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Natural Phenomenae-I: Static Modelling

Implicit modelling as an underlying metaphor provides a large number of
techniques that facilitate building of complex models. The BlobTree provides
tools that make use of blending, CSG, deformation, precise contact modelling
and other procedural techniques. Figure 10.1 shows a sea anemone model
that was built using the BlobTree. The spines were placed procedurally using
spiral phyllotaxis and blended to the base. The base of the anemone deforms
to fit the rock using precise contact modelling. In the following sections we
explore methods for describing complex models from the natural world using
the implicit methodology.

Fig. 10.1. Anemone illustrates the use of PCM to “fit” the rock.
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10.1 Murex Cabritii Shell

The seemingly simple mathematical character of shells, which yield a great
variety of beautiful shapes, has attracted much attention from computer mod-
ellers. Two motivations for such work are to synthesise realistic images that
can be incorporated into computer-generated scenes, and to gain a better un-
derstanding of the mechanism of shell formation [144, 266]. Two open prob-
lems in the modelling of shells are finding a good method to represent thin
spines, and to capture the thickness of the shell walls [144]. In this chapter
both of the above problems are addressed using the BlobTree. A model of
Murex cabritii is described which includes large spines, shell walls of non-
zero thickness, and allows different textures to be applied to different parts
of the shell, while blending textures automatically where these parts join. A
preliminary version of this work was published in [152].

10.2 Shell Geometry

As reviewed in [144, 266], the surface of a shell without protrusions may be
defined by sweeping a closed generating curve C in the shape of the aperture
of the shell along a logarithmic helico-spiral S. The scale of the generating
curve increases in geometric progression as the angle of rotation around the
shell’s axis increases arithmetically.

The helico-spiral is conveniently described in a cylindrical coordinate sys-
tem (Figure 10.2). The radius R (distance of a point P on the helico-spiral
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Fig. 10.2. One-half of a longitudinal cross-section of a turbinate shell.
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from the shell axis) is an exponential function of the angle of revolution θ
around the axis:

R(θ) = R0ρ
( θ
360◦ ); R0 > 0, ρ > 1, θ ≥ 0 (10.1)

where R0 is the initial radius and ρ is the ratio of the radii corresponding
to a rotation of 360◦. The vertical displacement H of point P increases in
proportion to the radius:

H(θ) = R(θ) cotβ, β > 0 (10.2)

where β is the angle between the axis of the spiral and a line L passing through
successive whorls of the helico-spiral (Figure 10.2). A whorl is defined as a
single volution of a spiral shell, or one turn about the axis.

The size of the generating curve C at point P can be determined under
the assumption that C is a circle of radius D lying in the plane including
the shell axis and the point P , and that the circles in consecutive whorls are
tangential to each other. From Figure 10.2 we then obtain:

D(θ) = R(θ)
sin β

(
ρ−1
ρ+1

)
(10.3)

In the case of noncircular generating curves, Equation (10.3) remains useful
as an approximate indicator of the curve size.

10.3 Murex Cabritii

To model Murex cabritii requires a description of the parts of the shell. The
model is derived from observations made from Figure 10.3, and from a written
description of the shell found in [336] page 507, which lists the following
features:

Fig. 10.3. Murex cabritii.
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• A smallish, oval aperture in a strongly convex body whorl.
• A long slender canal below the main body whorl, narrowly open, with

three axial rows of four to five spines.
• Each whorl has three varices (ridges) which bear several sharp curving

spines.
• Beaded axial riblets (or small bumps) are present between varices.

For the remainder of this chapter a whorl is redefined as a volution of
the shell beginning at one varix, and ending after three varices have been
formed. From Figure 10.3 it has been estimated that a whorl corresponds to
a rotation of θwhorl = 348◦ about the axis of the shell, thus the angle between
successive varices θvarix is equal to 116◦. This redefinition is employed as
model construction is more usefully guided by angles at which varices occur
than arbitrary intervals of 360◦.

The model presented in this chapter is constructed with wcount = 7 whorls,
each having vcount = 3 varices, thus a total of wcountvcount = 21 varices are in
the final model. Five to six spines (as observed in Figure 10.3) are modelled in
the axial rows rather than four to five as described above. The bumps occur
periodically both parallel and perpendicular to the helico-spiral, and five sets
of bumps are added along the helico-spiral between each pair of varices. The
y-axis in the standard coordinate system is defined as the axis of rotation of
the shell. The following parameters are used to define the helico-spiral for the
model:

β = 22.5◦

ρ = 1.3
R0 = 0.2

D(θ) = R(θ)
sin β

ρ−1
ρ+1 = 0.341R(θ)

(10.4)

10.4 Modelling Murex Cabritii

Procedural techniques are used to construct a BlobTree defining the model of
Murex cabritii. To implement the procedures introduced in this chapter, the
Python interface similar to that outlined in [388] was used. To describe the
construction of the BlobTree, the following notation is introduced. Arbitrary
BlobTree models are described using the symbol B, with specific instances de-
noted using appropriate subscripts. For example, skeletal implicit primitives,
which are the basic building blocks from which models are constructed, are
denoted as follows:

Bpoint → Skeletal point primitive
Bline → Skeletal line primitive (10.5)

Models are defined by expressions which combine BlobTrees using a mix-
ture of basic operators ∪ (union), ∩ (intersection), − (difference), + (blend),
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⊕n (super-elliptic blend) and functional composition operators fcontrol (con-
trolled blend), ftransl (translate), fscale (scale), frot (rotate), ftwist (twist
warp), ftaper (taper warp), fbend (bend warp), ftextG (gradient interpolated
2D texture mapping), and ftextF (field interpolated 2D texture mapping).
Additionally

∑
and

⊕
n

are used to represent the blend and super-elliptic
blend, respectively, of multiple BlobTrees using limit style notation. These op-
erators all correspond to the well-defined implicit surface modelling operations
introduced in Chapter 9.

At the lowest level, these operators act on one or more primitives. As a
valid BlobTree results from each operation, which may be passed as input to
other operators, hierarchical models are easily constructed.

The functional composition operators differ from the basic operators in
that they require additional parameters to the input BlobTrees. Notationally
this is defined as foperator(p1, p2, . . . , pn)(B1, B2, . . . , Bm) for an arbitrary op-
erator with n parameters and m input BlobTrees as follows:

ftransl(x, y, z)(B) → translate by (x, y, z)
fscale(x, y, z)(B) → scale by (x, y, z)
frot(θ, axis)(B) → rotate by θ about the given axis

using the right-hand rule
ftransf(m)(B) → transform by matrix m
ftaper(n)(B) → taper by n along the positive y-axis
fbend(θ, d)(B) → bend by θ degrees about the z-axis

over a distance of d units
fcontrol(b1, ..., bn)(B1, ..., Bm) → Controlled blend of m BlobTrees

where each bi defines a blend group
and bi ⊆ {1, ...,m}

ftextG(t)(B) → apply texture t using gradient
interpolated texture mapping

ftextF(t)(B) → apply texture t using field
interpolated texture mapping

For clarity, the numerical parameters to the above functional composition
operators will at times be omitted in the following discussion.

Construction of the BlobTree defining a Murex cabritii shell is discussed
next. Section 10.4.1 describes building the main body whorl of the shell. Cre-
ation of the varices is discussed in Section 10.4.2, followed by the addition of
bumps in Section 10.4.3 and the spines on the lower canal in Section 10.4.4.
Creating the aperture is described in Section 10.4.5 and the application of 2D
textures is discussed in Section 10.5.

10.4.1 Main Body Whorl

The formulas in Section 10.2 determine position (Equations (10.1) and (10.2))
and size (Equation (10.3)) of a generating curve along a helico-spiral, such



292 10 Natural Phenomenae-I: Static Modelling

that if successive curves are placed along the helico-spiral and connected in
a polygonal mesh, an approximation of the surface of the shell is obtained.
For example, Fowler et al. [144] used piecewise Bézier curves to construct
generating curves, which were applied to model a great variety of shells.

A similar method is used to create the implicit model. A generating im-
plicit surface Bg is first defined (for example using a skeletal implicit point
primitive). The placement of an instance of Bg on the helico-spiral at any
angle θ is then performed in three steps:

1. Scale by D(θ)—Equation (10.3).
2. Translate by

(
R(θ),H(θ), 0

)
—Equations (10.1) and (10.2).

3. Rotate by θ about the y-axis.

that is, the function

P (B, θ) = frot

(
θ, ay

)
. ftransl

(
R(θ), H(θ), 0

)
. fscale

(
D(θ), D(θ), D(θ)

)
. B
(10.6)

transforms an arbitrary BlobTree B as described above. To construct the
whorl, instances of Bg are placed at fixed intervals of θg along the helico-
spiral using Equation (10.6). The value assigned to θg must be chosen with
care. If θg is too large, then a smooth blend along the helico-spiral will not
be realised. In contrast, if θg is too small, then the tight overlap of the many
instances of Bg will lead to poor blending properties when adding detail to
the shell.

To incorporate controlled blending, each whorl is modelled in three whorl
sections, which are contained between successive varices along the whorl, and
thus correspond to a rotation of θvarix about the axis of the shell. Each whorl
section is created by placing five instances of Bg on the helico-spiral such that
θg = θvarix/5. The BlobTree for a whorl section Bwhorl

w
v which immediately

precedes varix v on whorl w is given by:

Bwhorl
w
v =

5∑
i=1

P
(
Bg, (3w + v − 1)θvarix + θgi

)
(10.7)

Figure 10.4 shows a whorl section composed of five point primitives placed
along a helico-spiral, as the radius of the field defined by each primitive is
increased, the resulting blended surface tends toward a shell whorl with a
circular aperture.

To avoid unwanted blending between consecutive whorls, controlled blend-
ing (see Section 9.5.1) is applied to create the main shell body Bbody using
the following procedure:

Lwhorlsections = (Bwhorl
j
i ),with i = 1, . . . , vcount, j = 1, . . . , wcount

Lblendpairs =
{

(j, j + 1) : j ∈ {1, 2, ..., wcountvcount − 1}
}

(10.8)

Bbody = fcontrol

(
Lblendpairs

)(
Lwhorlsections

)



10.4 Modelling Murex Cabritii 293

Fig. 10.4. Five point primitives placed on a helico-spiral. As the size of the field
produced by each primitive increases, the resulting surface forms part of the main
body whorl of a shell.

Fig. 10.5. Each whorl of a shell is composed of three sections (shown in Figure 10.4).
On the left all sections blend with all other sections, on the right controlled blending
constrains each section to blend only with its two neighbours along the helico-spiral.

Each whorl section is blended with its two immediate neighbours, and not
with any other whorl sections. The resulting surface is thus smooth along the
helico-spiral, while adjacent whorls do not blend together. A comparison of the
results obtained with and without controlled blending is shown in Figure 10.5,
where four whorls and a total of twelve whorl sections were modelled using
a point primitive as the generating surface. The whorl sections are assigned
dark and light colours in an alternating pattern so that each whorl section is
easily distinguished.

To incorporate the long slender canal below the main body whorl, a ta-
pered line primitive, subsequently bent with a bend operator, was placed
below and blended to a point primitive as follows:

Bg = ftransf(Bpoint) + ftransf

(
fbend

(
ftaper

(
ftransf(Bline)

)))
(10.9)

The generating surface and the resulting whorl it defines are shown in
Figure 10.6.
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Fig. 10.6. On the left is the generating surface used for the model of murex cabritii,
on the right is the whorl this surface defines.

10.4.2 Constructing Varices

Varices are the spiny ridges extending out from the main body whorl at even
intervals of θvarix around the axis of the shell. The varix is modelled primarily
as a series of curving spines of varying size. The relative size and location of
spines for varix v on whorl w is determined on a per-whorl basis, (for values
see [153]). Individual spines are modelled using tapered line primitives which
are bent by 30◦ over four units of length. Thus, spines shorter than 4 units
are bent less than 30◦, and spines longer than 4 units are not bent over their
whole length. All spines are modelled with the same thickness. By applying
taper such that the amount of taper is inversely proportional to the length of
each individual spine, a uniform thickness at the tip is achieved, regardless of
individual spine length. Construction of the ith spine Bspine

w
i for a varix on

whorl w using this method.
The left hand image in Figure 10.7 shows the resulting series of spines

for w = 7 blended to a whorl section. The result does not accurately reflect
the form observed in Figure 10.3, as the spines in the varix of Murex cabritii
are not free-standing, but are blended together in a ridge. A circle primitive
(which defined a toroid implicit surface) is added to connect the spines to
each other near the shell surface. The effect of this operation is seen in the
centre image of Figure 10.7. A new problem now emerges in that the base
of the spines are obscured by the toroid ridge. To make the spines stand out
from the ridge, a suitable scale is introduced:

Bspine
w
i = fbend(30, 4) . frot(−90, az) . ftaperZ

(
8
δwi

)
.

. ftaperX

(
4
δwi

)
. fscale(1, δwi , 3) . Bline

(10.10)
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Fig. 10.7. Creation of a varix. Left: bent tapered line primitives are placed as curved
spines. Centre: a circle primitive is used to create a toroid ridge blending the spines
together. Right: spines are modified as and super-elliptic blending is employed.

where az stands for the z-axis and δwi the relative size of curving spines at
each of 3 varices per whorl in the model of murex cabritii. In this case, the
spines are scaled by a factor of 3 in the z axis, and subsequently tapered by an
increased amount in the z-axis. The resulting spines are much wider in the z-
axis at their base, but gradually revert toward a circular aperture along their
length. When the spines are positioned along the helico-spiral, the z-axis in
their local coordinate system is transformed to be parallel to the helico-spiral,
thus the base of the spines are lengthened along the helico-spiral. Finally, to
avoid an overly smooth blending of the spines both with each other, and with
the toroid ridge, super-elliptic blending (Equation (9.14)) was used with a
blend factor of 3 to blend all of the components of the varix together. The
base BlobTree for a varix Bvarix

w on whorl w is thus defined as:

Bvarix
w = ftransf(Bcircle)⊕3

scount⊕
3

i=1

frot

(
αi, az

)(
ftransl(ra, 0, 0)(Bspine

w
i )
)

(10.11)
using Bspine

w
i from Equation (10.10). The vth varix Bvarix

w
v on whorl w is

defined by using Equation (10.6) with Bvarix
w as follows:

Bvarix
w
v = P

(
Bvarix

w, (3w + v)θvarix

)
(10.12)

The right image of Figure 10.7 shows the final varix blended with the
final whorl section using Equation (10.12), that is the result of Bvarix

wcount
vcount

+
Bwhorl

wcount
vcount

.

10.4.3 Constructing Bumps

Individual bumps Bbump were modelled using single point primitives scaled
by (sx, sy, sz) = (1.4, 1.0, 1.5) as follows:

Bbump = fscale(sx, sy, sz)(Bpoint) (10.13)
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Five sets of bumps were placed at regular intervals along the helico-spiral
between each successive set of varices. Definition of a single set of bumps
Bbumpset

w for whorl w is done in a similar fashion to the placement of spines
on a varix, utilising a set of empirically determined values. One bump was
placed for every two spines present in the varices for the given whorl as follows:

Bbumpset
w =

scount/2∑
i=1

frot

(
α2i, az

)(
ftransl(ra, 0, 0)(Bbump)

)
(10.14)

To place five sets of bumps Bbumpsection
w
v before a given varix v on whorl

w, where (3w+ v)θvarix is the angle of the varix along the helico-spiral, Equa-
tion (10.6) is used as follows:

Bbumpsection
w
v =

5∑
i=1

P

(
Bbumpset

w,

(
3w + v − 1 +

i

6

)
θvarix

)
(10.15)

The left image of Figure 10.8 shows the final bump section and final
whorl section blended together using Equation (10.15), that is the result of
Bbumpsection

wcount
vcount

+ Bwhorl
wcount
vcount

. The bumps are placed as desired; however,
the overlap in blending regions causes undesirable amounts of blending be-
tween adjacent bumps. The first step to solving this problem is to employ
super-elliptic blending again. For the Murex cabritii model n = 3 has been
found to work well.

A localised method is used to provide additional relief for the more tightly
packed bumps on the top and bottom of the whorl. Bumps are scaled based
on their rotation from the horizontal plane again as defined by empirically
determined values for αi. To produce a more organic feel, the sizes of individual
bumps were further modified using the function normal(µ, σ), which returns
a pseudo-random number with a normal distribution, where µ is the mean
and σ is the standard deviation. The default scale values

(
sx, sy, sz

)
are thus

replaced by
(
s′x, s

′
y, s
′
z

)
defined as follows:

Fig. 10.8. Creation of bumps. Left: bumps arranged and blended. Centre: non-
uniform scaling and super-elliptic blending ⊕3 are applied. Right: bumps are
randomly scaled, and rotated such that their long axis is aligned locally with the
helico-spiral.
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s′x = normal
(
sx,

sx
10

)
s′y = normal

(
sy,

sx
10

)
s′z = normal

(
sz,

sx
10

) (10.16)

An additional problem arises because the bumps are scaled non-uniformly,
so they are not locally aligned with the helico-spiral. This effect can be ob-
served in both the left and centre images from Figure 10.8. To counteract
this effect, each individual bump is rotated about the x-axis before they are
positioned, such that their longer axis is locally parallel to the helico-spiral.

10.4.4 Constructing Axial Rows of Spines

One row of axial spines protrudes from the lower canal below each varix
on the last whorl of the shell. Individual axial spines Baxspine are modelled
using tapered line primitives, in a similar fashion to the curving spines in the
varices from Equation (10.10). The relative sizes and number of axial spines
are determined separately for each row. The resulting spines, blended with
the lower whorl, are shown in the left image of Figure 10.9.

As with the bumps, to produce a more organic looking object random
variation is introduced. Each spine is randomly bent by 3◦ to 9◦, one to three
times, using a corresponding number of bend operators. The result is shown in
the right image of Figure 10.9. For details of the spine placement, the reader
is referred to Galbraith [153].

Fig. 10.9. Axial rows of 5-6 spines. Left: spines are straight. Right: each spine is
randomly bent 3◦ to 9◦ 1-3 times.
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10.4.5 Construction of the Aperture

To create the aperture, a solid model, defined as Baperture, is constructed in the
shape of the aperture. A CSG difference operation is then used to remove this
material from the main body of the shell, thus creating an opening. Baperture

is modelled using the same technique as that described for the main body
whorl.

A generating surface given by

Bgaperture = ftransf(Bpoint) + ftransf(Bcone)+

+ ftransf

(
fbend

(
ftaper

(
ftransf(Bline)

))) (10.17)

is created, which is slightly smaller in each dimension orthogonal to the helico-
spiral, than Bg. Equation (10.17) defines Bgaperture, which is formed in a
similar fashion to Bg. A point primitive slightly smaller than that of the
main whorl’s, is blended to a tapered and subsequently bent line primitive,
also slightly smaller than that of Bg. To this is also added an inverted cone
primitive which extends the inner edge of Bgaperture to the edge of the previous
whorl. This is done to ensure that no material is left between the outer shell
wall and that of the previous whorl. From Equation (10.17), and similar to
Equation (10.7), the corresponding whorl section Bapwhorl is defined as follows:

Bapwhorl =
7∑
i=1

P
(
Bgaperture, (wcountvcount − 1)θvarix + θg . i

)
(10.18)

Equation (10.18) describes a whorl equivalent to Bwhorl
wcount
vcount

plus two
additional instances of Bgaperture. This implies that the aperture will extend
θvarix degrees into the shell from the opening. The two additional instances of
Bgaperture ensure that Bapwhorl extends beyond the termination of Bwhorl

wcount
vcount

,
which in turn ensures that the aperture makes a clean opening. Bgaperture and
Bapwhorl are shown in the left and centre images of Figure 10.10. As defined,
Bapwhorl is not suitable for creating the opening in the shell, because Bapwhorl

overlaps significantly with the previous whorl. Before it is used to create the
opening, one more modelling operation is performed, shown in the right image
of Figure 10.10. A difference operation is used to remove the previous whorl
from Bapwhorl, thus defining Baperture, which creates an opening in the shell.

Baperture = Bapwhorl −
vcount∑
v=1

Bwhorl
wcount−1
v (10.19)

The summation term defines the second to last whorl using Equa-
tion (10.7). The right image in Figure 10.10 shows the resulting model.
The aperture in the main shell body is then created as:

Bbodywithaperture = Bbody −Baperture (10.20)
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Fig. 10.10. Creating an aperture. Left: the generating surface Bgaperture. Centre:
the resulting whorl from Equation (10.18). Right: the final aperture after difference
is applied to remove the previous whorl.

Fig. 10.11. Creating the aperture. Left: the opening which is carved out by Equa-
tion (10.20). Right: the final shape of the opening after adding in Binsidewall as in
Equation (10.21).

where Bbody is the complete shell without the opening from Equation (10.9).
The left image in Figure 10.11 shows the result when subtracting Baperture

from the last whorl section alone. This figure illustrates that the opening is
present only in the last third of the last whorl; however, this is a sufficient size
of opening for any view position set outside the shell to give the impression



300 10 Natural Phenomenae-I: Static Modelling

that the shell is hollow. Only if the view position is set inside the aperture is
the solid nature of the model revealed.

A more serious problem arises from the observation that the aperture
should be oval (as described in Section 10.3). To generate the desired oval
aperture, Bbodywithaperture is revised to include an inside wall:

Bbodywithaperture = (Bbody −Baperture) ∪Binsidewall (10.21)

Bbodywithaperture with and without the inside wall is shown in Figure 10.11.

10.5 Texturing the Shell

The final step in producing a photorealistic model of Murex cabritii is the
application of four 2D textures, using two separate texturing methods. The
textures used are shown in Figure 10.12, and were created using standard
paint programs.

Each whorl section in the main body whorl is textured with the tex-
ture shown in Figure 10.12(a) using gradient interpolated texture mapping
ftextG [387]. This method allows a single texture to be applied to an arbi-
trary BlobTree. As whorl sections are blended to each other, the resulting
textures on each whorl section are blended together. By placing the varices
directly over these regions, discontinuities in the resulting texture blends are
concealed.

Note that since the original work was done on texturing the shell, several
new techniques have been designed to ease the task of texturing any point set
object. Work is proceeding on this field but the following paper is of interest,
[353].

(a) (b) (c) (d)

Fig. 10.12. Textures and their corresponding uses in the model of Murex cabritii:
(a) main body whorl; (b) spines in varices; (c) axial rows of spines; (d) bumps on
main whorl.
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10.6 Final Model of Murex Cabritii

It is now possible to redefine the main geometry of the shell Bbody (originally
defined in Equation (10.9)), including textures, as follows:

Bvbwhorl
w
v = ftextG(Bwhorl

w
v ) + ftextF(Bvarix

w
v ) + ftextF(Bbumpsection

w
v )

Lwhorlsections = (Bwhorl
j
i ),with i = 1, . . . , vcount, j = 1, . . . , wcount

Lblendpairs =
{

(j, j + 1) : j ∈ {1, 2, ..., wcountvcount − 1}
}

Bbody = fcontrol

(
Lblendpairs

)(
Lwhorlsections

)
(10.22)

The key change between Equations (10.9) and 10.22, is the use of Bvbwhorl
w
v

in place of Bwhorl
w
v . Bvbwhorl

w
v incorporates texture maps, and blends a whorl

section with its corresponding varix and bump section. Starting with this
formulation for Bbody, the BlobTree model of Murex cabritii Bmurex is defined
as follows:

Bmurex = (Bbody −Baperture) ∪Binsidewall + ftextF(Baxspinerows) (10.23)

10.7 Shell Results

A comparison of a photograph of Murex cabritii, with the resulting model
of Murex cabritii defined by Equation (10.23), is shown in Figure 10.13. The
following areas of the model remain open to improvement: the opening was
modelled by observing the opening on similar shells (Murex troschel); the po-
sition and number of spines and bumps were based on a single view of the
shell, the number and placement of these features was arbitrary and suddenly
change from one whorl to another; the textures were created in a paint pro-
gram and pasted on to give a good approximation only; the varices do not
extend to the lower canal. A major extension of the model would be to use
reaction diffusion techniques [144] to place spines and bumps on the shell.

10.8 Final Remarks

The description of the model of Murex cabritii presented in this chapter illus-
trates how the BlobTree may be used to construct models of complex phenom-
ena, based solely on simple geometric primitives and a small set of implicit
surface modelling operations. This demonstrates concretely that not only im-
plicit surfaces are a valid choice for modelling natural forms, but in addition
that they can create models for which other methods such as L-systems fail.
Specifically, large protrusions on a shell surface have been modelled simply by
switching from a parametric to an implicit definition of the shell form.
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(a) (b)

Fig. 10.13. (a) Murex cabritii; (b) model of Murex cabritii.




