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Learning Legged Locomotion
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2.1 Introduction

Legged locomotion of biological systems can be viewed as a self-organizing pro-
cess of highly complex system–environment interactions. Walking behavior is, for
example, generated from the interactions between many mechanical components
(e.g., physical interactions between feet and ground, skeletons and muscle-tendon
systems), and distributed informational processes (e.g., sensory information pro-
cessing, sensory-motor control in central nervous system, and reflexes) [21]. An
interesting aspect of legged locomotion study lies in the fact that there are multiple
levels of self-organization processes (at the levels of mechanical dynamics, sensory-
motor control, and learning).

Previously, the self-organization of mechanical dynamics was nicely demon-
strated by the so-called Passive Dynamic Walkers (PDWs; [18]). The PDW is a
purely mechanical structure consisting of body, thigh, and shank limbs that are con-
nected by passive joints. When placed on a shallow slope, it exhibits natural bipedal
walking dynamics by converting potential to kinetic energy without any actuation.
An important contribution of these case studies is that, if designed properly, me-
chanical dynamics can generate a relatively complex locomotion dynamics, on the
one hand, and the mechanical dynamics induces self-stability against small distur-
bances without any explicit control of motors, on the other. The basic principle of the
mechanical self-stability appears to be fairly general that there are several different
physics models that exhibit similar characteristics in different kinds of behaviors
(e.g., hopping, running, and swimming; [2, 4, 9, 16, 19]), and a number of robotic
platforms have been developed based on them [1, 8, 13, 22].

Dynamic interactions of distributed information processing also play an impor-
tant role in stable and robust legged locomotion, which has previously been shown
in the locomotion studies of biologically inspired motor control architectures, the
so-called central pattern generator models (CPGs; [14]). This approach typically
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simulates the dynamic interactions of neurons, and the periodic oscillatory signal
output of the neural network is connected to the motors of legged robots. Because
of the dynamic stability in the signal output, the locomotion processes using this ar-
chitecture generally exhibit robust locomotion of complex musculo-skeletal struc-
tures [20, 25], and it has been shown that the legged robots are capable of legged
locomotion in relatively complex environment [7, 10, 15, 17].

As exemplified in these case studies, one of the most challenging problems in
the studies of legged locomotion is to identify the underlying mechanisms of self-
organization that induces physically meaningful behavior patterns in terms of stabil-
ity, energy efficiency, and controllability, for example, [3]. From this perspective, the
goal of this article is to explore how the self-organization processes in the physical
system–environment interactions can be scaled up to more “intellignet” behaviors
such as goal-directed locomotion by discussing two case studies of learning legged
robots. More specifically, while the dynamic legged locomotion research were lim-
ited to only periodic behavior patterns, we will explore the mechanisms in which the
rules of motor control can be generated from the physical interactions in the legged
robotic systems. Note that this article shows only the important aspect of the case
studies in order to discuss conceptual issues. More technical details can be found in
the corresponding publications [6, 11].

2.2 Learning from Delayed Reward

Physical dynamic interactions play an important role not only for the repetitive be-
havior patterns such as walking and running on a flat terrain, but also for the resilient
behaviors such as high jumps and kicking a ball. Generating such resilient behav-
iors generally involves nonlinear control that requires a certain form of planning.
For example, a high jump requires a preparation phase of several preceding steps;
ball-kicking requires a swing back of the leg in a specific way to gain the maximum
momentum at impact. The optimization of such behavior control can be character-
ized as a “delayed reward” learning problem [24], which means, for example, that a
system can realize it was a bad step only after falling over. To deal with such non-
linear control of body dynamics, this section explores a case study of a one-legged
hopping robot that learns to generate a series of high-jumps to traverse a rough
terrain [11].

2.2.1 One-legged Hopping Robot

Figure 2.1 shows one of the simplest legged robot models. This robot consists of one
motor at the hip joint and two limb segments connected through an elastic passive
joint. This system requires only a simple motor oscillation to stabilize itself into
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(a) (b)

Fig. 2.1 (a) Photograph and (b) schematic of the one-legged hopping robot. It consists of one
servomotor at the hip joint (represented by a circle with a cross) and two limb segments connected
through a compliant passive joint (marked by an open circle)

a periodic hopping behavior [23]. The hip motor uses a position feedback control,
in which the angle of hip joint is determined by three parameters: amplitude A,
frequency f , and offset of oscillation B.

P(t) = A sin(2π f t)+ B. (2.1)

When these parameters are set properly, the robot shows stable periodic hop-
ping behaviors (Fig. 2.2), and behavioral characteristics resulting from its particular
morphology can be summarized as follows. First, locomotion can only be achieved
dynamically. As the leg has one single actuated degree of freedom, the only way
the robot can lift its legs off the ground is by delivering enough energy through the
motors to make the whole body jump. Second, stability is achieved through the ma-
terial properties of the legs (especially the compliance of the passive joints) rather
than by actively controlling the positions of all joints. For instance, an inadequate
position of the lower limb (which is only passively attached to the upper limb) dur-
ing the flight phase will automatically be corrected by the spring on contact with
the ground. In particular, this characteristic allows the robot to be controlled in an
open-loop manner (i.e., without any sensory feedback) over a continuous range of
control parameters. By simply actuating periodically the motors back and forth, the
robot put on the ground will automatically settle after a few steps into a natural and
stable running rhythm. Third, the elasticity of the legs, partially storing and releas-
ing energy during contact with the ground, allows to achieve not only stable, but
also rapid and energy efficient locomotion. The importance of such elastic proper-
ties in muscle–tendon systems has been long recognized in biomechanics, where
it has a particular significance in theoretical models for the locomotion of legged
animals [2, 19].
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Fig. 2.3 (a) Learning results of motor control in simulation. The optimized sequence of motor
frequencies exhibits 12 leg steps successfully traveling through a rough terrain. (b) Time-series
photographs of the robot hopping over the steps. The motor control parameter was first optimized
in simulation and transferred to the robot for the real-world experiment

As in the typical reinforcement learning, this learning process utilizes a discount
factor γ , which influences the selection of action with respect to the prior action.
For example, when the action fi at a leg step i resulted in a successful continuation
of locomotion, the learning process reinforces the probability of choosing fi−1 with
a discount factor γ as well as that of fi.

The hopping robot was implemented in a physically realistic simulator to facili-
tate a number of trials and errors in the learning process, and the learned parameters
were transferred to the real-world robotic platform. After a few hundred iterations
in the learning phase, the system is able to find a sequence of frequency parameters
that generates a hopping gait of several leg steps for the locomotion of the given
rough terrain (Fig. 2.3).

Searching for a specific series of frequency parameters is not a trivial problem,
because the choice of parameter not only influences behavior of the corresponding
leg step, but also those of subsequent leg steps. For example, if the system changes
a control parameter at the leg step i, the exactly same motor output of the leg step
i+1 often results in completely different behaviors. It is, therefore, necessary to uti-
lize the delayed-reward learning such as the Q-learning algorithm explained above,
and the typical characteristics in the learning process is illustrated in Fig. 2.4. At
the earlier learning steps, the robot attempts mostly random sequences of the con-
trol parameters, which are more structured at the later stage. The search process is,
however, not straight forward in a way that, at a certain learning step, the control
parameters at earlier leg step is modified to achieve breakthroughs. For example,
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Fig. 2.4 A learning process of motor control policies. The color in each tile indicates the oscillation
frequency of motor at the leg step N. It is shown that the control policy is structured towards the
end of the learning process

while the learning process in Fig. 2.4 could not find the adequate parameter at the
leg step 12 (after the learning step 17), it had to explore the parameter space until
the parameter change at the leg step 9 (at the learning step 42), which eventually
resulted in a breakthrough to continue the locomotion thereafter.

In summary, this case study explored a learning architecture that exploits dy-
namics of a compliant leg for goal-directed locomotion in rough terrain. To achieve
highly dynamic locomotion such as a series of high jumps over large steps, the learn-
ing architecture requires a self-organization process that explores time-series motor
output: because behavior of the robot is not only dependent on an immediate motor
output but also on the prior ones, the delayed-reward mechanism (the propagation
of reward signals over multiple leg steps) is necessary in the learning architecture.
It is important to note that the goal-directed behavior shown in this case study was a
result of the two levels of self-organization processes (i.e., in mechanical and infor-
mational dynamics): because the learning process exploited the underlying mechan-
ical self-stability, the basic forward locomotion dynamics do not require parameter
optimization, on the one hand, and the rich behavioral diversity of various hopping
heights can be generated only by manipulating frequency parameters.

2.3 Learning from Implicit Reward

The previous case study employed a rather simple setup of learning experiments to
emphasize the roles of delayed-reward signals in a learning process of legged loco-
motion. In contrast, this section discusses how the complexity of self-organization
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Fig. 2.5 (a) Four-legged running robot with two cameras (only one of them was used in the ex-
periments). (b) Schematic of the robot, illustrating the locations of motors (circles with crosses)
and passive joints (open circles). (c) Neural network architecture that illustrates synaptic weights.
Solid arrows represents nonzero synaptic connections after the learning phase through which neu-
ral activities can propagate, while dotted arrows represent synaptic connections with essentially
zero weights. (d) Snapshot image correlated to the reward signals

processes can be scaled up such that nontrivial signal pathways can be developed
between sensory input and motor output. Here, we introduce another learning archi-
tecture that extracts correlation between signals to propagate implicit reward signals
for a visually mediated target following behavior.

2.3.1 Four-legged Running Robot

The robotic platform used in this case study is a running robotic dog [12] shown in
Fig. 2.5. This robot has four identical legs, each of which consists of one servomotor
actuating a series of two limbs connected through a passive elastic joint as in the
previous case study. Dynamic locomotion is also achieved by periodically moving
back and forth the servomotors actuating the legs of the robot, and the target angular
position Pi(t) of motor i at time t is given by
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Pi(t) = Ai sin(2π f t + φi)+ Bi, (2.4)

where Ai is the amplitude and Bi the set point of the oscillation. Compared with the
one-legged hopping robot, this robot has a few additional parameters φi, the phase
offsets, which determine the phase delay of oscillation between the legs.

The learning architecture of this robot has a form of neural network, which re-
ceives signals online from a visual sensor and provides output signals to the control
parameters of (2.4). The neural network is specifically designed for extracting cor-
relations in sensory-motor signals by using a modified Hebbian learning rule (see
[6] for more details). We have modeled three groups of neurons, that is, motor neu-
rons, sensor neurons, and “reward neurons,” which are fully connected internally as
shown in Fig. 2.5c.

The motor neurons are connected to a set of motor variables that represent the
differences of parameter values between left-side and right-side motors, as well as
between fore and hind motors. For instance, the oscillation amplitudes Ai of the four
motors are defined as follow:
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ΔAlat and ΔAlong are the lateral and longitudinal differences of amplitude, and A0

is the average amplitude. The other motor parameters (i.e., the set points Bi and the
phase offsets φi) are defined accordingly. Eventually, we have the eight state com-
ponents (i.e., A0, ΔAlat, ΔAlong, B0, ΔBlat, ΔBlong, Δφlat, and Δφlong) whose values
are represented by the activity of eight motor neurons. Note that the frequency of
oscillation f is constant for all motors, which provides a basic setup of the robot
running forward.

The robot is equipped with a vision system consisting of a camera attached to
the body and pointing in the forward direction (see Fig. 2.5). The sensor neurons
are receiving both intensity and estimated optical flow extracted from the gray-scale
visual input of the 32× 24 pixel values. For enabling reinforcement learning, we
also include a set of “reward neurons” as described later.

2.3.2 Learning to Follow an Object

The experiment of this case study consists of two phases. In the initial phase, the
motor neurons are randomly activated, thus producing arbitrary motions of the
robot. This initial phase allows the neural network to learn the basic cross-modal
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(a)

Fig. 2.6 Four-legged running robot following a black object in an unstructured environment

correlations as follows. The reward is delivered when the robot is facing a large
black bin placed in the environment (as shown in Fig. 2.6). The synaptic connec-
tions between the reward and the sensor neurons therefore learn a correlation be-
tween reward signals and a set of visual input signals that correspond to the image
of the black bin in the center of the visual field (as shown in Fig. 2.5d). At the same
time, because of the Hebbian-like learning rule, the synaptic connections between
the visual and motor groups of neurons capture another significant correlation. This
correlation, which we will elaborate later, involves the visual neurons that receive
optical flow signals and a particular pattern of activity in the motor neurons. In
the second phase, the robot is let to move on its own while activating the sensory
neurons receiving reward signals. Because of the particular synaptic connections
that have been strengthened during the initial phase of the experiment, the reward
signals are propagating through visual neurons to motor neurons, which eventually
activate the oscillation of the legs such that the robot follows the object.

The observed behavior, generated from the propagation of neural activity across
the network, is illustrated in Fig. 2.6, where the robot turns towards any black ob-
ject that is placed in the center of its field of view and follows the object as it is
moved around. The key aspect of the network connectivity is the correlation be-
tween perceived visual flow and motor activity, which is captured by the synaptic
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Fig. 2.7 Graphical representation of the synaptic weights coupling the visual modality to the mo-
tor modality, showing (a) the visual flow field, and (b) only the horizontal component thereof,
correlated to each of the eight components of the motor state. (c) Average horizontal component
of the visual flow correlated to each motor component (absolute value). (d) Turning speed of the
robot as a function of both lateral amplitude difference ΔAlat and later phase offset difference Δφlat

weights coupling the visual modality to the motor modality. Figure 2.7 shows a
graphical representation of these weights, illustrating the visual flow correlated to
each motor control parameter. Clearly, the neural architecture captures a significant
correlation only between visual flow and the motor parameter corresponding to lat-
eral phase offset difference (Δφlat ). This means that the quadruped robot learns a
control strategy for turning that modifies essentially the phase difference between
the oscillations of the left and the right legs.

To better understand this result, we systematically quantify the turning rate of the
robot as a function of various motor control parameters. Figure 2.7d shows that the
turning speed is most easily and robustly controlled with the lateral phase difference,
the relation between the two quantities being almost linear in the considered range.
In contrast, when the other motor control parameters are varied, the turning speed
of the robot either does not change significantly or displays no linear relation: for
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instance, as the lateral amplitude difference is steadily increased, the robot does not
always change the turning rate monotonously.

In summary, the modified Hebbian learning rule, which captured the correla-
tion patterns of sensory-motor activity in the neural network, developed a nontrivial
synaptic structure that produces an object following behavior based on the visual
sensory input. To achieve this task, the network has to find a nontrivial correlation
between visual sensory input, reward signals, and motor signals. This experiment
shows how self-organization processes that capture correlation of sensory-motor
signals can generate sensible behavior patterns.

2.4 Conclusion

This article discussed the issues of legged locomotion from the perspective of artifi-
cial life in the real world. By treating legged locomotion as a self-organizing process
resulting from complex physical and informational dynamics, we argue that one of
the most significant challenges lies in the grounding of self-organization processes
for physically meaningful behaviors. While our exploration is still at a nascent stage,
we extracted a few important principles from the case studies presented in this ar-
ticle. In particular, we have shown that a learning architecture requires, on the one
hand, reward signals evaluating a series of motor actions to make full use of nonlin-
ear mechanical dynamics, and on the other, a specific form of signal propagation to
capture the patterns of sensible physical system–environment interactions for goal-
directed behaviors.

There are still a number of open questions that we have not explicitly discussed
in this article so far. One of the fundamental questions is how we could extend the
complexity of self-organizing processes further with less “hand-coded” elements
in the embodied systems. For example, in the case studies presented in this arti-
cle, we predefined a number of elements such as the basic controllers that generate
sinusoidal oscillation, basic sensory information processing (e.g., optical flow es-
timation), mechanical dynamics with fixed viscous-elasticity in passive joints, and
the basic reward signals, to mention but a few. Although we found these predefined
elements essential to maintain the learning phase within a reasonable amount of
time, it requires further studies to discuss how the self-organizing processes should
be structured. We are expecting that the comparative study with some of the related
work (e.g., [5, 17, 26]) will clarify more general rules to manage the higher dimen-
sion of parameter space in self-organizing processes of embodied systems.
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