
4

Interval Arithmetic

4.1 Introduction

The fundamental idea behind the interval arithmetic (IA) is that the values of
a variable can be expressed as ranging over a certain interval. If one computes
a number A as an approximation to some unknown number X such that
|X − A| ≤ B, where B is a precise bound on the overall error in A, we will
know for sure that X lies in the interval [A−B,A+B], no matter how A and
B are computed. The idea behind IA was to investigate computations with
intervals, instead of simple numbers.

In fact, when we use a computer to make real number computations, we
are limited to a finite set of floating-point numbers imposed by the hardware.
In these circumstances, there are two main options for approximating a real
number. One is to use a simple floating point approximation of the number
and to propagate the error of this approximation whenever the number is used
in a calculation. The other is to bind the number in an interval (whose ends
may also be floating point values) within which the number is guaranteed
to lie. In the latter case, any calculation that uses the number can just as
well use its interval approximation instead. This chapter deals with computa-
tions involving two floating-point numbers as intervals—the subject covered
by interval arithmetic. Approximations carried out with a single floating-point
number are studied in the next chapter.

Interval arithmetic, also known as interval mathematics, interval analysis,
or interval computation, has been developed by mathematicians and com-
puter scientists since the late 1950s and early 1960s as an approach to putting
bounds on rounding errors in arithmetic computations. In this respect, Ramon
Moore’s PhD thesis [278], as well as his book [279] and other papers published
a posteriori, played an important role in the development of interval arith-
metic. Interval analysis is now a field of study in itself, widely used in nu-
merical analysis and geometric modelling, as well as many other computation
processes which require some guarantee in the results of calculations.

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 89
Data Structures and Algorithms,
c© Springer-Verlag London Limited 2009

90 4 Interval Arithmetic

Other relevant references in interval arithmetic can be found in the lit-
erature. For example, Alefeld and Herzberger [4] propose using intervals in
Newton-like methods for finding the roots of univariate functions and also in
solving systems of equations. Neumaier [299] takes the concept of intervals
further and develops distance definitions and topological properties for inter-
vals. Methods for finding enclosures for the range of a function are given, as
well as interval-based methods for solving systems of equations.

Apart from the classical way of looking at intervals, other approaches exist
whereby the interval is regarded as an approximation of its centre. Ratschek
and Rockne [335], as well as Neumaier [299], discuss the use of centred-form
intervals. Comba and Stolfi [90] and Andrade et al. [17] take this approach
even further in their affine arithmetic. Affine arithmetic (AA) still regards
the interval as an approximation of the number at its centre, but at the same
time keeps track of the various levels of error affecting the computed quantity
at different steps of the evaluation of an expression. Their results are quite
encouraging, in that they are tighter than the ones produced by the traditional
IA. But as expected, there is a tradeoff between accuracy and computation
time cost.

IA and AA are also used in research areas such as computer graphics and
geometric modelling. At our best knowledge, Suffern and Fackerell [379] and
Snyder [370] were who first introduced interval arithmetic in these research
areas. For example, Snyder [370] explains the advantages of using IA in geo-
metric modelling as opposed to approaching global problems by finding roots
of polynomials. The main point he makes is that IA controls the approxi-
mation errors during the floating-point computation by computing bounds
rather than exact values. The other major advantage of using interval meth-
ods is that they are exhaustive and can give information about the whole
region of interest. Other references in scientific computing, computer graph-
ics and geometric modelling include de Figueiredo and Stolfi [102], Heidrich
et al. [181], Cusatis et al. [99], Voiculescu [401], Martin et al. [259], Bowyer
et al. [62, 63], Bülher and Barth [72], Michelucci [270], Bülher [71], Shou
et al. [367], Figueiredo et al. [103], Fang et al. [131], Paiva et al. [315], and
Miyajima and Kashiwagi [275].

In this chapter, we look at the IA and AA rules, and describe how they
can be used in geometric modelling. This is important because geometric mod-
elling not only involves high precision calculations, but also uses intervals in
order to denote and study regions of space, regardless of whether they contain
implicit curves, surfaces or solids. For example, a point can be approximated
by the intervals that give bounds for its coordinates. Hence a neighbourhood
in the shape of a box describes the region of space where that point is guar-
anteed to lie. Evaluating the function at that point (or some similar potential
value for the whole box of coordinate ranges) has geometrical meaning: it is
a measure of how far away the point (or the box) is from the surface rep-
resented by the function. This measurement is only relative, as the function

4.2 Interval Arithmetic Operations 91

value merely indicates which of several points is closer to a given surface but
it does not actually help evaluate the distance from a point to the surface.

4.2 Interval Arithmetic Operations

The execution of an automatic computation usually involves the propagation
of inaccuracies and rounding errors, because floating point values are merely
rational approximations of real numbers. If interval ranges are used instead
of a single approximation, then an automatic computation results in a range
of possible values for the final solution. This solution is generally described
by means of an interval. Once again, this is only one intuitive motivation for
using intervals and introducing arithmetic operations on the set of intervals.
The exact way in which intervals are used in geometric modelling is explained
later.

4.2.1 The Interval Number

Owing to Moore’s work, the mathematical concept of number has been gen-
eralised to the ordered pair of its approximations—the interval number. An
interval number x is denoted as the ordered pair of reals [x, x], x ≤ x, which
defines the set of real numbers

[x, x] = {x | x ≤ x ≤ x}

When one of the extremities of the interval needs to be excluded from the
interval set, variations of the following notation are used:]x, x] = {x | x <
x ≤ x}. Either or both extremities of an interval can be excluded from the
set by using the appropriate inequalities. This particular notation has the
advantage of distinguishing between the open interval]x, x[and the pair of
numbers (x, x).

4.2.2 The Interval Operations

The rules of arithmetic can be redefined so that they apply to interval num-
bers. If x = [x, x] and y = [y, y], and the operator � ∈ {+,−,×, /} then the
four elementary arithmetic operations will follow the scheme:

x� y = {x � y : x ∈ x, y ∈ y}

An interval operation must produce a new interval containing all the pos-
sible results that can be obtained by performing the operation in question
on any element of the argument intervals. This template produces simpler
specific rules for each of the arithmetic operators (see also Higham [186]):

92 4 Interval Arithmetic

Addition:

x + y = [x+ y, x+ y] (4.1)

Subtraction:

x− y = [x− y, x− y] (4.2)

Multiplication:

x× y = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}] (4.3)

Division:

x/y = [min{x/y, x/y, x/y, x/y},max{x/y, x/y, x/y, x/y}] (4.4)

Depending on the circumstances in which interval division is used, it may
be appropriate to declare division by an interval containing zero as undefined
or to express it as a union of two semi-infinite intervals.

Interval division can also be written as follows:

x/y = x× 1
y

(4.5)

where

1
y

=

[

1
y ,

1
y

]
if y > 0 or y < 0]

−∞, 1
y

]
∪
[

1
y ,∞

[
if y ≤ 0 ≤ y

The addition and multiplication operations are commutative, associative
and subdistributive. The subdistributivity property comes from that fact that
the set x(y + z) is a subset of xy + xz.

An additional operation is the exponentiation of an interval. Interestingly,
it is defined differently from number exponentiation as follows:

Exponentiation:

[x, x]2n+1 =
[
x2n+1, x2n+1

]
(4.6)

[x, x]2n =

[
x2n, x2n

]
if 0 ≤ x < x[

0,M2n
]
if x < 0 ≤ x[

x2n, x2n
]
if x < x < 0

(4.7)

4.3 Interval Arithmetic-driven Space Partitionings 93

where n is any natural number and M = max{|x|, |x|}.
In particular, for even values of k,

[x, x]k 6= [x, x]× · · · × [x, x]︸ ︷︷ ︸
k

which is proved by a simple counterexample:

[−1, 2]× [−1, 2] = [−2, 4]

[−1, 2]2 = [0, 4]

The interval resulting from an even power exponentiation is always entirely
positive (even when the interval which is being raised to the even power con-
tains negative numbers).

4.3 Interval Arithmetic-driven Space Partitionings

Interval arithmetic is especially useful in geometric modelling when objects
(e.g. points, curves, surfaces, and solids) are represented by implicit functions
and are categorised by means of space partitioning. As seen above, an interval
can be regarded as an entity which gives lower and upper approximations
of a number. Since a point in Euclidean space is a pair of real coordinates
in 2D (respectively, a triplet in 3D), it can be naturally approximated by a
pair (respectively, triplet) of intervals, i.e. an axially aligned box. Thus, the
classical point membership testing method used in geometric modelling can
be extended to a box testing method.

We are then able to combine interval arithmetic with axially aligned space
partitionings to locate objects defined implicitly. This is illustrated in Fig-
ure 4.1, where combining interval arithmetic and a 2-d tree space partitioning
allows us to locate the following curve defined implicitly as follows:

Fig. 4.1. An implicit curve specified by the power-form polynomial p(x, y) defined
below, in the ambient space [0, 1]× [0, 1] and using a minimum box size of 1

27 × 1
27 .

94 4 Interval Arithmetic

p(x, y) =
9446

10,000
x y − 700,443,214

100,000,000
x3 y2 +

764,554
100,000

x4 y3 +
564
1000

y4 − x3

The curve is somewhere in the region of the green boxes, i.e. those boxes
in which p evaluates to an interval that straddles zero. The red boxes denote
entirely negative boxes, i.e. boxes in which p evaluates negative everywhere.
The blue boxes identify entirely positive boxes, i.e. boxes in which p evaluates
positive everywhere.

Here is an example that illustrates this box classification. Given the axially
aligned box [x, x] × [y, y], the two variables of the curve expression x and y
are replaced by the two interval coordinates [x, x] and [y, y], respectively.
This substitution produces an interval expression which is then evaluated by
applying IA rules. This evaluation results in an interval. For example, let us
consider the box [1

2 ,
5
8] × [0, 1

8] in Figure 4.1. Substituting x and y by [1
2 ,

5
8]

and [0, 1
8], respectively, in the expression of p, we obtain

prat

([
1
2
,

5
8

]
,

[
0,

1
8

])
=

9446
10,000

[
1
2
,

5
8

][
0,

1
8

]
− 700,443,214

100,000,000

[
1
2
,

5
8

]3[
0,

1
8

]2

+
764,554
100,000

[
1
2
,

5
8

]4[
0,

1
8

]3

+
564
1000

[
0,

1
8

]4

−
[

1
2
,

5
8

]3

=
[
− 27,086,029,053

1011
,−4,878,689,313

1011

]
which is an entirely negative interval; this confirms that the box [1

2 ,
5
8]× [0, 1

8]
in Figure 4.1 is correctly depicted red.

4.3.1 The Correct Classification of Negative and Positive Boxes

As seen above, there are three types of boxes output by interval arithmetic:
negative boxes, positive boxes and zero boxes (i.e. those that depict a region
where the function evaluates to an interval that straddles zero). As will be
shown later, not all zero boxes contain segments of the curve, i.e. not all boxes
classified as zero boxes are genuine zero boxes. The prediction that the box
contains at least a curve segment is reasonably accurate only for low-degree
polynomials, but problems become manifest when the curve expression is of
high degree.

However, we can prove that when a box is labelled as negative or positive
it is indeed correctly classified. The proof will be carried out in the one-
dimensional case, but can be easily generalised to any number of dimensions.

Given an implicit polynomial equation f : R → R, f(x) = 0 and a ‘box’
[x, x], we will first prove that if the box is labelled as positive then all the
points in the box have a positive function value. In other words,

f([x, x]) > 0 ?=⇒ f(x) > 0, ∀x ∈ [x, x].

4.3 Interval Arithmetic-driven Space Partitionings 95

Since f(x, y) is chosen as a polynomial function, its expression is an alge-
braic combination of entities involving additions, subtractions, multiplications
and exponentiations. Hence its corresponding interval expression will involve
similar combinations. All that remains to be proved is that any arithmetic
combination that yields a positive interval will yield a positive quantity when
the calculation is performed with numbers instead of intervals.

Addition:

[x, x] + [y, y] = [x+ y, x+ y] > 0 ?=⇒ x+ y > 0, ∀x ∈ [x, x], y ∈ [y, y]

Proof.
x+ y ≥ x+ y > 0

�

Subtraction:

[x, x]− [y, y] = [x− y, x− y] > 0 ?=⇒ x− y > 0, ∀x ∈ [x, x], y ∈ [y, y]

Proof.
x− y ≥ x− y > 0

�

Multiplication:

[x, x]× [y, y] > 0 ?=⇒ xy > 0, ∀x ∈ [x, x], y ∈ [y, y]

Proof.

[x, x]× [y, y] = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}]
xy ≥ min{xy, xy, xy, xy} > 0

�

Exponentiation:

For any natural number n, let us first consider the exponentation operator for
odd powers: [

x2n+1, x2n+1
]
> 0 ?=⇒ x2n+1 > 0, ∀x ∈ [x, x]

Proof.
x2n+1 ≥ x2n+1 > 0

�

96 4 Interval Arithmetic

Now, let us do the same for even powers:

[x, x]2n > 0 ?=⇒ x2n > 0, ∀x ∈ [x, x]

Proof. If 0 ≤ x < x then x2n ≥ x2n > 0. If x < x ≤ 0 then x2n ≥ x2n >
0. The case x < 0 ≤ x cannot be achieved because this would mean that
[x, x]2n =

[
0,M2n

]
(where M = max{|x|, |x|}), which would contradict the

strict inequality [x, x]2n > 0. �

So, for any function f involving a combination of the arithmetic operations
above, we have proved that

f([x, x]) > 0 =⇒ f(x) > 0, ∀x ∈ [x, x]

There is another half to this proof, stating an analogous result for negative
boxes.

f([x, x]) < 0 =⇒ f(x) < 0, ∀x ∈ [x, x]

This result is based on the symmetry of the IA rules. Its proof is analogous
to the one of the first part.

This theory can be easily extended to include rational functions, as interval
division is expressed in terms of multiplication. Another important general-
isation can be done to include more than one dimension. In fact, the one-
dimensional case has been used merely for clarity of the argument, but since
multidimensional IA rules are expressed componentwise, there is no reason
why the result should not hold in any number of dimensions.

4.3.2 The Inaccurate Classification of Zero Boxes

Let us now examine the case where the resulting interval of the substitu-
tion straddles zero. At first sight this may seem to correspond to a situation
where the box contains some curve segment or surface patch, independently of
whether it belongs to the frontier of a solid or not. This section will illustrate
a one-dimensional counterexample. We will show it is possible for the inter-
val to straddle zero despite the box being an positive box indeed. Again, the
phenomenon described can be easily observed and generalised to any number
of dimensions.

Consider the following four real polynomial functions f, g, h, k : [0, 1]→ R
given by

f(x) = 4x2 − 12x+ 9 (power form)

g(x) = (4x− 12)x+ 9 (Horner form)

h(x) = 9(x− 1)2 − 6x(x− 1) + x2 (Bernstein form)

k(x) = (2x− 3)2 (factored form)

4.3 Interval Arithmetic-driven Space Partitionings 97

Although they appear in different forms,1 their definitions are chosen such
that f(x) = g(x) = h(x) = k(x). Despite the fact that they take only positive
values over the interval [0, 1], in some cases the membership test outputs
intervals straddling zero, though of course they all contain the image of the
function.

The functions f , g, h and k take the same values everywhere and have
equivalent implicit expressions, so they must have the same image in the
range—namely the interval [1, 9]. Depending on the form of the polynomial
expression, the interval arithmetic method may give predictions for the image
which are wider intervals including it. This phenomenon is known as interval
swell or interval over-estimation and is responsible for the appearance of false
zero boxes. Let us illustrate this with the previous four real-valued functions
by replacing x by [0, 1] in their expressions:

f([0, 1]) = 4([0, 1])2 − 12[0, 1] + 9
= [−3, 13]
⊃ [1, 9] = Image f

g([0, 1]) = (4 [0, 1]− 12) [0, 1] + 9
= [−3, 9]
⊃ [1, 9] = Image g

h([0, 1]) = 9([0, 1]− 1)2 − 6[0, 1]([0, 1]− 1) + [0, 1]2

= [0, 16]
⊃ [1, 9] = Imageh

k([0, 1]) = (2 [0, 1]− 3)2

= [1, 9]
= [1, 9] = Image k

After applying interval arithmetic to the functions f , g, h and k, we observe
that only the prediction given by k(x) gives an exact answer: the prediction
in this case equals the exact image [1, 9] of the function. The other examples
illustrate the typical situation where the resulting interval straddles zero but
the corresponding box is a false zero box because the box itself lies entirely
in the positive half-space.

The boxes that interval arithmetic does label as negative or positive are
always properly identified. However, not all zero boxes are correctly identified.
But this is only a cautious box classification as the interval arithmetic tech-
nique cannot determine correctly the type of all the boxes in a given region
of interest. In this scenario, the box classification is said to be conservative.
1 For the definition of Horner’s scheme (also known as nested multiplication), the

reader is referred to the original article [194] as well as any good textbook on
algebra or geometric algorithms [132]. A good splines textbook [132] will contain
a definition and usage of the Bernstein polynomial basis.

98 4 Interval Arithmetic

Conservativeness is the main weakness of IA. Often the intervals produced
are much wider than the true range of the computed quantities. This problem
is particularly severe in long computational chains where the intervals com-
puted at one stage are input into the next stage of the computation. The more
variable occurrences there are in the algebraic expression, the wider the pre-
diction and the larger the interval swell. However, this is not a general rule,
because there are other aspects (such as the presence of even exponents and
the order of the arithmetic operations) which may influence the final result.
Several conservativeness examples and a suggested approach to this problem
can be found in [40], [62] and [401].

4.4 The Influence of the Polynomial Form on IA

There is a wide variety of ways of writing and rewriting a polynomial. In the
previous section, we have briefly approached four polynomial forms: power
form, Horner form, Bernstein form and factored form. The reader is referred
to de Boor [98] for other polynomial forms. Unfortunately, there is no known
method to determine what is the best form to express a given polynomial
function in order to get the sharpest possible bounds. This is so because the
optimal way of representing and storing a polynomial is crucially determined
by the kind of operations the user might want to perform on it afterwards.
Studies and comparisons are given in Martin et al. [258, 259].

This section shows that the Bernstein form is the most stable numerically
by comparing it to the power form as input to interval arithmetic. As suggested
in the previous section for the equivalent functions f(x), g(x), h(x) and k(x),
the resulting intervals obtained by replacing x by [0, 1] may differ from one
to another. This means that applying interval arithmetic to two equivalent
functions has as a result two distinct space partitionings (Figure 4.2).

(a) (b)

Fig. 4.2. The influence of the polynomial form on interval arithmetic applied to
locate a curve: (a) the power-form polynomial p(x, y) defined in Section 4.3 and (b)
its equivalent Bernstein-form polynomial.

4.4 The Influence of the Polynomial Form on IA 99

As illustrated in Figure 4.2, it is visible the differences between the power
form and Bernstein form of a polynomial, namely:

• Number of sub-boxes. Their corresponding 2-d tree space partitionings have
a different number of sub-boxes. The power form polynomial on the left-
hand side leads to a bigger number of space subdivisions than the Bernstein
form polynomial on the right-hand side.

• Box classification. The zero boxes (in green) provide a better approxima-
tion to the curve when the function is in Bernstein form, so that there are
fewer false zero boxes.

4.4.1 Power and Bernstein Form Polynomials

For brevity, we review univariate and multivariate polynomials in this section.

Univariate

A power form polynomial of degree n ∈ N in the variable x is defined by:

f(x) =
n∑
i=0

aix
i, (4.8)

where ai ∈ R. The equation f(x) = 0 is the implicit equation corresponding
to the polynomial f(x).

We have shown in the previous section that the form of the implicit expres-
sion supplied as input to interval arithmetic is crucial for the accuracy of the
box classification. Since any input expression can be written in a number of
equivalent forms, it makes sense to choose a transformation which will gener-
ate a more numerically stable polynomial form. If a base other than the power
base is used in order to express the same polynomial, the interval arithmetic
classification method will, in general, produce different results. The results
which follow below encourage the use of the Bernstein base especially in the
case of high-degree polynomials.

As seen in Section 3.1.3, the univariate Bernstein basis functions of degree
n on the interval [x, x] (see also Lorentz [248]) are defined by:

Bni (x) =
(
n

i

)
(x− x)i(x− x)n−i

(x− x)n
, ∀x ∈ [x, x], i = 0, 1, . . . , n. (4.9)

For a given n ∈ N, these n+ 1 univariate degree-n Bernstein polynomials
(Bni)i=0,n forms a basis for the ring of degree-n polynomials. This means that
any univariate power form polynomial can be represented on the interval [x, x]
using its equivalent Bernstein form as follows:

f(x) =
n∑
i=0

aix
i

︸ ︷︷ ︸
power form p(x)

=
n∑
i=0

bni B
n
i (x)︸ ︷︷ ︸

Bernstein form B(x)

100 4 Interval Arithmetic

where bni are the Bernstein coefficients corresponding to the degree-n base. The
two univariate representations p(x) and B(x) are equivalent on the interval
[x, x]. For example, on the unit interval [0, 1], determining B(x) from p(x)
requires the computation of the univariate Bernstein coefficients in terms of
the power coefficients:

bni =
i∑

j=0

(
i
j

)(
n
j

)aj (4.10)

As referred in Section 3.1.3, Formula (4.10) can be used to design an
algorithm of conversion between the power form and the Bernstein form of an
univariate polynomial [133, 134].

Multivariate

The generalisation of Bernstein bases to multivariate polynomials is not im-
mediate. The power form of a polynomial in d variables is written in terms of
x1, . . . , xd like this:

f(x1, . . . , xd) =
∑

0≤k1+···+kd≤n

a(k1,...,kd)x
k1
1 · · ·x

kd
d

where the coefficients a(k1,...,kd) ∈ R. Again, the equation f(x1, . . . , xd) = 0 is
the implicit equation corresponding to the implicit polynomial f(x1, . . . , xd).
By convention, the degree of each term is k1 + · · ·+ kd, and the degree of the
polynomial is the maximum of all degrees of its terms.

The multivariate Bernstein form is defined recursively as a polynomial
whose main variable is xd and whose coefficients are multivariate Bernstein-
form polynomials in x1, . . . , xd−1.

Formula (4.10) can be generalised to more variables. Conversion between
the power and the Bernstein representation is possible regardless of the num-
ber of variables (see Geisow [158] and Garloff [155, 425]). In [40, 41] Berchtold
et al. give formulae and algorithms for the computation of the Bernstein form
of bi- and trivariate polynomials, as needed for locating implicit curves in 2D
and surfaces and solids in 3D, respectively. The following example makes use
of this particular conversion method.

Example 4.1. Let us look again at Figure 4.2. The power-form polynomial
appears on the left-hand side and is given by the polynomial defined in Sec-
tion 4.3 and written now, for convenience, with R-style coefficients, though
under the understanding that the calculations are exact:

p(x, y) = 0.9446x y − 7.0044x3 y2 + 7.6455x4 y3 + 0.5640 y4 − x3

The corresponding Bernstein form in [0, 1]×[0, 1] appears on the righ-hand
side of Figure 4.2 and is as follows:

4.4 The Influence of the Polynomial Form on IA 101

B(x, y) =
(
− x3(1− x)− x4

)
(1− y)4 +

4
(

0.2361x(1− x)3 + 0.7084x2(1− x)2 − 0.2915x3(1− x)− 0.7638x4

)
·

y(1− y)3 +

6
(

0.4723x(1− x)3 + 1.4169x2(1− x)2 − 0.7505x3(1− x)− 1.6951x4

)
·

y2(1− y)2 +

4
(

0.7084x(1− x)3 + 2.1253x2(1− x)2 − 2.3768x3(1− x)− 1.8823x4

)
·

y3(1− y) +(
0.564(1− x)4 + 3.2006x(1− x)3 + 6.2178x2(1− x)2 − 2.9146x3(1− x) +

1.1497x4

)
y4

The power representation in Figure 4.2(a) is less effective in areas which are
further away from the origin, whereas the Bernstein representation in Fig-
ure 4.2(b) starts classifying correctly boxes which are roughly at a constant
distance away from the function.

For low-degree polynomials the advantage of using the Bernstein form is
not immediately obvious. However, in rectangular areas which are further
away from the origin, high-degree polynomials in the power form usually op-
erate with large powers of large numbers. Any small errors in the coordinates
can cause a significant change in the value of the polynomial. Thus, the Bern-
stein base is more numerically stable than the power base, which means that
minor perturbations introduced in the coefficients tend not to affect the value
of the polynomial.

Floating point errors can also be a reason for interval swell. Very small
numbers on the “wrong” side of the origin are decisive in the classification
procedure. Numerical stability helps correct this problem, though the Bern-
stein representation is not entirely error-free.

4.4.2 Canonical Forms of Degrees One and Two Polynomials

The standard form polynomial for three-dimensional quadrics is, as for any
degree-two polynomial, written in the following manner:

A+ 2Bx+ 2Cy+ 2Dz+ 2Exy+ 2Fxz+ 2Gyz+Hx2 + Iy2 +Jz2 = 0 (4.11)

This is also known as the general expanded equation of a quadric. Quadric
surfaces are always a special category of surfaces in geometric modelling

102 4 Interval Arithmetic

because of various nice geometric properties they possess (see, for example,
Sarraga [348]). Their importance comes from the fact that they are able to de-
scribe the geometry of most engineering mechanical parts designed by current
CAD/CAM systems. This explains why CSG geometric kernels were designed
and implemented from quadrics. For further details, the reader is referred to
the SVLIS set-theoretic kernel geometric modeller [61].

Quadrics are more commonly known by their respective canonical form
equations, where terms are grouped together in a symmetrical manner. By
canonical form we mean the best-known implicit form in which quadrics are
normally defined and studied (as shown in Figure 4.3):

±x
2

a2
± y2

b2
± z2

c2
= 1 (4.12)

that is, the normalised equation for a 3D quadric centred at the origin (0, 0, 0).
According to the sign of the coefficients of the expanded form (4.11) or the
canonical form (4.12), the quadrics can be of different types. It can be easily
proved (see, for example, Bronstein and Semendjajew [67]) that there are only
a finite number of types of quadric surfaces.

Furthermore, empirical tests carried out by the geometric modelling re-
search group at Bath suggest it is probably the case that IA yields perfect
classifications of all the sub-boxes of a region, provided they are tested against
the equation of a plane or a quadric surface in the canonical form. Otherwise,
the classifications are only conservative.

The multiplication of an interval by a constant and the addition and sub-
traction of two intervals are all exact operations. Hence, when an interval is
substituted into a linear equation of the type Ax + By + Cz + D = 0 the
arithmetic is expected to be well-behaved. The immediate geometrical conse-
quence is that it is always possible to determine precisely whether a plane in
space cuts a given box. The ‘perfect’ results are due not only to the linear-
ity of the polynomial form but also to the fact that each variable occurs in
the expression of the polynomial exactly once and independently from other
variables. Thus no interference occurs between the different sources of noise.
The coefficients A, B, C and D in the linear form Ax+By+Cz+D = 0 are
assumed to be obtained after all the reductions possible have been performed.
Otherwise the swelling phenomenon reappears.

As an illustration, consider the polynomial p(x) = 2x − x. When studied
over the unit interval, it yields a swollen result, despite its linearity:

2 [0, 1]− [0, 1] = [0, 2]− [0, 1] = [−1, 2] ⊃ [0, 1]

With the exception of the plane equation and quadrics in their canonical
form, these “perfect” results cannot be obtained for equations of degree two or
higher. The functions f(x), g(x) and h(x) given in Section 4.3.2 have already
illustrated a counterexample. That is, they all had degree-two equations but
the intervals which resulted after applying interval arithmetic were not the

4.4 The Influence of the Polynomial Form on IA 103

(a) Ellipsoid: x2

a2
+ y2

b2
+ z2

c2
= 1 (b) Elliptic cylinder: x2

a2
+ y2

b2
= 1

(c) Elliptic cone: x2

a2
+ y2

b2
− z2

c2
= 0 (d) Elliptic paraboloid: z = x2

a2
+ y2

b2

(e) Hyperboloid of 1 sheet: (f) Hyperboloid of 2 sheets:
x2

a2
+ y2

b2
− z2

c2
= 1 x2

a2
+ y2

b2
− z2

c2
= −1

(h) Hyperbolic cylinder: x2

a2
− y2

b2
= −1 (i) Hyperbolic paraboloid: z = x2

a2
− y2

b2

Fig. 4.3. Canonical forms for quadrics.

results of the exact calculations. When comparing the general expanded form
with the canonical form of the same quadric, it is customarily the case that the
former is the expansion of the latter and has degree-one terms as well as square
terms. Most of the canonical forms of the quadrics have only degree-two terms,

104 4 Interval Arithmetic

which constitutes an advantage for the application of interval arithmetic. This
is due to the exponentiation rule stated in Equation (4.7), which causes the
tightest positive intervals to be generated as results.

In general, the interval arithmetic technique can be used successfully for
the location of the familiar quadrics, in that all the boxes of the spatial subdi-
vision are classified correctly. The canonical form of the conic section surfaces,
each of the variables occurs exactly once, independently from the others and
with an exponent of one or two; thus it is expected that the resulting interval
will coincide with the exact range. The technique starts suffering from conser-
vativeness in the case of surfaces of an arbitrary representation, or of higher
degree.

4.4.3 Nonpolynomial Implicits

One reason for extensively using polynomials is that the most important
curves, surfaces and solids in geometric modelling can be expressed by means
of polynomials. Perhaps the only significant exception is the helix. The helix
is useful to represent as it is widely used in practice for such things as screw
threads, but its formulation requires transcendental functions. Another rea-
son why polynomials have been preferred is that algebraic theories provide
extensive studies of polynomials. The findings concerning general algebraic
functions cannot always be extended to transcendental functions.

As expected, conservativeness remains a problem for transcendental im-
plicits. Whilst performing correctly for quite a large number of negative and
positive boxes, the interval arithmetic technique still outputs some regions of
space as zero boxes, although in reality they are purely negative or purely
positive. Similarly to the polynomial case, the result is usable but not satis-
factory.

Example 4.2. The expression sin(x) can legitimately be assumed to take values
in the range [−1, 1], but this may be quite a gross estimate. In the particular
case where x ∈ [1

2 ,
7
3] the function’s image is only [sin(1

2), 1] ⊆ [0.47, 1]. When
the sin(x) function is incorporated in further calculations, an initial range
approximation as gross as [−1, 1] will propagate the interval swell throughout
the computation chain, affecting the final result.

An alternative evaluation method for periodic trigonometric functions (like
sin(x) and cos(x)) would be to calculate the range as a result of a circumstan-
tial study of the domain. If the length of the domain interval is larger than the
function period (2π in the case of sin(x) or cos(x)), then the function takes
values over the whole of the range [−1, 1]. If not, then a detailed study of the
relative positions of the ends of the interval and multiples of the values 0, π2 ,
π, 3π

2 and 2π will help establish the exact range. This is the case with the
tangent and cotangent functions as well, with the further complication that
these are not defined for certain values of their argument.

4.5 Affine Arithmetic Operations 105

Other transcendental functions, like the logarithmic and exponential func-
tions are slightly better behaved. Because they are monotone, an exact range
can be obtained by evaluating the function at both ends of the interval. Prob-
lems may occur, however, when the function is not defined for the whole
domain interval (e.g. log(x) is not defined for negative numbers or zero).

4.5 Affine Arithmetic Operations

As seen above, the conservativeness of algebraic methods that rely on interval
arithmetic depends on the polynomial form used to represent implicit curves,
surfaces and solids. We have also seen that the conservativeness is reduced
when the input is provided in the Bernstein form. Furthermore, in the par-
ticular case of planes or quadrics represented by canonical form polynomials,
the conservativeness vanishes.

As described in Section 4.3, the box classification method relies on substi-
tuting the interval coordinates of a box for the variables of an implicit function
expression, performing interval arithmetic calculations, and studying the rel-
ative positions of the resulting interval and zero. It might be thought that the
interval swell during the interval arithmetic evaluation depends merely on the
number of occurrences of a variable in the implicit expression. There are other
aspects (such as the presence of even exponents or the order of the arithmetic
operations) which contradict this assumption. It is known that the Bernstein
form of a polynomial has many more variable occurrences than the power
form; despite this, the former behaves better with IA than the latter.

Still, whenever interval calculations are performed, no account is taken of
the fact that each occurrence of any variable, such as x, always represents the
same quantity. That is to say that each variable introduces the same error
in all the terms of the polynomial. The method, called affine arithmetic, de-
scribed in the rest of this chapter makes use of this observation and correlates
the sources of error in the interval classification (see also Martin et al. [258]
or Shou et al. [367]). And, more importantly, it does not depend on the poly-
nomial form used to represent an implicit object. Thus, affine arithmetic can
be viewed as a more sophisticated version of interval arithmetic.

4.5.1 The Affine Form Number

Affine arithmetic was proposed by Comba, Stolfi and others [90] in the early
1990s with a view to tackle the conservativeness problem caused by standard
interval arithmetic. Like interval arithmetic, affine arithmetic can be used to
manipulate imprecise values and to evaluate functions over intervals. While,
like interval arithmetic, it provides guaranteed bounds for computed results,
affine arithmetic also takes into account the dependencies between the sources
of error. In this way it is able to produce much tighter and more accurate
intervals than interval arithmetic, especially in long chains of computations.

106 4 Interval Arithmetic

In affine arithmetic an uncertain quantity x is represented by an affine
form x̂ that is a first-degree polynomial of a set of noise symbols εi.

x̂ = x0 + x1ε1 + · · ·+ xmεm = x0 +
m∑
i=1

xiεi

Here the value of each noise symbol εi is unknown but defined to lie in
the interval [−1, 1]. The corresponding coefficient xi is a real number that
determines the magnitude of the impact of the product xiεi. Each product
xiεi stands for an independent source of error or uncertainty which contributes
to the total uncertainty in the quantity x. The number m may be chosen as
large as necessary in order to represent all the sources of error. These may
well be input data uncertainty, formula truncation errors, arithmetic rounding
errors, and so on.

This piece of reasoning is not restricted to the univariate case. On the
contrary, given a polynomial expression in any number of variables, the de-
pendencies between them can be easily expressed by using the same noise
symbol εi wherever necessary. If the same noise symbol εi appears in two or
more affine forms (e.g. in both x̂ and ŷ) it indicates the interdependencies
and correlations that exist between the underlying quantities x and y. For
example, in the bivariate case, computing with the affine forms is a matter of
replacing x and y by x̂ and ŷ in f(x, y), respectively, and each operation in
f(x, y) with the corresponding affine operation on x̂ and ŷ. Of course, each
affine operation must take into account the relationships between the noise
symbols in x and y.

The rules for arithmetic operations on affine forms are explained below.
The important thing to notice about the way affine arithmetic works is that
algebraic expressions take into account the fact that the same variable may
appear in them more than once. Thus using affine arithmetic, similar terms
get cancelled when they appear in an expression (e.g. 2x̂ + ŷ − x̂ = x̂ + ŷ).
This is not the case with interval arithmetic.

4.5.2 Conversions between Affine Forms and Intervals

Conversions between affine forms and intervals are defined in various papers
by Comba and Stolfi [90], Figueiredo [100] and Figueiredo and Stolfi [102].

Given an interval [x, x] representing a quantity x, its affine form can be
written as

x̂ = x0 + x1εx, where x0 =
x+ x

2
, x1 =

x− x
2

. (4.13)

Conversely, given an affine form x̂ = x0 + x1ε1 + · · · + xmεm, the range
of possible values of its corresponding interval is

[x, x] = [x0 − ξ, x0 + ξ] , where ξ =
m∑
i=1

|xi|. (4.14)

4.5 Affine Arithmetic Operations 107

4.5.3 The Affine Operations

The affine arithmetic rules are fully defined in Comba and Stolfi [90]. Those
that are relevant to the location of curves and surfaces are addition and multi-
plication, both of a scalar to an affine form, and of (two or more) affine forms
to each other. Given the affine forms x̂ and ŷ, and the real number α ∈ R the
simple arithmetic operations are carried out thus:

Addition:

α+ x̂ = (α+ x0) + x1ε1 + · · ·+ xmεm (4.15)
x̂+ ŷ = (x0 + y0) + (x1 + y1)ε1 + · · ·+ (xm + ym)εm (4.16)

Subtraction:

α− x̂ = (α− x0) + x1ε1 + · · ·+ xmεm (4.17)
x̂− ŷ = (x0 − y0) + (x1 − y1)ε1 + · · ·+ (xm − ym)εm (4.18)

Multiplication:

αx̂ = (αx0) + (αx1)ε1 + · · ·+ (αxm)εm (4.19)
x̂ŷ = (x0 + x1ε1 + · · ·+ xmεm)(y0 + y1ε1 + · · ·+ ymεm) (4.20)

=

(
x0 +

m∑
i=1

xiεi

)(
y0 +

m∑
i=1

yiεi

)

= x0y0 +
m∑
i=1

(x0yi + xiy0)εi︸ ︷︷ ︸
L(ε1,...,εm)

+

(
m∑
i=1

xiεi

)(
m∑
i=1

yiεi

)
︸ ︷︷ ︸

Q(ε1,...,εm)

(4.21)

Now, L(ε1, . . . , εm) is an affine form in which the noise symbols εi occur
only with degree 1, whereas Q(ε1, . . . , εm) is quadratic in the noise symbols.
The quadratic term can be handled so that it becomes linear itself, at the
expense of introducing a new noise symbol εk ∈ [−1, 1], with coefficient µν,
where µ =

∑m
i=1 |xi| and ν =

∑m
i=1 |yi|. So x̂ŷ can be expressed as an affine

combination of first-degree polynomials in the noise symbols:

x̂ŷ = x0y0 +
m∑
i=1

(x0yi + xiy0)εi + µνεk

= x0y0 + (x0y1 + x1y0)ε1 + · · ·+ (x0ym + xmy0)εm + µνεk

The index k can be chosen as m+ 1.

108 4 Interval Arithmetic

Division:

Division can be defined via inversion and multiplication in the same style as
shown in Formula (4.5) for intervals. This is rarely used in calculations, as
there is little scope for simplifying the polynomial expansions obtained.

Exponentiation:

x̂a = (x0 + x1εx)a = xa0 +
a∑
i=1

(
a

i

)
xa−i0 xi1ε

i
x, a ∈ Z. (4.22)

Unlike interval arithmetic, the affine exponentiation is a particular case of
the affine multiplication because

x̂2 = x̂.x̂

and, consequently, there is no interval swell caused by exponentiation.
It is immediately apparent from the rules above that the affine arithmetic

operations are commutative, associative and distributive. This was not the
case with interval arithmetic, whose misbehaviour with the distributivity law
caused the interval swell.

Practical experience with polynomials other than those of lowest degree,
shows that simply using the rules of affine arithmetic directly gives relatively
little advantage over ordinary interval arithmetic when localising polynomials
(e.g. curves and surfaces), which are basically defined by additions, subtrac-
tions, multiplications and exponentiations. This is due to rapid introduction
of many new error symbols. Much better results can be obtained by taking
more care, in particular in handling exponentiations.

4.5.4 Affine Arithmetic Evaluation Algorithms

Various affine arithmetic schemes have been proposed for use in geometric
modelling. One of the earlier ones (see Zhang and Martin [426] or Voiculescu
et al. [402]) proposes to simplify exponentiations in a way that separates
odd exponent terms from even exponent terms, and express any (univariate)
polynomial with a degree-one polynomial of three terms and just two noise
symbols:

x̂a = xa0 + xoddεxodd + xevenεxeven .

Whilst this yields results very efficiently and leads to reasonably narrow
result intervals, it unfortunately does so at the expense of the loss of conserva-
tiveness. This comes from trying to share the noise symbols εxodd and εxeven

between the computations of two distinct powers [373].
A more complete yet more expensive scheme is proposed in a related pa-

per [258] where Martin et al. give a matrix-form evaluation of the affine in-
terval polynomials that leads to a conservative interval result.

4.6 Affine Arithmetic-driven Space Partitionings 109

4.6 Affine Arithmetic-driven Space Partitionings

When applying affine arithmetic to algebraic surface location, the polynomial
representing the implicit surface needs to be evaluated on the intervals over
which its variables range. In particular, in order to locate a planar curve a
polynomial f(x, y) needs to be evaluated over the ranges in x and y repre-
senting a box. These are [x, x] and [y, y] or their affine equivalents x̂ and ŷ
respectively.

Because the affine arithmetic form can be converted back into an interval,
it can easily be used as an alternative to producing box classifications for
power- or Bernstein-form polynomials using direct interval arithmetic rules.

To compare the relative merits of interval arithmetic and carefully evalu-
ated affine arithmetic for curve drawing, we now present a practical example.

Example 4.3. Let us consider the following bivariate polynomial function
p(x, y) in the power form:

p(x, y) =
945
1000

x y − 94,3214
100,000

x2 y3 +
74,554
10,000

x3 y2 + y4 − x3

and then in its Bernstein form in the unit box [0, 1]× [0, 1]:

B(x, y) = − x3 (1− y)4 +

4
(

23,625
100,000

x (1− x)2 +
4725

10,000
x2 (1− x)− 76,375

100,000
x3

)
y (1− y)3 +

6
(

4725
10,000

x (1− x)2 +
945
1000

x2 (1− x) +
715,066,667

1,000,000,000
x3

)
y2 (1− y)2 +

4
(

70,875
100,000

x(1− x)2 − 9,405,350,004
10,000,000,000

x2(1− x) +
1,078,415
1,000,000

x3

)
y3(1− y) +(

(1− x)3 +
3945
1000

x (1− x)2 − 4,542,140,001
1,000,000,000

x2 (1− x)− 103,174
100,000

x3

)
y4

The left-hand side of Figure 4.4 represents the interval arithmetic classification
of the Bernstein form (i.e. the best polynomial form for IA). The right-hand
side illustrates the result of applying affine arithmetic (AA) to the power-
form polynomial p(x, y). Both have been drawn using a minimum box size of
1
27 × 1

27 . As apparent from Figure 4.4, AA definitely classifies a larger area,
and in bigger chunks at a time, than either case of IA. The Table 4.1 gives
the respective box percentages for p(x, y) at a resolution ∆ = 1

210 × 1
210 .

The complexity of each algorithm depends on the type of arithmetic used
(i.e. standard interval arithmetic or affine arithmetic), as well as on the form
of the input. Tables 4.2 and 4.3 summarise the running times and the number
of subdivisions in each case. (Note that the times are interesting to compare,
but not relevant in absolute terms, as the implementation depends on the
interval package and hardware used.)

110 4 Interval Arithmetic

(a) IA on Bernstein form (b) AA on power form

Fig. 4.4. Interval- and affine arithmetic box classification for p(x, y) and B(x, y) in
the unit box [0, 1]× [0, 1].

Table 4.1. Box percentages for p(x, y) at a resolution ∆ = 1
210 × 1

210 .

Negative boxes Zero boxes Positive boxes
[−,−] [−,+] [+,+]

IA on power form 0.3171 0.0231 0.6597
IA on Bernstein form 0.3241 0.0088 0.6670
AA on power form 0.3266 0.0037 0.6695

Table 4.2. Running times and number of subdivisions for p(x, y) at ∆ = 1
210 × 1

210 .

time (sec) subdivisions

IA on power form 2338.121 39834
IA on Bernstein form 2783.140 15568
AA on power form 194.339 6447

Table 4.3. Running times and number of subdivisions for p(x, y) at ∆ = 1
27 × 1

27 .

time (sec) subdivisions

IA on power form 20.94 1854
IA on Bernstein form 51.52 947
AA on power form 10.07 433

The results in Table 4.2 and Table 4.3 have been obtained also using
different minimum box sizes, 1

210 × 1
210 and 1

27 × 1
27 , respectively.

For the example given above the affine arithmetic method produces results
more quickly (and accurately) than either interval arithmetic method. The
former involves slightly more calculations per box, but classifies big boxes in

4.7 Floating Point Errors 111

a very efficient manner. When interval arithmetic is applied there are fewer
calculations per box than for affine arithmetic. Still, the Bernstein polynomial
form is so much more complicated that the program runs much slower.

Regarding the number of subdivisions, interval arithmetic needs much finer
subdivision of boxes for the power form than for the Bernstein form and ends
up with a less accurate result. Affine arithmetic needs comparatively fewer
subdivisions to reach a very accurate result.

In principle, rather than the interval arithmetic, one could also study the
Bernstein form using the affine arithmetic approach. However, as it has been
shown that affine arithmetic operations are associative, commutative and
distributive, it is expected that different polynomial representations would
produce the same results. This is because the various ways of expressing a
polynomial function using different bases does nothing other than rearrang-
ing the terms. This rearrangement does not affect the arithmetic of the poly-
nomial, and hence does not affect the result of applying affine arithmetic to
an equivalent polynomial form. Therefore, when studying affine arithmetic, it
is only the power basis that needs to be considered. The proof of this final
statement has been published in [259].

As a final remark in this section, it is worth noting that when interval
arithmetic produces a correct estimate of the range of values, then affine
arithmetic is expected to produce an exact range too. For example, in the
case of function k(x) = (2x− 3)2 studied in Section 4.3.2, interval arithmetic
gives the correct range [1, 9], and so does affine arithmetic.

4.7 Floating Point Errors

Recursive subdivision using interval arithmetic relies fundamentally on the
arithmetic operations carried out on the end values of the intervals being
accurate. This is why the examples given so far have involved polynomials
with rational coefficients and subdivisions of boxes stored as rational inter-
vals. Implementations in languages without a rational number data type will
compromise the precision of the calculations by storing the numbers as floating
point values.

The current section illustrates the extent to which floating point errors
propagate through the evaluation process, often making the classification pro-
cess impracticable. Let us recall the polynomial p, defined in Section 4.3, in
its rational and floating point power forms:

prat(x, y) =
9446

10,000
x y − 700,443,214

100,000,000
x3 y2 +

764,554
100,000

x4 y3 +
564
1000

y4 − x3

pflt(x, y) = 0.9446 y x− 7.00443214 y2 x3 + 7.64554x4 y3 + 0.564 y4 − x3

This was originally defined in the unit box, and had the zero set illustrated
in Figure 4.1.

112 4 Interval Arithmetic

We now aim to translate p so that it has the same zero set in a general
box, say [9.62, 10.62] × [7.31, 8.31]. This can be achieved in several ways, all
involving the substitution of x by x-minus-some-quantity, and y by y-minus-
some-quantity, in either prat or pflt :

• substitute x := x− 962
100 and y := y − 731

100 in prat , yielding p1;
• substitute x := x− 962

100 and y := y − 731
100 in pflt , yielding p2;

• substitute x := x− 9.62 and y := y − 7.31 in prat , yielding p3;
• substitute x := x− 9.62 and y := y − 7.31 in pflt , yielding p4.

Floating point errors already start occurring at the stage where brackets
are multiplied out. In the particular case of p(x, y), when using a precision of
10 significant digits, p3 = p4. The three zero sets (corresponding to p1, p2 and
p3 respectively) in the box [9.62, 10.62]× [7.31, 8.31] are plotted in Figure 4.5,
in the order cyan, magenta, yellow.

The affine arithmetic method necessarily complies to one of the four
schemes above. Our study uses two schemes in parallel: all the way through
the subdivision process described above. Any subdivision decisions are taken
using p1 and a “totally rational” scheme. At the same time, the subboxes are
also converted to their floating point equivalents and subjected to the sign
test against the floating point polynomial p4. Thus it is certain that subdivi-
sion is carried out correctly. The respective ranges (given by the two different
approximations) can be compared.

When the signs of the two ranges agree (in that they both indicate a
negative or a positive box), the same conventions for colours as before has
been used—that is, red for negative and blue for positive. However, when the
rational arithmetic predicts a negative box and the floating point arithmetic
calculation disagrees, the box is coloured magenta. Similarly, when the rational
arithmetic predicts a positive box but the floating point arithmetic calculation
disagrees, the box is coloured cyan. Zero boxes are still coloured green. The
result is illustrated in Figure 4.6(a).

9.8 10 10.2 10.4 10.6 9.6

7.4

7.6

7.8

8.2

8.0

Fig. 4.5. Zero sets of p1 (cyan), p2 (magenta) and p3 (yellow).

4.7 Floating Point Errors 113

(a) (b)

Fig. 4.6. (a) Affine arithmetic classification of floating-point polynomial using
rational evaluations in the box [9.62, 10.62] × [7.31, 8.31]; (b) Affine arithmetic
(mis)classification using only floating-point evaluations in the box [9.62, 10.62] ×
[7.31, 8.31].

The frequent occurrence of magenta and cyan boxes indicates to what
extent floating point errors can influence the affine arithmetic calculations.
Had there been only floating point evaluations, the classification would have
been totally irrelevant, as decisions for further subdivision would have been
taken in completely the wrong places. Indeed, when running such a test it
simply returns an inconsistent collection of negative and positive boxes, which
only vaguely evokes the shape of the initial curve (Figure 4.6(b)).

This is a typical illustration of the propagation of floating point errors.
Let us now consider a single magenta box and examine the way in which the
four possibilities there are for approximating either the coefficients or the box
can influence the final range given as a result.

Take the rational box:[
8471
800

,
33,909
3200

]
×
[

1637
200

,
13,121
1600

]
=

[10.58875000, 10.59656250] × [8.185000000, 8.200625000]

This is one of the boxes coloured magenta in Figure 4.6(a). Its corresponding
affine forms are:

x̂ =
67,793
6400

+
1

256
εx = 10.59265625 + 0.003906250000 εx

ŷ =
26,217
3200

+
1

128
εy = 8.192812500 + 0.007812500000 εy

Let us evaluate the results returned by affine arithmetic when classifying
these affine forms and/or their floating point equivalents against the vari-
ous forms of p. The results differ according to the amount of floating point
approximation carried out:

114 4 Interval Arithmetic

affine eval(p1(x, y), x̂rat , ŷrat) =[
-8,180,237,644,390,479,080,447
56,294,995,342,131,200,000,000

,
-2,383,608,804,974,363

140,737,488,355,328,000

]
= [−0.1453102109,−0.01693655921]

affine eval(p1(x, y), x̂float, ŷfloat) = [0.09670367511, 0.2243380429]

affine eval(p4(x, y), x̂rat, ŷrat) = [−0.1038870246, 0.02492879264]

affine eval(p4(x, y), x̂float, ŷfloat) = [0.09641367500, 0.2246280630]

To summarise, the intervals generated as answers vary in their signs and
positions relative to zero. The results are not conservative anymore; on the
contrary, some of them have completely misclassified the box type, as shown
in Table 4.4:

Table 4.4. Box classification for p1 and p4.

p(x, y) x̂× ŷ interval type box classification

rat rat [−,−] negative
rat float [+,+] positive

float rat [−,+] zero
float float [+,+] positive

Of course, “mixed” forms of the polynomial (such as p2) could have been
used in the experiments as well, generating a potentially wider variety of
answers. Nevertheless the study outlined above illustrates the point being
made in this section, which is that floating point errors are not negligible.

All the floating point calculations in this section have been carried out
using a precision of 10 significant digits. Increasing the precision of the cal-
culations may eliminate the problem for particular cases. Indeed, in the case
of p(x, y) a precision of 40 significant digits seems to be enough for a box
classification comparable to the one where rational arithmetic had been used.
However this is not a general solution, as the result depends thoroughly on
the precision with which the polynomial coefficients and the edges of the box
are being calculated in the first place.

4.8 Final Remarks

There are, of course, a variety of ways in which the polynomial can be input,
such as storing it in some canonical form, using a planar basis [61], or using an
implicitisation of some Bernstein form [41], a Taylor expansion [368], etcetera.
Overall, we conclude that the conservativeness problem which occurs in sur-
face location can be reduced in at least two major ways: either the input is

4.8 Final Remarks 115

given in Bernstein form instead of power form and interval arithmetic is used,
or the calculations are carried out on the power form, but a careful strategy
based on affine arithmetic is used instead of interval arithmetic.

When the Bernstein form is used the improvement is significant: boxes can
be located much more accurately in a given region of interest. The shape of
the surface is outlined in enough detail for it to be located.

When affine arithmetic is used as shown above, our results demonstrate
that curves can be located even more closely. This is because the intervals
produced during polynomial evaluation are tighter.

Affine arithmetic calculations are more complicated than interval arith-
metic ones. This is why the method is more error-prone when using floating
point calculations. This is also why, in some cases, we have found it to be
perhaps twice as slow as simple interval arithmetic, although this is strongly
dependent on the implementation.

However, affine arithmetic has a speed advantage in some cases when in-
terval arithmetic performs particularly badly. This advantage arises in the
subdivision method because fewer boxes need to be considered, even though
the amount of computation for any single box is greater.

All in all, it is fully expected that the benefits shown in curve drawing are
also applicable to other uses of solutions to implicit equations, such as surface
intersection, surface location, etc. Although the examples shown here have
used polynomials, similar approaches could also be used if non-polynomial
functions are needed for modelling. Different suitable basis functions and affine
evaluation methods will need to be found for such cases.

There is also a need to express the operations defined here in a more com-
pact form (perhaps using matrices). This would facilitate generalisations and
would help study the operations and properties at a higher level of abstraction.

