2

(1 − t2 + (1 + 2δ)(1 + t2))2
dt

+
∫ 1

0

1 + t2

(−1 + t2 + (1 + 2δ)(1 + t2))2
dt

]

(A.104)

and therefore

I ≤
∫ 1

0

1 + t2

(1 + δ + δt2)2
dt +

∫ 1

0

1 + t2

(δ + (1 + δ)t2)2
dt . (A.105)

Let

s =

√
δ

1 + δ
t and m =

√
1 + δ

δ
t.

Then

I ≤
∫ √

δ
1+δ

0

1 + 1+δ
δ s2

(1 + δ + (1 + δ)s2)2

√
1 + δ

δ
ds

+
∫ √

1+δ
δ

0

1 + δ
1+δm

2

(δ + δm2)2

√
δ

1 + δ
dm

≤ 1
δ3/2(1+δ)3/2

∫ √
δ

1+δ

0

δ + (1 + δ)s2

(1 + s2)2
ds

+ 1
δ3/2(1+δ)3/2

∫ √
1+δ

δ

0

1 + δ + δm2

(1 + m2)2
dm

= 1
δ3/2(1+δ)3/2

∫ √
δ

1+δ

0

δ + δs2

(1 + s2)2
ds + 1

δ3/2(1+δ)3/2

∫ √
δ

1+δ

0

s2

(1 + s2)2
ds

+ 1
δ3/2(1+δ)3/2

∫ √
1+δ

δ

0

1 + δ + (δ + 1)m2

(1 + m2)2
dm

+ 1
δ3/2(1+δ)3/2

∫ √
1+δ

δ

0

−m2

(1 + m2)2
dm .
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This implies that

I ≤ 1
δ1/2(1+δ)3/2

∫
√

δ
1+δ

0
1

1+s2 ds + 1
δ3/2(1+δ)3/2

∫
√

δ
1+δ

0
s2

(1+s2)2
ds

+ 1
δ3/2(1+δ)1/2

∫√ 1+δ
δ

0
1

1+m2 dm− 1
δ3/2(1+δ)3/2

∫√ 1+δ
δ

0
m2

(1+m2)2
dm

and therefore also

I ≤ 1
δ1/2(1+δ)3/2 arctan

(√
δ

1+δ

)
+ 1

δ3/2(1+δ)1/2 arctan
(√

1+δ
δ

)

+ 1
δ3/2(1+δ)3/2

∫ √
δ

1+δ

0

s2

(1 + s2)2
ds

− 1
δ3/2(1+δ)3/2

∫ √
1+δ

δ

0

m2

(1 + m2)2
dm .

One can easily prove that

∫ A

0

s2

(1 + s2)2
ds = − A

2(1 + A2)
+ 1

2 arctan(A) ∀A ≥ 0 . (A.106)

We deduce that

I ≤ 1
δ1/2(1 + δ)3/2

arctan

(√
δ

1 + δ

)
+

1
δ3/2(1 + δ)1/2

arctan

(√
1 + δ

δ

)

+
1

δ3/2(1 + δ)3/2

⎡

⎣−
√

δ
1+δ

2
(
1 + δ

1+δ

) + 1
2 arctan

(√
δ

1 + δ

)⎤

⎦

− 1
δ3/2(1 + δ)3/2

⎡

⎣−
√

1+δ
δ

2
(
1 + 1+δ

δ

) +
1
2

arctan
(√

1+δ
δ

)⎤

⎦

=
arctan

(√
δ

1+δ

)

δ1/2(1 + δ)3/2
+

arctan
(√

1+δ
δ

)

δ3/2(1 + δ)1/2

+
arctan

(√
δ

1+δ

)

2δ3/2(1 + δ)3/2
−

arctan
(√

1+δ
δ

)

2δ3/2(1 + δ)3/2

− 1
2δ(1 + δ)2

1(
1 + δ

1+δ

) +
1

2δ2(1 + δ)
1(

1 + 1+δ
δ

)
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and so also

I ≤ arctan

(√
δ

1 + δ

)[
1

δ1/2(1 + δ)3/2
+

1
2δ3/2(1 + δ)3/2

]

+ arctan

(√
1 + δ

δ

)[
1

δ3/2(1 + δ)1/2
− 1

2δ3/2(1 + δ)3/2

]
.

The preceding inequalities and the fact that arctan(q) + arctan(1/q) ≡ π
2

on (0,∞) now give

I ≤ 1
δ1/2(1+δ)1/2

{
arctan

(√
δ

1+δ

) [
1

1+δ + 1
2δ

]

+ arctan
(√

1+δ
δ

)[
1
δ − 1

2δ(1+δ)

]}

= 1
δ1/2(1+δ)1/2

[
arctan

(√
δ

1+δ

)
1

1+δ
1+3δ
2δ

+ arctan
(√

1+δ
δ

)
1
δ

1+2δ
2(1+δ)

]

≤ π(1 + 3δ)
4δ3/2(1 + δ)3/2

≤ 3π
4δ3/2

.

(A.107)

A.6 Continuous Time Matrosov Result with PE

We give the continuous time Matrosov construction that we used in the proof
of Theorem 12.4. We assume the following Matrosov Conditions:

Assumption A.1 There exist C1 functions V1 : [0,∞) × R
n → [0,∞) of

class UPPD and V2 : [0,∞) × R
n → R of class USB; φ2 ∈ K∞; everywhere

non-negative functions N1, N2 ∈ USB; a function χ : [0,∞)× [0,∞)×R
n →

R; an everywhere positive increasing function φ1; W ∈ PD; constants τ > 0
and ε > 0; and q ∈ Pcts(τ, ε) such that

DV1(t, x) ≤ −N1(t, x);

DV2(t, x) ≤ −N2(t, x) + χ(N1(t, x), t, x);

|χ(N1(t, x), t, x)| ≤ φ1(|x|)φ2(N1(t, x)); and

N1(t, x) + N2(t, x) ≥ q(t)W (x)

hold for all x ∈ R
n and t ∈ [0,∞).

Notice that V2 can take both positive and negative values. We show:
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Lemma A.9. If (12.9) satisfies Assumption A.1, then one can construct an
explicit strict Lyapunov function for (12.9). In particular, (12.9) is UGAS.

Proof. We indicate the changes needed in the proof of Theorem 12.3. We
define V3 and λ as in the earlier proof, giving

DV3(t, x) ≤ −q(t)W (x) + φ1(|x|)φ2

(
N1(t, x)

)

≤ −q(t)λ
(
V1(t, x)

)
+ φ1(|x|)φ2

(
N1(t, x)

)

everywhere. We define k1, Λ1 ∈ K∞, and

V4
.= k1(V1)V3

as before and therefore can find everywhere positive increasing functions Γ
and Λ2 satisfying

DV4(t, x) ≤ [−DV1(t, x)]Γ
(
V1(t, x)

)− q(t)Λ1

(
V1(t, x)

)

+Λ2

(
V1(t, x)

)
φ2

(
N1(t, x)

)
,

(A.108)

again by the previous argument. Choosing a function k2 ∈ K∞ such that

k′
2 ≥ Γ

everywhere, we get

D(k2 ◦ V1) = k′
2(V1)DV1 ≤ Γ (V1)DV1,

since DV1 ≤ 0 everywhere. It follows that

V5
.= V4 + k2(V1)

satisfies

DV5(t, x) ≤ −q(t)Λ1

(
V1(t, x)

)
+ Λ2

(
V1(t, x)

)
φ2

(
N1(t, x)

)
. (A.109)

Using the continuous time strictification approach from Chap. 6, the fact
that Λ1 ∈ C1 ∩ K∞ implies that

V6(t, x) .= V5(t, x) +
1
τ

[∫ t

t−τ

∫ t

s

q(r) dr ds
]

Λ1(V1(t, x)) (A.110)

satisfies

DV6(t, x) ≤ − ε

τ
Λ1

(
V1(t, x)

)
+ Λ2

(
V1(t, x)

)
φ2

(
N1(t, x)

)
.

The argument from the proof of Theorem 12.3 now provides a function k3 ∈
PD ∩ C1 such that
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k3(r) ≤ φ−1
2

( ε
τΛ1(r)

1 + Λ2(r)

)
1

1 + Λ2(r)
,

and therefore
φ2

(
k3(V1)Λ2(V1)

)
Λ2(V1) ≤ ε

τ
Λ1(V1)

everywhere. Let α1 be the lower bound function in the UPPD requirement
on V1, and pick α6 ∈ K∞ such that

α6(|x|) ≥ |V6(t, x)|

for all x ∈ R
n and t ≥ 0. Choose k4 ∈ K∞ ∩ C1 such that

k′
4(s) ≥ |k′

3(s)|(α6 ◦ α−1
1 )(s)

everywhere. Then
k′
4(V1) ≥ |k′

3(V1)V6|
everywhere. We conclude that the function

V7
.= k3(V1)V6 + k4(V1)

satisfies
DV7 ≤ − ε

τ k3(V1)Λ1(V1) + k3(V1)Λ2(V1)φ2(N1)

−|k′
3(V1)V6|DV1 + k′

4(V1)DV1

≤ − ε
τ k3(V1)Λ1(V1) + k3(V1)Λ2(V1)φ2(N1)

everywhere, since DV1 ≤ 0 everywhere. The conclusion of the argument is
similar to the corresponding part of the proof of Theorem 12.3, except with
Δk replaced by D and δ

8(l+1) replaced by ε
2τ . �



Appendix B

Converse Theory

B.1 Converse Lyapunov Function Theorem

For completeness, we provide a sketch of the proof of Theorem 2.1, which
builds strict Lyapunov functions for time-varying UGAS systems in terms of
the flow map. We follow the argument from [70, Appendix C.7]. The proof
relies on the following result which is known as Massera’s Lemma:

Lemma B.1. Assume that g : [0,∞) → (0,∞) is a continuous non-increasing
function satisfying g(t) → 0 as t → +∞, and h : [0,∞) → (0,∞) is con-
tinuous and non-decreasing. Then there exists a function G satisfying the
following two conditions:

1. G,G′ ∈ K; and
2. there is a constant k̄ > 0 such that

max
{∫ ∞

0

G(u(t))dt,
∫ ∞

0

G′(u(t))h(t)dt
}

≤ k̄ (B.1)

for all continuous functions u satisfying 0 < u(t) ≤ g(t) for all t ≥ 0.

Proof. Fix a sequence {tn} in [1,∞) such that

g(tn) ≤ 1
n + 1

∀n ∈ N.

We show that the requirements of the lemma are met with

G(r) =
∫ r

0

H(s)ds, where H(s) =

⎧
⎨

⎩

exp(−η−1(s))
h(η−1(s))

, s > 0

0, s = 0

and η is any decreasing function that satisfies the following conditions:

1. η is affine on (tn, tn+1) and η(tn) = 1/n for each n; and

367
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2. η(s) = (t1/s)p on (0, t1] where p ∈ N is large enough so that the one sided
derivatives at t1 satisfy η′(t−1 ) < η′(t+1 ).

Notice that g(r) < η(r) for all r ∈ [t1,∞).
To simplify the notation, let Ug denote the set of all continuous functions

u satisfying
0 < u(t) ≤ g(t) ∀t ≥ 0.

Since η−1 is also decreasing, we have

η−1(u(t)) ≥ η−1(g(t)) > η−1(η(t)) = t (B.2)

for all t ≥ t1 and u ∈ Ug. Moreover, H ∈ K, and (B.2) in conjunction with
the fact that h is non-decreasing implies

∫ ∞

t1

G′(u(t))h(t)dt ≤
∫ ∞

t1

e−tdt ≤ 1.

Since we can also bound G′(u(t)) ≤ G′(g(t)) on (0, t1], we get a bound on the
second integral in (B.1) that is uniform in u ∈ Ug. Similarly, since −η−1(s) ≤
−t when 0 < s ≤ η(t) and h is non-decreasing, we get

∫ ∞

t1

G(u(t))dt ≤
∫ ∞

t1

∫ η(t)

0

exp(−η−1(s))
h(0)

ds dt

≤
∫ ∞

t1

e−t

h(0)
η(t)dt < ∞

and therefore also a uniform bound on the first integral in (B.1). This proves
the lemma. �

Returning to the proof of the theorem, we apply the preceding lemma with
the choices

g(s) = β(r0, s) and

h(s) = exp(Ls) + sup{|f(r, x)| : r ≥ 0, |x| ≤ s},
(B.3)

where the constant L is chosen so that

sup
{∣∣∣∣

∂f

∂x
(t, x)

∣∣∣∣ : x ∈ rBn, t ≥ 0
}

≤ L. (B.4)

Letting G be the function that results from the lemma, we now show that

V (t, x) =
∫ ∞

t

G(|φ(τ, t, x)|) dτ (B.5)

satisfies the estimates of the theorem, where φ is the flow map of the system.
The choice (B.4) of L implies that
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∣∣∣∣
∂φ

∂x
(τ, t, x)

∣∣∣∣ ≤ exp(L[τ − t]) and |φ(τ, t, x)| ≥ |x|exp(−L[τ − t]) (B.6)

on [0,∞)2 × (rBn); see [70, Appendix C.7]. This gives the bound

∣∣∂V
∂x (t, x)

∣∣ =
∣∣∣∣
∫ ∞

t

G′(|φ(τ, t, x)|)φ
�

|φ| φxdτ
∣∣∣∣

≤
∫ ∞

t

G′(β(|x|, τ − t))exp(L[τ − t])dτ

≤
∫ ∞

0

G′(β(|x|, s))eLsds .= α4(|x|)

(B.7)

when 0 < |x| ≤ r0Bn, as long as x 
= 0. This gives the growth requirement on
Vx from the statement of the theorem.

Next notice that our choice of β gives

V (t, x) ≤
∫ ∞

t

G(β(|x|, τ − t)) dτ =
∫ ∞

0

G(β(|x|, s)) ds .= α2(|x|).

Also, the second inequality in (B.6) gives

V (t, x) ≥
∫ ∞

t

G(|x|exp(−L[τ − t]) dτ

=
∫ ∞

0

G(|x|exp(−Ls) ds

≥
∫ (ln 2)/L

0

G(0.5|x|)ds .= α1(|x|).

This gives α1(|x|) ≤ V (t, x) ≤ α2(|x|) for all (t, x) ∈ [0,∞) × (r0Bn), and
α1, α2 ∈ K, so the first requirement of the theorem is met. Finally, the vari-
ational equality gives φt(τ, t, x) + φx(τ, t, x)f(t, x) ≡ 0 for all τ ≥ t and
therefore

∂V

∂t
+

∂V

∂x
f(t, x) = −G(|x|)

when |x| ≤ r0. The preceding construction can be done globally in the spe-
cial case where ∂f/∂x is globally bounded. Since φ(τ, t, x) agrees with the
autonomous flow φ(τ − t, x) when f is independent of t, the last assertion of
the theorem follows as well. �

Remark B.1. We can choose V to be as smooth as desired. This follows from
the regularization arguments from [12, Sect. 4.1.5]. However, C1 Lyapunov
functions normally suffice for feedback design.
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B.2 Time-Varying Converse ISS Result

A well-known converse Lyapunov function result says that if a time-invariant
system (satisfying appropriate assumptions) is ISS, then it admits an ISS
Lyapunov function; the proof uses the abstract strict Lyapunov function con-
struction from [82]. The fact that this is true for time periodic time-varying
systems as well was announced in [39] and can be deduced from the following
special case of [12, Theorem 4.5]:1

Lemma B.2. Let F : [0,∞) × R
n ⇒ R

n be continuous and compact and
convex-valued. Assume that the differential inclusion

ẋ ∈ F(t, x) (B.8)

is UGAS. Then for any constant λ > 0, there exists a C∞ storage function
V : [0,∞) × R

n → [0,∞) such that

∂V

∂t
(t, x) +

∂V

∂x
(t, x)v ≤ −λV (t, x) (B.9)

for all t ≥ 0, x ∈ R
n, and v ∈ F(t, x). If, in addition, F is periodic in t with

some period T , then we can choose V in such a way that it also has period
T in t.

Let us show how the converse ISS result follows from Lemma B.2. For
simplicity, we assume that f is Lipschitz. If f is ISS, then [169] provides
χ ∈ K∞ such that the constrained input system

ẋ = fχ(t, x, d) .= f(t, x, dχ−1(|x|)), |d| ≤ 1 (B.10)

is UGAS; i.e., there exists β ∈ KL such that for each t0 ≥ 0 and x0 ∈ R
n

and each trajectory y of (B.10) satisfying y(t0) = x0, we have |y(t0 + h)| ≤
β(|x0|, h) for all h ≥ 0. By minorizing χ−1, we can assume it is C1. This
means the locally Lipschitz set-valued dynamics

F (t, x) = {f(t, x, u) : χ(|u|) ≤ |x|}

is UGAS, as is its convexification co(F ), namely (t, x) 
→ co{F (t, x)} where
co denotes the closed convex hull [12]. Since F .= co(F ) is continuous and
compact and convex-valued, and since we are assuming that f is periodic in
t, Lemma B.2 provides a time periodic V ∈ UBPPD such that (B.9) holds

1 By a solution of a differential inclusion (B.8), we mean an absolutely continuous function
φ : I → Rn defined on some nonempty interval I = [t0, tmax) with the property that
φ̇(t) ∈ F(t, φ(t)) for almost all t ∈ I. We say that (B.8) is UGAS (to the origin) provided
there is a function β ∈ KL such that for all initial times t0 ≥ 0, all nonempty intervals
[t0, tmax), and all solutions φ : [t0, tmax) → Rn of (B.8), we have |φ(t)| ≤ β(|φ(t0)|, t − t0)
for all t ∈ [t0, tmax). See [12] for the definition of continuity of a set-valued map.
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for all x ∈ R
n, t ≥ 0, and v ∈ F (t, x) with λ = 1. In particular, we can find

a function α1 ∈ K∞ such that V (t, x) ≥ α1(|x|) everywhere. Recalling the
definition of F , we therefore have

|x| ≥ χ(|u|) ⇒ f(t, x, u) ∈ F (t, x)

⇒ V̇ (t, x, u) ≤ −V (t, x) ≤ −α1(|x|)

for all t ≥ 0, so V is the desired strict ISS Lyapunov function for f . This
proves the result.
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Jurdjevic-Quinn Theorem, 34

LaSalle type conditions, 244
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linearization approach, 56
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slowly time-varying, 297
time-invariant, 6
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optimal hybrid stabilization, 338

outputs
error, 21
measurement, 21

parameter identification, 254
passive nonlinear system, 118
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periodic, 6
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proximal subgradient, 23
PVTOL model, 175
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optimal control approach, 230
robust hovering control, 230
small gain approach, 230
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set convergence, 338
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stability, 9
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equivalent characterizations of ISS, 155

global asymptotic stability, 9
global exponential stability, 9

input-measurement-to-error, 21
input-to-output stability, 21, 314
input-to-state exponential stability, 278

input-to-state stability, 10
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uniform global asymptotic stability, 9
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tracking, 6
translational oscillator with rotating

actuator (TORA) system, 190



386 Index

two-link manipulator, 83

UBPPD, 30
underactuated ship, 162

backstepping, 169
dynamic positioning, 162
hyrdodynamic damping, 162
intertia and mass effects, 162
kinematics, 163
port/starboard symmetry, 163
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