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Continuous-time MPC with Prescribed Degree
of Stability

8.1 Introduction

This chapter will propose a set of continuous-time model predictive control
algorithms that are numerically stable and have a prescribed degree of stabil-
ity. Section 8.2 begins with an example of the control of an unstable system,
demonstrating that when the prediction horizon increases, the original ap-
proaches to continuous-time MPC design described in Chapter 6 will lead to
an ill-conditioned Hessian matrix. This problem is caused by the open-loop
prediction using the unstable model in addition to the embedded integrator(s)
in the system matrix A for integral action. In Section 8.3, we show a strategy
to overcome this by using a stable matrixA for the design, which is achieved by
using an exponential weight in the cost function. This essentially transforms
the original state and derivative of the control variables into exponentially
weighted variables for the optimization procedure. In Section 8.4, we move on
to the next step that produces a model predictive control system with infinite
prediction horizon with asymptotic stability. With a slight modification on
the weight matrices, a prescribed degree of stability can be achieved in the
design of model predictive control (see Section 8.5). The final section discusses
how constraints are introduced in the design (see Section 8.6). The stability
results in this chapter are all based on the assumption of a sufficiently large
prediction horizon Tp used in the design.

8.2 Motivating Example

This section examines an example based on the design algorithms introduced
in Chapter 6. It emphasizes that because the design model is unstable, the
algorithms are numerically ill-conditioned for a large prediction horizon Tp.
This problem is particularly severe for systems that contain unstable poles,
as illustrated in the example below.
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Example 8.1. A dynamic system is described by the state-space model given
as

ẋ(t) =

⎡

⎢
⎢
⎣

0 1 0 0
0 α1

V
β1
V 0

0 0 −a a
0 0 0 0

⎤

⎥
⎥
⎦ x(t) +

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦u(t)

y(t) =
[
1 0 0 0

]
x(t), (8.1)

where α1 = 10.2, β1 = 0.32,a = 72 and V = 60. This system has four open-
loop eigenvalues as [

0 0 0.17 −72
]
.

Design a continuous-time model predictive control for this system using the
algorithm presented in Chapter 6. The design parameters are p = 0.8, N = 4,
and R = 0.1, however, the prediction horizon Tp should be used as a tuning
parameter. The design objective is for reference following of a step input signal.

Solution. We change the prediction horizon Tp and observe what happens
with respect to the closed-loop performance and numerical condition of the
algorithm.

Case A. The case of a short prediction horizon Tp = 10 is examined. With
this choice the closed-loop control system is unstable, which is indicated by
the location of the closed-loop eigenvalues

[−71.99 −2.883 0.0554± j0.166 −0.088
]
,

where the pair of complex poles are on the right half of the complex plane.
The condition number of the Hessian matrix is 146.68, which is irrelevant be-
cause the predictive control system is unstable.

Case B. The prediction horizon Tp is selected to be 13, which is increased on
the one used in Case A. The Hessian matrix is

Ω =

⎡

⎢
⎢
⎣

85.9886 −57.8910 37.0031 −21.7936
−57.8910 47.8025 −35.1036 21.6875
37.0031 −35.1036 31.2090 −21.6632
−21.7936 21.6875 −21.6632 18.8841

⎤

⎥
⎥
⎦ .

The closed-loop control system is stable, which is seen from the location of
the closed-loop eigenvalues

[−71.99 −2.7355 −0.0334± j0.1568 −0.1394
]
.

The state feedback control gain obtained from the predictive control is

Kmpc =
[
18.6 212.24 0.0164 3.11 1.837

]
.
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Fig. 8.1. Comparison of closed-loop responses for Case B (solid-line) and Case C
(darker-solid-line)

For this choice of prediction horizon, the condition number for the Hessian
matrix is 240.8.

Case C. The case of long prediction horizon Tp is examined. Let us choose
Tp = 50. The Hessian matrix is

Ω = 108 ×

⎡

⎢
⎢
⎣

1.4102 −0.9097 0.5854 −0.3754
−0.9097 0.5869 −0.3776 0.2422
0.5854 −0.3776 0.2430 −0.1558
−0.3754 0.2422 −0.1558 0.0999

⎤

⎥
⎥
⎦ .

The closed-loop control system is stable with the location of the closed-loop
eigenvalues as

[−71.99 −2.6016 −0.0412± j0.0737 −0.2616
]
,

and the state feedback control gain obtained from the predictive control
scheme is

Kmpc =
[
14.355 273.33 0.0208 3.115 0.909

]
.

Figure 8.1 shows the comparison results of the closed- loop responses for
Case B and Case C. It is seen that the closed-loop output response from
Case C is less oscillatory than the one from Case B. Although the closed-loop
response is satisfactory when Tp = 50, the condition number for the Hessian
has increased from 240.8 to 3.11 × 108. It is clear that the predictive control
scheme is numerically ill-conditioned for Case C.

This example shows that the predictive control algorithm is sensitive to the
choice of prediction horizon. If the prediction horizon is short, the closed-loop
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control system could become unstable; however, if the prediction horizon is
long, then the algorithm would become numerically ill-conditioned. Despite
these sensitivities in the predictive control algorithms, they have still gained
acceptance by the process industry. This is mainly due to their simplicity and
easy-to-implement features.

For the rest of the chapter, the continuous-time predictive control algo-
rithms presented in Chapter 6 will be modified to achieve the three objec-
tives: (1) removing the numerical ill-condition problem from the design when
the prediction horizon Tp is large; (2) deriving a design that will lead to as-
ymptotic closed-loop stability for a large prediction horizon; (3) providing a
solution that will have a prescribed degree of stability. Perhaps, above all, the
key features of the model predictive control algorithms will be maintained to
be simple and easy-to-implement.

8.3 CMPC Design Using Exponential Data Weighting

From the analysis, we can see that the model predictive control algorithm
became numerically ill-conditioned when the prediction horizon Tp became
large. The reason for this is that the system matrix used for prediction contains
eigenvalues with positive real parts and an integrator, which leads to

||eAt|| → ∞,

as t→ ∞.
In this section, we explore the exponential data weighting strategy used

in Anderson and Moore (1971) to produce a predictive control algorithm that
is numerically well-conditioned. To begin, let us define a cost function to be
optimized by the predictive control as

J =
∫ Tp

0

[e−2ατx(ti + τ | ti)TQx(ti + τ | ti) + e−2ατ u̇(τ)TRu̇(τ)]dτ, (8.2)

subject to
ẋ(ti + τ | ti) = Ax(ti + τ | ti) +Bu̇(τ),

with initial condition x(ti). If the set-point signal is non-zero, as before, the
last block variables in x(ti +τ | ti) correspond to the error signals between the
output and set-point, which is translated to the difference in initial condition
x(ti), while the rest of the formulations remain unchanged.

As before, Q is a symmetric nonnegative definite matrix, and R is a sym-
metric positive definite matrix. The constant α can be either positive or neg-
ative or equal to zero, depending on the application. The exponential weight
used by Anderson and Moore was e−2ατ with α negative, which effectively
produces an exponentially increasing weight. Their results were to produce
an optimal regulator with prescribed degree of stability (see Section 8.5). Our
interest here is to use a positive α that effectively produces an exponentially
decreasing weight.
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Minimization of Exponentially Weighted Cost

The results of α ≥ 0 are summarized in the theorem as follows.

Theorem 8.1. For a given α ≥ 0, Tp > 0, Q ≥ 0, and R > 0, minimization
of the cost function

J1 =
∫ Tp

0

[
e−2ατx(ti + τ | ti)TQx(ti + τ | ti) + e−2ατ u̇(τ)TRu̇(τ)

]
dτ, (8.3)

subject to

ẋ(ti + τ | ti) = Ax(ti + τ | ti) +Bu̇(τ); x(ti | ti) = x(ti),

is equivalent to minimization of

J =
∫ Tp

0

[
xα(ti + τ | ti)TQxα(ti + τ | ti) + u̇α(τ)TRu̇α(τ)

]
dτ, (8.4)

subject to

ẋα(ti+τ | ti) = (A−αI)xα(ti+τ | ti)+Bu̇α(τ); xα(ti | ti) = x(ti | ti) = x(ti),

where xα(.) and u̇α(.) are the exponentially weighted variables of x(.) and u̇(.)

xα(ti + τ | ti) = e−ατx(ti + τ | ti); u̇α(τ) = e−ατ u̇(τ).

Proof. The cost function J1 (8.3) equals the cost function J (8.4) with the
transformed variables xα(.) and u̇α(.). In addition

ẋ(ti + τ | ti) =
deατxα(ti + τ | ti)

dτ
= αeατxα(ti + τ | ti) + eατ ẋα(ti + τ | ti) (8.5)
= Ax(ti + τ | ti) +Bu̇(τ). (8.6)

Therefore, by multiplying both (8.5) and (8.6) with e−ατ , and re-arranging,
we obtain the following equation

ẋα(ti + τ | ti) = (A− αI)xα(ti + τ | ti) +Bu̇α(τ),

with the identical initial condition at τ = 0,

xα(ti | ti) = x(ti | ti).
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Use of the Results in CMPC Design

Theorem 8.1 shows that if we use a cost function that contains exponential
decay weight, which is a time-varying weight, then the optimal solution is
found by minimizing a cost function that has eliminated the time-varying
weight. However, the state-space system matrix A is shifted by a −αI matrix.
If α is positive, then all eigenvalues of original A matrix are shifted by the
scalar −α to yield the eigenvalues of the matrix A − αI, which effectively
changes the real part of all eigenvalues. In this transformed formulation, the
α value is selected such that the eigenvalues of A− αI lie strictly on the left-
half of the complex plane, i.e., real(λi(A − αI)) < −ε for ε > 0 and all i.
Thus, the continuous-time model used for the design then becomes a stable
model, instead of the unstable model in the original formulation. As a result,
the numerical ill-conditioning problem is overcome.

Denote Aα = A − αI. At time ti, xα(ti | ti) = x(ti) and the transformed
derivative of the control signal is

u̇α(τ) =
[
L1(τ)T L2(τ)T . . . Lm(τ)T

]
η.

The predicted, transformed state variable xα(τ | ti) at time τ is

xα(ti + τ | ti) = eAατx(ti)

+
∫ τ

0

eAα(τ−γ)
[
B1L1(γ)T B2L2(γ)T ... BmLm(γ)T

]
dγη, (8.7)

where we assume that the number of inputs is m and Laguerre functions are
used in the parameterization of the derivative of the control signal. Namely,
we optimize the transformed control variable u̇α(τ), instead of the original
variable u̇(τ). Introducing

φi(τ)T =
∫ τ

0

eAα(τ−γ)BiLi(γ)Tdγ, (8.8)

and
φ(τ)T =

[
φ1(τ)T φ2(τ)T . . . φm(τ)T

]
.

Equation (8.7) is simplified into

xα(ti + τ | ti) = eAατx(ti) + φ(τ)T η. (8.9)

Substituting (8.9) into the cost function (8.4), we obtain

J =
∫ Tp

0

(ηTφ(τ)Qφ(τ)T η + 2ηTφ(τ)QeAατx(ti))dτ + ηTRLη + constant,

(8.10)
where RL is a block diagonal matrix with the kth block being Rk, and
Rk = rwkINk×Nk

(where INk×Nk
is a unit matrix with dimension Nk). Here,
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for simplicity of the solution, we have assumed that the weight matrix R is a
diagonal matrix.

Defining the data matrices

Ω =
∫ Tp

0

φ(τ)Qφ(τ)T dτ +RL (8.11)

Ψ =
∫ Tp

0

φ(τ)QeAατdτ, (8.12)

the quadratic cost function (8.10) becomes

J = ηTΩη + 2ηTΨx(ti) + constant. (8.13)

The optimal solution that minimizes the above quadratic cost function is

η = −Ω−1Ψx(ti). (8.14)

Upon obtaining η, the exponentially weighted derivative of the control signal
u̇α(τ) is constructed through

u̇α(τ) =
[
L1(τ)T L2(τ)T . . . Lm(τ)T

]
η. (8.15)

From the receding horizon control, the optimal solution for the actual u̇(0) is

u̇(0) = u̇α(0) =
[
L1(0)T L2(0)T . . . Lm(0)T

]
η. (8.16)

Because the optimization is performed on the transformed variables xα(.) and
u̇α(.), when constraints are introduced, all the original constraints are required
to be transformed from the variables x(.) and u̇(.) to xα(.) and u̇α(.). Con-
strained control will be discussed further in the later sections of the chapter.

8.4 CMPC with Asymptotic Stability

This section establishes equivalent results with LQR when exponential weight-
ing is used. The results are investigated through two different cost functions,
and we then establish that the optimal control results are identical. The results
are summarized in the theorem as follows.

Case A

Suppose that the optimal control u̇1(τ) is obtained by minimizing cost func-
tion J1 with Q ≥ 0, and R > 0

J1 =
∫ ∞

0

[
x(ti + τ | ti)TQx(ti + τ | ti) + u̇(τ)TRu̇(τ)

]
dτ, (8.17)
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subject to
ẋ(ti + τ | ti) = Ax(ti + τ | ti) +Bu̇(τ),

where the initial state is x(ti). The optimal solution of the derivative of the
control u̇(τ) is obtained through the state feedback control law

u̇1(τ) = −R−1BPx(ti + τ | ti), (8.18)

and P is the solution of the Riccati equation

PA+ATP − PBR−1BTP +Q = 0. (8.19)

Case B

Choosing Qα = Q+ 2αP , α > 0, R unchanged, the optimal control u̇2(τ) is
obtained by minimizing

J2 =
∫ ∞

0

e−2ατ
(
x(ti + τ | ti)TQαx(ti + τ | ti) + u̇(τ)TRu̇(τ)

)
dτ, (8.20)

subject to
ẋ(ti + τ | ti) = Ax(ti + τ | ti) +Bu̇(τ),

with the initial condition x(ti).

Theorem 8.2. The optimal control solutions stated in Case A and Case B
have the following relation:

u̇2(τ) = u̇1(τ); min(J2) = min(J1).

Proof. The optimal solution for Case A is found through the algebraic Riccati
equation (Kailath, 1980, Bay, 1999)

PA+ATP − PBR−1BTP +Q = 0, (8.21)

with u̇1(τ) = −R−1BPx(ti + τ | ti) and min(J1) = x(ti)TPx(ti).

By adding and subtracting the term 2αP , (8.21) becomes

PA+ATP − PBR−1BTP +Q+ 2αP − 2αP = 0, (8.22)

which is

P (A− αI) + (A− αI)TP − PBR−1BTP +Q+ 2αP = 0. (8.23)

With Qα = Q+ 2αP , the Riccati equation (8.23) becomes identical to

P (A− αI) + (A− αI)TP − PBR−1BTP +Qα = 0. (8.24)

Relating these back to the exponential data weighting results in Theorem 8.1,
(8.24) is the Riccati equation for the optimization of Case B. Since (8.24)
is identical to (8.21), therefore, the Riccati solution P from (8.23) remains
unchanged, and hence

u̇2(τ) = u̇1(τ); min(J1) = min(J2).
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The original Case A is not solvable in the context of predictive control for
a sufficiently large prediction horizon Tp, when the design model contains
eigenvalues on the imaginary axis or on the right half of the complex plane,
and the prediction becomes numerically ill-conditioned. In contrast, the Case
B is solvable in the context of predictive control because of the choice of the
exponential weight α > 0 that will lead to the system matrix A−αI becoming
stable.

The following list summarizes the relationship between the design para-
meters and variables in LQR and the continuous-time MPC with exponential
data weighting for sufficiently large N and Tp.

Model (LQR) ẋ(ti + τ | ti) = Ax(ti + τ | ti) +Bu̇(τ)

Model (CMPC) ẋα(ti + τ | ti) = (A− αI)xα(ti + τ | ti) +Bu̇α(τ)

Weight matrices (LQR) Q, R

Weight matrices (CMPC) Qα = Q+ 2αP , R unchanged

Cost (LQR) J =
∫∞
0

(x(·)TQx(·)+ u̇(τ)TRu̇(τ))dτ

Cost (CMPC) J =
∫ Tp

0
(xα(·)TQαxα(·)+ u̇α(τ)TRu̇α(τ))dτ

Optimal control (LQR) u̇(τ) = −R−1BPx(ti + τ | ti)
Optimal control (CMPC) u̇(τ) = −L(τ)TΩ−1Ψx(ti)

0 ≤ τ ≤ Tp u̇α(τ) = u̇(τ)e−ατ

0 ≤ τ ≤ Tp xα(ti + τ | ti) = x(ti + τ | ti)e−ατ

Feedback gain Kmpc = Klqr

Closed-loop Eigenvalues. λi(A−BKmpc) = λi(A−BKlqr), for all i.

Tutorial 8.1. We consider the same system as in Example 8.1, where the
augmented dynamic system with an integrator is described by the state-space
model given as below

ẋ(t) =

⎡

⎢
⎢
⎢⎢
⎣

0 1 0 0 0
0 α1

V
β1
V 0 0

0 0 −a a 0
0 0 0 0 0
1 0 0 0 0

⎤

⎥
⎥
⎥⎥
⎦
x(t) +

⎡

⎢
⎢
⎢⎢
⎣

0
0
0
1
0

⎤

⎥
⎥
⎥⎥
⎦
u̇(t)

y(t) =
[
0 0 0 0 1

]
x(t), (8.25)

where α1 = 10.2, β1 = 0.32,a = 72 and V = 60. The parameters in the
Laguerre functions are selected as p = 0.8 and N = 4.

1. Choosing Q = CTC and R = 0.1, design the LQR control system with the
weight matrices Q and R, and find the Riccati equation solution P , the
feedback gain matrix K and the closed-loop eigenvalues.
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2. Using exponential data weighting in the cost function of predictive control
with α = 0.18 in the modified Qα, compute the data matrices Ω and Ψ
and verify the convergence of Ω and Ψ with respect to a large prediction
horizon Tp.

3. Compare the exponentially weighted predictive control system with the
LQR system.

Step by Step

1. Create a program called exptut.m.
2. We will first set-up the state-space model and the augmented state-space

model. Enter the following the program into the file:

alpha1=10.2;
beta1=0.32;
a=72;
v=60;
Ap=[0 1 0 0; 0 alpha1/v beta1/v
0; 0 0 -a a; 0 0 0 0] ;
Bp=[0;0;0;1];
Cp=[1 0 0 0];
Dp=0;
[m1,n1]=size(Cp);
[n1,n_in]=size(Bp);
A=zeros(n1+m1,n1+m1);
A(1:n1,1:n1)=Ap;
A(n1+1:n1+m1,1:n1)=Cp;
B=zeros(n1+m1,n_in);
B(1:n1,:)=Bp;
C=zeros(m1,n1+m1);
C(:,n1+1:n1+m1)=eye(m1,m1);

3. Compute the LQR solution using the MATLAB ‘lqr’ function. K is the
feedback gain, P is the Riccati equation solution and E is the set of closed-
loop eigenvalues. Continue entering the following program into the file:

Q=C’*C;
R=0.1*eye(m1,m1);
[K,P,E]=lqr(A,B,Q,R);

4. Compute Qα and specify the design parameters for the continuous-time
predictive control system. We also modify the unstable system matrix A to
stable Aα. A large N is used in this design to demonstrate that the results
converge to the LQR system. You can choose a smaller N and discover
the difference is small.

alpha=0.18;
Q_alpha=Q+2*alpha*P;
A_alpha=A-alpha*eye(n1+m1,n1+m1);
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p=0.6;
N=10;
Tp=35;
[Omega,Psi]=cmpc(A_alpha,B,p,N,Tp,Q_alpha,R);

5. With Ω and Ψ matrices, the cost function for the on-line optimization
is determined. With receding horizon control, the feedback control gain
matrix Kmpc is calculated. Continue entering the following program into
the file:

[Al,L0]=lagc(p,N);
K_mpc=L0’*(Omega\Psi);
A_cl=A-B*K_mpc;
E_mpc=eig(A_cl);

6. We need to verify the relationship between uα(τ) and u(τ); and the rela-
tionship between xα(ti+τ | ti) and x(ti +τ | ti). We solve for the Laguerre
parameter vector η using an initial state variable, and construct the whole
control trajectory u̇α(.) using Laguerre functions. The trajectory of xα(.)
is calculated by solving the differential equation. Continue entering the
following program into the file:

N_sim=22000;
h=0.001;
X0=[0.1;0.2;0.3;0.4;0.5];
eta=-Omega\Psi*X0;
x=X0;
t=0:h:(N_sim-1)*h;
for kk=1:N_sim
u_dot(kk)=(expm(Al*t(kk))*L0)’*eta;
xs(:,kk)=x;
x=x+(A_alpha*x+B*u_dot(kk))*h;
end

7. To compare the results, we also compute the LQR control trajectory and
the trajectory of x(.). Continue entering the following program into the
file:

A_lqr=A-B*K;
A_lqr_alpha=A_lqr-alpha*eye(n1+m1,n1+m1);
for kk=1:N_sim
x_lqr(:,kk)=expm(A_lqr*t(kk))*X0;
u_dot_lqr(kk)=-K*x_lqr(:,kk);
x_lqr_alpha(:,kk)=expm(A_lqr_alpha*t(kk))*X0;
end

8. Run this program, then you will have the numerical results for the expo-
nentially weighted continuous-time MPC system.
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9. Increasing prediction horizon Tp, you will notice this parameter does not
affect the control results after a certain large number.

Figure 8.2 shows the comparison results within one optimization window,
between the variables in the original LQR systems and the transformed pre-
dictive control system using exponential weighting. For simplicity, instead of
examining all components in x, we examine the last component in x, which is
the output y. By visual inspection, we can see that the exponentially weighted
variables decay faster. To show that indeed there is the factor of e−ατ differ-
ence between xα and x, and uα and u, we calculate the errors

ey =
∫ 22

0

(yα(τ) − y(τ)e−ατ )2dτ = 5.5529× 10−4, (8.26)

eu =
∫ 22

0

(u̇α(τ) − u̇(τ)e−ατ )2dτ = 6.1761× 10−6. (8.27)
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Fig. 8.2. Top figure: comparison between y(.) (solid-line) and yα(.) (darker-solid-
line); bottom figure: comparison between u̇(.) (solid-line) and u̇α(.) (darker-solid-
line)

Furthermore, the gain and closed-loop eigenvalues of LQR and continuous-
time MPC systems are compared as below:

Kmpc [23.2346 121.8435 0.0090 1.1371 3.1639]
Klqr [23.2281 121.8430 0.0090 1.1372 3.1623]
eigenvalues(mpc) −72.0000 − 0.1411 ± j0.3241 − 0.3424± j0.1334
eigenvalues(lqr) −72.0000 − 0.1411 ± j0.3240 − 0.3425± j0.1334
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8.5 Continuous-time MPC with Prescribed Degree of
Stability

The term ‘prescribed degree of stability of β’ means that the closed-loop
eigenvalues of the predictive control system reside to the left of the line s = −β
on the complex plane. This is very practical in the design of continuous-
time predictive control systems. For instance, the value of β becomes part of
the closed-loop performance specification. For a multi-input and multi-output
system, tuning the predictive control system can be very time consuming. By
specifying a degree of stability, the tuning process for a complex system can
be simplified.

8.5.1 The Original Anderson and Moore’s Results

We resort to the wealth of literature on the linear quadratic regulator (LQR).
In Anderson and Moore (1971), the cost function with (β > 0 ) is

J1 =
∫ ∞

0

e2βt
[
x(t)TQx(t) + u̇(t)TRu̇(t)

]
dt, (8.28)

and it is minimized subject to

ẋ(t) = Ax(t) +Bu̇(t). (8.29)

The minimization of the cost function (8.28) produces a closed-loop system
with a prescribed degree of stability determined by the value of β. Note that
the choice of the weight exponent, β, has an opposite sign to what we proposed
earlier, and let us call this an exponentially increasing weight.

To proceed further, denote

xβ(t) = eβtx(t); uβ(t) = eβtu(t).

Then, the problem of minimizing (8.28) is equivalent to the minimization of
the cost function:

J2 =
∫ ∞

0

[
xβ(t)TQxβ(t) + u̇β(t)TRu̇β(t)

]
dt, (8.30)

subject to
ẋβ(t) = (A+ βI)xβ(t) +Bu̇β(t). (8.31)

The optimal control is obtained through the solution of the algebraic Riccati
equation to solve for the transformed system (A+ βI,B)

P (A+ βI) + (A+ βI)TP − PBR−1BTP +Q = 0, (8.32)

u̇β(t) = −R−1BPxβ(t). (8.33)
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However, the original control signal is

u̇(t) = u̇β(t)e−βt = −R−1BPx(t). (8.34)

Therefore, the feedback controller gain has the identical formula, except that
the Riccati matrix P is solved using (8.32), where (A+ βI) is used to replace
the original system matrix A.

The following points are given to establish that the closed-loop system has
a prescribed degree of stability β.

1. If the pair (A,D) is observable where Q = DTD, then (A+ βI,D) is ob-
servable; if the pair (A,B) is controllable, then (A+βI,B) is controllable.
The solution of the Riccati equation (8.32) leads to asymptotic stability
of the closed-loop system for the pair (A+ βI,B). Namely

||xβ(t)|| → 0

as t→ ∞.
2. Note that

x(t) = e−βtxβ(t).

This means that x(t) decays at least as fast as the rate of e−βt.
3. This establishes that the exponentially weighted cost function produces a

closed-loop system with a prescribed degree of stability β.
4. The asymptotic stability of the closed-loop system for the pair (A+βI,B)

ensures that the closed-loop eigenvalues, for all k

real{λk(A+ βI −BK)} < 0,

where K = R−1BP . This means that the closed-loop eigenvalues for the
pair (A,B) must be at least, for all k

real{λk(A−BK)} < −β.
5. This establishes that the closed-loop eigenvalues are on the left of the
s = −β line in the complex plane.

8.5.2 CMPC with a Prescribed Degree of Stability

Although the exponentially increasing weight proposed by Anderson and
Moore produces a closed-loop system with a prescribed degree of stability,
their solution was obtained through the Riccati equation (see (8.32)). If their
approach was used in predictive control design, then numerical problems
would arise. This is because the system matrix A + βI (design model) has
eigenvalues shifted further towards the right-half of the complex plane by a
distance of β, and the prediction that uses this model will exponentially grow
at least at a rate of β. This approach to obtain a prescribed degree of stability
is re-developed in the context of predictive control design. The results are
summarized as below.
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Case A

Suppose that the optimal control u̇1(τ) is obtained by minimizing with Q ≥ 0,
R > 0, β > 0,

J1 =
∫ ∞

0

e2βτ
[
x(ti + τ | ti)TQx(ti + τ | ti) + u̇(τ)TRu̇(τ)

]
dτ, (8.35)

subject to

ẋ(ti + τ | ti) = Ax(ti + τ | ti) +Bu̇(τ); x(ti | ti) = x(ti),

where A may contain eigenvalues that are either on the jw axis or on the
right-half of the complex plane. The optimal solution of the derivative of the
control u̇(τ) is obtained through the state feedback law

u̇1(τ) = −R−1BPx(ti + τ | ti), (8.36)

and P is the solution of the Riccati equation

P (A+ βI) + (A+ βI)TP − PBR−1BTP +Q = 0. (8.37)

Case B

Choosing α > 0, R unchanged, and

Qα = Q+ 2(α+ β)P,

the optimal control u̇2(τ) is obtained by minimizing

J2 =
∫ ∞

0

e−2ατ
[
x(ti + τ | ti)TQαx(ti + τ | ti) + u̇(τ)TRu̇(τ)

]
dτ, (8.38)

subject to

ẋ(ti + τ | ti) = Ax(ti + τ | ti) +Bu̇(τ); x(ti | ti) = x(ti).

Theorem 8.3. The optimal solutions given in Case A and Case B satisfy the
following relation:

u̇2(τ) = u̇1(τ); min(J2) = min(J1).

Proof. The proof follows a similar procedure to that in the proof of Theorem
8.2.

From the Anderson and Moore’s results, the optimal solution for Case A
is found through the algebraic Riccati equation

P (A+ βI) + (A+ βI)TP − PBR−1BTP +Q = 0, (8.39)
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with u̇1(τ) = −R−1BPx(ti + τ | ti) and min(J1) = x(ti)TPx(ti).
By adding and subtracting the term 2αP , (8.39) becomes

P (A+ βI) + (A+ βI)TP − PBR−1BTP +Q+ 2αP − 2αP = 0, (8.40)

which is

P (A− αI) + (A− αI)TP − PBR−1BTP +Q+ 2αP + 2βP = 0. (8.41)

With Qα = Q+ 2(α+ β)P , the Riccati equation (8.41) becomes identical to

P (A− αI) + (A− αI)TP − PBR−1BTP +Qα = 0. (8.42)

Comparing the Riccati equation (8.42) to the exponential data weighting re-
sults in Theorem 8.1, (8.42) is the Riccati equation for the optimization Case
B. Since (8.42) is identical to (8.39), therefore, the Riccati solution P from
(8.42) remains unchanged, and hence

u̇2(τ) = u̇1(τ); min(J1) = min(J2).

8.5.3 Tuning Parameters and Design Procedure

Selection of the Exponential Weighting Factor

From a given augmented state-space model (A,B), the eigenvalues of A are
determined. If the plant is stable, then the unstable eigenvalues of A come
from the integrators that have been embedded in the model. In this case, any
α > 0 will serve the purpose of exponential data weighting. However, if the
plant is unstable with all its eigenvalues lying on the left of the ε line of the
complex plane where ε > 0, the parameter α is required to be at least greater
than ε. In summary, the idea behind the selection of α is to make sure that
the design model with (A− αI) is stable with all eigenvalues on the left-half
of the complex plane.

Selection of Prediction Horizon

Once the exponential weight factor α is selected, the eigenvalues of the ma-
trix A − αI are fixed. Since this matrix is stable with an appropriate choice
of α, the prediction of the state variables is numerically sound. Thus, the
prediction horizon Tp is selected sufficiently large to capture the transformed
state variable response. In general, if the eigenvalues of A − αI were further
away from the imaginary axis on the complex plane, then a smaller Tp would
be required. However, some attention needs to be paid to the computation
of Ω and Ψ matrices when discretization is used to recursively evaluate the
integrals given in Section 6.3.4. In general, the discretization interval (h) for
the computation should be smaller if the exponential weight factor α is used.
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Choice of Weight Matrices in the Cost Functions

From the model formulation, the Q matrix is usually selected as Q = CTC,
which corresponds to minimization of integral squared output errors. This
choice has been found to produce satisfactory closed-loop performance for set-
point tracking of a reference signal. Weight matrix R is selected as a diagonal
matrix, with each element weighting the corresponding control signal. For
instance, if the influence of a particular control is to be reduced, then the
corresponding diagonal element will be increased to reflect this intention.

Selection of Degree of Stability β

The closed-loop performance of a predictive control system so far is deter-
mined by the choice of Q and R matrices. The tuning could be very time
consuming as it often requires finding the off-diagonal elements in Q and R
to achieve satisfactory performance. This is often carried out in a trial-and-
error manner. Now, with the additional parameter β that dictates the de-
gree of stability, the closed-loop eigenvalues of the predictive control system
are effectively positioned to some desired regions on the complex plane. This
parameter is very useful in the closed-loop performance specification. For in-
stance, β is related to the minimal decay rate of the closed-loop system. So
we can use this parameter to specify the closed-loop response speed.

The Parameters in Laguerre Functions

When N increases, the predictive control trajectory converges to the under-
lying optimal control trajectory of the linear quadratic regulator. However,
with a small N , the pole location p will affect the closed-loop response. The
pair of parameters (p,N) can be used as a pair of fine tuning parameters for
the closed-loop performance. Detailed discussion on the Laguerre parameters
for the discrete-time counterpart is given in Chapter 4.

The Qα Matrix

With the choice of β, which is the degree of stability, the Riccati equation is
solved for the P matrix:

P (A+ βI) + (A+ βI)TP − PBR−1BTP +Q = 0. (8.43)

MATLAB script can be used for this solution:

[K,P,E]= lqr(A+beta*eye(n,n), B, Q, R);

Matrix Qα is determined, with the values of α, β and P , using

Qα = Q+ 2(α+ β)P.
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The Modified Design Model

The augmented state-space model (A,B) is modified for use in the design.
The matrix B is unchanged, however, the matrix A is modified to become

A− αI

With this set of performance parameters (Qα, R) and the design model
(A − αI,B), the predictive control problem is converted back to the origi-
nal problem stated in Chapter 6, thus the cost function for the predictive
control system is expressed as a function of η

J = ηTΩη + 2ηTΨx(ti) + constant. (8.44)

8.6 Constrained Control with Exponential Data
Weighting

The design of continuous-time predictive control using exponential data
weighting is based on the transformed variables xα(.) and u̇α(.). By using
the transformed variables, a large prediction horizon is used to approximate
the infinity horizon case so as to guarantee asymptotic stability or to achieve
a prescribed degree of stability, and the numerical ill-conditioning problem
is overcome. In the constraints handling, the design specification of the con-
straints is given for the original variables x(.) and u̇(.), and these are required
to be mapped into constraints with respect to the transformed variables xα(.)
and u̇α(.).

Constraints at τ = 0

Since within one optimization window, at τ = 0 the transformed variables
xα(ti | ti) and u̇α(0) are identical to the original variables x(ti | ti) and u̇(0),
there is no change for the constraints at the time τ = 0.

Constraints at τ > 0

As we know, the relationship between the transformed variables and the orig-
inal variables is given as

u̇α(τ) = u̇(τ)e−ατ ; xα(ti + τ | ti) = x(ti + τ | ti)e−ατ .

Thus, supposing that the upper and lower limits of u̇(τ) are specified as

dumin ≤ u̇(τ) ≤ dumax,

with respect the transformed variable u̇α(t) within one optimization window,
the constraints are mapped into the relation:
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e−ατdumin ≤ u̇α(τ) ≤ dumaxe−ατ , (8.45)

which is expressed, in terms of the decision variable η, as

e−ατdumin ≤ L(τ)η ≤ dumaxe−ατ . (8.46)

Similarly, the original constraints on the state variables, xmin and xmax, are
transformed into

e−ατxmin ≤
xα(ti+τ |ti)

︷ ︸︸ ︷
eAατx(ti) + φ(τ)T η ≤ xmaxe−ατ . (8.47)

Since the transformed variables exponentially decay in a faster rate, the orig-
inal constant bounds become exponentially decaying with respect to u̇α and
xα to form tighter bounds.

What we will do next is to transform the bounds on the original control
signal to the bounds on the transformed variables. Note that the control signal
with assumed zero initial condition is expressed as

u(τ) =
∫ τ

0

u̇(γ)dγ. (8.48)

By substituting u̇(γ) = u̇α(γ)eαγ = L(γ)T eαγη into (8.48), we obtain

u(τ) =
∫ τ

0

L(0)T e(Ap+αI)T γηdγ (8.49)

= L(0)T
(
e(Ap+αI)T τ − I

)
(Ap + αI)−T η. (8.50)

Adding the first sample of the control signal, the bounds are expressed in
terms of the decision variable η as

umin ≤ u(ti−Δt)+L(0)TηΔt+L(0)T
(
e(Ap+αI)T τ − I

)
(Ap+αI)−T η ≤ umax.

(8.51)
Upon setting up the constraints with respect to the transformed variables,
the remaining procedures to the solution of the constrained control problem
are identical to those without exponential data weighting, as discussed in
Chapter 7, namely, the inequality constraints are used in the optimization of
η by minimizing the cost function:

J = ηTΩη + 2ηTΨx(ti).

Example 8.2. Consider a two-input and two-output system described by the
transfer function:

[
y1(s)
y2(s)

]
=

[
12.8(−s+4)2

(40s+1)(s+4)2
−10.9(−3s+4)2

(21.0s+1)(3s+4)2

12.8(−7s+4)2

(10.9s+1)(7s+4)2
−19.4(−3s+4)2

(20s+1)(3s+4)2

][
u1(s)
u2(s)

]
. (8.52)
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This system has complex unstable zeros and strong couplings as shown by
the off diagonal elements of the transfer function. Choose the weight matrices
Q = CTC, R = I, and the prediction horizon Tp = 50, N1 = N2 = 6, and
p1 = p2 = 1. An observer is needed in the implementation of the predictive
control system. MATLAB function lqr is used with Qob = I and R = 0.2I.
With zero initial conditions on the state variables, for a unit set-point change,
the operational constraints on the control signals are specified as

0 ≤ u1(t), u2(t) ≤ 0.3; − 0.2 ≤ u̇1(t), u̇2(t) ≤ 0.4.

Design and simulate a continuous-time predictive control system with con-
straints using exponential data weighting, where α = 0.18, and compare
the results with the case when α = 0. The sampling interval is selected as
Δt = 0.009 sec.

Solution. The condition number of the Hessian matrix with exponential data
weighting (α = 0.18) is κ(Ω) = 720. In contrast, the condition number with-
out exponential data weighting (α = 0) is κ(Ω) = 1.474 × 105, which clearly
indicates that the Hessian matrix is ill-conditioned. Table 8.3 shows the com-
parison between the elements of the first row in the state feedback gain ma-
trix with three different approaches. It is seen that with exponential weighting
(α = 0.18), the elements of the predictive feedback control gain Kmpc are very
close to the elements of feedback gain from LQR design. However, without
exponential data weighting, there are large differences between the elements
of the predictive controller gain and those from LQR design. We also confirm
the large differences between the closed-loop responses from using exponen-
tial data weighting and not using exponential weighting (see Figure 8.3). In
the simulation, we introduce a unit set-point change for output y1 and zero
set-point signal for output y2. Without constraints, the responses when using
exponential data weighting are almost identical to those from LQR design (not
shown here), and exhibit faster set-point responses than those from not using
exponential weighting. We also compare the constrained control results with
and without exponential data weighting, where we only impose the constraints
on the first sample of the control signals. All constraints are satisfied for both
cases. Figure 8.4 shows the comparative results. It is seen that the responses
are quite different. Again, the output responses from using exponential data
weighting are faster than those without exponential data weighting.

Table 8.3. Elements of the first row in Klqr, Kmpc with and without exponential
data weighting

Klqr 2.7 −11.2 3.9 −3.0 3.1 1.2 −2.9 9.0 3.5 1.1 0.8 −0.6

Kmpc(α = 0.18) 2.7 −11.2 3.9 −3.0 3.1 1.2 −2.8 8.9 3.5 1.1 0.8 −0.6

Kmpc(α = 0) 0.4 −1.7 0.6 −0.4 0.5 0.4 0.6 0.7 −0.1 0.3 0.2 −0.2
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Fig. 8.3. Comparison of CMPC with and without exponential data weighting.
Key: solid-line without exponential data weighting α = 0; darker-solid-line with
exponential data weighting α = 0.18
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Fig. 8.4. Comparison of CMPC with and without exponential data weighting, in the
presence of constraints. Key: solid-line without exponential data weighting α = 0;
darker-solid-line with exponential data weighting α = 0.18

8.7 Summary

This chapter has discussed continuous-time model predictive control with ex-
ponential data weighting. In the original design of a continuous-time predictive
control system, because of embedded integrator(s) in the model, the prediction
horizon is limited to a finite value, and a numerical ill-conditioning problem
occurs when the prediction horizon is large. These problems are resolved in
this chapter by choosing a cost function with an exponential weight factor
e−2αt, where α > 0:

J =
∫ Tp

0

[e−2ατx(ti + τ | ti)TQx(ti + τ | ti) + e−2ατ u̇(τ)TRu̇(τ)]dτ, (8.53)

subject to
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ẋ(ti + τ | ti) = Ax(ti + τ | ti) +Bu̇(τ).

With the exponential weight, the optimization problem at time ti is solved
based on a pair of transformed variables xα(ti+τ | ti) and uα(τ) by minimizing

J =
∫ Tp

0

[
xα(ti + τ | ti)TQxα(ti + τ | ti) + u̇α(τ)TRu̇α(τ)

]
dτ, (8.54)

subject to

ẋα(ti + τ | ti) = (A− αI)xα(ti + τ | ti) +Bu̇α(τ),

where the transformed variables are defined by

xα(ti + τ | ti) = e−ατx(ti + τ | ti); uα(τ) = e−ατu(τ).

The initial conditions are identical when τ = 0. The central idea is that when
the system matrix A contains eigenvalues on the imaginary axis or on the
right-half of the complex plane, by choosing a suitable α > 0 such that the
eigenvalues of the modified system matrix A−αI are all strictly on the left-half
complex plane, then the model used for prediction is stable, and a sufficiently
large prediction horizon can be used in the design. As a consequence, the
numerical conditioning problem is overcome. Without any modification on
the pair of weight matrices Q,R, the solution does not guarantee exponential
decay of the original variable x(ti +τ | ti) within the optimization window. To
resolve this issue, a simple modification of the weight matrix Q is proposed.
Choosing Qα = Q + 2αP , α > 0, R unchanged, the optimal control u̇(τ) is
obtained by minimizing

J =
∫ Tp

0

[
xα(ti + τ | ti)TQαxα(ti + τ | ti) + u̇α(τ)TRu̇α(τ)

]
dτ, (8.55)

subject to

ẋα(ti + τ | ti) = (A− αI)xα(ti + τ | ti) +Bu̇α(τ),

where P is the solution of the steady-state Riccati equation:

PA+ATP − PBR−1BTP +Q = 0.

In fact, the optimal solution with the exponentially weighted cost function is
identical to the original optimal control solution without exponential weight-
ing, when the prediction horizon is sufficiently large. The proposed approach
is not only numerically sound, but also allows the use of a sufficiently large
prediction horizon to guarantee asymptotic stability.

To introduce a prescribed degree of stability β in the predictive control
system such that all the closed-loop eigenvalues are on the left of the line
s = −β in the complex plane, we only need to choose Qα as
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Qα = Q+ 2(α+ β)P,

and R unchanged and minimize the cost function J given by (8.55) with
transformed variables xα and uα, where P is the solution of the steady-state
Riccati equation:

P (A+ βI) + (A+ βI)TP − PBR−1BTP +Q = 0.

When imposing constraints, all the constraints are transformed and expressed
using the exponentially weighted variables.

Problems

8.1. A mathematical model for an inverted pendulum is described by the
Laplace transfer function:

G(s) =
−Ki

s2 − a2
, (8.56)

where the input to the inverted pendulum is external force, and output is
angle θ (rad) (see Figure 8.5). The parameters in the model are Ki = 0.01
and a = 3.

Fig. 8.5. Schematic diagram for an inverted pendulum

Since the inverted pendulum is an unstable system with one pole on the
right-half of the complex plane, the choice of the prediction horizon needs
careful consideration without using exponential data weighting. The design
parameters are N = 4, p = 3.3, Q = CTC (C is the output matrix of the
augmented model) and R = 0.1. Design a continuous-time predictive control
system with a final prediction horizon that will bring the angle θ as close as
possible to 0o in the presence of input step disturbance.
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1. Show that the Hessian matrix Ω in the cost function

J = ηTΩη + 2ηTΨ

is numerically ill-conditioned by examining its condition number with re-
spect to an increasing prediction horizon Tp.

2. Demonstrate that this numerical sensitivity causes the variations of the
closed-loop feedback control gain Kmpc and the closed-loop pole locations.

8.2. Continue from Problem 8.1 and use exponential data weighting in the
design of predictive control for this inverted pendulum.

1. Choose the exponential weight factor α = 3.8 that is greater than the
unstable pole, and modify the weight matrix Qα according to

Qα = Q+ 2αP ; PA+ATP − PBR−1BTP +Q = 0,

where A and B are the matrices in the augmented state-space model.
2. With exponential data weighting, examine the elements of Ω and Ψ ma-

trices in the cost function

J = ηTΩη + 2ηTΨ,

as functions of prediction horizon Tp and demonstrate graphically that
the diagonal elements in Ω converge to constants as Tp increases.

3. For a large Tp, compute the closed-loop feedback control gain Kmpc and
the closed-loop poles with the predictive control system. Compare them
with Klqr and the LQR closed-loop poles (use the MATLAB lqr function
for this computation).

4. If Kmpc and Klqr are not sufficiently close to your expectation, increase
the number of terms N in the Laguerre functions to improve the accuracy.

8.3. A continuous-time system has three inputs and two outputs described by
the Laplace transfer function

G(s) =
[
G11(s) G12(s) G13(s)
G21(s) G22(s) G23(s)

]
, (8.57)

where G11(s) = 1
(s+1)3 , G12(s) = 0.1

0.1s+1 , G13(s) = −0.8
s+4 , G21(s) = 0.01

s+1 ,

G22(s) = (−3s+1)
(10s+1)(3s+1) , G23(s) = −0.4

0.3s+1 .

1. Find the state-space model and augment it with integrators.
2. Choose Q = CTC and R = I, p1 = p2 = p3 = 0.8, and N1 = N2 = N3 = 3

as the design parameters. Find the matrices Ω and Ψ in the cost function
of the predictive control J , where J is expressed as

J = ηTΩη + 2ηTΨ,
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such that the closed-loop eigenvalues of the predictive control system are
positioned on the left of a line s = −1 in the complex plane. Hint: you
need to solve the following Riccati equation to find P matrix

P (A+ I) + (A+ I)TP − PBR−1BTP +Q = 0,

with exponential weight factor α > 0 (say α = 0.5), Q is modified to
Qα = Q + 2(α + 1)P . The solution of the Riccati equation is performed
using MATLAB lqr function.

3. We can also design an observer with the observer poles to be constrained.
For instance,if we want to position the observer poles on the left of a line
s = −γ (γ > 0) in the complex plane, we choose Qob = I and Rob = 0.1I,
and then modify A with A+ γI. The MATLAB script for doing this is

K_ob=lqr((A+gamma*eye(n,n))’,C’,Qob,Rob)’;

where n is the dimension of A matrix. Find the observerKob such that the
closed-loop observer poles are on the left of a line s = −2 in the complex
plane.

8.4. Consider the problems of using a prescribed degree of stability to improve
the robustness of a predictive control system. Assume that the open-loop
system is described by a transfer function

G(s) =
K

(10s+ 1)2(s− 0.3)
.

1. Assuming K = 1, design a predictive control system with prescribed de-
gree of stability β = 0.4 (i.e., all closed-loop eigenvalues are on the left of
a line s = −0.4 in the complex plane). The remaining design parameters
are specified as N = 6, p = 0.6, Q = CTC, R = 1 and Tp = 35. Parameter
α is chosen as α = 0.38 to be greater than the magnitude of the unstable
pole. An observer is used in the implementation. The weight matrices for
the observer are Qob = I and Rob = 0.0001.

2. Construct the closed-loop predictive control system, respectively, with
K = 0.8, 0.9, 1, 1.2, 1.4 and 1.6, and calculate the closed-loop eigenvalues
with the variations of parameter K, show that the closed-loop system is
stable for this range of parameters.

3. Repeat the design with β = 0, but the other design parameters remaining
the same. Show that the closed-loop system is only stable with respect
to the changes of K between 0.9 and 1.1. Present your comparative re-
sults using a tabulation of closed-loop eigenvalues, and comment on your
findings.




