
Chapter 7
Nature-inspired Single-electron Computers

Tetsuya Asai and Takahide Oya

7.1 Introduction

A single-electron circuit is one that creates electronic functions by controlling move-
ments of individual electrons [11]. The circuit uses tunneling junctions, each of
which generally consists of two conducting materials facing each other very closely
(statically, they are normal capacitors). Under a low-temperature environment, elec-
tron tunneling is governed by the physical phenomenon called the Coulomb block-
ade, where an electron does not tunnel through a junction if the tunneling increases
the circuit’s electrostatic energy (Ec). To comply with the Coulomb blockade, the
capacitance of a tunneling junction must be sufficiently small; for example, if we
use 1 pF of capacitance, Ec corresponds approximately to 1 mK in temperature (T ).
Generally, observing the Coulomb blockade in practical experimental environment
(e.g., T ∼ 0.1 K) is difficult because the blockade effect is disturbed by thermal fluc-
tuations. Therefore, elemental devices of single-electron circuits, that is, tunneling
junctions and capacitors, must be constructed in nanoscale (lower than a few tens of
nanometers).

These intrinsic quantum behaviors may give us an insight in developing modern
computing paradigms, including nature-inspired computing and quantum comput-
ing. However, if we employ conventional (deterministic) computing architectures,
we need a fully worked-out plan for both computing and circuit architectures, for
example, see [5, 10, 27, 29, 30]. Thermal noise tolerance is an important character-
istic of single-electron computers, because the rate of random electron tunneling
increases exponentially as the temperature increases. Several practical circuits have
been developed by improving the process for fabricating ultra-low capacitance of
tunneling junctions [29] and by using an error-compensation algorithm in the archi-
tecture [27].

On the other hand, one can easily observe robust, fault- and noise-tolerant sys-
tems in nature. For example, nature-inspired reaction-diffusion (RD) computers [3]
can perform specific computing under natural environment without paying much
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attention to, for example, device-size variations, thermal fluctuations, etc., as com-
pared to present nanoscale semiconductor artifacts for both analog and digital com-
puting. How can we incorporate such robust properties into single-electron circuits?
One possible way is to build an electrically equivalent circuit that implements con-
venient natural systems, for example, RD computers. Complementary metal-oxide-
semiconductor (CMOS) and single-electron circuits for image restoration and com-
putation of a Voronoi diagram (VD) have already been proposed in [20, 28]. The
other way is to learn from central nervous systems where neurons are fluctuated by
thermal noises, as well as single-electron circuits. Neurons would utilize thermal
noise to detect weak neuronal signals buried under the noise. The reappearance of
neuronal behaviors and matching properties between neurons are really poor com-
pared with semiconductor neural devices; nevertheless, our brains work robustly.

Constructing an electrical analog of natural or biological systems would enable
us to generate artificial dynamics on a LSI chip and to develop novel information
processing systems. This chapter briefly introduces recent topics on the develop-
ment of single-electron circuits that perform nonclassical computation inspired by
chemical or biological systems. In Sect. 7.2, a novel single-electron device for the
computation of a VD is introduced. A cellular-automaton model of VD formation
[1, 2] is employed to construct the device that consists of three layers of a 2D array
of single-electron oscillators. In Sect. 7.3, a single-electron neural circuit for a ro-
bust synchrony detection among burst spikes is presented. A simple single-electron
circuit for a single-layer nanodot array is designed for implementing depressing
synapses for efficient synchrony detection. The circuit can be used as a unit element
for spiking neural networks and its applications. Although the synapse circuit con-
sists of only three single-electron oscillators, they emulate fundamental properties
of depressing synapses. This work has been extended to utilize stochastic resonance
between single-electron neurons for possible robust computation on single-electron
circuits (Sect. 7.4). In Sect. 7.5, a novel semiconductor device in which electronic-
analogue dendritic trees grow on multilayer single-electron circuits is introduced as
an extreme example of artificial life on single-electron circuits.

7.2 A Single-electron Reaction-diffusion Device for Computation
of a Voronoi Diagram

Computation of VD is one of the typical problems in computer science, and VDs
are used in graphics, statistics, geography, and economics [14, 18]. The key feature
of VD construction is the partition of two- or three-dimensional space on a sphere
of influences generated from a given set of objects, points, or arbitrary geometrical
shapes. This section introduces a novel single-electron device for the computation
of a VD. A cellular-automaton model of VD formation [1,2] is used to construct the
device that consists of three layers of a 2D array of single-electron oscillators.

The authors and several colleagues have proposed to use single-electron
reaction–diffusion (SE-RD) devices for VD computation [20]. The original SE-RD
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Fig. 7.1 Circuit configuration of single-electron reaction-diffusion device [23]

device consists of arrayed single-electron oscillators and can imitate the operation
of chemical RD systems [23]. Figure 7.1 illustrates the original SE-RD device. The
main component is a single-electron oscillator that consists of a tunneling junction
Cj and a high resistance R connected in series at a node and biased by a positive
voltage Vdd or a negative one −Vdd. It has voltage Vnode of the node, and Vnode shows
the excitatory oscillation that is indispensable for imitating RD systems [23].

To compute a VD with RD systems, spatially localized waves that travel upon
computing media at a constant speed are necessary [1, 2], that is, the wavefronts
must be smooth and their speed must be constant. The original SE-RD device can
generate nonlinear voltage waves. However, the device was not suitable for comput-
ing a VD because the wavefronts were not smooth, as shown in Fig. 7.2, and their
spreading speeds were not constant. The stochastic tunneling of electrons at each
oscillator is the reason why the waves cannot travel at a constant speed. To make the
wavefronts smooth and the speed of the waves constant, new oscillators in which
the tunneling probability is averaged are necessary. Therefore, the authors have de-
veloped new single-electron oscillators with multiple-tunneling junction (MTJ) as
shown in Fig. 7.3. The MTJ oscillator consists of a MTJ Cm that has n tunneling
junctions and a high resistance R connected in series at the node, and is biased
by Vdd. It has voltage Vnode that shows the excitatory oscillation like the original
oscillator does. There are many tunneling junctions in the oscillator, and so the tun-
neling probability is averaged. Consequently, Vnode changes smoothly as shown in
Fig. 7.3b. The improved SE-RD device consists of these MTJ oscillators [20].

Adjacent oscillators have to be coupled with a capacitor for the voltage waves to
travel on the MTJ device. Figure 7.4 shows simulation results of a one-dimensional
chain of MTJ oscillators. In the figure, MTJ oscillators are denoted by A1, A2,...,
with their nodes represented by closed circles that are connected to their adjacent
oscillators through intermediary oscillators biased by a negative voltage−Vdd (these
are denoted by B1, B2, ..., with their nodes represented by open circles) and coupling
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Fig. 7.2 Spatially localized voltage wave that is generated by the original SERD device (simu-
lated). The device has 100×100 oscillators. Simulated with parameters: tunneling junction capac-
itance Cj = 1 aF, tunneling junction conductance = 1 μS, high resistance R = 137.5 MΩ, coupling
capacitance C = 1 aF, bias voltage Vdd = 16.5 mV, and zero temperature [23]
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Fig. 7.3 Single-electron oscillator with multiple-tunneling junction. (a) Circuit configuration and
(b) its operation (simulated). Simulated with parameters: tunneling junction capacitance Cm =
10 aF (500 aF/50 junctions), tunneling junction conductance = 5 μS, high resistance R = 20 GΩ,
bias voltage Vdd = 7.8 mV, and zero temperature

capacitors C (Fig. 7.4a). When electron tunneling occurs in one oscillator in this
structure, the node voltage of the oscillator decreases gently, and this induces elec-
tron tunneling in an adjacent intermediary oscillator. The induced tunneling changes
the node voltage of the intermediary oscillator from low to high, and this further in-
duces electron tunneling in an adjacent oscillator. Consequently, changes in node
voltage that are caused by the electron tunneling are transmitted from one oscil-
lator to another along the oscillator chain (Fig. 7.4b). Note that the voltage waves
travel at almost constant speed because the tunneling probability is averaged over
all oscillators.

A SE-RD device can be constructed by connecting MTJ oscillators into a network
by means of intermediary oscillators and coupling capacitors, as shown in Fig. 7.5.
Each oscillator is connected to its four adjacent oscillators by means of four inter-
mediary oscillators and coupling capacitors. Nonlinear voltage waves travel on the
device at a constant speed, as shown in Fig. 7.6. One can compute VDs by using
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Fig. 7.4 One-dimensional chain of MTJ oscillators. (a) Circuit configuration and (b) its operation
(simulated). Simulated with parameters: tunneling junction capacitance Cm = 10 aF (500 aF/50
junctions), tunneling junction conductance = 5 μS, high resistance R = 20 GΩ, coupling capaci-
tance C = 2.2 aF, bias voltage Vdd = 7.8 mV, and zero temperature

the information on the collision points of the nonlinear waves. In [1, 2], a cell that
connects eight adjacent cells changes its state according to the states of the adjacent
cells. The cell state transition rule is

xt+1 =

⎧⎨
⎩

β , if xt = • and 1 ≤ σ(x)t ≤ 4,
α, if xt = β and 1 ≤ σ(x)t ≤ 4,
xt , otherwise,

where x is the state of the middle cell, t is the time step, • is the resting cell, α is the
colored precipitate, β is the reagent, and σ(x)t is the number of β cells in the eight
adjacent cells. In this model, the collision points are memorized as the precipitate
of reagents.

To apply this rule to single electron device, the authors used single-electron
threshold detectors, specifically the single-electron boxes (SEB) for logic gate de-
vices [19, 22]. The SEB consists of a single-electron trap (two identical tunneling
junctions Cj connected in series, a capacitor CL, and a bias voltage Vdd) as shown
in Fig. 7.7a. This circuit has a hysteretic sawtooth function for Vdd, as shown in
Fig. 7.7b. The authors made use of this characteristic for threshold operation.
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Fig. 7.5 Two-dimensional RD device consisting of network of MTJ single-electron oscillators.
Each oscillator is connected with four neighboring oscillators by means of four intermediary os-
cillators and coupling capacitors

time

Fig. 7.6 Traveling nonlinear wave that is generated by the improved SE-RD device (simulated).
50 × 50 oscillators are placed in the device. This simulation used the same parameters as in
Fig. 7.4b [20]

Let us consider the threshold operation for computing a VD based on the CA
model, and assume the threshold value that is the number of β cells in the eight
adjacent cells to be 4.5, that is, no electron tunneling occurs in the SEB when the
node voltages of four or fewer adjacent oscillators are changed by electron tunneling
in the oscillators. On the other hand, electron tunneling occurs in the SEB when the
node voltages of five or more adjacent oscillators are changed. In addition, one can
find the collision points by comparing the state of the center oscillator with the state
of the SEB threshold detector. To compare the states, SEBs with the threshold set
to 1.5 can be used, that is, no electron tunneling occurs in the SEB when electron
tunneling occur in both the above SEB and the center oscillator.

Figure 7.8 shows a SE RD device with three layers for computing VDs. The top
layer (Fig. 7.8a) is the MTJ device shown in Fig. 7.5. The middle layer (Fig. 7.8b)
is the first logic layer of SEB threshold detectors. The SEB that is biased by the
negative voltage −Vb1 (Fig. 7.8e) are directly placed under the oscillators biased by
+Vdd (oscillator 9 in Fig. 7.8) and connects to the eight adjacent oscillators of the
top layer (oscillators 1–8 in Fig. 7.8d), that is, the SEB accepts eight signals from the
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Fig. 7.8 SE RD device that has three layers for computing VDs. The top layer is the device shown
in Fig. 7.5. The middle layer is the first logic layer with SEB threshold detectors. The bottom layer
is the second logic layer and it produces the VD

eight oscillators as inputs. The bottom layer (Fig. 7.8c) is the second logic layer. The
SEB that is biased by the negative voltage −Vb2 (Fig. 7.8f) connects to the oscillator
9 and the SEB in the second layer (Fig. 7.8e), that is, the second SEB accepts two
signals from the oscillator 9 and the SEB in the second layer as inputs. The bottom
layer produces the output, that is, its output is used to draw the VD.

Figures 7.9–7.11 show the simulated results. Figure 7.9 shows the density of
node voltages on the top layer (bright and dark dots represent high and low voltages
on the 2D device). Figures 7.10 and 7.11 show the voltages on the middle layer
and on the bottom layer. In Fig. 7.10, “A” indicates the wavefront in the top layer,
“B” indicates the wave-front in the middle layer, and “C” indicates collision points.
In this simulation, three oscillators of the top layer were triggered as planar points
for a VD. Nonlinear voltage waves traveled at a constant speed, and gave the data
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Fig. 7.9 Expanding circular pattern in the top layer of the device. Snapshots for six time steps. The
simulation used the same parameters as in Fig. 7.4b for the simulation

to the middle and bottom layers. In the middle layer, the SEBs changed their node
voltage when five or more oscillators of the upper eight oscillators changed their
node voltage. Wavefronts in the top layer had four or fewer oscillators that changed
their voltages. As a result, traveling nonlinear waves in this layer (B in Fig. 7.10)
followed the waves in the top layer (A). When wave “A” collided with other waves
in the top layer, the collision points had five or more oscillators that changed their
voltages. Therefore, wave “B” in this layer overtook “A” and collided with other
waves just like spanning a valley with a bridge (C). In the bottom layer, the SEBs
changed their node voltages when both the voltage of the oscillators in the top layer
and the SEBs in the middle layer are low. Namely, traveling waves that did not
collide were memorized by the bottom layer as a high voltage. When the nonlinear
waves of the top layer collided with each other, the voltages of the collision points
in the top were low and the node voltages of the SEBs in the middle were high.
As a result, the node voltages of the SEB in the bottom were kept low. Therefore,
the bottom layer memorized the result of computing the VD (Fig. 7.12).

7.3 Neuronal Synchrony Detection on Single-electron
Neural Networks

Synchrony detection between burst and nonburst spikes is known to be one func-
tional example of depressing synapses. Kanazawa et al. demonstrated synchrony
detection with CMOS depressing synapse circuits [12]. They found that the
performance of a network with depressing synapses that discriminates between
burst and random input spikes increases nonmonotonically as the static device
mismatch is increased [4]. The authors have designed a single-electron depress-
ing synapse and constructed the same network as in Kanazawa’s study to develop
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Fig. 7.10 Expanding circular pattern in the middle layer of the device. Snapshots for six time
steps. Parameters: tunneling junction capacitance Cj = 20 aF, tunneling junction conductance =
5 μS, bias capacitance CL = 10 aF, coupling capacitance C = 2.2 aF, bias voltage Vb1 = 26.5 mV,
and zero temperature

time

Fig. 7.11 Expanding circular pattern in the bottom layer of the device. Snapshots for six time steps.
Traveling nonlinear waves in this layer construct a VD. Parameters are the same as in Fig. 7.10
without bias voltage Vb2 = 18.5 mV

noise-tolerant single-electron circuits. This section shows the temperature charac-
teristics, and explores possible architecture that enables single electron circuits to
operate over absolute zero temperature.

The authors and several colleagues have proposed neuromorphic single-electron
circuits for fundamental neural components in modern spiking neural networks [24].
Our aim was to implement artificial neural networks on a single or multilayer nan-
odot array. A unit circuit consists of a pair of single-electron oscillators. Using these
unit circuits with coupling capacitors, we design a single-electron neuron circuit
that consists of excitable axons and dendrites, excitatory and inhibitory synapses,
and a soma. The authors have demonstrated an application of the neuron circuit
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Fig. 7.13 Single-electron oscillator and phase diagram

in an inhibitory competitive neural network [24], where the neurons compete with
each other in the temporal domain. However, we could observe expected neural
competition at a very low temperature (≤0.1 K). In this section, we explore a pos-
sible solution to improve the performance in another application, that is, neuronal
synchrony detection, by using the proposed single-electron depressing synapse.

To design a depressing synapse circuit, we use a pair of single-electron oscil-
lators that were proposed for a spiking neuron circuit [24] and an excitable media
[23]. As shown in Fig. 7.13a, one oscillator consists of a tunneling junction (Cj), a
conductive device (g), and a bias voltage source (Vdd). The oscillator has an island
node ni where excess electrons are stored. Figure 7.13b is a nominal phase diagram
of this circuit for positive Vdd. The vertical and horizontal axes represent node volt-
age ni and a tunneling phenomenon [= 1 (when an electron tunnels), 0 (else)] at Cj.
Note that trajectories between the tunneling phenomenon (0 and 1) in the figure do
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not have any quantitative physical meaning, but they have been used only to explain
this circuit’s operation. Let us assume that Vdd < e/2Cj (≡ VT: tunneling thresh-
old voltage of junction Cj). Because tunneling junction Cj is charged by Vdd [(i) in
Fig. 7.13b], the circuit is stable when ni = Vdd. Under this resting condition, if ni is
further increased by an external input and exceeds VT, an electron tunnels from the
ground to node i through junction Cj, which results in a sudden decrease in ni from
VT to −VT [(ii) in Fig. 7.13b]. Then, Vdd starts charging Cj, and the circuit becomes
stable again [(i) in Fig. 7.13b].

Note that there is a time lag from when the junction voltage exceeds VT to when
tunneling actually occurs. On can utilize this “monostable” (excitable) oscillatory
property to produce the depressing characteristics of the synapses, that is, we re-
gard an array of oscillators as a depressing synapse because input spike trains are
depressed by each neuron operating in its refractory period. Therefore, we can use
an array of single-electron oscillators to construct the single-electron depressing
synapse (SEDS) shown in Fig. 7.14. It should be noted that the term of the refrac-
tory period increases as the values of gNa and gK increase [23].

A neuromorphic relationship exists between the proposed SEDS and electronic
Hodgkin–Huxley (H-H) models: (1) a tunneling junction (Cj) corresponds to a mem-
brane capacitance and voltage-controlled gates in the H-H models, (2) nonlinear
chemical reactions between Na+ and K+ can be mediated by a coupling capaci-
tance (C) because of the neuron’s dielectric inside the soma.

Let us observe the depressing properties of a single SEDS through numerical
simulations. Typical parameter values for the single-electron circuit [23], except for
gNa(= gK) = 5, 2.5, and 1 μS were used. Figure 7.15 shows synaptic conductivities
(approximately the number of post-synaptic spikes) for inter-spike intervals (ISIs)
of input spike trains. As the ISI increases, the conductivity increases because each
SEDS can easily be recovered from its depressed (refractory) period as the ISI in-
crease. Because the depressed period increases as gNa and gK increase, the SEDS’s
conductivity for increasing ISIs decreases significantly.

Applications of SEDSs to synchrony detection has been demonstrated. We used
a typical functional example of depressing synapses proposed by Senn [26]. He
showed that an easy way to extract coherence information between cortical neu-
rons is by projecting spike trains through depressing synapses onto a post-synaptic
neuron [26]. We demonstrate it here by using single-electron synapse circuits.

Let us assume a simple circuit as shown in Fig. 7.16. The circuit is designed
based on the construction of Senn’s neural network. The bottom right part repre-
sents a post-synaptic neuron and the left part represents its dendrite with our synapse
circuits. The post-synaptic neuron consists of a membrane capacitance (Cm) and a
leak conductance (gm). In this study, we omit a threshold (Vth) detector from the
post-synaptic neuron circuit, that is, the post-synaptic neuron circuit never fires.
The post-synaptic neuron accepts spike inputs from excitatory neurons through de-
pressing synapses. If the post-synaptic neuron circuit has a firing function, it outputs
a spike when its EPSP < Vth, and resets the EPSP after the firing. In this setup, the
average values of the EPSP increase in proportion to the number of pre-synaptic
active neurons. Therefore, it can detect the number of pre-synaptic active neurons
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Fig. 7.14 Depressing synapse circuit with single-electron oscillator

gNa= gK = 5 μS

 = 2.5 μS

=1μS

interspike interval of input spikes (ns)

no
rm

al
iz

ed
 n

um
be

r 
of

 
po

st
sy

na
pt

ic
 f
ir
in

g 
ra

te

Fig. 7.15 Changes in postsynaptic firing rate of depressing synapse circuit against interspike in-
terval of input spikes

by setting the appropriate threshold Vth corresponding to the number of active neu-
rons. On the other hand, the EPSP also increases in proportion to the firing rate of
spiking neurons. Therefore, the performance needed to discriminate the number of
pre-synaptic active neurons largely deteriorates if the firing rate is not a constant
value. During a burst input, the output current of the depressing synapse circuit that
flows via a conductance (g′) rapidly decreases for successive spikes due to the re-
fractory properties of the single-electron oscillator. But during a nonbursting period,
the oscillator has time to be in a resting period, and these results in a strong EPSP
at the onset of the next burst. If we compare this dynamic response with that for a
nondepressed synapse evoking the same EPSP on average, the depressed synapse
will have a larger response at the burst onset and a smaller response toward the end
of the burst.
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Fig. 7.16 Circuit configuration of depressing synapses with postsynaptic neuron circuit
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Fig. 7.17 Responses of EPSP for single burst input (a) via nondepressed (b) and depressed synapse
circuit (c)

Figure 7.17 shows the response of the EPSP with bursting inputs for (a) a non-
depressed synapse (b) and a depressed synapse circuit (c). The results ensure that
the EPSP caused by the depressed synapse circuit has a larger response at the burst
onset, as compared with a nondepressed synapse circuit.

Let us see that the depressing synapse circuit can detect the synchrony in the
burst times. We used two bursting neurons as the input of the post-synaptic neu-
ron that receives the burst inputs through depressed or nondepressed synapses.
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Figures 7.18 and 7.19 show the results. When the input bursts were not synchronized
(Fig. 7.6a, b), the peak EPSPs evoked by nondepressed [Fig. 7.18c] and depressed
synapses (Fig. 7.18d) were both around 3 mV. But, when the input bursts were syn-
chronized (Fig. 7.19a, b), the peak EPSPs evoked by depressed synapses (Fig. 7.19d)
were significantly larger than the nondepressed synapses (Fig. 7.19c). Therefore,
after defining an appropriate threshold Vth of the post-synaptic neuron, for exam-
ple, Vth = 1.5 mV in the experiments, the post-synaptic neuron with the depressing
synapse circuit can fire when the burst inputs are synchronized.

Figure 7.20a shows a simulated result of 100 neurons driven by random spike
trains. According to Senn’s report [26], there is experimental evidence to assume
that before and during the tone, auditory cortical neurons fire in short bursts, with
bursts of three to four spikes at 40–50 ms, repeated every 200–250 ms. During the
tone, the burst onsets are assumed to be synchronized within the groups of 70 neu-
rons that are randomly assembled anew for each burst. In our simulations, the overall
firing rate of the population remains constant, apart from the short onset and offset
of the tone when most cells burst together. This is because the bursting times of the
groups alternate during the on-going tone (see Fig. 7.20b).

The neurons respond at the onset and offset by applying a tone stimulus (1.5–
4.0 μs in Fig. 7.20). They correlate their bursts only between randomly assembled
subgroups during the stimulus. Because the mean firing rate is on the background
level during the tone (Fig. 7.20b), a post-synaptic neuron gathering the input spike
trains through nondepressed synapses responds only at the stimulus onset and offset.
With a depressing synapse, however, the post-synaptic neuron detects the correlated
bursts, and then it fires as well (Fig. 7.20c), as shown in Senn’s original work.

The difference in EPSP between burst and nonburst inputs represents the net-
work’s signal-to-noise (SN) ratio when the task is to discriminate burst spikes from
nonburst ones. The results in Fig. 7.20c showed that it was around 1 mV. Note that
the parameters of depressing synapse circuits were not optimized well. So what is
the most important parameter to increase the difference? Apparently, it is the time
constant of the depression because it determines the maximum EPSP, as shown in
Fig. 7.19d. The constant is proportional to the junction capacitance and the channel
conductance. The other important parameter is the ISI of the input bursting spikes.
In the aforementioned simulations, the authors used typical bursting inputs that can
easily be generated by external spike generators.

To consider the noise tolerance, we examine Monte-Carlo simulations for the net-
work circuit with typical parameter sets. What we want here is to examine the quan-
titative difference between the original model [4] and the proposed single-electron
circuit to optimize the performance. As described, the performance of the discrim-
ination strongly depends on the SN ratio between the burst and the nonburst spike
inputs. Increasing temperature results in an increase in the averaged EPSP. Our in-
terest here is whether the SN ratio is constant or not for increasing the temperature.
Of course, we need to recalculate an appropriate threshold for the discrimination.
The following shows that the performance is definitely increased by increasing the
temperature; however, all of the parameter sets are not optimized.
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Fig. 7.18 Responses of EPSP for asynchronous burst input [(a) and (b)] via nondepressed (c) and
depressed synapse circuit (d)
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Fig. 7.19 Responses of EPSP for synchronous burst input [(a) and (b)] via nondepressed (c) and
depressed synapse circuit (d)

To investigate the noise tolerance of Senn’s network with our circuits, the 100-
neuron network was simulated. To evaluate the noise tolerance, we calculate the
difference between the averaged EPSP for the bursting and nonbursting periods and



148 T. Asai and T. Oya

time (μs)

E
P
SP

 (
m

V
)

pr
es

yn
ap

ti
c 

sp
ik

e 
(s

pi
ke

s/
10

0)
ne

ur
on

 n
um

be
r

Vth

(a)

(b)

(c)

Fig. 7.20 Simulation results of 100-neuron network simulated by random spike trains through our
depressing synapses

the threshold Vth that was defined as 2.4 mV in Fig. 7.20c as shown in Fig. 7.21.
Ideally, the post-synaptic neuron must not fire during the nonbursting period but
rather during the bursting period for the task of synchrony detection. The difference
between the numbers thus represents the performance of this task. The difference
between the averaged EPSP and Vth increased as the temperature increased during
the nonbursting period. On the other hand, when T > 0.5 K, the difference started
increasing. Namely, the performance of the synchrony detection did not change sig-
nificantly due to an increase in T as long as T < 0.5 K. Remarkably, the difference
(approximately performance of synchrony detection) changed nonmonotonically as
T increased, as shown in Fig. 7.22.

The post-synaptic neuron circuit does not yet have any firing mechanism, because
the circuit is a feed-forward neural network and because the important value for dis-
criminating the burst spikes from the nonburst spikes is whether the EPSP is lower
than the threshold or not. However, for the visualization alone, a significant differ-
ence is evident between the original model [4] and our circuit in Fig. 7.20c, where
the EPSP is oppositely represented due to the lack of firing (discharging the mem-
brane capacitance). The results shown in Fig. 7.22 indicated that the performance
increased up to 0.5 K in the simulations when the temperature was increased. In our
previous work [24], the maximum temperature for desired competitive operation
was 0.1 K. Needless to say, the temperature is not enough to operate at room tem-
perature. However, the phenomena where the performance increases monotonically
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Fig. 7.21 Changes in the difference between the averaged EPSP and the threshold Vth during burst-
ing and nonbursting period as a function of temperature

temperature (K)

di
ff

er
en

ce
 b

et
w

ee
n 

th
e 

av
er

ag
ed

 E
P
SP

 
du

ri
ng

 n
on

-b
ur

st
in

g 
an

d 
bu

rs
ti
ng

 p
er

io
d 

(m
V

)

Fig. 7.22 Changes in the difference between the averaged EPSP during bursting and nonbursting
period as a function of temperature

as the temperature increases have different physical meanings for conventional
stochastic resonance. We are currently optimizing the device and environmental pa-
rameters to make the phenomena clear and to optimize these parameters.
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7.4 Stochastic Resonance Among Single-Electron Neurons
on Schottky Wrap-Gate Devices

Neuromorphic computing based on single-electron circuit technology has become
widely noticed because of the recent claim about its massively increased com-
putational efficiency and its increasing relevance between computer technology
and nanotechnology. Its impact will be strongly felt when single-electron circuits
based on a fault- and noise-tolerant neural structure are able to operate in a room-
temperature environment. To fabricate such robust single-electron devices, the au-
thors investigated stochastic resonance (cf. [8]) in an ensemble of single-electron
boxes (SEB) [21]. We employed a single-electron transistor (SET) on a schottky
wrap-gate (WPG) device [13], instead of a SEB, as a neuron, and examined statisti-
cal results of the network by numerical simulation.

The reason why we employ WPG-SETs instead of SEBs is that SETs have a
switching characteristic as CMOS transistors do. A general SET consists of a ca-
pacitor (C) for an input terminal and two tunneling junctions (Cjs) as shown in
Fig. 7.23. A SET has three terminals, and one can connect controllable voltage
sources to the terminals. Now let us connect terminals with bias Vd, input Vg, and
ground, respectively, and control the switching characteristic by controlling the volt-
age sources. When the SET is in operation, an electron can tunnel through two Cjs
(between ground and a node, or between a node and Vd) in a low-temperature envi-
ronment, because electron tunneling is governed by the physical phenomenon called
the Coulomb blockade effect. In addition, one can easily observe the operations
of practical SET devices. However, we must also be careful when we use single-
electron circuits in a high-temperature environment. The reason is that the electrons
randomly tunnel through Cjs because the Coulomb blockade effect is disturbed by
thermal fluctuations.

Let us consider SR among N SETs in a network, as shown in Fig. 7.23. When
SETs are not connected with each other, electron tunneling in each SET’s junction
occurs independently. As in [8], we apply a common input to all the SETs and
calculate the sum of outputs of the SETs. For simplicity, we apply a common input

Σ

Fig. 7.23 Schematic image of SET array



7 Nature-inspired Single-electron Computers 151
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Fig. 7.24 Stochastic resonance in ensemble of single-electron transistors

voltage Vin to all the SETs as Vg, and do not consider practical circuits that calculate
the sum of the changes in each node’s electric charge Qi. The ith SET’s charge (Qi)
was increased with the input voltage, while the magnitude of the input was set to a
very low value so that no electron would tunnel through Cjs. Under this condition,
increasing the magnitude of thermal noise (temperature) enables electrons to tunnel
through each Cj.

Figure 7.24 shows simulation results of an ensemble of SETs for N = 1, 5, 10,
and 50. The temperature was increased from 0 to 100 K and correlation values (C1)
between the input voltages and the summed output were calculated. The results
showed characteristic signatures of SR-type behavior: a rapid rise to a peak, and
then a decrease at high temperatures. One could observe that the magnitude of |C1|
increased as N increased, as expected. The resonant temperatures were approxi-
mately 10 K for all the values of N. In addition, C1 took a large value −0.6 at 100 K
when N = 50, and increased as N increased. According to [8], the correlation value
should become almost 1.0 when N = 1,000. The results indicate that when one em-
ploys such an SR network in single-electron circuits, it certainly acts as a transmis-
sion line that can cancel noises on the line, as well as, cancel the devices’ intrinsic
noises.

7.5 Single-electron Circuits Performing Dendritic Pattern
Formation with Nature-inspired Cellular Automata

Ordered complex patterns can easily be observed everywhere in the natural world.
Among these, bifurcated and branched patterns formed in open systems often serve
as a basis for advanced functional structures. Indeed, these structures are essential
for performing particular computational tasks in nature, for example, structures of
a neuron’s dendritic tree are responsible for various intelligent computing tasks.
Recent advances in neuroscience have revealed that fundamental roles of these den-
dritic trees include not only the transmission of neuronal signals but also functional
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computation utilizing multiple properties of membranes and spines (early works
can be found in [6, 15]). To incorporate the functions performed by dendritic trees
into neuromorphic hardware, the authors and several colleagues developed a single-
electron circuit that self-organizes spatial dendritic patterns on a multilayer nanodot
array. As the first step, let us see a cellular automaton (CA) model based on a be-
havioral model of bacteria colonies [17].

It is difficult to implement a huge amount of physical wiring, that is, axons and
dendrites, on a 2D semiconductor chip because the wiring is fabricated by stacking
several layers of only wiring. Again we here use single-electron circuits, which are
believed to have potential for next-generation VLSIs, to increase the wiring density.
We also actively incorporate quantum effects and sensitivity to thermal noise into
the design of compact unit circuits for the proposed CA.

One of the features of neurons is the complexity of their forms, such as tree-
like, branching dendritic form. The details of dendritic pattern formation in neural
systems have been mainly studied from the viewpoint of molecular biology, rather
than that of general physics. This kind of branching pattern is also observed in many
other systems, including trees, crystal growth, protoplasmic streaming tubes of slime
molds, bacterial colonies, etc. Because of generality of these kinds of patterns, sev-
eral models have been proposed to describe complex branching patterns [7, 16, 32].
One of the best-known simple models is the diffusion limited aggregation (DLA)
model [32]. Another well-known type of model is the RD model for the pattern
formation of bacterial colonies, which exhibit more diverse patterns than the DLA
model [16]. Two methods are used to describe RD systems; one is based on par-
tial differential equations (PDE) [31] and the other on discretized CA [9]. Space,
time, and state variables are generally discrete in the CA model, whereas they are
continuous in the PDE representation of the RD system. Here we employ CA repre-
sentation of RD dynamics based on bacterial colony pattern formation to represent
dendritic patterns because of the variety of patterns available and its expansion for
device applications.

The skeleton of the RD pattern formation model of a bacterial colony consists
of movement/schism of bacteria, diffusion of nutrients, and consumption of nutri-
ents by the bacteria. In the model, the dynamics are described as “reaction,” the
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Fig. 7.25 Single-electron devices. (a) single-electron box, and (b) single-electron memory circuit
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relationship of the bacteria and the nutrient, and “diffusion,” which averages the
bacteria or nutrient in the neighborhood. In CA models, the targeted space is di-
vided into discrete areas of named cells. The time evolution of the state of each
cell is decided by simple inner- and inter-cell rules, and a dynamic pattern or whole
structure is generated from these local interaction rules. The algorithm of our CA
model is as follows. Three variables are used to describe the state of the system in
each cell; active bacteria (activator) a, inactive bacteria (inactivator, a trace of acti-
vator) w, and nutrient (substrate) f . The variables a and w take the digit value {0,1},
and f takes a digit or multivalue. When there are both a sufficient number of acti-
vators in the cell’s neighborhood and sufficient substrate in the cell, the state of the
activators becomes 1 (a : 0 → 1), and substrate f is depleted in the next step. After
(a → 1), when the substrate in the cell itself is less than the threshold value as a
result of depletion, the activator can no longer sustain an active state; the state of the
activators becomes 0 (a → 0), and the state of the inactivator becomes 1 (w → 1).
The substrate diffuses constantly with fluctuation. When there is insufficient sub-
strate, the activators try to take up the limited substrate. As a result, the cluster of
activators divides into several clusters, and a branching pattern appears as the cluster
of cells, where inactivator w = 1.

To imitate the diffusion of the consumed substance with fluctuation in the model,
we use an SE-RD device [23], SEBs, and SEM circuits [22] to implement the CA
rules. A typical single-electron circuit consists of tunneling junctions, resistances,
and capacitors. A tunneling junction that is similar to a capacitor is the main com-
ponent of a single-electron circuit. In a junction, a quantum effect occurs. A point
of difference between tunneling junctions and normal capacitors is that the two con-
ductors of the junction face each other very closely. The junction has a threshold
voltage value for the generation of a quantum effect that is electron tunneling. A
single-electron passes through the junction when the junction potential is over the
threshold voltage, and the potential of the junction changes suddenly. The tunneling
event has a probability of occurring, given by

P(E) ∼ 1
1− exp[−ΔE/(kBT )]

(7.1)

where P is the tunneling probability, E is the charging energy, kB is the Boltzmann
constant, and T is the temperature. The equation has a temperature factor. Therefore,
the tunneling probability changes with the temperature. We would like to utilize this
physical phenomenon to implement fluctuation in the diffusional operation of the
CA model. The circuit configuration and example operations of an SE-RD device
have already been shown in Figs. 7.1 and 7.2, respectively.

We use SEBs to change the input signals to binary signals. The left of Fig. 7.25a
shows the circuit configuration of an SEB. It consists of a tunneling junction, bias
capacitor, and bias voltage source. The right of Fig. 7.25a shows a sample operation.
The SEB shows a positive voltage (logical 1) when no electron tunneling occurs,
and a negative one (logical 0) when electron tunneling occurs. We also use SEMs as
memory devices because they have a hysteretic function as a function of the input
voltage. The left of Fig. 7.25b shows the circuit configuration of an SEM. It consists
of two tunneling junctions, a bias capacitor, and a bias voltage source in series. The
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right of Fig. 7.25b shows a sample operation [22]. The SEBs and SEMs play the role
of active and inactive bacteria, respectively.

We design a new single-electron device based on the CA model, the SE-RD de-
vice, the SEBs, and the SEMs. The device consists of six layers (Fig. 7.26). We add
two factors “ui, j” and “θ i, j” to the device as supplementary functions. The first layer
consists of arrayed SEBs that implements the “ai, j” of the model. The second also
consists of arrayed SEBs that implement the added factor “ui, j.” The third is the
SE-RD device, and the fourth consists of arrayed SEMs. The third layer implements
“ fi, j” in collaboration with the fourth layer. In this device, f takes a digit value. The
fifth layer consists of arrayed SEBs that implement the added factor “θi, j,” and the
sixth consists of arrayed SEMs that implement the “wi, j” of the model. The unit cir-
cuits of each layer are assumed to be cells of the CA. The operations of each factor
are represented by the following equations:

ai, j =
{

1 (if θi, j = 1),
0 (otherwise), (7.2)

ui, j =
{

1 (if ai−1, j + ai+1, j + ai, j−1 + ai, j+1 = 1),
0 (otherwise), (7.3)

fRD i, j =
{

TN (if ai, j = 1 or neighbor fRD = TN),
NT (otherwise), (7.4)

fi, j =
{

0 (if fRD i, j = NT or fi, j = 0),
1 (otherwise), (7.5)

θi, j =
{

1 (if ai, j ·ui, j · fi, j = 1),
0 (otherwise), (7.6)

wi, j =
{

1 (if ai, j + wi, j = 1),
0 (otherwise), (7.7)

where “TN” and “NT” represent “tunneling” and “no tunneling,” respectively.
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In the simulation, the device had 200× 200 elements in each layer. Figure 7.27
shows sample operations of the elements in each layer. In Fig. 7.27a, ai, j maintained
a logical 0 state (negative voltage) until θi, j changed its 0 state to 1 (positive volt-
age). ui, j kept 0 state until neighbor a changed its 0 state to 1. fi, j ( fRD i, j) maintained
1 state until ai, j changed its 0 state to 1 or electron tunneling occurred in the neigh-
boring fRD and kept 0 state after it changed its state from 1 to 0. wi, j kept 1 state
until ai, j changed its 0 state to 1 and kept 0 state after it changed its state from 1 to 0.
Thus, the device implemented the CA model. However, operating errors sometimes
occurred because of the tunneling probability in the device. Figure 7.27b shows
sample operations. In the figure, p and q represent different points from i and j.
Neighbors a, up,q, and fp,q operated well as did a, u, and f in Fig. 7.27a. θp,q, how-
ever, showed a failed operation because of the tunneling probability. As a result, ap,q

and wp,q could not change their state. This failed operation works as the diffusion
of the consumed nutrient with fluctuation in the model. Figure 7.28 shows the re-
sults of a two-dimensional simulation. In the simulation, a spatio-temporal pattern
was formed on the sixth (w) layer. The pattern grew from a planar point, but some
parts of the growing points stopped because of both the correct and failed operations
in each layer. As a result, a dendritic pattern appeared. This dendritic pattern will
change with every simulation because of the tunneling probability.

7.6 Summary and Future Works

This chapter introduced four nature- or bio-inspired single-electron circuits for non-
classical computation, that is, computation of a Voronoi diagram (VD), burst or
nonburst spike detection, weak signal transmission based on stochastic resonance
(SR) under noisy environment, and dendritic pattern generation based on an artifi-
cial model of bacteria colonies.

First, a SE-RD devices for computing a VD was introduced. The novel SE-RD
device consists of three layers. The top layer is an improved SE-RD device in which
nonlinear voltage waves are generated and travel, and the middle and bottom layer
are threshold detectors. The operations of the middle and bottom layer are based on
the CA model [1, 2]. The bottom layer outputs the results of computing a VD by
using data from the top and middle layers.

Second, a single-electron depressing synapse and its characteristics was intro-
duced for considering possible applications on noise-tolerant synchrony detection.
Previous works on CMOS VLSI showed that the network had great noise-tolerant
ability for static noise embedded as device (threshold) mismatches of MOSFETs [4].
We expanded this notion to dynamic ones that are usually a common problem in the
area of single-electron circuits. The results showed that the performance is greatly
increased by increasing the temperature until T ≤ 0.5 K [25]. However, all the pa-
rameter sets are not optimized. The performance is apparently sensitive to the time
constant of a single-electron oscillator and interspike intervals of input burst spikes.
Our next goal is an appropriate theory for the emergence of the noise tolerance and
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optimization of these parameters to explore the possible development of fault and
noise-tolerant single electron computing devices.

Third, SR in an ensemble of single-electron neuromorphic devices was intro-
duced. Recently, the authors and several colleagues have proposed a single-electron
competitive neural network based on SR in an ensemble of single-electron boxes
that can operate at room temperature [21]. Using realistic physical parameters, we
confirmed the SR behavior of single-electron boxes. The resonant temperature was
20 K, independent of the number of boxes (N).

Finally, novel single-electron circuits for forming dendritic patterns were intro-
duced. To construct the proposed device, we designed a six-layer single-electron
circuit with nature-inspired cellular automata. The utilized cellular automaton had
three factors. In the device, the top, second, and fifth layers consist of arrayed single-
electron boxes, the fourth and sixth layers consist of arrayed single-electron memory
circuits, and the third layer is an SE-RD device. Each layer described each factor of
the CA rule with randomness. As a result, the device formed dendritic patterns in
the sixth layer. These patterns will change with variations in the circuit parameters
or temperature environment.

Recent progress in nanotechnology has certainly accelerated by advances in
nanoscale processing, for example, elemental logic gates and memory cells for
single-electron LSIs have been proposed in the literature, and significant reports
of their fabrication have appeared. However, many problems concerning both static
and dynamic “noises” still exist for practical use of single-electron circuits. Future
works in this field is thus to find a clever way to cancel (or exploit if possible) the
effects of thermal fluctuations in terms of circuit architecture, instead of improv-
ing nanoscale device fabrication technologies. Recently, neuromorphic computing
based on single-electron circuits is gaining prominence because of its massively
increased computational efficiency and the increasing relevance of computer tech-
nology and nanotechnology. The maximum impact of these technologies will be
strongly felt when single-electron circuits based on fault- and noise-tolerant neural
structures can operate at room temperature.
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