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6.1 Introduction

For a mobile robot working in the real world, the ability to interpret information
coming from the environment is crucial, both for its survival and for its accomplish-
ing tasks. The cognitive capabilities of a robotic system are defined by the way in
which the information gathered from sensors are processed to produce a specific
action or behavior. Two broad classes can be distinguished: the cognitivist approach
based on symbolic information processing and the emergent systems approach that
is directed to the application of dynamical systems connected to the principles of
self-organization [39]. Among the numerous solutions proposed by researchers, a
great part is located in between the two main approaches.

In the recent past, research was directed towards endowing a robot with capa-
bilities of self-creating an internal representation of the environment. Experiments
in real world differ from applications in structured environments because they are
mostly dynamically changing, so that it is impossible to program robot behaviors
only on the basis of a priori knowledge. Moreover, the control loop must be able
to process the different stimuli coming from the environment in a time that must
be compatible with the real time applications. To solve these open problems, re-
search activities have been focused on suitable solutions obtained taking inspiration
from nature and applying biological principles to develop new control systems for
perception–action purposes.

Recently inside the research activity of the EU Project SPARK [37], a bio-
inspired framework for action-oriented perception has been proposed [5, 13].

Perception is no longer considered as a stand-alone process, but as an holistic and
synergetic one tightly connected to the motor and cognitive system [14]. Perception
processes are indivisible from action: behavioral needs provide the context for the
perceptual process, which, in turn, works out the information required for motion
control.
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In this work, the perceptual system, based on principles borrowed by insect neu-
robiology, nonlinear dynamics, and complex system theory, has been realized by
means of chaotic dynamical systems controlled through a new technique called
Weak Chaos Control (WCC).

WCC technique allows to create perceptual states that can be managed by the
control system because it directly is related to the concept of embodiment and situat-
edness [38]. The biological principles that inspired the proposed approach are based
on Freeman’s theories. His approach recognizes the existence of internal (mental)
motivationally driven pattern formation [16,19]. Cerebral cortex processes informa-
tion coming from objects identified in the environment from receptors by enrolling
dedicated neural assemblies. These are nonlinear dynamical coupled systems whose
collective dynamics constitutes the mental representation of the stimulus. Freeman
and co-workers, in their extensive experimental studies on the dynamics of sen-
sory processing in animals [16–18, 24], conceive a dynamical theory of perception.
Through electroencephalogram (EEG), Freeman evaluated the action potentials in
the olfactory bulb and he noticed that the potential waves showed a typical chaotic
behavior. So he came to the conclusion that the emergence of a mental pattern, in
correspondence to an incoming stimulus, is the result of a chaotic dynamics in the
sensory cortex in cooperation with the limbic system that implements the supporting
processes of intention and attention [16].

The application of chaotic models as basic blocks to reproduce adaptive behav-
iors [4, 11, 36] is an interesting aspect of the current research activity on this field.
The idea is that the chaos provides the right properties in terms of stability and flex-
ibility, needed by systems that evolve among different cognitive states. In particular,
perceptual systems dynamically migrate among different attractors that represent
the meaning of the sensory stimuli coming from the environment.

Moreover, other studies consider the role of noise as an added value to reactive
systems that otherwise could not be able to escape from the deadlock situations pro-
duced by local minima [28]. Chaotic dynamics can further improve reactive system
capabilities, in fact chaotic systems generate a wide variety of attractors that can
be controlled guiding the transit from one to another. Freeman’s studies lead to a
model, called K-sets, of the chaotic dynamics observed in the cortical olfactory sys-
tem. This model has been used as dynamic memory for robust classification and
navigation control of roving robots [20–22, 24].

The architecture proposed here, taking into consideration the relevant principles
previously underlined, is based on the control of chaotic dynamics to learn adaptive
behaviors in roving robots. The main aim is to formalize a new method of chaos
control applied to solve problems of perceptual state formation.

The WCC approach following these guidelines uses a chaos control technique
applied to a multiscroll chaotic system [27]. Therefore, the WCC is a general tech-
nique that can be applied to several chaotic systems [7, 41]. All sensory signals are
mapped as different potential reference dynamics used to control the chaotic system.
This creates association between sensory information and a particular area located
within the multiscroll phase plane, in a way that reflects the topological position
of the robot within the sensed environment. Moreover, thanks to the addition of a
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learning stage (called in the following Action Selection layer), the technique allows
to implicitly include within the robot control system the real robotic structure and
dimensions, including the sensor position, thus situating the robot within the envi-
ronment. The improvements provided by the Action Selection layer are shown in
several works [5, 10, 25]. Here a bio-inspired adaptive structure, based on an unsu-
pervised, reward-based method derived by the Motor Map paradigm, has been used.
This network, inspired by the paradigm of Kohonen Nets [23], is able to plastically
react to localized excitation by triggering a movement (like the motor cortex or the
superior colliculus in the brain) [30].

The aim of this chapter is to present in detail the WCC navigation technique
using the Motor Map paradigm to select the robot action. Moreover, the proposed
navigation control technique, based on the action-oriented perception paradigm, has
been implemented in the FPGA-based board and tested on a roving robot in a real
environment.

In the next section we will describe the control architecture that reproduce the
sensing–perception–action loop. Section 6.3 is devoted to illustrate the hardware
used to implement the proposed architecture. In Sect. 6.4, the implementation is
explained in more details, while the results are reported in Sect. 6.5.2. Finally, in
Sect. 6.7, we will draw the conclusions and present the possible developments that
we are currently investigating.

6.2 Control Architecture

The sensing–perception–action loop is at the basis of research in the cognitive sys-
tem field. In this chapter we propose an implementation of the action-oriented per-
ception paradigm applied to the navigation control of an autonomous roving robot.

A basic scheme of the architecture is shown in Fig. 6.1, where two main blocks
can be distinguished:

Perceptual system creates an internal representation of the environment from the
sensory inputs.
Action selection network learns the suitable action associated to each environ-
mental situation on the basis of the task to be accomplished.

When a robot is placed in an unknown environment, it is subject to a huge amount
of external stimuli. To explore the area avoiding obstacles, the robot, sensing the en-
vironment, can create an internal representation of the stimuli in relation to its body.
Therefore, when no stimuli are perceived (i.e., there are no active sensors), the sys-
tem evolves in a chaotic behavior and the robot continues to explore the environment
performing a random action determined by the chaotic evolution of a dynamical
system representing the core of the perceptual formation mechanism. When exter-
nal stimuli are perceived, the dynamical system evolution is enslaved into low order
dynamics that depends on the contribution of each active sensor. The behavior that
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Fig. 6.1 Control architecture used to implement the sensing-perception-action loop on a roving
robot

correspond to this perception will plastically depend on the characteristics emerg-
ing dynamics, as a result of a learning algorithm. The learning mechanism is here
driven by a Reward Function (RF), designed on the basis of the mission to be ac-
complished (in our case navigation tasks). In the following sections, the main blocks
are described in details.

6.2.1 Perceptual System

The core of this layer is the WCC method [6]. The crucial advantage of this approach
is the possibility to create a compact representation of the environment that can be
used for real-time navigation purposes in mobile robots. Moreover, this method per-
mits to handle with a great number of sensors. It emulates the perceptual processes
of the brain in which specific cerebral patterns emerge depending on the perceived
sensorial stimuli. To model this behavior, a chaotic system, proposed by Chen [27],
has been used as a plastic layer in which perceptual states can emerge. The chaotic
behavior of the Chen’s multiscroll system can be enslaved to regular periodic pat-
terns (i.e., emergence of perceptual states) by using the sensory stimuli as reference
control signals. The control mechanism has been realized with a feedback on the
state variables x and y controlled in order to follow the reference cycles. This multi-
scroll system can be viewed as a generalization of the Chua’s double scroll attractor
represented through saturated piecewise linear functions and of other circuits able
to generate n-scrolls [29]. It is able to generate one-dimensional (1D) n-scrolls, two-
dimensional (2D) n×m-grid scrolls, or three-dimensional (3D) n×m× l-grid scroll
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chaotic attractors by using saturated function series. In this paper, a 2D multiscroll
system has been chosen. It is described by the following differential equations [27]:

⎧⎪⎪⎨
⎪⎪⎩

ẋ = y− d2
b f1(y;k2;h2; p2,q2),

ẏ = z,
ż =−ax−by− cz+ d1 f1(x;k1;h1; p1,q1)

+ d2 f1(y;k2;h2; p2,q2),

(6.1)

where the following so-called saturated function series (PWL) f1(x;k j;h j; p j,q j)
has been used:

f1(x;k j;h j; p j;q j) =
q j

∑
i=−p j

gi(x;k j;h j), (6.2)

where k j > 0 is the slope of the saturated function, h j > 2 is called saturated delay
time, p j and q j are positive integers, and

gi(x;k j;h j) =

⎧⎪⎨
⎪⎩

2k j if x > ih j + 1,

k j(x− ih j)+ k j if |x− ih j| ≤ 1,

0 if x < ih j −1,

g−i(x;k j;h j) =

⎧⎪⎨
⎪⎩

0 if x > −ih j + 1,

k j(x + ih j)− k j if |x + ih j| ≤ 1,

−2k j if x < −ih j −1.

System (6.1) can generate a grid of (p1 +q1 +2)∗ (p2 +q2 +2) scroll attractors.
Parameters p1 (p2) and q1 (q2) control the number of scroll attractors in the positive
and negative direction of the variable x (y), respectively. The parameters used in the
following (a = b = c = d1 = d2 = 0.7, k1 = k2 = 50, h1 = h2 = 100, p1 = p2 = 1,
q1 = q2 = 2) have been chosen according to the guidelines introduced in [27] to
generate a 2D 5×5 grid of scroll attractors. An example of the chaotic dynamics of
system (6.1) is given in Fig. 6.2, also where a 3D grid of scrolls is shown.

In our approach, the perceptual system is represented by the multiscroll attractor
of (6.1), while sensorial stimuli interact with the system through periodic inputs
that can modify the internal chaotic behavior. As one of the main characteristics of
perceptive systems is that sensorial stimuli strongly influence the spatial-temporal
dynamics of the internal state, a suitable scheme to control the chaotic behavior of
the multiscroll system on the basis of sensorial stimuli should be adopted.

Chaos control refers to a process wherein a tiny perturbation is applied to a
chaotic system to realize a desirable behavior (e.g., chaotic, periodic, and others).
Several techniques have been developed for the control of chaos [15].

A commonly used chaos control strategy is to select the desirable behavior
among the unstable periodic orbits embedded in the system. The stabilization of
one of the unstable periodic orbits can be obtained by applying a small perturbation
when the chaotic orbit passes close to the desired behavior.
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Fig. 6.2 (a) Projection of the 5×5 grid of scroll attractors in the plane x-y. (b) 3D-scroll attractor,
5×5×5 grid of scrolls

In general, the strategies for the chaos control can be divided in two classes:
closed loop and open loop. The first class includes those methods that select the
perturbation based on a knowledge of the state variables and oriented to control
a prescribed dynamics. The two most important feedback methods are the Ott–
Grebogi–York (OGY) [15,31] approach and the Pyragas technique [32]. The second
class includes those strategies that consider the effect of external perturbations on
the evolution of the system. In the OGY’s method, the changes of the parameter are
discrete in time as this method is based on the use of Poincar maps.

In view of our application, a continuous-time technique like the Pyragas’s method
is a suitable choice [32]. In this method [32, 33], the following model is taken into
account:

dy
dt

= P(y,x)+ F(t),
dx
dt

= Q(y,x), (6.3)

where y is the output of the system (i.e., a subset of the state variables) and the
vector x describes the remaining state variables of the system. F(t) is the additive
feedback perturbation that forces the chaotic system to follow the desired dynamics.
Pyragas [32,33] introduced two different methods of permanent control in the form
of feedback. In the first method, that is used here, F(t) assumes the following form:

F(t) = K[ŷ(t)− y(t)], (6.4)

where ŷ represents the external input (i.e. the desired dynamics), and K represents
a vector of experimental adjustable weights (adaptive control). The method can be
employed to stabilize the unstable orbits endowed in the chaotic attractor reducing
the high order dynamics of the chaotic system.

In the second method, the idea consists in substituting the external signal ŷ in
(6.4) with the delayed output signal y(t − τ)

F(t) = K[y(t − τ)− y(t)], (6.5)

where τ is a delay in time. This feedback performs the function of self-control.
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In our case, a strategy based on (6.4) has been applied. The desired dynamics
is provided by the periodic behavior associated with the sensorial stimuli. As more
than one stimulus can be presented at the same time, the Pyragas method has been
generalized to account for more than one external forcing.

Hence, the equations of the controlled multiscroll system can be written as fol-
lows: ⎧⎪⎪⎨

⎪⎪⎩

ẋ = y− d2
b f1(y;k2;h2; p2,q2)+ ∑i Kxi(xri − x)

ẏ = z+ ∑i Kyi(yri − y)
ż =−ax−by− cz+ d1 f1(x;k1;h1; p1,q1)

+ d2 f1(y;k2;h2; p2,q2),

(6.6)

where i is the number of external references acting on the system, xri , yri are the
state variables of the reference circuits, which will be described in detail, and Kxi ,
Kyi represent the control gains. It can be noticed that the control acts only on the
state variables x and y. The complete control scheme is shown in Fig. 6.3.

Fig. 6.3 The control scheme when three distinct reference signals (i.e., sensorial stimuli) are per-
ceived by the multiscroll system

Each reference signal (xri , yri) is a periodic trajectory that represents a native
cycle. It can be generated using a multiscroll system (6.1) with particular parameters
(a = b = c = 1). The amplitude, pulse, and center position of the cycle depend on
the initial conditions. The number of the multiscroll systems needed to generate the
reference cycles is the same as the number of reference trajectories required. These
reference signals can be built using a sinusoidal oscillator:

xr(t) = Axr sin(ωxr −ϕxr)+ xoff

yr(t) = Ayr sin(ωyr −ϕyr)+ yoff (6.7)
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where (xoff,yoff) is the center of the reference cycle, ω is a frequency (in this work
ωxr = ωyr = 1), ϕxr and ϕyr are the phases, Axr and Ayr define the amplitude of the
reference.

This solution allows to improve the performance of the control system: only the
differential equations of the controlled system must be integrated, the reference tra-
jectory are obtained using (6.7).

If the sensor stimuli are associated with the reference cycles, the WCC tech-
nique can be used to control robot navigation. A key point of this approach is that
the reference cycle distribution in the phase plane x-y reflects the topological distri-
bution of robot sensors; this contributes to include the geometrical embodiment of
the robot itself within the environment. Moreover, the sensor range depicts the cur-
rent robot operating space, which is dynamically encoded within the phase space of
the multiscroll system. The link between reference signals and sensors are obtained
through control gains Kxi and Kyi . The value of these control parameters are related
to the amplitude of the sensory stimuli, and so a regular periodic pattern emerges as
a function of the sensor readings.

Figure 6.4 shows an example of the association between sensors and reference
signals used to control the chaotic system. Sensors with the same position on the
robot are associated with reference cycles with the same position in the phase plane.
Distance sensors are associated with the reference cycles that reflect their topolog-
ical position. A similar strategy has been adopted for the target. When a target is
within the range of robot visibility, it is considered as an obstacle located in a po-
sition symmetric with respect to the motion direction. The aiming action is guided
by a reference cycle with a low gain, so that obstacle avoidance is a priority over
reaching a target.

Each cycle that emerges from the control process (i.e., perceptual state) can be
identified through its center position and shape. A code is then associated to each
cycle and it is defined by the following parameters:

• xq and yq: the center position in the phase plane x− y
• x̄q: maximum variation of the state variable x within the emerged cycle
• ȳq: maximum variation of the state variable y within the emerged cycle

where q indicates the emerged cycle.
In this way, a few parameters provide an abstract and concise representation of

the environment. To solve the robot navigation task, an action is performed by the
robot according to the characteristics of the emerged pattern.

6.2.2 Action Selection Layer

The perceptual pattern obtained through the WCC technique is then processed by
the action selection system (see Fig. 6.1).
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(a) (b)

Fig. 6.4 (a) Map of the sensors equipped on the robot. (b) Reference cycles Re fi linked to the
sensors. Contact sensors are associated to the same cycles as the corresponding distance sensors,
if they are placed in the same position on the robot. The Ti reference cycles are associated to the
target sensor. The target is considered as an obstacle located in a symmetrical position with respect
to the motion direction

The action block establishes the association between the emerged cycle and the
consequent robot action. An action consists of two elements:

action = (module,phase). (6.8)

The module and phase of an action determine, respectively, the motion step and
the rotation angle to be performed by the robot. To perform this task, the Motor Map
(MM) paradigm was applied. MMs are suitable to control the behaviors of the robot
in an unknown environment, because they are adaptive, unsupervised structures and
are simple enough to allow for a real-time learning. The MM is composed by two
layers: one (V ) devoted to the storage of input weights and another (U) devoted
to the output weights. V represents the actual state of the system which is to be
controlled and U determines the required control action. This allows the map to
perform tasks such as motor control. Formally, a MM can be defined as an array of
neurons mapping the space of the input patterns into the space of the output actions:

ϕ : V −→U. (6.9)

The learning algorithm is the key point to obtain a spatial arrangement of both
the input and output weight values of the map. This is achieved by considering an
extension of the Kohonen algorithm. At each learning step, when a pattern is given
as input, the winner neuron is identified: this is the neuron that best matches the in-
put pattern. Then, a neighborhood of the winner neuron is considered and an update
involving both the input and output weights for neurons belonging to this neighbor-
hood is performed. The learning procedure is driven by a reward function that is
defined on the basis of the final aim of the control process [35]. A MM although
very efficient to be trained could be difficult to be implemented in hardware because
of the high number of afferent and efferent weights. As this work is finalized to
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the application on real roving robot prototypes, a simplified version is adopted [5].
The first difference is that the relationship of proximity is not considered among the
neurons. Another and more important difference is that the afferent layer is substi-
tuted by a pattern table. Each emerged cycle, identified by a code, is stored in the
pattern table (if it is not yet present) when the pattern emerges for the first time.
Each element in the pattern table contains the emerged cycle code and the number
of iterations from its last occurrence (defined as age). If the pattern table is full,
the new element will overwrite the one containing the code of the pattern least re-
cently used (LRU), that is, the one with the highest age value. This table permits
to synthesize the perception of the environment. Therefore, the winning neuron of
the afferent layer is replaced by the element q of the pattern table that contains the
last emerged cycle. Moreover, the efferent (output) layer is now constituted of two
weights for each element of the pattern vector. The element q is connected to the
weights wqm and wqp, which represent, respectively, module and phase of the action
associated with the pattern q (Aq). At each step, the robot does not perform the exact
action suggested by the weights of q (wqm and wqp), but the final action is

Aq = (Aq(module),Aq(phase)) = (wqm + asqλ1,wqp + asqλ2), (6.10)

where λ1 and λ2 are random variables uniformly distributed in the range [−1;1].
The parameter asq limits the searching area. Every time the pattern q emerges, asq

is reduced to focus the action search in a smaller range so as to guarantee the con-
vergence of the efferent weights. When there are no inputs, the perceptual core of
the robot (the multiscroll system) behaves chaotically. This implies that there are no
emerged cycles and no entries in the pattern table. In this case, the robot explores the
environment and its action depends on the position of the centroid of the particular
chaotic scroll shown by the system during the simulation step. Of course, the explo-
ration phase can also be performed using a forward motion, that is, not considering
the chaotic wandering.

The unsupervised learning mechanism that characterizes the MM algorithm is
based on a reward function (RF). This is a fitness function and it is the unique
information that permits to determine the effectiveness of an action. In a random
foraging task, a suitable choice for the RF is

RF = −∑
i

ki

D2
i

−hDDT −hA|φT |, (6.11)

where Di is the distance between the robot and the obstacle detected by the sensor i,
DT is the robot–target distance, φT is the angle between the direction of the longitu-
dinal axis of the robot and the direction connecting robot and target, and ki, hD, and
hA are appropriate positive constants determined during the design phase [9, 12].
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6.3 Hardware Devices

The proposed method for robot navigation was tested in a simulation environment
showing good results [8]. The choices done during the design of the control architec-
ture, oriented to a real-time hardware implementation, simplify the implementation
of the strategy in a high performing hardware to be embedded on a roving robot.

The first step followed consisted in the definition of the hardware framework.
The system should be able to acquire information coming from a distributed sensory
system. Moreover, the computational power have to be sufficient to obtain control
command compatible with a real-time application, allowing in the mean time the
data logging for debugging and post-processing performance analysis.

The two main options for the controller are a digital signal processor (DSP) or a
field programmable gate array (FPGA). A microcontroller is not taken into account
due to the limited resource and performance that could compromise the scalability
of the system.

DSPs are currently used in several fields of applications: communications, medi-
cal diagnostic equipment, military systems, audio and video equipment, and count-
less other products, becoming increasingly common in consumers’ lives.

DSPs are a specialized form of microprocessor, while FPGAs are a form of
highly configurable hardware. In the past, the use of digital signal processors was
ubiquitous, but now, with the needs of many applications outstripping the processing
capabilities of DSPs (measured in millions of instructions per second (MIPS)), the
use of FPGAs is growing rapidly. Thus, the comparison between digital signal pro-
cessors and FPGAs focuses on MIPS comparison, which, while certainly important,
is not the only advantage of an FPGA. Equally important, and often overlooked, is
the FPGAs inherent advantage in product reliability and maintainability. Therefore,
the device chosen to implement the WCC approach is an FPGA.

The particular FPGA device adopted is a Stratix II EP2S60 produced by Altera,
which integrates a soft embedded processor, the NiosII. This solution was adopted
to combine in a single device both the hardware reconfigurability of FPGA devices
and the programming simplicity of microcontrollers. NiosII is, in fact, a 32-bit RISC
digital microprocessor with a clock frequency of 50 MHz. It is a configurable “soft-
core” processor. Soft-core means that the CPU core is offered in “soft” design form
(not fixed in silicon), so that its functionalities, like the peripheral number and type
or the amount of memory, can be easily modified according to the specific task [2].

The first attempt was carried out by using a development board provide by Altera
[2]. This preliminary architecture led to the design of a new FPGA-based board,
called SPARK board. The SPARK board has been developed during the SPARK
project [37] and has been designed to fulfill the requirements needed by the SPARK
cognitive architecture [13].

The mobile robot used for the experiment is called Rover II (see Fig. 6.5). It is
a classic four-wheel drive rover controlled through a differential drive system by
Lynxmotion, which has been modified to host a distributed sensory system. The
complete control system was embedded on board and a wireless communication
module was introduced for debugging purposes.
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Fig. 6.5 Rover II: a dual drive roving robot endowed with a distributed sensory system

In the next section, more details about the robot and FPGA-based control archi-
tecture are given.

6.3.1 Spark Main Board

The FPGA-based development board preliminary used to assess the feasibility of the
hardware control scheme showed some problems due to the big size of the board,
the unused number of components, and mainly its lack of room within the FPGA
to implement the needed algorithms. For these reasons, the design of a new specific
board has been required.

Different approaches were taken into consideration during the design phase.

• One single board including a large FPGA (Stratix II EP2S180)
• One single board comprising two medium-size FPGA (Stratix II EP2S60)
• Two boards, each one with a medium-size EP2S60 FPGA connected via cables

After studying all the possibilities, the third option was adopted, as it is more ro-
bust in terms of developing time, costs, and flexibility. This solution permits us the
use of only one board when the resources are enough for the application, and also
two or even more boards when the algorithm requires more computational power.
Figure 6.6 shows the SPARK 1.0 Main Board features in details. It represents a hard-
ware platform for developing embedded systems based on Altera Stratix II EP2S60
FPGA with the following features:

1. Stratix II EP2S60F672C3N FPGA with more than 13,500 adaptive logic mod-
ules (ALM) and 1.3 million bits of on-chip memory

2. Eight expansion headers with access to 249 FPGA user I/O pins (3.3 V tolerant)
3. One expansion header with access to 16 FPGA user I/O pins (5 V tolerant)
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Fig. 6.6 SPARK board 1.0 block diagram

4. 1.2 V power supply
5. 5 V power supply
6. 12 V power supply connector
7. 3.3 V power supply
8. Eight LEDs connected to FPGA user I/O pins
9. Four push-button switches connected to FPGA user I/O pins

10. 32 Mbytes SDRAM
11. Dual seven-segment LED display
12. Integrated USB Blaster for connection with the ALTERA Software tools

on a PC
13. 32 Mbytes of SDRAM
14. RS-232 serial connector with 5 V tolerant buffers
15. Wireless UART Communication Port
16. USB 1.1 Communication Port
17. 50 MHz clock signal for FPGA
18. 8 Mbytes SPI Flash Memory
19. Push-button switch to reboot the NIOS II processor configured in the FPGA
20. 8-bit DIP switch

A scheme with the component’s locations on the SPARK board is shown in
Fig. 6.7.

6.3.2 Rover II

The roving platform used for navigation experiments is a modified version of
the dual drive Lynx Motion rover, called Rover II, whose dimensions are about
30× 30 cm2. It is equipped with a bluetooth telemetry module, four infrared short
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Fig. 6.7 Scheme of the SPARK board 1.0. A description of each block, numbered from 1 to 20, is
reported in the text

Fig. 6.8 Rover II control architecture

distance sensors Sharp GP2D120 (detection range 3–80 cm), four infrared long-
distance sensors Sharp GP2Y0A02 (maximum detection distance about 150 cm),
a digital compass, a low-level target detection system, a hearing board for cricket
chirp recognition [34, 40] and with the Eye-RIS v1.2 visual system [3].

The complete control architecture, reported in Fig. 6.8, shows how the low-level
control of the motors and the sensor handling is realized through a microcontroller
STR730. This choice optimizes the motor performances of the robot, maintaining
the high-level cognitive algorithms in the SPARK board and in the Eye-RIS visual
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system. Moreover, the Rover II can be easily interfaced with a PC through a blue-
tooth module, and this remote control configuration permits to perform some pre-
liminary tests debugging the results directly on the PC.

In the following experiments, to fulfill a food retrieval task, distance sensors were
used for obstacle avoidance, while a cricket-inspired hearing board was considered
for the target detection issues [1].

Among the 5×5 possible reference cycles which can be used in the application
reported here, only a subset of them has been effectively associated with a sensor.
Their distribution in the phase plane x-y reflects the topological distribution of the
robot sensors. Figure 6.9 shows a scheme of the robot equipped with four distance
sensors and a target sensor. The corresponding reference cycles reported in the phase
plane are related to the sensor positions. Distance sensors are directional, and each
one is associated to a single reference cycle, while target sensor is characterized by
an omnidirectional field of view, and for that reason it is associated to more than one
(i.e., four) reference cycles [8].

(a) (b)

Fig. 6.9 Scheme of a Rover II robot (a) equipped with four distance sensors and a target sensor.
In the phase plane x− y (b), the reference cycles associated to each sensor are reported. Target
sensor, due to its omnidirectional field of view, is associated to four reference cycles. Cycles can
be generated by system (6.1) with following parameters: a = b = c = d1 = d2 = 1, k1 = k2 = 50,
h1 = h2 = 100, p1 = p2 = 1, q1 = q2 = 2 and changing the offset. Equivalently, (6.7) can be used

The technique, based on placing reference cycles in the phase plane in accor-
dance with the distribution of sensors on the robot, is important to directly connect
the internal representation of the environment to the robot geometry. In our tests,
only distance and hearing sensors have been used, although other sensors could be
included, such us contact sensors, visual sensors, etc.

6.4 Hardware Implementation

In this section, the implementation of the framework for the control navigation
algorithm presented in the previous section is discussed (see Fig. 6.10).
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To realize the WCC approach for navigation control in hardware, the SPARK
board was considered. Control algorithm was implemented on the Nios II soft-
processor, and also customized VHDL (Very High Speed Integrated Circuits Hard-
ware Description Language) blocks were used for the most time-consuming tasks.

In particular, the simulation and control of the multiscroll system are performed
directly in a VHDL entity, named sim full, while the NiosII microprocessor is de-
voted to handle the sensory system for the execution of the action selection layer and
for the supervision of the activities of the VHDL entities implementing the WCC.
When the simulation ends, the NiosII reads the parameters that identify the emerged
cycle. Then it calculates the command to drive the roving robot. The simulation pro-
cess implemented in the sim full entity lasts for about 4.2 ms and the control algo-
rithm running on NiosII for about 80 ms. Even if the RoverII robot could be driven
via a bluetooth module, to reduce the communication time, the Spark board has to
be mounted directly on the robot.

Fig. 6.10 Description of the framework used during the experiments

As discussed earlier, the control and simulation of the multiscroll system are
made directly in VHDL entities. Other implementations were tested before testing
the VHDL one. The first step was to simulate the chaotic system directly by using
the NiosII in a C code algorithm. This solution works correctly, but the performances
were not suitable for a real-time application. The high simulation time on NiosII (see
Table 6.1) is probably due to the fact that its ALU (arithmetic logic unit) does not
support natively floating point operations. This problem can be overcome by using
custom instructions.

For these reasons, we went a step further; in fact, the “Soft-core” nature of the
NiosII processor enables designers to integrate custom logic instructions (e.g., writ-
ten in VHDL language) into the ALU. Similar to native NiosII instructions, custom
instruction logic can take values from up to two source registers and optionally write
back a result to a destination register. Also, in this case, the results were correct but
the execution time, although decreased of one order of magnitude, remained too
high for a real-time application. So, only the VHDL implementation is suitable as
shown in Table 6.1.
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Table 6.1 Performaces obtained with different implementations of the multiscroll control.

Timea

Multiscroll control implemented on Nios II 10 s

Multiscroll control implemented on Nios II using custom instructions 1 s

Multiscroll control implemented in VHDL (sim full entity) 4.2 ms
aThe time is referred to the execution of 2,000 samples and the value of the inte-
gration step is 0.1

As the WCC is implemented directly in hardware, the role of the NiosII proces-
sors is limited to drive the activity of the block that implemented the sim full entity
to read the sensor values, to calculate the control gains, and to give motor commands
to the robot on the basis of the actions generated by the action selection layer.

The main role of the sim full entity consists in integrating the controlled third-
order nonlinear multiscroll system for a given time. The integration algorithm im-
plemented is a fourth order Runge–Kutta algorithm (RK4)[26]; the evolution time
was fixed to 2,000 steps with an integration step of about 0.1. The evolution time
length was experimentally chosen to guarantee the creation of “percepts” (i.e., low
order dynamics like cycles) in the presence of sensorial stimuli. The output of the
sim full entity correspond to the behavior of the multiscroll system at the end of
the integration process. These information are used by the Nios II to calculate robot
actions.

For the implementation of the dynamical system, a decimal number arithmetic is
needed. This algebra is not supported by the standard library of VHDL, and so the
first step was to develop a dedicated library. As the fixed point operations are faster
than the floating point ones, the fixed point arithmetic has been adopted. The total
number of bits to codify the variable in the VHDL code is 24 bits. In particular, the
most significant bit represents the sign: 14 bits are used to code the integer part and
10 bits code the fraction part.

In Fig. 6.11 the top level entity sim full is shown. It is composed of two sub-
entities:

• The sim block, which implements the simulation of the controlled multiscroll
system adopting the RK4 algorithm with fixed integration step

• The sim machine, which implements a finite state machine (FSM) that controls
the activity of the sim entity.

The NiosII drives the sim full entity through the input signals and provides the
gains that are needed to control the simulated multiscroll system. Once the simula-
tion is completed, it reads the results of the computation provided by the entity on
its outputs.

Now we start with the description of the internal structure of the sim entity
(Fig. 6.12). The rk4, ram, structure control x, and structure control y VHDL en-
tities are the main components of this block. The function of the rk4 entity is to
implement the Runge–Kutta algorithm, and it needs the state vectors (x,y,z) and
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Fig. 6.11 VHDL Entity sim full. The bold line represent a 24 bits length bus

Fig. 6.12 VHDL Entity sim

the control signals to perform the integration. The function of the other inputs (i.e.,
Clk rk4, Start rk4 and Reset rk4) is to coordinate the activity of the entity.

The ram block is a memory that stores all the results of the integration: di is the
data input, do is the data output, dn is the last sample produced and memorized,
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we is a write enable input, and addr is necessary to address the memory. The other
outputs of this block represent the maximum and the minimum of the x and y state
variables. This is an important feature that permits to determine the characteristics
of the emergent cycle and to allow the use of the sim full entity for the successive
action selection steps.

Fig. 6.13 VHDL Entity structure control

The structure control x and structure control y blocks are two instances of the
same VHDL entity named structure control. The function of this entity is to cal-
culate the control signals, while the kxi and kyi inputs represent the control gains
corresponding to the reference i addressed with the input addr kx and addr ky, re-
spectively. Figure 6.13 shows a block diagram of the entity for the x state variable.
The reference signals are calculated off-line using (6.7), with xoff set to zero. The
samples obtained are stored in the read-only memory (ROM) x rom; the x rom offset
ROM block stores the offset that must be added to the sample to obtain the desired
reference signal; the calculate control block computes the control gains and the
control block is a finite state machine (FSM) that manages the activity of the entity.

Finally, in Fig. 6.14, the diagram of the FSM implemented is shown. The function
of each state is reported in the following:

• St ini sets the initial conditions, only at the startup
• St start sets all the outputs to default values
• St sim controls one step of simulation
• St mem stores the produced samples into the ram block
• St eos notifies the end of simulation
• St load, St send, St inc together with the Start s input and the sx output allow

the NiosII processor to access correctly all the simulation parameters in memory.
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Fig. 6.14 VHDL Entity sim machine

As this process is not needed (due to the fact that the parameters needed to iden-
tify the cycle are available in the St eos state), the ReStart permits to skip it, and
so to optimize the performances.

The inputs Clk, Start, Reset allow the control of the FSM activity.
Figure 6.15 represents an example of the evolution of the controlled multiscroll

system implemented in FPGA. The hardware results are equivalent to the simulation
ones, and so the fixed point algebra and the sim full VHDL entity are suitable for
implementing the WCC.

Table 6.2 SPARK board FPGA resources needed to implement the WCC.

Resource Used

ALUTs 27 %
Memory 34 %
DSP 56 %

Finally, Table 6.2 shows the FPGA resources of the SPARK board used to imple-
ment the proposed control architecture.

6.5 Experiments

The proposed action-oriented perceptual architecture was tested both in a simulated
environment and in a real arena. The simulation tool used to evaluate the system
capabilities is called SPAN [8], and has been already used to compare the reactive
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Fig. 6.15 An example of the evolution of the multiscroll system when controlled by reference dy-
namics associated with sensors. (a) When there are no input sensorial stimuli, the system shows
a chaotic behavior; (b) when a single stimulus is perceived, the system converges to the refer-
ence cycle; (c),(d) when a different stimuli is perceived, the resulting cycle is placed between the
references and the position depends on the gain value associated to the references

layer of the WCC approach (i.e., with a deterministic association between inter-
nal dynamics and corresponding robot actions) with more traditional approaches
to navigation like the potential field (see [6] for more details). Here we want to
demonstrate how a robot can learn to associate rewarding behaviors to the different
environmental situations encountered, aiming at performing a given task that in the
following experiments consists in retrieving targets avoiding obstacles.

6.5.1 Experimental Setup

During the learning phase, a growing set of emerged cycles, arisen in response to
different environmental conditions, are associated to suitable actions through the
MM algorithm. To evaluate the robot’s performances in a quantitative way, the fol-
lowing parameters have been considered:

• Pnew: cumulative number of new perceptual states that emerge during learning
• Bumps: cumulative number of collisions with obstacles
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• Explored Area: new area covered (i.e., exploration capability)
• Retrieved Targets: number of targets retrieved in the environment

Initially each new pattern is associated with a random action, but the continuous
emerging of such a pattern leads the action selection network to tune its weights
to optimize the association between the perceptual state and the action to be per-
formed. It is also desirable that new patterns occur only during the first learning
steps (i.e., epochs). To guarantee the convergence of the algorithm, the learning
process cannot be considered as ended while new patterns continue to emerge with
a high frequency. Moreover, to solve the robot navigation problem, it is necessary
that a pattern occurs several times, as the robot learns by trial and error.

As the term asq gives information about the stability of the action associated with
the pattern q, we use this parameter to evaluate the convergence of the learning pro-
cess. The LRU algorithm (that manages the pattern table) was modified to consider
asq . The pattern q cannot be replaced if its asq is under a fixed threshold (ASLearn)
that is determined during the design phase.

The code that identifies an emerged cycle is constituted by the four parameters xq,
yq, x̄q, and ȳq that assume continuous values, because they depend on the evolution
of the state variables of the controlled system.

The choice of the tolerance to distinguish among different patterns is a crucial
problem during the design phase. If the tolerance increases, the number of patterns
representing the robot’s perception of the environment decreases. Then, the learning
time is reduced but the perception–action association is more rough. On the contrary,
if the tolerance is reduced, the number of actions increases, producing a wider range
of different solutions for the navigation task. In this way it is feasible to reach a
better solution, but it is more time consuming. Table 6.3 shows the value of the
most relevant parameters used during the learning phase. The target sensor equipped
on the robot, based on cricket’s phonotaxis, is not able to estimate accurately the
distance between robot and sound source, for this reason the parameter hD used in
(6.11) has been not considered.

6.5.2 Experimental Results

The environment used to perform tests and comparisons is a 10×10 m2 room with
three obstacles and two targets. The simulated arena and the real arena are shown
in Fig. 6.16. Both in simulation and in the real case, a set of five learning trials
was performed, with the MM structure randomly initialized. The learning phase is
maintained for 1,200 epochs (i.e., actions) that correspond to 40 min for the real
robot and a few minutes in the virtual arena. Each robot simulation step (i.e., epoch)
corresponds to a single robot action: this is determined simulating the dynamical
system for 2,000 steps with an integration step equal to 0.1. These parameters guar-
antee the convergence of the multiscroll system to a stable attractor (i.e., a cycle)
when external stimuli are perceived by the robot; otherwise a chaotic evolution is
shown.
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Table 6.3 Relevant parameters of the MM-like structure.

RF parameters Learning parameters

ki for frontal distance sensors 15 as start value 0.6
ki for lateral distance sensors 10 as decrement factor 0.01
hA 10 Tolerance 8%

(a) (b)

Fig. 6.16 3D view of the environment used during the learning phase in real (a) and simulated
experiments (b). The dimensions of the environments are 10×10 m2

During the learning phase, a sequence of new patterns, in the form of cycles,
emerges and the robot learns how to behave in the current situation. To evaluate the
convergence of the learning phase in Fig. 6.17, the trends of the cumulative number
of new patterns that arise (Pnew) is shown in the case of the simulated agent and
the roving robot. The learning process leads to a huge improvement of the robot
behavior for the situation (i.e., perceptual state) that more often occurs, while some
other patterns cannot be suitably learned if they seldom emerge.

After the first learning epoches, the number of new emerging patterns is very
low and a steady state condition is reached after 100 epoches. These results were
obtained adopting the learning parameters defined in Table 6.3. In particular, the
total number of patterns that emerges, around 25–30, is directly related to the toler-
ance parameter that has been set to 8%. In other simulations carried out, increasing
the tolerance factor to 15% reduces the number of emerging patterns to 20%. A re-
duced number of emerged patterns leads to the speed-up of the learning phase, but
decreases the specialization of the robot actions with a consequent reduction of the
performances.

as is an important parameter to evaluate the efficacy of the learning phase. The
value of as is directly related to the stability of the association among perceptual
state and robot action. The total number of emerged patterns is about 25–30 and
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Fig. 6.17 Cumulative number of new patterns that emerge during the learning phase calculated
in windows of 100 epochs in the real environment (a) and in the simulated arena (b). The bars
indicate the minimum and maximum value while the solid line is the mean value of the set of five
trials performed

(a) (b)

Fig. 6.18 Cumulative value of bumps calculated in windows of 100 epochs in the conditions of
learning and no-learning for the real (a) and simulated (b) environments. The two trends span
among the minimum and maximum value for each window

more than 60% of the patterns have an as < 0.5: this corresponds to more than 100
updates of the associated action following the indication of the reward function, and
about the 25% of the patterns have an as < 0.1 that correspond to more than 500
updates.

The learning process guided by the reward function significantly improves the
robot capabilities evaluated in terms of the number of bumps and target retrieved.
In Figs. 6.18 and 6.19, the cumulative number of bumps and targets found is shown
for the two learning cases, comparing the behavior of the system during learning
with the same architecture when the learning is not activated. The results show that
a significant difference in terms of performance is evident.
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(a) (b)

Fig. 6.19 Cumulative value of retrieved targets calculated in windows of 100 and 1,000 epochs in
the conditions of learning and no-learning for the real (a) and simulated (b) environments. The two
trends span among the minimum and maximum value for each window

As far as the avoidance behavior is concerned, the robot learns how to manage
the information coming from distance sensors to avoid bumps. The improvement is
evident both in simulation and in the real experiments.

Another important index to be considered is the number of targets retrieved.
When a target is found by the robot, it is turned off until another target is reached.
Because of the limited power supply, the robot experiment was limited to 1,200
epoches, while the simulation was extended to 12,000 epoches to better appreciate
the improvement over a more relevant number of target retrieving (see Fig. 6.19).
The number of target found by the real robot when the learning process does not
work is very low, in fact the robot is often trapped by the obstacles placed in the
arena. The WCC performances were also compared with other more traditional nav-
igation algorithms showing similar results [6].

To understand how the robot behavior is modified during the learning process, in
Fig. 6.20, the trajectories followed by the robot before and after learning are shown.

Cmparison between the performance with and without learning outlines the ca-
pability of the control system to create a suitable link between perception and action.

To further outline the results of the testing phase for a learned architecture, in-
formation on the association between perceptual patterns and corresponding actions
is reported. In particular, in Fig. 6.21, the final emerged actions associated to the
mostly used patterns are shown. Figure 6.21 shows the x-y phase plane of the mul-
tiscroll system together with the internal patterns emerged during a learning phase.
For sake of clarity, each class is reported only with a marker, indicating its position
(i.e., parameters xq and yq). The vector associated to each pattern shows module and
phase of the corresponding action performed by the robot with respect to the x-axis
that indicates frontal direction of the robot motion.

It is important to notice that, in this case, the robot through learning is able
to define a series of actions needed in specific situations that can be adopted to
accomplish the food retrieval task. The approach can be extended to other tasks,
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(a) (b)

(c) (d)

Fig. 6.20 Trajectories followed by the robot during a test in the learning environments. (a) and (b)
Behavior of the robot without learning; (c) and (d) Trajectories followed after the learning phase
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Fig. 6.21 Action Map created during the learning phase by the Rover II. Each vector indicates the
phase action associated with the emerged pattern indicated only with its position in the phase plane
(xq, yq)
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considering other sensors and also different time scales, associating to the robot’s
internal state of not only a simple action but also a complete behavior.

Further experiments together with multimedia materials are available on the
web [37].

6.6 Summary and Remarks

The introduced strategy is based on the WCC technique, with the addition of a
plastically adaptable self learning layer. The technique is based on a state feedback
approach and the control gains were here chosen to grant the controlled system sta-
bility under stimulation with reference signals (see [6] for details). The term WCC
refers to a strategy that does not aim to the exact matching between the reference
and the controlled signal; instead, the chaotic signal has to collapse to an orbit near
the reference signal. At this point, the amplitude value of the control gains is related
to the matching degree between the reference and the controlled signal. The con-
trol gain value could be therefore used as an additional choice to weight a kind of
“degree of attention” that the learning system could pay to the corresponding sensor
signal. If learning is used also to choose the control gains, at the end of the learning
phase, the robot could be allowed to discard useless sensor signals and to “pay at-
tention” to the important ones. This approach is currently under active investigation.
Moreover, the strategy introduced in this chapter was applied to the apparently sim-
ple task of autonomous navigation learning. The clear advantages over the classical
approaches, for example, related to the potential field, are that the control structure,
based on the multiscroll system, is quite general. The fact that the results obtained
are comparable with those of the potential field is relevant (see [6] for details). This
means that a general approach to learning the sensing–perception–action cycle us-
ing the power of information embedding typical of chaotic systems, applied to a
traditional task, succeeds in reaching the same results as a technique peculiarly de-
signed to solve that task. The WCC-MM approach can in fact be applied to learn
an arbitrary action-map or, in general, a behavior map. In particular, we exploit the
rich information embedding capability of a chaotic system with a simple learning
that gives a “meaning” to the embedded information (taking inspiration from [19],
within the context of the robot action. This contextualization is decided through the
reward function definition. According to the best of the authors’ knowledge, it is the
first time that the chaotic circuits and system theory, linked to a simple neural learn-
ing, is used to approach problems relevant in robot perception, even in the simple
case of navigation. In fact, here navigation is treated as a perceptual task. Several
other examples are currently under investigation to further generalize the approach
and a considerable theoretical effort is being nowadays paid to include the strat-
egy introduced here within a more general scheme for robot perception in unknown
conditions and environments.
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6.7 Conclusion

In this chapter, a new architecture used to fulfill the sensing–perception–action loop
has been proposed. To evaluate the main characteristics of the proposed approach, a
case study has been considered: navigation control of a roving robot in unknown en-
vironments. The method based on the control of a chaotic multiscroll system allows
to synthesize a perceptual scheme in a compact form easy to be processed. More-
over, an action layer has been introduced to associate with the robot’s internal states,
new behaviors through an unsupervised learning driven by a reward function. The
architecture has been implemented in an FPGA-based hardware designed to fulfill
the flexibility needed by a cognitive architecture. A completely autonomous roving
robot, equipped with a suite of sensors used to perform a food retrieval task, was
tested, showing the improvement, in terms of robot capabilities, obtained through a
reward-based learning.

As already envisaged, the chaotic dynamical system representing the core of the
perceptual layer allows to extend the sensory system in a very simple and modular
way. Further developments will include the introduction in the real robot of other
kinds of sensors like visual, needed to improve the system capabilities to accomplish
the assigned task.
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perception-based navigation control. In: Proceedings of International Symposium on Nonlin-
ear Theory and its Applications (NOLTA’2005), pp. 18–21. Bruges, Belgium (2005)

10. Arena, P., Fortuna, L., Frasca, M., Pasqualino, R., Patané, L.: Cnns and motor maps for bio-
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