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  Contexts of Clinical Research Informatics    
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  Abstract   This chapter provides essential defi nitions and overviews important 
 constructs and methods within the emerging subdomain of clinical research 
 informatics. The chapter also highlights theoretical and practical contributions from 
other disciplines. This chapter sets the tone and scope for the text, highlights 
 important themes, and describes the content and organization of chapters.  

  Keywords   Clinical research informatics defi nition  •  CRI  •  Theorem of  informatics  • 
 American Medical Informatics Association  •  Biomedical informatics       

   Overview 

 The documentation, representation, and exchange of information in clinical research 
are inherent to the very notion of research as a controlled and reproducible set of 
methods for scientifi c inquiry. Clinical research is the branch of medical science 
that investigates the safety and effectiveness of medications, devices, diagnostic 
products, and treatment regimens intended for human use in the prevention, diagno-
sis, treatment, or management of a disease. Clinical research enables new under-
standing and practices for prevention, diagnosis, or treatment of a disease or its 
symptoms. Contemporary clinical research actually represents relatively recent 
application of statistics to medicine and the acceptance of randomized controlled 
clinical trials as the gold standard  [  1  ]  in this last half-century. Clinical research has 
been characterized as a discipline resting on three pillars of principle and practice 
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related to control, mensuration, and analysis  [  2  ] , though these can be more mod-
ernly interpreted as a triad of expertise in medicine, statistics, and logistics  [  3  ] . 

 Clinical research informatics (CRI), then, is the application of informatics prin-
ciples and techniques to support the spectrum of activities and business processes 
that instantiate clinical research. Informatics, as somewhat crudely defi ned as the 
intersection of information and computer science with a health-related discipline, 
has a foundation that has drawn from many well-established, theory-based disci-
plines, including computer science, library and information science, cognitive sci-
ence, psychology, and sociology. The newly articulated yet fundamental theorem of 
informatics  [  4  ]  states that humans plus information technology should function and 
perform better together than humans alone, and so informatics is a source for sup-
portive technologies and tools that enhance – but not replace – unreservedly human 
processes. 

 The US National Institutes of Health offer a comprehensive and widely accepted 
defi nition for clinical research that includes a spectrum of populations, objectives, 
methods, and activities. Specifi cally, this broad defi nition states that “clinical 
research is…patient-oriented research conducted with human subjects (or on mate-
rial of human origin that can be linked to an individual)”  [  5  ] . Under this defi nition, 
clinical research includes investigation of the mechanisms of human disease, thera-
peutic interventions, clinical trials, development of new technologies, epidemiol-
ogy, behavioral studies, and outcomes and health services research. This defi nition 
was used by all authors in this text to scope the content, so readers will see a broad 
overview of important informatics topics and constructs, as they apply to this wide 
spectrum of research objectives, participants, stakeholders, and activities. 

 Given this broad defi nition, clearly the challenges in clinical research – and the 
opportunities for informatics support – arise from many different objectives and 
requirements, including the need for optimal protocol design, regulatory compli-
ance, suffi cient patient recruitment, effi cient protocol management, and data collec-
tion and acquisition; data storage, transfer, processing, and analysis; and impeccable 
patient safety throughout. Regardless of clinical domain or study design, high- 
quality data collection and standard formalized data representation are critical to the 
fundamental notion of reproducibility of results. In addition to explicit and suitable 
data collection methods for reliability, strong study design and conduct (sampling in 
particular) are necessary for the generalizability of research fi ndings. In the age of 
an electronic data deluge, standards also take on critical importance and can facili-
tate data sharing, knowledge generation, and new discovery using existing data sets 
and resources. 

   Contexts and Attempts to Defi ne Clinical Research Informatics 

 The driving forces for the rapid emergence of the CRI domain include advances in 
information technology and a mass of grassroots innovations that are enabling new 
data collection methods and integration of multiple data sources to generate new 
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hypotheses, more effi cient research, and patient safety in all phases of research and 
public health. While the range of computer applications employed in clinical 
research settings might be (superfi cially) seen as a set of service or support activi-
ties, the practice of CRI extends beyond mere information technology support for 
clinical research. The needs and applications of information management and data 
and communication technologies to support research run across medical domains, 
care and research settings, and research designs. Because these issues and tools are 
shared across various settings and domains, fundamental research to develop the-
ory-based and generalizable applications and systems is in order. Original research 
will afford an evidence base for information and communications technologies that 
meaningfully address the business needs of research and also streamline, change, 
and improve the business of research itself. As a relatively new fi eld, but driven by 
maturing professional and research communities, CRI is just at the point where a 
defi ned research agenda is beginning to coalesce. As this research agenda is articu-
lated, standards and best practices for research will emerge, as will standards for 
education and training in the fi eld. 

 Embi and Payne (2009) present a defi nition for CRI as “the sub-domain of bio-
medical informatics concerned with the development, application, and evaluation of 
theories, methods, and systems to optimize the design and conduct of clinical 
research and the analysis, interpretation, and dissemination of the information gen-
erated”  [  6  ] . An illustrative – but nonexhaustive – list of CRI focus areas and activi-
ties augment this American Medical Informatics Association (AMIA)-developed 
defi nition: evaluation and modeling of clinical and translational research workfl ow; 
social and behavioral studies involving clinical research; designing optimal human-
computer interaction models for clinical research applications; improving and eval-
uating information capture and data; fl ow in clinical research; optimizing research 
site selection, investigator, and subject recruitment; knowledge engineering and 
standards development as applied to clinical research; facilitating and improving 
research reporting to regulatory agencies; and enhancing clinical and research data 
mining, integration, and analysis. The defi nition and illustrative activities emerged 
from in-person and virtual meetings and interviews with self-identifi ed CRI practi-
tioners within the AMIA organization. The scope and number of activities, and the 
information problems and priorities to be addressed, will obviously evolve over 
time as in any fi eld. Moreover, a single professional or educational home for CRI, 
and as such a source to develop a single consensus and more precise defi nition, is 
lacking at present and likely unachievable given the multidisciplinary and multina-
tional and multicultural scope of CRI activities. What is important to note is that this 
is all refl ective of the bottom-up development of this area, refl ecting the applications 
of information technology that have been needed and that are in use. 

 The fi rst references to what is now known as clinical research informatics go 
back to the 1960s and highlight the inevitable use of computers to support data col-
lection and analysis in research  [  7  ] . The use of clinical databases for research inquiry 
was fi rst established in the late 1960s, and by the next decade – more than 40 years 
ago – there were at least a handful of clinical information systems being used for 
research. This history is well described in Collen in a 1990 historical review. In short 
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course, it was clear that structured data entry and data standards would be a critical 
component of any computerized support or analysis system in research  [  8  ] . Bloise 
fi rst recognized that systems could and should support more than queries about 
single patient data, but rather should be searchable to retrieve many patient records 
to support research and quality monitoring. The fi rst applications focused on 
retrieval of clinical information to identify and understand patient subpopulations 
 [  9  ] . Others saw the potential for tapping these clinical databases in observational 
research and knowledge discovery; by the 1970s, cancer and tumor registries were 
well established, and cardiovascular disease registries emerged. For the fi rst few 
decades, computers in clinical research were indeed centered around maintaining a 
database focused on collecting and querying clinical data. The advent of patient 
eligibility screening and trial recruitment systems in the 1990s represents the intro-
duction of computers to support clinical research  processes   [  10–  12  ] . The regulated 
nature of human trials, especially since the formal inquiry and establishment of 
standards for the fi eld in the 1970s, created a critical need for documentation of 
methods and process, as well as analysis and fi ndings, and we saw systems emerge 
in the late 1980s that begin to address the conduct of studies. The capabilities of 
these systems have improved and their use has proliferated. Now, clinical research 
management systems of various types support the collection of data and the coordi-
nation of research tasks. The primary functionality of commercial applications 
today is essentially concerned with the delivery of valid and accurate data in confor-
mity with the Good Clinical Practice (GCP) guidelines  [  13  ] , and in most cases these 
systems are not well integrated with patient care systems. It is only recently that 
information management and technologies are forcing the reengineering of work 
processes, and identifying and creating synergies with clinical data documentation. 
This era is truly an exciting time of massive transformation in the management of 
clinical research. 

 The enormity of data generated from new diagnostic and measurement technolo-
gies, increasing ability to collect data rapidly from patients or external data sources, 
and the scope and scale of today’s research enterprises have lead to a bewildering 
array and amount of data and information. Information technology has contributed 
to the information management problems by generating more data and information, 
but the techniques and principles derived from informatics promise to purposively 
utilize IT to address the issues of data collection, information management, process 
and protocol management, communication, and knowledge discovery – and show 
promise to improve research effi ciencies, increase our knowledge of therapeutic 
evaluation, and impact human health and the global economy. Existing informatics 
tools and data management systems have been adopted and tailored to address the 
unique issues in clinical research. Because the objectives and workfl ows of clinical 
research are unique, or at least highly specifi c, new tools and solutions have also 
emerged in the form of CRI. Still, in time these tools will need to be evaluated via 
more formal means and evolve or be replaced by the next generation of tools and 
methods. As original informatics research and proper system evaluations – including 
randomized trials of various systems with outcomes measures related to research 
effi ciency, quality, and patient safety – are conducted, published, and scrutinized, 
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 evidence  to support decision making in health care and research informatics con-
texts will result.   

   Perspective, Objectives, and Scope 

 This book comes during a very exciting time for CRI and biomedical informatics 
generally. It is not surprising, however, that the opportunities and needs in CRI are 
so great and have emerged so rapidly that practitioners and researchers have not had 
time to amalgamate ideas or defi ne themselves as a professional and scientifi c com-
munity. This collection of works is meant to provide a beginning toward helping 
galvanize and present the current knowledge in the fi eld with an eye toward the 
future. In this book, we offer foundational coverage of key areas, concepts, con-
structs, and approaches of medical informatics as applied to clinical research activi-
ties, in both current settings and in light of emerging policies, so as to serve as but 
one contribution to the discourse going on within the fi eld during its early evolution. 
We do not presume to capture the entirety of the fi eld (can any text truly articulate 
the full spectrum of a discipline?), but rather an array of both foundational and more 
emerging areas that will impact clinical research and, so, CRI. This book is meant 
for both scholars and practitioners who have an active interest in biomedical infor-
matics and how the discipline can be leveraged to improve clinical research. Our 
aim is not to provide an introductory book on informatics, as is best done by 
Shortliffe and Cimino in their foundational Biomedical Informatics text  [  14  ] . Rather, 
this collection is targeted for those with at least a basic understanding of the fi eld 
and who would like to apply informatics principles to clinical research problems 
and processes. Many of these theories and principles presented in this collection are, 
naturally, common across biomedical informatics and not unique to CRI; however, 
the authors have put these fi rmly in the context of how these apply to clinical 
research. 

 The excitement of such a dynamic area is fueled by the signifi cant challenges the 
fi eld must face. At this stage, there is no consistent or formal reference model 
(e.g., curriculum models supporting graduate programs or professional certifi ca-
tion) that represents the core knowledge and guides inquiry. What we have found, 
however, is that there are clear information problems at the core of clinical research 
that have dominated CRI. Moreover, from these efforts discernible trends are emerg-
ing, and research/practice foci unique to CRI are becoming more pronounced. In 
this text, we try to cover both of these and also identify several broad themes that 
undoubtedly will infl uence the future of CRI. 

 In compiling works for this book, we were well aware that our selection of top-
ics and placement of authors, while not arbitrary, was inevitably subjective. Others 
in CRI might or might not agree with our conceptualization of the discipline. Our 
goal is not to restrict CRI to the framework presented here; rather, that this book 
will stir a discourse as this subdiscipline continues to evolve. In a very loose sense, 
this text represents a bottom-up approach to organizing this fi eld. There is not one 
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professional venue for clinical research informatics, therefore, no one single place 
to scan for relevant topics. Numerous audiences, researchers, and stakeholders have 
emerged from the clinical research side (professional practice organizations, aca-
demic medical centers, the FDA and NIH sponsors, research societies like the 
Society for Clinical Trials, and various clinical research professional and accredit-
ing organizations such as the Association of Clinical Research Professionals), and 
also from the informatics side (AMIA). Watching conferences, literature, list serve 
announcements and discussions, and meetings from these two sides of clinical 
research informatics for the last few years, we developed a sense of the types of 
predominant questions, activities, and current issues. We then sought to create 
chapters around themes, or classes of problems that had a related disciplinary base, 
rather than specifi c implementations or single groups. For this reason, readers 
active in clinical research informatics will possibly be surprised on fi rst glance not 
to see a chapter devoted exclusively to the BRIDG model or the Clinical and 
Translational Science Awards program, for instance. While these have been signifi -
cant movements in CRI, we view them as implementations of broader ideas. This 
is not to say they are not important in and of themselves, but we wanted these topics 
to be embedded within a discussion of what motivated their development and the 
attention these initiatives have received. 

 Authors were selected for their demonstrated expertise in the fi eld. We asked 
authors to attempt to address multiple perspectives, to paint major issues, and, when 
possible, to include international perspectives. Each of the outstanding authors suc-
ceeded, in our opinion, in presenting an overview of principles, objectives, methods, 
challenges, and issues that currently defi ne the topic area and that are expected to 
persist over the next decade. The individual voice of each author distinguishes one 
chapter from the other, although some topics can be quite discreet, others overlap 
signifi cantly at certain levels. Some readers may be disappointed at a presumed lack 
of chapters on specifi c data types (physiologic and monitoring data, dietary and 
nutrient data, laboratory data, etc.) or topics. However, to restate, it was impractical 
for this book to attempt to cover every aspect of the fi eld. The most notable omis-
sion is a single chapter on regulatory science, but the fi eld is relatively new as an 
informatics-related focus, and moving rapidly to accommodate explosive changes 
in research data sources, genetic data, new technologies, evolving patient roles, and 
new models and ethical issues for research in international settings, especially in 
developing nations. The topic is, however, touched upon in other chapters, and we 
hope readers will see the relevance and importance of regulations and ethics to CRI 
and also appreciate the gradual emergence of regulatory science as a scientifi c prac-
tice area in its own right. 

 Many of the topics for the book chapters rose rather easily to the surface given 
the level of activity or interest as refl ected in national or international discussions. 
Others were equally easy to identify, at least to a certain extent, as fundamental 
concepts. Still, even at this level, it is clear that CRI is a largely applied area, and 
theory, if drawn from at all, tends to be pulled into different projects in a more or 
less  ad hoc  manner. As we have implied, there is a noticeable lack of a single or 
unifying theory to guide inquiry in CRI (though this is emerging in informatics at 
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large). It has only been relatively recently that the AMIA CRI Working Group has 
become a promising research and policy leadership group. Regardless, as noted at a 
recent CRI-focused professional conference  [  15  ] , there is a lack of original research 
in the form of classic randomized interventional research of informatics applica-
tions in the clinical research domain. This issue becomes manifest in the book 
through the chapters and their organization. Some chapters tend to focus on best 
practices and are instructional in nature, and some are theoretical (usually drawing 
from the parent or contributing discipline); some are very concrete and easy to 
defi ne and digest; others are more abstract in nature and therefore require readers to 
extrapolate as to direct relevance to their own areas of interest.  

   Organization of the Book 

 As an attempt to cluster chapters under unifying themes, we chose to organize them 
at a high level using four broad sections: (1) the context and foundations of clinical 
research informatics; (2) data management and systems in clinical research; (3) 
knowledge representation and discovery; and (4) the future of clinical research, 
health, and clinical research informatics. 

   Section 1: Contexts of Clinical Research Informatics 

 The fi rst section addresses the historical context, settings, wide-ranging objectives, 
and basic defi nitions for clinical research informatics. In this section, we sought to 
introduce the context of clinical research and the relevant pieces of informatics that 
together constitute the “ space ” for applications, processes, problems, issues, etc., 
that collectively comprise CRI activities. We start with an historical perspective 
from Chris Chute, whose years of experience in this domain, and informatics gener-
ally, allow for an overview of the evolution from notation to digitization. His chapter 
brings in historical perspectives to the evolution and changing paradigms of scien-
tifi c research in general and specifi cally on the ongoing development of clinical 
research informatics. Also, the business aspects of clinical research are described 
and juxtaposed with the evolution of other scientifi c disciplines, as new technologi-
cal advances greatly expanded the availability of data in those areas. Chute also 
illustrates the changing sociopolitical and funding atmospheres and highlights the 
dynamic issues that will impact the defi nition and scope of CRI moving forward. 
Philip Payne follows this with a chapter focused on the complex nature of clinical 
research workfl ows – including a discussion on stakeholder roles and business activ-
ities that make up the fi eld. This is a foundational chapter as it describes the people 
and tasks which information and communication technologies (informatics) are 
intended to support. Extending the workfl ow and information needs is an  overview 
of study designs presented by Antonella Bacchieri and Giovanni Della Cioppa. 
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They provide a broad survey of various research study designs (which are described 
in much more detail in a separate Springer text written by them) and highlight the 
data capture and informatics implications of each. Note that while the workfl ow and 
study design chapters can be considered fundamental in many respects, the work-
fl ows are ever changing in response to new regulations, data types, and study designs. 
New study designs are being developed in response to new data collection activities 
and needs (e.g., small sample sizes). While new research methods and statistical 
techniques will continue to emerge, the principles of study design and research 
inquiry will remain constant and are fundamental background for CRI. 

 After this historical perspective and fundamentals of clinical research design and 
conduct, this introduction section includes two chapters that tackle different per-
spectives on patients or consumers. Chunhua Weng and Peter Embi address infor-
mation approaches to patient recruitment by discussing practical and theoretical 
issues related to patient recruitment for clinical trials, focusing on possible infor-
matics applications to enhance recruitment. Their chapter highlights evolving meth-
ods for computer-based recruitment and eligibility determination, sociotechnical 
challenges in using new technologies and electronic data sources, and standardiza-
tion efforts for knowledge representation. Given the rapid advances in technology 
and parallel continued emphasis on patient empowerment and participation in deci-
sion making, David Johnson and Jim Andrews consider the changing role of con-
sumers in health care generally and in clinical research particularly. Traditional 
treatments of information behaviors and health communication are discussed, build-
ing to more current approaches and models. Central to understanding the implica-
tions for clinical research are the evolving roles of consumers who are more engaged 
in their own decision making and care and who help drive research agendas through 
advocacy groups or other social networks. The tools and processes that support 
patient decision making, engagement, and leadership in research are also briefl y 
described here, though clearly the chapter can only touch upon them. 

 Finally, Chap.   7     of this section describes the increasing availability of genetic 
data that is becoming vital to clinical research and personalized medicine. The 
discussion provided by Stephane Meystre, Scott Narus, and Joyce Mitchell pri-
marily focuses on the relationship and interactions of voluminous molecular data 
with clinical research informatics, particularly in the context of the new (post) 
genomic era. The translational challenges in biological and genetic research, gen-
otype-phenotype relations, and their impact on clinical trials are addressed in this 
chapter as well.  

   Section 2: Data Management and Systems in Clinical Research 

 Six chapters in this section cover a range of issues in the management of various 
data and the systems that support these functions. At the crux of clinical research 
informatics is a variety of information management systems, which are  characterized 
and described by Prakash Nadkarni, Luis Marenco, and Cynthia Brandt. Their 
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 chapter also gives broad overview of system selection and evaluation issues. Their 
chapter includes brief descriptions of each group of activities, system requirements 
for each area, and the types and status of systems for each. Systems are discussed 
by organizing them by the following broad activities: study planning and protocol 
authoring, forms design, recruitment, eligibility determination, patient-monitoring, 
and safety – including adverse events, protocol management, study conduct, analy-
sis, and reporting. Also, a section of this chapter focuses on best approaches in the 
analysis, selection, and design of information systems that support the clinical 
research enterprise. Importantly, the authors emphasize needs assessment, user-
centered design, organizational features, workfl ows, human-computer interaction, 
and various approaches to developing, maintaining, updating, and evaluating 
software. 

 The importance of computerized representation of both data and processes – 
including the formalization of roles and tasks – is underscored by Ida Sim and Joyce 
Niland in their chapter on Study Protocol Representation. The essence of any clini-
cal study is the  study protocol,  an abstract concept that comprises a study’s investi-
gational plan and also a textual narrative documentation of a research study. To date, 
CRI has primarily focused on facilitating electronic sharing of text-based study pro-
tocol documents. Sim and Niland propose a much more powerful approach to lever-
aging protocol information using a formal representation of eligibility criteria and 
study metadata. 

 Common to all clinical research protocols is the collection of data. The quality 
of the data ultimately determines the usefulness of the study and applicability of 
the results. Meredith Nahm addresses the idea that central to clinical research is 
data collection, quality, and management. She focuses on various types of data 
collected (e.g., clinical observations, diagnoses) and the methods and tools for 
collecting these. Special attention is given to Case Report Forms (CRFs), the 
primary mechanism for data collection in clinical research, including discussions 
regarding the nature, development, and organization of the questions that com-
prise CRFs. The chapter provides both a theoretical framework for data quality 
in clinical research and also will serve as practical guidance. Moreover, Nahm 
draws on the themes of workfl ows presented by Payne in Chap.   2    , and advocates 
explicit processes dedicated to quality for all types of data collection and 
acquisition. 

 An important source of data, data reported by patients, is described thoroughly 
by Robert Morgan and Kavita Sail in the next chapter on “Patient-Reported 
Outcomes.” The chapter describes the important role patient outcomes play in clini-
cal research and the fundamentals of measurement theory and well-established 
techniques for valid and reliable collection of data regarding patient experiences. In 
addition, Liz Horn and Sharon Terry discuss the informatics issues involved in cell 
line/tissue banking, as well as an overview of the complexities and restrictions deal-
ing with storage and repeated analysis of human tissues. Regarding the latter, the 
authors characterize the broad types of research questions (current and near future) 
that biobanks support and highlight issues of quality and standardization, particu-
larly regarding the information (annotations) related to those samples. Technologies 
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and languages for indexing samples and merging different data sets are key issues. 
This chapter mentions virtually all informatics issues that affect the collection, stan-
dardization, and interpretation of data for research purposes, as well as highlights 
international challenges related to the comparability of genetic and pathology data 
for multisite research efforts. These data are particularly relevant and synergize the 
ideas regarding consumer involvement that were presented by Jim Andrews and 
David Johnson in the fi rst section. As patients become more active in research – as 
participants, sponsors, and consumers – the patient-reported data and patient bio-
logical specimens represent domains that are dominated as patient concerns. 

 Finally, and also related to patients, is Rachel Richesson and Kendra Vehik’s 
discussion of the use of patient data registries for observational research. Their dis-
cussion includes the variety of registries, their proliferation and overlap, and stan-
dards and best practice issues. Technical issues such as access, data updates, and 
data quality are fully described, as are sociopolitical issues related to data owner-
ship, policy, and international regulations. The registry issues represent rapidly 
growing area of research activity that is being driven in large part by patient advo-
cacy organizations, but also includes registry sponsors and developers from phar-
maceutical industries, commercial providers, government agencies, and academic 
medical centers.  

   Section 3: Knowledge Representation and Discovery 

 The premise of clinical research informatics is that the collection (and best repre-
sentation and availability) of data – and techniques for aggregating and sharing data 
with existing knowledge – can support discovery of new knowledge leading to sci-
entifi c breakthroughs. The chapters that comprise this section are focused on state-
of-the-art approaches to organizing or representing knowledge for retrieval purposes 
or use of advanced technologies to discover new knowledge and information where 
structured representation is not present or possible. While these topics apply across 
informatics and its subdisciplines, they stand to have a profound infl uence on CRI, 
which is inherently (unlike other subdisciplines) focused on data analysis. The abil-
ity to use, assimilate, and synergize new data with existent knowledge could poten-
tially identify new relationships that in turn lead to new hypotheses related to 
causation of disease or potential therapies and biological interactions. Also, the 
ability to combine and enhance new and old knowledge has a major role in improv-
ing safety, speeding discovery, and supporting translational science. Since all new 
research builds upon what has come before, the ability to access and assimilate cur-
rent research will accelerate new research. 

 There is a natural appeal to ideas for transforming and exchanging heteroge-
neous data, which can be advanced using ontologies (or formal conceptual semantic 
representations of a domain). Kin Wah Fung and Olivier Bodenreider give us an 
overview of basic principles and challenges, all tied to examples of use of ontology 
in the clinical research space. This chapter covers the challenges related to  knowledge 
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representation in clinical research and how trends and issues in ontology design, 
use, and testing can support interoperability. Essential defi nitions are covered, as 
well as applications and other resources for    development such as the Semantic Web. 
Additionally, major relevant efforts toward knowledge representation are reviewed. 
Specifi c ontologies relevant to clinical research are discussed, including the 
Ontology for Clinical Trials and the Ontology of Biomedical Investigation. 
Organizations, such as the National Center for Biomedical Ontology, that coordi-
nate development, access, and organization of ontologies are discussed. Next, 
Mollie Cummins’ chapter offers an overview of state-of-the-art data mining and 
knowledge discovery methods and tools as they apply to clinical research data. The 
vast amount of data warehoused across various clinical research enterprises, and the 
increasing desire to explore these to identify unforeseen patterns, require such 
advanced techniques. Examples of how nonhypothesis-driven research supported 
by advanced data mining, knowledge discovery algorithms, and statistical methods 
help elucidate the need for these tools to support clinical and translational 
research. 

 Last in this section, Feifan Liu, Chunhua Weng, and Hong Yu explain the use of 
data from electronic healthcare record (EHR) systems to support research activities. 
This is an area that is gaining attention since EHRs are widely used and represent 
 real-life  disease and health-care experiences that are potentially more generalizable 
than are the results from controlled clinical studies. However, at the current time, 
much of the important information in EHRs is still narrative in nature. This chapter 
describes how natural language processing (NLP) techniques can be used to retrieve 
and utilize patient information from EHRs to support important clinical research 
activities.  

   Section 4: The Future 

 In this fi nal section of the text, we chose to include a representation of different top-
ics that will continue to impact CRI into the future and that build upon the contexts, 
data sources, and information and knowledge management issues discussed in pre-
vious sections. Many of the topics included here are truly multidisciplinary and 
stand to potentially impact all clinical research studies. 

 Data sharing is tremendous challenge with perhaps the greatest potential for 
impact in all areas of clinical research.    In the U.S., a domestic national health infor-
mation infrastructure is being defi ned by the “collect once, use many” paradigm, 
which has broad support but a lack of consensus for how (or if) it can be accom-
plished on a massive scale. Rebecca Kush covers various scenarios for data sharing, 
including who needs to share data and why. More importantly, she describes the 
history and future strategy of cooperation between major standards development 
organizations in health care and clinical research. In her leadership role in the 
Clinical Data Interchange Standards Consortium (CDISC), she provides an illumi-
nating  perspective of the momentous but arduous alliance of the health care and 
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research professional community silos. Further, she defi nes interoperability, along 
with examples that demonstrate the need for interoperability in satisfying regula-
tions and in supporting global science. She also describes current technical, regula-
tory, and logistical challenges related to the reuse of electronic health record for 
clinical research. 

 Ed Hammond and Rachel Richesson cover the topic of standards – a central topic 
and persistent challenge for informatics efforts. Their focus is on the standards 
development process, identifi cation of relevant standards, and selection and imple-
mentation issues. Like Dr. Kush’s previous chapter, they address the collaboration 
and harmonization between clinical care data standards (and professional commu-
nities) and research data standards. Specifi cally, an argument for research standards 
(in the form of common data elements) that are complementary to health-care stan-
dards is introduced. 

 Pharmacovigilance is an emerging area that stands to impact the future of CRI, 
particularly given its relevance to patient safety and potential to impact population 
health. Informatics methods and applications are needed to ensure drug safety for 
patients, and the ability to access, analyze, and interpret distributed clinical data 
across the globe to identify adverse drug events. Kees van Grootheest and Rachel 
Richesson provide an historical account of its evolution, as well as the increasing 
need for informatics methods and applications that can be employed to ensure 
greater patient safety. Various issues are explored in this context, including drug 
safety monitoring, new methods for reporting of adverse drug events, and advanced 
database and information sharing approaches. 

 The full transparency of clinical research is a powerful strategy to diminish pub-
lication bias, increase accountability, avoid unnecessary duplication of research, 
advance research more effi ciently, provide more reliable evidence (information) for 
diagnostic and therapeutic prescriptions, and regain public trust. Trial registration 
and results disclosure are considered powerful tools for achieving higher levels of 
transparency and accountability for clinical trials. New emphasis on knowledge 
sharing and growing demands for transparency in clinical research are contributing 
to a major paradigm shift in health research that is well underway. This chapter by 
Karmela Krleža-Jeri  discusses the use of trial registries and results databases in 
clinical research and decision making. International standards of trial registration 
and their impact are discussed, as are the contribution of informatics experts to these 
efforts. 

 The book concludes with a brief chapter by Peter Embi summarizing the chal-
lenges CRI researchers and practitioners will continue to face as the fi eld evolves 
and new challenges arise. This concluding chapter helps in envisioning the future 
of the domain of clinical research informatics. In addition to outlining likely new 
settings and trends in research conduct and funding, the author cogitates on the 
future of the informatics infrastructure and the professional workforce training and 
education needs. A focus of this chapter is the description of how clinical research 
(and supporting informatics) fi ts into a bigger vision of a learning health-care sys-
tem and of the relationship between clinical research, evidence-based medicine, 
and quality of care.   
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   Conclusion 

 The overall goal of this book is to contribute to the ongoing discourse among 
researchers and practitioners in CRI as they continue to rise to the challenges of a 
dynamic and evolving clinical research environment. This is an exciting and quite 
broad domain, and there is ample room for future additions or other texts exploring 
these topics more deeply or comprehensively. Most certainly, the development of 
CRI as a subdiscipline of informatics and a professional practice area will drive a 
growing pool of scientifi c literature based on original CRI research, and high-impact 
tools and systems will be developed. It is also certain that CRI groups will continue 
to support and create communities of discourse that will address much needed prac-
tice standards in CRI, data standards in clinical research, policy issues, educational 
standards, and instructional resources. 

 The scholars that have contributed to this book are among the most active and 
engaged in the CRI domain, and we feel they have provided an excellent starting 
point for deeper explorations into this emerging discipline. While we have by no 
means exhausted the range of topics, we hope that readers will see certain themes 
stand out throughout this text. These include the changing role of the consumer, 
movement toward transparency, growing needs for global coordination and coop-
eration on many levels, and the merging together of clinical care delivery and 
research as part of a changing paradigm in global health-care delivery – all in the 
context of rapid innovations in technology and explosions of data sources, types, 
and volume. These forces collectively are the challenges to CRI, but they also show 
promise for phenomenal synergy to yield unimaginable advances in scientifi c 
knowledge, medical understanding, the prevention and cure of diseases, and the 
promotion of health that can change the lives of all. The use of informatics and 
computing can accelerate and guide the course of human and global evolution in 
ways we cannot even predict.      
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  Abstract   The history of clinical research, in the broadest sense of the term, is long 
and distinguished. From the pioneering work of William Harvey to the modern 
modalities of translational research, a common thread has been the collection and 
interpretation of information. Thus, informatics has played a prominent role, if not 
always recognized as such. Accepting that an allowable defi nition of informatics is 
the processing and interpretation of information that permits analyses or inferenc-
ing, the science of informatics can and does predate the advent of modern comput-
ing. Informatics has always been a multidisciplinary science, blending computer 
science with biology and medicine. Reasonable people may inquire whether distin-
guishing such a hybrid as a science is needed, though this is reminiscent of parallel 
debates about epidemiology, which to some had merely coordinated clinical medi-
cine with biostatistics; few question the legitimacy of epidemiology as a distinct 
discipline today. Similarly, in the past decade, informatics, including clinical 
research informatics as a recognized subfi eld, has come into its own.  

  Keywords   History of clinical research  •  Digitalization of biomedical data  • 
 Information-intensive domain  •  Complexity of clinical research informatics  • 
 Computing capacity and information processing  •  Interoperable information  • 
 Complexity of design protocol      

   Historical Perspective 

 The history of clinical research, in the broadest sense of the term, is long and 
 distinguished. From the pioneering work of William Harvey to the modern  modalities 
of translational research, a common thread has been the collection and interpreta-
tion of information. Thus, informatics has played a prominent role, if not always 
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recognized as such. Accepting that an allowable defi nition of informatics is the 
processing and interpretation of information that permits analyses or inferencing, 
the science of informatics can and does predate the advent of modern computing. 

 Informatics has always been a multidisciplinary science, blending computer sci-
ence with biology and medicine. Reasonable people may inquire whether distin-
guishing such a hybrid as a science is needed, though this is reminiscent of parallel 
debates about epidemiology, which to some had merely coordinated clinical medi-
cine with biostatistics; few question the legitimacy of epidemiology as a distinct 
discipline today (nor biostatistics if I were to nest this discussion yet further). 
Similarly, in the past decade, informatics, including clinical research informatics as 
a recognized subfi eld, has come into its own. 

 Nevertheless, common understanding and this present text align informatics, 
applied to clinical research or otherwise, with the use of digital computers. So when 
did the application of digital computers overlap clinical research? This centers on 
one’s notion about the boundaries of clinical research, perhaps more a cultural issue 
than amenable to rational debate. For the purposes of this discussion, I will embrace 
the spectrum from physiological measurements to observational data on popula-
tions within the sphere of clinical research. 

   Analog Signal Processing 

 In its simplest form, the use of an analog measurement can be seen in the measure-
ment of distance with a ruler. While not striking most as a predecessor of clinical 
informatics, it does illustrate the generation of quantitative data. It is the emphasis 
on the quantifi cation of data that distinguishes ancient from modern perspectives on 
biomedical research. 

 The introduction of signal transducers, which enabled the transformation of a 
myriad of observations ranging from light, pressure, velocity, temperature, or 
motion into electronic signals, such as voltage strength, demarcated the transition 
from ancient to modern science. This represents yet another social transformation 
attributable to the harnessing of electricity. Those of us old enough to remember the 
ubiquitous analog chart recorder, which enabled any arbitrary voltage input to be 
continuously graphed over time, recognize the signifi cant power that signal trans-
duction engendered. 

 The ability to have quantifi ed units of physiologic signals, replete with their 
time-dependent transformations as represented on a paper graph, enabled the com-
putation, albeit by analog methods, of many complex parameters now taken for 
granted. These include acceleration constants, maximum or minimum measures, 
infl ection points, and a host of continuous data properties. These in turn enabled the 
creation of mathematical models that could be inferred, tested, validated, and dis-
seminated on the basis of continuous quantitative data. 

 Departments of physiology and biomedical research saw huge progress in 
the evolution and sophistication of physiologic models arising from increasing 
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quantities of continuous quantitative data over time. Early work invoking signal 
transduction and quantifi ed analog signals could be found in the 1920s but became 
much more common in the 1930s and was standard method in the 1940s and 1950s. 
This introduced unprecedented precision, accuracy, and reproducibility in biomedi-
cal research. 

 The novel capability of complex quantitative data capture, analysis, and utiliza-
tion presaged the next great leap in clinical informatics: the digitalization of data.  

   Digital to Analog Processors 

 The advent of digital signal processing, fi rst manifest in analog to digital converters, 
has fundamentally transformed clinical research. In effect, it is the marrying of 
quantitative data to computing capability. Digital to analog converters (DACs) take 
analog input, most typically a continuous voltage signal, and transform it into a 
digital number. Typically, the continuous signal is transformed into a series of num-
bers, with a specifi c time interval between the generation of digital “snapshots.” 

 DACs were fi rst practical during the Second World War, when they were experi-
mented with to carry telephonic signals over long distances without degradation. 
The telephony industry brought this capability into the civilian world, and commer-
cial DACs began to appear in the 1950s. At that time, the numerical precision was 
crude, ranging from 4 to 8 bits. Similarly, the frequency of digital number genera-
tion was relatively slow, on the order of one number per second. 

 The appearance of transistors in the 1960s, and integrated circuits in the 1970s, 
ushered in a period of cheap, reliable, and relatively fast DACs. While case reports 
exist of physiologic researchers using DACs in the 1950s, this did not become com-
mon practice until the cost and performance characteristics of this technology 
became practical in the early 1970s.  

   The Digitalization of Biomedical Data 

 The early 1970s was also coincident with the availability of affordable computing 
machinery for routine analysis to the same biomedical research community. Because 
DACs are the perfect partner for modern digital computing, supporting moderately 
high-bandwidth data collection from a myriad of information sources and signals, 
they enabled a practical linkage of midscale experimental data to computing storage 
and analysis in an unprecedented way. Prior to that time, any analysis of biomedical 
data would require key entry, typically by hand. Again, many of us can recall rooms 
of punch card data sets, generated by tedious keypunch machinery. 

 While it is obviously true that not all biomedical data or clinical informatics 
arose from transducer-driven DAC signals, the critical mass of biomedical data gen-
erated through digitalization of transducer-generated data culturally transformed 
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the expectation for data analysis. Prior to that time, small data tables and hand 
 computations would be publishable information. The advent of moderate-volume 
data sets, coupled with sophisticated analytics, raised the bar for all modalities of 
biomedical research. With the advent of moderate-volume data sets, sophisticated 
computing analytics, and model-driven theories about biomedical phenomenon, the 
true birth of clinical research informatics began.   

   Dimensions of Complexity 

 Informatics, by its nature, implies the role of computing. Clinical research informat-
ics simply implies the application of computational methods to the broad domain of 
clinical research. With the advent of modern digital computing, and the powerful 
data collection, storage, and analysis that this makes possible, inevitably comes 
complexity. In the domain of clinical research, I assert that this complexity has axes, 
or dimensions, that we can consider independently. Regardless, the existence and 
extent of these complexities has made inexorable the relationship between modern 
clinical research, computing, and the requirement for sophisticated and domain-
appropriate informatics. 

   Computing Capacity and Information Processing 

 Biomedical research and, as a consequence, clinical research informatics are by 
their nature within a profoundly information-intensive domain. Thus, any ability to 
substantially increase our capacity to process or manage information will signifi -
cantly impact that domain. The key-enabling technology of all that has been 
described in clinical research informatics is the advent of ever-increasing computa-
tional capabilities. This has been widely written about, but I submit its review is 
germane to this introduction. I will frame these advances in four dimensions: com-
putational power, network capacity, local memory, and data storage. 

   Computational Power 

 The prediction of Gordon Moore in 1965 that integrated circuit density would dou-
ble every 2 years is well known. Given increasing transistor capabilities, a corollary 
of this is that computing performance would double every 18 months. Regardless of 
the variation, the law has proved uncannily accurate. As a consequence, there has 
been roughly a trillion-fold increase in computing power over the last 50 years. The 
applications are striking; the supercomputing resources that national spies would 
kill each other to secure 20 years ago now end up under Christmas trees as game 
platforms for children.  
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   Network Capacity 

 Early computing devices were reliant on locally connected devices for input and 
output. The most primitive interface devices were plugboard or toggle switches that 
required human confi guration; the baud rates of such devices are perhaps  unimaginably 
slow. Today, 100-Gb network backbones are not uncommon, giving yet another tril-
lion-fold increase in computational capabilities.  

   Local Storage 

 Early computers used electromechanical relays later replaced by speedy vacuum 
tubes. The advent of the transistor, and subsequently the integrated circuit, enabled 
the dramatic reduction in space with an increase in density for local storage. It is 
clear that at least a trillion-fold increase in common local storage capability in terms 
of speed and size has been achieved.  

   Data Storage 

 The advent of high-density, high-performance disk drives, compared to early paper 
tape or punch card, yields perhaps the most dramatic increase in data processing 
capability and capacity. Petabyte drive complexes are not uncommon, and with the 
advent of cloud storage, there is no practical upper limit. For the purposes of this 
exercise, and to make a relatively round number, we can assert a 10 14  increase in 
data storage capacity. 

 Taken together, these advances total an approximate 10 50  increase in computa-
tional power (albeit we are cheating somewhat adding exponents, which is really 
multiplying in nonlogarithmic space) over the past 50 years. Regardless, there has 
been an astronomical increase in our ability and capacity to manage, process, and 
inference about data and information. In an information-intensive industry such as 
clinical research, the consequences cannot be other than profound.   

   Data Density 

 The most obvious dimension of    data complexity is its sheer volume. Historically, 
researchers would content themselves with a data collection sheet that might 
have been enumeration of subjects or objects of study, and at most a handful of 
variables. The advent of repeated measures, metadata, or complex data objects 
was far in the future, as were data sets that evolved from the scores to the 
thousands. 

 Today, it is not uncommon in any domain of biomedical research to fi nd vast, 
rich, and complex data structures. In the domain of genomics, this is most obvious 
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with not only sequencing data for the genome, but also the associated annotations, 
haplotype, pathway data, and sundry variants with clinical or physiological import, 
as important attributes. 

 This complexity is not unique to genomic data. Previously humble    clinical trial 
data sets now have highly complex structures, and can involve vectors of laboratory 
data objects each with associated normal ranges, testing conditions, and important 
modes of conclusion-changing metadata. Similarly, population-based observational 
studies may now have large volumes of detailed clinical information derived from 
electronic health records. 

 The historical model of relying on human-extracted or entered data is long past 
for most biomedical investigators. High data volumes and the asserted relationships 
among data elements comprise information artifacts that can only be managed by 
modern computing and informatics methods.  

   Design Complexity 

 Commensurate with the complexity of data structure and high volume is the nature 
of experimental design and methodology. Today, 10-way cross-fold validation, 
bootstrapping techniques for various estimates, exhaustive Monte Carlo simulation, 
and sophisticated experimental nesting, blocking, and within-group randomization 
afford unprecedented complexity in the design, specifi cation, and execution of mod-
ern-day protocols. 

 Thus, protocol design options have become inexorably intertwined with analytic 
capabilities. What was previously inconceivable from a computational perspective 
is now routine. Examples of this include dynamic censoring, multiphase crossover 
interventions, or imputed values.  

   Analytic Sophistication 

 Paralleling the complexity of design is the sophistication of analysis. As implied in 
the previous section, it is diffi cult to say which is causal; no doubt analytic capabili-
ties push design, as design innovations require novel analytic modalities. 

 The elegant progression from simple parameter estimation, such as mean and 
variance, to linear regressions, to complex parametric models, such as multifactorial 
Poisson regression, to sophisticated and nearly inscrutable machine learning tech-
niques such as multinodal neural networks, demonstrates exponentially more inten-
sive numerical methods demanding corresponding computational capacity. 
Orthogonal to such computational virtuosity is the iterative learning process now 
routinely employed in complex data analysis. It is rare that a complete analytic plan 
will be anticipated and executed unchanged for a complex protocol. Now,  preliminary 
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analysis, model refi nement, parameter fi tting, and discovery of confounding or 
effect modifi cation are routinely part of the full analysis process. The computational 
implications of such repeated, iterative, and computationally complex activities are 
entirely enabled by the availability of modern computing. Absent this transforma-
tive resource, and the commensurate informatics skills, modern data analysis and 
design would not be possible.   

   The Emergence of Big Science 

 What then are the consequences of unprecedented computational capabilities in 
an information-intensive enterprise such as clinical research? It is useful to  examine 
where this or similar activities have occurred previously. An evolutionary change 
for many disciplines is a transition from an exclusively independent-investigator-
driven suite of agendas across a discipline (small-science or bottom-up foci) to a 
maturation where interdependency of data and methods, multidisciplinary teams 
of talent and interest, and large-scale, cross-discipline shared resources, such 
as massive machines or databases, predominate (big-science or top-down 
coordination). 

   Evolution of Astronomy and Physics 

 The practice of modern astronomy relies upon large groups, large data sets, and 
strong collaboration between and among investigators. The detection of a supernova 
in a distant galaxy effectively requires a comparison of current images against his-
torical images, and excluding any likely wandering objects, such as comets. 
Similarly, the detection of a pulsar requires exhaustive computational analysis of 
very large radio telescope data sets. In either case, the world has come a long way 
from the time when a single man with a handheld telescope, in the style of Galileo, 
could make seminal astronomical discoveries. 

 In parallel, the world of high particle physics has become big science given its 
requirements for large cyclotrons, massive data-collection instrumentation, and vast 
computational power to interpret arcane data. Such projects and initiatives demand 
large teams, interoperable data, and collaborative protocols. The era of tabletop 
experiments, in the style of Rutherford, has long been left behind. 

 What is common about astronomy and physics is their widely recognized status 
as big science enterprises. A young investigator in those communities would not 
even imagine or attempt to make a signifi cant contribution outside the community 
and infrastructure that these fi elds have established, in part due to the resource 
requirements, but equivalently because of the now-obvious multidisciplinary nature 
of the fi eld.  
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   Biology and Medicine as a Socially Interdependent Process 

 I return to the assertion that biology and medicine have become information-inten-
sive domains. Progress and new discovery are integrally dependent on high-volume 
and complex data. Modern biology is replete with the creation of and dependency 
on large annotated data sets, such as the fundamental GenBank and its derivatives, 
or the richly curated animal model databases. Similarly, the annotations within and 
among these data sets constitute a primary knowledge source, transcending in detail 
and substance the historically quaint model of textbooks or even the prose content 
in peer-reviewed journals. 

 The execution of modern studies, relying as it does on multidisciplinary talent, 
specialized skills, and cross-integration of resources, has become a complex social 
process. The nature of the social process at present is still a hybrid across bottom-
up, investigator-initiated research and team-based, program project–oriented 
collaborations.  

   The Social Transformation of Clinical Research 

 The conclusion that biology and medicine, and as a consequence clinical research 
informatics, are evolving into a big-science paradigm is unavoidable. While this 
may engender an emotional response, the more rational approach is to understand 
how we as a clinical research informatics community can succeed in this socially 
transformed enterprise. Given the multidisciplinary nature of informatics, the clini-
cal research informatics community is well poised to contribute importantly in the 
success of this transformed domain. 

 A consequence of such a social transformation is the role of government or large 
foundations in shaping the agenda of the cross-disciplinary fi eld. One role of gov-
ernment, in science or any other domain, is to foster the long-term strategic view 
and investments that cannot be sustained in the private marketplace or the agendas 
of independent investigators. Further, it can encourage and support the coordina-
tion of multidisciplinary participation that might not otherwise emerge. In the 
 clinical trials world, the emergence of modest but infl uential forces such as 
  ClinicalTrials.gov     illustrates this role.   

   Standards 

 If biology and medicine, and by association clinical research informatics, are 
 entering a big-science paradigm, what does this demand as an informatics 
infrastructure? 

http://ClinicalTrials.gov
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   Comparable and Consistent Information 

 Given the information-intensive nature of clinical research informatics, the under-
lying principle for big science is the comparability and consistency of data. 
Inferencing across noncomparable information, by defi nition, cannot be done. 
Anticipating or accounting for inconsistent data representations is ineffi cient and 
nonscalable. The obvious conclusion is that within biology and medicine, a tangible 
contribution of clinical informatics is to ensure that genomic, clinical, and experi-
mental data conform to frameworks, vocabularies, and specifi cations that can sus-
tain interoperability.  

   Interoperable Systems and Constructs 

 The hallmark of big science, then, is interoperable information. The core of interop-
erable information is the availability and adoption of standards. Such standards can 
and must specify data relationships, content, vocabulary, and context. As we move 
into this next century, the great challenge for biology and medicine is the defi nition 
and adoption of coherent information standards for the substrate of our research 
practice. 

 The present volume outlines many issues that relate to data representation, infer-
encing, and standards—issues that are crucial for the emergence of large-scale sci-
ence in clinical research. Readers must recognize that they can contribute importantly 
through the clinical research informatics community to what remains an underspec-
ifi ed and as yet immature discipline. Yet there is already tremendous excitement and 
interest at the intersection between basic science and clinical practice, manifest by 
translational research, that has well-recognized dependencies on clinical research 
informatics. I trust that the present work will inspire and guide readers to consider 
and hopefully undertake intellectual contributions toward this great challenge.       
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  Abstract   Clinical research is an information and resource intensive endeavor, 
incorporating a broad variety of stakeholders spanning a spectrum from patients to 
providers to policymakers. Increasingly, the modern clinical research environment 
incorporates a number of informatics methods and technologies, informed by socio-
technical and information-theoretic frameworks. In this chapter, we introduce the 
major facets that serve to defi ne the clinical research setting, including the design of 
clinical studies, clinical research workfl ow, and information management needs 
incumbent to such activities. Throughout this review, we will provide a number of 
exemplary linkages to core biomedical informatics challenges and opportunities 
and the foundational theories and frameworks underlying such issues. Finally, this 
chapter places the preceding review in the context of a number of national-scale 
initiatives that seek to address such needs and requirements.  

  Keywords   Clinical research workfl ow  •  Clinical research funding  •  Clinical 
research information management needs  •  Design of informatics platforms  • 
 Common clinical research settings  •  Large-scale research consortia  •  Information 
management requirements      

 In this chapter, we describe the clinical research environment, including an 
 overview of common activities and processes, as well as the roles played by vari-
ous actors involved throughout the lifecycle of clinical studies, including inter-
ventional and observational study designs. This discussion summarizes information 
management requirements incumbent to the clinical research domain. This chap-
ter concludes with a review of the state of knowledge concerning clinical research 
workfl ow and communication patterns as well as prevailing trends in clinical 
research funding and the evolving range of settings in which clinical research is 
taking place. 

    P.  R.  O.   Payne ,  Ph.D   
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 This chapter is organized into three general sections describing:

    1.    The basic processes, actors, settings, and goals that serve to characterize the 
physical and sociotechnical clinical research environment.  

    2.    A framework of clinical research information management needs.  
    3.    The current understanding of the evolving body of research that seeks to charac-

terize clinical research workfl ow and communications patterns. This understand-
ing can be used to support the optimal design and implementation of informatics 
platforms in the clinical research environment.     

   Clinical Research Processes, Actors, and Goals 

 In the following section, we introduce broadly applicable processes, actors, and 
goals that serve to characterize the modern physical and sociotechnical clinical 
research environment. Taken as a whole, these components represent a complex, 
information-intensive enterprise that incorporates a broad variety of professionals 
and participants and what are nominally concurrent and tightly interrelated goals or 
objectives. Given such a challenging environment, the role of informatics in address-
ing potential barriers to the effi cient, effective, high-quality, and timely conduct of 
clinical research programs is an area of intensive and ongoing interest in the bio-
medical informatics community  [  1,   2  ] . 

   Common Clinical Research Processes 

 At a high level, the processes that comprise clinical research can be divided into 
eight general classes, as summarized below. Of note, we will place particular empha-
sis in this section on describing such processes relative to the conduct of interven-
tional clinical studies. However, similar processes generally apply to observational 
or retrospective studies, with the exception of processes related to the tracking and 
execution of study-related participant encounters. An example of such workfl ow 
components, relative to the context of an interventional clinical trial, is illustrated in 
Fig.  3.1 . Key processes include the following.  

   Identifying Potential Study Participants 

 This process usually involves either (1) the preencounter and/or point-of-care 
review of an individual’s personal characteristics and medical history in order to 
determine if they are potentially eligible for a given research study, given a pre-
scribed set of eligibility criteria concerned with those same variables, or (2) the 
identifi cation of a cohort of potential study participants from whom data can be 
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derived, via a  retrospective review of available data sources in the context of a set 
of defi ning parameters. In many cases, the data elements required for such activi-
ties are either incomplete or exist in unstructured formats, thus complicating such 
workfl ows. In many cases, potential participants are identifi ed partially and then 
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  Fig. 3.1    Interventional clinical trial phases and associated execution-oriented processes       
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referred for  further screening via interview or other similar mechanisms. Due to 
prevailing confi dentiality and privacy laws and regulations, if the individual per-
forming such eligibility screening is not directly involved in the medical care of 
a potential study participant, and eligibility is determined through secondary use 
of primarily clinical data, then the individual performing such screening must 
work in coordination with an individual who is involved in such medical care in 
order to appropriately communicate that information to a potential study 
participant.  

   Screening and Enrolling Participants in a Clinical Study 

 Once a potential participant is identifi ed, they are often subjected to additional 
interviews and/or testing in order to satisfy all applicable study eligibility crite-
ria. If they do so successfully, the participant is “enrolled” or “registered” in a 
study. (Note that both of these activities depend upon a documented informed 
consent process.) During this process, it is common for a study-specifi c enroll-
ment identifi er to be assigned to the participant. Of note, study staff usually 
maintain a set of records (often known as a “screening log”) that summarize 
numbers of potential participants who were identifi ed via such screening pro-
cesses and how many of those individuals were successfully enrolled in a given 
study.  

   Scheduling and Tracking Study-Related Participant Events 

 Once a participant has been identifi ed, screened, and enrolled in a study, they are 
usually scheduled for a series of encounters as defi ned by the study protocol calen-
dar. Sometimes, the scheduling of such events is suffi ciently fl exible (allowing for 
windows of time within which a given task or event is required to take place) that 
individuals may voluntarily adjust or modify their study schedule or calendar. Such 
participant- and study-specifi c calendars of events are tracked at multiple levels of 
granularity (e.g., from individual participants to large cohorts of participants enrolled 
in multiple studies) in order to detect individuals or studies that are “off schedule” 
(e.g., late or otherwise noncompliant with the required study events or activities 
specifi ed in the research protocol).  

   Executing Study Encounters and Associated Data Collection Tasks 

 For each task or activity specifi ed in a study protocol, there is almost always a 
 corresponding study encounter (e.g., visit or phone call), during which the 
required study activities will be executed and the resulting data collected using 
either paper forms (i.e., case report forms or CRFs) or electronic data capture (EDC) 
instruments.  
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   Ensuring the Quality of Study Data 

 Throughout a given study, research staff will usually engage in a continuous cycle 
of reviewing and checking the quality of study-related data. Such quality assurance 
(QA) usually includes reconciling the contents of CRFs or EDC instruments with 
the contents of supporting source documentation (e.g., medical records or other 
legally binding record keeping instruments). It is common for such QA checks to be 
triggered via automated or semiautomated reports or “queries” regarding inconsis-
tent or incomplete data that are generated by the study sponsor or other responsible 
regulatory bodies. (A more thorough characterization of data quality and quality 
assurance activities specifi c to clinical research is presented in Chap.   10    ).  

   Regulatory and Sponsor Reporting and Administrative Tracking/Compliance 

 Throughout the course of a study, there are often prescribed reports concerning study 
enrollment, data capture, and trends in study-generated data that must be submitted 
to regulatory agencies and/or the study sponsor. As was the case with study- encounter-
related data capture, such reports can be submitted on paper or electronically. In 
addition, for studies regulated by government agencies (such as the FDA) or local 
institutional review boards (IRBs), further study-related reporting requirements must 
be tracked and complied with, often using proprietary or locally developed reporting 
instruments or tools. A primary example of such tracking/compliance is the prepara-
tion, submission, and approval of Institutional Review Board (IRB) protocols that 
defi ne how participants will be recruited and enrolled in studies, and subsequently 
how data will be collected from them, and how any physical or other risks (such as 
those related to security and confi dentiality) are to be identifi ed, reported, and miti-
gated. Additional activities included in this particular class of processes include 
seeking and retrieving information related to study protocols and any changes (or 
amendments) made to those documents throughout the course of their execution.  

   Budgeting and Fiscal Reconciliation 

 At the outset of a study, throughout its execution, and after its completion, an ongo-
ing process of budgeting and fi scal reconciliation is conducted. The goal of these 
processes is to ensure the fi scal stability and performance of the study, thus making 
it possible to maintain necessary overhead and support structures in what is ideally 
a revenue or cost neutral manner.  

   Human Subjects Protection Reporting and Monitoring 

 As mentioned previously, compliance with human subjects related reporting and the 
monitoring of such compliance is a central part of the conduct of clinical research. 
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This type of compliance can include obtaining IRB or equivalent approval for a 
study protocol and its associated practices and the execution of informed consent (a 
process by which potential participants are informed of the nature of a study, its 
risks, and benefi ts, in a way that allows them to weigh such factors before volun-
tarily engaging in a study). In addition, suspected adverse events must be collected 
and reported periodically to the institutional, sponsor, and regulatory organizations. 
The defi nition of “reportable” adverse events can vary by protocol, sponsor, and 
institution and can include local events (called internal AEs) and those occurring at 
other research sites (called external AEs). Similarly, actions taken in response to an 
AE (e.g., an amendment to a protocol refl ecting changes or elimination of study 
procedures, adding new risks to informed consent documents) must be communi-
cated, documented, and tracked for compliance. 

 According to a recent study conducted by Khan and colleagues, the fi ve most 
common tasks performed by research staff during clinical studies are: (1) complet-
ing case report forms, (2) seeking study information, (3) completing EDC instru-
ments, (4) seeking general information (e.g., medical or other supporting information 
related to a study protocol), and (5) identifying potential clinical trial participants. 
In the same study, it was determined that the preceding tasks are most commonly 
performed using the following fi ve types of tools or approaches: (1) paper-based 
forms and information sources, (2) verbal communications, (3) computer-based 
information systems, (4) manual processes (e.g., reviewing or organizing informa-
tion sources), and (5) telephones  [  3  ] .   

   Common Clinical Research Actors 

 The clinical research environment can include a broad variety of actors fulfi lling 
multiple roles. Such actors can be classifi ed into six major categories, which apply 
across a spectrum from community practice sites to private-sector sponsors to aca-
demic health centers (AHCs) and ultimately to governmental and other regulatory 
bodies. In the following discussion, we will briefl y review the roles and activities of 
such actors, relative to the following six categories  [  4–  8  ] . 

   Patients and Advocacy Organizations 

 The fi rst and perhaps most important stakeholder in the clinical research domain is 
the patient, also known as a study participant, and as an extension, advocacy orga-
nizations focusing upon specifi c disease or health states. Study participants are the 
individuals who either (1) receive a study intervention or therapy, or (2) from whom 
study-related data are collected. Participants most often engage in studies due to a 
combination of factors, including:

   The availability of novel therapies as a result of participation, which may provide • 
better clinical or quality of life outcomes, and that are not available via standard-
of-care models  
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  The exhaustion of standard-of-care options for a given disease state, thus leaving • 
interventional clinical studies as the only viable treatment modality  
  A desire to support the advancement of the understanding of a specifi c uncharac-• 
terized or  under characterized disease or condition via an observational or natural 
history study, or the advancement of understanding of biological processes, life 
sciences more generally, or public health    

 Unfortunately, identifying participants who are motivated by one or more of the 
preceding factors, and that meet appropriate demographic or clinical criteria for 
enrollment in a study (e.g., eligibility or inclusion/exclusion criteria), is a diffi cult 
task. In fact, in a recent report, it was found that only 3% of the adult US population 
who could have participated in a clinical research study actually did so. Such low 
participation is a signifi cant impediment to our collective ability to advance the state 
of human health and disease treatments. It is also important to note in any discus-
sion of clinical research participants that family and friends play an equally impor-
tant role as the participants themselves, providing the encouragement, information, 
support, and environment that may lead to or support such individual’s participation 
in a given study  [  9–  12  ] . 

 As mentioned previously, patient advocacy organizations also play a major role 
in clinical research, largely through a combination of (1) promoting policy and 
funding initiatives intended to motivate and support clinical research efforts in tar-
geted disease states, and (2) providing a medium by which potentially large cohorts 
of study participants may be recruited. In recent years, patient advocacy organiza-
tions have been taking increasingly active roles in shaping the agenda of the clinical 
research community, especially in rare and genetic diseases  [  13,   14  ] .  

   Academic Health Centers 

 Any number of sites can serve as the host for a given clinical research program, 
including individual physician practices, for-profi t or not-for-profi t clinics and hospi-
tals, academic health centers (AHCs), colleges or universities, or community-based 
institutions such as schools and churches (to name a few of many examples). However, 
by far, the most common site for the conduct of clinical research in the United States 
is the AHC  [  15  ] . During the conduct of clinical studies, AHCs or equivalent entities 
may take on any number or combination of the following responsibilities:

   Obtaining local regulatory approval for a research study (e.g., IRB approval)  • 
  Identifying, screening, and enrolling or registering study participants  • 
  Delivery of study-specifi c interventions  • 
  Collection of study-specifi c data  • 
  Required or voluntary reporting of study outcomes and adverse events    • 

 As part of these responsibilities, study sites such as AHCs take on signifi cant 
fi scal and ethical liabilities and risks related to a studies aim and objectives. Such 
fi scal risks are most often times shared with study sponsors, while ethical liabilities 
must be mitigated through the provision and maintenance of appropriate training 
and oversight structures for site-specifi c investigators or research staff  [  7  ] . 
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 Within an AHC, it is common for clinical studies to be motivated by a champion, 
who most often serves as the study investigator. Such investigators take primary 
responsibility for the clinical, scientifi c, and ethical design and conduct of a study 
within their immediate or otherwise defi ned scope of control and infl uence (e.g., at 
a site, or across a network of sites in the cases of a study site and sponsor-affi liated 
investigator, respectively). Study investigators may be engaged in a number of 
study-related activities for a given clinical research program, including:

   Development of preclinical or other pilot data as required to support a studies • 
objectives and design  
  Authoring and approval of study protocol documents  • 
  Securing local or broader-scale regulatory and ethical approval  • 
  Interactions with study participants in order to either/or deliver study-based • 
interventions or collect study-related data elements  
  Analysis and reporting of study outcomes and adverse events  • 
  Analysis and reporting of data and knowledge generated during the course of a • 
study (both regulatory reporting and scholarly communication, such as articles 
or presentations)    

 In addition to these activities, investigators are also responsible for overseeing the 
activities of research staff involved in a study and ensuring that the actions of those 
staff comply with applicable best practices and regulatory or ethical frameworks. In 
some studies, investigators may also serve as a type of study sponsor, usually when 
the hypotheses or interventions being evaluated are the result of the investigator’s 
own scientifi c discoveries or research questions. We refer to such studies as being 
“investigator-initiated.” Most investigator-initiated studies are of a small scale and are 
funded using a combination of institutional and grant-related resources  [  4,   6,   7,   16  ] . 

 Another recurring feature of AHCs is the engagement of research staff in the 
conduct of studies. Such research staff can be either fully focused upon research 
activities or only partially focused on such efforts, depending on their organization 
and role. Examples of research staff members include research coordinators/associ-
ates/assistants, data managers, statisticians, nurses, allied healthcare professionals, 
and information technology professionals. Such individuals usually serve as inves-
tigator extenders, performing the detailed and day-to-day work required to satisfy 
the range of study-related tasks and activities attributed to investigators in the pre-
ceding discussion. There are numerous professional groups and certifi cations for 
such individuals, who normally serve as the true implementers of the vast majority 
of clinical research projects  [  4,   6,   7,   16  ] .  

   Clinical Research Organizations 

 Clinical research organizations (CROs) are agencies that administer and facilitate 
clinical research processes and activities, most often on a contract basis that is 
funded by the study sponsor. Such CROs often provide study monitoring or regula-
tory support (acting as a proxy for sponsors and/or regulatory bodies) as well as 
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study-specifi c research staffi ng relative to the conduct research encounters and/or 
manage study-related data sets. The use of CROs is most prevalent in studies 
involving multiple sites that must adhere to and administer a common research 
protocol across those sites. In this role, the CRO can ensure consistency of study 
processes and procedures and support participating sites, such as community-based 
practices, that may not nominally have the research experience or staff usually seen 
in AHCs  [  17  ] .  

   Sponsoring Organization 

 Sponsoring organizations are primarily responsible for the origination (except in the 
case of investigator-initiated clinical trials, as discussed earlier) and funding of clin-
ical research programs. Examples of sponsors include pharmaceutical and biotech-
nology companies, nonprofi t organizations, as well as government agencies, such as 
the National Institutes of Health. Sponsors may be responsible for some combina-
tion of the following tasks or activities during the clinical research lifecycle:

   Conducting preclinical studies (e.g., animal models, in silico evaluations) of • 
therapeutic interventions  
  Developing or securing therapeutic agents or devices that are appropriate for use • 
in human subjects  
  Preparing a study protocol, informed consent documents, and obtaining neces-• 
sary regulatory approvals  
  Identifying and engaging sites and/or investigators to execute a trial  • 
  Negotiation and funding of protocol contracts, grants, or other fi scal and opera-• 
tional agreements as required to scope, inform, and fund a given study  
  Training investigators concerning study procedures and activities  • 
  Coordinating and monitoring data collection, including the performance of data • 
quality assurance checking (often referred to as monitoring)  
  Preparation and submission of required or otherwise necessary reports concern-• 
ing trial activities, outcomes, and adverse events  
  Aggregation, analysis, and dissemination of study data, outcomes, and fi ndings    • 

 As can be surmised from the preceding exemplary list of sponsor tasks and activ-
ities, the nature of such items is broadly variable given the type of clinical research 
program being executed. For example, in the case of a trial intended to evaluate a 
novel therapy for a specifi ed disease state, a private-sector sponsor could be respon-
sible for all of the preceding tasks. (Any of which could theoretically be outsourced 
to a CRO.) In contrast, in the case of a epidemiological study being conducted by a 
government agency, such a sponsor may only be engaged in a few of these types of 
tasks and activities (e.g., preparing a protocol, identifying and engaging sites, fund-
ing participation, and aggregating or analyzing study results or fi ndings). Ultimately 
and in the vast majority of clinical research programs, the sponsor possesses the 
greatest fi scal or intellectual property “stake” in the design, conduct, and outcomes 
of a study  [  4,   6  ] .  
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   Federal Regulatory Agencies 

 Federal regulators are primarily responsible for overseeing the safety and legality of 
clinical research programs, given applicable legal frameworks, community-accepted 
best practices, and other regulatory responsibilities or requirements. Examples of 
federally charged regulators can include Institutional Review Boards (IRBs, who 
act as designated proxies for the DHHS relative to the application and monitoring of 
human subjects protection laws) as well as agencies such as the Food and Drug 
Administration (FDA). Such regulators can be responsible for numerous tasks and 
activities throughout the clinical research lifecycle, including:

   Approving clinical research studies in light of applicable legal, ethical, and best-• 
practice frameworks or requirements  
  Performing periodic audits or reviews of study data sets to ensure the safety and • 
legality of interventions or other research activities being undertaken  
  Collecting, aggregating, and analyzing voluntary and required reports concern-• 
ing the outcomes of or adverse events associated with clinical research 
activities    

 Broadly characterized, the overriding responsibility of regulators is to ensure 
the safety of study participants as well as monitor the adherence of study investi-
gators and staff with often times complex regulatory and ethical requirements that 
defi ne the responsible and appropriate conduct of a given research model or 
approach  [  4,   6  ] .  

   Healthcare and Clinical Research Information Systems Vendors 

 Software developers and vendors play a number of roles in the clinical research 
environment, including: (1) designing, implementing, deploying, and supporting 
clinical trial management systems and/or research-centric data warehouses that can 
be used to collect, aggregate, analyze, and disseminate research-oriented data sets; 
(2) providing the technical mechanisms and support for the exchange of data 
between information systems and/or sites involved in a given clinical research pro-
gram; and (3) facilitating the secondary use of primarily clinical data in support of 
research (e.g., developing and supporting research-centric reporting tools that can 
be applied against operational clinical data repositories associated with electronic 
health record systems). Given the ever-increasing adoption of information technol-
ogy (IT) in the clinical research domain, and the corresponding benefi ts of reduced 
data entry, increased data quality and study protocol compliance, and increased 
depth or breadth of study data sets  [  1,   18  ] , the role of such healthcare and clinical 
research information systems vendors in the clinical research setting is likely to 
increase at a rapid rate over the coming decades.  
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   Other Clinical Research Actors 

 Additional actors who play roles in the clinical research setting include the follow-
ing  [  19–  21  ] :

   Administrative managers/coordinators: Administrative managers and coordina-• 
tors are often responsible for multiple aspects of regulatory or sponsor reporting, 
administrative tracking/compliance, budgeting and fi scal reconciliation, and 
human subjects protection reporting and monitoring.  
  Data safety and monitoring boards (DSMBs): DSMBs are usually comprised of • 
individuals without a direct role in a given study, and who are charged with over-
seeing the safety and effi cacy of study-related interventions. The members of a 
DSMB are usually empowered to halt or otherwise modify a study if such factors 
are not satisfi ed in a positive manner. A related mechanism for patient safety 
oversight in observational research studies is the Observational Study Monitoring 
Board, OSMB.      

   Common Clinical Research Settings 

 As was noted in the earlier sections of this chapter, clinical research programs are 
most commonly situated in AHCs. However, such institutions are not the sole 
environment in which clinical research occurs. In fact, as will be discussed in 
greater detail in Sect.  3 , there are signifi cant trends in the clinical research com-
munity toward the conduct of studies in community practice and practice-based 
network (e.g., organized networks of community practice sites with share admin-
istrative coordinating processes and agents) settings as well as global-scale net-
works. The primary motivations for such evolution in the practice of clinical 
research include: (1) access to suffi ciently large participant populations, particu-
larly in rare diseases or studies requiring large-scale and diverse patient popula-
tions; (2) reduced costs or regulatory overhead; and (3) increasing access to 
study-related therapies in underserved or diffi cult to access communities or geo-
graphic environments  [  3,   4,   22–  25  ] .  

   Common Clinical Research Goals 

 In a broad sense, the objectives or goals of most clinical research programs can be 
stratifi ed into one or more of the design patterns summarized in Table  3.1 . These 
patterns serve to defi ne the intent and methodological approach of a given study or 
program of research.    
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   A Framework for Information Management Requirements 
in Clinical Research 

 In order to better understand the relationships between the information needs of 
clinical researchers and available informatics tools or platforms, it is helpful to con-
ceptualize the conduct of clinical research programs as a multiple-stage sequential 
model  [  1  ] . At each stage in this model, a combination of general-purpose, clinical, 
and research-specifi c IT systems may be utilized. Examples of general-purpose and 
clinical systems that are able to support the conduct of clinical research include:

   Literature search tools such as the National Library of Medicine’s PubMed can • 
be used to assist in conducting the background research necessary for the prepa-
ration of protocol documents  [  26–  30  ] .  
  Electronic medical records (EMRs or alternatively, Electronic Health Records or • 
EHRs) can be utilized to collect clinical data on research participants in a struc-
tured form that can reduce redundant data entry  [  31–  36  ] .  
  Data mining tools can be used in multiple capacities, including (1) determining • 
if participant cohorts meeting the study inclusion or exclusion criteria can be 

   Table 3.1    Summary of clinical research design patterns   

 Pattern description  Goals/objectives 
 Exemplary methodological 

approaches 

 Evaluation of the safety of a 
new or modifi ed therapy 

 Establish safety of therapy as 
prerequisite for effi cacy 
testing 

 Phase I clinical trial a  

 Evaluation of the effi cacy 
(ability to positively effect 
a targeted disease state) of 
a new or modifi ed therapy 

 Establish effi cacy of therapy 
relative to targeted disease 
state as prerequisite for 
comparison to existing 
therapies 

 Phase II clinical trial a  

 Comparison of new of 
modifi ed therapy to 
existing therapies 

 Establish benefi ts or equivalency 
of new or modifi ed therapy 
relative to existing therapies 

 Phase III clinical trial a  

 Observation of the longitudinal 
effects of a new, modifi ed, 
or existent therapy 

 Identify long-term effects of 
therapies and population level 

 Phase IV clinical trial a  

 Collection of observational 
data to identify clinical, 
behavioral, or other 
manifested phenomena of 
interest 

 Identify phenomena of interest 
that serve to inform basic 
science, clinical, or 
 population-level studies and 
interventions 

 Observational study 
 Ethnography 
 Surveys 
 Interviews 

 Collection of biospecimens 
and/or correlative clinical 
data 

 Identify and collect  biospecimens 
and data that can support 
retrospective studies and/or 
hypothesis generation 
activities 

 Biospecimen banking 
 Remnant tissue capture 

   a The gold standard for such methodological approaches is the randomized controlled trial ( RCT )  
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practically recruited given historical trends and (2) identifying specifi c partici-
pants and related data within existing databases  [  37–  39  ] . (Also see Chap.   15    )  
  Decision-support systems can be used to alert providers at the point of care that • 
an individual may be eligible for a clinical trial  [  39–  41  ] .  
  Computerized physician order entry (CPOE) systems, which collect data describ-• 
ing the therapies delivered to research participants, can be used in both partici-
pant tracking and study analyses  [  15,   33,   42  ] .    

 In addition to the preceding general-purpose and clinical systems, research- 
specifi c IT systems have been developed that include:

   Simulation and visualization tools can streamline the preclinical research process • 
(e.g., disease models) and assist in the analysis of complex data sets  [  43,   44  ] .  
  Protocol authoring tools can allow geographically distributed authors to collabo-• 
rate on complex protocol documents  [  45–  49  ] .  
  Participant screening tools can assist in the identifi cation and registration of • 
research participants  [  39,   41,   50  ] .  
  Research-specifi c web portals provide researchers with a single point of access • 
to research-specifi c documents and information  [  51–  53  ] .  
  Electronic data collection or capture tools (EDC) can be used to collect research-• 
specifi c data in a structured form and reduce the need for redundant and poten-
tially error-prone paper-based data collection techniques  [  33,   54–  56  ] .  
  Research-specifi c decision-support systems provide protocol-specifi c guidelines • 
and alerts to researchers, for example, tracking the status of participants to ensure 
protocol compliance  [  33,   49  ] .    

 Fundamentally, the ability to use IT in support of clinical research relies on the 
ability to collect, store, and analyze data in a computationally tractable format. 
Electronic Data Capture (EDC) is a broad label for tools that enable the capture of 
protocol-specifi c data elements in a structured manner, and is a vigorous and active 
area of commercial and open source software development. In a report published by 
Forrester Research as early as 2005, it was projected that the number of global clini-
cal trials utilizing EDC between 2001 and 2006 would see a 12-fold increase over a 
6-year period  [  57  ] . A more recent report published by CenterWatch in 2007 demon-
strated that 99% of surveyed sites ( n  = 103) were using EDC technologies for at least 
one of their active clinical studies, with 73%, 36%, and 2% of sites using EDC for 
at least 25%, 50%, or 100% of their active clinical studies, respectively  [  58–  61  ] .  

   Clinical Research Workfl ow and Communications 

 Despite the critical role of workfl ow in determining both operational effi ciencies 
and effective tactics for the deployment and adoption of information technology in 
the biomedical domain, there is a paucity of literature describing systematic clinical 
research workfl ow paradigms. However, a small body of literature does provide 
some insight into the basic workfl ows engaged in or experienced by clinical research 
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investigators and staff, and associated challenges and opportunities. In the following 
section, we will highlight a number of salient features of such fi ndings, in order to 
provide a general overview of prevailing clinical research workfl ow characteristics. 

   Workfl ow Challenges 

 There are a number of workfl ow challenges that serve to characterize the clinical 
research environment, including the four broad categories of such issues as sum-
marized below  [  3,   62,   63  ] . 

   Paper-Based Information Management Practices 

 As was noted previously, a majority of clinical research tasks and activities are 
completed or otherwise executed using some combination of paper-based infor-
mation management practices. As with all such scenarios involving the use of 
paper-based information management, inherent limitations associated with paper, 
including its ability to only be accessed by one individual at one time in one loca-
tion, severely limit the scalability and fl exibility of such approaches. Furthermore, 
in many clinical research settings, with the number of ongoing studies that regu-
larly co-occur, the proliferation of multiple paper-based information manage-
ment schemes (e.g., study charts, binders, copies of source documentation, faxes, 
print-outs) leads to signifi cant space and organizational challenges and 
ineffi ciencies.  

   Complex Technical and Communications Processes 

 In recent studies of clinical research workfl ow, it has been observed that most 
research staff conduct their activities and processes using a mixture of tools and 
methods, including the aforementioned paper-based information management sche-
mas, as well as telephones, computers, and other electronic mediums, as well and 
interpersonal (e.g., face-to-face) communications. The combined effects of such 
complex combinations of tools and methods is an undesirable increase in cognitive 
complexity and corresponding decreases in productivity, accuracy, and effi ciency, 
as described later in this chapter.  

   Interruptions 

 Again, as has been reported in recent studies, upwards of 18% of clinical research 
tasks and activities are interrupted, usually by operational workfl ow requirements 
(e.g., associated with the environment in which a study is occurring, such as a 
 hospital or clinic) or other study-related activities. Much as was the case with the 
preceding issues surrounding complex technical and communication processes, 
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such interruptions signifi cantly increase cognitive complexity, with all of the associ-
ated negative workfl ow and effi ciency implications.  

   Single Point of Information Exchange 

 One of the most problematic workfl ow challenges in the clinical research environ-
ment is the fact that, in many instances, a single staff member (most often a CRC) 
is the single point of research-related information management and exchange. In 
such instances, the physical and cognitive capacities, as well as availability of such 
individuals, serves as a primary rate limiting component of overall research produc-
tivity and workfl ow. This phenomenon is most often associated with the scarcity of 
individuals with the necessary training to conduct clinical research activities and/or 
the availability of funding and resources to support such positions.   

   Cognitive Complexity 

 As was briefl y introduced in the preceding discussion, many of the characteristics 
of the current clinical research environment lend themselves to increased cognitive 
complexity. At a high level, the concept of cognitive complexity refers to scenarios 
in which the frequent use of multiple methods and artifacts to accomplish a given 
task exceeds inherent human cognitive capacities for information retention and 
recall. In such instances, increased errors and reduced effi ciencies are usually 
observed. Ideally, such cognitive complexity is alleviated through the implementa-
tion or optimization of workfl ows and tools that minimize the need to switch 
between modalities and artifacts in order to accomplish a task  [  64–  67  ] . A small 
number of studies in the clinical research setting, including efforts focusing on clin-
ical trial management systems and, in particular, clinical trial participant calendar-
ing applications, have demonstrated that the use of rigorous, human-centered design 
principles can reduce cognitive complexity and increase the speed and accuracy of 
task completion in commonly occurring clinical study tasks and events (such as 
scheduling and/or rescheduling protocol related events)  [  68–  70  ] . However, the pro-
liferation of paper-based information management and manually-oriented work-
fl ows in the modern research environment, largely as a result of slow or incomplete 
information technology adoption, continues to preclude large-scale reengineering 
efforts intended to tackle the important problem of cognitive complexity.  

   Trends in Clinical Research Funding 

 In the preceding sections of this chapter, we have outlined the basic theories and 
methods that facilitate the design and conduct of clinical research programs, as well 
as the signifi cant actors and workfl ow characteristics that defi ne the domain and 
current state of clinical research practice. Throughout these discussions, we have 
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referenced emergent issues surrounding the funding and resources available to sup-
port such activities. In this section, we will explore this topic in more detail, touch-
ing on the emergence of notable large-scale research programs and consortia in the 
United States, as well the increasing situation of clinical research programs in com-
munity or international settings, instead of US-based academic health centers. 

   Large-Scale Research Consortia 

 We will use both the NCI-sponsored Cancer Biomedical Informatics Grid (caBIG) 
and NCRR-sponsored Clinical and Translational Science Award (CTSA) programs 
as exemplary cases of the evolution of the clinical research policy and funding, with 
an emphasis on their import relative to the conduct of biomedical informatics 
research and development:

   The caBIG program was launched in 2004 with the goal of developing an infra-• 
structure capable of enabling multisite research and data sharing spanning 
National Cancer Institute’s (NCI) funded centers in order to facilitate large-
scale efforts intended to facilitate distributed clinical research and to inform 
personalized healthcare delivery  [  71  ] .  Funding for the program had been 
reduced, but active development and support continues for platforms such as 
caGrid and caTissue Suite. The caBIG program developed a suite of data shar-
ing and analysis platforms capable of supporting such goals. Further, as has 
been noted by Dr. Kenneth Buetow, discussing the interplay between caBIG and 
the data management requirements inherent to the translational sciences: “The 
tools, standards, and infrastructure developed for the caBIG program can pro-
vide a comprehensive solution to many of these data management issues”  [  71  ] . 
A number of characteristics of the caBIG program should be noted, including 
the (1) pursuit of an architectural model developed and overseen by a project-
specifi c cadre of informaticians, (2) an explicit focus on modeling and repre-
senting current and desirable research workfl ows, and (3) an explicit attempt to 
make the model and subsequent tools applicable to disease research outside of 
oncology. 
The CTSA program, which began in 2006, seeks to establish a network of aca-• 
demic health centers (AHC), each with a scholarly home for the clinical and 
translational sciences. As has been stated by former National Institutes of Health 
(NIH) Director, Dr. Elias A. Zerhouni: “The development of this consortium 
represents the fi rst systematic change in our approach to clinical research in 
50 years. Working together, these sites will serve as discovery engines that will 
improve medical care by applying new scientifi c advances to real-world prac-
tice”  [  72  ] . A critical component of the CTSA program is the creation of infor-
matics infrastructure and services for use by the research community at recipient 
organizations. Such efforts at most CTSA sites have focused on areas such as: 
training, consultative services, database design/hosting and data warehousing, 
data sharing infrastructure, and the execution of complex data analyses. The 
CTSA program was explicitly designed to integrate different parts of the research 
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process (from basic science to study conceptualization and design, to clinical 
research, to application of fi ndings). There are also explicit provisions for educa-
tion of clinical researchers, enhanced communication and collaboration across 
all actors in the research process, and the specifi cation of a new breed of scien-
tists called  translational scientists .    

 Both the caBIG and the CTSA programs can be broadly categorized as affecting 
the availability of resources to support clinical research and clinical research infor-
matics as follows:

   Resources and funding availability are focused on a small number of centers of • 
excellence and associated with the need to satisfy high-level requirements defi ned 
by funding programs and policies put in place by governmental agencies and 
legislators.  
  An emphasis is being placed on the design and use of modular components capa-• 
ble of enabling networks or networks, intended to provide for increased speed 
and economies of scale in the clinical research setting.  
  Informaticians are primarily focused on providing information management ser-• 
vices, with formative clinical research informatics research and development 
occurring as a secondary or indirect objective of such requirements and funding 
mechanisms.     

   Research in Community Practice and International/Global Settings 

 Beyond the preceding movement toward large-scale, government funding CRI 
research, and development efforts, there is an orthogonal movement toward the con-
duct of clinical research in settings beyond the traditional AHC, including commu-
nity practice and international environments. Such a movement has signifi cant 
implications for the CRI domain, as it represents a shifting target for the living labo-
ratory in which such efforts are situated, as summarized below:

   Community Practice Settings: Increasingly, both private- and public-sector study • 
sponsors are engaging community-based practice sites to conduct clinical stud-
ies. Such engagement is primarily motivated by the high fi nancial and adminis-
trative overhead imposed by AHCs as well as the need to access increasingly 
broad audiences of potential participants for large-scale or otherwise diffi cult to 
conduct clinical studies. A primary vehicle of providing such community engage-
ment is the Practice-Based Research Network (PBRN) or equivalent organiza-
tions, in which a centralized administrative body facilitates overall study 
operations at a distributed network of small- to medium-scale community prac-
tices. An example of this is a variety of Oncology Networks (e.g., CCOP) funded 
by the National Cancer Institute. With this shift in setting, the engagement of 
community practices in the design and evaluation of CRI platforms is becoming 
increasing critical. It is likely that this trend will continue for the foreseeable 
future  [  22–  25,   73  ] . Advances in information technology in past few decades that 
now facilitate distributed communication and collaboration (e.g., teleconference, 
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e-mail of documents and images, facsimile transmission of data) have created an 
environment that can better support distributed clinical research.  
  International Settings: In addition to the movement of clinical research programs • 
into community practice settings, there is a simultaneous effort underway to con-
duct many large-scale or early-phase clinical studies in international settings. 
One of the most common themes in this regard is the movement of clinical trials 
to what are known as the BRIC countries, namely, Brazil, India, and China. 
Recent reports have demonstrated increased participant recruitment and study 
completion rates, as well as lower costs and comparable data quality to that seen 
in US AHC-based trials from studies conducted in BRIC settings. This trend has 
the potential to signifi cantly shift the focus of cutting-edge clinical research away 
from the USA, with its complex legal, regulatory, and funding environments. 
Such a shift would require a signifi cant change in focus for the CRI community 
within the USA, Canada, the European Union, and Japan, none of which have 
traditionally conducted research or development activities in BRIC countries. 
Furthermore, the movement of clinical research originating in the USA to inter-
national settings introduced a broad variety of legal and ethical challenges, 
largely revolving around the harmonization of local, regional, national, and inter-
national norms and standards for research practices. These challenges represent 
yet another dimension of the challenges facing CRI in light of this shifting direc-
tion in clinical research conduct  [  74–  77  ] .       

   Discussion 

 As stated in the introduction to this chapter, the primary learning objectives to be 
addressed were associated with following three aims:

    1.    To describe the basic processes, actors, settings, and goals that serve to charac-
terize the modern physical and sociotechnical clinical research environment  

    2.    To introduce a framework of clinical research information management needs  
    3.    To summarize the current state of an evolving body of research and knowledge 

that seeks to characterize clinical research workfl ow and communications pat-
terns, in order to support the optimal design and implementation of informatics 
platforms in the clinical research environment     

 We have addressed these objectives and aims by reviewing common processes, 
actors, settings, and goals that characterize the contemporary clinical research envi-
ronment. We have also introduced a conceptual model by which the information 
needs incumbent to the clinical research domain can be satisfi ed by a combination 
of general-purpose and research-specifi c information systems. Finally, we have 
introduced the major workfl ow activities and challenges that exist in the clinical 
research setting, as well as prevailing trends in funding policy and clinical study 
conduct. Taken as a whole, this overview should equip readers with a solid ground-
ing by which they can place the content in the remainder of this text in context. 
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Furthermore, this background should serve as the basis for educating CRI research-
ers and professionals about the basics of clinical research design and practice, thus 
catalyzing their acculturation to this critical and rapidly evolving domain.      
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  Abstract   This chapter focuses on clinical experiments, discussing the phases of 
the pharmaceutical development process. We review the conceptual framework and 
classifi cation of biomedical studies, and look at their distinctive characteristics. 
Biomedical studies are classifi ed into two main categories: observational and exper-
imental, which are then further classifi ed into subcategories of prospective and ret-
rospective, and community and clinical, respectively. We review the basic concepts 
of experimental design, including defi ning study samples and calculating sample 
size, where the sample is the group of subjects on which the study is performed. 
Choosing a sample involves both qualitative and quantitative considerations, and 
the sample must be representative of the population under study. We then discuss 
treatments, including those that are the object of the experiment (study treatments) 
and those that are not (concomitant treatments). Minimizing bias through the use of 
randomization, binding, and  a priori  defi nition of the statistical analysis is also 
discussed. Finally, we look at how adaptive clinical trials can shorten the time and 
reduce the cost of classical research programs. Such adaptation strategies are rela-
tively new in clinical research and allow for modifi cation of the sample size, adjust-
ing study duration, and other changes.  

  Keywords   Phase I, II, III, and IV trials  •  Classifi cation of biomedical studies  
•  Observational study  •  Experimental study  •  Equivalence/non-inferiority studies  
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   The Development of Pharmaceuticals: An Overview 

 The development of a pharmacological agent (preventive, diagnostic, or therapeu-
tic) from start to fi rst launch on the market typically lasts in excess of 10 years, at 
times considerably longer, and thereafter continues throughout its life cycle, often 
for decades postmarketing  [  1  ]  (See Chap.   19    ). 

 Clinical experiments, the focus of this chapter, are preceded by many years of 
preclinical development. In very broad terms, the preclinical development process 
can be summarized in a sequence of seven phases  [  2  ] :

    1.    Screening of thousands of active compounds by means of biological assays.  
    2.    Selection of the lead compound.  
    3.    Synthesis and physicochemical characterization of the lead compound.  
    4.    Formulation of the drug product, consisting of drug substance, excipients, and 

delivery system.  
    5.    Scale-up of production and quality control.  
    6.    Toxicology experiments.  
    7.    Preclinical pharmacology, which includes pharmacokinetics (what the body does to 

the drug: absorption, distribution, metabolism, and excretion – ADME) and phar-
macodynamics (what the drug does to the different organs and body systems).     

 There is a considerable chronological overlap between phases with multiple iter-
ations and parallel activities, many of which continue well into the clinical stages. 
As the clinical experiments proceed and the level of confi dence on the potential of 
a new compound grows, experiments also proceed in many non-clinical areas, from 
toxicology to production, becoming increasingly complex, in preparation for the 
more advanced clinical phases and fi nally for commercialization. 

 Conventionally, the clinical development process is divided into four phases, 
referred to as Phases I, II, III, and IV.  Phase I  begins with the fi rst administration of 
the compound to humans. The main objectives of Phase I investigation are twofold:

    1.    Obtain indications on the safety and tolerability of the compound over a wide 
range of doses.  

    2.    Study its pharmacokinetics in humans. 

 Whereas traditionally Phase I is conducted in healthy volunteers, increasingly 
Phase I is carried out directly in patients. Then, a third objective is added:  

    3.    Obtain preliminary pharmacodynamic indications.     

  Phase II  studies are carried out on selected groups of patients suffering from the 
disease of interest, although patients with atypical forms and concomitant diseases 
are excluded. Objectives of Phase II are:

    1.    Demonstrate that the compound is active on relevant pharmacodynamic end-
points ( proof of concept ).  

    2.    Select the dose (or doses) and frequency of administration for Phase III (dose 
fi nding).  

    3.    Obtain safety and tolerability data.     
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 Sometimes Phase II is divided further into two  subphases : IIa, for proof of 
 concept; IIb, for dose-fi nding. 

 The aim of  Phase III  is to demonstrate the therapeutic (or preventive or diag-
nostic) effi cacy, safety, and tolerability of the drug in a representative sample of 
the target population, with studies of suffi ciently long duration relative to the 
treatment in clinical practice. The large Phase III studies, often referred to as  piv-
otal  or  confi rmatory , are designed to provide decisive proof in the registration 
dossier. 

 All data generated on the experimental compound, from the preclinical stage to 
Phase III, and even Phase IV (see below), when it has already been approved in 
other countries, must be summarized and discussed in a logical and comprehensive 
manner in the  registration dossier , which is submitted to health authorities as the 
basis for the request of approval. The last 25 years have seen a large international 
effort to harmonize the requirements and standards of many aspects of the registra-
tion documents. Such efforts became tangible with the guidelines of the International 
Conference on Harmonization (ICH) (  www.ich.org    ). These are consolidated guide-
lines that must be followed in the clinical development process and the preparation 
of the registration dossiers in all three regions contributing to ICH: Europe, the 
United States, and Japan. With regard to the registration dossier, the ICH process 
culminated with the approval of the Common Technical Document (CTD). The 
CTD is the common format of the registration dossier recommended by the European 
Medicines Agency (EMA), the US Food and Drug Administration (FDA), and the 
Japanese Ministry of Health, Labour and Welfare (MHLW). The CTD is organized 
in fi ve modules, each composed of several sections. Critical for the clinical docu-
mentation are the Effi cacy Overview, the Safety Overview, and the Conclusions on 
Benefi ts and Risks. The overviews require pooling of data from multiple studies 
into one or more integrated databases, from which analyses on the entire population 
and/or on selected subgroups are carried out. In the assessment of effi cacy, this may 
be done for special groups such as the elderly or subjects with renal or hepatic 
impairment. In the assessment of safety and tolerability, large integrated databases 
are critical for the evaluation of infrequent adverse events and for subgroup analyses 
by age, sex, race, dose, etc. The merger of databases coming from different studies 
requires detailed planning at the beginning of the project. The more complete the 
harmonization of procedures and programming conventions of the individual stud-
ies, the easier the fi nal pooling. On the other hand, the lack of such harmonization 
will necessitate an extenuating ad hoc programming effort at the end of the develop-
ment process, which will inevitably require a number of arbitrary assumptions and 
coding decisions. In some cases, this can reduce the reliability of the integrated 
database. 

 Clinical experimentation of a new treatment continues after its approval by 
health authorities and launch onto the market. Despite the approval, there are 
always many questions awaiting answers.  Phase IV  studies provide some of the 
answers. The expression  Phase IV  is used to indicate clinical studies performed 
after the approval of a new drug and within the approved indications and restric-
tions imposed by the Summary of Product Characteristics (also known as the 
Package Insert). 

http://www.ich.org
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 The sequence of clinical development phases briefl y described above is an over-
simplifi cation, and many departures occur in real life. For example, Phases I and II 
are frequently combined. Phases II and III may also be merged in an adaptive design 
trial (described later). Further, the so-called cytotoxic drugs used in oncology have 
many peculiarities in their clinical development, mainly concerning Phases I and II. 
These differences are determined mostly by the toxicity of these compounds, even 
at therapeutic or subtherapeutic doses, combined with the life-threatening nature of 
the diseases in question. 

 As mentioned above, the clinical development process for a new diagnostic, pre-
ventive, or therapeutic agent is extremely long and the costs correspondingly high, 
often exceeding 10 years and 800 million USD, respectively  [  3  ] . Therefore, faster 
and cheaper development has always been a key objective for pharmaceutical com-
panies, academic institutions, and regulatory agencies alike. Clearly, there is no 
magic solution, and no method is universally applicable. However, new method-
ological and operational solutions have been introduced, which contribute in selected 
situations to reducing the overall time of clinical development and/or lowering 
costs. Among the most effi cient  acceleration tools  are the following:

   Simulations, which are statistical techniques aimed at evaluating the conse-• 
quences of a variety of assumptions, i.e., answering “what happens if…” ques-
tions. Simulations are used for many purposes, including detection of bias, 
comparison of different study designs, and evaluation of the consequences of 
different decision-making rules in determining the success or failure of a study 
or an entire study program.  
  Strategies that combine different phases of development, mainly Phases II and • 
III, such as adaptive designs (described later).  
  Technological innovations such as electronic data capture (EDC), which allows • 
data entry directly by the study staff at the site into a central database without the 
intermediate step of traditional paper case report forms (CRFs) or even direct 
download from measurement instruments into the central database without any 
manual intervention.  
  Special regulatory options made available for the very purpose of accelerating • 
clinical development of lifesaving and essential treatments. Prominent among these 
are the  Treatment IND  (FDA) and the  mock application  (EMA) for the approval of 
vaccines in pandemic situations, such as the recent H1N1  swine fl u  pandemic.     

   Conceptual Framework and Classifi cation of Biomedical Studies 

   Variability of Biological Phenomena 

 All biological phenomena as we perceive them are affected by variability. The over-
all goal of any biomedical study is to separate the effect related to an intervention 
(the  signal ) from the background of variability of biological phenomena unrelated 
to the intervention  [  1 , Chap.   1     ] . 
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 Variability of biological phenomena can be divided into three main components:

    1.     Phenotypic variability , i.e., differences between individuals at a given point in 
time.  

    2.     Temporal variability , i.e., changes in a given individual over time. Temporal 
variability can be predictable and cyclical (e.g., hormonal changes during the 
menstrual cycle), predictable and non-cyclical (e.g., age-related changes of 
height), or erratic and unpredictable. An element of unpredictability is always 
superimposed to any biological phenomenon undergoing predictable temporal 
changes; for example, the hormonal changes during the menstrual cycle, although 
predictable quantitatively and chronologically, can still be very different from 
month to month.  

    3.     Measurement - related variability , due to the use of measurement instruments. 
External phenomena exist for us only to the extent they are detected by our senses 
and understood by our intellect. To understand an external phenomenon, we fi rst 
have to recognize it and then measure it. Measurement is the process of assigning 
a quantity and/or symbol to a variable according to a predefi ned set of rules. The 
set of rules is often implicit: for example, the statement “my friend Ann died 
young at age 40” implies the assignment of a quantity ( young ) to Ann’s age at the 
time of death, based on the implicit rule that the  normal  time of death is much 
later than age 40, say, 85 or more. In scientifi c measurements, the set of rules is 
explicit and defi ned by the measurement scale used. Variability related to the 
measuring process becomes an integral part of the variability of biological phe-
nomena as we perceive them. Errors made in the process of measuring can be of 
two types: random and systematic.

   A  • random error  generates measurements that oscillate unpredictably about 
the true value. Example: rounding off decimals from two digits to one.  
  A  • systematic error , also referred to as  bias  or distortion, generates measure-
ments that differ from the true value always in the same direction. Example: 
measuring weight with a scale that is not correctly calibrated and therefore 
always underestimates (or overestimates) weight.        

 Both random error and bias have an impact on the reliability of results of bio-
medical studies. Random error causes greater variability. This can be rescued to 
some extent by increasing the sample size of a study. Bias simulates the treatment 
effect. This cannot be rescued: bias can only be prevented by a proper design of the 
study (see below).  

   Biomedical Studies: Defi nitions and Classifi cation 

 Biomedical studies are experiments with the objective of establishing a relation-
ship between a characteristic or intervention and a disease or condition. The rela-
tionship of interest is one of cause-effect. The element which makes the 
biomedical studies different from deterministic experiments is the variability of 
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the phenomenon under study. As mentioned above, all methods and techniques 
used in biomedical studies have the overall goal of differentiating a true cause–
effect relationship from a spurious one, due to the background noise of biological 
variability. 

 Biomedical studies must have four critical distinctive characteristics:

    1.    Rationale, methods, and conclusions must be based on comparisons between 
groups of subjects.  

    2.    The groups of subjects between which comparisons are made must be homoge-
neous, i.e., must have similar distribution of important demographic and clinical 
characteristics.  

    3.    An adequate probabilistic model “tailored” exactly to the problem under study 
must allow the conclusions from the specifi c study to be applied to the underly-
ing population (inference).  

    4.    All aspects of the study must be planned in advance, in most cases before the 
study starts, and in all cases before the data are analyzed.     

 Biomedical studies can be classifi ed as shown in Fig.  4.1   [  1  ] . Medical studies are 
the subset of biomedical studies which involve human subjects. These studies are 
classifi ed in two main categories: observational and experimental.  

Biomedical studies

Medical studies

Experimental studies

Community
trials

Clinical
trials

Prospective
studies

Retrospective
studies

Observational studies

  Fig. 4.1    Classifi cation of biomedical studies (Adapted from Bacchieri and Della Cioppa  [  1  ] , with 
kind permission of Springer Business + Science Media)       
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   Observational Studies 

 In observational studies, also referred to as epidemiological studies, the association 
between a characteristic and an event is investigated without any type of interven-
tion. When the entity of the association is relevant, a causal relationship is assumed. 
The characteristic being studied can be a pharmacological treatment or a demo-
graphic, behavioral or environmental factor. The event can be the occurrence or 
recrudescence of a disease, hospitalization, death, etc. If the characteristic modifi es 
the event in a favorable way, it is called  protective factor ; if it modifi es the event in 
a negative way, it is called  risk factor   [  4  ] . 

 There are two main types of design for observational studies: prospective 
(or cohort) and retrospective (or case control)  [  1 , Chap.   3     ] . In  prospective studies , 
subjects are selected on the basis of the presence or absence of the characteristic. 
Prospective studies are also referred to as cohort studies. In a prospective study, the 
researcher selects two groups of subjects, one with the characteristic under study 
(exposed), the other without (non-exposed). For example, exposed could be subjects 
who are current cigarette smokers and non-exposed those who never smoked ciga-
rettes or have quit smoking. With the exception of the characteristic under study, the 
two groups should be as similar as possible with respect to the distribution of key 
demographic features (e.g., age, sex, socioeconomic status, health status). Each 
enrolled subject is then observed for a predefi ned period to assess if, when, and how 
the event occurs. In our example, the event could be a diagnosis of lung cancer. 
Prospective studies can be classifi ed based on time in three types:  concurrent  (the 
researcher selects exposed and non-exposed subjects in the present and prospec-
tively follows them into the future);  non - concurrent  (the researcher goes back in 
time, selects exposed and non-exposed subjects based on exposure in the past, and 
then traces all the information relative to the event of interest up to the present); and 
 cross - sectional  (the researcher selects subjects based on the presence/absence of the 
characteristic of interest in the present and searches the event in the present). 

 In  retrospective studies , subjects are selected on the basis of the presence or 
absence of the event. Retrospective studies are often referred to as case-control 
studies. In a retrospective study, the researcher selects two groups of subjects, one 
group with the event of interest (cases), the other without (controls). In order to 
ensure homogeneity of the study groups, each case is often matched to one or more 
controls for a few key demographic features (e.g., sex, age, ethnicity). In our exam-
ple, cases would be subjects with a diagnosis of lung cancer; each case would be 
matched with one or more controls, similar for important characteristics, for exam-
ple, sex, age, work exposure to toxic air pollutants, and socioeconomic status. The 
medical history of each enrolled subject is then investigated to see whether, during 
a predefi ned period of time in the past, he/she was exposed (and when and how 
much) to the characteristic under study, in our example cigarette smoking. 

 Retrospective studies can be classifi ed based on time in two types:  true 
 retrospective  (the researcher selects the subjects with and without the event and 
goes back in time to search for exposure) and  cross - sectional  (the researcher selects 
subjects based on the presence/absence of the event but limits the investigation 
about the exposure to the present).  
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   Experimental Studies 

 In experimental studies, the researcher has the control of the conditions under 
which the study is conducted. The intervention, typically a therapeutic or preven-
tive treatment, also referred to as an experimental factor, is not simply observed; 
the subjects are assigned to it by the researcher, generally by means of a procedure 
called  randomization  (see below). The assignment of the intervention to the study 
subjects can be done by groups of subjects (community trial) or, more frequently, 
by individual subject (clinical trial). Many other factors besides the experimental 
factor can infl uence the study results. These are referred to as subexperimental 
factors. Some are known (e.g., age, sex, previous or concomitant treatments, study 
site, degree of severity of the disease), but most are unknown. In experimental 
studies, the investigator not only controls the assignment of the experimental fac-
tor but also attempts to control as much as possible the distribution of subexperi-
mental factors, by means of: (a) randomization; (b) predefi ned criteria for the 
selection of study subjects (inclusion/exclusion criteria); (c) precise description, 
in the study protocol, of the procedures to which study subjects and investigators 
must strictly adhere; and (d) use of specifi c study designs (see below). Nevertheless, 
subexperimental factors, known and unknown, cannot be fully controlled by the 
above mentioned techniques. The infl uences that these uncontrollable factors 
exercise on the study results are collectively grouped in a global factor referred to 
as  chance . 

 There are two main types of design for experimental studies: between-group and 
within-group.

    1.    In  between-group studies , different subjects are assigned to different treat-
ments. The conclusions are drawn by comparing independent groups of sub-
jects. The most important design of this class is the randomized parallel group 
design.  

    2.    In  within-group studies , different subjects are assigned to different sequences of 
treatments, i.e. each subject receives more than one treatment. The conclusions 
are drawn by comparing subjects with themselves. The most important design of 
this class is the randomized crossover design.     

 In the rest of this chapter, we will focus on clinical trials, which are the most 
commonly used type of experimental studies.   

   The Logical Approach to defi ning the Outcome of a Clinical Trial 

 Let us assume we are the principal investigator of a clinical trial evaluating two 
treatments against obesity: A (experimental treatment) vs. B (control treatment). 
The sample size of the trial is 600 subjects (300 per treatment group). The primary 
outcome variable (or end-point; see below), as defi ned in the protocol, is the weight 
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expressed in kilograms after 1 month of treatment and is summarized at the group 
level in terms of mean. After over 1 year of hard work to set up the trial, recruit the 
patients, and follow them up, results fi nally come. These are as follows:

   Experimental treatment (A), mean weight: 104 kg  • 
  Control treatment (B), mean weight: 114 kg    • 

 To simplify matters, we assume no imbalance of the average weight of the sub-
jects at baseline and ignore the variability of the measurements, expressed by the 
standard deviation (clearly, in real life, both aspects are considered in the analysis 
and interpretations of results). After only 1 month of treatment, the group receiving 
the new treatment lost on average 10 kg, compared to the group receiving the tradi-
tional treatment. Clearly, investigators would rejoice at this fi nding. We want to 
believe that the observed difference is attributable to the new treatment and that we 
are on the verge of an important advancement in the management of obesity. 

 Unfortunately, this is not necessarily the case. In fact, three factors may contrib-
ute to different degrees to the observed difference: chance, bias, and treatment. The 
fi rst two must be ruled out with a reasonable degree of certainty before attributing 
the outcome to the treatment. 

 The fi rst question when confronting any observed difference between treatment 
groups must always be: can  chance  be the main reason for the observed difference? 
In clinical trials, the answer is given by a properly conducted statistical analysis. 
The famous  p  value expresses the probability of obtaining a difference as large as 
the one observed, or even larger, simply by chance, i.e., under the hypothesis of no 
true difference between groups ( null  hypothesis). If this probability is lower than a 
predefi ned (and totally arbitrary) threshold, traditionally fi xed at 5% ( p  < 0.05), then 
the likelihood of chance being responsible for the result is considered small enough 
to be dismissed. Thus, the null hypothesis is rejected, and the alternative hypothesis 
of a true difference between groups is accepted. 

 Once chance is ruled out, the second question must be asked: can bias be the 
main reason for the observed difference? Bias is a systematic error that always 
favors one group over the other, thus potentially simulating a treatment effect. If two 
different scales were used for the two treatment groups, and the scale used for group 
A was malfunctioning and underestimating weight by 5–15 kg, then the observed 
difference between group A and group B would not be due to a treatment effect, but 
to a measurement effect. This would be a typical, easily detectable example of bias. 
In most cases, the infl uence of bias is much more subtle and diffi cult to detect. The 
antidote against bias is in the study design features, including randomization and 
blinding (see below). In our example, clear rules on the validation and use of the 
scale(s), should be given in the protocol. The expert investigator will be reassured 
or concerned on the potential impact of bias by a careful review of the trial design 
and the way it was implemented. In addition, mathematical procedures exist to help 
detect bias. 

 Only after chance and bias have been excluded with reasonable certainty can the 
observed difference be attributed to the treatment. However, the logical approach to 
interpreting the study results is not over yet. A third and crucial question must be 
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asked: is the observed treatment effect clinically or biologically meaningful? The 
clinically meaningful difference is an essential ingredient in the calculation of the 
sample size of a properly designed clinical trial. However, not all trials have a proper 
sample size calculation, and in any case, the choice of the threshold for clinical 
signifi cance (superiority margin) is a highly subjective one. Biomedical journals are 
full of statically signifi cant results of well-conducted trials which are of question-
able clinical relevance.   

   Defi ning the Treatment Effect: From Measurement to Signal 

 The defi nition of the effect of a treatment is a conceptually complex process that 
starts with defi ning the aspects of interest of the disease and then proceeds in pro-
gressive steps to defi ne, for each aspect of interest, the measurements to be per-
formed on each patient, the variable that summarizes the measurements at the 
individual patient level (end-point), the variable that summarizes the measurements 
at the group level (group indicator), and, fi nally, the overall effect expressed in com-
parative terms between two treatment groups (signal)  [  1  ] . 

 This process has several key contributors including physicians/biologists, statis-
ticians, and regulatory, marketing, and pharmacoeconomic experts. 

 An example will help to understand the many choices that the researchers 
must make in this process. Suppose we are planning a clinical trial testing a new 
antihypertensive agent. The main objective of the study is to show the blood 
pressure lowering capacity of the new agent (as opposed, e.g., to showing its 
impact on clinical outcomes such as myocardial infarction or stroke, a much 
more formidable task). We focus here on the main (primary) objective of the 
trial, but clearly the process should be repeated for each of the secondary objec-
tives as well. 

  Step 1 .  Defi ne the measurements  ( individual subject level ). The researcher must 
painstakingly describe in the protocol the  what ,  how , and  when  of each of the mea-
surements selected to meet the objectives:

   For the  • what , we could choose diastolic blood pressure (DBP) or systolic blood 
pressure (SBP) or one of many other more sophisticated indicators of blood pres-
sure. We choose DBP as the measurement to meet the main objective of the 
study.  
  The  • how  is equally important. Mechanical or electronic sphygmomanometer? 
Any particular brand? How far back is last validation acceptable? Furthermore, 
the measurement procedure should be described in detail. Our decision is as fol-
lows: mechanical sphygmomanometer; three acceptable models (to be reported 
precisely in protocol); calibration of instruments no more than 6 months before 
study starts; DBP measurement to be taken on subject seated for at least 10 min, 
using dominant arm, each step precisely described in the protocol (e.g., infl ate 
cuff, stop when no pulse is detectable, then slowly defl ate, stop when pulse 
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detectable again, continue to defl ate, stop defl ation when pulse again 
undetectable).  
  Finally, the question of  • when . We decide that DBP is to be taken on day 1 (pre-
treatment baseline) and then on days 8, 14, and 28, in the morning between 8 and 
10 a.m., before intake of study medication.    

 Each of these decisions should be made with science, methodology, and feasibil-
ity in mind. The measurement has to be scientifi cally sound, adequate to meeting 
the objective of the study, and feasible in the practical circumstances of the study. 
This last requirement is often ignored by the researchers who design the study, with 
potentially disastrous outcome. 

  Step 2 .  From measurement to end - point  ( individual subject level ). An  end - point  
(also referred to as outcome variable) is a summary variable which combines all 
relevant measurements for an individual subject. Many end-points could be consid-
ered for the chosen measurement (DBP taken on days 1 [baseline], 8, 14, and 28). 
A few of the many possible options follow:

   Option #1: DBP difference from day l to day 28  • 
  Option #2: time to DBP <85 mmHg  • 
  Option #3: time to >5 mmHg reduction in DBP  • 
  Option #4: mean (or median) of DBP values obtained at days 8, 14, and 28  • 
  Option #5: lowest (or highest) DBP value over days 8, 14, and 28  • 
  Option #6: responder/not responder (where, e.g., responder = subject with DBP • 
<95 mmHg on day 28)    

 Again, the choice of the end-point is driven by many considerations, of which 
especially important are the objective of the study and the distribution of the end-
point. 

 The choice of the number and timing of measurements is crucial. On one side, it 
is important to ensure that all measurements are indeed useful for the chosen end-
point: for example, if the chosen option were number 1 (difference in DBP from 
baseline to day 28), then measurements on days 8 and 14 would have been useless. 
Measurements not contributing to the end-points are detrimental to the success of 
the study, as they only add to its complexity. On the other side, there may be situa-
tions where the frequency of measurements must be increased. For option number 
2 (time to DBP <85 mmHg), it would have probably been useful to plan more fre-
quent measurements. Let us assume that in our example the researchers chose option 
number 1. 

  Step 3 .  From end - point to group indicator  ( treatment group level ). We now move 
from the individual subject to the group of all subjects receiving a given treatment. 
A  group indicator  is a quantity which summarizes the data on the selected end-point 
for all subjects constituting each treatment group. In our example, where DBP dif-
ference from day l to day 28 was selected as the end-point, we could use the mean 
or the median of the DBP differences (depending on the distribution of such differ-
ences) as the group indicator. For our example, we choose the mean as the group 
indicator, assuming that the distribution of the DBP differences is symmetrical. 
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  Step 4 .  From group indicator to signal  ( treatment group level ). The  signal , the 
fi nal step of the process, is a summary quantity defi ning the overall effect of the exper-
imental treatment at a group level and in comparative terms. Typically, the signal is 
expressed as either a difference or a ratio between group indicator A and group indi-
cator B; occasionally, more complex signals are chosen, which may also involve 
more than two treatment groups (e.g., in dose-fi nding studies). In our example, we 
complete our journey by selecting the difference between treatment means of DBP 
differences from day 1 to day 28, as the signal for the primary objective of the trial. 

 As mentioned above, the whole process must be repeated for each of the objec-
tives included in the protocol, primary as well as secondary. It must be emphasized 
that the conclusions of a clinical trial must be based on the predefi ned primary 
objective(s). Results from all other objectives, referred to as secondary or explor-
atory, will help to strengthen or weaken the conclusions based on the primary 
objective(s) and to qualify them with ancillary information, but will never reverse 
them. Also, results from secondary objectives can be useful to generate new hypoth-
eses to be tested in future trials. 

 Ideally, only one primary end-point (and corresponding signal) is selected to 
serve one primary objective for a given clinical trial. However, given the cost, dura-
tion, and complexity of a clinical trial, researchers are often tempted to include 
more than one primary objective and/or more than one end-point/signal for a pri-
mary objective, often with good reasons. Multiple primary end-points/signals come 
at a price: (1) larger sample size, due to the complex statistical problem of multiple 
comparisons; (2) more diffi cult conclusions, as multiple primary end-points can 
give confl icting results. 

 Researchers can be more liberal with regard to the number of secondary end-
points to be included in a study. However, it is still dangerous to include too many 
secondary end-points, as the complexity of the study and the volume of the data to 
be collected and checked for accuracy (or “cleaned”) will increase very quickly as 
the number of end-points increases, and the study will soon become unmanageable. 
The risk is that the study will “implode” because of excessive complexity. Such a 
frustrating outcome is far from infrequent and is typically caused by an excessive 
number and complexity of secondary end-points. 

 The primary end-point/signal must have external relevance and internal validity. 
External relevance is the ability to achieve the practical goals of the study, such as 
regulatory approval, health economic justifi cation, differentiation from current 
treatment, etc. Internal validity is the ability to draw valid conclusions on the causal 
relationship between treatment and the desired effect; it is accomplished by appro-
priate design and statistical analysis. 

 Surrogate and composite end points are special types of end-points often used in 
clinical trials.  Surrogate end - points   [  5  ]  are instrumental or laboratory measurements 
used to substitute for clinical outcomes. Examples of surrogate end-points are dia-
stolic blood pressure as surrogate for cardiovascular accidents (myocardial infarc-
tion, stroke, etc.) or the blood level ( titer ) of a specifi c antibody as surrogate for a 
vaccine’s ability to protect against a given infection. The advantage of a surrogate 
end-point is that it allows smaller and shorter trials compared to those needed for the 
corresponding clinical end-point. This is especially important for rare events such 
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as a rare infection prevented by a vaccine, for which clinical outcome trials are 
practically undoable.  Composite end - points  combine in one score the outcome of 
multiple individual end-points; typical examples are quality of life questionnaires. 
The advantage of a composite end-point is that it overcomes the issue of multiple 
comparisons. 

 The big hurdle for both surrogate and composite end-points is that they must 
undergo proper validation, a long and complex process, before being used in a clini-
cal trial. Unfortunately, validation is often suboptimal, thus undermining the valid-
ity of the trial results and conclusions.  

   Defi ning the Study Sample 

 The sample is the group of subjects on which the study is performed. The choice 
of the sample requires qualitative and quantitative considerations  [  1 , Chap.   6     ] . 
Among the qualitative aspects of the sample selection, crucial is the need to ensure 
that the sample is representative of the population to which one wants to extend the 
conclusions of the study. In Phase I, in general, representativeness is not required: 
trials are typically conducted in healthy volunteers, although, as mentioned at the 
beginning of this chapter, there are important exceptions, most noticeably oncology, 
in which Phase I trials are also conducted in patients. The criteria qualifying a per-
son as  healthy  are far from obvious: if a long battery of clinical and laboratory tests 
are conducted and  normality  is required for every single one, almost everybody 
would fail. Phase II studies are typically conducted in patients with the disease in 
question, clearly more representative of the true target population than healthy vol-
unteers. However, selection criteria in Phase II are typically strict, with exclusion of 
the most serious or atypical forms of the disease, as well as of most concomitant 
conditions and use of many concomitant medications; thus, again, representative-
ness with respect of the true population is limited, and results are likely to be better 
than what would be seen in real life. It is in Phase III that the sample must be as 
representative as possible of the true population. Clearly, complete representative-
ness will never be accomplished because no matter how large a Phase III trial, it will 
always be conducted in a small number of countries and institutions, with inevitable 
bias in socioeconomic status, racial mix, nutritional habits, etc. However, it is essen-
tial not to have too restrictive inclusion and exclusion criteria, i.e., allow entry to the 
 average  patient. For example, if we are conducting a Phase III study in Chronic 
Obstructive Pulmonary Disease (COPD) it would be wrong to deny entry to patients 
with cardiovascular conditions, as these are very common in COPD patients. 

 The quantitative aspect of the sample selection is equally crucial: how large 
should the size of the sample be? The sample must be large enough to allow the 
detection of the treatment effect, separating it from the variability of the phenome-
non, with an acceptable degree of certainty. But how does one determine this? The 
decision on the sample size of a study is considered by many an exclusively statisti-
cal matter. This is not the case at all: there are of course formulas used to calculate 
the sample, which may change depending on the end-point, the signal, and the study 
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design; however, the most diffi cult aspects of the sample size determination are the 
decisions on the assumptions behind the formulas, which require a close collabora-
tion between the physician (or biologist), the statistician, and the expert in opera-
tional matters. Briefl y, the eight key ingredients necessary for the sample size 
calculation are as follows (note: for each, it is assumed that all conditions other than 
the one being discussed are equal):

    1.    The design of the study and the kind of comparison to be investigated: for exam-
ple, parallel group designs and equivalence studies require more subjects than 
corresponding crossover designs and superiority studies (see below).  

    2.    The magnitude of acceptable risk of type I and II errors: the smaller the risk we 
are willing to accept of obtaining a false-positive result (type I error) and a false-
negative result (type II error), the greater the sample size. One can reduce the 
type I error at the expense of the type II error and vice versa, while maintaining 
approximately the same sample size, but if we want to reduce both types of errors 
at the same time, the sample size will increase.  

    3.    The magnitude of the signal (threshold of clinical relevance or equivalence mar-
gin): the smaller the clinically relevant difference between treatments we want to 
detect in a superiority trial or the smaller the equivalence margin we want to 
allow for in an equivalence/non-inferiority trial (see below), the greater the num-
ber of subjects we need.  

    4.    The number of primary end-points and signals: in general, the more primary end-
points and signals we have in our protocol, the greater the sample size, as we 
need to  adjust  for multiple comparisons. Multiple treatment arms typically 
(although not necessarily) contribute to multiple signals.  

    5.    The type and variability of the primary end-point(s): the greater the variability 
(intrinsic or induced by the measurement process), the more subjects are required 
to detect a given threshold of clinical relevance or equivalence margin.  

    6.    The type of hypothesis: we will need more subjects for a bidirectional hypothesis 
(i.e., the study hypothesis is that A and B are different, and this difference can be 
in either directions) than for a unidirectional hypothesis (i.e., the study hypoth-
esis under study admits a difference only in one direction).  

    7.    The type of statistical test: for example, in general, parametric tests require fewer 
subjects than corresponding non-parametric tests.  

    8.    The expected rate of premature discontinuations: the more the expected discon-
tinuations affecting the primary end-point(s), the larger the sample size.      

   Defi ning the Study Treatments 

 In the planning of a clinical trial, one should carefully defi ne the treatments, both 
those that are the object of the experiment, referred to as study treatments, and those 
that are not, referred to as concomitant treatments  [  1 , Chap.   7     ] . The study treatments 
include experimental and control treatments:
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    • The experimental treatment  is the main object of the study. In general, only one 
experimental treatment is investigated, but there are situations where it is legiti-
mate to test more than one in the same study (e.g., different fi xed combinations 
or different doses). Experimental treatments can be new pharmacological pre-
ventive or therapeutic agents, but also surgical procedures, psychological/behav-
ioral treatments, and even logistical/organizational solutions (e.g., the use of 
normal hospital wards for myocardial infarction patients replacing intensive 
care).  
   • The control treatment  should represent the standard of care against which the 
experimental treatment is assessed by comparison. If the medical community or 
the regulatory authority does not recognize a standard of care with proven posi-
tive benefi t–risk ratio, the control treatment should be a placebo or no treatment 
(in cases where the use of placebo is not considered viable, e.g., intravenous 
procedure in young children). A  placebo  is an inactive treatment, identical to the 
experimental treatment in every aspect except for the presumed active substance. 
If a recognized standard of care does exist, then the control treatment should be 
the recognized active treatment. However, there are many intermediate situations 
in which there is no agreement as to whether or not a standard of care exists, for 
example, because common practice is based on old or unreliable data and/or 
there are multiple accepted best practices. In these situations, some very complex 
practical and ethical dilemmas must be addressed, concerning whether or not 
placebo should be used and what standard should be picked as the best compara-
tor. It is not uncommon that both placebo and an active comparator are required 
by a regulatory authority for pivotal Phase III trials, and more than one active 
comparator is chosen in postmarketing Phase IV profi ling trials.  
   • The concomitant treatments  are drugs or other forms of treatment that are allowed 
during the study, but are not the object of the experiment. Concomitant treat-
ments at times represent useful end-points, for example, the amount of rescue 
bronchodilator taken each day in asthma trials or the time to intake of a pain killer 
following tooth extraction in trials testing an analgesic/anti-infl ammatory agent. 
When the interaction between an experimental and a concomitant treatment is an 
objective of the trial, the latter should also be considered experimental.    

 For each type of treatment, the researcher must be very detailed in the protocol 
in describing not only the type of treatments but also their mode of administration 
(route, frequency, time, special instructions) and the method of blinding (see below), 
etc. These choices are of critical importance as they directly infl uence both the con-
duct and the analysis of the study. 

 A critical dilemma for investigators concerns the decision of how many study 
treatments to investigate. On the one side, multiple study treatments may make the 
study more interesting and scientifi cally valuable. On the other side, multiple com-
parisons will require a sample size increase, more complicated drug supply manage-
ment (blinding, packaging, shipment) and study conduct, statistical analysis, and 
interpretation of results. Unfortunately, no easy solution can be offered as to the 
number of treatments to be included in a trial. There are experimental designs that 
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facilitate multiple study treatments, such as factorial and dose-escalation designs 
(see below). Dose-fi nding studies (Phase II) require multiple study treatments. 
Studies evaluating combinations of different treatments (with or without different 
dose levels) can also have multiple study treatments. Vice versa, large confi rmatory 
Phase III trials are rarely successful with more than three study treatments. 

 Other diffi cult choices concern concomitant treatments: should we be liberal or 
strict in allowing concomitant treatments? Many investigators are afraid that con-
comitant treatments may interfere with the measurements and confound the results. 
This may well be the case. However, if a concomitant treatment is broadly used by 
patients in real life situation (e.g., inhaled corticosteroids are used by almost all 
asthma patients), there is little practical value in sanitizing results by eliminating 
such treatments from the study. In general, it may be acceptable to be relatively 
conservative with concomitant treatments in Phases I and IIa (but not too much), 
whereas in Phases IIb (dose-fi nding studies) and III, it is necessary to refl ect real life 
as much as possible by being quite liberal with concomitant treatments.  

   Superiority Versus Non-inferiority 

 The comparison between treatments can be performed with two different objec-
tives: (1) demonstrate the superiority of the new treatment over the standard one 
(or placebo), and (2) demonstrate the equivalence or, more frequently, the non-
inferiority of the new treatment compared to the standard one. 

 Clinical trials with the former objective are called  superiority studies ; those with 
the latter objective are called  equivalence  or  non-inferiority studies   [  1 , Chap.   11     ] . The 
difference between equivalence and non-inferiority is that in equivalence studies, 
the aim is to demonstrate that the new treatment is neither inferior nor superior 
to the standard one, while in non-inferiority studies, the aim is only to demonstrate 
that the new treatment is not inferior to the standard one (if it is better, it is consid-
ered still not inferior). 

 Equivalence/non-inferiority studies are performed when:

   It is suffi cient to demonstrate that the new treatment is similar to the standard one • 
in terms of effi cacy, because the new treatment has other advantages over the 
standard, for example, a better safety/tolerability profi le, an easier schedule or 
route of administration, or a lower cost.  
  It is an advantage to have several therapeutic options, based on a different active • 
principle and/or a different mechanism of action, even if their effi cacy and safety 
are on average about the same; indeed, some patients may respond better to one 
treatment than to another, some may be allergic to a particular treatment, some 
may develop tolerance to one specifi c compound, and so on.    

 Equivalence studies play a particularly important role in the development of 
 so-called generics, or identical copies of marketed drugs no longer protected by 
a patent. To register the new generic drug, one needs to demonstrate that key 
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pharmacokinetic and/or pharmacodynamic variables of the new treatment are 
equivalent, i.e., neither superior nor inferior, to the standard one. 

 The choice between the objective of demonstrating superiority and that of dem-
onstrating equivalence/non-inferiority has a major impact on study planning, defi ni-
tion of the clinical threshold, sample size calculation, and statistical analysis. 
A common mistake is to plan and analyze an equivalence study as if it were a supe-
riority study. Instead, different methods must be used. 

 When planning a superiority study, the investigator must select a threshold of 
clinical relevance (superiority margin), i.e., the smallest difference between treat-
ments, judged  a priori  as clinically meaningful. On the other hand, in an equiva-
lence/non-inferiority study, the investigator must select a threshold of clinical 
irrelevance (equivalence or non-inferiority margin) or the largest difference between 
treatments, judged  a priori  as clinically irrelevant. A guidance document under the 
patronage of the EHA Committee for Human Medicinal Products (CHMP) on the 
choice of the equivalence/non-inferiority margin is available at   www.ume.europe.eu    . 

 In superiority studies, the null hypothesis, which we seek to reject in the tradi-
tional statistical testing, is that there is no difference between treatments. Oppositely, 
in equivalence/non-inferiority studies, the null hypothesis is that the treatments are 
different. In other words, in equivalence/non-inferiority studies, the system of 
hypotheses is inverted compared to superiority studies. 

 In superiority studies, the statistical test is used for decision making. If the test is 
statistically signifi cant, we can conclude that the difference observed between treat-
ments is not due to chance, while if the test is not statistically signifi cant, we can 
conclude that the difference is likely generated by chance. In equivalence/non- 
inferiority studies, the statistical test is useless. A statistically signifi cant result does 
not necessarily imply that the treatments are not equivalent, because the difference 
between the treatments could be clinically irrelevant and therefore fall within the 
equivalence margin. A statistically non-signifi cant outcome does not allow accepting 
that there is no difference between treatments, because the statistical test may not 
have enough power to detect differences that are bigger than the threshold of 
equivalence.  

 The analysis of equivalence studies must be based on confi dence intervals. 
Assuming we use the mean as the group indicator, and the difference between means 
as the signal the 95% confi dence interval on the observed mean difference between 
the treatments must be calculated (note that the 95% level for the confi dence inter-
val is set conventionally, as well as the 5% level for the statistical test). Equivalence 
between the treatments is demonstrated if such confi dence interval is entirely 
included within the equivalence margin. To grasp the meaning of this rule, it helps 
to recall that the confi dence interval at the 95% level on the mean treatment differ-
ence is defi ned as the set of values of the estimated mean treatment difference which 
includes the true value of the mean treatment difference with a probability equal to 
95%. Therefore, when the 95% confi dence interval on the mean treatment differ-
ence is entirely included within the equivalence margin, there is a high probability 
(in fact equal to 95%) that the true value of the mean treatment difference is a clini-
cally irrelevant difference between the treatments. 

http://www.emea.eu.int
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 As mentioned earlier, the equivalence/non-inferiority study generally requires 
a greater number of subjects compared to the corresponding superiority study 
with the same design, primary end-point, and experimental conditions. In fact, all 
other conditions being the same, the treatment differences on which the sample 
size calculation is based are smaller in an equivalence/non-inferiority study, than 
in a superiority study. In addition, while in a superiority study we bet on treat-
ment differences bigger than the threshold of clinical relevance, in an equiva-
lence/non-inferiority study we bet on treatment differences smaller than the 
equivalence margin: this reduces power of the study and therefore increases the 
sample size. 

 In superiority studies, the better the quality of the study, the greater the likeli-
hood of detecting a difference between the study treatments, when it exists. 
Therefore, it is to the advantage of the researchers to plan and conduct the study in 
the best possible way. In equivalence studies, since the poorer the quality of the 
study, the lower the likelihood of detecting differences, if any, the researchers have 
no incentive to conduct the study in the best possible way. In other words, quality 
is even more important in equivalence than in superiority studies. This is one of the 
main reasons why regulatory authorities are often reluctant to allow pivotal Phase 
III trials with an equivalence or non-inferiority approach for new molecular enti-
ties (i.e., non-generic drugs) and request the addition of a placebo arm as well. 

 The two treatments under comparison could be equivalent or one could be non-
inferior to the other simply because both are ineffective. This is another reason why 
in equivalence/non-inferiority studies it is recommended to include a comparison 
with placebo aimed at showing superiority of the presumed active treatments to the 
inactive compound (see guideline ICH E12). With a placebo arm included in the 
study, the equivalence study has its own internal validity, i.e., it allows one to draw 
valid comparative conclusions. However, often the comparison to an active control 
is conducted because it is unethical to use the placebo. Theoretically, when there is 
no placebo group in the study, it is possible to use the placebo groups of the studies 
of the active control as an indirect reference. The equivalence/non- inferiority study 
must be as similar as possible to these placebo-controlled superiority studies, with 
respect of study design and conduct (treatment duration, end-points, characteristics 
of the population, etc.). In this way, if the equivalence/non-inferiority study is prop-
erly performed, one should theoretically obtain for the active control results similar 
to those obtained in the previous superiority studies against placebo, and, under 
such conditions, one should be able to judge whether the treatments under compari-
son are both effi cacious or both non-effi cacious. Unfortunately, this reasoning is 
theoretical and often far from reality. It is common in real life that the clinical stud-
ies, in which the effi cacy of the active compounds has been tested, have different 
protocols and different results, so that the issue of which one to choose arises. Then, 
the comparison between the results of the reference placebo-controlled studies and 
those of the active-controlled equivalence/non-inferiority study has all the weakness 
of a comparison with a historical control, which ultimately makes it impossible to 
guarantee bias-free comparisons.  
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   Experimental Designs 

   Defi nitions and Basic Concepts 

 In the section above, the experimental and subexperimental factors have been 
defi ned. The experimental design is the logical structure of an experiment. By means 
of the experimental design, the researcher controls the experimental factors, typi-
cally the study treatments being compared and some of the most important subex-
perimental factors, typically key protective and/or risk factors. There are two main 
objectives of the experimental design: (1) minimize the systematic error or bias, 
between the groups being compared, and (2) minimize the random error and conse-
quently reduce the variability. 

 Bias is minimized mainly by means of randomization, blinding, and  a priori  
defi nition of procedures and methods, as described below. By means of the experi-
mental design, we try to deconstruct the total variability in pieces that are due to 
known factors (experimental and subexperimental factors). The remaining part of 
variability, i.e., the part that cannot be attributed to any known factor, is attributed to 
accidental factors. These all together are named  chance . This unexplained variabil-
ity (due to chance), often referred to as  residual variability , is used for carrying out 
the statistical tests and for computing the confi dence intervals on the estimate of the 
treatment effect. The smaller the variability attributable to chance, the bigger the 
power of the statistical test, and the greater the precision of the estimates. 

 A good experiment must allow comparisons that are  bias-free , which means that 
no systematic errors are present, and  precise , which means that the part of variability 
not explained by the considered factors must be as small as possible. The different 
designs must be evaluated as for these two main characteristics. In addition, in choos-
ing the study design, the researcher must always keep simplicity in mind, i.e., sim-
plicity of study conduct, data analysis, and interpretation of results. The studies which 
are too complex are not feasible, and often complexity is the cause of study failure.  

   Before and After Comparisons in a Single Group 

 The simplest form of experimental design is based on the before–after comparison 
in a single group of subjects, i.e., without a separate control group  [  1 , Chap.   8     ] . 
 Before  and  after  refer to the beginning and the end of treatment, respectively. 

 This study design is simple and very close to the way the physicians are used to 
making decisions. However, there are numerous sources of bias in this design that 
make the  before  setting not comparable with the  after  setting. These are as follows:

   Temporal variations of the disease.  • 
  Temporal variations of personnel, equipment, and the context of the study.  • 
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  Statistical regression to the mean, a phenomenon by which a variable having an • 
extreme value (i.e., much greater or much smaller than the mean of its distribu-
tion in the population) in the fi rst measurement will tend to be closer to the mean 
in subsequent measurements  [  6,   7  ] .  
  Learning effect.  • 
  Psychological effect, caused by the awareness of being treated.    • 

 These different types of bias undermine the reliability of conclusions. In most 
cases, with this design, bias favors the  after  over the  before , thus simulating a treat-
ment effect when such effect does not exist or amplifying it when it does exist. 
There are some exceptions, especially when serious diseases with predictable time 
course are studied; yet, in general, the before–after comparison in a single group of 
subjects is a severely biased design, which should be avoided. 

 Among the kinds of bias reported above, the  regression to the mean  is probably 
the least obvious. Regression to the mean stands literally for “turning back to the 
mean.” In clinical trials, this phenomenon occurs every time a group of subjects is 
selected based on  extreme  values of a variable, and that same variable is measured 
again in the same subjects at a later point in time. The mean of the values obtained 
in the second measurement will likely tend to be less extreme compared to the mean 
of the values obtained in the fi rst measurement and, therefore, will be closer to the 
population mean. This probabilistic phenomenon will occur in the absence of any 
treatment effect. Therefore, in a simple before–after study, if the variable used for 
the selection of patients is also used as an end-point, the effect of treatment will be 
confounded with the regression to the mean effect, and it will be very diffi cult to 
separate one from the other. If the researcher performing such a study ignores the 
possible effect of the regression to the mean, and attributes the observed improve-
ment to the treatment, he/she will interpret the results in a biased way.  

   Antidotes Against Bias: Randomization, Blinding, and A Priori 
Defi nition of Analysis 

 The only way to avoid these problems is that of using study designs with one or 
more concurrent comparative groups. Three key procedures are used to minimize 
bias in experimental studies: randomization (against selection bias), blinding 
(against assessment bias), and  a priori  defi nition of the statistical analysis, i.e., 
before the results are known (against the analysis bias)  [  1 , Chap.   3     ] . 

 Randomization is the assignment of subjects to treatments (or sequence of treat-
ments) with predefi ned probability and by chance. The basic point is that the assign-
ment of an individual subject cannot be predicted based on previous  assignments. 
Randomization is not haphazard assignment. In fact, with a haphazard assignment 
of subjects to treatments, there would be no predefi ned probability, and, most 
likely, subconscious patterns would prevail. Randomization is also not  systematic 
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assignment (e.g., patients enrolled on odd days are assigned to A, on even days to B); 
in fact, by using such a method, there would be no chance assignment. 

 Randomization minimizes selection bias for known and unknown factors. It has 
to be taken into account that “no selection bias” does not necessarily mean “no 
imbalance” for key prognostic factors (e.g., age), especially in small trials. A base-
line imbalance can occur also when using randomization to allocate subjects to 
treatments and can be problematic, for example, it may cause unequal regression 
toward the mean between the two groups being compared. 

 The other important role of randomization is that it legitimizes the traditional 
(frequentist) approach to statistical inference. In fact, the foundation of the frequen-
tist approach is the assumption that the sample is extracted randomly from the pop-
ulation. As discussed earlier in this chapter, this does not happen in real life clinical 
trials. The sample of patients enrolled in a trial is never a random representation of 
the overall population who will receive the treatment. Randomization reintroduces 
the random element trough the assignment of patients to the treatments. 

 In the planning stage of a randomized clinical trial, the randomization list is 
generated according to predefi ned rules. For each randomization number in the list, 
a code containing a sequential numerical component is generated and placed on the 
pack containing that patient’s treatment. At this point, the randomization process 
can be directly executed by the investigator, by following the order of assignment of 
the pack codes (fi rst pack code, i.e., the code with the lowest numerical component, 
must be assigned to the fi rst eligible patient, second pack code to the second patient, 
and so on). The logistics of randomization can be very complex and is beyond the 
scope of this chapter. 

 There are numerous methods of random allocation of subjects to treatments, of 
which we will introduce the following: simple randomization, randomization in 
blocks, stratifi ed randomization, and variants that allow allocation of patients to 
treatments based on information collected during the study (adaptive 
randomization). 

 In the  simple randomization , each subject has the same probability of receiving 
each of the study treatments or sequence of treatments. When the sample of a study 
is large, simple randomization will most likely assign almost the same number of 
subjects to each treatment group, through the effect of chance alone. The situation 
can be completely different in small studies. In such studies, to avoid relevant 
inequalities in the sizes of the treatment groups, the so-called  randomization in 
blocks  is used. The assignment occurs in subgroups, called blocks. Each block must 
have a number of subjects equal to the number of treatments or to a multiple of this 
number. Furthermore, within each block, each treatment must appear the same 
number of times. It should be noted that this randomization method obtains treat-
ment groups of similar size not only at the end of enrolment but also throughout the 
whole enrolment process. 

 The so-called  stratifi ed randomization  takes into account one or more prognostic 
(protective or risk) factors. It allows for the selected prognostic factor(s) to be evenly 
distributed among the treatment groups. The stratifi ed randomization requires that 
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each preselected factor be subdivided in exhaustive and mutually exclusive classes. 
For gender, for example, this is easily done by considering the two classes of males 
and females. The classes are called strata. When taking into account multiple prog-
nostic factors, the strata originate by combining the classes of all factors. An inde-
pendent randomization list is generated for each stratum, and a subject is assigned 
to a treatment according to the randomization list of the stratum to which he/she 
belongs. 

 In the so-called  adaptive randomization methods , the allocation of patients to 
treatments is based on information collected during the study. This information can 
be related to a protective/risk factor (with the goal of minimizing the imbalance 
between groups with respect to such a factor) or to the result of a preestablished 
end-point, generally the primary one (in this case, the assignment of a new patient 
is based on a probabilistic rule which favors the group showing the best result, at the 
time the new patient is ready to be randomized). 

  Blinding  (or masking) is the process by which two or more study treatments are 
made indistinguishable from one another. Blinding protects against various forms of 
bias, most important of which is the assessment bias. 

 The ideal situation would be that the study treatments differ with respect to the 
presumed active component but are otherwise identical in weight, shape, size, color, 
taste, viscosity, and any other feature that allows identifying the treatment. This 
would be a perfect double-blind, where all study staff and patients are blinded. 
However, in practice, often one has to accept a lower level of blinding, for 
example:

   Observer-blind: the patients and the study staff assessing the patients are blinded, • 
whereas the staff administering the treatments are not.  
  Single-blind: only patients are blinded.  • 
  Open-label: no one is blinded.    • 

 The lower the level of blinding, the higher the risk of bias. 
 The randomized, double-blind clinical trial with concomitant control groups is 

the type of study that is most likely to achieve bias-free results, minimizing the 
impact of errors systematically favoring or penalizing one treatment over another. 

 Non-randomized and non-blinded studies generally cannot achieve a similar 
degree of methodological strength. However, one should not be dogmatic: a com-
parison before–after in a single group can be the best way to start the clinical devel-
opment of a compound intended to treat a cancer with rapid and predictable outcome, 
especially for ethical reasons. An open-label randomized design can be stronger 
than a double-blind study, if the latter results in poor compliance to study medica-
tion by patients, for example, because the mechanism for blinding the treatments is 
too complex. The experienced clinical researcher will try to get as close as possible 
to the standard of the randomized, double-blind design. However, he/she will also 
give due consideration to the practical, logistic, technical, and economic aspects in 
making the fi nal decision, keeping always in mind the value of simplicity. Finally, 
he/she will make a transparent report on the methods followed and on the reasons 
for the choices made at the time of presenting the results.  
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   Parallel Group and Crossover Designs 

 There are two main categories of comparative study designs for clinical trials 
 [  1 , Chap.   10     ] .

    1.    The parallel group designs in which there are as many groups as treatments, all 
groups are treated simultaneously, and every subject receives only one of the 
study treatments (or a combination tested as a single treatment).  

    2.    The crossover designs in which each subject receives more than one study treat-
ment in sequence, but only one of the possible sequences of study treatments.     

   Parallel Group Designs 

 The  completely randomized parallel group design  is the simplest. Let us indicate 
the treatment factor with  T  and assume it has  k  levels, i.e.,  T  

1
 ,…,  T  

 k 
 . These can be 

different compounds or different doses of the same compound. Each level  T  
 i 
  of  T  is 

replicated on  n  
 i 
  subjects. The subjects are assigned in a random way at the different 

levels of  T . The design matrix is shown in Table  4.1 .  
 In this design, it is possible to estimate only the treatment effect. Accordingly, the 

total variability is decomposed into two components: the part explained by the treat-
ment and the part unexplained by the treatment, which is totally attributed to chance. 

 The most important advantage of this study design is its simplicity, concerning 
both the study conduct and the statistical analysis. Its biggest disadvantages are:

    1.    The variability of the end-points within each group is the biggest among all the 
experimental designs; therefore, all other aspects being equal, the statistical tests 
have less power, and the treatment estimates are less precise.  

    2.    By chance, the groups under comparison may be imbalanced at baseline with 
respect to important subexperimental factors (e.g., twice as many female sub-
jects in one group). Baseline imbalances can be to some extent  adjusted  by sta-
tistical procedures; however, major baseline imbalances for important prognostic/
risk factors render the groups not comparable.     

 It should be noted that, if the study is large enough, both disadvantages men-
tioned above are contained to acceptable levels and the advantages prevail. Thus, 
this design is often used for pivotal Phase III clinical trials. 

 Two methods can be used to reduce variability without increasing the sample 
size. These are as follows:

  T  
1
    T  

2
   …   T  

 k 
  

  Y  
11

    Y  
21

    Y  
 k 1

  
 …  …  …  … 
  Y  

1 n 1
    Y  

2 n 2
    Y  

 knk 
  

 Table 4.1    The parallel group design matrix  
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    1.    Group the subjects with respect to common characteristics by generating so-
called strata or blocks.  

    2.    Replicate the measurements on each subject.     

 In the  stratifi ed parallel group design , the researchers will select few (typically 
one or two) particularly important subexperimental factors with well-known prog-
nostic value on the end-point for which they want to avoid any relevant baseline 
imbalance. The levels of the considered subexperimental factor(s) are categorized in 
classes ( strata ). Let us assume we chose age as the prognostic factor for which we 
want to ensure balance at baseline, which we then categorize in four strata: children 
(6–11 years of age), adolescents (12–17), non-elderly adults (18–64), and elderly 
adults (65 and above). Let us indicate the treatment factor as above and the strata 
with  S ; the four strata are:  S  

1
 ,  S  

2
 ,  S  

3
 , and  S  

4
 . Each level  T  

 i 
  of  T  and stratum  S  

 j 
  of  S  is 

replicated on  n  
 ij 
  subjects. The subjects are randomly assigned to the different treat-

ments, separately and independently within each individual stratum. As a conse-
quence, by design, the strata are balanced between treatments. The design matrix of 
the stratifi ed parallel group design is shown in Table  4.2 .  

 In this design, it is possible to estimate the following effects:

   Main treatment effect, i.e., treatment effect without considering the stratifi cation • 
factor.  
  Main effect of the stratifi cation factor, i.e., without considering the treatment.  • 
  Interaction between the two effects: there is an interaction between the treatment • 
and the stratifi cation factor when the effect of the treatment on the response 
changes across the different levels of the stratifi cation factor and, like wise, the 
effect of the stratifi cation factor changes across the different levels of the treat-
ment factor.    

 Accordingly, in this type of design, the total variability is decomposed into four 
parts: the part explained by the treatment, the part explained by the subexperimental 
factor(s), the part explained by the interaction between the treatment and the subex-
perimental factor(s), and the residual variability attributed to chance (computed by 

  T  
1
    T  

2
   …   T  

 k 
  

  S  
1
  children   Y  

111
    Y  

211
    Y  

 k 11
  

 …  …  …  … 
  Y  

11 n 11
    Y  

21 n 21
    Y  

 k 1 nk 1
  

  S  
2
  adolescents   Y  

121
    Y  

221
    Y  

 k 21
  

 …  …  …  … 
  Y  

12 n 12
    Y  

22 n 22
    Y  

 k 2 nk 2
  

  S  
3
  non-elderly adults   Y  

131
    Y  

231
    Y  

 k 31
  

 …  …  …  … 
  Y  

13 n 13
    Y  

23 n 23
    Y  

 k 3 nk 3
  

  S  
4
  elderly adults   Y  

141
    Y  

241
    Y  

 k 41
  

 …  …  …  … 
 Y 

14n14
   Y 

24n24
   Y 

k4nk4
  

 Table 4.2    The design 
matrix of the stratifi ed 
parallel group design  
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 averaging  the estimates of the variability calculated within each stratum). If the fac-
tor used for the stratifi cation is a real prognostic factor, the residual (chance) vari-
ability of the stratifi ed design is smaller than the residual variability of the completely 
randomized design. Therefore, the former provides more powerful tests and more 
precise estimates of the treatment effect than the latter. However, the stratifi ed 
design is more complex than the completely randomized design, and this aspect 
should be carefully considered when choosing between the two designs. 

 Another design based on grouping the subjects with respect to common charac-
teristics is the  randomized block design . In this kind of design, as many subjects as 
the number of study treatments are “grouped” based on predefi ned prognostic 
 factors. These groups of subjects are called “blocks.” The subjects within each 
“block” are randomized to the study treatments (randomization in blocks). The 
number of blocks to be randomized depends on the total sample size. If only two 
treatments are to be compared, the blocks have size of 2. This special case is referred 
to as the  matched - paired design , which is the variant of randomized block design 
most often used in clinical trials. Often the randomized block design is used in clini-
cal trials when the time of enrolment is one of the factors that should be controlled 
for. Time can be a known prognostic factor (e.g., asthma, Reynaud syndrome) or 
just a subexperimental factor with unknown prognostic value (e.g., a study in which 
high turnover of personnel is expected). In any case, with the randomized block 
design, the temporal changes are balanced between the treatment groups at regular 
intervals: the smaller the block, the shorter the intervals.  

   Crossover Designs 

 The  crossover design  is based on the concept that every subject is used as his/her 
own control. As already said, this implies that each subject receives more than one 
treatment  [  1 , Chap.   10     ] . 

 We shall start with the so-called  two - by - two crossover design , characterized by 
the use of two treatments in two periods. Suppose we have two treatments A and B. 
A is administered to the subjects of one group as fi rst treatment (period 1), followed 
by B (period 2). Vice versa, B is administered as fi rst treatment to the subjects of the 
other group (period 1), then followed by A (period 2). Each of the two groups, AB 
and BA, is called  sequence . In this design, the subjects are randomized to the 
sequences, not to the treatments. The design matrix of a balanced cross-over design 
(i.e., a design with the same sample site in each period and each sequence) is shown 
in Table  4.3 .  

 Sequence 1 (AB)  Sequence 2 (BA) 

 Period  1  A:  Y  
111

 ,  Y  
112

 ,…,  Y  
11 n 

   B:  Y  
211

 ,  Y  
212

 ,…,  Y  
21 n 

  
 2  B:  Y  

121
 ,  Y  

122
 ,…,  Y  

12 n 
   A:  Y  

221
 ,  Y  

222
 ,…,  Y  

22 n 
  

 Table 4.3    The crossover 
design matrix  
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 The generic response  Y  
 ijr 

  is identifi ed by three indices:  i  (sequence),  j  (period), 
and  r  (subject). 

 In this design, it is possible to estimate the following effects:

   Treatment effect.  • 
   • Period effect , which is the effect of time, for example, spontaneous progression 
or improvement of the disease, seasonal or cyclic changes of the disease.  
  Interaction between treatment and period.  • 
   • Carry-over effect . The carry-over is the continuation of a treatment effect from 
one period into the following period; it should be noted that a carry-over effect is 
a problem and can be detected only when it is unequal between treatments (e.g., 
the continuation of the effect of A is longer or greater than the continuation of the 
effect of B in the following period).  
  Sequence effect.  • 
  Subject effect.    • 

 To attenuate, and possibly eliminate, the carry-over effect, often the so-called 
 washout period  is included between the two treatment periods, i.e., an additional 
period where the patients receive no treatment. 

 Generally, the crossover design makes use of a simple randomization. However, 
the stratifi ed and the randomized block crossover designs, which use the corre-
sponding methods of randomization, do exist. In the crossover design, the subject 
and the sequence effects have a very limited interest per se. These factors are useful 
for reducing the residual variability. 

 The statistical analysis typically starts with the test of the carry-over effect. If this 
is statistically signifi cant, the solution generally applied is that of taking into account 
only the observations from the fi rst period and discarding the ones from the second 
one. The study is then analyzed as if it were a parallel group design. Unfortunately, 
in most cases, the sample size is insuffi cient for a parallel group design; thus, in 
practice, a signifi cant carry-over effect results in a failed study. If no statistically 
signifi cant carry-over effect is detected, all data are considered in the analysis, and 
therefore, both the period and the treatment effects are estimated. It should be noted 
that the test for the carry-over effect is often underpowered, thus unequal carry-over 
may go undetected. 

 The statistical test for the treatment effect and the one for the period effect are 
based on the within-subject component of the total variability, while the test for the 
carry-over effect uses the between-subject component of the total variability. 

 The observations on different patients are independent; the ones on the same 
patient are not, i.e., they are correlated. The fundamental reason to use the crossover 
design instead of a parallel group design is that measurements taken on the same 
subject for more than one study treatment often result in a smaller total variability. 
This, in turn, results in a smaller sample size or more precise estimates of the effect 
for a given sample size. It should be noted, however, that this is true only when the 
measurements on the same subject are highly correlated and this is not a given (the 
measurements on the same subject are correlated by defi nition, but this correlation 
may be low). In other words, if the measurements on the same subject are highly 
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correlated, the crossover design generates a test on the treatment effect which is 
more powerful as compared to the one for a design based on between-subject com-
parisons (parallel group). Therefore, it requires a smaller sample. 

 In summary, the most important advantages of the crossover designs are as 
follows:

   The concept that every subject is used as his/her own control is close to the com-• 
mon way of making judgments.  
  If the observations on the same subject are highly correlated, the sample size is • 
reduced compared to the matching parallel group design.    

 These advantages must be balanced against the following disadvantages:

   The crossover design is more complex for the logistical aspects and more prob-• 
lematic on methodological grounds than the parallel group design.  
  The subjects, before receiving the second treatment, must be back to their base-• 
line conditions, i.e., the treatment effect must be fully reversible.  
  The duration of the treatments must be relatively short; otherwise, the overall • 
duration of follow-up in an individual patient will be untenable (washout periods 
must be added as well!).  
  The statistical analysis requires more assumptions compared to the parallel group • 
design and cannot cope well with dropouts.  
  An unequal carry-over effect will generally invalidate the study.    • 

 In theory, the  complete crossover design  (where all possible sequences are used 
and each subject receives one sequence containing all of the treatments under study) 
is applicable to any number of treatments. However, if the treatments are more than 
three, the experiment becomes very complex. For example, if the treatments are 
four, there are 24 possible sequences. Therefore, generally, with more than three 
treatments, only incomplete versions of the crossover design are used. 

 Two variants of  incomplete crossover designs  are possible. One is based on the 
use of a selection of complete sequences, for example, with four treatments, only 
6 of the 24 possible sequences are used. The other is based on the use of incomplete 
sequences, i.e., the subjects do not receive all the treatments under study. 

 If there is reasonable certainty that the period effect is irrelevant, there is no need 
to guarantee any balance among the sequences that have been included in the study. If 
instead there is no reasonable certainty that the period effect is irrelevant, the researcher 
must assure balance among the sequences by means of a special form of crossover 
called  Latin square design . The main feature of the Latin square design is that any 
treatment appears only once in each row (representing the sequence) and only once in 
each column (representing the period). With three treatments, referred to as A, B, and 
C, there are two possible Latin square designs, as illustrated in Table  4.4 .  

 In order to use the Latin square design, the sample size must be a multiple of the 
number of treatments in each sequence (in this case three). 

 In the incomplete crossover design characterized by incomplete sequences, more 
treatments than periods are included in the design. For example, a design with three 
treatments and two periods can be obtained by removing one column from the Latin 
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square designs shown above. This design maintains some level of balance: each 
treatment appears in the same number of sequences, each pair of treatments appears 
in the same number of sequences, and each treatment appears once in each period.   

   Variants of Parallel Group and Crossover Designs 

 Variants of the more frequently used designs exist, which are useful in special situ-
ations  [  1 , Chap.   11     ] . Because of space limitations, we will mention just a few exam-
ples. In Phase I, the controlled  dose - escalation designs  are frequently used. These 
designs, in which each patient receives only one dose level, allow the evaluation of 
higher doses, only once suffi cient evidence on the safety of the lower doses has been 
obtained. 

 Sometimes, for the fi rst assessment of the dose-response curve of a new com-
pound, the  dose - titration design  is used, in which increasing doses (if well toler-
ated) are administered to each patient, both in the active and in the control group, 
and the entire dose-response curves are compared between groups. 

 In the “ N of 1 ”  design , two or more treatments are repeatedly administered to a 
single patient: this approach is particularly useful in the study of symptomatic treat-
ments of rare diseases or rare variants, for which the common approaches cannot be 
applied, simply because it is impossible to fi nd the necessary number of patients. 
The restrictions are the same of those of any crossover design. 

 In the  simultaneous treatment design , different treatments are simultaneously 
administered to the same patient. Such designs are generally used in ophthalmology 
and dermatology. All of the study treatments must have only a local effect (in terms of 
both effi cacy and safety). These designs are analyzed as randomized block designs. 

 The  factorial designs  can be useful for studying two or more treatments simulta-
neously, when there is interest in the individual effects as well as in the combined 
ones. 

 Some therapeutic areas, such as oncology, have ethical problems of such magni-
tude that the trial designs must address these concerns fi rst and foremost. Only once 
these are addressed will the classical methodological criteria for design selection be 
used. In these situations, the  multistage designs  without control group are frequently 
used in Phase II of the clinical development. 

 Generally, the use of more sophisticated designs produces the undesired effect of 
increasing the complexity of the study, both at a practical and operational level and 

 Period 

 1 2 3  1 2 3 
 Sequence 1  A B C  A C B 

 2  B C A  B A C 
 3  C A B  C B A 

 Table 4.4    The Latin square design matrix  
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at a conceptual and methodological level. For example, the use of within-patient 
comparisons requires that each patient accepts a burden of visits and procedures 
which is often quite heavy. From a methodological point of view, these comparisons 
require that the researchers accept a considerable increase in the number of assump-
tions, which may be more or less verifi able. To justify the use of these strategies, 
these inconveniences must be balanced by relevant gains in terms of precision/ 
effi ciency and accuracy of the estimates.  

   Adaptive Clinical Trials 

 The classical clinical development of new pharmacological compounds is based on 
a chain of subsequent studies, where the researcher has to wait until the end of the 
previous trials before planning the next. At the end of a long clinical development 
process the registration decision is mostly made on the data collected in Phase III 
studies. 

 As mentioned at the beginning of this chapter, in most therapeutic areas, the 
costs and times associated with clinical development plans are becoming prohibi-
tive, and this, in turn, has ultimately a tremendous impact on the price of the drugs 
and the time that the patients should wait before new therapies can reach them. 

 It is obvious that a lot of effort is devoted to shorten the time and reduce the cost 
of the classical research programs. To this end, one of the most promising approaches 
is that of implementing  adaptation  strategies, i.e., programs that are not fi xed from 
the very beginning but can be changed based on interim looks at the data. This strat-
egy can be used at the individual study level to modify ongoing trials that could not 
continue successfully without appropriate changes or, at a more general level, to 
allow subsequent trials to overlap partially, i.e., the next trial to start before the pre-
vious one is fi nished. 

 The adaptation strategy is based on the so-called  adaptive designs , the use of 
which is relatively new in clinical research. Adaptive designs allow the fl exibility to 
modify sample size, terminate early one or more treatment arms, change the study 
duration, or make other changes, based on the evidence generated by accumulating 
data. 

 The adaptive methodology is applicable in those situations where the enrolment 
is relatively slow, the effi cacy end-point can be evaluated rapidly, and the data can 
be collected and analyzed quickly. A landmark paper is  [  8  ] , which proposes a gen-
eral method for combining samples    obtained before and after a preplanned interim 
analysis. This is adaptive in the sense that all information available at the time of 
performing this analysis may be used for planning the subsequent steps of the 
study(ies). One important stream of research in the adaptive design area has been 
sample size reassessment  [  9–  12  ] . 

 Various other design modifi cations have been considered, for example, redefi n-
ing multiple end-points  [  13,   14  ]  or changing the study design  [  15  ] . At present, an 
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important role of the adaptive designs is played in Phase II of drug development. In 
fact, the high rate of study failure in Phase III (45% according to  [  16  ] ) is to a large 
extent determined by a wrong choice of the dose, which is made in Phase II. The 
adaptive designs may be very useful in Phase II because, for a given sample size, 
they allow to explore a bigger number of doses than the fi xed designs, to collect 
more data on those doses that provide meaningful information on the dose-response 
curve (i.e., those in the steep part of the curve)    and that are more promising in terms 
of effi cacy and safety. Interesting papers on methodology for adaptive designs in 
Phase II are  [  17,   18  ] . 

 In Phase III, an interesting approach is that of the integration of Phase II and 
Phase III into one adaptive trial. This of course creates major issues, both opera-
tional and methodological. 

 The conventional approach is to conduct one or more Phase II trials in which 
several doses and/or dose schedules of an experimental drug are evaluated in terms 
of a preestablished primary end-point. The Phase II results are then used for decid-
ing whether subsequent Phase III trials should be conducted and at what dose(s). 
The fi nal analysis relies only on the data collected in the Phase III trials, individu-
ally considered. Generally, the Phase II and III primary end-points are different, 
being the former biomarkers or surrogate end-points and the latter clinical end-
points, i.e., variables able to capture the clinical benefi t for the patient, if any. 
Sometimes, however, the Phase II and III end-points are the same variable evaluated 
at different times, namely, the Phase II end-point is assessed at an early time, while 
the Phase III end-point requires a much longer follow-up. Only occasionally can the 
same end-point be used in Phase II and III trials: this happens when it is compatible 
with a relatively short observation period and small sample size (an example is the 
forced expiratory volume in 1 s [FEV1] in trials evaluating bronchodilators in 
asthma or chronic obstructive pulmonary disease). The drawbacks of the traditional 
sequential approach are essentially two: development is delayed due to the pause in 
patient enrolment between the end of Phase II and the start of Phase III, and the 
Phase II data are not incorporated in the fi nal analysis for effi cacy, which is based 
on Phase III data only. 

 The adaptive methods for combining Phases II and III are based on  adaptive two-
stage designs , where stage 1 plays the role of the Phase II study and stage 2 plays the 
role of the Phase III study. In the fi rst stage, the patients are randomized to experi-
mental treatments (generally more doses of the same treatment) and a control, and 
at the end an interim analysis is performed to decide whether to continue the devel-
opment of the experimental treatment and at what dose(s). The second stage is con-
ducted in accordance with a protocol adapted at the time of the interim analysis in 
terms of doses to be compared, sample size, and sometimes also statistical  methods. 
At the end of the study, data from both stages are combined for the fi nal analysis. 
Interesting publications on the issue of combining the two phases are  [  19–  22  ] . 

 Different research approaches and study designs are appropriate in selected situ-
ations. New technologies (for data capture and study management), approaches 
(e.g., simulation), and regulatory options are evolving, all with the goal of reducing 
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the overall time and costs of clinical development. The design principles and con-
structs described here drive the requirements for clinical research information sys-
tems (described in Chap.   8    ) and have implications for all aspects of clinical research 
planning, conduct, and analysis.       
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  Abstract   Clinical research is essential to the advancement of medical science and 
is a priority for academic health centers, research funding agencies, and industries 
working to develop and deploy new treatments. In addition, the growing rate of 
biomedical discoveries makes conducting high-quality and effi cient clinical research 
increasingly important. Participant recruitment continues to represent a major bot-
tleneck in the successful conduct of human studies. Barriers to clinical research 
enrollment include patient factors and physician factors, as well as recruitment chal-
lenges added by patient privacy regulations such as the Health Insurance Portability 
and Accountability Act (HIPAA) in the USA. Another major deterrent to enroll-
ment is the challenge of identifying eligible patients, which has traditionally been a 
labor-intensive procedure. In this chapter, we review the informatics interventions 
for improving the effi ciency and accuracy of eligibility determination and trial 
recruitment that have been used in the past and that are maturing as the underlying 
technologies improve, and we summarize the common sociotechnical challenges 
that need continuous dedicated work in the future.  

  Keywords   Internet-based patient matching systems  •  Research recruitment work-
fl ows  •  Informatics interventions in clinical research recruitment  •  Computerized 
clinical trial  •  EHR-based recruitment      

 Clinical research is essential to the advancement of medical science and is a priority 
for academic health centers, research funding agencies, and industries working to 
develop and deploy new treatments  [  1,   2  ] . In addition, the growing rate of biomedi-
cal discoveries makes conducting high-quality and effi cient clinical research 
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increasingly important. Participant recruitment continues to represent a major bot-
tleneck in the successful conduct of human studies. Failure to meet recruitment 
goals can impede the development and evaluation of new therapies and can increase 
costs to the healthcare system. According to recent data, a clinical trial averages 
$124 million and takes more than a decade to complete per drug candidate  [  3  ] , with 
half of this time spent on patient, site, and investigator recruitment  [  4  ] . It has also 
been noted that 86% of all clinical trials are delayed in patient recruitment for 
1–6 months and that 13% are delayed by more than 6 months  [  5,   6  ] . Indeed, ineffi -
cient recruitment processes threaten the success of clinical research and can have a 
range of effects including delayed study completion, trial failure, weakened results, 
introduction of bias, increased costs, slowing of scientifi c progress, and limiting the 
availability of benefi cial therapies. 

 Barriers to clinical research enrollment include patient factors  [  7  ]  and physician 
factors  [  8  ] , as well as recruitment challenges added by patient privacy regulations 
such as the Health Insurance Portability and Accountability Act (HIPAA) in the 
USA. Another major deterrent to enrollment is the challenge of identifying eligible 
patients, which has traditionally been a labor-intensive procedure. Studies have 
shown that 60–95% of the eligible patients often go unidentifi ed  [  9,   10  ]  and conse-
quently miss the opportunity to participate in research studies. To overcome research 
recruitment challenges, informatics approaches have been developed and have dem-
onstrated their potential to improve clinical research recruitment effi ciency. In this 
chapter, we review the informatics interventions for improving the effi ciency and 
accuracy of eligibility determination and trial recruitment that have been used in the 
past and that are maturing as the underlying technologies improve, and we summa-
rize the common sociotechnical challenges that need continuous dedicated work in 
the future. 

   Typical Clinical Research Recruitment Workfl ows 

 Over the past 20 years, many efforts have been made to address the challenges 
involved in clinical trials recruitment and have been applied to major stakeholders 
in the recruitment process: investigators, patients, and healthcare providers. Many 
efforts to improve the awareness of clinical trials among physicians, patients, and 
the public have been pursued, ranging from distribution of paper and electronic fl y-
ers by trial centers, to direct-to-consumer advertising, to the use of government and 
privately sponsored websites (Fig.  5.1    ). In addition, patients can now be matched to 
trials and trials to patients by information-based computer programs using com-
puter-based protocol systems, electronic health records, web-based trial matching 
tools, clinical data repositories or warehouses, or clinical registries  [  11–  16  ]  
(Figs.  5.2 ,  5.3 , and  5.4 ). Figures  5.2 ,  5.3 , and  5.4  show three common recruitment 
workfl ows initiated by investigators, physicians, and patients, respectively. 
Accepting Dr. Robert Califf’s assertion that “clinical research sites are the underap-
preciated component of the Clinical Research System,”  [  17  ]  then by extension 



835 Informatics Approaches to Participant Recruitment

 clinical research coordinators are central to all of these three workfl ows. The 
 simplest among the three is the workfl ow initiated by patients involving web-based 
trial matching (Fig.  5.2 ), which provides direct links between patients and research 
coordinators but also presents challenges such as discrepant health literacy levels 
among patients, heterogeneous data representations provided by different patients, 
and data incompleteness. Subsequently, the results are not fi ne-grained recommen-
dations and need manual fi ltering. The workfl ow initiated by physicians (Fig.  5.3 ) 
has medium effi ciency and complexity. The challenge for this recruitment mode lies 
in providing appropriate incentive for physicians to help with clinical research 
recruitment in their tight patient care schedules. The workfl ow using the clinical 
data warehouse (Fig.  5.4 ) is the most complicated among the three because it 
involves requests and queries initiated by investigators, permissions by care provid-
ers, and consent by patients. However, the highest positive predictive accuracy for 
trial screening is achieved by leveraging the data repositories. The following discus-
sion will be focused on the three information-based recruitment workfl ows in the 
chronological order of their occurrence (Figs.  5.2 ,  5.3 , and  5.4 ).      

   Informatics Interventions in Clinical Research Recruitment 

   Computerized Clinical Trial Decision Support 

 As early as the late 1980s, researchers have been seeking computational solutions to 
improving clinical research recruitment. Since protocol is at the heart of every clini-
cal trial  [  18  ] , earlier work largely concentrated on providing decision support to 
investigators through computer-based clinical research protocol systems  [  9,   11,   15, 
  19–  21  ] . T-Helper was the earliest ontology-based eligibility screening decision sup-
port system  [  20  ]  that offered patient-specifi c and situation-specifi c advice  concerning 
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  Fig. 5.1    Traditional researcher-initiated trial recruitment workfl ow       
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new protocols for which patients might be eligible. Later, Tu et al. developed a 
comprehensive and generic problem solver  [  15  ]  for eligibility decision support 
using Protégé  [  22  ] . Gennari et al. extended Tu et al.’s work and developed the 
EligWriter to support knowledge acquisition of eligibility criteria and to assist with 
patient screening  [  19  ] . Ohno-Machado et al. addressed uncertainty issues in eligi-
bility determination and divided knowledge representations for eligibility criteria 
into three levels  [  23  ] : (1) the classifi cation level, where medical concepts are mod-
eled; (2) the belief network level, where uncertainty related to missing values are 
modeled; and (3) the control level that represents procedural knowledge and stores 
information regarding the connections between the other two levels, predefi ned 
information retrieval priorities, and protocol-specifi c information  [  23  ] . Other 
approaches include decision trees  [  11,   21  ] , Bayesian Networks  [  24,   25  ] , and web-
based interactive designs  [  9  ] . DS-TRIEL  [  11  ]  used a handheld computer to match 
eligibility criteria represented to patient data entered by human experts using a deci-
sion tree. OncoDoc  [  21  ]  was a guideline-based eligibility screening system for 
breast cancer trials in which users could browse eligibility criteria represented as 
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  Fig. 5.2    Patient-initiated research recruitment workfl ow       
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decision trees in the context of patient information. Cooper et al. used Bayesian 
Networks to select a superset of patients with certain hard-coded characteristics 
from a clinical data repository  [  25  ] . Fink et al. developed an expert system for mini-
mizing the total screening cost needed to determine patient eligibility  [  9  ] . 

 In the 1990s, Musen et al. tested the T-Helper system, designed to help commu-
nity-based HIV/AIDS practitioners manage patients and adhere to clinical trial pro-
tocols. Their investigations revealed that many patients eligible for ongoing trials 
were overlooked  [  26,   27  ] . In their 1995 manuscript, Carlson et al. concluded, “The 
true value of a computer-based eligibility screening system such as ours will thus be 
recognized only when such systems are linked to integrated, computer-based medi-
cal-record systems”  [  27  ] . In a move toward that end, Butte et al. made use of a 
locally developed automated paging system to alert a trial’s coordinator when a 
potentially eligible patient’s data were entered into a database upon presentation to 
an emergency department  [  28,   29  ] . This approach was effective at increasing refer-
rals for certain trials in that particular setting  [  30  ] . In another approach, Afrin et al. 
combined the use of paging and email systems linked to a healthcare system’s labo-
ratory database to identify patients who might be eligible for an ongoing trial and 
then to notify the patient’s physician  [  31  ] . The system complied with privacy regu-
lations and was successful in signaling the patient’s physician most of the time. 
However, most physicians did not follow up on the alerts, likely owing to the fact 
that the alert took place outside the context of the patient encounter and relied on the 
physician initiating contact with the patient after the visit had concluded, events that 
might be expected to reduce effectiveness.  

   Internet-Based Patient Matching Systems 

 Before the broad adoption of computer-based medical records systems as hoped for 
by Carlson et al., another technology revolution emerged that introduced new oppor-
tunities for improving clinical research recruitment: the Internet. With the penetra-
tion of the Internet starting in the mid-1990s, clinical research opportunities have 
been presented to more and more patients through online health information. Patient-
enabling tools have emerged to help patients fi nd relevant clinical research trials. 
Physician Data Query (PDQ) is a comprehensive trial registry database created by 
the National Cancer Institute (NCI) for patients to search for trials using stage, dis-
ease, and patient demographics  [  32  ] ; however, PDQ does not support trial screening 
based on lab tests or detailed patient information. The search results often have low 
specifi city and need further fi ltering. Ohno-Machado et al. developed an XML-based 
eligibility criteria database to support trial fi ltering for patients  [  12  ] . This system, 
known as the caMatch project, is a more recent Internet-based, patient-centric clini-
cal trial eligibility matching application conceived by patient advocates  [  33  ]  with a 
focus on developing common data elements for eligibility criteria rather than on 
automatic mass screening. It requires patients to build online personal health records 
to be matched to structured eligibility criteria  [  34  ] . Niland also developed the 
Agreement on Standardized Protocol Inclusion Requirements for Eligibility 
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(ASPIRE) to help cancer patients search for highly relevant clinical trials online  [  35  ] . 
Trialx (  http://www.trialx.com    ) is another new web-based tool matching patients to 
trials using semantic web technologies  [  36  ] . In the past few years, Harris extended a 
local research registry for engaging the patient community for research participation 
into a national registry (ResearchMatch.org) to link patients, investigators, and clini-
cal trials for the United States  [  37  ] . Both Trialx and ResearchMatch provide location-
aware trial recommendation to patients over the Internet. As the semantic web 
technologies and the next generation of Web mature, more and more Internet-based 
research recruitment and patient education opportunities will undoubtedly emerge.  

   Electronic Health Records–Based Recruitment Support 

 So far, the above interventions largely rely on matching structured entry of limited 
patient data elements to structured protocol eligibility criteria. While they are 
appropriate for providing patient-specifi c recommendations, some of them may 
not be practical for large-scale mass screening due to the lack of patient details for 
high-accuracy trial matching and the laborious, error-prone patient data entry pro-
cess. In recent years, the adoption of electronic health records (EHRs) in both 
hospitals and private practice has been rising steadily, with 50% of US hospitals 
currently using EHR systems  [  3  ] . EHR systems contain rich patient information 
and are a promising resource for mass screening for clinical research by physi-
cians. However, relatively few physicians contribute to research recruitment due to 
various barriers, including the lack of time and technical limitations of existing 
systems. To make participating in the recruitment process easier for non-researcher 
clinicians, Embi et al. pioneered methods to generate EHR-based clinical trial 
alerts (CTAs). These point-of-care alerts build on and repurpose clinical decision 
support tools to alert clinicians when they encounter a patient who might qualify 
for an ongoing trial, and they enable a physician to quickly and unobtrusively con-
nect a patient with a study coordinator, all while being HIPAA compliant  [  38  ] . The 
CTA intervention has now been associated in multiple studies with signifi cant 
increases both in the number of physicians generating referrals and enrollments 
and in the rates of referrals and enrollments themselves. Indeed, during Embi 
et al.’s initial CTA intervention study applied to a study of type 2 diabetes mellitus, 
the CTA intervention was associated with signifi cant increases in the number of 
physicians generating referrals (5 before and 42 after;  P  = 0.001) and enrollments 
(5 before and 11 after;  P  = 0.03), a 10-fold increase in those physicians’ referral 
rate (5.7/month before and 59.5/month after; rate ratio, 10.44; 95% confi dence 
interval, 7.98–13.68;  P  = 0.001), and a doubling of their enrollment rate (2.9/month 
before and 6.0/month after; rate ratio, 2.06; 95% confi dence interval, 1.22–3.46; 
 P  = 0.007). Moreover, a follow-up survey of physicians’ perceptions of this infor-
matics intervention  [  39  ]  indicated that most physicians felt that the approach to 
point-of-care trial recruitment was easy to use and that they would like to see it 
used again. The CTA approach has subsequently been tested in other venues, fur-
ther demonstrating improvements to recruitment rates  [  40–  42  ] .  

http://www.trialx.com
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   Data Repository–Based Clinical Trial Recruitment Support 

 Another promising intervention for mass screening is the use of data repositories or 
data warehouses. In fact, automation of participant identifi cation by leveraging large 
data repositories dates back to the early 1990s. With the increasing adoption of 
EHRs worldwide, many institutions have been able to aggregate data collected from 
EHRs into clinical data warehouses to support intelligent data analysis for adminis-
tration and research. Kamal et al. developed a web-based prototype using an infor-
mation warehouse to identify eligible patients for clinical trials  [  43  ] . Thadani et al. 
demonstrated that electronic screening for clinical trial recruitment using a Columbia 
University Clinical Data Warehouse reduced the manual review effort for the large 
randomized trial ACCORD by 80%  [  44  ] . Compared with EHRs, data warehouses 
are often optimized for effi cient cross-patient queries and can be linked to com-
puter-based clinical research decision support systems, such as alerts systems, to 
facilitate recruitment workfl ow. Furthermore, Weng et al. compared the effective-
ness of a diabetes registry and a clinical data warehouse for improving recruitment 
for the diabetes trial TECOS  [  45  ] . Clinical registries are created for clinicians with 
disease-specifi c information; they are easy to use and contain information of sim-
plicity and better quality. For example, not all diabetic patients identifi ed using the 
clinical data warehouse have regular A1C measurement; therefore, applying A1C 
eligibility criteria on these patients with incomplete data to determine their eligibil-
ity is diffi cult. The diabetic patients identifi ed using the diabetes registry, on the 
other hand, often do have regular A1C measurements due to the requirements of 
establishing clinical registries to improve quality monitoring of chronic diseases 
like diabetes. However, the results showed that the registry generated so many false-
positive recommendations that the research team could not complete the review of 
the recommended patients. The data warehouse, though, generated an accurate, 
short patient list that helped the researcher become the top recruiter in the USA for 
this study. Weng et al. concluded that a clinical data warehouse in general contains 
the most comprehensive patient, physician, and organization information for apply-
ing complex exclusion criteria and can achieve higher positive predictive accuracy 
for electronic trial screening. The only disadvantage is that its use mandates approv-
als from the Institutional Review Board (IRB) and sophisticated database query 
skills, which are barriers for clinical researchers or physicians wishing to use it 
directly for trial recruitment.   

   Sociotechnical Challenges 

 The availability of electronic patient information by itself does not entail an easy 
solution. There are regulatory, procedural, and technical challenges. Regulatory 
barriers for using electronic trial screening primarily come from HIPAA. HIPAA 
forbids nonconsensual release of patient information to a third party not involved 
with treatment, payment, or other routine operations associated with the provision 
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of healthcare to the patient; therefore, concerns regarding privacy represent a 
 growing barrier to electronic screening for clinical trials accrual  [  46  ] . In addition, 
technical barriers, including heterogeneous data representations and poor data qual-
ity (e.g., incompleteness, inconsistency, and fragmentation), pose the primary chal-
lenges for EHR-based patient eligibility identifi cation  [  47,   48  ] . Moreover, differ-
ences in EHR implementation represent another roadblock with respect to the reuse 
of computer-based eligibility queries across different institutions. Parker and 
Embley developed a system to automatically generate medical logical modules in 
Arden syntax for clinical trials eligibility criteria  [  49  ] ; however, queries represented 
in Arden syntax have the “curly braces problem” because the syntactic construct 
included in curly braces has to be changed for each site specifi cally  [  50  ] , which 
could entail considerable knowledge engineering costs. In addition, poor data qual-
ity, unclear information sources, and incomplete data elements all contribute to 
making eligibility determination diffi cult  [  51  ] . Inconsistent data representations 
(both terminology and information model) are signifi cant barriers to reliable patient 
eligibility determination. Weng et al. found signifi cant inconsistency between struc-
tured and unstructured data in EHRs  [  52,   53  ] , which posed great challenges for 
reusing clinical data for recruitment. Data incompleteness is another serious prob-
lem. Criteria such as “life expectancy greater than 3 months” or “women who are 
breast feeding” are often unavailable in EHRs. As Kahn has observed  [  54  ] , EHR 
systems confi gured to support routine care do well identifying patients using only 
demographics and lab tests but do poorly with diagnostic tests and questionnaires 
 [  54  ] . Moreover, oftentimes patients are subsequently found ineligible at detailed 
screening because of treatment regimens or other factors that are exclusion factors 
in the protocol. Heterogeneous semantic representation is perhaps the greatest tech-
nical challenge. While EHRs or data warehouses all typically contain continuous 
variables, time-series tracings, and text, these rich data are not stored in a consistent 
manner for decision support, such as identifying eligible patients for clinical trials. 
For example, one EHR implementation might enter “abdominal rebound pain” as a 
specifi c nominal variable with value “YES,” and another might provide only the 
option of entering “abdominal pain” as free text or store a value on a visual ana-
logue scale from 1 to 10. Hence, Chute asserts that eligibility determination using 
electronic patient information is essentially a problem of phenotype retrieval, whose 
big challenge is the semantic boundary that characterizes the differences between 
two descriptions of an object by different linguistic representations  [  55  ] . A chal-
lenge for the implementation of EHRs or data warehousing for clinical research 
recruitment is the semantic gulf between clinical data and clinical trial eligibility 
criteria. No single formalism is capable of representing the variety of eligibility 
rules and clinical statements that we can fi nd in clinical databases  [  56  ] . More 
research is needed to identify: (1) common manual tasks and strategies involved to 
craft EHR-based data queries for complex eligibility rules; (2) the broad spectrum 
of complexities in eligibility rules; (3) the breadth, depth, and variety of clinical 
data; and (4) the coverage of current terminologies in the concepts of eligibility 
criteria. As there is a signifi cant distinction between high-level classifi cations (such 
as the ICDs) from detailed nomenclatures (such as SNOMEDCT)  [  57  ] , in order to 
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bridge the semantic gap between eligibility concepts and clinical manifestations in 
EHRs, we need to address the divergence and granularity discrepancies across dif-
ferent data encoding standards in our proposed research. 

 Also, a data-centric approach is indispensable to any e-clinical solution, but no 
existing approach has appeared to have the robust data connectivity required for 
data-driven clinical trials’ mass screening. Thorough coverage of existing knowl-
edge representation for eligibility criteria can be found in Weng et al.’s literature 
review  [  58  ] . Natural Language Processing (NLP) is a high-throughput technology 
that formalizes the grammar rules of a language in algorithms, then extracts data 
and terms from free-text documents, and converts them into an encoded representa-
tion. Medical Language Processing (MLP) is NLP in the medical domain  [  59  ] . MLP 
has demonstrated its broad uses for a variety of applications, such as extracting 
knowledge from medical literature  [  60,   61  ] , indexing radiology reports in clinical 
information systems  [  62–  64  ] , and abstracting or summarizing patient characteris-
tics  [  65  ] . One of the widely used tools is MetaMap Transfer (MMTx)  [  66  ] , which is 
available to biomedical researchers in a generic, confi gurable environment. It maps 
arbitrary text to concepts in the UMLS Metathesaurus  [  67  ] . Chapman demonstrated 
in her studies that MLP is superior to ICD-9 in detecting cases and syndromes from 
chief complaint reports  [  68,   69  ] ; this fi nding was also confi rmed by Li et al. in a 
study comparing discharge summaries and ICD-9 codes for recruitment uses  [  53  ] . 
The most mature MLP system is MedLEE  [  70  ] . In numerous evaluations carried out 
by independent users, MedLEE performed well  [  71  ] . To date, MedLEE is one of the 
most comprehensive operational NLP systems formally shown to be as accurate as 
physicians in interpreting narrative patient reports in medical records. EHR systems 
contain much narrative clinical data. The cost and effort associated with human 
classifi cation of such data is not a scalable or sustainable undertaking in modern 
research infrastructure  [  57  ] . For this reason, it is well-recognized that we need NLP 
such as MedLEE to structure clinical data for trial recruitment.  

   Conclusion and Future Work 

 Ongoing attempts to use electronic patient information for patient eligibility identi-
fi cation underscore a great need for a long-range research plan to design and evalu-
ate different methods to surmount the social, organizational, and technical challenges 
facing clinical trial recruitment, the key components of the plan being: (1) to improve 
the data quality and completeness for EHR systems, (2) to design better data presen-
tation techniques for EHR systems to enable patient-centered, problem-oriented 
data views, (3) to reduce ambiguities and to increase the computability of clinical 
research eligibility criteria, (4) to develop automatic methods for aligning the 
semantics between eligibility criteria and clinical data in EHRs, and (5) to integrate 
clinical research    and patient care workfl ows to support clinical and translational 
research. The culmination of EHR-based recruitment efforts demonstrates that 
effort should be made to facilitate collaboration and workfl ow support between 
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clinical research and patient care, which unfortunately still represent two distinct, 
separate processes and which divide professional communities and organizational 
personnel and regulations. Inadequate interoperability of workfl ow processes and 
electronic systems between clinical research and patient care can lead to costly, 
redundant tests and visits and to dangerous drug-drug interactions. In 2009, Conway 
and Clancy suggested that “use of requisite research will be most effi cient and rel-
evant if generated as a by-product of care delivery . ”  [  72  ]  A meaningful fusion of 
clinical care and research workfl ows promises to avoid confl icts, to improve safety 
and effi ciency for clinical research  [  3  ] , and to make EHR-based research more effi -
cient and productive.      
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  Abstract   The culmination of the changes in health care, motivated in many ways 
by the rapid evolution of information and communication technologies in parallel 
with the shift toward increased patient decision making and empowerment, has 
critical implications for clinical research, from recruitment and participation to, ulti-
mately, successful outcomes. For those who are incapable (or unwilling) to develop 
the requisite health literacy skills, there is also a tendency to turn to intermediaries 
for advice. This chapter explores these developments from various perspectives and 
looks at some foundational issues in health communication as related to health con-
sumerism. The overarching concern is the information environment within which 
health consumers are immersed and some of the underlying communication issues 
and emerging technologies contributing to the changing nature of patients’ informa-
tion world. Not surprisingly, we will see that core fi ndings from communication and 
behavior research have relevance for our current understanding and future studies of 
the evolving role of the consumer.  

  Keywords   Health consumerism  •  National Library of Medicine  •  Consumer health 
information  •  Web-based information resources  •  Consumer health movement  • 
 Patient empowerment  •  Public access technologies  •  Personalization of medicine  • 
 Public Internet access      

   The premise is that we are at a new phase of health and medical care, where more decisions 
are being made by individuals on their own behalf, rather than by physicians, and that, 
furthermore, these decisions are being informed by new tools based on statistics, data, and 
predictions… We will act on the basis of risk factors and predictive scores, rather than on 
conventional wisdom and doctors’ recommendations. We will act in collaboration with 
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 others, drawing on collective experience with health and disease… these tools will create a 
new opportunity and a new responsibility for people to act – to make health decisions well 
before they become patients. 

 Thomas Goetz, cited by Swan  [  1  ] , from The Decision Tree,   http://thedecisiontree.com/
blog/2008/12/introducing-the-decision-tree       

 The role of patients as consumers    has been evolving for over a generation. 
Patients are central to clinical research, and there are a number of challenges and 
issues stemming from the health consumerism movement that stand to impact the 
conduct and ultimate success of clinical research. Accelerating the trends in health 
consumerism are a host of technology and decision-support-related advances, 
including enhanced access to authoritative web-based information resources, social 
networking capabilities, and personal decision aids. Generally, the goal is greater 
patient empowerment, defi ned by the World Health Organization (WHO) as, “a 
process by which people, organizations and communities gain mastery over their 
affairs”  [  2  ] , or more practically as “self-reliance through individual choice (con-
sumer perspective)”  [  3  ] . Consumerism and empowerment, however, assume and 
require a level of health literacy on the part of consumers and an understanding of 
challenges and implications of this by developers, researchers, and healthcare 
providers. 

 Increasingly, the responsibility for health-related matters is passing to the indi-
vidual, partly because of legal decisions, which have entitled patients to full infor-
mation access. Ever since the 1970s, patients have increasingly become more active 
participants in decisions affecting health care  [  4  ] . The overload of information on 
today’s health professionals forces decentralization of responsibilities, placing the 
onus on individuals to inform themselves if they are going to receive up-to-date 
treatment, identify clinical studies for which they are suited and eligible, and utilize 
the variety of consumer health tools now available. In effect, patients must often do 
the traditional work of doctors, who cannot possibly keep up with the breadth and 
depth of information related to specifi c research advances and studies and requisite 
eligibility criteria for their patients. Recognition of the limitations on health profes-
sionals also requires individuals to be able to confi rm and corroborate information 
by using multiple sources in various formats, in other words, to develop effective 
health information literacy skills. Their efforts now can be more easily pooled 
because of advances in health information technology, social networking, and 
related information and communication technologies (ICTs) and tools to produce 
informed consumers who share information with each other and whose collective 
knowledge may even exceed that of some health professionals, especially in terms 
of issues related to everyday life with a disease. 

 In the U.S., the Federal government, particularly the National Library of Medicine 
(NLM), has played a signifi cant role in increasing the public’s access to authorita-
tive information  [  5  ] . Early government efforts focused on telephone hotlines such 
as the Cancer Information Service  [  6  ] , and more recently, the government has 
focused on providing information through access to authoritative databases such as 
NLM’s PubMed, which fi rst became free to the public in 1997  [  7  ] . Many NLM sites 
now provide users with the capability to develop profi les that keep them abreast of 
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self-defi ned areas of interest as relevant material is added to a database by using 
RSS feeds. The Federal government is thus promoting a rich infrastructure from 
which individuals can draw information, enhancing their access to richer informa-
tion fi elds  [  8  ] . 

 The culmination of the changes in health care, motivated in many ways by the 
rapid evolution of ICTs in parallel with the shift toward increased patient decision 
making and empowerment, has critical implications for clinical research, from 
recruitment and participation to, ultimately, successful outcomes. For those who 
are incapable (or unwilling) to develop the requisite health literacy skills, there is 
also a tendency to turn to intermediaries for advice. This chapter explores these 
developments from various perspectives and looks at some foundational issues in 
health communication as related to health consumerism. The overarching concern 
is the information environment within which health consumers are immersed and 
some of the underlying communication issues and emerging technologies contrib-
uting to the changing nature of patients’ information world. Not surprisingly, we 
will see that core fi ndings from communication and behavior research have rele-
vance for our current understanding and future studies of the evolving role of the 
consumer. 

   Traditional Perspectives: Health Campaigns 
and Information Behaviors 

 Public communication campaigns represent “purposive attempts to inform, per-
suade, or motivate behavior changes in a relatively well-defi ned and large audience, 
generally for noncommercial benefi ts to the individuals and/or society, typically 
within a given time period, by means of organized communication activities involv-
ing the mass media and often complemented by interpersonal support”  [  9  ] . We 
know a lot about how formal organizations (e.g., the National Cancer Institute, the 
American Cancer Society) conduct campaigns to change individual behaviors  [  10  ] . 
Increasingly, however, individual action, embodied most clearly in information 
seeking, determines what messages individuals will be exposed to and how they 
will behave. In our view, actors operate in “information fi elds” (covered in greater 
depth later in the chapter) where they recurrently process resources and informa-
tion. This fi eld operates much like a market where individuals make choices (often 
based on only incomplete information, and often irrationally) that determine how 
they will act regarding their health. This contrasts directly with the view of informa-
tion campaigns that tend to view the world as rational, known, and which concen-
trate on controlling individuals to seek values of effi ciency and effectiveness  [  9  ] . 

 A focus on information seeking develops a true receiver’s perspective and forces 
us to examine how an individual acts within an information fi eld containing mul-
tiple information carriers. Some of these carriers may be actively trying to reach 
individuals, but many contain passive information awaiting retrieval. While there 
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may be some commonalities across information fi elds, individuals’ information 
environments are becoming so fragmented due to individual contextualizing that 
assessing media effects (or campaign ones) is increasingly diffi cult  [  11  ] . There is 
a commonplace recognition now that mass media alone is unlikely to have the 
desired impacts and that they must be supplemented with interpersonal communi-
cation within social networks  [  12  ] , with growing importance attached to social 
media. 

 Campaigns may result in felt needs on the part of the individual, but the indi-
vidual and his or her placement in a particular social context will determine how 
needs are acted upon. A true picture of the impact of communication on health 
needs to contain elements of both perspectives. Yet, most of the work in this area 
tilts in the direction of understanding more formal campaigns, with increasingly 
sophisticated methods  [  13,   14  ] ; for our purposes, however, the primary focus will be 
on how individuals make sense of the information fi elds within which they act. This 
focus on receivers dovetails nicely with the renewed focus on the patient as con-
sumer, as expert, and as one seeking empowerment. 

 Traditional health communicators have learned that these classic approaches are 
not very effective unless the needs of the audience and their reaction to messages are 
considered  [  15,   16  ] . Thus, it soon became apparent that, while there were some 
notable successes, audiences could be remarkably resistant to campaigns, especially 
when they did not correspond to the views of their immediate social network  [  17–  20  ] . 
Indeed, campaigns tend to reach those who are already interested and typically 
bypass those who are most in need of their messages  [  19  ] . In effect, campaigns 
reach the already converted. While this might have a benefi cial effect of further 
reinforcing beliefs, the audience members who are most in need of being reached 
are precisely those members who are least likely to attend to health professionals’ 
messages  [  17  ] . 

 One of the areas where the limitations of public campaigns is most clearly 
revealed is in the diffi culty and considerable expense involved in recruiting people 
into clinical research studies, which has prompted initiatives like the Army of 
Women addresses (  www.armyofwomen.org    ). According to Allison  [  21  ] , less ~3% 
of eligible cancer patients enroll in trials, and roughly one in fi ve of NCI-sponsored 
trials fail to meet their necessary enrollment  [  22  ] . The challenge of trial recruitment 
becomes especially pronounced in the area of rare diseases, where there are rela-
tively low numbers of affected individuals who may be geographically dispersed. 
Even with new technologies to better match patients with trials or other health infor-
mation, privacy and credibility underlie and potentially impede these efforts  [  23  ] , 
and researchers must consider whether they are getting representative samples given 
that those seeking trials might disproportionately represent certain demographics 
 [  24  ] . The extremely low accrual rates in clinical research show that even within 
subsets of the population who might be eligible to participate in particular trials, the 
traditional “one size fi ts all” approach to health campaigns is insuffi cient. 
Expectations have understandably risen on the part of consumers, who have access 
to more targeted or even personalized information to assist them with such deci-
sions and whose support groups may reinforce their natural predispositions.  

http://www.armyofwomen.org
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   The Social World of Health Consumers 

 The most obvious and compelling development in consumer health over the past 
15 years or more has been the emergence of a dynamic social world facilitated by 
the Internet and social media. The interactions and relationships among people, the 
evolving healthcare environment, technology, and information resources and carri-
ers are incredibly complex and continually in fl ux. The frequently cited Pew Internet 
report on the social life of health information showed that 61% of adults seek health 
information online  [  25  ] . While most (86%) of all adults still continue to seek infor-
mation from traditional sources (i.e., health professionals), the social world is 
“robust,” with more than half of online health information seekers doing so for 
someone else and discussing such information with others  [  25  ] . In addition to seek-
ing health information that ranges in complexity, there are increasing online support 
groups that are now showing signs of fostering patient empowerment or manage-
ment  [  26  ]  and participation tools that may lead to more positive outcomes, espe-
cially for rare diseases  [  27  ] . The consumer health environment is expanding at a 
breakneck pace, but the underlying theoretical issues and social dynamics are not 
terribly different from those that preceded the Internet age. 

 An overview of the context of previous communication and behavioral research 
on health consumers, including those who are engaged in or might consider partici-
pating in clinical research of one kind or another, is important as we consider the 
technologies and approaches that currently populate the landscape of consumerism 
in relation to clinical research. First, in this section, we present in greater detail the 
notion of information fi elds where health consumers are embedded. We then explore 
interpersonal interactions among individuals in social networks and the complex 
relationships and dynamics this presents despite emerging technologies. The role of 
third parties is also discussed, including brokers and advocacy groups. 

   Information Fields 

 As suggested above, one conception of an information environment is that of the 
information fi eld within which the individual is embedded  [  28  ] . An individual’s 
information fi eld provides the more static context for their information seeking, 
containing resources, constraints, and carriers of information  [  4,   29  ]  It provides the 
starting point for information seeking  [  30  ]  representing the typical arrangement of 
information stimuli to which an individual is regularly exposed  [  11  ]  and the infor-
mation resources they routinely use  [  31  ] . Individuals are embedded in a physical 
world that involves recurring contacts with an interpersonal network of friends and/
or family. They are also regularly exposed to the same mediated communication 
channels (company news bulletins, local newspapers, television news, and so on). 
The information fi eld in which an individual is located constrains the very possibil-
ity of selecting particular sources of information. 
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 The concept of fi eld has a long tradition in the social sciences tracing back to the 
seminal work of Lewin  [  32  ]  with interesting recent variants such as the information 
horizons approach  [  31  ] . Potential fi elds for patients have become incredibly richer 
over the last decade, providing them resources that can dramatically change their 
relationships with clinicians and researchers, as well as with patient advocacy 
groups and other health-related agencies and organizations. 

 People can, if they so desire, arrange the elements of their information fi eld to 
maximize their surveillance of health information, providing an initial contextu-
alizing of their environment. Individuals who are more concerned with their 
health are likely to mold their information fi elds to include a richer mixture of 
health-related information sources. How they shape this fi eld over time deter-
mines not only their knowledge of general health issues but also their incidental 
exposure to information that may stimulate them to more purposive information 
seeking. The nature of an individual’s interpersonal environment, or social fi elds, 
has important consequences for information seeking and for health practices  [  4  ] . 
Its importance is increasing with rising consumerism, a focus on prevention, self/
home care, and a greater focus on individual responsibility. In a sense, individuals 
are embedded in a fi eld that acts on them, the more traditional view of health 
campaigns. However, they also make choices about the nature of their fi elds, the 
types of media they attend to, the friendships they form and the neighborhoods 
they live in, and the social media they participate in, which are often based on 
their information needs and preferences which is greatly facilitated by the Internet 
and explosion of choices among even traditional media such as cable television 
and magazines. 

 Naturally, an information fi eld can be modifi ed to refl ect changes in an individu-
al’s life, which at times are also directly related to changing information seeking 
demands such as a pressing health problem. When an individual becomes a cancer 
patient, for instance, his or her interpersonal network changes to include other can-
cer patients who are proximate during treatment. They also may be exposed to a 
greater array of mediated communication (e.g., pamphlets, videotapes, and more 
tailored electronic communication—described later—to name a few) concerning 
the nature of their diseases, treatment options, or availability of relevant clinical 
research studies. As individuals become more focused in their information seeking, 
they change the nature of their information fi eld to support the acquisition of infor-
mation related to particular purposes  [  33  ] . In this sense, individuals act strategically 
to achieve their ends and in doing so construct local communication structures in a 
fi eld that mirrors their interests  [  34  ] . 

 In some ways, the total of someone’s information fi elds has analogies to the 
notion of social capital in that it describes the resource an individual has to draw 
upon when confronting a problem. When individuals share the same information 
fi eld, they also share a context which provides the information grounds for further 
interaction  [  35  ] . This sense of shared context is central in the development of online 
communities and related tools that have been growing in number in recent years and 
that extend the reach of one’s effective social network through information behavior 
involving the development of weak ties.  
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   Interpersonal Communication in Social Networks 

 There have been a number of recent studies that demonstrate a clear link between 
individuals’ positioning in social networks and their health  [  36,   37  ] . There are four 
basic dynamics involved:

    1.    Lack of adequate social network ties worsens health, increasing demands for 
medical services.  

    2.    Social networks shape beliefs and access to lay consultation.  
    3.    Disruptions in social networks trigger help seeking.  
    4.    Social networks moderate (or amplify) other stressors.     

 An individual’s effective network is constituted by friends, family members, and 
other close associates, while an extended network is composed of casual acquain-
tances and friends of friends who, because they have different contacts than the 
focal individual, can provide them with unique information. Effective networks 
impart normative expectations to individuals, and these expectations are often linked 
to behavioral intentions and actions that can represent convergence of network 
members around symbolic meanings of support  [  38,   39  ] . These networks, in effect, 
constitute elaborate feedback processes through which individual behavior is regu-
lated and maintained  [  38,   39  ] . 

 Social networks are often viewed as the infrastructure of social support with 
social support seen as “…inextricably woven into communication behavior”  [  38,   39  ] . 
Generally, two crucial dimensions of support are isolated, informational and emo-
tional, with informational support being associated with a feeling of mastery and 
control over one’s environment and emotional support being crucial to feelings of 
personal coping, enhanced self-esteem, and needs for affi liation  [  4  ] . Individuals 
need the social support of their immediate social networks to deal effectively with 
the disease and with the maintenance of long-term health behaviors  [  40  ] , but they 
also need authoritative professional guidance in the institution of proper treatment 
protocols, selection of trials, and comprehension of the most recent research. 

 However, interlocking personal networks lack openness (the degree to which a 
group exchanges information with the environment) and may simply facilitate the 
sharing of ignorance among individuals. “The degree of individual integration in 
personal communication networks is negatively related to the potential for informa-
tion exchange”  [  41  ] . The degree to which individuals expand their networks and are 
encouraged to do so by members of their effective network has important conse-
quences for health-related information acquisition and subsequent actions. 

 The strength of weak ties is perhaps the best-known concept related to network 
analysis. It refers to our less developed relationships that are more limited in space, 
place, time, and depth of emotional bonds  [  8  ] . This concept has been intimately tied 
to the fl ow of information. Weak ties’ notions are derived from the work of 
Granovetter  [  42  ]  on how people acquire information related to potential jobs. It 
turns out that the most useful information came from individuals in a person’s 
extended networks, casual acquaintances, and friends of friends. This information 



102 J.D. Johnson and J.E. Andrews

was the most useful precisely because it comes from our infrequent or weak con-
tacts. Strong contacts are likely to be people with whom there is a constant sharing 
of the same information; as a result, individuals within these groupings have come 
to have the same information base. Information from outside this base gives unique 
perspectives that may be crucial to confronting a newly developed health problem. 

 Weak ties provide critical informational support because they transcend the limi-
tation of our strong ties and because, as often happens in sickness, our strong ties 
can be disrupted or unavailable  [  38  ] . In online support groups, weak ties might 
benefi t participants (or have potentially negative consequences), given the disinhibi-
tion effect often referred to in online communication, where people are known to 
say or do things they would not normally do within closer networks  [  26  ] . As in other 
weak tie contexts, disinhibition can foster a sense of closeness, empathy, and kind-
ness and a certain level of bonding that may break the inertia of the fi elds in which 
an individual has habitually been embedded and introduce them to new individuals 
or third parties.   

   The Role of Third Parties 

 There are a number of ways that use of third parties, particularly knowledge 
 brokers, can complement clinical practice and, by extension, research. First, indi-
viduals who want to be fully prepared before they visit the doctor often consult the 
Internet  [  43,   44  ] . In fact, Lowery and Anderson  [  45  ]  suggest that prior information 
use may impact respondents’ perception of physicians. Second, there appears to be 
an interesting split among Internet users, with as many as 60% of users reporting 
that while they look for information, they only rely on it if their doctors tell them to 
 [  25,   44  ] . While the Internet makes a wealth of information available for particular 
purposes, it is often diffi cult for the novitiate to weigh the credibility of the informa-
tion, a critical service that a knowledge broker, such as a clinical professional or 
consumer health librarian, can provide. This suggests that a precursor to a better 
patient-doctor dialogue would be to increase the public’s knowledge base and to 
provide alternative, but also complementary, information sources by shaping  clients’ 
information fi elds. To achieve behavioral change regarding health promotion, a 
message must be repeated over a long period via multiple sources  [  46  ] . By shaping 
and infl uencing the external sources a patient will consult both before and after 
visits, clinical practices can simultaneously reduce their own burden for explaining 
(or defending) their approach and increase the likelihood of patient compliance. 

 Although intermediaries play an important role despite more consumer health 
information on the Internet, increasing health literacy by encouraging autonomous 
information seekers also should be a goal of our healthcare system  [  47  ] . While it is 
well known that individuals often consult a variety of others before presenting 
themselves in clinical settings  [  4  ]  outside of HMO and organization contexts, there 
have been few systematic attempts to shape the nature of these prior consultations. 
If these prior information searches happen in a relatively uncontrolled, random, 
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parallel manner, expectations (e.g., treatment options, diagnosis, drug regimens) 
may be established that will be unfulfi lled in the clinical encounter. 

 The emergence of the Internet as an omnibus source of information has appar-
ently changed the nature of opinion leadership; both more authoritative (e.g., medi-
cal journals and literature) and more interpersonal (e.g., support or advocacy groups) 
sources are readily available and accessible online  [  48  ] . This is part of a broader 
trend that Shapiro  [  49  ]  refers to as “disintermediation,” or the capability of the 
Internet to allow the general public to bypass experts in their quest for information, 
products, and services. The risk here, however, is that individuals can quickly 
become overloaded or confused in an undirected environment. In essence, while the 
goal may be to reduce uncertainty or help bridge a knowledge gap, the effect can be 
increased uncertainty and, ultimately, decreased sense of effi cacy for future searches. 
A focus on promoting health information literacy, then, would mean helping people 
gain the skills to access, to judge the credibility of, and to effectively utilize a wide 
range of health information. 

 Increasing use of secondary information disseminators, or brokers, is really a 
variant on classic notions of opinion leadership  [  18  ]  and gatekeepers  [  50  ]  and 
instantiates weak ties  [  51  ] . Opinion leadership suggests ideas fl ow from the media 
to opinion leaders to those  less active  segments of the population serving a relay 
function, as well as providing social support information to individuals  [  52  ] , rein-
forcing messages by their social infl uence over them  [  18  ] , and validating the author-
itativeness of the information  [  53  ] . So, not only do opinion leaders serve to 
disseminate ideas but they also, because of the interpersonal nature of their ties, 
provide additional pressure to conform as well  [  52  ] . Another trend in this area is the 
recognition of human gatekeepers, community-based individuals who can provide 
information to at-risk individuals and refer them to more authoritative sources for 
treatments  [  4  ] . Recognizing the powers of peer opinion leaders, many health institu-
tions are establishing patient advocacy programs, for example, where cancer survi-
vors can serve to guide new patients through their treatments. However, these highly 
intelligent seekers also may create unexpected problems for agencies since they 
may create different paths and approaches to dealing with treating a disease or moti-
vating clinical research studies.  

   Self-help Groups 

 Increasingly, more formal groups, acting as crowd-sourced medicine, are serving as 
opinion leaders and information seekers for or supporting the everyday health infor-
mation needs of individuals. Self-help groups are estimated to be in the hundreds of 
thousands across a wide variety of diseases with members numbering in the mil-
lions  [  26  ] . They also can provide critical information on the personal side of dis-
ease: How will my spouse react? Am I in danger of losing my job? Will I get proper 
treatment in a clinical study? etc. In addition, these groups also can prepare some-
one psychologically for a more active or directed search for information once his or 
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her immediate personal reactions are dealt with. Driving this movement has been 
the notion that self-help groups have the potential to affect outcomes by supporting 
patients’ general well-being and sense of personal empowerment  [  26  ] , and the 
diversity of tools now available have the potential to further enable this. 

 The Internet has increased the impact of these groups and the functionality and 
tools available to individuals, with the additional twist that formal institutions or 
private companies often support these groups. Perhaps the most prominent recent 
example of a robust and multifaceted online support system (or health social net-
work) is PatientsLikeMe (PLM) (  www.patientslikeme.com    ). PLM is essentially an 
online support group that uses patient-reported outcomes, symptoms, and various 
treatment data to help individuals fi nd and communicate with others with similar 
health issues  [  54  ] . As noted by a few of its developers, the essential question asked 
by patients participating in one of the several disease communities is “Given my 
current situation, what is the best outcome I can expect to achieve and how do I get 
there?”  [  55  ] . Personal health records, graphical profi les, and various communica-
tion and networking tools help patients in their quest to answer this. Enhanced 
access to others willing to share experiences is obviously critical and would cer-
tainly have been nearly impossible prior to the information and communication 
technologies available today. 

 Another prominent and long-lasting self-help intervention is the Comprehensive 
Health Enhancement Support System (CHESS) which has focused on a variety of 
diseases with educational and group components, closed membership, fi xed dura-
tion, and decision support  [  56  ] . Computer-mediated support groups (CMSG) inter-
ventions such as CHESS have been shown in a recent meta-analysis to increase 
social support, to decrease depression, and to increase quality of life and self- 
effi cacy, with their effects moderated by group size, the type of communication 
channel, and the duration of the intervention  [  57  ] .  

   Advocacy Groups 

 The emergence of advocacy groups over at least the last half century comes from 
people with the same disease or affl ictions who need to share efforts in facing simi-
lar challenges, exchange knowledge that is recognized as different from that of 
health professionals, and to speak with a more unifi ed voice to impact policy and 
related matters  [  58  ] . Advocacy groups have interests beyond serving and supporting 
the needs of their individual members, however; they may seek to change societal 
reactions to their members or insure that suffi cient resources are devoted to the 
needs of their groups  [  59  ] . At times, these groups will have agendas that do not 
necessarily coincide with an individual’s needs. Advocacy groups need members to 
advance the group’s agendas. For example, they often are especially interested in 
insuring that the latest information on treatment is made available to patients, some-
times pressing for the release of information on experimental treatments before they 
would traditionally be available. They also may expose their members to risky 
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experimental treatments prematurely, though they would argue that these individual 
costs are often for the greater good of their members and that the patriarchal attitude 
of cancer (or other) researchers has shrouded scandal in secrecy and led to an orien-
tation toward treatment instead of prevention  [  59  ] . Advocacy groups are particu-
larly active when there are no clear treatment options or when they are perceived to 
be ineffective  [  59  ] . Thus, at times individual and group interests coincide, and at 
times, of course, they do not. 

 Advocacy groups for cancer (e.g., Army of Women, Breast Cancer Action, 
Patient Advocates for Advanced Cancer Treatments) serve as increasingly impor-
tant lobbyists for the provision of information. For instance, these groups have been 
very successful in increasing research funds for breast cancer research. Much of 
their infl uence is due to how deeply cancer has pervaded our society and to the vast 
numbers of individuals who have either been personally diagnosed or have been 
impacted by family members and friends who have suffered from some form of 
cancer. These groups actively seek more money for research that leads to informa-
tion for databases, to enhanced access to and availability of information, and so on. 
In short, they lobby for an information infrastructure. 

 The international growth of advocacy groups for rare diseases has been particu-
larly interesting. Because rare diseases affect small numbers of people who are 
geographically dispersed, there is a need, indeed an intense desire, for these patients 
and families to connect. A few decades ago, prior to the explosion of health infor-
mation accessible on the Internet, many of the stories of how these groups began 
were similar: A family has a sick member with a disease that perhaps only a few 
dozen others have; they seek more answers and often become experts in the disease; 
and, ultimately, they are able to fi nd others with similar challenges and needs and 
are able to work together to promote change and gain attention. The notion of 
“expert patient” is one that has gained increased attention, particularly in rare dis-
eases, given the amount and variety of information available on the Internet, the 
concern by some health professionals that patients may disintermediate existing 
power structures (though many others encourage knowledge acquisition by patients), 
and the increased ability to form communities  [  58  ] . Most compelling, however, has 
been how these groups are driving research. There are a number of examples, such 
as the Army of Women, where they have been highly successful at generating funds 
for clinical studies, enhancing participation in trials (particularly challenging in rare 
diseases), and garnering support for more trials on orphan drugs.  

   Emerging Technologies and Models 

 We asserted at the beginning of this chapter that a major impetus of the consumer 
health movement is patient or consumer empowerment. We know that health pro-
fessionals remain the primary resource for authoritative information, although many 
augment this with information seeking prior to or following consultations. Still, 
there continues to be a shift from traditional models of medicine and medical 
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research to ones where patients have a greater role in their own decisions, from 
treatment options to involvement in clinical research to actually initiating and con-
ducting research. The core issues relate to more than simple choice, but rather 
choice for achieving more personalized care, for increasing safety in research and 
care, and for accomplishing other altruistic purposes that require social networks 
that can enable knowledge transfer, greater voice, and concerted action evoking the 
wisdom of crowds. 

 Saying that the Internet is what has heralded so many changes in our world is 
almost cliché now, particularly in emerging social networks. However, this has been 
exactly the case with Internet sites and the technologies and functionality that they 
employ to meet the information needs of consumers. The term  Web 2.0  has been 
widely used to describe social computing and other technologies that have gone 
beyond more static (or at least less interactive) Web applications. As correctly noted 
by Eysenbach  [  60  ] , however, neologisms such as this may be easily dismissed; how-
ever, to dismiss the overall impact of the technologies this implies and the optimism 
for what these will yet bring, particularly in the area of health, would be 
erroneous. 

 As noted earlier, PatientsLikeMe is a robust and prominent harbinger of what is 
to come. The site essentially furthers the notion of the “patient researcher” and 
serves many of the same positive elements of social interaction, as described above 
(e.g., emotional, social, and informational support). In fact, there is some work 
showing promise in how PLM is positively impacting outcomes  [  27  ] . Yet unlike 
social groups of the past, sites such as PLM are much more dynamic. For example, 
thousands of patient data are aggregated, so individuals can compare their own 
diagnoses, treatments, symptoms, etc. with many others in order to help them choose 
a more personal path toward a better outcome. This path is lined with social and 
emotional support, quantifi ed/visualized self-tracking, and opportunities for other 
treatments or research participation. Of interest here is how such a technology has 
seemed to accelerate the kind of networks and patient interactions that have bene-
fi ted consumers and how this acceleration seems to be helping to strengthen and 
better enable patient empowerment. 

 As models in health are changing and are more refl ective of the consumer health 
movement involving personal empowerment, social networking, and enabling tech-
nologies, there has also been a concomitant emergence of new challenges in research 
that these have fostered. Patients, the advocacy or related groups they form or join, 
and even research enterprises are all helping to move into the “obvious next phase 
of active patient participation in health social networks,” the area of patient-inspired 
or patient-run research  [  1  ] . The promise of new research models may be great, but 
as with any shift or change, there are clear challenges and issues. While much of the 
traditional medical literature has focused on very real concerns about poor health 
literacy and the growing gaps in knowledge/awareness of large segments of the 
public  [  61,   62  ] , most of the threats to clinical research focus on hyperseekers who 
constitute only a small proportion of the public. Still, the consumer movement 
assumes increasingly sophisticated individuals who can understand issues ranging 
from advanced cell biology to psychosocial adjustment to pain management. 
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 Patients now have incredible options to operate in an information fi eld that is 
personalized, quantifi able, linked to others, and with even more choices for 
resources. The citizen researcher of even the recent past needed more than Internet 
access; they needed to analyze and integrate information from sources ranging from 
those specifi cally for laypersons (e.g., healthfi nder.gov) to extraordinarily sophisti-
cated information and tools (e.g., the array of tools and resources available at the 
National Center for Biotechnology Information—NCBI). 

 New technologies create an increasingly fragmented and privatized information 
environment, as opposed to the more mass, public access technologies represented 
by television and radio  [  63  ] . In response to these trends, governmental agencies are 
adopting policies to promote information equity among various segments of our 
society  [  64  ] , but some question whether access to information resources can ever 
truly be universal, in spite of the best intentions of our policy makers  [  65  ] . 

 Clinical research requires access to patient data, and PLM and related online 
consumer networks encourage patients to share their own data, ultimately for 
aggregated analysis, so it can be sold to or otherwise accessed by research compa-
nies and agencies of various sorts  [  66  ] . Importantly, since the data is provided 
directly by the patient, the hurdles normally associated with clinical research can 
be partially removed  [  66  ] . The obvious questions that are arising about this model 
relate to how PLM and such sites can balance their own profi t motive with the 
altruistic one stated in their “Openness Philosophy” (  http://www.patientslikeme.
com/about/openness    ), which is one that seeks to accelerate and democratize 
research. Such sites considerably speed the dissemination of research results to 
those who can benefi t from them  [  67  ] .The individual patient’s desire to become a 
partner in research, to learn, to share, and ultimately to identify a positive outcome 
for a certain disease is leveraged in this democratization process. Frost notes that 
this model of sharing is continually under review by PLM to understand how this 
level of participation impacts decision making and actions  [  54  ] . In one small study, 
there are telling questions and responses highlighted that show many patients com-
municate with others in the community to seek treatment recommendations  [  68  ] . 
Much of the advice given seemed to come from personal research or fi rsthand 
experiences. Such information sharing can be quite compelling to individuals in 
dire need for some answer, in particular since the information exchanges occur 
among patients with similar data profi les and medical concerns. This is an area that 
has not been explored deeply at this time, but one that requires a host of approaches 
to better understand. 

 For instance, there is relatively little known in this context regarding the impact 
visualization of the data has on comprehension. Visual representation of informa-
tion, especially risk, can be interpreted differently and with varying psychosocial 
effects, many unintended. Some patients might react to any increased risk for a 
disease or any adverse side effect very negatively, which could preclude taking 
appropriate preventive measures or lead to depression or other negative reactions. 
Moreover, even if patients are similar in certain data-supported ways, the desire for 
a resolution to one’s needs and concerns could lead to overly optimistic hopes for 
untested treatments, such as complementary or alternative medicines. 

http://www.patientslikeme.com/about/openness
http://www.patientslikeme.com/about/openness
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   Clinical Trial Recruitment 

 Another attractive aspect of health-related social networks is the potential to 
 overcome the discouraging barriers to patient recruitment into clinical trials  [  67  ]  
and other research projects. Projects like the Army of Women can greatly facilitate 
researcher access to willing populations for those who go through their elaborate 
approval process. There are certainly a number of affective and practical reasons 
individuals do not, or cannot, be part of a clinical trial. Certainly, in traditional clini-
cal research, access to the study site is an issue that is not easily overcome by many, 
particularly those in rural, underserved areas. Moreover, many patients understand-
ably question how involvement in a study might impact his or her quality of life, 
even if they have strong feelings of altruism. Human nature suggests there might 
also be concerns of bias by physicians seeking to enroll patients into a trial, and 
knowing which trials are available has been a challenge even with such national 
efforts as   ClinicalTrials.gov      [  21  ] . 

 As noted earlier, social networking sites present the potential for studying exist-
ing data as well as for mining these sites for likely study populations based on eli-
gibility criteria or other factors  [  67  ] . Again, the nature of the participants in many of 
these sites seems to be that they are already willing partners seeking to fi nd a path 
to a positive outcome for themselves and others like them. With reportedly 1/3 of 
trial recruitment sites failing to recruit a single patient  [  21  ] , online patient commu-
nities offer a far more refreshing outlook. Critical to this potential revolution, how-
ever, is an understanding that such communities are not merely a gathering ground 
for X number of people with disease Y looking for a cure. Rather, these are increas-
ingly savvy consumers who have empowered themselves with personal and collec-
tive knowledge and expertise, who are not likely to respond to every call for 
participants, and who have been known to share information on ongoing trials in 
ways that can be very disruptive of traditional research. In other words, a shift in the 
research model will certainly need be advanced, but only with the consent of a more 
infl uential group. Potential collaborations among site developers, researchers, and 
patients could expedite research and advance the needs of all groups, for instance, 
through the use of patient registries on such sites (please see Chap.   13    ).   

   Conclusions 

 To support patient empowerment, even in the broadest sense, now means under-
standing the interactions among patients or consumers themselves and between 
consumers and the fragmented and increasingly complex health information envi-
ronment they must navigate. We have long known that information alone, whether 
provided by an intermediary or accessed directly, does not necessarily lead to ratio-
nal choice or informed decision making. For instance, the traditional “one size fi ts 
all” approach to public health campaigns is limited at best. Research in information 
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behaviors continues to reveal that individuals facing serious health issues will seek 
out others with similar problems and that the notion of opinion leaders is evolving 
in the new social networking environments emerging online. New technologies are 
enabling a personalization of medicine that facilitates more quantitative assessment 
of one’s own progress toward some possible positive outcome and of one’s state 
measured against others. While there are concerns over an increasing infl uence of 
the private sector, direct-to-consumer marketing, and related social and ethical con-
siderations, there is plenty of promising evidence suggesting a new model of clini-
cal research is now possible; one that will help speed discovery and encourage 
participation. Patients are savvier and can make better decisions as to which trials 
might be a good fi t for them; consequently, adverse events could be identifi ed more 
quickly, thus helping to make clinical trials safer. 

 The underlying issues are not resolved but are becoming clearer, and this clarity 
will help guide future research. Information fi elds are becoming even more fl uid as 
choices of sources and changing technologies become available and more ubiqui-
tous. While the prospects are exciting, there continue to be serious concerns over the 
information literacy levels of most people and the resulting risk of major segments 
of the population being left behind. Collaboration among patients means enhanced 
knowledge sharing, and the citizen researcher can leverage this to help drive research 
relying on the wisdom of crowds to quickly correct erroneous information  [  67,   69  ] . 

 All this also begins to raise the question of whose information is it anyway? The 
social norms that cast doctors and public health offi cials as the brokers of medical 
information are yielding to an era in which individuals actively seek information and 
in which a balance of power is sought in the patient-provider relationship. Information 
that is necessary to a client for coping with cancer may be seen by doctors as an 
intrusion into their prerogatives. Exacerbating this problem is the fact that doctors 
and patients may not share similar outcome goals. Traditionally, doctors have viewed 
the ideal patient as one who came to them recognizing their authority and who were 
willing to comply totally (and with enthusiasm) with recommended therapies  [  70  ] .  
 So, for example, most doctors believe in treating cancers aggressively, even those 
with low cure rates; however, increasingly some more harmful aspects of chemo-
therapy and other treatments are weighed against the likelihood of success, the qual-
ity of life, and costs. So, while doctors typically engage in narrow problem-solving 
relating to the disease, patients often view a disease as but one component of a com-
plex social system of which they are a part. What good does it do to save me if I will 
be but a shell of my former self and my family is bankrupted in the process? These 
issues are particularly salient for often highly experimental clinical research efforts.      
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  Abstract   Clinical research, being patient-oriented, is based predominantly on 
 clinical data – symptoms reported by patients, observations of patients made by 
health-care providers, radiological images, and various metrics, including labora-
tory measurements that refl ect physiological functions. Recently, however, a new 
type of data – genes and their products – has entered the picture, and the expectation 
is that given clinical conditions can ultimately be linked to the function of specifi c 
genes. The postgenomic era is characterized by the availability of the human genome 
as well as the complete genomes of numerous reference organisms. How genomic 
information feeds into clinical research is the topic of this chapter. We fi rst review 
the molecules that form the “blueprint of life” and discuss the surrounding research 
methodologies. Then we discuss how genetic data are clinically integrated. Finally, 
we relate how this new type of data is used in different clinical research domains.  

  Keywords   Postgenomic era  •  Genetic data  •  Molecular biology genomic data  • 
 Bioinformatics  •  Sequence ontology  •  Bioinformatics Sequence Markup Language  • 
 Sequence analysis data  •  Structure analysis data  •  Functional analysis data      

 Clinical research, being patient-oriented, is based predominantly on clinical data – 
symptoms reported by patients, observations of patients made by health-care pro-
viders, radiological images, and various metrics, including laboratory measurements 
that refl ect physiological functions. Recently, however, a new type of data – genes 
and their products – has entered the picture, and the expectation is that given clinical 
conditions can ultimately be linked to the function of specifi c genes. 

 This new approach is a fruit of the pregenomic era. That era, which lasted from 
1990 to 2003, was defi ned by the Human Genome Project effort to sequence the 
nucleotides that make up the human genome and identify its approximately 25,000 
genes  [  1  ] . Since all humans have a unique nucleotide sequence, the data produced 
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by this project represents not the genome of a single individual, but the aggregate 
genome of a small number of anonymous donors. 

 Completion of the effort ushered in the postgenomic era, characterized by the 
availability of the human genome as well as the complete genomes of numerous 
reference organisms. How genomic information feeds into clinical research is the 
topic of this chapter. We fi rst review the molecules that form the “blueprint of life” 
and discuss the surrounding research methodologies. Then we discuss how genetic 
data are clinically integrated. Finally, we relate how this new type of data is used in 
different clinical research domains. 

   The Molecular Basis of Life 

 As fi rst enunciated by Crick in 1958  [  2  ] , deoxyribonucleic acid (DNA) is respon-
sible for transmitting structural information to proteins, the key structural and 
functional components of living cells. The DNA sequence information is trans-
mitted to daughter cell DNA by replication and to proteins in a two-step process: 
transcription to messenger RNA (mRNA), and then translation (Fig.  7.1 ). The full 
DNA sequence of an organism is    the genome ,  and the set of all mRNA molecules 
produced in a cell is called the transcriptome. The totality of proteins expressed by 
the genome is the proteome, and the network of their interactions is called the 
interactome. Finally, by-products and end products of metabolic pathways – 
metabolites – constitute the metabolome. For more information on these mole-
cules of life, a resource such as the Genetics Home Reference  [  3  ]  can be 
consulted.  

 The  omes  mentioned are the subjects of several fi elds of study. Genomics focuses 
on the genome and increasingly on comparative genomics (genetics focuses primar-
ily on genes and their mutations and regulation). Transcriptomics focuses on the 
transcriptome, and proteomics on the proteome and proteins. Functional genomics 

TranslationTranscription

Replication

DNA RNA Protein

  Fig. 7.1    Central dogma of molecular biology       
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focuses on the dynamic aspects of cell function – such as the timing and quantity of 
transcription, translation, and protein interactions – and therefore includes most of 
transcriptomics and proteomics. Metabolomics focuses on the metabolome, on how 
proteins interact with one another and    with small molecules to transmit intra- and 
intercellular signals.  

   Molecular Biology and Genomics Data 

 Molecular biology produces vast amounts of data. Currently, more than a 1,000 
public molecular biology databases are available. Prominent examples and their 
Web addresses are listed in Table  7.1 .  

   Table 7.1    Selected molecular biology databases   

 Nucleotide sequence databases 

 GenBank    www.ncbi.nlm.nih.gov/Genbank     
 EMBL-Bank (European Molecular Biology Laboratory)    www.ebi.ac.uk/embl     
 DDBJ (DNA Data Bank of Japan)    www.ddbj.nig.ac.jp     
 Relate DNA sequences with their location on chromosomes and corresponding genes, their 

products, offi cial names and synonyms, and scientifi c publications. Used, for example, to 
identify the products (e.g., proteins) of a DNA sequence, and develop methods to measure 
these products and therefore the activity of this sequence. 

 Many journals require submission of sequence information prior to publication, stimulating the 
growth of these databases 

 Amino acid sequence and proteomics databases 

 UniProt (Universal Protein Resource)    www.uniprot.org     
 PDB (Protein Data Bank)    www.rcsb.org/pdb     
 PRIDE (PRoteomics IDEntifi cations database)    www.ebi.ac.uk/pride     
 SGKB (Structural Genomics KnowledgeBase)    kb.psi-structuralgenomics.org     
 InterPro    www.ebi.ac.uk/interpro     
 Relate proteins with their gene(s), function(s), structure, tissue specifi city, involvement in 

diseases, offi cial name and synonyms, variants, and scientifi c publications. Used, for 
example, to develop a new drug targeting a cell receptor with a known structure and 
predicting the structure the new drug should have. 

 Genes databases 

 OMIM (Online Mendelian Inheritance in Man)    www.ncbi.nlm.nih.gov/omim     
 Entrez Gene    www.ncbi.nlm.nih.gov/gene     
 Relate genes with their location, structure, function, interactions, associated phenotypes and 

diseases, markers, offi cial name and synonyms, and scientifi c publications. Used, for 
example, to fi nd all oncogenes related to a specifi c cancer and the markers that exist to 
detect them, to eventually develop a laboratory test predicting the behavior and outcome of 
this cancer 

 Gene and protein functional databases 
 OPHID (Online Predicted Human Interaction Database)    ophid.utoronto.ca     
 GEO (Gene Expression Omnibus)    www.ncbi.nlm.nih.gov/geo/     

(continued)
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 The fl ood of data (one RNA analysis, for example, can produce an uncompressed 
image of more than 2,000 MB) and its nature require specialized tools for capture, 
visualization, and analysis. Computational tools and database development, and 
their application to the generation of biological knowledge, are the primary subdo-
mains of bioinformatics. Bioinformatics, a term coined in 1978, is a discipline in 
which biology, computer science, and information technology merge  [  4  ] . 
Bioinformatics uses computers for storage, retrieval, manipulation, and distribution 
of information related to biological macromolecules  [  5  ] . Bioinformatics tools are 
used extensively in three areas of molecular biological research – sequence analysis, 
structural analysis, and functional analysis. 

   Sequence Analysis Data 

 Knowledge of DNA, RNA, and gene and protein sequences is now indispensable in 
most biomedical research domains. In the clinical domain, the knowledge is used 
for studying disease mechanisms, for diagnosing and evaluating disease risk, and 
for treatment planning. Sequence analysis typically consists in searching for 
sequences of interest in specialized databases such as GenBank  [  6  ] , or in identifying 
sequence features that could be extended to structural or functional properties. 
Sequences are annotated with information such as binding sites, exons, or experi-
mental features. The annotations can be represented by standardized terminologies 
and information models such as the Sequence Ontology  [  7  ]  and the Bioinformatics 
Sequence Markup Language. The former provides a structured, controlled termi-
nology for sequence annotation, for the exchange of annotation data, and for the 
description of sequence objects in databases. It is also part of the Open Biomedical 

 Gene and protein functional databases 
 ArrayExpress    www.ebi.ac.uk/microarray-as/ae/     
 HMDB (Human Metabolome Database)    www.hmdb.ca     
 MMCD (Madison Metabolomics Consortium Database)    mmcd.nmrfam.wisc.edu     
 Relate genes and proteins with their expression profi les and corresponding scientifi c publica-

tions, offi cial name and synonyms, diseases, and interactions. Used, for example, to link the 
expression profi le of a set of genes in a patient with organ transplant with a graft rejection 
risk, and subsequently adapt the treatment to prevent a rejection, therefore enabling 
“personalized medicine” 

 Databases combining different types of molecular biology data 

 Entrez cross-database search    www.ncbi.nlm.nih.gov/sites/gquery     
 HGPD (Human Gene and Protein Database)    www.hgpd.jp     
 KEGG (Kyoto Encyclopedia of Genes and Genomes)    www.genome.jp/kegg     
 Relate the genome with biological systems and the environment, integrate genes, proteins, and 

their interactions. Used, for example, to combine risk loci (DNA sequence) with diseases to 
suggest potential new therapies based on molecular genetic information. They support 
molecular biology research, functional genomics research, and systems biology in general 

Table 7.1 (continued)
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Ontologies Foundry  [  8  ] , which groups interoperable reference ontologies to describe 
features such as anatomy, phenotypes, biochemistry, diseases, and molecular func-
tions and provides mappings between them. 

 GenBank is an annotated collection of all publicly available DNA sequences. In 
2009, it contained data on over 106 billion nucleotide pairs and about 108 million 
sequence records  [  9  ]  and doubled in size every 18 months  [  6  ] . GenBank and the 
European Molecular Biology Laboratory (EMBL) database were launched in 1982. 
GenBank merged with the National Center for Biotechnology Information (NCBI) 
when it was established, and EMBL is now managed by the European Bioinformatics 
Institute and included in the European Nucleotide Archive. Both also collaborate 
with the DNA Database of Japan (DDBJ) and exchange new and updated data daily. 
Many scientifi c journals now require submission of sequence information to a data-
base prior to publication, supporting database growth. 

 Computerized amino acid sequence databases such as the National Biomedical 
Research Foundation protein sequence database managed by the Protein Information 
Resource were started around 1980. Swiss-Prot, created in 1986, developed meth-
ods and tools to ensure high quality data. It contains rich annotations (e.g., protein 
functions, variants, and posttranslational modifi cations) and numerous links to other 
databases, including GenBank/EMBL/DDBJ and the Protein Data Bank, and assures 
good data curation. Swiss-Prot collaborates with the EMBL, and its computer-anno-
tated nucleotide sequence database (trEMBL) complements Swiss-Prot. Since 2002, 
Swiss-Prot, trEMBL, and the Protein Information Resource protein sequence data-
base have been combined in Universal Protein Resource, or UniProt, the world’s 
largest protein information catalog.  

   Structure Analysis Data 

 The three-dimensional structure of nucleic acids and proteins follows thermody-
namically from the sequence of their component nucleotides or amino acids, 
 respectively. Structure prediction relies mostly on observed sequence-structure rela-
tionships that are based on actual protein structures previously determined by X-ray 
crystallography or nuclear magnetic resonance spectroscopy and is realized by 
comparative modeling or by fold recognition. 

 Protein structure can be described at different levels. The primary structure is the 
amino acid sequence. The secondary structure is the stable substructures – mostly 
alpha helices and beta sheets – caused by local peptide folding. The tertiary struc-
ture is the three-dimensional confi guration of the entire protein and is stabilized by 
bonds between amino acids that are not close to each other in the primary structure. 
The quaternary structure involves stable interactions among multiple folded pro-
teins to form a functional complex. Sequence information is stored in the Protein 
Data Bank, along with atomic coordinates, literature citations, chemical character-
istics, links with other databases, and classifi cation of the structure according to 
terminologies such as the CATH Protein Structures Classifi cation  [  10  ]  and is 
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 represented in XML format as PDBML  [  11  ] . The data can be analyzed with the aid 
of viewers that create three-dimensional representations of the proteins. Good 
examples are RasMol  [  12  ]  and PyMOL  [  13  ] . The Structural Genomics 
Knowledgebase (SGKB) was developed by the Protein Structure Initiative with the 
aim of making the three-dimensional structures of most proteins easily obtainable 
from their corresponding DNA sequences.  

   Functional Analysis Data 

 The fi rst gene database, Mendelian Inheritance in Man, was published in 1966 by 
the late Victor McKusick and has been available online as OMIM since 1987. It 
contains information about all known Mendelian disorders and their over 12,000 
associated genes. OMIM is linked to NCBI’s Entrez Gene  [  14  ] , which contains 
information on about 45,000 human genes or loci (i.e., fi xed positions on a chromo-
some that may or may not be occupied by one or more genes). Genes are identifi ed 
by gene fi nding, a process that relies on the complete human genome sequence and 
on computational biology algorithms to identify DNA sequence stretches that are 
biologically functional. Determining the actual function of a found gene, however, 
requires in vivo research (creating “knockout” mice is one possibility), although 
bioinformatics is making it increasingly possible to predict the function of a gene 
based on its sequence alone, aided by a computational analysis of similar genes in 
other organisms. 

 Genetic data include chromosomal localization (locus), product, markers, phe-
notypes, and interactions and are based on several terminologies and annotations 
such as Gene Ontology  [  15  ] , the classifi cation of the Human Genome Organization 
Gene Nomenclature Committee (HGNC)  [  16  ] , and a growing body of information 
about epigenetic factors (factors that modify genes without changing their DNA 
sequence)  [  17  ]  and interactions with other genetic elements. Gene Ontology includes 
gene product annotation with respect to molecular function, cellular location, and 
biological role. HGNC links to OMIM, Entrez Gene, GenBank/EMBL/DDBJ, 
UniProt, Pubmed, GENATLAS  [  18  ] , GeneCard  [  19  ] , and other gene databases. 

 Gene expression profi ling measures the relative amount of mRNA expressed by 
thousands of genes at the same time, creating a global picture of cellular function. 
The most common (and least costly) technology is DNA microarray analysis, but 
the development of next-generation sequencing has increased the use of sequence-
based techniques such as serial analysis of gene expression, or SAGE. Microarray 
analysis depends on the binding of an RNA sequence to its complementary DNA 
sequence. A DNA microarray is a slide or “chip” on which tiny amounts of thou-
sands of different short DNA sequences (“probes”) are arranged. When a clinical 
sample of extracted cellular RNA is applied to the slide, the amount of mRNA that 
binds to each sequence is measured with specialized scanners, and values are often 
stored in a vendor-specifi c format. 
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 Microarray data can be represented in two-dimensional “heat maps” where 
 values are represented by colors, but the exchange of microarray data is diffi cult due 
to the lack of standardization. Several groups are working on the problem. The 
Microarray and Gene Expression Data (MGED) Society has defi ned the minimum 
information needed to document a DNA microarray experiment (Minimal 
Information About a Microarray Experiment, or MIAME)  [  20  ]  and addresses ways 
to describe microarray designs, manufacturing information, experimental protocols, 
gene expression data, and data analysis results (Microarray Gene Expression 
Markup Language, or MAGE-ML, and MAGE-TAB). The MGED society collabo-
rates with the Protein Structure Initiative and the Metabolomics Standards Initiative 
to develop the Functional Genomics Ontology, now combined with clinical and 
epidemiological research and biomedical imaging concepts in the Ontology for 
Biomedical Investigations  [  21  ] . Gene and protein expression results are stored in a 
MIAME-compliant format in public repositories such as the Gene Expression 
Omnibus at NCBI  [  22  ]  and the Array Express at the European Bioinformatics 
Institute. 

 Protein expression is signifi cantly more complex than gene expression. The 
genome is relatively constant while the proteome differs from cell to cell and over 
time, and the approximately 25,000 human genes correspond to about 1,000,000 
proteins  [  23  ] . Additional complexity follows from the fact that mRNA is not always 
translated, proteins undergo posttranslational modifi cations, and many different 
proteins are created from splice variants of a single stretch of DNA. 

 The techniques used to identify proteins, measure their expression, and study 
their modifi cations and cellular localization are protein microarrays and mass spec-
trometry. Protein microarrays  [  24  ]  resemble DNA microarrays and conventionally 
use monoclonal antibodies or purifi ed proteins as probes. Recent advances allow 
protein arrays to be created by in situ synthesis from corresponding DNA arrays. 
Proteins and their multiple forms produced by splice variants from a gene can be 
represented with the Protein Ontology  [  25  ] , another member of the Open Biomedical 
Ontologies Foundry. 

 Metabolomics data are even more variable and complex than gene expression 
and protein expression data. Metabolomics databases such as the Human Metabolome 
Database  [  26  ]  and the Madison Metabolomics Consortium Database  [  27  ]  combine 
chemical and molecular biology data with links to other proteomics and genomics 
databases. 

 Several knowledge bases combine different types of molecular biology ele-
ments and functional data. An example is the Kyoto Encyclopedia of Genes and 
Genomes, a knowledge base for linking genomes to biological systems and to the 
environment, and for integrating genes and proteins, ligands, and molecular inter-
actions and reaction networks. These databases, along with the gene and protein 
functional data resources discussed above, support molecular biology and func-
tional genomics research. All of these resources are also used in the fi eld of sys-
tems biology, which aspires to understand the organisms via complex biological 
system simulations.  



120 S.M. Meystre et al.

   Human Variation 

 With the possible exception of monozygotic twins, no two human beings are geneti-
cally identical. The most common source of genetic differences between individuals 
is single-nucleotide polymorphisms, or SNPs (pronounced “snips”). SNPs are gene 
variations that involve a single nucleotide – that is, an A, T, C, or G in one or both 
copies of a gene is replaced, respectively, by a nucleotide other than an A, T, C, or 
G. SNPs are the main reason that people differ in their susceptibility to common 
diseases. The International HapMap Project  [  28  ]  was the fi rst to systematically 
explore human SNPs and is currently cataloging those found in different groups of 
people worldwide. The project is an open resource that helps scientists explore 
associations between haplotypes (a set of associated SNP alleles in a single region 
of a chromosome) found in different populations and common health concerns or 
diseases. As more haplotypes are studied, the database, dbSNP  [  29  ] , will more 
accurately refl ect the specifi c types and extent of human variation. 

 While many variations are associated with health problems, many other varia-
tions are advantageous and many are neutral. Genome-wide association studies 
(GWAS) consider the statistical association between specifi c genome variations 
from the HapMap and human health conditions and analyze specifi c chromosome 
regions or whole genomes for those health-associated sites. Since 2002, when the 
HapMap project began, the list of human health conditions associated with patterns 
of genetic variation has grown rapidly  [  30  ] . 

 Structural variants are another source of genetic variation among humans. They 
include sequence inversions, insertions, deletions, copy number variations, and com-
plex rearrangements. The 1,000 Genomes Project  [  31  ]  (which is actually sequencing 
2,000 genomes) is investigating structural variants as well as SNPs in human popula-
tion samples from Europe, Africa, East Asia, and the Americas. The whole genome of 
three individuals have been recently sequenced: a Caucasian man of European descent 
from the HapMap project, a Yoruban woman from HapMap whose genome is also 
being sequenced as part of the 1,000 Genomes Project, and a Caucasian man from the 
Personal Genome Project  [  32  ] . The team found around three million SNPs in each 
Caucasian genome and four million SNPs in the African genome, and 10% of the 
former were new, while 19% of the latter had not been identifi ed in past studies  [  33  ] . 

 A catalog of GWAS studies and their disease-gene associations is maintained by 
the National Human Genome Research Institute  [  34  ] . As of December 2011, it 
listed 1106 publications and 5481 SNPs. A 2009 review of the HapMap project and 
GWAS indicated that over 150 risk loci had been associated with over 60 common 
diseases and traits  [  35  ] . Those fi ndings suggested potential new therapies based on 
molecular genetic information. 

 Many projects arise from an interest in applying genetic data clinically and the 
need to keep track of the variations shown to be associated with health problems. 
The Human Gene Mutation Database maintains a catalog of germline (sperm and 
egg) mutations in nuclear genes that are associated with human inherited diseases, 
and new entries are accruing at the rate of 9,000 per year  [  36  ] . Somatic mutations 
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are covered by the COSMIC system, which is especially relevant for cancer  [  37  ] , 
and mitochondrial mutations are covered by the MITOMAP database  [  38  ] . 

 The Human Variome Project is an overarching initiative focused on collecting and 
curating all human genetic variation affecting human health  [  39  ] . It is considered the 
successor to the Human Genome Project  [  40  ]  and to the HapMap project. The Human 
Variome Project is creating a full catalog of the genome sequence and variations in 
the human species, and will focus on the development of standards associated with 
the use of genetic information in the health care and clinical research communities.   

   Translating from the Molecular World to the Clinical World 

   Clinical Application of - Omics  Data 

 Molecular biology data are becoming increasingly important in clinical research, 
with a prominent example being cancer research. Cancer, a somatic genetic disease, 
is caused by a series of mutations in a single cell that provide that cell with a repro-
ductive advantage. Cancer is therefore a logical target for research based on genomic, 
epigenetic, proteomic, and functional data. Cancer genomics, or oncogenomics, 
focuses on the genome associated with cancer, on identifying new oncogenes 
(growth-promoting genes that can lead to cancer when mutated) and tumor suppres-
sor genes (growth-regulating genes that can lead to cancer when mutated), and on 
improving the diagnosis, prognosis, and treatment of cancer. Cancer markers (such 
as prostate-specifi c antigen) are cancer-associated products found in the blood or 
urine that are used for early detection of cancer, to classify cancer types, or to pre-
dict outcomes. Cancer-associated proteins can be used as targets for drug therapies 
(as tyrosine kinase is for imatinib in chronic myelogenous leukemia, or HER2 is for 
tamoxifen in breast cancer). At the genomic level, the Cancer Genome Project  [  41  ]  
aims at identifying sequence variants and mutations in somatic cells that are involved 
in the development of human cancers. Among its resources are the sequenced human 
genome and the COSMIC database. At the functional genomics level, the National 
Cancer Institute’s Cancer Genome Anatomy Project is determining the expression 
profi les of normal cells, precancerous cells, and cancer cells  [  42  ] , and at the pro-
teomics level, the Clinical Proteomics Program of the National Cancer Institute and 
the US Food and Drug Administration  [  43  ]  is searching for and characterizing new 
circulating cancer biomarkers. 

 Clinical research informatics plays a crucial role in these efforts, facilitating 
translation between the basic sciences, such as all the -omics discussed above, and 
clinical research. This translation and the use of molecular biology data for clinical 
applications require the integration of data from both worlds, the molecular biology 
and bioinformatics world, and the clinical research and medical informatics world, 
using new methods and resources, as described by Martin-Sanchez and colleagues 
 [  44  ]  and demonstrated in examples cited below.  



122 S.M. Meystre et al.

   Integration of Molecular and Clinical Data 

 Researchers have made signifi cant advances in the use of genomic data to describe 
the genetic makeup of organisms and are investigating how genes are expressed 
under various conditions. As mentioned earlier, however, whether a gene is turned 
on under a given set of conditions varies between individuals – even if they have 
the identical gene – and expression of that identical gene may manifest different 
physical or behavioral characteristics in different people  [  45  ] . Therefore, knowing 
the genomic signature of an individual is frequently not suffi cient to predict the 
presence or probability of a given condition. This has a profound impact on clinical 
research and informs basic science. Demographic and clinical information (such as 
age, sex, symptoms, comorbidities, diagnostic test results, tobacco and alcohol 
use, and reactions to therapies) characterize a phenotype more precisely  [  46  ] . Early 
investigations  [  47,   48  ]  demonstrated that simply using annotation data (semantic 
categories such as “Amino Acid, Peptide, or Protein,” “Pharmacologic Substance,” 
“Disease or Syndrome,” and “Organic Chemical”) within publicly available gene 
expression databases such as Gene Expression Omnibus allowed researchers to 
associate phenotypic data with gene expression data and discover gene-disease 
relationships. Combining clinical and environmental data with genomic data 
enables more effi cient and accurate identifi cation of how genes are expressed under 
specifi c conditions and how genetic makeup may affect treatment outcomes. New 
informatics tools and techniques are being employed to address the growing need 
for integration between molecular and clinical data. Some prominent examples are 
presented below. 

 A National Center for Biomedical Computing research initiative based at 
Brigham and Women’s Hospital (Boston, MA) called “i2b2” (Informatics for 
Integrating Biology and the Bedside)  [  49  ]  is seeking to “build an informatics frame-
work that will bridge clinical research data and the vast data banks arising from 
basic science research in order to better understand the genetic bases of complex 
diseases.” The i2b2 Center is developing a computational infrastructure and meth-
odological framework that allows institutions to store genomic and clinical data in 
a common format and use innovative query and analysis tools to discover cohorts 
and visualize potential associations. The system can be used in early research design 
to generate research hypotheses, to validate potential subjects, and to estimate popu-
lation sizes. Once data have been collected, the same framework can be used for 
deeper analysis and discovery. The inclusion of genomic data allows clinical 
researchers to study genetic aspects of diseases and facilitates the translation of their 
fi ndings into new diagnostic tools and therapeutic regimens. This framework has 
been evaluated at the University of Utah  [  50  ]  and is used by research groups to 
study the genetic mechanisms underlying the pathogenesis of Huntington disease 
 [  51  ]  or predict the response to bronchodilators in asthma patients  [  52  ] . 

 In light of the growing amount of cancer genomic data and basic and clinical 
research data, the National Cancer Institute sponsored the development of the  cancer 
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Biomedical Informatics Grid (caBIG) to accelerate research on the detection, 
 diagnosis, treatment, and prevention of cancer  [  53  ] . caBIG’s goal is to develop a 
collaborative information infrastructure that links data and analytic resources within 
and across institutions connected to the cancer grid (caGrid  [  54  ] ). caBIG resources 
proposed or currently available to researchers include clinical, microarray (caAr-
ray), and tissue (caTissue) data objects and databases in standardized formats, clini-
cal trial software, data analysis and visualization tools, and platforms for accessing 
clinical and experimental data across multiple clinical trials and studies. The 
National Mesothelioma Virtual Bank, a biospecimen repository of annotated cases 
that includes tissue microarrays and genomic DNA that supports basic, clinical, and 
translational research, incorporated portions of the caBIG infrastructure  [  55  ] . 

 To store and search the vast amounts of knowledge generated by genotype-phe-
notype research, new databases and ontologies are being developed or enhanced. 
These resources set standards for how genomic and phenotypic concepts are named 
and defi ned, how they are associated, and how new knowledge can be modeled, 
shared, and stored. The PhenoGO database, for example, contains gene-disease 
annotations that were derived from the literature using several Gene Ontology anno-
tation databases, the Unifi ed Medical Language System, and other specialized 
ontologies  [  56  ] . The Unifi ed Medical Language System Metathesaurus and the 
National Cancer Institute Thesaurus have been used to map annotation fi elds within 
genomic databases to standard concepts in order to integrate data for translational 
research  [  48  ] . The Unifi ed Medical Language System has also been used to map 
textual annotations across microarray studies in order to join similar phenotypes 
and automatically construct disease classes  [  57  ] . Many ontological resources used 
in biological health settings utilize incompatible formats and different modeling 
languages, making it diffi cult to integrate those resources in projects that span bio-
medical domains, such as clinical and translational research on genotype-phenotype 
associations. The Lexical Grid (LexGrid) project seeks to bridge multiple ontolo-
gies and provide standard application programming interfaces for more robust 
access to the underlying terminologies and their concept associations  [  58  ] . 

 Pharmacogenetics is the study of genetically based responses to drugs. The 
Pharmacogenomics and Pharmacogenetics Knowledge Base (PharmGKB) was 
developed to store the genomic, phenotypic, and clinical information that was rap-
idly being generated  [  59  ] . PharmGKB contains both primary study data and derived 
knowledge about genes associated with drug responses and their associated pheno-
types. Interactive online tools facilitate research on the way genomics affects drug 
responses. 

 In addition to storing data generated from genotype-phenotype studies, new mes-
saging standards are also needed so that information between systems can be shared 
for clinical collaboration. The Health Level 7 Clinical Genomics Special Interest 
Group (HL7 CG SIG) was formed to address this gap. While message standards had 
been developed separately for genomic and clinical data, the HL7 CG SIG’s goal 
was to associate personal genomic data and clinical data. A data storage message 
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encapsulates all the raw genomic data as static HL7 information objects. As this 
stored information is accessed for clinical care or research purposes, a data access/
display message retrieves the most relevant raw genomic data as determined by 
associated clinical information, and those data are combined with updated knowl-
edge. Thus, the presented information is dynamic, embodies the most up-to-date 
genomic research, and is based on a patient’s clinical or research record at the time 
of access  [  60  ] . In parallel to the HL7 CG SIG, the Clinical Data Interchange 
Standards Consortium was formed in order to develop data standards that enable 
interoperability of medical research systems  [  61  ] . Additionally, the Biomedical 
Research Integrated Domain Group Project, a collaborative effort of stakeholders 
from the Clinical Data Interchange Standards Consortium, Health Level 7, the 
National Cancer Institute, and the US Food and Drug Administration, is producing 
a “shared view of the dynamic and static semantics that collectively defi ne the 
domain of clinical and preclinical protocol-driven research and its associated regu-
latory artifacts,” such as the data, organization, resources, rules, and processes 
involved  [  62  ] . As of this writing, neither the Clinical Data Interchange Standards 
Consortium nor the Biomedical Research Integrated Domain Group have specifi -
cally addressed genomic information collected during clinical research, but both 
groups are likely to focus on this area in the near future.  

   Integration of Molecular Data into Clinical Research 

 When genomic data is incorporated into clinical trials, patient selection can be refi ned 
so that responses of those with specifi c phenotypes can be evaluated. For example, 
people with differences in their genes for cytochrome P450 oxidase (CYP) vary in 
the way they metabolize certain drugs, and people who metabolize drugs slowly are 
at greater risk of adverse drug effects than those who metabolize them rapidly. 
Clearance of the antidepressant drug imipramine, for example, depends on CYP2D6 
gene dosage. To achieve the same effect, patients with less active CYP2D6 alleles 
(“poor metabolizers”) require less drug than those with very active CYP2D6 alleles 
(“ultrarapid metabolizers”)  [  63  ] . Thus, selecting patients according to their metabo-
lizing genotype when evaluating drug effects yields more useful information. 

 Molecular data can also be applied to the randomization and stratifi cation of 
patients selected for clinical trials according to prognostic and predictive mark-
ers. Several trials have discovered and validated such markers in oncology, and 
others are ongoing; markers for breast cancer treatment is one example  [  64  ] . 
When trastuzumab – a monoclonal antibody against HER2 – was analyzed in a 
breast cancer population, no major response was seen, but when patients with an 
overexpressed HER2 receptor protein were targeted, signifi cant responses could 
be observed  [  65  ] . If these trials would have been realized only on a population 
without genetic or proteomic selection criteria, this excellent new drug would 
have been discarded.   
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   Application of Molecular Data to Disease 

   Mechanisms of Disease 

 Some diseases are mostly caused by genetic disorders, such as single-gene diseases 
(e.g., familial hypercholesterolemia, sickle cell anemia) or chromosomal disorders 
(e.g., Down’s syndrome). Other diseases, such as hypertension and diabetes melli-
tus, have an important genetic component. Molecular pathogenesis offers new 
understandings of the mechanisms involved in such diseases. For example, genes 
that enhance susceptibility to Type 1A Diabetes have been identifi ed and can predict 
disease risk  [  66  ] . A large amount of the research conducted on the mechanisms of 
diseases is nonclinical in nature.  

   Diagnostic Methods and Therapeutic Applications Studies 

 Single-gene tests are being developed at a very rapid pace and are the bellwether of 
postgenomic diagnostic development. The GeneTests system  [  67  ]  for describing 
disease-gene relationships and available genetic tests, now hosted at the NCBI, was 
started in the mid-1990s when there were only a handful of DNA-based tests for 
inherited diseases; in 2009, it listed almost 1900. 

 Many diagnostic tests are being developed by high throughput techniques exem-
plifi ed by microarrays. These studies provide information about biochemical 
changes in tissues and are especially useful for chronic diseases when they relate to 
modifi cations in disease states. Many such studies focus on neoplasms and have led 
to the development of molecular signatures that recognize clinically indistinguish-
able subtypes of cancers as well as subtype aggressiveness. This has included lym-
phomas  [  68  ]  as well as leukemias  [  69  ] , bladder cancer  [  70  ] , sarcomas  [  71  ] , head 
and neck cancers  [  72  ] , kidney cancers  [  73  ] , ovarian cancers  [  74  ] , neuroblastoma 
 [  75,   76  ] , and melanoma  [  77  ] . Many clinical trials involve therapeutic interventions. 
In breast cancer in particular, several commercial genomic assays for outcome pre-
diction such as the MammaPrint are available  [  78  ] . The ongoing TAILORx and 
MINDACT clinical trials concentrate on outcomes  [  79  ] . Molecular therapies for 
lymphomas are also undergoing clinical testing  [  80  ] . 

 Transplantation is another active research area. Heart transplant studies and 
microarray-based biomarker signatures have been ongoing for a decade, resulting in 
the CARGO clinical trials using an 11-gene signature called the Allomap genes 
 [  81  ] . Recent studies indicate that the number and frequency of cardiac biopsies can 
be reduced when the Allomap signature indicates a low risk of rejection. The US 
Food and Drug Administration has cleared Allomap for use in transplant manage-
ment  [  82  ] . New studies of other organ transplants indicate a similar promise of 
monitoring the risk of transplant rejection  [  83  ] . 
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 The application of molecular profi ling appears to hold promise for autoimmune 
diseases. Clinically distinct rheumatic diseases, for example, show dysregulation of 
the type I interferon pathway that correlates with disease progression. Pharma-
cogenomic studies based on such profi ling are underway  [  84,   85  ] . Infectious disease 
is another area which has been altered by molecular data and the associated tech-
nologies. Resequencing arrays can now rapidly identify bacteria and viruses in body 
fl uids based on their gene sequences, thus eliminating the need for time-consuming 
culturing techniques  [  86  ] . 

 Selecting appropriate doses of drugs metabolized by some CYPs has been sim-
plifi ed by a chip that detects a standard set of CYP2C19 and CYP2D6 mutations 
 [  87  ] . The chip, called AmpliChip, predicts how rapid a metabolizer a patient is. The 
chip is best used for selecting the initial dose of medications such as warfarin to 
attain optimal therapy as quickly as possible. This pharmacogenetic test is regulated 
as a medical device by the US Food and Drug Administration. 

 The growing population of consumers who access biomedical information on the 
World Wide Web, contribute their own health data through online tools such as per-
sonal health records, and directly access genetic testing resources, poses both chal-
lenges and opportunities for clinical investigators. Today, consumers can send a 
saliva or cheek swab sample to companies such as 23andMe  [  88  ] , Navigenetics  [  89  ] , 
and deCODEme  [  90  ]  for genotyping and a risk analysis for a wide variety of health 
conditions. Consumers can also obtain an ancestral path based on their DNA. They 
can gain detailed information about their genetic conditions at Web sites such as the 
National Library of Medicine’s Genetics Home Reference  [  3  ] . They can also join 
groups of people with similar conditions on the 23andMe or PatientsLikeMe Web 
site  [  91  ]  and share their specifi c health and genetic data. Researchers affi liated with 
these sites use the contributed patient data to promote research on rare conditions and 
on conditions with limited research funding. Clinical investigators can tap these sites 
for highly motivated, well-informed study subjects; they may also able to gain access 
to the clinical and genetic data and use them to design new research projects. 

 Tailoring therapy to a specifi c subject, referred to as “personalized medicine” or 
“genomic medicine,” offers new challenges for both clinical and informatics investi-
gators. For the informatics investigator, linking genomic, phenotypic, and therapeu-
tic data with outcomes presents computational and analytic challenges. Those four 
dimensions of data demand ever more precise data collection and analysis if mean-
ingful and accurate associations are to develop. For the clinical investigator, person-
alized medicine research could improve therapy prediction, planning, and monitoring. 
The studies would be informed by subjects’ genomic and phenotypic data with the 
goal being to increase knowledge about targeted treatments for individuals.  

   Molecular Epidemiological Data 

 Molecular epidemiology is the study of how genetic and environmental risk factors, 
at the molecular level, relate to diseases within families and in populations. In the 
cancer domain, molecular epidemiology studies explore the interactions between 
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genes and the environment and their infl uence on cancer risk. “Environment” 
includes exposures to foods and chemicals as well as lifestyle factors. The new fi eld 
of nutrigenomics focuses on how diet infl uences genome expression  [  92  ] . 

 Genealogical data allows for the study of the familiality of diseases and risk fac-
tors. A prominent genealogical resource is the Utah Population Database (UPDB), 
a computerized integration of pedigrees, vital statistics, and medical records of mil-
lions of individuals that helped demonstrate the hereditability of many diseases, 
including cancers – some before the genetics was established  [  93  ] . Recent studies 
have combined the pedigree-based linkage studies with genome-wide association 
studies. One example demonstrated the linkage of bipolar disorder with loci on 
chromosomes 1, 7, and 20  [  94  ] . Another demonstrated linkage of rheumatoid arthri-
tis with several chromosomes  [  95  ] .   

   The Future of Molecular Data in Clinical Research 

 Molecular data has clearly made its way into clinical research and rapidly into stan-
dard care for various diseases, health conditions, and therapies. This trend is likely 
to accelerate for many decades as the postgenomic era matures. The large number 
of single-gene tests is being augmented by multigene testing techniques. The Lynch 
syndrome test for nonpolyposis hereditary colon cancer involves full sequencing of 
four genes and two associated laboratory tests. The panel of 17 genes involved in 
testing for hypertrophic cardiomyopathy is in the fi nal stages of development and 
clinical trials  [  96  ] . Proteomics tests via tandem mass spectroscopy form the basis 
for mandatory screening of newborns. Molecular signatures based on microarray 
functional analyses are used routinely in breast cancer and in the fi nal stages of 
clinical trials for many other cancers. Patients who have undergone organ trans-
plants are being monitored by blood tests and associated molecular signature analy-
sis that indicates the risk of rejection. Other disorders are similarly being transformed 
by these new and powerful sets of genomic information. 

 The next frontier in the postgenomic era may involve nanoparticle technology. 
Nanoparticles are measured in nanometers, which is the size domain of proteins. 
They are being investigated for many applications such as potential drug delivery 
vehicles  [  97,   98  ] . Specifi c particles can interact with tumors of a specifi c genotype. 
The future will undoubtedly involve individualized nanoparticle therapy.      
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  Abstract   Clinical Research Information Systems (CRISs) are a type of specialized 
software application which are designed to support clinical research. The use of 
CRISs can reduce the costs of research studies. Information systems can also  support 
a host of functions and activities within clinical research enterprises. In this chapter, 
we look at the various CRIS vendor models, including new open-source systems. 
We consider issues and workfl ows unique to clinical research that mandate the use 
of a Clinical Research Information System and distinguish its functionality from 
that provided by Electronic Medical Record (EMR) Systems. We also discuss the 
considerations involved in deciding whether to build, lease, or purchase a vendor 
model. Some signifi cant quality-control issues are also highlighted, including 
 double data entry (DDE) and random audits. We then describe the operations of a 
CRIS during different phases of a study, including determining patient recruitment 
and eligibility, protocol management, patient monitoring and safety, and analysis 
and reporting. Included here is role of informaticians in working with investigators and 
biostatisticians to make systematic requirements analysis and to provide costs  estimates 
for informatics components of studies. We fi nally discuss briefl y the issues of 
 standards and certifi cation and look at usability and user-centered designed as 
 evaluative criteria for CRISs.  
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 Clinical Research Information Systems (CRISs) are a category of software appli-
cation specialized to handle one or more aspects of supporting clinical research. 
Their effective use can play an important role in reducing the costs of conducting 
research studies  [  1  ] . While distinct from Electronic Medical Record (EMR) Systems, 
they must typically interoperate with EMRs. Initially, many systems were developed 
to support individual aspects of clinical research, such as primary data capture, study 
logistics, patient recruitment, and so on, but over time, the systems have tended to 
grow more monolithic in an attempt to provide one-stop shopping to their custom-
ers. Nonetheless, despite the proliferation of commercial software, special problems 
still arise that only custom software development can solve. Protocol-authoring 
capabilities, while part of CRIS functionality, are discussed in the next chapter. 

 In this chapter, we provide the reader with a feel for the various issues and 
 processes related to CRISs in order to be able to perform a systematic requirements 
analysis and to decide whether to build a system, lease, or purchase one. We will also 
emphasize practical issues in CRIS operation that have little to do with informatics 
 per se , but which can be ignored only at one’s peril. We will not provide an  exhaustive 
survey of CRIS-related efforts; few such efforts have sustained themselves, and 
fewer still have resulted in software that has been made freely available. 

   Clinical Research Information Systems Vendor Models 

 The larger commercial CRISs require a fi nancial investment almost as formidable 
as that for an institutional EMR. The size of this outlay, coupled with the software’s 
complexity, virtually mandates their deployment be institution wide. In keeping 
with their scope, such systems can manage an arbitrary number of clinical studies 
within a single physical database design, subject only to hardware limits. These are 
sold outright to the customer, installed at a customer site, and operated by customer 
personnel. 

 In addition to expense, such systems require a team of individuals with diverse 
skills to operate and maintain – database administrators, software developers, and 
nontechnical individuals familiar with clinical research as well as the CRIS soft-
ware, which can translate an investigator’s study design into an electronic represen-
tation. This team’s salaries can only be amortized through support of multiple 
studies, and this is typically feasible only at an institution level. 

 Institution-level information technology projects have high risk and require orga-
nizational commitment. Many customers with smaller budgets, for example, indi-
vidual departments, may be uncertain about getting such commitment, and also lack 
the budgets to hire or retain skilled informatics support staff. Therefore, certain 
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CRIS vendors follow a different approach, installing the software at either the 
 customer or vendor’s site (the latter is an option only if Institutional Review Board 
concerns about data       privacy and security can be addressed), but the vendor staff 
generally perform all administrative and software-development functions remotely. 
The customer is billed based on factors such as the number of supported studies, the 
complexity of the processes needing support, and the number of electronic data 
capture instruments that have to be developed. This model has much lower up-front 
costs and potentially higher ongoing costs; often, though, the vendor can perform 
the administrative/developer tasks much more cheaply than the customer: a single 
developer’s or administrator’s time can be fully utilized in supporting multiple 
 customer sites. 

 A third alternative in terms of ready-made software is an open-source system. 
While the software purchase costs are zero, the people who have to learn, adopt, and 
run the software locally are not free. Such systems are rarely plug and play and 
require a team commitment much greater than that required to run a commercial 
package: while user groups may help answer simple questions, free software cannot 
be supported by the authors 24/7 (some open-source vendors will, however, provide 
support for a fee). As with any software, one must study the documentation care-
fully to ensure that the software is a match for one’s needs: the capabilities of differ-
ent systems vary widely, and certain systems support only simple study designs, 
such as surveys.  

   Why Have Clinical Research Information Systems Evolved? 

 EMRs are not entirely suitable for supporting clinical research needs by themselves, 
mostly due to fundamental differences between clinical research and patient-care 
processes. We describe these differences below, while emphasizing that workfl ows 
involve interoperability with EMR-related systems. 

 In the account below, we will use the words “subject” and “patient” interchange-
ably, while accepting that participants in a study may often be healthy. We will use 
“case report form” (CRF) to refer to either a paper or an electronic means of capturing 
information about a set of related study parameters. The parameters are often called 
 questions  when the CRF is a questionnaire, but may also be clinical fi ndings or 
results of laboratory or other investigations. 

   The Concept of a Protocol Is Fundamental to Clinical Research 
Information Systems 

 CRISs differ from EMRs in that their design is based on the concept of a  study . The 
details of a given study – the experimental design, the CRFs used, the time points 
designated for subject encounters, and so on – constitute the study  protocol . 
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Sometimes, a  project  may involve multiple related studies performed by a research 
group or consortium, typically involving a shared pool of subjects – so that certain 
common data on these subjects, such as demographics or screening data, is shared 
between studies within the same project. 

 Regardless of any other functions, a CRIS must provide two essential functions: 
representing a protocol electronically and supporting electronic data capture. EMRs 
are not designed for the former objective. Individual CRIS offerings differ in how 
fully they can model a variety of protocols, and the sophistication of their data capture 
tools. (Chap.   9     describes issues related to protocol representation in greater detail.)  

   Clinical Research Information Systems Implement User Roles 
That Are Specifi c to Research Designs 

   Supporting Differential Access to Individual Studies 

 For an institutional CRIS that supports multiple studies only a handful of individuals – 
typically, administrators and developers – will have access to all studies. Unlike in the 
EMR setting, where a patient can be seen by almost any healthcare provider in the 
organization, access to research subjects’ data must be limited to those individuals 
involved in the conduct of the study or studies in which that subject is participating. 
The vast majority of users, after logging on, will therefore see only the studies or 
projects to which they have been given access. Even here, their  privileges  – the actions 
they can perform once they are within a study – will vary. For example, an investiga-
tor may be a principal investigator in one study, but only a coinvestigator in another; 
therefore, certain administrative-type privileges may be denied in the latter study.  

   Representing Experimental Designs 

 Clinical research often involves an experimental design. In some designs, two or 
more groups of subjects are given different therapeutic agents (including placebos) 
or procedures. The designs are typically double-blinded. That is, neither the patient 
nor the caregiver(s) dealing with the patient (nor even the chief investigator) knows 
what the patient is receiving: the patient simply receives a custom-formulated medi-
cation with one’s name on the container. It is occasionally necessary to break the 
blinding for a given patient, for example, if serious adverse effects develop and the 
patient needs specifi c therapy to counteract it. Therefore, some individuals (typi-
cally pharmacists who dispense the medication) are aware of the blinding scheme. 
CRIS software is aware of the study-specifi c privileges of the currently logged on 
user with respect to blinded data; EMR software lacks this capability.   
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   The Scope of a Clinical Research Information System May Cross 
Institutional or National Boundaries 

 A given clinical study may often be conducted by a research consortium that crosses 
institutional boundaries, with multiple geographically distributed sites. Very often, 
certain investigators in the consortium happen to be professional rivals who are col-
laborating only because a federal agency initiates and fi nances the consortium, 
selecting members through competitive review. Individual investigators would not 
care to have investigators from other sites access their own patients’ data. However, 
putatively “neutral” individuals, such as the informatics and biostatistics team mem-
bers, and designated individuals affi liated with the sponsor, would have access to all 
patients. 

 Even if all consortium investigators trusted each other fully, regulations such as 
those related to the Health Insurance Portability and Accountability Act (HIPAA) 
limit unnecessary access of personal health information (PHI) to individuals not 
directly involved in a patient’s care. So biostatisticians intending to analyze the data 
would generally not care to have access to unnecessary PHI such as patient addresses 
(unless one is studying the fi ne-grained geographical distribution of the condition of 
interest). 

 The concept of enforcement of selective access to individual patients’ data ( site 
restriction ) as well as  selective access to part of a patient’s data  (PHI) based on the 
user’s role and affi liation is again a critical issue that EMRs do not address. 

 For transinstitutional studies, CRIS solutions must increasingly use Web tech-
nology to provide access across individual institutional fi rewalls. By contrast, EMRs 
even when used in a geographically distributed setting (as for a network of commu-
nity-based physicians) are still institutional in scope. Therefore, EMR vendors have 
been relatively slow to provide access this way; most still employ two-tier (tradi-
tional “fat” client-to-database server) access or access using remote login (through 
mechanisms such as Citrix). 

 When a multisite study is conducted across countries with different languages, 
the informatics challenges can be signifi cant, as well-described in  [  2  ] . Besides chal-
lenges in the coordination of the studies, the same physical CRIS (which is hosted 
in the country where the main informatics team is located) must ideally present its 
user interface in different languages based on which person has logged in. This 
feature, called  dynamic localization , is possible to implement with relatively mod-
est programming effort using Web-based technologies such as Microsoft ASP.NET. 
The approach relies on  resource fi les  containing text-string elements of the user 
interface for each language of use, which are consulted by a user interface where the 
elements are defi ned symbolically rather than hard-coded (so that their actual defi -
nitions are pulled from a resource fi le at run time). While several commercial web-
sites implement this capability, to the best of our knowledge no existing commercial 
CRIS has employed it as of yet.  
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   Certain Low-Risk Clinical Studies May Not Store Personal 
Health Information 

 In EMR-supported processes involving patient care, the Joint Commission on 
Accreditation of Healthcare Organizations (JCAHO) recommends the use of  at 
least  two personal identifi ers  [  1,   3  ]  to ensure that errors due to treatment of the 
wrong patient are minimized. In contrast, in certain multisite clinical studies that 
involve minimal risk to the patient (such as purely observational studies), Institutional 
Review Boards (IRBs) will not permit PHI entry into a CRIS: patients are often 
identifi ed only by a machine-generated “Study ID,” and the correspondence between 
a Study ID and an actual patient is stored in a separate system. 

 Using IDs this way with extra manual processes risks the error of entering/edit-
ing data for the wrong patient, unless the Study ID incorporates extra check digits 
to prevent an invalid (e.g., digit-substituted or digit-transposed) Study ID from 
being accepted. There is often a very real fear of allowing PHI to be entered, even 
in multisite studies where physical injury (e.g., dose escalations of a toxic drug) 
would result from decisions accidentally made for the wrong patient. In such cir-
cumstances, IRBs need to be gently educated that in their zeal to prevent patient 
harm due to PHI disclosure, they risk much greater clinical harm.  

   Workfl ow in Clinical Research Settings Is Mostly Driven 
by the Study Calendar 

 Most research studies are conducted in ambulatory (outpatient) settings simply 
because most conditions of research interest do not mandate the expense of continu-
ous subject monitoring through admission to a hospital or research center. (Even in 
major illnesses like cancer, patients are typically in a hospital only for the short 
duration of chemotherapy.) Consequently, patient visits to the clinic or hospital are 
scheduled based on the study’s design. The schedule of visits, worked out relative 
to a reference “time zero” (such as the date of the baseline screening and investiga-
tions) is called the  Study Calendar . Obviously, all patients do not enroll in a given 
study at the same time; they typically trickle in. The application of the study calen-
dar to a single patient creates a  Subject Calendar  for that patient. 

 In a simple study design, such as a survey, there is only one event, so a calendar 
is not needed. However, for any longitudinal study, whether observational or inter-
ventional, calendar capability is essential. CRISs also typically allow for “unsched-
uled” visits that do not fall on calendar time points, such as those required for 
medical emergencies. 

 Some CRIS software uses the more general term “Event” instead of “Visit” to 
refl ect the fact that certain critical time points in the study calendar may not neces-
sarily involve actual visits by a subject, but will still drive workfl ow. For example, 
1 week before the scheduled visit date, a Previsit Reminder Event will drive a work-
fl ow related to mailing of form-letter reminders. Thus, the Subject Calendar is really 
a  Calendar of Events . 
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   Time Windows Associated with Events 

 One should note that, in order to allow for subjects’ convenience, and due to the fact 
that certain scheduled days may fall on weekends or public holidays, the subject 
calendar dates in most intermediate- to long-term studies have some built-in slack, 
and the permissible slack, or  window,  is also predetermined by the investigator/s on 
a per-event basis. Thus, the event that corresponds to the 1-year follow-up may be 
allowed to occur between 11 and 13 months. This window, of course, would vary by 
the protocol and type of study. For example, in a natural history/observational study, 
the windows might be as broad as 6 months on each end of the event due date, while 
in a pharmacokinetic study of a fast acting drug, the acceptable window might be 
measured in minutes. 

 Based on the study calendar, a given subject can, soon after enrollment, receive a 
precomputed calendar in advance, with minor adjustments made to suit the subject either 
at the start of the subject’s participation or as the study progresses. Such adjustments 
are permissible as long as the event/visit falls within the permissible time window.  

   The Event-Case Report Form Cross-Table 

 At each event, specifi c actions are performed – for example, administration of ther-
apy – and units of information gathered in individual CRFs, for example, for ques-
tionnaires, physical examinations, laboratory tests, and special investigations. The 
association of individual events with individual case report forms is called the 
“Event-CRF Cross-Table.” For reasons of expense as well as risk to the patient from 
invasive tests, all investigations are not carried out at all events, or with equal fre-
quency: expensive and/or tests posing risk of physical harm are much fewer than 
cheaper or routine tests. 

 In such experimental designs, the supporting software must typically  enforce the 
Study’s Event-CRF cross-table constraints . That is, it should not be possible for a 
member of the research team, when entering data in real time or off-line, to acciden-
tally create a CRF for an event where, according to the cross-table, it does not apply. 
Cross-table constraint enforcement ensures that the values of individual parameters 
gathered at a specifi c time point on the Study Calendar for individual patients can 
be pooled together into summary statistics (and compared across groups of patients, 
where the study design uses more than one group) because these values refl ect the 
state of that cohort or subcohort at that point in time. 

 The CRIS should also provide alerts for the research staff about which subjects 
are due for a visit, and what event that visit corresponds to, so that the appropriate 
workfl ow (e.g., scheduling of use of a scarce resource) can be planned. The CRIS 
should ideally also support provision of  advance reminders  to subjects either 
through form letters, phone messages, or email. (Reminders are one feature that 
today’s EMRs support very well: missed offi ce visits translate into lost revenue 
because scheduled services reserved for a given patient are not utilized.) Timely 
alerts about  missed visits  are particularly critical because even if a subject is per-
suaded to show up for an appointment later, the data for the delayed visit may not 
be usable if it falls outside that event’s time window.   



142 P.M. Nadkarni et al.

   Clinical Research Subjects Are Not Typical “Patients” 

 Clinical research subjects differ from the typical patients whose care an EMR 
supports:

   EMRs support processes where caregivers (rather than research staff) interact • 
with patients in processes that are either preventive (e.g., annual physical exams) 
or therapeutic in nature. In many clinical studies, by contrast, the subjects may 
be healthy volunteers who are involved in processes that have no direct relation-
ship to care giving, such as performing cognitive tasks or responding to standard 
questionnaires.  
  In most studies, a large number of potential subjects are screened for recruitment • 
into the study. Many of the screened individuals who show initial interest in par-
ticipation may, on screening via a questionnaire, fail to meet the study’s eligibil-
ity criteria. But even among those who are eligible, it often takes persistent 
persuasion to secure their participation. The process may take several encounters 
(phone calls or personal interviews) after which certain candidate subjects may 
ultimately decline once participation risks are explained. All the while, the CRIS 
must record contact information about potential subjects and log all encounters, 
if only to keep a work record for the recruiting staff who are paid for their 
efforts.  
  In research studying genetic infl uences on particular diseases, one type of study • 
design involves study of large groups of subjects who are related to each other 
through marriage and common ancestors (i.e.,  pedigrees  of individuals). In such 
situations, to increase the power of the ultimate data analysis, one may include 
“pseudo-subjects”: ancestral individuals (e.g., great grandparents) who connect 
smaller families even though they are long deceased and almost nothing is known 
about them.     

   Clinical Research Information Systems Often Need to Support 
Real-Time Self-reporting of Subject Data 

 To ease the research staff’s data entry burden, some CRISs may support self-entry 
by subjects or can accept data via bulk import from external systems that support 
such self-entry. Self-entry is appropriate for certain CRFs in studies involving self-
rating. For example, pain intensity is typically self-reported on an ordinal or analog 
scale, and certain instruments, such as the Center for Epidemiological Studies 
Depression Scale (CES-D)  [  4  ] , have been used to self-assess intensity of depressive 
symptoms following radiotherapy for head-neck cancers. 

 Many subjects are more than capable of using Web-based computer applications 
for work or personal purposes, so it is reasonable to allow such patients to fi ll up 
such CRFs via the Web at a time and location (e.g., home) convenient to them rather 
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than have mandate a visit or have a staff member interview them over the phone. 
CRISs that support self-entry by subjects allow informatics staff to provide a lim-
ited login to subjects and also to specify which forms are subject enterable. When 
the subject logs in, only such forms will be presented for data entry. To enhance data 
completion and quality, the use of good interface design and online data collection 
features is particularly important in patient-directed data collection applications.  

   Clinical Research Data Capture Is More Structured 
Than in Patient Care 

 In clinical care, a patient may present with any disease; even in most clinical spe-
cialties, a broad range of conditions are possible. The only way to capture most 
information other than vital signs or lab tests is through the narrative text of clinical 
notes. Structured data only arises when a patient is undergoing a specifi c protocol 
where the required data elements are known in advance, for example, for coronary 
bypass, cataract surgery, or when partial structure can be imposed (e.g., for a chest 
X-ray examination). 

 While narrative text is very fl exible, it is extremely challenging to analyze 
because of issues such as medical term synonymy and the telegraphic, often non-
grammatical nature of the notes. By contrast, in most clinical research, the patients 
are preselected for a specifi c clinical condition or conditions, so one knows in 
advance exactly what data elements will be captured. Therefore, CRFs are highly 
structured, maximizing the use of elements that require numeric or discrete responses 
(e.g., yes/no responses or values selected from a list of choices). 

 Occasionally, in studies that have dual objectives – that is, research combined 
with clinical care – such forms will occasionally contain narrative-text elements like 
“Additional Comments,” “If Other, Please Specify,” but such elements are relatively 
modest in number. A good research team will monitor the contents of such fi elds 
continuously, looking for frequently occurring textual responses. These provide an 
opportunity to revise the CRF by increasing its structure through specifi c prompts 
for such responses. Apart from making the CRF faster to fi ll (entering narrative text 
is always slower than clicking check boxes or selecting items from lists), they 
improve the data’s subsequent analyzability by making more of the questions 
discrete-valued.  

   Clinical Research Information Systems Electronic Data Capture 
Needs to Be Robust and Flexible and Effi cient to Set Up 

 Data capture in many research settings (notably psychiatry/psychology) is typically 
far more extensive than in EMRs. Numerous questionnaires have been designed 
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specifi cally for research problems and are too lengthy for convenient use by busy 
caregivers or by patients who are not compensated for their time in a research study. 
Because many CRFs are so lengthy, there is a greater risk of the data capture process 
introducing inconsistency. Consequently, CRISs must provide extensive support for 
real-time data validation:

   Validation at the individual fi eld level includes data-type-based checks for dates • 
and numbers, range checking, preventing out-of-range values by presenting a list 
of choices, regular-expression checks for text, spelling check, and mandatory 
fi eld check (blank values not permitted).  
  Certain values (especially dates) can be designated as approximate – accurate • 
only to a particular unit of time such as month or year – if the subject does not 
recall a precise date. Fields can also be designated as having their contents miss-
ing for specifi ed reasons such as failure of subject to recall, refusal to answer the 
answer, or change in a form version (a new question is introduced, so that data 
created with older version does not have the response for this question). Such 
reasons may often be specifi c to a given study.  
  Cross-fi eld validation can occur within a form through simple rules – for exam-• 
ple, the sum of the individual fi eld values of a differential WBC count must 
equal 100.  
  The more powerful packages will even support consistency checks across the • 
entire database, for example, by comparing a value entered for a specifi c param-
eter with the value entered for the previous event where the CRF applies.  
  Support of computations where the values of certain items are calculated through • 
a formula based on other questions in the form whose values are fi lled in by the 
user.    

 In addition to simple validation techniques, which rely on the software pointing 
out a user’s mistake, many facilities are ergonomic aids that in addition to being 
preventive in nature, streamline the data entry process.

   The use of  • default values  for certain fi elds can speed data entry.  
   • Skip logic  is employed when a particular response to a given question (e.g., an 
answer of yes to a question about past history of cardiovascular disease) causes 
certain subsequent questions which would ask for more details about this condi-
tion to be disabled or to become invisible if the user responds to the initial ques-
tion with a “no” because they are now inapplicable.  
   • Dynamic (Conditional) Lists:  Certain lists may change their contents based on 
the user’s selection from a previous list. For example, some implementations of 
the National Bone Marrow Donor Program screening form will ask about the 
broad indication for transplant: based on the indication chosen, another list will 
change its contents to prompt for the specifi c subindication. This feature, typi-
cally implemented using Web-based technologies such as Asynchronous 
JavaScript over XML (AJAX)  [  5  ] , reduces the original 15-page paper question-
naire (which contains instructions such as “If you chose Hodgkin’s disease, go to 
page 6”) into a two-item form.    
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 Finally, certain research designs, such as those involving psychometrics, may 
require the order of questions in a particular electronic CRF to be changed ran-
domly. In computerized adaptive testing  [  6  ] , even the questions themselves are not 
fi xed: depending on how the subject has responded to previous questions, different 
new questions will appear. 

 While EMRs increasingly allow sophisticated data capture, it would be safe to 
say that CRISs have defi ned the state of the art in this regard. Note that a given 
CRIS may not support every possible feature: the requirement for adaptive 
designs, for example, has resulted in such systems being developed from fi rst 
principles, as in the PROMIS consortium  [  7  ] . Also, certain experimental designs, 
as described in  [  8,   9  ] , require more than one research team member to evaluate the 
same subject (or the same tissue from the same subject) for the same logical 
encounter. Each team member performs an evaluation or rating, and this design 
intends to estimate interobserver variability or agreement in an attempt to increase 
reliability. 

 Issues of privileges specifi c to individual user roles arise here too. Some users 
may only be allowed to view the data in forms, others may also edit their contents, 
while some with administrator-level privileges may be permitted to lock CRF data 
for individual forms or subjects to prevent retrospective data alteration. Certain des-
ignated forms may be editable only by those responsible for creating their data. 

   Use of Data Libraries 

 A signifi cant part of the effort of electronic protocol representation involves CRF 
design. To speed up the process, many CRISs use a  data library , which is essentially 
a type of metadata repository. That is, the defi nitions of questions, groups of ques-
tions, and CRFs are stored so as to be reused. For example, the defi nition of a ques-
tion (including its associated validation information) can be used in multiple CRFs. 
(Thus, hemoglobin’s defi nition can be used in a form for anemia as well as trau-
matic blood loss). 

 Similarly, the same CRF can be used across multiple studies dealing with the 
same clinical domain: standard CRFs, such as laboratory panels, can be used in a 
variety of research domains. For the last situation, some CRISs will allow study-
level customization so that, for a given study, only a subset of all questions in a CRF 
will be shown to the user: questions that the investigator considers nonrelevant can 
be hidden.   

   Data Entry in Clinical Research May Not Always Be Performed 
in Real-Time: Quality Control Is Critical 

 EMRs capture patient-encounter data in real time or near real time: CRISs are more 
adaptable to individual needs, supporting off-line data entry with transcription from 



146 P.M. Nadkarni et al.

a source document if real-time capture is not possible or bulk import of data such as 
laboratory values from external systems. The chapter by Nahm deals with the issue 
of quality control in greater detail: we will highlight a few signifi cant issues here 
which that chapter does not address. 

 To ensure highest quality in terms of minimal missing or unusable data – a major 
issue in clinical research  [  10  ]  – off-line transcription should be as little delayed 
from the original encounter as possible – for example, not more than 4 days later. 
Missing data can occur because source documents can be misplaced or damaged. 
Bad data-element values are much more likely with paper source documents than 
with electronic CRFs that support robust interactive validation. Bad-data errors can 
be corrected only by querying the source document’s human originator, and only if 
the operator remembers the encounter, which is likely only if the encounter is very 
recent. 

 Double data entry (DDE) is a quality-control method based on the principle of 
comparing identical input created by two different operators who transcribe the 
same document separately: input that matches exactly is likely to be correct (unless 
both operators made the same mistake). Originating during the punched-card era, 
DDE, in our opinion, has outlived its usefulness. In a seminal article, Day et al.  [  11  ]  
point out that DDE is neither necessary nor suffi cient for good data quality: it does 
not catch bad-source-data errors. 

 Today, best QC practices involve close-to-real-time data entry with CRFs maxi-
mally using interactive validation, followed by very timely  random audits  of a sta-
tistical sample of CRFs against the source documents. The proportion of audited 
CRFs is based on criteria such as the criticality, a particular CRF for the study’s 
aims and clinical decision-making: the study’s stage (early on, the sampling per-
centage is higher so as to get an idea of the error rate) and site in a multisite study 
(some sites may be more lackadaisical). All questions on a single CRF are not 
equally important, and therefore only some (typically critical items used for analy-
sis or decision-making) are audited. This approach, based on W. Edwards Deming’s 
(a leading scholar in QC) approach, allows concentration of limited resources in the 
areas of most potential benefi t, as opposed to DDE, which indiscriminately weights 
every single question on every single CRF equally. 

 Because timeliness of data entry is so important, a useful CRIS report will list 
which CRFs have not yet been entered for scheduled patient visits or which have 
been created after a delay longer than that determined to be acceptable.   

   Clinical Research Information System-Related Processes During 
Different Stages of a Study 

 After discussing the special needs that CRISs meet, we now consider CRIS-related 
matters that arise in the different stages of a study. In chronological sequence, 
these stages are Study Planning and Protocol Authoring, Recruitment/Eligibility 
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Determination (screening), Protocol Management and Study Conduct (including 
patient-monitoring and safety), and Analysis and Reporting. Most of the foregoing 
text has dealt with issues relating to stage 3, though CRF design and Calendar 
setup are part of stage 1. 

   Study Planning and Protocol Authoring 

 While clinical investigators are ultimately responsible for the overall study plan, it 
is far more productive for the study plan to be developed in close collaboration with 
the biostatistics and informatics leads at the outset, rather than approaching them 
after a study plan has already been determined without their inputs. While experi-
mental expert-type systems have been developed with the idea of helping clinical 
investigators design their own trials  [  12–  14  ] , their scope is too limited to address the 
diverse issues that human experts handle. 

 For example, a skilled biostatistician will work with the investigator to conduct 
a study of the relevant literature to determine previous research, availability of 
research subjects, relative incidence in the population of the condition(s) of inter-
est, epidemiology of the outcome, the time course of the condition, risk factors, 
and vulnerable populations. Knowledge of these factors will provide a guide as to 
an appropriate experimental design. If the design involves two or more groups of 
subjects, knowledge of the risk factors and comorbidities will suggest strata for 
randomization. A power analysis can determine how many subjects need to be 
recruited for the study to have a reasonable chance of being able to prove its main 
hypothesis. If data is available on the annual number of cases presenting at the 
institution, sample size determinations will provide an idea as to how long the 
study must remain open for enrollment of new subjects, or even if it is possible to 
accrue all subjects from a single institution: sometimes, multiple sites will need to 
be involved to get suffi cient power.  Data security considerations  should be part of 
the study plan. Other than the study-specifi c considerations discussed earlier, the 
issues of physical security, data backup/archiving, user authentication, audit trails 
for data changes and user activity, and data locking are not signifi cantly different 
from those applying to EMRs. An informatics support team should have all these 
issues worked out in advance. In particular, informaticians must work with inves-
tigators and biostatisticians to give them an idea of the extent to which their experi-
mental design can be supported by the software that is currently in use at the 
institution, and what aspects require custom software development. The latter is 
understandably expensive, but even if custom development were zero for a given 
study, a CRIS will not run itself. The informatician should therefore provide a cost 
estimate for the informatics component of the study: in our experience, some clini-
cal investigators may be naive and greatly underestimate the human resources 
required for informatics support tasks such as CRF and report design, administra-
tive chores, end-user training, documentation, and help-desk functions. Meeting 
with the investigator while the idea for the study is still being developed minimizes 
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the risk of underbudgeting. For an informatics team, participation in a study where 
the members find themselves expending more resources than they are being 
compensated for becomes, in the immortal words of Walt Kelly’s Pogo, an insur-
mountable opportunity. 

 Electronic protocol design involves the following tasks:

   Setting up the Study Calendar.  • 
  Designing the CRFs for the study (or reusing other CRFs that have been previ-• 
ously created for other studies).  
  Designating which CRFs apply to which event on the calendar.  • 
  Designating user roles and the privileges associated with each.  • 
  Specifying the options required for a given experimental design, such as blinding • 
and hiding of PHI.  
  Specifying eligibility criteria. (More on this shortly.)  • 
  Identifying the types of reports that will be needed and designing these, as well • 
as devising a data analysis plan. (More on this later.)  
  Determining QC parameters for timeliness and accuracy of CRF entry.  • 
  Creating a manual of operations. CRIS Software typically does not have support • 
for multiple authoring and version control. However, tools such as Adobe 
RoboHelp™ are more than capable for this task, they can create the documenta-
tion in formats such as HTML (and automatically generating a searchable web-
site) as well as generate indexed, searchable help fi les that can be downloaded 
and installed on a user’s local machine. In addition, one can create context-sen-
sitive help that is accessible from individual CRFs.  
  Devising and documenting a data safety monitoring plan (DSMP), which ensures • 
adequate oversight and monitoring of study conduct, to ensure participant safety 
and study integrity. At the least, the DSMP should include a plan for adverse 
event reporting (see later) and a Data Safety Monitoring Board if the intervention 
has the potential of signifi cant risk to the patient.  
  Testing the resulting functionality and revising the design until it works cor-• 
rectly. Most CRISs will let you simulate study operation in a test mode using 
fi ctitious patients. Once everything works correctly, one can throw a “go live” 
switch that enables features such as audit trails.  
  Role-based User training and certifi cation. Note that this will be an ongoing • 
process as new personnel join the research team.     

   Recruitment and Eligibility Determination 

 Most CRIS software will support eligibility determination based on a set of crite-
ria. For simple criteria, they will allow creating questions with “yes/no” responses: 
for a subject to be considered eligible, responses to all inclusion criteria must be 
“yes,” and responses to exclusion criteria must be “no.” For more complex cases, 
one can utilize the CRF-design capabilities to design a special “eligibility 
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 determination” CRF. Standalone systems also exist: some of these are experimental, 
for example  [  15  ] , while others, such as the Cancer Center Participant Registry 
 [  16  ] , are domain specifi c. 

 The most effective approach to recruitment for subjects with a clinical condition 
(as opposed to healthy volunteers) involves close integration with the EMR. 
Information about patients who would meet the broader eligibility criteria (e.g., 
based on diagnosis codes or laboratory values) can be determined computationally 
by queries against the EMR data, though other criteria (such as whether the patient 
is currently pregnant) would have to be ascertained through subject interviews or 
further tests. Most automation efforts have involved custom, study-specifi c pro-
gramming. Though it is possible to build a general-purpose framework that would 
be study independent, such a framework would still be specifi c to a given EMR 
vendor’s database schema. The issues with integrating CRIS and EMR data are 
described in more detail in Chapter   17    . 

 When a subject agrees to participate in the study, he or she is given a calendar of 
visits. As stated earlier, the exact dates may be changed to suit patient convenience: 
CRIS software may often provide its own scheduler but should ideally be well inte-
grated with an EMR’s scheduling system if the subjects are patients and the hospital 
(as opposed to a clinical research center) is primarily responsible for providing 
care. 

 Robust software generates reminders for both staff and subjects and also allows 
rescheduling within an event’s window. The period of time prior to a visit date for 
which changes to the visit date are allowed depend on the nature of the visit: if the 
visit involves access to a relatively scarce and heavily used resource such as a 
Positron Emission Tomography scanner, changes to the schedule must be made well 
in advance.  

   Protocol Management and Study Conduct 

 Many of the issues related to recruitment continue through most of the study, since 
all patients never enroll in the study at the same time. Issues specifi c to this part of 
the study include:

   Tracking the overall enrollment status by study group, demographic criteria, and • 
randomization strata.  
  Transferring external source data into the CRIS, using electronic rather than • 
manual processes where possible.  
  Monitoring and reporting of protocol deviations, which are changes from the • 
originally approved protocol, such as off-schedule visits. Protocol violations are 
deviations that have not been approved by the IRB. Major violations affect 
patient safety/rights or the study’s integrity. Protocol deviations related to issues 
such as major CRF revisions or workfl ow issues may be prevented simply by the 
informatics staff resisting changes to the electronic protocol without  offi cial 
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approval. Some major violations, such as failure to document informed  consent 
in the CRIS or enrolling subjects who fail to meet all eligibility criteria, can also 
be forestalled by the software refusing to proceed with data capture for that 
patient until these issues are fi xed.  
  Supporting occasional revisions to the protocol to meet scientifi c needs, includ-• 
ing CRF modifi cation. (Note that signifi cant protocol revisions require IRB 
approval.)  
  Creating new reports to answer specifi c scientifi c questions. (More on this • 
shortly.)  
  Monitoring the completeness, timeliness, and accuracy of data entry.  • 
  The workfl ow around individual events based on the Study Calendar. In addition • 
to reminders to patients to minimize the risk of missed or off-schedule visits, 
CRISs may also generate a checklist for research staff, for example, a list of 
things to do for a given patient based on the event.    

   Patient-Monitoring and Safety 

 In clinical studies involving therapeutic interventions, monitoring for adverse 
events (AEs) is critical. It is not enough to record the mere presence of an AE: its 
severity in a given patient is also important. For cancer studies, the National Cancer 
Institute has devised a controlled terminology called the Common Toxicity Criteria 
for Adverse Events (CTC AE)  [  17  ] . Here, the gradation of each concept is speci-
fi ed unambiguously, typically on a fi ve-point scale for most AEs (5 = death). The 
severity of an AE dictates workfl ow: in cancer studies, a grade 3 or greater AE 
must be reported to the sponsor and other collaborating sites as well as to the local 
IRB. (Failure to do so is a major protocol violation: good CRIS software, by auto-
mating the workfl ow as soon as a grade 3+ AE is detected, helps prevent such 
violations.) 

 An important aspect of CTC AE is that the grades are based on anchored (i.e., 
objectively defi ned, often quantitative) criteria that minimize interobserver variability. 
Therefore, CTC AE has often been used in noncancer studies where AE grading, 
especially of physical fi ndings and laboratory values, is necessary. CTC AE’s use is 
less appropriate for subjective symptoms or in studies of psychiatric disorders, 
where the scale lacks suffi cient discrimination. 

 In cases where the study is being conducted in a hospital rather than a clinical 
research setting, effective interoperability between the EMR software and the CRIS 
can simplify AE tracking. Some AE data originates from laboratory tests or struc-
tured data based on subject interviews/examinations where specifi c AEs are looked 
for: here, either the CRIS or the EMR may be the primary system for AE capture: 
Richesson et al. have devised software that facilitates AE capture and grading and 
automates the related workfl ows  [  18  ] . In hospital settings, AEs are also recorded in 
the narrative text of progress notes. Processing these is much more challenging, but 
Wang et al.  [  19  ]  describe an approach for pharmacovigilance based on narrative 
EMR data.   
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   Analysis and Reporting 

 Most CRISs implement a variety of standard reports. Among these are:

   Reports related to enrollment of subjects, subcategorized by demographics or • 
randomization strata. Reporting details of subjects screened vs. subjects actually 
enrolled  
  Reports of screened subjects who failed individual eligibility criteria  • 
  Reports related to Adverse Events  • 
  Reports related to completeness, accuracy, and timeliness of data capture/entry  • 
  Reports summarizing the numbers of patients in different stages of the study • 
(based on events)  
  Reports of patients who were terminated from the trial abnormally – for example, • 
because of refusal to continue, adverse events, etc.  
  Workfl ow reports related to the calendar – which patients are due for visits over • 
a forthcoming time interval, and what needs to be done for each    

 In addition, each study will generally require specifi c, custom-designed reports 
related to its scientifi c objectives. 

 For the purposes of  analysis , a CRIS must provide bulk-export capabilities, with 
the data ideally being in a format that is directly acceptable as input by a statistical 
package. Since the internal data model of CRISs differs signifi cantly from the fl at-
fi le design that most statistics packages use, the CRIS must perform extensive trans-
formation on their data. Also, in practically all cases, the data sets generated for 
statistical analysis must be  de-identifi ed , that is, the subjects must be identifi ed only 
by their machine-generated ID without any PHI being because these are destined for 
a data analyst who does not need to know the PHI. By contrast, most reports related 
to workfl ow, as well as many study-specifi c reports, which are used by research staff 
who are in direct contact with their subjects, will contain PHI, especially because 
clinician decisions may be made on the basis of the reports’ contents, and it is 
important to identify each subject accurately.   

   Miscellaneous Issues 

   Validation and Certifi cation 

 CRISs are often used to make clinical decisions; therefore, defects should be mini-
mized. We know of now-defunct CRIS software, once priced at around $3 million, 
which crashed several times a day with a “blue screen.” Certifi cation of CRISs has 
been proposed in a manner similar to that used by the Certifi cation Commission for 
Hospital Information Technology (CCHIT). As many EMR customers have learned 
painfully, however, CCHIT certifi cation does not actually mean that the software 
will meet an organization’s needs, or even that it will be usable. The criteria for 
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CRIS certifi cation may be based on whether a CRIS has particular features or not – 
but if the implementation of individual features is inelegant, use of those features 
will be nonintuitive and error prone. 

 A detailed testing plan is obviously important in helping to establish a CRIS as a 
robust product. However, as Kaner, Falk, and Nguyen’s classic “Testing Computer 
Software”  [  20  ]  emphasizes, the absence of detected errors detected does not prove 
conclusively the absence of defects. Also, software that fully meets its specifi ca-
tions on testing is not defect-free if the specifi cation itself was incomplete or fl awed. 
Further, CRISs are built on top of existing operating systems, commercial database 
engines, transaction managers, and communications technology. Defects in any of 
these – is any user of Microsoft Windows unaware of periodic discoveries of bugs 
and vulnerabilities? – could affect their operation. 

 Finally, even if a CRIS fully meets all its requirements, it may not be defect-free 
in actual operation. CRFs, which end-users interact with, are developed by the CRIS 
support team within an organization. CRF design is essentially a kind of high-level 
programming, typically using a GUI metaphor (so that nonprogrammers can accom-
plish most tasks). Errors of both commission – for example, a mistake in a formula – 
or omission – for example, forgetting to add suffi cient validation checks, so that bad 
data creeps in – are possible. The point we are trying to make is that there are no 
simple solutions to the matter of system validation and certifi cation.  

   Standards 

 Lack of standards has been one limiting factor in CRISs: as in several other areas of 
computing, they result in an uncomfortably tight dependency of a customer on a 
given vendor. Several chapters of this book deal with the issue of standards in greater 
detail, so we will just give you our take on data-library standards. 

 There are efforts toward standardizing the contents of data libraries, such as by the 
Clinical Data Interchange Standards Consortium (CDISC). However, data libraries are 
where individual CRIS vendors differentiate themselves the most, especially for com-
plex validation (but in highly incompatible ways), and CDISC makes no attempt to 
represent complex validation rules. Even simple computational formulas are repre-
sented as text strings that are specifi c to a particular programming language. Even sim-
ple computational formulas are represented as text strings that are specifi c to a particular 
programming language. Even if CDISC acquired such capabilities, we doubt that it 
would have signifi cant impact: vendors have no compelling reason to change (which 
would require overhauling their infrastructure completely). The fact is that complex 
validation in CRISs is not easy to implement in a manner that is readily learnable by 
nonprogrammers. It is harder still to represent in a metadata interchange model.   

   Concluding Remarks 

 An important aspect of evaluation of a CRIS that is a candidate for purchase is its 
usability. A CRIS is a complex piece of software, and it will understandably have 
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a signifi cant learning curve simply because a lot of its functionality must be 
learned in order to set up an electronic protocol correctly. A less than intuitive user 
interface can greatly compound the diffi culty in learning it. Such software should 
ideally follow the principles of user-centered design  [  21  ] , which is a fancy way of 
describing a design process that emphasizes the perspectives, needs, and the limi-
tations of the intended users of the software. The reality, however, is that the CRIS 
software market is simply not as competitive as that of mass-produced microcom-
puter software, and so one may often fi nd that the user (and organizational pro-
cesses) must adapt to the software rather than vice versa. (A similar situation held 
for an unacceptably long duration in the area of Enterprise Resource Planning 
software.) 

 With competitive pressure due to the entry of open-source CRIS software, this 
situation may change for the better. However, it is important to ensure that the soft-
ware one is considering is a good fi t for one’s needs, and some forward thinking is 
necessary: it should not only be a good fi t for the studies one is conducting pres-
ently, but also for studies one may conduct in future.      
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  Abstract   Clinical research is an extremely complex process involving multiple 
stakeholders, regulatory frameworks, and environments. The core essence of a 
 clinical study is the  study protocol , an abstract concept that comprises a study’s 
investigational plan—including the actions, measurements, and analyses to be 
undertaken. The “planned study protocol” drives key scientifi c and biomedical 
activities during study execution and analysis. The “executed study protocol” 
 represents the activities that actually took place in the study, often differing from the 
planned protocol, and is the proper context for interpreting fi nal study results. To 
date, clinical research informatics (CRI) has primarily focused on facilitating 
 electronic sharing of text-based study protocol documents. A much more powerful 
approach is to instantiate and share the abstract protocol information as a  computable 
protocol model, or  e-protocol , which will yield numerous potential benefi ts. At the 
design stage, the  e-protocol  would facilitate simulations to optimize study 
 characteristics and could guide investigators to use standardized data elements and 
case report forms (CRFs). At the execution stage, the  e-protocol  could create 
 human-readable text documents; facilitate patient recruitment processes; promote 
timely, complete, and accurate CRFs; and enhance decision support to minimize 
protocol deviations. During the analysis stage, the  e-protocol  could drive  appropriate 
statistical techniques and results reporting, and support proper cross-study data 
 synthesis and interpretation. With the average clinical trial costing millions of 
 dollars, such increased effi ciency in the design and execution of clinical research is 
critical. Our vision for achieving these major CRI advances through a computable 
study protocol is described in this chapter.  
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   Overview 

   The Study Protocol: Core Essence of a Clinical Research Study 

 A clinical research study is a planned investigation in which a series of prespecifi ed 
actions are carried out on study participants, their data, or their biospecimens, in 
order to collect information that can be analyzed to increase our understanding of 
human health and disease. The study’s investigational plan—including the actions 
to be undertaken, the measurements, and the analysis procedures to be followed—is 
called the  study protocol . The study protocol is an abstract concept, which manifests 
as two related states during the life cycle of the research study. The “planned study 
protocol” is the core essence of any clinical research study, representing the study’s 
conceptual scientifi c structure. In proposed and ongoing studies, the planned proto-
col drives the key scientifi c and biomedical activities that take place during study 
execution and analysis. In completed studies, the “executed study protocol” repre-
sents the activities that actually took place, which often may differ from the study’s 
planned protocol; understanding and documenting the executed protocol is vital for 
interpreting the fi nal study results. In any case, the study protocol is the single most 
valuable and distinguishing assembly of information to defi ne a clinical study. 

 In common usage, the term  study protocol  often confl ates the abstract notion of 
the planned research, as described above, with the textual documents that tradition-
ally describe the abstract protocol. That is, investigators write study protocol  docu-
ments , not study protocols, in text. They fi le study protocol  documents  for human 
subjects approval applications, and sponsors sometimes post study protocol  docu-
ments  on the web. Study protocol documents are artifacts generated to guide the 
conduct of clinical research during the course of a study, and while they describe a 
study’s planned activities with varying accuracy and completeness, study protocol 
documents are not the core essence of a study’s scientifi c structure in the way that 
the abstract study protocol is.  

   Clinical Research Informatics and the Study Protocol 

 Clinical research is an extremely complex process involving multiple stakeholders 
acting within a number of regulatory frameworks. Study management in such a 
complex environment necessitates the sharing of information generally represented 
to date as documentary artifacts. Given the current state of clinical research infor-
matics (CRI) tools, the focus has been on facilitating the electronic sharing of such 



1579 Study Protocol Representation

study protocol documents. However, because study protocol documents are only 
derivatives of the abstract study protocol, this focus on document management is 
narrower and less powerful than direct information management of the abstract 
study protocol itself. 

 To advance CRI tools, the abstract study protocol must be made directly comput-
able, without the intermediary of textual descriptions in the form of a protocol docu-
ment. Rather, the convenience of sharable protocol documents should be generated 
from the creation of a computable study protocol. Such computable study protocols 
would yield many benefi ts throughout the clinical study life cycle. For example, at 
the design stage, a computable protocol would facilitate conducting simulations of 
varying design characteristics to help an investigator iteratively optimize the design 
to lower study duration and costs. User interfaces that help investigators capture 
study plans as computable protocols also afford the opportunity for ensuring stan-
dardized data elements and case report forms (CRFs). At the execution stage, as has 
been shown in clinical research management systems, the computable protocol can 
be used to create human-readable text and paper documents; facilitate distributed 
patient recruitment processes; provide timely, complete, and more accurate CRFs 
for greater study quality assurance; and drive decision support to help minimize 
protocol deviations such as ineligible patients, missed visits, or inappropriate doses 
 [  1  ] . During the analysis stage, the computable protocol can drive the use of appro-
priate statistical analytic techniques and computable reporting of results  [  2  ] . With 
the average cost of commercial clinical trials being in the millions, effi ciency in the 
design and execution of clinical research is not a luxury. There is an increasingly 
urgent and outstanding opportunity to apply the power of computers beyond clinical 
research document management, to true information management in full-spectrum 
support of the design, execution, analysis, and reporting of clinical research. 

 Table  9.1  defi nes several key terms for this chapter. We distinguish between the 
study protocol, which is the abstract investigational plan for a study, and the  com-
putable protocol model , which is a generic computable representation of the abstract 
elements and decision rules commonly found in study protocols. There already exist 
multiple computable protocol models of various depth and complexity, as we review 

   Table 9.1    Clinical research informatics terms relating to study protocol   

 Study protocol  The abstract specifi cation of a study’s investigational plan, including 
the actions to be undertaken, the variables to be assessed, and the 
analysis procedures to be followed 

 Study protocol 
document 

 A textual description of the study protocol, often in the form of a PDF 
or other document format, such as MS Word 

 Computable protocol 
model 

 A generic computable representation of the information contained 
within a clinical research study protocol 

 Common computable 
protocol model 

 A  shared and standardized  computable representation of study 
protocols that serves as a reference semantic across all clinical 
research studies 

 E-protocol  An instantiation of an individual study plan in a specifi c singular 
computable protocol model (“e-protocol”), or ideally going 
forward, in the common computable protocol model (“E-protocol”) 
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below. Standardization of the underlying computable protocol model into a  common 
computable protocol model  has been a “holy grail” of clinical research informatics 
for many years, to facilitate the interoperation of computable protocols across dis-
parate systems for advanced information and knowledge management in clinical 
research. Efforts are ongoing to establish such an agreed upon common computable 
protocol model, as described briefl y below. This will be an active area of CRI for 
years to come.  

 When a specifi c study’s protocol is instantiated in a computable protocol model, 
we introduce here a new term for this representation and call it an  e-protocol . 
The e-protocol is defi ned as an instantiation of an individual study plan as an elec-
tronic computable protocol representation, based on a specifi c singular computable 
protocol model. (Ideally going forward, once a commonly defi ned and accepted 
computable protocol model is in place, we propose that a study plan that utilizes this 
common model will be so designated by the term  E-protocol .) 

 The protocol elements and rules that need to be computable to create a functional 
e-protocol are described in the next section, followed by several examples of use 
cases for which the e-protocol will offer large benefi ts. Additional benefi ts would 
accrue if e-protocols could easily be instantiated across multiple systems, as the 
average multicenter clinical trial typically now enrolls thousands of patients from 
over 20 participating sites. The current status of efforts to standardize major ele-
ments of computable protocol models will be presented later in the chapter, which 
will conclude with a discussion of the many remaining research and policy chal-
lenges in study protocol representation.   

   Elements and Specifi cations of a Computable Study Protocol 

 Most clinical researchers are intimately familiar with study protocol documents, 
which may be paper-based or completely electronic (e.g., PDF). These documents 
are used for a multitude of tasks, ranging from obtaining funding, to securing human 
subjects approval, to guiding study execution. The documents vary greatly in length 
and content, but generally should include detailed background rationale; carefully 
stated scientifi c hypotheses; clear and complete eligibility criteria; well-specifi ed 
measurements, data collection, and variables; and robust statistical analysis plans. 

 Despite the importance of their content, far too often protocol documents include 
only cursory descriptions of the study population and primary variables. There are 
no broadly accepted standards for the contents of protocol documents at the design 
stage, although one is in development  [  3  ] . The International Conference on 
Harmonization E3 standard applies to describing the executed protocols of com-
pleted studies and is meant for a different audience and purpose than planned proto-
col documents created before study initiation. 

 The major elements of e-protocols overlap with, but are of necessity broader 
reaching and more standardized than the elements contained within study protocol 
documents. While study protocol documents are for human use, e-protocols are for 
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supporting computational approaches to data structure and organization, information 
management, and knowledge discovery. Thus, e-protocols must satisfy both domain 
modeling (content requirements) as well as requirements for computability to sat-
isfy a broad range of clinical research use cases. By considering what is required of 
the e-protocol to meet particular use cases, we illuminate the abstract common 
requirements for generic computable protocol models. 

   Content Requirements 

 Content requirements for the e-protocol are dictated by the ultimate functionality to 
be supported. We assert that the e-protocol’s purpose is to: (1) capture the complete 
study plan in computable form, (2) provide decision support during study conduct, 
(3) facilitate timely and accurate data capture and storage, (4) support appropriate 
statistical analysis and reporting, (5) support appropriate interpretation and applica-
tion of results, and (6) facilitate reuse of study data and artifacts (e.g., biosamples). 
Out of scope for the e-protocol content requirements will be the tracking of the sci-
entifi c and regulatory review and approval processes. However, amendments to the 
study protocol content will of necessity, and naturally, be captured as a self-docu-
menting audit trial within the e-protocol. The minimal content requirements for 
each of the areas of desired functionality are described in the following sections.  

   Capture the Complete Study Plan in Computable Form 

 A fi rst step toward computable study plans is to capture study plan in electronic, if 
not necessarily computable, form. Absent widely accepted guidelines on study pro-
tocol contents, Table  9.2  provides a typical table of contents that we will use to 
discuss the protocol data elements necessary to facilitate all further functionality. 
Complete capture of this content in e-text will allow the rendering of the study pro-
tocol in human-readable form(s), such as PDF or MS Word documents that humans 
will always need to conduct studies. However, capture of this content as fully coded 
machine-readable standardized data elements as well is ideal and will enable much 
richer and more powerful decision support and enhanced workfl ow functionality.  

 Based on today’s state of the computable study protocol, we suggest in Table  9.2  
the data formats that are currently realistic for the electronic e-protocol, even if the 
e-protocol is not yet fully computable. As work progresses on the computable 
model and related rule sets (mostly within the Biomedical Research Integrated 
Domain Group [BRIDG] model activities, mentioned in Chap.   17    ), more discrete 
data elements will be captured for each content category in ever more structured 
and coded format. The defi nition, modeling, and standardization of these more dis-
crete data elements are being driven by the work to support the following e-protocol 
functionalities.  
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   Provide Decision Support During Study Conduct 

 Modern clinical research protocols can be very complex, arguably too complex to 
be generalizable to daily clinical care  [  4  ] . As a result, study coordinators and 
frontline staff have many complex protocol rules to follow (e.g., who to enroll, 
when to assess outcomes, and how/when to report adverse events). Because stan-
dardized study processes can increase the internal validity of studies, decision 
support to regularize study conduct serves scientifi c as well as regulatory goals. 
Broadly speaking, the constructs that need to be computable to support this func-
tionality include: (1) eligibility criteria, (2) decision rules for triggering specifi c 
study actions (e.g., adverse event reporting), and (3) participant-level and study 
data referenced by eligibility criteria and decision rules. Following sections dis-
cuss the representation of eligibility criteria and the requirements for achieving 
computability. We focus here on the content requirements for criteria, rules, and 
clinical data. 

 Clinical research studies cover the entire range of health and disease, so the broad 
answer to the question of “what are the content requirements for study protocol 
decision support?” is “all of medicine.” The need for concept representations for all 
medical concepts is as much a challenge for clinical research informatics as it has 

   Table 9.2    Example table of contents and data formats for a clinical research e-protocol a    

 Study protocol content  Data format 
 Study objectives  Text-based, possibly templated 
 Background  Text-based, possibly templated 
 Hypotheses  Text-based, possibly templated 
 Patient eligibility  Coded core eligibility criteria to enable patient-protocol 

fi ltering (e.g., per ASPIRE standards) and fully coded 
complete eligibility criteria (e.g., per ERGO) 

 Study design  Coded data elements per emerging standards 
(e.g., TrialDesign component of CDISC model or OCRe) 

 Sample size  Coded enrollment numbers, per arm 
 Registration guidelines  Text-based, possibly templated 
 Recruitment and retention  Templated (e.g., CONSORT fl owchart) 
 Intervention description  Templated, for different types of interventions (e.g., RxNorm 

codes for drug names, model numbers for devices) 
 Intervention plan  Text-based, possibly templated 
 Adverse Event (AE) 

management 
 Coded data for AE terms reporting intervals, regulatory 

agencies 
 Outcome defi nitions  Coded baseline, primary, and secondary outcome variables 

and coding 
 Covariates  Coded main covariates (e.g., stratifi cation variables, 

adjustment factors) 
 Statistical analyses  Coded data and algorithms per emerging standards 

(e.g., StatPlan component of CDISC model) 
 Data submission schedule  Coded data submission intervals 

   a These data elements are meant to be illustrative, not exhaustive  
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been a challenge for health informatics over many decades. The challenge will most 
certainly require the exchange and use of knowledge from multiple domains. 
Different controlled terminologies may be used for subdomains in medicine (e.g., 
RxNorm for drugs; see Table  9.2 ), but there should be no bounds on the permissible 
domain content for e-protocols. Indeed, clinical studies often require content from 
outside of medicine, for example, eligibility criteria that require residence within a 
certain county, or decision rules in health services research studies that are triggered 
by changes in patient insurance status. Clearly, the scope of decision support will be 
limited by the domain coverage of the clinical data that is coded and formally rep-
resented in e-protocols. 

 Another category of content requirement for decision support is semantic rela-
tionships between multiple encoded concepts. Thus, an inclusion criterion for 
patients with renal failure  due to  diabetes is semantically different from one that 
includes patients with renal failure  coexisting with  but not necessarily due to diabe-
tes. In other words, a decision support system that attempts to fully determine if a 
particular patient satisfi es the fi rst criterion above needs to have access to standard-
ized data elements for renal failure, diabetes, and the causal relationship between 
them. The representation of semantic relations is currently very rudimentary. The 
fi rst version of the OBO Relations Ontology details ten relations: two foundational 
ones (is_a, part_of), and other physical (e.g., located_in), temporal (e.g., preceeded_
by), and participant (e.g., has_participant) relations  [  5  ] . In accordance with the 
underlying OBO philosophy, the Relations Ontology includes only “relations that 
obtain between entities in reality, independently of our ways of gaining knowledge 
about such entities,” which would exclude many clinical relevant relations such as 
“due_to.” The Unifi ed Medical Language System (UMLS) has about 100 semantic 
relations, but without a formal structure, it is impossible to fully reason across 
semantic relations themselves (e.g., “that are due_to” and “caused_by” are similar, 
but this similarity is not fully represented). This in turn limits opportunities to fully 
reason across protocols and protocol content encoded in this way. Better decision 
support for clinical research awaits additional advances in the representation and 
codifi cation of clinically relevant semantic relations.  

   Facilitate Timely and Accurate Data Capture and Storage 

 When fully and appropriately executed, the e-protocol will greatly enhance the 
ability to capture and store data in an accurate, complete, and timely manner. 
Electronic CRFs should be designed such that the metadata, including user defi -
nitions and allowable code lists for each fi eld, are encoded within the e-protocol. 
The ability to export the metadata from the system should be in place, for integra-
tion within a metadata repository, along with the ability to draw upon this reposi-
tory to create standard data elements. Ideally, CRI tools will evolve in the future 
such that the forms metadata would also include the ordering, labeling, and 
placement of the data elements within the electronic CRFs, and these forms 
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would be automatically  generated via the system. Embedding the technical 
metadata into the e-protocol could facilitate the design and creation of the data 
storage tables as well. 

 In the e-protocol, the metadata describing the specifi cations for data capture 
should capture the core and full eligibility criteria, treatments received, treatment 
deviations, routine monitoring results for subject health status, any AEs that may 
occur, primary and secondary endpoint measurements, and any covariates or adjust-
ment factors for the patient. Efforts at standardized data elements for CRFs are 
underway and will greatly improve and speed the process of creating CRFs within 
electronic data capture systems, as documented through the e-protocol  [  6,  7  ] . 
Currently, uneven data quality frequently limits the effectiveness and effi ciency of 
clinical trials execution. Improved data quality will be enhanced through program-
matic data validations that can be specifi ed in the e-protocol prior to initiation of 
data collection. Ideally, such validations could be exported to electronic data cap-
ture (EDC) tools in the future to automatically program the up-front data validations 
into the system. 

 Standardized encoding of data capture will help to improve clinical trial capabili-
ties to drive operational effi ciency, and allow centers to mount multisite studies 
much more rapidly and effi ciently. Global data element libraries will allow for reuse 
in study development, resulting in more rapid study implementation. This process 
also will reduce the complexity and thereby facilitate within study or cross-study 
data analysis and integration by eliminating data “silos.”  

   Support Appropriate Statistical Analysis and Reporting 

 The purpose of clinical research studies is to collect data that can be analyzed to 
inform our understanding of health and disease. If inappropriate analytic methods 
are used, the fi ndings will be uninformative or worse, misleading. E-protocols can 
mitigate these problems by enforcing clear defi nitions of study variables and their 
data types: for example, diabetes as a dichotomous variable (HbA1c  ³  6.5%) should 
be analyzed using different statistical methods than diabetes as a continuous vari-
able of HbA1c level. 

 The set of appropriate statistical tests to use depends on the data type of the inde-
pendent and dependent variables. In turn, the data types and statistical tests used 
determine what aspects of the results should be reported (e.g.,  p  value, beta coeffi -
cient) to maximally inform the scientifi c community of the study’s fi ndings. 
Therefore, the contents of e-protocols needed to support statistical analysis and 
reporting include a clear defi nition of study variables and their data types, the rela-
tionship of raw data to these variables (e.g., censored, aggregated), a clear specifi ca-
tion of the study analyses (e.g., of the primary outcome), and the role of individual 
variables as independent or dependent variables within specifi c study analyses. The 
defi nition of these elements and their interrelationships are defi ned in the Ontology 
of Clinical Research  [  8  ] .  
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   Support Appropriate Interpretation and Application of Results 

 One of the tenets of evidence-based medicine is that study results must be interpreted 
in light of how the data were collected. Thus, generations of students have learned 
the principles of critical appraisal and the hierarchy of evidence (e.g., that random-
ized controlled trials provide less internally biased results than observational stud-
ies). Readers of journal articles are exhorted to consider all manner of design and 
study execution features that might affect the reliability of the study results (e.g., 
Was allocation concealed? Were the intervention groups similar in baseline charac-
teristics? Was there disproportionate lack of follow-up in one arm?). For computers 
to support results interpretation, therefore, the e-protocol representing the executed 
(not the planned) protocol must contain the data elements required for critical 
appraisal. Sim et al. identifi ed 136 unique study elements required for critically 
appraising randomized controlled trials  [  9  ] . Comparable data elements are required 
for critically appraising observational and non-randomized interventional studies. 
These data elements are modeled in the Ontology of Clinical Research (OCRe), 
which was designed to support study interpretation and methodologically rigorous 
synthesis of results across multiple studies  [  8  ] .  

   Facilitate Reuse of Study Data and Artifacts 

 The same design and execution elements needed for critical appraisal also are 
needed to properly reuse study data or biospecimens. For example, data from a trial 
enrolling only patients with advanced breast cancer will not be representative of 
breast cancer patients in general, and this must be recognized in any data reuse. 
Studies may even include subjects who do not have the condition of interest: for 
example, a study with a nonspecifi c case defi nition or a study with healthy volun-
teers. While sharing patient-level data from human studies would help investigators 
make more and better discoveries more quickly and with less duplication, this shar-
ing must be done with equal attention to sharing study design and results data, 
preferably via computable e-protocols. Sharing of biospecimens will be facilitated 
through encoding of the type, quantity, processing, and other specifi c characteristics 
of the specimens to be collected during the conduct of the study.  

   Computability and Standardization Features and Requirements 

 The ability to reuse protocol elements across different studies requires standardized, 
formal representation of the “parts” of a protocol (see the constructs in Table  9.2 ). 
For standardizing the representations, bindings to appropriate clinical vocabularies 
are critical but not suffi cient. There needs to be agreement on the conceptual 
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 elements in each construct as well as the specifi c codings that should be used. 
For example, for Endpoint Defi nitions, how exactly are primary endpoints different 
from secondary endpoints? Investigators sometimes change these designations over 
the course of a study for various reasons. The representational challenges here are 
reminiscent of those that have plagued clinical data representation and exchange in 
the EHR context—clinical terminologies offer standardized value sets, but the 
meaning of the data fi eld itself needs standardization for computability. 

 The e-protocol could be represented using a number of representational formal-
isms, with Unifi ed Modeling Language (UML) and Web Ontology Language 
(OWL) being the dominant choices. OWL provides mechanisms that tend to encour-
age cleaner semantics, while UML has the practical benefi t of coupling modeling to 
software development. E-protocol models do not have to be either UML or OWL, 
but can be both. The BRIDG model is now both in UML and OWL, as is the 
Ontology of Clinical Research (OCRe). The Ontology for Biomedical Investigations 
project also defi nes, in OWL, entities relevant to e-protocols  [  10  ] . The achievement 
of a single unifi ed model in corresponding OWL and UML forms across the breadth 
of clinical research is challenging but is the holy grail of clinical research informat-
ics. An important gap in tooling includes easy-to-use and widely accessible tools 
that allow distributed editing and harmonization of conceptual models expressed in 
various formalisms.   

   Benefi ts of a Computable Study Protocol 

   Current Ineffi ciencies in Study Protocol Informatics 

 As described above, the computable study protocol that will be enabled through the 
e-protocol will confer numerous benefi ts and eliminate many of the ineffi ciencies 
that exist today due to the usage of paper protocol documents and a mishmash of 
CRI systems to guide study conduct. One of the greatest sources of these ineffi cien-
cies is the lack of well-accepted and adopted standards. The typical clinical trial 
protocol document contains many implied meanings and unclear instructions, often 
leading to misinterpretations, errors, and inconsistencies in trial conduct. This issue 
becomes especially critical when different companies and protocol sponsors ascribe 
different meanings to the same term. 

 Among existing clinical research databases and systems, most have developed 
independently with tremendous variability in nomenclature, data content, and ana-
lytical tools, leading to silos that impede effi cient solutions even as clinical research 
information systems, rules, processes, and vocabularies are becoming increasingly 
interdependent over time. In short, there is no unifying architecture to support the 
desired interoperability and enforce the technological and lexical standards upon 
which these systems depend. The structured protocol created through the e-protocol 
is the semantic foundation of clinical research informatics that adds value through 
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improved clarity and communication. Such standardization can confer benefi ts even 
in a paper-based world; however, these benefi ts are leveraged much more in a com-
puter-assisted clinical research environment. 

 For biomedical data to be effectively exchanged, integrated, and analyzed, the 
need for standardization must be addressed fi rst. Although establishing a common 
structured protocol representation represents a formidable task, it is prudent to 
address this problem before it becomes even more intractable and costly to solve in 
the face of tens of thousands of human studies going on worldwide at any one time. 
The application of computational and semantic standards is essential for informa-
tion integration, system interoperability, workgroup collaboration, and the overall 
exploitation of signifi cant prior investments in biomedical information resources. 

 Currently, there is substantial redundancy of data collection, entry, and storage 
throughout clinical research institutions, overlapping with processes and data in the 
clinical care arena. The lack of data sharing and integration across systems is exac-
erbated by the absence of universally adopted clinical research standards. 
Vocabularies differ, and there has been no clear emergence of a complete clinical 
research semantic system. Further, the discipline is lacking in the comprehensive 
metadata required to appropriately address and resolve these issues. The standards 
embedded within the e-protocol will enforce such unifying approaches to enable 
rapid design of protocols, mounting of multicenter initiatives, and integration and 
interpretation across studies to speed discoveries.  

   Use Cases over the Study Life Cycle 

 Although e-protocols have most often been used to drive clinical research manage-
ment systems, their uses in fact span the entire life cycle of clinical research, as 
shown in Fig.  9.1 . We discuss several illustrative examples.   

   Improving Study Design 

 Design-a-Trial was one of the fi rst examples of using a declarative study protocol to 
drive a system that helps investigators design new trials  [  11  ] . More recently, 
WISDOM has similar aims. Such systems benefi t from a computable protocol 
model on which to implement complex design knowledge to guide users to instanti-
ate superior study plans  [  12  ] . For example, if a user designs a randomized trial of 
Surgery A versus Surgery B, the system can default the variable a patient’s surgery 
assignment be the independent variable in the study’s primary analysis, and to 
restrict allowable statistical analyses to those that are appropriate for dichotomous 
independent variables. These systems could therefore be valuable in training new 
investigators or to introduce new research methods to established investigators 
(e.g., adaptive designs)  [  13  ] . 
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 Once instantiated, execution of an e-protocol could be simulated using data from 
other studies and sources on such execution parameters as recruitment rates and base-
line disease rates to iteratively optimize the design for study duration and cost. For 
example, an e-protocol’s computable eligibility criteria could be matched against an 
institutions patient data repository for automated cohort discovery  [  14,  15  ] . At the 
study design stage, an investigator could tweak the eligibility criteria to balance 
recruitment time with the selectivity of the eligibility criteria. Simulation of e-proto-
cols to optimize study time and costs could save valuable clinical research resources.  

   Improving Clinical Study Effi ciencies 

 Integration of Electronic Medical Record (EMR) data for secondary use of this 
information within clinical research, and therefore improved study effi ciency, will 
be greatly facilitated through the e-protocol. Such secondary use of EMR data has 
the potential to greatly enhance the effi ciency, speed, and safety of clinical research. 
By clearly defi ning the protocol information as encoded fi elds within the e-protocol, 
mapping the fi elds required within the CRF to data that may exist within the EMR 
will advance the evaluation and discovery of new treatments, better methods of 
diagnosis and detection, and prevention of symptoms and recurrences. Clinical 
research can be enhanced and informed by data collected during the practice of 
care, such as comorbid conditions, staging and diagnosis, treatments received, 
recurrence of cancer, and vital status and cause of death. 

 A fully computable e-protocol, with structured coded data rather than free text, 
offers a solid foundation for integrating the clinical research workfl ow with data 
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capture into the Electronic Medical Record or other care systems. Such integration 
would offer at least two major benefi ts. First, study-related activities that generate 
EMR data (e.g., lab tests, radiological studies) would be clearly indexed to an 
e-protocol, clarifying billing considerations. Second, with computable e-protocols, 
decision support systems could combine scheduled study activities with routine 
clinical care whenever possible (e.g., a protocol-indicated chest x-ray coinciding 
with a routine clinical visit), to increase participant convenience and therefore par-
ticipant retention and study completion rates.  

   Improving Application to Care and Research 

 Clinical research is a multibillion dollar enterprise whose ultimate value is its con-
tribution to improving clinical care and improving future research. E-protocols can 
support results application by capturing in computable form the intended study 
plan, the executed study plan, and the eventual results, to give decision support 
systems the information they need to help clinicians critically appraise and apply 
the study results to their patients. Existing systems for evidence-based medicine 
support either rely on humans to critically appraise studies and use computers to 
deliver the information (e.g., UpToDate) or build and manage their own knowledge 
bases of studies for their reasoning engines. Neither of these approaches is scalable 
to the tens of thousands of studies published each year. With computable e-protocols 
of completed studies publicly available, point-of-care decision support systems like 
MED could be more powerful in customizing the application of evidence to indi-
vidual patients via the EMR. 

 Moreover, many clinical questions are addressed by more than one study, and the 
totality of the evidence must be synthesized with careful attention to the method-
ological strengths and weaknesses of the individual studies. Currently, such system-
atic reviews of the literature are a highly time-consuming and manual affair, which 
limits the pace of scientifi c knowledge, reduces the return on investment of clinical 
research, and delays the determination of comparative effectiveness of health treat-
ments. The Human Studies Database Project is using OCRe as the semantic stan-
dard for federating human studies design data from multiple academic research 
centers to support a broad range of scientifi c query and analysis use cases, from 
systematic review to point-of-care decision support  [  16  ] .  

   Benefi ts of a Common Computable Protocol Model 

 Figure  9.1  illustrates that a single clinical study involves many different people and 
many different information systems over its life cycle. For each system to take 
advantage of the computable e-protocol of the study, each system will have to 
 interface with the underlying computable protocol model in which the e-protocol is 
instantiated. Clearly, clinical research informatics would be well served if there were 
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a  common  computable protocol model in which all e-protocols are instantiated, so 
that systems would not have to build separate interfaces to a multitude of protocol 
models. Given that the average clinical trial is conducted in 23 different sites, each 
possibly using local confi gurations of clinical trial management and other systems, 
substantial resources will be required for protocol and data integration in order to 
provide decision support across the life cycle across multiple sites and multiple sys-
tems for a single study. A common computable protocol model can virtually elimi-
nate that resource overhead and has therefore been a “holy grail” of clinical research 
informatics. The next section of this chapter highlights current protocol representa-
tion standard activities, and the chapter will conclude with a view to the future.   

   Protocol Representation Standards 

   Standards for Protocol Documents 

   HL7 Regulated Clinical Research Information Model Protocol 
Representation Group 

 Health Level 7 (HL7) is the preferred electronic exchange format for healthcare 
information, per the Department of Health and Human Services. HL7    is an American 
National Standards Institute (ANSI)-accredited standards development organization. 
The HL7 exchange format is already used for several FDA messages, including the 
Structured Product Label (SPL), the Integrated Case Safety Report (ICSR), and the 
Regulated Product Submission (RPS) messages. HL7 messages also are the preferred 
exchange format for clinical observations captured within EMR systems, which will 
enable the integration and reuse of clinical care data within the e-protocol. 

 The HL7 Reference Information Model (RIM) V2.0 allows exchange of infor-
mation on clinical care processes through  technical  interoperability.    HL7 V3.0 is a 
standardized model to represent healthcare information, and will yield  semantic  
interoperability, based on consensus ballots worldwide. A subgroup called the HL7 
Regulated Clinical Research Information Model (RCRIM) is working to utilize the 
RIM to evolve a standardized model for research, which would facilitate the cre-
ation and adoption of the e-protocol format.  

   The Clinical Data Interchange Standards Consortium Protocol 
Representation Group 

 The Clinical Data Interchange Standards Consortium (CDISC) was formed through 
a collaboration of biopharmaceutical, regulatory, academic, and technology partners 
with a goal toward optimizing clinical research through the creation and adoption of 
standards. The CDISC Protocol Representation Group (PRG) has developed the 



1699 Study Protocol Representation

CDISC Protocol Representation Model (PRM) V1 (  http://cdisc.org/standards/
protocol.html    ) to facilitate the exchange of clinical research data, allowing studies 
to be initiated more rapidly, and supporting machine- and human-understandable 
decision support. Recognizing that the study protocol lies at the heart of clinical 
research, the primary goal of the PRG is to develop a standard interoperable proto-
col. The mission statement of the group is: “To develop a standard structured proto-
col representation that supports the entire life cycle of clinical research protocols to 
achieve semantic interoperability (the exchange of content and meaning) among 
systems and stakeholders.” The CDISC PRM has the potential to add great value to 
the effi ciency of clinical study conduct, diminishing time to author new protocols, 
improving the quality of study conduct through enhanced clarity and consistency of 
protocol information, and facilitating multicenter data exchange. However, as with 
other representation models, the full value of the PRM will not be realized unless it 
receives widespread acceptance and adoption across the stakeholder spectrum. The 
current directions for the PRG effort are to: (a) leverage standards that had matured 
since the initiation of the PRM project, (b) align with the BRIDG model that had been 
initiated to harmonize CDISC standards, and (c) focus on an initial set of representa-
tive priority use cases out of the many that involve the clinical research protocol.  

   The Standard Protocols Items for Randomized Trials Initiative 

 The Standard Protocols Items for Randomized Trials (SPIRIT) initiative is defi ning 
an evidence-based checklist that defi nes the key items to be addressed in trial proto-
cols, leading to improved quality of protocols and enabling accurate interpretation 
of trial results  [  3  ] . The SPIRIT group’s methodology is rigorous and similar to that 
of the CONSORT group that defi nes trial reporting standards. The SPIRIT recom-
mendations come from the academic epidemiology and evidence-based medicine 
community, not from clinical research informatics, and should complement the pro-
tocol document standards discussed above.   

   Standards for Protocol Model Representation 

   Biomedical Research Integrated Domain Group 

 The    Biomedical Research Integrated Domain Group (BRIDG) model strives to be an 
overarching protocol-driven biomedical model in support of clinical research. The 
model is proposed to provide harmonization among standards within the clinical 
research domain, and between biomedical/clinical research and healthcare, with a 
focus on supporting the day-to-day operational needs of those who run interventional 
clinical trials intended for submission to the FDA. BRIDG has already been used by 
a number of groups as the underlying model for the development of clinical research 
 systems, automated business process support for the conduct of research, and the 

http://cdisc.org/standards/protocol.html
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representation to inform standardization of protocol data collection and conduct. The 
development of such standardized CRI tools also continually informs and advances 
the BRIDG model representation to be more useful and broadly applicable across all 
clinical research. The current BRIDG model version is in both UML and OWL.  

   Ontology of Clinical Research 

 While the BRIDG model focuses on modeling the administrative and operational 
aspects of clinical trials to support clinical trial execution, the Ontology of Clinical 
Research (OCRe) focuses on modeling the scientifi c aspects of human studies to 
support their scientifi c interpretation and analysis  [  16  ] . Thus, OCRe makes clear 
ontological distinctions between interventional and observational studies, it models 
a study’s unit of analysis as distinct from the unit of randomization, and it models 
study endpoints more deeply than BRIDG does—that is, as an outcome phenome-
non studied (e.g., asthma), the variable used to represent this phenomenon (e.g., 
peak expiratory fl ow rate), and the coding of that variable (e.g., as a continuous or 
dichotomized variable). OCRe imports operational constructs from BRIDG where 
possible (e.g., BRIDG’s detailed modeling of actions, actors, and plans). OCRe is 
the semantic foundation for the Human Studies Database Project, a multi-institu-
tional project to federate human studies design and results to support large-scale 
reuse and analysis of clinical research results  [  17  ] . OCRe is also modeled in both 
OWL and UML.  

   Other Protocol Models 

 Other protocol model representations include Epoch and the Primary Care 
Research Object Model (PCROM)  [  18,  19  ] . Like BRIDG, these models are pri-
marily concerned with modeling clinical trials to support clinical trial execution. 
The WISDOM model represents clinical studies primarily for data analysis  [  12  ] . 
The Ontology for Biomedical Investigations (OBI) is a hierarchy of terms includ-
ing some that are relevant to clinical research (e.g., enrollment, group randomiza-
tion)  [  10  ] . OBI differs from BRIDG, OCRe, WISDOM, and other protocol models 
in that it is a standardization and representation of  terms  in clinical research, but 
not a model of the  structure  of research studies. A common structured protocol 
model may come from blending the operational modeling of BRIDG, the scien-
tifi c and statistical analysis modeling of OCRe and WISDOM, and the termino-
logical modeling of OBI.   

   Eligibility Criteria Representation Standards 

 Eligibility criteria specify the clinical and other characteristics that study partici-
pants must have for them to be eligible for the study. As such, eligibility criteria 
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defi ne the clinical phenotype of the study cohort and represent a protocol element of 
immense scientifi c and practical importance. Making eligibility criteria computable 
would offer substantial benefi ts for providing decision support for matching eligible 
patients to clinical trials, and to improving the comparability of trial evidence by 
facilitating standardization and reuse of eligibility criteria across related studies. 
Hence, there have been many attempts to represent eligibility criteria in computable 
form, but there does not yet exist a dominant representational standard. 

 Part of the challenge of representing eligibility criteria is that eligibility criteria 
are often written in idiosyncratic free-text sentence fragments that can be ambigu-
ous or underspecifi ed (e.g., “candidate for surgery”). Indeed, in one study, 7% of 
1,000 eligibility criteria randomly selected from   ClinicalTrials.gov     were found to 
be incomprehensible  [  20  ] . The remaining criteria exhibited a wide range of com-
plex semantics: 24% have negation, 45% have Boolean connectors, 40% include 
temporal data (e.g., “within the last 6 months”), and 10% have if-then constructs. 
Formal representations of eligibility criteria should ideally be able to capture all of 
this semantic complexity, while capturing the clinical content using controlled clini-
cal vocabularies. In addition, if the criteria are to be matched against EHR data (e.g., 
to screen for potentially eligible study participants), the representation needs a 
patient information model to facilitate data mapping from the criterion to the patient 
data (e.g., mapping a lab test value criterion to the appropriate EHR fi eld). The 
major projects on eligibility criteria representation differ in the ways they address 
these needs. 

 The Agreement on Standardized Protocol Inclusion Requirements for Eligibility 
(ASPIRE) project defi nes key “pan-disease” (e.g., age, demographics, functional 
status, pregnancy) as well as disease-specifi c criteria (e.g., cancer stage) stated as 
single predicates (i.e., one characteristic, one value)  [  21  ] . For each criterion, 
ASPIRE defi nes the allowable values (e.g., stage = I, II, III, or IV). This approach 
offers an initial high-level standardization of the most clinically important eligibil-
ity criteria in each disease area. As of 2008, disease-specifi c standardized criteria 
have been defi ned for the domains of breast cancer and diabetes. ASPIRE does not 
aim to capture the complete semantics of eligibility criteria, nor does it include ref-
erence to a patient information model. ASPIRE would therefore not be suffi cient as 
the sole formal representation for eligibility criteria in a fully computable protocol 
model but has the benefi t of lower adoption barriers. 

 The Eligibility Rule Grammar and Ontology (ERGO) project takes a different 
approach than ASPIRE. ERGO aims capture the full semantics of eligibility criteria 
from any clinical domain in a template-based expression language, but encoding 
criteria into formal expression languages is diffi cult and time-consuming  [  22  ] . The 
ERGO investigators therefore developed ERGO Annotation, a lighter-weight tem-
plate model that captures substantial semantic complexity (e.g., Boolean connectors, 
quantitative and temporal comparators) and that can be converted programmatically 
to OWL DL or SQL queries to execute against patient data  [  23  ] . In preliminary 
work, natural language processing techniques were used to assist in transforming 
eligibility criteria from free-text into ERGO Annotation. 

 Other eligibility criteria representations include caMatch, SAGE, and GLIF 
 [  24–  26  ] . While the latter two representations are for practice guidelines, representing 
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the conditional part of guidelines is conceptually identical to representing eligibility 
criteria. Weng et al. reviewed this very active area of clinical research informatics 
work and concluded that an expressive language is highly desired for clinical deci-
sion support uses of eligibility criteria (e.g., eligibility determination), and that a 
patient model is important for matching against patient data but less so for uses such 
as facilitating reuse of criteria in protocol authoring  [  27  ] . Because the vision for the 
computable structured protocol model includes driving operations at the individual 
patient level, a computable representation of eligibility criteria for the e-protocol 
should be based on an expressive language, should reference a standard patient 
information model (e.g., HL7 RIM), and should code to a broad controlled clinical 
vocabulary. Further research is needed on developing and testing practically useful 
and usable expression languages for eligibility criteria, and on standardized 
approaches to applying complex criteria semantics to patient data in EHRs.   

   The Protocol-Model Driven Future 

 The current patchwork, paper-driven approach to clinical research is ineffi cient, 
redundant, and is impeding the advance of science by squelching opportunities for 
data sharing and reuse of various resources. It is an approach that is overdue for 
reengineering. Critically, the full promise of clinical research informatics for achiev-
ing this reengineering demands that study protocols become fully structured and 
computable. Study protocols specify all the major administrative and scientifi c 
actions in a study and drive how studies are conducted, reported, analyzed, and 
applied. Making protocols fully computable would improve effi ciencies and quality 
throughout the life cycle of a study, from study design, to participant recruitment, to 
knowledge discovery. Making protocols electronic in the form of PDF or word pro-
cessor documents is better than paper protocol documents, but is no substitute for 
“e-protocols” based on computable protocol models that are semantically rich and 
indexed to controlled clinical vocabularies. Ideally, however, all e-protocols would 
be based on one common computable protocol model to maximize interoperability 
and effi ciencies for managing data, systems, and knowledge across the entire clini-
cal research enterprise. 

 While there are many ongoing initiatives addressing various parts of the prob-
lem, there remain large challenges to achieving the overall vision of a protocol-
model driven future. First, modeling work from the clinical trial execution and 
analysis communities (e.g., BRIDG and OCRe, respectively) needs to be merged to 
provide a semantic foundation for the entire study life cycle. Second, the use of 
clinical vocabularies (e.g., SNOMED, RxNorm, locally developed vocabularies) 
needs to be harmonized and processes for standardizing clinical constructs estab-
lished and adopted (e.g., ASPIRE for eligibility criteria, cSHARE for study out-
comes). Thirdly, user-friendly tooling is greatly needed to support modeling and 
harmonization work in this complex domain, and new methods and tools are needed 
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to gracefully integrate the semantic standards into clinical research systems to 
enable systems interoperation and data sharing. 

 Finally, the sociotechnical challenges cannot be downplayed. Clinical research 
involves a broad and complex group of stakeholders from industry to regulators to 
academia that represent multiple diseases, multiple countries, and multiple, some-
times confl icting, interests. The adoption of clinical research standards, like the 
adoption of electronic health record standards, will be in fi ts and starts, but is already 
on its way through initiatives like CDISC and other efforts. These efforts show that 
there is general agreement on the broad constructs of the common computable pro-
tocol model, but specifi c terms, controlled terminologies, and data elements are 
harder to get consensus on, and representational challenges still loom large particu-
larly for modeling eligibility criteria and the scientifi c structure of clinical research 
studies. Nevertheless, moving clinical research practice away from paper-based 
protocol drivers and toward being driven by a shared fully computable protocol 
model is a vital and worthwhile goal and would pay immense dividends for clinical 
research and science.      
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  Abstract   Every scientist knows that research results are only as good as the data 
upon which the conclusions were formed. However, most scientists receive no training 
in methods for achieving, assessing, or controlling the quality of research data—
topics central to clinical research informatics. This chapter covers the basics of 
collect and process research data given the available data sources, systems, and 
people. Data quality dimensions specifi c to the clinical research context are used, 
and a framework for data quality practice and planning is developed. Available 
research is summarized, providing estimates of data quality capability for common 
clinical research data collection and processing methods. This chapter provides 
researchers, informaticists, and clinical research data managers basic tools to plan, 
achieve, and control the quality of research data.  

  Keywords   Clinical research data  •  Data quality  •  Research data collection  • 
 Processing methods  •  Informatics  •  Management of clinical data  •  Data accuracy      

   Clinical Research Data Processes and Relationship 
to Data Quality 

 Data quality is foundational to our ability to human research. Data quality is so impor-
tant that an Institute of Medicine report  [  1  ]  was written on the topic. Further, two key 
thought leaders in the quality arena, W. E. Deming and A. Donabedian, specifi cally 
addressed data quality  [  2–  4  ] . 

 Failing to plan for data quality is an implicit assumption that errors will not 
occur. Emphasizing that failing to plan for data quality further threatens data quality 
by inhibiting the detection of errors when they do occur, Stephan Arndt et al. state, 
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“Ironically, there is a major difference between a process that is presumed through 
inaction to be error-free and one that monitors mistakes. The so-called error-free 
process will often fail to note mistakes when they occur”  [  5  ] . 

 Quality is broadly defi ned by Juran as fi tness for use  [  6  ] . Unfortunately, for clini-
cal investigators and research teams, the use varies from study to study. In clinical 
research, data collection processes are often customized according to the scientifi c 
questions and available resources, resulting in different processes for individual 
studies or programs of research. Because data quality assurance and control are 
largely dependent on how data are collected and processed, they are complicated by 
this mass customization. (The label  mass customization  used to describe clinical 
research by Karen Koh in a meeting at Duke Clinical Research Institute.) Given the 
likely persistence of science-driven customization, an antidote may lie in methods 
for data quality planning. It is only when a planning framework exists and is used 
that knowledge gained from work on prior projects can translate to new projects 
with different data sources, processes, and people. 

 The types of data collected in clinical research include data that are: manually 
abstracted or electronically extracted from medical records, observed in clinical 
exams, obtained from laboratory and diagnostic tests, or from various biological 
monitoring devices, and patient-reported items. Each data source is associated 
with a method by which the data were acquired. After acquisition, these data are 
subject to further processing. Whether data are collected specifi cally for a research 
project, or whether data collected for other purposes are used, a data quality plan 
should take into account the data source, precollection processing, the data acqui-
sition method, and, fi nally, postprocessing. While these elements of the data qual-
ity plan apply regardless of where the data were collected, the data sources will 
likely infl uence the plan. In other words, one method does not fi t all. Using the 
same method to treat all data will overlook both errors and opportunities to prevent 
them. For example, data recorded on a form may be retrospectively abstracted 
from medical records, may be written directly onto the form by the patient, or may 
be recorded directly on the form by a provider during a study visit. Each of these 
data acquisition processes is subject to different sources of error and, therefore, 
may benefi t from different error prevention or correction methods, thus the need to 
take into account the data source, precollection processing, data acquisition, and 
postprocessing in data quality planning. This chapter is primarily concerned with 
how to accomplish this and will give the reader a framework to use to assure and 
control quality regardless of the data source, acquisition method, or processing. 

 Similar to the decreased property value of a house with a serious foundation 
problem, it is no surprise that research conclusions are only as good as the data 
upon which they were based. As plans and construction of a house help determine 
quality, well-laid research protocols must address data quality considerations, for 
example, by specifying a consistent suitable collection method, planning interrater 
reliability assessments for subjective assessments, or other collection of indepen-
dent data. The resulting degree of data quality affects how data can be used and, 
ultimately, the level of confi dence that can be reposed in research fi ndings or other 
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decisions based on the data. Thus, protocol and Case Report Form (CRF) design, 
including data capture methods, must be concerned with data quality assurance 
measures from the start. 

 Data quality and the discipline of informatics are inextricably linked. Data defi ni-
tion, collection, processing, representation, and use are central to informatics 
(Fig.  10.1 ). Defi nition, collection, processing, representation, and use impact data and 
information quality, and data and information quality impact use. In turn, data and 
information that are used are more likely to have higher quality. In clinical research, 
data can be collected both prospectively and retrospectively, depending on the proto-
col and local procedures at the clinical investigational site. Therefore, information use 
in clinical care as well as information use in the study may impact data quality.  

 Each step in the collection, handling, and processing of data affects data quality. 
International Conference on Harmonization (ICH) guidelines state, “Quality con-
trol should be applied to each stage of data handling to ensure that all data are reli-
able and have been processed correctly”  [  7  ] . We suggest a less literal interpretation 
of the ICH E6 guidance document. The gold standard in achieving quality is preven-
tion rather than after-the-fact fi nding and fi xing errors; thus, interventions aimed at 
preventing errors are typically designed into data collection and handling processes, 
i.e., part of the process rather than an after-the-fact checking activity applied to a 
data handling step. Similarly, methods for monitoring data quality are built into data 
collection and handling processes. 

Definition, collection, processing, and
representaion impact data and

information quality

Data and information
quality impact use

Data
Definiton

Data
Collection

Data
Processing

Data
Representaion

Data
Quality

Data and information
use impacts quality

Data
Use

  Fig. 10.1    Impacts of data generation and handling features on data and information quality. The 
way data and information are handled impacts the quality of that data and information. The quality 
of data and information impacts our willingness and ability to use it. Use of data and information 
causes more care to be taken in their handling, increasing the quality       
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 Assuring and controlling data quality are largely a focus on the presence of  data 
errors , defi ned here as a data value that does not accurately refl ect the true state of the 
thing being represented. Data represent things (or states of things) in the real world. 
Since all things change with time, so does the accuracy with which a data value rep-
resents the true state of the represented thing. Thus, data that are correct will not 
necessarily remain so with the passage of time. The qualifi ers necessary for a given 
datum to remain accurate over time are often referred to as context, for example, 
patient age as of the fi rst study visit; or air temperature in degrees Celsius at latitude 
35.620252°N, longitude −82.542933°W, at an elevation of 2,310 ft at noon on May 
23, 2009; or medications taken within the 10-day time window before the blood draw 
(see discussions of reliability and validity in Chaps.   4     and   11    ). The use of a broader 
defi nition than “inaccuracies created in data processing,” or “nonconformance to 
data specifi cations,” is intentional because inaccuracies from any source may render 
data values incorrect. Data quality can be compromised at any point along the con-
tinuum of data collection and processing, as demonstrated by the following examples 
adapted from actual cases. In this chapter, we develop and apply a framework for 
preventing and controlling data errors in the context of clinical research. The following 
examples come from the Society for Clinical Data Management  [  8  ] .    

 Example 1 
 A large multisite clinical trial was sponsored by a pharmaceutical company to 
obtain marketing authorization for a drug. During the fi nal review of tables 
and listings, an oddity in the electrocardiogram (ECG) data was noticed. The 
mean heart rate, QT interval, and other ECG parameters for one research site 
differed signifi cantly from those from any other site; in fact, the values were 
similar to ones that might be expected from rather than human subjects. The 
data listed on the data collection form were checked and were found to match 
the data in the database, thereby ruling out data entry error; moreover, there 
were no outliers from that site that would have skewed the data. After further 
investigation, it was discovered that a single ECG machine at the site was the 
likely source of the discrepant values. Unfortunately, the site had been closed, 
and the investigator could not be contacted. 

 Example 2 
 In the course of a clinical research study, data were single entered at a local 
data center into a clinical data management system. During the analysis, the 
principle investigator noticed results for two questions that seemed unlikely. 
The data were reviewed against the original data collection forms, and it was 
discovered that on roughly half of the forms, the operator entering the data had 
transposed “yes” and “no.” Closer examination failed to identify any charac-
teristics particular to the form design or layout that might have predisposed the 
operator to make such a mistake; rather, the problem was due to simple human 
error, possibly from working on multiple studies with differing form formats. 
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 Each of these scenarios describes a data quality problem, one in device-based 
data collection, one in data processing, one in measurement procedure. Despite the 
differences in setting and in the sources of the errors, the end result was the same: 
inaccurate data. 

 The 1999 Institute of Medicine Report  [  1  ]  emphasized the importance of data 
quality to regulatory decision-making, i.e., drawing conclusions from clinical trials. 
At the time, there was little in the literature base to synthesize in the report. Further, 
since the IOM report, there has been scant methodological progress toward data 
quality assurance, assessment, and control in clinical research. The framework pre-
sented here draws from a synthesis of experience and fi rst principles.  

   Errors Exist 

 Errors occur naturally by physical means and human fallibility. Some errors cannot 
be prevented or even detected, for instance, a study subject who deliberately pro-
vides an inaccurate answer on a questionnaire or a measurement that is in range but 
due to calibration drift or measurement error. Nagurney reports that in a recent 
study, up to 8% of subjects could not recall historical items and up to 30% gave 
different answers on repeat questioning  [  9  ] . A signifi cant amount of clinical data 
consists of information reported from patients. Further, as Feinstein eloquently 
states,

  In studies of sick people, this [data accuracy] problem is enormously increased because (1) 
the investigator must contemplate a multitude of variables, rather than the few that can be 
isolated for laboratory research; (2) the variables are often expressed in the form of verbal 
descriptions rather than numerical dimensions; (3) the observational apparatus consists 
mainly of human beings, rather than inanimate equipment alone  [  10  ] .   

 Example 3 
 A clinical trial of subjects with asthma was conducted at 12 research sites. 
The main eligibility criterion was that subjects must show a certain percent-
age increase in peak expiratory fl ow rate following inhalation of albuterol 
using the inhaler provided in the drug kits. Several sites had an unexpectedly 
high rate of subject eligibility compared with other sites. This was noticed 
early in the trial by an astute monitor, who asked the site staff to describe their 
procedures during a routine monitoring visit. The monitor realized that the 
high-enrolling sites were using nebulized albuterol (not permitted under the 
study protocol), instead of the albuterol inhaler provided in the study kits for 
the eligibility challenge. Because nebulized albuterol achieves a greater 
increase, these sites enrolled patients who would not otherwise have been 
eligible. Whether due to misunderstanding or done deliberately to increase 
their enrollment rate (and fi nancial gain), the result was the same: biased and 
inaccurate data. 
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 Even with clinician observation, reading test results, or interpreting images, 
human error and variability remain as factors. Simply put, where humans are 
involved, human error exists  [  11  ] . For most types of assessment, observation, or 
interpretation of test results, reports of error or agreement rates can be found in the 
literature. These known and real errors and inconsistencies are often not accounted 
for in data quality planning in clinical research. 

 Moreover, in every process, nature affects every project every day, increasing 
disorder. As time passes, natural forces cause machines to wear, settings to drift, and 
attention to wander. Thus, while measurements and processes capable of achieving 
the desired levels of quality are often sought and employed in a research project, 
energy and vigilance must continuously be applied to maintain them. 

 Natural laws, logic, and empirical evidence together suggest that it is unwise to 
assume any data set is truly error-free. Still, respondents to a data quality survey 
conducted by the author  [  12  ]  and others  [  13  ]  noted perfect data as their acceptance 
criterion. References to fear of consequences from regulators and potential data 
users observing obvious errors  [  1  ] , such as a diastolic blood pressure of 10, suggest 
that the real concern may be the doubt that a user-discovered data error casts on the 
rest of the data set. Such concern should be taken into account in data quality plan-
ning; for example, many organizations perform a review of blinded tables, listings, 
and fi gures prior to closing a database, to identify such obvious errors. The concern 
of obvious errors discrediting a data set will likely increase with more public data 
sharing, so methods such as looking at descriptive statistics, outliers, frequencies, 
and distribution graphs to effi ciently scan a data set will persist. 

 It is important to note that cleaner data can save time in programming and data 
use, but this is likely concomitant with additional costs. As such, and within the 
context of a given research project, pursuing data quality to a greater extent than 
needed to support the conclusions is unnecessary. Thus, data quality plans must be 
informed by the necessary level of data quality and must target the necessary level 
of data quality in the most cost effective way. Two questions naturally result from 
this line of thought:

    1.    How clean do the data need to be to support the intended analysis?  
    2.    What is the best method, given the study context, to achieve this?     

 The fi rst is a statistical question, and the second is for the experienced informati-
cist to explore.  

   Defi ning Data Quality 

 The Institute of Medicine (IOM) defi nes quality data as “data strong enough to sup-
port conclusions and interpretations equivalent to those derived from error-free 
data”  [  1  ] . Like Joseph Juran’s famous “fi tness for use” defi nition  [  6  ] , the IOM defi -
nition is use dependent. Further, the robustness of statistical tests and decisions to 
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data errors differs. Thus, applying the IOM defi nition requires a priori knowledge of 
how a statistical test or mode of decision-making behaves in the presence of data 
errors. For this reason, in clinical research, it is most appropriate that a statistician 
set the acceptance criterion for data quality. 

 Further specifi cation of the IOM defi nition of data quality is necessary for opera-
tional application. Other authors who have discussed data quality defi ne it as a  mul-
tidimensional concept   [  14–  20  ] . In clinical research, the dimensions most commonly 
considered are  reliability ,  validity ,  accuracy , and  completeness   [  21  ] . Reliability and 
validity address the underlying concept being measured, i.e., is this question a reli-
able and valid measure of depressive mood? Accuracy is important with respect to 
and intrinsic to the data value itself. For example, does a heart rate of 92 represent 
the patient’s true heart rate at the time of measurement? That is,  is it correct?  And 
completeness is a property of a set of data values; i.e.,  are all of the data there?  
More recently, as research methods have matured and data are increasingly used for 
monitoring and decision-making during the trial (as in the case of data and safety 
monitoring boards),  timeliness  has emerged as an important data dimension. Further, 
regulatory authorities are concerned with trustworthiness of the data and initially 
identifi ed the following data quality dimensions for clinical research: “electronic 
source data and source documentation must meet the same fundamental elements of 
data quality (e.g., attributable, legible, contemporaneous, original, and accurate) 
that are expected of paper records and must comply with all applicable statutory and 
regulatory requirements”  [  22  ] . 

 These “fundamental elements,”  attributable ,  legible ,  contemporaneous ,  original , 
and  accurate , are commonly referred to as ALCOA. Registries commonly report 
data quality in terms of accuracy and completeness  [  23  ] . As secondary use of data 
has grown, so has the need for data to be  specifi ed ,  accessible , and  relevant . 
Similarly, the dimension of  volatility , or how quickly the data change, becomes a 
concern; for example, studies in adult populations seldom collect height at annual 
study visits, but studies in pediatric populations are likely to do so. These funda-
mental dimensions are attributes, or descriptors of data quality, allowing users, 
especially secondary users, to evaluate the likelihood that data will support their 
specifi c (secondary) use. As we begin to see an increase in secondary, particularly 
research, uses of clinical data, the need for fundamental dimensions of data quality 
will become a necessary data itself. 

 The multidimensionality data quality causes ambiguity because any given use 
of the term might refer to a single dimension or to a subset of possible dimensions. 
Further, different data users may emphasize some dimensions while excluding oth-
ers; for instance, the information technology (IT) sector tends to assess data quality 
according to conformance to data defi nitions stated business rules, while regula-
tory authorities are concerned with attribution and verifi ability  [  22  ] . Although 
accuracy and completeness historically have been emphasized in the clinical 
research literature, multiple dimensions ultimately affect and determine the useful-
ness of data. Each individual dimension describes an element of quality that is 
necessary but usually not suffi cient for data to be useful for their intended purpose. 
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When maintained as metadata, can be used to assess the quality of the data for 
primary and secondary uses. 

 All dimensions apply to any use of data, but often the circumstances surround-
ing a given (or the primary) use include built-in processes that assure a relevant 
dimension is present and addressed. For example, in a clinical trial, those who use 
data often have a role in defi ning it, meaning the  defi nition  is of little concern. 
However, when data are considered for secondary uses, such as a pooled analysis 
spanning a number of studies,  relevance  and  defi nition  become primary concerns. 
By employing a dimension-oriented approach to data quality, these assumptions 
become transparent, helping us to avoid overlooking important considerations 
when working in new situations. In other words, carving data quality up into 
dimensions helps us design for, measure or assess, control, and increase data qual-
ity. A consensus set of dimensions for clinical research does not yet exist. Here, 
we will primarily address the dimensions of  accuracy ,  completeness ,  timeliness , 
 accessibility ,  relevance ,  and volatility .  Reliability  and  validity  are addressed in 
Chaps.   4     and   11    , as noted, and data  defi nition  (full specifi cation) is addressed in 
Chap.   13    . 

 Using multiple dimensions to characterize data quality, and measuring those 
dimensions to assess data quality, requires both operational defi nitions and accep-
tance criteria for each dimension of quality. An approach that will allow collabora-
tion across studies and domains includes standard operational defi nitions for 
dimensions, with project-specifi c acceptance criteria. For example,  timeliness  can 
be operationally defi ned as the difference between the date a given set of data is 
needed and the actual date it is available. The acceptance criterion—“How many 
minutes, days, or weeks late is too late?”— is set based on study needs. Further, 
some dimensions are inherent in the data, i.e., characteristics of data elements or 
data values themselves, while others are context dependent. Table  10.1  contains 
common clinical research data quality dimensions, labels each dimension as inher-
ent or context sensitive, labels the level at which it applies, and suggests an opera-
tional defi nition.   

   Framework for Data Quality Planning 

 Over the past decade or more, the number and diversity of both new technology and 
new data sources have increased. Managing new technology or data sources on a 
given project is now a normal aspect to clinical research data management. One of 
the largest problems is preparing data managers to work with new technology and 
data sources. Simply put, a framework is needed that will enable data managers to 
assess a given data collection scenario, including new technology and data sources, 
and systematically evaluate that scenario, apply appropriate methods and processes, 
and achieve the desired quality level. 

 A dimension-oriented approach provides a framework that practitioners can rely 
on when handling data in a novel situation (e.g., data from a different source, in a 
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   Table 10.1    Data quality dimensions for clinical research   

 Dimension  Type 
 Natural language 
defi nition 

 Operational defi nition/
metric 

 Accuracy  Inherent   States in the data match the 
intended state in the real 
world  

 Number of errors 
divided by number 
of fi elds inspected 
(implies compari-
son with gold 
standard) 

 Currency  Inherent  Length of time a data value 
has been stored (since last 
update) 

 Use/need date minus 
date data last 
updated 

 Completeness  Inherent   The extent to which every 
represented real-world 
state is refl ected in the 
data  

 Number of missing 
values divided by 
number of fi elds 
assessed 

 Consistency 
(internal) 

 Inherent  Data values representing the 
same real-world state are 
not in confl ict 

 Number of discrepant 
values divided by 
number of values 
subject to data 
consistency checks 

 Timeliness  Context 
dependent 

  Length of time from a change 
in the real-world state to 
the time when the data 
refl ect the change  

 Data need date minus 
date data ready for 
intended use 

 Relevance  Context 
dependent 

 Data can be used to answer a 
particular question 

 Percentage of data 
values applicable 
to intended use 

 Granularity  Context 
dependent 

 Level of detail captured in 
data 

 Percentage of values 
at level of detail 
appropriate for 
intended use 

 Specifi city 
(nonambiguity) 

 Inherent   Each state in the data 
defi nition  (metadata) 
 corresponds to one  (or 
no)  state of the real world  

 Number of values with 
full ISO 11179 
metadata including 
defi nition divided 
by number 
assessed 

 Precision  Context 
dependent 

 Number of signifi cant digits 
to which a continuous 
value was measured (and 
recorded); for categorical 
variables, the resolution of 
the categories 

 Percentage of values 
with precision 
appropriate for 
intended use 

 Attribution  Inherent  Source and individual 
generating and updating 
data are inextricably 
linked to data values 

 Percentage of data 
values linked to 
source and user ID 
of individual who 
generated and 
changed record 

  Italicized wording quoted from Wand and Wang  [  18  ]   
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new environment, or using new technology). Such a framework helps guard against 
methodological omissions and assures that data will meet specifi ed needs. However, 
data quality dimensions alone are an incomplete solution. A systematic way to 
assess data sources and processes on a project is necessary. Figure  10.2  shows the 
set of steps comprising the data-related parts of the research process. These steps 
are described at a general level so that they can be applied to any project. From the 
data-oriented point of view, the steps include: (1) identifying data to be collected, 
(2) defi ning data elements, (3) observing and measuring values, (4) recording those 
observations and measurements, (5) processing data to render them in electronic 
form and prepare them for analysis, and (6) analyzing data. While research is ongo-
ing, data may be used to manage or oversee the project. After the analysis is com-
pleted, results are reported, and the data may be shared with others.  

   Identifying and Defi ning Data to Be Collected 

 Identifying and defi ning the data to be collected are critical aspects of clinical 
research. Data defi nition initially occurs as the protocol or research plan is devel-
oped. Too often, however, a clinical protocol reads more like a shopping list (with 
higher-level descriptions of things to be collected, such as  paper towels ) than a sci-
entifi c document (with fully specifi ed attributes such as  brand name ,  weight ,  size of 
package ,  and color of paper towels ). When writing a protocol, the investigator be as 
specifi c as possible because in multicenter trials, the research team will use the 
protocol to design the data collection forms. Stating in the protocol that a pregnancy 
test is to be done at baseline is not suffi cient—the protocol writer should specify the 
sample type on which the test is to be conducted (e.g., pregnancy test is to be per-
formed on women of childbearing potential). 

 As standards such as the Protocol Representation Standard  [  24  ]  mature and sup-
porting software becomes available, full specifi cation of protocol elements will 
become the most effi cient method for defi ning data, as metadata specifi ed in the 

Identify data to
be collected

Record Process

Report
(status) Reuse?

Analyze
Observe/
Measure

Report
(results)

Define

  Fig. 10.2    Data-centric view of the research process. A set of general steps for choosing, defi ning, 
observing, or otherwise measuring, recording, analyzing, and using data apply to almost all 
research (From Data Gone Awry  [  8  ] , with permission)       
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protocol will be immediately available for generation of data collection forms. (See 
Chap.   9    ) Lack of specifi city in data defi nition is the mechanism by which data iden-
tifi cation and defi nition can cause serious data quality problems, for example, two 
sites using different measurement methods, or not measuring the same construct. 
The information necessary to fully specify a clinical measurement, with context 
suffi cient to remove ambiguity, differs based on the type of data. For example, spec-
ifi cation of the specimen (and often, the method by which the specimen is obtained) 
is important for some tests. For blood pressure measurements, the position, location 
of measurement, and device used may be important. Without careful identifi cation 
and specifi cation of this context, data collectors at clinical sites may inadvertently 
introduce unwanted variability. 

 The principle of “Occam’s razor” applied to clinical research suggests that it is 
necessary only to collect the data needed to assure patient safety, answer the scien-
tifi c question(s), and uniquely identify the collected data elements. Jacobs and 
Studer report that for every dollar spent to produce a data collection form, $20–$100 
are required to fi ll each one in, process it, and store it, emphasizing that “the true 
cost of a form involves people not paper”  [  25  ] . When extensive data cleaning is 
required, this ratio becomes even more exaggerated. Eisenstein and colleagues 
report extensive cost savings in clinical trials by decreasing the number of data col-
lection form pages  [  26,   27  ] . At the time of this writing, the relationship between 
form length and data accuracy for online forms remains unprobed  [  28  ] . Further, the 
evidence relating form length to decreased response rate while considered equivocal 
by some  [  28  ]  has been demonstrated in controlled and replicated experiments  [  29, 
  30  ] . There is no question, however, that collecting more data increases costs and 
places additional burden on clinical investigational sites and data centers  [  26,   27  ] . 

 These two principles, parsimony in the number of data elements collected, and 
full specifi cation of those that are collected, are preventative data quality interven-
tions. Parsimony, or lack thereof, may impact data accuracy and timeliness dimen-
sions, while data defi nition impacts the specifi city dimension and signifi cantly 
impacts secondary data users.  

   Defi ning Data Collection Specifi cations 

 The previous section covered the defi nition and specifi cation of data elements them-
selves. This section covers defi nition of the tools, often called data collection forms 
or case report forms, for acquiring data. The design of data collection forms, whether 
paper or electronic, directly affects data quality. Complete texts have been written 
on form design in clinical trials, (see Data Collection Forms in Clinical Trials by 
Spilker and Schoenfelder (1991) Raven Press NY). There are books on general form 
design principles, for example, Jacobs and Studer (1991) Forms Design II: The 
Complete Course for Electronic and Paper Forms. In addition, the fi eld of usability 
engineering and human-computer interaction has generated many publications on 
screen or user interface design. A good introductory work is Shneiderman and 
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Plaisant (2004) Designing the User Interface: Strategies for Effective Human-
computer Interaction. While this topic is too broad to discuss in depth here, two 
principles that are directly relevant to clinical research informatics, and not covered 
in more general texts, warrant attention here. The fi rst is the match between the type 
of data and data collection structure; the second is the  compatibility-proximity prin-
ciple   [  31  ] . A general assumption is that the more structured the data, the higher the 
degree of accuracy and ease of processing. We will see, however, that this can be 
counterbalanced by considerations related to ease of use. 

 As a general principle, the data collection structure should match the type data. 
Data elements can be classifi ed according to Stevens’ scales (nominal, ordinal, 
interval, and ratio)  [  32  ] , or as categorical versus continuous. Likewise, classifi cation 
can also be applied to data collection structures describing how the fi eld is repre-
sented on a form, including: verbatim text fi ll in the blank, drop-down lists, check 
boxes (“check all that apply”), radio buttons (“check one”), and image maps. 
Examples of data collection structures are shown in Fig.  10.3 .  

 Mismatches between data type and collection structure, for example, collecting 
data in a structure more or less granular than reality, can cause data quality prob-
lems. Collecting data at a more granular structure than exists or than can be dis-
cerned in reality, for example, 20 categories of hair color, invites variability in 
classifi cation. Collecting data at a less granular structure,  data reduction , than can 
be discerned in reality also invites variability and results in information loss. The 
real granularity cannot be resolved once the data are lumped together into the 
 categories. For example, if height is collected in three categories, short, medium and 

a. Write in (the electronic equivalent of “fill in the blank”)

Method of Birth Control: Barrier method

Method of Birth Control:

Method of Birth Control:

Sterilization

Sterilization

Sterilization

Barrier method

Barrier method

Abstinence
Birth control pills

Abstinence

Abstinence

Birth control pills

Birth control pills

b. Drop down list

c. Check lists (the electronic equivalent of “check all that apply”)

d. Radio button (the electronic equivalent of a“check”)

a. Write in (the electronic equivalent of “fill in the blank”)
Method of Birth Control: Barrier method

  Fig. 10.3    Example data collection structures. For many data elements, more than one data collection 
structure exists       
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tall, the data cannot be used to answer the question, “how many subjects are over 6 
feet tall?” Another way to think about data reduction is in terms of Steven’s scales. 
Data are reduced through collection at a lower scale, for example, collecting a yes 
or no indicator for high cholesterol. When the defi nition of high cholesterol changed, 
data sets that collected the numerical test result continued to be useful, while the 
data sets that contained an indicator, yes or no to high cholesterol, became less use-
ful. There are many cases such as high-volume data collected through devices where 
reduction in the number of data values collected or retained or stored is necessary 
and desirable. The amount of information loss is dependent on the method employed. 
Reduction of CRF data is through both data collection at a lower scale than the 
actual data and through decision not to collect certain data values. Because data 
reduction results in information loss, it limits reuse of the data and should only be 
employed after careful deliberation. 

 Data collection structure can cause quality problems in capturing categorical 
data in other ways. When the desired response for a fi eld is to mark a single item, 
the available choices should be exhaustive (i.e., comprehensive) and mutually exclu-
sive  [  33–  35  ] . Lack of comprehensiveness causes confusion when completing the 
form, leading to unwanted variability. Similarly, overlapping categories cause con-
fusion and limit reuse of the data. 

 The  compatibility-proximity principle  was fi rst recognized in the fi eld of cogni-
tive science. When applied to the design of data collection forms, it means that the 
representation on the form should as closely as possible the cognitive task of the 
person completing the form. For example, if body mass index (BMI) is a required 
measurement, but the medical record captures height and weight, the form should 
capture height and weight, and the BMI should be calculated by a computer. 
Sometimes, this principle is stated as “collect raw data.” Values on the form should 
allow data to be captured using multiple units so that the person completing the 
form is not required to convert units. Importantly, the fl ow of the form should fol-
low as closely as possible the fl ow of the source document  [  33–  35  ] . An additional 
application of the compatibility-proximity principle is that all items that the person 
completing the form needs to complete his or her task should be immediately 
apparent on the form itself (separate form completion instruction booklets are less 
effective)  [  34  ] . There is evidence that data elements with higher cognitive load on 
the abstractor or form completer also have higher error rates  [  35–  47  ] . Adhering 
to the compatibility-proximity principle, by decreasing cognitive load, may help 
prevent this. 

 There are, however, four countervailing factors that must be weighed against the 
compatibility-proximity principle: (1) for projects involving multiple sites, match-
ing aspects of each site’s medical record in the data collection form, representation 
may not be possible; (2) there may be reasons for using a more structured data col-
lection form that outweigh the benefi ts of precisely matching the medical record; 
(3) in circumstances where a calculated or transformed value is necessary for imme-
diate decision-making at the site, a real-time solution or tool to support the addi-
tional cognitive tasks is needed; such a tool may require raw data as input; and (4) 
it may not be possible to design forms that match clinical workfl ow, for example, 
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some electronic systems limit data collection structure to one question-answer pair 
per line, precluding collection of data using tabular formats. 

 Defi ning data collection is not limited to the data collection structure. It also 
includes the source and means by which the data will be obtained. For example, 
will data be abstracted from medical records, collected de novo from patients 
directly, or collected electronically through measuring devices? The identifi cation 
of possibilities and selection of one over the alternatives is a design decision requir-
ing knowledge of the advantages and disadvantages of each option and how they 
impact costs and the dimensions of data quality. Thus, ability to characterize data 
sources and processes in these terms is a critical competency of clinical research 
informaticists. 

 Like parsimony and full specifi cation, defi ning the data collection mechanism is 
a preventative data quality intervention. The chosen data sources and mechanisms 
of collection and processing may impact data accuracy, precision, and timeliness 
dimensions, while the defi nition itself may impact the specifi city dimension and the 
utility of data for secondary uses.  

   Observing and Measuring Data 

 The different types of measurement and observations used in clinical research are 
too many and too various to enumerate here. Clinical data may be reported by the 
patient, observed by a physician or other healthcare provider, or measured directly 
via instrumentation. Some measurements return a concrete number (e.g., tempera-
ture) or answer, while others require interpretation (e.g., the trace output of an 
electrocardiogram). 

 It is diffi cult (and sometimes impossible) to correct values that are measured 
incorrectly, biased, or gathered or derived under problematic circumstances. 
Recorded data can be checked to ascertain whether they fall within valid values or 
ranges and can be compared with other values to assess consistency, but doing so 
after the data have been collected and recorded eliminates the possibility to cor-
rect errors in observation. For this reason, error checking processes should be 
built into measurement and observation whenever feasible. This can be accom-
plished by building redundancy in to data collection processes  [  48,   49  ] . Some 
examples include: (1) measurement of more than one value (e.g., taking three 
serial blood pressures), (2) drawing an extra vial of blood and running a redundant 
assay for important measurements, (3) asking a different question to measure the 
same construct, and (4) measuring the same parameter via two independent meth-
ods. Immediate independent measurement with immediate feedback can be used 
to identify and correct discrepancies at the point of measurement. Independent 
measurement alone can also provide a replacement value if needed (e.g., the sec-
ond vial of blood that saves the day when the fi rst vial hemolyzes). Independent 
assessment with immediate feedback should be distinguished from error checking 
with immediate feedback. Error checking is a comparison of a recorded value 
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against a known standard, for example, valid ranges, or relative comparison to 
another value. While error checking can identify some errors, it will miss those 
within the valid value set. Errors within the valid value set can only be identifi ed 
through redundancy. Secondly, error checking may occur at the point of measure-
ment or recording, but is usually not built in to measurement processes, and thus 
occurs after the fact, and only serves as an identifi cation mechanism, rather than 
as a correction mechanism. In summary, measurement discrepancies can be miti-
gated through careful procedures and training; however, errors are nonetheless 
inevitable. While error checking near or after measurement can identify errors, 
immediate independent verifi cation with contemporaneous feedback remains the 
safest option. 

 Another important aspect of measurement and observation, one that has a criti-
cal effect on data quality, is ensuring consistency between or among clinical 
investigational sites. The “albuterol” example given at the beginning of the chap-
ter refl ects an all-too-common problem rooted in the fact that clinical investiga-
tional sites each practice medicine and research differently and institutional 
policies vary from location to location. In addition, equipment may vary from site 
to site, and there is usually at least some degree of staff turnover during studies, 
meaning that levels of available skill, knowledge, and experience at a given site 
will fl uctuate over time. These and other factors contribute to variations in proce-
dures governing observation and measurement, adding unwanted variability to 
clinical data. 

 For these reasons, clear, unambiguous, and uniform procedures that all study 
personnel can follow are essential to maintaining data quality. Consistency can 
often be improved    by providing sites with critical study-related equipment or devices 
(so that all study data are being gathered with the same devices), training site per-
sonnel in study procedures and the administration of tests and questionnaires, using 
central reading centers where rating or interpretation of data is required, and requir-
ing all sites to follow equipment calibration schedules that offer preventative meth-
ods to improve data quality from measurement and observation. 

 Measurement and observation should also be subject to ongoing assessment 
and control. Some methods directly assess the measurement or observation; 
examples include assessing interrater reliability, reviewing recorded interviews, 
and monitoring investigational sites for adherence to procedure are all ways of 
providing ongoing assessment and control. While other assessment and control 
methods are indirect, examples include counts of data inconsistencies, instances 
of noncompliance to protocol specifi ed    time windows, and statistical methods of 
checking for aberrant by site. These indirect methods may identify sites or study 
staff that may be performing aspects of the study differently from other sites. 
However, these indirect measures are only surrogates for data quality, i.e., mea-
sures of inconsistency, rather than direct assessment of accuracy. With such 
 indirect assessments, care must be taken to respect natural variations (including 
those caused by variations in population) among sites. Assessment and control 
methods are usually targeted at the accuracy, timeliness, or completeness 
dimensions.  
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   Recording Data 

  Recording  data is the process of writing down (e.g., as from a visual readout or 
display) or directly capturing electronically data that have been measured, thereby 
creating a permanent record. The fi rst time a data value is recorded—whether by 
electronic means or handwritten, on an offi cial medical record form, or a piece of 
scratch paper, by a principal investigator or anyone else— is considered the source  
 [  7  ] . If questions about a study’s results arise, the researcher (and ultimately, the 
public) must rely upon the source to reconstruct the research results. Several key 
principles are applicable: (1) the source should always be clearly identifi ed; (2) 
the source should be protected from untoward alteration, loss, and destruction; 
and (3) good documentation practices, as described by US Food and Drug 
Administration regulations codifi ed in 21 CFR Part 58  [  50  ] , should be followed. 
These practices include principles    such as data should be legible, changes should 
not obscure the original value, the reason for change should be indicated, and 
changes should be attributable (to a particular person). While it seems obvious 
that the  source  is foundational, even sacred to the research process, cases where 
the source is not clearly identifi ed or varies across sites have been reported and are 
common  [  51,   52  ] . Data quality is also affected at the recording step by differences 
such as the recorder’s degree of fi delity to procedures regarding number of signifi -
cant fi gures and rounding; such issues can be checked on monitoring visits or 
subjected to assessment and control methods discussed in the previous section. 
Data recording usually impacts the accuracy, timeliness, or completeness dimen-
sions. However, where recording is not adequately specifi ed, precision may also 
be impacted.  

   Processing Data 

 In a recent literature review and pooled analysis that characterized common data 
collection and processing methods with respect to accuracy, data quality was seen 
to vary widely according to the processing method used  [  53  ] . Further, it appears that 
the process most associated with accuracy-related quality problems, medical record 
abstraction, is the most ubiquitous, as well as the least likely to be measured and 
controlled within research projects  [  53  ] . 

 Although not as signifi cant in terms of impact on quality as abstraction, the 
method of data entry and cleaning can also affect the accuracy of data. On average, 
double data entry is associated with the highest accuracy and lowest variability, 
followed by single data entry (Table  10.2 ). While optical scanning methods could 
provide accuracy comparable to key-entry methods, they were associated with 
higher variability. Other factors such as on-screen checks with single data entry, 
local versus centralized data entry and cleaning, and batch data cleaning checks 
may act as substantial mediators with the potential to mitigate differences between 
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methods  [  53  ] . Additionally, other factors have been hypothesized in the literature, 
but an association has yet to be established, for example, staff experience  [  53  ] , 
number of manual steps  [  54  ] , and complexity of data  [  51  ] . For these reasons, mea-
surement of data quality is listed as a minimum standard in the Good Clinical Data 
Management Practices document  [  54  ] . Because of the potentially signifi cant impact 
that variations in data quality can have on the overall reliability and validity of 
conclusions drawn from research fi ndings  [  55  ] , publication of data accuracy with 
clinical    research results should be required.  

 While our focus thus far has been on the accuracy dimension, data processing 
methods and execution can also impact timeliness and completeness dimensions. 
Impact on timeliness can be mitigated by using well-designed data status reports to 
actively manage data receipt and processing throughout the project or even pre-
vented by designing processes that minimize delays. The impact of data processing 
on completeness can be mitigated in the design stages through collecting data that 
are likely to be captured in routine care or through providing special capture mecha-
nisms, for example, measuring devices, capture directly from participants, or use of 
worksheets. Additionally, throughout the study, completeness rates for data ele-
ments can be measured and actively managed.  

   Analyzing Data, Reporting Status, and Reporting Results 

 Analyzing and reporting data differ fundamentally from other steps discussed in the 
preceding sections, as they lack the capacity to introduce error into the data values 
themselves. Errors in analysis and reporting programming or data presentation, 
while potentially costly, do not change underlying data. Analysis and reporting pro-
gramming is typically applied to a copy of the database. However, analysis and 
reporting do have the potential to misrepresent the data. Assuring and controlling 
quality at the analysis and reporting stage is achieved through choice of appropriate 
methods, through validation of programming, and through applying the compatibility-
proximity principle to data displays through matching the scale of represented data 
and representing display.  

   Table 10.2    Accuracy associated with common data processing methods   

 Min.  Median  Mean  Max.  Std. Dev.  LCL  UCL 

 Abstraction  70  647  960  5,019  1,018  510  818 
 Optical  2  81  207  1,106  338  4  220 
 Single entry  4  26  80  650  150  21  36 
 Double entry  4  15  16  33  10  6  24 
 No batch data 

cleaning 
 2  270  648  5,019  946  200  475 

 Batch data 
cleaning 

 2  36  306  1,351  428  23  287 
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   Using the Framework to Plan for Data Quality 

 When starting a new project, the clinical data manager and/or clinical research 
informaticist is faced with a design task: match the data collection scenario for the 
project to the most appropriate data sources and processing methods. The frame-
work presented here can be used to structure this task to increase the transparency 
of decisions to the research team and lessen the likelihood that anything is missed. 
The fi rst step is to group the data to be collected into categories depending on source, 
for example, medical history and medications will be abstracted from the medical 
record, blood pressures will come from a study provided device, lab values will be 
transferred electronically from a central lab, and so on. Where data sources within 
the medical record are varied, a more granular treatment may be required. The data 
sources and process by which the data are obtained can then be diagrammed, and 
alternative sources, methods, and processes can be considered. For example, some 
data sources may have undesirable preprocessing steps or known higher variability 
and may be excluded from consideration. Once the data sources have been chosen 
and the data gathering process has been specifi ed, the steps in Fig.  10.4  can be 
applied to identify known error sources, to consider the possibility or desirability of 
preventing or mitigating the error, and to evaluate the methods for accomplishing 
the change. Data quality dimensions that are important to the research study are 
assessed for each type of data and each processing step. The output of this process 
is then discussed with the research team and incorporated into the plan for data col-
lection and management. Importantly, application of this framework is a tool and 
mental exercise to use in planning and a tool to promote discussion and informed 
decision-making by the research team. Use of such a framework should impact the 
data collection and management plan, ultimately optimizing data quality. Use of 
this framework to produce an additional written document is explicitly not the intent 
(Fig.  10.4 ).    

   Infrastructure for Assuring Data Quality 

 Whenever organizations depend solely upon the skill, availability and integrity of 
individuals to assure data quality, they place themselves at risk. Levels of skill, 
ability, and knowledge not only differ from one person to another, but may even 
differ in the same person depending on circumstances (e.g., fatigue can degrade the 
performance of a skilled operator). Further, in the absence of clear and uniform 
procedures and standards, different persons will perform tasks in different ways; 
and while free expression is honored in artistic pursuits, it is dangerous when oper-
ationalizing research. A data quality assurance infrastructure provides crucial guid-
ance and structure for humans who work with research data. Simply put, it assures 
that an organization will consistently produce the required level of data quality. 



19310 Data Quality in Clinical Research

The following criteria are commonly assessed in preaward site visits and audits. It 
is no surprise that they comprise a system for assuring data quality.

    1.     Organizational consensus regarding the required level of data quality, informed 
by an understanding of the cost of achieving it and the consequences of failing to 
achieve it  
  Because the leaders of organizations or clinical trials are not typically data qual-
ity professionals, informaticists, or statisticians, data quality-related information, 
i.e., needs and impacts of not meeting them, may need to be communicated to 
leadership in a manner that can be acted upon, for example, a draft policy for 
approval. Where organizations exhibit inadequate support data quality, it may be 
because this critical information has not been conveyed to leadership in a com-
pelling way that demonstrates the need, the associated costs, and the benefi ts.  

    2.     Appropriate tools for supporting the collection and management of data  
  Although specialized devices and software are of themselves neither necessary 
nor suffi cient for producing quality data, their presence is often perceived as 
representing rigor or important capabilities. Specialized tools often automate 
workfl ow and enforce controls on the collection and processing of data. Controls 

Data Quality Planning and Assessment

Data and Error Source

1. List the data to be collected

2. Group data according to data source

3. List common sources of error for
    each data source
    – Consider each processing step 
    (Fig 10.2)

4. Choose strategies to prevent
    or mitigate  

Assessment Dimensions 

1. State the intended uses of the data

2. List the DQ/IQ dimensions important
    for the use

3. List the metrics, operational 
    definitions and acceptance 
    criteria for each dimension

4. Decide monitoring frequency
    and reporting plan

  Fig. 10.4    Data Quality Planning and Assessment. This framework links data quality planning and 
assessment with the decisions about which data elements to collect. During planning, data to be 
collected are listed and grouped by type and or source of data. Known error sources for each are 
considered and deliberate decisions are made about prevention, mitigation, or doing nothing. At 
the same time, the data quality dimensions important to the intended use are identifi ed. Metrics, 
acceptance or action criteria and operational defi nitions for each are developed as well as reporting 
plans. Some mitigation strategies may prompt inclusion of metrics and monitoring for known error 
types       
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built into software are referred to as technical controls. These features can poten-
tially increase effi ciency, accuracy, and adherence to procedures by eliminating 
the variance associated with manual steps and options; for these reasons, data 
managed using automated systems are often perceived to be of higher quality. 
Where specialized software with these technical controls is not available, custom 
programming can be done to create them in available software. Other types of 
controls are managerial and procedural controls. These use policies, manuals of 
operations, and work procedures to assure consistency and quality. It is worth 
emphasizing that high-quality data can be achieved without specialized systems 
through the use of managerial and procedural controls; however, doing so often 
entails more highly qualifi ed staff and additional costly manual checking and 
review. Where specialized technical controls are not in place, depending on the 
quality needed, their function may need to be developed or addressed through 
procedural controls.  

    3.     Design of processes capable of assuring data quality  
  Likened to mass customization, in clinical research, scientifi c differences in 
studies and circumstances of management by independent research groups drive 
variation in data collection and processing. Because each study may use different 
data collection and management processes, the design and assessment of such 
processes is an important skill in applied clinical research informatics. The fi rst 
step in matching a process to a project is to understand how the planned pro-
cesses, including any facilitative software, perform with respect to data quality 
dimensions. For example, it is common practice for some companies to send a 
clinical trial monitor to sites to review data prior to data processing; thus, data 
may wait for a month or more prior to further processing. Where data are needed 
for interim safety monitoring, processes with such delays are most likely not 
capable of meeting timeliness requirements. 

 Designing and using capable processes is a main component of error preven-
tion. For this reason, clinical research informaticists must be able to anticipate 
error sources and types and ascertain which errors are preventable, detectable, 
and correctable and the best methods for doing so. Processes should then be 
designed to include error mitigation, detection, and correction. Process control 
with respect to data quality involves ongoing measurement of data quality dimen-
sions such as accuracy, completeness, and timeliness, plus taking corrective 
action when actionable issues are identifi ed. A very good series of statistical 
process control books has been published by Donald Wheeler. Several articles 
have been published on SPC applications in clinical research  [  55–  61  ] .  

    4.     Documented standard operating procedures (SOPs) are required by FDA regula-
tion and in most research contracts . 
  The complete data collection and management process should be documented 
prior to system development and data collection. The importance of SOPs is 
underscored by the fact that documented work procedures are mandated by 
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International Standards Organization (ISO) quality system standards. Variation 
in approaches to documenting procedures are common, but the essential 
requirement is that each process through which data pass should be docu-
mented in such a way that the published data tables and listings can be traced 
back to the raw data. Differences between the scientifi c and operational aspects 
of clinical research projects often necessitate multiple levels of documenta-
tion; for example, a standard procedure level that applies across studies, cou-
pled with a project-specifi c level that pertains to individual studies or groups 
of similar studies. Further, because organizations, regulations, and practices 
change, process documentation should be maintained in the context of a  regular 
review and approval cycle.  

    5.     Personnel management infrastructure; job descriptions, review of and feedback 
on employee performance, and procedures for managing performance . 
  Written job descriptions generally include minimum qualifi cations and experi-
ence, a detailed list of job responsibilities, and reporting structure. These 
descriptions help the candidate as well as the hiring manager(s) assess a per-
son’s suitability for a job. In addition, they help organizations communicate 
expectations and maintain performance standards for a given position. 
Appropriate data quality assurance infrastructure also includes regular review 
of employees’ work and a means of providing meaningful and actionable feed-
back to employees. If management is nonexistent or incapable of reviewing 
employees’ work and providing oversight and technical guidance, a key com-
ponent of the quality assurance infrastructure is absent. Managers should also 
identify and defi ne both good and inadequate performance, and there should 
be organizational procedures for encouraging the former and correcting the 
latter. While these concerns may sound more appropriate for a business offi ce, 
personnel management  infrastructure is crucial to data quality in clinical 
research because even with continuing technological development, humans 
still perform all of the design, and much of the data collection and processing, 
and human performance directly affects data quality.  

    6.     Project management in clinical research informatics begins with understanding 
the basic data-related requirements of a study, i.e., the data deliverables, associ-
ated costs, the necessary levels of quality, and the amount of time required or 
available . 
  Project management also includes planning to meet requirements as well as ongo-
ing tracking, assessment, and reporting of status with respect to targets. Project 
management profoundly affects data quality; for example, good planning and 
forecasting make the necessary resources and time for a given project transparent. 
Keeping a project on schedule eliminates (or at least mitigates) pressure to rush 
or cut corners and often results in employees who feel less harassed or fatigued.     

 Together, these six structural components form a quality system for the collec-
tion and management of data in clinical research (Fig.  10.5 ).   
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   Impact of Data Quality on Research Results 

 In most clinical research, the goal is to answer a scientifi c question. This is often 
done through inferential statistics. Unfortunately, a “one size fi ts all” data quality 
acceptance criterion is not possible because statistical tests vary in their robustness 
to data errors. Further, the impact on the statistical test depends on the variable in 
which the errors occur and the extent of the errors. Further still, data that are of 
acceptable quality for one use may not be acceptable for another, i.e., the “fi tness for 
use” aspect addressed earlier. It is for these reasons that regulators cannot set a data 
quality minimum standard or an “error rate threshold.” 

 What we can say is that data errors, measurement variability, incompleteness, 
and delays directly impact the statistical tests through adding variability, potentially 
decreasing power. As shown conceptually in Fig.  10.6 , added variability makes it 
more diffi cult to tell if two distributions (i.e., a treatment and a control group) are 
different. Data error rates reported in the literature are well within ranges shown to 
cause power drops or necessitate increases in sample size in order to preserve 
 statistical power  [  62,   63  ] . While it is true that sample size estimates are based on 
data that also have errors, i.e., the sample size accounts for some base level of vari-
ability, data errors have been shown to change p values  [  26  ]  and attenuate correla-
tion coeffi cients to the null  [  64–  66  ]  (i.e., for trials that fail to reject the null hypothesis, 
data errors rather than a true lack of effect could be responsible)  [  67  ] . In the context 
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  Fig. 10.5    Components of a data quality system. The environment in which data are collected 
and processed impacts data quality. Thus, achieving and controlling data quality usually requires 
action from entities in the broader environment       
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of large data error rates, a researcher must choose either to: (1) accept power loss, 
risking an incorrect indication toward the null hypothesis due to data error, or (2) 
undertake the expense of measuring the error rate and possibly also the expense of 
increasing the sample size accordingly to maintain the original desired statistical 
power  [  55,   63,   66  ] . The adverse impact of data errors has also been demonstrated in 
other secondary data uses such as registries and performance measures  [  68–  74  ] . 
Thus, whether or not data are of acceptable quality for a given analysis is a question 
to be assessed by the study statistician. The assessment should be based on mea-
sured error and completness rates.   

  Fig. 10.6    Effect of adding variability. The top two distributions have less variability (are narrower) 
than the bottom two, making it easier to tell them apart both visually and statistically       
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   Summary 

 The following important points apply to data and information collected and man-
aged in clinical research: (1) errors occur naturally, (2) sources of error are numer-
ous, (3) some errors can be prevented, (4) some errors can be detected, and (5) some 
errors can be corrected. The sets in 3–5 do not completely overlap. At the same time, 
there are errors that cannot be prevented, detected, or corrected (e.g., a study subject 
who deliberately provides an inaccurate answer on a questionnaire). Errors exist in 
all data sets, and it is foolish to assume that any collection of data is error-free. While 
higher quality data are often associated with overall savings, preventing, detecting, 
and correcting errors are associated with additional or redistributed costs. 

 The skilled practitioner possesses knowledge of error sources and matching 
methods for prevention, mitigation, detection, and correction where they exist. 
Further, the skilled practitioner applies this knowledge to design clinical research 
data collection and management processes that provide the needed quality at an 
acceptable cost. Achieving and maintaining data quality in clinical research is a 
complex undertaking. If data quality is to be maintained, it must also be measured 
and acted upon throughout the course of the research project. 

 There is widespread agreement that the validity of clinical research rests on a 
foundation of data. However, there is limited research to guide data collection and 
processing practice. The many unanswered questions, if thoughtfully addressed, 
can help investigators and research teams balance costs, time, and quality while 
assuring scientifi c validity.      
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  Abstract   This chapter provides a brief introduction to patient-reported outcome 
measures (PROs), with an emphasis on measure characteristics and the implications 
for informatics of the use of PROs in clinical research. Because of increased appre-
ciation on behalf of healthcare funders and regulatory agencies for actual patient 
experience, PROs have become recognized as legitimate and attractive endpoints 
for clinical studies and for comparative effectiveness research. “Patient-reported 
outcomes” is an internationally recognized umbrella term that includes both single 
dimension and multidimension measures of symptoms, with the defi ning character-
istic that all information is provided directly by the patient. PROs can be adminis-
tered in a variety of formats and settings, ranging from face-to-face interaction in 
clinics to web interfaces to mobile devices (e.g., smart phones). PRO instruments 
measure one or more aspects of patients’ health status and are especially important 
when more objective measures of disease outcome are not available. PROs can be 
used to measure a broad array of health status indicators within the context of widely 
varying study designs exploring a multitude of diseases. As a result, they need to be 
well characterized so that they can be identifi ed and used appropriately. The stan-
dardization, indexing, access, and implementation of PROs are issues that are par-
ticularly relevant to clinical research informatics. In this chapter, we discuss design 
characteristics of PROs, measurement issues relating to the use of PROs, modes of 
administration, item and scale development, scale repositories, and item banking.  
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 The term  patient-reported outcomes  (PRO) is an umbrella term that includes both 
single dimension and multidimension measures of symptoms. While there is no 
standard defi nition of a PRO, most commonly used defi nitions are in close agree-
ment. In general, PROs include “…any report of the status of a patient’s health 
condition that comes directly from the patient, without interpretation of the patient’s 
response by a clinician or anyone else. The outcome can be measured in absolute 
terms (e.g., severity of a symptom, sign, or state of a disease) or as a change from a 
previous measure”  [  1  ] . 

 PROs provide information on the patient’s perspective of a disease and its 
treatment  [  1  ]  and are especially important when more objective measures of 
disease outcome are not available. PRO instruments measure one or more aspects 
of patients’ health status. These can range from purely symptomatic (e.g., pain 
magnitude) to behaviors (e.g., ability to carry out activities of daily living), to 
much more complex concepts such as quality of life (QoL), which is considered 
as a multidomain attribute with physical, psychological, and social components. 
Consequently, PROs are a large set of patient-assessed measures ranging from 
single-item (e.g., pain visual analog scale [VAS], global health status) to multi-
item tools. In turn, multi-item tools can be monodimensional (e.g., measuring a 
single dimension such as physical functioning, fatigue, or sexual function) or 
multidimensional questionnaires. This chapter is intended to provide an over-
view of patient-reported outcomes measurement. We touch on fi ve main topics 
in this chapter: design characteristics of PROs, measurement issues, modes of 
administration, item and scale development, and banking and retrieval of 
PROs. 

   Characteristics of Patient-Reported Outcomes 

 PROs can be classifi ed along multiple dimensions, including the generality of symp-
toms, specifi city of disease or population, and whether patients are reporting experi-
ences or attitudes  [  1  ] . The more  specifi c  a PRO is, the more responsive it is likely to 
be to changes in health status for the health problem being investigated  [  2  ] . In con-
trast, PROs that assess more  general  states or conditions provide broader informa-
tion on health and quality of life and are frequently more usable in economic 
evaluations  [  3  ] . They have a greater potential to measure unforeseen effects or side 
effects of health care, and the results can usually be compared with those for other 
patient populations. Selection of the appropriate PRO is clearly dependent on the 
purpose for which it is intended  [  4  ] ; however, it is generally considered good prac-
tice to use both types of PROs where possible  [  3  ] . 

 PROs have been endorsed by the NIH and FDA as credible endpoints for clinical 
research studies and comparative effectiveness studies. The FDA has outlined 14 
design characteristics for PROs used in clinical trials  [  1  ] . These serve as an excel-
lent guide for PROs in general and for choosing the appropriate instruments. A good 
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summary of this guidance is provided by Shields et al.  [  5  ] . The recommended FDA 
design characteristics address:

    1.     Concepts being measured : Any use of a PRO is predicated on clearly 
 understanding what trait or characteristic that measure is designed to capture 
and whether the PRO is appropriate for the disease and population under 
study. A list of example traits or characteristics might include overall health 
status, symptoms and signs, functional status, health perceptions, satisfaction, 
 preference, and adherence.  

    2.     Number of items : This is important in terms of response burden and data com-
pleteness. PROs can be constructed as single-item measures, as indices with 
several individual item measures, with multiple items measuring a single con-
struct (e.g., a scale), or as a collection of multiple scales.  

    3.     Conceptual framework of the instrument : This represents the conceptual con-
text of the information being gathered, the related concepts, and the relationship 
of those concepts to a population, treatment, condition, or knowledge domain. 
Understanding the context is key to assessing the appropriateness of the PRO in 
a given application.  

    4.     Medical condition for intended use : Is the PRO intended for use as a generic 
measure, or is it disease specifi c? Along with the target population (character-
istic 5), the medical condition being targeted affects the specifi city of the popu-
lation that the data relate to and the utility of the data for making comparisons 
to other patient populations.  

    5.     Population for intended use : Is the PRO intended for use with any individuals, 
or is it age or gender specifi c, specifi c to the patient or caregiver, etc.?  

    6.     Data collection method : What mechanism is being used to collect the data? 
Paper and pencil, a computer, a tablet PC, using web-based systems, interactive 
voice response, or some other method? This affects the ease and effectiveness 
of administration within a given situation. Note that “ease” and “effectiveness” 
are not the same.  

    7.     Administration mode : Is the PRO self-administered, interviewer-administered, 
or administered in another way? As with the data collection method (character-
istic 6), this affects the ease and effectiveness of administration. It also affects 
the scope of the data that can be collected and strongly infl uences the complete-
ness of the data gathered.  

    8.     Response options : This is the way responses are enumerated (e.g., Likert type, 
true/false, visual analog, etc.). This affects the sensitivity of the PRO questions, 
that is, will the questions capture the information desired?  

    9.     Recall period : For example, do the PRO questions relate to the patient’s current 
status, or do they require recall of prior states or experiences? If prior status, the 
time period over which recall is requested can signifi cantly impact the accuracy 
of the data, particularly if long recall periods are used.  

    10.     Scoring : Does the PRO measure yield a single rating, an index score combining 
multiple ratings, a profi le – multiple uncombined scores, a composite – an index, 
profi le or battery, free text information, or some other type of  summarization? 
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This will affect the specifi city and reliability (reproducibility) of the information 
collected by the PRO.  

    11.     Weighting of items or domains : Do summary scores use equal or variable 
weighting of items and/or scales? This will refl ect the relative importance of the 
individual items (or scales) on the PRO measure and will affect the sensitivity 
of the measure to information from items with different weights.  

    12.     Format : What is the text layout, and are there skip patterns, drop-down lists, 
interactive scales, and so on? As with characteristics 6 and 7, this can affect the 
ease and effectiveness of administration, as well as the scope and completeness 
of the data collected.  

    13.     Respondent burden : Are the PRO items cognitively complex? What are the time 
or effort demands? This directly affects the ability of respondents to provide 
effective responses to the PRO items or even to complete the PRO measure.  

    14.     Translation or cultural adaptation availability : Are validated, alternative ver-
sions for specifi c patient subgroups available? As with estimates of response 
burden (characteristic 13), this affects the ability of respondents to provide 
effective and accurate responses to the PRO items.     

 Valderas and Alonso  [  6  ]  provide an alternative classifi cation system for PROs 
that incorporates many of the same elements presented above.  

   Measurement Issues 

   Comparability of PROs Across Studies and Time 

 Data that are unreliable or have poor validity can lead to erroneous and nongeneral-
izable study results through a combination of low statistical power and lack of sen-
sitivity in data analyses, biases in statistical conclusions, and biases in estimates of 
prevalence and risk  [  7  ] . These errors can affect our understanding of therapeutic 
effectiveness by restricting our ability to detect an intervention’s effect and distort 
our assessments of the epidemiology of medical conditions by biasing our assess-
ment of different subpopulations of patients. 

 It is widely recognized that measurement properties such as reliability and validity 
are both sample and purpose dependent  [  8  ] . That is, they vary across the populations 
and purposes for which measures are used. Researchers are most familiar with these 
issues in the context of measurement with self-report instruments, surveys, or scales. 
On scales, for example, individual items may differ across populations in terms of 
how they relate to the underlying constructs being measured, and the constructs 
themselves may shift across populations. Measures may be affected by differences in 
demographic characteristics (e.g., age, socioeconomic status, location), illness bur-
den, psychological health, or cultural identity. Consequently, a scale developed to 
assess communication ability in Anglo-Americans may not be as effective when used 
with African- or Hispanic-Americans; a scale may not work as well with individuals 
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raised in a rural setting as with those raised in an urban one, or the properties of a 
scale developed in a sample of young female patients may not generalize when the 
scale is used with older males. Similarly, the measurement properties of scales may 
vary according to how they are used. For example, a measure developed for assessing 
cross-sectional group differences in health status may be inadequate as an instrument 
for measuring change over time for a particular individual. When measurement is 
conducted via survey methodology, these vulnerabilities may be compounded by 
biased nonresponse to the survey or partial completion of survey items  [  9  ] . 

 The need to verify measurement properties extends beyond “traditional” psycho-
metric applications (e.g., reliability or validity of survey or other self-report mea-
sures) and beyond the characteristics of the population we are attempting to study. 
For the US population in general, there are substantial differences among the health-
care systems in which individuals seek care. These differences may affect entry into 
the system (e.g., access), therapeutic decisions (e.g., quality), and availability of 
endpoints (e.g., outcomes). Thus, measurement and the resulting fi ndings are infl u-
enced by features of the healthcare system. Attention to measurement quality neces-
sarily includes design issues (e.g., formatting and administration of measurement 
instruments), settings in which measurement is conducted (e.g., at a physician’s 
offi ce versus a hospital setting, or at home), and the source from which the measures 
are obtained  [  9  ] .  

   Reliability 

 The reliability of a measure refers to the  stability  or  equivalence  of repeated mea-
surements of the same phenomena within the same patient  [  10  ] . In this context, 
 stability  refers to the consistency of information collected at different points in time, 
assuming no real changes have occurred.  Equivalence  refers to the consistency of 
observations or responses given to different observers. One way to visualize reli-
ability is as a “signal-to-noise” ratio. High reliability would be equivalent to a high 
signal-to-noise ratio (more signal, less noise). Low reliability would be equivalent 
to a low signal-to-noise ratio (less signal, more noise). 

 Reliability is generally expressed as a correlation coeffi cient or a close statistical 
relative (e.g., kappa coeffi cients, Cronbach’s alpha, intraclass correlations [ICC]) 
 [  11  ]  and is on a scale of 0.00–1.00, where 0.00 refl ects the lowest possible reliability 
(i.e., none), and 1.00 refl ects perfect reproducibility or correspondence. In practice, 
low reliability equates to high variability in measurement. Consequently, measures 
with low reliability are minimally useful. From a research perspective, highly reli-
able measures increase the statistical power for a given sample size, enabling statisti-
cal signifi cance to be achieved with a smaller sample (i.e., more signal, less noise). 

 Since the reliability of a measure depends both on the characteristics of the mea-
sure and on how it is being used, there is no single way to assess reliability. The 
most common types of reliability assessments are  test-retest ,  internal consistency , 
and  interrater  reliability  [  10,   12  ] . 



208 R.O. Morgan and K.R. Sail

  Test-retest  reliability is estimated by the correlation between responses to same 
measure by same respondent at two different points in time. The presumption is 
that the correlation between the two measures represents a  lower-bound estimate  
on the stability or consistency of the measuring instrument. Clearly, the more tran-
sient the construct that is being measured is, the less effective test-retest correla-
tions are as a measure of reliability. Transient personal characteristics, such as 
physical or mental states, and situational factors, such as changes in the measure-
ment context (e.g., clinic versus home environments or mailed administration ver-
sus in-person administration), can have a signifi cant impact on test-retest reliability 
estimates. 

  Internal consistency  reliability is a variant on test-retest methodology. Internal 
consistency is used to estimate the level of association among responses by the same 
respondent to individual items on a multi-item scale assessing a single construct 
 [  10  ] . Under classical test theory, the individual scale items can be presumed to be 
approximately equivalent measures of the same construct. As such, correlations 
among items are a form of test-retest reliability, with the correlation among scale 
items representing an estimate of the reliability of the overall scale. The two most 
widely used internal consistency estimators are split-half reliability and Cronbach’s 
alpha  [  12  ] . Split-half reliability is self-explanatory. Since items are presumed to be 
interchangeable, the scale items are randomly split into two equal groups, and the 
subgroup totals are correlated. This correlation, once adjusted for the length of the 
full scale, is an estimate of the scale’s reliability  [  12  ] . The more widely used 
Cronbach’s alpha is an extension of this approach. 

 Internal consistency estimates are fundamentally driven by the number of ques-
tions asked to capture the underlying construct (more questions = higher consistency 
estimates) and the average correlation between the individual questions (higher 
average correlation = higher consistency estimates). 

  Interrater reliability  is important in situations where multiple interviewers are 
needed to collect information from a large group of patients, patients in multiple 
locations, or across multiple staffi ng shifts. Interrater reliability is estimated by the 
correlation between measurements on the same respondent obtained by different 
observers at the same point in time and is used to test the presumption that the inter-
viewers are collecting equivalent data, that is, that the interviewers are interchange-
able. For continuous measures, interrater reliability is estimated by a Pearson r 
(or an intraclass correlation coeffi cient for more than two interviewers). For cate-
gorical measures, interrater reliability is estimated by a kappa coeffi cient  [  11,   12  ] .  

   Validity 

 The validity of a measure represents the degree of systematic differences between 
responses to PROs relative to (1) the concept they were intended to assess ( content 
validity ), (2) related assessments of the same concept ( criterion validity ), and (3) 
hypotheses about relationships to other concepts ( construct validity )  [  10,   12  ] . 
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  Content validity  (or face validity) is the extent to which a measure  adequately 
represents  the concept of interest. Content validity primarily relies on judgments 
about whether the measure (or the individual items of a scale) represents the con-
cept that it was chosen to represent (Table  11.1 )  [  11  ] . Content validity is directly 
affected by any lack of clarity regarding the domain in the concept being evaluated. 
Even when the concept being evaluated is clearly defi ned, failure to thoroughly 
conduct background research on the concept’s defi nition and measurement may 
reduce validity.  

  Criterion validity  is the extent to which a PRO predicts or agrees with a crite-
rion indicator of the  “true ”  value  (gold standard) of the concept of interest 
 [  10,   11  ] . The two principal types of criterion validity are  predictive validity , where 
the criterion indicator or indicators are predicted by a PRO measure, and  concur-
rent validity , where the PRO measure corresponds to (correlates with) criterion 
measures of the concept of interest (Table  11.1 ). Criterion validity is adversely 
affected by lack of clarity in the measures (either low content or low construct 
validity) and by response bias, particularly under- or overreporting events due to 
frequency and/or particularly high or low salience. Criterion validity is also nega-
tively impacted by low reliability (low signal-to-noise ratio), which makes validity 
diffi cult to demonstrate. 

  Construct validity  is the extent to which relationships between a PRO and other 
measures agree with relationships predicted by existing theories or hypotheses 
(Table  11.1 )  [  10,   12  ] . Construct validity can be separated into  convergent validity , 
where the PRO measure shows  positive  associations with measures of constructs it 
should be positively related to (i.e., converging with), and  discriminant validity , 
where the PRO measure shows  negative  associations with measures of constructs it 
should be negatively related to (i.e., discriminating from). Construct validity is par-
ticularly useful when there are no good criterion measures or gold standards for 
establishing criterion validity, for example, when the construct measured is abstract 
(e.g., “pain”). Construct validity is negatively affected by the same things as crite-
rion validity, including low reliability, lack of clarity in defi ning the construct, and 
response bias. The ability to demonstrate construct validity can also be hampered by 
inadequate theory for guiding the specifi cation of hypothesized relationships. 

   Table 11.1    Methods of computing validity   

 Types of validity 

 Methods  Content  Criterion  Construct 

 Literature review  X 
 Expert judgment  X 
 Sensitivity-specifi city analysis  X 
 Correlation coeffi cients  X  X 
 Known-groups validity  X 
 Factor analysis  X 
 Multitrait multimethod  X 

  From Aday and Cornelius  [  12  ] , Table 3.3 (p. 64). Reprinted with permission of John Wiley & Sons, Inc  
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  Responsiveness  is the extent to which a PRO is sensitive to change in the health 
construct being measured. That is, does the PRO refl ect a change that has occurred, 
and does it remain stable if there has been no true change? As noted above, PROs 
that are more specifi c to a disease, condition, or population or that have a more 
 fi ne-grained measurement resolution are generally more sensitive to change than 
are more generic PROs  [  13  ] . Although the general concept of responsiveness is 
 straightforward, there is no consensus on the best way to measure it. McDowell 
provides a summary of different approaches, all of which refl ect some form of 
 standardizing the change score  [  13  ] .  

   Modes of Administration 

 Researchers need to consider many factors in deciding the appropriate mode for 
data collection, including the burden (time, effort, stress, etc.) on the respondent and 
the cost of administration. Also, researchers need to be aware of impact of changes 
in mode of administration on the overall reliability and validity of the resulting data. 
Common administration modes are presented below. 

   Personal (Face-to-Face) Administration 

 Personal or face-to-face administration is recognized as the gold standard among 
data collection methodologies  [  14  ] . Instruments are completed by the interviewer 
based on what the respondent says, and the interviewer has the opportunity to probe 
or ask follow-up questions to the respondent. This type of administration is credited 
for achieving high response rates and better quality of data. Once the administration 
is initiated, the interviewer builds a rapport or trust with the respondent which gen-
erally leads to more accurate responses. This method allows direct observation of 
the respondents and hence allows for fl exibility in the way questions are asked. 
A skilled interviewer can read people, assess moods, and probe, clarify, rephrase, or 
restate the question in an alternative manner to the participant. Personal administra-
tion can vary from a highly structured set of questions to an unstructured conversa-
tion. This type of administration generally yields the highest levels of cooperation 
and lowest refusal rates; it allows for longer, more complex interviews; the responses 
are generally of high quality; the administration can be designed to take advantage 
of the interviewer’s presence; and it allows for the use of multiple methodologies in 
the data collection process  [  12  ] . 

 Face-to-face administration has several disadvantages as well. It is resource inten-
sive, and usually more costly than other modes of administration, it typically requires 
a longer data collection period, the interviewer(s) require signifi cant training, and 
when multiple interviewers are used, correspondence among interviewers needs 
to be demonstrated and maintained over the data collection period (i.e., interrater 
reliability)  [  12,   14  ] .  
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   Telephone Administration 

 Telephone administration allows more rapid collection of information than face-
to-face administration. Like face-to-face administration, it allows for signifi cant 
personal contact between the respondent and the interviewer. The steps followed for 
telephone administration are essentially the same as those for face-to-face adminis-
tration above. Since telephone administration typically does not require in-person 
interaction, it is usually less expensive than face-to-face administration with a 
shorter data collection period. It offers many of the same advantages of face-to-face 
administration listed above while also allowing better control and supervision of 
interviewers. 

 Telephone administration carries some of the same disadvantages as well. For 
example, telephone data collection is usually less expensive than for face-to-face 
administration but remains more expensive, per completed PRO battery, than for 
mailed surveys. Further, interviewer training and correspondence remain issues, 
and telephone administration can be biased against households without telephones, 
households with unlisted numbers, or households that rely exclusively on cell 
phones, although methodologies mitigating these biases are becoming more wide-
spread  [  12,   14  ] . Since administration is conducted over the phone, it typically does 
not (or cannot) last as long as face-to-face administration, restricting the number of 
PRO measures that can be collected. It can also be diffi cult to administer PRO 
instruments on sensitive or complex topics.  

   Mailed Surveys 

 Mailed surveys are self-administered instruments sent via mail to recipients. 
This mode of administration is generally lower in cost, per completed PRO 
instrument, than either face-to-face or telephone administration. Surveys can be 
administered by a smaller team since no fi eld staff is required and can be effec-
tive with populations that are diffi cult to reach by phone or in person. Mailed 
surveys also offer respondents fl exibility in when and how they choose to com-
plete the instruments. 

 However, since there is typically little individualized contact with the recipients, 
at least until late in the data collection process, it can be more diffi cult to obtain 
cooperation from the individuals receiving the survey. Since the survey instruments 
are intended to be self-administered, they typically must be more rigidly structured 
than in either face-to-face or telephone administration, restricting both the content 
and the length of the PRO instruments. Further, wording of individual items must be 
straightforward and easily interpreted, which in turn can increase the time it takes to 
develop and refi ne the mailed survey. 

 According to Dillman  [  15  ] , the steps needed for achieving acceptable response 
rates in mailed surveys are:

   A prenotice letter informing the respondent about the survey sent to the respon-• 
dent prior to sending the actual questionnaire  
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  The actual survey packet, including a detailed cover letter explaining the survey • 
and the importance of the respondent participation, as well as any incentive 
offered to prospective respondents  
  A thank you postcard sent a few weeks later indicating appreciation if response • 
has been sent or hoping that the questionnaire would be completed soon  
  A replacement questionnaire sent to nonrespondents, usually 2 weeks after the • 
reminder postcard, including a second cover letter urging the recipients to 
respond to the survey  
  A fi nal reminder, sometimes made by telephone (if the telephone numbers are • 
available), or through priority mail     

   E-Mail and Web Surveys 

 E-mail surveys are self-administered PRO instruments sent through electronic mail. 
They are simpler to compose and send than web surveys, but are more limited with 
respect to their visual stimulation and interaction capabilities. They also provide lim-
ited options for structural features of instruments such as skip patterns. The design 
principles for implementing an e-mail survey are  [  15  ] :

   As with mailed surveys, it is important to send the respondent a prenotice e-mail • 
message informing the respondent of the survey. The objective of sending a 
prenotice letter is to leave a positive impression of importance of the survey so 
that the recipient does not discard the questionnaire upon arrival.  
  To help preserve confi dentiality and promote a higher response rate, e-mail con-• 
tacts should be personalized, and the recipient should receive a personalized 
e-mail, rather than be a part of list serve   .  
  When the survey is sent, the cover e-mail should be kept as brief as possible since • 
respondents usually have less attentive reading while reading an electronic 
mail.  
  Within the cover e-mail, the participants should be informed of alternative ways • 
to respond such as printing the survey and sending it back.  
  Follow-up contacts should follow the same timeline as for mailed surveys. • 
A replacement survey should be included with any follow-up contact.    

 Web surveys are self-administered surveys accessed through the Internet. 
Web surveys are not usually sent through electronic mail, although a link to a URL 
may be. They are constructed on a website, and the respondent must access the 
particular website to be able to respond to the survey. The questions are constructed 
in a fi xed format, and there are different programming languages and styles that can 
be utilized for building a web survey. Web surveys provide the possibility for 
dynamic interaction between the respondent and the questionnaire  [  15  ] . The diffi -
cult structural features of questionnaires, such as skip patterns, drop-down boxes for 
answer choices, instructions for individual questions, and so on, can be easily incor-
porated in a web survey. Pictures, animations, and video clips can be added to the 
survey to aid the respondent. 
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 E-mail and web surveys offer several advantages over mailed surveys. They are 
usually lower cost (no paper, postage, mailing, data entry costs), the time required 
for implementation is reduced, because of the minimal distribution costs sample 
sizes can be much greater and the scope of distribution can be worldwide, and the 
formatting of the surveys can be complex and interactive, for example, skip patterns 
and alternative question pathways can be programmed in  [  15  ] . New technology and 
software have made implementation of e-mail and web-based PROs relatively 
straightforward – often for little or no cost. 

 However, there are signifi cant limitations as well. Not all homes have a computer 
or e-mail access. Consequently, representative (unbiased) samples are diffi cult to 
obtain, and sampling weights are hard to determine. There are also differences in 
the capabilities of people’s computers and software for accessing web surveys and 
the speed of Internet service providers and line speeds, further limiting the represen-
tativeness of samples  [  15  ] .  

   Electronic Data Collection Devices/Systems (ePRO) 

 The emergence of telephone- and web-based data collection has gone hand in hand 
with the development of interactive devices. There are two main categories of ePRO 
administration platforms:  voice/auditory devices  and  screen text devices   [  16  ] . 

  Voice auditory devices : These devices are often referred to as interactive voice 
response (IVR) and are usually telephone-based, although voice over Internet pro-
tocols (VOIP) will likely be increasingly incorporated into their designs. With these 
devices, an audio version of the questions and response choices is provided to the 
respondent. Typically, IVR systems interact with callers via a prerecorded voice 
question and response system. The advantages of an IVR system include  [  16  ] : no 
additional hardware is required for the respondent, minimum training is necessary 
for respondent, data are stored directly to the central database, the voice responses 
can be recorded, low literacy requirements exist for respondents, a combination of 
voice input and touch-tone keypad selection is accepted to assist the questionnaire 
completion, and it allows both call generation and call receipt. 

  Screen text devices : Numerous screen text devices exist, including desktop and 
laptop computers, tablet or touch-screen notebook (and netbook) computers, hand-
held/palm computers, web-based systems, audiovisual computer-assisted self-
interviewing (A-CASI) systems, and mobile devices, including cell phones. 

 These devices have a number of advantages over more traditional, hard-copy 
data collection systems. The collection of PROs is fast, accurate, and reliable; time 
to analysis is reduced; remote monitoring is possible, including access to individual 
participant-reported information and biometric data from devices such as glucom-
eters, scales, BP monitors, and spirometers; and researchers and staff can commu-
nicate securely with study subjects and patients through encrypted messaging 
systems  [  16  ] . However, access to these devices is neither universal nor necessarily 
representative of the populations of interest  [  15  ] . 
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  Desktop, laptop, and touch-screen tablet computers : These systems are usually 
fully functional computers, and they offer more screen space than other screen-based 
options. Consequently, a major advantage of such systems is that the question and the 
response text can be presented in varying font sizes and languages. Stand-alone desk-
top systems may be limited in mobility. Touch-screen systems have a touch-sensitive 
monitor screen and may be used with or without a keyboard or a mouse  [  16  ] . 

  Handheld computer system : These systems use a special pen/stylus to enter the 
data. The main advantage is the portability of the system due to its light weight. 
However, the limited screen space leads to smaller fonts and may require the respon-
dent to scroll down to view the entire question and response set  [  16  ] . 

  Web-based systems : These systems require access to a computer or device with 
Internet service  [  15,   16  ] . They offer the respondent the convenience of completing 
the questionnaire in their leisure time or at home, as well as the advantage of captur-
ing the data in the data fi le as the patient is responding to the questionnaire. These 
devices can also be adjusted to changes in the protocol during a study period at a 
lesser cost since modifi cations are made to the software residing on a central server. 
Other screen-based systems require software changes to be uploaded to each device, 
potentially creating logistical and technical challenges  [  16  ] . 

  Audiovisual computer-assisted self-interviewing (A-CASI) systems : This system 
combines IVR and screen text. The questionnaire is presented on a computer moni-
tor and is accompanied by an audible presentation of questions and responses. These 
devices may be helpful for evaluating special populations  [  16  ] . 

  Mobile devices : Another method of obtaining patient-reported data is through 
the use of mobile devices or cell phones (   MPRO, mobile patient-reported outcomes). 
This technique utilizes web and mobile technology to enhance the collection and 
management of patient-reported data. The rapid growth of “smart phones” with 
sophisticated web interfaces (e.g., the iPhone or phones using the Android or simi-
lar operating systems), or tablet PCs with cellular interfaces, is blurring the lines 
between tablet, handheld, and voice-operated systems. Newly developed digital pen 
and paper technologies use tiny cameras in the tips of pens along with special paper 
with unique dot patterns to create electronic replicas of handwritten pages. 
Researchers use the forms in the same way they would an ordinary paper form and 
then upload the information to a study database. While the actual integration of 
these devices as data collection instruments is still in its infancy, this class of mobile 
devices holds substantial potential for broad application  [  17  ] . Notably, use of cel-
lular networks also permits real-time geotracking of the devices, allowing PROs to 
be combined with specifi c location information. These data are particularly useful 
in social network analysis and the evaluation of lifestyle interventions  [  18–  20  ] .   

   Item and Scale Development 

 Although technology can signifi cantly ease implementation of PRO measures, 
 actually developing items and scales from scratch can be a laborious and 
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 time-consuming activity, with no guarantee of a well-performing scale when 
fi nished. It is frequently better (and easier) to use an existing, validated scale, assum-
ing that it adequately meets the needs of the research study. Next best is an existing 
scale that comes close to meeting the requirements of the study but needs some 
modifi cation. Note that modifying an instrument, or using an existing instrument in 
a modifi ed context, may still necessitate a reevaluation of the instrument’s proper-
ties. Steps for modifying a scale are described below, after the  guidelines for item 
and scale development . 

 Although the work required to develop a new scale is signifi cant (and almost always 
underestimated), there is plenty of guidance available. An extensive literature docu-
ments methods for developing and modifying scales and scale items  [  1,   10,   12,   15  ] . 
The following is a summary of the key guidelines presented by DeVellis  [  10  ] :

   1.     Determine clearly what it is to be measured : Scale development needs to be 
based in a clear conceptual framework.  This is the most important step in devel-
oping a scale.  Everything follows from this, so it is crucial to spend the time 
necessary for clarifying the constructs to measure This includes clearly identify-
ing the scope of the content, the target population, the desired measurement set-
ting, the method(s) for administration, and the period of recall over which 
subjects will report.   

  2.     Generate an item pool : Following from step 1, items must refl ect the constructs 
to be measured. Create a large number of items to refl ect the concept. This is the 
 item pool . At this stage, emphasize quantity over quality; redundancy is fi ne. 
Then, eliminate the poorly worded or less clear items. These would include those 
that are cognitively complex (too long, hard to read or interpret), double-barreled 
items (two items masquerading as one), and items with ambiguous wording.   

  3.     Determine the format for measurement : What type of responses is desired? Do 
they include binary (e.g., yes/no) or ordinal categories (e.g., Likert scale–type 
responses) or a response on a continuous scale (e.g., a visual analog scale)? Next, 
assign descriptors for the response options; these are also called  item anchors  
(e.g., “strongly disagree” to “strongly agree”). These provide the framing for the 
responses. They need to be clear and to match the item wording. For example, 
anchors for attitudinal items would clearly be different from anchors for fre-
quency items.  Take the time to be sure that the response format is likely to pro-
vide the variability desired. Will the targeted respondents be able to distinguish 
among the response options?  Do not “reinvent the wheel”; wherever possible, 
look for examples. A nonexhaustive list of possible response options are shown 
in Table  11.2 .    

  4.     Have the item pool reviewed by experts : These should include individuals with 
expertise in the content area and whenever possible representatives of the target 
population and someone with experience in developing scales. Make sure to pro-
vide the expert panel with a conceptual guide to what you are measuring. The 
panel should review the items for clarity, readability, and completeness. Are 
there items that are too similar? Are there aspects of the content area that are not 
represented in the item pool?   
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  5.     Consider inclusion of validity items : Consider including items for assessing 
response bias (e.g., socially desirable answers), as well as items for establishing 
scale validity, for example, previously validated items measuring related 
constructs.   

  6.     Administer items to a development sample : This is often done in stages: item 
review and development, and psychometric assessment. Both stages require 
careful consideration of the purposes of the assessment and the sample composi-
tion.  Item review and development  focuses on readability, format, administration, 
and identifi cation of missing content. As such, it is easier with smaller samples. 
 Psychometric assessment  is used to help establish the measurement properties of 
the items and scale (see below). Since these are based on summaries of data, 
larger samples are better.   

  7.     Evaluate the items : Using data from step 6, examine the item properties: scoring 
ranges, item variance, item-scale correlations, and item means. Assess the 
dimensionality of the draft scale(s): examine the underlying latent constructs 
(e.g., using exploratory or confi rmatory factor analysis [EFA or CFA], as appro-
priate and if your sample is of suffi cient size) and the internal consistency (e.g., 
using Cronbach’s alpha). For well-developed scales, where basic item-scale 
properties have been established, consider examining differential item function-
ing (DIF), that is, whether items function differently among subgroups of respon-
dents  [  12  ] .   

   Table 11.2    Types of response options   

 Type  Description 

 Visual analog 
scale (VAS) 

 A fi xed length line that has words that anchor the scale at extreme ends and 
no other words in between. Patients are required to place a mark on the 
line that corresponds to their perceived state. These scales are not usually 
very accurate 

 Anchored or 
categorized 
VAS 

 It has the addition of one or more intermediate marks with reference terms 
that help the patient to locate in between the scale 

 Likert scale  It is an ordered scale that requires the patient to choose the response that best 
describes their state or experience 

 Rating scale  A scale with numerical categories without labels and the ends of the rating 
scales are anchored with words. Patients are asked to choose the category 
which best describes their state or experience 

 Frequency scale  A scale with ordinal categories representing ordered categories of frequen-
cies, for example, income categories or frequencies of occurrence 

 Event log  A patient diary or a reporting system in which the specifi c events are 
recorded as they occur 

 Pictorial scale  A set of pictures are applied to the other types of response options. Specially 
used for pediatric patients or for patients with cognitive impairments 

 Checklist  Patients are provided a simple choice between a fi xed number of options 
such as yes, No and Don’t know. They are reviewed for completeness and 
non redundancy 

  FDA  [  1  ]   
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  8.     Optimize scale length : There is no magic length for a scale. Longer scales usu-
ally have better internal consistency, but having more items increases respondent 
burden. Fewer than four items is a pretty short scale but certainly not unknown. 
Items with a low (or worse, negative) contribution to alpha, a low item-total cor-
relation, or a very high correlation with other items should be targeted for exclu-
sion; but be careful, dropping items changes the scale, and item statistics are 
sample estimates and therefore dependent on who is in the development sample. 
Being a little conservative is probably prudent.     

   Modifi cation of Existing PROs 

 Modifi cation of existing PROs may involve any or all of the same steps as develop-
ing a new instrument. Clearly, some modifi cations, such as changing the number of 
response categories on a few items, involve less effort than others, such as translat-
ing a PRO to a new language. However, any of these changes may necessitate 
reevaluation of the instrument’s psychometric properties. The FDA recommends 
validation of revised instruments when any of the following occur  [  1  ] . 

  Revision of the measurement concept : For example, administering a single sub-
scale from a multisubscale instrument, or use of items from an existing instrument 
in order to create a new instrument. 

  Application of the PRO to a new population or condition : For example, use of a 
PRO validated in a healthy population for a population of patients with chronic 
illness. 

  Changes in item content or format : For example, changes in wording or scaling, 
changes in the recall period, or changes in formatting or instruction. 

  Changes in mode of administration : For example, adapting a PRO designed for 
face-to-face administration for use in a web-based battery. 

  Changes in the culture or language of application : For example, translations to 
another language from the language used in validation, or use of an instrument in a 
culture it has not been validated in (even if left in the original language).  

   Instrument Repositories 

 Collections of instruments are available both in hard copy and in electronic form. 
McDowell provides one of the most comprehensive print compendiums of health 
measures available, with over 100 separate measures reviewed  [  13  ] . The purpose, con-
ceptual basis, administration information, known psychometric properties, and copies 
of the items are provided for each instrument. The health domains covered include 
physical disability and handicap, social health, psychological well-being and affect 
(anxiety and depression), mental status, pain, and general health status and quality 
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of life. This compendium also includes an introduction to the theoretical and technical 
foundations of health measurement. 

 Online repositories are becoming increasingly available and can be signifi cantly 
more expansive than print compendiums. King’s College London maintains the 
Registry of Outcome Measures (  http://www.researchrom.com/    ), a searchable  registry 
with descriptive, psychometric, availability, and contact information for each mea-
sure. Similarly, the Patient-Reported Outcome and Quality of Life Instruments 
Database (PROQOLID;   http://www.proqolid.org/    ) was developed by the Mapi 
Research Institute and managed by the Mapi Research Trust in Lyon, France, to “…
identify and describe PRO and QOL instruments….” As of June, 2010, the 
PROQOLID site provided information on over 600 PRO and QOL instruments and 
varying levels of details (basic versus detailed) depending on subscriber status.  

   Item Banks 

 The Patient-Reported Outcome Measurement Information System (PROMIS) pro-
vides a different approach to PRO measurement. PROMIS was formed by collabo-
ration of outcomes researchers from seven institutions and the National Institutes of 
Health (NIH) in 2004. This cooperative group is funded under the NIH Roadmap 
for Medical Research Initiative to reengineer the clinical research enterprise by 
developing, validating, and standardizing item banks to measure PROs relevant 
across common chronic medical conditions, for example, cancer, congestive heart 
failure, depression, arthritis, multiple sclerosis, and chronic pain conditions. The 
main objectives of the PROMIS initiative are (adapted from the PROMIS website; 
  http://www.nihpromis.org/default.aspx    ):

   Create item pools and core questionnaires measuring health outcome domains • 
relevant to a variety of chronic diseases. The item pools consist of new items, as 
well as existing items from established questionnaires. These new items undergo 
rigorous qualitative, cognitive, and quantitative review before approval.  
  Establish and administer the PROMIS core questionnaire in paper and electronic • 
forms to patients suffering from a variety of chronic diseases. The collected data 
will then be analyzed and utilized to calibrate the item sets for building the 
PROMIS item banks.  
  Develop a national resource for precise and effi cient measurement of PROs and • 
other health outcomes in clinical practice.  
  Build an electronic web-based resource for administering computerized adaptive • 
tests, collecting self-report data, and reporting instant health assessments.  
  Conduct feasibility studies to assess the utility of PROMIS and promote exten-• 
sive use of the instrument for clinical research and clinical care.    

 The PROMIS item library is a large relational database of items gathered 
from existing PROs. The library was created with an intention of supporting the 

http://www.researchrom.com/
http://www.proqolid.org/
http://www.nihpromis.org/default.aspx
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 identifi cation, classifi cation, improvement, and writing of items that serve as 
 candidate items for upcoming PROMIS item banks. 

 During the fi rst phase of the initiative (2004 to present), the PROMIS network of 
researchers have developed questions or “items” for assessing patient outcomes 
(e.g., pain, fatigue, physical functioning, emotional distress, and social role). 
PROMIS is creating a computer adaptive testing (CAT) system, based on item 
response theory (IRT), to administer these items, and is developing a web-based 
system to give clinical researchers access to the item banks and the CAT system 
 [  21  ] . Using these approaches, PROMIS has demonstrated improved item perfor-
mance relative to existing PROs.    

   Conclusion 

 Well-developed PRO instruments are the best and perhaps only way to gather valid 
data from the patient perspective. PROs are now accepted as providing a necessary 
adjunct to more traditional clinical and laboratory outcome measures; for example, 
a patient’s perception of their overall health status is increasingly used in conjunc-
tion with clinical measures of disease burden. PRO measures may also provide pri-
mary outcome data when clinical and/or laboratory measures are not appropriate or 
available, for example, when a patient’s assessment of pain or quality of life is 
needed. 

 The increased emphasis on the patient’s experience as a therapeutic outcome and 
a healthcare priority is necessitating the development and use of PRO measures that 
are appropriate for a variety of diseases and patient populations. A large literature 
on PRO measures and their application already exists. The development of instru-
ment compendia and repositories, such as the Registry of Outcome Measures and 
the PROQOLID, and item banks, such as the PROMIS database and their related 
technologies, are providing valuable tools for expanding the implementation of 
PRO measures. However, with thousands of identifi ed diseases, and with instru-
ments having demonstrated utility needing adaptation and validation across lan-
guages and cultures, a considerable amount of work remains to be done. 

 Along the same lines, the evolution of the clinical information infrastructure is 
revolutionizing the way medical information can be organized, accessed, and used. 
Collection and use of PROs is a key piece of that revolution. Technological devel-
opment has made the implementation of PRO measures much easier. However, the 
evaluation of the impact of new technologies on the validity and usability of the 
information collected remains, and will likely always remain, ongoing. It is crucial 
that health information professionals have a thorough understanding of the design 
principles outlined here and their potential impact on the reliability and validity of 
PRO measures. These principles should be the foundation of any PRO development 
effort.      
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  Abstract   Biobanking is the science and practice of storing biological specimens 
for future use. Biobanking is an emerging fi eld with the potential to improve our 
understanding of disease and develop better, more targeted treatments for many 
conditions. Data associated with the specimens must include information about the 
specimens, the donor, and the conditions (including informed consent) under which 
the samples were collected, processed, and stored. Biobanking is based upon the 
premise that the storage of biologic specimens will enable future research, includ-
ing the use of advanced technologies and methods beyond what currently exists, and 
without associated data, samples cannot be leveraged for the future. With the com-
pletion of the human genome and the promise of personalized medicine and diag-
nostics, biobanking is being embraced by a variety of stakeholders, including 
academic institutions, government, industry, and patient advocacy groups. This 
wide-ranging adoption has led to the development of many biobanks for various 
purposes. These different categories of biobanks, from population biobanks to dis-
ease-specifi c biobanks, collect a variety of human specimen types, each requiring 
different descriptive data and associated standards for collection, processing, and 
storage. In this chapter, we discuss the challenges inherent in biobanking and oppor-
tunities for informatics to resolve some of these challenges.  
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 A tremendous amount of resources and energy is being invested in biobanking 
worldwide, and the research potential of biobanks has impressed scientists, policy 
makers, and the public. In 2009,  Time  Magazine named biobanking as one of ten 
ideas changing the world  [  1  ] . While there is great excitement surrounding the 
 science of biobanking, considerable challenges do exist. The most signifi cant 
 challenges relate to adequate acquisition and preservation of biosamples and to the 
collection of descriptive data associated with the sample and with the individual 
donating the sample. Samples must be collected and preserved appropriately and 
consistently, with relevant data collection to support valid and reproducible research. 
As scientifi c research techniques improve, increasingly smaller quantities of 
 materials are needed for very sophisticated techniques. While this modernization 
has the potential to produce unprecedented research advances with high-quality 
samples, it also has the potential to produce vast amounts of data from low-quality 
samples. In other words, we now have the ability to get answers that are potentially 
inaccurate at unprecedented speed. 

   Standards 

 Important concerns in the fi eld of biobanking lie in the realm of standardization. 
Standards are needed for sample collection methods, specimen processing and stor-
age, and associated clinical data. Standards for each of these areas are limited, and 
for the few that exist, widespread adoption has not yet occurred. Ongoing efforts in 
biobanking and biospecimen science are aimed at initiating    the development and 
adoption of standards. The application of informatics tools and techniques can sup-
port best practices for sample acquisition and preservation, and thereby reduce vari-
ation and increase reproducibility. Informatics can also enable explicit representation 
of sample characteristics and associated clinical data, enabling innovative and novel 
use of samples in the future. Therefore, informatics applications have the potential 
to improve not only the information associated with samples, but also the quality of 
biobanking resources and their relevance to the clinical research process.  

   Signifi cance, Relevance, and Challenges of Biobanking 

   The Need for High-Quality Biospecimens 

 Following the completion of the sequencing of the human genome, personalized 
medicine has been heralded as the future of medicine  [  2  ] . Tailoring therapies to 
individuals requires the collection, analysis, and molecular characterization of 
 biological specimens. High-quality, well-annotated biospecimens are needed for 
identifi cation of targets for drug development, treatment, and prevention; for 
 identifi cation of biologic variations that determine drug effi cacy and drug toxicity; 
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for defi ning biomarkers for susceptibility, screening, and reoccurrence of cancer; 
and for the elucidation of molecular mechanisms and validation of therapeutics  [  3  ] . 
For these and other scientifi c endeavors, accurate, reproducible data derived from 
patient samples in the clinical setting will be essential.  

   Biobank Landscape 

 Traditionally, biobanks have been created for genetic research with relatively simple 
sample acquisition and storage and with straightforward hypothesis testing. As sci-
ence advances, more sample types are being collected for more sophisticated analy-
sis by a variety of stakeholders and organizations. Academic institutions have 
developed biobanks of pathology archives to support clinical care and research, usu-
ally within that institution. They have also begun to build large, institution-wide, 
repositories enabling activities from biomarker development to drug discovery  [  4  ] . 
Some have also created collaborative collections used in clinical trials for both diag-
nostics and drugs and have even created new technologies based on these collec-
tions  [  5  ] . Commercial vendors have developed collections of samples and data that 
can be purchased by investigators. Some collections also include robust, annotated 
data with available biospecimens. Large, national, population biobanks are being 
developed in Estonia, Sweden, the UK, and the USA  [  6  ] . Population biobanks fol-
low cohorts of people, including healthy individuals, over many years. For example, 
the UK Biobank is expected to follow 500,000 citizens over several decades, con-
tinually updating their health history information  [  7  ] . Other biobanks are disease 
specifi c, following individuals with a specifi c condition over time. In some instances, 
disease advocacy organizations have established and are managing biobanks  [  8  ] . 
The Genetic Alliance BioBank is one example where seven advocacy organizations 
representing rare or common diseases utilize shared infrastructure in a cooperative 
model  [  9  ] . The biobanks mentioned collect a variety of sample types, including 
blood, urine, saliva, tissue, and organs from full-body harvests. Many also process 
and store these sample types as derivatives such as DNA, RNA, and protein.  

   The Challenge of Acquiring High-Quality Samples 

 The lack of high-quality human specimens has become the limiting factor for post-
genomic biomedical science and is a major roadblock to translational research and 
personalized medicine  [  10,   11  ] . By and large, researchers continue to work in silos 
where little specimen sharing exists, and each institution has its own program com-
prised of individual studies with small numbers. Dr. Carolyn Compton, Director of 
the Offi ce of Biorepositories and Biospecimen Research (OBBR), described the chal-
lenges of acquiring high-quality samples at a scientifi c conference sponsored by the 
NIH Offi ce of Rare Diseases Research in January, 2010  [  12  ] . In the current culture, 
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many investigators do not believe they can get the quantity or quality of samples 
needed for their research. Scientists also reported questioning their data due to the 
unreliable quality of available specimens, and many limit the scope of their work 
due to the low of quality of biospecimens. If biospecimens of poor or unknown qual-
ity are utilized, the accuracy and validity of the research data can be compromised. 

 Acquiring high-quality specimens and data is challenging because the collection, 
processing, and storage procedures are not standardized and because the degree and 
type of data annotation varies. Quality control may not be built into the collection 
process, and biobanks may overestimate the quality of samples they have collected. 
This is further complicated by the many different kinds of samples collected for 
distinct purposes, with each sample type having its own unique best practices. 
Collection practices are highly variable within and among institutions, and speci-
men quality is determined by the medical system, not scientifi c users. Most tissues 
procured for research purposes are leftover from surgery or autopsy, and misclassi-
fi cation and degradation of the sample are often issues of concern. Diagnosis may 
not be known until after pathology assessment, compromising the opportunity to 
collect a sample prospectively for research. The size of samples needed for diagno-
sis is also becoming smaller, and the more diffi cult and complicated the diagnosis, 
the greater the depletion of the sample for testing and the less remaining for subse-
quent research. Finally, the collection of normal control samples is not routine, 
making any comparison between diseased and unaffected tissue problematic. 

 Tissue collection itself is complex, in part because molecules that refl ect the 
disease state are extremely labile. In an ideal collection environment, tissue is fro-
zen within minutes of blood supply disruption, reducing the opportunity for biomol-
ecules such as RNA and proteins to degrade. In standard clinical procedure, tissue 
is not usually frozen rapidly, but procured after clinical requirements have been 
satisfi ed. This makes determining the molecular quality of biospecimens diffi cult, 
and histology is not a good indicator of molecular quality. Formalin-fi xed paraffi n-
embedded tissues (FFPE) are often available, but analyses performed on FFPE are 
limited, and biomolecules are highly degraded by processing; however, technolo-
gies are emerging to overcome these challenges  [  5  ] . There is also a cost to the insti-
tution to procure these samples, and many of the activities required to collect 
biospecimens are nonreimbursable.  

   Governance 

 To add to the complexity, governance practices vary by biobank, with variable levels 
of transparency. In general, patients give consent with differing levels of permission 
for sample storage, use, and recontact for additional information or samples. Policies 
for data access, sample access, incidental fi ndings, and returning results to partici-
pants may not exist, may be inadequate, or may be unknown to participants. In addi-
tion, material transfer agreements often differ between institutions, and medical 
institutions may be hesitant to release specimens for research if they were procured 
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for diagnostic use. Complying with regulations can be burdensome for individual 
investigators, investigators new to human subjects research, and institutions without 
robust infrastructure. Supporting biorepository IT structures differ in capacity and 
functionality with little standardization, and there are not uniform, agreed upon 
standards for clinical data. Extraction and transfer of associated clinical data may be 
extremely laborious, quite costly, and inhibited by regulatory issues including those 
concerning privacy. The variability in consent information makes using samples 
from multiple institutions problematic, as consent is controlled at the institutional 
level. Historically collected samples are a pervasive problem, since it is not always 
clear what secondary uses the samples might support. Efforts are underway to stan-
dardize consent practices to allow for future use and sharing of samples  [  13  ] .  

   Timing 

 Finally, the timing of biospecimen collection poses unique challenges. Diseases 
manifest themselves over time, and obtaining early and late stage biospecimens is 
often diffi cult. Recruitment can also be diffi cult when there are limited individuals 
with the condition or a limited number of investigators studying the disease, such 
as in rare disease research. It is impossible to anticipate all the data needed for bio-
specimens when collected prospectively. Getting medical centers to comply with 
data requests is time-consuming, and while participants can be helpful in obtaining 
clinical records, it can be challenging if requests are highly technical or if the donor 
is deceased. Taken together, these conditions lead to a wide variation in quality of 
biospecimens and associated clinical data.   

   Informatics Opportunities for Improving Biospecimen Quality 

 In most instances, the scientifi c community cannot anticipate the scientifi c ques-
tions that might be asked in the future on the samples being collected today. It is 
diffi cult to prepare now for a future that is unknown. Regardless, planning and stan-
dardization can facilitate the development of resources to support future research 
and discovery. While a daunting task, there are great opportunities for informatics 
applications to improve the state of biobanking and biospecimen science, particu-
larly through the adoption best practices and standards described below. 

   Biobanking Best Practices and Supporting Initiatives 

 Best practices are needed to provide state-of-the-science guidance for biobanking 
and to harmonize procedures for collection, processing, storage, and distribution of 
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biospecimens. Multiple best practices exist but there is not yet uniform adoption of 
these protocols. The National Cancer Institute (NCI) has developed comprehensive 
best practices, fi rst published in 2007 and revised in 2010, that examine the scien-
tifi c evidence for collection, annotation, processing, and storage of biospecimens 
 [  14  ] . Included in NCI’s best practices are technical and operational best practices 
and ethical, legal, and policy best practices. The International Society for Biologic 
and Environmental Repositories (ISBER) has also developed best practices for 
biorepositories, focusing on the collection, storage, retrieval, and distribution of 
biological materials for research  [  15  ] . 

 A number of initiatives have been developed to improve standardization of bio-
specimen quality and informatics to support best practices. In the USA, the Cancer 
Human BioBank (caHUB) was initiated as a national infrastructure for translational 
research with evidence-based collection strategies  [  16  ] . It was developed to provide 
a centralized source for both cancer specimens and normal human specimens, as 
well as for tools, training opportunities, and other biospecimen resources. In mid-
2011, caHUB became a center for Biospecimens and Standards. The Tissue Banks 
and Pathology Tools Workspace (TBPTW) of the Cancer Biomedical Informatics 
Grid, caBIG  [  17  ] , includes the following tools relevant to biobanking: caTISSUE 
Core for managing biospecimens, caTISSUE Clinical Annotation to annotate bio-
specimens with clinical data, and cancer Text Information Extraction System (caT-
IES) to extract concepts from free-text pathology reports into a structured data 
model. It is unclear as of this writing how or to what extent these tools will be sup-
ported and available, but certainly they represent relevant and important areas of 
thought and standardization for biospecimens and future research. In Europe, 
Biobanking and Biomolecular Resources Research Infrastructure (BBMRI) is a 
coordinated infrastructure that provides access to a Europe-wide collection of bio-
medical samples and data  [  18  ] . BBMRI is composed of a network of biobanks with 
different formats and biomolecular resources. BBMRI utilizes standards for sample 
collection, storage, preanalytics and analysis, and a harmonized database and com-
puting infrastructure, and it also includes guidance on ethical, legal, and social 
issues. Another useful resource is the ISBER self-assessment tool, a confi dential, 
158-question assessment designed to help biorepositories strengthen their practices 
by identifying areas that need improvement  [  19  ] .  

   Standards Surrounding Specimen Collection and Storage 

 The use of a biospecimen in the future requires that the user understand the basis of 
its collection. How was the sample collected? What were the patient characteristics 
at the time of collection? How was the sample transported? These are examples of 
preanalytic variables. These variables start with the patient and include the medical/
surgical procedures and acquisition of samples. Preacquisition variables include 
antibiotics, other drugs and treatments, type of anesthesia, duration of anesthesia, 
and arterial clamp time. Postacquisition variables include time at room temperature, 



22712 Biobanking Challenges and Informatics Opportunities

temperature of the room, type of fi xative, time in fi xative, rate of freezing, and time 
of aliquots. Once the sample has been acquired, handling/processing, storage, dis-
tribution, scientifi c analysis, and restocking unused sample may all affect the integ-
rity of the sample. For example, changes in specifi c transcript levels may be based 
on the ischemic time and not the disease. The inability to reproduce protein bio-
markers has been seen in discovery research as well as inconsistent immunohis-
tochemistry (IHC) results in research and clinical labs. In metabolomics, the 
potential for error is greater, where inconsistencies in small molecule readouts may 
yield results that point to incorrect pathways. Ideally, every piece of relevant data 
needs to be collected to support future users who may have no connection to or 
understanding of the specimen collection protocols. Research is also needed to bet-
ter understand how these variables affect molecular integrity, as some variables will 
have great infl uence on molecular pathways and others will not. 

 The Offi ce of Biospecimen and Biorepositories Research (OBBR) has developed 
Biospecimen Reporting for Improved Study Quality (BRISQ) to guide researchers 
to capture information about the source and handling of biospecimens with a goal 
of making research results more reproducible  [  20  ] . BRISQ elements have three tiers 
of reporting. Tier 1 includes items necessary to report, such as organs from which 
the biospecimens were derived and the manner in which biospecimens were stabi-
lized and preserved. Tier 2 levels are items advisable to report but are less crucial or 
less likely to be available in the annotations, such as demographics of the patient 
population and methods of enrichment for relevant components. Tier 3 includes 
additional items about conditions that are not as likely to infl uence research results 
or are unlikely to be available to researchers. These include environmental factors 
to which patients were exposed and the type of storage containers in which bio-
specimens were kept. BRISQ elements are captured as preacquisition, acquisition, 
stabilization/preservation, storage/transport, and quality assurance measures. 
Critical unknown elements should also be fully acknowledged. 

 The ISBER Biospecimen Science Working Group has also been working to 
improve classifi cation schemas for biospecimens. The Standard PREanalytical 
Coding for biospecimens (SPREC) was developed to improve biospecimen research 
experimental protocols and to provide information about the biomolecular quality 
of samples  [  21  ] . SPREC codes are seven element-long biospecimen characteriza-
tion codes that give details on preanalytical sample processing. They are available 
for primary samples (those specimens directly collected from the donor) and for 
simple derivatives (samples prepared by simple laboratory manipulation). SPREC 
codes are fl exible and easy to implement. Complex derivatives are out of scope 
including cell disruption, cell selection, and multistep chemical manipulation such 
as acidifi cation, digestion, precipitation, deproteinization, and desalting. 

 The Standardisation and Improvement of Generic Pre-Analytical Tools and 
Procedures for In Vitro Diagnostics consortium, better known as SPIDIA, has also 
been working in this area, developing pan-European quality assurance schemes and 
guidelines for preanalytical procedures such as sample collection, handling, trans-
portation, processing, and storage of clinical samples  [  22  ] . SPIDIA is developing 
guidelines for processing of blood, tissue, RNA, DNA, and proteins; developing 
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new tools and technologies that integrate and standardize preanalytical steps; and 
identifying appropriate biomarkers for monitoring changes in clinical samples, 
including RNA, DNA, proteins, and metabolites. Other European initiatives of 
interest include the European Network to Promote Research into Uncommon 
Cancers in Adults and Children: Pathology, Biology, and Genetics of Bone Tumours 
(EuroBoNeT) and BBMRI  [  23  ] .  

   Standards in Clinical Data Associated with Samples 

 Robust clinical information enhances the value of biological samples, enabling the 
correlation of phenotype with the research being conducted on a particular sample. 
The availability of associated clinical information is often variable, ranging from 
basic demographics to very detailed patient histories. Data collection is expensive. 
The variability of the available data can be compounded if questions and measured 
values change over time in subtle ways or if participants are lost before the neces-
sary follow-up. Efforts are ongoing for standardizing how questions are asked and 
how responses are obtained. Standardization will minimize some of the work of 
data collection, will increase the likelihood that data collected today will be compat-
ible with data collected in the future, and will facilitate the pooling of data between 
related registries and studies. 

 One way of standardizing data is to use scientifi cally validated survey instru-
ments. Because people’s health and disease change over time, participant informa-
tion cannot be static and must be collected and updated at multiple time points. If 
validated survey instruments do not exist for the information that needs to be col-
lected, using questions that others have used on a large scale is recommended. The 
National Health and Nutrition Examination Survey (NHANES)  [  24  ] , the Patient-
Reported Outcomes Measurement Information System (PROMIS)  [  25  ] , the consen-
sus measures for Phenotypes and exposures (PhenX) project  [  26  ] , and the database 
of Genotypes and Phenotypes (dbGaP)  [  27  ]  are possible sources for questions and 
answers. The Patient Registry Item Specifi cations and Metadata for Rare Diseases 
(PRISM) project is collecting and cataloging questions that have been used by oth-
ers to develop a library of standardized questions across a broad spectrum of rare 
diseases  [  28  ] . Utilizing messaging standards, such as Health Level 7 (HL7)  [  29  ] , 
Logical Observation Identifi ers Names and Codes (LOINC)  [  30  ] , or Systematized 
Nomenclature of Medicine-clinical Terms (SNOMED CT)  [  31  ] , is another impor-
tant aspect of standardizing data. HL7 is the standard messaging for the delivery of 
many types of clinical and laboratory results. LOINC provides codes for lab tests, 
clinical measures, diagnostic reports, and surveys, and SNOMED CT provides a 
comprehensive clinical terminology. The National Library of Medicine (NLM) sup-
ports LOINC and SNOMED CT, along with RxNorm  [  32  ] , which provides codes at 
the clinical drug and ingredient level. The use of such data standards will be essen-
tial for sharing data across multiple platforms, including registries and electronic 
health records (EHRs). Data standards will also support sharing information from 
different institutions or over time.  
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   Laboratory Information Management Systems 

 Laboratory information management systems (LIMS) are necessary to track all 
aspects of the workfl ow in a laboratory, including instruments, samples, personnel, 
and quality assurance and quality control procedures. LIMS are the primary method 
of managing samples in a biobank, and the record produced by LIMS provides 
important information about what happens to the sample while it is in the labora-
tory. When a sample is received, it is accessioned, and a barcode is affi xed to the 
tube for identifi cation. This is used to track the chain of custody, the location of the 
sample, and all events associated with the sample, such as how the sample is pro-
cessed, the number of freeze-thaw cycles, and shipment of the sample to investiga-
tors. ISBER provides guidance on the information that should be collected  [  15  ] , 
and a variety of commercial and open source LIMS are available. Standards used 
with LIMS include Title 21 CFR Part 11 from the United States Federal Drug 
Administration, Good Laboratory Practice (GLP) from the Organisation for 
Economic Co-operation and Development, and ISO/IEC 17025 from the 
International Organization for Standardization and the International Electrotechnical 
Commission.  

   Managing Access to Data and Samples 

 Information systems are also needed to manage access to samples and data for 
future research. Biospecimen locators and online catalogs are needed for investiga-
tors to identify samples and data needed for their research. Tools are also needed for 
biobanks to manage sample and data access requests and permissions, and in some 
instances, return results to participants. These systems must be used in cooperation 
with governance models to track how existing samples can be used in the future, as 
dictated by the original informed consent. In some instances, the participant has 
given blanket consent for all future use, but in other cases, there are restrictions in 
how the sample can be used. Biobanks’ understanding how the samples they have 
collected can be used and their honoring any restrictions of future use are imperative 
for public trust. Information systems can be used to facilitate data and sample stew-
ardship, keeping the record of rules and permissions surrounding future use for data 
and samples. Some of these systems may also track patient preferences and consent; 
however, this type of information is usually kept separate from information about 
sample collection and processing discussed above.   

   Future Directions in Informatics and Biobanking 

 Biobanking is an emerging fi eld that has the potential to usher in the era of per-
sonalized medicine and diagnostics, improving individualized health outcomes. 
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Informatics tools are needed for biobanking to reach its full potential. Scientists 
and policy makers have learned that the way in which studies are designed, speci-
mens are handled, assays are performed, data are analyzed, and conclusions are 
stated  does  matter and that much of this essential information is not readily avail-
able. Biospecimen science is helping to identify the best methods to collect and 
manipulate samples, and to identify standards for sample collection, storage, and 
representation of associated clinical data – all of which are essential for users to 
assess the quality of biospecimens and data. The biobanking community’s adop-
tion and implementation of agreed upon standards to improve the quality of sam-
ples and data and the reproducibility of scientifi c results are imperative. Much 
work has already been done in identifying appropriate standards, but more work 
is needed to encourage adoption of these standards. Shared information technol-
ogy infrastructure and open source platforms are needed to aggregate sample and 
associated clinical data from multiple sources. There are also opportunities to use 
informatics to manage ethical, legal, and social issues. With cooperation and com-
mon vision, standards for high quality biospecimens can be developed, adopted, 
and implemented. These standards can help merge the separate silos that currently 
exist in research and, ultimately, advance the fi eld of personalized medicine and 
diagnostics.      
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  Abstract   Patient registries are fundamental to the research process. Registries 
 provide consistent data for defi ned populations and can support the study of the 
distribution and determinants of various diseases. One advantage of registries is the 
ability to observe caseload and population characteristics over time, which might 
facilitate the evaluation of disease incidence, disease etiology, planning, operation 
and evaluation of services, evaluation of treatment patterns, and diagnostic 
 classifi cation. Registries can be developed for many different needs, including 
research recruitment, study planning, public health, and observational research. 
Any registry program must collect high-quality data to be useful for its stated 
 purpose. We describe the methodological issues, limitations, and ideal features of 
registries to support various purposes. The future impact of registries on our 
 understanding and interventions for many diseases will depend upon technological 
and political solutions for global collaborations to achieve consistent data (via 
 standards) and regulations for various registry applications. The development, 
implementation, interpretation, and evaluation of registries are areas that can  benefi t 
from informatics expertise and coordination.  
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 Patient registries are a fundamental part of research and have been for centuries. 
Although gathering, observing, and following populations of individuals have long 
been the important steps in the understanding of any disease etiology, the use of 
registries is taking on new importance in clinical trials support, effectiveness 
research, and patient safety. The FDA and health advocacy groups in the United 
States and the European Union, including those explicitly targeting improved effec-
tiveness and effi ciency of the drug development process, are advising patient advo-
cacy organizations to create registries as a primary step in advancing research for 
understudied diseases. Even before drug development, patient registries can facili-
tate research by clearly documenting the natural course of disease and providing 
metrics for comparisons between alternate therapies. In rare and neglected diseases, 
registries are a critical research step and necessity to identify potential patients for 
clinical studies. Such “preresearch” registries provide a qualitative picture of dis-
ease burden and complications and are often sponsored by patient advocacy groups, 
rather than academia or industry. In common diseases, the registry data can truly 
support evidence-based medicine and comparative research. Cystic fi brosis (CF) 
has had a registry for 40 years that has supported various studies which collectively 
contributed to tripling the life expectancy for patients with CF. Diabetes has an 
extensive network of registries in Europe that have been in existence for over 
30 years; more recently, the United States has started to develop such a network, 
primarily for monitoring diabetes in the young. The cumulative effect of these reg-
istries has provided evidence of a rapid increasing trend in both type 1 and type 2 
diabetes worldwide with the greatest increases in the very young. This has provided 
impetus to increase research funding to both determine preventative strategies and 
therapeutic interventions to reduce the complications of this debilitating disease. 

 A search on   ClinicalTrials.gov     (which likely excludes most nonresearch regis-
tries hosted by patient support and advocacy organizations) will show more than 
700 registries, and a PubMed search on treatments in many diseases will show the 
role of registries is identifying genes, comorbidities, life expectancy, and quality of 
life. The numbers of registries are expected to grow over the next few decades – 
largely due to relative ease of both design and maintenance owed to innovative 
information technology. Changing roles of patients and successful business models 
for patient advocacy groups are facilitating the development of patient registries to 
support research activities and funding. While registries are an important tool for 
clinical research, the diversity of sponsors and objectives has lead to confusion 
regarding the legal and operational defi nitions, their subsequent evaluation, and the 
best practices for the use and interpretation of registry data. 

   Defi nition 

 A patient  registry  is defi ned as an organized program for the collection, storage, 
retrieval, and dissemination of a clearly defi ned set of data collected on identifi able 
individuals for a specifi c purpose; the collected data are termed  patient registry 

http://ClinicalTrials.gov
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data . This extends previous registry defi nitions by viewing a registry as not only a 
database but also as a systematic data collection program  [  1–  3  ] . Although there are 
various defi nitions for patient registries in the public health literature, there is a 
general consensus that the term registry implies follow-up and change in status of 
cases over time  [  4,   5  ] . 

 As shown in Fig.  13.1 , patient registries have three broad types of inclusion cri-
teria: disease (or condition or syndrome), exposure (e.g., medical or surgical treat-
ment, medical devices, environmental), and patient characteristics (e.g., genetic, 
twin, sibling, healthy controls). Disease and exposure registries are the most com-
mon types of registries, but the number of patient characteristics–based registries is 
increasing each year due to a surge of new genetic registries. The annotated data 
records associated with biological repositories (“biobanks”) also can be thought of 
as registries of patient characteristics (usually genetic) with a biological data collec-
tion component – and the presence of these collections is growing rapidly  [  6–  9  ] .   

   History 

 The fi rst known disease registries go back several hundred years with registries in 
leprosy and tuberculosis  [  10–  12  ] . The emergence of chronic diseases has sparked a 
persistent proliferation of patient registries since the 1950s  [  4  ] . A recent review 
article found over 43,000 articles in the scientifi c literature (2000) referring to reg-
istries  [  13  ] . Cancer-specifi c registries grew explosively from 32 registries in 1966 to 
449 cancer registries representing fi ve continents in 2006  [  14  ] . 

 Patient registries are often the fi rst step in estimating prevalence or incidence and 
building a cause for future research and facilitating enrollment in trials. Genetic 
sequencing has lead to the identifi cation of new diseases, which in turn has spawned 
the creation of numerous disease-specifi c patient advocacy groups that demand 
funding new disease-specifi c registries in rare diseases. While registries were fi rst 
born from government departments to support core public health functions, many 
successful and large registries have since been established by patient-driven organi-
zations. The creation of a registry is not merely a rite of passage to get a disease “on 
the map” for funding priority but has become a fundamental early step in the under-
standing of the natural history of disease, development of clinical endpoints, 

Patient Registries
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(disease or pre-disease)

Exposure
(location, drugs,

procedures,
environmental)

Patient
Characteristics

(genetic, twin, sibling,
biorepository, healthy

volunteers)

Inclusion
Criteria:

  Fig. 13.1    Types of patient registries       
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 monitoring trends, patient-reported outcomes, and baseline data to support formal 
evaluations of therapeutic interventions. In the United States, the NIH and the FDA 
are actively recruiting special interest groups to develop registries in parallel to the 
identifi cation of disease assays and drug compounds  [  15  ] . 

 Concerns about the safety of new drugs (especially biologics with uncertain long-
term outcomes – e.g., thalidomide, human growth hormone), and desire for large-
scale, real-world safety and effi cacy data on marketed drugs (as well as combination 
therapies), have fueled the growth of patient registries for use in postmarketing activ-
ities. The use of registries for postmarket monitoring (phase 4 studies) of approved 
drug products has increased in recent years. Under the Food and Drug Administration 
Amendments Act of 2007 (FDAAA) in the United States, the FDA can mandate 
postapproval requirement studies and risk mitigation and evaluation systems (REMS) 
as a condition of approval for new products with potential safety issues  [  16  ] .  

   Characterization of Registries, Their Uses, and General 
Requirements 

 The unending proliferation of registries and the need for global research coopera-
tion create a situation desperate for standards and best practices for patient registry 
projects  [  17  ] . The large number of registries, and the various purposes and stake-
holders for each, complicates any attempts to inventory, standardize, or prescribe 
good design features for patient registries in general. There have been a few attempts 
to characterize types of registries by their data source [local hospital, regional 
(~multiple hospitals), and population-based (~multiple data sources)  [  18  ] ] or by the 
database and data characteristics  [  13  ] . Characterizations of registries by purpose 
may simply delineate registries as either clinical or research  [  4  ] , or by more detailed 
purposes  [  19  ]  which inspired the characterization we present in this chapter. Others 
consider the manifold impact of registries as supporting the classic medical school 
triad of research, service, and teaching  [  20  ] . 

 We present a characterization of registries by purposes and suggest some essen-
tial requirements to support various purposes. As displayed in Table  13.1 , registry 
uses can fall into six (nonexclusive) categories of usage: public health, health ser-
vices research, health promotion, patient care, clinical research, and regulatory 
(public safety). Based upon the primary purpose of the registry, the columns depict 
whether the selected primary registry function necessarily dictates an  absolute  
requirement for: completeness of case ascertainment, extensive clinical data, verifi -
cation of data validity, and follow-up. The table is designed to indicate which types 
of registries need this to fulfi ll stated functions in any capacity. For example, while 
clearly verifi cation of data validity and completeness of case ascertainment is a 
desirable feature for any registry, for some purposes (e.g., the use of registry for 
scientifi c or epidemiologic investigation), the verifi cation of data and assurance of 
complete case capture is of utmost importance, where as in other applications, such 
as advertising for clinical trials, the lack of data verifi cation or incomplete case 
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ascertainment does not impede the registry objectives. There are many data quality 
and bias issues, mostly related to case ascertainment, data validity, and follow-up, 
which limit the utility of registry data for various purposes. In the next section, we 
describe the major limitations and biases associated with patient registries.   

   Table 13.1    Purpose of registry and essential requirements   

 Essential requirements 

 Purpose 

 Completeness 
of case 
ascertainment 

 Clinical data a  
(beyond 
diagnosis or 
procedure) 

 Verifi cation 
of data 
validity 

 Follow-up 
data 

  Public health (“population-based”)  
 Population surveillance  Yes  No  Yes  No 
 Contact notifi cation  Yes  No  No  No 
 Patient compliance (for management 

of infectious diseases) 
 Yes  Yes  Yes  Yes 

 Planning (community and service)  Yes  No  No  No 
 Policy  Yes  No  No  No 
  Health services research  
 Evaluation of healthcare/education 

delivery 
 Yes  Yes  Yes  No 

 Facilitate health utilization treatment 
patterns 

 Yes  No  Yes  Yes 

 Monitoring health services  Yes  No  No  No 
 Measuring healthcare quality  No  Yes  Yes  Yes 
  Health promotion tools and 

education  
 Patient education notifi cations  No  No  No  No 
 Physician education notifi cations  No  No  No  No 
 Aggregate data for patient education/

support 
 No  No  No  No 

  Patient care  
 Chronic disease management  No  Yes  Yes  Yes 
 Vaccination  Yes  No  No  Yes 
  Clinical research – funding 

and support  
 Research funding decisions  No  No  No  No 
 Research planning and design  No  No  No  No 
 Cohort selection  No  Yes  Yes  No 
 Recruitment – outreach to patients  No  No  No  No 
  Clinical research – scientifi c inquiry  
 Cross-sectional  Yes  Yes  Yes  No 
 Longitudinal  Yes  Yes  Yes  Yes 
  Regulatory  
 Safety of agents (postmarketing)  Yes  Yes  Yes  Yes 
 Effi cacy of agents 

(postmarketing; phase 4) 
 Yes  Yes  Yes  Yes 

   a Clinical data – additional data beyond the data elements required for determining eligibility for 
the registry. Eligibility is determined either by disease, exposure, or patient characteristics  
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   Data Quality, Bias, and Limitations of Patient Registry Data 

 Developers of registries and potential users of registry data must be keenly aware of 
the inherent limitations of certain registry designs for certain functions, particularly 
in the exploration of research questions involving treatment evaluation. A registry 
must have high-quality data to be useful for any research purpose. Two fundamental 
concerns related to gauging the quality of registry data include completeness of case 
ascertainment and validity of values for each data point  [  4  ] . Timeliness of data has 
also been noted as a quality indicator  [  14  ] . For registries requiring follow-up data, 
the proportion of follow-up obtained and the nature of cases lost to follow-up must 
be provided and considered for any interpretation of registry data. 

   Completeness of Registry 

 Disease registries for epidemiologic purposes are largely designed to ascertain cases 
of a specifi c disease for public health surveillance and planning. The primary met-
rics used are incidence and prevalence of a disease. Completeness of case ascertain-
ment for infrequent or rare disorders is an essential measure to determine the 
accuracy of the true incidence or prevalence in a population. The idea behind any 
registry endeavor is that the registry is a tool to either count or characterize health 
or disease characteristics in a  sampled  population, with the intent to extrapolate 
those results back to a larger or different population. The completeness of case 
ascertainment (i.e., the inclusion of all cases in the sample area time or place) there-
fore has implications for the conclusions and the extrapolations made to the general 
population. 

 The capture-recapture methodology has long been the “gold standard” for deter-
mining completeness of case ascertainment. Originally, this method was fi rst used 
in wildlife biology to study fi sh and wildlife populations  [  21,   22  ] . The simplistic 
model was used to estimate the unknown size of ecological populations. In human 
populations, the capture-recapture methodology still utilizes the two-mode ascer-
tainment model (e.g., physician provider versus hospital data), although multiple 
models can be employed  [  23  ] . Cases are identifi ed from multiple sources, where a 
source is defi ned as any location where a case was reported. Using the various sources, 
cases are matched to identify duplicate ascertainment across sources. The sources 
are grouped into “modes” of ascertainment. The capture-recapture method is used 
to estimate the size of the unknown total population with a specifi c disease (condi-
tion or exposure) by capturing them in one mode and recapturing them in another 
mode(s). Based on the assumption that the probability of capturing cases in both 
modes would be equal to the probability of capturing cases in each mode, the num-
ber of missed cases can be estimated and the completeness assessed  [  24  ] . The per-
cent completeness of ascertainment is defi ned as the number of observed cases 
divided by the estimated number by capture-recapture methodology.  
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   Types of Error and Biases Associated with Registry Data 

 There are two types of measurement error that can affect the accuracy in estimation: 
random and systematic. Random error is unpredictable and is associated with pre-
cision. It often leads to inconsistency in repeated measures. This type of error is 
usually due to chance alone. Systematic errors are biases in a measurement that 
distort the measured values from the actual values. There are many sources of 
systematic error, such as instrument calibration, environmental changes, and pro-
cedure changes. Methods for the collection of certain data, such as anthropomet-
ric or genetic, may change over time and introduce error based on a specifi c time 
period of collection. Alternatively, if a specifi c genetic test with inaccuracy is 
used to determine a case for all subjects in a registry, there still would be error, but 
the error would be constant. In any registry application, it is important to identify 
the possible sources of error and assess the impact the error will have on interpret-
ing the results. 

  Bias  is “any systematic error in the design, conduct or analysis of a study that 
results in a mistaken estimate of an exposure’s effect on the risk of disease”  [  25  ] . 
Selection and information bias are the two main biases that affect registries. 
Selection biases are distortions that result from procedures used to select subjects 
for the registry or from factors that infl uence participation or inclusion  [  26  ] . One 
example is  self-selection bias  (also called healthy-worker/volunteer effect), where 
“healthier” participants disproportionally enroll in the registry, creating a false 
impression that the burden of disease is less or that the survival is increased. For 
epidemiological purposes, it is diffi cult to use registries to estimate population-
based rate estimates – especially for rare diseases – because most rare disease 
registries are based on self-selection or hospital-based data collection. In this 
situation, it is diffi cult to determine a denominator of “at-risk” subjects because 
only those cases seen at the hospital or through self-selection are included in the 
registry. This type of bias will create distorted characteristics of the case popula-
tion when looking at registry data.  Information bias  results from systematic errors 
in the measurement of either the exposure or the disease. Sources of this bias 
include poor questionnaire/survey design, data collection procedures (“inter-
viewer bias”), selective recollection of exposures (“recall bias”), and imprecise 
diagnostic procedures. 

 Although both selection and information biases impact the estimates produced 
from registry data, the degree of their effect depends on how the data were collected. 
If the degree of inaccuracy of the registry selection (i.e., inclusion) or the data col-
lection is uniform across the sample, then it is nondifferential in that it affects the 
entire monitoring process rather than just a specifi c piece of the process. This type 
of bias predominately underestimates the result. However, if the inaccuracy of the 
data differs across the population, such that for example, those who are selected 
differ from those that are not included in the registry, then the bias is differential and 
can impact any interpretations of the registry data as a whole. These impacts are 
diffi cult to disentangle without using methods to control for confounding. 
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  Misclassifi cation  is a type of bias generally associated with categorical or 
discrete variables. This type of bias is usually introduced into registries by inaccura-
cies or variation in methods of data acquisition and case    or exposure defi nitions, as 
mentioned above. This bias can be differential or nondifferential depending on how 
it affects the values of other variables associated with the variable of interest. 
Differential misclassifi cation is dependent upon the values of other variables (e.g., 
a case defi ned in a hospital would not be defi ned the same in an outpatient setting). 
This type of bias can skew any summary data from the registry. Nondifferential 
misclassifi cation does not depend on the values of other variables, such that the 
misclassifi cation of an exposure, for example, is not dependent upon the disease 
status. 

 Changes in the diagnostic criteria for a disease can affect the comparability of 
cases in a registry over time.  Lead-time bias , for example, results from advances in 
testing (e.g., disease-specifi c genetic screening and testing) that lead to an earlier 
identifi cation of disease. Patients can theoretically join a registry before symptoms 
even begin and represent “healthier” individuals than in previous years. Any exami-
nation of data characteristics (types of treatment, symptoms, survival time) could 
show an improvement over time that is not necessarily attributable to effective med-
ical care but rather to the fact that the cases are being identifi ed earlier in the disease 
process. Similarly, technologies that can identify diseases noninvasively or earlier in 
the course of disease can infl uence the number of cases detected and markedly 
infl ate the number of new cases, creating the false impression that the incidence of 
the disease is increasing. 

 With increases in genetic determination of disease and improvements in testing 
quality and sensitivity, the comparability of registry cases over time is a persistent 
issue for patient registries. Collection of information specifi c to the method of 
diagnosis, including detailed testing information, can facilitate future analyses of 
the data. Of course, the volume of data collection comes with a cost in terms of 
resources and rate of participation, so the data elements that can preserve context 
of each registry case must be chosen carefully. Some of these elements are gener-
alizable across diseases (   e.g., date of test, nature of test (clinical or molecular), 
type of person making diagnosis (clinical specialty)), but most elements of value 
in understanding disease diagnosis over time are, predictably, disease specifi c. 
Therefore, it is diffi cult to ascribe a standard set of data elements. Certainly, the 
data collection elements for a patient registry must be chosen carefully and 
reviewed often. 

  Variability  is a random bias that may attenuate true associations in epidemio-
logic measures but is not intrinsically fatal to certain registry objectives. Within-
subject variability tends to average out for repeated measures (e.g., blood ammonia 
test for urea cycle disorders), whereas observer/measurement variability can vary 
on its overall effect on the measure of interest. This variability is usually random 
but can be systematic if different observers or instruments are introduced or not 
properly trained or calibrated. To reduce systematic bias, it is important to make 
sure that observers or data collection instruments observe or measure data consis-
tently from all subgroups of the sampled population. Thoughtful design of data 
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collection elements and protocols – driven by multidisciplinary team of disease 
experts, measurement experts, and informatics professionals – can at least collect 
enough data to identify, characterize, and control for variability in registry data 
over time. 

  Sensitivity  estimates how successful a registry is at identifying all of the events, 
cases, or exposures in the target population. Sensitivity is the probability that a sub-
ject who is truly diseased (or exposed in case of exposure registries) will be classi-
fi ed as such by the method used for ascertainment. The level of sensitivity is based 
on the purpose of the registry. If the registry is purely to monitor trends in disease, 
then a low sensitivity is satisfactory. However, if the purpose is to assess the distri-
bution or impact of a therapy, then high sensitivity is needed.   

   Best Practices for Patient Registries in Rare Diseases Research 

 The unending proliferation in registries is driving a need for registry best practices. 
Based upon the limitations mentioned above, we can adopt some general guide-
lines, mostly from the public health practice literature  [  1  ] , for fi rst determining the 
appropriateness of a patient registry for a given purpose and best practice for devel-
oping and maintaining various types of patient registries. Foci should be on methods 
that maximize and quantify the level of case ascertainment and limit (or measure) 
the presence of the biases discussed earlier. 

   Evaluate Alternatives 

 Before even considering a registry, the motivations and long-term commitment 
must be thoroughly explored. Costs for even a simple administrative registry can 
be expensive. Long-term, multinational registries that capture clinical data can 
employ dozens to hundreds of people at tremendous expense. More effi cient and 
cheaper alternatives to registries, such as cross-sectional surveys or short-term or 
limited catchment studies, should always be considered before establishing a new 
patient registry. Particular caution should be exercised in opening new registries 
when the primary motivation is epidemiological. The epidemiologic usefulness of 
a registry increases the longer it has been in existence, often meaning that data 
collection, documentation, and quality control activities be conducted for many 
years before a register becomes fully productive for epidemiological purposes  [  2  ] . 
As a general rule, patient registries require continual funding and long-term com-
mitment and should be undertaken only with strong assurance that the registry 
will be needed and will be funded for years or decades into the future. As sum-
marized by Wedell in a 1973 review: “The critical question is: can this be done 
any other way?” If the answer is “yes,” then registry planners should consider 
them heavily  [  27  ] .  
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   General Methodology and Best Practices 

 Based upon the intended purpose, certain functionality and best practices will be 
required. Broadly, the functionalities relate to those presented in Table  13.1 : com-
pleteness of case ascertainment, type of data collected, verifi cation of data validity, 
and patient follow-up. The development of registry procedures and data specifi ca-
tions depend upon the goals of the registry and the stakeholders involved. General 
stages in the development of a registry projects are presented below. 

   Develop and Document Explicit Goals for the Registry 

 The ideal design and scope of a registry data collection system is determined by its 
intended purpose and funding. Once decided that the development of a new registry 
is warranted, the fi rst step is to develop clarity and consensus on the goals for the 
registry. Any registry endeavor should start with a clear description of the purpose, 
which should be vetted through and consensually agreed upon by various stakehold-
ers. Stakeholders for patient registries include patients and families, clinicians, 
genetic counselors, industry, patient advocacy groups (often multiple), and regula-
tory agencies – especially if the registry is being developed to support future drug 
development and approval. The US FDA has encouraged researchers and patient 
groups to incorporate “regulatory suffi ciency” into registry design, with the assump-
tion that the data collected in registries will support the evaluation of treatments in 
therapeutic trials. Of particular importance is the development of clinical end points 
that will be acceptable to regulatory agencies at the time of premarketing drug 
research. Therefore, it is benefi cial to engage in dialogue with regulators regarding 
the appropriateness of various proposed registry data points for future phase 2 and 
3 trials in a given disease area. 

 It is particularly important to note the differences between etiological and thera-
peutic research, as well as the inherent limitations of registries and observational 
research designs for the latter  [  28  ] . For any comparison of treatment effectiveness, 
the randomized clinical trial remains the ideal, and perhaps the only credible, means 
for conclusion – despite the logistic and ethical challenges  [  29,   30  ] . The need for 
randomization emerges from the likely presence of patient-or care-related charac-
teristics that are subtle, complex, and unknown and not easily subject to quantifi ca-
tion. These characteristics, then, act as confounders and potentially mask any 
attempts at comparison. In practice, whenever a rational indication for intervention 
exists, confounders are likely  [  30  ] . 

 However, the use of registries for observational research is often the only practi-
cal research strategy. In these cases, it is important to consider the sampling and bias 
issues, carefully select appropriate comparison groups, and collect adequate data to 
compare relevant differences between groups. This is particularly vital in exposure 
registries  [  31  ] . Although registry data can be a good source for patient identifi cation 
to conduct a randomized clinical trial or observation study, it is important that the 
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registry design is clearly understood before patients are selected and associated 
medical data are used.  

   Develop Leadership Structure and Policies for Data Storage, 
Protection, and Access 

 Once the purpose and goals of the registry are clearly defi ned, then issues of data 
ownership and security need to be addressed. These issues affect the enrollment of 
individuals in the registry and need to be clearly disclosed to all potential registry 
participants, as part of the informed consent process. Before any data are collected, 
a data sharing and release policy needs to be developed and documented, and a 
governance structure for the registry will be required. It is critical to have this in 
place to ensure that registry data are protected but also disseminated to trusted par-
ties for review and action. Technical solutions for registry transactions and relevant 
data security should be driven by the policies and requirements set forth by registry 
leaders. 

 This issue of leadership and governance is particularly important now as regis-
tries are being hosted and marketed by commercial interests outside of traditional 
research models (e.g., 23 and Me, Inc., PatientsLikeMe) with business models and 
patients-as-customers driving them  [  32  ] .  

   Develop Adequate Infrastructure 

 A registry should be conceptualized as a multidisciplinary endeavor, and the skills 
of a multidisciplinary team are crucial. Registry efforts should include active 
involvement of epidemiologists and biostatisticians as well as technical and infor-
matics specialists. The multidisciplinary team should engage in discussions on the 
best approach to capture the most valid data on the most cases (or the most repre-
sentative cases) possible. The goals of the registry will be both the driver and the 
benchmark for measuring success and will drive iterative discussions on the design 
and operation of the registry.  

   Identify Data Sources 

 The scope, purpose, and funding commitment of the registry also infl uence deci-
sions about data source (e.g., medical record abstraction, patient self-report) and 
the aggressiveness of follow-up. The limited resources that are true of any registry 
project are weighted against the strengths and weaknesses of various data sources. 
All possible data sources, including existing sources such as death records, related 
registries or epidemiologic studies, and healthcare records, should be listed and 
considered at this phase. Small pilot investigations or review of previous work can 
help determine the suitability of the data source to meet the purpose of the registry 
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will be required. Some data sources that are suitable for applications in prevalent 
diseases will have particular limitations for rare diseases. For example, although 
mortality data are often a good data source for chronic disease epidemiology, 
these data are not suitable for rare diseases, many of which are undiagnosed or 
“lost” in the death certifi cate coding system that lumps various rare diseases under 
a more general heading “other.” For epidemiological prevalence studies in gen-
eral, the use of multiple data sources is preferred to fully understand the disease 
activity in a given region and might be required for many rare diseases. For most 
rare disease registry projects, there may not be any existing data collection sources 
that are appropriate, and new organizational mechanisms for recruitment, enroll-
ment, data collection, and follow-up will need to be devised. If the registry data 
are to be used as if they were collected from a prospective longitudinal hypothe-
sis–driven study, then the rigor, documentation, enforcement, and validation of 
registry data collection should be subject to the same methodological consider-
ation as a rigorous natural history study. In this regard, registry developers should 
consult established clinical research methods and best practices  [  33  ] . A detailed 
research protocol is required for registries developed specifi cally for postmarket 
approval studies  [  16  ] .  

   Identify Inclusion/Exclusion Criteria, Including Case Defi nitions 

 Standardization of data defi nitions and clinical diagnostic criteria is critical to ensure 
valid and reliable data for all registry purposes. More detailed examination of rep-
resentative subsamples might be conducted to validate large survey results, and 
feedback of the results of validity tests are the primary objectives for registry devel-
opers. For exposure-based registries, the length or circumstances of the exposure 
and the method for determining it (e.g., patient report, public records, pharmacy 
data) will need to be outlined. With genetic registries, the test method needs to be 
specifi ed clearly. It is particularly important to standardize and clearly document 
inclusion criteria and data collection. As diagnostic methods change over time, 
combining cohorts becomes diffi cult because the case populations have changed. In 
these cases, analysts are forced to use the “weakest” case defi nition that can be 
derived for all registry cohorts.  

   Sampling and Surveillance Methods 

 Passive and active surveillance are two alternative approaches to identifying cases. 
Passive surveillance is the approach where the registry does not contact possible 
reporters directly but rather leaves the reporting to others, such as mandated or sys-
tematic monitoring system (i.e., physicians are mandated to report cases of infl u-
enza or cancer). Active or epidemiological surveillance is an approach where the 
party conducting ascertainment initiates procedures to obtain data through tele-
phone calls, mailers, or visits with physicians or hospitals. Based on the method of 
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surveillance, bias can be introduced. Passive surveillance is most likely affected by 
systematic error due to its standard monitoring process, whereas active surveillance 
is most affected by selection bias. Internet-based registries where patients self-select 
to enroll are considered passive surveillance and are affected by both systematic 
bias and selection bias. When doing surveillance, whether active or passive, it is 
important that the approach used is consistent and documented in detail. 

 In registries designed for epidemiologic research, it is necessary to check regu-
larly the completeness of case ascertainment – both to evaluate the effectiveness of 
the outreach and to understand any biases that will affect data interpretation. 
Eligibility and data collection from each registry case must be collected in a stan-
dard manner. Observations on the characteristics of (diseased) cases should be com-
pared with data on the general population (from census, special population surveys, 
or by matched control studies)  [  2  ] . With genetic registries, the test method will need 
to be specifi ed clearly, with the understanding that tests will change, metrics of the 
tests are questionable, and variability between labs will exist.  

   Design Data Collection Instruments 

 The most basic and important piece of all registries is the design of the data collec-
tion tool, which usually is a data collection form or patient-directed survey. The 
content of the form (i.e., the data collected) is, of course, driven by the goals and 
resources of the registry. Most registries capture disease, exposure, demographic, 
severity, and treatment information, as well as some identifi cation number or means 
to uniquely identify patients and prevent duplicate records in the registry. Important 
data to include for rare diseases are genetic factors to establish genotype-phenotype 
correlations, family history, concomitant medications, and medical or surgical inter-
ventions. The data to be collected in a survey tool must be specifi c to the objectives 
of the study and associated analyses to be conducted. One tendency that investiga-
tors should be deterred from is trying to collect or measure too much. Data collec-
tion is a tedious and time-consuming process, so it is important to limit metrics that 
are of secondary importance. 

 As discussed in detail in Chap.   11    , each variable included for measurement 
should have an operational defi nition and documented procedures for collection. 
This will reduce bias and increase validity and repeatability of the fi ndings from an 
analytical standpoint. It is very important that data collection instruments are stan-
dardized across settings or regions (e.g., countries) and that the defi nitions used to 
identify a case represent the “standard” or conventions used in the reporting 
community. 

 Procedures for data quality and completeness should be developed before data 
collection begins and evaluated regularly. This might include training and testing of 
observers/data entry staff and the use of standard or clinical reference material 
which all data collection centers can calibrate to. Periodic review of the data can 
identify data elements or system features that need refi nement to produce quality or 
complete data. 
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 The costs for clinical data collection are huge, and many registries are considering 
patient-reported data as an alternative. Future studies will illuminate which types of 
data can be reliably reported by patients (e.g., quality of life, functioning, family 
history). Additionally, future studies might provide insight regarding methods for 
verifying patient-reported data, thereby increasing the validity of the data while still 
utilizing economically viable data sources  [  34  ] .  

   Plan Follow-Up Data Collection Procedures 

 Perhaps one of the most expensive registry activities is the collection of follow-up 
data. The frequency and method of follow-up are infl uenced by both the purpose of 
the registry and the resources available. A statistical analysis plan should be devel-
oped at the design phase of the registry. Inconsistent follow-up procedures and suc-
cess can lead to signifi cant bias and affect the interpretation of registry data. In 
addition to aiming for complete patient follow-up, registry developers will need to 
characterize those lost to follow-up.  

   Continually Reevaluate Purpose and the Registry 

 Communication between registry stakeholders and registry leadership (both gover-
nance and implementers) is vital to a registry, and there should be continuous dia-
logue between all interested parties throughout the life of a registry. There is an 
inevitable trade-off between limited time and resources and the amount and quality 
of the data, and this must be recognized by registry stakeholders and leadership. The 
value of a registry must be reexamined periodically to ensure that the objectives are 
still relevant and obtainable  [  27  ] . A plan or criteria for closing the registry should be 
specifi ed at the start of the project  [  31  ] .    

   Data Standards 

 Standards should certainly be given priority and consideration at the design of any 
registry project. Because data standards are continually evolving, there are ongoing 
opportunities for disease investigators and activists to engage in standards develop-
ment activities. There are currently no standards for developing registry programs, 
systems, or data collection instruments, although existing registries, particularly 
cancer registries, can provide valuable experience. The US Agency for Healthcare 
Quality and Research commissioned a comprehensive report on the role of patient 
registries for scientifi c, clinical, and policy purposes  [  17  ] . This report, recently 
updated as of this writing, provides the most comprehensive and relevant set of best 
practices for registry design and framework for assessing quality of registry data for 
evaluating patient outcomes. A critical and largely unaddressed problem for 
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 registries is the need for tools that allow registry data collection forms and their 
component questions and answers to be encoded in such a way that they can be 
retrieved for reuse (e.g., to support the rapid development of another related rare 
disease registry) or that the collected data can be interoperable with other data 
sources (e.g., personal health records or electronic medical records). This is the 
focus of several data element repository applications, including the Patient Registry 
Item Specifi cation and Metadata (PRISM) project for standardizing data elements 
for rare disease registries and the Consensus Measures for Phenotypes and Exposures 
(PhenX) funded by the National Human Genome Research Institute (NHGRI) to 
contribute to the integration of genetics and epidemiologic research – specifi cally to 
support standards for genotype-phenotype correlation studies. 

 Broad areas of standardization that need to be considered when developing a 
registry include the choice of data content and structure. Specifi cally, a data model 
(~data fi elds) and associated controlled terminologies must be selected. These of 
course must address the objectives of the registry, but also enable any interoperabil-
ity needs that might conceivably emerge in the future, and follow standard regula-
tions where applicable. Both of these requirements are vague and dynamic, so it is 
impossible to prescribe a universal set of standards. The dominant discussion forums 
for moving toward clinical research data standards that support applied uses are the 
Clinical Data Standards Interchange Consortium (CDISC) and the Regulated 
Clinical Research (RCRIM) Technical Committee of Health Level Seven (HL7). 
Compelling use cases for shared clinical and research data drove the development 
of the BRIDG domain analysis model as a shared model to harmonize both sets of 
standards  [  35  ] . New and forthcoming pilot projects sponsored by HL7 and CDISC 
that demonstrate the use of common data elements and the BRIDG for specifi c 
therapeutic areas (e.g., cardiovascular, tuberculosis, and diabetes) should be moni-
tored and explored as a source of standardized questions for rare disease registries 
 [  35–  37  ] . Similarly, the most recent CDASH recommendations are promising in 
terms of standardizing form and section names (e.g., patient characteristics form, 
concomitant medication form, medical history form)  [  38  ] . 

 Useful standardization of registry data collection forms should enable unambig-
uous, consistent, and reliable reuse of questions, answers, and groups of question/
answer sets among different registries. Standards for the representation of common 
sets of questions and answers are maturing (e.g., CDISC/CDASH, caDSR/caBIG), 
though implementation is still not common and their encoding with standard termi-
nologies is not done consistently  [  36,   37  ] . Semantic encoding of data elements (i.e., 
question + answer + defi nition) is very prone to intercoder variability  [  38,   39  ]  and 
makes consistent querying based on these “standard” codes diffi cult and 
unreliable. 

 Previous research and the current US federal standard for standardized assess-
ment instruments have shown that a combination of standards (specifi cally 
LOINC + SNOMED CT) is ideal to represent fi rst the structural and generic features 
of questions and then the clinical content  [  40  ] . Promising feasibility studies have 
been conducted on small samples of questions in nursing, mental health, and public 
health  [  41–  43  ] . Other standards, such as a recent (December 2008) standards 
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 recommendations put forth by the American Health Information Community’s 
(AHIC) Family Health History Multi-Stakeholder Workgroup to the Offi ce of the 
National Coordinator (ONC) can identify data elements for family history data col-
lection, although controlled terminology such as SNOMED CT has not yet been 
incorporated into the standard  [  44  ] . 

 One of the most important constraints for rare disease registries is coding and 
classifi cation – both for fi nding related registries and linking them to other relevant 
data sources. There is no global “master index” of registries, so it is hard to know 
if a new registry is duplicating work or could be an extension of an existing pro-
gram. Registry participation could be increased if people/physicians could be aware 
of all registry opportunities and not asked to submit data to separate but related 
registries. There is a need for standards to “organize” or inventory registries. The 
Orphanet project in Europe (  http://www.orpha.net/consor/cgi-bin/ResearchTrials_
ParticipateClinicalResearch.php?lng=EN    ) maintains a database of rare disease reg-
istries in European and surrounding countries, although it is unclear how perfect 
the inventory is considering the need for continuous data collection and the fact that 
the system is voluntary. Registries can be included in various trial registers (dis-
cussed in detail in Chap.   20    ), but the coverage is not complete.  

   Ethical and Policy Issues 

 There are several important ethical and policy considerations that need to be explored 
for registries that will operate in a multinational context. This is especially clear in 
the EU, where a mix of policies – at the regional, national, and European level – 
regarding consent and data sharing are diffi cult to navigate  [  3  ] . The variety of dis-
parate regulations not only govern general consent, research, data collection 
methods, and privacy issues, but also dictate which data elements can be collected 
and how patients can be recruited. Because of the confusion, several groups have 
gotten together to assimilate these resources  [  3,   45–  47  ] , though we must point out 
this is a dynamic area in need of continuous reexamination. 

 Rare diseases, some with very visible phenotypes and small numbers of affected 
individuals, are especially vulnerable to possible identifi cation. The increasing 
availability of electronic data with which to link to individuals in a registry has 
enabled the capture of data beyond the registry data set. This has been demonstrated 
in cancer by combining registry data with treatment and clinical data from health 
insurance records  [  48  ]  and hospital data  [  49  ] , and socioeconomic status from census 
data  [  50  ] . In  deidentifi ed data , all explicit identifi ers, such as Social Security num-
ber, name, or address, are removed or replaced with an alternative. Deidentifying 
data does not guarantee that the result is anonymous, however.  Anonymous data  
imply that the data cannot be manipulated or linked to identify any individual  [  51  ] . 
“Privacy” is emerging as a scientifi c discipline that includes mathematics and 
computer science to help address today’s privacy-technology confl icts – including 
the prevention of reidentifi cation from combining multiple seemingly innocent 

http://www.orpha.net/consor/cgi-bin/ResearchTrials_ParticipateClinicalResearch.php?lng=EN
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data sources  [  51,   52  ] . The creation and use of special algorithms, techniques, and 
qualifi ed oversight are especially critical for rare diseases to prevent the identifi ca-
tion of cases by association with other data sets. 

 An outstanding question that remains unanswered is the identifi cation of who is 
best suited to host a registry and control the data. The notion of patients (via patient 
advocacy organizations) “owning” their data collection is gaining popularity and 
with some good reason. However, the resources, expertise, and governance struc-
ture of these groups vary tremendously, and all might not be ready for the demands 
and responsibilities of data stewardship. There has been little work to explore the 
nature and organizational characteristics of different patient organizations. Patient 
organizations are exempt from some regulations such as HIPAA, although the use 
of registries for research purposes does constitute research involving human sub-
jects and is subject to those regulations. The summary of a recent multiperspective 
and EU-wide meeting on the topic of registries (funded by the European Commission 
Public Health Directorate) called for a code of conduct for patient organizations, 
academic researchers, policy makers, and the industry regarding the use of health 
information in biomedical research  [  3  ] .  

   Future of Registries 

 The future of registries will continue to be shaped by the changing models of regis-
try sponsorship, the availability of technical tools to support registry development 
and patient access to registry participation, and the development of policy to support 
global cooperation in medical research. The availability of computer technology has 
contributed to the proliferation of registries and infl uenced their evolution. Over the 
past decades, there has been more direct use of registries for patient care including 
chronic disease management, delivery of best practice guidelines to both patients 
and providers, and quality care on both institutional and community levels  [  17  ] . In 
addition, we are seeing computer technology impact the nature and scope of registry 
data by affecting the collection (i.e., new sources), the volume, the quality (e.g., 
verifi cation by using multiple sources), the promotion (e.g., social networking), and 
follow-up (e.g., customized reminders for data updates or corrections). 

 The transparency of systems and processes enabled by information technology 
can enable patients to consent to their information being part of a registry and allow 
them to specify preferences regarding how their data are used over time. Implied in 
that consent, and enabled by information technology, is the monitoring and control 
of the data. Patients can remove consent any time, leaving registry holders continu-
ously accountable. New technologies, if designed to support thoughtful and proac-
tive patient-oriented policies, can enable patient-controlled sharing of electronic 
health record (EHR) data direct from healthcare providers or from patient-managed 
personal health records (PHR). PHRs might someday contribute a rich source of 
patient-reported information to registries that would include various disease- specifi c 
outcomes and measures of functioning and quality of life – arguably of central 
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importance to rare disease research. One assumption of PHRs is that they provide 
data that are complete and closest to the patient. Data streams from physiologic or 
device measures could also be incorporated. 

 Social networking tools (e.g., MySpace, Facebook) are playing a growing role in 
the promotion and recruitment of registries. In rare diseases, coping with multiple 
languages will be a growing challenge. New applications are enabling patients to 
view aggregate data from similar patient communities, creating emergent needs for 
guidance on the presentation and appropriateness and utility of these ventures. 
Patient advocacy groups and vendors can analyze data to share with patient com-
munities but should be cautioned as to how the data are displayed or used. As men-
tioned earlier, registry data are generally inappropriate for comparing treatments, 
and any presentation of registry data for this purpose could be misleading and per-
haps dangerous. 

 Advances in technology, standards, global communication, and policy will be 
needed to support expanded use and functionality of patient registries in the future. 
Technology and tools are needed to enable the rapid development of registries and 
to maximize participation by reducing response burden and enabling high-quality 
data collection. Standards are required to enable sharing of content and technology 
across registry efforts and to enable the reuse of data from clinical settings or patient 
reports. In that sense, registry standards must be compatible with healthcare, though 
we are likely to see a certain synergy of standards as the eligibility criteria for clini-
cal trials begin to drive the type and strategy of data collection in EHRs and health-
care settings. As noted in other research activities, multinational cooperation is 
needed for consistent or complementary policies for data stewardship and patient 
privacy and data collection so that registries can enable global research and patient 
safety. There is broad support for registries as a means to complement clinical 
research and patient care, and with rigorous design and informatics involvement, 
registries can gain prominence within the hierarchies of evidence that are used to 
support patient guidelines and policy.      
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  Abstract   Ontologies have become important tools in biomedicine, supporting 
 critical aspects of both health care and biomedical research, including clinical 
research. Some even see ontologies as integral to science. Unlike terminologies 
(focusing on naming) and classifi cation systems (developed for partitioning a 
domain), ontologies defi ne the types of entities that exist, as well as their 
 interrelations. And while knowledge bases generally integrate both defi nitional and 
assertional knowledge, ontologies focus on what is always true of entities, i.e., 
 defi nitional knowledge. In practice, however, there is no sharp distinction between 
these kinds of artifacts, and  ontology  has become a generic name for a variety of 
knowledge sources with important differences in their degree of formality,  coverage, 
richness, and computability. In this chapter, we focus on those ontologies of 
 particular relevance to clinical research. After a brief introduction to ontology 
 development and knowledge representation, we present the characteristics of some 
of these ontologies. We then show how ontologies are integrated in and made acces-
sible through knowledge repositories and illustrate their role in clinical research.  

  Keywords   Knowledge representation  •  Biomedical ontologies  •  Research  metadata 
ontology  •  Data content ontology  •  Ontology-driven knowledge bases  •  Data 
 integration  •  Computer reasoning      

 Ontologies have become important tools in biomedicine, supporting critical aspects 
of both health care and biomedical research, including clinical research  [  1  ] . Some 
even see ontologies as integral to science  [  2  ] . Unlike terminologies (focusing on 
naming) and classifi cation systems (developed for partitioning a domain), ontolo-
gies defi ne the types of entities that exist, as well as their interrelations. And while 
knowledge bases generally integrate both defi nitional and assertional knowledge, 
ontologies focus on what is always true of entities, i.e., defi nitional knowledge  [  3  ] . 
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In practice, however, there is no sharp distinction between these kinds of artifacts, 
and  ontology  has become a generic name for a variety of knowledge sources with 
important differences in their degree of formality, coverage, richness, and comput-
ability  [  4  ] . In this chapter, we focus on those ontologies of particular relevance to 
clinical research. After a brief introduction to ontology development and knowledge 
representation, we present the characteristics of some of these ontologies. We then 
show how ontologies are integrated in and made accessible through knowledge 
repositories and illustrate their role in clinical research. 

   Ontology Development 

 Ontology development has not yet been formalized to the same extent as, say, data-
base development has, and there is still no equivalent for ontologies to the entity-
relationship model. However, ontology development is guided by fundamental 
ontological distinctions and supported by the formalisms and tools for knowledge 
representation that have emerged over the past decades. Several top-level ontologies 
provide useful constraints for the development of domain ontologies, and one of the 
most recent trends is increased collaboration among the creators of ontologies for 
coordinated development. 

   Important Ontological Distinctions 

 A small number of ontological distinctions inherited from philosophical ontology 
provide a useful framework for creating ontologies. The fi rst distinction is between 
types and instances. Instances correspond to individual entities (e.g., my left kidney, 
the patient identifi ed by 1,234), while types represent the common characteristics of 
sets of instances (e.g., a  kidney  is a bean-shaped, intra-abdominal organ – properties 
common to all kidneys)  [  5  ] . Instances are related to the corresponding types by the 
relation  instance of . For example, my left kidney is an  instance of  kidney. (It must 
be noted that most biomedical ontologies only represent types in reference to which 
the instances recorded in patient records and laboratory notebooks can be anno-
tated.) Another fundamental distinction is between continuants and occurrents  [  6  ] . 
While continuants exist (endure) through time, occurrents go through time in phases. 
Roughly speaking, objects (e.g., a liver, an endoscope) are continuants, and pro-
cesses (e.g., the fl ow of blood through the mitral valve) are continuants. One fi nal 
distinction is made between independent and dependent continuants. While the kid-
ney and its shape are both continuants, the shape of the kidney  owes  its existence to 
the kidney (i.e., there cannot be a kidney shape unless there is a kidney in the fi rst 
place). Therefore, the kidney is an independent continuant (as most objects are), 
whereas its shape is a dependent continuant (as are qualities, functions, and disposi-
tions, all dependent on their bearers). These distinctions are important for ontology 
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developers because they help organize entities in the ontology and contribute to 
consistent ontology development, both within and, more importantly for interoper-
ability, across ontologies.  

   Building Blocks: Top-Level Ontologies and Relation Ontology 

 These ontological distinctions are so fundamental that they are embodied by top-level 
ontologies such as Basic Formal Ontology  [  7  ]  (BFO) and Descriptive Ontology for 
Linguistic and Cognitive Engineering  [  8  ]  (DOLCE). Such upper-level ontologies are 
often used as building blocks for the development of domain ontologies. Instead of 
organizing the main categories of entities of a given domain under some artifi cial root, 
these categories can be implemented as specializations of types from the upper-level 
ontology. For example, a protein is an independent continuant, the catalytic function 
of enzymes is a dependent continuant, and the activation of an enzyme through phos-
phorylation is an occurrent. Of note, even when they do not leverage an upper-level 
ontology, most ontologies implement these fundamental distinctions in some way. For 
example, the fi rst distinction made among the semantic types in the Unifi ed Medical 
Language System (UMLS) Semantic Network  [  9  ]  is between  entity  and  event , roughly 
equivalent to the distinction between continuants and occurrents in BFO. While BFO 
and DOLCE are generic upper-level ontologies, Bio-Top  [  10  ]  – itself informed by 
BFO and DOLCE – is specifi c to the biomedical domain and provides types directly 
relevant to this domain, such as  chain of nucleotide monomers  and  organ system . BFO 
forms the backbone of several ontologies which form the open biomedical ontologies 
(OBO) family, and Bio-Top has also been reused by several ontologies. Some also 
consider the UMLS Semantic Network, created for categorizing concepts from the 
UMLS Metathesaurus, an upper-level ontology for the biomedical domain  [  9  ] . 

 In addition to the ontological template provided for types by upper-level ontolo-
gies, standard relations constitute an important building block for ontology develop-
ment and help ensure consistency across ontologies. The small set of relations 
defi ned collaboratively in the Relation Ontology  [  5  ] , including  instance of ,  part of , 
and  located in , has been widely reused.  

   Formalisms and Tools for Knowledge Representation 

 Many ontologies use description logics for their representation. Description logics 
(DLs) are a family of knowledge representation languages, with different levels of 
expressiveness  [  11  ] . The main advantage of using DL for ontology development is 
that DL allows developers to test the logical consistency of their ontology. This is 
particularly important for large biomedical ontologies. Ontologies, including Epoch 
Clinical Trial Ontologies (CTO), Ontology of Clinical Research (OCRe), Ontology 
for Biomedical Investigations (OBI), Systematized Nomenclature of Medicine – 
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Clinical Terms (SNOMED – CT), National Drug File – Reference Terminology 
(NDF – RT), and the NCI (National Cancer Institute) Thesaurus, discussed later in 
this chapter, all rely on some sort of description logic (DL) for their development. 

 Ontologies are key enabling resources for the Semantic Web, the “web of data,” 
where resources annotated in reference to ontologies can be processed and linked 
automatically  [  12  ] . It is therefore not surprising that the main language for repre-
senting ontologies, the Web Ontology Language (OWL), has its origins in the 
Semantic Web. OWL is developed under the auspices of the World Wide Web 
Consortium (W3C). The current version of the OWL specifi cation is OWL 2, which 
offers several profi les (sublanguages) corresponding to different levels of expressiv-
ity and support of DL languages  [  13  ] . Other Semantic Web technologies, such as 
RDF/S (Resource Description Framework Schema)  [  14  ]  and Simple Knowledge 
Organization System (SKOS)  [  15  ] , have also been used for representing taxonomies 
and thesauri, respectively. 

 The OWL syntax can be overwhelming to biologists and clinicians, who simply 
want to create an explicit specifi cation of the knowledge in their domain. The devel-
opers of the Gene Ontology created a simple syntax later adopted for the develop-
ment of many ontologies from the OBO family. The so-called OBO syntax  [  16  ]  
provides an alternative to OWL, to which it can be converted  [  17  ] . 

 The most popular ontology editor is Protégé, developed at the Stanford Center for 
Biomedical Informatics Research for two decades  [  18,   19  ] . Originally created for 
editing frame-based ontologies, Protégé now supports OWL and other Semantic 
Web languages. Dozens of user-contributed plug-ins extend the standalone version 
(e.g., for visualization, reasoning services, support for specifi c data formats), and the 
recently developed web version of Protégé supports the collaborative development 
of ontologies. Originally created to support the development of the Gene Ontology, 
OBO-Edit now serves as a general ontology editor  [  20,   21  ] . Simpler than Protégé, 
OBO-Edit has been used to develop many of the ontologies from the Open Biomedical 
Ontologies (OBO) family. Rather than OWL, OBO-Edit uses a specifi c format, the 
OBO syntax, for representing ontologies. Both Protégé and OBO-Edit are open-
source, platform independent software tools. Other ontology editors related to some 
of the ontologies presented in this chapter include Apelon’s proprietary Terminology 
Development Environment (TDE), based on the description logics KRSS and used 
for the development of NDF-RT, and the International Health Terminology Standards 
Development Organisation (IHTSDO) Workbench, an open-source, freely available 
editing environment created for the collaborative development of SNOMED CT.  

   Open Biomedical Ontologies Foundry 
and Other Harmonization Efforts 

 Two major issues with biomedical ontologies are their proliferation and their lack of 
interoperability. There are several hundreds of ontologies available in the domain of 
life sciences, some of which overlap partially but do not systematically  cross-reference 
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equivalent entities in other ontologies. The existence of multiple representations for 
the same entity makes it diffi cult for ontology users to select the right ontology for 
a given purpose and requires the development of mappings between ontologies to 
ensure interoperability. Two recent initiatives have offered different solutions to 
address the issue of uncoordinated development of ontologies. 

 The OBO Foundry is an initiative of the Open Biomedical Ontologies (OBO) 
consortium, which provides guidelines and serves as coordinating authority for the 
prospective development of ontologies  [  22  ] . Starting with the Gene Ontology, the 
OBO Foundry has identifi ed kinds of entities for which ontologies are needed and 
has selected candidate ontologies to cover a given subdomain, based on a number of 
criteria. Granularity and fundamental ontological distinctions form the basis for 
identifying subdomains. For example, independent continuants (entities) at the 
molecular level include proteins (covered by the protein ontology), while macro-
scopic anatomical structures are covered by the Foundational Model of Anatomy. In 
addition to syntax, versioning, and documentation requirements, the OBO Foundry 
guidelines prescribe that OBO Foundry ontologies be limited in scope to a given 
subdomain and orthogonal. This means, for example, that an ontology of diseases 
referring to anatomical structures as the location of diseases (e.g.,  mitral valve 
regurgitation   has location   mitral valve ) should cross-reference entities from the 
reference ontology for this domain (e.g., the Foundational Model of Anatomy for 
 mitral valve ), rather than redefi ne these entities. While well adapted to coordinating 
the prospective development of ontologies, this approach is extremely prescriptive 
and virtually excludes the many legacy ontologies used in the clinical domain, 
including SNOMED CT and the NCI Thesaurus. 

 The need for harmonization, i.e., making existing ontologies interoperable and 
avoiding duplication of development effort, has not escaped the developers of large 
clinical ontologies. The International Health Terminology Standard Development 
Organization (IHTSDO), in charge of the development of SNOMED CT, is leading 
a similar harmonization effort in order to increase interoperability and coordinate 
the evolution of legacy ontologies and terminologies, including Logical Observation 
Identifi ers Names and Codes (LOINC, for laboratory and clinical observations), the 
International Classifi cation of Diseases (ICD), and the International Classifi cation 
for Nursing Practice (ICNP, for nursing diagnoses)  [  23  ] .   

   Ontologies of Particular Relevance to Clinical Research 

 Broadly speaking, clinical research ontologies can be classifi ed into those that 
model the characteristics (or metadata) of the clinical research and those that model 
the data contents generated as a result of the research  [  24  ] . Research metadata 
ontologies center around characteristics like study design, operational protocol, and 
methods of data analysis. They defi ne the terminology and semantics necessary for 
formal representation of the research activity and aim to facilitate activities such as 
automated management of clinical trials and cross-study queries based on study 
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design, intervention, or outcome characteristics. Ontologies of data content focus 
on explicitly representing the information model of and data elements (e.g., clinical 
observations, laboratory test results) collected by the research, with the aim to 
achieve data standardization and semantic data interoperability. Some examples of 
the two types of ontology will be described in more detail. Finally, examples of 
ontology-driven knowledge bases for translational research will be presented 
briefl y. 

   Research Metadata Ontology 

 A survey of the public repository of ontologies in the Open Biomedical Ontologies 
(OBO) library hosted by the National Center of Biomedical Ontology (see below) 
yielded three ontologies that fi t the description of research metadata ontology. These 
are the Epoch Clinical Trial Ontologies (CTO), Ontology of Clinical Research 
(OCRe), and Ontology for Biomedical Investigations (OBI). 

   Epoch Clinical Trial Ontologies 

 CTO is a suite of ontologies that encodes knowledge about clinical trials. The use of 
this ontology is demonstrated in the integration of software applications for the 
management of clinical trials under the Immune Tolerance Network  [  25  ] . By build-
ing an ontology-based architecture, the disparate clinical trial software applications 
can share essential information to achieve interoperability for effi cient management 
of the trials and analysis of trial data. CTO is made up of the following component 
ontologies:

    1.    Clinical trial ontology – the overarching ontology that covers protocol specifi ca-
tion and operational plan  

    2.    Protocol ontology – the knowledge model of the clinical trial protocol  
    3.    Organization ontology – supports the specifi cation of study sites, laboratories, 

and repositories  
    4.    Assay ontology – models characteristics of tests (e.g., specimen type, workfl ow 

of specimen processing)  
    5.    Labware ontology – models the laboratory entities (e.g., specimen containers)  
    6.    Virtual trial data ontology – models the study data being collected (e.g., partici-

pant clinical record, specimen workfl ow log)  
    7.    Constraint expression ontology – models logical and temporal constraints  
    8.    Measurement ontology – models physical measurements and units of 

measurement     

 There are three stated goals of CTO: to support tools which help acquire and 
maintain knowledge about protocol and assay designs, to drive data collection dur-
ing a trial, and to facilitate implementation of querying methods to support trial 
management and  ad hoc  data analysis. A clinical trial protocol authoring tool has 
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been developed based on CTO  [  26  ] . The ability to map from CTO to the Biomedical 
Research Integrated Domain Group (BRIDG) information model has been demon-
strated  [  27  ] .  

   Ontology of Clinical Research 

 While the main use case of CTO is in the automation of design and workfl ow man-
agement of clinical research, the primary aim of OCRe is to support the annotation 
and indexing of human studies to enable cross-study comparison and synthesis  [  28  ] . 
Developed as part of the Trial Bank Project, OCRe provides terms and relationships 
for characterizing the essential design and analysis elements of clinical studies. 
Domain-specifi c concepts are covered by reference to external vocabularies. 
Workfl ow related characteristics (e.g., schedule of activities) and data structure 
specifi cation (e.g., schema of data elements) are not within the scope of OCRe. 

 The three core modules of OCRe are:

    1.    Clinical module – the upper-level entities (e.g., clinician, study subject)  
    2.    Study design module – models study design characteristics (e.g., investigator 

assigned intervention, external control group)  
    3.    Research module – terms and relationships to characterize a study (e.g., outcome 

phenomenon, assessment method)     

 OCRe entities are mapped to the Basic Formal Ontology (BFO).  

   Ontology for Biomedical Investigations 

 Unlike CTO and OCRe whose creations are rooted in clinical research, the origin of 
OBI is in the molecular biology research domain  [  29  ] . The forerunner of OBI is the 
MGED Ontology developed by the Microarray Gene Expression Data Society for 
annotating microarray data. Through collaboration with other groups in the 
“OMICS” arena such as the Proteomics Standards Initiative (PSI) and Metabolomics 
Standards Initiative (MSI), MGED Ontology was expanded to cover proteomics and 
metabolomics and was subsequently renamed Functional Genomics Investigation 
Ontology (FuGO)  [  30  ] . The scope of FuGO was later extended to cover clinical and 
epidemiological research and biomedical imaging, resulting in the creation of OBI, 
which aims to cover all biomedical investigations  [  31  ] . 

 Another difference between OBI and the other two ontologies is the collabora-
tive approach to its development. As OBI is an international, cross-domain initia-
tive, the OBI Consortium draws upon a pool of experts from many fi elds, including 
even fi elds outside biology such as environmental science and robotics. The goal of 
OBI is to build an integrated ontology to support the description and annotation of 
biological and clinical investigations, regardless of the particular fi eld of study. OBI 
also uses the BFO as its upper-level ontology, and all OBI classes are a subclass of 
some BFO class. OBI covers all phases of the experimental process and the entities 
or concepts involved, such as study designs, protocols, instrumentation, biological 
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material, collected data, and their analyses. OBI also represents roles and functions 
which can be used to characterize and relate these entities or concepts. Specifi cally, 
OBI covers the following areas:

    1.    Biological material – e.g., blood plasma  
    2.    Instrument – e.g., microarray, centrifuge  
    3.    Information content – e.g., electronic medical record, biomedical image  
    4.    Design and execution of an investigation – e.g., study design, electrophoresis  
    5.    Data transformation – e.g., principal components analysis, mean calculation     

 For domain-specifi c entities, OBI makes reference to other ontologies such as 
Gene Ontology (GO) and Chemical Entities of Biological Interest (ChEBI). The 
ability of OBI to adequately represent and integrate different biological experimen-
tal processes and their components has been demonstrated in examples from several 
domains, including neuroscience and vaccination.   

   Data Content Ontology 

 While there are relatively few metadata ontologies, there is a myriad of ontologies 
that cover research data contents. Unlike metadata ontologies, in this group, the 
distinction between ontologies, terminologies, classifi cations, and code sets often 
gets blurred. Three ontologies are chosen for more detailed discussion here: the 
National Cancer Institute Thesaurus (NCIT), Systematized Nomenclature of 
Medicine – Clinical Terms (SNOMED CT), and National Drug File Reference 
Terminology (NDF-RT). These are chosen because they are arguably closer to the 
ontology end of the ontology-vocabulary continuum than most other artifacts in this 
category, and their content areas are most relevant to clinical research. All of them 
have concept-based organization with a rich network of interconcept relationships 
and use description logic formalism in content creation and maintenance. All three 
ontologies are available through the Unifi ed Medical Language System (UMLS) 
and the BioPortal ontology repositories (see below). 

   National Cancer Institute Thesaurus 

 The National Cancer Institute Thesaurus (NCIT) is developed by the US National 
Cancer Institute (NCI). It arose initially from the need for an institution-wide com-
mon terminology to facilitate interoperability and data sharing by the various com-
ponents of NCI  [  32–  34  ] . NCIT covers clinical and basic sciences as well as 
administrative areas. Even though the content is primarily cancer centric, since can-
cer research spans a broad area of biology and medicine, NCIT can potentially serve 
the needs of other research communities. Due to its coverage of both basic and clini-
cal research, NCIT is well positioned to support translational research. NCIT is the 
reference terminology for the NCI’s Cancer Biomedical Informatics Grid (caBIG) 
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and other related projects. It is also one of the US federal standard terminologies 
designated by the Consolidated Health Informatics (CHI) initiative. 

 NCIT contains about 80,000 concepts organized into 19 disjoint domains. 
A  concept is allowed to have multiple parents within a domain. NCIT covers the 
following areas:

    1.    Neoplastic and other diseases  
    2.    Findings and abnormalities  
    3.    Anatomy, tissues, and subcellular structures  
    4.    Agents, drugs, and chemicals  
    5.    Genes, gene products, and biological processes  
    6.    Animal models of disease  
    7.    Research techniques, equipment, and administration     

 NCIT is updated monthly. It is in the public domain under an open content license 
and is distributed by the NCI in OWL format.  

   Systematized Nomenclature of Medicine – Clinical Terms 

 SNOMED CT was originally developed by the College of American Pathologists. 
Its ownership was transferred to the International Health Terminology Standards 
Development Organisation (IHTSDO) in 2007 to enhance international governance 
and adoption  [  35  ] . There are currently 17 member countries including USA, United 
Kingdom, Canada, Australia, Netherlands, Sweden, and Spain. SNOMED CT is the 
most comprehensive clinical terminology available today, with almost 300,000 
active concepts. The concepts are organized into 19 disjoint hierarchies. Within 
each hierarchy, a concept is allowed to have multiple parents. Additionally, 
SNOMED CT provides a rich set of associated relations (across hierarchies), which 
form the basis for the logical defi nitions of its concepts. The principal use of 
SNOMED CT is to encode clinical information (e.g., diseases, fi ndings, proce-
dures). It also has comprehensive coverage of drugs, organisms, and anatomy. 
SNOMED CT is a CHI-designated US Federal terminology standard. It is also one 
of the named terminology standards for the problem list in the “meaningful use” 
criteria for the Electronic Health Record published by the US Department of Health 
and Human Services  [  36,   37  ] . SNOMED CT is updated twice yearly. The use of 
SNOMED CT is free in all IHTSDO member countries, in low-income countries as 
defi ned by the World Bank, and for qualifi ed research projects in any country. 
SNOMED CT is available in proprietary release format from the National Release 
Centers of the IHTSDO member countries.  

   National Drug File Reference Terminology 

 NDF-RT is developed by the US Veteran Health Administration (VA) as an exten-
sion to their National Drug File, which is the master list of drugs prescribed to VA 
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patients. In addition to drug names, ingredients, dose forms, and strengths, NDF-RT 
contains hierarchies for the chemical structure, mechanism of action, physiologic 
effect, and therapeutic intent of drugs. There is also a disease hierarchy to which 
drugs may be linked through roles such as  may _ treat ,  may _ prevent , and 
 may _ diagnose . NDF-RT contains about 4,000 drugs at the ingredient level. The 
coverage of NDF-RT has been evaluated using data outside of the VA system and 
found to be adequate  [  38,   39  ] . NDF-RT is in the public domain and is updated 
monthly  [  40  ] . It is available in XML and OWL formats. NDF-RT has recently been 
integrated with RxNorm and is now available through RxNav and its application 
programming interfaces (APIs)  [  41  ] .   

   Ontology-Driven Knowledge Bases for Translational Research 

 Several ontology-driven knowledge bases have been developed in the past few 
years for translational research purposes. On the one hand, there are traditional 
data warehouses created through the Clinical and Translational Science Awards 
(CTSA) program and other translational research efforts. Such warehouses include 
BTRIS  [  42  ] , based on its own ontology, the Research Entity Dictionary, and 
STRIDE  [  43  ] , based on standard ontologies, such as SNOMED CT and RxNorm. 
On the other hand, several proof-of-concept projects have leveraged Semantic 
Web technologies for translational research purposes. In the footsteps of a demon-
stration project illustrating the benefi ts of integrating data in the domain of 
Alzheimer’s disease  [  44  ] , other researchers have developed knowledge bases for 
cancer data (leveraging the NCI Thesaurus)  [  45  ]  and in the domain of nicotine 
dependence (using an ontology developed specifi cally for the purpose of integrat-
ing publicly available datasets)  [  46  ] . The Translational Medicine Knowledge 
Base, based on the Translational Ontology, is a more recent initiative developed 
for answering questions relating to clinical practice and pharmaceutical drug dis-
covery  [  47  ] .   

   Ontology Repositories 

 Because most biomedical terminologies and ontologies are developed by different 
groups and institutions independently of each other and made available to users in 
heterogeneous formats, interoperability among them is generally limited. In order to 
create some level of semantic interoperability among ontologies and facilitate their 
use, several repositories have been created. Such repositories provide access to inte-
grated ontologies through powerful graphical and programming interfaces. This 
section presents the two largest repositories: the Unifi ed Medical Language System 
(UMLS) and the BioPortal. 
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   Unifi ed Medical Language System 

 The US National Library of Medicine (NLM) started the Unifi ed Medical Language 
System (UMLS) project in 1986. One of the main goals of UMLS is to aid the 
development of systems that help health professionals and researchers retrieve and 
integrate electronic biomedical information from a multitude of disparate sources 
 [  48–  51  ] . One major obstacle to cross-source information retrieval is that the same 
information is often expressed differently in different vocabularies used by the vari-
ous systems, and there is no universal biomedical vocabulary. Knowing that to dic-
tate the use of a single vocabulary is not realistic, the UMLS circumvents this 
problem by creating links between the terms in different vocabularies. The UMLS 
is available free of charge. Users need to acquire a license because some of the 
UMLS contents are protected by additional license requirements  [  52  ] . Currently, 
there are over 3,000 UMLS licensees in more than 50 countries. The UMLS is 
released twice a year. 

   Unifi ed Medical Language System Knowledge Sources 

 The Metathesaurus of the UMLS is a conglomeration of a large number of terms 
that exist in biomedical vocabularies. All terms that refer to the same meaning (i.e., 
synonymous terms) are grouped together in the same UMLS concept. Each UMLS 
concept is assigned a permanent unique identifi er (the concept unique identifi er, 
CUI), which is the unchanging pointer to that particular concept. This concept-
based organization enables cross-database information retrieval based on  meaning , 
independent of the lexical variability of the terms themselves. In the 2010AB 
release, the UMLS Metathesaurus incorporates 153 source vocabularies and includes 
terms in 20 languages. There are two million biomedical concepts and eight million 
unique terms. The Metathesaurus also contains relationships between concepts. 
Most of these relationships are derived from relationships asserted by the source 
vocabularies. To edit the Metathesaurus, the UMLS editors use a sophisticated set 
of lexical and rule-based matching algorithms to help them focus on areas that 
require manual review. 

 The Semantic Network is another resource in the UMLS. The Semantic Network 
contains 133 semantic types and 54 kinds of relationship between the semantic 
types. The Semantic Network is primarily used for the categorization of UMLS 
concepts  [  9  ] . All UMLS concepts are assigned at least one semantic type. The 
semantic relationships represent the possible relationships between semantic types, 
which may or may not hold true at the concept level. A third resource in the UMLS 
is the SPECIALIST Lexicon and the lexical tools. The SPECIALIST Lexicon is a 
general English lexicon that includes over 450,000 lexical items. Each lexicon entry 
records the syntactic, morphological, and orthographic information that can be used 
to support activities such as natural language processing of biomedical text. 
The  lexical tools are designed to address the high degree of variability in natural 
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 language words and terms. Normalization is one of the functions of the lexical tools 
that helps users to abstract away from variations involving word infl ection, case, and 
word order  [  53  ] .  

   Unifi ed Medical Language System Tooling 

 The UMLS is distributed as a set of relational tables that can be loaded in a database 
management system. Alternatively, a web-based interface and an application pro-
gramming interface (API) are provided. The UMLS Terminology Services (UTS) is 
a web-based portal that can be used for downloading UMLS data, browsing the 
UMLS Metathesaurus, Semantic Network, and SPECIALIST Lexicon, and access-
ing the UMLS documentation. Users of the UTS can enter a biomedical term or the 
identifi er of a biomedical concept in a given ontology, and the corresponding UMLS 
concept will be retrieved and displayed, showing the names for this concept in vari-
ous ontologies, as well as the relations of this concept to other concepts. For exam-
ple, a search on “Addison’s disease” retrieves all names for the corresponding 
concept (C0001403) in 56 ontologies (version 2010AB, as of April 2011), including 
SNOMED CT, the NDF-RT, and several translations of the International Classifi cation 
of Primary Care. Each ontology can also be navigated as a tree. In addition to the 
graphical interface, the UTS also offers an application programming interface (API) 
based on SOAP (Simple Object Access Protocol) web services. This API provides 
access to the properties and relations of Metathesaurus concepts, as well as seman-
tic types and lexical entries. Most functions of the UTS API require UMLS creden-
tials to be checked in order to gain access to UMLS data. Support for user 
authentication is provided through the UTS API itself.  

   Unifi ed Medical Language System Applications 

 The UMLS provides convenient one-stop access to diverse biomedical vocabular-
ies, which are updated as frequently as resources allow. One important contribution 
of the UMLS is that all source vocabularies are converted to a common schema of 
representation, with the same fi le structure and object model. This makes it much 
easier to build common tools that deal with multiple vocabularies, without the need 
to grapple with the native format of each. Moreover, this also enhances the under-
standing of the vocabularies as the common schema abstracts away from variations 
in naming conventions. For example, a term may be called “preferred name,” “dis-
play name,” or “common name” in different vocabularies, but if they are determined 
to mean the same type of term functionally, they are all referred to as “preferred 
term” in the UMLS. 

 One common use of the UMLS is interterminology mapping. The UMLS con-
cept structure enables easy identifi cation of equivalent terms between any two 
source terminologies. In addition to mapping by synonymy, methods have been 
reported that create interterminology mapping by utilizing relationships and lexical 
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resources available in the UMLS  [  54  ] . Natural language processing is another 
important use of the UMLS making use of its large collection of terms, the 
SPECIALIST Lexicon and the lexical tools. MetaMap is a publicly available tool 
developed by NLM which aims to identify biomedical concepts in free text  [  55,   56  ] . 
This is often the fi rst step in data mining and knowledge discovery. Other uses of the 
UMLS include terminology research, information indexing and retrieval, and termi-
nology creation  [  57  ] .   

   BioPortal 

 BioPortal is developed by the National Center for Biomedical Ontology (NCBO), 
one of the National Centers for Biomedical Computing, created in 2004. The    goal 
of NCBO is “to support biomedical researchers in their knowledge-intensive work, 
by providing online tools and a Web portal enabling them to access, review, and 
integrate disparate ontological resources in all aspects of biomedical investigation 
and clinical practice.” BioPortal not only provides access to biomedical ontologies, 
but it also helps link ontologies to biomedical data  [  58  ] . 

   BioPortal Ontologies 

 The current version of BioPortal integrates over 250 ontologies for biomedicine, 
biology, and life sciences and includes roughly fi ve million terms. A number of 
ontologies integrated in the UMLS are also present in BioPortal (e.g., Gene 
Ontology, LOINC). However, BioPortal    also provides access to the ontologies from 
the Open Biomedical Ontologies (OBO) family, an effort to create ontologies across 
the biomedical domain. In addition to the Gene Ontology, OBO includes ontologies 
for chemical entities (ChEBI), biomedical investigations (OBI), phenotypic quali-
ties (PATO), and anatomical ontologies for several model organisms, among many 
others. Some of these ontologies have received the “seal of approval” of the OBO 
Foundry (e.g., Gene Ontology and ChEBI). Finally, the developers of biomedical 
ontologies can submit their resources directly to BioPortal, which makes BioPortal 
an open repository, as opposed to the UMLS. Examples of such resources include 
the African Traditional Medicine Ontology and the Electrocardiography Ontology 
and the Ontology of Clinical Research. BioPortal supports several popular formats 
for ontologies, including OWL, OBO format, and the Rich Release Format (RRF) 
of the UMLS.  

   BioPortal Tooling 

 BioPortal is a web-based application allowing users to search, browse, navigate, 
visualize, and comment on the biomedical ontologies integrated in its repository. 
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For example, a search on “Addison’s disease” retrieves the corresponding entries in 
19 ontologies (as of April 2011, restricted to exact matches, including synonyms), 
including SNOMED CT, the Human Phenotype Ontology, and DermLex. 
Visualization as tree or graph is offered for each ontology. The most original feature 
of BioPortal is to support the addition of marginal notes to various elements of an 
ontology, e.g., to propose new terms or suggest changes in relations. Such com-
ments can be used as feedback by the developers of the ontologies and can contrib-
ute to the collaborative editing on ontologies. Users can also publish reviews of the 
ontologies. In addition to the graphical interface, BioPortal also offers an applica-
tion programming interface (API) based on RESTful web services and is generally 
well-integrated with Semantic Web technologies, as it provides URIs for each con-
cept, which can be used as a reference in linked data applications.  

   BioPortal Applications 

 As the UMLS, BioPortal identifi es equivalent concepts across ontologies in its 
repositories (e.g., between the term  listeriosis  in DermLex and in MedlinePlus 
Health Topics). The BioPortal Annotator is a high-throughput named entity recog-
nition system available both as an application and a web service. The Annotator 
identifi es the names of biomedical concepts in text using fast string matching algo-
rithms. While users can annotate arbitrary text, BioPortal also contains a list of 
textual resources, which have been preprocessed with the Annotator, including sev-
eral gene expression data repositories, ClinicatTrials.gov, and the Adverse Event 
Reporting System from the Food and Drug Administration (FDA). In practice, 
BioPortal provides an index to these resources, making it possible to use terms from 
its ontologies to search these resources.   

   Approaches to Ontology Alignment in Ontology Repositories 

 Apart from providing access to existing terminologies and ontologies, the UMLS 
and BioPortal also identify bridges between these artifacts, which will facilitate 
inter-ontology integration or alignment. For the UMLS, as each terminology is 
added or updated, every new term is comprehensively reviewed (by lexical match-
ing followed by manual review) to see if they are synonymous with existing UMLS 
terms. If so, the incoming term is grouped under the same UMLS concept. In the 
BioPortal, equivalence between different ontologies is discovered by a different 
approach. For selected ontologies, possible synonymy is identifi ed through algorith-
mic matching alone (without human review). It has been shown that simple lexical 
matching works reasonably well in mapping between some biomedical ontologies 
in BioPortal, compared to more advanced algorithms  [  59  ] . Users can also contribute 
equivalence maps between ontologies.   
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   Ontology in Action: Uses of Ontologies in Clinical Research 

 To facilitate discussion, the use of ontologies and ontology-based technology in 
clinical research is classifi ed into three major areas: workfl ow management, data 
integration, and computer reasoning  [  1  ] . However, these are not meant to be water-
tight categories (e.g., the ontological modeling of the research design can facilitate 
workfl ow management, as well as data sharing and integration). 

   Research Workfl ow Management 

 In most clinical trials, knowledge about protocols, assays, and specimen fl ow is 
still stored and shared in textual documents and spreadsheets. The descriptors 
used are neither encoded nor standardized. Standalone computer applications are 
often used to automate specifi c portions of the research activity (e.g., trial author-
ing tools, operational plan builders, study site management software). These 
applications are largely independent and rarely communicate with each other. 
Integration of these systems will result in more effi cient workfl ow management, 
improve the quality of the data collected, and simplify subsequent data analysis. 
However, the lack of common terminology and semantics to describe the charac-
teristics of a clinical trial impedes efforts of integration. Ontology-based integra-
tion of clinical trials management applications is an attractive approach. One such 
effort of integration resulted in the creation of CTO (described above) which has 
been applied successfully in the Immune Tolerance Network, a large distributed 
research consortium engaged in the discovery of new therapy for immune-related 
disorders. 

 Another notable effort in the use of ontology in the design and implementa-
tion of clinical trials is the Advancing Clinical Genomic Trials on Cancer (ACGT) 
Project in Europe  [  60  ] . ACGT is a European Union cofunded project that aims at 
developing open-source, semantic, and grid-based technologies in support of 
postgenomic clinical trials in cancer research. One component of this project is 
the development of a tool called Trial Builder to create ontology-based case 
report forms (CRF). The Trial Builder allows the researcher to build CRFs based 
on a master ontology called ACGT Master Ontology (ACGT-MO)  [  61  ] . During 
this process, the metadata of the research is also captured which can be used in 
the automatic creation of the ontology-based data management system. The 
advantage of this approach is that the alignment of research semantics and data 
defi nition is achieved early in the research process, which guarantees easy down-
stream integration of data collected from disparate data sources. The early use of 
a common master ontology obviates the need of a  post hoc  mapping between 
different data and information models, which is time-consuming and error-
prone.  
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   Data Integration 

 In the postgenomic era of research, the power and potential value of linking data 
from disparate sources is increasingly recognized. A rapidly developing branch of 
translational research exploits the automated discovery of association between clin-
ical and genomics data  [  62  ] . Ontologies can play important roles at different strate-
gic steps of data integration  [  63  ] . 

 For most existing data sources, data sharing and integration only occurs as an 
afterthought. To align multiple data sources to support activities such as cross-study 
querying or data mining is no trivial task. The classical approach, warehousing, is 
to align the sources at the  data  level (i.e., to annotate or index all available data by 
a common ontology). When the source data are encoded in different vocabularies or 
coding systems, which is sadly a common scenario, data integration requires align-
ment or mapping between the vocabularies. Resources like the UMLS and BioPortal 
are very useful in such mapping activity. 

 Another approach to data integration is to align data sources at the  metadata  
level, which allows effective cross-database queries without actually pooling data in 
a common database or warehouse. 

 OCRe (described above) is specifi cally created to annotate and align clinical tri-
als according to their design and data analysis methodology. Another effort is 
BIRNLex which is created to annotate the Biomedical Informatics Research 
Network (BIRN) data sources  [  64  ] . The BIRN sources currently include image 
databases ranging from magnetic resonance imaging of human subjects, mouse 
models of human neurologic disease to electron microscopic imaging. BIRNLex 
not only covers terms in neuroanatomy, molecular species, and cognitive processes, 
it also covers concepts such as experimental design, data types, and data prove-
nance. BIRN employs a mediated architecture to link multiple databases. The medi-
ator integrates the various source databases by the use of a common ontology. The 
user query is parsed by the mediator, which issues database-specifi c queries to the 
relevant data sources each with their specifi c local schema  [  65  ] . 

 Other innovative approaches of using ontologies to achieve data integration have 
also been described. One study explored the possibility of tagging research data to 
support real-time meta-analysis  [  66  ] . Another described a prototype system for 
ontology-driven indexing of public datasets for translational research  [  67  ] . 

 One particular form of data integration supported by ontologies is represented by 
what has become known as  Linked Data  in the Semantic Web community  [  68  ] . The 
foundational idea behind Linked Data and the Semantic Web is that resources 
semantically annotated to ontologies can be interrelated when they refer to the same 
entities. In practice, datasets are represented as graphs in RDF, the Resource 
Description Framework, in which nodes (representing entities) can be shared across 
graphs, enabling connections among graphs. Interestingly, a signifi cant portion of 
the datasets currently interrelated as Linked Data consists of biomedical resources, 
including PubMed, KEGG, and DrugBank. For privacy reasons, very few clinical 
datasets have been made publicly available, and no such datasets are available as 
Linked Data yet. However, researchers have illustrated the benefi ts of Semantic 
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Web technologies for translational research  [  44–  47  ] . Moreover, the development of 
personal health records will enable individuals to share their clinical data, and effec-
tive de-identifi cation techniques might also contribute to the availability of clinical 
data, which could enable knowledge discovery through the mining of large volume 
of data. Ontologies support Linked Data in three important ways. Ontologies pro-
vide a controlled vocabulary for entities in the Semantic Web; integrated ontology 
repositories, such as the UMLS and BioPortal, support the reconciliation of entities 
annotated to different ontologies; fi nally, relations in ontologies can be used for 
subsumption and other kinds of reasoning. An active community of researchers is 
exploring various aspects of biomedical linked data as part of the Semantic Web 
Health Care and Life Sciences interest group  [  69  ] , with particular interest in the 
domain of drug discovery through the Linking Open Drug Data initiative  [  70  ] .  

   Computer Reasoning 

 To harness the reasoning power of computers is another important reason to use 
ontologies in clinical research. The use of ontologies to support reasoning is not 
new. The Foundational Model of Anatomy (FMA) has been used to predict the ana-
tomic consequences of penetrating injuries and the physiological consequences of 
injury to the arteries supplying the heart  [  71–  73  ] . 

 The ready availability of enabling tools and utilities like Protégé, Web Ontology 
Language (OWL), and Semantic Web Rule Language (SWRL) makes it easier to 
implement computer reasoning through the use of ontologies. One example is the 
use of Protégé and the accompanying SWRL Temporal Built-In Library in a study 
of quality standards in the management of hypertension by family practitioners 
 [  74  ] . Clinical research often involves chronic patients with multiple comorbidities. 
Hierarchical and temporal types of queries are often necessary. Traditional data 
stored in relational databases cannot easily support queries involving hierarchical 
entities (e.g., all patients with codes related to hypertension) or temporal concepts 
(e.g., all patients with a lapse in antihypertension therapy during a certain period). 
These kinds of queries are often necessary in clinical trials (e.g., identifying sub-
jects that are eligible for a particular study). As illustrated in this study, an ontology-
based approach using readily available tools turned out to be a better solution. 

 Another area of the use of computer reasoning in clinical medicine is clinical 
decision support systems (CDSS). As CDSS become more widely used, it is not 
uncommon to fi nd CDSS to be an important component in clinical research. CDSS 
often rely on ontologies to enable them to do logical reasoning. One example is 
ATHENA, which is an ontology-based inferencing system that encourages blood 
pressure control and recommends guideline-concordant choice of drug therapy in 
relation to comorbid diseases  [  75  ] . The ATHENA ontology specifi es eligibility cri-
teria, risk stratifi cation, blood pressure targets, relevant comorbidities, and preferred 
drugs within each drug class. One special feature of ATHENA is that clinical experts 
themselves can customize the knowledge base to incorporate new evidence or to 
refl ect local interpretation of guideline ambiguities.  
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   The Way Ahead 

 Looking forward, it is encouraging that the value of ontologies in clinical research 
is becoming more recognized. This is evidenced by the increase in the number of 
research teams making use of ontologies. At the same time, this is also accompanied 
by an increase in the number of ontologies, which in itself is a mixed blessing. 
Many researchers still tend to create their own ontologies to suit their specifi c use 
case. Reuse of existing ontologies is only a rarity. If left unchecked, this tendency 
has the potential of growing into the very problem that ontologies are created to 
solve – the multitude of ontologies will itself become the barrier to data interoper-
ability and integration.  Post hoc  mapping and alignment of ontologies is often dif-
fi cult (if not impossible) and an approximation at best (with inherent information 
loss). The solution is to coordinate the development and maximize the reuse of 
existing ontologies, which will signifi cantly simplify things downstream. 

 To facilitate reuse of ontologies, resources like the UMLS and BioPortal are 
indispensable. They enable users to navigate the expanding sea of biomedical ontol-
ogies. In addition to listing and making these ontologies available, what is still lack-
ing is a better characterization of these ontologies to help users decide whether they 
are suitable for the tasks at hand. In case there are multiple candidate ontologies, 
some indicators of quality (e.g., user base, ways in which they are used, user feed-
back and comments) will be very useful to help users decide on the best choice.       
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  Abstract   Clinical information, stored over time, is a potentially rich source of data 
for clinical research. Knowledge discovery in databases (KDD), commonly known 
as data mining, is a process for pattern discovery and predictive modeling in large 
databases. KDD makes extensive use of data mining methods, automated processes, 
and algorithms that enable pattern recognition. Characteristically, data mining 
involves the use of machine learning methods developed in the domain of artifi cial 
intelligence. These methods have been applied to healthcare and biomedical data 
for a variety of purposes with good success and potential or realized clinical transla-
tion. Herein, the Fayyad model of knowledge discovery in databases is introduced. 
The steps of the process are described with select examples from clinical research 
informatics. These steps range from initial data selection to interpretation and eval-
uation. Commonly used data mining methods are surveyed: artifi cial neural net-
works, decision tree induction, support vector machines (kernel methods), 
association rule induction, and k-nearest neighbor. Methods for evaluating the mod-
els that result from the KDD process are closely linked to methods used in diagnos-
tic medicine. These include the use of measures derived from a confusion matrix 
and receiver operating characteristic curve analysis. Data partitioning and model 
validation are critical aspects of evaluation. International efforts to develop and 
refi ne clinical data repositories are critically linked to the potential of these methods 
for developing new knowledge.  

  Keywords   Knowledge discovery in databases  •  Data mining  •  Artifi cial neural 
 networks  •  Support vector machines  •  Decision trees  •   k -Nearest neighbor 
 classifi cation  •  Clinical data repositories      

 Clinical information, stored over time, is a potentially rich source of data for clini-
cal research. Many of the concepts that would be measured in a prospective study 
are already collected in the course of routine healthcare. Based on comparisons of 

    M.  R.   Cummins ,  Ph.D., APRN   
       College of Nursing, University of Utah ,
  10 S 2000 East ,  Salt Lake City ,  UT   84112-5880 ,  USA    
e-mail:  mollie.cummins@utah.edu   

    Chapter 15   
 Nonhypothesis-Driven Research: 
Data Mining and Knowledge Discovery       

       Mollie   R.   Cummins           



278 M.R. Cummins

 treatment effects, some believe well-designed case–control or cohort studies pro-
duce results equally rigorous to that of randomized controlled trials, with lower 
cost and with broader applicability  [  1  ] . While this potential has not yet been fully 
realized, the rich potential of clinical data repositories for building knowledge is 
undeniable. Minimally, analysis of routinely collected data can aid in hypothesis 
generation and refi nement and partially replace expensive prospective data 
collection. 

 While smaller samples of data can be extracted for observational studies of clini-
cal phenomena, there is also an opportunity to learn from the much larger, accumu-
lated mass of data. The availability of so many instances of disease states, health 
behaviors, and other clinical phenomena bears an opportunity to fi nd novel patterns 
and relationships. In an exploratory approach, the data itself can be used to fuel 
hypothesis development and subsequent research. Importantly, one can induce exe-
cutable knowledge models directly from clinical data, predictive models that can be 
implemented in computerized decision support systems  [  2,   3  ] . However, the statisti-
cal approaches used in cohort and case–control studies of small samples are not 
appropriate for large-scale pattern discovery and predictive modeling, where bias 
can fi gure more prominently, data can fail to satisfy key assumptions, and  p  values 
can become misleading. 

 Knowledge discovery in databases (KDD), also commonly known as data min-
ing, is the process for pattern discovery and predictive modeling in large data-
bases. An iterative, exploratory process distinctly differs from traditional statistical 
analysis in that it involves a great    deal of interaction and subjective decision mak-
ing by the analyst. KDD also makes extensive use of data mining methods, which 
are automated processes and algorithms that enable pattern recognition and are 
characteristically machine learning methods developed in the domain of artifi cial 
intelligence. These methods have been applied to healthcare and biomedical data 
for a variety of purposes with good success and potential or realized clinical 
translation. 

   The Knowledge Discovery in Databases Process 

 Casual use of the term  data mining  to describe everything from routine statistical 
analysis of small data sets to large-scale enterprise data mining projects is perva-
sive. This broad application of the term causes semantic diffi culties when attempt-
ing    to communicate about KDD-relevant concepts and tools. Though multiple 
models and defi nitions have been proposed, the terms and defi nitions used in this 
chapter will be those given by Fayyad and colleagues in their seminal overview of 
data mining and knowledge discovery  [  4  ] . The Fayyad model encompasses other 
leading models. Fayyad and colleagues defi ne data mining as the use of machine 
learning, statistical, and visualization techniques algorithms to enumerate patterns, 
usually in an automated fashion, over a set of data. They clarify that data mining is 
one step in a larger knowledge discovery in databases (KDD) process that includes 
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data mining, along with any necessary data preparation, sampling, transformation, 
and evaluation/model refi nement  [  4  ] . The encompassing process, the KDD process, 
is iterative and consists of multiple steps, depicted in Fig.  15.1 . Data mining is not 
helpful or productive in inducing clinical knowledge models outside of this larger, 
essential process. Unless data mining methods are applied within a process that 
ensures validity, the results may prove invalid, misleading, and poorly integrated 
with current knowledge. As Fig.  15.1  depicts, the steps of KDD are iterative, not 
deterministic. While engaging in KDD, fi ndings at any specifi c step may warrant a 
return to previous steps. The process is not sequential, as in a classic hypothetico-
deductive scientifi c approach.  

   Data Selection 

 KDD projects are typically incepted when there is a clinical or operational decision 
requiring a clear and accurate knowledge model or in order to generate promising 
hypotheses for scientifi c study. These projects develop around a need to build 
knowledge or provide some guidance for clinical decision-making. Or lacking a 
particular clinical dilemma, a set of data particularly rich in content and size rele-
vant to a particular clinical question may present itself. However, the relevant data 
is usually not readily available in a single fl at fi le, ready for analysis. Typically, a 
data warehouse must be queried to return the subset of instances and attributes 
containing potentially relevant information. In some cases, clinical data will be 
partially warehoused, and some data will also need to be obtained from the source 
information system(s). 

Selection
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 Just 20 years ago, data storage was suffi ciently expensive, and methods for 
analysis of large data sets suffi ciently immature, that clinical data was not rou-
tinely stored apart from clinical information systems. However, there has been 
 constant innovation and improvement in data storage and processing technology, 
 approximating or exceeding that predicted by Moore’s law. The current availability 
of  inexpensive, high-capacity hard drives and inexpensive processing power is 
 unprecedented. Data warehousing, the long-term storage of data from information 
systems, is now common. Transactional data, clinical data, radiological data, and 
laboratory data are now routinely stored in warehouses, structured to better facili-
tate secondary analysis and layered with analytic tools that enable queries and 
online analytic processing (OLAP). 

 Since clinical data is collected and structured to facilitate healthcare delivery and 
not necessarily analysis, key concepts may be unrepresented in the data or may be 
coarsely measured. For example, a coded fi eld may indicate the presence or absence 
of pain, rather than a pain score. Proxies, other data attributes that correlate with 
unrepresented concepts, may be identifi ed and included. For example, if a diagnosis 
of insulin-dependent diabetes is not coded, one might use insulin prescription (in 
combination with other attributes found in a set of data) as a proxy for Type I diabe-
tes diagnosis. The use of proxy data and the triangulation of multiple data sources 
are often necessary to optimally represent concepts and identify specifi c popula-
tions within clinical data repositories  [  5  ] . A relevant subset of all available data is 
then extracted for further analysis.  

   Preprocessing 

 It is often said that preprocessing constitutes 90% of the effort in a knowledge dis-
covery project. While the source and basis for that adage is unclear, it does seem 
accurate. Preprocessing is the KDD step that encompasses data cleaning and prepa-
ration. The values and distribution of values for each attribute must be closely 
examined, and with a large number of attributes, the process is time consuming. It 
is sometimes appropriate or advantageous to recode values, adjust granularity, 
ignore infrequently encountered values, replace missing values, or to reduce data by 
representing data in different ways. For example, ordinality may be inherent in cat-
egorical values of an attribute and enable data reduction. An example exists in 
National Health Interview Survey data, wherein type of milk consumed is a categor-
ical attribute. However, the different types of milk are characterized by different 
levels of fat content, and so the categorical values can be ordered by % fat content 
 [  6  ] . Each categorical attribute with  n  possible values constitutes  n  binary inputs for 
the knowledge discovery process. By restructuring a categorical attribute like type 
of milk consumed as an ordinal attribute, the values can be represented by a single 
attribute, and the number of inputs is reduced by  n  − 1. If attributes are duplicative 
or highly correlated, they are removed. 

 The distribution of values is also important because highly skewed distributions 
do not behave well mathematically with certain data mining methods. Attributes 
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with highly skewed distributions can be adjusted to improve results, typically 
through normalization. The distribution of values is also important so that the 
investigator(s) is familiar with the representation of different concepts in the data set 
and can determine whether there are adequate instances for each attribute-value 
pair.  

   Transformation 

 Transformation is the process of altering the coded representation of data as input in 
order to reduce dimensionality, or the number of rows and columns. Dimensionality 
reduction is often necessary in order to avoid combinatorial explosion, or simply to 
improve computational effi ciency during knowledge discovery. Combinatorial 
explosion is the vast increase in the number of possible patterns/solutions to a clas-
sifi cation problem that occur with increases in the number of attributes. If a data set 
contains  n  input attributes, the number of possible combinations of attribute-value 
pairs that could be used to predict an outcome = 2  n  . For a mere 16 inputs ( n  = 16), the 
number of possible combinations = 65,536. Every additional input results in 
increased computational demand. For knowledge discovery involving very large 
data sets, it is often necessary to create an alternate representation of the original 
input data, a representation that is computationally more manageable. Methods of 
transformation include wavelet transformation, principal components analysis, and 
automated binning (discretization) of interval attributes.  

   Data Mining 

 Data mining is the actual application of statistical and machine learning methods 
to enumerate patterns in a set of data  [  4  ] . It can be approached in several different 
ways, best characterized by the type of learning task specifi ed. Artifi cial intelli-
gence pioneer Marvin Minsky  [  21  ]  defi ned learning as “making useful changes in 
our minds.” Data mining methods “learn” to predict values or class membership 
by making useful, incremental model adjustments to best accomplish a task for a 
set of training instances. In unsupervised learning, data mining methods are used 
to fi nd patterns of any kind, without relationship to a particular target output. In 
supervised learning, data    mining methods are used to predict the value of an inter-
val or ordinal attribute, or the class membership of a class attribute (categorical 
variable). 

 Examples of unsupervised learning tasks:

   Perform cluster analysis to identify subgroups of patients with similar demo-• 
graphic characteristics.  
  Induce association rules that detect novel relationships among attribute-value • 
pairs in a pediatric injury database.    
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 Examples of supervised learning tasks:

   Predict the blood concentration of    an anesthetic given the patient’s body weight, • 
gender, and amount of anesthetic infused.  
  Predict smoking cessation status based on health interview survey data.  • 
  Predict the severity of medical outcome for a poison exposure, based on patient • 
and exposure characteristics documented at the time of initial call to a poison 
control center.    

 Data mining methods are numerous, and it is important to understand enough 
about each method to use it appropriately. Some methods are highly fl exible, capa-
ble of modeling very complex decision boundaries (artifi cial neural networks, sup-
port vector machines), while other methods are advantageous because they can be 
readily understood (classifi cation and regression trees, association rules). Bayesian 
methods are distinctive in modeling dependencies among data. A comprehensive 
description of data mining methods is beyond the scope of this chapter but can be 
found in any data mining textbook. This chapter includes only a brief description of 
several important methods. 

   Artifi cial Neural Networks 

 Artifi cial neural networks constitute one of the oldest and perpetually useful data 
mining methods. The most fundamental form of an artifi cial neural network, the 
threshold logic unit, was incepted by McCulloch and Pitts at the University of 
Chicago during the 1930s and 1940s as a mathematical representation of frog neu-
ron  [  7  ] . Contemporary artifi cial neural networks are multilayer networks composed 
of processing elements, variations of McCulloch and Pitt’s original TLUs (Fig.  15.2 ). 
Weighted inputs to each processing element are summed, and if they meet or exceed 
a certain threshold value, they produce an output. The sum of the weighted inputs is 
a probability of class membership, and when deployed, the threshold of artifi cial 
neural networks can be adjusted for sensitivity or specifi city.  

 Artifi cial neural networks make incremental adjustments to the weights accord-
ing to feedback of training instances during a procedure for weight adjustment. 
Weight settings are initialized with random values, and the weighted inputs feed a 
network of processing elements, resulting in a probability of class membership and 
a prediction of class membership for each instance. The predicted class membership 
is then compared to the actual class membership for each instance. The model is 
incrementally adjusted, in a method specifi c to one of many possible training algo-
rithms, until all instances are correctly classifi ed or until the training algorithm is 
stopped. Because artifi cial neural networks incrementally adjust until error is mini-
mized, they are prone to overtraining, modeling nuances, and noise in the training 
data set, in addition to valid patterns. In order to avoid overtraining, predictions are 
also incrementally made for a portion of data that has been set aside, not used for 
training. Each successive iteration of weights is used to predict class membership 
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for the holdout data. Initially, successive iterations of weight confi gurations will 
result in decreased error for both the training data and the holdout data. As the arti-
fi cial neural network becomes overtrained, error will increase for the holdout data 
and continue to decrease for the training data. This transition point is also the stop-
ping point and is used to determine the optimal weight confi guration (Fig.  15.3 ).   
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   Decision Trees 

 Decision trees, methods including classifi cation and regression trees (CART) and an 
almost identical method known as C4.5, developed in parallel by Quinlan and others 
in the early 1980s  [  8  ] . These methods are used for supervised learning tasks and 
induce tree-like models that can be used to predict the output values for new cases. In 
this family of decision tree methods, the data is recursively partitioned based on attri-
bute values, either nominal values or groupings of numeric values. A criterion, usu-
ally the information gain ratio of the attributes, is used to determine the order of the 
attributes in the resulting tree. Unless otherwise specifi ed, these methods will induce 
a tree that classifi es every instance in the training data set, resulting in an overtrained 
model. However, models can be post-pruned, eliminating leaves and nodes that han-
dle very few instances and improving the generalizability of the model. 

 Decision trees are readily comprehensible and can be used to understand the 
basic structure of a pattern in data. They are sometimes used in the preprocessing 
stage of data mining to enhance data cleaning and feature subset selection. The use 
of decision tree induction methods early in the KDD process can help identify the 
persistence of rogue variables highly correlated with the output that are inappropri-
ate for inclusion.  

   Support Vector Machines 

 Support vector machine methods were developed by Vapnik and others in the 1970s 
through the 1990s  [  9–  11  ] . Support vector machines, like artifi cial neural networks, 
can be used to model highly complex, nonlinear solutions; however, they require the 
adjustment of fewer parameters and are less prone to overtraining. The method 
implements a kernel transformation of the feature space (attributes and their values) 
then learns a linear solution to the classifi cation problem (or by extension, regres-
sion) in the transformed feature space. The linear solution is made possible because 
the original feature space has been transformed to a higher dimensional space. 
Overtraining is avoided through the use of maximal margins, margins that parallel 
the optimal linear solution and that simultaneously minimize error and maximize 
the margin of separation.  

    k -Nearest Neighbor 

 The  k -nearest neighbor classifi cation method (a common classifi cation method and 
so-called “hot deck” method in missing value imputation) infers binary class mem-
bership on the basis of known class membership for similar instances. The output is 
inferred based on the majority class value for similar instances. This is a relatively 
simple algorithmic approach to classifi cation. It has been shown robust in the pres-
ence of missing values and with large numbers of attributes  [  12  ] . It is a case-based 
reasoning method that learns pattern in the training data only when it is required to 
classify each new testing instance.  
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   Association Rules 

 Association rule induction is a method used for unsupervised learning. This method 
is used to identify if-then relationships among attribute-value pairs of any kind. For 
example, a pattern this algorithm could learn from a data set would be: If 
COLOR = red, then FRUIT = apple. Higher order relationships can also be found 
using this algorithm. For example, If COLOR = red and SKIN = smooth, then 
FRUIT = apple. Relationships among any and all attribute-value combinations will 
be described, regardless of importance. Many spurious relationships will typically 
be described, in addition to meaningful and informative relationships. The analyst 
must set criteria and limits for the order of relationships described, the minimum 
number of instances (evidence), and percentage of instances for which the relation-
ship is true (coverage).  

   Bayesian Methods 

 Bayesian networks (in general) are networks of variables that describe the condi-
tional probability of class membership based on the values of other attributes in the 
data. For example, a Bayesian network to predict the presence or absence of a dis-
ease would model P (disease symptoms). That conditional probability is then used 
to infer class membership for new instances. The structure and probabilities of the 
network can be directly induced from data, and the structure can be specifi ed by 
domain experts with probabilities derived from actual data. These models become 
complex as join probability distributions become necessary to model dependencies 
among input data. Naïve Bayes is the most fundamental form of these methods, in 
which conditional independence between the input variables is assumed (thus the 
descriptor “naïve”).   

   Interpretation and Evaluation 

 For supervised learning tasks, an output is specifi ed, and a predictive model is 
induced. The error of induced models in predicting the output, whether the output is 
a real number or class membership, is used to evaluate the models. These metrics 
can be calculated by applying the model to predict outputs for data where actual 
output is known and comparing the predicted outputs to the actual outputs. For real 
number outputs, the error is the difference between the actual and predicted outputs. 
Error terms, including LMS error and RMSE, are used to quantify error. 

 For class variable outputs, error is misclassifi cation. Each prediction constitutes 
a true positive, true negative, false positive, or false negative, and a confusion matrix 
is constructed from which various accuracy metrics are derived. Many data mining 
methods produce models that calculate a probability of class membership, to which 
a threshold is applied. At any given threshold, the confusion matrix may change. A 
higher threshold will result in fewer false positives, while a lower threshold will 



286 M.R. Cummins

maximize sensitivity. This is advantageous in that the threshold can be adjusted in 
order to optimize these parameters for clinical applications. However, the predictive 
performance of the model cannot be adequately represented by metrics calculated 
with a single threshold confusion matrix. Instead, receiver operating curve (ROC) 
analysis is used. 

 An ROC curve is derived from the confusion matrix, by plotting the true-positive 
fraction vs. the false-positive fraction. Hanley and McNeil  [  13  ]  defi ne the index 
known as the area under the ROC curve as the probability that a randomly chosen 
subject of a given class will be predicted to belong to that class versus a randomly 
chosen subject that does not belong to that class  [  13  ] . ROC analysis originated in 
Great Britain during World War II, as a method of quantifying the ability of subma-
rine sonar operators to distinguish signal indicating the presence of enemy ships. It 
was later adopted in radiology to quantify diagnostic accuracy. A detailed discus-
sion of ROC analysis, specifi c to knowledge discovery and data mining in biomedi-
cal informatics, is found in Lasko et al.  [  14  ] . 

 In order to obtain unbiased estimates of accuracy, it is necessary to calculate 
accuracy of model performance on a set of data that has not been used in training, 
testing, or model selection. This validation data set must be set aside before data 
mining methods are applied. Validation data sets differ from testing data sets. While 
validation data sets are not used during the data mining step, testing data sets are 
used in an interactive fashion to select model parameters and architecture. When 
cross validation is used, each testing instance also serves as a training instance. 
Even if cross validation is not used, and testing data sets do not contribute training 
instances, testing data sets are certainly used to compare and make choices about 
model parameters during the data mining step of the KDD process, so any estimates 
of accuracy calculated using testing data are biased. It is necessary to calculate 
accuracy using an entirely separate body of data, the validation set. Data partition-
ing, the assignment of available instances to training, testing, and validation data 
sets, is critical to interpretation and evaluation in KDD.   

   Applications of Knowledge Discovery and Data Mining 
in Clinical Research 

 Knowledge discovery and data mining methods have been used in numerous ways 
to generate hypotheses for clinical research. 

 Knowledge discovery and data mining methods are especially important in 
genomics, a fi eld rich in data but immature in knowledge. In this area of biomedical 
research, exploratory approaches to hypothesis generation are accepted, even nec-
essary, in order to accelerate knowledge development. Data mining methods are 
often used to identify genetic markers of disease and genotype-phenotype associa-
tions for closer examination. For example, microarray analysis employs automated 
machine learning and statistical methods to identify patterns and associations in 
gene expression relevant for genetic epidemiology, pharmacogenomics, and drug 
development  [  15  ] . 
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 While KDD and data mining methods have demonstrated their ability to discern 
patterns in large, complex data, their usefulness in identifying patterns across bio-
medical, behavioral, social, and clinical domains is tempered by the disparate ways 
in which data is represented across research databases. It is diffi cult to aggregate 
clinical and genomic data, for instance, from diverse sources because of differences 
in coding and a lack of syntactic and semantic interoperability. Currently, a great 
deal of effort is being devoted to development of systems and infrastructure to facil-
itate sharing and aggregation of data.  

   Commonly Encountered Challenges in Data Mining 

   Rare Instances 

 Rare instances pose diffi culty for knowledge discovery with data mining methods. 
In order for automated pattern search algorithms to learn differences that distin-
guish rare instances, there must be adequate instances. Also, during the data mining 
step of the KDD process, rare instances must be balanced with noninstances for pat-
tern recognition. If only 1 out of every 100 patients in a healthcare system has a fall 
incident, a sample of instances would be composed of 1% fall and 99% no-fall 
patients. Any classifi cation algorithm applied to this data could achieve 99% accu-
racy by universally predicting that patients do not fall. If the sample is altered so that 
it is composed of 50% fall and 50% no-fall patients or if weights are applied, true 
patterns that distinguish fall patients from no-fall patients will be recognized. 
Afterwards, the models can be adjusted to account for the actual prior probability of 
a fall. In cases where inadequate instances exist, rare instances can be replicated, 
weighted, or simulated.  

   Sources of Bias 

 Mitigation of bias is a continual challenge when using clinical data. Many diverse 
sources of bias are possible in secondary analysis of clinical data. Verifi cation bias 
is a type of bias commonly encountered when inducing predictive models using 
diagnostic test results. Because patients are selected for diagnostic testing on the 
basis of their presentation, the available data does not refl ect a random sample of 
patients. Instead, it refl ects a sample of patients heavily biased toward presence of a 
disease state. Another troublesome source of bias relates to inadequate reference 
standards (gold standards). Machine learning algorithms are trained on sets of 
instances for which the output is known, the reference standard. However, clinical 
data may not include a coded, suffi ciently granular representation of a given disease 
or condition. Even then, the quality of routinely collected clinical data can vary 
dramatically  [  6  ] . Diagnoses may also be incorrect, and source data, such as lab and 
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radiology results, may require review by experts in order to establish the reference 
standard. If this additional step is necessary to adequately establish the reference 
standard, the time and effort necessary to prepare an adequate sample of data may 
be substantial. For an extended discussion of these and other sources of bias, the 
reader is referred to Pepe  [  16  ] . 

 Many concepts in medicine and healthcare are not precisely defi ned or consis-
tently measured across studies or clinical sites. Changes in information systems 
certainly infl uence the measurement of concepts and the coding of the data that 
represents those concepts. When selecting a subset of retrospective clinical data for 
analysis, it is wise to consult with institutional information technology personnel 
who are knowledgeable about changes in systems and databases over time. They 
may also be aware of documents and fi les describing clinical data collected using 
legacy systems, information that could be crucially important.  

   Limitations 

 The limitations in using repositories of clinical data for research are related to data 
availability, data quality, representation and coding of clinical concepts, and avail-
able methods of analysis. Since clinical information systems only contain data 
describing patients served by a particular healthcare organization, clinic, or hospi-
tal, the data represent only the population served by that organization. Any analysis 
of data from a single healthcare organization is, in effect, a convenience sample and 
may not have been drawn from the population of interest. 

 Data quality can vary widely and is strongly related to the role of data entry in 
workfl ow. For example, one preliminary study of data describing smoking status 
revealed that the coded fi elds describing intensity and duration of smoking habit 
were completed by minimally educated medical assistants, instead of nurse practi-
tioners or physicians. Data describing intensity and duration of smoking habit were 
also plagued by absurdly large values. These values may have been entered by med-
ical assistants when the units of measurement enforced by the clinical information 
system did not fi t descriptions provided by patients. For example, there are 20 ciga-
rettes in a pack. When documenting the intensity of the smoking habit, a medical 
assistant may have incorrectly entered “10” instead of “0.5” into a fi eld with the unit 
of measurement “packs per day,” not “number of cigarettes per day”  [  6  ] .  

   Infrastructure for Knowledge Discovery 

 The power of the KDD process, and of data mining methods, to enable large-scale 
knowledge discovery lies in their singular capacity to identify previously unknown 
patterns, in data sets too large and complex for human pattern recognition. However, 
in order to identify true and complete patterns, all the relevant concepts must be 
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represented in the data. Representations of key concepts, whether gene expression, 
environmental exposure, or treatment, often exist. However, they exist in siloed data 
repositories, owned by different scientifi c groups. Development of systems and 
infrastructure to support sharing and aggregation of scientifi c data is essential for 
understanding complex multifactorial relationships in biomedicine. The potential of 
KDD for advancing biomedical knowledge will not be fully realized until these 
systems and infrastructure are in place. 

 One important infrastructure project in the United States is caBIG ® , the cancer 
biomedical informatics grid. This project is addressing the barriers posed by lack of 
interoperability and siloed data by promoting fundamental change in the way clini-
cal research is conducted. caBIG ®  collaborators are developing open-source tools 
and architecture that enable federated sharing of interoperable data, using an object-
oriented data model and standard data defi nitions. These tools will facilitate data 
interoperability while allowing participants to retain control over the use of their 
own data. The project’s use of object-oriented data defi nitions greatly facilitates the 
development of applications to support collection of caBIG ®  compatible data in 
clinical studies. In early 2009, the University of Edinburgh became the fi rst European 
university to deploy a caBIG application, caTISSUE repository  [  17  ] . This project 
demonstrated caBIG’s adaptability to European data. 

 Another major approach to facilitating biomedical knowledge discovery is that 
of the semantic web  [  18  ] . The semantic web is an extension of current web-based 
information retrieval that enables navigation and retrieval of resources using seman-
tics (meaning) in addition to syntax (specifi c words or representations). Development 
of the semantic web is broadly important for information retrieval and use, but spe-
cifi cally valuable for biomedical research because of its ability to make scientifi c 
data retrievable and usable across disciplines and scientifi c groups. In a recent meth-
odological review, Ruttenberg and colleagues emphasized the importance of scien-
tifi c ontology, standards, and tools development for the semantic web in order for 
biomedical research to realize the benefi ts. All-purpose semantic web schema lan-
guages RDFS and OWL can be used to manage relationships among data elements 
in information systems used to manage clinical studies. “Middle” ontologies are 
being developed to specifi cally address data relationships in scientifi c work  [  18  ] . 

 Enterprise data warehouses (EDW) are repositories of clinical and operational 
data, populated by source systems but completely separate from those systems. 
EDWs facilitate secondary analysis by integrating data from diverse systems in a 
single location. The data is not used to support patient care or operations. It exists in 
a stand-alone repository optimized for secondary analysis. Typically, a layer of ana-
lytic tools is used to support queries and OLAP (online analytic processing). In some 
healthcare organizations, all clinical data may be warehoused. In other organizations, 
data collected by certain systems may be excluded, or certain types of data may be 
excluded. In these cases, data extracted from the EDW may need to be aggregated 
with data stored only in source systems. It is crucially important that data warehouses 
be optimized to facilitate scientifi c analytics. The way in which the data is stored and 
the development of powerful tools for examining and extracting the data directly 
infl uence the feasibility and quality of knowledge discovery using the data.   
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   Conclusion 

 Knowledge discovery and data mining methods are important for informatics 
because they link innovations in data management and storage to knowledge devel-
opment. The sheer volume and complexity of modern data stores overwhelms sta-
tistical methods applied in a more traditional fashion. In the past, the inductive 
approach of data mining and knowledge discovery has been criticized by the statis-
tical community as unsound. However, these methods are increasingly recognized 
as necessary and powerful for hypothesis generation, given the current data deluge. 
Hypotheses generated through the use of these methods, and unknown without these 
methods, can then be tested using more traditional statistical approaches. As the 
statistical community increasingly recognizes the advantages of machine learning 
methods and engages in knowledge discovery, the line between the statistical and 
machine learning worlds becomes increasingly blurred  [  19  ] . 

 Much criticism is tied to the iterative and interactive nature of the knowledge 
discovery process, which is not consistent with the very sequential scientifi c method. 
Indeed, it is very important that data mining studies be replicable. In order for stud-
ies to be replicable, it is important that the analyst keep detailed records, particularly 
as data is transformed and sampled. It is also crucial that domain experts be involved 
in decision making about data selection and feature selection and transformation, as 
well as the iterative evaluation of models. The quality of resultant models is evi-
denced by performance on new data, and models should be validated on unseen data 
whenever possible. Models also must be calibrated for the target population with 
which they are being used. Uncalibrated models will certainly lead to increased 
error  [  20  ] . 

 While the data deluge is very real, our technology for optimally managing and 
structuring that data lags behind. In clinical research, data mining and knowledge 
discovery awaits the further development of high-quality clinical data repositories. 
Many data mining application studies in the biomedical literature fi nd that model 
performance is limited by the concepts represented in the available data. For opti-
mal use of these methods, all relevant concepts in a particular area of interest must 
be represented. The old adage “garbage in, garbage out” applies. If a health behav-
ior (i.e., smoking) is believed to be related to biological, social, behavioral, and 
environmental factors, a data set composed of only biological data will not suffi ce. 
Additionally, much of the data being accumulated in data warehouses is of varied 
quality and is not collected according to the more rigorous standards employed in 
clinical research. As more sophisticated systems for coding and sharing data are 
devised, we fi nd ourselves increasingly positioned to apply data mining and knowl-
edge discovery methods to high-quality data repositories that include most known 
and possibly relevant concepts in a given domain. 

 In the ever-intensifying data deluge, knowledge discovery methods represent one 
of several pivotal tools that may determine whether human welfare is advanced or 
diminished. It is important for scientists engaged in clinical research to develop 
familiarity with these methods and to understand how they can be leveraged to 
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advance scientifi c knowledge. It is also critical that clinical scientists recognize the 
dependence of these methods upon high-quality data, well-structured clinical data 
repositories, and data sharing initiatives like caBIG.      
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  Abstract   Electronic health records (EHR) capture “real-world” disease and care pro-
cesses and hence offer richer and more generalizable data for comparative  effectiveness 
research than traditional randomized clinical trial studies. With the increasingly 
broadening adoption of EHR worldwide, there is a growing need to widen the use of 
EHR data to support clinical research. A big barrier to this goal is that much of the 
information in EHR is still narrative. This chapter describes the foundation of bio-
medical natural language processing and its common uses for extracting and trans-
forming narrative information in EHR to support clinical research.  

  Keywords   Electronic health records  •  Biomedical natural language processing  • 
 Sublanguage approach  •  Machine-learning approach  •  Decision tree  •  Rule-based 
approach      

 Electronic health records (EHR) capture “real-world” disease and care processes 
and hence offer richer and more generalizable data for comparative effectiveness 
research  [  1  ]  than traditional randomized clinical trial studies. With the increasingly 
broadening adoption of EHR worldwide, there is a growing need to widen the use 
of EHR data to support clinical research  [  2  ] . A big barrier to this goal is that much 
of the information in EHR is still narrative. This chapter describes the foundation 
of biomedical language processing and its common uses for extracting and 
 transforming narrative information in EHR to support clinical research. 
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   Accelerating Clinical Research Using EHR: 
Opportunities and Challenges 

 The NIH defi nes clinical research as  patient-oriented research ,  epidemiological and 
behavioral studies ,  or outcomes and health services research   [  3  ] . Patient-oriented 
research involves a particular person or group of people or uses materials from 
humans. In recent years, national clinical research enterprises have been under 
increased jeopardy  [  4  ]  in part due to the rising costs associated with participant 
   screening and recruitment, as well as issues surrounding data collection. Only 13% 
of clinicians are involved in clinical research  [  5  ] . To integrate research with clinical 
care, and to speed the application of research fi ndings to clinical practice, the 
National Institute of Health (NIH) has created the Clinical and Translational Science 
Awards (CTSA) program to reengineer the clinical research enterprise  [  6  ] . A poten-
tial powerful accelerator to clinical research is electronic health records. 

 An EHR is a legal computerized medical record for documenting patient informa-
tion captured at every patient encounter  [  7,   8  ] . Figure  16.1  shows a sample EHR  [  9  ] . 
As of 2008, more than 40% of physicians in the USA were using EHRs, more than 
double the percentage at the start of the decade  [  10  ] . The resident population of the 
USA as of 2009 was 307 million  [  11  ] . During that same year, it was reported that 
83% adults and 90% children had contact with a health-care professional, there were 

  Fig. 16.1    Illustration of a sample electronic health record (EHR)       
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1.1 billion ambulatory care visits (to physician offi ces, hospital outpatient, and 
emergency departments), and the number of physician offi ce visits was 902 million. 
In other words, there were possibly over 800 million record entries in EHRs in 2009.  

 EHRs offer great potential to improve the effi ciency and reduce the cost for clini-
cal research, but this potential has not yet been fully realized. EHR includes stan-
dards-based structured laboratory test results and narrative interpretations by care 
providers. Unstructured narrative information can be provided for admission notes, 
discharge summaries, radiology images, and all sorts of ancillary notes, etc. 
Unlocking discrete data elements from such narrative information is a big challenge 
for reusing EHR data for clinical research. 

 Many studies and demonstration projects have explored the use of EHR data for 
clinical research, including detecting possible vaccination reactions in clinical notes 
 [  12  ] , identifying heart failure  [  13  ] , classifying whether a patient has rheumatoid 
arthritis  [  14  ] , identifying associations between diabetes medications and myocar-
dial infarction  [  15  ] , and predicting disease outcomes  [  16  ] . EHR data has also been 
used for computerized pharmacovigilance  [  17  ]  (see Chap.   19    ). Below, we elaborate 
two common use cases as examples of applying information extraction and retrieval 
techniques in EHR to support clinical research. 

   Use Case 1: Eligibility Screening or Phenotype Retrieval 

 The foremost, albeit costly, information retrieval task in clinical research is eligibility 
screening, which is to determine whether a person may or may not be eligible to 
enter a clinical research study. Chute has described this as essentially “patient phe-
notype retrieval” since it is meant to identify patients who manifest certain charac-
teristics, which include diagnosis, signs, symptoms, interventions, functional status, 
or clinical outcomes  [  18  ] . Such characteristics are generally described in the eligi-
bility criteria section for a research protocol. In recent years, the increasing volume 
of genome-wide association studies also raised the demand for clinical phenotype 
retrieval in discovering the genetics underlying many medical conditions. Traditional 
methods of participants search through manual chart review cannot scale to meet 
this need. In the study of rare diseases, there are usually only a small number of 
patients available, so it is feasible to have research personnel carefully collect, 
record, and organize the phenotypic information of each study participant. Diseases 
like diabetes mellitus, hypertension, and obesity, however, are complex, multifacto-
rial, and chronic, and it is likely that a large number of patients will need to be fol-
lowed over an extended period to ascertain important phenotypic traits. Large-scale 
studies involving many participants, or even smaller studies in which participants 
are selected from a larger population, will require innovative means to extract reli-
able, useful phenotype information from EHR data. 

 In recent years, several academic institutions have used EHR data to electroni-
cally screen (E-Screen) eligible patients for clinical studies  [  19  ] . Manually screen-
ing charts is time-consuming for research personnel, who must search for information 
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in patient records to determine whether a patient meets the eligibility criteria for a 
clinical trial. E-Screening, however, can exclude ineligible patients and establish a 
much smaller patient pool for manual chart review. Thus, E-Screening helps clinical 
research personnel’s transition from random and burdensome browsing of patient 
records to a focused and facilitated review. Consistent with concerns for patient 
safety and trial integrity, clinical research personnel should review all patients clas-
sifi ed as “potentially eligible” by E-screening to confi rm their eligibility. E-screening 
systems essentially perform “prescreening” for clinical research staff and should 
not fully replace manual review.  

   Use Case 2: Secondary Use of Clinical Data for Research 

 The national movement toward the broad adoption of EHRs obviously means that 
more clinical data will be captured and stored electronically. Secondary use of data for 
clinical research is a competitive requirement for a clinical and research enterprise 
 [  20  ] . In late 2009, the National Center for Research Resources called for “widening 
the use of electronic health records for research” to strengthen our capacity for using 
clinical care data for research. The nation’s transition from traditional clinical trials to 
comparative effectiveness research  [  21  ]  led by the US government has further empha-
sized the need for effective tools to extract research variables from preexisting clinical 
data. As an example, i2b2 (Informatics for Integrating Biology and the Bedside) is an 
NIH-funded National Center for Biomedical Computing based at Partners HealthCare 
System. The i2b2 Center is developing a scalable informatics framework that will 
enable clinical researchers to use existing clinical data for discovery research. In addi-
tion to that, the US Offi ce of the National Coordinator for Health Information 
Technology (ONC) recently awarded $60 million in research grants through the 
Strategic Health IT Advanced Research Projects (SHARP) Program to the Mayo 
Clinic College of Medicine for secondary use of EHR data research. 

 A major challenge of using EHRs to facilitate clinical research is that much EHR 
data are presented as clinical narratives, which is largely unstructured and poses 
machine readability problems. Clinical natural language processing has been an 
active fi eld since the inception of EHR in the 1960s and is an area that explores tools 
that can effectively extract, mine, and retrieve clinically relevant structured data 
from narrative EHRs. Clinical natural language processing has been infl uenced by 
the theory of sublanguage, which is characterized by distinctive specializations of 
syntax and the occurrence of domain-specifi c word subclasses in particular syntac-
tic combinations. More recently, clinical NLP has been experiencing a shift from 
rule-based approach to machine-learning methods, as discussed later. 

 The rest of this chapter is organized as follows: we will fi rst introduce the foun-
dations of clinical NLP research in terms of sublanguage analysis and machine-
learning models, including cutting-edge information extraction and retrieval 
techniques that can be applied to EHRs-based clinical research. Then, a few existing 
clinical NLP systems will be reviewed, followed by discussions on the challenges 
and future directions in this fi eld.   



29716 Natural Language Processing, Electronic Health Records, and Clinical Research

   Foundations of Biomedical Natural Language Processing 

 Natural language processing (NLP) is a research fi eld dedicated to enable com-
puters with the right knowledge for understanding natural language text, ulti-
mately to facilitate the different types of natural language interaction between 
humans and computers. Biomedical NLP is a subfi eld specifi ed for biomedical 
texts from biology, medicine, and chemistry. There exists great variability in the 
language in each of these areas, as refl ected in their respective literature, guide-
lines, etc. In addition, the same type of biomedical text, such as narrative in an 
EHR, as discussed earlier, could differ greatly due to the expression variances and 
some organization-specifi c variance (i.e., among different medical centers). 
Sublanguage and machine-learning theory and approaches lay strong foundations 
for developing effi cient clinical NLP systems in many real-world applications. 
Although some approaches and models are described below in the context of bio-
medical NLP applications, all of them can be adapted on electronic health records 
(EHRs) for clinical research informatics. 

   Sublanguage Approach 

 A sublanguage is defi ned by Grishman  [  22  ]  as a specialized form of natural lan-
guage used to describe a limited subject matter, generally employed by a group of 
specialists dealing with a particular subject. Zellig Harris  [  23  ]  was one of the fi rst 
linguists to apply the term sublanguage to natural language, using algebra as the 
underlying formalism. He defi nes a sublanguage as a subset of the language that is 
closed under some or all of the operations of the language. 

 Sublanguage theory laid a foundation for NLP in specifi c contexts such as clini-
cal narratives. Many NLP applications are developed by exploiting the sublanguage 
characteristics, that is, restricted domain syntax and semantics. For example, an 
electronic health record (EHR) is limited to discussions of patient care and is 
unlikely to cover gene annotations or cell-line issues as in the biomedical literature. 
Sublanguages have many unique properties in comparison to more everyday lan-
guage, resulting in a specialized vocabulary, structural patterns, as well as special-
ized entities and relationships among them. 

   Vocabulary Level 

 A sublanguage tends to have a specialized vocabulary which is quite different from 
standard language. For example, “cell line” is unlikely to be mentioned in nonbio-
logical documents. In particular, the development of scientifi c and technological 
advancements in the biomedical domain has led to the discovery of new biological 
objects, functions, and events, which can only be acquired by analyzing sublan-
guage in the corresponding corpus.  
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   Syntax Level 

 A sublanguage is not merely an arbitrary subset of sentences and may differ in syn-
tax structure as well as vocabulary. For example, in medicine, telegraphic sentences 
such as “patient improved” are grammatical due to operations that permit dropping 
articles and auxiliaries. In addition, there are certain patterns of expression in sub-
language consisting of predicate words and ordered arguments, as in “<antibody> 
<appeared in> <tissue>”; “appeared in” is predicate words, and “<antibody>” and 
“<tissue>” are two arguments which can have semantically related terms fi lled in.  

   Semantics and Discourse Level 

 In addition to differences on the vocabulary and syntax levels, a sublanguage may 
also have specialized ways of interpreting language and organizing larger units of 
discourse. For example, “secondary to” has a specialized meaning that indicates a 
causal relationship, which is different from its use in standard language. In dis-
charge summaries, the structural format often includes history of present illness, 
medications on admission, social history, physical examination, etc. 

 These properties of sublanguages allow the use of methods of analysis and pro-
cessing that would not be possible when processing the language of newspaper 
articles or novels. Sublanguage analysis also provides a way of integrating domain-
specifi c knowledge with existing systems. For example, a biomedical information 
retrieval system can be developed by indexing medical articles on only terms from 
a list of terminology known to be of interest to researchers; controlled medical 
vocabulary can be derived using sublanguage analysis based on terms combining 
regularly with particular other words; biological information extraction system can 
be adapted by sublanguage analysis of specialized expression patterns; a system 
that analyzes clinical reports can look for predictable semantic patterns that are 
characteristics of the clinical domain  [  24–  27  ] .   

   Machine-Learning Approach 

 Sublanguage patterns (rules) and manually specifi ed models often lack the quality 
of generalization and also are time-consuming to keep well maintained and updated. 
With the ever-growing availability of electronic biomedical resource data and 
advanced computational power, machine-learning models have been arousing 
intense interests for many biomedical NLP tasks, which can be mainly divided into 
fi ve categories:

   Classifi cation: assign documents predefi ned labels  • 
  Ranking: order objects by preference  • 
  Regression: obtain real-value output as prediction  • 
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  Structured prediction: sequence labeling and segmentation to recognize entities • 
or other semantic units  
  Clustering: discover the underlying structure of unlabeled data to form natural • 
groups    

 Many clinical research informatics applications can be formulated into the 
abovementioned tasks, such as entity (medications, diseases, doses). Extraction 
from EHRs can be realized using structured prediction models; adverse events 
detection from EHRs is an example of classifi cation tasks. For these tasks, the goal 
of machine learning is to enable correct predictions for target variables given obser-
vation variables (attributes or features) from corresponding instances. Different 
learning models have been applied in recent years. In terms of their modeling 
approaches, they can be grouped as generative models and discriminative models. 
The generative approach models a joint probability distribution over both input and 
output variables (observation and label sequences), such as Naive Bayes, Bayesian 
network, hidden Markov model, and Markov random fi eld, while the discriminative 
approach directly models the dependence of the output variables (label to be pre-
dicted) on the input variables (observation) by conditional probability, such as deci-
sion tree, logistic regression, support vector machine,  k  nearest neighbor, artifi cial 
neural network, and conditional random fi elds. This section will cover the introduc-
tory descriptions of those algorithms, but we encourage interested readers to explore 
these in more detail through further readings  [  28–  32  ] . 

   Generative Model 

 The generative model is a full probability model on all variables, which can simu-
late the generation of values for any variables in the model. By using Bayes’ rule, it 
can be formed as a conditional distribution to be used for classifi cation. When there 
is little annotated data, the generative model is advantageous for making use of a 
large quantity of raw data for better performance. The generative model reduces the 
variance of parameter estimation by modeling the input, but at the expense of pos-
sibly introducing model bias. 

  Naive Bayes Classifi er . The Naive Bayes classifi er is based on Bayesian theorem 
 [  33  ]  and is a very simple probabilistic generative model that can be used to compute 
the probability of each candidate class label given observed features, under the 
assumption that all the features are independent given class label. It requires only a 
small size of training data with faster parameter estimation, but the strong indepen-
dence assumption is violated in numerous occasions for real applications, which 
can lead to a large bias. 

  Bayesian network . Bayesian network  [  34  ] , also belief network, is a probabilistic 
graphical model, whose nodes are a set of random variables connected by a directed 
acyclic graph (DAG) to represent the conditional dependences among those vari-
ables. This model does not require the independence assumption as in Naive Bayes, 
providing stronger representational power in real-world applications and making 
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the parameter estimation more complex as well. It models the dependency between 
variables providing a good ability to handle missing values and is widely used in 
causal relationship reasoning applications, such as clinical decision support  [  35  ]  
and gene expression data analysis  [  36  ] . 

  Hidden Markov Model . The hidden Markov model (HMM)  [  37  ]  is a probabilistic 
generative model of a Markov process (Markov chain), where the model passes dif-
ferent state sequences, which are unobserved, producing a sequence of observa-
tions. Each hidden state has a probability distribution over the possible output 
observations, and there are transition probabilities among those states. 

 HMM is widely used in temporal pattern recognition (e.g., medical dictation 
system) and other sequence-labeling tasks (e.g., gene/protein recognition  [  38  ]  and 
biosequence alignment  [  39  ] ). Although this type of statistical model has worked 
extremely well in many situations, it does have limitations. A major limitation is the 
assumption that successive observations are independent, which cannot take into 
account the contextual dependency in the observation sequence. Another limitation 
is the Markov assumption itself, that is, the current state only depends on the imme-
diate preceding state, which is also inappropriate for some problems. 

  Markov Random Field . Markov random fi eld (MRF), also a Markov network or 
undirected graphic model  [  40  ] , is a graphic model on the joint probability over a set 
of random variables each corresponding to a node in the graph. Markov properties 
exist among those variables to provide conditional independence for graph 
factorization. 

 MRF is similar to Bayesian network in terms of modeling dependency relation-
ships among variables. Bayesian network is a direct graphic model, and it represents 
probability distributions that can be factorized into products of conditional distribu-
tions, which is desirable to capture causal relationships among variables, while 
MRF is an undirected graphic model, where there is no directionality on each edge 
connecting a pair of nodes, and the probability distribution it represents will be 
factorized into products of potential functions of conditionally independent 
cliques [  28  ] , which makes MRF better suited to expressing soft constrains between 
random variables. In addition, MRF can represent certain dependencies that a 
Bayesian network cannot, such as cyclic dependencies, wherein it cannot represent 
certain dependencies that a Bayesian network can such as induced dependencies. 
MRF model has been successfully applied in biomedical image analysis for com-
puter-aided diagnosis as shown in  [  41,   42  ] .  

   Discriminative Model 

 Compared with the generative model, the discriminative model is designed to 
only involve a target variable(s) conditional on the observed variables, directly 
computing the input to output mappings (posterior) and eschewing the underly-
ing distributions of the input. As there are fewer independence assumptions, the 
discriminative model often provides more robust generalization performance 
when enough annotated data are available. However, it usually lacks fl exible 
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modeling methods for prior knowledge, structure, uncertainty, etc. In addition, 
the relationships between variables are not as explicit or visualizable as in the 
generative model. 

  Decision Tree . A decision tree (DT)  [  43  ]  is a logical model represented as a tree 
structure that shows how the value of a target variable can be predicted by using the 
values of a set of observation variables (attributes). Each branch node represents a 
split between a number of alternatives based on a specifi c attribute, and each leaf 
node represents a decision. The induction of a decision tree is a top-down process to 
reduce information content by mapping them to fewer outputs but seek a trade-off 
between accuracy and simplicity. 

 Decision trees provide a way to easily understand the derived decision rules and 
interpret the predicted results and have been used for diagnosis of aortic stenosis 
 [  44  ]  and folding mechanism prediction of protein homodimer  [  45  ] . One of the dis-
advantages of DT models is that DT split the training set into smaller and smaller 
subsets, which makes correct generalization harder and incorrect generalization 
easier because smaller sets have accidental regularities that do not generalize. 
Pruning can address this problem to some extent though. 

  Logistic Regression . Logistic function was fi rst discovered by Peral and Reed 
 [  46  ]  in 1920, and logistic regression is a generalized linear model used to calculate 
the probability of the occurrence of an event by fi tting the data to a logit function 
through maximum likelihood. It is a discriminative counterpart of naive Bayes 
model as they represent the same set of conditional probability distributions. It has 
been extensively used for prediction and diagnosis in medicine  [  47,   48  ]  due to its 
robustness, fl exibility, and ability to handle nonlinear effects. But generally, it 
requires more data to achieve stable and meaningful results than standard 
regression. 

  Support Vector Machines . Support vector machines (SVMs)  [  49  ]  are also linear 
models that are trained to separate the data points (instances) based on both empiri-
cal and structural risk minimum principles; that is, they not only classify objects 
into categories but also construct a hyperplane or set of hyperplanes in a high dimen-
sion space with a maximum margin among different categories. New instances are 
then mapped into the same space and classifi ed into a category based on which side 
of hyperplanes they fall on. 

 The SVM model has been used for many biomedical tasks, such as microarray 
data analysis  [  50  ] , classifi cation  [  51  ] , information extraction  [  52  ] , and image seg-
mentation  [  53  ] . SVM model can leverage an arbitrary set of features to produce 
accurate and robust results on a sound theoretical basis, with powerful generaliza-
tion ability due to optimizing margins. However, from a practical point of view, the 
most serious problem with the SVM model is the high level of computational com-
plexity and extensive memory requirements for large-scale tasks. 

  K Nearest Neighbor . The  k  nearest neighbor ( k -NN) rule  [  54  ]  is a type of instance-
based learning, or lazy learning, where generalization beyond the training data is 
delayed. The goal is to assign a new instance a value or category that is averaged 
(for regression) or voted (for classifi cation) based on examining the  k  closest labeled 
training instances. 
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 The  k -NN method has been used in gene expression analysis  [  55  ] , screening data 
analysis  [  56  ] , protein-protein interaction  [  57  ] , biomedical image interpretation  [  58  ] , 
etc. The main advantage of this method is that the target function will be approxi-
mated locally for each new instance so that it can deal well with changes in the 
problem domain. A practical problem is that it tends to be slower especially for 
large training sets as the entire training set would be traversed for each new 
instance. 

  Artifi cial Neural Network . Artifi cial neural networks (ANNs)  [  59  ]  are a mathe-
matical model of human intellectual abilities that seek to simulate the structure and 
functional aspects of biological neural networks. In an ANN model, the artifi cial 
neutrons (processing units) are connected together via unidirectional signal chan-
nels in different layers to mimic the biological neural network. Usually, only neu-
trons in two consecutive layers are connected. 

 In the biomedical domain, ANNs have been used for many diagnostic  [  60,   61  ]  
and prognostic  [  62,   63  ]  tasks. Neural networks have the ability to implicitly detect 
complex nonlinear relationships between dependent and independent variables, as 
well as possible interactions among predictor variables. On the other hand, ANNs 
are computationally expensive, prone to overfi tting, and lack a sound theoretical 
foundation. 

  Conditional Random Fields . Conditional random fi elds (CRFs)  [  64  ]  consist of a 
probabilistic framework for labeling and segmenting structured data, such as 
sequences, trees, and lattices. The underlying idea is that of defi ning a conditional 
probability distribution over label sequences given a particular observation sequence, 
rather than a joint distribution over both label and observation sequences. 

 Much like MRF, a CRF is an undirected graphic model, but they have different 
characteristics. CRFs would have better predictive power due to direct modeling on 
posterior, have fl exible to use features from different aspects, and relax the strong 
assumption of conditional independence of the observed data. On the other hand, 
MRFs can handle incomplete data problems, augment small labeled data with larger 
amounts of cheap unlabelled data. Similarly, the primary advantage of CRFs over 
hidden Markov models (HMM)  [  37  ]  is also their conditional nature, resulting in the 
relaxation of the independence assumptions required by HMMs in order to ensure 
tractable inference. Additionally, CRFs avoid the label bias problem, a weakness 
exhibited by maximum entropy Markov models (MEMMs)  [  65  ]  and other condi-
tional Markov models based on directed graphical models. CRF model is very pop-
ular in biomedical entity recognition  [  66,   67  ] , relation extraction  [  68  ] , and event 
detection  [  69  ] .  

   Unsupervised Clustering 

 The learning models discussed above are mostly for supervised learning, which 
requires labeled data for model training. Clustering is a commonly used unsuper-
vised learning method which automatically discovers the underlying structure or 
pattern in a collection of unlabelled data. The goal is to partition a set of objects into 
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subsets whose members are similar in some way as well as dissimilar to members 
from a different subset. Determining how similarity (or dissimilarity) between 
objects is defi ned and measured is very crucial for the clustering task. Examples of 
distance metrics are Mahalabobis, Euclidean, Minkowski, and Jeffreys-Matusita. 
There are three main types of clustering approaches: partition clustering  [  70  ] , hier-
archical clustering  [  71  ] , and a mixed model  [  72  ] . 

 The most typical example of clustering in bioinformatics is microarray analysis 
 [  55,   73–  76  ] , where genes with expressional similarities are grouped together, 
assuming that they have regulatory or functional similarity.    

   An Overview of Existing Clinical Natural 
Language Processing Systems 

 In electronic health records (EHRs), the central challenge of extracting detailed 
medical information is dealing with the heterogeneity of clinical data, which 
involves both structured descriptions and narratives. Over the last two decades, 
there have been great efforts to develop biomedical NLP systems for clinical narra-
tive text mining. There are mainly two types of approaches that have been explored. 
Rule-based approaches focus on making use of sublanguage analysis and pattern 
matching rules, while machine learning–based approaches investigate various use-
ful features and appropriate algorithms. For both approaches, a domain knowledge 
resource is generally used. 

   Rule-Based Approach 

 One of the earliest clinical NLP systems developed, which emerged from the 
Linguistic String Project  [  77,   78  ] , used comprehensive syntactic and semantic 
knowledge rules to extract encoded information from clinical narratives. But sys-
tems containing syntactic knowledge are very time-consuming to build and main-
tain because syntax is so complex. 

 Later, MedLEE (Medical Language Extraction and Encoding system) system 
 [  79  ]  was developed to process clinical information expressed in natural language. 
This system incorporates a semantically based (simple syntax rules are also included) 
parser for determining the structure of text. The parser is driven by a grammar that 
consists of well-defi ned semantic patterns, their interpretations, and the underlying 
target structures. By integrating the pattern matching with semantic techniques, the 
MedLEE system is expected to reduce the ambiguity within the language of domain 
because of the underlying semantics. 

 Gold et al.  [  80  ]  developed a rule-based system called MERKI to extract med-
ication names and the corresponding attributes from structured and narrative 
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clinical texts. Recently, Xu et al.  [  81  ]  built an automatic medication extraction 
system (MedEx) on discharge summaries by leveraging semantic rules and a 
chart parser, achieving promising results for extracting medication and related 
fi elds, for example, strength, route, frequency, form, dose, duration, etc. This 
information was defi ned by a simple semantic representation model for pre-
scription type of medication fi ndings, into which medication texts were 
mapped.  

   Learning-Based Approach 

 SymText (Symbolic Text Processor)  [  82  ]  is a learning-based NLP system which 
integrates a syntactic parser based on augmented transition networks and transfor-
mational grammars with a semantics model based on the Bayesian network  [  34  ]  
statistical formalism, which has been used for various applications such as extract-
ing pneumonia-related fi ndings from chest radiograph reports  [  83  ] . 

 Agarwal and Yu developed two biomedical NLP systems named NegScope  [  84  ]  
and HedgeScope  [  85  ] , which were able to detect negation and hedge cues as well as 
their scopes in both the biomedical literature and clinical notes. Both systems were 
built on the conditional random fi elds (CRFs)  [  64  ]  learning model trained on the 
publicly available BioScope  [  86  ]  corpus. 

 Lancet  [  87  ]  is a supervised machine-learning system that automatically extracts 
medication events consisting of medication names and information pertaining to 
their prescribed use (dosage, mode, frequency, duration, and reason) from clinical 
discharge summaries. Lancet employs the CRFs model  [  64  ]  for tagging individual 
medication names and associated fi elds, and the AdaBoost model with decision 
stump algorithm  [  88  ]  for determining which medication names and fi elds belong to 
a single medication event. During the third i2b2 shared task for challenges in natural 
language processing for clinical data, medication extraction challenge, Lancet 
achieved the highest precision among top ten systems. 

 In order to help health-care providers quickly and effi ciently answer the ques-
tions that arise during their meetings with patients, Cao et al.  [  89  ]  built a clinical 
question answering system called AskHERMES, a computational system that auto-
matically analyzes the input clinical questions, retrieves and mines large sets of lit-
erature documents and clinical notes pertaining to specifi c questions, and generates 
short text summary as the output answer. For question analysis  [  90  ] , support vector 
machines (SVMs) learning algorithm  [  49  ]  and CRFs model  [  64  ]  were used for the 
question classifi cation and keyword identifi cation, respectively. The system is 
designed to enable health-care providers to effi ciently seek information in clinical 
settings. 

 Liu et al.  [  91  ]  developed speech recognition system for clinical setting, 
ClinicalASR, to provide the speech interface to clinical NLP applications for more 
effi cient information access, such as clinical question answering system. ClinicalASR 
explored language model (LM)–based adaptation on the SRI Decipher system  [  92  ]  
using clinical questions.   
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   Challenges and Future Directions 

 Although remarkable progress has been made for clinical NLP, there are many chal-
lenges and open questions to be investigated in the future. One obstacle to clinical 
NLP is access to EHRs. In the USA, the Health Insurance Portability and 
Accountability Act of 1996 (HIPAA) has required that the use of protected health 
information (PHI) in research studies is not permitted except with the explicit con-
sent of the patient, which prevents gathering data for NLP applications if the data 
are not de-identifi ed. But HIPAA does allow for the creation of de-identifi ed health 
information. De-identifi cation tools have been developed, and commercial tools are 
also available. De-ID  [  93  ]  information has been used by affi liated hospitals at the 
University of Pittsburgh, which made available a whole year of EHR data for NLP 
use. Currently, de-identifi cation tools are still not widely used by hospitals, hamper-
ing the NLP applications which are highly based on available EHR data. 

 Although the sublanguage analysis works well in many subdomains, it is very 
time-consuming to compile rules syntactically and semantically and needs a lot of 
efforts to keep them well maintained, especially as ever-increasing amount of EHR 
data become available. But sublanguage analysis does provide more information 
that could be helpful in the design of learning-based systems. Therefore, how to 
effectively and systematically integrate the sublanguage analysis as feature into the 
learning framework and how to employ the learning methods for automatically 
extracting sublanguage specifi c patterns have great potential to facilitate the 
advancement of EHR-based clinical research informatics. 

 Currently, most clinical NLP systems are still in an experimental stage rather 
than deployed and regularly used in clinical setting. The diffi culties in translation of 
clinical NLP research into clinical practice and obstacles in determining the level of 
practical engagement of NLP systems provide more challenging research opportu-
nities in this fi eld. In addition, to assist clinical decision support, NLP system needs 
to deal with time series information extraction, reasoning, and integration, for 
example, linking clinical fi ndings to patient profi le, linking different records of 
same patient, and integrating factual information from multiple sources. However, 
all those tasks are not trivial in the clinical setting. Last but not least, effectively 
mining EHRs for clinical research presents the following two challenges:

    1.    Data Quality Issues. EHR data hold the promise for secondary use for research 
and quality improvement; however, such uses remain extremely challenging 
because EHR data can be inaccurate, incomplete, fragmented, and inconsistent 
in semantic representations for common concepts. For example, patient data 
such as glomerular fi ltration rate (GFR) or body mass index are often unavailable 
in EHR but are important research variables. In addition, for a study looking for 
hypertension patients, the determination of hypertension should account for the 
use of hypertensive drugs, the ICD-9 diagnosis codes for hypertension, or the 
blood pressure values out of the normal range in certain measurements contexts. 
Blood pressure values captured in an emergency room are found to be generally 
elevated compared with the blood pressure values documented during physical 
exams; therefore, the former value may not represent the patient’s real value. 
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Moreover, the saying “absence of evidence is not evidence of absence” is very 
true for using EHR data. If a clinical research investigator is looking for patients 
with cardiovascular diseases but cannot fi nd corresponding diagnoses in a patient, 
the investigator cannot jump to the conclusion that the patient has no cardiovas-
cular disease until further confi rmation can be obtained. Typical reasons can be 
that the patient’s medical history is not completely captured by the hospital 
where the EHR is used or the patient has not been diagnosed. Moreover, much 
data are not amenable for computer processing, especially those in free-text 
notes. Whenever it is free-text, there is a challenge for identifying semantic 
equivalence of multiple linguistic forms of the shared concepts. For example, 
among hypertensive patients, the medical records can store values such as 
“HTN,” “hypertension,” or “401.9” as an ICD-9 code to indicate hypertension.  

    2.    Challenges for Converting Clinical Data to Research Variables. Many people are still 
skeptical about reusing clinical data for clinical research because they believe clinical 
data are “garbage in, garbage out.” Although this statement is a little exaggerated, 
there are dramatic differences between a clinical database and a clinical research 
database developed following a rigorous clinical research protocol. A research pro-
tocol will specify what data will be collected at what time and how. A clinical research 
database is often designed as a relational database with a tabular format, organized 
by patient and variables over time. There is a strict quality assurance procedure to 
ensure the completeness and accuracy of research data. Furthermore, clinical research 
databases are optimized for statistical analysis. In contrast, a clinical database is 
organized by clinical events, not by patients. Moreover, clinical data are collected for 
administrative uses or personal interpretations of medical doctors. Copy and paste, as 
well as creative abbreviations that only doctors themselves can interpret in certain 
contexts are very common in clinical databases. Therefore, ad hoc extraction of 
research variables from a clinical database is not a trivial task.     

 In conclusion, natural language processing (NLP) offers an effective way to 
unlock disease knowledge from unstructured clinical narratives. Although standards 
are emerging and EHR data is becoming better encoded with clinical terminology 
standards, there will likely always be a narrative aspect (at least for the foreseeable 
future), which makes clinical NLP technologies indispensible for clinical research-
ers and informatics professionals. Different approaches and models have been 
widely applied for biomedical literature, and all those NLP techniques are crucial 
and can be adapted for effectively mining electronic health records (EHRs) to sup-
port important clinical research activities.      
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  Abstract   Data sharing is extremely important for a number of reasons, and its 
importance is increasing rapidly as we generate more and more information and 
data in new areas such as genomics. At the core, the value of data sharing is to allow 
different technology tools to work together to improve currently antiquated clinical 
research processes; however, data sharing can also serve to leverage the global 
uptake of electronic health records to improve workfl ow and enhance the link 
between research and healthcare. From the point of view of the patient, data sharing 
will allow for aggregation of suffi cient data to support robust analyses and/or com-
parisons across studies that will increase the quality of research knowledge gained 
from healthcare. The concept of data sharing is critical to the advancement of 
healthcare, which relies on research information for informed clinical decisions.

Despite the recognized value of data sharing for the benefi t of patients, which 
includes all of us, there are inherent challenges yet to be overcome. These include, 
but are not limited to regulations, trust and patient privacy, slow adoption of infor-
mation technology and standards, as well as workfl ow, content and technical issues.  
This chapter focuses on efforts to address these challenges - in particular, collabora-
tions among standards developing organizations and others to develop, harmonize 
and support interoperability among the standards and to improve workfl ows between 
clinical care and research processes. Currently available opportunities and initia-
tives with signifi cant promise are identifi ed, yet the importance of a stepwise, itera-
tive approach is recognized.  
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   Benefi ts of Data Sharing 

 The appropriate use of valuable medical information can impact the feasibility and 
speed of clinical research and the safety of patients and the public. Aggregation of 
accurate health data can serve to improve individual healthcare experiences, expand 
collective knowledge about treatments and diseases, strengthen insights into 
healthcare systems in terms of effectiveness and effi ciency, support public health, 
and offer other benefi cial opportunities. Still, there is a limited understanding of 
these benefi ts and of the surrounding issues by the general public and a lack of 
coherent policy to guide the users  [  1  ] . Kahn et al.  [  2  ]  explored current research poli-
cies and regulations in light of the benefi ts of using electronic health records (EHR) 
for research; however, the inconsistent requirements across multiple users based 
upon institutional interpretations and implementations of research policies and reg-
ulations remain a signifi cant barrier to EHR providers in response to varied requests 
for system enhancements. These authors recommend well-conceived models based 
upon best practices to guide institutions in combining the clinical care and clinical 
research communities. Authors from the biopharmaceutical industry  [  3  ]  organized 
15 “use scenarios” for research use of EHR data: audit medication workfl ow, clini-
cal trial data collection, clinical trial recruitment, document management for clini-
cal trials, drug safety surveillance, epidemiology, outcomes research, remote site 
monitoring, study drug use postlaunch, support regulatory approval, trial subject 
compliance, understand disease progression, understanding disease mechanism, 
and virtual phase IV trials. In a study on the potential opportunities for using elec-
tronic health records to support biopharmaceutical industry needs, the most cited 
use cases were drug safety surveillance and clinical trial recruitment. 

 Clearly, sharing data between healthcare and research has the potential to increase 
the effi ciency of current research and regulatory review and approval processes, to 
support new observational research, and to facilitate safety monitoring. In particular, 
there would be tremendous benefi ts of data reuse for safety reporting. The current 
paper-/fax-based process sharing of this information between the site and the sponsor 
or a regulatory authority is so cumbersome that most postmarketing adverse events 
go unreported. The process typically takes well over 30 minutes, which is unreason-
able for a busy clinician who could be seeing another patient during that time. 

 The frustrations on the part of the clinical research community are similar to 
frustrations with the clinical care community without EHRs. Information that is 
collected on patients at many hospitals often ends up in paper archives in health 
information system databases that have been termed  graveyards , with terabytes 
of data rarely looked at after the direct course of patient care  [  4  ] . Clinical 
research information that goes to a research sponsor is also frequently not inte-
grated into useful databases and is diffi cult to access or analyze after each study 
is complete. When there are integrated databases at the sponsor site, they have 
proven to be extremely useful, even eliminating the need for subsequent studies 
that were thought to be necessary for additional analyses or new indications  [  5  ] . 
Moreover, in the case of safety reporting, the implementation of interchange 
standards and integration profi les in one study has reduced the reporting time 
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from over 30 minutes to approximately 1 minute and has dramatically increased 
the reporting frequency  [  6  ] . Success stories such as these encourage further 
exploration into why standards and integration profi les such as these are not used 
more widely today. 

 The primary reason to share data is to benefi t patients, and each of us is a 
patient. Regardless of our current health situation or the health of those close to us, 
we will all benefi t from a more rapid translation of research information into 
knowledge that can be used for clinical decisions based upon safety and effi cacy 
profi les of therapies and best practices. In other words, clinical research informs 
healthcare. It is likely that uniform adoption of data and content standards in EHRs 
and clinical research information systems will stimulate new ideas and opportuni-
ties for data sharing and subsequent process improvement and knowledge 
discovery.  

   Relevant Terms 

 Often the terms data sharing, data reuse, and secondary use of data are used inter-
changeably. All imply that routinely collected data in the context of medical care 
can be reused or shared to support clinical research or related activities. The clini-
cal research activities, in a broad sense, include processes (e.g., eliminating data 
transcription or reentry, identifi cation and recruitment of subjects, trial registra-
tion, regulatory reporting) and knowledge discovery (i.e., where the EHR data 
itself is used to support a study, analysis, or discovery in, e.g., public health or 
health services research, outcomes research, epidemiology). The American 
Medical Informatics Association (AMIA) has proposed a clarifi cation of the 
primary/secondary use concept: “reuse of health data occurs when personal health 
data are used for purposes other than those for which they were originally 
collected”  [  1  ] . 

 Another relevant term is eSource, which refers to “source data captured initially 
into a permanent electronic record used for the reconstruction and evaluation of a 
clinical study.  Permanent  in the context of these defi nitions implies that any changes 
made to the electronic data are recorded via an audit trial.” [ICH, CDISC]  [  7  ] . The 
concept of eSource is important when seeking ways to facilitate data sharing with-
out transcription, for example, from electronic health records or electronic diaries 
for collecting research data. 

 Data sharing obviously can include other  siloed  sources such as biological and 
genetic data. Other terms, such as interoperability and directionality, are important 
and contribute to our defi nition and conceptualization of data sharing; these are 
described later in this chapter, as are key concepts, general strategies, and chal-
lenges, which include workfl ow and standards and technology adoption. The nature 
and status of important initiatives and collaborations to encourage data sharing will 
be described. At the end of this chapter are explorations of development phenomena 
for the fi eld of clinical research informatics.  
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   Stakeholders 

 Historically, basic research, clinical research, and medical care have been viewed as 
distinct spheres, with different objectives, processes, actors, roles, rules and regula-
tions, ontologies, terminologies, databases, and software. The importance of  unifying 
these spheres has been heralded for many years and is taking upon new fervor most 
recently with the emergence of “translational science” and supporting informatics 
research and applications. The harmonization of these spheres is an enormous task 
and will likely continue for decades to come. However, great strides have been made, 
collaborations have been forged, communications on the topic are engaging, and 
standards development organizations are collaborating such that standards between 
the silos are beginning to converge through harmonization efforts. The infrastructure 
and technological tools are advancing, but players are recognizing this as not merely 
a technological problem but a social, political, and organizational problem as well. 

 The stakeholders are all-important. Those who need to be able to share data, 
albeit with appropriate privacy and security in place, include, but are not limited to, 
research partners (study sponsors of any type of study, investigators, institutional 
review boards, data safety monitoring boards, government funding agencies, regu-
lators, biotechnology and pharmaceutical companies, clinical research organiza-
tions, technology providers), study registries and patient or disease registries, 
physicians referring patients to other physicians, biosurveillance centers or centers 
for disease control, quality forum and public health centers and patient advocacy 
groups, and obviously the patients themselves. Benefi ts of data sharing can be 
reaped by any of these numerous and varied stakeholders.  

   Challenges in Data Sharing 

 Despite general consensus that there are opportunities to improve the quality of 
healthcare based upon the collective and accumulating information in medical 
records that can inform clinical decision support, there are challenges that must be 
overcome. Because of these challenges, widespread interoperability of basic 
research, clinical research, and healthcare information has not yet been realized, 
apart from a handful of pilots or “point solutions” in limited geographic areas. 
Clearly, there is a need to agree on workfl ows to inform roles  [  2  ] , and there are regu-
lations and problem areas to be addressed  [  8  ] . Additional challenges include trust-
related issues (privacy), a variety of disparate approaches to information technology, 
adoption of standards for data interchange, and content issues due to incompatible 
terminologies. These challenges are addressed in this section in light of the status 
and evolution of progress toward data sharing. Subsequent sections introduce key 
concepts and collaborations toward the goals of semantic interoperability and infor-
mation linkages between healthcare and clinical research. 
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   Regulations 

 In the current state, clinical research is still paper-focused, which does not allow 
rapid, real-time electronic data sharing. The time to develop a new therapy is on the 
order of a decade, and the translation of research results into clinical care decisions 
is even longer  [  9  ] . The clinical research side of the equation must be transformed 
in order to leverage this new electronic healthcare information at an acceptable 
pace, and  guidelines and regulations must be reviewed and updated accordingly. 
Although the history of a paper-based process is still a strong infl uence for most 
regulations and procedures related to data privacy in research, we are seeing a 
change. Certain FDA regulations and guidance have been developed to address the 
retention of electronic records (21CFR11), and there is FDA guidance on the use of 
computerized systems in clinical research (CSUCI), but these are still not in sync 
with the policies for the use of electronic health records such as HIPAA. It is inter-
esting that HIPAA itself was initially developed to encourage portability of data 
while 21CFR11 was developed to encourage the use of technology in clinical 
research; however, both of these regulations have frequently been “overinterpreted” 
such that they have the opposite effect due to fear on the part of the users. Data shar-
ing technologies and implementation will improve when patients, providers, 
researchers, and organizations understand and trust the regulations, and procedures, 
for protecting patient data and privacy in a changing electronic environment.  

   Trust-Related Issues 

 While data sharing or secondary use or reuse of data can be a frightening concept, 
and appropriate processes and policies must be in place, patients with chronic dis-
eases seeking improved therapies are advocating the use of their medical informa-
tion to identify biomarkers and other means of obtaining better treatments for 
themselves and others who may suffer from the same chronic diseases in the future. 
The more patients and physicians agree to participate in ethical clinical research, the 
more information we can gain to improve healthcare—that is, assuming this infor-
mation can be readily accessible for analysis and reporting. 

 The majority of data sharing use cases can be achieved in an ethical manner, 
protecting the security and privacy of the patient and for the ultimate benefi t of the 
patient; however, there are cases of fraud, misuse, and unethical practices that 
undermine the value and benefi t for all of us. For this reason, in addition to GCPs 
and regulations/guidance, measures and tools such as   ClinicalTrials.gov     and the 
WHO International Clinical Trials Registry Platform  [  10,   11  ]  are being put in place 
around the globe for research sponsors to be transparent about the studies they are 
conducting and their results, whether the results are positive or negative. The ethical 
and regulatory issues are emerging and dynamic.  

http://ClinicalTrials.gov
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   Slow Adoption of IT (and Standards) in Clinical Research 

 The adoption of new technology by the clinical research community has proven to 
be more challenging and slower than many would have anticipated two decades ago 
when the fi rst “remote data entry (RDE)” tools became available. These tools are 
now typically referenced as electronic data capture (EDC) since the data capture 
occurs at the origin (not as these were initially viewed by sponsors—as remote to 
the data management activities). Granted, the EDC adoption trend has been on an 
incline, but even in 2006 (when some study sponsors declared that all of their stud-
ies use EDC), the overall percentage of clinical research studies conducted using 
electronic data capture technologies was estimated to be on the order of 40% (paper 
data collection on 3-part NCR forms accounted for the rest), while in 2009, the 
estimate was approximately 50–60%. The tools employed are varied, and, in 2004, 
nearly two-thirds of study sites had more than one EDC (eCase Report Form) appli-
cation, and half of the sites had more than one ePRO (ePatient Reported Outcome 
or eDiary) application in use simultaneously. This is still, in 2011, a problem at 
research sites where an active site may well have between 6 and 12 different EDC 
tools, each with a different login, data collection requirements, and query resolution 
process. And, these tools require data re-entry/transcription from the medical chart, 
whether it is paper or an EHR. Obviously, this is not an ideal workfl ow process, and 
it increases the opportunity to introduce errors since the same data could potentially 
be entered and/or transcribed 4–7 times  [  12  ] .  

   Workfl ow 

 The workfl ow and systems design issues that emerge from the reuse of data are criti-
cal. They are mentioned throughout this chapter and addressed more in depth in 
Chapter   3    . The preponderance of disparate methods for collecting clinical research 
data at investigative sites needs to be addressed from a workfl ow perspective. With 
the recent incentives for increasing use and adoption of electronic health records, 
integrating clinical research and healthcare in one electronic setting such as the 
EHR is clearly part of a logical solution to improve workfl ow for a clinician involved 
in both research and healthcare. This has been a key objective of the Clinical Data 
Interchange Standards Consortium (CDISC) Healthcare Link Initiative since its 
inception  [  13  ] . The mission of the CDISC is “to develop and support global, 
 platform-independent data standards that enable information system interoperabil-
ity to improve medical research and related areas of healthcare”  [  14  ] . It has always 
been important to CDISC that the CDISC clinical research data interchange stan-
dards are harmonized with relevant standards for healthcare. In addition, the CDISC 
Healthcare Link Initiative has specifi c goals to: (a) make it easier for physicians to 
conduct clinical research, (b) collect data only once, preferably in an industry stan-
dard format for multiple downstream uses, and, thereby, (c) improve data quality 
and patient safety  [  15  ] . The overarching goal is to better leverage technology and 
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information that emanates from healthcare for research purposes, ultimately to be 
able to better and more rapidly inform healthcare decisions based upon the latest 
research results. Specifi cally, the CDISC Healthcare Link Initiative encompasses a 
number of projects, including but not limited to:

   eSource Data Interchange (eSDI) initiative, the product of which is a document • 
 [  16  ]  that contains an extensive review and analysis of the relevant existing global 
regulations, 12 requirements for conducting regulated clinical research using 
eSource data collection (e.g., EHRs) in the context of existing regulations, fi ve 
potential scenario (three based on use of EHRs in research), and other checklists 
for various responsible parties  
  Biomedical Research Integrated Domain Group (BRIDG) Model  [  • 17  ] , which is 
described later in this chapter  
  Integration profi les developed through CDISC and Integrating the Healthcare • 
Enterprise (IHE), also described later    

 Standards-based process improvements such as these address workfl ow by 
approaching it with a goal toward achieving “workfl ow integration” for concurrent 
clinical research and clinical care.  

   Content and Technical Issues 

 It may well be that in any clinical research data sharing scenario, there are certain 
differences in the original data sources and objectives between settings and pur-
poses (i.e., healthcare vs. clinical research) that will never be reconciled. The pur-
poses for EHR data collection are to support patient care (including longitudinal 
continuity of care and decision support) of almost endless scope, while research 
interests tend to be more prescribed, more focused, and more short term. For these 
reasons, there are different characterizations of “shared” data. Each domain (research 
and healthcare) has its own requirements and goals, and certain data may be valu-
able for one case or the other. That being said, there are clearly cases where data are 
valuable to both the documentation of care delivery and to secondary or enhanced 
uses such as clinical research; these data represent the “same” clinical constructs, 
but they may or may not be represented the same. In this sense, efforts at synergiz-
ing opportunities for data sharing have the potential to impact healthcare standards 
and data collection, and current EHR-clinical research harmonization efforts are 
focusing, obviously, on the areas with overlap. The ultimate goal is to have data 
standards for the overlapping information that are compatible and support data shar-
ing and interchange, which is why many Standards Developing Organizations 
(SDOs) are working together for just this purpose. The Joint Initiative Council (JIC) 
is a group of SDOs addressing global health informatics standards harmonization, 
including clinical research  [  18  ] . In terms of standards harmonization and interoper-
ability, there are “content” challenges and also “technical” challenges, which inci-
dentally involve social and organizational issues. These are described by in more 
detail in Chapter   18    . 
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 Hence, key concepts we must address for effective data sharing include: (a) 
adoption and implementation of data interchange standards to enable the sharing of 
information across varied choices of technologies and applications (system interop-
erability), (b) terminology harmonization, (c) basing the standards and applications 
on an overarching information model and ensuring they are global, (d) understand-
ing electronic health records with respect to clinical research regulations and guide-
lines to enable the use of electronic source data (e.g., EHR data) for research 
purposes, and (e) streamlining workfl ow and processes at research sites. The  sharing 
of data across systems relies on data interchange standards that enable interopera-
bility between computer systems. As we move into the new areas of translational 
and personalized medicine, the need to be able to share data, integrate and/or com-
pare data across studies, and deal with large volumes of data will become increas-
ingly critical. Currently, we struggle with the sharing of data among different 
applications used for an individual clinical research study—often within a single 
institution. Activities and progress toward addressing such content and technical 
challenges will be described and addressed in more depth, specifi cally in relation to 
data sharing, in subsequent sections of this chapter.   

   Key Concepts Around Data Sharing 

   Interoperability 

 It makes sense to use different information and computer technology applications 
for different purposes in an individual clinical research study, to be able to select the 
“best of breed” for activities such as data collection, data management, statistical 
analysis, and project management. However, this also means that the data need to be 
either re-entered or transcribed from one system to the next or, more appropriately, 
shared electronically among these tools. Sharing data electronically from one sys-
tem or application to another effi ciently, while retaining the meaning along with 
those data and avoiding mapping exercises, requires data interchange standards—
both transport standards and content standards—including common terminology. 

 The IEEE defi nes  interoperability  as the ability of two or more systems or com-
ponents to exchange information and to use the information that has been exchanged. 
The notion of interoperability involves both syntactic and semantic aspects. 

 If two or more systems are capable of communicating and exchanging data, they 
are exhibiting syntactic interoperability. Specifi ed data formats, communication 
protocols, and the like are fundamental. In general, XML or SQL standards provide 
syntactic interoperability. Syntactical interoperability is required for any attempts of 
further interoperability. 

 Beyond the ability of two or more computer systems to exchange information, 
semantic interoperability is the ability to automatically interpret the information 
exchanged  meaningfully and accurately in order to produce useful results as defi ned 
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by the end users of both systems. To achieve semantic interoperability, both sides 
must defer to a common information exchange reference model. The content of the 
information exchange requests is unambiguously defi ned: what is sent is the same 
as what is understood  [  19  ] . 

 Semantic interoperability is not usually an issue with the system itself but rather 
with the compatibility of the data or information. As an example, consider one study 
with Gender selections of Female = 1 and Male = 2; another study with Gender 
selections of Female = F, Male = M, and Unknown = U; another may have fi ve differ-
ent categories for gender vs. two; and yet another study has Sex instead of Gender 
in the data collection instructions or data collection form. When the research is 
completed, such data must be interpreted before it can be aggregated or compared 
across the four studies. In this common scenario, the data must be “mapped” to a 
common value set (sometimes referred to as ‘normalization’) before it can be mean-
ingfully exchanged or aggregated. Not only is the mapping of data a time-consum-
ing and costly activity (imagine mapping problem lists or laboratory test code 
values—thousands of values), but there is also a real risk of loss of meaning in the 
fi nal database information  [  20  ] . According to this review and computer science lit-
erature/experience, the “mapping” of data from heterogeneous systems requires 
consideration of the data collection context and data model semantics in combina-
tion with terminological data values. An example of context would be the use of the 
word “epoch” in the standardization of study design as a part of a protocol. (See 
Chapter   9    .) Most clinical research protocols include timeframes that are called 
cycles, periods, stages, or other such terms. In the CDISC Protocol Representation 
Model—Study Design  [  21  ] , this has been named “epoch” to standardize on one 
word that subsumes the myriad of terms that are often used. Epoch has a very spe-
cifi c defi nition for a clinical research protocol:  Interval of time in the planned con-
duct of a study . An epoch is associated with a purpose (e.g., screening, randomization, 
treatment, follow-up), which applies across all arms of a study. Note: Epoch is 
intended as a standardized term to replace period, cycle, phase, and stage. 

 Precise semantic defi nitions and concepts are critical to enabling computable 
semantic interoperability. Mead  [  22  ]  writes of the  Four Pillars of Interoperability  
(in the context of information messaging): a common information model, robust 
data types, a robust infrastructure for specifying and binding concept-based termi-
nology values to specifi c message elements, and a formal top-down message devel-
opment process. These four pillars are deemed necessary, but not necessarily 
suffi cient, for computable semantic interoperability.  

   Directionality 

 The notion of  directionality  of data sharing is critical. The specifi cs of the tasks and 
objectives for data sharing are important in defi ning system and technical requirements. 
This chapter does not deal with directionality specifi cally, although the means to 
improve workfl ow to enhance data sharing is addressed in depth later in this chapter.  
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   Harmonization 

 The pursuit of interoperability between heterogeneous systems, data representa-
tions, or other standards is what drives  harmonization . Harmonization implies a 
consensus and agreement, in this context, on the specifi cations for the content and 
representation of health and research data, yet the term connotes slightly different 
meanings to different people and organizations. There are several broad 
approaches:  [  23  ]  one is to map to terminologies or ontologies (e.g., ontology 
mappers); one is to translate between different standards, that is, defi ne explicit 
(“mapping”) relationships and equivalencies between overlapping concepts/data, 
so that they can be compared; one is to create common metadata and data ele-
ments; another is to create a use case, use scenario, or other such vignettes and 
identify standards to support these “information fl ows”; yet another is to create an 
overarching reference model and perhaps submodels (domain analysis models) 
that are less abstract and address a given area of concern (i.e., a domain). An 
example of a domain analysis model is the collaborative Biomedical Research 
Integrated Domain Group (BRIDG) model for “protocol-driven research”  [  17  ] , 
described in the next section. 

 To support computerized semantic interoperability, harmonization is agreeably 
important; however, there is current confusion and varying approaches to achieve 
it, and it is not entirely clear how domain analysis models, detailed clinical mod-
els, clinical element models, templates, common data elements, concepts, and ter-
minology or ontologies that support mapping/harmonization of the same 
information all compare. The collaborations described in the following section are 
examples of current efforts to develop and harmonize compatible standards and 
other activities necessary to support computerized semantic interoperability and 
data sharing that forge a better link between clinical research and relevant health-
care information.   

   Collaborations Supporting Data Sharing Between Healthcare 
and Research 

 In 2001, HL7 initiated discussions with the Clinical Data Interchange Standards 
Consortium (CDISC), and the two standards development organizations agreed that 
they should be working together to ensure that the clinical research standards 
(CDISC) and healthcare standards (HL7) could and would be harmonized to sup-
port the vision that clinical research should gain information from healthcare and, 
in turn, research should inform healthcare decisions. CDISC and HL7, therefore, 
signed an agreement to collaborate and initiated a special interest group to explore 
how this could best be executed. This collaboration has now fl ourished into numer-
ous joint projects between CDISC and HL7. 

 Collaboration among SDOs and harmonization of standards are not always easy. 
While HL7 and CDISC have had many successful collaborative initiatives, there 
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were a few that required signifi cant effort. The benefi ts, however, do outweigh the 
challenges  [  24  ] . One particular area that remains to be resolved involves the distinction 
between content and transport standards; basically, CDISC and HL7 ended up hav-
ing essentially competing transport standards, both in different “fl avors” of XML; 
in fact, HL7 itself has competing transport standards. Another area involved the fact 
that clinical research domain experts did not comprehend the language of HL7. The 
resolution of these issues has involved the development of “choices” for transport of 
the same CDISC content (e.g., the CDISC LAB standard content can be carried by 
several different transport standards) and in the collaborative development of a 
domain analysis model, the BRIDG model, Release 3, which has a layer for domain 
experts to read and a layer directly mapped to the HL7 Reference Information 
Model (RIM) along with the originally designed BRIDG layer. 

 The CDISC and HL7 collaboration has now extended to the previously men-
tioned Joint Initiative Council (JIC).  Additional global collaborations of potentially 
major importance are forming, such as CIMI (Clinical Information Modeling 
Initiative), an international effort to promote harmonization of detailed information 
models/specifi cations of content that are of common value to healthcare and 
research. 

   Clinical Research Standards 

 CDISC holds a niche in the formal development (as a recognized Standards 
Developing Organization) of standards in the clinical research domain. As noted 
previously, CDISC also makes a concerted effort to harmonize these standards 
with the relevant standards for healthcare; this is an ongoing challenge, but steady 
and signifi cant progress is being made. For the most part, the CDISC standards 
are “content standards” in the domain of clinical research. The CDISC content 
standards encompass the information that is collected and exchanged to support 
any protocol-driven research (a subset of healthcare information). The initial set 
of CDISC standards addressed the safety information that is collected for essen-
tially all research studies (e.g., demographics, medical history, physical exam, 
concomitant medications, adverse events—the 18 domains of the CDISC CDASH 
standard and analogous SDTM domains)  [  25  ] . More recently, certain therapeutic 
area standards have been developed, including those specifi c to tuberculosis (TB) 
and certain cardiovascular disorders, and others are in progress. The CDISC con-
tent standards began as metadata standards, specifi cally the data itself along with 
the information about that data that provides the means to understand the data. 
For example, if a number is used for weight, the metadata would indicate whether 
this number is in kilograms, grams, pounds, ounces, or whatever the units are as 
well as other information about that bit of data. Once these standards were devel-
oped, the complementary terminology was then developed for each element/data 
fi eld, collaborating with HL7, NCI, FDA, EMA, and others. The term ‘clinical 
data element’ or ‘concept’ refers to the data and the metadata and more, such as a 
set of valid values (i.e., code list, pick list, or value set). The CDISC standards 
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now support clinical research end-to-end (from protocol through analysis and 
reporting), and to ensure that these standards are harmonized with each other to 
support streamlined data fl ow from protocol through analysis and reporting, a 
clinical research domain analysis model (BRIDG, described in next section) is 
used (Fig.  17.1 ).  

 Joint activities to agree on terminology now involve CDISC and HL7 as well 
as other organizations, including the National Cancer Institute (NCI), FDA, NIH, 
and the International Conference on Harmonization (ICH) which is comprised of 
the regulatory authorities and pharmaceutical manufacturing associations from 
Europe, Japan, and the USA. However, the development and adoption of a global 
concept-based terminology continues to elude the world and is now commanding 
attention from an increasing number of standards development organizations 
working together in order to solve this problem  [  26  ] , not only for healthcare but 
also including clinical research terminology. In particular, to encourage global 
harmonization of standards (including terminology), the aforementioned JIC 
 [  18  ]  was initiated with HL7, ISO TC 215 (Healthcare Informatics Standards), 
and CEN from Europe. CDISC and now the International Health Terminology 
SDO (IHTSDO) have also now joined this council. It is only through the collabo-
ration of global SDOs and their stakeholders that semantic interoperability will 
be feasible.  
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   The BRIDG Model 

 The initial exploration of how    CDISC and HL7 could best ensure harmonization of 
the clinical research standards with the relevant healthcare standards to achieve seman-
tic interoperability between healthcare and clinical research computer systems was 
inherently diffi cult since these two groups were speaking different languages in every 
sense of the word. The proposed solution came in the recommendation to develop a 
domain analysis model. This was initiated in 2004 by CDISC, and the scope was 
broadly defi ned as “protocol-driven research.” The resulting model is a collaborative 
and open domain analysis model, the Biomedical Research Integrated Domain Group 
(BRIDG) model  [  17  ] . The two main reasons for initiating the BRIDG model were (a) 
to provide a domain analysis model for clinical research that harmonizes all of the 
CDISC standards and other relevant protocol-driven clinical research standardization 
efforts and (b) to link clinical research standards with healthcare standards toward the 
goal of semantic interoperability  [  25  ] . The BRIDG model now serves to bridge not 
only standards but also organizations and clinical research with healthcare. 

 The BRIDG model now includes the CDISC standards, along with harmonized 
adverse event reporting (safety reporting) standards from the FDA, NIH, NCI, ICH, 
and CDISC. The BRIDG model    Release 3, which was the fi rst “Production Release,” 
has a layer that domain experts can readily understand and one that is directly mapped 
to the HL7 RIM, along with the original middle layer. The BRIDG is now being used 
to (a) ensure that any new clinical research standards that are developed are harmo-
nized with the existing ones and (b) develop interoperable applications, to facilitate 
meaningful data sharing. Figure  17.2  illustrates the relationship of the BRIDG model 
to the HL7 Reference Information Model (RIM) and the  domain-friendly models 
developed by the BRIDG Semantic Coordination Committee (SCC).  

 The fi rst standard that emanated directly from the BRIDG model (as opposed to 
being harmonized into BRIDG) is the Protocol Representation Model  [  21  ] . The mission 
of the Protocol Representation Group, which developed this model, is “to develop a 
structured protocol representation that supports the entire lifecycle of clinical research 
protocols to achieve semantic interoperability (the exchange of content and meaning) 
among systems and stakeholders.” The Protocol Representation Model V 1.0 includes 
subject eligibility criteria (not specifi c to therapeutic areas), study design (standard 
design information, including epochs, and time and events or study calendar), and clini-
cal trial registry information (also supporting project/protocol management and report-
ing the study summary to FDA). The clinical trial registry elements in BRIDG and PRM 
have been harmonized to support EudraCT, WHO ICTRP and   ClinicalTrials.gov    . 

   The BRIDG model will become increasingly useful as the development and 
enhancements continue and as users better comprehend its structure and value. It is also 
important to ensure that, for all of the standards, enhancements and new releases are 
“backwardly compatible” so that early adopters are supported. As of this writing, HL7 
and CDISC (through the BRIDG Board) are formalizing policies to ensure that emerg-
ing standards/artifacts, data models in the domain of clinical research are represented 
in the BRIDG model to ensure that these standards are compatible with each other. 

http://ClinicalTrials.gov
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BRIDG has also been adopted as a JIC Project, which means it will be not only a 
CDISC and HL7 standard but also an ISO/CEN standard as well. 

 For the BRIDG as a whole, as with data collection and reporting standards such 
as CDISC CDASH and SDTM, specifi c therapeutic area-specifi c standards would 
be very useful as would value sets bound to BRIDG. CDISC is working with other 
organizations in this area on a project called SHARE (Shared Health and Research 
Electronic Library). SHARE is defi ned as “a globally accessible electronic library 
built on a common information model, which (through advanced technology) 
enables precise and standardized data element defi nitions that can be used in studies 
and applications to improve biomedical research and its link with healthcare”  [  27  ] .   

   Developments/Phenomena Driving Data Sharing 

 In addition to the collaborative BRIDG model, which serves not only to bridge 
standards and organizations but also to bridge clinical research and healthcare, there 
are several important initiatives that are taking place to link healthcare and clinical 
research, leveraging electronic health records (EHR). Three concurrent areas of 
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development include: (a) translational biomedical research to integrate processes 
from biology and discovery of new therapies through to bedside treatment and the 
data standards and technologies needed to enable these processes, (b) the use of 
EHRs to support clinical research of various designs and personalized healthcare 
and the standards and technology to support these processes, and (c) aggregated 
databases to support research towards the development of new therapies. 

   Clinical and Translational Science 

 In the translational medicine arena, there are a number of technology efforts ongoing 
within and across academic institutions and by government health organizations and 
corporations around the globe. Without going into depth in this chapter, these initia-
tives include, but are not limited to, integrated data repositories  [  28  ] , data warehousing 
 [  4  ] , ontology-related projects, IT infrastructure considerations  [  29  ] , and data integra-
tion initiatives  [  30  ] . The Clinical and Translational Science Awards (CTSA) in the 
USA encourage collaboration and data sharing among research organizations  [  31  ] . The 
Informatics for Integrating Biology and the Bedside (i2b2) project is indeed an exem-
plary initiative enabling data mining and producing integrated databases and ontology 
mappings that collaborators may apply to their research projects to augment cohorts 
and leverage larger aggregated sets of information for their research purposes  [  32  ] . 

 The US National Cancer Institute (NCI) has sponsored a number of projects for 
the purpose of integrating discovery research and translating that to the bedside, 
including caGrid and caBIG  [  33  ] . The mission of caBIG ®  was to develop a truly 
collaborative information network that accelerates the discovery of new approaches 
for the detection, diagnosis, treatment, and prevention of cancer, ultimately improv-
ing patient outcomes. The NCI also collaborates with the European cancer commu-
nities to try to bring a more global perspective. At the very core of these initiatives, 
or any data sharing effort, is a set of standards that enable data sharing. The NCI 
uses established standards when available and has been a key contributor in stan-
dards development work by Health Level Seven (HL7) and the Clinical Data 
Interchange Standards Consortium (CDISC). The NCI is one of the key collabora-
tors with the BRIDG model, along with CDISC, HL7, and FDA, and their applica-
tions are built using the BRIDG model to enable data sharing and aggregation for 
research purposes. Their core data collection standards are harmonized with those 
of CDISC (CDASH), and the controlled terminology for FDA and CDISC is housed 
and made available through the NCI Enterprise Vocabulary Services (EVS).  

   Healthcare Link 

 As mentioned earlier in the chapter, the eSDI concept is a powerful force changing 
workfl ows and research paradigms, thus promising improved effi ciencies and 
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knowledge discovery. In addition to the CDISC eSDI document, developed in col-
laboration with FDA, the European Medicines Agency (EMA) has also referenced 
the eSDI work in their “Refl ection Paper on Expectations for Electronic Source 
Documents Used in Clinical Trials” for the GCP Inspectors Workgroup  [  34  ] .
  Through the CDISC Healthcare Link Initiative and building upon the eSDI work 
and the associated scenarios using EHRs for clinical research, Scenario 3, or “Single 
Source,” was piloted  [  35  ] . The concept was then brought by CDISC to Integrating 
the Healthcare Enterprise (IHE) to be developed into an integration profi le. This 
integration profi le, developed jointly by IHE and CDISC, is named Retrieve Form 
for Data Capture (RFD)  [  36  ] . Although relatively simple in concept, the RFD has 
proven to be extremely powerful in enabling the sharing of key information between 
EHRs and research-related systems. It is easily implemented by a variety of differ-
ent EHR systems and has received support from EHR vendors for this reason  [  37  ] . 
The RFD allows a form (from another source) to be brought into the EHR environ-
ment, partially prepopulated via the EHR, and then the data entered into the remain-
ing fi elds by investigative site personnel such that the resulting subset of data can 
then be sent, in a de-identifi ed and private manner, to various reviewers (secondary 
users). The use cases supported thus far have been clinical research studies (eCRFs), 
safety reporting (MedWatch/ICH E2B), biosurveillance/outbreak reports, patient/
disease registries, and postmarketing surveillance. 

 The value comes from RFD in a number of ways, including the following:

   Allowing clinicians to continue to use the healthcare technology/EHR system • 
they are using while readily supporting other uses such as clinical studies (inte-
grated workfl ow) thus creating effi ciencies in research and healthcare  
  Eliminating transcription or re-entry of data into multiple systems, thus improv-• 
ing quality (and reducing paper)  
  Integrating the adherence to regulations for research and patient privacy into the • 
process (RFD supports a standard archive process for the investigative site)  
  Facilitating downstream use of the information from the EHR since it is in a • 
standard format (e.g., the Continuity of Care Document (CCD) and CDASH 
have been used as standards to support clinical studies using the RFD for the 
process/workfl ow component)  
  Providing the potential to improve patient safety by linking it into the clinical • 
care session    

 Safety reporting (i.e., adverse events reporting) at one research center using RFD 
now takes on the order of 30 seconds instead of the original greater than 30 minutes 
timeframe  [  6  ] . The H1N1 fl u threat in mid-2009 emphasized the need for the rapid 
sharing of information to support an adequate dataset from which to glean knowl-
edge required to address the threat. The CDC was able to use the RFD and con-
trolled vocabulary for their purposes. There are also implementations of the RFD in 
Europe and Japan, safety surveillance reporting to Japan’s regulatory agency, 
(PMDA) Pharmaceuticals and Medical Devices Agency. 
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 The RFD is being augmented by additional integration profi les that are in 
development to streamline workfl ow from EHRs for research purposes and to 
ensure safety and privacy and use of the appropriate subset of data (redaction 
services). Specifi cally, there is now an integration profi le and mapping to sup-
port the use of CCD to populate eCRFs using the CDISC CDASH standard and 
an integration profi le to enable the EHR to “know” what data should be col-
lected in the form based upon a protocol (Retrieve Protocol/Process for Execution 
or RPE). 

 The Interoperability Specifi cation (IS) #158 for clinical research, developed 
through the US Health Information Technology Standards Panel (HITSP) initiative 
and ratifi ed in January 2010, was specifi cally developed for the use of EHRs in 
clinical research, initially scoped as exchanging a core set of data between EHRs 
and research systems. The corresponding value case and use case were produced 
prior to the IS development steps. The standards/integration profi les identifi ed for 
this IS are the HL7 CDA, the CDISC-IHE, and the CDISC CDASH as a core (mini-
mal) research dataset. In fact, there are four HITSP IS that employ the RFD—
clinical research, quality, biosurveillance, and public health, and, as mentioned 
previously, the RFD has been endorsed by the EHR Association for its ease of 
implementation and value. 

 Leveraging the standards, eSDI and RFD, an HL7 Functional Profi le was 
 developed to support the use of EHRs in clinical research. EuroREC, a certifi cation 
agency in Europe, has also been involved in this functional specifi cation develop-
ment. These harmonization efforts are critically important in order to help ensure 
that healthcare standards and interoperability specifi cations take into account 
research needs such that there can be convergence of these efforts, rather than a 
detrimental divergence. 

 Also in Europe, the European Commission is requesting funding proposals for 
their Framework Programme 7: “Advanced environment for health professionals 
and researchers that enable seamless, secure and consistent integration or linking of 
clinical care information in electronic health records (EHR) with information in 
clinical research information systems, such as clinical trial systems.” And, the 
Innovative Medicines Initiative (IMI) has funded a collaborative project with 
33 partners to develop four use cases; it is called EHR4CR. The Healthcare Link is 
clearly of global interest.  

   Aggregated Databases to Improve Opportunities 
for New Therapies 

 An unprecedented collaborative initiative that demonstrates the value of data sharing 
is the Coalition Against Major Diseases (CAMD). A project of the Critical Path 
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Institute, CAMD has brought together collaborators from the biopharmaceutical 
industry, government, patient advocacy groups, and other key stakeholders to work 
together to develop a shared database with a goal to “bring greater speed, effi ciency, 
safety and predictability to medical product development”  [  38  ] . The initial target is 
Alzheimer’s disease, which continues to devastate patients, their caregivers, and their 
families. Aggregated data from failed clinical research studies conducted by multiple 
sponsors is being used to create a database with suffi cient size to enable disease mod-
eling and biomarker validation; a better understanding this disease will presumably 
lead to more effective therapies. A placebo database can also reduce the number of 
subjects required for studies and improve analysis of future research. To create the 
database required a common set of standards; in this case, the studies were all mapped 
into the CDISC SDTM format, which was augmented by a standard for the effi cacy 
data to evaluate Alzheimer’s treatments. In the future, studies can take advantage of 
the CDISC standards for data collection, thus eliminating the need for back-end map-
ping of data into a standard and improving the effi ciency of the research. The CAMD 
collaborators are now looking at additional diseases such as Parkinson’s disease, thus 
paving the way for more effectively conducting global research studies and evaluating 
the effectiveness of therapies in the future through data sharing. CDISC and the 
Critical Path Institute continue to collaborate in the development of therapeutic area 
standards to facilitate these invaluable data sharing initiatives.   

   Conclusion 

 The notion of information on paper centered around a single patient, or even in 
computers at an individual clinical care site, must be challenged. Advanced testing 
and genomic data require computerized systems and the aggregation of information 
for interpretation and/or comparison through research before they can be useful in a 
practice setting. The American Medical Informatics Association (AMIA) defi nes 
translational bioinformatics as “the development of storage, analytic, and interpre-
tive methods to optimize the transformation of increasingly voluminous biomedical 
data into proactive, predictive, preventative, and participatory health”  [  39  ] . Inherent 
in this defi nition is the sharing and processing of data from multiple sites across a 
spectrum of clinical research. Indeed, as discussed in Chapter   19    , even safety evalu-
ations of therapies cannot be trustworthy or useful unless they are based upon suf-
fi cient amounts of aggregated data from multiple sources or sites. 

 The status quo at this writing is no doubt unacceptable to all the stakeholders 
mentioned in this chapter, among others. Should an insurance company have quicker 
and better access to greater healthcare information than the research community? 
Should the insurers be the fi rst to identify an unsafe product as opposed to the manu-
facturer or regulatory authorities? Should individual states and countries have dif-
ferent requirements that inhibit sharing data across borders? Should 
government-funded research results be inaccessible beyond the walls of a given 
institution or investigator? And, fi nally, should physicians fi nd research and the 
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reporting of adverse events so cumbersome that they choose not to participate? The 
opportunities for data sharing are vast and could signifi cantly benefi t a multitude of 
stakeholders. 

 Data sharing is important for a number of reasons, primarily to allow different 
technology tools to work together to improve clinical research processes and to 
allow for aggregation of data from different studies and/or comparisons across stud-
ies. These steps are critical to the advancement of healthcare, which relies on 
research information for informed clinical decisions and is rapidly becoming 
encumbered with increasingly larger quantities of data, particularly in the area of 
genomics. 

 Clinical research processes are currently, unfortunately, antiquated and not 
changing quickly enough. Around half of studies are still done collecting data fi rst 
on paper, and others are done using disparate systems where clinical data must be 
re-entered or transcribed, thus increasing the chances of errors and a negative impact 
on quality. Progress is being made, however. Standards developing organizations 
are ensuring that standards are harmonized for both research and healthcare by 
 creating a domain analysis model (BRIDG). Academic research institutions are 
encouraged to collaborate on research, which requires sharing data; integration pro-
fi les and standards are being developed and employed to support new processes at 
investigative sites that will leverage electronic health records to streamline the 
research process and eliminate burdens on clinical research investigators; and, regu-
latory authorities and governments realize the importance of ensuring that research 
and healthcare are better linked. Indeed, the great potential of data sharing 
is a global concern for the future of healthcare and clinical research. All of the ini-
tiatives that rely upon data sharing require policies that protect patients while 
enabling research, a collaborative attitude among research and healthcare stake-
holders (including patients and their advocates) and technology and service provid-
ers that implement and support standards development and adoption. 

 Challenges to informatics include tools, communication, and dialogue to under-
stand current and changing processes, standards, objectives, and systems—for both 
healthcare delivery and clinical research. Creating a synergy between the two 
worlds will enable the exploitation of data sources for knowledge discovery and 
sharing and stand to positively impact all stakeholders. Also, imagination is needed 
to visualize and anticipate changes in the status quo for healthcare delivery and 
clinical research. Finally, we must understand ways to achieve interoperability 
across them all. Opportunities for education, coordination, improved collaborative 
communication and consensus tools, IT tools, and revised regulations that will 
encourage the link between healthcare and research (and thus data sharing) also 
abound. 

 The nirvana is to reach semantic interoperability, but we may have to take this 
step by step, all the while ensuring that the standards and technology that are imple-
mented in healthcare will also support research. For these two related areas to 
develop, divergent or disparate systems and standards would only worsen the current 
tower of Babel  [  40  ]  and inhibit the advancement of both research and healthcare. 
The ultimate benefi t is for the patients, and we are all patients.      
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  Abstract   In this chapter, the case is made for the use of standards to support clini-
cal research. In particular, the focus is on the standards development process, identi-
fi cation of relevant standards, and selection and implementation issues. Types of 
standards discussed include physical connectivity, data modeling, information model-
ing, terminology, organizational process, and documentation of technical specifi ca-
tions. The notion of “certifi cation” in standards activities and the implications for 
research are introduced. Specifi cally, an argument for research standards (in the form 
of common data elements) that are complementary to healthcare standards is intro-
duced. Finally, a review of key advocates for clinical research standards is presented.  

  Keywords   Research data sources  •  Healthcare informatics  •  Clinical research 
informatics  •  Clinical research data standards  •  Certifi cation  •  Conformance  • 
 Common data elements      

 The importance of standards to healthcare informatics has long been recognized and is 
taking an increasingly prominent place in clinical research informatics. However, the 
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lack of consensual data representation standards and compliant implementations are still 
seen as the primary obstacles to achieving widespread use of patient healthcare records 
as part of a coordinated and effi cient national healthcare infrastructure. Internationally, 
countries with less complicated healthcare models, such as single payer, have made 
considerably more progress in ubiquitous implementation of electronic health record 
systems. Even so, there are still signifi cant unsolved problems. In many of these coun-
tries, there is still a disconnect between inpatient and outpatient care. Secondary use of 
data is a universal and cogent goal that is not widely achieved. Effective use of clinical 
decision support remains a goal for the future. In short, the ability to coordinate patient 
care or support research across national boundaries is essentially unrealized. 

 Clinical research has been even slower than care delivery to adopt data standards, 
and the ability to compare or use data across clinical research controlled trials is almost 
nonexistent. Paper-based data collection still dominates clinical research and is being 
replaced more slowly than in healthcare. The motivations for adopting data standards 
in clinical research have been directly proportionate to the low motivation to share data 
among researchers, given the highly competitive fi nancial and academic stakes. Despite 
the obstacles to data standards in clinical research, progress has been made just in the 
past 5 years. In the previous chapter, Data Sharing: Electronic Health Records and 
Research Interoperability, Dr. Kush alludes to the sociopolitical and organizational 
challenges of developing standards necessary for interoperability. The systems and 
workfl ow issues related to clinical research data collection are addressed in Chapters   3     
and   8    . This chapter focuses more deeply on the heterogeneity and features of standards 
themselves and generic aspects of their development. Informatics has a role to support 
processes of both standards development and standards implementation. As we discuss 
the various types and features of standards, it is important – especially in the rapidly 
growing use of electronic data collection for clinical research – to recognize that there 
are both  content  and  technical  aspects to data standards. We describe both within the 
context of a future vision of interoperable health information systems. We propose the 
need for standards that bring the content and technical requirements together in reus-
able and transparent ways in order to ensure interoperability between and across clini-
cal research and a spectrum of healthcare and population health activities. 

   Future Milieu for Standards (The Vision) 

 For the moment, consider what the value of coordinated health information and 
research infrastructure, with truly interoperable information systems, would mean. 
Current and important problems of the clinical research community – such as identi-
fying candidates for clinical trials, obtaining well-informed consent effi ciently, locating 
existing biological samples – would become relatively effortless. The data collected 
in the documentation of patient care could be used seamlessly to support research 
planning, observational research (e.g., clinical and comparative effectiveness 
research), and knowledge discovery (e.g., data mining). Computer-directed guidance 
could enhance the quality and consistency of data collection, by providing actionable 
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guidance so that the data are collected by the most appropriate person (or device), at 
the proper time, according to protocol specifi cations. Issues of  provenance  (i.e., who 
recorded, changed, and authenticated each piece of data) could be reliably assured. 
Patient data would be available to facilitate the continuity, safety, and quality of 
patient care, as well as support clinical trials, data mining, reimbursement, audit and 
performance measures, and other purposes with little additional effort  [  1  ] . Data for 
research protocols could be conveniently collected at the time of clinical visits, 
or research visits could be managed separately. The data specifi c to research could 
be collected as specifi ed in the research protocol, and the protocol events could be 
directed without signifi cant additional cost. Adverse events for protocols could be 
managed within the context of comprehensive patient care records, so that health 
providers would be aware of research participations and interventions in their 
patients, and researchers (and regulatory and patient safety organizations, see Chap. 
  19    ) could be aware of emergent health issues (i.e., possible adverse events, safety 
issues, or confounding factors) that present to the healthcare providers. Multinational 
research studies could utilize clinical data or be supported. In a world with truly 
interoperable health information systems, public health reporting would be timely, 
accurate, and complete. Population experience would infl uence the nature and fund-
ing of new research, and subsequent discoveries could be put into practice and evalu-
ated quickly and continuously, as described in the fi nal chapter of this text (Chap.   21    ). 
Quality of care could be explored – near real time, within and across organizations 
and national boundaries, and process and interventional features could be performed. 
Informatics, enabled with interoperable systems, could indeed create a Brave New 
World. All of these scenarios require the sharing of patient data, which is dependent 
upon a consistent – or standard – representation of the data and its context.  

   Features of Standards 

 The word “standard” is used frequently in our conversations to refer to many dif-
ferent things. Sometimes we mean a formal document that was developed using 
prescribed procedures, balloted through an open, consensus process, and thus has 
received a stamp of authority. Sometimes we merely mean an informal set of rules 
by which we create expectations of behavior. Sometimes we mean a specifi ed list 
of codes that reference concepts. We often confuse standards with operating 
instructions or legal regulations. This variety of defi nitions for “standard” is part of 
the confusion – since user communities cannot easily assess which standards are 
overlapping or are appropriate for their domain or purview, nor can users quickly 
plug-and-play standards into their own information systems and applications. In 
this chapter, we use the term standard broadly to mean consensual specifi cations 
for collection or exchange of data. Readers should be cognizant that these stan-
dards can take many forms. 

 A few generic features of a standard are worth pointing out to better explore the 
heterogeneity in standards and the challenges of assimilating them for meaningful 
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data exchange. In the next paragraph, we will describe some examples of various 
layouts of standards but only with the intent to emphasize that there is variety, which 
contributes to the diffi culty of achieving the vision of integrated healthcare and 
research systems. Secondly, all standards imply some level of consensus and shared 
use, both of which imply the notion of multiple individuals or groups. Basically, stan-
dards are accredited or endorsed by some process or authorizing body. Standards can 
be produced by several methods: ad hoc, de facto, government mandate, and consen-
sus, as described in  [  2  ] . Other important aspects of standards include conformance 
and certifi cation (of implementation), and although these issues are not addressed 
here, they are an important aspect of standards compliance, expense, and popularity. 
There are also some specifi c categories of standards such as informative standard 
(information only) or normative standard (must be explicitly followed to be compli-
ant), and to further complicate matters, the coexistence of draft standards (for trial 
use) and multiple versions illustrates the fact that standards are ever changing, as 
needs and knowledge continue to evolve. Individuals or organizations actually  create  
standards using domain expertise, a defi ned process, and mutual understanding of the 
exchange or cooperation problem that the standard is intended to address. Consensus 
standards become offi cial through some type of industry-balanced balloting process. 
Critical to the ability to use any standard are implementation guides, which may be 
developed by the organization developing the standard, by another related group, or 
by a single user (individual or an organization) for its own purposes. In other words, 
regardless of the source, there can be implementation guidance or standards, and this 
should include where, when, how, and by whom a standard is used. 

 In all of these standards development processes and steps, there are conceptual, 
methodological, procedural, and logistical issues related to distributed collaboration, 
communication, and consensus. There are also conceptual, methodological, proce-
dural, and logistical issues related to group identity, membership, governance, fund-
ing, uptake, and “public relations.” Solutions to standards problems will no doubt 
require contributions from many disciplines, including cognitive science, organiza-
tional psychology, sociology, education, communications, political science, and, of 
course, information science and technology. These issues, though seemingly mun-
dane, all impact the quality of the standard and also the perceptions (of stakeholders 
and potential users) about the utility, quality, completeness, and equitability (fair-
ness) of that standard, and all of these features – we presume – have a direct impact 
on the use. Undoubtedly, there are gratifying, exciting, endless opportunities for 
informaticists within clinical research domain and other healthcare areas to explore 
ideal development formats and features for standards. Regardless of domain or train-
ing, those engaged in clinical research in the contemporary era should be familiar 
with standards and standards developing organizations. Accordingly, we encourage 
readers to inform and engage in relevant standards activities – to ensure that stan-
dards remain relevant, useful, and usable as they evolve.  



33918 Standards and Standards Development

   International Landscape and Coordination 

 Often, people refer to standards with the assumption of some master architect that 
has – if not a legal authority – a master conceptual model of how the pieces (data 
systems, data models, activities, and terminologies) of the health and research enter-
prise fl ow together. This has not been the case with healthcare information systems 
to date, though global and national standards efforts need to embrace this coordina-
tion approach. As we have mentioned, the interaction between EHR and clinical 
research systems is critical and will have strong infl uence in redesigning the clinical 
research enterprise. As an increasingly mobile society, the need for EHR and patient 
data to fl ow across international borders is clear. Similarly, as noted throughout this 
text, research knows no national borders. The need for multinational coordination 
and cooperation in research is clear. Because of this, the challenges for meaningful 
standards are tremendous, but facing them is inevitable. Seeing the number of orga-
nizations involved in the standards landscape, as shown in Fig.  18.1 , can give read-
ers an appreciation for the complexities of identifying and harmonizing standards.  

 Figure  18.1  illustrates a number of Standards Developing Organizations (SDOs) 
that exist and are creating standards. [Note that the fi gure is a comprehensive, but not 
exhaustive, list of organizations.] Appendix  18.1  identifi es each of the acronyms and 
organizations depicted on this fi gure. The fi gure illustrates several different kinds of 
organizations. The standards developing organizations are international (CDISC, 
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  Fig. 18.1    The International Standards Landscape (acronyms defi ned in Appendix  18.1 )       
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CEN TC 251, DICOM, GS1, HL7, IEEE, IHTSDO, and ISO TC 215) and USA-
based (ASC X12, ASTM E31, and NCPDP). The Joint Initiative Council is an inter-
national collaborative that encourages single, joint international standards. The SDO 
Charter Organization (SCO) is a similar-purposed US body promoting harmonization 
among US SDOs. HL7 and CDISC participate in both groups. IEEE and DICOM are 
both international SDOs but do not formally participate in the JIC or SCO. Both have 
a relationship with ISO and work effectively with the other SDOs. ANSI is a US stan-
dards regulating body; it does not create standards, but through a set of rules and bal-
loting processes approves standards as US standards. ANSI is also the US representative 
to ISO. ANSI also has been identifi ed as the permanent certifi cation body for the cer-
tifi cation of EHR systems. The groups on the right are controlled terminologies that 
are both international (SNOMED, MedDRA, ICD) and domestic (LOINC, RxNorm, 
CPT) in scope. The other boxes represent US federal activities as part of the Offi ce of 
the National Coordinator for the Department of Health and Human Services, which is 
driving the efforts at nationwide EHR adoption and coordination. The National 
Institute for Standards and Technology (NIST), as part of the American Recovery and 
Reinvestment Act of 2009, has assumed an increased role is identifying and testing 
standards. Even though there are many players and many standards, there is move-
ment toward harmonization and cooperation among the different groups. 

  Mapping       
 Despite emerging and promising cooperative efforts, there are still, unfortunately, 
many overlapping and competing standards addressing all aspects of healthcare 
systems. The most common approach has been to allow the coexistence of over-
lapping standards by supporting mapping efforts between the standards. The 
Unifi ed Medical Language System (UMLS) in the USA (globally available) has 
facilitated the mapping of various terminologies and coding systems. 

 Mapping is the process of fi nding a concept in a target terminology that 
“best matches” a particular concept in the source terminology, although what 
“best matching” means can range from exact synonymy to mere relatedness, 
depending upon the context of use. The process for creating cross-terminology 
mappings itself is time-consuming and labor-intensive, and there are potential 
problems with the mapping approach, including information loss and ambigu-
ity  [  3  ] . Mappings are by defi nition context specifi c and often are not an ideal 
or easy solution to a lack of a uniform standard. Mapping between two stan-
dards must always result in a loss of information. (If they mapped perfectly, 
why have two standards?) Further, it is impossible to keep two independent 
standards synchronized. Ongoing maintenance is essential and can consume 
considerable resources  [  4  ] . How best to handle versioning in mappings is still 
a largely unresolved issue  [  3  ] . In addition, the mapping approach is much 
more diffi cult to support when including different data models that underlie 
various medical systems. In general, mapping should be considered a work-
around and not a solution. 



34118 Standards and Standards Development

 The organizations represented in Fig.  18.1  and defi ned in Appendix  18.1  rep-
resent many, but certainly not all, standards organizations in the picture. 
Undoubtedly, there are scores of professional societies and ad hoc groups defi n-
ing content standards, and there are initiatives, such as the FDA Critical Path 
Initiative, that demand aggregation and sharing of data, integration of functional-
ity, multiple uses of data without redundant, independent collection of data, and 
an overall perspective of the individual independent of the clinical domain or 
disease that can only be accomplished by an engaging and interoperable suite of 
standards. 

 The European Standards body Comité Européen de Normalisation (CEN) cre-
ated a standard EN 13606 (now ISO 13606 standard) that defi nes a data structure 
called  archetypes . Archetypes are reusable clinical models of content and process, 
developed to provide a standard shared model of important clinical data as well as 
standard requirement for terminology. OpenEHR, an open source organization 
based in Australia, has created a number of archetypes that are in increasing use 
worldwide. In a very separate organizational effort and distinctively different mod-
eling approach, HL7 and ISO are creating detailed clinical models – data structures 
that also model discrete set of precise clinical knowledge for use in a variety of 
contexts – using XML syntax. HL7 also creates standards for Common Message 
Element Terms (CMETS) and templates for a variety of uses. The Integrating the 
Healthcare Enterprise (IHE) has created structured documents for imaging diagnos-
tic reports. ASTM has created the document standard Continuity of Care Record 
(CCR) for the exchange    of patient summary data. HL7 has the Clinical Document 
Architecture (CDA) standard. As a harmonization effort between two SDOs, HL7 
took the content of the ASTM CCR and implemented it in the CDA standard. This 
product, called the Continuity of Care Document (CCD), is essentially an imple-
mentation guide using the HL7 CDA standard. Within HL7, there is a new and dedi-
cated effort (called “Fresh Look”) that is attempting to bring all of these activities 
and specifi cations together. As this effort’s name implies, the effort will lead an 
unbiased and critical look at what has been done after 25 years of standards and see 
what new approaches might be effective. This initiative is striving to break the 
cycle of backward standards compatibility and eliminate interoperability barriers 
that are intrinsic to fundamental designs of early standards models. If successful, 
the Fresh Look effort might drive tangible achievements toward interoperability 
over the next year. 

 The Integrating the Healthcare Enterprise (IHE) is a current multi-organization 
initiative developed to address the global coordination of standards. IHE is led 
by the Healthcare Information and Management Systems Society (HIMSS) and 
Radiological Society of North America (RSNA) and includes dozens of elec-
tronic health record vendors to defi ne profi les using suites of standards to achieve, 
or at least contribute to, end-to-end interoperability. In many countries, the gov-
ernment identifi es, and in some cases mandates, which standards are used for 
what purposes. In the international scene, such profi les will require global gov-
ernance and vision across all healthcare domains and businesses. The European 
Union has projects underway that will enable a multinational coordination 
process.     
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   Standards by Function 

 The challenges with achieving collaboration, consensus, and coordination in stan-
dards go beyond the obvious geographic, cultural, and language issues in trying to 
unite international communities. Often, these challenges also involve different sci-
entifi c and professional communities, who all speak different “languages.” Most IT 
standards are sophisticated and complex and require technical experts to evaluate, 
develop, and implement. Additionally, the stakeholders are either domain (clinical) 
experts or research implementers. The technical and content experts differ more in 
their intended use. Study design and authoring, implementation and monitoring, 
data collection, transfer, and storage all require different players, who approach 
problems and discussions differently. 

 Part of the reason there are so many standards to be coordinated is because there 
are many different processes related to the collection, storage, transfer, and use of 
data in healthcare and research work processes. Figure  18.2  presents a high-level 
view of the key processes underlying all of the data interchanges: planning, data 
(representation), (data) collection, data transfer and storage, and applications that 
address the use and presentation of data. Standards exist at each of these levels, 
designed to perform a specifi c function. These processes can be thought of as the 
building blocks of a health information system; and interoperability, from end-to-
end, requires them to work together seamlessly.  
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 The purpose of Fig.  18.2  is to provide an overview of the components and of the 
large number of standards that exists in each of the areas. These standards have been 
created by a number of US and international standards bodies – sometimes working 
independently, sometimes working together; sometimes working competitively, 
sometimes working harmoniously. Other standards exist that are also important to 
healthcare applications. There are now a number of regulatory standards developed 
by HL7, ISO, and others in this area and adopted by the US Food and Drug 
Administration  [  5  ] . Examples include the Individual Case Safety Report  [  6  ] , the 
Structured Product Labeling, annotated ECG, and Common Product Models. HL7 
has produced standards for the exchange of genetic testing results and family his-
tory (pedigree) data, and many others are in development. 

 The presence of multiple transport standards (HL7 versions 2 and 3; CEN 13606, 
DICOM) for the exchange of data can also be seen on Fig.  18.2 . The existing stan-
dards have been developed by many different SDOs and are mostly focused on 
specifi c applications. These standards are redundant, overlapping, and competing. 
The most common form of a data interchange standard is called a messaging stan-
dard. The most popular standard for data exchange used in the USA today is the 
HL7 version 2.x standard. This standard, the fi rst standard developed by HL7, start-
ing in 1987, had, as its purpose, the exchange of data for building a “best of breed” 
hospital information system. Created at a time of limited bandwidth and computing 
power, the standard uses defi ned messages composed of functional segments, which 
in turn are composed of data fi elds, composed of data elements. Data elements are 
defi ned by position within the fi elds, separated by a hierarchical set of delimiters. 
Generalized data elements such as lab tests with results are defi ned by a name-value 
pair. HL7 also has introduced a more robust and sophisticated model-based exchange 
standard, version 3, which enables interoperability through the use of a Reference 
Information Model (RIM). The HL7 CDA standard and its specifi c domain imple-
mentations (harmonized with the RIM) can also be used for data interchange. 

 Other    data transport standards include the Digital Imaging and Communications 
in Medicine (DICOM), which is used universally for echanging images. DICOM 
evolved out of the American College of Radiology and the National Electrical 
Manufacturers Association (ACR/NEMA) and is now a global SDO. As a US SDO, 
the National Council for Pharmacy Drug Program (NCPDP) has created a set of 
standards for e-prescribing and reimbursement for drug prescriptions. Another US 
SDO, the Accredited Standards Committee X12N, has created a set of data exchange 
standards to support the reimbursement process. ASTM created the CCR standard 
as previously noted that may also be used for data interchange. IEEE, an interna-
tional SDO working with ISO, CEN, and HL7, has created a family of standards to 
support moving data from medical devices to electronic patient database. ISO TC 
215 – health informatics – supports messaging standards primarily through harmo-
nization with other SDOs. 

 Standards for the storage of data are still an open issue. For the most part, cer-
tainly as part of an electronic health record system, the EHR architecture is a pro-
prietary issue. CEN, in its EN 13606 standard, suggests an EHR architecture; others 
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have suggested that the EHR is a set of CDAs or CCR documents. Data is most 
frequently used and presented independent of its collection. Consequently, data 
must be stored in its most fi nely grained form to enable effi ciency and maximum 
utility. However, there will appropriately exist data directly stored with its modifi ers. 
An example is a heart murmur will have sets of modifi ers that include location, tim-
ing, and other attributes.  

   Selecting and Evaluating Standards 

 For every data standard, there is a need that motivates the use of standard. A use 
case is a narrative scenario of a real data exchange situation, and can be developed 
to support the development of meaningful standards. A use case must include all 
relevant parties or systems that generate data or use the systems. The use case forms 
the basis of requirements, which can be functional or representational requirements. 
These requirements provide the criteria to select from existing standards or to 
develop new ones and also form the criteria with which to evaluate the standards 
and systems selected. The appropriate scope and content of the use case are critical 
to the success of a standard: if the use case is too constrained, the standards will not 
accommodate important uses. For this reason, a variety of  multiple  use cases and the 
engagement of  all  stakeholders are important. Although this does take time, the lack 
of complete use cases and stakeholder requirements is often the reason that stan-
dards are continuously being expanded and changed. 

 If using an existing standard, it must be accessible – requiring a physical connec-
tion and access procedures. Additionally, issues of licensing and managing ver-
sions, as standards are always changing, must be addressed. In many situations, the 
physical structure, format, costs, and update schedules for the standards are impor-
tant criteria for the standard in the fi rst place. The standard must be incorporated 
into existing systems and workfl ows. With the use of terminological data standards 
in particular, there are several approaches to implementation. Healthcare or research 
staff can be trained to code at point of care or research observation  [  7  ] , or the data 
can be coded centrally in batches after the patient visit, as the FDA does with 
MedDRA coding of adverse events, which are reported as free text and coded later. 
(Many readers might be surprised to know how much data is actually collected in an 
unstructured fashion and coded later in this manner by an external party.) Regardless 
of the approach for implementing the standard, there are technical development 
aspects and user training aspects to consider. Ultimately, the standard is evaluated. 
This evaluation can then produce updates or improvements to the standard or to the 
systems and workfl ow processes for using that standard or could motivate the rejec-
tion of one standard and the use or development of a different standard. 

 Functional requirements for data modeling and exchange standards can be evalu-
ated by successful demonstration of use-case activities. By far the most common 
evaluation metric for a controlled vocabulary or content standard is coverage – in 
other words: content, content, content  [  8,   9  ] . Other criteria include ease of use, 
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precision, and recall  [  10–  13  ] . Characteristics of useful vocabularies are certainly 
fundamental reading for anyone new to data standards  [  10  ] . The complexities and 
hierarchies of the representation of medical data fi rst described by Blois are also 
interesting reading  [  14  ] .  

   Specifi c Standards Relevant to Clinical Research 

 Standards are not homogeneous and are not plug-and-play. They are not merely data 
dictionaries or fl at enumerated lists of values. They have dimensionality, implicit 
and explicit semantics, and data formats associated with them. They come from dif-
ferent organizations with different curation policies and update schedules. They are 
typically designed to work in one context, and their curation environments likely 
refl ect different commitments to the use of standard in that context. Some are 
designed for strict contexts (e.g., ICD) and others for many contexts (e.g., LOINC 
and SNOMED CT have a history of accepting emerging domains if they are relevant 
to health data exchange or EHR systems). There is not always coordination – or 
even communication – among standards on scope or content, so overlaps are com-
mon. For example, SNOMED CT covers medications although other controlled ter-
minologies do as well. SNOMED CT also covers laboratory tests, as does LOINC. 
[Note that there is a formal collaboration and coordination between IHTSDO and 
LOINC. However, they are still different standards, represent different curation and 
user communities, and will continually be developed separately and independently 
for the foreseeable future.] Several countries use different parts of SNOMED CT 
(e.g., laboratory test names and medications) where the USA does not. LOINC is 
moving toward standardized patient assessments and is crossing the fi ne line 
between “standardized” assessments to data elements. The list of overlaps and 
expanding scope goes on and on, but essentially the success and growth of standards 
are driven by familiarity, marketing, and social issues. Each of these standard termi-
nologies has (and will have) a specifi c user community, various stakeholder groups, 
business considerations, and a desire to accommodate the evolving needs of users. 

 In clinical research, the notion of standards includes standard case report forms, 
which are collections of data elements. In study implementation and development, 
these data elements are the items or questions on forms. They can be reused (includ-
ing the formatting and layout work and inclusion in the database) and thereby 
increase effi ciencies in protocol implementation and data capture system design. A 
recent review of CRF (Case Report Form) data standards organizes existing CRF-
related standards into three types: structural features of forms and data items, con-
tent standards, and specifi cations for using terminologies  [  15  ] . In response to the 
Food and Drug Administration (FDA)’s 2004 report, “Innovation/Stagnation: 
Challenge and Opportunity on the Critical Path to New Medical Products,” a 
CDISC effort, Clinical Data Standards Acquisition Standards Harmonization 
(CDASH), addresses data collection standards through standardized CRFs  [  16  ] . 
Initial CDASH standards focused on cross-specialty areas such as clinical trial 



346 W. Ed Hammond and R.L. Richesson

safety. Disease- or therapeutic-specifi c standards are now being considered, along 
with tools and process development to facilitate data element reuse across diseases. 
Because clinical research is highly protocol specifi c, forms-development  processes  
are more easily standardized than is CRF content, and current CDASH standards 
include guidance on forms development, including multidisciplinary expertise in 
their development. The CDASH standards document, “Recommended 
Methodologies for Creating Data Collection Instruments,” presents important and 
necessary features of the CRF development process. The techniques described 
include: adequate and “cross-functional” team review, version control, and docu-
mented procedures for design, training, and form updates. The FDA also requires 
rigor in the development, validation, and use of data elements related to patient-
reported outcomes as study endpoints in investigational new drug studies  [  17  ] .  

   Standard Data Elements 

 Signifi cant progress has been made toward data transport and terminology stan-
dards in medicine; however, standard data elements and defi nitions for information 
generated and used in care are lacking, resulting in our inability to leverage comput-
ers to exchange and use information between and across healthcare and research 
settings, and ultimately has hindered achieving the vision of integrated health 
described at the start of this chapter. Data may be exchanged between care provid-
ers, but variations in meaning, measurement, recording, formatting, and coding sys-
tems limit their effectual use. 

 A data element is a discrete unit of data collection that is clearly defi ned and 
reusable. Data elements can be viewed as the fundamental unit of data exchange 
across integrated health information systems  [  18–  20  ] . Data element–based informa-
tion exchange standards in other industries (e.g., commerce, library sciences, envi-
ronmental sciences) support the growing consensus that the data element is the level 
at which specifi cation must occur to support semantic interoperability in healthcare 
and research industry. Data elements do indeed have a conceptual model as we 
describe below, but the attributes of this model are designed to capture data collec-
tion features of the data element. Data elements can include concepts from specifi c 
controlled terminologies, but often data elements have narrative clinical defi nitions 
that go beyond clinical concepts to capture time, role (e.g., observer, reporter), and 
clinical defi nition. 

 The development of reference sets of data elements is the most important means 
to standardize data. Certainly, the development of standard data elements is the logi-
cal research approach, given that research deals with variables and values. CDISC 
is developing standards using a variable (or data element)-based approach. Their 
fi rst standards identifi ed generic, pan-disease data elements, and now data specifi c. 
NCI has had the caDSR data element repository for many years  [  21  ] . In research, 
the idea of shared data elements is intuitive. Probably because the currency of 
research has been – and will always be – variables that have standard and structured 
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value sets (codes) and defi nitions. The notion of a data dictionary is accepted best 
practice in statistics and clinical research practice. The quality of that data diction-
ary might need some work, and the use of shared common data elements can sup-
port consistent high-quality defi nitions that promote consistent use of data elements, 
leading to more comparable data. The notion of data elements, shared defi nitions, 
and metadata are a new paradigm for healthcare but a necessary shift in thinking and 
standards, especially in the new age. In the past, EHRs would have to just produce 
predictable standard codes – like report ICD-9 codes. They have never yet been 
challenged for semantic data exchange. This is a new challenge and an opportunity 
for research and care delivery to synch together. 

 We provide some guidelines and important features for data elements. The data 
element fi rst must remove any ambiguity in using a rich set of attributes to not only 
provide structure and defi nition but also include related knowledge representation, 
linkages, and operational characteristics. Language in itself is not an absolute sci-
ence. Words are frequently used with different meanings between the speaker and 
hearer. A study of the literature, done in 2011, identifi ed 67 different meanings and 
use of the phrase 'unstable angina'. Yet, on a data-gathering form for a clinical trial, 
there is one box for unstable angina. Which of the 67 different meanings did the 
author mean? In healthcare, this ambiguity can be dangerous. Furthermore, we 
believe the defi nitions must be made by a group of domain experts acting as judges – 
not by a consensus process. 

 The data element is represented by a single code that in itself has no meaning. It 
is absolute and functions as an index into a metadictionary that contains the data 
element and all of its attributes. A core set of essential attributes should accompany 
data elements to ensure that their semantics and context are adequately represented 
to support meaningful exchange and reuse (i.e., interoperability). These attributes 
include: numerical code, defi nition, long and short names, synonyms, units, data 
type, value set, class and categories and domain (for indexing and classifying the 
data element), purpose, and language. Note that data element defi nitions should be 
addressed using multiple attributes for both human readability and computer action 
using description logic. Human-readable defi nitions should be precise and unique 
and clinically meaningful. Additional attributes can provide more defi nitional infor-
mation, such as how the value is measured (e.g., removal of shoes for weight or 
height measure). Other attributes can be used to connect data elements to other 
standards. For example, a “relationship links” attribute can identify specifi c causes 
and manifestations of a clinical problem using external ontologies and controlled 
vocabularies, and a “triggers for services” attribute could be used to connect clinical 
data with decision support algorithms to display relevant alerts or prompts for addi-
tional research data collection. 

 Fundamental to each of the stakeholder groups across the informatics-using 
community are a set of data elements that defi ne their universe; in other cases, these 
data elements may be shared with other groups. We propose, however, that practi-
cally, there can be only one steward of a data element, and that steward should have 
complete authority over the defi nition of that element. A second level association 
is the affi liate steward, and there may be several of these, would be able to strongly 
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infl uence the set of attributes but would not have ultimate authority. The remaining 
community could offer comments and opinions, but the authority rests with the 
judges. Therefore, additional “administrative attributes” that should be associated 
with a data element will include steward, affi liated stewards, version, and date of 
last activity, all of which will be critical in coordinating content and data elements 
across many practice and research domains. 

 It is important that all related stakeholder groups participate in this process, and 
the groups must be international. Many of these groups would be defi ned by the 
clinical specialty organizations and other organizations. These groups would be 
required to register and declare their domain of interests. They would agree to a 
common process and identify the judges. We fully recognize that many data ele-
ments that support clinical care have little or no secondary use or research value 
purpose. We also recognize that many research elements would not be appropriate 
for an EHR. Therefore, we can envision that professional and scientifi c communi-
ties might develop certain content standards and maintain their own research data 
element repositories, such as the caDSR, with highly specifi c elements. But we also 
recognize that, over time, these specifi c elements would be increasingly integrated 
into EHRs, as new and more frequent successes in translational research will change 
the standard of care, and hence add new requirements to the primary healthcare data 
documentation. Certainly, as EHRs become more sophisticated (driven in the USA 
by legislated “meaningful use” requirements and ever-increasing attention on 
usability and cognitive science research) and widely adopted in all specialty prac-
tice domains and care settings, we can envision the need for many, many highly 
specifi c data elements. Clinical research – though not new to the concept of data 
elements – would nevertheless need to be represented as a major stakeholder in 
these healthcare standards discussions. The important role of clinical researchers 
acting as motivated stakeholders in the development of clinical documentation stan-
dards suffi cient to support secondary research use is an area to watch and engage in 
 [  1,   22  ] . Undoubtedly, this challenge will require coordination, collaboration, and 
strategic planning on an unprecedented scale. 

 There is no consensus process for developing collections of domain-specifi c data 
elements (also called clinical content standards), although there have been success-
ful demonstrations with documented efforts  [  20  ] . This is an open research area and 
one that the US FDA is trying to understand. The process should include the follow-
ing: open submission process, transparent governance and operations, vetting (for 
representational and content features; implications for other communities), steward-
ship, and management (duplications, updates, status, and versioning). The HL7 
standards development methodology and process (  www.hl7.org    ) is a likely candi-
date, as it is international in scope and designed to address all health-related infor-
mation fl ows, including those of clinical research. HL7 will also be well poised to 
ensure data capture and exchange standards that can address multiple needs, includ-
ing research. The American College of Cardiology (ACC) has with much success 
collected research data elements as part of registries, in the context of healthcare 
provider organizations, and these registries have been used as evidence to effect 
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patient care changes  [  23  ] . The registries are based upon many standards developed 
by ACC and others. These professional groups remain engaged in the development 
of standard data elements for cardiovascular care and are leaders in developing 
 content - based  standards. The process and formatted standards (for distribution) are 
being developed as pilot projects within HL7 CIC–Clinical Interoperability Council. 
   The development of content-specifi c data standards is described in depth in  [  20  ]  for 
tuberculosis and cardiovascular. These groups have fully described their experience 
and results from their work developing a process for (1) engaging stakeholders from 
primary and secondary data uses, (2) identifying data used and generated in patient 
care, and (3) providing authoritative natural language defi nitions of those data ele-
ments. These efforts use the ISO 11179 data element as defi ned by ISO 11179 [ 24 ] 
and UML class and activity diagrams [ 25 ] to document the data and their defi nition, 
and refer to this documentation as a clinical domain analysis model (DAM). The 
goal of these pilots was to develop an effective, sustainable, and generalizable pro-
cess for developing data elements in therapeutic practice areas.  

   Important Principles of Standards 

 This chapter has conveyed the message that data standards are highly heterogeneous 
and have many different formats, scope, organization, and objectives. They emerge 
from many types of organizations and entities, with varying levels of cost and access, 
and different governance and curation operations (i.e., the politics related to what gets 
in). Understanding this diversity and lack of shared vision across standards develop-
ers, designators, and stakeholders/users is important to appreciate so that clinical 
research can effectively engage, and effect constructive change, in data standards. 

 Because harmonious data standards (with shared semantics) between healthcare 
and research are essential for the Brave New World we described at the start of this 
chapter, we believe that successful standards for the future will be at this data ele-
ment level. This represents a major paradigm shift – especially for healthcare – but it 
is a strategy that will allow health information exchange and reuse for research 
purposes. The approach will require data element  registries  that can support the 
structured collection of data in healthcare and in research using standard questions 
and answer sets. In the world of clinical research, this is akin to the questions on 
case report forms that translate to variables used in analysis. There can certainly be 
some autonomy and effi ciency for the clinical research world, but there also should 
be pathways, mechanisms, and cultural forethought about connections between 
research data collection and future healthcare delivery. Some data elements will be 
relevant only for patient care contexts, some will be useful only to research, but 
most data elements should and will exist in both domains. If we are to enable trans-
lational informatics, clinical data elements and research data elements must coex-
ist, and informatics professionals can develop applications and systems that 
facilitate coordination and synergies between clinical and research communities. 
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 While technologies are changing continuously, standards are evolving, and 
 legislation and multinational, multiorganizational collaborations changing, we pro-
vide some general observations and advice regarding standards. We put forth some 
basic principles that we feel apply to all standards efforts and will be helpful to keep 
in mind for new standards endeavors across the variety of project applications and 
standards needs for CRI for years to come. Essentially, these are signifi cant lessons 
learned. We doubt that these are controversial, though we will say that these are the 
opinions of authors. Undoubtedly, this list is incomplete, but it is a start. We have 
already established that standards are not standard, and that standards organizations 
are not standard. We also assert that:

    1.     Standards are multifaceted  and must address several key areas. Standards 
include artifacts that specify the information  content  of a clinical domain, as 
well as a  representation  for that content. Standards also represent the  process  
by which they are developed and maintained. The criteria for evaluating stan-
dards address all of these areas.  

    2.     The purpose and context of the standard must clearly be defi ned . This is a funda-
mental theorem for informatics and vocabulary development in general. The notion 
that a terminology can only be assessed or evaluated in the context of its intended 
use is critical  [  26  ] . Many standards are developed for a given context but used in 
research only because they are the only representation widely used in available 
electronic data resources. (The persistent use of International Classifi cation for 
Diseases (ICD) codes for various research purposes, despite the well-known short-
comings of ICD for research or clinical documentation, is a classic example.) But 
what we hope the reader will take from this is that the purpose of the standard must 
accommodate for the ideal vision of data sharing and interoperability that we pres-
ent here and throughout the text. This can be challenging given the lack of shared 
vision of EHR and research interoperability. This is also particularly challenging 
given the current transition of paper-based workfl ows to electronic workfl ows that 
we are now seeing in clinical research informatics.  

    3.     The development of a standard must be tied to both functional requirements and 
content requirements . Historically, many data standards were being developed 
in isolation. They were silos and in their free-standing silo status were including 
dimensions that overlap with other processes. Now that data standards are  
being developed with the exchange and interoperability in mind, we are seeing 
new aspects. Lenza and colleagues suggest that the modeling of domain con-
cepts should be separated from IT system implementation (i.e., IT systems 
should be implemented by IT experts and medical knowledge should be mod-
eled and maintained by domain experts)  [  27  ] . This separation is not easy. 
Moving forward, it is clear that these communities must communicate but also 
recognize their unique expertise and skills.  

    4.     Existing efforts can be leveraged . The focus on data elements provided here does 
not negate existing work. Existing controlled vocabularies play a vital role in this 
vision. They represent domain-specifi c knowledge and important concepts. They 
can be used as both value sets (e.g., LOINC can be the value set for a data 
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element about “tests”), or they can be used to organize data elements, such as the 
use of SNOMED CT to index data entry questions for patient registries  [  28  ] . 
Regardless, we will say that:

    (a)      It is always easier to repurpose and extend than to build anew . Often, individu-
als reinvent a standard and underestimate the amount of work involved – often 
by years or decades. Re-creation of a standard requires as much work – and 
trial and error – as the original process.  

    (b)      It takes effort to fi nd existing relevant standards  for repurposing (above), but 
there are many efforts historically or actively working on many problems, and 
they do not always advertise or market themselves well.    In this sense, and 
because there are so many standards of so many different types that are poten-
tially relevant, developers must invest time to identify them all.      

    5.     Standards for electronic data require both technical and content experts . All 
relevant stakeholders should be included, and informatics persons are central to 
coordinating dialog about technical features, requirements, and content. Medical 
information is complex and has many levels of specifi city  [  14  ] . An understand-
ing of this and a master strategy are essential in order to allow specifi c data to 
be aggregated (or collected) more generally in a useful manner.  

    6.     Standards are dynamic and need to be maintained . The maintenance process 
needs to be well documented and thoughtfully designed to allow the standard to 
evolve with the fi eld and stay relevant and useful  [  29  ] . The process also needs 
to recognize the potential for duplication of effort with other standards or com-
binatorial explosion. There is always a tension between interface terminologies 
and reference terminologies. These lessons should not be relearned in CRI con-
texts, but rather CRI should be adding to the scientifi c literature regarding spe-
cifi c data representation and standards maintenance requirements and 
approaches. Commercial developers incorporate standards in products and must 
be permitted to receive the return on the investment before changes are intro-
duced. Further, if the currently implemented standard meets the users need, it is 
unlikely that user will spend more money just to be up-to-date, hence the reason 
for so many versions of a standard.  

    7.     People generally want fast and simple  and focus    on an immediate problem 
without a bigger vision. Fast efforts have emerged to date – they can success-
fully focus on a single area and get a standard. But they have not considered 
bigger implications and have added to the fragmentation we have now. This is 
very understandable because to address the bigger vision simply takes time and 
money, and no one can expect a sponsor with a particular business need to take 
on greater challenges that offer less immediate value. But the lack of complete 
stakeholder involvement and use cases often leads to incomplete requirements, 
an insuffi cient standard, the need for more work, and scope creep.  

    8.     Scope creep .  The human nature is the fact that humans want to expand .On the 
other hand, what is the value of half-solving a problem? As SDOs get into creat-
ing a standard, more people/stakeholders become involved, technology changes, 
and the standard must evolve. The temptation is always to expand scope, and 
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the tendency is to want to address needs and requests of stakeholders – one to 
keep the standard dynamic and exciting but also to keep it alive. As a result, 
standards can get complex and unwieldy, and then a backlash happens and peo-
ple reject the standard for one that is more simple. The key is to be able to 
change but still keep it simple. 

 The creation of standards, by its very nature, is a slow process. The fact is 
that there is a tension between speed and sophistication. Unfortunately, the new 
age of research (as part of this Brave New World) requires standards to support 
interoperability, which implies more stakeholders, more cross-disciplinary col-
laboration, and more time. The more information exchange functions that are 
required will necessitate more stakeholders. The more stakeholders involved, 
the more complex the standard will become. However, this also presents new 
opportunities for informatics solutions and new needs to pull in contributing 
disciplines such as information technology, communications, sociology, cogni-
tive science, computer science, and others. Tools for standard development, 
visualization, and distributed collaboration are critical. These tools must be 
easy to access, install, and use. By default, many standards are being developed 
using insuffi cient tools (like Excel spreadsheets), and there are many needs for 
tools that enable distributed collaboration and standards development.  

    9.     Use cases and exchange scenarios can guide efforts and are a preferred 
approach to standards . Since the greatest benefi ts of standards involve the abil-
ity to exchange and share, these uses must be considered. The scope of a stan-
dard, therefore, can go beyond what the user group envisioned or is scoped to 
do. So, they are multiorganizational and transdisciplinary by defi nition – a 
major change from previous standards scoping efforts that tend to get one com-
munity. Narrative use cases are often a means to elicit the specifi c requirements 
in the context of a practical and needed use. These use case stories can take 
many forms, but human-readable versions support the engagement of many dif-
ferent individuals, organizations, and cultures. These use cases must describe 
that data exchange specifi cs as well as the static content (that in reality is never 
quite static). Nahm et al. propose that the data elements, workfl ow activities, and 
data movement specifi cations collectively be called clinical domain analysis 
models (CDAMs)  [  20  ] . As many use cases should be developed as possible – 
more than a very few and enough to cover full scope of the needs and the 
domain. After the standard is created, other use cases should be played against 
the standard to make sure their requirements are met.  

    10.     All standards / data collection/information system efforts are tied to workfl ows . 
 As our information changes, global cooperation in research changes; the work-
fl ows are becoming formally developed and including redesign and reengineer-
ing, and then our terminology needs will change and evolve. These changes will 
be consensus, and both bottom-up and top-down approaches. Workfl ows are 
dynamically and radically changing in clinical research, based upon changing 
technology, reactive legislation, and newer motivations for multinational 
research collaboration. These have implications for standards, which, at the end 
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of the day, are only used and adopted when they fi t within the job or interests 
of stakeholder organizations or individuals (care providers, researchers, and 
patients themselves). New and creative models for incentivizing the develop-
ment, implementation, coordination, and evaluation of standards are badly 
needed and represent a wide open area for CRI experts.      

   The Future of Clinical Research 

 If a standard process and representations for data elements were to be achieved, then 
one could conceive of our vision of an integrated health information system. 
A global master set (or coordinated sets) of data elements could be available 
throughout the world at no cost, and every healthcare site and related business would 
commit to the use of these data elements. No one would use everything, but no one 
would use any data element not included in the master set. The commitment would 
be to use the data element from beginning to end. The data element would be defi ned 
at the point of creation and used without a change in any and all use. For example, 
the name and characteristic of the data element in a chemical laboratory machine 
would use the same name as the clinician or researcher using the data element. 

 A data set of data element codes would become the language of business transac-
tions. For example, a medical center can post a public data set that defi nes the data 
element collected by the institution. A researcher who is setting up a clinical trial can 
use that database to set up a search algorithm to identify possible patients for the 
clinical trial. If the researcher needs additional data elements, she can negotiate with 
the data collection process to add that element to the collection package. 
Reimbursement requirements specify the data elements required by code. The 
exchange of data elements between sites of care, for example, between a hospital and 
a nursing home, can be specifi ed by defi ning a set of codes. Presentation and exchange 
of data can be controlled by just indicating the codes along with some other param-
eters such as date-time. That vision of tomorrow’s health environment explodes if 
such a system of standard and accessible data elements were in place throughout the 
world. (The emerging concept of  provenance  is becoming increasingly recognized as 
critical to understanding the integrity of health and research data, and standards 
issues related to representing the origin, changes, and integrity of medical and 
research data will be a signifi cant informatics challenge in the near future.) 

 Data mining is evolving into one if not the most important application of HIT. By 
having a rich set of unambiguous and clearly identifi ed data elements for a large 
number of patients, knowing patient data value sets, problems, treatments, and out-
comes, data mining can and must support the creation of knowledge and provide the 
evidence for evidence-based medicine. This knowledge coupled with the clinical 
research community conduct of clinical trials largely from the same data sets can 
more easily and quickly support clinical effectiveness research. Further, since the 
data elements are mostly present in the patient care system, the translation from 
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research to routine patient care is quickly accelerated. Instant learning can immedi-
ately infl uence and enhance patient care. The created knowledge for evidence-based 
medicine can be used to drive clinical guidelines and decision support algorithms. 

 A few fi nal points about data standards – whether they be standards from newly 
collected research data or standards for healthcare data that can be leveraged as a 
source of research data – are worth mentioning. The collection and generation of 
research data sets are expensive and time-consuming, and there is a need for research-
ers, regulators, and the public to understand the data, reproduce the analysis to vali-
date or contradict the conclusions, and aggregate data or compare fi ndings across 
multiple studies. The value of data standards can grow (and be appreciated) over time 
as new research combines data sets to make new discoveries. In this regard, the sci-
entifi c community has a responsibility to share data in a meaningful way. Data stan-
dards should not override scientifi c judgment of investigators or protocol-specifi c 
procedures and data collection. In other words, data standards should not standardize 
what is done experimentally but should describe what was actually done so that other 
systems and individuals can sensibly use that data. In addition, data standards can 
support information fl ows and actions supporting clinical research activities, enabling 
technology to impact protocol conduct and patient safety. 

 The clinical research community is actually relatively new to shared standards 
(CDISC is only 10 years old). The prospect of widespread electronic healthcare data 
collection is only just on the horizon in developed countries and a bit beyond in 
developing nations. There is room for standards participation on many levels. There 
is a need for incredibly detailed and specifi c content standards. Domain experts are 
needed as knowledge engineers who can participate in terminology development. 
There is a need for architects of a master system to determine how interaction 
between EHR and CRI should occur, what are best mechanisms for data sharing, 
and so forth. Finally, there is a need to coordinate conceptual models, functional 
requirements, and clinical content standards across domains. The development of 
resources and tools to support the development and access, and hence sharing, of 
data standards will all be required. 

 The data standards vision from the US National Library of Medicine has been for 
a long time an interlocking set of standards that allow detailed representation and 
general representation that can be folded into each other or used (and extended) as 
needed  [  12  ] . This is diffi cult in practice given the variety of domains and motiva-
tions; but the vision of interoperable health IT systems will undoubtedly require 
standards that facilitate data collection and semantic representation at all levels of 
granularity and for all aspects of health and medicine and research. Informatics, 
health data, and thus health data standards must be part of the process of bringing 
previous separate interests or domains together. Standards, specifi cally ontologies 
(Chap.   14    ), must be implemented throughout the healthcare spectrum – from biomo-
lecular and ‘omics informatics, to clinical informatics, to patient care informatics, 
to community and public health informatics, to population informatics. Of course, 
the common thread throughout all of this is the individual. 

 Like the Great Wall of China, the achievement of standardized data and interoper-
able health and research information systems will take a shared and big vision and 
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lots of workers and coordination. The bigger the scope, the more stakeholders will be 
involved, and the longer the process will be. As we move forward with our vision, we 
have many stakeholders. But at the same time we have many benefi ciaries. We are all 
benefi ciaries. So, as we witness the slowness of standards, we hope that this chapter 
helps to explain it and suggest sound approaches toward achieving standards. Of 
course, this goal and the incremental steps to get there will be the subject of debate 
for many years to come and an exciting aspect of clinical research informatics.  

   Appendix 18.1: Standards Developing 
Organizations and Standards 

   Organizations and Initiatives 

  Accredited Standards Committee  ( ASC X12 ) – Develops electronic data interchange 
(EDI) standards and related documents for national and global markets. With more 
than 315 X12 EDI standards and a growing collection of X12 XML schemas, ASC 
X12 enhances business processes, reduces costs, and expands organizational reach. 
ASC X12’s diverse member base includes 3,000+ standards experts representing 
over 340 companies from multiple business domains, including communications, 
fi nance, government, insurance, supply chain, and transportation. Chartered in 1979 
by the American National Standards Institute.   http://www.X12.org    . 

  The American Health Information Management Association  ( AHIMA ) – An 
association of health information management (HIM) professionals committed to 
advancing the HIM profession in an increasingly electronic and global environment 
through leadership in advocacy, education, certifi cation, and professional education. 
AHIMA’s more than 61,000 members are dedicated to the effective management of 
personal health information to support quality health care. Founded in 1928.   http://
www.ahima.org    . 

  The American Medical Association  ( AMA ) – A voluntary association of physi-
cians in the USA. It promotes the art and science of medicine and the betterment of 
public health. The American Medical Association helps doctors help patients by 
uniting physicians nationwide to work on the most important professional and pub-
lic health issues. Founded in 1847.   http://www.ama-assn.org    . 

  American National Standards Institute  ( ANSI ) – A not-for-profi t organization 
that oversees the creation, promulgation, and use of thousands of norms and guide-
lines that directly impact businesses in nearly every sector, including acoustical 
devices, construction equipment, dairy and livestock production, energy distribu-
tion, and health care. ANSI is also actively engaged in accrediting programs that 
assess conformance to standards – including globally recognized cross-sector pro-
grams such as the ISO 9000 (quality) and ISO 14000 (environmental) management 
systems. ANSI is also the US representative to the ISO. Founded in 1918.   http://
www.ansi.org    . 

http://www.X12.org
http://www.ahima.org
http://www.ahima.org
http://www.ama-assn.org
http://www.ansi.org
http://www.ansi.org
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  American Society for Testing and Materials  ( ASTM ) – A globally recognized 
leader in the development and delivery of international voluntary consensus stan-
dards. Today, some 12,000 ASTM standards are used around the world to improve 
product quality, enhance safety, facilitate market access and trade, and build con-
sumer confi dence. Formed in 1898 by chemists and engineers from the Pennsylvania 
Railroad.   http://www.astm.org    . 

  European Committee for Standardization or Comité Européen de Normalisation  
( CEN ) – A major provider of European standards and technical specifi cations. It is 
the only recognized European organization according to Directive 98/34/EC for the 
planning, drafting, and adoption of European standards in all areas of economic 
activity with the exception of electrotechnology (CENELEC) and telecommunica-
tion (ETSI). The Vienna Agreement − signed by CEN in 1991 with ISO (International 
Organization for Standardization), its international counterpart−ensures technical 
cooperation by correspondence, mutual representation at meetings and coordination 
meetings, and adoption of the same text, as both an ISO standard and a European 
standard. Founded in 1961.   http://www.cen.eu/cen/pages/default.aspx    .

    European Committee for Electrotechnical Standardization  ( CENELEC ) – A 
nonprofi t Belgian organization, CENELEC is responsible for standardization in 
the electrotechnical engineering fi eld. CENELEC prepares voluntary standards, 
which help facilitate trade between countries, create new markets, cut compli-
ance costs, and support the development of a Single European market. Created in 
1973.   http://www.cenelec.eu/index.html    .  
   European Telecommunications Standards Institute  ( ETSI ) – A not-for-profi t 
organization that produces globally applicable standards for information and 
communications technology. Their approach is one of openness and knowledge 
accessibility within standardization. Created in 1988.   http://www.etsi.org/web-
site/homepage.aspx    .    

  Clinical Data Interchange Standards Consortium  ( CDISC ) – A global, open, 
multidisciplinary, nonprofi t organization that has established standards to support 
the acquisition, exchange, submission, and archive of clinical research data and 
metadata.  The CDISC mission is to develop and support global ,  platform-indepen-
dent data standards that enable information system interoperability to improve 
medical research and related areas of health care . CDISC standards are vendor 
neutral, platform independent, and freely available via the CDISC website. Began 
as a volunteer group in 1997.   http://www.cdisc.org/    . 

  Digital Imaging and Communications in Medicine  ( DICOM ) – A joint commit-
tee formed from the American College of Radiology (ACR) and the National 
Electrical Manufacturers Association (NEMA) to create a standard method for the 
transmission of medical images and their associated information. The DICOM 
Standards Committee exists to create and maintain international standards for com-
munication of biomedical diagnostic and therapeutic information in disciplines that 
use digital images and associated data. The actual  DICOM Standard  (currently in 
version 3.0) defi nes an upper layer protocol (ULP) that is used over TCP/IP (inde-
pendent of the physical network), messages, services, information objects, and an 

http://www.astm.org
http://www.cen.eu/cen/pages/default.aspx
http://www.cenelec.eu/index.html
http://www.etsi.org/website/homepage.aspx
http://www.etsi.org/website/homepage.aspx
http://www.cdisc.org/
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association negotiation mechanism. These defi nitions ensure that any two imple-
mentations of a compatible set of services and information objects can effectively 
communicate. Committee formed in 1983. DICOM Standard versions released in 
1995, 1988, and 1993.   http://medical.nema.org/    . 

  GS1  – An international not-for-profi t association with member organizations in 
over 100 countries. GS1 is dedicated to the design and implementation of global 
standards and solutions to improve the effi ciency and visibility of supply and 
demand chains globally and across sectors. The GS1 system of standards is the most 
widely used supply chain standards system in the world. Founded in 1977.   http://
www.gs1.org/    . 

  Healthcare Information and Management Systems Society  ( HIMSS ) – A cause-
based, not-for-profi t organization exclusively focused on providing global leader-
ship for the optimal use of information technology and management systems for the 
betterment of health care. Its mission is to lead health care transformation through 
the effective use of health information technology. It was founded in 1961.   http://
www.himmss.org    . 

  Health Level Seven International  ( HL7 ) – A not-for-profi t, ANSI-accredited 
standards developing organization dedicated to providing a comprehensive frame-
work and related standards for the exchange, integration, sharing, and retrieval of 
electronic health information that supports clinical practice and the management, 
delivery, and evaluation of health services. HL7’s 2,300+ members include approxi-
mately 500 corporate members who represent more than 90% of the information 
system vendors serving health care. Founded in 1987.   http://www.hl7.org    . 

  Institute of Electrical and Electronics Engineers  ( IEEE ) – The world’s largest 
technical professional society and an association dedicated to advancing innovation 
and technological excellence for the benefi t of humanity. It is designed to serve 
professionals involved in all aspects of the electrical, electronic, and computing 
fi elds and related areas of science and technology that underlie modern civilization. 
IEEE was established in 1963 as a merger of the Institute of Radio Engineers 
(founded in 1912) and the American Institute of Electrical Engineers (founded in 
1884).   http://www.ieee.org    . 

  Integrating the Healthcare Enterprise  ( IHE ) – An initiative by health care profes-
sionals and industry to improve the way computer systems in health care share infor-
mation. IHE promotes the coordinated use of established standards such as DICOM 
and HL7 to address clinical need and support optimal patient care. Systems developed 
in accordance with IHE communicate with one another better, are easier to implement, 
and enable care providers to use information more effectively.   http://www.ihe.net    . 

  International Conference on Harmonisation  ( ICH ) – ICH’s mission is to make 
recommendations toward achieving greater harmonization in the interpretation and 
application of technical guidelines and requirements for pharmaceutical product 
registration, thereby reducing or obviating duplication of testing carried out during 
the research and development of new human medicines. Founded in 1990.   http://
www.ich.org    . 

  International Health Terminology Standards Development Organisation  ( IHTSDO ) – 
A not-for-profi t association that develops and promotes use of SNOMED CT to 

http://medical.nema.org/
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358 W. Ed Hammond and R.L. Richesson

support safe and effective health information exchange. SNOMED CT is a clinical 
terminology and is considered to be the most comprehensive, multilingual health 
care terminology in the world. Formed in 2006.   http://www.ihtsdo.org/    . 

  International Organization for Standardization  ( ISO ) – The world’s largest 
developer and publisher of international standards. Its network consists of 162 
countries, coordinated by a general secretariat in Geneva, Switzerland. It is a non-
governmental multinational organization that forms a bridge between public and 
private sectors. Founded in 1947.   http://www.iso.org/iso/home.html    . 

  Joint Initiative Council  ( JIC ) – A harmonization process between standards 
development organizations (SDOs) to enable common, timely health informatics 
standards by addressing and resolving issues of gaps, overlaps, and counterproduc-
tive standardization efforts, particularly between ISO TC215 and HL7. The Council 
consists of leaders and appointed liaison members of the participating SDOs and 
strategically oversees the  Joint Initiative on SDO Global Health Informatics 
Standardization . Currently, the participating SDOs are ISO/TC 215, HL7, CEN/TC 
251, CDISC, IHTSDO, and GS1. The Charter was signed in 2007.   http://www.
jointinitiativecouncil.org/    . 

  National Council for Prescription Drug Programs  ( NCPDP ) – is a not-for-profi t, 
ANSI-accredited standards development organization representing the pharmacy 
services industry.   http://www.ncpdp.org    . 

  The National Quality Forum  ( NQF ) – A nonprofi t organization with a mission to 
improve the quality of American health care by building consensus on national 
priorities and goals for performance improvement and working in partnership to 
achieve them, endorsing national consensus standards for measuring and publicly 
reporting on performance, and promoting the attainment of national goals through 
education and outreach programs. NQF’s membership includes a wide variety of 
health care stakeholders, including consumer organizations, public and private pur-
chasers, physicians, nurses, hospitals, accrediting and certifying bodies, supporting 
industries, and health care research and quality improvement organizations. The 
NQF was established in 1999 in response to the recommendation of the Advisory 
Commission on Consumer Protection and Quality in the Health Care Industry, 
which concluded that an organization was needed to promote and ensure patient 
protections and health care quality through measurement and public reporting. 
  http://www.qualityforum.org    . 

  OpenEHR  – An international, not-for-profi t foundation working toward develop-
ing an interoperable, lifelong electronic health record. To this end, it is developing 
open specifi cation, open source software, and knowledge resources. It also partici-
pates in international standards development.   http://www.openehr.org    . 

  Professional societies ,  for example ,  the American College of Cardiology  ( ACC ) – 
The American College of Cardiology is a nonprofi t medical association of 39,000 
members to advocate for quality cardiovascular care through education, research, 
development, and applications of standards and guidelines. It also works to infl u-
ence health care policies. Established in 1949.   http://www.cardiosource.org/acc    . 

  Radiological Society of North America  ( RSNA ) – The mission of the Radiological 
Society of North America is to promote and develop the highest standards of radiology 
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and related sciences through education and research. The Society seeks to provide 
radiologists and allied health scientists with educational programs and materials of the 
highest quality and to constantly improve the content and value of these educational 
activities. The Society seeks to promote research in all aspects of radiology and related 
sciences, including basic clinical research in the promotion of quality health care. 
Founded in 1916 as the Western Roentgen Society, it was given its present name in 
1919.   http://www.rsna.org    . 

  SDO Charter Organization  ( SCO ) – provides an environment that facilitates effec-
tive coordination and collaboration on US national health care informatics standards 
development. Among its purposes are to facilitate the coordination of conventions for 
enhanced interoperability among diverse standards development organizations in the 
areas of health data acquisition, processing, and handling systems and to communi-
cate and coordinate when appropriate with the US Technical Advisory Group (US 
TAG) in order to facilitate a unifi ed representation of US standards (this is not intended 
to supersede any member’s existing coordination with the US TAG). Established in 
2008.   http://scosummit.com/    ;   http://www.ncpdp.org/resources_sco.aspx    . 

  World Health Organization  ( WHO ) – WHO is the directing and coordinating 
authority for health within the United Nations system. It is responsible for providing 
leadership on global health matters, shaping the health research agenda, setting 
norms and standards, articulating evidence-based policy options, providing techni-
cal support to countries, and monitoring and assessing health trends. Established in 
1948.   http://www.who.int/en    .  

   United States Government Organizations 
Developing and Naming Standards 

  Centers for Disease Control and Preservation  ( CDC ) – One of the major operating 
components of the Department of Health and Human Services. Its mission is to col-
laborate to create the expertise, information, and tools that people and communities 
need to protect their health – through health promotion, prevention of disease, injury 
and disability, and preparedness for new health threats. It began on July 1, 1946 as 
the Communicable Disease Center.   http://www.cdc.gov    . 

  Centers for Medicare and Medicaid Services  ( CMS ) – Part of the Department of 
Health and Human Services, this agency is responsible for Medicare health plans, 
Medicare fi nancial management, Medicare fee for service operations, Medicaid and 
children’s health, survey and certifi cation, and quality improvement. Founded in 
1965.   http://www.cms.gov    . 

  Department of Defense  ( DOD ) – The mission of the DOD is to provide the mili-
tary forces needed to deter war and to protect the security of our country. Defense.
gov supports the overall mission of the Department of Defense by providing offi -
cial, timely, and accurate information about defense policies, organizations, func-
tions, and operations, including the planning and provision of health care, health 
monitoring, and medical research, training, and education. Also, Defense.gov is the 
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single, unifi ed starting point for fi nding military information online. Created in 1789 
as the War Department, in 1949 it became known as the Department of Defense. 
  http://www.defense.gov    . 

  The United States Department of Health and Human Services  ( HHS ) – The prin-
cipal government agency for supervising the health of American citizens and provid-
ing essential human services, particularly for vulnerable populations. Representing 
almost a quarter of all federal outlays, it administers more grant dollars than all 
other federal agencies combined, including the Medicare and Medicaid health care 
insurance programs. HHS programs are directed by the Offi ce of the Secretary and 
administered by 11 operating divisions, including eight agencies in the US Public 
Health Service and three human services agencies. The department includes more 
than 300 programs, which provide health services, support equitable treatment of 
recipients nationwide, and enable national health and data collection. Originally 
founded in 1953 as the Department of Health, Education, and Welfare (HEW), it 
was offi cially renamed in 1979.   http://www.hhs.gov/    . 

  Department of Homeland Security  ( DHS ) – With the passage of the Homeland 
Security Act by Congress in November 2002, the Department of Homeland Security 
formally came into being as a stand-alone, Cabinet-level department to further coor-
dinate and unify national homeland security efforts, opening its doors on March 1, 
2003. The DHS has fi ve departmental missions: to prevent terrorism and enhance 
security, to secure and manage our borders, to enforce and administer US immigra-
tion laws, to safeguard and secure cyberspace, and to ensure resilience to disasters. 
  http://www.dhs.gov    . 

  Federal Health Architecture  ( FHA ) – An E-Government Line of Business initia-
tive managed by the United States’ Offi ce of the National Coordinator for Health IT. 
FHA was formed to coordinate health IT activities among the more than 20 federal 
agencies that provide health and health care services to citizens. FHA and its federal 
partners are helping build a federal health information technology environment that 
is interoperable with private sector systems and supports the President’s plan to 
enable better point-of-service care, increased effi ciency, and improved overall health 
in the US population.   http://www.hhs.gov/fedhealtharch    . 

  Food and Drug Administration  ( FDA ) – An agency within the US Department of 
Health and Human Services, it is responsible for protecting the public health by 
assuring the safety, effectiveness, and security of human and veterinary drugs, vac-
cines, and other biological products, medical devices, the nation’s food supply, cos-
metics, dietary supplements, and products that give off radiation. Though FDA can 
trace its history back to the appointment of chemist Lewis Caleb Beck to the 
Agricultural Division in the Patent Offi ce in 1848, its origins as a federal consumer 
protection agency began with the passage of the 1906 Pure Food and Drugs Act. 
This law was the culmination of about 100 bills over a quarter-century that aimed to 
rein in long-standing, serious abuses in the consumer product marketplace.   http://
www.fda.gov    . 

  National Cancer Institute  ( NCI ) – The National Cancer Institute (NCI) is part of 
the National Institutes of Health (NIH), which is one of 11 agencies that compose 
the Department of Health and Human Services (HHS). The NCI, established under 
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the National Cancer Institute Act of 1937, is the federal government’s principal 
agency for cancer research and training. The National Cancer Act of 1971 broad-
ened the scope and responsibilities of the NCI and created the National Cancer 
Program. Over the years, legislative amendments have maintained the NCI authori-
ties and responsibilities and added new information dissemination mandates as well 
as a requirement to assess the incorporation of state-of-the-art cancer treatments 
into clinical practice.   http://www.cancer.gov    . 

  National Institute for Standards and Technology  ( NIST ) – A nonregulatory fed-
eral agency within the US Department of Commerce. Its focus is on promoting 
innovation and industrial competitiveness by advancing measurement science, stan-
dards, and technology in ways that enhance economic security and improve our 
quality of life. The NIST also managed the Advanced Technology Program between 
1990 and 2007 to support US businesses, higher education institutions, and other 
research organizations in promoting innovation through high-risk, high-reward 
research in areas of critical national need. Founded in 1901.   http://www.nist.gov/    . 

  National Institute of Neurological Disorders and Stroke  ( NINDS ) – Part of the 
NIH, NINDS conducts and supports research on brain and nervous system disor-
ders. It also supports training of future neuroscientists. Created by Congress in 
1950.   http://www.ninds.nih.gov    . 

  The National Institutes of Health  ( NIH ) – A division of the US Department of 
Health and Human Services and the primary agency of the United States govern-
ment responsible for biomedical and health-related research. The purpose of NIH 
research is to acquire new knowledge to help prevent, detect, diagnose, and treat 
disease and disability by conducting and supporting innovative research, training of 
research investigators, and fostering communication of medical and health sciences 
information. The NIH is divided into “extramural” divisions, responsible for the 
funding of biomedical research outside of NIH, and “intramural” divisions to con-
duct research. It is headed by the Offi ce of the Director and consists of 27 separate 
institutes and offi ces. It was initially founded in 1887 as the Laboratory of Hygiene 
but was reorganized in 1930 as the NIH.   http://www.nih.gov/    . 

  The United States National Library of Medicine  ( NLM ) – Located in the National 
Institutes of Health, a division of the US Department of Health and Human Services. 
The NLM is the world’s most extensive medical library with medical and scientifi c 
collections are comprised of books, journals, technical reports, manuscripts, micro-
fi lms, and images. It also develops electronic information services, including the 
free-access PubMed database and the MEDLINE publication database. The NLM 
provides service scientists, health professionals, historians, and the general public 
both nationally and globally. Originally founded in 1836 as the Library of the Offi ce 
of the Surgeon General of the Army, it has been restructured multiple times before 
fi nally reaching its current confi guration in 1956.   http://www.nlm.nih.gov/    . 

  Offi ce of the National Coordinator for Health Information Technology  ( ONC ) – 
Located within the US Department of Health and Human Services as a division of 
the Offi ce of the Secretary. It is the nationwide coordinator for the implementation 
of new advances in health information technology to allow electronic use and 
exchange of information to improve health care. The ONC makes recommendations 
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on health IT standards, implementation specifi cations, and certifi cation criteria 
through two Federal Advisory Committees, the  Health IT Policy Committee  ( HITPC ) 
and the  Health IT Standards Committee  ( HITSC ). The HITPC provides a policy 
framework for the development and adoption of a nationwide health information 
infrastructure, including standards for the exchange of patient medical information. 
The HITSC developed a schedule for the annual assessment of the HITPC’s recom-
mendations and provides for the testing of standards and implementation specifi ca-
tions by the National Institute for Standards and Technology (NIST).The position of 
national coordinator was created through an Executive Order in 2004 and legisla-
tively mandated in the Health Information Technology for Economic and Clinical 
Health Act (HITECH Act) of 2009.   http://healthit.hhs.gov/    . 

  Veterans Health Administration  ( VHA ) – Component of the US Department of 
Veterans Affairs that implements the medical assistance program through the admin-
istration and operation of numerous outpatient clinics, hospitals, medical centers, 
and long-term care facilities. The fi rst VHA hospital dates back to 1778.   http://
www.va.gov/health/default.asp    .  

   Controlled Terminologies (Standards) 

  Current Procedural Terminology  ( CPT ) – A registered trademark of the American 
Medical Association (AMA), CPT codes are used in medical billing to describe 
medical, surgical, and diagnostic services and are designed to communicate uni-
form information about medical services and procedures for administrative, fi nan-
cial, and analytic purposes.   http://www.ama-assn.org    . 

  International Classifi cation of Diseases  ( ICD ) – The classifi cation used to code 
and classify mortality data from death certifi cates. The International Classifi cation 
of Diseases, Clinical Modifi cation is used to code and classify morbidity data from 
the inpatient and outpatient records, physician offi ces, and most National Center for 
Health Statistics (NCHS) surveys. In 1893, a French physician, Jacques Bertillon, 
introduced the Bertillon Classifi cation of Causes of Death at the International 
Statistical Institute in Chicago. A number of countries adopted Dr. Bertillon’s sys-
tem, and in 1898, the American Public Health Association (APHA) recommended 
that the registrars of Canada, Mexico, and the United States also adopt it. Since 
1959, the US Public Health Service published several versions of this classifi cation 
system which is the standard to code diagnostic and operative procedural data for 
offi cial morbidity and mortality statistics in the United States. It is currently in its 
10th edition.   http://www.cdc.gov/nchs/icd.htm    . 

  Logical Observation Identifi ers Names and Codes  ( LOINC ) – A universal code 
system for identifying laboratory and clinical observations. Mapping local terms to 
LOINC makes it possible to exchange and pool data from many independent sys-
tems for clinical care, research, outcomes management, and lots of other purposes. 
Initiated in 1994.   http://loinc.org    . 
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  Medical Dictionary for Regulatory Activities  ( MedDRA ) – A terminology that 
applies to all phases of drug development, excluding animal toxicology. It also 
applies to the health effects and malfunction of medical devices. It was developed 
by the International Conference on Harmonisation (ICH) and is owned by the 
International Federation of Pharmaceutical Manufacturers and Associations 
(IFPMA) acting as trustee for the ICH Steering Committee. MedDRA is used to 
report adverse event data from clinical trials and for postmarketing reports and phar-
macovigilance.   http://meddramsso.com/index.asp    . 

  RxNorm  – Provides normalized names for clinical drugs and links its names to 
many of the drug vocabularies commonly used in pharmacy management and 
drug interaction software, including those of First DataBank, Micromedex, Medi-
Span, Gold Standard Alchemy, and Multum. By providing links between these 
vocabularies, RxNorm can mediate messages between systems not using the same 
software and vocabulary. RxNorm now includes the National Drug File – Reference 
Terminology (NDF-RT) from the Veterans Health Administration. NDF-RT is a 
terminology used to code clinical drug properties, including mechanism of action, 
physiologic effect, and therapeutic category.   http://www.nlm.nih.gov/research/
umls/rxnorm    . 

  Systematized Nomenclature of Medicine  –  Clinical Terms  ( SNOMED CT ) – A 
comprehensive clinical terminology, originally created by the College of American 
Pathologists (CAP) and, as of April 2007, owned, maintained, and distributed by the 
International Health Terminology Standards Development Organisation (IHTSDO), 
a not-for-profi t association in Denmark. The CAP continues to support SNOMED 
CT operations under contract to the IHTSDO and provides SNOMED-related prod-
ucts and services as a licensee of the terminology.   http://www.nlm.nih.gov/research/
umls/Snomed/snomed_main.html    .  

   Resources 

  Cancer Data Standards Registry and Repository  ( caDSR ) – Database and a set of 
APIs (application programming interfaces) and tools to create, edit, control, deploy, 
and fi nd common data elements (CDEs) for use by metadata consumers and infor-
mation about the UML models and forms containing CDEs for use in software 
development for research applications. Developed by National Cancer Institute for 
Biomedical Informatics and Information Technology.   https://cabig.nci.nih.gov/
concepts/caDSR    . 

  National Center for Biomedical Ontology  ( NCBO Bioportal ) – An open reposi-
tory of biomedical ontologies. Supports ontologies in OBO, OWL, RDF, Rich 
Release Format (RRF), Protégé Frames, and LexGrid XML. The goal of the NCBO 
is to support biomedical researchers by providing online tools and a Web portal, 
enabling them to access, review, and integrate disparate ontological resources in all 
aspects of biomedical investigation and clinical practice. Funded by the US NIH 
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and National Centers for Biomedical Computing. Created in 2007.   http://www.
bioontology.org    . 

  National Drug File Reference Terminology  ( NDF - RT ) – An extension of the 
VHA National Drug File (NDF). It organizes the drug list into a formal representa-
tion and can be considered as a knowledge base or ontology for classifying drugs 
and medication products. NDF-RT is used for modeling drug characteristics includ-
ing ingredients, chemical structure, dose form, physiologic effect, mechanism of 
action, pharmacokinetics, and related diseases.   http://bioportal.bioontology.org/ont
ologies/40402?p=terms#40402?p=summary&_suid=426    . 

  Unifi ed Medical Language System  ( UMLS ) – A set of fi les and software that 
brings together many health and biomedical vocabularies and standards to enable 
interoperability between computer systems. UMLS can be used to enhance or 
develop applications, such as electronic health records, classifi cation tools, diction-
aries, and language translators. The UMLS has three tools, which are called the 
Knowledge Sources:

    • Metathesaurus : Terms and codes from many vocabularies, including CPT®, ICD-
10-CM, LOINC®, MeSH®, RxNorm, and SNOMED CT®  
   • Semantic network : Broad categories (semantic types) and their relationships 
(semantic relations)  
   • SPECIALIST Lexicon and Lexical Tools : Natural language processing tools    

 Created in 1986.   http://www.nlm.nih.gov/research/umls    .       
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  Abstract   Pharmacovigilance is a scientifi c discipline concerned with the safety of 
drugs as used in clinical practice and whose main purpose is to balance the risk–
benefi t ratio to the public. This chapter discusses the progression of pharmacovigi-
lance as a discipline from its start in the early 1960s during the thalidomide tragedy 
to its current status as a visible and pervasive part of the health care delivery and 
research. It provides an overview of the recent activities and science supporting 
pharmacovigilance and their informatics dependencies and implications, as well as 
the settings in which pharmacovigilance activities are undertaken. Major informa-
tics themes related to pharmacovigilance include the design and support of drug 
safety data collection systems, identifi cation of alternative data sources, methodolog-
ical development to support new analyses and discovery, methods to support the use 
of patient-specifi c genetic profi le data as mitigating factors, and communication of 
complex information to physicians, policy makers, and patients. This chapter also 
reviews the various methods of detecting new adverse drug reactions, including pre- 
and postmarketing studies, spontaneous reporting, intensive monitoring, and data-
base studies, as well as the pros and cons of each. Both pharmacovigilance and drug 
safety monitoring impact the activities and workfl ows of clinical research, and the 
knowledge generated from these activities will lead to safer use of drugs in the 
future.  
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 Pharmacovigilance is defi ned by the World Health Organization (WHO) as “the sci-
ence and activities relating to the detection, assessment, understanding and preven-
tion of adverse effects or any other drug-related problems”  [  1  ] . The activities of 
pharmacovigilance are information intensive and include the collection, exchange, 
aggregation, analysis, interpretation, and communication of data related to patient 
experiences and use of therapeutic agents. Pharmacovigilance plays a key role in 
ensuring that patients receive safe drugs, and its activities are becoming increas-
ingly visible with growing public scrutiny of the drug industry. New regulatory, 
political, and scientifi c requirements are changing the practice of pharmacovigi-
lance and are creating many demands and opportunities for the application of infor-
mation science and technology. On a regulatory level, the proviso of conditional 
approval for marketed drug products, and related requirements for risk management 
plans (including phase IV clinical studies and patient registries), reinforce the need 
for effi cient event detection and reporting systems. Politically, increased patient 
involvement and the push for “transparency” in the business of research and medi-
cine is affecting the nature of pharmacovigilance as well – strengthening demands 
for systems to monitor and act upon possible threats to patient safety as soon as 
possible. 

 Pharmacovigilance and drug safety monitoring activities have a defi nite impact 
on clinical research practice and related information management activities. Many 
pharmacovigilance and population monitoring activities are clinical research 
activities by defi nition and can also impact research and development. The results 
of pharmacovigilance and drug safety monitoring impact decisions on which 
agents are developed or manufactured and for which populations and indications 
and can impact the practice, and therapeutic interventions, for future human 
trials. 

 As our scientifi c understanding and cumulative knowledge about existing prod-
ucts continually increases, so do opportunities for medical discovery, risk commu-
nication, and prevention of adverse side effects. Pharmacovigilance systems and 
methods have undoubtedly evolved with the ever-increasing number of electronic 
data sources and will continue to do so as information technology permeates health 
care and research domains. The aim of this chapter is to provide an overview of the 
activities and science that support pharmacovigilance and their informatics implica-
tions. New paradigms and recent developments that affect the practice, information 
requirements, and impact of pharmacovigilance will also be discussed. The organi-
zation and themes of this chapter are inspired by a recent review of pharmacovigi-
lance activities and outcomes  [  2  ] . 
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   Historical Perspectives 

 Without a systematic detection and assessment process for adverse drug effects, 
thousands of individuals might experience an event before an astute clinician might 
bring his suspicions forward for public investigation and action. In 1961, the 
Australian physician McBride had a letter published in The Lancet in which he 
suggested a connection between congenital malformations in newly born infants 
and the hypnotic thalidomide, which had been marketed under various names in 
many countries, both as a prescription and as an over-the-counter (OTC) drug, as 
well as in many compositions of simple analgesics  [  3  ] . Later that same year, the 
manufacturer Chemie Grünenthal withdrew thalidomide from the market but only 
after an accrual of very perceptible and debilitating congenital defects. The num-
ber of children born with serious congenital malformations as a result of maternal 
use of thalidomide is estimated between 6,000 and 12,000, the majority of which 
were born in Germany  [  4,   5  ] . Had the biological sequelae of fetal thalidomide 
exposure been less visible or severe, perhaps tens or hundreds of thousands more 
would have been affected. Since then, the use of deliberate data collection and 
analysis activities in the interest of public health has detected and removed several 
dangerous products from public markets. 

 An adverse event (AE) is broadly defi ned as any clinical event, sign, or symptom 
that goes in an unwanted direction  [  6  ] . There is no assertion of causality implied 
with adverse events – they are merely events. The notion of an adverse drug reaction 
(ADR) includes the suggestion of a causal relationship (e.g., probable, possible, 
etc.) between the event and a therapeutic agent or device. After an ADR is suspected 
(i.e., adverse consequences are speculated to be caused from a drug), then careful 
and systematic data collection is required to evaluate that suspicion for further 
action. The decision to remove thalidomide from the market was made in response 
to  active  data collection of adverse events related to the drug. The thalidomide expe-
rience soon led the FDA (the Food and Drug Administration, USA) to initiate a 
systematic collection of reports on all types of adverse drug reactions, chiefl y 
through the Hospital Reporting Program. In various countries, the thalidomide trag-
edy had prompted the immediate formulation of criteria for safety and effi cacy that 
new drugs would need to meet in order to receive marketing authorization. In addi-
tion, the marketing authorization holders were commissioned to establish a post-
marketing surveillance system to facilitate the early detection of adverse reactions 
to prevent a similar tragedy from occurring in the future. In 1968, ten countries that 
supported a spontaneous reporting system for adverse drug reactions formed a col-
laboration under WHO Pilot Research Project for International Drug Monitoring 
 [  7  ] . In 1971, a resolution of the Twentieth World Health Assembly laid the founda-
tions for WHO International Drug Monitoring Programme  [  8  ] . In 1972, a report was 
published which formed the basis of the current international system of national 
centers collaborating in WHO Programme  [  9,   10  ] . Although sophisticated methods 
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have evolved, the motivation (public safety) and strategy (population monitoring) 
have not changed. 

 The overarching purpose of pharmacovigilance has been to balance the risk–ben-
efi t ratio to the public. Pharmacovigilance is based upon the premise that there are 
risks associated with any therapeutic agent, and these risks are not evenly distributed 
across a population. Biological variations make some individuals more vulnerable to 
side effects or adverse drug reactions. Individual variations also impact the course of 
a disease and preferences for treatment options and tolerability of side effect.  

   Global Perspectives 

 Various national authorities and the pharmaceutical industry have played a role in the 
development of pharmacovigilance practice, which in turn has resulted in new legis-
lation and qualitative requirements for the drug, the industry, and their products. The 
Council for International Organizations of Medical Sciences (CIOMS) and the 
International Conference on Harmonisation (ICH) have been instrumental in devel-
oping pharmacovigilance standards and practice and continue to operate as forums 
for discussion and standardization of drug safety methods and requirements. Through 
such venues, it has become clear that a globally integrated and deliberate pharma-
covigilance system is required to protect the public. The WHO International Drug 
Monitoring Programme is supported and coordinated by the WHO Collaborating 
Centre for International Drug Monitoring (“the Uppsala Monitoring Centre”), which 
maintains and implements the international database of adverse drug events. 

 It is necessary that countries maintain some autonomy in terms of regulatory 
organizations and legal authority because they each make their own decisions about 
drugs marketed in their countries and their populations have different risks and ben-
efi ts for various products. Despite the need for national autonomy, however, stan-
dardized drug safety reporting and global communication is in the best interest of 
all countries because it can enable countries to share data and learn from drug expo-
sure experiences from other populations. An awareness of products available in 
other countries is critical to fully protect the safety of patients. Not only is it helpful 
for countries to be familiar with products, product information, and regulatory 
actions of other countries, sharing of data between countries could increase the 
monitored population size and potentially identify a signal (i.e., a potential relation-
ship between product and untoward medical consequence) that might not be detected 
otherwise. Additionally, the multinational character of pharmaceutical companies 
has infl uenced the need for shared data and standards in the area of drug safety. The 
idea of a single drug company having to report information in multiple formats for 
multiple counties could prove to be a disincentive for much needed multinational 
trials. Pharmacovigilance use cases (related to standardized reporting formats for 
AE information), in fact, are one of the highest impact use cases that drive 
international standardization efforts such as CDISC and efforts toward standardiza-
tion and reuse of data collected in electronic health records (see Chap.   17    ).  
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   Criticisms of Current Pharmacovigilance Systems 

 In the aftermath of the withdrawal of rofecoxib in 2004, the FDA and the current 
system of postmarketing surveillance was heavily criticized  [  11–  15  ] . Points of 
criticism were that the FDA is using only a limited number of data sources (clinical 
trials, spontaneous reporting) for information about the safety of a drug. 
Furthermore, the FDA has no legal control over the conduct and completion of 
postmarketing safety studies. The majority of postmarketing study commitments 
are never initiated, and the completion of postmarketing safety studies (i.e., phase 
IV studies) declined from 62% between 1970 and 1984 to 24% between 1998 and 
2003. The FDA has no authority to take direct legal action against companies that 
do not fulfi ll their postmarketing commitments  [  16  ] . Some critics also claim that 
the FDA has become too close to the industry that they are supposed to regulate; 
consequently, a separation between regulatory duties and the postmarketing sur-
veillance activities has been advocated  [  17  ] . In response to the criticism, the Centre 
for Drug Administration (CDER) at the FDA asked the Institute of Medicine (IOM) 
to assess the US drug safety system. In September 2006, the IOM released the 
committee’s fi ndings and recommendations in a report “The future of drug safety: 
promoting and protecting the health of the public”  [  18  ] . The main message in this 
report is that the FDA needs to follow the safety of a drug during its whole life 
cycle. This life cycle approach includes identifying safety signals, designing stud-
ies to confi rm them, evaluating benefi ts as well as risks, using risk–benefi t assess-
ments to integrate study results and communicating key fi ndings to patients and 
physicians  [  7,   19  ] . 

 Similarly, in Europe, the withdrawal of rofecoxib lead to an assessment of 
the pharmacovigilance system in the different European Union member states, 
which was published in March 2006. The report “Assessment of the European 
Community System of Pharmacovigilance” highlighted the strengths and weak-
nesses of the European pharmacovigilance system. The report’s recommenda-
tions focused on the breadth and variety of data sources, the proactive use of 
registration, the speed of decision making, the impact of regulatory action and 
communication, the compliance by marketing authorization holders, and the 
general principles of quality management and continuous quality improvement 
 [  20,   21  ] .  

   Different Aspects of Pharmacovigilance 

 The activities undertaken in the name of pharmacovigilance fall within three set-
tings: regulatory, industry, and academia. Each of these settings refl ects a different 
perspective on the scope and practice of pharmacovigilance. Consequently, these 
three perspectives have infl uenced the nature of pharmacovigilance and will con-
tinue to be a source of infl uence in the future. 
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   Regulatory Pharmacovigilance 

 Regulatory authorities, both at the national and increasingly at the international 
level, initially defi ned and fostered the fi eld of pharmacovigilance. Because of the 
crucial role that regulatory authorities have played in the development of pharma-
covigilance, Waller et al. actually used the label “regulatory pharmacovigilance” 
which they define as “the process of evaluating and improving the safety of 
marketed medicines”  [  22  ] . They demarcated the responsibilities that national gov-
ernments have in the monitoring of drug safety, which was well accepted by many 
nations, sobered by the outcome of the thalidomide tragedy  [  7,   10  ] . It is undeniable 
that in several countries, most notably in the USA and UK, legislation has signifi -
cantly contributed to the advance of pharmacovigilance as a specialized fi eld of 
knowledge. The role of WHO stands out here. The collaborative program launched 
under the auspices of WHO by ten countries in 1968 was the start of a historic inter-
national cooperative effort, resulting in WHO International Drug Monitoring 
Programme  [  7  ] . The technical report, entitled “International Drug Monitoring: The 
Role of National Centres” and published as the proceedings of one of WHO meet-
ings in 1972, laid the theoretical and practical foundation for the further develop-
ment of pharmacovigilance  [  9  ] . The program has also resulted in the WHO 
Collaborating Centre for Drug Monitoring (the Uppsala Monitoring Centre) which 
maintains the international ADR database and fulfi lls an important role particularly 
by the support it offers to the pharmacovigilance centers in low-income countries.  

   The Role of the Pharmaceutical Industry 

 The second great infl uence on the development of pharmacovigilance is the phar-
maceutical industry. This is not surprising since it is their product, a product they 
themselves have both developed and manufactured, that is the object of study. From 
their circles, great infl uence has been exerted to come to international agreements, 
many of which have since been formalized in the various reports the Council for 
International Organizations of Medical Sciences (CIOMS) and the International 
Conference on Harmonisation (ICH) have issued. Initially, the sector’s main interest 
lay in the epidemiological approach and causality assessment, but nowadays, aspects 
of risk management are also given due attention.  

   Pharmacovigilance as a Science 

 Pharmacovigilance is also a scientifi c discipline, dedicated to the safety of drugs as 
used in the clinical practice, based on experiences from the clinical practice, thus 
generating knowledge on the harmful effects of drugs, both at the individual and the 
population level. The knowledge generated by pharmacovigilance activities will 
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eventually be applied to clinical practice and thus lead to a safer use of drugs. Many 
of the statistical methodologies of pharmacovigilance are conceptualized, applied, 
and evaluated from university and academic settings  [  23,   24  ] . 

 As in most applied sciences, the fi eld of pharmacovigilance is an amalgam of 
numerous other scientifi c domains, each contributing their own expertise to the 
fi eld. The combined knowledge fosters drug safety reasoning. Pharmacovigilance is 
essentially a clinical science  [  25  ] . To allow a sound judgment of any adverse effects 
of drugs, we need clinical knowledge at the level of the individual patient. It takes 
extensive general medical knowledge, preferably supported by direct experience 
with patient care, to be able to make an accurate assessment of the impact pharma-
cotherapy is likely to have, which becomes even more urgent when unintended 
adverse events occur. However, as the availability of robust electronic clinical data 
sets increases, pharmacovigilance activity is becoming even more interdisciplinary. 
Academics are now publishing pharmacovigilance methods in statistical journals, 
clinical specialty journals, informatics journals, database and computer science 
journals, and health policy journals. We expect this trend to continue. 
Pharmacoepidemiology, the science concerned with the effects of drugs in large 
populations, has been a key contributor and, among other contributions, has helped 
establish the basis for the statistical analysis techniques and risk assessments in 
pharmacovigilance (Fig.  19.1 ).  

 Lastly, it has been the international scientifi c societies that have been vital in 
furthering pharmacovigilance as a discipline in its own right. The International 
Society of Pharmacoepidemiology (ISPE), founded in 1984, has helped formulate 
the epidemiological underpinning of the safety aspects of drugs. The International 
Society of Pharmacovigilance (ISoP), founded as the European Society of 
Pharmacovigilance in 1992, has promoted the fi eld’s clinical and communication 
aspects. Both organizations organize international courses in their fi eld, in addition 
to their annual conferences.   

   Methods in Pharmacovigilance 

 Regardless of who performs a pharmacovigilance activity (e.g., regulatory, industry, 
or academia), similar methods are used in the detection of new adverse drug reac-
tions (Table  19.1 ).  

Pharmaco-
vigilance

Clinical
Pharmacology

Epidemiology

  Fig. 19.1    Pharmacovigilance 
and related disciplines       
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 We describe the basic methodological strategies, and the pros and cons of each, 
below. 

   Premarketing Studies 

 The main method of gathering information about a drug in the premarketing phase 
is to conduct a clinical trial. As mentioned in Chap.   4    , premarketing clinical trials 
can be divided into three phases. Phase III studies are often double-blind random-
ized controlled trials, which are considered to be the most rigorous way of deter-
mining whether a cause–effect relationship exists between a treatment and an 
outcome. However, when it comes to monitoring the safety of a drug, this study 
design is not optimal. Due to the limited number of patients participating, it is not 
possible to identify rare ADRs. The relatively short duration of clinical trials makes 
it diffi cult to detect ADRs with a long latency. Another limitation with clinical trials 
is the population in which a drug is tested. The characteristics of these persons do 
not always correspond to the characteristics of the population in which it will later 
be used; therefore, it might be diffi cult to extrapolate the results obtained from clini-
cal trials to the population at large  [  27  ] . This is especially true for the elderly, for 
women, or for people belonging to a minority  [  28,   29  ] . In order to study rare ADRs, 
ADRs with a long latency, and ADRs in specifi c populations, careful monitoring of 
the drug in the postmarketing phase is essential.  

   Postmarketing Studies 

 Postmarketing studies can be descriptive or analytical. Descriptive studies are 
hypothesis generating and try to describe the occurrence of events related to drug 
toxicity and effi cacy. Analytical studies are hypothesis testing and seek to determine 
associations or causal connections between observed effects and particular drugs 
and to measure the size of these effects. Descriptive studies are widely used in 

   Table 19.1    Activities of pharmacovigilance   

 Suspected ADR signal generation and formation of hypothesis 
 Analysis of all issues around the signal, particularly confi rmation (of refutation) of hypotheses, 

estimation of the size of the risk, and whether susceptible patients exist 
 Consideration of possible changed benefi t-to-risk issues in therapy 
 Communication of information to health professionals and patients in a useful way and possible 

regulatory action 
 Consequence evaluation 

  From Edwards  [  26  ] , with permission of Wolters Kluwer  
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 postmarketing surveillance because they are able to generate hypotheses that will 
become starting points for analytical studies  [  30  ] . Two forms of descriptive studies, 
spontaneous reporting and intensive monitoring, will be discussed in two subsec-
tions below. Analytical studies can be conducted via a variety of methods including 
case–control studies, cohort studies, and clinical trials. In order to be able to con-
duct retrospective cohort and case–control studies, data which have been collected 
in a reliable and routine fashion need to be available.  

   Spontaneous Reporting 

 Spontaneous reporting systems (SRS) have been and still are the chief method of 
collecting postmarketing information about the safety of drugs. The primary function 
of SRS is to facilitate the early detection of “signals” of new, rare, and serious ADRs. 
Via a spontaneous reporting system, physicians, and increasingly pharmacists and 
patients, are able to report suspected adverse drug reactions to a pharmacovigilance 
center  [  31–  33  ] . The task of the pharmacovigilance center is to collect and analyze the 
reports and to inform stakeholders of the potential risk when “signals” of new ADRs 
arise. Spontaneous reporting is also used by the pharmaceutical industry to collect 
information about their drugs. Via a spontaneous reporting system, it is possible to 
monitor all drugs on the market throughout their whole life cycle at a relatively low 
cost. The main criticism against spontaneous reporting is selective and underreport-
ing  [  34  ] . In a review article, the magnitude of underreporting was investigated, and it 
was shown that more than 94% of all ADRs remain unreported  [  35  ] . Underreporting 
can lead to the false conclusion that a real risk is absent, while selected reporting of 
suspected risks may give a false impression of a risk that does not exist. However, 
underreporting and selective reporting can also been seen as an advantage. Because 
only the most severe and unexpected cases are reported, it is easier to detect new 
signals because the person reporting the issue have already pinpointed what might be 
a new safety issue. Against this background, perhaps the system should be called 
 concerned reporting  instead of spontaneous reporting, seeing as those reporting the 
issues are highly selective of what they are reporting  [  36  ] . 

 Although critics say that spontaneous reporting is not the ideal method for moni-
toring the safety of drugs, it has proven its value throughout the years. Between 
1999 and 2001, 11 products were withdrawn from the UK and US markets. 
Randomized trial evidence was cited for two products (18%) and comparative 
observational studies for two products (18%). Evidence from spontaneous reports 
supported the withdrawal of eight products (73%), with four products (36%) appar-
ently withdrawn on the basis of spontaneous reports only. For two products, the 
evidence used to support their withdrawal could not be found in any of the identifi ed 
documents  [  37  ] . Out of nine recent signifi cant drug safety issues handled in the 
European Union since 1995, six were detected by spontaneous reports. See 
Table  19.1 , showing the strength of spontaneous reporting in detecting new safety 
issues  [  21  ] .  
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   Intensive Monitoring 

 In the late 1970s and early 1980s, a new form of active surveillance was developed 
in New Zealand (Intensive Medicines Monitoring Programme) and the UK 
(Prescription Event Monitoring). These intensive monitoring systems are using pre-
scription data to identify users of a certain drug. The prescriber of the drug is asked 
about any adverse event occurring during the use of the drug being monitored. These 
data are collected and analyzed for new signals. The methodology of these intensive 
monitoring systems has been described in depth elsewhere  [  38–  41  ] . 

 Intensive monitoring is a noninterventional observational cohort, differentiating 
itself from spontaneous reporting because it only monitors selected drugs during a 
certain period of time. Through its noninterventional character, intensive monitor-
ing provides real-world clinical data involving neither inclusion nor exclusion crite-
ria throughout the collection period. It is unaffected by the kind of selection and 
exclusion criteria that characterize clinical trials, thereby eliminating selection bias. 
Another strength of the methodology is that it is based upon event monitoring and 
is therefore capable of identifying signals for events that were not necessarily sus-
pected as being ADRs of the drug studied. Intensive monitoring also allows estima-
tion of the incidence of adverse events which makes it possible to quantify the risk 
of certain ADRs. Intensive monitoring also has recognized limitations. The propor-
tion of adverse effects that go unreported to doctors is unknown. 

 The studies also produce reported event rates rather than true incident rates. This 
is the same for all studies based on medical record data including computer data-
bases and record linkage. There is no control group in standard intensive monitoring 
studies, and the true background incidence for events is therefore not known  [  42  ] . 

 Although the intensive monitoring methodology was developed more than 
20 years ago, this methodology has received renewed interest in the last years. In the 
European Commission consultation “Strategy to better protect public health by 
strengthening and rationalising EU Pharmacovigilance,” intensive monitoring is 
mentioned as one tool in improving the pharmacovigilance system  [  43  ] .  

   Database Studies 

 In order to test a hypothesis, a study has to be performed. This kind of study can be 
conducted using a variety of methods including case–control studies and cohort 
studies. Limitations of these methods include power considerations and study 
design. In order to be able to conduct retrospective cohort and case–control studies, 
data which have been collected in a reliable and routine fashion need to be available. 
As an example, the General Practice Research Database is described. Other data-
base- and record-linkage systems are available for research purposes both in Europe 
and in North America  [  44  ] . 
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 In the UK, virtually all patient care is coordinated by the general practitioner, and 
data from this source give an almost complete picture of a patient, his illnesses, and 
treatment. In any given year, GPs, who are members of the General Practice Research 
Database, collect data from about three million patients (about 5% of the UK popu-
lation). These patients are broadly representative of the general UK population in 
terms of age, sex, and geographic distribution. The data collected include demo-
graphics (age and sex), medical diagnoses that are part of routine care or resulting 
from hospitalizations, consultations or emergency care, along with the date and 
location of the event. There is also an option of adding free text, referral to hospitals 
and specialists, all prescriptions including date of prescription, formulation strength, 
quantity and dosing instructions, indication for treatment for all new prescriptions, 
and events leading to withdrawal of a drug or a treatment. Data on vaccinations and 
miscellaneous information such as smoking, height, weight, immunizations, preg-
nancy, birth, death, date entering the practice, date leaving the practice, and labora-
tory results are also collected. Similar databases of prescriptions and drug-specifi c 
registries can afford other opportunities. As electronic health data collection 
becomes standardized and adopted in the United States and other countries, then 
similar electronic resources will exist.  

   Quantitative Signal Detection 

 Signal detection can be defi ned as the search for information on a possible causal 
relationship between an adverse event and a drug, of which the    relationship is 
unknown or incompletely documented previously. The data analysis/exploration 
methods that comprise signal detection activities can be applied on various data 
sources, including case reports or other data streams. This is an active research area 
and a ripe area for clinical research informatics professionals. Signal detection has, 
in the past, mainly been done on the basis of case by case analyses of reports, but in 
recent years, data mining techniques have become more important. The term  data 
mining  refers to the principle of analyzing data from different perspectives and sort-
ing out relevant information. Often, algorithms are used to discover hidden patterns 
of associations or unexpected occurrences (i.e., “signals”) in large databases. 
Although the methodology of the various data mining methods applied in pharma-
covigilance differ, they all share the characteristic that they express to what extent 
the number of observed cases differs from the number of expected cases  [  23  ] . 

 Several analytic approaches are currently in use. Proportional reporting ratios, 
   PRRs, compare the proportion of reports for a specifi c ADR reported for a drug with 
the proportion for that ADR in all other drugs. The calculation is analogous to that of 
relative risk. Using the same information, it is also possible to calculate a reporting 
odds ratio  [  45  ] . The method, Bayesian confi dence propagation neural network 
(BCPNN) is used to highlight dependencies in a data set. The method uses Bayesian 
statistics implemented in a neural network architecture to analyze all reported adverse 
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drug reaction combinations. Quantitatively unexpectedly strong relationships in the 
data are highlighted relative to general reporting of suspected adverse effects. WHO 
Collaborating Centre for International Drug Monitoring uses this method for data 
mining  [  46  ] . A related approach is used by the FDA, which uses the Multi-Item 
Gamma Poisson Shrinker (MGPS) for data mining of their spontaneous report’s 
database. The MGPS algorithm computes signal scores for pairs and for higher-order 
(e.g., triplet, quadruplet) combinations of drugs and events that are signifi cantly more 
frequent than their pairwise associations would predict  [  47  ] . All data mining 
approaches currently cannot distinguish between already-known associations and 
new associations. Moreover, clinical information described in the case reports is not 
taken into account. There is still a need for a reviewer to analyze these events. 

 In contrast to hypothesis testing where quantitative estimates are used to express 
the frequency of a signal, in spontaneous reporting systems, quantitative estimates 
are used to determine the probability of a combination being a signal or not, based 
on disproportionate reporting  [  38  ] . Various quantitative procedures can be used to 
focus attention of human reviewers, who ultimately are required to review and eval-
uate any potential signal. A recent comparison of common pharmacovigilance mea-
sures found that the various measures that are used in quantitative signal detection 
in various national centers are comparable when four or more reports constitute the 
drug–ADR combination  [  48  ] .   

   System Developments in Pharmacovigilance 

   Transparency 

 The Erice declaration, as well as  Waller and Evans , stated that transparency is 
important for the future of pharmacovigilance. In the last few years, transparency 
around adverse drug reactions has increased. Clinical trials registration will allow 
the necessary tracking of trials to ensure full and unbiased reporting for public ben-
efi t  [  49  ] . A number of countries, including Canada (  www.hc-sc.gc.ca    ), the 
Netherlands (  www.lareb.nl    ), and the UK (  www.mhra.gov.uk    ), have put their data-
bases containing the data from the spontaneous reporting system online, available to 
the public.  

   Conditional Approval 

 The FDA report, as well as the report from the European Union described earlier, 
emphasizes that compliance by marketing authorization holders, when it comes to 
additional postmarketing studies, needs to be improved. A possible solution to this 
problem would be a time-limited conditional approval, which would place pressure 
on the manufacturers to conduct and report additional safety studies  [  50  ] . 

http://www.hc-sc.gc.ca
http://www.lareb.nl
http://www.mhra.gov.uk
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 Within the European Union, the European Medicines Agency EMA (formerly 
EMEA) has introduced a conditional marketing authorization. The CHMP delivers 
a conditional marketing authorization for products where there is a specifi c patient 
need. Examples include products for seriously debilitating or life-threatening dis-
eases, medicinal products to be used in emergency situations in response to public 
threats, and products designated as orphan medicinal products. A conditional mar-
keting authorization is granted in the absence of comprehensive clinical data refer-
ring to the safety and effi cacy of the medicinal product. However, a number of 
criteria have to be met including a positive risk–benefi t balance of the product, a 
likelihood that the applicant will eventually be able to provide comprehensive clini-
cal data, and an unmet medical need. Essentially, it must be demonstrated that the 
public health benefi ts of the immediate availability of the medicinal product out-
weigh the risks inherent in the absence of additional data. 

 Conditional marketing authorizations are valid for 1 year, on a renewable basis. 
The holder is required to complete ongoing studies or to conduct new studies with 
a view to confi rming that the risk–benefi t balance is positive. In addition, specifi c 
obligations may be imposed in relation to the collection of pharmacovigilance data. 
The authorization is not intended to remain conditional indefi nitely. Rather, once 
the missing data are provided, it should be possible to replace it with a formal mar-
keting authorization. The granting of a conditional marketing authorization will 
allow medicines to reach patients with unmet medical needs earlier than might oth-
erwise be the case and will ensure that additional data on a product are generated, 
submitted, assessed, and acted upon. Methods for the collection, communication, 
and interpretation of these data will require informatics and integration of health 
care, clinical research, and regulatory information.  

   Risk Management Plans 

 Another step in a more proactive postmarketing surveillance is the introduction of 
risk management plans, RMPs  [  51  ] . RMPs are being set up in order to identify, 
characterize, prevent, or minimize risk relating to medicinal products, including the 
assessment of the effectiveness of those interventions. An RMP may need to be 
submitted at any time in a product’s life cycle, for example, during both the preau-
thorization and postauthorization phases. An RMP is required for all new active 
substances, signifi cant changes in established products (e.g., new form/route of 
administration), established products introduced to new populations, signifi cant 
new indications, or when an unexpected hazard is identifi ed. 

 The EU Risk Management Plan contains two parts, the fi rst part containing a 
Safety Specifi cation and a Pharmacovigilance Plan and the second part containing 
an evaluation of the need for risk minimization activities and, if necessary, a risk 
minimization plan. The safety specifi cation contains a summary of what is known 
and what is not known about the safety of the product. This encompasses the impor-
tant identifi ed risk and any information and outstanding safety questions which 



380 A.C. (Kees) van Grootheest and R.L. Richesson

 warrant further investigation in order to refi ne understanding of benefi t–risk during 
the postauthorization period. 

 A risk minimization plan is only required in circumstances where standard 
information provision, via a medicine’s summary of product characteristics, is 
considered inadequate. Insuffi cient patient information leafl ets or inadequate 
labeling of the medicine are additional reasons for drawing up a risk minimaliza-
tion plan. Where a risk minimization plan is considered necessary, both routine 
and additional activities are to be included. Some safety concerns may have more 
than one risk minimization activity, each of which should be evaluated for 
effectiveness. 

 Many risk management plans have already been established; however, no quan-
titative or qualitative reports have been released by the EMA. Information to the 
public about RMPs has also been scarce. If RMPs are to take an important place in 
pharmacovigilance they need to be made public and easily accessible for scientists, 
professionals, and patients.  

   Patients as Reporters 

 Another important development is the recognition of the patient as an important 
player in pharmacovigilance. Patients are the users of drugs. Their use of a drug in 
a safe manner is the ultimate goal of pharmacovigilance activities. In an increasing 
number of countries, patients are now allowed to report adverse drug reactions to 
the spontaneous reporting system. The European Commission acknowledges the 
role of the patient in spontaneous reporting  [  43  ] . Patients and patient organizations 
are getting more involved in pharmacovigilance, especially when it comes to risk 
communication  [  52,   53  ] . 

 After introducing patient reporting in the spontaneous reporting scheme in 
2004  [  54  ] , the Netherlands Pharmacovigilance Centre Lareb took patient report-
ing one step further, and in 2006, an intensive monitoring program using patients 
as a source of information was introduced. Lareb Intensive Monitoring, (LIM), 
follows the PEM methodology in the way of identifying patients via prescriptions. 
Eligible patients are identifi ed in their pharmacies when they come and pick up 
the drug under study for the fi rst time. Patients can register at the LIM website, 
and during a certain period of time, they will receive questionnaires asking them 
about adverse events. The system is totally web-based, meaning that question-
naires can be sent via e-mail to participating patients at different points, allowing 
the collection of longitudinal data. The high grade of automation also allows 
quick data collection and analysis  [  55  ] . Further, the notion of patients entering 
their data directly in personal health records  [  56  ]  and exercising control over their 
data entered in provider electronic health record (EHR) systems will likely 
increase the involvement of patients as reporters or gatekeepers to ADR informa-
tion and drug experience.   



38119 Pharmacovigilance

   International Developments 

   The United States 

 In 2007, in response to the IOM report, the FDA announced several initiatives 
designed to improve the safety of prescription drugs  [  19  ] . These initiatives fall into 
four main categories. The fi rst is increasing the resources for drug safety activities. 
Perceptions of the agency as being overly dependent on industry funding have lead 
to proposals of eliminating user fees. The second category of proposed reform is 
new authority for the FDA; the agency needs regulatory tools to help assure drug 
safety. This authority would be exercised through a required risk evaluation and 
mitigation strategy including measures such as prescribing restrictions, limits on 
direct to consumer marketing, and requirements for postmarketing studies. The 
FDA could impose monetary penalties for noncompliance. A third aspect of the 
reform is improvement of postmarketing surveillance. A routine systematic approach 
to active population-based drug surveillance that could identify potential safety 
problems is needed. Finally, changes in the FDA management practices and safety 
supervision are necessary  [  57  ] . The latter two changes clearly will require informat-
ics expertise in developing systems for data collection and communication that 
enhance opportunities for collaboration and integrated response. 

 In May 2007, the US Senate passed its version of reform for the Food and Drug 
Administration. The senate proposed that the Prescription Drug User Fee Act, which 
allows the pharmaceutical industry to pay money directly to the FDA, should 
increase their payments to the FDA with close to 400 million US dollars. Furthermore, 
this reform would give the FDA new authority to order companies to undertake 
formal safety studies of drugs that are being marketed and to fi ne those who do not 
honor their postmarketing commitments. However, when it came to changing the 
structure of the FDA, the proposal to create an independent offi ce for the monitoring 
of the safety of drugs was rejected by one vote  [  58–  60  ] .  

   Europe 

 In 2005, a document was drafted by the Heads of Medicines Agencies called 
“ Implementation of the Action Plan to Further Progress the European Risk 
Management Strategy .” In July 2007, the EMEA published a document wherein the 
achievements thus far were discussed. Achievements included implementation of 
legal tools for monitoring the safety of medicines and for regulatory actions. 
Particular emphasis was placed on  [  2  ] :

    1.    Systematic implementation of risk management plans  
    2.    Strengthening the spontaneous reporting scheme through improvements of the 

EudraVigilance database  
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    3.    Launching the European Network of Centres for Pharmacoepidemiology and 
Pharmacovigilance (ENCePP) project to strengthen the monitoring of medicinal 
products  

    4.    The conduct of multicenter postauthorization safety studies  
    5.    Strengthening the organization and the operation of the EU pharmacovigilance 

system.     

 In the course of the next 2 years, two main areas will be covered by the European 
Risk Management Strategy: further improving of the operation of the EU 
Pharmacovigilance System and strengthening the science that underpins the safety 
monitoring for medicines for human use  [  61,   62  ] . In December 2007, a public con-
sultation “Strategy to Better Protect Public Health by Strengthening and Rationalising 
EU Pharmacovigilance” was published on behalf of the European Commission. 
This document contains legislative strategy and key proposals for legislative changes 
within the European Union.    Areas where legislative changes are necessary include: 
fast and robust decision making on safety issues; clarifi cation of roles and responsi-
bilities for industry and regulators; strengthening the role of risk management 
planning; improving the quality of noninterventional safety studies; simplifi cation 
of ADR reporting including introducing patient reporting; strengthening medicines 
safety, transparency, and communication; and, including clearer safety warnings in 
the product information to improve the safe use of medicines  [  43  ] .   

   Role of Informatics    

 Pharmacovigilance is by defi nition an information-intensive discipline. As elec-
tronic data sources become available, pharmacovigilance will become even more 
interdisciplinary, requiring information and computational science professionals as 
well as statisticians and clinical experts. The essential activities of pharmacovigi-
lance defi ned at the start of this chapter will continue to be the foundation of phar-
macovigilance, although new data sources, analytic methods, and communication 
platforms will be added. 

 Informatics will play an important role in pharmacovigilance. Key informatics 
areas include the design and support of safety data collection systems, identifying 
alternative data sources for pharmacovigilance, methodological development to 
support new analyses and discovery (signals detection, probabilistic methods, etc.), 
methods to support the use of patient-specifi c genetic profi le data as mitigating fac-
tors, and communication of information to physicians, policy makers, and patients. 
As discussed in Chap.   8    , thoughtful design and implementation strategy serve as the 
foundation of any of these application areas. The need for global communication 
and collaboration will drive all of these systems to support multiple languages and 
regulations. Increasing volumes of electronic health data and the changing role of 
the patient in health care, clinical research, and pharmacovigilance mean that the 
design and implementation of data collection, information, and communication sys-
tems must consider many different user groups. 
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 In order to receive information about the safety of a drug at the earliest point, 
active surveillance is necessary. Real-time data collection and information gather-
ing is vital for active postmarketing surveillance. Spontaneous reporting has indeed 
been shown to be a useful tool in generating signals, but the relatively low number 
of reports received for a specifi c association makes it less useful in identifying 
patient characteristics and risk factors that will contribute to the occurrence of an 
ADR for a given person, which is the essential information for providers making 
treatment decisions. Furthermore, when facing an ADR, both patients and providers 
want to know: Will this ADR disappear? How long will it take before it does? What 
treatment is needed? Current pharmacovigilance resources and methods cannot 
address these questions. The development of infrastructure and process that can fol-
low cohorts of patients using various drugs can support this type of population mon-
itoring. These systems will likely develop in parallel with electronic health record 
(EHR) and personal health record (PHR) systems that enable continuity of health 
care. To support longitudinal follow-up of patients and their adverse drug events, 
future data streams and sources should include not only information linked to the 
individual (identifi ers, demographics, etc.) but also information regarding treat-
ment, concomitant medications, medical history, exposures, setting, and other clini-
cal data. This will require the identifi cation and linkage of multiple data sources 
over time, which has been a fundamental challenge for clinical and public health 
informatics for decades. Informatics professionals in the clinical research domain 
should collaborate and advocate for these solutions to improve synergy between 
health care and clinical research information systems. 

 The availability of electronic health data resources is driving requirements for 
the representation of adverse events themselves. Historically, ADRs are identifi ed 
by astute clinicians and communicated via human language for subsequent actions. 
As distinct pharmacovigilance systems have evolved, formal representations (i.e., 
controlled terminologies) for the adverse events themselves have become necessary. 
Because these controlled terminologies were developed explicitly for pharmacovig-
ilance and regulated reporting, they were created anew (e.g., MedDRA) rather than 
by adapting existing systems. Years ago, access to clinical terminologies such as 
SNOMED CT was very limited, and the prospect of utilizing clinical data for phar-
macovigilance purposes was not immediate. However, as the prospect of reusing 
existing clinical data streams is now within reach (see Chap.   17    ), regulatory bodies 
are becoming pressured to require clinical data standards and terminologies that are 
endorsed by their governments. 

 Additionally, because drug safety is now considered not only as a part of the 
“drug life cycle” but also as an important component of individual and population 
health, postmarket surveillance and population monitoring are increasingly being 
viewed as clinical activities that need to be supported by electronic medical records. 
We will likely see an increased emphasis in clinical data standards discussions on 
the information needs to support pharmacovigilance activities. 

 Because of the needs and precedent of global communication and cooperation in 
the area of drug safety, internationally accepted data standards will be particularly 
critical. From a terminological standpoint, standard names for drugs and medical 
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devices themselves will be required, as concepts related to patient experience using 
that drug. This will include at a minimum clinical observations and fi ndings, comor-
bidities and preexisting conditions, environmental and behavioral exposures, and 
concurrent treatments and procedures. Some of these terminologies have been 
developed specifi cally for this purpose and are de facto standards (e.g., WHO Drug, 
MedDRA). As pharmacovigilance moves to support developing countries, particu-
larly those that are playing an increasing role in clinical research (e.g., India), then 
licensing models for access to these terminologies and tools for their appropriate 
use will become essential feature for national clinical research and population health 
infrastructures. Identifi cation and use of controlled terminology and standard data 
models are discussed in depth in other chapters, but they are clearly very important 
to any comprehensive pharmacovigilance program. 

 Adverse events can encompass physical fi ndings, complaints, and laboratory 
results  [  6  ] . Per FDA and ICH defi nitions, adverse events also include worsening of 
preexisting conditions, so comprehensive AE coding systems must encompass dis-
eases, disorders, and conditions as well  [  63  ] . There are several competing adverse 
event data standards (including terminologies and classifi cations), each with very 
different structures. Having multiple standards does complicate data sharing and 
requires resources to achieve interoperability. An ultimate goal would be to have the 
same standard, or harmonious standards, across the different user communities. The 
need for informatics professionals to identify strategies to harmonize these stan-
dards or share data between them will increase over time. The importance of work-
fl ows – both for care delivery and pharmacovigilance – will become more visible as 
multiple organizations, stakeholders, and nations work toward global cooperation in 
pharmacovigilance. 

 Given the industry investment and FDA/ICH endorsement at this time, it seems 
likely that MedDRA may continue to be a standard for FDA reporting, and if so, 
there will be future needs for mappings between SNOMED CT and MedDRA. 
However, only clear specifi cations for workfl ows and information exchanges can 
inform us as to which directions and which content these mappings should be 
addressed and how their creation should be prioritized. Since SNOMED CT is the 
likely standard for the collection of clinical data in EHR, the “collect once, use 
many” paradigm would dictate mapping SNOMED CT (as the source clinical data 
collection) to specialized terminologies and classifi cations that would support 
adverse event reporting as a secondary data use. The importance of connecting the 
health care and research domains for pharmacovigilance will affect the develop-
ment agendas for tools that allow data to be interoperable in the appropriate direc-
tion and maintain the level of precision needed for all users.  

   Conclusion 

 Pharmacovigilance is an important clinical activity with strong implications for 
population health and for clinical research portfolios and conduct. Pharmacovigilance 
has made a long journey since it started in the early 1960s after the thalidomide 
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disaster. Recent events and current popular media coverage show that it is very 
much a subject that lies close to people’s hearts. In the past few years, there has been 
a major push in trying to change the existing pharmacovigilance systems in order to 
meet the demands of the future. While drug safety is very much a patient-centered 
issue and the origins of pharmacovigilance are essential clinically, the future of 
pharmacovigilance will refl ect systems and political issues that will drive policy and 
impact patient safety and human health. The core of the future pharmacovigilance 
is the systematic collection of valid and representative data that can be rigorously 
analyzed, interpreted, and acted upon as part of medical care. Scientifi c underpin-
ning of pharmacovigilance is needed to make sure that it will develop as a scientifi c 
discipline and thereby contribute to the innovation needed in this fi eld. 
Pharmacogenetics will play a role in identifying individual risk factors for the 
occurrence of certain ADRs, and these data will be critical to address in future sys-
tems  [  64  ] . The pharmacovigilance of tomorrow must be able to identify new safety 
issues without delay and be able to communicate that information to patients and 
providers in languages and representation that facilitate decision making and pro-
tective action for patients everywhere.      
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  Abstract   Trial registration and results disclosure are considered powerful tools for 
achieving higher levels of transparency and accountability for clinical trials. New 
emphasis on knowledge sharing and growing demands for transparency in clinical 
research are contributing to a major paradigm shift in health research that is well 
underway. In this new paradigm, knowledge will be generated from the  culmination  
of all existing knowledge – not just from parts and bits of previous knowledge, as is 
largely the case now. The full transparency of clinical research is a powerful strat-
egy to diminish publication bias, increase accountability, avoid unnecessary dupli-
cation of research, advance research more effi ciently, provide more reliable evidence 
for diagnostic and therapeutic prescriptions, and regain public trust. Transparency 
of clinical trials, at a minimum, means sharing information about design, conduct, 
and results. The information itself must be explicitly documented, but then an access 
location or medium for distribution must be provided. In the case of clinical trials, 
the public disclosure of data is realized by posting them in well-defi ned, freely 
accessible clinical trial registries and results databases.  
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   Background 

   Rationale for Trial Registration 

 Trial registration and results disclosure are considered powerful tools for achieving 
higher levels of transparency and accountability for clinical    trials. New emphasis on 
knowledge sharing and growing demands for transparency in clinical research are con-
tributing to a major paradigm shift in health research that is well underway. In this new 
paradigm, knowledge will be generated from the  culmination  of all existing knowledge – 
not just from parts and bits of previous knowledge, as is largely the case now. 

 We are in the era of evidence-informed decision-making in health care for both 
individuals and populations at all levels – local, regional, national, and global. This 
decision-making is multifaceted, from the individual patient via physician to health 
administrators and policy makers. Registration of protocol items, publication of the 
complete protocol, and public disclosure of trial fi ndings in peer-reviewed journals – 
complemented with public (internet-based) disclosure of results that include 
microlevel data collectively – represent a totality of evidence and knowledge for a 
given topic area and are integral to supporting efforts toward evidence-informed 
decision-making. 

 Evidence is needed to support all of these personal and policy decisions. 
Randomized clinical trials and their systematic reviews are considered the gold 
standards for evidence creation, as illustrated by positioning them at the top of the 
pyramid of evidence (Fig.  20.1 ). This position of trials on the evidence pyramid 
implies that the reliability of data that they collect is very important. Because they 
may be directly implemented in decision-making, their quality should be constantly 
scrutinized. Unfortunately, the reliability of trial-based evidence is questionable due 
to the publication and outcome reporting bias of trials. Consequently, incomplete 
evidence can lead to biased clinical decisions, with often harmful consequences, 
and damages the public trust in research and medical interventions. Following med-
ical deontology, doctors’ prescription habits are supposed to be judiciary, which 
would require the complete and total knowledge of benefi ts and potential harms that 
a given medication or simultaneously prescribed medications might have. This is 
diffi cult at best, and impossible if the information about the given diagnostic tools, 
medications, or devices is not available.  

 The full transparency of clinical research is a powerful strategy to diminish pub-
lication bias, increase accountability, avoid unnecessary duplication of research, 
advance research more effi ciently  [  1  ] , provide more reliable evidence for diagnostic 
and therapeutic prescriptions, and regain public trust. Transparency of clinical tri-
als, at a minimum, means sharing information about design, conduct, and results. 
The information itself must be explicitly documented, but then an access location or 
medium for distribution must be provided. In the case of clinical trials, the public 
disclosure of data is realized by posting them in well-defi ned, freely accessible clin-
ical trial registries and results databases. 

 Considering that trials take place internationally and that the knowledge gained 
by them may be used by anyone anywhere in the world, their quality is also 
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constantly and internationally scrutinized. Thus, the standards for trial registration 
and registries should be internationally defi ned and relevant.  

   Development of Trial Registration 

 Although the need for trial registration has been discussed for several decades, only at 
the beginning of this millennium did trial registration garner widespread attention from 
many stakeholders representing varied perspectives. Its practical development started 
around 2000 with two critical boosts in 2004 and in 2006. The 2004 New York State 
Attorney General vs. Glaxo case  [  2,   3  ]  inspired the International Council of Medical 
Journal Editors (ICMJE)  [  4  ]  and Ottawa statements  [  5  ] , as well as the recommenda-
tions of the Mexico Ministerial Summit  [  6  ] . These led to the development of interna-
tional standards for trial registration by the World Health Organization (WHO), which 
were launched in 2006 and changed the landscape of trial registration worldwide  [  7  ] . 

 By 2004, a number of circumstances had coincided, which enabled the develop-
ment of trial registration and subsequent standards. These include:

   The Internet-enabled storage and retrieval of large data sets  • 
  The existence and experience of two major registries: International Standard • 
Randomized Clinical Trials Number (ISRCTN), based in the United Kingdom, 
and   ClinicalTrials.gov    , based in the United States of America  

CRITICAL
APPRAISALMeta-analysis

re
lia

bi
lit

y 
of

 e
vi

de
nc

e

Systematic review

Non-randomised Clinical Trial

Cohort Study

INTERVENTIONAL
STUDIES

OBSERVATIONAL
STUDIESCase-controlled study

Case-reports

Animal Studies

Laboratory Studies

Randomised Controlled Trial

  Fig. 20.1    Evidence pyramid – hierarchy of evidence       

 

http://ClinicalTrials.gov


392 K. Krleža-Jerić 

  The ever-increasing awareness of the need to enhance transparency  • 
  The willingness of the international research community to embark on this undertaking  • 
  The awareness of the harmful consequences of decision-making in the context of • 
partial evidence  
  The pressure from developing countries to share research data  • 
  The appreciation of the impact of trial registration on knowledge creation, shar-• 
ing, and translation  
  The need to stop wasting precious resources in unnecessary duplication of research    • 

 The initial international trial registration standards that were launched by WHO 
in 2006 are essential for achieving the goal of evidence-based decision-making. 
Because they identify existing registries and trials that need to be registered, defi ne 
the minimum data set, designate the timing of registration, and assign unique num-
bers to trials, international standards facilitate the comparability of data in various 
registries and the development of any new national or regional registries. It is impor-
tant to note that as of 2011, there are no international standards for results disclo-
sure; however, they are likely to be developed in the near future and will create 
numerous opportunities for informatics and information technology (IT) experts to 
leverage an apply to new applications. Additionally, further evolution of trial regis-
tration and its standards is also expected, again leading to new applications and 
resources that can impact the development of new research and our understanding 
of health, disease, and effective therapies. 

 The goal of research transparency has been to have the protocol documents elec-
tronically available. For example, the protocol documents would be posted on the 
registry website, and all trial-related data from them would be cross-referenced to 
results and fi ndings. A trial protocol can be very complex and lengthy, which can 
make fi nding the needed information diffi cult. An international group has been 
working on defi ning Standard Protocol Items for RandomIzed Trials (SPIRIT) as 
can be seen on the Enhancing QUAlity and Transparency Of health Research 
(EQUATOR) website  [  8  ] . SPIRIT  [  9  ]  is expected to contribute to clarity and ensure 
that needed items are included in the protocol. This might also facilitate public dis-
closure, especially in combination with the growing use of electronic data manage-
ment  [  10  ] . It is important to note that even if full protocols are publicly available, 
the existing minimum data set of the WHO international standards will still be 
important as the summary of a protocol. With developing methodology, increasing 
requests for transparency, and ongoing analysis and evaluation, trial registration 
standards will have to be revisited frequently, and trial registries will most certainly 
expand to include results or cross-references to results databases.   

   Trial Registries 

 Many different kinds of clinical trial registries exist in the public and private domains, 
such as international-, country-, and region-specifi c registries, and corporate (spon-
sor-driven) registries. This might be seen as a natural consequence of increased 
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 pressure and interest and as a positive development; however, a proliferation of 
 registries could potentially lead to information overload and confusion for patients, 
clinicians, policy makers, and research sponsors. For example, an inexperienced 
user may not know which registries to trust. It might be expected that this situation 
will gradually correct itself as the evidence and best practice accumulate. Certainly 
the proliferation of trial registries underscores the critical need for international 
standards that defi ne characteristics of registries and their content. 

   Standards, Policies, and Principles 

 Because trials are conducted internationally, trial registration standards have to be 
defi ned on the international level. WHO developed international standards for trial 
registration, which were endorsed by the ICMJE, most medical journal editors, the 
Ottawa group, some public funders, and various nations. It is important to note that 
individual countries often implement international standards by adopting and 
extending them with additional fi elds to host more information as needed for their 
particular registries. 

 WHO international standards have helped shape many, if not all, trial registries 
and have been contributing to the quality and the completeness of data for registered 
trials. Also, it is expected that they will play a major role in further evolution of trial 
registration. They are sometimes referred to as WHO/ICMJE standards (or even 
cited only as ICMJE requirements, because the journal editors endorsed the WHO 
international standards in their instructions to authors and in related FAQs) These 
international standards defi ne the scope (i.e.,  all  clinical trials need to be registered), 
the registries that meet the well-defi ned criteria, the timing (i.e., prospective nature 
of the registration prior to the recruitment of the fi rst trial participant), the content 
(a minimum dataset that needs to be provided to the registry, often referred to as a 
20-item minimum data set), and the assignment of the unique identifi er (ID). These 
international standards also defi ne the criteria that the registry has to meet, which 
includes level (nationwide or regional), ownership and governance (public or pri-
vate nonprofi t), trial acceptance, open access, and structure. In particular, structur-
ally, the registry must have at least enough fi elds to host the 20-item minimum data 
set containing the following:

    1.    Unique trial number and the name of registry  
    2.    Trial registration date  
    3.    Secondary ID  
    4.    Funding source(s)  
    5.    Primary sponsors  
    6.    Secondary sponsors  
    7.    Responsible contact person  
    8.    Research contact person  
    9.    Public title  
    10.    Scientifi c title  
    11.    Countries of recruitment  
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    12.    Health condition or problem studied  
    13.    Interventions (name, dose, duration of the intervention studied, and comparator)  
    14.    Inclusion/exclusion criteria  
    15.    Study type (randomized or not, how many arms, who is blinded)  
    16.    Anticipated start date (and later on the actual start date)  
    17.    Target sample size  
    18.    Recruitment status (not yet recruiting, recruiting, temporarily stopped recruit-

ing, or closed for recruitment)  
    19.    Primary outcome(s) (name, prespecifi ed time point of measurement)  
    20.    Key secondary outcomes     

 In order to foster the implementation of these standards, to facilitate creation of 
new registries, and to identify the best practice for trial registration, WHO formed 
a freely accessible search portal in 2007, followed in 2008 by the formation of a 
network of registries and of the Working Group on Best Practice for Clinical Trial 
Registries. The WHO International Clinical Trials Registry Platform (ICTRP) 
search portal is a unique global portal to the trials in registries that meet criteria 
(i.e., WHO primary registries and   ClinicalTrials.gov    ) but does not provide access to 
the full extent of registries’ data. Instead, the predefi ned 20-item data set provided in 
English by the registries is displayed. The unique identifi er displayed is meant to be 
used in any communication about a trial, including in the ethics committees/boards’ 
communications, consent forms, reports, publications, amendments, and press 
releases. This enables users and computer applications to collect trial data from many 
sources and users to get the full picture of a given trial, from start to fi nish.  

   Characteristics and Design Features of Trial Registries 

 Patient registries are described in depth in Chap.   13    . Although patient and trial reg-
istries might be confused, as they both capture certain disease-related information 
and often use Internet-based depositories, these two types of registries are quite dif-
ferent. Patient registries contain records and data on individuals, whereas trial reg-
istries focus on the descriptive aspects of a research study at various stages of its 
implementation and link to study results. While trial registries can be accessed via 
the WHO ICTRP global search portal, at present there is no single global search 
portal leading for patient registries. 

 Clinical trial registries contain predefi ned information about ongoing and com-
pleted clinical trials, regardless of the disease or condition addressed. Patient regis-
tries contain the disease-specifi c information of individual patients. In a clinical trial 
registry, each entry represents one trial and contains selected information from pro-
tocol documents of the trial. Clinical trials are prospective interventional studies, and 
they may recruit either healthy volunteers or patients with various diseases. Each trial 
may include between a few and several thousand participants. In a patient registry, 
each entry is an individual patient with the same disease or a condition of the same 
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group, usually chronic diseases. For example, there are cancer, psychosis, and rare 
disease patient registries. 

 The most important difference between trial and patient registries is the purpose, 
which is refl ected in the status. The main goal of trial registries is to provide various 
stakeholders with information about ongoing and completed trials in order to enhance 
transparency and accountability as well as to reduce the publication bias, increase the 
quality of published results, prevent harmful health consequences, and most impor-
tantly, provide knowledge that will ultimately enhance patient care. Patient registries 
are developed in order to answer epidemiological questions such as incidence and 
prevalence, natural course of disease(s), and disease-related lethality. 

 Some trial registries also aim at informing the potential trial participants in order 
to enhance recruitment. Besides being a transparency tool, registries are also a 
learning tool, and one could argue that they may help improve the quality of the 
protocol and, as a result, the quality of conducted trials. For example, while entering 
data in predefi ned fi elds, the researcher might realize that he or she is lacking some 
information (i.e., elements he or she forgot to defi ne and include in the protocol) and 
will address the missing element(s) by editing and enhancing the protocol. 

 The fi rst version of the protocol is the initial protocol that has been approved by 
the local ethics committee and submitted to the trial registry. Updates for trial reg-
istries are expected and consist of providing information about the protocol in vari-
ous stages of the trial: prior to recruitment, during the implementation (recruitment, 
interventions, follow-up), and upon completion. During trial implementation, 
changes of protocol, termed  amendments , often take place for various reasons. 
Amendments to a protocol are instantiated as new protocol versions, which are 
dated and numbered sequentially as version 2, 3, 4, etc. Annual updates of registry 
data enable posting of such amendments after approval by the ethics committees. 
The ability to manage multiple versions of protocol documents is an important fea-
ture for a trial registry. The basic rule for the registry is to preserve all of the descrip-
tive data of a protocol that is ever received. Once registered, trials are never removed 
from the registry, but rather a s tatus  fi eld indicates the stage of a trial (e.g., prior to 
recruitment, recruiting, do not recruit any more, completed). Earlier versions of 
protocol-related data are kept, are not overwritten, and should still be easily acces-
sible by the trail registry user. 

 WHO endorses trial registries that meet international standards and calls these 
 primary registries . Registries that do not meet all the criteria of international stan-
dards are considered  partner registries , and they provide data to the WHO search 
portal via one or more primary registries. The need for international access and 
utilization of registries implies the need for a common language. While some of 
these registries initially collect data in the language of the country or region, they 
provide data to the WHO portal in English because the WHO ICTRP currently 
accepts and displays protocol data in English only. 

 It is important to note that registries adhering to international standards tend to 
add more fi elds to meet their registry-specifi c, often country-specifi c, needs. 
Regardless of these additional fi elds, the essential 20 items should always be 
included and well-defi ned. Although they are bound by the international standards, 
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the presentation of a registry’s website (i.e., the web-based access and query 
interface) is not the same across primary registries. Some registries collect and dis-
play protocol descriptive data beyond the basic predefi ned 20-item fi elds. Those 
registries that collect more data typically have more detailed  and quality data for 
each trial record and are potentially more useful. Some registries have free-text 
entry fi elds with instructions about which data need to be provided in the fi elds 
targeted to those registering their trials, while other registries employ self-explana-
tory and structured fi elds often including drop-down lists  [  11  ] . 

 In order to identify best practices and improve this tool for entering new trial 
protocol records, as well as to provide support in case of the development of new 
registries, WHO formed the Working Group on Best Practice for Clinical Trial 
Registries in 2008  [  12  ] . The working group includes primary and some partner 
registries. As of May 2011, there were 13 WHO primary registries and the 
  ClinicalTrials.gov     registry that directly provide data to the search portal. As can be 
seen from their geographic distribution shown in Fig.  20.2 , the network includes at 
least one registry per continent.  

 Clinical trial registries cross-reference a registered trial to its website if one 
exists; many large trials establish their own websites. Also, registries provide links 
and cross-references to publications in peer-reviewed journals, and some also cross-
reference to trial results databases and raw data repositories. These links are expected 
to increase as results databases and raw data repositories are developed. 

   Timing 

 A responsible registrant, usually a specially delegated individual from the trial team 
or sponsoring organization, provides protocol-related data to the trial registry. 
Because all research protocols must be reviewed and approved by the ethics com-
mittee or board of the local institution in order to conduct the study, the descriptive 
protocol data set is usually submitted to the trial registry after institutional ethics 
approval. Otherwise, registration in the trial registry is considered conditional until 
the institutional ethics approval is obtained. 

 Although international standards require registration prior to recruitment of trial 
participants, this is still not fully implemented  [  11,   13  ] . Such prospective registra-
tion is important as it not only guarantees that all trials are registered, but also that 
the initial protocol is made publicly available. For various reasons, the protocol 
might be changed early on and/or a trial might be stopped within the fi rst few weeks. 
Information about early protocol changes or stopped trials is lost unless trials are 
prospectively registered. Full data sharing is essential for the advancement of sci-
ence and helps to avoid repeating such trials. Registries record the date of initial 
registration and date all subsequent updates. Additionally, the assignment of the 
unique ID to each trial upon registration and its subsequent use enables any stake-
holder to easily fi nd what interests them. 

 Some countries hesitate to simply “import” the international standards or poli-
cies out of fear that they might change and put the country (regulator, funding 
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agency) in an odd position. One can debate the justifi cation of such positions, but 
they are a reality. Implicit application of international standards occurs more often, 
with or without referencing them. Such is the case with the Declaration of Helsinki 
(DoH)  [  14  ] , which obliges physicians via their national medical associations and is 
thus implicitly implemented. Notably, DoH calls specifi cally for registration and 
results disclosure of trials  [  15  ] .  

   Quality of Registries 

 The quality of various trial registries can be judged by the extent to which they meet 
the predefi ned goal of achieving high transparency of trials. Considering that meet-
ing international standards is a prerequisite to qualify as a WHO primary registry, 
the quality and utility of trial registries mainly depend on the quality and accuracy 
of data and the timing of reporting. To realize research transparency, clinical trials 
need to be registered prior to the recruitment of trial participants; this principle has 
not yet been fully achieved  [  16  ] . 

 Registries constantly work on ensuring and improving the quality of data. The 
aim is to have correct data that are meaningful and precise. Accuracy of data requires 
regular updates in case of any changes and keeping track of previous versions. 
Registries impose some logical structure onto submitted data, but the quality is 
largely in the hands of data providers (i.e., principal investigators or sponsors). 
Many researchers and some registries perform analysis and evaluation of data 
 [  11,   17,   18  ] . IT experts might contribute by developing new, system-based solutions 
for quality control of entered trial data. Quality of data is a particularly sensitive 
issue as trial registries are based upon self-reporting by researchers, their teams, or 
sponsors. Following international standards and national requirements are prerequi-
sites of attaining an acceptable level of data quality. (The practical and theoretical 
aspects of data quality are described in Chap.   10    .) 

 The ongoing and numerous analyses and evaluations of the implementation of 
the existing standards and the quality of registries will enable revisions and updates, 
thereby improving trial registries at large. Furthermore, trial registries should refl ect 
the reality of clinical trials methodology, which is constantly developing. 
Understandably, this presents a continuing challenge to those involved with the IT 
aspects of the data collection. 

 Registries that meet international standards might accept trials from any number 
of countries with data in the country’s native language; therefore, it is essential to 
ensure the high quality of the translation of terms from any other language to 
English. Criteria that defi ne quality also include transfer-related issues such as cod-
ing and the use of standard terms, such as those developed by the Clinical Data 
Interchange Standards Consortium (CDISC)  [  19  ] . For this reason, defi nitions of 
English terms used across registries created in different countries also require stan-
dardization, and there have been efforts to this end, notably those on the standard 
data interchange format developed by CDISC. Standardization of terms is an impor-
tant issue, and solutions must balance the resources required for researchers and 
trial registry administrators to implement standard coding against the potential 
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benefi ts for information retrieval, interoperability, or knowledge discovery. The 
ability of protocol data to be managed and exchanged electronically, including dif-
fi culties with computerized representation due to various coding standards for sev-
eral elements such as eligibility criteria, is described in Chap.   9    . 

 One of concerns for trial registries is the issue of duplicate registration. Duplicate 
registration of trials, especially of multicenter and multicountry trials, has been 
observed from the very beginning and was discussed by the WHO Scientifi c 
Advisory Group (SAG) while developing the standards. The concern is that dupli-
cate registration in primary registries and registries acknowledged by the ICMJE 
might lead to counting one trial as two, or even as several trials, and might skew 
conclusions of systematic reviews. Therefore, these registries perform intraregistry 
deduplication process, while the WHO search portal established mechanisms of 
overall deduplication called  bridging . In that process, most registries have created a 
fi eld for an identifi cation number (ID) that a particular trial was given by another 
registry. They usually also have the fi eld for the ID from the source, which is 
assigned by the funder and/or sponsor. Parallel registration in a hospital, sponsor-
based, or WHO partner registry does not count as duplicate registration; only the 
registration in more than one primary registry of the WHO and registries recognized 
by the ICMJE qualifi es as duplication. This is because those other registries have to 
provide their data to one primary registry or   ClinicalTrials.gov     to meet criteria of 
international standards and then data are provided to the WHO search portal. 

 It is important to note that clinical trials are sometimes justifi ably registered in 
more than one primary registry. For example, international trials might be registered 
in more than one primary registry if regulators in different jurisdictions require 
registration in specifi c registries. In these cases, researchers need to cross-reference 
IDs assigned from one registry to another. For this reason, the creation of a fi eld in 
the registry to host the ID(s) received by other registries is important. Also, it is 
important that researchers provide the same trial title and the same version of proto-
col information in case of duplicate registration. The latter is particularly important 
in case of delayed registration in one of the registries and/or of initial data entry 
from a protocol that was already amended. Primary registries usually date the e-data 
entry, but it would be very useful to also number and date the protocol versions. 

 In 2009, as a part of implementing international standards, WHO established the 
universal trial number (UTN)  [  20  ] , and registries developed a fi eld to host it. This 
number is also meant to help control duplicate registrations. While designing a reg-
istry, it is thus necessary to anticipate the fi eld to host the UTN. Likewise, nonpri-
mary registries as well as eventual trial websites should create fi elds for UTN and 
IDs assigned by primary registries.    

   Evolution and Spin-off 

 Mandates for registries determine their scope, substance, and consequent design. 
Although relatively new, trial registries are experiencing constant and rapid evolution, 
and the learning curve is steep for registrants, registry staff, registry users, and of 
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course, IT professionals. The major impetus for the progress of trial registries fol-
lowed the development of the WHO international standards in 2006 that expanded 
their scope from randomized controlled trials (RCTs) to all trials, regardless of the 
scope and type, and from a few items that indicated the existence of a trial to a sum-
mary of the protocol. At the same time, registries expanded fi elds and started to accept 
trials from other countries. Initially, registration included only RCTs that aimed at 
developing new drugs, and collected only basic information. Of course, there is still 
signifi cant potential for improvement. For example, many trials are still registered 
retrospectively or with a delay, but this is expected to get better with time  [  16  ] . 

 Further evolution of the international trial registration standards is expected to 
respond to the evolution of trial methodology. For example, phases 0, I, and II might 
need different fi elds, while some fi elds designed for RCTs no longer apply. This has 
to be kept in mind while designing a registry. 

 Some registries, such as ClincalTrials.gov, primarily originated from a mandate 
to enable potential trial participants to fi nd a particular RCT and to enroll in it. 
Overall the main purpose of registries has shifted from a recruitment tool to a trans-
parency tool, while still focusing on benefi ts to trial participants. While registries 
still facilitate patients and clinicians searching by various criteria for ongoing stud-
ies, they are also becoming a source of data on various completed trials. 

 The trigger for trial registration was the lack of transparency and the subsequent 
and disastrous health consequences shown by the New York State Attorney General 
vs. Glaxo trial (2, 3). This case mobilized stakeholders and elicited consequent 
action from various interest groups (i.e., journals, research communities, consumer 
advocates, regulators, etc.). Nowadays, trial registries aim to inform research and 
clinical decisions and to control publication bias in response to scientifi c and ethical 
requirements of research. As a result of the international dialogue among various 
stakeholders, most registries now aim at meeting the needs of all involved in order 
to bring research to another level. 

 Apparently, the compliance with international standards is weak and selective 
when registration is voluntary, but it is gradually becoming compulsory in many 
jurisdictions. Still, even when regulated, compulsory registration does not necessar-
ily meet all the requirements of the WHO international standards. In the USA, reg-
istration in   ClinicalTrials.gov     is required by law  [  21  ] . Investigators must comply or 
risk a penalty; however, the law does not require registration of all trials, and it 
allows a delay of 21 days for registration of trials that are covered by the Food and 
Drug Administration Amendments Act (FDAAA) of 2007. 

 The experience gained so far is expected to inspire the registration of other types 
of studies or the development of other research-type registries. Such “spin-off” is 
already taking place and includes registration of observational studies in trial regis-
tries. Another example of a spin-off is the international initiative to develop a regis-
try of systematic reviews of clinical trials and corresponding standards. The registry 
PROSPERO, International Prospective Register of Systematic Reviews  [  22  ] , was 
launched in February 2011. It is expected that such registries will function based on 
similar principles as trial registries. For example, PROSPERO will prospectively 
register a systematic review (i.e., its design and conduct, protocol, or equivalent) 
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and will later display a link to eventual publication of the completed review. All the 
information will be provided by the researcher and publicly displayed on 
PROSPERO’s website. The registration and the usage are free of charge and freely 
accessible. Individual studies will be the unit (record) of entry in such registries, and 
a mechanism for cross-referencing of study entries across various registries will be 
established. For example, systematic review registries might establish a cross-refer-
ence to trial registries. Such spin-off would require development of standards and 
creation of specifi c fi elds. Registries might provide fi elds to capture results or link 
to various levels of reporting trial results and fi ndings, such as links to publications, 
capturing aggregate results data in results fi elds, and linking to a database with 
microlevel data and registry of systematic reviews. 

 Besides the WHO international trial registration standards, some countries 
develop their own specifi c standards which may meet and expand or somewhat dif-
fer from the existing standards. For example, FDAAA differs by exempting the so-
called phase I and some device trials from compulsory registration. Consequently, 
  ClinicalTrials.gov     offers fi elds for such trials, but their registration is voluntary. 
There are also initiatives to develop regional registries and software that will facili-
tate development of individual country registries in a given region  [  16  ] .  

   Creation and Management of a Trial Registry: 
The User Perspective 

   Design of Trial Registries 

 As mentioned earlier, each primary trial registry contains fi elds for a 20-item mini-
mum dataset defi ned by the international standards and usually a few more. These 
include the fi elds for the ID assigned by any other registry, the unique trial registra-
tion number (UTRN) assigned by WHO, ethics approval(s), trial website URL, pub-
lications, etc. The 20 required items are often expanded in several fi elds. For example, 
there may be special fi elds to indicate whether healthy volunteers are being recruited 
or to specify which participants are blinded. In parallel with registration of a mini-
mum dataset, arguments have been built for publishing the full protocol, and some 
journals have already started doing so. It will be particularly interesting to have elec-
tronic versions of structured, computerized protocols; however, even when that hap-
pens, the data provided in trial registries will be useful as a summary of the protocol. 
These two tools of protocol transparency will probably attract different users. 

   International Standards 

 International standards were the major impetus for the development of trial regis-
tries. Among other advantages, standards ensure the trustworthiness of data and 
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comparability among registries. It is important that data provided is precise and 
meaningful, which depends on the precision of instructions for registration and also 
on the fi elds  [  11  ] . These instructions, inspired by the WHO standards, might be 
developed by regulators in combination with the registry and/or journal editors. It is 
important to note that at this time there are no standards for registration of observa-
tional studies, so currently, registries use the trial fi elds and enable the entering of 
additional specifi c data. Registries usually have levels of compulsory completion of 
fi elds that cannot be skipped. Furthermore, they might indicate which fi elds/items 
are required by the WHO standards and/or by their national regulator.  

   Data Fields 

 Design of fi elds is extremely important. Possibilities include free-text, drop-down, 
or predefi ned entries. It is advisable to defi ne which data is needed and develop a 
drop-down list whenever possible. Such a drop-down list should include all known 
possibilities and the category “other” with text fi eld to elaborate. Considering the 
rapidly developing fi eld of clinical trials, it is necessary to anticipate additional 
items in a drop-down list. 

 Well-defi ned fi elds are prerequisite to obtain high-quality protocol data in trial 
registries. For example, if a registry fi eld is free text and the data entry prompt reads 
 Type of trial , the answer will likely be simply “randomized controlled trial” or “ran-
domized clinical trial” or even just the acronym “RCT.” However, the registry might 
prespecify in a drop-down list whether the trial is controlled or uncontrolled and 
whether it is an RCT, and whether its design is parallel, cross-over, etc. 

 Although phases I–IV are still in use as descriptive terms, they will probably be 
replaced with more specifi c descriptions of studies in the future. Elaboration of 
those numbered phases is already taking place: the phase 0 has been added, and 
existing phases are subdivided into a, b, and c (e.g., phase II a, b, etc.). In some 
cases, two phases are streamlined into one study (e.g., I/II or II/III). 

 Other examples of terminology issues arise within the  Study Design  fi eld, which 
might include allocation concealment (nonrandomized or randomized) control, 
endpoint classifi cation, intervention model, masking or blinding, and who is blinded. 
Thus, in the case of RCTs, the trial registry data will not simply classify a study as 
a RCT but will also indicate if it is a parallel or cross-over trial, which participants 
are blinded, whether the trial is one center or multicenter, and if the latter plans to 
recruit in one or several countries.  

   Data Quality 

 In order to ensure the quality of data entered, instructions in the form of guidelines or 
learning modules are needed. Registries are developing such instructions to help 
researchers achieve better quality of data submitted. For example, the Australian New 
Zealand Clinical Trial Registry developed “Data item defi nition and explanation” 
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 [  23  ] . International standards, the two countries’ regulations, funders, and registries’ 
policies all inform the content of this tool. Initial analysis of data entry in existing 
acceptable registries showed that a substantial amount of meaningless information 
was entered in open-ended text fi elds, but it has also shown improvement in this area 
over time  [  24,   25  ] . Finding the balance between general versus specifi c information is 
important. For example, indicating that the trial is blinded or double-blinded is much 
less informative than specifying who is blinded. 

 Many registrants will do only what is required, which is often determined by 
regulations, policies of funders, or simply recommended by WHO international 
standards and ICMJE instructions. The following is one potential look at levels of 
required data fi elds. 

  First-Level Fields . First-level fi elds are required by the regulator. For example, 
  ClinicalTrials.gov     has fi elds that cannot be skipped because the FDAAA requires 
them; ISRCTN has fi elds that cannot be skipped, which are aligned with the WHO 
international standards. While designing a registry, one should keep in mind the 
possibility of expansion and provide a few fi elds for such unexpected information. 

  Second-Level Fields . Second-level fi elds are not made compulsory by some regis-
tries but are required by others. For example, because public funders or journal editors 
may require additional information beyond the international standards, there is an 
expectation that the relevant information will be provided by registrants; however, 
registries themselves cannot necessarily make these fi elds compulsory on their end, 
and consequently, some registries might not have these fi elds. Because adding fi elds 
to registries can sometimes be diffi cult, posting such additionally required informa-
tion elsewhere in the registry is allowed. It may be placed along with or below other 
information or in an  Other  or  Additional information  fi eld. For this reason, it is neces-
sary to anticipate creation of such fi elds. For example, Canadian Institutes of Health 
Research (CIHR) requires the explicit reporting and public visibility of the ethics 
approval and confi rmation of the systematic review justifying the trial. 

  Third-Level Fields . Third-level fi elds are optional and contain information that 
might be suggested by the registry, research groups, or offered by the researcher as 
important for a given trial. Currently, such third level data are usually entered in the 
 Additional information  fi eld. This variation in fi elds means that, although there are 
international standards, there are differences among registries, specifi cally in the 
number of fi elds and their elaboration. The current stage of trial registries might be 
considered the initial learning stage, and the analysis and evaluation of current prac-
tices will point to better policies and practices for the future.   

   Maintenance of Trial Registries 

 The researcher or sponsor of a registry provides annual updates of the trial record, and 
all of these updates should be displayed in the registry. These updates aim at capturing 
all amendments (i.e., changes of the protocol, the stage of trial implementation, 
eventual early stopping, etc.). It is important that these updates have dedicated fi elds 
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and do not overwrite previous information. Such an approach enables the identifi ca-
tion of changes and tracks the fl ow of the trial implementation. The registry can be 
designed so that a reminder is sent automatically to registrants so that they can obtain 
the annual update. As mentioned earlier, registries develop special mechanisms of 
deduplication within the registry and with other registries.   

   Results Databases: Repositories 

 Traditionally the main vehicle to disseminate trial results and fi ndings in a trustwor-
thy way has been via publication in a peer-reviewed journal. Due to publication and 
outcome reporting bias and the availability of the Internet, there is a growing inter-
national discussion about Internet-based databases. Public disclosure of results in 
such repositories will complement publication in peer-reviewed journals, and it is 
an integral part of the transparency tool set. 

 Results databases or repositories are complex, and they might include aggregate 
data, metadata, and microdata (i.e., individual participant dataset, also known as 
raw data). Similarly, to trial registries, results repositories are expected to build 
hyperlinks, the most important ones being between the given trial in the registry and 
related publications or systematic reviews. As of 2011, results databases and reposi-
tories are less developed than trial registries. As identifi ed by the international meet-
ing of the Public Reporting Of Clinical Trials Outcomes and Results (PROCTOR) 
group in 2008  [  26  ] , there are numerous issues to be resolved in order to get the 
results data, especially microlevel data sets, publicly disclosed. 

 There are no international standards for public disclosure of trial results, and 
there are no standards or repositories for meta- or microdata. However, there is a lot 
of discussion on how these should be designed and some initiatives that have been 
contributing to accumulation of experience  [  15,   18,   26–  30  ] . The journal  Trials  
started posting them on the Internet as the series “Sharing clinical research data,” 
edited by Andrew Vickers  [  31  ] . 

 When talking about results disclosure, there is a whole spectrum, from aggregate 
to full raw data sets. Public disclosure of aggregate data and fi ndings beyond those 
published in peer-reviewed journals seems to be a starting point. Since 2008, indi-
vidual experiences have been accumulated by   ClinicalTrials.gov     and by the 
European Medicines Agency (EMEA)  [  18,   32  ] .   ClinicalTrials.gov     is implementing 
the FDAAA of 2007  [  21  ]  and has developed fi elds for aggregate results of registered 
trials, which are being cross-referenced to its registry  [  18  ] . Apparently, it seems that 
  ClinicalTrials.gov     and EMEA are working on developing comparable data fi elds 
which might inform future development of international standards. 

 Some results disclosure issues are comparable to those related to trial registries 
and include the development of international standards, quality and completeness of 
data, timing of reporting, and standardization of terms. Other issues are more spe-
cifi c to the practical details of public disclosure of microlevel datasets. Those include 
the cleaning of data, quality of data, accountability, defi ning who is the guarantor of 
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truth, privacy issues, and issues related to depersonalization efforts and intellectual 
property rights. Many of these issues suggest a need to develop levels of detail 
related to levels of access. In the era of electronic data management, some of these 
issues, such as cleaning of raw data, are becoming less of an issue as they take place 
simultaneously with the data collection. A lot can be learned from the experience of 
genome data, for which many have shown that data sharing has boosted the devel-
opment of the fi eld  [  10,   33–  35  ] . 

 However, the problems with microlevel data involving individual trial participant 
data sets are far from being solved. There is no single repository, and there are no 
standards. These data exist, but they are either protected in the hands of regulators 
or might be shared with systematic reviewers upon request and only under certain 
conditions. In order to facilitate systematic reviews and meta-analysis, several jour-
nal editors  [  28–  30  ]  are now encouraging data sharing upon publication of trial fi nd-
ings. There have been research-type, experimental efforts to create trial results 
repositories, some in collaboration with journals  [  36,   37  ] . Several dilemmas will 
have to be studied and resolved, including the balance of privacy versus transpar-
ency. Many of these issues will require revisiting and modernization. In the initial 
stage, one might expect varying levels of accessibility to more or less “de-indenti-
fi ed” microlevel data. All these elements will create a new challenge, a need for 
interdisciplinary work, and an opportunity for clinical research informatics and 
information technology experts. 

 Data sharing is becoming more and more appealing to all stakeholders. Earlier 
hesitation has been gradually lightening, and we are witnessing increased transpar-
ency and a change in the research paradigm. One illustration of this is the increasing 
registration of phase I trials by major pharmaceutical companies. By the time this 
book is printed, there will be even more developments in this area as it is constantly 
and rapidly evolving.  

   Conclusion 

 It is anticipated that data fl ow from trials to the public domain and the linking and 
cross-referencing of related data will create a more effi cient system of information shar-
ing (Fig.  20.3 ). Although it has not as yet been completely accomplished, there is a clear 
tendency to move in that direction, which will ensure a high level of transparency.  

 Trial registries host selected defi ned items, and they are in constant evolution, 
from the elaboration of fi elds to the establishment of hyperlinks. It can be expected 
that the analysis and evaluation of the existing primary registries’ experience will 
inform the best practice and potential expansion of the data included, like adding 
fi elds to host more data than required by the international standards. Furthermore, 
there is a strong push for publication of the full protocol, either in the registry or 
elsewhere. If this were to happen, the international data set that is currently avail-
able in registries will be a valuable summary and will include links to the full 
protocol, publications, trial website, systematic review, and results repositories. It is 
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expected that even when full protocols become publicly available, registries will 
continue to provide summaries of protocols and thus continue to play an important 
role in achieving trial transparency. 

 Results repositories are in their early stage of development, and they currently 
lack international standards. The aggregate data repositories are being formed by 
trial registries or regulators and aim at providing timely aggregate data in predefi ned 
tables. For example, ClincialTrials.gov displays results of trials it registered in a 
results database in accordance with the FDAAA. 

 There are no international standards to govern the public disclosure (of de-iden-
tifi ed data) at the individual participant level data (i.e., microdata or raw data), but 
there is growing interest and even prototype implementations in this level of data 
accessibility. Development of such standards will require thorough planning, analy-
sis of quality control, resources, as well as revisiting the privacy and proprietary 
rules and practices. Furthermore, it is expected that existing systematic reviews will 
be updated with the results of a given trial to inform various levels of decision-
making with the updated evidence. BioMed Central (BMC) and its journal  Trials  
opened a discussion about the public disclosure of individual participant datasets of 
clinical trials and started publishing them  [  28,   29  ] . Finally, in an ongoing effort to 
increase transparency of research and to build on the experience of trial registries, 
other types of studies are being registered in trial registries, and other types of 
research registries are being developed.      

  Disclaimer   The views expressed here are the author’s and do not represent the views of the 
Canadian Institutes of Health Research or any other organization. 
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  Abstract   Given the rapid advances in biomedical discoveries, the growth of the 
human population, and the escalating costs of health care, there is an ever increasing 
need for clinical research that will enable the testing and implementation of cost-
effective therapies at the exclusion of those that are not. The fundamentally infor-
mation-intensive nature of such clinical research endeavors begs for the solutions 
offered by CRI. As a result, the demand for informatics professionals who focus on 
the increasingly important fi eld of clinical and translational research will only grow. 
New models, tools, and approaches need to be developed to achieve this, and this 
innovation is what will drive the fi eld forward in the coming years.  

  Keywords   Clinical research informatics  •  Biomedical informatics  •  Phases of 
translation research  •  Electronic health records  •  Future trends  •  US policy initia-
tives  •  Health IT infrastructure      

 As evidenced by the production of this text and refl ected in its chapters, clinical 
research informatics (CRI) has clearly emerged as a distinct and important biomedi-
cal informatics subdiscipline  [  1  ] . Given that clinical research is a complex, informa-
tion- and resource-intensive endeavor, one comprised of a multitude of actors, 
workfl ows, processes, and information resources, this is to be expected. As described 
throughout the text, the myriad stakeholders in CRI, and their roles in the health-
care, research, and informatics enterprises, are continually evolving, fueled by tech-
nological, scientifi c, and socioeconomic changes. These changing roles bring new 
challenges for research conduct and coordination but also bring potential for new 
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research effi ciencies, more rapid translation of results to practice, and enhanced 
patient benefi ts as a result of increased transparency, more meaningful participation, 
and increased safety. 

 As Fig.  21.1  depicts, the pathway from biological discovery to public health 
impact (the phases of translational research) clearly is served by informatics appli-
cations and professionals working in the different subdomains of biomedical infor-
matics. Given that all of these endeavors rely on data, information, and knowledge 
for their success, informatics approaches, theories, and resources have and will con-
tinue to be essential to driving advances from discovery to global health. Indeed, 
informatics issues are at the heart of realizing many of the goals for the research 
enterprise.  

   Policy Trends 

 It should therefore come as no great surprise that recent years have seen the emer-
gence of several national and international research and policy efforts to foster 
advances in CRI by supporting CRI professionals’ efforts to address the inherent 
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CRI and the other subdomains of translational bioinformatics, clinical informatics, and public 
health informatics as applied to those efforts (From Embi and Payne  [  1  ] , with permission)       
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challenges and opportunities that motivate the subdiscipline. Focused on 
accelerating and improving clinical research capacity and capabilities in the bio-
medical sector, a range of initiatives funded by US health and human service agen-
cies are helping to advance the fi eld. These include initiatives by the US National 
Cancer Institute (NCI), such as the Cancer Biomedical Informatics Grid (caBIG) 
 [  2–  5  ] , to the National Institutes of Health’s (NIH) Clinical and Translational Science 
Award (CTSA)  [  6,   7  ]  programs  [  8,   9  ] . In recent years, the CTSA program in par-
ticular has had fostered signifi cant growth in both the practice and science of CRI as 
well as fostering professional    development of CRI, given one of its major emphases 
the advancement of CRI, and the closely related domains of translational research 
informatics and translational bioinformatics. Further, other NIH institutes like the 
National Library of Medicine, as well as funders like the Agency for Healthcare 
Research and Quality (AHRQ), are also driving advances in research data methods 
and techniques for CRI-related efforts, including comparative effectiveness and 
health services research. 

 In addition to such initiatives focused on advancing the science and practice of 
CRI, investments by institutions and by the government through the US Department 
of Health and Human Services (DHHS), the US Offi ce of the National Coordinator 
for Health IT (ONC), and the US Centers for Medicare and Medicaid Services 
(CMMS) are serving to incentivize the adoption and “meaningful use” of electronic 
health records (EHRs). Such movement toward more widespread health IT infra-
structure, while initially focused primarily on improving patient care, is meant ulti-
mately to lead an interoperable infrastructure that will enable a national health 
information network in the United States. Once in place and enabled via appropriate 
health information interchange standards, such a network is envisioned to leverage 
the reuse of data and information from clinical care for improvements in public 
health and research – to create the learning health system  [  10  ] . Just as biomedical 
informatics approaches and resources are essential to realizing the potential of such 
systems for enhancing clinical care, so too will CRI methods, theories, and tools be 
critical to realizing the potential of such a system for enabling discovery through 
acceleration and enhancement of clinical research.  

   Data Management and Quality 

 Indeed, fully leveraging our healthcare and research investments to advance human 
health will require even more emphasis on making sense of the ever increasing 
amounts of data generated through healthcare and research endeavors. It is work in 
the fi eld of CRI that will enable and improve such research activities, from the trans-
lation of basic science discoveries to clinical trials, to the leveraging of healthcare 
data for population level science and health services research. Importantly, these 
advances will require increased effort not just to the development and management 
of technologies and platforms but also to the foundational science of CRI in an 
increasingly electronic world  [  11  ] . By facilitating all of the information-dense 
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aspects of clinical research, CRI methods and resources enable the conduct of such 
research programs to generate new and impactful knowledge. In fact, the truly 
“meaningful use” of EHRs will allow the systematic collection of essential data that 
will drive quality improvement research, outcomes research, clinical trials, com-
parative effectiveness research, and population level studies to a degree not hereto-
fore feasible. However, realizing this promise will require the attention and efforts 
of experts focused on advancing the domain of CRI. 

 As the preceding chapters also demonstrate, advances in CRI have already begun 
to enable signifi cant improvements in the quality and effi ciency of clinical research 
 [  8,   9,   12  ] . These have occurred through improvements in processes at the individual 
investigator level, through approaches and resources developed and implemented at 
the institutional level, and through mechanisms that have enabled and facilitated the 
endeavors’ multicenter research consortia to drive team science. As research 
becomes increasingly global, initiatives like those mentioned above provide oppor-
tunities for collaboration and cooperation among CRI professionals across geo-
graphical, institutional, and virtual borders to identify common problems, solutions, 
and education and training needs. Increasingly, investigators and professionals 
engaged in these groups are explicitly self-identifying as CRI experts or practitio-
ners, further evidence for the establishment of CRI as an important, respected, and 
distinct informatics subdiscipline.  

   Multidisciplinary Collaboration 

 CRI professionals come to the fi eld from many disciplines and professional com-
munities. In addition to the collaborations and professional development fostered by 
such initiatives as the CTSA mentioned above, there is also a growing role for pro-
fessional associations that can provide a professional home for those working in the 
maturing discipline. The American Medical Informatics Association (AMIA) is one 
such well-recognized organization. Working groups focused on CRI within organi-
zations like AMIA have seen considerable growth in interest and attendance over 
the past decade. More recently, scientifi c conferences dedicated to CRI and the 
closely related informatics subdiscipline of translational bioinformatics (TBI) have 
been launched by AMIA to great success among the informatics and clinical/trans-
lational research communities. AMIA’s journal, JAMIA, has also recently acknowl-
edged the importance of CRI, with the addition of editorial board members and 
allotted journal space to the important topics in CRI, as have others. Given its 
growth, it is likely that journals specifi cally focused on this domain will emerge in 
the years to come. In addition, other important informatics groups and journal, such 
as International Medical Informatics Association (IMIA), and non-informatics 
associations and journals (e.g., DIA, The Society for Clinical Trials, and a myriad 
of professional medical societies) also increasingly provide coverage of and oppor-
tunities for professional collaboration among those working to advance CRI. Efforts 
like these continue foster the maturity and growth so critical to advancing the fi eld.  
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   Challenges and Opportunities 

 Despite these many advances, signifi cant challenges and opportunities remain to be 
addressed if this relatively young discipline is to evolve and realize its full potential 
to accelerate and improve clinical and translational science. Indeed, as reported in 
2009 by Embi and Payne, the challenges and opportunities facing CRI are myriad. 
In that manuscript, these were placed into 13 distinct categories that spanned mul-
tiple stakeholders groups (Fig.  21.2 )  [  1  ] .  

 This conceptualization of CRI activities includes those related to: education and 
original (informatics) research, research support services and activities, and policy 
leadership. The stakeholders for all of these span the individual, institutional, and 
national levels, and include those with clinical research as well as informatics per-
spectives and priorities. These broad groups of stakeholders and the wide range of 
diverse CRI activities should all be considered as the fi eld evolves and as research 
agendas, educational and training efforts, and professional resources are 
developed. 
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  Fig. 21.2    Major challenges and opportunities facing CRI. This fi gure provides an overview of 
identifi ed challenges and opportunities facing CRI, organized into higher-level groupings by scope, 
and applied across the groups of stakeholders to which they apply (From Embi and Payne  [  1  ] , with 
permission)       
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 Among the many challenges to be overcome in order to realize the promise of 
CRI is the need to address the severe shortage of professionals currently working to 
advance in the CRI domain. As with many biomedical informatics subdisciplines, 
training in CRI is and will remain interdisciplinary by nature, requiring study of 
topics ranging from research methods and biostatistics, to regulatory and ethical 
issues in CRI, to the fundamental informatics and IT topics essential to data man-
agement in biomedical science. As the content of this very book illustrates, the 
training needed to adequately equip trainees and professionals to address the com-
plex and interdisciplinary nature of CRI demands the growth of programs focused 
specifi cally in this area. 

 Furthermore, while there is certainly a clear need for more technicians conver-
sant in both clinical research and biomedical informatics to work in the CRI space, 
there remains a great need for scientifi c experts working to innovate and advance 
the methods and theories of the CRI domain. In recent years, the National Library 
of Medicine, which has long supported training and infrastructure development in 
health and biomedical informatics, recognized this need by clearly calling out clini-
cal research informatics as a domain of interest for the fellowship training programs 
it supports. While most welcome and important, the availability of such training and 
education remains extremely limited. Signifi cantly, more capacity in training and 
education programs focused on CRI will be needed to establish and grow the cadre 
of professionals focused in this critical area if the goals set forth for the biomedical 
science and healthcare enterprise are to be realized. This will require increased 
attention by sponsors and educational institutions. 

 In addition to training the professionals who will focus primarily in CRI to 
advance the domain, there is a major need to also educate current informaticians, 
clinical research investigators and staff, and institutional leaders concerning the 
theory and practice of CRI. Programs like AMIA’s 10 × 10 initiative and tutorials at 
professional meetings offer examples like a course focused in CRI that help to meet 
such a need  [  13  ] . Such offerings help to ensure that those called upon to satisfy the 
CRI needs of our research enterprise are able to provide appropriate support for and 
utilization of CRI-related methods or tools, including the allocation of appropriate 
resources to accomplish organizational aims. 

 As the workforce of CRI professionals grows, the fi eld can be expected to mature 
further. While so much of the current effort of CRI is quite appropriately focused on 
the proverbial “low hanging fruit” of overcoming the signifi cant day-to-day IT chal-
lenges that plague our traditionally low-tech research enterprise, signifi cant advances 
will ultimately come about through a recognition that biomedical informatics 
approaches are crucial centerpieces in the clinical research enterprise. Indeed, just 
as the relationship between clinical care and clinical research is increasingly being 
blurred as we move toward the realizing of a “learning health system,” so too are 
there corollaries to be drawn between the current formative state of CRI and the 
experiences learned during the early decades of work in clinical informatics. Those 
working to lead advances in CRI would do well to heed the lessons learned from the 
clinical informatics experiences of years past. Future years can be expected to see 
CRI not only instrument, facilitate, and improve current clinical research processes, 
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but advances can be expected to fundamentally change the pace, direction, and 
effectiveness of the clinical research enterprise and discovery. Through CRI 
advances, discovery, quality improvement, and the systematic generation of evi-
dence will become as routine and expected a part of the healthcare system and 
practice in the years to come as advances in clinical informatics in years past have 
helped foster the systematic application of evidence into healthcare practice.  

   Conclusion 

 In conclusion, the future is bright for the domain of CRI. Given the rapid advances 
in biomedical discoveries, the growth of the human population, and the escalating 
costs of healthcare, there is an ever increasing need for clinical research that will 
enable the testing and implementation of cost-effective therapies at the exclusion of 
those that are not. The fundamentally information-intensive nature of such clinical 
research endeavors begs for the solutions offered by CRI. As a result, the demand 
for informatics professionals who focus on the increasingly important fi eld of clini-
cal and translational research will only grow. New models, tools, and approaches 
need to be developed to achieve this, and this innovation is what will drive the fi eld 
forward in the coming years. It is a great time to be working in this critically impor-
tant area of informatics study and practice.      
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