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Abstract Diffusion MRI, which is sensitive to the Brownian motion of molecules,

has become today an excellent medical tool for probing the tissue micro-structure

of cerebral white matter in vivo and non-invasively. It makes it possible to recon-

struct fiber pathways and segment major fiber bundles that reflect the structures in

the brain which are not visible to other non-invasive imaging modalities. Since this

is possible without operating on the subject, but by integrating partial information

from Diffusion Weighted Images into a reconstructed ‘complete’ image of diffu-

sion, Diffusion MRI opens a whole new domain of image processing. Here we shall

explore the role that tensors play in the mathematical model. We shall primarily

deal with Cartesian tensors and begin with 2nd order tensors, since these are at the

core of Diffusion Tensor Imaging. We shall then explore higher and even ordered

symmetric tensors, that can take into account more complex micro-geometries of

biological tissues such as axonal crossings in the white matter.

1 Introduction

The Brownian motion or diffusion of particles observed by Robert Brown in 1828

was first modelled independently by Albert Einstein in 1905 while trying to pro-

vide an experimentally testable hypothesis for the kinetic-molecular theory of mat-

ter [12]. Nuclear Magnetic Resonance (NMR) was discovered by Felix Bloch [7]

and Edward M. Purcell [32] in 1946. In 1950 Erwin L. Hahn published a paper [16]

where he noted that the amplitude of the observed NMR spin echo in the presence of

a magnetic field inhomogeneity would be attenuated due to the inherent Brownian

motion of the spins. Shortly after, in 1954 Herman Y. Carr and Purcell developed a

set of equations [10] to describe this attenuation as a function of discrete motion of

the spins. H. C. Torrey subsequently developed the continuum description in 1956
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[35]. And about a decade later in 1965 E. O. Stejskal and J. E. Tanner designed

the classical pulsed gradient spin echo (PGSE) experiment that made it possible to

measure the coefficients of molecular diffusion from Diffusion NMR [33].

Magnetic Resonance Imaging (MRI) was developed by Paul C. Lauterbur in 1973

[19] making it possible to generate two and three dimensional images using NMR

principles. Peter Mansfield developed the magnetic gradient scheme called Echo

Planar Imaging (EPI) in [25]. This facilitated the development of Diffusion MRI

(D-MRI), which saw its development in [20, 26, 34].

Since then, D-MRI has come a long way today to become a state-of-the-art med-

ical tool for probing the tissue micro-structure of cerebral white matter in vivo and

non-invasively. This became possible due to the concept of Diffusion Tensor Imag-

ing (DTI) introduced in [5, 6] and due to the development of the diffusion propa-

gator formalism. DTI and the diffusion propagator formalism provide ways to infer

the geometry of the underlying medium.

Here we shall take a look at the role played by Cartesian tensors in the mathemat-

ical model of the diffusion propagator and the aquired Diffusion Weighted Images

(DWI) or signal. Second order diffusion tensors were first introduced by Peter J.

Basser in 1994 [5, 6] to accomodate anisotropic diffusion phenomenon in biologi-

cal tissues, and it became the corner stone in medical D-MRI as DTI. Higher Order

and symmetric Tensors (HOT) were recent additions to the propagator and signal

model and were introduced to take into account more complex micro-geometries of

the underlying tissue such as axonal crossings in the white matter.

We shall begin with the fundamental equations that describe the phenomenon of

D-MRI. DTI shall be presented in this framework. DTI with the 2nd order tensor de-

scribes Gaussian diffusion or free or unrestricted diffusion. However, the anisotropy

that the 2nd order diffusion tensor can describe can only arise from restriction,

which would seem to present a contradiction [36]. This shall be resolved by explor-

ing Generalized DTI (GDTI) which will consider the Gaussian model to be a low

spatial frequency approximation of the propagator. Two distinct models of GDTI

were developed and are often known by the names GDTI-1 and GDTI-2. Both shall

be presented, and both employ HOTs to formulate the propagator and signal model.

Finally we shall take a look at recent attempts to apply the positivity constraint on

the diffusivity function while estimating 2nd and 4th order diffusion tensors from

the signal. This is motivated by the fact that diffusion is a positive quantity and neg-

ative diffusion has no physical meaning. However, since the DWIs contain noisy

signal the estimated tensorial diffusivity functions can often have negative values.

2 Principles of Diffusion MRI

We shall begin by examining the fundamental equations governing the principles of

D-MRI, namely the Bloch-Torrey equation and the Stejskal-Tanner equation. These

will provide the basic framework for the 2nd order diffusion tensor and its role

in DTI to describe diffusion anisotropy. We shall then go back to the physics of
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Fig. 1 The PGSE sequence. For the idealised case of rectangular gradient pulses, g represents
gradient intensity, δ gradient duration, and Δ gradient spacing. Courtesy [27].

the problem and present the propagator formulation which will make it possible to

describe more complex anisotropies by introducing HOTs in later sections.

2.1 The Bloch-Torrey Equations

Torrey proposed the addition of two terms to the Bloch equation to account for flow

and diffusion, which gives the Bloch-Torrey equation[9, 35] in the rotating frame

and in the absence of radio frequency (RF) field to describe diffusion NMR as

∂M+

∂ t
=−iγr.g(t)M+−

M+

T2
+∇.(D∇M+)−∇.vM+ (1)

where M+ is the complex magnetization vector, r is the spin position vector, g(t)
is the applied magnetic gradient as a function of time, γ is the gyromagnetic ratio,

T2 is the spin-spin or the transverse relaxation time, v is the flow velocity, D is

the diffusion coefficient, and ∇.(D∇M+) is Fick’s first law of diffusion. We shall

consider the case of pure diffusion where the net flow term ∇.vM+ is zero. The

following development follows closely [9, 36].

The PGSE experiment was designed by Stejskal and Tanner to quantitatively

measure the diffusion coefficient (Fig-1). Essentially the spin system is excited with

a π/2 RF pulse and a magnetic gradient field constant over time δ (which is not

always achievable in practice) is applied to encode the spin positions. Then the

spins are flipped around by a π RF pulse and the same time constant magnetic

gradient is re-applied after a time Δ . The echo signal is finally aquired after a time

TE. If a spin diffuses during the time Δ , then its phase will not return to its original

orientation after the second gradient is applied. This increase of disorder in the spin

phase distribution will cause the spin echo signal to attenuate proportionally to the

mean phase difference.

Equation (1) can be solved by realizing that M+ is a function of both r and t and

by making the substitution
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M+(r, t) = M(t)exp(−ir.G(t))exp(−t/T2), (2)

with

G(t) = γ
∫ t

0
g(t ′)dt ′, (3)

in (1), where we now consider g to be the ‘effective gradient’ incorporating also the

effect of the phase inversion RF pulses. Solving from there for only the real part of

M+(r, t) which corresponds to attenuation due to diffusion, we obtain

M(t) = M(0)exp

(
−D
∫ t

0
G(t ′)T G(t ′)dt ′

)
, (4)

which is the well known Stejskal-Tanner equation [33].

Equation (4), can be rewritten in the following manner by introducing the b-factor

for t = T E

b =
∫ T E

0
G(t ′)T G(t ′)dt ′, (5)

and u a unit vector along the gradient direction g, giving us

M = M(0)exp
(
−bDuT u

)
. (6)

It can be shown that b = γ2g2δ 2(Δ − δ
3 ) [20, 9].

Equation (4) can also be modified to introduce the B-matrix which can take into

account greater variations in the gradient term to account for imaging and spoiling

gradients

B =
∫ T E

0
G(t ′)G(t ′)T dt ′, (7)

then equation (4) becomes

M = M(0)exp(−Dtr(B)) . (8)

The B-matrix was introduced by Basser [5] and is more generic than the scalar b-

factor. This can be seen when the diffusion is anistropic and the diffusion coefficient

D is replaced by the 2nd order diffusion tensor D. We will see the 2nd order diffusion

tensor shortly. In that case equation (8) becomes

M = M(0)exp(−tr(BD)) . (9)

This formulation improves the accuracy by allowing the off-diagonal terms of the

B-matrix to couple imaging and diffusion gradient pulses in orthogonal directions

over and above only the diagonal terms which account for interactions between dif-

fusion and imaging gradient pulses in the same direction [5]. The orthogonal effects

are, however, often overlooked, since their strength is typically small in comparison

to the diffusion-weighting gradients, and using the b-factor (b = B11 + B22 + B33)

greatly simplifies calculations (reference 44 in [27]).
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2.2 Diffusion Tensor Imaging (2nd Order)

The diffusion phenomenon is called isotropic when the apparent diffusion is in-

dependent of the diffusion direction. Anisotropic diffusion occurs when the ap-

parent diffusion varies for different directions. It is generally caused by strongly

aligned micro-structures in the medium. Diffusion can therefore occur more freely

along the aligned micro-structure, while it is restricted in the perpendicular direc-

tion. Anisotropic diffusion provides a convenient way to infer the alignment in the

structure of the medium.

To describe Gaussian anisotropy, Basser introduced the 2nd order diffusion ten-

sor, a 3imes3 symmetric positive definite matrix D to replace the scalar diffusion

coefficient D [5, 6]. Its effect was to modify equation (8) to (9) and (6) to

M = M(0)exp
(
−buT Du

)
. (10)

The uT Du is known as the diffusivity function and is often written as D(g) = gT Dg
with the letter g replacing the letter u.

DTI provided quantitative framework for describing anisotropic diffusion. It

made it possible to identify the alignment of the medium’s micro-structure by di-

agonalizing D and associating its major eigenvector to this dominant alignment di-

rection. This in turn made it possible to trace fibers in the brain’s white matter.

The six independent coefficients {Di j} of D and the unweighted MR image M(0)
can be estimated from a set of seven or more DWIs. The estimation is linear in

its simplest form and can be computed by linearizing equation (10) by taking the

logarithms on both sides

ln(M) = ln(M(0))−buT Du. (11)

By creating a vector out of the unknowns d = [D11,D12,D13,D22,D23,D33,
ln(M(0))]T , by computing an Nx7 matrix Y for the N gradient directions {u}N

i=1

and b-values from (11) such that the i-th row is bi.[ui1ui1,ui1ui2,ui1ui3,
ui2ui2,ui2ui3,ui3ui3,1/bi], and by storing the logarithms of the N observed diffusion

signals along the corresponding gradient directions {ln(Mi)}N
i=1 in an Nx1 vector S,

the unknowns can be estimated as

dopt = argmin
d
||(Yd−S)||2, (12)

which gives

dopt = ((YT Y)−1YT )S, (13)

which is the Moore-Penrose pseudoinverse or the linear Least Square (LS) approach.

More sophisticated methods exist [39], many also estimate the diffusion tensor

D in the presence of noisy signal. Basser in [5] takes into account a Gaussian noise

model, while other approaches constrain the problem further to guarantee positive

diffusivity or to apply spatial smoothing [11, 13, 22, 28, 31, 37].
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2.3 The Diffusion Propagator

It is important to understand that the signal from the PGSE experiment measures

the diffusion of spin bearing particles, and that it is an average of the superimposed

signals of a large number of such particles. Therefore to understand and model the

signal generation one has to be able to both describe the diffusion motion of a spin

bearing particle and also be able to compute something of an ‘ensemble average’

quatity.

Since the Brownian motion of a particle is erratic and random it is convenient to

describe it using a conditional probability density function (PDF) P(r′|r, t) which is

the probability of finding a particle at position r′ at time t given that it was at the

position r at time 0. This PDF or propagator has to then satisfy the diffusion process

described by Fick’s first law

J(r) =−D∇rP(r′|r, t), (14)

with the initial condition

P(r′|r,0) = δ (r− r′), (15)

where J is the particle probability density flux and D is the diffusion coefficient.

Conservation of total conditional probability implies the continuity theorem

∇rJ =−∂P/∂ t (16)

which states that the rate of change of particle displacement probability is equal to

the loss of probability due to the particle flux. Combining (14) and (16) gives us

Fick’s second law

∂P/∂ t = D∇r.(∇rP) . (17)

The differential equation (17) can be solved for unrestricted or free diffusion which

has the special boundary condition P→ 0 as r′ → ∞ and with the initial condition

(15) [9], yielding

P(r′|r, t) = (4πDt)(−3/2) exp
{
−(r− r′)2/4Dt

}
. (18)

Notice in this equation that P only depends on r− r′ and not on the initial position

r.

The Ensemble Average Propagator (EAP) defined as

P(R, t) =
∫

P(r+R|r, t)ρ(r)dr, (19)

can then be computed, where ρ(r) is the particle density. It is a useful quantity and

gives the average probability of any particle to have a displacement R over time t.
For the free diffusion propagator (18), since it is independent of the starting position,

the EAP is the same for all the particles and can be written as
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P(R, t) = (4πDt)(−3/2) exp
{
−R2/4Dt

}
, (20)

by dropping the overhead bar.

This Gaussian propagator describing free or unrestricted diffusion is defined for

isotropic diffusion by the diffusion coefficient D. It can be generalized to the case of

anisotropic diffusion by introducing the 2nd order diffusion tensor D in the equation

(14) to yield

P(R, t) = (|D|(4πt)3)(−1/2) exp
{
−RT D−1R/4t

}
. (21)

DTI, therefore, not only provides a framework for describing anisotropic diffu-

sion, for identifying the major micro-structural alignment direction of the medium

from the eigen-decomposition of D, but also for connecting the signal (10) to the

Gaussian propagator formulation (21) using the tensor D.

The simplicity of the Gaussian or free diffusion both in terms of a model and

computational load make DTI today the preferred approach in D-MRI. The decom-

position and easy geometric interpretation of the 2nd order tensor D also plays in

its favour. However, one would notice the paradox that though free diffusion is de-

scribed by a Gaussian EAP, anisotropy can occur only in the presence of restriction.

This seeming contradiction is the motivation to move on to a more generic prop-

agator formulation. It will help us understand the Gaussian propagator as a low

spatial frequency approximation of the EAP. It will also provide us with a frame-

work to introduce HOTs to be able to describe more complex geometries such as

fiber crossings.

2.4 The Fourier Relationship

Let us assume that δ is infinitesimally short, which we shall denote as the short

gradient pulse (SGP) condition. For the sake of simplicity let us also assume at first

without loss of generality that the gradients are applied along the x-axis and that

g denotes only the magnitude of the gradient vector (Fig-1) [27]. The dephasing

resulting from the two gradient pulses is then

φ1 = γ
∫ δ

0
gx1dt = γgδx1, (22)

φ2 = γ
∫ Δ+δ

Δ
gx2dt = γgδx2, (23)

where x1 = x(t = 0) and x2 = x(t = Δ) are the position vectors. The SGP condition

allows for x(t) to be constant over the integrals. The sign of φ1 and φ2 are opposite

due to the π RF pulse. Therefore the total dephasing due to both the gradient pulses

of one particle is

φ = φ2−φ1 = γgδ (x2− x1). (24)
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And so the complex signal from one particle is

c = eiφ = eiγδg(x2−x1) = eiγδgX , (25)

where X is the net displacement due to diffusion along the x-axis. In the general

case without assumptions on the gradient, which would then have the value g and

the net displacement vector R the complex signal is given by

c = eiγδg.R . (26)

To compute the ensemble average complex signal, we have to again take into

account that the signal is the superimposed signals from a large number of spin

bearing particles whose displacement probability is the EAP P(R, t), therefore

C(q, t) =
〈
eiq.R〉 =

∫ ∞

−∞
eiq.RP(R, t)dR (27)

= F [P(R, t)], (28)

where q = γδg, and 〈...〉 denotes the ensemble average. The ensemble average com-

plex signal is, therefore, the Fourier transform of the EAP. The propagator can there-

fore be estimated by taking the inverse Fourier transform of the complex signal

P(R, t) = F−1[C(q, t)]. (29)

What is interesting, however, is that it can be shown that for a pure diffusion

process, the inverse Fourier transform of the complex signal is equal to the inverse

Fourier transform of the modulus of the signal [36]

P(R, t) = F−1[|C(q, t)|] = F−1[S(q, t)], (30)

which we shall call the modulus Fourier transform. Hence the diffusion signal

C(q, t) is equal to its modulus C(q, t) = |C(q, t)|= S(q, t).
This establishes the Fourier relation between the signal and the EAP. Diffusion

Spectrum Imaging (DSI) uses this relation to compute the propagator from the signal

[38]. However, it requires aquiring the signal from a detailed sampling of q-space

and therefore suffers from lengthy aquisition times.

2.5 Cumulant Expansion of the Propagator

Equation (27) can also be used to interpret the signal as the characteristic function

or the complex cumulant generating function of the EAP. This realization permits

us to rewrite the logarithm of the signal in function of the cumulants of the EAP. For

simplicity of notation we do this for the one dimensional case along, say, the x-axis
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ln(C) =
∞

∑
n=1

κn
(iγδg)n

n!
, (31)

where κn are the cumulants. We shall see in the three dimensional case that these

cumulants are HOTs. Assuming a pure diffusion process it can be shown that all

odd order cumulants are zero or that the EAP is an even function with respect to the

displacement variable. The signal is therefore the modulus signal S.

Truncating the cumulant expansion (31) after the second term yields a signal

from a Gaussian EAP with κ1 = μ the mean and κ2 = σ2 the variance. Comparing

to the free Gaussian propagator from equation (20) and considering it in the one

dimensional case gives κ1 = 0 and κ2 = 2Dt. This implies that the logarithm of the

diffusion signal is

ln(S) =−κ2
(γgδ )2

2
= −γ2g2δ 2ΔD (32)

≈ −bD, (33)

Equation (33) is essentially equation (6). The SGP condition therefore yields a sig-

nal that differs from the finite pulse experiment (33) by δ/3.

Hence, assuming the SGP condition, the Gaussian propagator or the free diffu-

sion can be viewed as the low spatial frequency approximation of the EAP.

2.6 Diffusion Kurtosis Imaging

The cumulant expansion allows us to naturally characterize the deviation of the

diffusion from the Gaussian behaviour due to restriction by considering the higher

order cumulants [18]. For example truncating the expansion after the fourth order

[27] yields

ln(S) =−κ2
(γgδ )2

2
+κ4

(γgδ )4

4!
. (34)

By defining the excess kurtosis, or the fourth standardized moment as

K =
κ4

κ2
2

, (35)

and again substituting the value of κ2 from (20) gives

κ4 = Kκ2
2 = 4KD2Δ 2, (36)

which therefore yields
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ln(S) = −bD+
4KD2Δ 2(γgδ )4

4!
(37)

= −bD+
1

6
b2D2K. (38)

This makes it possible to directly estimate the diffusion kurtosis by taking three

DWI measurements for different b-values along any gradient direction (including

the b = 0 unweighted image). This approach is, therefore, known as Diffusion Kur-

tosis Imaging (DKI) [18].

For anisotropic diffusion in three dimensions the diffusion coefficient D is a 2nd

order Cartesian tensor D and the kurtosis coefficient K becomes a 4th order Carte-

sian tensor K(4).

The kurtosis is a measure of the peakedness of the EAP and tells us if the diffu-

sion is more sharply peaked or less sharply peaked than a Gaussian or free diffusion.

Gaussian diffusion corresponds to K = 0. The cumulant expansion has, however, a

finite radius of convergence centered around b = 0, and, therefore, DKI is useful at

intermediate and low b-values.

3 Higher Order Tensors in D-MRI

Tensors in the form of 2nd order diffusion tensors at the core of the DTI framework

allow for the inference of the medium’s micro-structure analytically and quanti-

tatively. The EAP formulation, however, generalizes the anisotropy model of the

diffusion tensor by considering the Gaussian propagator as a low spatial frequency

approximation. This is done from the cumulant expansion of the EAP. In DKI we

see higher order cumulants being used, especially the 4th order cumulant which is a

4th order Cartesian tensor to examine the deviation of the diffusion from Gaussian

or free diffusion.

The EAP formulation offers the possibility of extracting more complex geomet-

ric information of the medium’s micro-structure, such as fiber crossings, by admit-

ting more general anisotropy models. The anisotropy is often modelled using HOTs,

such as in GDTI, which lend greater geometric details to the propagator with their

increased multi-linearity. However, it must be noted that the GDTI models are phe-

nomenoligical or that the order of the tensors are increased to fit the diffusion signal

data more closely.

At this point it is relevant to mention D-MRI reconstruction schemes that attempt

to be model-free or model-independent. The classical approach along this line is

DSI. Q-Ball Imaging (QBI) is another [36]. QBI computes a function known as the

Orientation Distribution Function (ODF) which is the radial integration of the EAP.

No models are set for the propagator however.
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3.1 Generalizing Fick’s Laws

Generalized Diffusion Tensor Imaging tries to model the diffusion signal containing

anisotropies suspected to be more complex than Gaussian anisotropy using higher

order tensors. Two GDTI models have been proposed. Both modify Fick’s laws of

diffusion to accomodate non-Gaussian diffusion.

Let us go back to equations (14) and (17) and rewrite them for J the flux, D the

diffusion coefficient, and C the concentration as:

J = −D∇C (39)

∂C
∂ t

= D∇2C. (40)

And in the case of Gaussian-anisotropic three dimensional diffusion the equations

become

J = −Di j∇ jC (41)

∂C
∂ t

= tr(Di j∇2
i jC), (42)

where Di j are the coefficients of the 2nd order tensor D. In equations (41) and (42),

we use Einstein’s notation convention and a repetition of indices, such as Di j∇ jC,

implies a summation over the repeated index over all its possible values ∑ j Di j∇ jC.

Two generalizations to Fick’s laws were proposed independently by the authors

in [24] and [30]. They are sometimes referred to as GDTI-1 and GDTI-2 respectively

[27].

In GDTI-1, Fick’s laws in three dimensions are written as an infinite sum of

products of tensors of increasing orders with partial derivatives of C of increasing

orders

Ji1 = −
∞

∑
k=2

[
D(k)

i1i2...ik

∂ (k−1)C
∂xi2∂xi3 . . .∂xik

]

= −
∞

∑
k=2

[
D(k)

i1i2...ik
∇(k−1)

i2...ik
C
]

(43)

∂C
∂ t

=
∞

∑
k=2

[
D(k)

i1i2...ik
∇(k)

i1i2...ik
C
]
, (44)

where D(k)
i1i2...ik

are the coefficients of the k-th order three dimensional Cartesian

diffusion tensor D(k), by an abuse of notation ∇(k)
i1i2...ik

C denotes the k-th order partial

derivatives of C, and we again employ Einstein’s notation convention of a repetitive

index to represent summation. GDTI-1 modifies the fundamental relation between

the flux and the concentration in Fick’s laws.

In GDTI-2, Fick’s laws in three dimensions for spin bearing particles under the

influence of a magnetic gradient g are written for a given order k as
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J = −Di1i2...ik gi1gi2 . . .gik ∇C (45)

∂C
∂ t

= Di1i2...ik gi1gi2 . . .gik ∇2C, (46)

where Di1i2...ik are the coefficients of D(k), gii . . .gik are components of the gradient

g, and we use Einstein’s notation convention for the indices. GDTI-2 modifies Fick’s

law by replacing the diffusion coefficient by a generalized diffusion function.

3.2 GDTI-1

In [24] the author uses the modified Fick’s law (44) in the Bloch-Torrey equation

(1). Solving this yields the diffusion function

D(g) =
∞

∑
k=1

[
i2kD(2k)

l1l2...l2k
B(2k)

l1l2...l2k

]
, (47)

where i is the imaginary number, B(k)
l1l2...lk

are the coefficients of the k-th order Carte-

sian tensor B(k) that is the generalization of the B-matrix (7), and we again use Ein-

stein’s summation notation. We only retain the even ordered diffusion tensors here,

unlike in the authors presentation [24]. This is justified by the explanation that the

even ordered tensors account for the magnitude of the signal while the odd ordered

tensors (on the imaginary axis) account for the phase, and as we have seen earlier,

for a pure diffusion process the signal is equal to the modulus Fourier transform of

the propagator.

What makes GDTI-1 attractive is that with this form of the diffusion function

and given the Fourier relation between the propagator and the signal, it is possible

to reconstruct the propagator as a function of the estimated higher order diffusion

tensors. This can be seen by replacing the diffusion function (47) in the linearized

model of the signal, given by taking logarithms on both sides of equation (9), which

yields

ln

(
M

M(0)

)
=

∞

∑
k=1

[
i2kD(2k)

l1l2...l2k
B(2k)

l1l2...l2k

]
. (48)

The cumulant expansion of the signal (31) written in the three dimensional case

using Einstein’s summation notation is

ln(S) =
∞

∑
j=1

⎡⎣i2 j
K(2 j)

l1l2...l2 j
ql1 ql2 . . .ql2 j

2 j!

⎤⎦ , (49)

where only the even ordered cumulants are non-zero, K( j)
l1l2...l j

are the coefficients

of the j-th order cumulant K( j) which is now a j-th order Cartesian tensor, and
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ql1ql2 . . .ql2 j are the coefficients of q = γδgu with u the unit vector in the direction

of the gradient pulse satisfying the SGP condition.

Comparing equations (48) and (49) reveals [24]

K(n)
l1l2...ln = (−1)nn!D(n)

l1l2...ln

(
Δ − n−1

n+1
δ
)

≈ (−1)nn!D(n)
l1l2...lnΔ , (50)

or in other words the higher order cumulants K(n) can be computed from the dif-

fusion tensors of the same order D(n) that parameterize the generalized Fick’s law

(46), while the diffusion tensors can be estimated from the signal or DWIs using the

linear LS approach [23].

It is then possible to reconstruct the propagator as a function of the cumulants

using the Gram-Charlier series [24]

P(r) = N(0,K(2)
l1l2

)×

⎛⎝1+
K(4)

l1l2l3l4
4!

Hl1l2l3l4(r)+ ...

⎞⎠ , (51)

where N(0,K(2)
l1l2

) is the normal distribution with zero mean and covariance matrix

K(2)
l1l2

, and Hl1l2...ln(r) is the n-th order Hermite tensor.

If pl1l2 be the components of N(0,K(2)
l1l2

)−1, and if wl1 = pl1l2rl2 , then [24]

Hl1l2l3l4(r) = wl1wl2wl3wl4 −6w(l1 wl1 pl3l4) +3p(l1l2 pl3l4), (52)

where indices within parantheses designate that the term is to be averaged over

all permutations of those indices that produce different terms, remembering that

pl1l2 = pl2l1 and wl1wl2 = wl2wl1 . This gives the components of the fourth order

Hermite tensor for completeness.

3.3 GDTI-2

In [30] the author modifies the Bloch-Torrey equation (1) by replacing the diffusion

term described by Fick’s classical law by the modified diffusion law of equation

(46). Solving this modified Bloch-Torrey equation yields the diffusion function of

order k

D(g) =
3

∑
i1=1

3

∑
i2=1

. . .
3

∑
ik=1

Di1i2...ik gi1gi2 . . .gik . (53)

which can be seen as a extension of the Gaussian diffusion function defined for the

2nd order tensor
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D(g) = gT Dg =
3

∑
i=1

3

∑
j=1

Di jgig j. (54)

The k-th order diffusion tensor D(k) has to be of even order and symmetric. The

symmetry constraint implies that the coefficients Di1i2...ik are equal under any per-

mutation of the indices, yielding

N(k) = (k +1)(k +2)/2 (55)

independent coefficients. These unknowns can be estimated from the diffusion sig-

nal or DWIs in exactly the same fashion as the unknowns of DTI were estimated –

by constructing the vectors d, S and the matrix Y appropriately. One can then again

use the linear Least Squares approach (13).

The estimated diffusion function D(g) allows to approximate the diffusion signal,

by extrapolating, everywhere in q-space. The EAP has to be, therefore, computed

from the diffusion function by extrapolating the diffusion signal and then by numer-

ically computing its inverse Fourier transform (29). This does not give a closed form

for the propagator. However, since the diffusion function is more complex, it allows

the propagator to model complex anisotropies such as fiber crossings.

4 Positivity Constraints

Diffusion is a positive quantity and negative diffusion does not correspond to any-

thing physical. This is the reason behind introducing a positive definite 2nd order

diffusion tensor by Basser in DTI [6]. However, since the signal is often noisy it

is common to estimate non-positive definite tensors using the linear LS approach.

Tackling this problem revealed that 3×3 symmetric positive definite diffusion ten-

sors belong to a Riemannian space, with a Riemannian metric which assigns an

inner product to each point of this space. In fact two affine invariant metrics were

proposed that rendered the space of symmetric positive definite matrices S+ com-

plete, allowing various tasks like interpolation and geodesic computation to be natu-

rally confined to this space. These were the Riemannian metric [13, 28, 31, 22] and

the Log-Euclidean metric [1, 2]. The linear LS approach uses the Euclidean metric

of R3x3.

It is well known, and as we have seen, DTI, using 2nd order tensors, cannot

model complex anisotropic diffusion phenomenon like fiber crossings. It is lim-

ited to a single dominant alignment direction (one major eigenvector), and in the

case of crossing fibers the tensors become oblate or spherical. GDTI overcomes this

shortcoming by estimating the diffusion function with HOTs. However, HOTs in

GDTI are also estimated using the linearized LS approach which doesn’t guaran-

tee a positive diffusion function. The problem of guaranteeing a positive diffusion

using HOTs is rendered hard by the increased multi-linearity of the tensors. Two ap-
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proaches were proposed recently to tackle 4th order diffusion tensors in the GDTI-2

model. These shall be presented here.

4.1 Riemannian Approach

In [15] the authors propose to extend the Riemannian framework from 2nd order

tensors to the space of 4th order tensors by mapping a 4th order 3D tensor to a 2nd

order 6D tensor which is a 6×6 matrix. Then they proceed to use the Riemannian

framework for S+ in the space S+(6) to guarantee a positive diffusion function.

A 4th order tensor is defined to be a linear transformation A(4) : Lin(V ) →
Lin(V ), where V is a vector space over Rn [29]. The double-dot-product is intro-

duced as A(4) : D(2) = Ai jklDkl , using Einstein’s summation notation, where D(2)

is a 2nd order tensor. Transpose A(4)T is then defined as 〈A(4) : D(2) | C(2)〉 =
〈D(2) | A(4)T : C(2)〉 using the inner-product 〈. | .〉 in the space of 2nd order ten-

sors. And the Euclidean inner-product in the space of 4th order tensors is defined to

be 〈A(4) | B(4)〉= tr(A(4)T B(4)).
A 4th order tensor satisfying major and minor symmetries has 21 independent

coefficients, in three dimensions, and has an eigen decomposition. If it satisfies to-
tal symmetry it has 15 independent coefficients. This symmetry corresponds to the

symmetric HOTs in GDTI, and by replacing k = 4 in (55) one can arrive at the same

number of independent coefficients.

A proposition [29] states that

〈A(4)
s | B(4)

a 〉= tr(A(4)
s B(4)

a ) = 0, (56)

where B(4)
a is the remainder or anti-symmetric part that remains when the totally

symmetric part B(4)
s of a tensor B(4) is subtracted from itself.

When a 4th order tensor in three dimensions A(4,3), satisfies major and minor

symmetries it can be mapped to a symmetric 2nd order tensor in six dimensions

A(2,6) [4, 29]. The double-dot-product, for a symmetric 2nd order tensor D(2,3),

can be rewritten as a matrix vector product A(4,3) : D(2,3) = A(2,6)d(1,6), where

d(1,6) = [D11,D22,D33,
√

2D12,
√

2D13,
√

2D23]T , where Di j are the six independent

coefficients of D(2,3). The diffusion function of GDTI-2 (53) for order 4 can then be

written as

D(g) = D(2,3) : A(4,3) : D(2,3)

= tr(A(4,3)G(4,3)), (57)

where D(2,3) = g⊗g, with g the gradient, ⊗ the outer-product, and G(4,3) = g⊗g⊗
g⊗g, a totally symmetric 4th order tensor. For computations the equivalent matrix

formulation can be used instead

D(g) = d(1,6)T
A(2,6)d(1,6). (58)



330 Ghosh and Deriche

The 4th order diffusion tensor A(4,3) can be estimated in S+(6) by using the

Riemannian metric and an M-estimator Ψ , to account for outlier data, along the

lines of [21]. The error energy functional that has to be minimized is

E(A(2,6)) =
N

∑
i=1

Ψ
(

1

bi
ln

(
M

M(0)

)
+

d(1,6)T
i A(2,6)d(1,6)

i

)
, (59)

where N is the number of DWIs aquired, as a non-linear gradient descent problem.

The gradient of this functional using the Riemannian metric in S+(6) is

∇E =
N

∑
i=1

Ψ ′(ri(A(2,6)))A(2,6)d(1,6)
i

(
A(2,6)d(1,6)

i

)T
, (60)

where ri(A(2,6)) = 1
bi

ln
(

M
M(0)

)
+ d(1,6)T

i A(2,6)d(1,6)
i . Since A(2,6), is estimated in

S+(6), the diffusion function (58) is guaranteed to be positive for any g. However,

since A(2,6) is estimated in S+(6), it has 21 independent coefficients, while a 4th

order diffusion tensor is totally symmetric and can have only 15. This indeterminacy

can be overcome by noticing that G(4,3) is totally symmetric, therefore

D(g) = tr(A(4,3)G(4,3))

= tr((A(4,3)
s +A(4,3)

a )G(4,3))

= tr((A(4,3)
s G(4,3)), (61)

where the last equality comes from equation (56), A(4,3)
s contains the coefficients of

the 4th order diffusion tensor and A(4,3)
a , the residue, contains the excess parameters.

The symmetry constraint of ||A(4,3)
a || = 0 can, therefore, be applied by projecting

A(4,3) to its symmetric part A(4,3)
s .

4.2 Ternary Quartics Approach

The authors in [3] were the first to attempt a positivity constraint on the 4th order

diffusion tensor. The diffusion function of GDTI-2 (53) for order 4 was rewritten as

D(g) = ∑
i+ j+k=4

Di jkgi
1g j

2gk
3, (62)

due to the bijection that exists between a symmetric tensor of order k and a homo-

geneous polynomial of degree k. In this form, the diffusion function can be seen to

be a function of the three variables g1,g2,g3, and of total degree four. It is a Ternary
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Quatic. The positivity constraint on the diffusion function requires the ternary quar-

tic to be positve for any values of the three variables. Hilbert proved in 1888 [17]

that

Theorem 1 Every non-negative real ternary quartic form is a sum of three squares
of quadratic forms.

Using this theorem, the diffusion function (62) can be parameterized as

D(g) = (vT q1)2 +(vT q2)2 +(vT q3)2

= vT QQT v = vT Gv, (63)

where v contains the monomials consisting of the gradient coefficients [g2
1,g

2
2,

g2
3,g1g2,g1g3,g2g3]T , Q = [q1|q2|q3] is a 6× 3 matrix, and G = QQT is the 6× 6

Gram Matrix which contains 18 independent coefficients, of which 15 are of the

4th order diffusion tensor. The coefficients of the diffusion tensor can be extracted

from G using a map described in [3], and which closely resembles the map used in

[4, 29].

Parameterized in this fashion, with Q estimated from the DWIs, G computed

from Q, to finally extract the coefficients of the 4th order diffusion tensor from G,

ensures that the diffusion function, a ternary quartic, is always non-negative. The

energy functional to estimate Q from N DWIs is

E(Q) =
N

∑
i=1

(
Mi−M(0)e−bivT

i QQT vi
)2

. (64)

For any given Q, however, it is possible to compute a whole family of {Q′}s
such that Q′Q′T = QQT = G, from the group of rotation matrices R, since they

are orthogonal and, therefore, RRT = I, where I is the identity matrix. This can be

seen by constructing Q′ = QR, since Q is 6imes3 and R is 3imes3, and computing

Q′Q′T = (QR)(QR)T = QQT . To reduce this infinite solution space to a finite set

of solutions, Q is separated into its upper and lower 3imes3 blocks A and B and

re-parameterized via a QR-decomposition of its upper block A as

Q =
(

TR
B

)
=
(

T
C

)
R, (65)

where TR is the QR decomposition of A, T is a lower trangular matrix, R is an or-

thogonal matrix, and C = BRT . Re-parameterized in this fashion Q now has exactly

15 independent coefficients which corresponds to the number of unknowns of the

4th order diffusion tensor, and R is simplified when computing QQT .

The authors also proposed a distance function between two 4th order diffusion

tensors A1 and A2 for spatial regularization. It is defined as

dist(A1,A2) =
1

4π

∫
S2

(D1(g)−D2(g))2 dg, (66)
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where D1(g) and D2(g) are the diffusion functions that correspond to A1 and A2, and

the integral is over the unit sphere S2. This metric is invariant to rotations and can

be computed analytically as a function of the coefficients of the 4th order difference

5 Conclusion

Since its inception in the mid 1900s, Diffusion MRI has today become a state-of-

the-art medical tool for probing cerebral white matter. Its strength lies in being able

to infer the micro-structure of the biological tissue non-invasively and in vivo by

reconstructing a ‘complete’ diffusion image by integrating the partial information

from DWIs. This is possible due to the anisotropic phenomenon of diffusion in

mediums with strongly alligned micro-structures.

Starting from the fundamental equations that describe the diffusion phenomenon,

we have presented here the role played by Cartesian tensors in modelling this

anisotropic diffusion and from there extracting the geometric information of the un-

derlying tissue. DTI, using 2nd order diffusion tensors was able to model Gaussian-

anisotropy and from there extract a single major diffusion direction or structural

alignment from its eigen-decomposition. This allowed to trace fibers in the white

matter.

However, we saw how the propagator formulation generalized on DTI by con-

sidering the Gaussian propagator to be a low order spatial approximation of the

actual EAP. It was then possible to model the general EAP by employing higher or-

der Cartesian diffusion tensors which were capable of accounting for more complex

anisotropic diffusion phenomena such as fiber crossings.

In the last section we tackled the problem of the positivity constraint on the dif-

fusion function. Diffusion being a physical phenomenon, negative diffusion does

not correspond to anything. However, in the presence of noisy data straightforward

linear Least Squares approximation can result in a non-positive diffusion function.

This had been tackled by the Riemannian metric formulation in the case of DTI. We

saw two recent methods which attempted to tackle this problem in the case of 4th

order diffusion tensors using the GDTI-2 model.

Tensors play an important role in Diffusion MRI. Higher order tensors are a re-

cent addition, but the 2nd order diffusion tensor in DTI is a cornerstone technique

in the clinical scenario today. Recent work in [8, 14] have shown how it is possible

to use higher order Cartesian tensors to extract the maxima from relevant spherical

functions such as the Orientation Distribution Function (ODF) with great precision.

Since the maxima of the ODF indicate fiber directions, extracting them correctly

is of fundamental importance in tracing fiber tracts in regions where complex fiber

configurations like crossings are possible.
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tensor ∆∆∆ = A1−A2.
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