
7

Continuous-time MPC with Constraints

7.1 Introduction

This chapter discusses continuous-time model predictive control with con-
straints. Section 7.2 formulates the constraints for the continuous-time predic-
tive control system, including the cases of set-point following and disturbance
rejection of constant signals. Section 7.3 presents the numerical solution of
the constrained control problem with an example, where Hildreth’s quadratic
programming procedure is employed. Because of the nature of the continuous-
time formulation such as fast sampling, there might be computational delays
when the quadratic programming procedure is used in the solution of the real-
time optimization problem. Section 7.4 discusses the real-time implementation
of continuous-time model predictive control in the presence of constraints.

7.2 Formulation of the Constraints

7.2.1 Frequently Used Constraints

There are three types of constraints frequently encountered in continuous-
time applications. The first two types deal with constraints imposed on the
manipulated variables, and the third type of constraint deals with output or
state variable constraints.

Constraints on the Manipulated Variable Rate of Change

In the context of continuous-time control, the rate of change on the control
signal is given by the limit:

lim
Δt→0

Δu(ti) −Δu(ti −Δt)
Δt

= u̇(t) |t=ti . (7.1)



250 7 Continuous-time MPC with Constraints

We often use an approximation of the derivative for a given small Δt to
calculate the upper and lower limits of the derivative. Assume that for a
single-input system, the upper limit is dumax and the lower limit is dumin.
Then, constraints are specified as

dumin ≤ u̇(t) ≤ dumax. (7.2)

Note that we use ≤, not <, which includes the case of =. This is because
the optimal solution involves the active constraints, and they are the equality
ones. If we have more than one input, say m inputs, then we can specify the
constraints for each input independently. In the multi-input case, suppose that
the constraints are given for the upper limit as

[
dumax

1 dumax
2 . . . dumax

m

]
,

and lower limit as [
dumin

1 dumin
2 . . . dumin

m

]
.

We can specify each variable with rate of change, as

dumin
1 ≤ u̇1(t) ≤ dumax

1

dumin
2 ≤ u̇2(t) ≤ dumax

2

...
dumin

m ≤ u̇m(t) ≤ dumax
m . (7.3)

The derivative constraints can be used to impose directions of movement on
the manipulated variables. For instance, if u1(t) can only increase, and not
decrease, then we select 0 ≤ u̇1(t) ≤ dumax

1 .

Constraints on the Amplitude of the Manipulated Variable

Suppose that the constraints are given for the upper limit of the control signal
as [

umax
1 umax

2 . . . umax
m

]
,

and lower limit as [
umin

1 umin
2 . . . umin

m

]
.

Then, we specify the amplitude of each control signal to satisfy the constraints:

umin
1 ≤ u1(t) ≤ umax

1

umin
2 ≤ u2(t) ≤ umax

2

...
umin

m ≤ um(t) ≤ umax
m . (7.4)



7.2 Formulation of the Constraints 251

Output Constraints

We can also specify the operating range for the plant output. For instance,
supposing that the output y(t) has an upper limit ymax and a lower limit
ymin, then the output constraints are specified as

ymin ≤ y(t) ≤ ymax. (7.5)

Output constraints are often used in the regulation case where disturbance
rejection is the primary focus for control. However, because output constraints
could cause a predictive control system to become unstable, we need to be cau-
tious when implementing output constraints. So they are often implemented
as ‘soft’ constraints and a slack variable sv > 0 is added to the constraints,
forming

ymin − sv ≤ y(t) ≤ ymax + sv. (7.6)

This means that they will not become active if the slack variable sv is chosen
large enough.

There are several reasons why we use a slack variable to form ‘soft’ con-
straints for outputs. One is that the output constraints often cause the prob-
lem of conflict constraints in the situation where the input constraints become
activated. Also, when the predictive control system tries to alter the behav-
iour of a plant output, severe nonlinearity appears in the control law, which
may result in closed-loop system oscillation, and system instability. We have
observed this in the discrete-time case when output constraints are enforced
(see Section 2.5.4 and Section 3.8.1). Similarly, this can occur in continuous-
time control. When this happens, we relax the output constraints by selecting
a larger slack variable sv to resolve the problem so that the active constraints
do not become active. Another reason is that the constraints are imposed
based on the model and in the case where there is a model-plant mismatch,
the prediction of the output may not be accurate. The constraints are not
meaningful unless the model used for prediction is reasonably accurate.

Similarly, we can impose constraints on the state variables if they are
measured or estimated. They also need to be in the form of ‘soft’ constraints
for the same reasons as the output case.

7.2.2 Constraints as Part of the Optimal Solution

Having formulated the constraints as part of design requirements, the next
step is to translate them into linear inequalities, and relate them to the orig-
inal model predictive control problem. The key here is to parameterize the
constrained variables using the same orthonormal basis functions as the ones
used in the design of predictive control. Subsequently, we represent the con-
straints in terms of the parameter vector η. Since the predictive control prob-
lem is formulated and solved in the framework of receding horizon control, the



252 7 Continuous-time MPC with Constraints

constraints are taken into consideration frame-by-frame for each moving hori-
zon window. This allows us to vary the constraints at the beginning of each
frame and also gives us the means to solve the constrained control problem
numerically.

Constraints on the Derivative of Control

If we want to impose the constraints on the derivative of the control signal
u̇(t) at time ti, the constraints are expressed as

dumin ≤ u̇(t) ≤ dumax,

where dumin and dumax are the minimum and maximum limits of the deriv-
ative at time t = ti. From the time instance ti, the predictive control scheme
looks into the future, and we need to express the future of the derivative of the
control signal in terms of the Laguerre coefficient vector η. Differing from the
discrete-time case, the future control trajectory in the continuous-time case is
represented by continuous-time Laguerre functions. Thus, in order to obtain
a finite set of linear inequalities for the constraints, the future time within the
optimization window is discretized to obtain the time intervals 0, τ1, τ2, . . .
for which we wish to impose the constraints. The parameters τ1, τ2, . . ., may
not be related to the sampling interval Δt used for the implementation of the
continuous-time predictive control, however, the first sample τ0 = 0 is always
imposed to ensure that the constraints are satisfied when the receding horizon
principle is applied. The implementation of the constraints on the first sample
is performed as

−L(0)T η ≤ −dumin (7.7)
L(0)T η ≤ dumax. (7.8)

At an arbitrary future time τi, the derivative of the control signal is ex-
pressed as

dumin ≤ u̇(τi) ≤ dumax. (7.9)

Note that
u̇(τi) = L(τi)T η,

where L(τi) =
[
l1(τi) l2(τi) . . . lN (τi)

]T is the vector of the Laguerre func-
tions and η is the parameter vector. Thus, the inequalities for the constraints
at the time τi are

−L(τi)T η ≤ −dumin (7.10)
L(τi)T η ≤ dumax. (7.11)

The inequalities are readily extended to a multi-input system, as illustrated
by the following example.



7.2 Formulation of the Constraints 253

Example 7.1. Consider a continuous-time system with two inputs, u1 and u2.
The constraints for the derivatives of the control signals are specified as

dumin
1 ≤ u̇1(t) ≤ dumax

1 ; dumin
2 ≤ u̇2(t) ≤ dumax

2 , (7.12)

where dumin
1 = 0.5, dumax

1 = 0.8, dumin
2 = −0.3, dumax

1 = 1. Within the
optimization window, the constraints are imposed on the first sample τ0 = 0
and τ1 = 0.2. Assuming p1 = 0.6 and p2 = 1; N1 = N2 = 2, formulate the
inequalities for imposing the constraints in the solution of continuous-time
predictive control.

Solution. In the design of predictive control, the two derivatives of the control
are expressed as

u̇1(τ) = L1(τ)T η1; u̇2(τ) = L2(τ)T η2. (7.13)

Letting η =
[
ηT
1 ηT

2

]T with η1 and η2 having two coefficients each (N1 =
N2 = 2), the inequalities corresponding to the constraints are

[
L1(0)T oT

2

oT
1 L2(0)T

]
η ≤

[
dumax

1

dumax
2

]
(7.14)

[
L1(τ1)T oT

2

oT
1 L2(τ1)T

]
η ≤

[
dumax

1

dumax
2

]
(7.15)

−
[
L1(0)T oT

2

oT
1 L2(0)T

]
η ≤

[−dumin
1

−dumin
2

]
(7.16)

−
[
L1(τ1)T oT

2

oT
1 L2(τ1)T

]
η ≤

[−dumin
1

−dumin
2

]
, (7.17)

where o1 and o2 are the zero vectors with their dimensions equal to those in
L1(0) and L2(0), respectively. Numerically, these eight linear inequalities are
shown as

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

1.0954 1.0954 0 0
0 0 1.4142 1.4142

0.9716 0.7384 0 0
0 0 1.1579 0.6947

−1.0954 −1.0954 0 0
0 0 −1.4142 −1.4142

−0.9716 −0.7384 0 0
0 0 −1.1579 −0.6947

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

η ≤

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

0.8
1

0.8
1

−0.5
0.3
−0.5
0.3

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

. (7.18)

MATLAB tutorial: how to formulate the derivative constraints

Tutorial 7.1. The purpose of this tutorial is to show how to formulate the
derivative constraints using MATLAB.



254 7 Continuous-time MPC with Constraints

Step by Step

1. Create a new file called Mder.m.
2. We only impose constraints on the first sample τ0 = 0 and a sample at τ

in the future time. The program can be easily modified to include a larger
number of constraints within the optimization window. The parameters p
and N are the parameters for the Laguerre functions; nin is the number of
inputs and τ is the future sample of the constraints to be imposed. The first
part of the program will formulate the constraints for the initial sample,
so L(0) will be generated and used. Because it is a multi-input system,
attention is paid to the dimension of the matrix.

3. Enter the following program into the file:

function [M_dv,Lzerot]=Mder(p,N,n_in,tau)
N_pa=sum(N);
k0=1;
[Al,L0]=lagc(p(k0),N(k0));
L_t=zeros(n_in,N_pa);
L_t(1,1:N(1))=L0’;
cc=N(1);
for k0=2:n_in;
[Al,L0]=lagc(p(k0),N(k0));
L_t(k0,cc+1:cc+N(k0))=L0’;
cc=cc+N(k0);
end

4. The second part of the program is to formulate the constraints for the
second sample at time τ .

5. Continue entering the following program into the file:

Lzerot=L_t;
k0=1;
[Al,L0]=lagc(p(k0),N(k0));
L1=expm(Al*tau)*L0;
L_t1=zeros(n_in,N_pa);
L_t1(1,1:N(1))=L1’;
cc=N(1);
for k0=2:n_in;
[Al,L0]=lagc(p(k0),N(k0));
L1=expm(Al*tau)*L0;
L_t1(k0,cc+1:cc+N(k0))=L1’;
cc=cc+N(k0);
end
M_dv=[L_t1];

6. Test the function with the following parameters

p=[0.2 1];



7.2 Formulation of the Constraints 255

N=[2 3];
n_in=2;
tau=0.3;

7. The results are

M_dv= 0.5956 0.5241 0 0 0
0 0 0.7079 0.5805 0.4645

Lzerot= 0.6325 0.6325 0 0 0
0 0 0.7746 0.7746 0.7746

Constraints on the Amplitude of Control

As for the control signal, assuming that Δt is the sampling interval for imple-
mentation, the first sample of the control signal at the optimization window,
is calculated as

u(ti) = u(ti −Δt) + L(0)T ηΔt, (7.19)

where L(0)T η is the derivative of control at the beginning of the optimization
window. This leads to the constraints for the control signal at the first sample
time of the window as

umin − u(ti −Δt) ≤ L(0)TηΔt ≤ umax − u(ti −Δt), (7.20)

which is in agreement with how the control is calculated using the velocity
form. At the arbitrary time τi, we have

u(τi) = u(ti) +
∫ τi

0

u̇(γ)dγ (7.21)

= u(ti) +
∫ τi

0

L(γ)T ηdγ (7.22)

= u(ti) + (L(τi)T − L(0)T )A−T
p η. (7.23)

With the information of u(ti −Δt), the future control signal at time τi (�= 0)
is expressed as

u(τi) = u(ti −Δt) +

Cu︷ ︸︸ ︷
(L(0)TΔt+ L(τi)TA−T

p − L(0)TA−T
p ) η. (7.24)

Therefore, the inequality constraints are formulated as

umin − u(ti −Δt) ≤ Cuη ≤ umax − u(ti −Δt), (7.25)

where umin and umax are the lower and upper limits of control signal u.
Note that the choice of the set of future time instants plays an impor-

tant role in the numerical solution of the constrained control problem. In the



256 7 Continuous-time MPC with Constraints

continuous-time case, the choice of τ1, τ2, . . .,τm needs to be considered care-
fully. If they are selected too close to each other, then the constraints will be
approximately equal to each other, which leads to redundancy among them.
An appropriate choice will reduce the number of constraints.

Tutorial 7.2. This tutorial shows how to produce the data matrix Cu for a
multi-input system.

1. Create a new file called Mucon.m.
2. We only impose constraints on the first sample τ0 = 0 and a sample at τ

in the future time. The program can be easily modified to include a larger
number of constraints within the optimization window. The parameters p
and N are the parameters for the Laguerre functions; nin is the number of
inputs and τ is the future time of the constraints to be imposed. The first
part of the program will formulate the constraints for the initial sample,
so L(0)Δt will be generated and used. Because it is a multi-input system,
attention is paid to the dimension of the matrix.

3. Enter the following program into the file:

function [Mu,Mu1]=Mucon(p,N,n_in,delta_t,tau)
%function for generating matrix M for
%the constraints on the control signal
%constraints are imposed on the zero time and tau time
%delta-t is the sampling interval
%Mu is for constraints to be imposed on the zero sample
%Mu1 is for constraints to be imposed on tau time
N_pa=sum(N);
k0=1;
[Al,L0]=lagc(p(k0),N(k0));
L_t=zeros(n_in,N_pa);
L_t(1,1:N(1))=L0’;
cc=N(1);
for k0=2:n_in;
[Al,L0]=lagc(p(k0),N(k0));
L_t(k0,cc+1:cc+N(k0))=L0’;
cc=cc+N(k0);
end
% constraints on second sample
k0=1;
[Al,L0]=lagc(p(k0),N(k0));
L1=expm(Al*tau)*L0;
L_t1=zeros(n_in,N_pa);
L_t1(1,1:N(1))=(L1’-L0’)*inv(Al’)+L0’*delta_t;
cc=N(1);

Step by Step



7.3 Numerical Solutions for the Constrained Control Problem 257

for k0=2:n_in;
[Al,L0]=lagc(p(k0),N(k0));
L1=expm(Al*tau)*L0;
L_t1(k0,cc+1:cc+N(k0))=(L1’-L0’)*inv(Al’)+L0’*delta_t;
cc=cc+N(k0);
end
Mu=[L_t*delta_t];
Mu1=[L_t1];

4. Test the function using the following parameters:

p=[1 2];
N=[3 2];
n_in=2;
tau=1;
delta_t=0.1;

5. The results are

Mu= 0.1414 0.1414 0.1414 0 0
0 0 0 0.2000 0.2000

Mu1=1.0354 0.2880 -0.0051 0 0
0 0 0 1.0647 -0.1233

7.3 Numerical Solutions for the Constrained Control
Problem

Now, the predictive control problem with hard constraints imposed in the
design becomes the problem of finding the optimal solution of the quadratic
cost function:

J = ηTΩη + 2ηTΨx(ti)

+ x(ti)T

∫ Tp

0

eAT τQeAτdτx(ti), (7.26)

where Ω and Ψ are given as

Ω =
∫ Tp

0

φ(τ)Qφ(τ)T dτ +RL (7.27)

Ψ =
∫ Tp

0

φ(τ)QeAτdτ (7.28)

φ(τ)T =
∫ τ

0

eA(τ−γ)BL(γ)Tdγ, (7.29)

subject to the linear inequality constraints that are formed from the previous
analysis. When set-point following is required in the predictive control, if it



258 7 Continuous-time MPC with Constraints

is a piece-wise constant signal, the last block element corresponding to the
output y will be the error signal between the actual and desired signals of the
output.

Finding the numerical solution to the continuous-time predictive control
with constraints is concerned with the problems of constrained minimization
where the constraint functions are linear and the objective function is a posi-
tive definite quadratic function. Similar to the discrete-time case, because the
constraint functions are expressed in the form of linear inequalities, in gen-
eral, the solutions involve quadratic programming procedures as outlined in
Chapter 2.

Tutorial 7.3. In this tutorial, we will produce a MATLAB function that per-
forms constrained control for a continuous-time system. The program is writ-
ten for a MIMO system, and we only impose constraints on the first sample
of the control signals (both derivative and amplitude). sp is the set-point sig-
nal, which has the same number of rows as the output and number of columns
greater than or equal to the simulation time Nsim. The plant model is described
by (Ap, Bp, Cp), and the augmented model is described by (A,B,C). Lzerot is
the data matrix for reconstructing the derivative of the control from Laguerre
functions. M is the data matrix for the inequality constraints (Mη ≤ γ) where
η is the Laguerre parameter vector. h is the sampling interval. The initial con-
ditions of the plant are specified by the data vectors xm, u, y.

Step by Step

1. Create a new file called cssimucon.m. We will set the initial conditions
and the data vector γ. Enter the following program into the file:

function [u1,y1,udot1,t]=
cssimucon(xm,u,y,sp,Ap,Bp,Cp,A,B,C,N_sim,Omega,Psi,
K_ob,Lzerot,h,M,u_max,u_min,Deltau_max,Deltau_min);
up=u;
gamma=[(u_max-up);(-u_min+up);Deltau_max;-Deltau_min];
[m1,n1]=size(Cp);
[n1,n_in]=size(Bp);
X_hat=zeros(n1+m1,1);

2. In order to incorporate the set-point signal in the simulation, we define a
vector Xsp, which has the same dimension as the observed state with all
zero elements except the last m1 rows as the set-point signal. The state
feedback variable Xf is defined and the constrained control problem is solved
using the MATLAB function QPhild.m (see Section 2.4.4 in Chapter 2).
With the optimized udot (u̇), the control and observer state are updated.
Continue entering the following program into the file:

for kk=1:N_sim;
Xsp=[zeros(n1,1);sp(:,kk)];



7.3 Numerical Solutions for the Constrained Control Problem 259

Xf=X_hat-Xsp;
eta=QPhild(Omega,Psi*Xf,M,gamma);
udot=Lzerot*eta;
u=u+udot*h;
udot1(1:n_in,kk)=udot;
u1(1:n_in,kk)=u;
y1(1:m1,kk)=y;
X_hat=X_hat+(A*X_hat+K_ob*(y-C*X_hat))*h+B*udot*h;

3. We update the plant state and output in the simulation. (If the predictive
control were implemented on a real plant, then the control signal would
be sent to the actuator and the output y would be the signal sensed in the
plant operation.) Continue entering the following program into the file:

xm=xm+(Ap*xm+Bp*u)*h;
y=Cp*xm;
up=u;
gamma=[(u_max-up);(-u_min+up);Deltau_max;-Deltau_min];
end
t=0:h:(N_sim-1)*h;

4. Test your program using the data from Tutorial 7.4.

Tutorial 7.4. In this tutorial, we will present a case study of continuous-time
model predictive control with constraints based on an industrial process.

A sugar mill model was presented in Goodwin et al. (2000) for a case study
of control system design. In the study, a single stage of a milling train was
described by the following continuous-time transfer function model:

[
y1(s)
y2(s)

]
=
[
g11(s) g12(s)
g21(s) g22(s)

] [
u1(s)
u2(s)

]
, (7.30)

where the output y1 is the mill torque, and y2 is the buffer chute height; the
input u1 is the flap position and input u2 is the turbine speed set-point. The
four transfer functions are given as

g11(s) =
−5

25s+ 1
; g12(s) =

s2 − 0.005s− 0.005
s(s+ 1)

;

g21(s) =
1

25s+ 1
; g22(s) =

−0.0023
s

.

This process has significant multivariable interaction, nonminimum-phase be-
haviour. Also, the plant contains integrators.

The design specifications for the model predictive control are Q = CTC,
R = I, Tp = 100, N1 = N2 = 6, p1 = p2 = 0.6; and the observer design
specifications are Q1 = I, and R1 = 0.2I. A sampling interval Δt = 0.03
(sec) is suggested for this continuous-time system simulation.



260 7 Continuous-time MPC with Constraints

The constraints are imposed on the derivatives and amplitudes of both u1

and u2, and we only implement them on the first sample of the signals. The
simulation scenario assumes that with zero initial conditions, the output y1
performs a positive unit set-point change, and output y2 performs a negative
unit set-point change, while the constraints are specified as, −1 ≤ u1 ≤ 0;
−3 ≤ u2 ≤ 3; −0.4 ≤ u̇1; −0.4 ≤ u̇2 ≤ 4.

Step by Step

1. When the turbine speed set-point u2 changes, the effect on the mill torque is
almost instantaneous, and this is reflected on the model by having g12(s) as
a proper transfer function (both numerator and denominator are second-
order s-polynomials). The structure of this proper transfer function causes
a problem in the design of predictive control, as we have assumed that
there is no direct connection between the input and output to allow the
computation of receding horizon control law. However, by adding a filter
with a very small time constant to g12(s), we obtain the modified transfer
function as:

g12(s) =
s2 − 0.005s− 0.005
s(s+ 1)(0.1s+ 1)

.

The modified g12(s) is a strictly proper transfer function, and there is no
direct link between u2 and y1.

2. Create a new MATLAB program called sugarmill.m. We will first define
the plant and create the augmented state-space model. Enter the following
program into the file:

num11=-1;
den11=[25 1];
num12=[1 -0.005 -0.005];
den12=conv([1 0],[1 1]);
den12=conv(den12,[0.1 1]);
num21=1;
den21=[25 1];
num22=-0.0023;
den22=[1 0];
Gs=tf({num11 num12; num21 num22},
{den11 den12; den21 den22});
Gs1=ss(Gs,’min’);
[Ap,Bp,Cp,Dp]=ssdata(Gs1);
[m1,n1]=size(Cp);
[n1,n_in]=size(Bp);
A=zeros(n1+m1,n1+m1);
A(1:n1,1:n1)=Ap;
A(n1+1:n1+m1,1:n1)=Cp;
B=zeros(n1+m1,n_in);



7.3 Numerical Solutions for the Constrained Control Problem 261

B(1:n1,:)=Bp;
C=zeros(m1,n1+m1);
C(:,n1+1:n1+m1)=eye(m1,m1);

3. We enter the design parameters and compute Ω and Ψ . Continue entering
the following program into the file:

n=n1+m1;
Q=C’*C;
R=1*eye(2,2);
p1=0.6;
p2=0.6;
N1=6;
N2=6;
Tp1=100;
Tp2=100;
p=[p1 p2];
N=[N1 N2];
Tp=[Tp1 Tp2];
[Omega,Psi]=cmpc(A,B,p,N,Tp,Q,R);

4. We design the observer. Continue entering the following program into the
file:

Q1=eye(n,n);
R1=0.2*eye(m1,m1);
K_ob=lqr(A’,C’,Q1,R1)’;

5. The initial conditions and the set-point signals are specified. Pay atten-
tion to the data structure of the set-point signal. Continue entering the
following program into the file:

xm=zeros(n1,1);
u=zeros(n_in,1);
y=zeros(m1,1);
h=0.03;
N_sim=8*1400;
sp1=ones(1,N_sim);
sp2=[zeros(1,N_sim/2) -ones(1,N_sim/2)];
sp=[sp1;sp2]; %set-point signal

6. Define the constraints by calling ‘Mder.m’ and ‘Mucon.m’. Since we only
impose constraints on the first sample, the second sample of constraints is
neglected (we choose τ = 0.1 as an arbitrary choice). Continue entering
the following program into the file:

[Md,Lzerot]=Mder(p,N,n_in,0.1);
[Mu,Mu1]=Mucon(p,N,n_in,h,0.1);
M=[Mu;-Mu;Lzerot;-Lzerot];



262 7 Continuous-time MPC with Constraints

u_max=[0;3];
u_min=[-1;-3];
Deltau_max=[0.4;0.4];
Deltau_min=[-0.4;-0.4];

7. The constrained control simulation is performed using the function ‘cssimu-
con.m’. Continue entering the following program into the file:

[u1,y1,udot1,t]=cssimucon(xm,u,y,sp,Ap,Bp,Cp,A,B,C,N_sim,
Omega,Psi,K_ob,Lzerot,h,M,u_max,u_min,Deltau_max,
Deltau_min);

Figure 7.1 shows the constrained control results for this example. There are
eight constraints in the case. So it is difficult to take a guess at the active con-
straints, and it is necessary to identify the active constraints in the optimiza-
tion. We have done so by using Hildreth’s quadratic programming algorithm.
If we carefully examine the number of iterations required to identify the active
constraints in the quadratic programming, then we find that the convergence
rate of the Lagrange multipliers is very fast. In fact, it takes about two iter-
ations to achieve the convergence, and this is due to the fact that the active
constraints are linearly independent.

It is seen from Figure 7.1 that all the constraints are satisfied. By com-
paring with the unconstrained case, we see in Figure 7.1 that the response
speed of the constrained control system is slightly slower. The Laguerre pa-
rameters p1, p2, N1 and N2 could be used as performance related tuning
parameters. For instance, in this example, when we choose p1 = p2 = 0.1 and
N1 = N2 = 3, the closed-loop control results are different from the previous
case (see Figure 7.2). In particular, the overshoot and undershoot in y1 are
reduced, and also the constraints on the control signal u2 become active in
shorter time intervals.

7.4 Real-time Implementation of Continuous-time MPC

The essence of continuous-time model predictive control is to minimize the
cost function:

J = ηTΩη + 2ηTΨx(ti) + constant,

subject to the set of inequality constraints:

Mη ≤ γ.

This formulation in the continuous-time case is fundamentally identical to the
one in the discrete-time case. One of the key advantages in using continuous-
time predictive control instead of discrete-time predictive control is that the
design model and the algorithm are robust in a fast sampling environment.
The discrete-time models and predictive control algorithms could encounter



7.4 Real-time Implementation of Continuous-time MPC 263

0 50 100 150 200 250 300 350

−2

−1

0
u1

0 50 100 150 200 250 300 350
−5

0

5

u2

Time (sec)

(a) Control signal

0 50 100 150 200 250 300 350
−1

0

1

D
ot

 u
1

0 50 100 150 200 250 300 350
−1

0

1

D
ot

 u
2

Time (sec)

(b) Derivative of control signal

0 50 100 150 200 250 300 350

0

1

2

y1

0 50 100 150 200 250 300 350

−1

−0.5

0

y2

Time (sec)

(c) Output

Fig. 7.1. Comparison of CMPC with and without constraints. Key: solid-line, with-
out constraints; darker-solid-line, with constraints (−1 ≤ u1 ≤ 0; −3 ≤ u2 ≤ 3;
−0.4 ≤ u̇1; −0.4 ≤ u̇2 ≤ 4)

problems when the system is under a fast sampling condition. Another advan-
tage is that because the design is performed in the continuous-time domain,
the discretization is carried out in the implementation stage and the frame-
work permits the control of an irregular sampled-data system.

Without imposing constraints, the computational requirement of minimiz-
ing the objective function J is negligible because the analytical expression is
presented for the optimal solution with Ω and Ψ computed off-line. There-
fore, implementing a continuous-time predictive control without constraints
is not a challenging task. Also, if it is a single-input and single-output system,
then the closed-form solution of the constrained control problem, introduced
for discrete-time systems in Chapter 2, can be adapted to the applications
in continuous-time. However, when introducing constraints for a multi-input
and multi-output system, it is often necessary to use quadratic programming
procedures to find the active constraints because the violated constraints may
not be the active constraints. An optimal combination of the input signals
needs to be found through the iterative search procedure (see Chapter 2).
Therefore, there is a larger computational demand for finding the optimal



264 7 Continuous-time MPC with Constraints

0 50 100 150 200 250 300 350

−2

−1

0
u1

0 50 100 150 200 250 300 350
−5

0

5

u2

Time (sec)

(a) Control signal

0 50 100 150 200 250 300 350

0

1

2

y1

0 50 100 150 200 250 300 350

−1

−0.5

0

y2

Time (sec)

(b) Output

Fig. 7.2. Comparison of CMPC with different performance parameters. Key: solid-
line (p1 = p2 = 0.6,N1 = N2 = 6); darker-solid-line (p1 = p2 = 0.1,N1 = N2 = 3);
(−1 ≤ u1 ≤ 0; −3 ≤ u2 ≤ 3; −0.4 ≤ u̇1; −0.4 ≤ u̇2 ≤ 4)

solution of the constrained control problem for a MIMO system. Since the
optimal solution cannot be found instantaneously, a computational delay will
occur in the implementation of a continuous-time predictive control. If the
computational rate is faster than the sampling rate in implementation, then
the computational delay is not an issue. However, if the computational rate
is slower than the sampling rate, then the computational delay must be ad-
dressed carefully.

Understanding the Problem of Computational Delay

As we understand, at time ti the receding horizon control is performed within
the optimization window 0 ≤ τ ≤ Tp. Closed-loop feedback is introduced
through the initial condition of the state variable x(ti). Or in the general case,
x(ti) is replaced by its estimate x̂(ti) through an observer. The continuous-
time observer is represented by the observer equation

dx̂(t)
dt

= Ax̂(t) +Bu̇(t) +Kob(y(t) − Cx̂(t)).

With approximation for sufficiently small Δt, at time ti

dx̂(t)
dt

≈ x̂(ti +Δt) − x̂(ti)
Δt

.

Therefore, the estimated future state variable x̂(ti + Δt) is calculated based
on current values of x̂(ti), u̇(ti) and y(ti), using the formula,

x̂(ti +Δt) = (Ax̂(ti) +Bu̇(ti) +Kob(y(ti) − Cx̂(ti)))Δt+ x̂(ti). (7.31)

With the estimated future state variable x̂(ti +Δt) and the set-point informa-
tion r(ti +Δt) as the new initial condition at ti +Δt, the predictive control



7.4 Real-time Implementation of Continuous-time MPC 265

algorithm optimizes J subject to the set of linear inequality constraints to find
the new u̇(ti + Δt). Therefore, the optimization is required to be completed
within the allocated Δt time to avoid any computational delay. If the com-
putational algorithm is sufficiently fast to produce u̇(ti + Δt) on time when
the real-time clock ticks at ti + Δt, then there will not be a computational
delay. However, if the computational speed is not matched with the fast sam-
pling rate, then u̇(ti +Δt) is produced with the time Δt+Δc, and Δc is the
computational delay.

Strategy to Deal with Computational Delay

When computational delay occurs, the implementation clock time ticks at
ti +Δt and the optimal coefficient vector η is not available. To distinguish the
difference, let us call ηc the vector η computed using the information x̂(ti+Δt)
and r(ti +Δt), and ηp the vector η computed using the information x̂(ti) and
r(ti). A common strategy is to replace the optimal control derivative

u̇(ti +Δt) = L(0)T ηc, (7.32)

where ηc is still being computed, by the extended optimal control derivative
from the previously computed ηp with the expression:

u̇(ti +Δt) = L(Δt)T ηp. (7.33)

This is not an optimal solution, but a sub-optimal solution. The difference is
that u̇(ti +Δt) used the estimated state variable x̂(ti), instead of x̂(ti +Δt).
However, we argue that there are two scenarios related to this sub-optimal
solution.

The first scenario is the case where there is no external set-point change or
disturbance occurring at time ti or during the time from ti to ti+Δt. Another
important underlying assumption is that the model (A,B,C) is an accurate
representation of the dynamic system. This statement actually means that the
prediction generated by the model is sufficiently close to the actual output. If
this happens, then

x̂(ti +Δt) = (Ax̂(ti) +Bu̇(ti))Δt+ x̂(ti); r(ti +Δt) = r(ti). (7.34)

The predictive control has taken this prediction into account in its design,
thus the optimal control at time ti + Δt is identical to L(Δt)T ηp and there
is no compromise in the solution. We have demonstrated similar cases in the
examples presented in the discrete-time case (see Chapters 3 and 4).

The second scenario is the case where there are external set-point changes
or disturbances occurring at time ti or during the time from ti to ti + Δt.
Or the predicted response from the model is different from the actual system
response. Then, the information presented in (7.34) is no longer accurate.
There will be a difference between the solutions obtained from L(0)T ηc and



266 7 Continuous-time MPC with Constraints

from L(Δt)T ηp. The changes in the external signals could not be contained
in the information L(Δt)T ηp. Thus, the computational delay appears as a
time delay in the measurement. We emphasize that if computational delay
is anticipated, then the constraints need to be imposed on the time intervals
where the extended control trajectory will be used. For instance, if we prepare
to extend the solution at Δt, then the constraints will be imposed at least at
0 and Δt so to ensure that they are satisfied when computational delay occurs
and ηp is used to replace the unavailable optimal solution ηc.

7.5 Summary

This chapter has discussed continuous-time predictive control with con-
straints. Similar to the discrete-time counterpart, the constraints in the
continuous-time MPC are also placed on the current and future values of
the control signal, and the derivative of the control signal. In addition, if
desired, constraints on the future state variable and plant output are intro-
duced. The constrained control problem in continuous time is formulated as
a minimization of a quadratic cost function subject to linear inequality con-
straints, which is a quadratic programming problem. Similar to the discrete-
time case, the coefficients of the Laguerre functions are the decision variables.
In the solution, Hildreth’s quadratic programming procedure is used to iden-
tify the active constraints, and subsequently the optimal decision variable η
is found. When the set of active constraints can be correctly guessed, the de-
cision variable η is obtained using the closed-form solution (see Chapter 2).
This is particularly useful in the continuous-time case, as a fast sampling rate
is often used to take advantage of the continuous-time setting.

One of the key differences between continuous-time and discrete-time MPC
systems is that the orthonormal basis functions are in the continuous-time
domain. Therefore, when introducing constraints on the future trajectories, a
set of fixed nodes are chosen as the discretized time intervals for the constraints
to be enforced upon. If the nodes were selected to be too close to each other,
then constraints could be redundant. Therefore, a sensible choice needs to be
made from application to application. In any case, the constraints are always
enforced at the current time, and perhaps, one or two nodes are sufficient for
the future time.

When the sampling rate in the implementation is faster than the compu-
tational rate dictated by the quadratic programming procedure, a computa-
tional delay occurs. A natural way to deal with the computational delay is
to extend the optimal control trajectory obtained from previous computation
to the current sample time, through the Laguerre functions and the previous
optimal Laguerre coefficients. Like any other predictor-based approach, this
strategy will work well if the modelling error between the plant and the model
is small. An application of this approach to an inverted pendulum was pre-



7.5 Summary 267

sented in Gawthrop and Wang (2006). The approach was termed intermittent
model predictive control in Gawthrop and Wang (2007).

Problems

7.1. A DC motor with speed as output variable and voltage as input variable
has a first-order transfer function model given by

G(s) =
1

s+ 1

Design a continuous-time predictive controller with constraints for this DC
motor. Assuming zero initial conditions, the output response is required to
follow a positive and a negative step input change where the constraints are
specified as

−0.5 ≤ u̇(t) ≤ 0.5;−1 ≤ u(t) ≤ 1.

The other performance parameters are Q = CTC, R = 1, N = 2, p = 0.5,
and the prediction horizon Tp = 3. Sampling interval Δt = 0.01.

1. Impose the constraints on the first sample of the signal and solve the
constrained control problem analytically.

2. Simulate the constrained MPC system with zero initial conditions, and
a positive unit step reference change at t = 0 and a negative unit step
change at t = 5.

3. Show that without constraints the control signal can be written as com-
ponents of proportional and integral controls,

u(t) = k1

∫
(r(τ) − y(τ))dτ − k2y(t),

where k1 and k2 are the gains of the predictive control system. Present
schematically the configuration of the predictive control system, which is
identical to a traditional proportional integral (PI) control system (see
Astrom and Hagglund, 1995, Johnson and Moradi, 2005).

7.2. Assume that a second-order system has the continuous-time transfer
function

G(s) =
b0

s2 + a1s+ a0
.

Verify that the augmented state-space model using x1(t) = ÿ(t), x2(t) = ẏ(t)
and x3(t) = y(t) has the following form:

ẋ(t) =

⎡

⎣
−a1 −a0 0
1 0 0
0 1 0

⎤

⎦x(t) +

⎡

⎣
b0
0
0

⎤

⎦ u̇(t)

y(t) =
[
0 0 1

]
. (7.35)



268 7 Continuous-time MPC with Constraints

1. Show that a continuous-time MPC based on this model structure has the
control signal in the form:

u(t) = k1

∫
(r(τ) − y(τ))dτ − k2y(t) − k3ẏ(t),

which is equivalent to a proportional integral derivative (PID) controller.
2. Suppose that a1 = 1, a0 = 0.1 and b0 = 1. Find the predictive controller

parameters for Q = CTC, R = 0.1, p = 0.5, N = 2, and Tp = 20.
3. Implement this predictive control system with constraints in a closed-

form solution, assuming sampling interval Δt = 0.01, step reference input
signal, zero initial conditions. The constraints are

−0.1 ≤ u̇(t) ≤ 0.1; − 0.1 ≤ u(t) ≤ 0.1.

4. In the implementation of a PID controller (see Astrom and Hagglund,
1995), a derivative filter is often needed because of the presence of mea-
surement noise. Similarly, you could use a derivative filter in the imple-
mentation here by using the relationship

k3sY (s) ≈ k3s

βk3s+ 1
Y (s),

where k3 is the state feedback gain corresponding to ÿ(t), and β is 0.1 or
less. Use of an observer is another option in the presence of measurement
noise. Positioning observer poles at −2,−2.1 and −2.2, implement the
predictive control system. Compare the implementations in the presence
of measurement noise that is simulated using a sequence of zero-mean
white noise with standard deviation of 0.1.

7.3. A distillation column is described by the transfer function model

G(s) =

⎡

⎢
⎢
⎣

0.66e−2.6s

6.7s+1
−0.51e−3s

8s+1
−0.3e−s

10s+1
1.5e−8s

4.1s+1
−5e−2s

5.4s+1
−1.3e−2s

9s+1
−0.3e−11s

8s+1
0.1e−10.8s

9s+1
0.9e−2s

50s+1

⎤

⎥
⎥
⎦ , (7.36)

where typically the outputs are product concentration and product purity,
and the inputs are the feed flow, temperature and vaporization rate. A case
study of a distillation train was given in (Wang and Cluett, 2000) for the
purpose of mathematical modelling.

1. Approximate the time delays in the transfer function model using the
second-order Pade approximation where e−ds = (ds−4)2

(ds+4)2 , and find a min-
imal state-space realization (Am, Bm, Cm) of the transfer function model
using MATLAB functions ‘tf’ and ‘ss’ (see e.g., Tutorial 3.3).



7.5 Summary 269

2. Design a continuous-time MPC system that will reject a constant input
disturbance and follow a constant setpoint change without steady-state
errors. The performance specifications are Q = CTC, R = 0.2I where I is
the 3× 3 identity matrix, Tp = 50. N1 = 3, N2 = 3 and N3 = 3. p1 = 1/6,
p2 = 1/5, p3 = 1/40, which are close to the dominant poles of the diagonal
elements in G(s). The Laguerre scaling parameters should not be equal
to the poles in the model as the inverse of matrix A + pI is required in
the solution of convolution integral equations (see section 6.3.3).

3. An observer is required in the implementation, where the observer gain
Kob is found by using the MATLAB lqr function with the pair AT , CT

and the weight matrices are Qob = I and Rob = 0.1I.
4. Simulate the nominal closed-loop performance without constraints, with

zero initial conditions and a unit step reference input for y2 at time 0 and
a unit input disturbance added to u1(t) at time 60. The reference signals
for y1 and y3 are zero. The sampling interval for implementation is 0.01.

5. It is relatively easy to build a SIMULINK simulation program when the
plant has time delays. Writing the predictive control system as state feed-
back control u̇(t) = −Kmpcx(t), without constraints, simulate the predic-
tive control system with the plant model that contains the time delays and
compare the closed-loop responses with the nominal closed-loop responses.

7.4. Continue from Problem 7.3, where we will design and implement con-
strained MPC for the distillation column. The objective of the constraints is
to maintain plant input and output within a desired operating region when
performing set-point changes and rejecting disturbances originating from plant
operations such as upstream feed flow changes. Assuming zero steady state
for the system, introduce unit step change at y2(t) at time t = 0, then in-
troduce unit step input disturbance at u1(t) at time t = 30. The operational
constraints are specified as

−1.3 ≤ u1 ≤ 0, − 0.3 ≤ u2 ≤ 0.1, − 0.4 ≤ u3 ≤ 0.1
−0.1 ≤ u̇1(t) ≤ 0.05, − 0.1 ≤ u̇2(t) ≤ 0.1, − 0.05 ≤ u̇3(t) ≤ 0.05.

Realize the constrained control using Hildreth’s quadratic programming pro-
cedure. Impose the constraints on the first sample of the control signals in
the first set of simulation experiments; then impose constraints on the first
sample, τ0 = 0 and the second sample τ1 = 1.

7.5. Continue from Problem 7.4. The sampling interval for implementation
of the constrained control is 0.01 in the simulation study. In the actual real-
time implementation, the solution of the quadratic programming problem
may require a longer computational time. Assume that the computational
time on average is about 20 times the Δt used in the simulation. Revise the
constrained predictive control scheme to cope with this computational delay
using the technique introduced in Section 7.4. Compare the results obtained
from using this predictive control to the results obtained in Problem 7.4.




