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Preface

Over the past few years, tensor processing tools have become more and more popu-

lar in the fields of computer vision and image processing, and tensor-valued image

modalities have also been more commonly employed, with the remarkable example

of Diffusion Tensor Magnetic Resonance Imaging.

However, tensor applications and tensor processing tools arise from very dif-

ferent areas. This can prevent important advances from rapidly spreading over the

scientific community. Even though novel discoveries can greatly benefit many het-

erogeneous fields such as medical image processing or multilinear analysis, these

advances are too often kept within the areas of knowledge where they were first

employed.

Given this fact, a compilation of some of the most recent advances in tensor

processing can be a valuable tool for the scientific community, thus providing a

useful reference state of the artfor tensor processing applications as well as a general

insight on the areas where tensor processing is being successfully applied.

The idea behind this book started after the Tensor Workshop held at the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition held in

Anchorage, Alaska, in June 2008. This workshop gathered experts from different

fields working on tensor processing, and some of the ideas presented there were

further developed toghether with the results of the Tensor Workshop held earlier in

Gran Canaria (Spain) in November 2006, which was sponsored by the SIMILAR

Network of Excellence of the European 6th Framework Programme.

As this book comprises theoretical advances and applications regarding very het-

erogeneous areas of image processing and computer vision, it has been organized

into five parts, which are nevertheless preceeded by an introductory chapter about

the different applications of the use of tensors in signal processing. Part I is devoted

to the use of tensors and tensor field processing in general. The processing tools

described in these chapters can be applied in a number of different applications. In

Part II, two tensor techniques for image processing are presented. Later, Part III fo-

cuses on the use of tensors in computer vision applications, such as camera models

or multilinear applications. As medical imaging is one of the areas that has taken

more advantage of the advances of tensor processing, Part IV is dedicated to this

v



vi Preface

issue, collecting applications from Diffusion Tensor Magnetic Resonance Imaging

to strain tensor estimation in cardiac analysis or elastography imaging. Finally, Part

V is devoted to storage, visualization and interfaces with tensors, an issue of consid-

erable importance since this new data modality presents particularities that require

new approaches to these otherwise traditional problems.

The preparation of this book has been an arduous and difficult task. We would

like to thank all the authors for their great effort and dedication in preparing their

contributions. Also, all the reviewers, and specially the members of the editorial

boards of the Tensor Workshops at CVPR’08 and in Gran Canaria in 2006, deserve

our utmost gratitude. Thanks a lot to all of them.

Boston, MA Rodrigo de Luis Garcı́a
Fall 2008 Santiago Aja Fernández



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

A Review of Tensors and Tensor Signal Processing . . . . . . . . . . . . . . . . . . . . 1

L. Cammoun, C. A. Castaño-Moraga, E. Muñoz-Moreno, D. Sosa-Cabrera,
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A Review of Tensors and Tensor Signal
Processing

L. Cammoun1, C. A. Castaño-Moraga2, E. Muñoz-Moreno4, D. Sosa-Cabrera2,

B. Acar5, M. A. Rodriguez-Florido2,3, A. Brun6, H. Knutsson6, J. P. Thiran1

Abstract Tensors have been broadly used in mathematics and physics, since they

are a generalization of scalars or vectors and allow to represent more complex prop-

erties. In this chapter we present an overview of some tensor applications, especially

those focused on the image processing field. From a mathematical point of view, a

lot of work has been developed about tensor calculus, which obviously is more com-

plex than scalar or vectorial calculus. Moreover, tensors can represent the metric of

a vector space, which is very useful in the field of differential geometry. In physics,

tensors have been used to describe several magnitudes, such as the strain or stress

of materials. In solid mechanics, tensors are used to define the generalized Hooke’s

law, where a fourth order tensor relates the strain and stress tensors. In fluid dy-

namics, the velocity gradient tensor provides information about the vorticity and

the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies

the notation of the Maxwell equations. But tensors are not constrained to physics

and mathematics. They have been used, for instance, in medical imaging, where we

can highlight two applications: the diffusion tensor image, which represents how

molecules diffuse inside the tissues and is broadly used for brain imaging; and the

tensorial elastography, which computes the strain and vorticity tensor to analyze

the tissues properties. Tensors have also been used in computer vision to provide

information about the local structure or to define anisotropic image filters.

1Signal Processing Institute Ecole Polytechnique Fédérale de Lausanne Switzerland
Email: {leila.cammoun,JP.Thiran}@epfl.ch
2Center for Technology in Medicine. Department of Signals and Communciations
University of Las Palmas de Gran Canaria.
3 Canary Islands Institute of Technology
Email: {ccasmor, dario, marf}@ctm.ulpgc.es
4 Laboratory of Image Processing. Univ. de Valladolid (Spain)
Email: emunmor@lpi.tel.uva.es
5Electrical-Electronics Eng. Dept. Bogazici University Istanbul Turkey
Email: acarbu@boun.edu.tr
6 Biomedical Engineering Dept. CMIV Linköpings Universitet Sweden
Email: {andbr,knutte}@imt.liu.se
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1 Introduction

It is obvious that processing of higher-dimensional data sets puts high demands on

computer power and storage capacity. Perhaps less obvious is that increasing the

dimensionality of the data also has profound implications for the analysis of the

data. It turns out that the scalar and vector fields are no longer sufficient for the

analysis of data on curved surfaces and representation of high order differential

operators such as the Hessian. Tensor analysis provides the adequate tool for such

cases.

Tensor analysis is a generalization of the notions from vector analysis. The mo-

tivation for the theory is the fact that there are many physical quantities of compli-

cated nature that cannot naturally be described or represented by scalars or vectors.

We could find a lot of examples in various fields: in mathematics as in Riemanian

geometry; in physics or engineering as the stress at a point in a solid body due to

internal forces, the deformation of an arbitrary infinitesimal element of volume of

an elastic body, or the moments of inertia, electrical and thermal conductivity in

anisotropic materials or diffusion, etc. These quantities can be described and repre-

sented adequately only by the more sophisticated mathematical entities called ten-
sors. It is appropriate to visualize tensors as generalizations of the more commonly

known entities such as scalars and vectors. The order of a tensor can be thought

of as the complexity of the entity it represents. While algebra and linear algebra is

applicable to scalars and vectors, tensors of higher order are the building blocks of

multilinear algebra.

2 Tensor Definition

The word tensor was first introduced by William Rowan Hamilton in 1846 in alge-

braic system domain, but the tensor as used in its current meaning was introduced

by Woldemar Voigt in 1899. The notation was developed around 1890 by Gregorio

Ricci-Curbastro under the title absolute differential calculus, and was made acces-

sible to many mathematicians by the publication of Tullio Levi-Civita in 1900. In

the 20th century, the subject came to be known as tensor analysis and around the

year 1915 the introduction of Einstein’s theory of general relativity achieved border

acceptance. In fact, general relativity is formulated completely in the language of

tensors.

Before any further development, it is an interesting task to understand the math-

ematical concept of tensors in order to better exploit their properties for the devel-

opment of specific signal processing algorithms.

In an informal sense, a tensor is a generalized linear quantity or geometrical en-

tity that can be expressed as a multi-dimensional array relative to a choice of basis;

however, as an object itself, a tensor is independent of any chosen frame of ref-

erence. The rank of a particular tensor is the number of array indices required to

describe such a quantity. For example, mass, temperature and other scalar quantities
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are tensors of rank 0; force, displacement and other vector-like quantities are tensors

of rank 1; diffusion, electrical impedance and other anisotropic measurements are

tensors of rank 2. In a more strict sense, a nth-rank tensor in an m-dimensional space

is a mathematical object that has n indices and m×n components and obeys certain

transformation rules. Each index of a tensor ranges over the number of dimensions

of the space. However, the dimension of the space is largely irrelevant in most ten-

sor equations (with the notable exception of the contracted Kronecker delta). Ten-

sors are generalizations of scalars (that have no indices), vectors (that have exactly

one index) and matrices (that have exactly two indices) to an arbitrary number of

indices. Tensors provide in this way a natural and concise mathematical framework

for formulating and solving problems in areas of physics such as elasticity, fluid

mechanics and general relativity. In tensor notation, a vector v would be written vi,

where i = 1, ...,m and a matrix is a tensor of type (1, 1), which would be written ai j.

A more general tensor may have an arbitrary number of indices r + s which may be

of mixed type, consisting of r so-called contravariant (upper indices) and s covariant

(lower indices). While the distinction between covariant and contravariant indices

must be made for general tensors, the two can be considered equivalent for tensors in

a rectilinear coordinate system in Euclidean space, in particular when the coordinate

basis has unit lenght and the metric tensor is the Kronecker delta, δi j. Such tensors,

known as Cartesian tensors, are widely used in fluid mechanics and elasticity to sim-

plify calculations. In the notation for Cartesian tensors, all indices are lowered, ai jk,

since there is no need to discriminate between covariant and contravariant indices.

For tensors in general however, upper indices denote contravariance and lower in-

dices denote covariance and ai j
k is distinct from ai

jk. The ordering of the indices,

from left to right, is also important while the exact letters denoting the indices are

not, for instance ai
j
k and aq

p
r denote the same tensor.

Tensors are used everywhere in natural science, engineering and mathematics,

and to cover every field is a huge task. In the following sections we will describe

the applications of tensors in some important fields, with an overall goal to give an

understanding of how these relate to signal- and image processing in particular.

3 Example of Tensors in Mathematics

Due to the multi-linear nature of tensors, an often used convention in tensor notation

is the so called Einstein summation convention. It means that identically named

indices in tensor expressions are converted to sums over these indices. For instance,

∑i aibi is equivalent to aibi and ∑i ∑ j xigi jy j is equivalent to xigi jy j. Summation is

always from indices 1 . . .m, where m is the dimension of the vector space.

If the vector space has a scalar product, i.e. the metric tensor gi j is known which

is the case in Riemannian manifolds, one may identify covariant and contravariant

indices. A contravariant vector xi may be “lowered” to a covariant vector using the

metric, x j = ∑i gi jxi = gi jxi and in general any contravariant index in a higher or-

der tensor may analogously. By defining the inverse of the metric, gi j by, using the
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Einstein convention, gikgk j = δi
k, one may also “rise” an index, xi = gi jx j. Manipu-

lating the tensor index notation is sometimes referred to as “index gymnastics”. It is

a powerful tool for manipulation of tensors, which nevertheless should be used with

care when presenting tensor calculus to people who are not used to tensor notation.

Tensors are like vectors and scalars defined in vector spaces. With the additional

structure of a Riemannian manifold, where tensor fields are defined in the tangent

space of each point p on the manifold, it is possible to also differentiate tensor fields.

The thing that makes this interesting, and in some cases slightly involved, is the

fact that tensors in different locations on the manifold are not defined in the same

tangent vector space. To compare tensors in different locations on the manifold,

and to differentiate tensor fields which involves comparing tensors at very nearby

locations, one defines the exact meaning of this comparison by the notion of affine

connections. In Riemannian geometry there is a special connection called the Levi-

Civita connection which is particularly natural to use. It is the only torsion-free

Riemannian connection preserving the Riemannian metric. The latter means that the

derivative of the metric tensor is zero, i.e. two metric tensors in different locations

on the manifold must be equal.

Differentiation of a scalar field on a manifold is facilitated by simply taking the

partial derivative of the field in the current coordinate chart being used. Given a

scalar field a, the gradient or partial derivative is denoted a,i and it is referred to as

“comma derivative”. The differentiation of a vector field in a manifold is slightly

more involved. Like in differentiation of vector fields defined for curvilinear coordi-

nates in vector analysis, both the derivative of the basis vectors and the coordinates

must be considered. In differential geometry, this is called semicolon derivative or

covariant derivative. For a contravariant vector field vi, this mixed tensor field is

defined

vi
; j = vi

, j + vkΓ i
k j, (1)

where Γ i
k j is the Christoffel symbol defined by partial derivatives of the metric,

Γ i
k j =

1

2
gim(gmk, j +gm j,k−gk j,m). (2)

One example of an important equation which can now be described for mani-

folds is the geodesic equation, the ordinary differential equation describing parti-

cles moving in the manifold without the influence of any force. For a flat manifold

in Cartesian coordinates this equation is ẍ = 0, a path where the acceleration is zero.

In the current setting for a manifold this translates to conditions on the momentary

velocity, which is now interpreted as a velocity field vi = ẋ, and thus can be handled

by the covariant derivative. The condition ẍ = 0 now translates to the directional

derivative of the velocity field, in the direction of the velocity, which is exactly ẍ.

ẍ = 0⇔ vi
; jv

j = 0⇔ vi
, jv

j + vkΓ i
jkv j = 0⇔ ∂xi

∂ t2
+Γ i

jk
∂x j

∂ t
∂xk

∂ t
. (3)
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In the last step above, the velocity field is again transformed back to time-derivatives

of xi. This equation is an ordinary differential equation (ODE) which can be solved

numerically and sometimes also analytically.

Three examples of manifolds which can be completely described by a single

coordinate chart are the half-sphere, the cone and the hyperbolic plane. In all of these

examples the chart is defined in the unit disk in R2 and by choosing an appropriate

metric tensor field, the characteristics of the three manifolds can be described.

In figure 1 (a) the upper half of a sphere is visualized in 3-D and in (b) a chart

defined in the unit disk representing the same sphere is visualized. The metric of the

upper half of the unit sphere is

gi j(u1,u2) =
[

u1u1−1 −u1u2

−u1u2 u1u1−1

]
i j

. (4)

It is a symmetric positive definite (PD) matrix which determines the scalar product at

a specific point in the 2-D chart. This PD matrix may be visualized by a metric ellip-

soid, i.e. a set of points ai such that the norm is equal to a fixed radius,
√

aigi ja j = r.

In the circles have been calculated as geodesic circles. These are almost the same

but the distance in the manifold is integrated along geodesics instead of using the

scalar product in a particular point. Geodesic circles give very similar results to met-

ric ellipsoids but yields more deformed shapes in areas where the curvature is large

as seen in later examples. For this visualization they may be considered equal.

Another example is the cone, seen in figure 2. The metric of a cone with slope k
is

gi j(u1,u2) =
[

1 0

0 1

]
i j

+
k2

u1u1 +u2u2

[
u1u1 u1u2

u1u2 u1u1

]
i j

(5)

In this example it is possible to see that some geodesic circles are not ellipsoidal

close to the center of the chart.

Finally a more exotic manifold, hyperbolic plane in figure 3. This manifold is not

possible to embed in 3-D, but thanks to the Poincaré disk model seen in figure 3 (b)

it is possible to use differential geometry. The metric of the Poincaré disk model,

defined in the unit disk, is

gi j(u1,u2) =
1

(1−u1u1−u2u2)2

[
1 0

0 1

]
i j

. (6)

3.1 Differential Geometry

Tensors naturally arise in the field of mathematics. In this section we briefly re-

view some important concepts that show the importance of tensors in the field of

differential geometry. The basis of this study relies on the interpretation of the topo-

logical space as a differentiable manifold. Basically, a differentiable manifold is an
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(a) (b)

Fig. 1 a) The upper half of the unit sphere in Cartesian coordinates (x1,x2,x3) ∈ R3 painted with
geodesic circles. b) The chart (u1,u2) = (x1,x2) with the same geodesic circles drawn in the plane.
The ellipsoid-shaped circles in the plane can be regarded as a representation of the metric tensor
field gi j , defined in the tangent plane to each point in the chart. From the metric it is possible to
derive all the relevant geometrical properties of the half-sphere, i.e. to measure area, length and
curvature directly in the chart without considering the embedding in R3.

(a) (b)

Fig. 2 a) A cone in Cartesian coordinates (x1,x2,x3) ∈ R3 painted with geodesic circles. b) The
chart (u1,u2) = (x1,x2). Again the ellipsoid-shaped circles can be considered as a representation
of the metric gi j , which is defined for all points in the unit disc except (0,0).

algebraical structure with the special property that any local neighborhood resem-

bles the Euclidean space, although the global structure might be much more com-

plicated, with a globally defined differentiable structure. In other words, for every

point, its neighborhood is similar enough to Euclidean space to allow one to define

differentiable equations.

For every point P in a manifold M , we can define a vector space with the same

dimension as the manifold which consists of all the possible directional derivatives

at that point. This vector field is called the tangent space at point P, TPM . Its impor-

tance resides in the fact that it allows to define generalized differential equations on

the manifold. In the particular case that the tangent space at every point is equipped
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(a) (b)

Fig. 3 a) A surface with negative curvature embedded in R3. b) The Poincaré disk model of the
hyperbolic plane, drawn with geodesic circles of equal radius. While it is not possible to embed
this infinitely large and curved manifold in R3, differential geometry allow for a complete analysis
in R2 by defining the proper metric tensor in the unit disk. Regular tilings of the Poincaré disk
model are known to a broad audience from the work of the artist M. C. Escher.

with an inner product and it varies smoothly from point to point, the manifold is

called Riemannian manifold. The continuous collection of scalar products on the

tangent space at each point of the manifold is called Riemannian metric and it is

denoted as g. The Riemannian metric, then, is nothing different from a tensor that is

symmetric and positive definite.

Riemannian manifolds are quite interesting structures since it is possible to de-

fine concepts such as lengths of curves, areas, volumes, gradient of functions and

divergence of vector fields by means of the Riemannian metric tensor. Thus, if we

consider a continuously differentiable curve γ(t) : [a,b] �→M on the manifold M ,

we can compute at each point its instantaneous speed vector γ ′(t0) in the tangent

space TM (t0) at any point t0 ∈ [a,b] and the instantaneous speed ‖ γ ′(t0) ‖g, which

is the norm of the speed vector induced by the inner product with metric tensor g. To

compute the length of the curve, we can proceed as usual by integrating this values

along the whole curve:

L(γ) =
∫ b

a
‖ γ ′(t) ‖g dt (7)

The distance between two points of a connected Riemannian manifold is the min-

imum length among the curves joining these points, as shown in Eq. (8). The curves

realizing this minimum for any two points of the manifold are called geodesics.

D(a,b) = inf{L(γ)} (8)
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4 Example of Tensors in Physics and Engineering

In the next sections we identify several physics or engineering domains where ten-

sors arise. In general, the use of second order tensors suits whenever the feature

to be measured is intrinsically anisotropic, like electrical conductivity, diffusion of

particles, etc.

In continuum mechanics there are two tensor magnitudes that are of great impor-

tance. The first one is the stress tensor that measures the internal distribution of force

per unit area. The second one is the strain tensor that measures the deformation per

unit area caused by the action of stress on a physical body. In solid mechanics, these

tensor fields are linked by the generalized Hooke’s Law, where as in fluid dynamics

they are analogically linked by the Navier-Stokes equations.

4.1 Tensors in Solid Mechanics

Actually, Hooke’s law of elasticity is an approximation that states that the amount

by which a material body is deformed (the strain) is linearly related to the force

causing the deformation (the stress), its formula is the well known expression in the

spring case for example:

F =−kx (9)

where x is the elongation distance, F is the restoration force exerted by the spring,

and k is the force constant of the spring. But this approximation is only possible for

small deformation where a linear approximation of the reality is possible (first order

Taylor series). When working with larger deformation this approximation is not

more possible, and the elasticity becomes non linear. The Hooke’s Law is therefore

replaced by its ’tensor form’ which is the generalized Hooke’s Law that links the

stress tensors to the strain tensors.

Stress is a measure of the internal distribution of force per unit area that balances

and reacts to the external loads or boundary conditions applied to a body. It is an

example of a second-order tensor. In three dimensions, a second-order tensor can be

represented by a 3×3 square matrix (containing nine components). However, in the

absence of body moments, the stress tensor is symmetric and can be fully specified

by six components.

In N dimensional space, the stress tensor σi j is defined as follow

dFj =
N

∑
i=1

σi jdAi (10)

where dFj are the components of the resultant force vector acting on a small area

dA. which can be represented by a vector dAi perpendicular to the area element, fac-

ing outwards and with length equal to the area of the element. In three dimensions,
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the internal force acting on a small area dA of a plane that passes through a point

P can be resolved into three components: one normal to the plane and two parallel

to the plane. The normal component divided by dA gives the normal stress, and the

parallel components divided by the area dA give shear stresses.

Strain is the geometrical expression of deformation caused by the action of stress

on a physical body, in the case of the string deformation where the deformation is

small and linear, this deformation is the elongation distance x in Eq. (9). However,

for a small 3-D deformation, the strain tensor, is a symmetric tensor. Its εii diagonal

coefficients are the relative change in length in the i direction where the other terms

εi j are the shear strains.

The deformation of an object is therefore defined by a tensor field, i.e. this strain

tensor is defined for every point of the object. This field is linked to the field of the

stress tensor by a fourth order tensor Ci jkl representing the stiffness in the general-

ized Hooke’s Law as follow:

σi j = ∑
kl

Ci jkl .εkl (11)

These three tensors completely describe the mechanical properties of the material

under study.

If the particular case of isotropic materials, characterized by properties which are

independent of direction in space, the strain tensor expression could be decomposed

as the sum of a constant tensor, known also as the pressure and a traceless symmetric

tensor known as shear tensor:

εi j = (
1

3
εkk1i j)+(εi j−

1

3
εkk1i j) (12)

where 1i j is the unit tensor.

The general form of Hooke’s Law for isotropic material could be written as linear

combination of the stress and the strain tensor:

σi j = 3K(
1

3
εkk1i j)+2G(εi j−

1

3
εkk1i j) (13)

Where K and G are respectively known as bulk modulus and shear modulus.

When the deformation of a body is sufficiently large to invalidate the assump-

tions inherent in small strain theory, finite deformation tensors are used. This is

commonly the case with elastomers, plastically deforming materials and other flu-

ids and biological soft tissue.

4.2 Tensors in Fluid Dynamics

In fluid dynamics, the Navier-Stokes equations are a set of equations that describe

the motion of fluids. These differential equations state that changes in fluid particles

momentum are simply the product of changes in pressure and dissipative viscous
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forces acting inside the fluid. The general form of the Navier-Stokes equations for

the momentum conservation involve the use of tensors as shown in the following

formula:

ρ
dv
dt

= ∇.P+ρ f (14)

where ρ is the fluid density, v is the velocity vector, f is the body force vector and P

is the stress tensor that represents the surface force applied on the fluid and has the

following form:

P =

⎛⎝σxx τxy τxz
τxy σyy τyz
τxz τyz σzz

⎞⎠ (15)

where σ are normal stresses and τ shear stresses.

Another important source of information of tensor nature is the so called velocity
gradient tensor described in Eq. (16). This tensor is given by the spatial gradient of

the velocity vector field denoted by v(x) = [u(x),v(x),w(x)]T and contains the in-

formation on how the velocity is changing in space, which helps to detect important

fluid flow features such as vortices, separation and shocks.

V(x) =

⎛⎜⎝
∂u
∂x

∂u
∂y

∂u
∂ z

∂v
∂x

∂v
∂y

∂v
∂ z

∂w
∂x

∂w
∂y

∂w
∂ z

⎞⎟⎠ (16)

A common practice to identify the relevant features of the fluid flow is to de-

compose V into its symmetric and antisymmetric parts, which yields to the def-

inition of the symmetric tensor VS = 1
2 (V + VT ) and the antisymmetric tensor

VA = 1
2 (V−VT ) [1]. The symmetric part represents the strain tensor with the elon-

gational strains on the diagonal and the shearing strains on the off-diagonal, whereas

the non-null elements of the antisymmetric part contain the components of the vor-
ticity vector, which measures the circulation per unit area of the fluid flow and allow

us to detect and measure the strength of vortices [2].

An eigenanalysis of the velocity gradient tensor is used to classify the local fea-

tures of the flow pattern [3]. In general, we can distinguish two general types of flow

types characterized by the fact that the 3 eigenvalues of V are real numbers or only

1 is real and 2 complex conjugate numbers.

The sign of the real eigenvalues indicates whether the flow is accelerating, if it

is positive, or decelerating, if it is negative, along the direction determined by the

associated eigenvector. The magnitude of the eigenvalues determines the strength.

When there is a complex conjugate pair of eigenvalues it indicates that there is a spi-

ral flow. The magnitude of the imaginary part indicates the strength of the spiraling

flow. If the value is small the flow is hardly swirling, whereas a big magnitude means

that the flow is rotating rapidly about the point. The sign of the real part indicates

whether the flow is converging, if it is negative, or diverging, if it is positive, with

the magnitude of the real part reflecting the strength of the attraction or repulsion.
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The special case where the real part is zero, the flow produces concentric periodic

paths [3].

4.3 Tensors in Electromagnetism

Electromagnetism is a field of science where tensors also arise. The electromagnetic
tensor is an antisymmetric 4×4 second order tensor that describes the electric and

magnetic fields, yielding to a simplification in notation of the Maxwell equations. It

is usually written as:

F =

⎛⎜⎜⎝
0 1

c ex
1
c ey

1
c ez

− 1
c ex 0 −bz by

− 1
c ey bz 0 bx

− 1
c ez by bx 0

⎞⎟⎟⎠ (17)

where [ex,ey,ez]
T are the components of the electric field e, [bx,by,bz]

T are the

components of the magnetic field b and c is the speed of light. The tensor repre-

sentation allows us a compact representation of the Maxwell’s equations in terms of

this tensor and its dual G, which is obtained by replacing the electric components

by the magnetic components and vice versa:

∂ f αβ

∂xβ = μ0 jα (18)

∂gαβ

∂xβ = 0 (19)

where α,β denote the indices of the tensor and jα is a 4-D vector which denotes

the current density. Hence, the electromagnetic field tensor not only is a mathe-

matical object to simplify notation, but it also completely describes the inherent

electromagnetic field.

5 Tensors Usage in Medical Imaging

5.1 Diffusion Tensor Imaging

One of the most interesting applications of tensors in medical imaging is the DT-

MRI (diffusion tensor magnetic resonance imaging) [4]. This is a special kind of

magnetic resonance that shows the motion of water molecules in tissues. Its appli-

cation in brain imaging is of paramount importance, since it allows to identify the

nerve fiber bundles, what is very useful to understand the brain development, or

to diagnose several pathologies like brain ischemia, axon damages or psychiatrics
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problems [5]. In this section we explain how diffusion tensor (DT) is computed

as well as its usefulness in medical issues. Besides, it is described a Riemmanian

framework for DT and how the fiber tracts can be identified and visualized.

5.1.1 Acquisition and Computation

Water molecules have a Brownian motion, that means that they constantly randomly

collide with other molecules. If there are not obstacles in the environment, this effect

causes an isotropic diffusion, which can be seen like a Gaussian distribution of water

molecules released from one point, expanding dynamically [6]. In case of obstacles

constraining motion in some given direction, diffusion becomes anisotropic. This is

what occurs within fibers. Nerves are made up of neurons axons, whose myelin cov-

ering does not allow water diffusion across it. Because of it, fibers can be identified

as areas where diffusion has a clearly main direction.

Anisotropic diffusion has been described by ellipsoids, whose radii represent

diffusion amount in each of the main directions. On the other hand, a symmetric

second order 3× 3 tensor can be visualized like an ellipsoid, whose axes direction

and length are given, respectively, by the eigenvectors and eigenvalues of the matrix

representing the tensor. For this reason, tensors are used to characterize diffusion in

tissues [4], and, in such a way, to describe their structure.

Magnetic resonance images (MRI) of the brain are widely used in neurology to

identify regions like white matter, gray matter or ventricles. MRI consists in the ex-

citation of the tissue with an RF-pulse. When molecules return to their relaxed state,

they release energy, which is measured and translated into pixel intensity in image.

Since different tissues have different energetic behavior, they can be distinguished

in the MRI. However, white matter appears like an homogeneous region, where fiber

structure cannot be notice. Therefore, in order to know about the structural anatomy

of white matter, diffusion measurement becomes necessary. To assess this magni-

tude, the MRI is carried out by applying a pulse sequence, known as Stejskal-Tanner

imaging sequence [7]. It consists in two symmetrically positioned gradient pulses,

with a 180◦ refocusing pulse between them. In such a way, diffusion in a given

direction can be measured.

The aim of the two symmetric pulses is to cancel the phase shift for static spins.

Spins whose location has changed between both gradients do not recover their orig-

inal phase causing energy loss. In order to eliminate the signal not related with

diffusion, two images must be captured, one of them without diffusion weighting,

called S0, and the other one with diffusion weigthing, denoted as S. Both images are

related by the diffusion D through the next equation:

S = S0e−bD (20)

The b-factor is the diffusion weighting factor defined by LeBihan [8], according

to the following equation:
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b = γ2δ 2(Δ − δ
3

) |g|2 (21)

In this equation, γ is the proton gyromagnetic ratio, |g| and δ are the strength and

duration, respectively, of the gradient pulses used to obtained the image, and Δ the

time between the two gradient pulses.

The value of diffusion in Eq. (20) is known as ADC (apparent diffusion compo-

nent) and depend on the gradient pulse and the parameters of the pulse sequence.

Because of this, it does not reflect how anisotropically molecules are diffused. In or-

der to obtain this information, we need to apply gradient pulses in several directions,

and compute from such measures the diffusion tensor D [4], from which diffusion

in a given direction x can be computed according to next equation:

d(x) = xT Dx (22)

In this tensorial case, Eq. (20) can be rewritten including the normalized gradient

vectors ĝ = g
|g| :

S = S0e−bĝTDĝ (23)

Since D can be represented like a 3× 3 symmetric matrix, we need six coeffi-

cients to define it. Therefore, at least six different non-collinear gradient directions

must be applied in order to obtain six independent measures, from which tensor

elements can be estimated. It is also required to obtain the image data without dif-

fusion S0, in order to eliminate the spin dependence, as previously noted. Let be

{S0,S1, ...,S6} the seven images (the one without diffusion weighting, and the six

with different gradient directions ĝi, i = 1, ...,6). The diffusion tensor can be com-

puted from this equation system:

ln(Si) = ln(S0)−bĝi
TDĝi, i = 1, ...,6 (24)

Although six gradients are enough to compute the diffusion tensor, more gradient

pulses are often used in the acquisition to reduce the noise influence in the tensor

computation.

The information contained in the diffusion tensor is very useful but it is complex

and may not be user-friendly. Because of this, some scalar parameters are com-

puted from the tensor in order to make easier its use. As an example of these scalar

measures, we can point out the apparent diffusion coefficient, that measures the

global diffusivity; the fractional anisotropy, that shows how the DT differs from the

isotropic case; the relative anisotropy or the volume ratio. All of them are based

on rotationally invariant eigenvalues from the matrix representing the tensor. The

lattice anisotropy index [9] can be also highlighted, since it takes into account a

neighborhood of every voxel. Geometrical diffusion measures [10] (linear, planar

and spherical anisotropy) are also very useful, because they include information

about directional variation of diffusion.

Scalar parameters from tensors can be visualized as traditional gray images and

can be used in a more intuitive way by physicians, as well as traditional processing
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techniques can be applied to such images. Nevertheless, it is preferred to adapt these

techniques to the special characteristics of tensorial data in order to exploit all the

information given by the tensor. Thus, several works about DTI processing have

been developed, proposing segmentation, registration and regularization algorithms

for tensorial images. A review of these techniques can be found in [11].

Besides processing, several approaches to tensor visualization have been pub-

lished. The most extended way is representing tensor by an ellipsoid whose shape

and size are given by the tensor eigenvectors and eigenvalues [9]. Other ideas are to

plot the spherical, elliptic and linear components [10], or to use superquadrics [12].

5.1.2 A Riemannian Framework for DTI

In the special case of tensor datasets like those provided, for instance, by DT-MRI,

we can identify PS+(3), the set of 3× 3 real symmetric positive definite matrices,

with the family of 3-D normal distributions with 0-mean as the 6-D parameter space

of variances and covariances, that is a Riemannian manifold.

Following the work by Rao [13] and Burbea-Rao [14], where a Riemannian

metric was introduced for PS+(3) in terms of the Fisher information matrix, it is

possible to define notions such as the geodesic distance, the curvature, the mean,

and the covariance matrix for elements in PS+(3). The tangent space TΣΣΣ PS+(3) at

ΣΣΣ ∈ PS+(3) is taken to be SΣΣΣ (3), the vector space of symmetric matrices [15]. We

denote by Ei, i = 1, ...,6 the basis of such a vector space, which is given by:

E1 =

⎛⎝1 0 0

0 0 0

0 0 0

⎞⎠ E2 =

⎛⎝0 0 0

0 1 0

0 0 0

⎞⎠ E3 =

⎛⎝0 0 0

0 0 0

0 0 1

⎞⎠
E4 =

⎛⎝ 0 1 0

1 0 0

0 0 0

⎞⎠ E5 =

⎛⎝0 0 0

0 0 1

0 1 0

⎞⎠ E6 =

⎛⎝0 0 1

0 0 0

1 0 0

⎞⎠ (25)

The Riemannian metric tensor for PS+(3), derived from the Fisher information

matrix is given by the following theorem, which is proved in [15]:

The Riemannian metric for the space PS+(3) of multivariate normal distributions

with zero mean is given, ∀ΣΣΣ ∈ PS+(3) by:

gi j = g(Ei,E j) = 〈Ei,E j〉ΣΣΣ =
1

2
tr
(
ΣΣΣ−1EiΣΣΣ−1E j

)
i, j = 1, ...,6 (26)

In practice, this means that for any tangent vectors A,B, their inner product rela-

tive to ΣΣΣ is 〈A,B〉ΣΣΣ = 1
2 tr
(
ΣΣΣ−1AΣΣΣ−1B

)
.

We recall that, if ΣΣΣ : t �→ ΣΣΣ(t)∈PS+(3), ∀t ∈ [t1, t2]⊂R denotes a curve segment

in PS+(3) between two normal distributions parameterized by the matrices ΣΣΣ 1 and

ΣΣΣ 2, its length is expressed as:
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LΣΣΣ (ΣΣΣ 1,ΣΣΣ 2) =
∫ t2

t1

(
6

∑
i, j=1

gi j(ΣΣΣ(t))
dθi(t)

dt
dθ j(t)

dt

)1/2

dt (27)

As stated for example in [16], the geodesic starting from ΣΣΣ(t1) ∈ PS+(3) in the

direction V = Σ̇ΣΣ(t1) of the tangent space TΣΣΣ PS+(3) = SΣΣΣ (3), is given by the expo-

nential map:

ΣΣΣ(t) = ΣΣΣ(t1)1/2 exp
(
(t− t1)ΣΣΣ(t1)−1/2VΣΣΣ(t1)−1/2

)
ΣΣΣ(t1)1/2∀t ∈ [t1, t2] (28)

We recall that the geodesic distance D between any two elements ΣΣΣ 1 and ΣΣΣ 2 is

the length of the minimizing geodesic between ΣΣΣ 1 and ΣΣΣ 2:

D(ΣΣΣ 1,ΣΣΣ 2) = inf
ΣΣΣ
{LΣΣΣ (ΣΣΣ 1,ΣΣΣ 2) : ΣΣΣ 1 = ΣΣΣ(t1),ΣΣΣ 2 = ΣΣΣ(t2)}

It is given by the following theorem, whose original proof is available in an ap-

pendix of [17] but different versions can also be found in [15] and [18].

Theorem : (S.T. Jensen, 1976, originally proved in [17]) Consider the family of

multivariate normal distributions with common mean vector but different covariance

matrices. The geodesic distance between two members of the family with covariance

matrices ΣΣΣ 1 and ΣΣΣ 2 is given by

D(ΣΣΣ 1,ΣΣΣ 2) =

√
1

2
tr
(

log2
(

ΣΣΣ−1/2
1 ΣΣΣ 2ΣΣΣ−1/2

1

))
=

√
1

2

3

∑
i=1

log2(ηi) (29)

where ηi denote the 3 eigenvalues of the matrix ΣΣΣ−1/2
1 ΣΣΣ 2ΣΣΣ−1/2

1 .

5.1.3 DTI Usage

DT-MRI offers important benefits to clinicians. The main application has been in

brain imaging since it allows to identify fibers. Nevertheless, it has been used also

in myocardial analysis (for instance, in [19]) and in the research of other tissues

microstructure, like cartilage [20].

In brain, DTI allows the examination of its microstructure in vivo, what cannot be

done with older techniques. Hence, it has a lot of clinical applications [5]. Among

others, we can mention its use in the study of the structure and development of white

matter. Furthermore, it is a helpful tool in the research of several brain diseases, such

as cerebral ischemia, multiple sclerosis, epilepsy or Alzheimer diseases. Its useful-

ness is also remarkable in tumor diagnosis, since it allows to distinguish between

different sorts of tumors. The advances in this medical research are related to the

improvements in processing and visualization of tensorial data. A visualization op-

tion is to represent the diffusion tensor as a color image by considering the principal

diffusion direction (eigenvector corresponding to the higher eigenvalue) like a RGB
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vector, and the value of FA like the color intensity. In fiber tracking or tractography,

visualization of fibers is usually carried out by streamlines or streamsurfaces.

The probability density function (pdf) of this anisotropic motion can be approx-

imated at each voxel by an anisotropic 3D Gaussian function that can be parame-

terized by the diffusion tensor to create a 3D diffusion tensor field [4]. A diffusion

tensor (DT) is a second order tensor, i.e. a 3× 3 matrix. Since this tensor is sym-

metric and semi-positive definite the eigenvalues are always positive as long as they

are unaffected by noise. A diffusion tensor D can then be expressed in terms of its

eigenvalues (λ1,λ2,λ3) and eigenvectors (−→e1 ,−→e2 ,−→e3 ) as follow:

D = (−→e1 ,−→e2 ,−→e3 )

⎛⎝λ1 0 0

0 λ2 0

0 0 λ3

⎞⎠(−→e1 ,−→e2 ,−→e3 ) (30)

when performed within a compact tract with parallel running axonal trajectories,

the DT is very anisotropic and the direction of the fiber tract correspond to the

principal eigenvector (see figure 4). This was the basic lead for several fiber tracking

algorithms that all have the same objective of inferring the fibers bundles trajectories

from the DT field.

Fig. 4 Example of diffusion tensors. In A, the diffusion is shown as an ellipsoid with its principal
eigenvectors. in B, the diffusion tensor is shown an an orientation distributed tensor [21].

5.1.4 DTI Tractography

Several researches have proposed tractography methods and have reported success

in fiber tracking [22, 23, 24, 25, 26, 27] . For connecting different regions in the

brain the fiber tracking methods are basically based on inferring continuity from

voxel to voxel using an estimate of local tract direction. Some recent researches

have reviewed the most of the fiber-tracking methods [23]. The basic fiber track-

ing algorithm is the streamlines tracking method that models propagation in the

major eigenvector field. Actually, this method consists on effering the tracing by

connecting each voxel to the adjacent one toward which the fiber direction is point-

ing [24][25][23]. This direction is collinear to the eigenvector corresponding to the

largest eigenvalue of the diffusion tensor in this voxel. In 1999 Mori et al. [28] pro-

posed the Fiber Assignment by Continuous Tracking (FACT) method which changes
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the direction of the propagation at the interface of the voxels boundary. In 2000

Basser et al. [25] proposed a continuous tensor field estimation method where a

fiber is computed as a streamline of the major eigenvector field corresponding to

the solution of the ordinary differential equation using the 4th order Runge-Kutta

method

dr(s)
ds

= ε1(r(s)) (31)

where r(s) is a vector parameterized by the arc length, s, of the trajectory, and ε1 is

the unit eigenvector calculated at this latter position.

Another way to determine tract direction as described in [26] is to use the en-

tire DT to deflect the incoming vector direction Vin (propagation direction from the

previous integration step)

Vout = Vin (32)

This tensor operator deflects the incoming vector towards the major eigenvector

direction. This algorithm called tensor deflection (TEND) enables a smoother tract

reconstruction, on one hand the incoming vector is deflected to the direction of the

main eigenvector and on the other hand the deflection curvature is limited.

The tensorline tracking technique combine the streamline and the TEND meth-

ods. It does not consider simply the main diffusion direction of the local tensor, but

also the nearby local tensor information.

Vout = f e1 +(1− f )((1−g)Vin +gDVin) (33)

where, f and g are user defined in interval [0,1]. For most of fiber-tracking methods,

a simulated fiber is propagated in both positive and negative direction of the eigen-

vector direction of the local diffusion. The tracking continues until the boundary of

the data set is reached or the mean diffusion anisotropy at the current curve point is

less than an a priori defined threshold.

As presented in [29] and [30], a voxel that contains several populations of ax-

ons with different directions has a tensor which shape will change according to the

proportion of each fiber population, and the principal eigenvector looses then its sig-

nification and tracking becomes more hazardous. The principal eigenvector is also

very sensitive to noise, especially in areas of low anisotropy [31]. The family of

tracking algorithms described above could globally be described as deterministic,

and most of them reduce the tensor to a vector field [25, 24, 32, 33, 34] and con-

sequently do not take into account the uncertainty of the fiber direction. To address

this issue Hagmann et al. have developed in [27] a statistical fiber tracking algorithm

based on two hypotheses: the solutions of this tracking algorithm are a set of lines

or virtual fiber trajectories. Each line is the result of a random walk in a diffusion

tensor field. This walk, indexed by a time dependent position vector qi, is driven by

the local diffusion properties, i.e. the diffusion tensor Di, and a regularity constraint

vector to ensure smooth trajectories. More precisely we have:
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qi+1 = qi + μΩi (34)

The displacement of size μ = 1mm at each step occurs along direction Ωi that is

defined as:

Ωi =

{
λdi+Ωi−1

‖λdi+Ωi−1‖
Ωi−1.Ωi−1 > 0

(35)

where di = Dα
i ri with ri a random vector uniformly distributed over the unit

sphere. α is an anisotropy enhancing exponent set to 3. di is a random vector dis-

tributed according to the local diffusion properties. As shown in Eq. (35), the curve

that particle propagation generate grows along a unit vector Ωi that is a weighted

sum of di and the previous displacement vector enhancing collinearity. A large set

of fibers thus generated provides an estimate of axonal trajectories throughout the

brain. An example of some virtual fibers generated by the streamline algorithm are

presented in figure 5.

Fig. 5 Example of virtual tracts: the red bundle corresponds to the uncinate, and the green one is
the cingular one.

5.2 Tensorial Elastography

Elastography is well established in the literature [35], and can aid the diagnosis of

several diseases such as breast and prostate cancer, or cardiovascular dysfunctions

[36, 37]. Ultrasound elastography measures the elastic properties of soft tissues us-

ing ultrasound signals. The scalar representation of the axial strain (in the direction

of an applied compression) leads to the visualization of some cancers that otherwise

would be blind for the US scanner due to their isoechoic response with respect to

the surrounding tissue. Researchers have introduced new techniques such as MR-

elastography, optical elastography, etc. and the tensorial approach presented here as

well as its visualization, can be extended to all of them.

Tensorial elastography is a rather new research area. Investigations trying to get

new information for the physicians out of a tensorial approach, and visualization in

elastography, has its starting point in papers such as [38]. The fact that other modal-

ities as cardiac strain, has succeeded in contributing to characterize the myocardial
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motion and therefore to determine physiological factors affecting the behavior of

the cardiac cycle, make us assume the importance of tensorial elastography in spite

of its early stage of development.

Several techniques have been proposed to estimate the tensor strain components.

All of them estimate a displacement vector field u, due to an applied deformation

load. From the displacement field, the individual components of the tensor are cal-

culated and visualized separately. However, the spatial variation, i.e. the gradient, of

this displacement defines a second order tensor field given by:

du
dA

= Jun (36)

where du
dA is the column matrix of unit relative displacement vector components, n

is the column matrix of direction cosines and Ju is the the displacement gradient
matrix, a 3×3 matrix, also called the Jacobian matrix.

In mechanical engineering it is well known that this tensor can be decomposed

into the strain tensor εεε (the symmetric part), with the elongational strains on the

diagonal and the shearing strains on the off-diagonal, and the vorticity tensor ωωω (the

antisymmetric part), that contains only the vorticity components.

The strain tensor, εεε , measures the changes of shape locally (elongations or

stretching), and relates to the stress tensor through the stiffness of the material, the

Young modulus, see equation (13).

On the other hand ωωω informs about modifications related to rotations and not to

the shape.

This decomposition, Ju = εεε + ωωω , is very important in the tensorial approach to

elastography. On one hand, we have an estimation of the strain tensor, as all the

works in bibliography, and besides, an estimation of the structures inertia to rotate

is obtained.

5.2.1 Tensor Visualization of Ultrasound Elastography Data

Although the elastography problem is reduced to the estimation of tensor data (the

strain tensor), its visualization has been traditionally based on scalar representations,

i.e. scalar images (Young modulus, components of the strain tensor, etc.).

However, it is important to know that the visualization of tensor fields improve

the understanding and interpretation of tensor data and is therefore of paramount

importance for scientist applications (medicine, engineering, etc.). Over the last few

years, tensor fields visualization has achieved great interest thanks to improvement

of graphics hardware (allows to visualize large amounts of data), and the advances

in nervous fiber visualization given by DT-MRI dataset.

The difficulty of interpreting tensor data arises not only from the usually large

size of the data sets but also from the fact that each tensor could be represented by

a matrix. The aim of tensor field visualization is therefore to transform these large

amount of data into a single image which can be easily understood and interpreted

by the user.



20 Cammoun et al.

Two useful tools in visualizing data are data transformation and data reduction.

Data transformation retains all the information in the data but presents it in a dif-

ferent form. The transformation of a tensor into its eigenvectors and eigenvalues

is an example. Data reduction, on the other hand, extracts only partial information

from the original tensor data and so gives an incomplete representation. Scalar data

obtained by reducing tensor data includes, in our case, any principal strain, the max-

imum shearing strain, and the strain energy per unit volume. Tensor algebra has been

used because it is the only way in which important tensor properties under study can

be preserved, managed and exploited.

Although the DT-MRI visualization techniques are quite well developed, it is not

obvious its application to strain tensor fields. Remember that the strain tensor, used

in elastography, is symmetric but does not satisfy the positive semidefinite condi-

tion. Hence, its visualization as an ellipsoid in each data point of the field is not clear

[39, 40]. However, in our case the condition of positive semidefinite is not a barrier

to visualize the strain tensor field as an ellipsoid field, because clinically the sign of

the strain tensor eigenvalues (positive and negative represents respectively material

stretching or compression, in the direction of the corresponding eigenvector) does

not corrupt the information given with this representation. Then, we propose here a

technique similar to that in [41], used for the visualization of myocardial strain-rate

tensors, i.e. visualize tensors as ellipsoids (ellipses in our 2D case) colored accord-

ing to the sign of the largest eigenvalue representing stretch or compression in the

main direction, or if there exists a negative eigenvalue.

In order to validate the usefulness of this representation, let take into account that

what we want to discriminate, at first, are tissues with different elastic properties.

The theory says that axially, all the points of a compressed tissue should have a

negative value of strain. Due to noise decorrelation this is not always true for data

obtained from ultrasound. However, the obtained images differentiate between two

tissues or materials with different stiffness.

The sign of the deformation is represented with colors and with the size of the

ellipses or ellipsoids in their principal directions, we appreciate how much deforma-

tion there is in each principal direction and their ratio, and how much deformation

from the total has been absorbed by each tissue.

More information can be found in [42]. In figure 6 some different 2D and 3D

tensorial elastograms are presented for illustration.

6 Tensors Usage in Computer Vision

6.1 Representation of Local Structure Using Tensors

Tensors are nowadays an important tool in the field of computer vision since it

provides information about the local structure of an image. We understand by local
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(a)

0
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Fig. 6 a) Displacement field overlaid to the B-mode scan dor a synthetic experimet. The blue vec-
tors are the ground truth and the green ones our estimation. b) Lamé tensorial elastogram overlaid
to the axial elastogram for acommercial CIRS 059 breast phantom scanned with the Ultrasonix
RP500. c) A novel tensorial elastogram using dephormational strain glyphs (DSG) for the case of
a virtual phantom. d) A 3D tensorial elastogram. In all the cases there is a centered circular or
spherical inclusion three times stiffer than the background.

structure the meaningful features in the image, which are usually related to those

areas where a contour is present [43].

The tensor representation for local orientation was introduced by Knutsson [44]

to encode the orientation information for signals with dimensionality greater than

one. Tensors, besides allowing a compact representation, have a solid mathematical

body that supports further analysis in the tensor domain. The idea is to represent the

orientation of a neighborhood by a symmetric and positive semidefinite matrix.

In the case that more than one dominant orientation is present, (for instance, a

corner in a scalar image), it should be necessary to use higher order tensors to com-

pletely describe local orientation in a strict sense. However, in practice, a second

order tensor provides enough information to distinguish the relevant features of an

image, including corners [45], although certain ambiguity might appear under cer-

tain circumstances.

Knutsson studied the requirements that a continuous representation of orienta-

tion should hold [44]. Let vo ∈ Rn be a known vector which represents the main
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orientation and let M be a mapping M : Rn �→Rn×n to be defined. Then M should

satisfy the following properties in order to properly describe local structure:

• Uniqueness: Antipodal vectors should be mapped onto a singular point. In this

way, vectors pointing in opposite directions are treated equally removing the

discontinuity at π:

M (vo) = M (−vo) (37)

• Polar separability: The norm of the mapped vector should be rotation invariant.

Information carried by the norm of the vector does not carry information about

orientation:

‖M (vo) ‖F= f (‖ vo ‖), (38)

where f : R+ �→ R+ is an arbitrary function.

• Uniform stretch / Equivariance: Variations in the original spaces should be pro-

portional to variations in the mapped space. In other words, the tensor represen-

tation must be invariant to basic transformations such as translation, rotation or

scale:

‖ ∂M (vo) ‖F= b ‖ ∂vo ‖ . (39)

A mapping that fulfills the above requirements is M : Rn �→ Rn×n [44] such that

M(vo) =
vovo

T

‖ vo ‖
. (40)

This mapping is a non-linear mapping, therefore filtering operations applied to

the elements of M have to be carefully made. This mapping provides a symmetric

positive semidefinite matrix with
n(n+1)

2 independent components where the domi-

nant orientation given by the vector vo is codified by the dominant eigenvector of

that matrix. The symmetry condition guarantees the invariance to rotations at the

same time that assures that all the eigenvalues of the matrix are real values and the

positive semidefiniteness guarantees that all of them are positive. The matrix pro-

vided by this mapping is called local structure tensor and will be denoted by T. In

section 6.2 we discuss different approaches to directly estimate the local structure

tensor from data.

The main advantage of the tensor representation is that tensors contain more in-

formation than only the dominant orientation, since they also quantify uncertainty

about this orientation being actually dominant [46]. In other words, they quantify

how much the signal varies along the dominant orientations and also along the ori-

entation orthogonal to the dominant within a certain neighborhood. Thus, through

an analysis of eigenvalues λ1 ≥ . . . ≥ λm and eigenvectors e1, . . . ,em we can dis-

tinguish different cases in 3D m = 3 (an analogous classification can be done in

2D):

1. Planar case (λ1 � λ2 � λ3 � 0): There is only one main direction of signal varia-

tion. This neighborhood is approximately a planar structure whose normal vector

is given by e1.
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2. Linear case (λ1 � λ2 � λ3 � 0): In this case, there are two main directions of

signal variation which yields a line-like neighborhood oriented along e3, as the

edges of a cube.

3. Point structure case (λ1 � λ2 � λ3 � 0): There is no preferred orientation of

signal variation, which represents a corner or a junction in 3D.

4. Homogeneous case (λ1 � λ2 � λ3 � 0): In this case, there is neither a preferred

orientation of signal variation nor significant variation, which corresponds to ho-

mogeneous regions.

From a statistical point of view, when the signals are regarded as random fields an

interesting relationship can be established between the local structure tensor and the

covariance matrix C. In fact, when the expectation per element is zero (usually on

homogeneous areas such as planes or lines) the local structure tensor and covariance

matrix are identical. The equivalence is given by the following formulation:

C = T−E{∇s}E{(∇s)T} (41)

where ∇s represents the spatial gradient of the signal s and E{·} is the expecta-

tion operator.

6.2 Estimation of the Local Structure Tensor

In this section we face the problem of local structure estimation from multidimen-

sional images using the tensor representation described in the previous section. As

we said before, local structure is related to local orientation and to the most relevant

features of an image. As a consequence of this fact, estimation of local structure has

been a matter of discussion in literature for years. The works [47], [48] and [49] in

1987 together with [44] in 1989 represent the seed of the tensor representation of

local structure. These methods can be classified, as done in [50], in two different

groups:

• Gradient method: These methods use the spatial gradient to determine the signal

orientation. Among others, the following references are of interest [47, 48, 49,

51, 52].

• Local-energy method: These methods involve the use of quadrature filters to

quantify the energy of the signal and, hence, to be able to determine local struc-

ture. Among others, the following references are of interest [44, 53, 54, 55]

6.2.1 Gradient Method

The computation of the local structure tensor components are given by the following

formulation:
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T(x0) = {ti j}=
1

4π2

∫
x∈Ω(x0)

∂ s
∂xi

∂ s
∂y j

dx (42)

where Ω(x0) is a local neighborhood of the function s(x) around the point x0
where the local structure tensor is going to be estimated. In practice, where we as-

sume we are working on a discrete grid, Eq. (42) can be written using the following

expression:

T(x0) = Gσ (x0)∗ (∇s(x0)∇T s(x0)) (43)

where Gσ (x0) is a Gaussian kernel with standard deviation σ , used to regularize

the outer product of the gradient introducing the information of the local neigh-

borhood at a given scale σ in order to obtain a full rank tensor. Otherwise, the

outer product of the gradient itself would not incorporate the uncertainty informa-

tion since it is a rank-1 tensor. The partial derivatives in the discrete domain are

computed with Gaussian derivative filters.

An analogous formulation to Eq. (43) can be obtained by means of a probabilistic

interpretation of the signal s(x) [56]. In other words, we can think of the signal

s(x) as a field where a random variable is assigned to each position x ∈ Rn. Then,

to characterize the variation of the signal we make use of the second order joint

statistics of the signal gradient. Assuming a zero mean gradient, an estimate of the

covariance matrix of the signal gradient is given by Eq. (44), where V (N (x0))
stands for the number of samples of the neighborhood N (x0) centered at point x0:

C∇s(x0) =
1

V (N (x0))
∑

xi∈N (x0)
∇s(xi)∇s(xi)T (44)

The elements of the covariance matrix, i.e. local structure tensor, are estimates

of the second order cross moments of the signal gradient. Thus, an analysis of the

eigenvalues and eigenvectors provide information on the manner in which the gra-

dient changes. In brief, the eigendecomposition helps to discriminate the type local

neighborhood among the different cases already presented.

Both formulations are then coherent with the properties that any descriptor of

orientation should hold, which were previously outlined in this section. In addition,

it is clear that Eqs. (43) and (44) are particular formulations of the proposed mapping

M.

6.2.2 Local Energy Method

This method, mainly developed by Knutsson [44], involves the use of quadrature

filters to quantify the local energy of the signal to infer the local structure, based

on the relationship between these two concepts described in [43]. However, local

energy itself is not enough to completely describe local structure since it does not

provide orientation information, as it is a scalar measure. Then, the estimation of

the local structure tensor requires some previous steps.
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Using basic theory of tensor algebra, it is known that any tensor T(x) can be

expressed as a linear combination of the elements of a tensor basis {Mk} weighted

by the coefficients qk(x), where k = 1, . . . ,K is the number of elements in the basis

of tensors:

T(x) =
K

∑
k=1

qk(x)Mk (45)

Knutsson, then, proposed the way to compute the tensor basis {Mk} and the

coefficients qk(x) using a bank of K spherically separable quadrature filters oriented

along a given set of directions n̂k symmetrically distributed in the n-dimensional

space of the signal s(x) [44]. The set of quadrature filters is defined in the Fourier

domain by:

Qk(u) =

{
e
( −4

B2ln2
)(ln2( ‖u‖‖u0‖

)) · (ûT n̂k)2 if ûT n̂k > 0

0 otherwise
(46)

These filters can be seen as oriented Gaussian functions in a logarithmic scale,

centered at ‖ u0 ‖ and with bandwidth B.

Assuming a signal model that presents only one main orientation, each coefficient

qk(x) (with k = 1, . . . ,K) is given by the magnitude of the complex function given

by the convolution of the signal with the quadrature filter, which is more easily

computed in the Fourier domain:

qk(x) =‖ 1

(2π)n

∫
Ω

G (n̂T u)δ line
n̂ (u)Qk(u)eiuT xdu ‖ (47)

Concerning the tensor basis, the set {Mk} is defined as the dual or reciprocal

basis of the tensor basis {Nk} given by the outer product of the set of directions n̂k,

as it shown in the following expression:

Nk = n̂kn̂T
k (48)

Since the set {Nk} form a basis of tensors which may not be orthonormal, we

have to use its dual basis {Mk} in order to get a proper representation for the tensor

T(x).
Finally, the K elements of the basis still have to be determined. The number K

is related to the number of directions n̂k needed to orientate each quadrature filter

in order to compute the local energy over all the orientation space of the signal, i.e.

Rn in an n-dimensional space. A practical rule is that the directions n̂k should pass

through the adjacent vertexes of a regular polytope (a hexagon in 2D, an icosahe-

dron in 3D, etc.). Then, in an n-dimensional scalar dataset, the minimum number of

directions required for the quadrature filters is K = n(n+1)
2 [57]. This requirement is

based on the fact that T(x) by definition is invariant to rotation of the filters [50].

A common practice is to regularize the final result with a Gaussian kernel with

standard deviation σ to provide a more robust response against noise. Although this

regularization is not needed in a strict sense, it also introduces an integration scale
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to provide a robust response. Hence, the final expression of the local structure tensor

is as follows:

T(x) = Gσ (x)∗
n(n+1)

2

∑
k=1

‖ s(x)∗hk(x) ‖Mk (49)

where hk(x) is the spatial formulation of the quadrature filter in Eq. (46).

6.3 Nonlinear Structure Tensors

In the previous section we described two different methods to estimate the local

structure tensor. Although the philosophy behind them is completely different, in

both cases it is a common practice to regularize the tensor field by means of a Gaus-

sian convolution. In this way, we incorporate spatial information within a certain

neighborhood at the desired integration scale and, at the same time, the estimation

is more robust against noise.

However, it is known that Gaussian smoothing has two main drawbacks: the

blurring effect and delocalization of main structures. This is mainly due to the use

of a fixed kernel that does not depend on the local characteristics of the signal. Thus,

near boundaries, where the structure information is mainly present, this will yield

an inaccurate result since we are mixing different kinds of information.

To avoid these two effects, Brox et al. proposed the definition of the nonlinear
structure tensor [58]. The main idea is to substitute the Gaussian convolution by a

generalized nonlinear matrix-valued heat diffusion equation [59]. As it is done for

the scalar case, a diffusivity function g(∑m
i, j=1 ‖ ∇ti j(x) ‖) is introduced in the heat

equation to correlate the amount of smoothing with the magnitude of the gradient

of all tensor components, as it is shown in the following equation:

∂t ti j(x) = div(g(
m

∑
i, j=1

‖ ∇ti j(x) ‖2)∇ti j(x)), ti j(x, t = 0) = ti j(x) (50)

In this way, when the gradient in any tensor component is high due to the pres-

ence of structure, the diffusivity is low to avoid smoothing while the diffusivity is

high when there is no structure in any component. As a consequence, this technique

is different from just applying nonlinear diffusion independently to every compo-

nent of the tensor field, since a boundary in one component reduces the amount of

smoothing in all the others.

There exists another natural extension for the linear structure tensor which con-

sists on the use of an anisotropic matrix-valued diffusion process also proposed in

[59]. In the anisotropic case, not only the amount of diffusion is adapted locally to

the data, but also the direction of smoothing. Hence, in presence of boundaries, the

smoothing will take place along the edges of the boundary but not across them. To

do that, we only have to replace the diffusivity function defined in Eq. (50) by a dif-
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fusion tensor G(x) that determines the direction in which the diffusion takes place.

The anisotropic structure tensor is given by the following expression:

∂t ti j(x) = div(G(
m

∑
i, j=1

(∇ti j(x))T (∇ti j(x)))∇ti j(x)), ti j(x, t = 0) = ti j(x) (51)

Concerning the positive semidefiniteness, it can be easily shown that tensors

evolving under either Eq. (50) or Eq. (51) stay symmetric positive definite if the

initial value T(0) = (t(0)i, j) is symmetric positive definite [58].

6.4 Diffusion Filters

A direct usage of the structure tensors computed based on the data is to use them in

diffusion filters. Diffusion filtering is a PDE based image processing technique1 that

is based on the anisotropic diffusion equation. The underliying idea is to interpret

the image as an abstract concentration map to which the diffusion is applied. It is

directly related to oriented smoothing where the orientation of the smoothing kernel

is based on the estimated structure tensor 2. Diffusion filters are directly related

to variational image processing techniques. We would refer the reader to [60] for

more details. In this section, we will briefly review the diffusion filters that use the

structure tensor explicitly.

Let us start by recalling the second order symmetric diffusion tensor D. The 1D

diffusion PDE establishes a linear relation between the temporal variation and the

second order spatial derivative of the concentration. It namely states that ut = ∇ ·
D∇u = Duxx. We can move onto 2D anisotropic diffusion by defining Da to be the

1D diffusion along the direction given by the unit vector a and Db to be the diffusion

coefficient along the unit vector b, where a⊥ b. Then we get,

ut = Dauaa +Dbubb (52)

= Da(aT Hua)+Db(bT Hub) (53)

= Da(aT
(

∂x1

∂x2

)
∇uT a)+Db(bT

(
∂x1

∂x2

)
∇uT b) (54)

= Da(∇T aaT ∇u)+Db(∇T bbT ∇u) (55)

= ∇T (DaaaT +DbbbT )∇u (56)

= ∇ ·D∇u = ∇ ·
[

a b
] [ aT

bT

]
∇u (57)

1 Although we are mostly concerned with image processing applications here, diffusion filtering is
applicable to a wider class of signals.
2 It should be noted that this framework is not only used for smoothing but it can also be applied
for enhancing operations, as in the shock filters.
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So the eigenvectors of the diffusion tensor show the principal diffusion directions

and the corresponding eigenvalues are the diffusion coefficients along these direc-

tions.

The main strategy is to perform more diffusion (smoothing) along the edges and

less (or even negative) diffusion across the edges. We can construct a diffusion ten-

sor that would serve to this purpose, i.e. that would have two eigenvectors e1,e2 s.t.

e1 ‖∇u and e2 ⊥∇u. This corresponds to using the tensor D = ∇u∇uT . Its eigenval-

ues are λ1 = ||∇u||2 and λ2 = 0. It is an extremely local measure of orientation. If

we use it directly, we will be using nothing more than the linear isotropic diffusion

PDE (to see this, note that e2 ·∇u = 0). However, if we gather information from the

neighbourhood, and use it to determine a structure tensor D, i.e. the diffusion di-

rections e1 and e2, then we can achieve edge enhancing/preserving smoothing. The

desired diffusion (filtering) is achieved by forming a diffusion tensor derived from

such a structure tensor by manipulating its eigenvalues only.

Weickert [61] proposed to use the following smoothed tensor as the structure

tensor. He used it to determine the diffusion directions and proposed a set of filters

by suggesting different choices of eigenvalue manipulations. Weickert’s structure

tensor is

uσ = kσ ∗u⇒ D = kρ ∗∇uσ ∇uT
σ (58)

=
[

e1 e2

][λ1 0

0 λ2

][
eT

1

eT
2

]
(59)

where kσ is a Gaussian smoothing kernel. e1 shows the maximum variation direction

(given that λ1 > λ2) and e2 gives the minimum variation direction. Also note that

now e2 ·∇u �= 0. The plan is to change λ1 and λ2 to fit to our needs.

edge enhancing filter:
The approach is to reduce diffusion across edges (along maximum variation di-

rection given by e1). Weickert proposed (λ1 ≥ λ2),

λ̂1 =

{
1 ,λ1 = 0

1− exp(−3.315
λ 4

1

) ,o.w. (60)

λ̂2 = 1 (61)

Coherence Enhancing Filter:
A measure of coherence is (λ1 − λ2)2 and the maximum coherence direction

is given by e2, i.e. the minimum variation direction. The coherence enhancing filter

enhances flowlike structures, closes interrupted lines. The strategy is to diffuse along

the coherence direction with a diffusion coefficient increasing with the coherence.

Weickert proposed [62],
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λ̂1 = α (62)

λ̂2 =

{
α ,λ1 = λ2

α +(1−α)exp( −c
(λ1−λ2)2 ) ,o.w. (63)

where α ∈ (0,1), the chosen isotropic diffusion coefficient (lower bound for diffu-

sion). Figure 7 shows a noisy image and its coherence enhancing filtered versions.

Note the change in texture as a result of filtering. Coherence enhancing diffusion

filtering identifies the principal edge directions in the image and perform smoothing

along these directions selectively throughout the image.

(a) (b) (c)

Fig. 7 (a) A noisy aerial photograph; the image is filtered using coherence enhancing diffusion
filter. (b) Result after a single iteration of diffusion. (c) Output generated after eight iterations; note
that the filter has identified and enhanced the coherence directions locally throughout the image.

7 Conclusion

Tensors are mathematical entities that are generalizations of more common entities,

such as scalars (zero order tensors), vectors (first order tensors) and matrices (second

order tensors). As such, tensor analysis provides us a unified framework for the

analysis of them all. Such a unified framework makes it possible to generalize the

techniques developed for those more common entities. It is of utmost importance

to realize that the tensors are not pure abstract entities but unavoidably exist in

real world data, such as digital images, elasticity of materials, Brownian motion of

particles, etc. We believe that the researchers from a wide spectrum of fields would

benefit greatly from the recognition of tensors in their own data and the adaptation

of techniques developed in some seemingly unrelated field using the tensor analysis

tools.

This review was aimed at introducing the tensors as mathematical entities and

stimulating the readers’ interest in tensor analysis by highlighting some of the most

common fields of research where the tensor analysis is used. In most cases, it is a

matter of seeing the tensors in your data, not a matter of their existence.
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Segmentation of Tensor Fields: Recent Advances
and Perspectives

Rodrigo de Luis-Garcı́a, Carlos Alberola-López and Carl-Fredrik Westin

Abstract The segmentation of tensor-valued images or 3D volumes is a relatively

recent issue in image processing, but a significant effort has been made in the last

years. Most of this effort has been focused on the segmentation of anatomical struc-

tures from DT-MRI (Diffusion Tensor Magnetic Resonance Imaging), and some

contributions have also been made for the segmentation of 2D textured images us-

ing the Local Structure Tensor (LST). In this chapter, we carefully review the state

of the art in the segmentation of tensor fields. We will discuss the main approaches

that have been proposed in the literature, with particular emphasis on the impor-

tance of the different tensor dissimilarity measures. Also, we will highlight the key

limitations of the segmentation techniques proposed so far, and will provide some

insight on the directions of current research.

1 Introduction

Tensor fields are an extension of scalar or vector fields, and their usage in image

processing is becoming more and more common, having also been employed in dif-

ferent areas such as differential geometry, physics, mechanics, chemistry, crystallo-

physics, engineering and other sciences. Usually, second-order tensors are employed

for the description of anisotropic behaviour [81].
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Laboratorio de Procesado de Imagen, Universidad de Valladolid, Valladolid, Spain, e-mail:
caralb@tel.uva.es

Carl-Fredrik Westin
Laboratory of Mathematics in Imaging, Harvard Medical School, Boston, MA, USA, e-mail:
westin@bwh.harvard.edu

35



36 Luis-Garcı́a et al.

In the area of image processing, and particularly within the field of medical image

processing, the use of tensors has gained much relevance lately. Most of this interest

is due to the appearance of a relatively new medical imaging modality, the DT-

MRI (also referred to as DTI, Diffusion Tensor Imaging) [11], and the use of tensor

descriptors for feature extraction, as in the case of the LST (Local Structure Tensor)

[41, 42, 35, 13, 27]. These two applications deserve special consideration as they

are central elements of this chapter.

When dealing with tensor-valued images, such as in the case of the LST or DTI,

traditional techniques like filtering, registration or segmentation have been revis-

ited in order to take into account the special properties of this data modality. This

chapter reviews the state of the art in the segmentation of tensor-valued images.

To do so, we will follow the course of the main contributions in the literature, and

the chapter is organized as follows: in next section, we introduce the two main ten-

sor modalities employed in image processing, that is, the local structure tensor and

the diffusion tensor. We then review the most important scalar parameters that have

been employed in the analyis of tensor images prior to the proposal of truly tensor

processing of this kind of data. As tensor processing heavily relies on the choice

of a suitable tensor metric, in Section 4 we present the main tensor dissimilarity

measures that have been proposed for segmentation purposes. Section 5 carefully

reviews the different methods in the literature for the segmentation of tensor-valued

data, and we finally summarize in Section 6 with a special emphasis in the main

limitations of the segmentation methods proposed so far and the future trends in

tensor segmentation.

2 Tensors in Image Processing

2.1 Local Structure Tensor

Texture is one of the most important features in images, and therefore its consid-

eration can greatly improve their analysis and understanding. Besides, this feature

space is deeply connected with important biological vision properties [52]. The rep-

resentation and modeling of textures is a difficult and open issue, and different ap-

proaches have been proposed over the last decades [24, 74].

Local orientation is a major component of textures in images, and therefore can

be used as feature space. The tensor representation for local orientation in multi-

dimensional signals [41, 42, 35, 13, 27], known as the LST, is widely accepted to

provide a compact representation of orientation, and has been used for motion anal-

ysis besides texture representation [13]. This representation yields a symmetric and

positive semidefinite second order tensor that encodes the local orientation.

For a scalar 2D image I, the LST is defined as follows [35, 13, 27, 32, 50, 62]:

Tρ = Kρ ∗ (∇I∇IT ) =
(

Kρ ∗ I2
x Kρ ∗ IxIy

Kρ ∗ IxIy Kρ ∗ I2
y

)
(1)
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where Kρ is a Gaussian kernel with standard deviation ρ , and subscripts denote

partial derivatives. The tensor yields three feature channels (Kρ ∗ I2
x , Kρ ∗ I2

y and

Kρ ∗ IxIy) which, for a fixed scale, may be as powerful as a whole set of Gabor filters

for the discrimination of different textures [65]. In the case of a vector-valued (i.e.

colour) image, all channels are taken into account by summing the tensor products

of the particular channels [88]:

Tρ = Kρ ∗
(

N

∑
i=1

∇Ii∇IT
i

)
(2)

This definition of the LST is appropriate for any number of dimensions, and can be

extended in a straightforward manner. As it was shown in [80, 64], smoothing with a

Gaussian kernel causes blurring of each of the tensor components, which may make

the structure tensor suffer from the dislocation of edges, leading to inaccurate seg-

mentation results near region boundaries. Indeed, the convolution with a Gaussian

kernel is equivalent to the linear matrix-valued diffusion process

∂tui j = div(∇ui j) ∀i (3)

where ui j(t = 0) are the components resulting from the tensor product ∇I∇IT . In

order to solve the limitations of the classic linear structure tensor, Brox and Weick-

ert [17, 18] proposed to replace the Gaussian smoothing (i.e. linear diffusion) by

nonlinear diffusion. Nonlinear diffusion was introduced by Perona and Malik [59],

and aims at reducing the smoothing in the presence of edges. The resulting diffusion

equation is, for the scalar case:

∂tu = div(g(|∇u|)∇u) (4)

with u(t = 0) being the image I and g(·) a decreasing function. This diffusion equa-

tion is only suitable for scalar-valued data. The version for vector-valued data was

introduced by Gerig et al. in [31], while the nonlinear matrix-valued process is

[80, 18]:

∂tui j = div

(
g

(
∑
kl
|∇ukl |2

)
∇ui j

)
∀i, j (5)

where ui j(t = 0) are the initial tensor product components. It is worth noticing that,

for the equation above, the diffusivity g(·) is a scalar, and thus the diffusion process

is isotropic. A very interesting property of this matrix-valued diffusion equation re-

lies on its preservation of positive semidefiniteness [80, 18]. For implementation, the

AOS (additive operator splitting) scheme, proposed in [82], allows for a much more

efficient and faster computation than a straightforward implementation scheme, and

is consequently preferred.
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2.2 Diffusion Tensor Magnetic Resonance Imaging

DT-MRI is a medical imaging modality based on Magnetic Resonance Imaging
(MRI) which is able to quantify the anisotropic diffusion of water molecules in

biological tissues [14]. This property is usually applied to visualize highly struc-

tured tissues. Currently, brain imaging is the most common application of diffusion

MRI, as the brain has a complex structure of gray matter areas connected by white

matter fibres. Diffusion MRI can be therefore employed for the visualization of the

fibre tracts in the white matter of the brain, and has been applied in Neurology and

Neurosurgery (see [71, 34] for a comprehensive introduction to the applications of

DT-MRI to brain diseases).

Water is a major component of biological tissue. Due to Brownian motion, wa-

ter molecules experiment random motion within the tissue. The diffusion is then

measured as the PDF p of particle displacements x over a fixed time t. To measure

diffusion from Diffusion Weighted Images (DWI), the Stejskal-Tanner imaging se-

quence is employed [70], which allows for a controlled diffusion weighting. If, for

instance, a measurement is done without diffusion weighting and one is done with

diffusion weighting in a certain direction, then diffusion can be calculated using the

Stejskal-Tanner equation:

S = S0e−bD (6)

where S is the measured diffusion weighted image, S0 is the baseline image (i.e.

with no diffusion weighting), b is the diffusion weighting factor, introduced by Le

Bihan et al. [14]. The diffusion values, D, are also known as Apparent Diffusion Co-
efficients (ADC). It is worth emphasizing that the diffusion values generated depend

on the direction of the sensitizing gradient and other parameters [85].

In the more general case of considering anisotropic diffusion, Eq. 6 can be rewrit-

ten in the following way:

Sk = S0e−bgk
T Dgk (7)

where Sk are the diffusion weighted images in the gradient directions gk, and D is the

diffusion tensor, represented by a SPD (symmetric positive definite) 3× 3 matrix.

This formula reverts to the isotropic case of Eq. 6 with D = DI, being I the identity

tensor.

The representation of diffusion by means of the diffusion tensor yields the DT-

MRI imaging modality, which implicitly implies modeling the PDF of the three-

dimensional molecular motion, pt(x) by a zero-mean trivariate Gaussian distribu-

tion whose covariance matrix is given by the diffusion tensor:

p(x|D, t) =
1√

(4πt)3|D|
exp

(
−xT D−1x

4t

)
(8)

For the estimation of a field of 3×3 diffusion tensors, at least six measurements Sk
must be made using different non-collinear gradient directions, besides the baseline

image S0, taken in absence of a diffusion sensitizing field gradient. This is due to

the fact that the diffusion tensor has six free components in a matrix representation,
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that is, six degrees of freedom. Different methods for the estimation of the diffusion

tensor have been proposed [55], such as the direct estimation proposed by Westin et
al. [85, 84], the least squares estimation [10, 60] or a variational approach [72].

Even though the Gaussian assumption that DT-MRI employs is valid in most

cases, sometimes this Gaussian model does not accurately fit the data. DT-MRI

provides only one fibre-orientation estimate for each voxel, whereas in regions

where different fibres cross inside a voxel, there are multiple fibre-orientations.

In these points, obtaining the anisotropy from the diffusion tensor underestimates

the true directional anisotropy and, furthermore, the orientation estimates are not

correct. Several diffusion MRI modalities have been proposed that go beyond the

tensor representation of the water diffusion in order to overcome these limitations

[1, 28, 29, 3, 79, 73, 36, 2].

3 Scalar Diffusion and Anisotropy Measures

The necessity of developing new methods for the segmentation of tensor images

arises from the fact that traditional segmentation techniques operate with scalars or

vectors, and therefore cannot be directly applied to tensors. Initially, most of the

methods intended for the analysis of tensor fields were based on scalar or vector

values extracted from the tensors.

Apart from segmentation, other image processing techniques developed for DT-

MRI, such as smoothing, have been primarily addressed by using derived expres-

sions from the diffusion tensor such as eigenvalues, eigenvectors or rotationally-

invariant scalar measures [23, 61]. Also for fibre tracking, most techniques work on

scalar or vector-valued data [19, 76].

In [12], Basser et al. proposed the use of some scalar quantities derived from the

diffusion tensor D. First, they decomposed D into isotropic and anisotropic parts:

D = DI+(D−DI) (9)

where Di = DI is an isotropic tensor (I is the identity tensor) and Da = D−DI is an

anisotropic tensor. The scalar D is called the mean diffusivity, and can be computed

in the following way:

D =
Trace(D)

3
=

d11 +d22 +d33

3
=

λ1 +λ2 +λ3

3
(10)

where λ1, λ2 and λ3 are the eigenvalues of D. The authors also reinterpret D with

relation to the square root of the (scalar) generalized tensor product or tensor dot

product1 of the isotropic part of the tensor:

1 The generalized tensor product of a tensor, which is equivalent to the square of the Frobenius
norm (T : T =‖ T ‖2

F ), is defined as T, as T : T = ∑3
i=1 ∑3

j=1 t2
i j = λ 2

1 +λ 2
2 +λ 2

3
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√
DI : DI = D

√
I : I = D

√
3 (11)

It can be seen that this magnitude of the isotropic part of D is proportional to the

mean diffusivity. The magnitude of the anisotropic part of D is given by:

√
Da : Da =

√√√√ 3

∑
i=1

3

∑
j=1

(di j−Dii j)2 =

√
1

3
((λ1−λ2)2 +(λ2−λ3)2 +(λ3−λ1)2)

(12)

Starting from these definitions, it is then possible to obtain the well-known relative
anisotropy, RA, and fractional anisotropy, FA:

RA =
√

Da : Da√
DI : DI

=
1√
3

√
Da : Da

D
(13)

FA =

√
3

2

√
Da : Da√
D : D

(14)

In [86], the authors proposed a decomposition of the diffusion tensor based on its

symmetry properties that results in measures that describe the geometry of the dif-

fusion ellipsoid (i.e. an ellipsoid whose principal axes correspond to the directions

of the eigenvector system, and whose dimensions are the corresponding eigenval-

ues). From this analysis, a simple anisotropy measure was proposed. Specifically,

let λ1 ≥ λ2 ≥ λ3 ≥ 0 be the eigenvalues of the diffusion tensor D and let êi be the

eigenvector corresponding to λi. Then, D can be decomposed as follows:

D = λ1ê1ê1
T +λ2ê2ê2

T +λ3ê3ê3
T (15)

A classification of the tensor shape in three different cases can be considered:

• Linear case: This case occurs when λ1 � λ2 � λ3 , and diffusion occurs only

along one direction:

D� λ1Dl = λ1ê1ê1
T (16)

• Planar case: In this case, λ1 � λ2 � λ3, and diffusion is restricted to planes:

D� λ1Dp = λ1(ê1ê1
T + ê2ê2

T ) (17)

• Spherical case: This is the isotropic case, where λ1 � λ2 � λ3.

D� λ1Ds = λ1(ê1ê1
T + ê2ê2

T + ê3ê3
T ) (18)

The geometrical shapes corresponding to these basic cases can be seen in Figure

1. One can expand the diffusion tensor using these cases as a basis:

D = (λ1−λ2)Dl +(λ2−λ3)Dp +λ3Ds (19)

where (λ1 − λ2), (λ2 − λ3) and λ3 are the coordinates of D in the tensor basis

{Dl,Dp,Ds}. If we normalize these coordinates so that each of them lies within



Segmentation of Tensor Fields: Recent Advances and Perspectives 41

the range [0,1] and the they all sum one, the linear, planar and spherical coefficients

cl , cp and cs are obtained:

cl =
λ1−λ2

λ1 +λ2 +λ3
(20)

cp =
2(λ2−λ3)

λ1 +λ2 +λ3
(21)

cs =
3λ3

λ1 +λ2 +λ3
(22)

Finally, an anisotropy measure that describes the deviation from the spherical case

is achieved by summing the normalized linear and planar coefficients:

ca = cl + cp =
λ1 +λ2−2λ3

λ1 +λ2 +λ3
= 1− cs (23)

In [57], the authors employed these coefficients to visualize and quantitatively an-

(a) (b) (c)

Fig. 1 Geometric shapes of tensors for the linear, planar and spherical case ((a), (b), (c) respec-
tively).

alyze the anisotropy properties and different parts of the brain, such as the corpus

callosum and the internal capsule.

Zhukov et al. presented a slightly different approach in [89]. In their work, they

argue that using eigenvalues/eigenvectors to compute scalar measures of diffusivity

or anisotropy requires a considerable computational expense, and stability problems

can arise as a small amount of noise will greatly affect not only the values but also

the ordering of the eigenvalues (many of the anisotropy measures seen above de-

pend on the ordering of the eigenvalues). Therefore, an anisotropy measure was

proposed that does not require eigenvalue computations and is stable with respect

to noise, besides of being rotationally invariant. This anisotropy measure is derived

from three tensor invariants, that is, combination of tensor elements which are ro-

tationally invariant, proposed in [75]. These invariants can be obtained without the

computation of the eigenvalues (although they can also be obtained from them), and

are the following:
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1. First invariant or trace:

I1 = d11 +d22 +d33 = λ1 +λ2 +λ3 (24)

2. Second invariant:

I2 = d11d22 +d11d33 +d22d33−d12d21−d13d31−d23d32

= λ1λ2 +λ1λ3 +λ2λ3 (25)

3. Third invariant or determinant:

I3 = d11(d22d33−d32d23)−d12(d21d33−d31d23)
+ d13(d21d32−d31d22) = λ1λ2λ3 (26)

The first invariant is proportional to the sum of the square of the radii of the ellipsoid,

the second is proportional to the square of its surface area, and the third one is

proportional to the square of its volume. From the three of them, the following

anisotropy measure was proposed in [89]:

Ca =
1

6

(
I1I2

I3
−3

)
(27)

For isotropic diffusion, when λ1 = λ2 = λ3, Ca = 1. In the anisotropic case, both for

linear or planar diffusion, Ca is always ∼ λ1/λ3.

4 Tensor Dissimilarity Measures

Representing tensor fields using scalar diffusion or anisotropy measures extracted

from the full tensor presents serious limitations derived from the substantial loss

of information that this reduction implies. Therefore, in order to exploit the infor-

mation present in all the components of the structure tensor, Rousson, Brox et al.
proposed in [16, 66, 65] to represent the tensor in a vector form consisting of the

nonlinearly diffused free components of the LST, and then using an Euclidean dis-

tance between them. This way, the image is treated as though it were multiespectral,

being the channels each of the components of the tensor.

This approach presents an evident advantage over the schemes described in the

preceding section that uniquely considered a scalar value extracted from the full

tensor, as it uses the information corresponding to all the components in the ten-

sor. However, it also suffers from a major drawback, namely, it misses the tensor

structure of the information; making explicit use of the tensor structure implies per-

forming the segmentation directly in the tensor domain.

In order to overcome the limitations of scalar diffusion or anisotropy measures or

the vector processing of the tensor information, segmentation approaches have been
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proposed based on the use of different dissimilarity measures between tensors. Next,

we present and discuss the most relevant tensor distances that have been introduced

in the literature.

In [4], Alexander et al. proposed a number of similarity measures for tensor im-

ages for their application in the registration of diffusion tensor data. These similar-

ity measures include the squared trace of the difference of the tensors, the squared

anisotropy indices, and have been the inspiration for subsequent work in the seg-

mentation of tensor images.

Wiegell et al. proposed in [87] a tensor metric which is a combination of the

Mahalanobis voxel distance and the Frobenius distance tensor distance. Specifically,

the distance E jk between a voxel j and the cluster centroid k is as follows:

E jk =‖ xj− x̄k ‖Wk +γ ‖ Dj− D̄k ‖F (28)

where xj is the location of voxel j, x̄k is the mean voxel location for cluster k, Wk is

the covariance matrix for the voxels in cluster k, γ is a weighting factor to control the

relative importance of the tensor distance and the voxel distance, Dj is the diffusion

tensor for voxel j, and D̄k is the mean diffusion tensor. The Frobenius norm for a

tensor T is defined as ‖ T ‖F=
[
Trace(TT T)

]1/2
. This way, the procedure labels as

belonging to the same region voxels which are close both in position and in diffusion

properties. To the best of our knowledge, this method is the first to propose a metric

working directly on the tensor data to perform the segmentation.

Wang and Vemuri employed the Frobenius norm of the difference of tensors as a

tensor distance in their segmentation approach [78]. Indeed, this is equivalent to the

consideration of the tensor as a vector with an Euclidean distances. Although the

experimental results were good, the Frobenius norm of the difference of tensors is

not completely appropriate, as it uses the same weights for different components of

the tensor and ignores the fact that tensors have structure.

Jonasson et al., in [38, 37], proposed a new tensor dissimilarity measure called

the normalized tensor scalar product (NTSP), which was specifically designed to

be very sensitive to small changes of the orientation of the tensors:

NTSP(D1,D2) =
D1 : D2

Trace(D1)Trace(D2)
(29)

where D1 : D2 stands for the well known tensor scalar product that is a measure of

overlap between two tensors:

D1 : D2 = Trace(D1D2) (30)

4.1 Kulback-Leibler Distance

In order to overcome the limitations of the Frobenius norm or other tensor dissim-

ilarity measures used in the preceding segmentation approaches, Wang and Vemuri
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introduced in [77] a new tensor dissimilarity measure. Recalling that, in the context

of DT-MRI, the displacement of water molecules over a time t follows a Gaussian

distribution whose covariance matrix is the diffusion tensor, it is naturally justified

to use the distance between Gaussian distributions to induce a distance between the

tensors. The most frequently used information theoretic dissimilarity measure is the

Kullback-Leibler (KL) divergence, which is defined as:

KL(p ‖ q) =
∫

p(x) log

(
p(x)
q(x)

)
dx (31)

As the KL divergence is not symmetric, it is commonly symmetrized as:

J(p,q) =
1

2
(KL(p ‖ q)+KL(q ‖ p)) (32)

This symmetrized KL divergence is also called J-Divergence. Based on it, Wang

and Vemuri proposed in [77] a dissimilarity measure for SPD tensors, given by the

square root of the J-divergence between two Gaussian distributions with zero mean

and covariances T1 and T2:

d(T1,T2) =
√

J(p(x|T1, t), p(x|T2, t)) (33)

Taking the square root in Eq. 33 is justified because the KL divergence, and thus

twice the J-divergence, is the square distance of two infinitesimally nearby points

on a Riemannian manifold of parametrized distributions. It turns out that the J-

divergence has a simple form for the Gaussian distribution considered [77]:

d(T1,T2) =
1

2

√
trace(T−1

1 T2 +T−1
2 T1)−2n (34)

where n is the size of the tensors.

In order to employ the J-divergence for segmentation purposes, one usually needs

to compute the mean values of the tensor field over different regions. In [77], the

mean value T̄ of a tensor field T over a region Ω is defined as

T̄(T,Ω) = min
M∈S+(n,R)

∫
Ω

d2(T(x),M)dx (35)

where S+(n,R) stands for the set of real SPD matrices of size n. Wang and Vemuri

proved that there is a closed form expression for T̄ when using the J-Divergence as

a distance measure, which is given by

T̄ =
√

B−1
[√√

BA
√

B
]√

B−1 (36)

where A =
∫

Ω T(x)dx and B =
∫

Ω T−1(x)dx.
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4.2 Geodesic Distance

In order to define a new tensor dissimilarity measure, Lenglet et al. considered in

[46, 47] the statistical manifold M representing the family of 3-D, zero-mean Gaus-

sian PDFs described through the 6 free parameters of their covariance matrix2. A

Riemannian metric can then be introduced in terms of the Fisher information matrix

[63] that allows for the definition of geodesic distances on this manifold.

The geodesic distance induced by the Riemannian metric derived from the Fisher

information matrix has been investigated for several parametric distributions. If

we concentrate on the family of multivariate normal distributions with common

mean vector ξ but different covariance matrices T or, equivalently, on the manifold

S+(n,R), i.e. the set of n×n real SPD matrices, the information geodesic distance

between any two element T1 and T2 is given by (theorem by S. T. Jensen, 1976,

originally proved in [7]):

d(T1,T2) =

√
1

2
trace
(

log2
(

T1
−1/2T2T1

−1/2
))

=

√
1

2

m

∑
i=1

log2(λi) (37)

where the λi are the m eigenvalues of the determinantal equation |λT2−T1|= 0.

The information geodesic distance was used in the segmentation algorithm that will

be described in next section (Eqs. 44-47) replacing the J-divergence [47, 43]. For

this purpose, the mean value of the tensor field over each region with respect to this

new geodesic distance is needed. Fréchet [30], Karcher [39] and Pennec [58] define

this mean value, also known as the Riemannian barycenter, as follows:

T̄ = min
T∈S+(n,R)

1

N

N

∑
k=1

d2(T,Tk) = E[d2(T,Tk)] (38)

While it has been shown that the Riemannian barycenter exists and is unique for

S+(n,R), a closed form expression cannot be obtained [53]. However, a gradient

descent algorithm was proposed in [46] where, starting from an initial guess T̂(t =
0), the following evolution equation is obtained:

∂t T̂(t) =− T̂(t)
N

N

∑
k=1

log
(

T−1
k T̂(t)

)
(39)

More details and the corresponding numerical implementation can be found in [46].

2 Throughout the theoretical derivation of the geodesic distance, 3× 3 diffusion tensors are con-
sidered.
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4.3 Log-Euclidean Metrics

Even though Riemannian geodesic distances have excellent theoretical properties

and have shown very good results for segmentation purposes, they yield in practice

slow algorithms because of their complexity. In order to overcome this limitation,

the Log-Euclidean metrics were proposed [5, 6] that produce similar results but

using simpler and faster computations.

Euclidean distances (also referred to as Frobenius distance distances) are well

adapted to general square matrices, but they are not for the tensor specific case. If

Euclidean operations are performed on tensors, null or negative eigenvalues can ap-

pear, as these Euclidean operations are not convex [6]. Besides, Euclidean averaging

of tensors produces what is called tensor swelling effect [22], meaning that the deter-

minant of the Euclidean mean of several tensors can be larger than the determinants

of the original tensors.

With respect to Riemannian metrics, the computational burden is related to the

intensive use of matrix inverses, square roots, logarithms and exponentials. Besides,

there is not a closed form for the tensor mean, and the computation needs to be done

in an iterative manner.

In order to define the Log-Euclidean metrics, the notions of matrix logarithm and

exponential are first needed. For any matrix M, its exponential is given by:

exp(M) =
∞

∑
k=0

Mk

k!
(40)

The matrix logarithm is defined as the inverse of the exponential. The existence and

uniqueness of the logarithm is not guaranteed for a general invertible matrix, but it is

well defined for a positive definite tensor, yielding a symmetric matrix. Conversely,

the exponential of any symmetric matrix is a positive definite tensor.

The introduction of Log-Euclidean metrics is based on the idea of defining a

novel vector space structure on tensors. It corresponds to Euclidean metrics in the

domain of logarithms. Using the Euclidean norm || · || on symmetric matrices, the

distance between two tensors can be written as:

d(T1,T2) = || log(T1)− log(T2)|| (41)

Log-Euclidean metrics do not satisfy full affine-invariance as the Riemannian metric

introduced in the previous section. However, a number of them are invariant by

similarity, that is, orthogonal transformation and scaling. The simplest similarity-

invariant Log-Euclidean metric is given by:

d(T1,T2) =
[
Trace

(
(log(T1)− log(T2))2

)]1/2
(42)

Log-Euclidean have been mainly employed for interpolation and regularization of

tensor fields [6], but some authors have also used for segmentation purposes, as will

be seen in next section.
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5 Tensor Field Segmentation Techniques

Whereas most of the scalar diffusion and anisotropy measures previously described

in this chapter were proposed mainly for visualization or some quantitative purposes

from brain tensor data, the diffusivity measure I1 (Eq. 24) and the anisotropy mea-

sure Ca (Eq. 27) were both employed in [89] for the segmentation of tensor brain

data through the evolution of a level set following an edge-based approach similar

to the Geodesic Active Contour (GAC) model [20, 40]. This can be considered to be

one of the very first approaches to the segmentation of tensor data.

Rousson, Brox et al. proposed in [16, 66, 65] to apply the vector-valued version

of the Geodesic Active Regions (GAR) model [56] for multivariate Gaussian distri-

butions [67, 68] to the vector consisting of the nonlinearly diffused free components

of the LST. This way, the image is treated as though it were multiespectral, being

the channels each of the components of the tensor.

The first level set segmentation approach directly working on tensor data was

proposed by Feddern et al. [26]. In their work, they present a structure tensor for

tensor data as a generalization of the concept of image gradient to tensor data. Start-

ing from this concept an active contour model is presented, based on the GAC model

and adapted to tensor data by using the trace of the LST of the tensor data as an edge

detector that stops the evolution of the contour in the presence of edges.

In [87], a modified k-means algorithm [49, 33, 15] was proposed to segment the

thalamic nuclei from DT-MRI. The metric the authors propose is a combination

of the Mahalanobis voxel distance and the Frobenius distance tensor distance (see

Section 4).

After the pioneering works by Feddern et al. [26] —who first run a level set

algorithm on tensor data, as previously indicated—, and by Wiegell et al. [87] —

who first employed tensor dissimilarity measures for segmentation—, most recent

approaches for the segmentation of tensor data are based on the combination of

both elements, that is, the use of variational methods and level sets based on the

information given by tensor dissimilarity measures.

In [78], Wang and Vemuri proposed the use of a region-based active contour

model for the segmentation of tensor fields. Their approach is an extension of the

level set implementation of the Mumford-Shah functional [54] to matrix-valued im-

ages, where the Frobenius norm of the difference of tensors is employed. This seg-

mentation method was tested on synthetic tensor field segmentation as well as for

the segmentation of textures by means of the LST, and MRI data.

Jonasson et al., in [38, 37], face the segmentation of DT-MRI data from a per-

spective somehow inspired on a fibre tracking approach. In a level set framework,

the speed propagation of the front is proportional to the similarity between the ten-

sors lying on the front and its neighbors. They employed the NTSP as a tensor dis-

similarity measure (see Section 4). In order for the mean curvature flow —usually

introduced in the level set evolution for regularization purposes— not to destroy the

tubular structure of the fibre tracts that are sought, the smaller principal curvature
is employed, which is a combination of the mean and the Gaussian curvatures and

was introduced in [51].
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There is an important group of segmentation algorithms that have been proposed

using the J-divergence as tensor dissimilarity measure. The first approach was pre-

sented by Wang and Vemuri [77], and is based on the minimization of the following

energy functional:

E(C ,T1,T2) =
∫

Ω1

d2(T(x),T1)dx+
∫

Ω2

d2(T(x),T2)dx+ν |C | (43)

This energy functional is the tensor extension, with the introduction of the J-

divergence as dissimilarity measure, of the Chan and Vese model for the segmenta-

tion of piecewise constant regions [21].

The energy functional in Eq. 43 depends on the segmenting contour, C , and on

the mean values of the tensor field over regions Ω1 and Ω2, T1 and T2, respec-

tively. These are computed as shown in Section 4.1. Through its implementation in

a level set framework, this segmentation approach was successfully tested on syn-

thetic tensor fields as well as for the segmentation of textures using the LST and

the segmentation of real DT-MRI data. Its main drawback is, coherently with the

Chan and Vese model on which it is grounded, its limitation to a piecewise constant

model. With the aim to overcome this limitation, Lenglet et al. presented in [43, 47]

a segmentation approach that, with the twofold inspiration of the GAR model for

segmentation and the use of the J-divergence as a tensor dissimilarity measure, pro-

poses the minimization of the following energy functional:

E(C , T̄i,σ2
i ) =−

2

∑
i=1

∫
Ω1

log pd,i
(
d(T(x), T̄i)

)
dx (44)

where C is the segmenting contour that splits the image domain Ω into regions Ω1

and Ω2. The equation above is a derivation from the region term in the GAR model

where, instead of modeling the PDF of the image values, the distances between the

tensor at each point and the mean value of the tensor field over the corresponding

region are modeled as Gaussian distributions3 with zero mean and variances σ2
i ,

that is:

pd,i
(
d(T(x), T̄i)

)
=

1√
2πσ2

i

exp

(
−d2(T(x), T̄i)

2σ2
i

)
(45)

If we reformulate the energy term by representing the segmenting contour C by the

zero level set of the distance function φ , and make use of the regularized versions of

the Dirac and Heaviside functions, δε(φ(x)) and Hε(φ(x)), and add the regularity

constraint on the length of the contour, the energy functional becomes:

E(φ , T̄i,σ2
i ) =

∫
Ω
− log pd,1

(
d(T(x), T̄1)

)
Hε(φ(x)) (46)

− log pd,2

(
d(T(x), T̄2)

)
(1−Hε(φ(x)))+ν |∇Hε(φ(x))|dx

3 Since the tensor distances are always non-negative, strictly speaking the expression in Eq. 45
should be multiplied by 2 so that pd,i

(
d(T(x), T̄i)

)
remains a PDF. Anyway, as this applies for

both distributions over Ω1 and Ω2, this consideration has no practical effect.
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The derivation of the Euler-Lagrange equations for this energy functional, which

was studied in [67], yields the following evolution equation for the level set function:

∂φ(x)
dt

= δε(φ(x))

[
ν∇ · ∇φ(x)

|∇φ(x)| +
1

2
log

(
pd,2

(
d(T(x), T̄2)

)
pd,1

(
d(T(x), T̄1)

))] (47)

The derivation of the energy with respect to σ2
i and T̄i indicates that the variances

must be updated by their estimations, while the mean values for the tensor field over

both regions are updated following Eq. 36.

It is worth noticing that this segmentation approach is an extension of the method

proposed in [67] by Rousson et al. that applies the GAR model with Gaussian dis-

tributions on the intensity values. In the present approach, it is not the data that is

modeled as indicated, but the distances between the tensors at each point and their

mean values, and a zero mean constraint is imposed.

Together with this segmentation framework, the use of a new tensor distance was

also proposed in [47]. Taking into account the Riemannian geometry of the space

of Gaussian PDFs based upon which the K-L distance was defined, they rigorously

define a geodesic distance on this Riemannian manifold.

The described segmentation approach was able to achieve impressive results for

the segmentation of both synthetic and real DT-MRI data and it was made clear in

[47] the superiority of the J-divergence and the geodesic distance over the consider-

ation of the tensor components in a R6 vector representation.

While the J-divergence and the information geodesic distance between tensors

are indeed appropriate intrinsic tensor dissimilarity measures, their use for tensor

field segmentation purposes through the modeling of the distances between the ten-

sors and their mean values as a zero-mean Gaussian distribution entails an important

limitation. Indeed, the complexity of the space of SPD tensors is reduced to the 1-D

space of the J-divergence or geodesic distances.

On the other hand, the previous vector representations in Rd for the tensors com-

ponents considered in [65, 66] allowed for the statistical modeling directly on the

domain of the data, but the vector representation was shown not to be completely

adequate.

Because of this, Lenglet et al. proposed in [48, 44, 45] an approach for the sta-

tistical modeling of the data directly on the tensor domain, through the definition of

Gaussian distributions between diffusion tensors. These distributions are then incor-

porated into the probabilistic setting of the GAR model. Making use of the necessary

elements from differential geometry, and once a suitable metric has been defined,

a Gaussian distribution between tensors belonging to the manifold S+(3,R) of the

3×3 real, SPD matrices is defined with the following PDF:

p(Ti|T̄,Λ) =
1√

(2π)6|Λ |
exp

(
−ϕ(β i)

T Λ−1ϕ(β i)
2

)
(48)

The following elements need to be specified to complete the description of the Gaus-

sian distribution:
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• Ti is the 3×3 tensor located at voxel i in Ω .

• T̄ is the empirical mean tensor over a set of N diffusion tensors.

• Λ is the associated covariance matrix, whose size is 6×6 for a 3×3 tensor (that

is, the number of free components).

• The symmetric matrix β i is defined, for a given metric Dx, by β i =−∇TiDx(Ti, T̄).
• The map ϕ : S+(3,R) �→ R6 associates to each matrix β i its 6 free components.

As can be seen, the definition of the Gaussian distribution is general in terms of

the metric employed. In their work, Lenglet et al. consider three different choices:

Euclidean metric, J-divergence and geodesic metric. For further details, we refer the

reader to [48, 44, 45].

Using the described Gaussian distribution on tensor data, and choosing one of

the proposed metrics, an energy functional was then proposed in that is based on

modeling the data directly on the tensor domain:

E(C , T̄1,2,Λ1,2) = −
∫

Ω1

log p(T(x)|T̄1,Λ1)dx

−
∫

Ω2

log p(T(x)|T̄2,Λ2)dx+ν |C | (49)

In the original work by Lenglet et al., a boundary based term was also employed,

based on the norm of the spatial gradient of the tensor field, which is also derived

for the Euclidean, J-divergence and Geodesic metrics (see [44]).For given statistical

parameters, the final level set evolution equation employed for segmentation is:

∂φ(x)
dt

= δε(x)
[

μ∇ · ∇φ(x)
|∇φ(x)| +

1

2
log

(
p(T(x)|T̄1,Λ1)
p(T(x)|T̄2,Λ2)

)]
(50)

Experimental results made with this segmentation approach on both synthetic and

real MR-DTI images proved that the choice of the tensor dissimilarity measure has

a critical effect on the segmentation results. The Euclidean metric presents serious

limitations that become evident as the complexity of the data increases. All in all,

empirical evidence showed that the geodesic distance outperforms the J-divergence

which, in turn, achieves better results than the Euclidean metric.

Following the idea of applying a statistical model directly on the tensor data

for segmentation, de Luis-Garcia et al. proposed in [25] an extension of the previ-

ous method through the definition of Gaussian mixtures on tensor fields, which are

then incorporated in the segmentation framework seen above. Through an automatic

method for the selection of the number of components of the mixture, the statistical

model is able to adapt to the complexity of the data. This technique was success-

fully tested for the segmentation of the corpus callosum from DTI over a big dataset,

showing a slight higher accuracy and robustness than the use of a single Gaussian.

A completely different approach was proposed by Ziyan et al. for the segmenta-

tion of the talamic nuclei from DTI data [90]. This method uses a spectral segmenta-

tion algorithm [69] with some modifications. In spectral clustering, the segmentation

problem is posed in terms of a graph partitioning problem. The nodes of the graphs
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are the diffusion tensors, and the links connecting the nodes are based on the tensor

similarities of the data points being linked. In their work, several distances were em-

ployed: Frobenius norm, K-L divergence, and also the angular difference between

the principal eigenvector directions. Finally, in order to incorporate spatial relations

into the scheme, Markovian relaxation was employed. Results showed an accurate

segmentation on a dataset of 10 DTI volumes, starting from the manual delineation

of thalamus masks by experts.

Weldeselassie and Hamarneh proposed a related approach in [83], where graph

cuts segmentation technique operates using either the Log-Euclidean or the J-

divergence as tensor distances. The user interactively selects certain tensors as be-

longing to the different regions, thus imposing hard constraints to the segmentation.

This technique was applied to the segmentation of the corpus callosum as well as

the cardiac wall from DTI data.

Another recent approach to DTI segmentation was proposed by Awate et al.
[9, 8], who presented a fuzzy C-means algorithm that, instead of incorporating

Gaussian class models, uses nonparametric data-driven statistical models. The mo-

tivation underlying this approach lies in the fact that, because of the anatomical

characteristics of fiber bundles, they change their orientation significantly. Thus, the

tensor statistics do not accurately fit Gaussian models, whereas nonparametric statis-

tical models can efectively adjust to these situations. Using a Log-Euclidean metric,

the segmentation of different structures in the white matter, such as the cingulum

and the corticospinal tract, is performed.

In order to provide a comparative insight on all the segmentation methods that

have been described in this section, we summarize them in Tables 1 and 2, where

the main features of each method are listed together with their main advantages and

disadvantages.

6 Summary

In this chapter, the use of tensor fields for image processing, and for medical image

processing in particular, has been discussed. Second-order tensors constitute a con-

venient mathematical tool to describe anisotropic behaviours; specifically, we have

focused on the LST and the diffusion tensor from DT-MRI.

Once the LST and the diffusion tensor have been introduced, we have reviewed

the main scalar measures that have been used for tensor analysis in the literature.

These were precursors of the segmentation techniques that were proposed after-

wards directly in the tensor domain. These techniques rely on the definition of suit-

able tensor distances, which have thus been a central element in this chapter.

With regard to the different tensor segmentation methods that have been stud-

ied in this chapter, a two-fold evolution is worth noticing. First, methods have

evolved from the usage of basic tensor dissimilarity measures, such as Euclidean

distance, towards more advanced distances, such as the geodesic distance or the

Log-Euclidean metric. Second, these distances have been incorporated into segmen-
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tation framework with an increasing level of refinement. Indeed, DT-MRI has been

the leading application for the development of new segmentation techniques, with

the final goal of the automatic segmentation of anatomical structures within the

white matter of the brain.

Even though the most recent segmentation methods have successfully proved to

be able to segment different structures such as the corpus callosum or the thala-

mus nuclei, some important limitations still remain unsolved. First, these segmenta-

tion methods need some degree of manual initialization, which makes the automatic

analysis of populations hard to perform. Automatic initialization procedures need

to be developed, either through a coarse-to-fine segmentation approach, the use of

anatomical knowledge to drive the segmentation or the usage of brain atlases to

guide the initialization process. Second, the relative performance of the different

tensor metrics has not completely been understood. Some comparisons have been

made, but they are limited and do not allow to assess the superiority of certain metric

for segmentation purposes in general, or for the segmentation of a certain anatom-

ical structure. The nature of the interfaces between different fiber bundles in the

white matter is not homogeneous, which suggests that different metrics could be

appropriate for different specific applications.

All in all, the topic of segmentation of tensor-valued data keeps receiving an in-

creasing interest. Given the rapid evolution of the segmentation techniques in the

last years, it can be expected that this trend will go on, providing useful tools for the

analysis of DT-MRI images and tensor-valued data in general.
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A Variational Approach to the Registration of
Tensor-Valued Images

Sebastiano Barbieri, Martin Welk and Joachim Weickert

Abstract A variational framework for the registration of tensor-valued images is

presented. The underlying energy functional consists of four terms: a data term mod-

elled on a tensor constancy constraint, a compatibility term which couples domain

deformations and tensor reorientation on the basis of a physical model, and regu-

larity terms imposing smoothness of deformation and tensor reorientation fieldss in

space. A specific feature of our model is the separation of data and compatibility

terms which eases an adaptation to different physical models of tensor deformation.

A multiscale gradient descent is used to minimise the energy functional with repect

to both transformation fields involved. The viability and potential of the approach

in the registration of tensor-valued images is demonstrated by experiments.

1 Introduction

In medical imaging it is often necessary to fuse data from multiple images depicting

the same structure to gather the necessary information for diagnosis or the planning

of surgeries or other treatments. The images can originate from different imaging

modalities, but also from the same modality at different times. The task of trans-

forming all images into one common coordinate system is called image registration

[10]. Analogous problems appear of course also in other imaging application fields.

In a standard setting for registration using two images one aims at transform-

ing the template image in such a way that it can be overlaid to the other one, the

reference image, that corresponding structures are found at equal locations.
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At a closer look, this task decomposes into two parts. First, a map has to be found

that indicates for each point in the domain of the template image the corresponding

point in the domain of the reference image. Second, the template image has to be

deformed in accordance to this map. The first part is what in computer vision is

called a correspondence problem, similar to stereo vision or optic flow, while the

deformation task comes down to a geometric transformation commonly denoted as

warping.
Tensor fields [16] are more difficult to register than scalar-valued images, such

as computerised tomography or standard magnetic resonance (MR). To understand

why this is the case, notice that scalar-valued images can be deformed by simply

moving values within the image domain. For sake of discretisation, this will usu-

ally require to resample the image by some interpolation, but not more. In contrast,

tensors in a tensor field are inherently linked to the geometry of the domain of def-

inition. In order to keep this reference intact while transforming the domain, tensor

values have to be adapted. Locally, the relevant deformation data are gathered in the

Jacobian of the displacement map. To integrate the transformation of tensors prop-

erly into the registration procedure, it needs not only to be used in the warping step

but should already be taken into account when computing the correspondence map.

Our contribution. This chapter is dedicated to a variational framework for the reg-

istration of tensor-valued images in which the correspondence and warping prob-

lems are joined in a single minimisation task. A gradient descent procedure is used

for finding the minimiser. While a preliminary version of this framework has been

presented at the CVPR workshop Tensors in Image Processing and Computer Vision
[3], our present work improves the compatibility term such that it becomes algorith-

mically simpler, and provides a substantially extended experimental investigation.

Our approach is characterised by the consistent combination of displacement and

reorientation information that allows to make full use of the direction information

contained in the tensor data. Although the physical model behind the functional

used here is motivated by DT-MRI, the approach itself is fairly generic as it can

easily accommodate any change to the physical model. This is a typical advantage

of variational methods because they make the assumptions of the model explicit

and permit straightforward manipulations on them, and our specific model is es-

pecially designed to capitalise on this advantage. For example, while we refrained

from modelling empirical parameters describing tissue physiology into the func-

tional, a refined model capturing physiological details could easily be plugged in,

but also any completely different transformation behaviour that could possibly arise

from the physical nature of some other tensor imaging application.

We present here the variational model and demonstrate experimentally its poten-

tial as a versatile tool for image registration of tensor data.

Related work. A variety of approaches to DT-MRI registration have been proposed

in the literature. In some approaches the correspondence and warping problems are

treated independently. Often the correspondence is inferred from derived quantities

that to not involve directional information, thus completely avoiding reorientation

in this step [12, 13, 15, 19]. In extracting from the location map the reorientation
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information for the warping step, a frequent assumption is that only a rotation takes

place. This can be motivated from a single-fibre model. Two methods to extract

a rotation field are discussed in [1]. One is the finite-strain approach based on a

polar decomposition of the Jacobian of the domain map. The second one is the

preservation of principal directions approach where the reorientation is governed by

the application of the domain transformation on the principal eigenvector. Another

way is to apply the Jacobian directly to the tensors, whose shape is thereby changed

[13]. For an overview of these techniques, we refer also to [7].

In [8], an algebraic approach to DT-MRI registration is proposed. Restricting

again tensor transformation to rotations, transformation parameters are optimised

locally to solve the correspondence problem. Furthermore, the authors discuss a

multi-scale refinement and the inclusion of feature correspondences. For another

feature-based registration approach see [14].

Another category of approaches aims at using directional information from

the beginning, i.e. already in computing the correspondence maps. For example,

[17, 18] formulate a diffusion tensor constancy constraint in which an affine trans-

formation of the domain is combined with a rotation of the tensor values based on

polar decomposition. A parametric model, namely a piecewise affine transforma-

tion, is fitted to the image data. In contrast, [5] proposes a gradient descent method

coming from a variational model. Here, tensor transformation is made dependent on

the deformation field in the sense of the preservation of principal directions. Another

variational model presented in [6] contains a data term that codes the deformation

of tensors by the Jacobian of the displacement field.

A comparison of tensor field registration using derived quantities without orien-

tation information to an alternative registration method based on the matrix entries

of the tensors is found in [11].

Concerning the related problem of registering DT-MRI data with data from other

imaging modalities, mutual information approaches have been studied in [9]. This

approach again clearly separates the correspondence and warping tasks. Another ap-

proach to registration problems of this kind found in [4] is based on fluid dynamics

PDEs.

Structure of the chapter. We start by describing our variational model in Section 2.

We detail on the energy functional and outline the minimisation procedure. Sec-

tion 3 is devoted to the experimental evaluation. A series of experiments in 2D on

synthetic and DT-MRI data demonstrates basic features of the method. By two 3D

experiments the viability of the approach for 3D data is verified, and a comparison

to a finite-strain based registration procedure is made. Section 4 contains a summary

and outlook.

2 The Variational Model

In the following, we consider two tensor fields R,T : Rd → SPD(d). Here, SPD(d)
is the cone of symmetric positive definite real d×d-matrices. We consider the tensor
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field R as reference image, T as template image. In order to register these images, we

want to find two maps: first, the displacement field u : Rd → Rd that describes how

the image domain Rd is transformed between R and T , and second, the reorientation
field P : Rd → G that controls the change of the tensor values, and whose range

G⊂ GL(d,R) is the matrix group of the admissible transformations.

The purpose of this separation is twofold. On the one hand, the specific depen-

dency between these two fields is not coded into the structure of the variational

model, thereby enabling an easy adaptation to a different physical setting. On the

other hand, it also simplifies the variational formulation, as no algebraic solution of

the equations relating both fields needs to be included in the functional.

2.1 Energy Functional

The energy functional to be minimised in our variational registration model reads

E[u,P] = D[u,P]+w1C[u,P]+w2Su[u]+w3SP[P] . (1)

It consists of four terms, each of which enforces a specific model requirement by

generating a nonnegative penalty for violations of this requirement:

• The data term D enforces the match between the transformation fields u, P and

the given tensor fields R, T .

• The compatibility term C encodes the physically motivated relation between the

displacement and reorientation fields.

• The displacement smoothness term Su expresses a regularity assumption for the

displacement field.

• The reorientation smoothness term SP promotes regularity of the reorientation

field.

The contributions of the four terms are combined with weight factors w1, w2, and

w3, thereby balancing the influences of the different model requirements. Let us now

discuss the four terms in detail.

Data term. If the displacement field u and reorientation field P perfectly match the

given data, their application to the template T should become equal to the reference

image R, which leads us to the diffusion tensor constancy constraint (DTCC)

(P(x)T)−1T (x+u(x))P(x)−1 = R(x) . (2)

To make the following mathematical derivations simpler, we distribute the actions

of u and P to the two tensor fields, yielding T (x+u) = PTRP, compare also [8, 17].

Penalising deviations from the DTCC by the Frobenius norm ‖·‖F of the matrix

difference, and integrating over the image domain Ω ⊂ Rd , we arrive at the data

term

D[u,P] =
∫
Ω

‖T (x+u(x))−P(x)TR(x)P(x)‖2
F dx . (3)
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Compatibility term. With this term, the relation between displacements and re-

orientation of tensors is introduced into the functional, which requires to specify a

physical model of tensor deformation. The shift field u of the domain acts induces lo-

cally a deformation given by the Jacobian J(x+u) of the location map x �→ x+u(x).
This deformation acts on the tensors. It is evident that pure translations for which the

Jacobian vanishes everywhere leave the tensors unchanged. Generally, the action of

J(x+u) can geometrically be interpreted in terms of the three components rotation,

shearing, and scaling. The action of each of these components needs to be specified

in the deformation model. We discuss in the following simple deformation models

for DT-MRI data.

As to scaling, it can be assumed that absolute diffusivities depend rather on the

physiology of the tissue on a microscopic scale, and will therefore not change when

the tissue is stretched or shrunk. As a result, scaling of the domain does not change

the tensors.

Rotation, however, can reasonably be assumed to act on the tensors directly by

accordingly rotating their eigensystems.

It remains to specify the effect of shearing, which is the most controversial com-

ponent of the model. In the case of DT-MRI, the way in which diffusion tensors

in tissue change when this tissue is sheared may depend on the underlying fibre

composition and the physiology of the fibres, and can therefore not be inferred un-

ambiguously in the context of the second-order tensor model. We suppose that only

small shears occur, and consider two models for the action of shear. In the first one

the shearing component of J(x+u) acts directly on the tensors. In the second version

of the model no shearing at all is assumed for the tensors. Formally these models

correspond to different matrix groups G as ranges of P: For the first model it is

the group of all matrices with determinant one, G = SL(d,R), while for the second

model G equals the group of (proper) rotation matrices G = SO(d).
In both cases, the compatibility term reads

C[u,P] =
∫

Ω
‖(PJ(x+u))p−det(J(x+u))p/dI‖2

F dx , (4)

where I is the unit matrix. By penalising once again deviations via the Frobenius

norm of a matrix difference, this term enforces approximate equality between P and

the inverse of J(x + u) up to the scaling component expressed via the determinant.

Its minimisation has the form of a least-squares fit. In those models which do not

include shear in the tensor transformation P, this least-squares fit takes place be-

tween the rotation matrix P ∈ SO(d) and the rescaled Jacobian from SL(d,R). As a

consequence, also the shear comprised in the Jacobian J(x + u) is subsumed to the

least-squares error in this case.

Note that in (4) matrices are raised to the p-th power. In this chapter, the standard

value for p will be 1. By keeping the exponent p in the formula we subsume the

model from our previous work [3], in which p = 2 was used for 2D tensor regis-

tration. While this seemed advantageous in terms of registration quality in early ex-

periments, the case p = 1 is algorithmically simpler, and experimental exploration
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has proven its equal qualitative performance. We will include one experiment for

comparison in Section 3.

Smoothness terms. Imposing regularity by including smoothness terms in a func-

tional is a standard component in variational models. It allows the model to cope

with the inevitable noise in input data.

In our model, we need regularisers for both transformation fields. Regularity of

the displacement field u is enforced by penalising its spatial gradient with its Eu-

clidean norm ‖·‖2, yielding the smoothness term

Su[u] =
∫

Ω

d

∑
j=1

‖∂ ju‖2
2 dx . (5)

In quite the same way the reorientation field is regularised by

SP[P] =
∫

Ω

d

∑
j=1

‖∂ jP‖2
F dx . (6)

2.2 Minimisation

We want to minimise the functional (1) by a gradient descent method. We use there-

fore the Euler-Lagrange formalism from the calculus of variations to obtain vari-

ational derivatives of E with respect to the transformation fields u and P. As these

fields, however, consist of multi-channel quantities, it is necessary to take the deriva-

tives with respect to suitable sets of parameters. For the displacement field u whose

values belong to a vector space, the displacements u1, . . . ,ud in the coordinate di-

rections lend themselves as such a parameter set. In the case of P, however, the

Lie group SO(d) or SL(d,R) has to be parametrised, dependent on the deformation

model in use.

Restricting ourselves to the 2D case with and without shearing, and the 3D case

without shearing, and assuming that deformations are small (thus, P close to I), we

can use the following parameter sets:

• Case SO(2) (2D, only rotations): This is a one-parameter rotation group with

one rotation angle α , such that

P(α) =
(

cosα −sinα
sinα cosα

)
. (7)

• Case SL(2,R) (2D, rotations and shear): Here, we decompose the action of P
into two rotations framing between them a shear with invariant x axis. By choos-

ing the rotation angles as 1
2 (α±β ), we arrive at the parametrisation
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P(α,β ,γ) =

(
cos

α+β
2 −sin

α+β
2

sin
α+β

2 cos
α+β

2

)(
1 0

2γ 1

)(
cos

α−β
2 −sin

α−β
2

sin
α−β

2 cos
α−β

2

)
. (8)

Here, α can be interpreted as “net rotation”, β as shear direction, while γ gives

the magnitude of the shear.

• Case SO(3) (3D, only rotations): A sensible parametrisation of 3D rotations is

given by Euler angles α , β , θ , such that

P(α,β ,θ) =

⎛⎝1 0 0

0 cosα −sinα
0 sinα cosα

⎞⎠⎛⎝ cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ

⎞⎠⎛⎝cosθ −sinθ 0

sinθ cosθ 0

0 0 1

⎞⎠ . (9)

To write down the gradient descent equations, we abbreviate by F the integrand

of the energy functional,

F := ‖T (x+u(x))−P(x)TR(x)P(x)‖2
F

+‖(PJ(x+u))p−det(J(x+u))p/dI‖2
F +

d

∑
j=1

‖∂ ju‖2
2 +

d

∑
j=1

‖∂ jP‖2
F , (10)

and introduce the artificial time variable t.
The 2D gradient descent then reads

∂
∂ t

u1 =
d

dx
Fu1x +

d

dy
Fu1y −Fu1

,

∂
∂ t

u2 =
d

dx
Fu2x +

d

dy
Fu2y −Fu2

,

∂
∂ t

α =
d

dx
Fαx +

d

dy
Fαy −Fα ,

∂
∂ t

β =
d

dx
Fβx +

d

dy
Fβy −Fβ ,

∂
∂ t

γ =
d

dx
Fγx +

d

dy
Fγy −Fγ

(11)

with rotations and shear. When no shear is used, the last two equations are omitted.

Analogously, the equations in the 3D case read
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−5◦ 0◦ +5◦ α

−0.01 0.00 +0.01 γ

(a) (b)

Fig. 1 Colour coding schemes for visualisation of tensor field transformations. Left: (a) Displace-
ment vectors in 2D. Right: (b) Scale for rotation angles and shear factors.

∂
∂ t

u1 =
d

dx
Fu1x +

d

dy
Fu1y +

d

dz
Fu1z −Fu1

,

∂
∂ t

u2 =
d

dx
Fu2x +

d

dy
Fu2y +

d

dz
Fu2z −Fu2

,

∂
∂ t

u3 =
d

dx
Fu3x +

d

dy
Fu3y +

d

dz
Fu3z −Fu3

,

∂
∂ t

α =
d

dx
Fαx +

d

dy
Fαy +

d

dz
Fαz −Fα ,

∂
∂ t

β =
d

dx
Fβx +

d

dy
Fβy +

d

dz
Fβz −Fβ ,

∂
∂ t

θ =
d

dx
Fθx +

d

dy
Fθy +

d

dz
Fθz −Fθ .

(12)

To compute these gradient descents, we use explicit (forward Euler) discretisa-

tions. As we aim at a steady state, higher order schemes bear no advantage. All

spatial derivatives are discretised by Sobel operators.

Note that the evaluation of T (x+u) involves a resampling which is performed

here by bilinear interpolation. While some interpolation artifacts implied by this

proceeding could be reduced by using a shape interpolation approach, see e.g. [2],

bilinear interpolation appears to be closer to the physical sampling process which

also leads to partial volume effects in the measurements.

Multiscale procedure. Particularly in the presence of displacements that exceed

the range of about 1 to 2 pixels, the gradient descent method tends to converge

extremely slow, or can even be caught in local minima. We use a multiscale

approach to solve this problem: The registration is performed subsequently for

a series of image pairs smoothed with Gaussians of decreasing standard devia-

tion, i.e. (Rk,Tk),(Rk−1,Tk−1), . . . ,(R0,T0) with R0 = R, T0 = T and Ri = Gσi ∗R0,

Ti = Gσi ∗T0 where Gσ denotes the Gaussian of standard deviation σ , and we choose

σk > σk−1 > .. . > σ1 > 0. The transformation fields u and P in each step i≤ k−1

are initialised with the minimisers found in the previous step i+1.
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3 Experiments

First we present a series of experiments in 2D. In the presentation of our results we

use a glyph-based representation of tensor fields with ellipse glyphs. The principal

axes of each ellipse are oriented in the eigenvector directions of the corresponding

tensor, while their lengths equal its eigenvalues. Note that the eigenvalues are real

and positive, as we deal with symmetric positive definite matrices.

In visualising displacement fields, we use a colour coding scheme given in

Fig. 1(a) to generate colour images. We also represent the scalar quantities, i.e. an-

gles α and shear magnitudes γ , by colour images. The colour scale for this is shown

in Fig. 1(b).

Weight parameters have been chosen manually in all of our experiments. Fur-

ther investigation will be necessary to address a possible automatic choice of these

parameters.

3.1 Synthetic 2D Experiment

In the experiment in Fig. 2, we use a synthetic 2D data set containing a fibre-like

structure as reference image (a). The template image (b) has been generated by ro-

tating consistently domain and tensors of the reference image by 3◦. A caveat about

this test image pair is that the correspondence map is dramatically underdetermined.

For registration, we set the weights in (1) as w1 = 2 ·106, w2 = 5 ·107, w3 = 4 ·107.

Our complete 2D model with rotation and shear yields the registered image shown

in Fig. 2(c). No multiscale procedure has been used here. In Fig. 2(d–f) we show

the displacement field and two components of the reorientation field. Due to the

mentioned underdetermination of the example, the model attains an optimum with

nonzero shear. In particular, the vertically periodic structures visible in Fig. 2(e, f)

indicate that the process slightly overfits and matches aliasing-type structures gener-

ated by the resampling of the rotated data. Fig. 2(g–i) show the results of registration

with the rotation-only model.

As a measure of registration quality we use the value of the data term D[u,P] for

the computed displacement and reorientation fields. By this means, we can compare

different registration models. As this measure could, however, be misled by overfit-

ting, its utilisation is restricted to cases with equal smoothness parameters. Table 1

Table 1 Data term values measured to assess registration quality for the fibre images from
Fig. 2(a,b) by different models.

Model with rotation and shear 2.14 ·104

Model with rotation only 3.04 ·104

Model without reorientation 4.60 ·104

Ground truth 1.29 ·104
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a b c

d e f

g h i

Fig. 2 Registration of a synthetic tensor field. (a) Top left: Clipping (rows 0 to 19, columns 54
to 73) from a 127× 127 synthetic tensor field featuring a simplified “fibre”, used as reference
image. (b) Top middle: Template image obtained by 3◦ rotation of (a). (c) Top right: Result of
variational registration with deformation model involving rotation and shear. (d) Second row, left:
displacement field computed in the registration process (all 127× 127 pixels). (e) Second row,
middle: Rotation angle α from the reorientation field. (f) Second row, right: Shear factor γ . (g)
Bottom left: Registration result using the deformation model involving only rotations. (h) Bottom
middle: displacement field computed in registration with rotation-only model. (i) Bottom right:
Rotation angle α from rotation-only model. Inserts in (e), (f) and (i) show correct parameter values
(3◦, 0.0).

comprises values of the data term for registration with and without shearing and,

for comparison, for a model that does not account for reorientation as well as for

the known correct displacement and reorientation field (ground truth). The nonzero

error measured in the latter case is caused by the resampling in generating the data

and in the registration itself.

As expected, the model with reorientation reduces the error considerably. Since

by construction the data fit a pure rotation model, it is natural that the gain by includ-
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a b

Fig. 3 127× 127 fields of 2D tensors extracted from two DT-MRI data sets of the same human
brain. The data set in (a) was obtained with 10 times averaging, while that in (b) was measured
without averaging, which leads to a great difference in noise level.

ing shear is smaller. Nevertheless, the underdetermination of the correspondence

allows a further improvement by a nonzero shear. 1

3.2 Real-World 2D Experiments

We continue by three experiments based on 2D tensor fields from diffusion tensor

imaging. From two DT-MRI data sets of the same human brain, a single plane of 2×
2 tensors is extracted, using only those components of the original 3×3 tensors that

belong to the section plane. Fig. 3 shows the images in a grey-value representation,

where each of the 2×2 tiles of each image represents one matrix component.

In analogy to our synthetic experiment, we register first one image to a rotated

version of the same image. The original image from Fig. 3(b) serves as reference,

and a copy rotated by 3◦ as template. As the noise level is higher than in the synthetic

experiment, we choose w1 = 3.6 ·107, w2 = 9 ·107, w3 = 7.2 ·108. From now on we

use the multiscale procedure with k = 4 and standard deviations 4.0,2.0,1.0,0.5.

The resulting displacement and reorientation estimates are shown in Fig. 4 along-

side with detail views of the reference, template, and registered image. In Table 2

data term measurements are given that allow a judgement on the registration qual-

ity. It can be seen in the colour-coded display, Fig. 4(e,f) that the angle and shear

estimates in most of the image area approximate the correct (ground truth) values

1 In [3], where p = 2 was used in the compatibility term, data term measurements for the registra-
tion results were significantly lower than those reported here. It is only in this synthetic example
that such a large difference between p = 1 and p = 2 is observed. It can be ascribed to the dramatic
underdetermination of the correspondence map by the given data.
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Fig. 4 Registration of a 127× 127 field of 2D tensors extracted from a DT-MRI dataset of a
human brain as reference image and a copy rotated by 3◦ as template. (a) Top left: Reference
image, rows 55 to 66, columns 29 to 40 shown. (b) Top middle: Template image, same area. (c)
Top right: Registered image, same area. (d) Bottom left: displacement field. (e) Bottom middle:
Rotation angle from the reorientation field. (f) Bottom right: Shear factor. Inserts in (e), (f) show
ground truth parameter values.
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Fig. 5 Histograms of estimated deformation parameters for 2D tensors. (a) Left: Rotation angles
from Fig. 4(e). (b) Right: Shear factors from Fig. 4(f).

3◦ and 0, respectively. Histograms shown in Fig. 5 confirm this. Significant devia-

tions occur only in those outer regions of the data set which are dominated by noise

tensors close to zero.

a b c

d e f
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Fig. 6 Registration of two 127× 127 fields of 2D tensors extracted from different DT-MRI data
sets of a human brain. (a) Left: Colour-coded displacement field that shows an approximately
constant shift between the two images. (b) Middle: Rotation angle from the reorientation field. (c)
Right: Shear factor from the reorientation field. – Inserts in (b), (c) show ground truth values.

While the improvement by a model accounting for reorientation is again evident,

the remaining mismatch is much larger than in the synthetic model due to the high

spatial variation of the data and resulting large resampling error.

We turn now to register the two different 2D DT-MRI images onto each other. As

both data sets were acquired subsequently during the same MR session, there is only

a slight displacement, and virtually no reorientation between them. Using the same

parameters as before, we obtain the values shown in Fig. 6. In this case, there is

no significant influence of the reorientation, which indicates that also no substantial

overfitting takes place.

We end our 2D experiments by registering again the two different 2D DT-MRI

images as before, but additionally rotating the reference image by 3◦. Using the

same weight parameters as before, we obtain the results compiled in Table 3 and

Fig. 7. In the top row (standard setting), a good capture of rotation is achieved in the

central region where most anisotropic tensors reside (white matter). One observes,

Table 2 Data term measurements for the registration of a 2D DT-MRI data set and its rotated
version by different models.

Model with rotation and shear 1.02 ·106

Model with rotation only 1.70 ·106

Model without reorientation 2.39 ·106

Ground truth 0.89 ·106

Table 3 Data term measurements for the registration of two 2D DT-MRI data sets, one of them
rotated, by different models.

Model with rotation and shear 1.16 ·106

Model with rotation only 1.42 ·106

Model without reorientation 1.51 ·106

a b c
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a b c

d e f

g h i

Fig. 7 Registration of two 127× 127 fields of 2D tensors extracted from different DT-MRI data
sets of a human brain. The test images were the same as in Fig. 6 but with the reference image
rotated by 3◦. Top row: Standard model with exponent p = 1 and parameters w1 = 3.6 ·108, w2 =
9 ·107, w3 = 7.2 ·108. (a) Top left: displacement field showing a rotation superposed to the constant
shift. (b) Top middle: Rotation angle. (c) Top right: Shear factor. Middle row, (d)–(f): Same but
with suppressed compatibility term, w1 = 0. While the displacement field (d) is almost identical
to (a), both deformation components are substantially misestimated. Bottom row, (g)–(i): Model
with p = 2 (compare [3]) and parameters w1 = 3.6 ·107, w2 = 9 ·107, w3 = 7.2 ·108. Note that the
compatibility weight w1 is rescaled to accommodate the change in the compatibility energy. Inserts
in angle and shear fields show ground truth values.

however, that angles are somewhat underestimated. The middle row demonstrates

the importance of the compatibility term in our model: By setting its weight to

zero, the displacements are still fairly well estimated but deformations are estimated

reasonably only in a part of the image domain. Finally, the bottom row shows a result

obtained by the model from [3] with exponent p = 2 in the compatibility term. With

a suitably adapted value of the compatibility weight w1, results of both models (top

row and bottom row) look almost identical.
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a b c

d e f

g h i

Fig. 8 Registration of 3D tensor data. A 40×40×40 volume from a human brain DT-MRI data
set serves as reference image. The template is a copy of the same data, rotated first by 5◦ around
the x-axis and then by 5◦ around the y-axis. The reorientation model allows only rotations. Top
row: (a) Left: Voxels 20 to 35 in x direction, 5 to 20 in y direction from layer 30 in z direction of
the reference volume. (b) Middle: Same voxels from the template volume. (c) Right: Same voxels
from the registered volume. Second row: (d) Left: displacement field in the x-y central plane. (e)
Middle: Displacement field in the x-z central plane. (f) Right: Displacement field in the y-z central
plane. Bottom row: Euler angles in the x-y central plane. (g) Left: Angle α . (h) Middle: Angle β .
(i) Right: Angle θ . Inserts in (g)–(i): ground truth.

3.3 Experiments with 3D Data

In our first 3D experiment (Fig. 8) we register a rotated volume taken from one of

our DT-MRI data sets onto its unrotated counterpart, using the SO(3) reorientation

model. For the visualisation of exemplary data we use ellipsoid glyphs analogous to

the ellipse glyphs mentioned above for the 2D case. For the transformation fields we

apply the 2D colour coding within the planes shown. The results show that the ho-
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Fig. 9 3D tensor registration results. (a) Left: Histogram of Euler angles α from Fig. 8(g). (b)
Right: Histogram of Euler angles β from Fig. 8(h).

mogeneous rotation field and corresponding displacements are captured well, again

with an underestimation of reorientation angles, see also the histograms in Fig. 9.

Our second 3D experiment (Fig. 10) consists in registering equally sized volumes

from both our DT-MRI data sets. First we use our variational model with SO(3)
reorientation. Similarly as in the registration of 2D sections, the displacement field

is dominated by an almost constant translation, whereas the rotation angles range

around zero, with absolute values not exceeding 0.1◦, see also the histogram in

Fig. 11(a). In order to visualise the small deviations from zero, the angles have been

amplified by a factor 10 before applying the colour scale.

For comparison, we register the same volumes by a different model: Gradient

descent is performed only for the displacement field, while the reorientation com-

ponent is computed by the finite-strain model in each iteration step. The resulting

Euler angles are shown in the bottom row of Fig. 10. It can be seen that the reori-

entation fields are less smooth than before and vary in fact up to absolute values of

approx. 0.3◦, compare also the histogram in Fig. 11(b).

4 Summary and Outlook

In this chapter, we have described a variational approach to the registration of ten-

sor data. Using an energy functional consisting of separate terms for data fidelity,

compatibility, and smoothness of displacement and reorientation fieldss, this model

is apt for a flexible adjustment to possible different physical models of tensor de-

formation. We have presented an experimental demonstration of the applicability of

our model for synthetic and DT-MRI-based real-world data.

A more extensive evaluation of the model in 3D and its comparison to other

registration approaches are part of our ongoing work. We also aim at investigating

the use of the framework with other physical compatibility models.
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a b c

d e f

g h i

Fig. 10 Registration of 3D tensor data. Reference and template were 40×40×40 regions of the
3D data sets from which also the 2D data in Fig. 3 have been extracted. A 40× 40× 40 volume
from one human brain DT-MRI data set is registered onto an equally sized volume from a different
DT-MRI measurement of the same subject. Top row: (a) Left: displacement field in the x-y central
plane. (b) Middle: Displacement field in the x-z central plane. (c) Right: Displacement field in the
y-z central plane. Second row: Euler angles in the x-y central plane, amplified by a factor 10 (i.e.,
the colour scale from Fig. 1(b) covers the interval [−0.5◦,0.5◦]). (d) Left: Angle α . (e) Middle:
Angle β . (f) Right: Angle θ . Bottom row: Same Euler angles for a registration based on a finite-
strain model (see text). (g) Left: Angle α . (h) Middle: Angle β . (i) Right: Angle θ .
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Fig. 11 Comparison of 3D tensor registration results. (a) Left: Histogram of Euler angles β esti-
mated by our variational method, see Fig. 10(e). (b) Right: Histogram of Euler angles β estimated
by finite-strain model, see Fig. 10(h).
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Quality Assessment of Tensor Images

Emma Muñoz-Moreno, Santiago Aja-Fernández and Marcos Martin-Fernandez

Abstract The evaluation of tensor image processing algorithms is an open problem

that has not been broadly handled, and specific measures have not been described

to assess the quality of tensor images. In this chapter, we propose the adaptation

of quality measures that have been defined in the case of conventional scalar im-

ages to the tensor case, in order to evaluate the quality of the tensor images that are

most frequently used in the image processing field. Special attention is paid to the

tensor features that made this extension no straightforward. Some general concepts

that should be taken into account for the definition of quality indexes for tensor

images based on the well-known measures for conventional scalar images are de-

tailed. Then, some of these measures are adapted to deal with tensor images and

their behavior is analyzed by means of some examples. Thus, it is shown that struc-

ture based measures outperform point-wise measures, as well as the influence of

handling all the tensor components.

1 Introduction

Due to emerging modalities and advanced processing techniques, tensor data usage

has become frequent in the image processing field. We can highlight its application

in medical image, where new modalities, such as diffusion tensor imaging (DTI) [3]

or tensor elastography [20], allow to visualize structures or tissue properties that are

not visible with conventional image techniques. DTI is based on measures of the dif-

fusion anisotropy in the tissues and it has been mainly used in brain imaging, since

the nerve fibers can be identified as areas where diffusion is clearly anisotropic. It is

also used to analyze the microstructure of muscles such as the myocardium [23] or

cartilage [12]. The elastography, on the other hand, is a technique that analyzes the

Emma Muñoz-Moreno, Santiago Aja-Fernández and Marcos Martin-Fernandez
Laboratory of Image Processing (LPI), University of Valladolid, Spain,
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elastic properties of tissues. These properties can be described by means of tensors,

such as the strain and the vorticity tensors, and for this reason, the advanced elas-

tography techniques deal with tensor images. Moreover, the mechanical properties

of the tissues can be represented by fields of strain or stress tensors, which can be

useful, for instance, to analyze the motion of the heart muscles in the heartbeat [16].

In order to obtain a tensor image, some processing must be carried out to esti-

mate the tensor at each voxel after the acquisition procedure. In consequence, not

only acquisition noise but artifacts related to the tensor estimation may appear in the

final image. Therefore, likewise in conventional scalar images, many filtering and

denoising algorithms have been defined to improve the image quality. As well, other

processing techniques, such as registration algorithms, have been proposed for this

sort of data. In any case, the evaluation of the algorithm performance requires the

definition of quality measures that describe the goodness of the resulting images.

This quality evaluation is not trivial, even when working with scalar images, and it

becomes more complex when dealing with tensor images. In tensor image process-

ing literature, results are evaluated both quantitatively and qualitatively. Quantitative

approaches provide a numerical value of the quality of an image, usually by com-

paring it with a reference image. When estimating the quality of a tensor image, part

of the tensor information is usually discarded, since the tensorial magnitude is often

reduced to a scalar value that measures a given property. Once a scalar value is com-

puted for each voxel, it is possible to apply well-known quality or error measures

to the obtained images. However, this scalar-based measure may not reflect the real

quality of the tensor image. Qualitative approaches, on the other hand, are based on

quality assessment by visual inspection. Obviously, this evaluation is subjective and

therefore it does not allow to establish rigorous comparison among different pro-

cessing methods. Moreover, as in quantitative approaches, this visual comparison is

usually carried out over intensity images that only represent one of the tensor com-

ponents or some scalar magnitude related to the tensor, ignoring again part of the

tensor information.

All in all, it seems necessary to define measures that take into account every

tensor component to describe more realistically the quality of tensor images. Ac-

cordingly, in this chapter, we provide an approach to the definition of this kind of

measures, based on the existing quality measures for scalar images.

Quality assessment methods for scalar images can be roughly classified into full-

reference methods [30], that compare the image with a reference image, and blind-

quality methods, which do not use reference images. This chapter is more focused

on the former, the so-called full-reference techniques that can be divided into point-

wise and structural measures. Tensor point-wise comparison can be found in some

tensor image processing works. However, this kind of measures have several draw-

backs that have been widely reported in the case of scalar images. They are very

sensitive to changes in the intensity range, although these changes may not neces-

sarily affect the image structure. This is also the case when working with tensor im-

ages [18]. For this reason, the definition of quality measures based on structural in-

formation becomes necessary. Different structure-based quality measures have been
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defined to evaluate scalar images. The issues that should be considered to adapt such

measures to tensor images are further described.

In the remainder, the chapter is structured as follows: in Section 2, a review of

quality measures for scalar images is presented; next, in Section 3 we include a

brief definition of what a tensor is, and a description of the most used tensors in the

image processing field. Then, in Section 4, the special issues which the definition

of quality measures for tensor data involves are highlighted, and some examples of

quality measures are defined for tensor images. These measures are analyzed by a

set of experiments described in Section 5 and finally, results are discussed in Section

6 and conclusions are drawn in Section 7.

2 Background on Quality Assessment in Image Processing

Images can suffer distortion due to several sources, from the acquisition process

itself to compression, transmission through noisy channels and others. On the other

hand, images can also undergo quality improvement processes, like enhancement

or restoration techniques [15]. In each case it is useful to quantify the quality of

the resulting image. The approaches that do it using a reference image to carry out

this task are known as full-reference methods [30]. Within them, the most frequently

used are those based on error measures, as the Mean Squared Error (MSE) [10, 27].

Let I(x) be the ground truth image or golden standard and J(x) an image we

want to compare with the former. The MSE is defined by

MSE(I,J) =
1

|Ω | ∑
x∈Ω

(I(x)− J(x))2 , (1)

where |Ω | denotes the cardinality of space Ω , i.e., the number of elements in im-

age I(x). Although the MSE gives a measure of pixelwise similarity between the

images, it does not explicitly take into account any structural information in the

images or any sort of subjective measure. Variations of the former are sometimes

considered [10], such as the Structural Content (SC)

SC(I,J) =

1
|Ω | ∑

x∈Ω
[I(x)]2

1
|Ω | ∑

x∈Ω
[J(x)]2

(2)

or the Peak MSE (PMSE)

PMSE(I,J) =

1
|Ω | ∑

x∈Ω
(I(x)− J(x))2

(
max

x
I(x)
)2

. (3)

The limitations of such methods have been widely reported in the literature. Con-

sequently, some additional variations of the MSE have also been used in order to
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better deal with the features of the Human Visual System [10, 27], like the Lapla-

cian MSE (LMSE)

LMSE(I,J) =

1
|Ω | ∑

x∈Ω
(H(I(x))−H(J(x)))2

1
|Ω | ∑

x∈Ω
(H(I(x)))2

(4)

where the images are previously high-pass filtered with the high-pass operator H(·).
In [22], Przelaskowski proposes a vector of six components, mainly based on

errors between the ground truth and the degraded image, such as the average pixel

error, correlated errors or preservation of high contrast edges. Methods proposed

in [8] are also mainly based on error measurements. Other approaches, as the one

in [9], assess the quality using a degradation model.

In [17] a new index is proposed, namely, the objective Picture Quality Scale

(PQS), basically intended to measure the degradation in coding and compression of

images. It takes into account properties of visual perception of both global features

and of disturbances. It turns out to be bounded, with a maximum value of 5.797,

obtained when an image is compared with itself. Experiments show that although it

is a good measure when dealing with compression, it is not so good for other sources

of degradation [26]. Recently, some methods based on Natural Scene Statistics have

also been reported [25, 24].

In [30] Wang et al. proposed a full-reference quality assessment method based

on the structural similarity of two images, the so-called Structural Similarity (SSIM)

index. The method is a modification of their Quality Index, originally proposed

in [29]. This method has proved to be versatile and robust in many different envi-

ronments [26]. It uses three levels of pixelwise comparison:

1. Luminance comparison:

l(I,J) =
2μI(x)μJ(x)+C1

μ2
I (x)+ μ2

J (x)+C1

(5)

with μI(x) and μJ(x) the local means of the images I(x) and J(x) respectively,

and C1 a constant.

2. Contrast comparison:

c(I,J) =
2σI(x)σJ(x)+C2

σ2
I (x)+σ2

J (x)+C2

(6)

with σI(x) and σJ(x) the local standard deviations of the images I(x) and J(x),
respectively, and C2 a constant.

3. Structure comparison:

s(I,J) =
σIJ(x)+C3

σI(x)σJ(x)+C3
(7)



Quality Assessment of Tensor Images 83

with σIJ(x) the local covariance between the images I(x) and J(x), and C3 a

constant.

The local SSIM index then is defined as

SSIM(I,J) = [l(I,J)]α · [c(I,J)]β · [s(I,J)]γ (8)

and with a proper parameter selection [30] it becomes

SSIM(I,J) =
(2μI(x)μJ(x)+C1)(2σIJ(x)+C2)

(μ2
I (x)+ μ2

J (x)+C1)(σ2
I (x)+σ2

J (x)+C2)
. (9)

The overall value is obtained using the mean of the local SSIM (with acronym

MSSIM):

MSSIM(I,J) =
1

|Ω | ∑
x∈Ω

SSIM(I(x),J(x)). (10)

Some variations of the original method have been proposed elsewhere, like using

a weighted sum instead of the mean [31],

WSSIM(I,J) =
∑

x∈Ω
W (x)SSIM(I(x),J(x))

∑
x∈Ω

W (x)
(11)

with W (x) a weighting function that can be, for example:

W (x) = σ2
I (x)+σ2

J (x)+C2. (12)

A somehow different approach is the one by Weken et al.; they use fuzzy sim-

ilarity measures as a way to compare two images. In [34, 35, 36] many distances

have been defined, tested and used, either over the images themselves or over their

histograms. For instance, using the fuzzy Minkowski distance

S1(I,J) = 1−
(

1

|Ω | ∑
x∈Ω

|I(x)− J(x)|r
)1/r

(13)

or a modified version

M3(I,J) = 1−
∑

x∈Ω
|I(x)− J(x)|

∑
x∈Ω

(I(x)+ J(x))
. (14)

To be considered as fuzzy sets, the images must be normalized by their maximum

value. The measures are bounded, giving an index in the interval [0,1].
In [1] an alternative method is proposed. It is based on the distribution of the

local variance of the data. According to the authors, the quality indexes given by

this method correspond more closely to those expected from subjective visual as-
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sessment (concerning structural information) than methods previously reported. The

index is based on the assumption that a great amount of the structural information

of an image is encoded in the distribution of its local variance. The Quality Index

based on Local Variance (QILV) between two images I(x) and J(x) is defined as

QILV(I,J) =
2μVI μVJ

μ2
VI

+ μ2
VJ

· 2σVI σVJ

σ2
VI

+σ2
VJ

· σVIVJ

σVI σVJ

(15)

where μVI and μVJ denote the mean of the local variance of images I(x) and J(x),
σVI and σVJ the standard deviation of the local variance of images I(x) and J(x),
and σVIVJ the covariance between the local variance of I(x) and the local variance

of J(x).
Note that although there is a purposeful great similarity between Eq. (15) and the

SSIM index, the latter relies on the mean of the local statistics of the images, and

the former deals with the global statistics of the local variances of the images.

The first term in Eq. (15) carries out a comparison between the means of the local

variances of both images. The second one compares the standard deviation of the

local variances. This term is related with the blur and the sharpness of the image.

The third term is the one to introduce cross information in the two images. To avoid

computational problems with small values, some constants may be added to every

term in Eq. (15):

QILV(I,J) =
2μVI μVJ +C4

μ2
VI

+ μ2
VJ

+C4

· 2σVI σVJ +C5

σ2
VI

+σ2
VJ

+C5

· σVIVJ +C6

σVI σVJ +C6
. (16)

In order to make the index more sensitive to certain kind of degradations, each of

the three components may be weighted by a different positive exponent α , β and γ:

QILV(I,J) =

[
2μVI μVJ

μ2
VI

+ μ2
VJ

]α

·
[

2σVI σVJ

σ2
VI

+σ2
VJ

]β

·
[

σVIVJ

σVI σVJ

]γ
. (17)

3 Background on Tensor Images

Although a rigorous definition of tensors is out of the scope of this chapter, in this

section we will briefly describe tensors and tensor fields, as well as the most com-

mon tensor images used in image processing.

Tensors are mathematical entities that allow to describe some physical or mathe-

matical properties that cannot be fully described by scalar magnitudes. In addition,

tensors offer an appropriate behavior under changes of basis. They are expressed

as multi-dimensional arrays, and their rank is defined as the number of array in-

dexes that are required to fully describe the tensorial magnitude. Thus, tensors can

be viewed as a generalization of scalars (zero order tensors), vectors (first order

tensors) and matrices (second order tensors) to high-dimensional objects.
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Regarding the tensor fields, they can be described as a geometric space that has

a tensor associated with each of their points. This is obviously a non-rigorous defi-

nition, but it is enough for the purposes of this chapter. According to this definition,

tensor images, that is, images where a tensor is defined at each voxel, can be re-

garded as discrete tensor fields. Thus, the representation of complex quantities, such

as anisotropic magnitudes, is carried out by tensor images.

In the image processing area, tensors appear both in the images themselves and

as a tool to image analysis or processing. This is the case of the structure tensors [14]

that are often used to identify structured areas in the images, or the diffusion tensors

that are used to anisotropically filter the images [32]. Regardless of these applica-

tions, this chapter is focused on the tensor images, in order to assess their quality

and for this reason we will describe more thoroughly the tensors that appear in the

most commonly used images.

One type of tensors that most frequently appear in image are the diffusion ten-

sors (DT), that describe the diffusion of molecules in the space [3]. DTI has been

broadly used in medical imaging, especially in neuroimage, since the anisotropy

of the diffusion provides information about the nerve fiber structure that cannot be

observed by other modalities. In general, DT is a second order tensor, that can be

expressed as a 3× 3 positive definite matrix, to describe diffusion in a 3D space,

or a 2× 2 positive definite matrix if only a two-dimensional space is considered.

However, higher order tensors can be defined for advanced applications [33], since

they provide more information about diffusion, specially in areas where fibers cross.

Currently, these higher order tensors are not widely used, and the 3×3 second order

tensor is still the most common approach to represent diffusion in tissues.

Other common tensors are the stress and strain tensors, which are related to the

mechanical properties of the materials. The stress describes the distribution of forces

within a tissue or material, and the strain tensor measures how a body is deformed

when a force is applied on. Both are second order tensors and can be represented as

3× 3 symmetric matrices. In medical imaging, they have been used to analyze the

forces in the heart muscle in the course of a heartbeat [16], or the behavior of tissues

when deformation forces are applied [20]. This technique is known as elastography,

and it also takes into account the vorticity tensor [13], that is also a second order

tensor, represented as a 3×3 anti-symmetric matrix.

Since these are the most common tensor images, the quality measures that are

defined in this chapter are focused on them. Nevertheless, the topics mentioned in

Section 4 intend to be generalizable to other tensor images.

On the other hand, in some applications only part of the information that the

tensor provides is required. For instance, some scalar magnitudes are defined to

measure some quantities of interest or to make more intuitive the data visualization

and interpretation. In other cases, relevant information can be given by vectorial

magnitudes computed from the tensor data. This is the case of fiber tracking ap-

plications, which consist in the estimation of the nerve fiber trajectories from the

DTI [19]. It is usually based on the direction given by the major eigenvector of the

matrix that represents the DT. Thus, the quality measure definition can be focused

on these magnitudes instead of the tensor itself. However, it will depend on the spe-
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cific application and the tensor type, so a general definition is not possible. We will

show a comparison between the results based on these magnitudes with the results

achieved using every tensor component in Section 5.

4 Application of Quality Measures to Tensor Images

In this section we describe how the quality measures can be extended to the case of

tensor images. We focus on full-reference methods, which are based on comparison

of the image under evaluation with a reference image or golden standard. Among

this kind of measures, we distinguish between point-wise measures and structure

based measures. Point-wise measures are usually computationally less costly but

since they do not consider the image structure, they are less reliable than measures

that take into account structural information. In [26] a comparative study of quality

measures for scalar images is done, concluding that the results of structure based

measures are more coherent with the subjective observer judgement.

The extension of point-wise measures to second order tensors is relatively

straightforward. For instance, the MSE consists in the average of the square of the

Euclidean distance between the pixel values in both images, as defined in Eq. (1). In

the case of second order tensors, which can be expressed as matrices, the Euclidean

distance should be computed between matrices, which can be done by computing

the Frobenius norm of the difference matrix. Averaging the square of these values

all over the image, the MSE value for the tensor images is obtained. Other differ-

ent metrics could be also defined instead of the Euclidean metric, and thus more

appropriate norms for each tensor type could be defined to better assess the error.

The same concept can be applied to other point-wise measures: the SC can be de-

fined for tensors by substituting in Eq. (2) the intensity values at each pixel by the

Frobenius norm or another appropriate norm of the tensor in each voxel. Likewise,

the PMSE can be defined by changing the square difference in Eq. (3) by the square

of the chosen norm of the difference between tensors, and computing the maximum

value of the tensor norm in image I(x).
Some quality measures have been also defined taking into account the features of

the human visual system. However, note that the tensor images do not have a straight

visualization, since a tensor is represented at each voxel. It is usual to visualize

tensors as glyphs, but the human eye should be accustomed to this representation

and its interpretation to assess the quality of the image. Moreover, the image quality

appreciated by the human visual system depends on the visualization algorithm and

not only on the original image quality itself. Another option is to show a scalar

image whose values are somehow related to the tensor. However, these images only

reflect part of the tensor, which in most cases is not enough to assess the quality of

the tensor image. For these reasons, the methods based on the human visual system

cannot be extended to tensor images.

Further, we will show that point-wise measures present the same drawbacks that

have been widely reported in the case of scalar images comparison. Therefore, struc-
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ture measures are also required to describe the quality of tensor images. Structure

measures are usually based on local statistics of the images. The computation of

such statistics in tensor fields is the most involved issue to be handled in the exten-

sion of the quality measures to tensor images. For this reason, the next subsection

is focused on the special tensor features that should be taken into account in the

statistics computations, as well as the frameworks that have been developed to carry

out this estimation.

4.1 Statistics of Tensor Data

Due to the special nature of tensor data, some issues should be kept in mind to

estimate the statistics of a tensor field. Next, we describe the main reasons that

prevent a straightforward extension of scalar statistic estimation:

• Let T be a tensor describing a given transformation. The inverse transformation

is described by T−1. The composition of the transformation and its inverse must

be the identity tensor, that is, T−1T = I. Thus, it will be advisable that the mean

of these two tensors would be the identity tensor, what is achieved by the use of

geometric means instead of arithmetic ones.

• If the tensors are averaged by a Euclidean metric, a swelling effect appears, that

makes the determinant of the mean tensor higher than the determinant of the

individual tensors [6]. In order to avoid this effect, non-Euclidean metrics should

be defined.

• As aforementioned, the most often used tensors in image processing are con-

strained to the space of symmetric definite or semipositive definite matrices.

When using Euclidean metrics, computation with this kind of data can lead to

results that do not belong to the allowed space. It can be avoided by using Rie-

mannian metrics that consider the negative eigenvalues at infinite distances, and

therefore, prevent the tensor from having negative eigenvalues.

The problem of how to compute tensor statistics taking into account the previ-

ous issues has been tackled by some works in the literature [2, 4, 7, 21], especially

for the case of DT. Most of them are focused on the computation of the mean ten-

sor for interpolation purposes. These approaches have been based on the statistic

methodology for Riemmanian manifolds that had been previously developed, and

affine-invariant Riemmanian metrics have been defined to avoid the undesirable ef-

fects of Euclidean metrics [21].

Thus, the statistic estimation can be based on the concepts about statistics on

manifolds [5]. Instead of the conventional arithmetic mean, the Fréchet mean [11] is

more suitable to compute the mean of a set of tensors, since it avoids the problems

previously described. Given a set of tensors T1, ...,TN , the mean tensor Tmean is

given by the value that minimizes the sample Fréchet function, Fn(T), [5]:
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Tmean = argmin
T

Fn(T) = argmin
T

1

N

N

∑
i=1

d2(Ti,T), (18)

where d is the distance between tensors. Therefore, the mean tensor should be com-

puted by means of an optimization algorithm, but, if the metric is properly chosen,

the problem has an explicit solution. Thus, if a Log-Euclidean metric [2] is defined,

the distance between two tensors is given by

d(T1,T2) =
√

trace
(
(log(T1)− log(T2))

2
)
. (19)

It has been proved that, with this distance, the Fréchet mean is a generalization

of the geometric mean for positive numbers, and can be directly computed as

Tmean = exp

(
1

N

N

∑
i=1

log(Ti)

)
. (20)

Note that Log-Euclidean metric is only defined in the case of positive definite ma-

trices, since the logarithm of a matrix with negative eigenvalues is not real. There-

fore, this expression can only be applied to the case of tensors that are represented

by positive definite matrices, while for tensors that are not positive definite other

metrics must be defined.

The Fréchet variation of a probability measure on a manifold is defined as the

mean value of the sample Fréchet value [5]. Thus, the variation Vn of a set of tensors

can be computed as

Vn = Fn(Tmean) =
1

N

N

∑
i=1

d2(Ti,Tmean). (21)

These definitions must be taken into account in the description of the structural

quality measures that are based on the local statistic assessment. Next, some of

the quality measures that have been introduced in Section 2 are defined for tensor

images.

4.2 MSSIM and WSSIM

MSSIM and WSSIM have been defined in Section 2 for scalar images. Both are

derived from the SSIM map. This SSIM index is based on the comparison of the lu-

minance, contrast and structure, which are described by ratios between some local

statistics. Namely, the local mean and variance in both images, and the local covari-

ance between them are required. When working with tensor images, the assessment

of such statistics should be based on the Fréchet mean and variation previously de-

fined.
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First of all, the local mean at a voxel x of a tensor image I is defined as the Fréchet

mean in a given neighborhood N (x) of the voxel. Thus, let η(x) be the estimated

local mean, it is computed as

ηI(x) = argmin
T

1

|N (x)| ∑
xi∈N (x)

d2(I(xi),T), (22)

where | · | denotes the cardinality of the neighborhood, that is, its number of ele-

ments. In the case of positive definite tensors, with the Log-Euclidean metric given

by Eq. (19), can be directly computed as

ηI(x) = exp

(
1

|N (x)| ∑
xi∈N (x)

log(I(xi))

)
. (23)

The SSIM of an image J is computed by comparing such image with a reference

image that we will denote as I. Thus, to compute the term of luminance comparison

in Eq. (5), the estimation of both ηI(x) and ηJ(x) is required. Let it be noticed

that the mean of a tensor set is also a tensor. In order to compute the ratio between

local means that describes the luminance comparison, the norm of the mean tensor

is computed. If the Log-Euclidean metric has been considered to estimate the local

mean, the norm is computed according to this metric. That is,

||T||=
√

trace(log(T)2). (24)

Thus, μI(x) = ||ηI(x)|| and μJ(x) = ||ηJ(x)|| are computed, and the luminance

term in the SSIM definition can be obtained by including these local mean images

in Eq. (5).

With regard to the contrast comparison in the SSIM expression, it is based on the

local standard deviation of images, σI(x). In the case of tensor images, this statistic

is estimated as the square root of the variation of Fréchet in a given neighborhood,

σI(x) =

√
1

|N (x)| ∑
xi∈N (x)

d2(I(xi),ηI(x)). (25)

If the Log-Euclidean metric is used to assess the local mean, the distance d in

this equation must be again the one defined in Eq. (19). Note that σI(x) is a scalar

value, so the contrast term can be directly computed by means of the Eq. (6), where

both σI(x) and σJ(x) are obtained according to Eq. (25).

Finally, the local covariance between both images is required for the structure

comparison. The estimation of this statistic for tensor images can be based on the

Fréchet variation, and it is defined as

σIJ(x) =

√
1

|N (x)| ∑
xi∈N (x)

d(I(xi),ηI(x)) ·d(J(xi),ηJ(x)). (26)
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Again, the Log-Euclidean distance should be considered for positive definite ten-

sors, if it has been used to estimate the mean. With this covariance estimation the

structure comparison term can be obtained as defined in Eq. (7). Thus, the SSIM

map can be computed by the Eqs. (8) or (9) , where the statistics are computed as

we have just described. The values of the SSIM map are scalars, so the MSSIM or

WSSIM can be directly computed applying the Eqs. (10) and (11) respectively. If

statistics are included in the weighting term, they should be estimated with the pre-

vious equations. In the implementation of WSSIM performed in the experiments,

the weighting function is the one described in the Eq. (12).

4.3 QILV

The QILV index is based on the statistics of the local variance images, instead of

the original images themselves. The estimation of the local variance VI(x) at each

voxel x is defined as the Fréchet variation of the tensor in a neighborhood N (x) of

the voxel:

VI(x) =
1

|N (x)| ∑
xi∈N (x)

d2(I(xi),ηI(x)). (27)

The local mean ηI(x) is computed as described in Eq. (22) for the general case,

or by Eq. (23) if positive definite tensors and Log-Euclidean metric are considered.

The distance definition used in the Eq. (27) must be coherent with the metric used

to estimate the mean.

Thus, the local variance VI and VJ of both images I and J are computed. Let notice

that VI and VG are scalar images, and therefore the statistics of such images can be

computed as usual, and the QILV value is obtained by directly applying Eq. (15).

4.4 Modified Fuzzy Minkowsky Distance

The so-called M3 quality index is the modified version of the Minkowsky distance,

described by Eq. (14). This measure is computed over the image histogram. In our

case, the histogram will be computed over the norm of the tensors at each voxel.

An appropriate metric should be considered to compute the norm of the tensor. In

the case of positive definite tensors, the Log-Euclidean metric can be chosen, so the

norm definition is the one given in Eq. (24). Once the norm is computed at each

voxel, the histogram of the scalar images so computed can be obtained, and the

quality index can be estimated as usual.

The histogram can be based on other scalar magnitudes computed from the ten-

sor, such as its eigenvalues or its trace. The appropriateness of such magnitudes

depends on the specific applications. Moreover, multichannel schemes can be pro-
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posed, where a vector of quality indexes is built by computing the M3 value for a

set of scalar images.

5 Experiments

In order to analyze the applicability of quality measures to tensor images, we have

designed a set of experiments, whose results are described in this section. Though

the appropriateness of a given quality measure mainly depends on the specific ap-

plication or kind of data, we intend to provide a general view of the behavior of

such measures when working with tensor images. Thus, we compute and compare

the measures that have been defined for tensor images in Section 4, that is, QILV,

MSSIM, WSSIM and M3, as well as the point-wise MSE measure for tensors. Com-

parison is done with the same measures based on some scalars derived from the

tensor data.

In the next subsection the data set used for the experiments is described, and then

the experiments are detailed and their results are shown.

5.1 Data Set

The experiments have been carried out on both synthetic and real tensor images.

In the case of synthetic data, we have generated 200× 200 tensor fields composed

by second order tensors of 2× 2 components and another set of fields of 3× 3

second order tensors. Their construction has been based on DTI, since it is the most

common kind of tensor images. For this reason, the synthetic images can be viewed

as an isotropic region where some fibers appear. Diffusion inside fibers is supposed

to be clearly anisotropic, since molecules mainly diffuse in the direction parallel to

the fiber. Three areas can be distinguished in both images:

1. Background: In this region tensors are defined to be isotropic, that is, all their

eigenvalues have similar values. These eigenvalues are generated by means of a

uniform distribution U [0.05,0.15].
2. Lines or fibers: In these areas the tensors are oriented parallel to the structure,

and are clearly anisotropic. The highest eigenvalue corresponds to the eigenvec-

tor that is parallel to the line direction, and its generated by a uniform random

distribution U [2,6], while the two other eigenvalues are generated by a uniform

distribution U [0.05,0.15].
3. Crossings: These are the regions where two or more fibers intersect. Here, the

tensors are computed as a composition of the tensors defined in each of the cross-

ing lines.
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In Fig. 1 (a), an example of the structure of the synthetic field is shown. The gray

scale is related with the fractional anisotropy (FA) of the tensor1: white stands for

isotropic diffusion, and black means that the diffusion occurs only along one direc-

tion. Five fibers can be identified, where tensors are oriented parallel to the lines.

The same layout is defined for 2× 2 and 3× 3. As an example of how the tensors

are in fiber crossing, the squared region in Fig. 1 (a) is zoomed in, and represented

in Fig. 1 (b). Tensors are represented by ellipses, where the axis direction is given

by the tensor eigenvectors and their size is given by the tensor eigenvalues. In the

crossing area, the diffusion is less anisotropic, since it is the sum of the diffusion in

both fibers. Since diffusion is higher in the diagonal fiber than in the vertical one,

diffusion is higher in the diagonal direction, but some diffusion also appears in the

vertical direction.

(a) (b)

in

Fig. 1 Synthetic data: a) Structure of the synthetic field, five fibers can be distinguished; b) Fiber
cross: zoom in of the squared area in a). Tensors are represented as ellipses

The original synthetic images are corrupted by different means, and comparison

is carried out between these altered images and the original ones, that are consid-

ered the ground truth. In order to produce realistic alterations of the images, these

degradations have been applied considering the synthetic field to be a DTI. The DT

is computed from a set of diffusion weighted images (DWI) [37], which have been

acquired by a magnetic resonance scanner. The noise or artifacts in the DWIs are

responsible for the decreasing in the quality of the estimated DT field. For this rea-

son, such DWIs have been simulated and the distortions have been applied to these

images. DT image is estimated again from the corrupted image by means of the

Stejskal-Tanner equations [37]. Note that, in other kind of tensor images, the ten-

sors are also computed from some kind of acquired images, so a similar procedure

should be carried out to synthetically alter the images. Next, we described the trans-

1 Fractional anisotropy is a measure of the anisotropy of the diffusion and it is defined from the

tensor eigenvalues, λ1,λ2 and λ3, as FA =
√

(λ1−λ2)2+(λ1−λ3)2+(λ2−λ3)2√
λ 2

1 +λ 2
2 +λ 2

3
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formations that have been applied to the synthetic dataset and how they influence

the quality indexes.

Furthermore, real DTI data are considered to provide an example of a real ap-

plication of the quality measures. These images are obtained by a General Electric

Sigma 1.5 T scanner, with b-value= 1000 and 15 gradient directions.

5.2 Experiments on the Synthetic Data Set

To analyze the influence of different kinds of distortion in the quality indexes, the

synthetic images previously defined are modified by the next degradation sources:

1. DWIs are blurred by local averaging using a square N×N window with different

N values, and then DTI is computed. Examples of these images are shown in

Fig. 2 (a) and 2 (b), where the image has been blurred by a 5× 5 and a 15× 15

windows respectively. The FA images of the corrupted tensor fields are repre-

sented. Moreover, a detail of a tensor field blurred by a 3×3 window is displayed

in Fig. 2 (c). The zoomed area is the same region that is highlighted in Fig. 1 (b).

2. DWIs are corrupted by Rician noise, with different values of the σ parameter,

and the DTI is estimated from the noisy images. Rician noise has been chosen

because it is the main kind of distortion in the magnetic resonance images. In

Fig. 2 (d) and 2 (e), two examples of the FA maps of noisy DTI are shown. The

parameters of the applied Rician noises are σ = 0.1 and σ = 0.25 respectively.

A detail of the noisy field is shown in Fig. 2 (f), where the effect of noise in

the zoomed region in Fig. 1 (b) can be viewed. In this case the parameter of the

Rician noise is σ = 0.1.

3. The intensity level of the DWIs is increased by a percentage τ of their original

level. Different percentages of change are applied. Then, the DT field is com-

puted from the new DWIs. This distortion is more noticeable in the trace image

of the tensor field, that is, the voxel intensity is the value of the trace of the corre-

sponding tensor. Trace is directly related with the size of the tensor, and for this

reason, it reflects the intensity change better than other magnitudes such as the

FA. Thus, in Fig. 2 (g), the trace of the original field is shown, and in in Fig. 2

(h) the field computed from the modified DWI is displayed. In such example, the

intensity of the DWIs have been increased in a 50%. The effect of such distortion

in the tensor size can be viewed in the Fig. 2 (i).

These transformations are applied to a reference image, so three groups of images

are obtained. A set of blurred images is built by averaging the original image by

N×N windows, with N = 2n+1, n = 1, ..,10. These images will be denoted as Ib,N .

A set of images with different levels of noise is also generated. Thus, noisy images

are obtained with Rician noise of σ = {0.005,0.5}. These images will be denoted

as In,σ . Moreover, DT images are computed from DWI whose intensities have been

increased by a percentage τ = {10%,100%} respect to their original value, so a set

of Ic,τ images is built.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Examples of corrupted images used in the experiments: a) FA image of the tensor field
blurred with a 5× 5 window; b) FA image of the tensor field blurred with a 15× 15 window; c)
Fiber crossing blurred by a 3× 3 window; d) FA image of the tensor field corrupted by Rician
noise of parameter σ = 0.01; e) FA image of the tensor field corrupted by Rician noise of param-
eter σ = 0.25; f) Fiber crossing corrupted by Rician noise of parameter σ = 0.1; g) Trace of the
original tensor field; h) Trace of the tensor field whose intensity has been increased by 50%; i)
Fiber crossing, where intensity has been increased by 50%.

We compute five quality indexes for the transformed images, taking as reference

image the original synthetic field. The results are shown in Fig. 3. Notice that the

values of MSSIM, WSSIM, QILV and M3 are bounded between 0 and 1, and higher

values correspond to higher quality, whereas the MSE is not bounded, and its value

tends to zero as the quality increases. For this reason, in Fig. 3, we represent 1−
MSE instead of MSE, to more straight comparison of the indexes behavior. Thus,

due to the range within which the tensor values are defined, the 1−MSE curve can

be seen together with the other measures.

The first conclusion that can be obtained from Fig. 3 is that the indexes based

on structural information are more reliable to assess the quality of images. This
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Fig. 3 Quality indexes for corrupted images: a, b) Blurring by N×N windows, with N = 2n + 1;
c, d) Noisy images. Rician noise with parameter σ has been applied; e, f) Tensor fields computed
from a modified set of DWI, whose intensity has been increased by a percentage τ . The right
column corresponds to fields of 2×2 tensors, and the left column to fields of 3×3 tensors.

issue has already been observed in the analysis of the quality of conventional scalar

images [26], and now it can be extended to tensor images. The main drawback

of point-wise measures can be noticed in the quality of the Ic,τ images. In Fig. 2

(h) it can be viewed that the structure of the data is not affected by this kind of

distortion, and the only effect in the image is the rescaling of the tensors. For this
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reason, the QILV, MSSIM and WSSIM indexes decay very slowly and are near

one, while the MSE error increases rapidly. On the other hand, the M3 index, that is

based on the histogram comparison also decreases faster although the image remains

very similar to the reference image, since it is based on the tensor norm, and the

difference between the resulting histograms is noticeable. Point-wise measures are

more sensitive to changes in the intensity image range, whereas structural measures

are supposed to be less sensitive to these changes as long as the image structures are

preserved. Let notice that the value of MSE for the image in Fig. 2 (h) is similar to

the MSE value for the image in Fig. 2 (b), that is a very blurred image.

It can also be noticed that the behavior of the structure-based quality indexes is

similar to their performance in the scalar case. For instance, the QILV decreases

faster for blurred images than for impulsive noise, whereas the MSSIM is very sen-

sitive to noise but it is less influenced by blurring. The WSSIM has an intermediate

behavior since its value decreases slowly for little distortions of both types (noise

and blurring) but decays more abruptly as the image degradation decreases.

Variance of the Quality Measures

An experiment has been developed to assess the variance of the quality indexes

in a set of images that have been altered by the same source of degradation. It is

supposed that if a similar distortion has been applied to two different images, the

quality indexes of these images should be similar. Thus, we have generated a set of

40 synthetic images of 3×3 tensors, that have been modified with the three kinds of

distortion previously defined: blurring, noise and intensity change. Then, the quality

indexes have been computed for each of the altered images. The variance of the

indexes for each of the distortion sources is shown in Fig. 4. It can be highlighted

the small variability of the structure based measures QILV, MSSIM and WSSIM

in case of intensity changes, which is coherent with the previous comments about

Fig. 3. QILV and WSSIM have higher variability when noisy images are evaluated

than if blurred images are considered, while MSSIM seems to be more robust with

both distortion sources. With regard to the fuzzy M3 computed over the norm of the

tensors data, it is the less reliable index since it has a great variability whatever the

distortion source be. Nevertheless, its behavior for the analysis of noisy images is

comparable to the WSSIM and QILV measures.

Quality Indexes Based on Scalar Magnitudes

Previous experiments have applied the formulation of the quality indexes in Sec-

tion 4, that takes into account every tensor component. However, as mentioned, it

is frequent to compute scalar images from the tensor data, in order to make eas-

ier the data visualization or processing. In this experiment, the quality indexes are

computed over scalar images derived from the previously described synthetic fields.

Two magnitudes are considered: FA and the higher eigenvalue λ1. The respective
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Fig. 4 Quality index variance distribution for three kind of degradation sources: a) Blurring by a
5×5 window; b) Rician noise with parameter σ = 0.025; c) Intensity increasing of τ = 20%

scalar images from every degraded 3× 3 tensor field are computed, and quality is

assessed.

In Fig. 5, the behavior of the indexes so computed when noise or intensity

changes appear in the images can be viewed. Thus, it can be noticed that the differ-

ent magnitudes have different sensitivity for noise or intensity changes. For instance,

the higher eigenvalue is more sensitive to intensity changes than FA, and therefore,

the degradation in the tensor image due to this source will be ignored if a quality

index based on FA is considered. On the other hand, the noise has more influence

on the FA than in the higher eigenvalue. Therefore, special care must be taken to

choose the images over which the quality indexes are computed, in order to not

discard relevant information.

5.3 Example of Real Application: Fiber Tracking.

In this experiment, an example of the utility of quality measures in a real applica-

tion is shown. A fiber tracking algorithm is considered, which estimates the fiber

trajectories from a DT-MRI volume. Fibers are computed by tracking the direction

given by the major eigenvector in the voxels whose FA is high enough. The refer-

ence image is a real DT-MRI data set, whose tensors have been estimated from a

filtered set of DWIs [28]. It will be compared with the DT-MRI obtained from the

same DWIs, but in this case, the original noisy images are considered. Moreover, a

corrupted DT-MRI set is considered, where the tensors are computed with modified

gradient directions. Namely, a rotation of π
6 has been applied to every gradient di-

rection, what produces a rotation of the tensors in the image. This is a problem that

can occur if some geometrical transformation is applied to the image, but the ten-

sor data are not transformed coherently to preserve their relation to the underlying

structure.

In Fig. 6 a fiber tract computed from the same seed in the three images is shown.

Fig. 6 (a), corresponds to the reference image, Fig. 6 (b) is the fiber tract computed

from the noisy DT-MRI and Fig. 6 (c) the volume whose tensors have been rotated.

(a) (b) (c)
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Fig. 5 Quality indexes for scalar images derived from the tensor: a, b) FA images; c, d) Higher
eigenvalue images. The images in the right column correspond to noisy images, with Rician noise
of parameter σ , and those in the left column to changes in the intensity of the DWIs.

It can be viewed that better fiber tracts are obtained from the noisy image than from

the image whose tensors are rotated with respect to the original data, that is, the

noisy image is better for tractography purposes. The values of the quality indexes

are compiled in the Table 1, where it can be noticed that some measures are not valid

to assess the quality of the DTI for this application. Namely, the FA-based indexes

are not sensitive to orientation changes, and they give higher values for the rotated

tensors than for the noisy image. Moreover, MSSIM and MSE obtain better quality

values for the rotated image, even though the whole tensor is considered, whereas

the WSSIM, QILV and fuzzy M3 indexes are coherent with the visual assessment of

the quality. Thus, this example shows the importance of the choice of the appropriate

quality measure for each specific application.
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(a) (b) (c)

Fig. 6 Fiber tracts computed from the same seed: a) Original image; b) Noisy image; c) DTI
computed with rotated gradient directions.

1-MSE MSSIM WSSIM QILV Fuzzy M3

Tensor

Noisy 0.9950 0.9111 0.9383 0.9601 0.6282

Rotated tensors 0.9965 0.9918 0.9198 0.9502 0.5979

Fractional Anisotropy

Noisy 0.9919 0.8902 0.3739 0.8015 0.8894

Rotated tensors 0.9993 0.9914 0.7755 0.9886 0.9802

Highest Eigenvalue

Noisy 0.9971 0.9024 0.7450 0.9278 0.9550

Rotated tensors 0.9990 0.9907 0.7342 0.8227 0.9835

Table 1 Quality indexes for noisy image and the image whose tensors have been rotated.

6 Discussion

Quality assessment has proved to be a very important issue when dealing with image

processing. As previously stated, image quality may vary due to noise, acquisition

artifacts, compression or any kind of processing. Data compression or noise, for

instance, are well known sources of degradation. Image enhancement, on the other

hand, is a tool that intends to improve the image quality, though sometimes it works

reversely, destroying some important structures.

As a result of all the possible worsening and improvements an image may suffer,

a need for quality assessment arises. Users need a way to establish the quality of

their data. However, the definition of quality measures is an involved issue. It may

be difficult to assess when an image is better than other, and it may depend on the

specific application. In some cases, a noisy image is worse than a blurred image,

while in other cases well-defined edges are preferred, although impulsive noise ap-

pears. In addition, the quality can be related with the structure of the image, rather

than with its intensity levels, and therefore quality indexes should quantify if the

structure in two images is similar or not, independently of the intensity values in

pixels.

All these issues also appear when tensor images are considered. In this case,

once images have been acquired, the tensor at each voxel must be computed, and



100 Muñoz-Moreno et al.

therefore the quality of the resulting image depends also on the tensor estimation al-

gorithm. Moreover, since a tensor, and not a scalar intensity value, is defined at each

voxel, the issue of how to measure the similarity between tensors arises. Point-wise

measures are computed by comparing the values at the same position of two images.

In the scalar case, the difference or square difference between the intensity values is

usually computed. Now, the difference between tensors can be considered, but then

the computation of the norm of the tensor difference will be required to obtain a

scalar value. The Frobenius norm has been usually considered in this case, which is

equivalent to the Euclidean distance between matrices. However, depending on the

application or the tensor class, this measure could not reflect the difference between

tensors. For instance, the tractography application is usually based on the fractional

anisotropy and the tensor orientation. Thus, two tensors that have the same orien-

tation but different size will lead to the same results for a tractography algorithm.

However, the Frobenius norm of the difference may take a value higher than be-

tween two tensors of the same size and different orientation. These topics depend

on the application and the specific tensor type, and for this reason it is not possible

to provide a general definition of how to measure the difference between tensors.

Furthermore, structure-based quality measures usually rely on image statistics.

The computation of such statistics in tensor data is not straightforward, and recent

works are dealing with this topic. In this chapter, we define a method to assess such

statistics, but more rigorous definitions of such estimations could be proposed. By

means of these definitions, quality indexes have been extended to tensor images, and

it has been shown that their behavior is similar in both the scalar and tensor cases.

Thus, some measures are more sensitive to noise and others are more sensitive to

blurring, or to intensity changes.

It is important to be aware of the fact that tensor data provide information about

the underlying structure. If structure is defined only as the region layout in the im-

ages, as is the case of conventional structure-based quality indexes, two images

could have exactly the same structure, but if tensors are different, the information

that they provide would be different. Suppose a pair of DTIs, each of them composed

by the same two regions. Nevertheless, if different tensors are defined in each of the

regions of both images, the information provided by the images may be completely

different. This would be the case, for instance, if regions in the first DTI are formed

by isotropic tensors, and regions in the second DTI are composed by cigar-shaped

tensors. In the second case, fiber structures can be found, whereas in the first a grey

matter region (where no fibers are present) would be represented. For this reason,

the specific nature of the tensor data should be taken into account when describing

quality measures.

A usual application of the quality measures is to analyze the performance of

image filters. If full-reference indexes are considered, images should be compared

with a reference image. Thus, synthetic data or phantoms are defined for providing

a reference image which can be corrupted to analyze the filtering results. Although

synthetic data sets have already been defined to several image modalities, some of

them available on line, to compare algorithm performances, the building of synthetic

data set for tensor images is still in its earlier stage. In other processing algorithms
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the previous problem with the reference image may not appear. This is the case of

image registration, where the registered image is compared with the target in order

to assess the goodness of the registration algorithm.

A final question would be what is considered to be quality. In the scalar case, it

is usual to consider that the quality of an image is related to the visual impression.

Thus, proposed measures intend to reduce the gap between the human-based as-

sessment and the machine-based criteria. For this reason, some quality indexes are

based on the features of the Human Visual System. On the contrary, in the case of

tensor images, the goodness of an image cannot be easily established from the vi-

sual perception, since they cannot be directly visualized. The visualization of tensor

fields is done by means of scalar images whose intensity values are computed from

the tensor, and therefore the observer does not view the tensor field but some part

of it. Depending on the scalar magnitude that is represented, some changes in the

image quality could not be noticed. Another way to visualize a tensor field can be

the use of glyphs that represent the tensor. However, to visually analyze this repre-

sentation, the observer should be familiarized with this kind of visualization, so the

quality assessment may be more difficult than in the scalar case. Thus, there are not

clear criteria to assess the quality of the quality indexes. When focusing on a spe-

cific application the quality can be defined based on the features that have stronger

influence on the algorithm.

7 Conclusions

In this chapter, we have analyzed the problem of the quality assessment for ten-

sor images. This issue has often been left aside in the works about tensor image

processing. However, the definition of measures that allows to compare the perfor-

mance of different algorithms over tensor images is a task of paramount importance

when dealing with tensor data. Although the goodness of a particular method will

be related with the particular application or the nature of data, there are some global

measures that give useful information about the structural similarity between two

tensor images, hence the quality of a processed image. Measures described in this

chapter are based on the quality indexes defined for scalar images. They have been

extended to cope with tensor images, and their validity has been analyzed. The pro-

posed methods are not exclusive, and they can be viewed as a first and general

approach to the problem. Based on the presented results, appropriate modifications

may be proposed to face a specific application or to analyze a given sort of tensor

images. In addition, specific tensor quality indexes could also be defined. Quality

assessment is still an open topic in the analysis of images and a lot of work should

be done to find the appropriate way to quantify the quality of a tensor image. More-

over, the quality can be related with different issues in the image (noise, structure,

difference between tensors...) and a set of quality indexes could be required, each of

which measures the quality with respect to different criteria.
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esment based on local variance. In: Proc of the 28th IEEE EMBC, pp. 4815–4818. New York,
NY, USA (2006)

2. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-euclidean metrics for fast and simple
calculus on diffusion tensors. Magnetic Resonance in Medicine 56(2), 411–421 (2006)

3. Basser, P., Mattiello, J., Le Bihan, D.: MR diffusion tensor spectroscopy and imaging. Bio-
physical Journal 66, 259–267 (1994)

4. Batchelor, P.G., Moakher, M., Atkinson, D., Calamante, F., Connelly, A.: A rigorous frame-
work for diffusion tensor calculus. Magnetic Resonance in Medicine 53, 221–225 (2005)

5. Bhattacharya, A., Bhattacharya, R.: Nonparametric statistics on manifolds with applications
to shape spaces. In: B. Clarke, S. Ghosal (eds.) Pushing the limits of contemporary statistics:
contributions in honor of Jayanta K. Ghosh, pp. 282–301. Institute of Mathematical Statistics,
Beachwood, OH, USA (2008)
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Algorithms for Nonnegative Tensor
Factorization

Stefanos Zafeiriou1

Abstract Nonnegative Matrix Factorization (NMF) is a decomposition which in-

corporates nonnegativity constraints in both the weights and the bases of the repre-

sentation. The nonnegativity constraints in NMF correspond better to the intuitive

notion of combining parts in order to create a complete object, since the object is

represented using only additions of weighted nonnegative basis images. NMF has

proven to be very successful for image analysis, especially for imaged-based object

representation, discovery of latent object variables and recognition. A drawback of

NMF is that it requires the object tensor (with valence more than one) to be vector-

ized. This procedure may result in information loss since the local object structure

is lost due to vectorization. Recently, in order to remedy this disadvantage of NMF

methods, Nonnegative Tensor Factorization (NTF) algorithms that can be applied

directly to the tensor representation of object collections, have been introduced. In

this chapter, we demonstrate how various algorithms are formulated in order to treat

arbitrary valence NTFs and we present the various cost functions that have been used

for measuring the quality of the approximation. We discuss the optimization proce-

dures that have been used for deriving the factors of the decomposition. Afterwards,

we describe how additional constraints can be incorporated into the cost of the de-

composition in order to either enhance the sparsity of the solution or to enhance the

discrimination between object classes. The presented NTF schemes are described in

a manner that can be easily implemented using, in most cases, only matrix multipli-

cations and publicly available packages for treating tensor representations. Finally,

we comment on the various applications of NTF algorithms in visual representation

and recognition.
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1 Introduction

The Nonnegative Matrix Factorization (NMF) algorithm [1] has attracted a signif-

icant interest in the scientific community in the past decade especially for pattern

recognition applications. A recent survey on some NMF algorithms can be found

in [2]. In pattern recognition, one disadvantage of NMF is that the objects (e.g., the

images) should be vectorized in order to find the nonnegative decomposition. This

vectorization leads to information loss, since the local structure of objects is lost. In

order to remedy this drawback of NMF representation, arbitrary valence Nonnega-

tive Tensor Factorization (NTF) schemes have been proposed [3, 4, 5, 6, 7, 8, 9].

Nowadays, an increasing interest in analysis of large scale tensors has been ob-

served. Tensors are also called multi-way arrays or multidimensional matrices and

are generalizations of vectors and matrices which are first order and second or-

der tensors, respectively. To analyze tensor data, decomposition techniques have

been widely used in a variety of fields including psychometric, chemometrics, im-

age analysis, graph analysis and signal processing [10, 11, 12]. The tensorization

of well-established vector-based algorithms is not an easy procedure and it consti-

tutes a very active research field with many applications in image processing and

computer vision.

In order to achieve the extension of NMF to NTF algorithms the most com-

mon formulation of the decomposition are the Tucker tensor model [6], the more

restricted Parallel Factor (PARAFAC) analysis model (or CANnonical DECOM-

Position (CANDECOMP) [17, 18]) and the equivalent to PARAFAC model using

Kruskal tensors model [3, 5, 6]. NTF has been initially proposed using PARAFAC

[3] and subsequently using Kruskal tensor formulations [5]. The first algorithms for

non-negative Tucker decompositions have been proposed in [13] but the decompo-

sitions do not allow for all the factors to be constrained non-negative (i.e., do not

allow the core tensor to be constrained nonnegative). Recently, research has been

conducted [6, 8, 7] in order to extend NMF to arbitrary valence Tucker [14] decom-

positions, where data, core and mode matrices are nonnegative and multiplicative

update rules for all the factors have been proposed. In order to further reduce the

ambiguities of the decomposition, updates that can impose sparseness in any com-

bination of modalities have been also proposed in [8]. Moreover, the notion of nons-

moothness [15] for controlling the sparseness has been extended in NTF algorithms

[6].

In [9] a series of NTF methods has been proposed using Kruskal tensor formula-

tion. Moreover, by incorporating discriminant constraints inside the NTF decompo-

sitions a series of Discriminant Nonnegative Tensor Factorization (DNTF) methods

have been presented. These approaches have been tested for face verification and

facial expression recognition, where it is shown that they outperform other popular

subspace approaches.

In this chapter we will review the basic tensor formulations and the basic algo-

rithms based on multiplicative update rules that have been applied for setting and

solving NTF problems. The reminder of the chapter is organized as following. In

Section 2 we will describe the NTF tensor formulations and the various cost func-
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tions that have been employed in order to measure the error of the approximation.

Afterwards we will show, in Section 3, how multiplicative update rules can be de-

rived in order to find the solution and we will discuss the constraints that can be

incorporated in the decomposition in order to control the sparseness. Furthermore,

in Section 4 we will describe how discriminant constraints can be incorporated in

order to find a supervised nonnegative tensor decomposition. In Section 5 we will

comment on the applications of NTFs in the fields of image representation and com-

puter vision. Finally, conclusions are drawn in Section 6.

2 Formulating Nonnegative Tensor Factorizations

The two most commonly used tensor decompositions are the Tucker model [14]

and the more restricted PARAFAC/CANDECOMP model [17, 18]. The RARAFAC

model is also equivalent to the decomposition using 1-valence Kruskal tensors [16]

which is another popular formulation. In this Section, we will describe how the

problem is formulated using Kruskal and Tucker models and we will present the

cost functions that are used for measuring the quality of the approximation. The

procedures used for the minimization of the cost will be discussed in the following

Sections.

2.1 Tensor Representations

Let X denotes a database of L objects Xi, i = 1,2, . . . ,L. Every object Xi has a non-

negative representation as a (n−1)-valence tensor, i.e., Xi ∈ℜI1×···×In−1
+ , indexed by

an (n−1) tuple of indices (i1, i2, . . . , in−1). Thus, the object database is a n-valence

tensor X ∈ℜI1×···×In
+ with In = L. The dimension I j is indexed by i j = 1, . . . , I j. For

example, the most natural way to model a facial image database using a tensor is by

a 3-valence tensor X ∈ ℜI1×I2×I3
+ [5], where I1× I2 is the resolution of each image

(i.e., height and width) and I3 = L is the number of images in the database. We will

consider the general case of n-valence tensors in the expositions that follow.

Firstly we will review some of the tensor algebra and notations that will be used

throughout the chapter. Scalars will be denoted with lower case letters (i.e., a de-

notes a scalar), lower case bold letters will denote vectors (ie., a denotes a vector)

while matrices and tensors with valence more than 2 will be denoted with upper

case bold letters (i.e., A is a matrix or a tensor). A vector a ∈ ℜI
+ will also be de-

noted as a = [ai], i = 1 . . . I and ai = [a]i will be the elements of the vector. An

arbitrary n-valence tensor A ∈ℜI1×...×In
+ will be also denoted as A = [ai1,...,in ] con-

taining elements ai1,...,in = [A]i1,...,in or for simplicity we may use ai1,...,in = Ai1,...,in .

The operator vec stacks the columns of its matrix argument into a single vector.

Let that a ∈ ℜI
+ and b ∈ ℜJ

+ are two real vectors, then their outer product is a

matrix defined as:



108 Zafeiriou

a⊗b = [aib j] ∈ℜI×J
+ . (1)

Consequently, the outer product of n vectors a1, . . . ,an, with ai ∈ℜIi
+, a1⊗ . . .⊗an,

is denoted as
⊗n

i=1 ai and is a tensor in ℜI1×...×In
+ .

The Kronecker product between two matrices A ∈ℜI1×J1
+ and B ∈ℜI2×J2

+ is de-

fined as:

A⊗B =

⎡⎢⎣ Ab1,1 · · · Ab1,J2

...
. . .

...

AbI2,1 · · · AbI2,J2

⎤⎥⎦ (2)

and A⊗B ∈ℜI1I2×J1J2
+ . In case we have n matrices A1, . . . ,An with Ai ∈ℜIi×Ji

+ the

product
⊗n

i=1 Ai is an array of ∏n
i=1 Ii×∏n

i=1 Ji.

The Khatri-Rao product between two matrices A = [a1| . . . |aK ] ∈ℜI×K
+ and B =

[b1| . . . |bK ] ∈ℜJ×K
+ is given by:

A�B = [vec(a1⊗b1) . . .vec(an⊗bn)] (3)

and A� B ∈ ℜIJ×K
+ . In case we have n matrices A1, . . . ,An, with Ai ∈ ℜIi×K

+ ,

the Khatri-Rao product between them is given by A1 � . . .� An =
⊙n

i=1 Ai ∈
ℜ(∏n

i=1 Ii)×K
+ .

An important operation between a tensor G ∈ ℜJ1×...×Jn
+ and a matrix A( j) ∈

ℜI j×Jj
+ is the j-mode product defined as:

[G×n A( j)]m1,...,m j−1,i j ,mn+1,...,mn = ∑
Jj
m j=1 gm1,...,mnai j ,mn

1≤ ml ≤ Jl , 1≤ l ≤ n, 1≤ il ≤ Il
(4)

which is a tensor in ℜJ1×...×Jj−1×I j×Jj+1×...×Jn
+ .

We will often make use of transformations that change tensors into matrices ( j-
mode matricization) and matrices into vectors (vectorization). The j-mode matri-

cization transforms the tensor G into a matrix G( j) defined by:

G( j) ∈ℜJj×M
+ with M = ∏n

l=1,l �= j Jl (5)

for each j = 1, . . . ,n. Note that the number of rows of G( j) is equal to the size of the

j-th dimension of the tensor. The number of columns is expanded to accommodate

all the other dimensions of the tensor. The matrix G( j) can be expressed elementwise

as:

[G(l)] jl ,k = g j1,..., jl ,..., jn with k = 1+∑n
m=1,m �=l [( jm−1)∏m

r=1,r �=m Jr]. (6)

In the remaining of this chapter • and / tensor operators will denote the ele-

mentwise multiplication and division between tensors. tr[A] denotes the trace of the

matrix A. The vector of ones is denoted as 1 while the tensor and matrix of ones is

denoted as E. A tensor which has all elements equal to zero except those for which
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all indices are the same is called a superdiagonal tensor. If all nonzero elements

equal unity, then is is referred to as the unit superdiagonal tensor I. The identity

matrix I is a 2-valence unit diagonal tensor.

2.1.1 Nonnegative Tensor Factorization Using Kruskal tensors

A n-valence tensor X is of rank at most K if it can be expressed as a sum of K rank-1

Kruskal tensors i.e., a sum of K n-fold outer-products. In the NTF framework X can

be decomposed as a sum of K n-fold outer-products as:

X ≈ ∑K
l=1

⊗n
j=1 ul

j ⇔
xi1,...,in ≈ ∑K

l=1 ul
i1,1 . . .ul

in,n, 0≤ i j ≤ I j, 1≤ j ≤ n
(7)

with ul
j ∈ℜI j

+ and ul
j = [ul

1, j, . . . ,u
l
I j , j]

T . That is, NTF aims at finding the best rank

K approximation of X with respect to an approximation cost. The NTF factorization

using Kruskal tensors is pictorially described in Figure 1. As can be seen, the tensor

X ∈ℜI1×I2×I3
+ is represented as a sum of K outer product tensors ul

1⊗ul
2⊗ul

3.

Fig. 1 Visualization of the rank-K approximation of a 3-valence tensor using Kruskal tensor nota-
tion.

Lets define the matrices U j � [u1
j | . . . |uK

j ], j = 1, . . . ,n or equivalently U j =

[ul
i j , j] ∈ ℜI j×K

+ , 1 ≤ i j ≤ I j, 1 ≤ j ≤ n, 1 ≤ l ≤ n. These matrices will be used for

defining NTF algorithms using matrix multiplications. The notation ui j , j holds for

the column vector that corresponds to the i j-th row of the matrix U j. A vectorization

of the tensor decomposition vec(∑K
l=1

⊗n
j=1 ul

j) is given by summing the columns

of the matrix
⊙K

l=1 Ul .

The NMF problem X ≈ ZH in [1] can be easily derived from (7) by selecting

Z = U1 and H = UT
2 .

2.1.2 Nonnegative Tensor Factorization Using Tucker tensors

In terms of the Tucker tensor model the factorization is written as:

X ≈G×1 A(1) . . .×n A(n) ⇔
xi1,...,in ≈ ∑J1,...,Jn

j1=1,..., jn=1 g j1,..., jna(1)
i1, j1

. . .a(n)
in, jn

1≤ il ≤ Il , 1≤ jl ≤ Jl , 1≤ l ≤ n
(8)
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where A(m) = [a(m)
im, jm ] ∈ℜIm×Jm

+ , m = 1, . . . ,n are the so-called mode matrices. The

Tucker model is more general than the Kruskal decomposition and it allows the use

of the core tensor G ∈ℜJ1×...×Jn
+ . Using the j-mode product the matrix factorization

is written as X≈G×A(1)×2 A(2) = A(1)GA(2)T
.

The decomposition X ≈ G×1 A(1) ×2 A(2) ×3 A(3) for 3-valence tensor X ∈
ℜI1×I2×I3

+ and G ∈ ℜJ1×J2×J3
+ is pictorially described in Figure 2. The matrix A(2)

has not been transposed, for reasons of symmetry. Multiplication with A(1) involves

linear combination of the ”horizontal matrices” (index j1 fixed) in G. Multiplica-

tion of G with A(1) means that every column of G (indices j2 and j3 fixed) has to

be multiplied from the left with A(1). Similarly, multiplication with A(2) and A(3)

involves linear combinations of matrices, obtained by fixing j2 and j3, respectively.

This can be considered as a multiplication, from the left, of the vectors obtained by

fixing the indices j3 and j1 and j1 and j2, respectively.

Fig. 2 Visualization of the multiplication of a 3-valence tensor G∈ℜJ1×J2×J3
+ with matrices A(1) ∈

ℜI1×J1
+ , A(2) ∈ℜI2×J2

+ and A(3) ∈ℜI3×J3
+ .

A simplification or the Tucker model is the CANDECOMP/PARAFAC model.

The main difference between these two models is the presence of the core tensor in

the Tucker model. The core tensor allows column vectors of mode matrices to in-

teract each other in order to reconstruct the original tensor. In the PARAFAC model

J1 = J2 = . . . = Jn = K and the core tensor is selected as G j1,..., jn �= 0 if and only

if j1 = j2 = . . . = jn (diagonal tensor). In case that the tensor G is the unit super-

diagonal tensor, then the nonnegative Tucker decomposition in (8) can be written

as:

xi1,...,in ≈ ∑K
l=1 a(1)

i1,l . . .a
(n)
in,l ,a( j)

i j ,l
∈ℜ+, 1≤ i j ≤ I j ⇔

X ≈ ∑K
l=1

⊗n
j=1 a( j)

l , a( j)
l ∈ℜI j

+

(9)

where A( j) = [a( j)
1 | . . . |a

( j)
K ]. The above model is equivalent to the Kruskal decompo-

sition in (7) in case we select as rank-1 Kruskal tensors the columns of the matrices

A( j), (i.e., ul
j ≡ a( j)

1 ).

Strictly speaking, only the PARAFAC model has an uniqueness property up to

scaling and permutation of the mode matrices [19, 16]. Even though the Tucker

model has not the uniqueness property, it is more useful in data compression. That
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is, the Tucker model may require a smaller number of component vectors for mode

matrices than the PARAFAC model, since it uses every combination of mode vectors

(column vectors of mode matrices).

2.2 Cost Functions

Many cost functions have been proposed in order to set the NTF decomposition.

Every cost function models in a different way the error of the approximation. Among

the most popular cost functions is the Least Squares Error (LSE) which corresponds

to a homoscedastic gaussian noise model and the Kullback-Leibler (KL) divergence

which corresponds to Poisson noise.

In the Kruskal tensor notation the cost function for NTF decomposition is defined

as:
dLK(u1

1, . . . ,u
K
n ) = 1

2 ||X−∑K
l=1

⊗
j ul

j||2F
= 1

2 ∑I1,...,In
i1=1,...,in=1(Xi1,...,in −∑K

l=1 ∏ j ul
i j , j)

2 (10)

where ||.||F is the Frobenius norm. The corresponding cost with nonnegative Tucker

decomposition is given by:

dLT (G,A(1), . . . ,A(n)) = 1
2 ||X−G×1 A(1) . . .×n A(n)||2F

= 1
2 ∑I1,...,In

i1=1,...,in=1, j1=1,..., jn=1(Xi1,...,in

−∑J1,...,Jn
j1=1,..., jn=1 G j1,..., jnA(1)

i1, j1
. . .A(n)

in, jn)
2.

(11)

The KL divergence for the NTF with Kruskal decomposition is:

dKLK(u1
1, . . . ,u

K
n ) = ∑I1,...,In

i1=1,...,in=1(Xi1,...,in ln(
Xi1,...,in

∑K
m=1 ∏n

j=1 um
i j , j

)−Xi1,...,in

+∑K
m=1 ∏n

j=1 um
i j , j)

(12)

and with Tucker model:

dKLT (G, A(1), . . . ,A(n))
= ∑I1,...,In

i1=1,...,in=1(Xi1,...,in ln(
Xi1,...,in

∑
J1,...,Jn
j1=2,..., jn=1 G j1,..., jn A(1)

i1, j1
...A(n)

in, jn

)

−Xi1,...,in +∑J1,...,Jn
j1=1,..., jn=1 G j1,..., jnA(1)

i1, j1
. . .A(n)

in, jn).

(13)

The NTF optimization problems are formulated by requiring the minimization of

one of the above cost functions subject to nonnegativity constraints for all factors.
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3 Solving the Optimization Problems Using Multiplicative
Update Rules

The most popular way for solving constrained optimization problems like for NMF

and NTF is via multiplicative update rules. In order to derive the update rules

for minimizing the cost function we should first define a proper auxiliary func-

tion and afterwards optimize it. A function W is an auxiliary function for Y (F) if

W (F,F(t))≥Y (F) and W (F,F) = Y (F). If W is an auxiliary function of Y , then Y is

nonincreasing under the update F(t+1) = argminF W (F,F(t))[1]. All the multiplica-

tive update rules that are described in this section have been derived from defining

proper auxiliary functions.

3.1 Update Rules For Least Squares Error and Kruskal tensors

The update rules that guarantee a nonincreasing behavior of (10) under nonnegativ-

ity constraints are [5]:

ul
i j , j

(t+1)
= ul

i j , j
(t) ∑

I1,...,I j−1,I j+1,...,In
i1=1,...,i j−1=1,i j+1=1,...,in=1 Xi1,...,in ∏r �= j ul

ir ,r

∑K
m=1 um

i j , j
(t) ∏r �= j(um

r )T (ul
r)

. (14)

For all the factors ul
ip,p with 1≤ p≤ j−1 we use the estimation at time t +1 while

for the rest of the factors we use the estimation at time t. Let that we allow a total of

r iterations, then the complexity of the NTF algorithm is O(rnK ∏n
j=1 I j).

The algorithm that is described by the update rules in (14) can be implemented

using only matrix operations as following. In the following we will describe it for

the 3D NTF case. However this algorithm can be easily extended for treating ar-

bitrary valence NTF decompositions. Initially U(0)
1 , U(0)

2 and U(0)
3 are assumed to

be initialized with random nonnegative entries. At every iteration the matrix U1 is

updated as:

U(t+1)
1 = U(t)

1 • (X(1)(U
(t)
2 �U(t)

3 )/(U(t)
1 (U(t)

2 �U(t)
3 )T (U(t)

2 �U(t)
3 ))). (15)

For the second matrix U2 we have:

U(t+1)
2 = U(t)

2 • (X(2)(U
(t+1)
1 �U(t)

3 )/(U(t)
2 (U(t+1)

1 �U(t)
3 )T (U(t+1)

1 �U(t)
3 ))). (16)

and for the third matrix:

U(t+1)
3 = U(t)

3 • (X(3)(U
(t+1)
1 �U(t+1)

2 )/(U(t)
3 (U(t+1)

1 �U(t+1)
2 )T

(U(t+1)
1 �U(t+1)

2 ))).
(17)
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3.2 Update Rules for KL divergence and Kruskal Tensors

Lets define the following optimization problem for solving NTF using KL diver-

gence:
minum

i j
dKLK(u1

1 . . .uK
n )

subject to um
i j , j ≥ 0, 1≤ i j ≤ I j,1≤ j ≤ n,1≤ m≤ K

and ∑
I j
i j=1 um

i j , j = 1, j �= n.

(18)

The above additional constraint (i.e., ∑
I j
i j=1 um

i j , j = 1 , j �= n) is added by following

the same reasoning as the constraint of the bases of the NMF to sum up to one. That

is, the normalization of the matrices U1, . . . ,Un−1 is a generalization of the normal-

ization of the bases matrix in the NMF algorithms for eliminating the degeneracy

associated with the invariance of ZH under the transformation Z→ZP, H→P−1H,

where P is a diagonal matrix with positive diagonal elements.

In that case the update rules for j �= n are given by:

(úm
i j , j)

(t) = um
i j , j

(t)

∑
I1,...,I j−1,I j+1,...,In
i1=1,...,i j−1=1,i j+1=1,...,in=1 Xi1,...,in

∏n
r=1,r �= j um

ir ,r

∑K
l=1 ul

i j , j
(t)

∏n
r=1,r �= j um

ir ,r

∑In
in=1 um

in,n

. (19)

We also normalize the terms (úm
i j , j)

(t) so as:

um
i j , j

(t+1) =
(úm

i j , j)
(t)

∑
I j
i j=1(ú

m
i j , j)(t)

(20)

in order to obtain um
i j , j

(t+1). The corresponding update rules for the factors um
in,n are

given by:

um
in,n

(t+1) = um
in,n

(t)
I1,...,In−1

∑
i1=1,...,in−1=1

Xi1,...,in

um
i1,1 . . .um

in−1,n−1

∑K
l=1 ul

i1,1 . . .ul
in−1,n−1ul

in,n
(t) . (21)

The above algorithm using only matrix operation for the 3D NTF case is written

as follows. At every iteration the following updates should be repeated for each of

the matrices U1, U2 and U3. The matrix update rules presented in the following are

equivalent to the update rules in (19), (20) and (21). The matrices U1, U2 and U3

are initialized using random nonnegative entries and the columns of U1 and U2 are

normalized in such a way that every column sums up to one.

The matrix U1 ∈ℜI1×K
+ is updated as:

Ũ(t)
1 = U(t)

1 • ((X(1)/(U(t)
1 (U(t)

2 �U(t)
3 )T )(U(t)

2 �U(t)
3 ))/B(t)). (22)

The matrix B(t)
1 ∈ℜI1×K

+ is formulated by repeating the vector
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b(t) = [∑
i3

u1
i3,3

(t)
. . .∑

i3

uK
i3,3

(t)]

as a row I1 times, i.e., B(t)
1 =

⎡⎢⎢⎣
b(t)T

...

b(t)T

⎤⎥⎥⎦ . The estimation U(t+1)
1 is obtained from the

matrix Ũ(t)
1 when it is normalized in such a way that every column sums up to one.

Afterwards, for U2 ∈ℜI2×K
+ :

Ũ(t)
2 = U(t)

2 • ((X(2)/(U(t)
2 (U(t+1)

1 �U(t)
3 )T )(U(t+1)

1 �U(t)
3 ))/B(t)

2 . (23)

B(t)
2 is obtained in the same way as B1 by in this case repeating the vector b(t) I2

times. For obtaining U(t+1)
2 the matrix Ũ(t)

2 is normalized so that every column sums

up to one.

Finally, the matrix U3 ∈ℜI3×K
+ is updated as:

U(t+1)
3 = U(t)

3 • ((X(3)/(U(t)
3 (U(t+1)

1 �U(t+1)
2 )T )(U(t+1)

1 �U(t+1)
2 ))). (24)

3.3 Update Rules for Least Squares Error and Tucker Model

Using Tucker tensor formulation the minimization of (11) under nonnegativity con-

straints is formulated as:

minimizeG,A(1),...,An
1
2 ||G×1 A(1)×2 . . .×n A(n)−X||2

subject to [G] j1,..., jn ≥ 0, [A(m)]im, jm ≥ 0

1≤ m≤ n, 1≤ im ≤ Im, 1≤ jm ≤ Jm.

(25)

In order to solve the above optimization problem and derive a set of update rules

for all factors, the LSE should be written in such a form that the factors A( j) and G
will be isolated. The properties of j-mode matricization can be used for this purpose

and the LSE cost can be expanded as:

dLST (G ,A(1), . . . ,A(n))
= 1

2 ||G×1 A(1)×2 . . .×n A(n)−X||2F
= 1

2 ||(I⊗ (
⊗1

l=n,l �= j A(l)GT
( j)))vec(A( j))T −vec(X( j))T ||22.

(26)

As can be seen, the Kronecker product
⊗1

l=n,l �= j A(l) does not include A( j) which is

the optimization variable. The above vectorization leads to n least squares subprob-

lems (one for each A( j)) over the vectors vec(A( j)).
The j-th subproblem is a constrained linear least-squares problem with respect

to the vector vec(A( j))
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minimizeA( j)
1
2 ||(I⊗ (

⊗
l=1,l �= j A(l)GT

( j)))vec(A( j))T −vec(X( j))T ||22
subject to [A( j)]i j , j j ≥ 0, 1≤ i j ≤ I j, 1≤ j j ≤ Jj.

(27)

Update rules that guarantee the nonincreasingness of the cost in (27) can be derived

from an auxiliary function similar to the one used in [1].

By using the j-mode matricization of the tensor X into the matrix X( j) ∈
ℜ

I j×∏n
l=1,l �= j Il

+ the Tucker model may lead to the factorization:

X( j) ≈ R j = A( j)G( j)(
1⊗

l=n,l �= j

A(l))T = A( j)Z( j) (28)

where Z( j) = G( j)(
⊗1

l=n,l �= j A(l))T . The matrix
⊗1

l=n,l �= j A(l)GT
(n) arises at sev-

eral key points in the analysis that follows. This overall product has dimensions

∏1
l=n,l �= j Il × Jj and usually Jj � Il . The intermediate matrix

⊗1
l=n,l �= j A(n) has di-

mensions ∏1
l=n,l �= j Il×∏1

l=n,l �= j Jl . Then, for j = 1, . . . ,n we have the following up-

date rules:

R( j) = A( j)(t)Z( j)

A( j)(t+1)
= A( j)(t) • (

X( j)Z( j)
T

R( j)Z( j)
T ).

(29)

For the matrix Z( j) we use the estimation A(l)(t+1)
for 1 ≤ l ≤ j−1 and A(l)(t) for

j +1≤ l ≤ n.

In order to obtain the core tensor G we may proceed as in the case of A( j) and

similarly we may transform the cost as:

dLT (G,A(1), . . . ,A(n)) =
1

2
||

1⊗
j=n

A( j)vec(G(1))−vec(X(1))||22. (30)

The optimization problem is as follow:

minimizeG
1
2 ||
⊗1

j=n A( j)vec(G(1))−vec(X(1))||22
subject to [G] j1,..., jn ≥ 0, 1≤ jl ≤ Jl , 1≤ l ≤ n.

(31)

By using vec(G(1)) in an auxiliary function in [1] the following multiplicative up-

date rules:
R = G×1 A(1)×2 . . .×n A(n)

B = X×1 A(1)×2 . . .×n A(n)

C = R×1 A(1)×2 . . .×n A(n)

G(t+1) = G(t) • ( B
C )

(32)

guarantee the nonincreasingness of the cost (30). For all the matrices A( j) for

1 ≤ j ≤ n in (32) we use the estimation in time t + 1. Let that the algorithm be

iterated r times. Then, the complexity of the Tucker decomposition is O(r(n +
1)∏n

l=1 Il ∏n
l=1 Jl).
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3.3.1 Imposing Sparseness

One of the most popular ways for enhancing the sparseness is by requiring the min-

imization of L1 norm of the various factors [8]. Let that for the j-th matrix A( j) we

enforce sparseness constraints by incorporating the additional cost ||vec(AT
( j))||1 in

the main LSE cost function as:

minimizeA( j)
1
2 ||(I⊗ (

⊗1
l=n,l �= j A(l)GT

( j)))vecA( j)T −vecXT
( j)||22

+γ||vec(A( j))||1
subject to A( j) ≥ 0, 1≤ j ≤ n

(33)

where γ is a nonnegative constant that controls the effect of ||vec(A( j))||1 in the total

cost. Then, the update rules are the following:

A( j)(t+1)
= A( j)(t) • (

X( j)Z( j)
T

R( j)Z( j)
T +γ ). (34)

For the core tensor the optimization problem with additional sparseness con-

straints for G are:

minimizeG
1
2 ||
⊗1

j=n A( j)vec(G(1))−vec(X(1))||22 + γ||G||1
subject to [G] j1,..., jn ≥ 0, 1≤ jl ≤ Jl , 1≤ l ≤ n

(35)

and the corresponding update rules for the core tensor G are:

G(t+1) = G(t) • ( B
C+γ ). (36)

3.4 Update Rules for KL Divergence and Tucker Model

Using a similar procedure as in the minimization of LSE, we could write the cost

function (13) by isolating all A( j) and G defining in that way n + 1 optimization

problems (an optimization problem for obtaining every mode matrix vec(A( j)) and

one for obtaining the core tensor vec(G(1)), respectively). Then, by using vec(A( j))
and vec(G(1)) in the auxiliary function of KL divergence the following update rules,

for j = 1, . . .n can be defined:

R( j) = (A( j))(t)Z(n)

(A( j))(t+1) = (A( j))(t) • (
(

X( j)
R( j)

)Z( j)
T

E( j)Z( j)
T ).

(37)

The corresponding update rules for G are:
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R = G×1 A(1)×2 . . .×n A(n)

D = X
R ×1 A(1)×2 . . .×n A(n)

F = E×1 A(1)×2 . . .×n A(n)

G(t+1) = G(t) • (D
F ).

(38)

A similar problem to the minimization of LSE with L1 constraints can be for-

mulated for KL divergence [8], as well. But, for KL divergence a more powerful

scheme for controlling the sparseness has been proposed [15, 6], initially for NMF,

and afterwards extended for NTF. This scheme is described in the following.

3.4.1 Nonsmooth Nonnegative Tucker Factorization

One of the simplest and most effective methods for controlling the sparseness of

NMF has been proposed in [15] and has been incorporated in NMF with KL diver-

gence, the so-called nonsmooth NMF (nsNMF). The nsNMF model [6] is described

by X≈ ZMH, introducing a smoothing matrix M given by:

M = (1−θ)I+
θ
K

11T (39)

where the parameter θ satisfies 0 ≤ θ ≤ 1. The parameter θ controls the extent of

smoothness of the matrix operator M. For θ = 0, the model (39) is equivalent to

the original NMF (i.e., X ≈ ZH). As θ → 1, stronger smoothing is imposed on M,

leading to a strong sparseness on both Z and H in order to maintain the faithfulness

of the model to the data.

The notion of nonsmoothness can be extended in order to enforce sparseness

in nonnegative tucker factorizations. The nonsmooth NTF (nsNTF) using Tucker

model is given by:

X ≈ (G×1 M1×2 . . .×n Mn)×1 A(1)×2 . . .×n A(n)

≈G×1 A(1)M1×2 . . .×n A(n)Mn
(40)

where M1, . . . ,Mn are the smoothing matrices for each mode defined similar to (39).

They smooth the core tensor and mode matrices simultaneously as M smoothes Z
and H in the nsNMF. For the same reason, a sparseness on both G and A(1), . . . ,A(n)

is obtained. The update rules can be derived from (37) by replacing A(1), . . . ,A(n)

into A(1)M(1), . . . ,A(n)M(n) in original mode matrices. The update rules for G can

be derived by replacing G in (38) into G×1 M(1)×2 . . .×n M(n).

4 Supervised Nonnegative Tensor Factorization

In [20, 21] discriminant constraints have been incorporated in the NMF decomposi-

tion motivated by minimizing the Fisher criterion [22]. These decompositions have
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been motivated by the need of finding basis images that correspond to discriminant

parts of faces. The discriminant cost functions that have been implemented refer to

the matrix H which has as elements the coefficients of the NMF decomposition.

In DNMF the discriminant constraints concern the coefficients of the decom-

position. The problem involves the selection of proper coefficients of the NTF de-

composition on which the discriminant analysis should be applied. In order to an-

swer this question lets examine the decomposition of a 3-valence tensor. In this case

the tensor X ∈ ℜI1×I2×I3
+ is a 3D matrix that is built of slices that are the images

X1, . . . ,XI3 and every image Xi ∈ ℜI1×I2
+ . Let U1 = [u1

1, . . . ,u
K
1 ], U2 = [u1

2, . . . ,u
K
2 ]

and U3 = [u1
3, . . . ,u

K
3 ]. Let (U1�U2)UT

3 = [x1, . . . ,xI3 ], then each vector xi is the

vectorized image Xi, i.e. the image Xi scanned columnwise. That is, each vector-

ized image xi is a linear combination of the vec(u j
1u j

2

T
) with the coefficients of the

decomposition taken from the i-th row of the matrix U3. Thus, the weights of the

representation are stored in the matrix U3, while the bases are found by combining

the two matrices U1 and U2.

In the same way as in the DNMF decomposition (or like other methods, e.g.

like Principal Component Analysis (PCA) plus Linear Discriminant Analysis (LDA)

[22]), the discriminant analysis is incorporated in the coefficients of the decompo-

sition, which in the 3-valence tensor case corresponds to the elements of the matrix

U3. The j-th row u1
j,3, . . . ,u

K
j,3 of the matrix U3 corresponds to the coefficients of

the image X j. Following the same reasoning we can generalize for the case of n-

valence tensors. The matrix Un ∈ℜIn×K
+ has rows that correspond to coefficients of

the decomposition of the objects Xi ∈ ℜI1×I2...×In−1
+ . Let vi = [u1

in,n, . . . ,u
K
in,n] be a

column vector with elements the i-th row of the matrix Un. This vector contains the

representation coefficients of the object Xi.

The objects Ai are separated to R different object classes. The coefficient vectors

vi are separated to R classes (V1, . . . ,VR), as well. The within and between class

scatter matrices, for these vectors are defined as:

Św =
R

∑
r=1

∑
v∈Vr

(v− μ́(r))(vi− μ́(r))T and Śb =
R

∑
r=1

Nr(μ́(r)− μ́)(μ́(r)− μ́)T (41)

where μ́(r) = [μ́(r)
1 , · · · , μ́(r)

In ] is the mean vector of the class of vectors v ∈ Vr and

the μ́ = [μ́1, · · · , μ́In ] is the grand mean of V . The divergence with the discriminant

cost function is:

dd(u1
1, . . . ,u

K
n ) = dKLK(u1

1, . . . ,u
K
n )+ γtr[Św]−δ tr[Śb]. (42)

and the corresponding optimization problem of the factorization is:

minum
i j

dd(u1
1, . . . ,u

K
n )

subject to∑
I j
i j=1 um

i j , j = 1 and um
i j , j ≥ 0, 1≤ i j ≤ I j,1≤ j ≤ n,1≤ m≤ K.

(43)
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The update rules that guarantee a non increasing behavior of (42), under non-

negativity constraints, for j �= n, are given by equations (19) and (20). For j = n,

let Fr = {∑r−1
ρ=1 Nρ + 1, · · · ,∑r

ρ=1 Nρ}. Then, for the objects of the r-th class (i.e.,

in ∈Fr) the update rules are given by:

um
in,n

(t+1) =

T́ +

√
T́ 2 +4ε ∑i1,...,in−1

Gi1,...,in
um

i1,1
(t+1)...um

in,n
(t)

∑K
l=1 ul

i1,1
(t+1)

...ul
in,n

(t)

2ε
(44)

where T́ is given by:

T́ = (2γ +2δ )(
1

Nr
∑

λ �=in,λ∈Fr

(um
λ ,n))−2δ μ́m−1 (45)

and ε = 2γ− (2γ +2δ ) 1
Nr

. The above update rules can be obtained by using a sim-

ilar to [20] procedure and when having an 2-valence tensor X it degenerates to the

DNMF method in [20].

5 Applications of Nonnegative Tensor Factorizationss

Even though the applications of NTF span several disciplines in this chapter we are

particularly interested in the applications of NTF in image processing and computer

vision.

5.1 Application to Image Representation and Unmixing

We demonstrate the power of NTF framework providing an empirical verification

of the fact that NTF can produce better bases in terms of interpretability and sparse-

ness than NMF and its effect on the success of recreating the underlying model.

One dataset that has been used to this end is the Swimmer database. The Swimmer

database has been used in [23] for demonstrating a case when the NMF can provide

a unique decomposition into parts. Some of the images of the Swimmer dataset can

be seen in Figure 3 (a). The Swimmer image set is comprised of 256 images of di-

mensions 32×32 forming a tensor X ∈ℜ32×32×256
+ . Each image contains a ”torso”

(the invariant part) of 12 pixels in the center and four ”limbs” of 6 pixels that can be

in one of 4 positions. In [23] the NMF scheme [1] correctly resolves the local parts

but fails on the torso, which is shown as a ”ghost” part in all images (also shown

in Figure 3 (b) ). The NTF on the other hand, contains a unique factorization and

correctly resolves the parts (Figure 3) ).

Another example that demonstrates the potential of NTF is the problem of re-

solving local parts from a single image (a similar experiment has been considered
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(a) (b)

(c)

Fig. 3 Some images of the Swimmer database and the corresponding bases for NMF and NTF, a)
Swimmer images; b) NMF bases images; c) NTF bases images .

in [5, 4]). In an NMF framework this cannot be achieved as a single image, even if

copied multiple times, would still be decomposed into itself. With NTF on the other

hand, the single image has been copied 20 times forming a tensor X ∈ ℜ32×32×20
+ .

The NTF algorithm, described in Section 3.2, has been applied on this tensor. The

used image and the bases of the decomposition can be seen in Figure 4 (a). As can

be seen by using only one image certain parts of the original image can be retrieved

through NTF. In Figure 4 (b) some of the bases of NTF when applied to a facial

image database are shown. These bases have been retrieved by the application of

NTF to the set of 19×19, facial images of the MIT CBCL database.

(a) (b)

Fig. 4 a) The decomposition of one image using NTF; b) Bases of the CBCL database from NTF.

A consequence of representing the image set as a 3D tensor is that the spatial

redundancy is factored in the decomposition (which is not the case when the im-

ages are vectorized as in the NMF framework) – therefore one should expect a more

efficient representation (higher compression rate). This has been demonstrated pro-

viding in [5] simple experiments where the authors have compared the number of

NTF and NMF factors that are needed in order to reconstruct images. It has been

validated that there is an increased coding efficiency of the tensor representation

compared to a 2D NMF representations. Similar experiments have been conducted

in [7] where an NTF algorithm has been proposed using the Tucker model and α
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divergence has been minimized. The role of the parameter α has been also exper-

imentally explored for facial image reconstruction. Finally, in [6] the authors have

proposed NTF schemes using the Tucker tensor model and the superiority of NTF

in comparison to NMF has been demonstrated in facial image reconstruction.

Another experiment in [6] shows the resistance of NTF decomposition to ’salt

& pepper’ noise. As shown the learned basis images of NMF are very sensitive to

noise while the bases images of NTF have shown great insensitivity. A possible

explanation of the fact that NTF is superior to NMF in this problem is that NMF

breaks the neighborhood structure since it needs to reshape 2D images into 1D vec-

tors. In contrast to NTF, 2D neighboring structure is preserved in the framework of

3-way tensor, leading to better reconstructed images in the case of the ’salt & pep-

per’ noise. In [7] the authors demonstrated a simple experiment of estimating the

source facial images in randomly mixed 3D tensors. Moreover, in [24] NTF have

been applied for spectral unmixing.

The sparsity of NTF representations has been studied in [8, 6]. In [6] a method

for controlling the sparseness of NTF by extending the notion of nonsmoothness to

arbitrary valence tensors has been proposed. It has also been demonstrated that the

θ parameter in the nonsmooth NTF (nsNTF, described in Section 3.4.1) controls in

an efficient way the sparseness of the bases. In [8] the methods for enhancing the

sparsity of NTF have been proposed and it has also been shown that they control in

an efficient way the sparseness of tensor decompositions.

5.2 Application to Clustering

The application of NMF to clustering has been initiated in [25] where it has been

shown that there is a close relationship between spectral clustering and NMF. In

[26] the problem of clustering data given complex relations (beyond pairwise rela-

tionships) between the data points has been considered. The complex n-wise rela-

tionships between data can be modelled by a n-valence tensor where each entry cor-

responds to an affinity measure (usually nonnegative) over an n-tuple of data points.

It has been shown that a probabilistic assignment of data points to clusters is equiv-

alent, under mild conditional independence assumptions, to a super-symmetric non-

negative factorization of the closest hyper-stochastic version of the input n-valence

affinity tensor. NTF decomposition has been applied to a number of visual inter-

pretation problems including 3D multi-body segmentation and illumination-based

clustering of human faces.

5.3 Facial Image Characterization Applications

The usefulness of the NTF algorithm in the extraction of facial features for classifi-

cation has been demonstrated in [4, 9]. In [4] the NTF has been applied for feature
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extraction for face detection. The feature vector representing an image was the inner-

product between the factors and the input image. Those measurement vectors over

positive (faces) and negative (non-faces) examples were fed into various classifiers

(Support Vector Machines (SVM) and Adaboost). The MIT CBCL face has been

used and it has been shown that the features extracted by the NTF factors generated

the higher classification accuracy when compared to NMF and PCA.

NMF and DNMF algorithms have been proven useful for facial features extrac-

tion for face recognition and face verification [20, 27]. In [9] NTF and DNTF ap-

proaches have been applied to face verification problems. The experiments were

conducted in the XM2VTS database using the protocol described in [9, 20]. The

authors in [9] have compared the proposed methods with other popular subspace

methods like [12, 22] and has been verified that the best results have been achieved

using the DNTF and NTF plus LDA frameworks.

Apart from face recognition/verification and detection NMF based algorithms

have been proven very useful for facial expression analysis and recognition [21, 28].

In [9] NTF based algorithms have been applied to the facial expression recognition

problem since DNMF has shown superior performance in that problem [21, 28].

The database used for the facial expression recognition experiments in [9] was cre-

ated using the Cohn-Kanade database. The differences images have been used for

facial expression recognition. The differences images are created by subtracting the

neutral image intensity values from the corresponding values of the fully expres-

sive facial expression image, were calculated. Each differences images was initially

normalized, resulting in an image built only from positive values. The differences

images are used instead of the original facial expressive images, due to the fact that

in the differences images, the facial parts in motion are emphasized [28]. It has been

shown that DNTF algorithm described in Section 4 achieved the best results in facial

expression recognition.

6 Conclusions and Discussion

In this chapter we have described various NTF methods and we have discussed on

their applications to image representation and computer vision. We have described

various tensor models used for formulating the NTF problems. We have presented

the most popular cost functions that are used for measuring the error of approxi-

mation. We have shown how multiplicative update rules can be derived for solving

the optimization problem. Subsequently, we have shown how constraints can be

incorporated in the cost function in order to enhance the sparseness of the NTF de-

composition. Moreover, we have described a method for supervised Nonnegative

Tensor Factorization by incorporating discriminant cost functions in the NTF de-

composition. Finally, we have described the applications of NTF in computer vision

and image representation problems.

The NTF-based optimization problems are non-convex. They may have several

local minima and produce a sequence of iterations. A common misunderstanding is
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that the limit points of this sequence are local minima. In optimization theory most

non-convex optimization methods guarantee only the stationarity of the limit points.

Such a property is very useful as a local minimum must be a stationary point. On

the other hand the multiplicative update rules proposed that far for arbitrary valence

NTF algorithms they only guarantee that the cost function is nonincreasing under

these rules.

Another problem for NTF methods is that the quality of the decomposition highly

depends on the initialization of the various factors. The most common approach for

initialization is by using random nonnegative values. In [6] a first approach for ini-

tiliazing NTF using Tucker decomposition has been proposed. Finally, another open

problem is the optimal choice of K. Actually, this a problem that all decomposition

methods face and actually there is no standard way for setting K a priori. Typically

in pattern recognition problems K is selected as the one that minimizes the classifi-

cation error.
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PDE-based Morphology for Matrix Fields:
Numerical Solution Schemes

Bernhard Burgeth, Michael Breuß, Stephan Didas, and Joachim Weickert

Abstract Tensor fields are important in digital imaging and computer vision. Hence

there is a demand for morphological operations to perform e.g. shape analysis,

segmentation or enhancement procedures. Recently, fundamental morphological

concepts have been transferred to the setting of fields of symmetric positive def-

inite matrices, which are symmetric rank two tensors. This has been achieved by

a matrix-valued extension of the nonlinear morphological partial differential equa-

tions (PDEs) for dilation and erosion known for grey scale images. Having these

two basic operations at our disposal, more advanced morphological operators such

as top hats or morphological derivatives for matrix fields with symmetric, positive

semidefinite matrices can be constructed. The approach realises a proper coupling

of the matrix channels rather than treating them independently. However, from

the algorithmic side the usual scalar morphological PDEs are transport equations

that require special upwind-schemes or novel high-accuracy predictor-corrector ap-

proaches for their adequate numerical treatment. In this chapter we propose the

non-trivial extension of these schemes to the matrix-valued setting by exploiting

the special algebraic structure available for symmetric matrices. Furthermore we

compare the performance and juxtapose the results of these novel matrix-valued

high-resolution-type (HRT) numerical schemes by considering top hats and mor-

phological derivatives applied to artificial and real world data sets.
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1 Introduction

Initiated by Serra’s and Matheron’s work on binary morphology [33, 46] in the

sixties, mathematical morphology has developed into a powerful discipline that

provides versatile tools to the image processing community. Over the last four

decades morphological concepts have been generalised and extended not only

to greyscale images but also to vector-valued images and image sequences. Nu-

merous monographs, e.g. [26, 34, 47, 48, 51], and conference proceedings, e.g.

[21, 22, 27, 32, 53], bear testimony to the variety and the success of mathemati-

cal morphology.

Recently, the fundamental morphological operations of dilation and erosion, and

with it some other basic morphological operators, have been made available for

matrix-valued data, matrix fields for short [11].

The interest of the image processing community in matrix-valued data has been

triggered mainly by the advent of diffusion tensor magnetic resonance imaging (DT-

MRI) [3]. This 3-D medical imaging technique assigns to each voxel a tensor, i.e.,

a positive semidefinite 3× 3-matrix, which provides in vivo information about the

diffusion of water molecules in biological tissue. As such it mirrors the geometry

and organisation of the tissue under examination and is a very valuable diagnostic

tool [39]. Furthermore, in image analysis itself tensors turned out to be a useful con-

cept [23]: The structure tensor [18], for instance, (also known as Förstner interest

operator, second moment matrix or scatter matrix) is used for corner detection [25],

but also for motion [4] and texture analysis [40]. Finally, in physics and engineering

anisotropic behaviour of quantities is described by tensors such as inertia, diffu-

sion, permittivity and stress-strain tensors. Hence, modern image processing should

provide appropriate tools to analyse matrix fields.

To fix notation we consider a matrix field as a mapping

F : Ω ⊂ IRd −→Mk(IR) (1)

from a d-dimensional image domain into the set of k× k-matrices with real entries,

F(x) = ( fp,q(x))p,q=1,...,k . Unless otherwise stated we will concentrate throughout

this chapter on matrix fields with values in the set Sym(k) of all symmetric ma-

trices, Sym(k) ⊂ Mk(IR). In most applications this type of matrices is of practical

relevance.

In [10] novel matrix-valued partial differential equations governing dilation and

erosion for matrix fields have been proposed and numerically solved by a first-order

scheme of Osher and Sethian generalised to the setting of matrices.

However, in the case of scalar images the morphological differential equations

of dilation and erosion can also be solved numerically by a flux corrected transport

(FCT) scheme as introduced in [8]. This scheme follows a predictor-corrector strat-

egy which allows for an almost perfect preservation of edges and discontinuities

outperforming even a high-resolution scalar variant of the Osher-Sethian scheme.

In what follows, we denote the corresponding Osher-Sethian schemes by OS-I and

OS-II, respectively.
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As a novelty we propose in this chapter high-resolution-type matrix-valued ex-

tensions of OS-II as well as of the FCT scheme. Furthermore, we compare in ex-

periments on matrix fields the performance of OS-I, OS-II, FCT, and we juxtapose

the results to the output of the ordering based morphological operators which were

introduced and investigated in [15, 12].

This chapter is organized as follows: First we deal in Section 2 with mathemati-

cal morphology for grey scale images. We present the ordering and the PDE-based

approach for the two fundamental operations, dilation and erosion. For the nonlinear

hyperbolic PDEs governing dilation and erosion we present three schemes for their

numerical solution. The section ends with a short review of some basic morpholog-

ical derivative operators. Section 3 gives a compact description how the operations

of dilation and erosion can be defined for matrix fields. To this end we utilise the

Loewner partial ordering for symmetric matrices to define a supremum and infimum

of a finite set of symmetric matrices. In Section 4 we establish matrix-valued PDEs

for dilation and erosion, and we introduce matrix-valued counterparts of the three

schemes for the numerical solution of the dilation/erosion equations in the setting

of matrix fields. In our experiments we apply morphological operations to artificial

and real DT-MRI data sets. The operations are realised via ordering and via the three

numerical schemes of the PDE-based approach. We report on the comparison of the

results in Section 5. The remarks in Section 6 conclude this chapter.

2 Morphology for Grey Scale Images

In this section we briefly recall the definitions of some basic scalar-valued mor-

phological operators whose matrix-valued generalisations will be of interest in this

chapter. First we focus on the two very different approaches to the fundamental

operations of mathematical morphology: dilation and erosion.

The first approach is based on ordering leading to the so-called flat morphology

while the continuous-scale morphology relies on partial differential equations. Af-

ter introducing these approaches, we briefly recall some important morphological

operations based on subsequent applications of dilation/erosion.

A second topic addressed here are numerical schemes for scalar-valued PDE-

based morphology. After a general discussion, we introduce the methods we use in

this paper, giving them a formulation easily carried over to the tensor-valued setting

discussed later.

2.1 Erosion and Dilation Based on Ordering

In flat morphology for a scalar image f (x,y) the so-called structuring element (SE)

is a set B⊂ IR2 that determines the neighbourhood relation of pixels with respect to
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a shape analysis task. Often convex sets such as disks, ellipses or squares are used

as structuring elements.

Grey scale dilation ⊕ replaces the greyvalue of the image f (x,y) by its supre-

mum/maximum within a mask defined by B,

( f ⊕B)(x,y) := sup { f (x−x′, y−y′) | (x′,y′)∈B}, (2)

while erosion � is determined by taking the infimum/minimum,

( f �B)(x,y) := inf { f (x+x′, y+y′) | (x′,y′)∈B}. (3)

The notions of supremum and infimum only make sense if an ordering of the grey

values is possible. The following PDE-based approach is in principle free from this

requirement.

2.2 Erosion and Dilation by PDEs

In [43, 44] nonlinear partial differential equations were proposed that mimic the

process of dilation and erosion of an image f with a ball as structuring element.

These Eikonal equations read

∂tu = ±‖∇u‖ :=
√

(∂xu)2 +(∂yu)2 on Ω × (0,+∞)

∂nu = 0 on ∂Ω × (0,+∞) (4)

u(x,y,0) = f (x,y) for all (x,y) ∈Ω

The evolution process governed by (4) is initialised with the original image f and

yields transformed versions u(·, t) for any t ∈ (0,+∞). Here ∂nu denotes the outward

normal derivative of u at the boundary ∂Ω of the image domain Ω . The plus sign +
realises the dilation, while the minus sign − corresponds to erosion.

The dilation/erosion PDEs (4) belong to the class of hyperbolic PDEs, see e.g.

[16, 17] for introductions. Hyperbolic processes describe transport processes and

are strongly linked to wave propagation. An important property of solutions to hy-

perbolic PDEs is that discontinuities, often called shocks, generally arise. Note in

the context of this work, that the resolution of shocks requires specifically tailored

numerical schemes, see e.g. [31].

2.3 Morphological Operations

The combination of dilation and erosion lead to various other morphological opera-

tors such as opening and closing,
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f ◦B := ( f �B)⊕B , f •B := ( f ⊕B)�B , (5)

the white top-hat and its dual, the black top-hat,

WTH( f ) := f − ( f ◦B) , BTH( f ) := ( f •B)− f , (6)

and finally, the self-dual top-hat,

SDTH( f ) := ( f •B)− ( f ◦B) . (7)

Boundaries of objects are loci of high grey value variations in an image, and as such

they can be detected by derivative operators. The so-called Beucher gradient

ρB( f ) := ( f ⊕B)− ( f �B) , (8)

as well as the internal and external gradient,

ρ−B ( f ) := f − ( f �B) , ρ+
B ( f ) := ( f ⊕B)− f , (9)

are morphological counterparts of the norm of the gradient f , ‖∇ f‖, if f is consid-

ered as a differentiable image.

In [55] a morphological Laplacian has been introduced. But we define a variant

by

ΔB f := ρ+
B ( f )−ρ−B ( f ) = ( f ⊕B)−2 · f +( f �B) . (10)

This Laplacian is a morphological equivalent of the second derivative ∂ηη f where

η stands for the unit vector in the direction of the steepest slope. It allows us to

distinguish between influence zones of minima and maxima of the image f . This is

a vital property for the construction of so-called shock filters [24, 30, 37]. Shock fil-

tering amounts to applying either a dilation or an erosion to an image, depending on

whether the pixel is located within the influence zone of a minimum or a maximum:

SB f :=

⎧⎪⎨⎪⎩
f ⊕B , ΔB f < 0,

f , ΔB f = 0,

f �B , ΔB f > 0.

(11)

A considerable number of variants of shock filters have been considered in the

literature [1, 20, 36, 41, 45, 56]. When they are applied iteratively, experiments

show that their steady state is given by a piecewise constant image with discontinu-

ities (“shocks”) between adjacent segments of constant grey value. For more details

about the morphological shock filter as introduced above see [12].

These operators are at our disposal once we have succeeded to performing dila-

tion and erosion on matrix fields. Depending on the quality of the discrete realisa-

tions these two operations we will see considerable differences in the output of the

composed morphological operators.
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2.4 Numerical Schemes for PDEs of Erosion or Dilation

In the context of PDE-based mathematical morphology, first-order finite difference

methods such as the Osher-Sethian scheme [35, 38, 49] and the Rouy-Tourin method
[42, 54] are adequate choices. A typical design feature of such PDE-based algo-

rithms for mathematical morphology consists of diffusive numerical effects neces-

sary to capture propagating shocks. Unfortunately, this also leads to a blurring of

edges.

The construction of an accurate method yielding sharp edges is a non-trivial task.

In [50, 52], the attempt to circumvent this blurring by means of using higher-order

ENO1 interpolants within numerical schemes was investigated in scalar-valued mor-

phology. However, schemes like these are very difficult to implement in a tensor-

valued setting since the mathematical concept behind ENO interpolants does not

carry over. On the other hand, as we show in this work, it is possible to define a rea-

sonable tensor-valued analogue of the high-resolution extension of the first-order

Osher-Sethian scheme, and also the flux-corrected transport (FCT) scheme intro-

duced in [8] for scalar-valued morphology can be extended to the tensor-valued

setting. Consequently, we denote the resulting schemes as being of high-resolution-
type (HRT), and these are to the knowledge of the authors the first schemes in the

area of tensor-valued data constructed for the purpose of a high-quality resolution.

In this section, we briefly review the first-order Osher-Sethian scheme (OS-I) as

well as its high-resolution extension (OS-II), and the FCT scheme for the scalar-

valued 2-D case. Restricting the presentation to this setting, all numerical aspects

will become evident while the notation is not overloaded. We employ the notation

un
i j as the grey value of the image u at the pixel centred at (ihx, jhy)∈ IR2 at the time-

level nτ of the evolution. For the convenience of the reader, the formulae are already

given in a format so that the coding procedure is extendable to the 3-D tensor-valued

setting in a straightforward fashion:

• Instead of grey values un
i j the reader may employ tensors Un(ihx, jhy).

• Instead of the minmod-function defined below in a scalar-valued setting, the

reader may employ its tensor-valued generalisation discussed in section 4.

• The formulae can be extended straightforwardly to tensors in 3-D Un(ihx, jhy,khz).

Also, we only describe the schemes for morphological dilation, as algorithms for

erosion just incorporate a switch of sign, compare (4).

For a compact notation, we employ the usual abbreviations for forward and back-

ward difference operators, i.e.,

Dx
+un

i, j := un
i+1, j−un

i, j and Dx
−un

i, j := un
i, j−un

i−1, j . (12)

These operators can be defined analogously with respect to the y-direction, and they

can be formally concatenated yielding the obvious results. It also turns out to be

advantageous to define the central difference operator

1 ENO means essentially non-oscillatory
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Dx
cun

i, j := un
i+1, j−un

i−1, j (13)

which should be understood accordingly.

2.5 The basic Osher-Sethian Scheme

The first-order-accurate Osher-Sethian scheme for morphological dilation referred

to as OS-I is given by

un+1
i, j = un

i, j + τ

((
1

hx
min
(
Dx
−un

i, j,0
))2

+
(

1

hx
max
(
Dx

+un
i, j,0
))2

+
(

1

hy
min
(
Dx
−un

i, j,0
))2

+
(

1

hy
max
(
Dx

+un
i, j,0
))2
)1/2

. (14)

The scheme (14) is largely identical to the first-order upwind scheme of Rouy and

Tourin [42, 54], but with the exception of the treatment of extrema of un
i, j.

2.6 The Osher-Sethian Scheme with High-Resolution Correction

For notational convenience, we first write down this enhanced scheme, named OS-

II, in semidiscrete form keeping the time derivative, compare [38]. Note, that it is

at this stage identical to (14) with the exception of terms tweaking the numerical

derivatives:

∂
∂ t

ui, j(t) =

((
1

hx
min

(
Dx
−un

i, j +
1

2
mm
(
Dx
−Dx

+un
i, j,D

x
−Dx

−un
i, j
)
, 0

))2

+
(

1

hx
max

(
Dx

+un
i, j−

1

2
mm
(
Dx

+Dx
+un

i, j,D
x
−Dx

+un
i, j
)
, 0

))2

+
(

1

hy
min

(
Dy
−un

i, j +
1

2
mm
(
Dy
−Dy

+un
i, j,D

y
−Dy

−un
i, j
)
, 0

))2

+
(

1

hy
max

(
Dy

+un
i, j−

1

2
mm
(
Dy

+Dy
+un

i, j,D
y
−Dy

+un
i, j
)
, 0

))2
)1/2

. (15)

In (15), the function mm(·, ·) denotes the so-called minmod-function defined as

mm(a,b) :=

⎧⎨⎩min(a,b) if a > 0 and b > 0 ,
max(a,b) if a < 0 and b < 0 ,

0 else .
(16)
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It is left to define the time stepping method discretising the time derivative in (15),

whereby we denote the right hand side of (15) as L(un, i, j). This is done by the

method of Heun, yielding the final update formula

ūn+1
i, j = un

i, j + τ L(un, i, j) (17)

un+1
i, j =

1

2
un

i, j +
1

2
ūn+1

i, j +
τ
2

L
(
ūn+1, i, j

)
. (18)

2.7 The Rouy-Tourin Scheme

Another first-order-accurate scheme has been proposed by Rouy and Tourin in [42].

The variant we employ in this chapter reads

un+1
i, j = un

i, j + τ

(
max

(
1

hx
max
(
−Dx

−un
i, j,0
)

,
1

hx
max
(
Dx

+un
i, j,0
))2

+ max

(
1

hy
max
(
−Dy

−un
i, j,0
)

,
1

hy
max
(
Dy

+un
i, j,0
))2
)1/2

(19)

It displays a performance very similar to that of the first-order scheme OS-I, hence

we refrain from showing experiments based on this scheme alone. However, we use

it as a predictor step in the FCT scheme as it will be pointed out in the following

subsection.

2.8 The FCT Scheme

The FCT scheme summarised below is by construction a new variant of a tech-

nique originally proposed by Boris and Book [5, 6, 7] in the context of fluid flow

simulation. As shown in [8], the FCT scheme results in accurate and (largely) ro-

tationally invariant discrete representations of continuous-scale morphological dila-

tion/erosion.

The proposed FCT scheme relies on one-sided upwind differences as both

schemes previously presented above. Instead of terms refining the gradient approx-

imation as in (15), the idea behind the FCT scheme is to quantify the undesirable

blurring effects introduced by upwinding and to negate the corresponding quantity

in a corrector step by stabilised inverse diffusion (SID). Note that due to the stabili-

sation, the SID process is not ill-posed, compare [9].

In order to define the FCT scheme, let us give the abbreviations
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�xun
i, j :=

τ
2hx

∣∣Dx
cun

i, j
∣∣+ τ

2hx
Dx

+un
i, j−

τ
2hx

Dx
−un

i, j , (20)

�yun
i, j :=

τ
2hy

∣∣Dy
cun

i, j
∣∣+ τ

2hy
Dy

+un
i, j−

τ
2hy

Dy
−un

i, j . (21)

Let us stress, that the quantities �xun
i, j and �yun

i, j just describe the upwinding in-

corporated in (19), see [8] for details. An important observation is, that the central

differences above incorporate a second-order error which is non-diffusive, while the

one-sided differences are discrete diffusive fluxes. Thus, a spatial discretisation re-

lying on (20)–(21) such as the Rouy-Tourin scheme (19) introduces exactly these

diffusive fluxes. The FCT procedure then inverts the corresponding numerical dif-

fusion using the predicted data in the corrector step.

Using the method (19) as a predictor denoting the result pointwise as un+1,pred
i, j ,

we are now concerned with the corrector step, which will finally read as

un+1
i j = un+1,pred

i j +qn+1,pred
h −qn+1,pred

d . (22)

The FCT scheme then consists of a subsequent application of (19) and (22).

We now define the terms occurring in (22). As indicated, it is essential for the

FCT procedure to split the diffusive part from the second-order part. To this end, let

us note that the discretisation of the dilation PDE using central differences only,

un+1,pred
i, j = un

i j +

√(
τ

2hx

∣∣∣Dx
cun

i, j

∣∣∣)2

+
(

τ
2hy

∣∣∣Dy
cun

i, j

∣∣∣)2

, (23)

incorporates no numerical diffusion in the spatial discretisation part.

Let us now consider predicted data as arguments in the formulae of our numerical

schemes. Then, adding zero by adding and subtracting the square root below (23)

on the right hand side of (19), we can easily identify the higher-order part qn+1,pred
h

in (22) as

qn+1,pred
h :=

√(
τ

2hx

∣∣∣Dx
cun+1,pred

i, j

∣∣∣)2

+
(

τ
2hy

∣∣∣Dy
cun+1,pred

i, j

∣∣∣)2

. (24)

For the lower-order term qn+1,pred
d in (22) we have to take into account the stabilisa-

tion of the backward diffusive fluxes. This is done making use of

gi+1/2, j := mm

(
Dx
−un+1,pred

i, j ,
τ

2hx
Dx

+un+1,pred
i, j , Dx

+un+1,pred
i+1, j

)
, (25)

gi, j+1/2 := mm

(
Dy
−un+1,pred

i, j ,
τ

2hy
Dy

+un+1,pred
i, j , Dy

+un+1,pred
i, j+1

)
, (26)

where mm(·, ·, ·) is a straightforward extension of the minmod-function defined in

(16) to three arguments. Employing then the stabilised fluxes within the formulae of

(20)-(21), but applied at predicted data, we obtain
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δ xun+1,pred
i, j :=

τ
2hx

∣∣∣Dx
cun+1,pred

i, j

∣∣∣+gi+1/2, j−gi−1/2, j, (27)

δ yun+1,pred
i, j :=

τ
2hy

∣∣∣Dy
cun+1,pred

i, j

∣∣∣+gi, j+1/2−gi, j−1/2 , (28)

yielding the second new term in (22) as

qn+1,pred
d :=

√(
δ xun+1,pred

i, j

)2
+
(

δ yun+1,pred
i, j

)2
. (29)

We now conclude our review of morphology in the scalar setting and proceed

with the transfer to the matrix-valued case.

3 Ordering Based Morphology for Matrix Fields

Since dilation respectively erosion of flat morphology are defined via supremum and

infimum, see (2) and (3), a suitable ordering on the set of image values is necessary.

Dealing with symmetric matrices as image values, the so-called Loewner ordering
is a natural choice. We introduce this partial ordering and other useful concepts from

matrix analysis in the next subsection.

3.1 Matrix Analysis

Of particular importance for us is the subset Sym(k) of symmetric k× k-matrices

with real entries. They form a vector space endowed with the scalar product

〈A,B〉 :=
√

trace(A�B) . (30)

Note that at each point the matrix F(x) of a field of symmetric matrices can be

diagonalised and decomposed into its spectral components yielding

F(x) = V (x)�D(x)V (x) =
k

∑
i=1

λi(x) vi(x)v�i (x) . (31)

Here V (x)∈O(k) is a matrix field of orthogonal matrices V (x) with column vectors

vi(x), i = 1, . . . ,k, while D(x) is a matrix field of diagonal matrices with entries

λi(x), i = 1, . . . ,k. In the sequel we will denote k×k - diagonal matrices with entries

λ1, . . . ,λk ∈ IR from left to right simply by diag(λ1, . . . ,λk), and O(k) stands for the

matrix group of orthogonal k× k-matrices.

We need to define functions h of symmetric matrices. The most common way to

do this is as follows [29]. Let diag(α1, . . . ,αk) denote a diagonal matrix with entries

α1, . . . ,αk. We define for a symmetric matrix A ∈ Sym(k) with eigenvalue decom-
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position A =V diag(α1, . . . ,αk)V� and orthogonal matrix V ∈O(k) the matrix h(A)
by

h(A) := V diag(h(α1), . . . ,h(αk))V� (32)

provided the αi’s lie in the domain of definition of h. Note that the outcome of that

operation is rotational invariant, h(WAW�) = Wh(A)W�, W ∈ O(k), and preserves

symmetry, h(A) ∈ Sym(k).
For example, specifying h as the absolute value function, h(x) = |x|, associates

with a matrix A its absolute value |A|. This |A| denotes a positive semidefinite matrix

and must not be confused with the norm or determinant of A.

The set of positive (semi-)definite matrices, denoted by Sym+(k) (Sym++(k),
resp.), consists of all symmetric matrices A with 〈v,Av〉 := v�Av > 0 (≥ 0, resp.,)
for

v ∈ IRk \{0} .
The set Sym+(k) forms a cone, that is, a set that is invariant under addition of

matrices as well as multiplication with a positive scalar. This cone is used to define

a partial ordering on Sym(k), the Loewner ordering:

A,B ∈ Sym(k) : A≥ B :⇔ A−B ∈ Sym+(k), (33)

i.e. A≥ B if and only if A−B is positive semidefinite.

A subset K of a cone C is called base if every y ∈ C,y �= 0 is uniquely rep-

resentable as y = r · x with x ∈ K and r > 0. For instance, the set of positive

semidefinite matrices with trace 1 form a convex and compact base K1 of Sym+(k):
K1 := {M ∈ Sym+(k) : trace(M) = 1}.

A point x is an extreme point of a convex subset S⊂V of a vector space V if and

only if S\{x} is still convex. The set of all extreme points of S is denoted ext(S).

All the important information of a convex compact set is captured in its extreme

points. The theorems of Minkowski and Krein-Milman state that each convex com-

pact set S in a finite dimensional vector space can be reconstructed as the set of all

finite convex combinations of its extreme points [2, 28]:

S = convexhull(ext(S))

=

{
N

∑
i=1

λi ei |N ∈ IN,ei ∈ ext(S),λi ≥ 0, for i = 1, . . . ,N,
N

∑
i=1

λi = 1

}
.

It is known [2] that the matrices vv� with unit vectors v ∈ IRk, ‖v‖ = 1 are ex-

actly the extreme points of a base K1 of Sym+(k). Because of this extremal property

the matrices vv� with ‖v‖= 1 carry the complete information about the base of the

Loewner ordering cone and hence the cone itself: convexhull({vv� : v ∈ IRk, ‖v‖=
1}) is a base for the Loewner ordering cone. Such extreme points of bases of trans-

lated Loewner cones will play a decisive role in the explicit calculation of the supre-

mum/infimum of a finite number of symmetric matrices.
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3.2 Maximal/Minimal Matrices in the Loewner Ordering

The supremum of two symmetric matrices A1 and A2 is obtained easily. As it was

pointed out in [10] the quantity

sup(A1,A2) =
1

2
(A1 +A2)+

1

2
|A1−A2| , (34)

well known to hold for real numbers, indeed provides the supremum of the two

matrices with respect to the Loewner ordering. The infimum of two matrices we

obtain through

inf(A1,A2) =
1

2
(A1 +A2)−

1

2
|A1−A2| . (35)

We will need in Section 5 a minmod-function for matrix fields, and to this end

the supremum/infimum of three symmetric matrices A1,A2,A3 has to be calculated.

However, the iteration of (34) leads to the upper bounds

S1 := sup(A1,sup(A2,A3)) , S2 := sup(A2,sup(A3,A1)) ,

S3 := sup(A3,sup(A1,A2)) ,
(36)

for the set {A1,A2,A3} that in general do not coincide:

S1 �= S2 �= S3 . (37)

We construct an approximate supremum of {A1,A2,A3} in the following manner.

Since each Si dominates {A1,A2,A3} so does their arithmetic mean:

Sm :=
1

3
(S1 +S2 +S3)≥ Ai, i = 1,2,3 . (38)

We can improve this upper bound Sm by finding an optimal τ ≥ 0 such that

Sm− τI ≥ Ai, i = 1,2,3, (39)

holds, where I denotes the identity matrix. If μi j ≥ 0, j = 1, . . . ,k, are the eigenval-

ues of Sm−Ai for i = 1,2,3, this optimal τ is given by the minimum of all these

eigenvalues

τopt = min
i=1,...,3
j=1,...,k

(μi j) (40)

yielding a suitable supremum of three matrices

supopt(A1,A2,A3) = Sm− τopt I . (41)

The infimum of three matrices is calculated by
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infopt(A1,A2,A3) = −supopt(−A1,−A2,−A3) . (42)

It is clear that an extension of this approach to four or more matrices is not

feasible. To extend the notions of dilation (2) and erosion (3) to matrix fields a

different method to calculate the supremum/infimum of a larger number of matrices

Ai has to be employed. Such a technique has been developed and described in detail

in [10, 12]. However, in order to keep this presentation as self-contained as possible

we sketch this approach in the following.

Using the customary notation a + r S := {a + r · s : s ∈ S} for a point a ∈ V , a

scalar r ∈ IR and a subset S ⊂ V , we define the penumbra P(M) of a matrix M ∈
Sym(k) as the set of matrices N that are smaller than M with respect to the Loewner

ordering:

P(M) := {N ∈ Sym(k) : N ≤M}= M−Sym+(k) . (43)

The penumbra P(M) is a reverted and translated version of the Loewner cone geo-

metrically characterising all matrices that are smaller than the matrix M marking its

vertex.

Using this geometric description the problem of finding the maximum of a set

of matrices {A1, . . . ,Am} amounts to determining the minimal penumbra covering

their penumbras P(A1), . . . ,P(Am). Its vertex represents the matrix supremum A :=
sup(A1, . . . ,Am) we are searching for and that dominates all Ai w.r.t the Loewner

ordering.

To this end we associate with each matrix M ∈ Sym(k) a ball in the subspace

{A : trace(A) = 0} of all matrices with zero trace as a completely descriptive set. For

the sake of simplicity we will assume that trace(M)≥ 0. We determine the center

and the radius of this enclosing ball: First, we note that the set
{

M− trace(M)×
convexhull{vv� : v ∈ IRk,‖v‖ = 1}

}
is a base for P(M) contained in the subspace

{A : trace(A) = 0}. The orthogonal projection of M onto {A : trace(A) = 0} is given

by

m := M− trace(M)
k

I . (44)

Second, the extreme points of the base of P(M) are lying on a sphere with center m
and radius

r := ‖M− trace(M)vv�−m‖= trace(M)

√
1− 1

k
. (45)

If the center m and radius r of a sphere in {A ∈ Sym(k) : trace(A) = 0} are given

the vertex M of the associated penumbra P(M) is obtained by

M = m+
r
k

1√
1− 1

k

I . (46)
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With this geometric interpretation in mind we may reformulate the task of

finding a suitable maximal matrix A dominating the matrices {A1, . . . ,Am}: The

smallest sphere enclosing the spheres associated with {A1, . . . ,Am} determines

the matrix A that dominates the Ai. It is minimal in the sense, that there is no

smaller one w.r.t. the Loewner ordering which has this “covering property” of

its penumbra. For each i = 1, . . . ,m, we sample within the set of extreme points

{Ai− trace(Ai)vv�} of the base of P(Ai) by expressing v in 3-D spherical coor-

dinates, v = (sinφ cosψ,sinφ sinψ,cosφ) with φ ∈ [0,2π),ψ ∈ [0,π). Vectoris-

ing these matrices, that is, writing the entries of each of these matrices in a n2-

dimensional vector provides us with points for which a smallest enclosing ball has

to be found. This is a non-trivial problem of computational geometry and we tackle

it by using a sophisticated algorithm implemented by B. Gaertner [19]. The algo-

rithm returns the center and the radius of the smallest enclosing ball from which we

obtain with the help of the relations (44) – (46) the corresponding maximal matrix

A. As in (42) we set

inf(A1, . . . ,Am) =−sup(−A1, . . . ,−Am) . (47)

As a consequence the notion of dilation/erosion and with them many other morpho-

logical operations are available now for matrix fields.

In the next section we turn to the PDE-based approach to dilation and erosion in

the matrix setting.

4 PDE-based morphology for Matrix Fields

In order to find the matrix-valued counterparts of the scalar morphological PDEs (4)

it is necessary to establish a rudimentary calculus for fields of symmetric matrices.

For a more extended calculus for matrix fields the reader is referred to [13, 14].

4.1 Matrix-valued PDEs for Dilation and Erosion

The nonlinear PDEs (4) create a dilation and erosion process corresponding to a

ball-shaped SE for grey value images. These equations contain the gradient oper-

ator ∇ := (∂x,∂y,∂z)� with its partial derivatives and the Euclidean vector norm

‖(v1,v2,v3)�‖ :=
√

v2
1 + v2

2 + v2
3. For both we have to find suitable analogs for ma-

trices. To this end we have to clarify what a partial derivative, the absolute value and

a square root of a symmetric matrix is. It is important not to consider a matrix norm

as the extension of the vector norm in (4).

It is natural to define the equivalent ∂ α of the partial derivative ∂α , spatial

(α ∈ {x,y,z}) or temporal (α = t), of a scalar function for a matrix-valued func-
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tion U(x,y,z, t) = (ui, j(x,y,z, t))i, j=1,...,k by componentwise application of ∂α :

∂ αU := (∂α ui, j)i, j=1,...,k . (48)

Note that the subscripts indicate the matrix components and not the grey value of an

image u at pixel (ihx, jhy). Due to the linearity of matrix multiplication and differen-

tiation the application of ∂ α preserves symmetry, U ∈ Sym(k) =⇒ ∂ αU ∈ Sym(k),
and is rotational invariant:

∂ α(WUW�) = W (∂ αU)W� holds for any constant orthogonal matrix W .

With definition (32) the notion of a function of a symmetric matrix is already at

our disposal. Hence, specifying the functions h(x) = |x|2 and h(x) =
√

x we have

equipped the matrix-valued expression

√
|∂ xU |2 + |∂ yU |2 + |∂ zU |2 with meaning.

The latter is in fact a positive definite matrix if U is a non-constant matrix field, and

it can be seen as a direct analog of the Euclidean norm of a vector.

Now we are in the position to establish the matrix-valued counterpart of (4):

∂ tU =±
√
|∂ xU |2 + |∂ yU |2 + |∂ zU |2 , (49)

where “+“ governs the dilation-like, and “–“ rules the erosion-like evolution process.

4.2 Numerical Schemes for Matrix-valued PDEs
of Dilation and Erosion

In order to solve the matrix-valued PDEs of dilation/erosion we transfer the numer-

ical schemes OS-I, OS-II and FCT presented in the previous section to the setting

of matrix fields. Linear combinations and elementary functions such as the square,

square-root or absolute value function for matrix fields are now at our disposal.

Hence it is straightforward to define one sided differences in x-direction for 3-D

matrix fields of k× k-matrices:

Dx
+Un(i, j,k) := Un((i+1)hx, jhy,khz)−Un(ihx, jhy,khz) ∈ Sym(k) , (50)

Dx
−Un(i, j,k) := Un(ihx, jhy,khz)−Un((i−1)hx, jhy,khz) ∈ Sym(k) . (51)

In order to avoid confusion with the subscript notation for matrix components we

used the notation U(i, j,k) to indicate the (matrix-) value of the matrix field evalu-

ated at the voxel centred at (ihx, jhy,khz) ∈ IR3. The central difference operator in

x-direction is interpreted as

Dx
cU

n(i, j,k) := Un((i+1)hx, jhx,khx)−Un((i−1)hx, jhy,khz) ∈ Sym(k) . (52)

The y− and z−directions are treated accordingly. The notion of supremum and in-

fimum of two matrices (as needed in a matrix variant of OS-I) has been provided
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by (34) and (35). However, care has to be taken for functions that are defined piece-

wise such as the minmod functions for two or three arguments. We generalise the

minmod functions to the matrix setting by invoking the Loewner ordering

mm(A1,A2) :=

⎧⎨⎩ inf(A1,A2) for A1 > 0 and A2 > 0 ,
sup(A1,A2) for A1 < 0 and A2 < 0 ,
0 else ,

(53)

in the case of two matrices, while for three matrices we set

mm(A1,A2,A3) :=

⎧⎨⎩
infopt(A1,A2,A3) for Ai > 0, i = 1,2,3 ,
supopt(A1,A2,A3) for A1 < 0, i = 1,2,3 ,
0 else ,

(54)

with supopt and infopt given in (41) and (42).

Having these generalisations at our disposal the numerical schemes OS-I, OS-II

and finally the FCT scheme are available now in the setting of matrix fields.

The case differentiation necessary for shock filtering (11) is handled differently

and utilises the trace-function: The sign of tr(ΔBU) of the matrix ΔBU provides the

switching mechanism for shock filtering in the matrix field setting.

5 Experimental Comparison of the Numerical Schemes

The hyperbolic morphological PDEs of dilation/erosion are numerically tackled

with three specialised schemes: The first- and second-order schemes of Osher and

Sethian (OS-I, OS-II) and the FCT scheme of Breuß and Weickert. We compare the

results of basic morphological operations on images for ordering-based morphol-

ogy and PDE-based methods obtained with the numerical schemes OS-I, OS-II and

FCT. We restrict ourselves to the self-dual top hat (SDTH), the Beucher gradient,

and the matrix-valued variant of a morphological Laplacian and shock filter. Note

that the dilation and erosion are performed with respect to a ball-shaped structur-

ing element. In extension of the experiments in [8] we first turn our attention to the

scalar case in the next subsection.

5.1 Scalar Valued Data

In the scalar case we apply the morphological self-dual top hat and the Beucher

gradient to the grey value test image of size 256×256 depicted in Figure 1.

We juxtapose the results of these operations when the underlying dilation/erosion

operations stem from the classical ordering-based definitions, or from the PDE-

based approach with resolved with the three numerical schemes OS-I, OS-II and

FCT discussed above.
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In the case of the self-dual top hat we performed 40 steps with time step size 0.1
resulting in an evolution time of 4 which corresponds to a ball with 4 pixel radius

as SE. In Figure 2 we clearly see the superior performance of FCT when compared

to OS-I and OS-II: The FCT-based SDTH selects the smaller details of the image

almost as good as the ordering-based SDTH. Both OS-I and OS-II produce blurring

artefacts due to the inherent numerical dissipation.

Let us now turn to the Beucher gradient ρB as our last example in the scalar

setting. We performed 20 steps with time step size 0.1 resulting in an evolution time

of 2 which corresponds to ball with 2 pixel radius as SE. The results displayed in

Figure 3 confirm the advantage of the FCT scheme over the standard schemes. The

edges are enhanced as in the ordering-based Beucher gradient while the schemes

OS-I and OS-II suffer from blurring.

5.2 Matrix-valued Data

In order to assess the quality of our numerical approach, we first show two experi-

ments with matrix-valued data in two dimensions. Afterwards, a corresponding 3-D

experiment is given.

In our first two numerical experiments for matrix data we use an artificial 20×20-

field as well as a 128×128 slice of 3-D positive definite matrices originating from

a 3-D DT-MRI data set of a human head, see figures 4, 6, 7, and 8.

The data are represented as ellipsoids via the level sets of the quadratic form

{x�A−2x = const. : x ∈ IR3} associated with a matrix A ∈ Sym+(3). Using A−2 in-

stead of the matrix A the length of the semi-axes of the ellipsoid correspond directly

with the three eigenvalues of the positive definite matrix.

Fig. 1 The grey value test
image of size 256×256 used
for the experiments in the
scalar setting.
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The artificial data constitute a circular structure where the ellipsoids in the center

are elongated, while those outside the circle are simple balls.

In Figure 5, the results with artificial test data are displayed. It is clearly visible

that the ordering-based approach leads to sharp edges while the elongated tensors

change their shape towards a round appearance. Note that the sharp edges stem

from a discrete approximation of the structuring element in the pixel grid. The PDE-

based methods better preserve the initial shape of the tensors, but the Osher-Sethian

approaches introduce numerical blurring of the edges. The FCT scheme performs

better with this respect. The small tensors near the edges arise by geometrical effects

as the structuring element is a perfect ball given by the Euclidean norm.

Exactly the analogous numerical behaviour is observable in our experiment with

real-world data shown in Figure 6. The same assertion applies with respect to Figure

Fig. 2 Top left: Ordering-based SDTH with ball-shaped SE of size 4. Top right: PDE-based
SDTH via OS-I with time step size 0.1 and total evolution time 4. Bottom left: The same with
OS-II. Bottom right: The same with FCT scheme.
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7. However, in the latter experiment, it becomes even clearer than in Figure 5 that the

ordering-based approach and the PDE-based approach in the matrix-valued setting

are not equivalent and thus cannot be expected to yield the same results.

In our last experiment in two dimensions we investigate the shock filter. For this

morphological operation the differences between the numerical schemes are hardly

visible. We included this example in order to show that it depends on the underlying

process of interest if it pays off to use a high-resolution-type scheme.

In our last experiment, we show that the schemes for matrix-valued morphol-

ogy can also be applied in three dimensions. Figure 9 shows that the qualitative

behaviour of the FCT scheme worked out before carries over to the 3-D setting.

Fig. 3 Top left: Ordering-based Beucher gradient with ball-shaped SE of size 2. Top right: PDE-
based Beucher gradient via OS-I with time step size 0.1 and total evolution time 2. Bottom left:
The same with OS-II. Bottom right: The same with FCT scheme.
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6 Conclusion

In this work we were concerned with numerical solution schemes for the morpho-

logical PDEs for dilation and erosion in the setting of matrix fields. It has been

demonstrated that, firstly, it is possible to extend even sophisticated high-resolution

schemes for morphological PDEs, such as the FCT, in a rather straightforward man-

ner once the suitable matrix-algebraic foundations a properly prepared. Secondly,

we showed in experiments that the use of a computationally more expensive FCT

indeed pays off in the matrix setting: It preserves or enhances edges and contours

in matrix fields transformed with top-hats and morphological derivatives better than

the first- or even second-order schemes of Osher and Sethian. The findings reported

on in this work confirm that the elaborate numerical machinery for PDE-based scalar

morphology is now at our disposal for matrix-valued morphology as well.
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19. B. Gärtner. http://www.inf.ethz.ch/personal/gaertner. 2005.
20. G. Gilboa, N. A. Sochen, and Y. Y. Zeevi. Regularized shock filters and complex diffusion.

In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors, Computer Vision – ECCV 2002,
volume 2350 of Lecture Notes in Computer Science, pages 399–413. Springer, Berlin, 2002.

21. J. Goutsias, H. J. A. M. Heijmans, and K. Sivakumar. Morphological operators for image
sequences. Computer Vision and Image Understanding, 62:326–346, 1995.

22. J. Goutsias, L. Vincent, and D. S. Bloomberg, editors. Mathematical Morphology and its Ap-
plications to Image and Signal Processing, volume 18 of Computational Imaging and Vision.
Kluwer, Dordrecht, 2000.

Fig. 7 Top left: Ordering-based Beucher gradient with ball-shaped SE of size 3. Top right: PDE-
based Beucher gradient via OS-I with time step size 0.1 and total evolution time 3. Bottom left:
The same with OS-II. Bottom right: The same with FCT scheme.



148 Burgeth et al.

23. G. H. Granlund and H. Knutsson. Signal Processing for Computer Vision. Kluwer, Dordrecht,
1995.

24. F. Guichard and J.-M. Morel. A note on two classical enhancement filters and their associated
PDE’s. International Journal of Computer Vision, 52(2/3):153–160, 2003.

25. C. G. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of the
Fourth Alvey Vision Conference, pages 147–152, Manchester, UK, August 1988.

26. H. J. A. M. Heijmans. Morphological Image Operators. Academic Press, Boston, 1994.
27. H. J. A. M. Heijmans and J. B. T. M. Roerdink, editors. Mathematical Morphology and

its Applications to Image and Signal Processing, volume 12 of Computational Imaging and
Vision. Kluwer, Dordrecht, 1998.

28. J.-B. Hiriart-Urruty and C. Lemarechal. Fundamentals of Convex Analysis. Springer, Heidel-
berg, 2001.

29. R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge,
UK, 1990.

Fig. 8 Top left: Ordering-based shock filter with ball-shaped SE of size 3. Top right: PDE-based
shock filter via OS-I with time step size 0.1 and total evolution time 3. Bottom left: The same with
OS-II. Bottom right: The same with FCT scheme.



PDE-based Morphology for Matrix Fields: Numerical Solution Schemes 149

30. H. P. Kramer and J. B. Bruckner. Iterations of a non-linear transformation for enhancement
of digital images. Pattern Recognition, 7:53–58, 1975.

31. R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press,
Cambridge, UK, 2002.

32. G. Louverdis, M. I. Vardavoulia, I. Andreadis, and P. Tsalides. A new approach to morpho-
logical color image processing. Pattern Recognition, 35:1733–1741, 2002.
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Spherical Tensor Calculus for
Local Adaptive Filtering

Marco Reisert and Hans Burkhardt

Abstract In 3D image processing tensors play an important role. While rank-1

and rank-2 tensors are well understood and commonly used, higher rank tensors are

rare. This is probably due to their cumbersome rotation behavior which prevents

a computationally efficient use. In this chapter we want to introduce the notion of

a spherical tensor which is based on the irreducible representations of the 3D ro-

tation group. In fact, any ordinary cartesian tensor can be decomposed into a sum

of spherical tensors, while each spherical tensor has a quite simple rotation behav-

ior. We introduce so called tensorial harmonics that provide an orthogonal basis

for spherical tensor fields of any rank. It is just a generalization of the well known

spherical harmonics. Additionally we propose a spherical derivative which connects

spherical tensor fields of different degree by differentiation. Based on the proposed

theory we present two applications. We propose an efficient algorithm for dense

tensor voting in 3D, which makes use of tensorial harmonics decomposition of the

tensor-valued voting field. In this way it is possible to perform tensor voting by

linear-combinations of convolutions in an efficient way. Secondly, we propose an

anisotropic smoothing filter that uses a local shape and orientation adaptive filter

kernel which can be computed efficiently by the use spherical derivatives.

1 Introduction

In 3D image processing tensors play an important role. While rank-1 and rank-2

tensors are well understood and commonly used, higher rank tensors are rare. This
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is probably due to their cumbersome rotation behavior which prevents a computa-

tionally efficient use. In this chapter we want to introduce the notion of a spherical

tensor which is based on the irreducible representations of the 3D rotation group. In

fact, any ordinary cartesian tensor can be decomposed into a sum of spherical ten-

sors, while each spherical tensor has a quite simple rotation behavior. We introduce

so called tensorial harmonics that provide an orthogonal basis for spherical tensor

fields of any rank. It is just a generalization of the well known spherical harmon-

ics. Additionally we propose a spherical derivative which connects spherical tensor

fields of different degree by differentiation.

We will use the proposed theory for local adaptive filtering. By local adaptive

filtering we mean that during the filtering process the filter kernels may change their

shape and orientation depending on local quantities which were derived from the im-

age. Typically there are two ways to do this which are in a certain sense dual to each

other. Consider the classical linear filtering process. There are two interpretations,

on the one hand the convolution: each pixel (impulse) in the image is replaced by a

predefined filter kernel (impulse response) while the filter kernel itself is weighted

by the intensity of the observed pixel. The contribution from all pixels are combined

by summation. This is the interpretation we know from signal processing, where the

filter kernel is known as the impulse response. For Gaussian filter kernels the phys-

ical interpretation of this is simple isotropic diffusion. The second interpretation is

to compute a kind of correlation or blurring of the image: at each pixel we com-

pute an inner product of the filter kernel with its local neighborhood, i.e. a kind of

correlation. If the filter kernel is positive, then it may be interpreted as an average

of the surrounding pixels while the filter kernel determines the shape and size of

local window in which the average is taken. In the linear case both interpretations

are identical up to a point reflection of the filter kernel. But, if the filter kernel is

spatially dependent (or locally adaptive) both approaches are not identical anymore.

Let us formalize this. Let m(r) be the intensity of an image at position r and V n(r)
a filter kernel at position r, where the superscript n is a parameter that determines

the orientation and shape of the kernel. Now suppose that we have also given a pa-

rameter field n(r), i.e. the appearance of the kernel is spatially dependend. Then,

the ‘convolution’ integral looks as

Uconv(r) =
∫

R3
V n(r′)(r− r′) m(r′) dr′.

It formulates the above described intuition. We attach to each position r′ ∈ R3 the

filter kernel while the filter kernel depends on the kernel parameter n at position r′.
Then, the filter kernel is weighted by the observed image intensity m(r′) and the

contributions from all positions r′ are superimposed additively by the integral. On

the other hand we can write down the ‘correlation’ integral as

Ucorr(r) =
∫

R3
V n(r)(r′ − r) m(r′) dr′,
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which again covers the above presented picture. The value of the result at position r
is just the standard inner product of the image with the filter kernel modified by the

parameter n(r).
The ‘convolution’-approach is related to the so called tensor voting framework

(TV) [6, 8]. In TV the filter kernel is denoted as the voting function and is typically

tensor-valued. For example, rank-2 tensors are use to enhance feature images for

fiber detection. In TV the intensity image m(r) is interpreted as a probability for

the presence of a fiber, while the kernel parameter n(r) is the orientation of the

fiber at the specific position. On the other hand, the ’correlation’-approach is related

to anisotropic smoothing filters, which are typically used to denoise images while

preserving edges and discontinuities. Here the filter kernel is for example a squeezed

Gaussian, tablet-like function, which is during the filter process oriented along the

intensity gradients. In this way the smoothing is not performed across edges and,

hence, the discontinuities are preserved.

In this chapter we propose how to use spherical tensor calculus to expand the

filter kernel in an advantageous manner, such that the orientational steering of the

filter kernel can be performed efficiently. For scalar filter kernels this expansion is

the well-known Spherical Harmonics expansion. To generalize this idea to tensor-

valued images we propose the so called tensorial harmonics. In this way arbitrary

filter kernels can be expanded in tensorial harmonics and the computation of the

filter integral turns out to be a sum of convolutions. Although the convolutions can

be computed efficiently by the Fast Fourier Transform, the convolution is still the

bottleneck in the computation for very large volumes. Another problem of this ap-

proach is the severe memory consumption, because one has to store the tensorial

harmonic decomposition in a quite wasteful manner to allow an efficient computa-

tion. Hence, we introduce so called spherical derivatives that allow to compute the

convolutions with special type of kernels efficiently.

1.1 Related Work

The tensor voting (TV) framework was originally proposed by Medioni et al. [6]

and has found several applications in low-level vision in 2D and 3D. For example,

it is used for perceptual grouping and extraction of line, curves and surfaces [8].

The key idea of TV is to make unreliable measurements more robust by incorpo-

rating neighborhood information in a consistent and coherent manner. To compute

the TV-integral in a reasonable time the initial measurements in TV are typically

sparse. Recently, Franken et al. [3] proposed an efficient way to compute a dense

Tensor Voting in 2D. The idea makes use of a steerable expansion of the voting

field. Steerable filters are an efficient architecture to synthesize filters for arbitrary

angles from linear combinations of basis filters [4]. Perona generalized this concept

in [9] and introduced a methodology to decompose a given filter kernel optimally in

a set of steerable basis filters. The idea of Franken et al. [3] is to use the steerable

decomposition of the voting field to compute the voting process by convolutions in
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an efficient way. Complex calculus and 2D harmonic analysis are the major mathe-

matical tools that make this approach possible.

Anisotropic filtering is a low-level image processing technique that is used to

denoise and enhance images. The applied algorithms can be separated into iterative

and non-iterative methods. Iterative algorithms [15] are based on solutions of par-

tial differential equations. The motivation of the idea has its roots in the physical

modelling of an anisotropic diffusion process. The equations are tailored such that

particles tend to diffuse along edges rather than across edges. Consequently, the dis-

continuities of the images are preserved while the isotropic regions are smoothed.

The second class of algorithms [19, 5] treats the problem as a local adaptive blurring

process. Depending on a local orientation analysis the blurring kernels are steered

for each pixels such that the blurring is not performed across edges. In [5] a tech-

nique for fast anisotropic filtering in 2D is proposed; unfortunately the idea is not

extendable to 3D. In [10] local adaptive filters were implemented with the help of

complex derivatives; this work may be seen as a generalization of this ideas to 3D.

In [11] complex derivatives were used to compute nonlinear rotation-equivariant

filters in 2D efficiently.

2 Spherical Tensor Analysis

We will assume that the reader is familiar with the basic notions of the harmonic

analysis of SO(3). For introductory reading we recommend mainly literature [2, 13,

14, 17, 18] concerning the quantum theory of the angular momentum ang chemical

qunatum theory, while our representation tries to avoid terms from quantum theory

to also give the non-physicists a chance to follow. See e.g. [7, 16] for an introduction

from an engineering or mathematical point of view.

In the following we just repeat the basic notions and introduce our notations.

2.1 Preliminaries

Let D j
g be the unitary irreducible representation of a g∈ SO(3) of order j with j ∈N.

They are also known as the Wigner D-matrices (see e.g. [13]). The representation

D j
g acts on a vector space Vj which is represented by C2 j+1. We write the elements

of Vj in bold face, e.g. u ∈ Vj and write the 2 j + 1 components in unbold face

um ∈C where m =− j, . . . j. For the transposition of a vector/matrix we write uT ; the

adjoint representation (a joint complex conjugation and transposition) is denoted by

u� = uT . In this terms the unitarity of D j
g is expressed by the formula (D j

g)�D j
g = I.

Note, that we treat the space Vj as a real vector space of dimensions 2 j + 1,

although the components of u might be complex. This means that the space Vj is

only closed under weighted superpositions with real numbers. As a consequence of

this we always have that the components are interrelated by um = (−1)mu−m. From
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a computational point of view this is an important issue. Although the vectors are

elements of C2 j+1 we just have to store just 2 j +1 real numbers.

We denote the standard basis of C2 j+1 by e j
m, where the nth component of e j

m is

δmn. In contrast, the standard basis of Vj is written as c j
m = 1+i

2 e j
m +(−1)m 1−i

2 e j
−m.

We denote the corresponding ‘imaginary’ space by iVj, i.e. elements of iVj can be

written as iv where v ∈ Vj. So, elements w ∈ iVj fulfill wm = (−1)m+1w−m. Hence,

we can write the space C2 j+1 as the direct sum of the two spaces C2 j+1 = Vj⊕ iVj.

The standard coordinate vector r = (x,y,z)T ∈ R3 has a natural relation to elements

u ∈V1 by

u =
x− y√

2
c1

1 + zc1
0−

x+ y√
2

c1
−1 =

⎛⎜⎝
1√
2
(x− iy)

z
− 1√

2
(x+ iy)

⎞⎟⎠= Sr ∈ V1

Note, that S is a unitary coordinate transformation. The representation D1
g is directly

related to the real valued rotation matrix Ug ∈ SO(3)⊂ R3×3 by D1
g = SUgS�.

Definition 2.1 A function f : R3 �→C2 j+1 is called a spherical tensor field of rank j
if it transforms with respect to rotations as

(gf)(r) := D j
gf(UT

g r)

for all g∈ SO(3). The space of all spherical tensor fields of rank j is denoted by T j .

2.2 Spherical Tensor Coupling

Now, we define a family of bilinear forms that connect tensors of different ranks.

Definition 2.2 For every j ≥ 0 we define a family of bilinear forms of type

◦j : Vj1 ×Vj2 �→ C2 j+1

where j1, j2 ∈ N has to be chosen according to the triangle inequality | j1− j2| ≤
j ≤ j1 + j2. It is defined by

(e j
m)�(v◦j w) := ∑

m=m1+m2

〈 jm | j1m1, j2m2〉vm1
wm2

where 〈 jm | j1m1, j2m2〉 are the Clebsch-Gordan coefficients.

For references concerning the Clebsch-Gordan coefficients see the appendix. The

characterizing property of these products is that they respect the rotations of the

arguments, namely

Proposition 2.3 Let v ∈ V j1 and w ∈ V j2 , then for any g ∈ SO(3)
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(D j1
g v)◦j (D j2

g w) = D j
g(v◦j w)

holds.

Proof. The components of the left-hand side look as

(e j
m)�((D j1

g v)◦j (D j2
g w))

= ∑
m=m1+m2

m′
1

m′
2

〈 jm| j1m1, j2m2〉D j1
m1m′1

D j2
m2m′2

vm′1
wm′2

First, one has to insert the identity by using the orthogonality relation (17) with

respect to m′1 and m′2. Then we can use relation (25) and the definition of ◦j to prove

the assertion.

Proposition 2.4 If j1 + j2 + j is even, than ◦ is symmetric, otherwise antisymmetric.
The spaces Vj are closed for the symmetric product, for the antisymmetric product
this is not the case.

j + j1 + j2 is even ⇒ v◦j w ∈Vj

j + j1 + j2 is odd ⇒ v◦j w ∈ iVj,

where v ∈Vj1 and w ∈Vj2 .

Proof. The symmetry and antisymmetry is founded in the symmetry properties of

the Clebsch-Gordan coefficients in equation (23). To show the closure property con-

sider

(e j
m)�v◦j w = ∑

m=m1+m2

〈 jm| j1m1, j2m2〉vm1
wm2

= ∑
m=m1+m2

(−1)m〈 jm| j1m1, j2m2〉v−m1
w−m2

= ∑
m=m1+m2

(−1)m+ j+ j1+ j2〈 j(−m)| j1m1, j2m2〉vm1
wm2

= (−1)m+ j+ j1+ j2(e j
−m)�v◦j w,

where we used the symmetry property given in equation (24). Hence, we have for

even j + j1 + j2 the ’realness’ condition complying to Vj and for odd j + j1 + j2 the

‘imaginariness’ condition for iVj, which prove the statements.

We will later see that the symmetric product plays an important role, in particu-

lar, because we can normalize it in a special way such that it shows a more gentle

behavior with respect to the spherical harmonics.

Definition 2.5 For every j ≥ 0 with | j1− j2| ≤ j ≤ j1 + j2 and even j + j1 + j2 we
define a family of symmetric bilinear forms by

v•j w :=
1

〈 j0| j10, j20〉v◦j w
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For the special case j = 0 the arguments have to be of the same rank due to the

triangle inequality. Actually in this case the symmetric product coincides with the

standard inner product

v•0 w =
m= j

∑
m=− j

(−1)mvmw−m = w�v,

where j is the rank of v and w.

Proposition 2.6 The products ◦ and • are associative in the following manner.

v j1 ◦� (w j2 ◦j2+ j3 y j3) = (v j1 ◦j1+ j2 w j2)◦� y j3 (1)

holds if j1 + j2 + j3 = �. And

v j2 ◦� (w j1 ◦j1+ j3 y j3) = (v j1 ◦j2− j1 w j2)◦� y j3 (2)

holds with � = j2− ( j1 + j3)≥ 0.

Proof. Both statements are proved by using the explicit formulas for the special

cases of the Clebsch-Gordan coefficients as given in equation (20) and (21).

The introduced product can also be used to combine tensor fields of different

rank by point-wise multiplication.

Proposition 2.7 Let v ∈ T j1 and w ∈ T j2 and j chosen such that | j1− j2| ≤ j ≤
j1 + j2, then

f(r) = v(r)◦j w(r)

is in T j , i.e. a tensor field of rank j.

In fact, there is another way to combine two tensor fields: by convolution. The evolv-

ing product respects the translation in a different sense.

Proposition 2.8 Let v ∈ T j1 and w ∈ T j2 and j chosen such that | j1− j2| ≤ j ≤
j1 + j2, then

(v◦̃jw)(r) :=
∫

R3
v(r′ − r)◦j w(r′) dr′

is in T j , i.e. a tensor field of rank j.

2.3 Relation to Cartesian Tensors

The correspondence of spherical and cartesian tensors of rank 0 is trivial. For rank 1

it is just the matrix S that connects the real-valued vector r ∈ R3 with the spherical

coordinate vector u = Sr ∈ V1. For rank 2 the consideration gets more intricate.

Consider a real-valued cartesian rank-2 tensor T ∈ R3×3 and the following unique

decomposition
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T = αI3 +Tanti +Tsym,

where α ∈ R, Tanti is an antisymmetric matrix and Tsym a traceless symmetric ma-

trix. In fact, this decomposition follows the same rules as the spherical tensor de-

composition. A rank 0 spherical tensor corresponds to the identity matrix in carte-

sian notation, while the rank 1 spherical tensor to corresponds to an antisymmetric

3× 3 matrix or, equivalently, to a vector. The rank 2 spherical tensor corresponds

to a traceless, symmetric matrix. Let us consider the spherical decomposition. For

convenience let Ts = STS�, then the components of the corresponding spherical

tensors b j ∈ V j with j = 0,1,2 look as

b j
m = ∑

m1+m2=m
〈1m1,1m2| jm〉(−1)m1T s

(−m1)m2
,

where b0 corresponds to α , b1 to Tanti and b2 to Tsym. The inverse of this ‘cartesian

to spherical’-transformation is

T s
m1m2

=
2

∑
j=0

m= j

∑
m=− j

〈1(−m1),1m2| jm〉(−1)m1b j
m.

In particular, consider a cartesian symmetric 2-tensor and its eigensystem. In spher-

ical tensor notation the spherical tensor b2 is decomposed into products of three

1-tensors vk ∈ V1 as

b2 =
1

∑
k=−1

λk vk ◦2 vk,

where vk are the eigenvectors of Ts and λk the eigenvalues. Note that b2 is invariant

against a common shift of the eigenvalues by some offset γ . It is ‘traceless’ in the

sense that
1

∑
k=−1

vk ◦2 vk = 0,

for any set of orthogonal vectors v−1,v0,v1 ∈V1. This offset, namely the trace of T
is covered by the zero-rank b0. It corresponds to the ‘ballness’ or ‘isotropy’ of T.

2.4 Spherical Harmonics

We denote the well-known spherical harmonics by Y j : S2 →Vj (see appendix). We

always write Y j(r), where r may be an element of R3, but Y j(r) is independent of

the magnitude of r = ||r||, i.e. Y j(λr) = Y j(r) for any λ ∈ R. We know that the Y j

provide an orthogonal basis of scalar function on the 2-sphere S2. Thus, any real

scalar field f ∈ T0 can be expanded in terms of spherical harmonics in a unique

manner:
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f (r) =
∞

∑
j=0

a j(r)�Y j(r),

where the a j(r) are expansion coefficients just depending on the radius r = ||r||. In

the following, we always use Racah’s normalization (also known as semi-Schmidt

normalization), i.e.

〈Y j
m,Y j′

m′ 〉=
1

4π

∫
S2

Y j
m(s) Y j′

m′(s)ds =
1

2 j +1
δ j j′δmm′

where the integral ranges over the 2-sphere using the standard measure. One im-

portant property of the Racah-normalized spherical harmonics is that Y j�Y j = 1.

Another important and useful property is that

Y j = Y j1 •j Y j2 (3)

if j + j1 + j2 is even. We can use this formula to iteratively compute higher order

Y j from given lower order ones. Note that Y0 = 1 and Y1 = Sr, where r ∈ S2.

The spherical harmonics have a variety of nice properties. One of the most im-

portant ones is that each Y j, interpreted as a tensor field of rank j is a fix-point with

respect to rotations, i.e.

(gY j)(r) = D j
gY j(UT

g r) = Y j(r)

or in other words Y j(Ugr) = D j
gY j(r). A consequence of this is that the expansion

coefficients of the rotated function (g f )(r) = f (UT
g r) just look as D j

ga j(r).
Note that the spherical harmonics arise as solutions of the Laplace equation Δ f =

0. One set of solutions are the homogeneous polynomials

R j(r) := r jY j(r),

i.e. the R j fulfill R j(λr) = λ jR j(r) and the components solve the Laplace equation

ΔR j
m = 0. In literature these functions are called the solid harmonics. They will get

important in the context of the spherical tensor derivatives.

3 Tensorial Harmonic Expansion

We propose to expand a tensor field f ∈T� of rank � as follows

f(r) =
∞

∑
j=0

k=�

∑
k=−�

a j
k(r)◦� Y j(r),

where a j
k(r) ∈ T j+k are expansion coefficients. Note, that for � = 0 the expansion

coincides with the ordinary scalar expansion from above. We can further observe
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that

(gf)(r) = D�
gf(U�g r)

=
∞

∑
j=0

k=�

∑
k=−�

(D j+k
g a j

k(r))◦� Y j(r) (4)

i.e. a rotation of the tensor field affects the expansion coefficients a j
k to be trans-

formed by D j+k
g .

By setting a j
k(r) = ∑m= j+k

m=−( j+k) a j
km(r)e j+k

m we can identify the functional basis Z j
km

as

f(r) =
∞

∑
j=0

k=�

∑
k=−�

m= j+k

∑
m=−( j+k)

a j
km(r)e j+k

m ◦� Y j(r)︸ ︷︷ ︸
Z j

km

,

Proposition 3.1 (Tensorial Harmonics) The functions Z j
km : S2 �→ V� provide an

complete and orthogonal basis of the angular part of T�, i.e.∫
S2

(Z j
km(s))�Z j′

k′m′(s)ds =
4π
Nj,k

δ j, j′δk,k′δm,m′ ,

where
Nj,k =

1

2�+1
(2 j +1)(2( j + k)+1).

The functions Z j
km are called the tensorial harmonics.

Proof. We first show the orthogonality by elementary calculations:

1

4π

∫
S2

(Z j
km(s))�Z j′

k′m′(s)ds

=
�

∑
M=−�

〈�M|( j+k)m, j(M−m)〉〈�M|( j′+k′)m′, j′(M−m′)〉 1
4π
∫

S2 Y j
M−mY j′

M−m′︸ ︷︷ ︸
δ j, j′ δm,m′

2 j+1

=
δ j, j′δm,m′

2 j +1

�

∑
M=−�

〈�M|( j+k)m, j(M−m)〉〈�M|( j+k′)m, j(M−m)〉︸ ︷︷ ︸
2�+1

2( j+k)+1
δ( j+k),( j+k′)

= δ j, j′δk,k′δm,m′
1

2( j + k)+1

2�+1

2 j +1

In line 2 we use the orthogonality of the Racah-normalized spherical harmonics. In

the third line we use the orthogonality relation for the Clebsch-Gordan coefficients

given in (19).
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Secondly, we want to show that the expansion of a spherical tensor field f ∈ T�

in terms of tensorial harmonics is unique and complete. Everybody agrees that the

expansion of the individual components (e�
M)�f in spherical harmonics is complete.

That is, we can write the expansion as

(e�
M)�f(r) =

∞

∑
j=0

j

∑
n=− j

b j
M(r)�Y j(r),

where b j
M(r) ∈ V j are the expansion coefficients for the Mth component. We show

the completeness of the tensorial harmonics by connecting them in an one-to-one

manner with this ordinary spherical harmonic expansion of the spherical tensor field.

For convenience we just consider the jth term in the expansion, i.e. the homoge-

neous part of f of order j that we denote by f j. We start with the expansion in terms

of tensorial harmonics and rewrite them to identify the elements of b j
M(r) written as

b j
M,n(r) in terms of the a j

km(r). And so,

(e�
M)�f j(r) =

�

∑
k=−�

∑
m+n=M

a j
km(r)〈�M|( j + k)m, jn〉Y j

n (r)

=
j

∑
n=− j

Y j
n (r)

�

∑
k=−�

∑
m

a j
km(r)〈�M|( j + k)m, jn〉︸ ︷︷ ︸

b j
M,n(r)

=
j

∑
n=− j

b j
M,n(r)Y

j
n (r).

Now, we just have to give the inverse relation that computes the a j
km out of the b j

Mn.

This can be accomplished by

∑
M,n

b j
M,n(r)〈�M|( j + k′)m′, jn〉

= ∑
M,n

�

∑
k=−�

∑
m

a j
km(r)〈�M|( j + k)m, jn〉〈�M|( j + k′)m′, jn〉

=
�

∑
k=−�

∑
m

a j
km(r) ∑

M,n
〈�M|( j + k)m, jn〉〈�M|( j + k′)m′, jn〉︸ ︷︷ ︸

δk,k′δm,m′
2�+1

2( j+k′)+1

=
2�+1

2( j + k′)+1
a j

k′m′(r),

where we used again the orthogonality relation for the Clebsch-Gordan coefficients

given in (19). This provides the one-to-one relation between the tensorial harmonic
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expansion with the component-wise spherical harmonic expansion and proves the

statement.

3.1 Symmetric Tensor Fields

Typical filter kernels show certain symmetry properties. We figured out three sym-

metries that result in a vanishing of specific terms in the tensorial expansion: the

rotationally symmetry with respect to a certain axis, the absence of torsion and re-

flection symmetry.

The rotation symmetry of a spherical tensor field f ∈ T� about the z-axis is ex-

pressed algebraically by the fact that gφ f = f for all rotation gφ around the z-axis.

Such fields can easily be obtained by averaging a general tensor field f over all these

rotations

fs =
1

2π

∫ 2π

0
gφ f dφ .

It is well known that the representation D j
gφ of such a rotation is diagonal, namely

D j
gφ ,mm′ = δmm′eimφ . Hence, the expansion coefficients a j

km of fs vanish for all m �= 0.

Thus, we can write any rotation symmetric tensor field as

fs(r) =
∞

∑
j=0

k=�

∑
k=−�

a j
k(r) e j+k

0 ◦� Y j(r). (5)

We call such a rotation symmetric field torsion-free if gyzfs = fs, where gyz ∈O(3)
is a reflection with respect to the yz-plane (or xz-plane). In Figure 1 we give an

example of such a field. The action of such a reflection on spherical tensors is given

by D j
gyz,mm′ = (−1)mδm(−m′). Similar to the rotational symmetry we can obtain such

fields by averaging over the symmetry operation

fstf =
1

2
(fs +gyzfs).

Note, that the mirroring operation for a spherical harmonic is just a complex conju-

gation, that is Y j(UT
gyzr) = Y j(r). The consequence for equation (5) is that all terms

where the k+� are odd vanish. The reason for that is mainly Proposition 2.4 because

with its help we can show that

D�
gyz(e

j+k
0 ◦� Y j(UT

gyzr)) = (−1)(k+�)(e j+k
0 ◦� Y j(r))

holds.

Finally, consider the reflection symmetry with respect to the xy-plane. This sym-

metry is particularly important for rank 2 spherical tensor fields. In TV such fields

are typically aligned or ‘steered’ with quantities of the same, even rank. For even

rank tensors the parity of the underlying quantity is lost, so the voting field has to
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invariant under such parity changes. This symmetry is algebraically expressed by

gxyfs = fs where gxy ∈O(3) is a reflection with respect to the xy-plane, whose action

on spherical tensors is given by D j
gyz,mm′ = (−1) jδmm′ . Averaging over this symme-

try operation has the consequence that expansion terms with odd j are vanishing.

For odd rank tensor fields the reflection symmetry is not imperative. But there is

typically an antisymmetry of the form gxyfs =−fs. This antisymmetry let vanish the

expansion terms with even index j.

Fig. 1 Rotation symmetric vector fields. Left: torsion-free. Right: with torsion.

3.2 Expanding Rotation-Symmetric Fields in Polar Representation

We write the spherical tensor field in polar representation f(r,θ ,φ), where cos(θ) =
z/r and φ = arg(x + iy). Consider a field of rank �. In polar representation the

rotation symmetry with respect to the z-axis is expressed by the fact that for all

m =−�, . . . , � the components fm(r,θ ,φ) of the field f can be written as

fm(r,θ ,φ) = αm(r,θ)eimφ ,

where αm(r,θ) ∈ C is the colatitudinal/radial dependency of the field. This rotation

symmetry is easy to verify because fm(r,θ ,φ −φ ′)eimφ ′ = fm(r,θ ,φ). For torsion-

free tensor fields we additionally know that αm(r,θ) ∈ R. To project such a sym-

metric kind of field on the tensorial harmonics consider the mth component of the

tensorial harmonic Z j
k0:
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(e�
m)�Z j

k0(θ ,φ) = (e�
m)�(e j+k

0 ◦� Y j(θ ,φ))

= 〈�m | ( j + k)0, jm〉Y j
m(θ ,φ)

= 〈�m | ( j + k)0, jm〉eimφ

√
( j−m)!
( j +m)!

P j
m(cos(θ))

= C� jmeimφ P j
m(cos(θ))

Now, using this expression the projection on Z j
k0 yields

〈Z j
k0, f〉S2 =

π/2∫
−π/2

2π∫
0

Z j
k0(θ ,φ)�f(r,θ ,φ)sin(θ) dφdθ

= 2π
�

∑
m=−�

C� jm

π/2∫
−π/2

αm(r,θ)P j
m(cos(θ))sin(θ)dθ

The residue integral may be computed numerically or analytically.

3.3 Rotational Steering

By equation (4) the tensorial harmonics are very well suited to rotate the expanded

spherical tensor field. We want to show how to steer a rotation symmetric field

efficiently in a certain direction.

Consider a general rotation gn ∈ SO(3) that rotates the z-axis rz = (0,0,1)� to

some given orientation n ∈R3, i.e. Rgnrz = n. Of course, there are several rotations

that can accomplish this. But, if we apply such a rotation on a rotational symmetric

field fs this additional freedom does not have an influence on the result. Starting

from the general rotation behavior of the tensorial harmonic expansion in Eq. (4)

one can derive that the symmetric tensor field fs rotates as

(gnfs)(r) =
∞

∑
j=0

k=�

∑
k=−�

a j
k(r) Y j+k(n)◦� Y j(r) (6)

This expression is the basis for the algorithm proposed in the next section. To prove

equation (6) one needs to know that Y j(rz) = e j
0.

4 Local Adaptive Filtering with Tensorial Harmonics

We already described the two dual ideas of local adaptive filtering in the introduc-

tion. In this section we describe how tensorial harmonics can be used to compute
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the filter integrals efficiently. (application examples can be found in [12]) For both

cases we assume that the filter kernel is tensor-valued of rank �, i.e. a function

Vn : R3→V�. The intensity image is still represented by the function m : R3→R and

an orientation image n : R3 →V1 of normalized vectors is given. We also assume a

rotation symmetric filter kernel as given in equation (6). The expansion coefficients

a j
k(r) can be obtained by a projection of the filter kernel onto the tensorial harmonics

a j
k(r) = Nj,k〈Z j

k0,V
rz〉S2

r
(7)

due to the symmetry only Z j
k0 are involved. For the numerical integration scheme

see Section 3.2.

4.1 The Convolution Integral

The key expression that has to be computed is

Uconv(r) =
∫

R3
Vn(r′)(r− r′) m(r′) dr′, (8)

Following the last section we set the voting field to Vn(r) = (gnfs)(r), where fs

is the rotational symmetric field. Inserting this expression in (8) and using Eq. (6)

yields

Uconv(r) =
∫

R3
Vn(r′)(r− r′) m(r′) dr′ =

∫
R3

(gn(r′)fs)(r− r′) m(r′) dr′

=
∫

R3

∞

∑
j=0

k=�

∑
k=−�

a j
k(|r− r′|) Y j+k(n(r′))◦� Y j(r− r′) m(r′) dr′

=
∞

∑
j=0

k=�

∑
k=−�

∫
R3

m(r′)Y j+k(n(r′))︸ ︷︷ ︸
E j+k(r′)

◦� a j
k(|r− r′|)Y j(r− r′)︸ ︷︷ ︸

A j
k(r−r′))

dr′

=
∞

∑
j=0

k=�

∑
k=−�

E j+k◦̃�A j
k

where E j(r) := m(r)Y j(n(r)) are combined tensor-valued evidence images and

A j
k(r) := a j

k(r)Y
j(r) is the harmonic expansion of the voting field. In Algorithm

1 we give pseudo-code for implementation.
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Algorithm 1 Convolution Algorithm

Input: m ∈T0, n(r) ∈T1, A j
k ∈T j

Output: U ∈T�

1: Let E0 := m
2: for j = 1 : ( jmax + �) do
3: E j := (E j−1 ◦j n)/〈 j0|10,( j−1)0〉
4: end for
5: for j = 0 : jmax do
6: for k =−� : 2 : � do
7: Compute U := U+E j+k ◦̃� A j

k
8: end for
9: end for

Algorithm 2 Correlation Algorithm

Input: m ∈T0, n(r) ∈T1, A j
k ∈T j

Output: U ∈T�

1: Let N0 := 1

2: for j = 1 : ( jmax + �) do
3: N j := (N j−1 ◦j n)/〈 j0|10,( j−1)0〉
4: end for
5: for j = 0 : jmax do
6: for k =−� : 2 : � do
7: Compute U := U+N j+k ◦� (m∗A j

k)
8: end for
9: end for

4.2 The Correlation Integral

Let us now consider the correlation integral

Ucorr(r) =
∫

R3
Vn(r)(r′ − r) m(r′) dr′. (9)

Following the same approach as in the previous section we can write

Ucorr(r) =
∫

R3

∞

∑
j=0

k=�

∑
k=−�

a j
k(|r

′ − r|) Y j+k(n(r))◦� Y j(r′ − r) m(r′) dr′

=
∞

∑
j=0

k=�

∑
k=−�

Y j+k(n(r))︸ ︷︷ ︸
N j+k(r)

∫
R3

m(r′)◦� a j
k(|r

′ − r|)Y j(r′ − r)︸ ︷︷ ︸
A j

k(r
′−r))

dr′

=
∞

∑
j=0

k=�

∑
k=−�

N j+k ◦� (m∗A j
k)
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The final expression enables us to give an efficient computation scheme as depicted

in Algorithm 2.

5 Spherical Tensor Derivatives

In this Section we propose derivative operators that connects spherical tensor fields

of different ranks. We call them spherical tensor derivatives (STD). A similar oper-

ator was already proposed by Weniger [17]. In his work the coordinate functions in

the harmonic polynomials R�(r) are replaced by the partial derivatives, symbolically

R�(∇).
We will use the spherical derivatives to compute local adaptive filters for special

types of filter kernels efficiently. The explicit convolutions used in the last section

are replaced by finite difference operations.

The idea is to represent the filter kernel by superpositions of STDs of radial sym-

metric functions. Due to the commuting property of convolution and differentiation

the computation of the filter response will just involve one explicit convolution with

the radial symmetric functions, the rest of the computations consists of repeated

applications of STDs.

In particular we will consider spherical derivatives of the Gaussian. We will see

that the resulting polynomials are just solid harmonics (see Section 2.4). Based on

this we will present a special type of filter kernel which can be defined for arbitrary

tensor ranks and has a very simple parameter dependency controlling its shape and

orientation.

Proposition 5.1 (Spherical Tensor Derivatives) Let f ∈ T� be a tensor field. The
spherical up-derivative ∇1 : T� → T�+1 and the down-derivative ∇1 : T� → T�−1

are defined as

∇1f := ∇•�+1 f (10)

∇1f := ∇•�−1 f, (11)

where
∇ = (

1√
2
(∂x− i∂y),∂z,−

1√
2
(∂x + i∂y))

is the spherical gradient and ∂x,∂y,∂z the standard partial derivatives.

Proof. We have to show that ∇1f ∈T�+1, i.e.

∇1(D�
gf(UT

g r)) = D�+1
g (∇1f)(UT

g r)

and ∇1f ∈T�−1

∇1(D�
gf(UT

g r)) = D�−1
g (∇1f)(UT

g r)

Both statements are proved just by using the properties of •.
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Note, that for a scalar function the spherical up-derivative is just the spherical gra-

dient, i.e. ∇ f = ∇1 f .

In the Fourier domain the spherical derivatives act by point-wise •-multiplications

with a solid harmonic ikY1(k) = iR1(k) = iSk where k = ||k|| the frequency mag-

nitude:

Proposition 5.2 (Fourier Representation) Let f̃(k) be the Fourier transformation
of some f ∈ T� and ∇̃ representations of the spherical derivative in the Fourier
domain that are implicitly defined by (̃∇f) = ∇̃̃f, then

∇̃
1
f̃(k) = R1(ik)•�+1 f̃(k) (12)

∇̃1̃f(k) = R1(ik)•�−1 f̃(k). (13)

Proof. By the ordinary Fourier correspondence for the partial derivative, namely

∂̃xf = ikx̃f, we can verify for the spherical gradient ∇ that

∇̃ = iSk = R1(ik)

and hence

∇̃1f = ˜(∇•�+1 f) = ∇̃•�+1 f̃ = R1(ik)•�+1 f̃

which was to show. Proceed similar for the down-derivative.

In the following we want to use as a short-hand notation for multiple STDss

∇�
i := ∇i∇� := ∇1 . . .∇1︸ ︷︷ ︸

i−times

∇1 . . .∇1︸ ︷︷ ︸
�−times

.

Note that if when this operator is applied to a scalar field one can show that ∇�
i =

Δ i∇n−i, where Δ i is the Laplace operator applied i-times.

Proposition 5.3 (Commuting Property for Convolutions) Let A ∈ Tk and B ∈
T j be arbitrary spherical tensor fields then

(∇�A) •̃J B = A •̃J(∇�B) (14)

(∇�A) •̃L B = A •̃L(∇�B) (15)

where J = j− (�+ k) and L = j + �+ k.

Proof. Both assertions originate from the associativity of the spherical product.

Consider the first statement in the Fourier domain by using equation (12) and then

apply the associativity given in equation (2):

(∇̃�Ã)•J B̃ = (R1 •k+� (˜∇�−1Ã))•J B̃

= (˜∇�−1Ã)•J (R1 •j−1 B̃) = (˜∇�−1Ã)•j (∇̃1B̃)
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where we abbreviated R1 = R1(ik). A repeated application of this proves the first

assertion. For the second statement it is similar but using the associativity as given

in Eq. (1).

Note, that the operator ∇� is equivalent to the spherical gradient R�(∇) defined

by Weniger in [17]. Actually, the work of Weniger and ours are equivalent. But, our

work focuses more on the fact that spherical derivatives connect spherical tensor

fields of different ranks quite naturally. Another emphasize of our work in contrast

to Weiniger’s is that higher order spherical gradients R�(∇) can be obtained by re-

peated applications of lower order ones, which is, from a computational perspective,

quite important.

5.1 Spherical Gaussian Derivatives

Our goal is to represent filter kernels as linear combinations of STDss of radial

symmetric functions. Suppose that g is an arbitrary radial functions, i.e. g(r) =
g(||r||). In fact, it holds in general that the angular part of STDs of the form ∇n

i g
are spherical harmonics of degree n− i. In particular we are interested in a very

important radial function, the Gaussian function. In this section we show that the

STDs of a Gaussian are just the Gaussian-windowed solid harmonics.

Proposition 5.4 We define the Gaussian windowed harmonic of width σ as

G�
σ (r) :=

1

(
√

2πσ)3

(
−1

σ2

)�

R�(r)e−
r2

2σ2 ,

then, the Fourier transformation of G�(r) is given by

G̃�
σ (k) = 〈eik�r,G�(r)〉L2

= (ik)�Y�(k)e−
(σk)2

2 .

Proof. We start with the definition of the Fourier transform and plug in the spherical

harmonic expansion of the plane wave in terms of spherical Bessel function jn (see

e.g [13], p. 136). Then, we integrate out the angular dependend part:∫
R3

G�
σ (r)e−ik�rdr =

∫
R3

G�
σ (r)∑

n
(2n+1)(−i)n jn(kr) Yn(r)•0 Yn(k)

=

√
2

π
(i)�

σ2�+3
Y�(k)

∫ ∞

0
j�(kr)e−

r2

2σ2 r�+2dr

The residual radius dependend part is integrated by using the series expansion of the

spherical Bessel function:
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0
j�(kr)e−

r2

2σ2 r2+�dr =
∞

∑
n=0

(−1)nk2n+�

2nn!(2(n+ �)+1))!!

∫ ∞

0
r2n+2�+2e−

r2

2σ2 dr︸ ︷︷ ︸√ π
2 σ2(n+�)+3(2(n+�)+1)!!

=
√

π
2

∞

∑
n=0

(−1)nk2n+�

2nn!σ−2(n+�)−3
=
√

π
2

σ2�+3k�e−
(σk)2

2

which proves the assertion.

In fact, for σ = 1 the G�s are eigenfunctions of the Fourier transformation with

eigenvalue (−i)�. Using the above proposition it is also easy to show that the G� are

just the �th order spherical derivatives of a Gaussian.

Proposition 5.5 (Spherical Gaussian Derivative) The homogeneous spherical deriva-
tive ∇� of a Gaussian computes to

∇�e−
r2

2σ2 = (
√

2πσ)3G�
σ (r) =

(
− 1

σ2

)�

R�(r) e−
r2

2σ2

Proof. An immediate consequence of the fact that ∇̃�g̃(k) = R�(ik)g̃(k) and Propo-

sition 5.4.

6 local adaptive filtering with STDs

The basic idea of the following approach is to represent the filter kernel by a lin-

ear superposition of spherical Gaussian derivatives. This will enable us to formulate

the filtering process by repeated applications of spherical derivatives which is much

more efficient than the explicit convolutions used in the previous section. We have

seen that the Gaussian derivatives are just Gaussian-windowed harmonic polynomi-

als, so the resulting kernels will also be Gaussian windowed harmonics. There are

many possibilities to construct such filter kernels. We present a kernel which can be

imagined as a squeezed or stretched Gaussian. But actually, we restrict the expan-

sion to derivatives of the form ∇ jg. Due to the symmetry properties of the Gaussian

the expansion will only contain even degree derivatives ∇2 jg. We propose to use the

following filter kernel

Vn(r) =
∞

∑
j=0

λ j

(2 j−1)!!
R2 j+�(n)•� ∇2 jg(r) (16)

where n is the squeezing/stretching direction. The expression (2 j−1)!! denotes the

double factorial given by (2n−1)(2n−3) . . .3. The parameter �≥ 0 determines the

rank of the filter kernel. The parameter λ controls the shape. For λ < 0 the function

has a tablet-like shape, for λ > 0 the shape is stick-like. Note that if the orientation

parameter n is not normalized the magnitude ||n|| has the same effect on the shape
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of the filter kernel like the magnitude of λ . So, we can control the orientation as

well as the shape of the filter kernel by the single parameter n. In Figure 2 we show

surface plots of the filter kernel for � = 0 for different λ .

Fig. 2 Surface-Plots for � = 0 with λ =−0.2,0,0.2.

6.1 The Convolution Integral

Again we have to compute the convolution integral as given in equation (8). Insert-

ing the filter kernel as given in equation (16) into (8) yields

Uconv(r) =
∫

R3

∞

∑
j=0

λ j

(2 j−1)!!
m(r′)R2 j+�(n(r′))︸ ︷︷ ︸

E j(r′)

•�(∇2 jg)(r− r′)dr′

=
∞

∑
j=0

λ j

(2 j−1)!!
(∇2 jg)•̃�E j

= g∗
∞

∑
j=0

λ j

(2 j−1)!!
∇2 jE j

where we used equation (14) to get from the second to the third line. The resulting

approach is similar to the algorithm using the tensorial harmonics, but the convolu-

tions with the basis functions are replaced by repeated differentiations.

6.2 The Correlation Integral

On the other hand consider the correlation integral. Starting with equation (9) and

inserting expression (16) yields:
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Algorithm 3 Convolution Algorithm with STDs

Input: m ∈T0, n(r) ∈T1

Output: U ∈T�

1: Let E0 := m•� R�(n)
2: for j = 1 : jmax do
3: E j := E j−1 •2 j+� R2(n)
4: end for
5: Let U := 0

6: for j = jmax :−1 : 1 do
7: U := λ j

(2 j−1)!! ∇2(U+E j)
8: end for
9: U := U+E0

10: U := g∗U

Ucorr(r) =
∫

R3

∞

∑
j=0

λ j

(2 j−1)!!
R2 j+�(n(r))︸ ︷︷ ︸

N j(r)

•�(∇2 jg)(r′ − r)m(r′) dr′

=
∞

∑
j=0

λ j

(2 j−1)!!
N j(r)•� ∇2 j(m∗g)

where we used equation (15) to pull the differentiation outward. In Algorithm 4 we

depict the computation process. In contrast to the convolution integral everything

can be computed in place. We just need one loop for the whole process, hence, the

memory consumption is much lower as for the convolution algorithm.

Algorithm 4 Correlation Algorithm with STDs

Input: m ∈T0, n(r) ∈T1

Output: U ∈T�

1: Let N := R�(n)
2: Let M := m∗g
3: Let U := N•� M
4: for j = 1 : jmax do
5: N := N•2 j+� R2(n)
6: M := ∇2M
7: U := U+ λ j

(2 j−1)!! N•� M
8: end for
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6.3 Application to Anisotropic Blurring

Finally we want to use the algorithm proposed in the last section to denoise scalar

MRI data while preserving edges and surfaces, that is, we apply Algorithm 4 with

� = 0. The idea is to perform a blurring operation isotropically in isotropic regions

and anisotropically in anisotropic regions. As a measure anisotropy we use the gra-

dient normalized with the local standard deviation. We choose λ < 0 such that the

filter kernel has a tablet-like shape. This tablet shape is for each voxel oriented or-

thogonal to the observed gradient such that the smoothing is not performed across

the edges. In conclusion we choose the orientation/shape parameter n as

n =
∇1(m∗g)

ε +
√

m2 ∗g− (m∗g)2

where ε > 0 is a small regularization parameter avoiding zero divisions. In Figure 3

we show an example applied to MRI-data of a human head of size 2563. Obviously,

the algorithm works, the isotropic regions are smoothed well and the edges are kept.

The run time on a standard PC (Intel Pentium 2.2 Ghz) is about 15 seconds.

Fig. 3 Example of anisotropic blurring filter on MRI-data.

7 Conclusion

In this chapter we proposed a mathematical framework for the efficient handling of

nonlinear filters in 3D. The framework is based on the notion of the spherical tensor

that is characterized by its transformation behavior with respect the 3D rotation
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group. The advantage of this representation in contrast to the usual cartesian one is

that even high rank tensors can be rotated in a quite efficient way.

Based on this framework we introduced so called tensorial harmonics that pro-

vide an orthogonal and complete basis of spherical tensor fields of any rank. Sec-

ondly, we proposed a differentiation scheme that connects spherical tensor fields of

different degrees. These tools enabled us to implement local adaptive filters, e.g.

anisotropic smoothing filters, in an efficient way.

Appendix

Spherical Harmonics

We always use Racah-normalized spherical harmonics. In terms of Legendre poly-

nomials they are written as

Y �
m(φ ,θ) =

√
(l−m)!
(l +m)!

P�
m(cos(θ))eimφ

We always write r ∈ S2 instead of (φ ,θ). The Racah-normalized solid harmonics

can be written as

R�
m(r) =

√
(�+m)!(�−m)! ∑

i, j,k

δi+ j+k,�δi− j,m

i! j!k!2i2 j (x− iy) j(−x− iy)izk,

where r = (x,y,z). They are related to spherical harmonics by R�
m(r)/r� = Y �

m(r)

Clebsch-Gordan Coefficients

For the computation of the Clebsch-Gordan (CG) coefficients recursive formulas are

applied (see e.g. [1]). The important orthogonality-relations of the CG-coefficients

are

∑
j,m
〈 jm| j1m1, j2m2〉〈 jm| j1m′1, j2m′2〉 = δm1,m′1

δm2,m′2
(17)

∑
m=m1+m2

〈 jm| j1m1, j2m2〉〈 j′m′| j1m1, j2m2〉 = δ j, j′δm,m′ (18)

∑
m1,m

〈 jm| j1m1, j2m2〉〈 jm| j1m1, j′2m′2〉 =
2 j +1

2 j′2 +1
δ j2, j′2

δm2,m′2
(19)

For two special cases there are explicit formulas:
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〈�m|(�−λ )(m−μ),λ μ〉=
(

�+m
λ + μ

)1/2(
�−m
λ −μ

)1/2(
2�
2λ

)−1/2

(20)

〈�m|(�+λ )(m−μ),λ μ〉= (−1)λ+μ
(

�+λ −m+ μ
λ + μ

)1/2

(
�+λ +m−μ

λ −μ

)1/2(
2�+2λ +1

2λ

)−1/2
(21)

The CG-coefficients fulfill certain symmetry relations

〈 jm| j1m1, j2m2〉 = 〈 j1m1, j2m2| jm〉 (22)

〈 jm| j1m1, j2m2〉 = (−1) j+ j1+ j2〈 jm| j2m2, j1m1〉 (23)

〈 jm| j1m1, j2m2〉 = (−1) j+ j1+ j2〈 j(−m)| j1(−m1), j2(−m2)〉 (24)

Wigner D-Matrix

The components of D�
g are written D�

mn. In Euler angles φ ,θ ,ψ in ZYZ-convention

we have

D�
mn(φ ,θ ,ψ) = eimφ d�

mn(θ)einψ ,

where d�
mn(θ) is the Wigner d-matrix which is real-valued. Explicit formulas for the

d�
mn(θ) involve the Jacobi-polynomials (see e.g. [13]) The important relations to the

Clebsch-Gordan coefficients are:

D�
mn = ∑

m1+m2=m
n1+n2=n

D�1
m1n1

D�2
m2n2

〈lm|l1m1, l2m2〉〈ln|l1n1, l2n2〉 (25)

and

D�1
m1n1

D�2
m2n2

= ∑
l,m,n

D�
mn〈lm|l1m1, l2m2〉〈ln|l1n1, l2n2〉. (26)
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On Geometric Transformations of Local
Structure Tensors

Björn Svensson, Anders Brun,

Mats Andersson, and Hans Knutsson

1 Introduction

The structure of images has been studied for decades and the use of local structure

tensor fields appeared during the eighties [3, 14, 6, 9, 11]. Since then numerous

varieties of tensors and estimation schemes have been developed. Tensors have for

instance been used to represent orientation [7], velocity, curvature [2] and diffu-

sion [19] with applications to adaptive filtering [8], motion analysis [10] and seg-

mentation [17].

Even though sampling in non-Cartesian coordinate system are common, analysis

and processing of local structure tensor fields in such systems is less developed.

Previous work on local structure in non-Cartesian coordinate systems include [21,

16, 1, 18]. A possible explanation is that it sometimes is prohibitively difficult or not

necessary to take into account the geometry, e.g. in the following rather common

cases:

• The geometry of the image is not known or very complicated. A photograph is

for instance a projection onto an image-plane. For a complete description of the

geometry it would then be necessary to know the distance to the image plane and

every object visible in the scene.

• The application does not require knowledge about the correct geometry or the

correct geometry does not contribute in a useful way to the observer.
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• The image has already a correct geometry or resampling to a correct geometry

can be performed with negligible effects on the result.

We address cases where none of the above statements apply. In for instance med-

ical imaging, geometry is very important and abnormalities can be detected by size,

shape and location. It is also common that samples are acquired in a non-Cartesian

coordinate system. Non-cubic voxels are perhaps the most common example, but

more complex geometries are also utilized such as oblique sampling or samples ac-

quired in a polar coordinate system. Signals acquired from such an imaging device

are generally resampled in order to present a geometrically correct image. Comput-

erized analysis of the signal such as localization of objects or estimation of shape

and size does not, however, require resampling. In fact, resampling often compli-

cates subsequent processing, since signal and noise characteristics are deteriorated.

This reasoning applies to local structure in particular, since it is a feature which

relates to geometry.

The research presented here reviews the concept of local structure and orienta-

tion using basic differential geometry. This is relevant, since most existing theory

on this topic implicitly assumes an underlying Cartesian geometry. The concept of

local structure can be generalized to arbitrary dimension. But since this work con-

cerns geometric transformations, it is not meaningful to increase the dimensionality

beyond the spatial dimensions.

2 Background

In non-Cartesian coordinate systems, it is important to distinguish between con-

travariant and covariant tensors, i.e. if the tensor is expressed in meter or per meter.

To introduce covariant and contravariant tensors let us start out by studying vectors,

i.e. tensors of order 1. A vector v is an element in a d-dimensional vector space

V , which is spanned by its natural basis ∂
∂xi . More compactly we write v ∈ V and

denote its coordinates by vi with an upper index, where i = 1, . . . ,d. The vector is

said to be a tensor of order (1,0), i.e. a contravariant first order tensor. As the order

increases it is convenient to use the Einstein summation convention, which means

that indices occurring more than once are implicitly summed over, i.e. the vector v
is written as

v = v1 ∂
∂x1

+ v2 ∂
∂x2

+ · · ·+ vd ∂
∂xd = vi ∂

∂xi . (1)

A dual vector w belongs to the d-dimensional space V ∗, which is the dual space of

V . The dual space V ∗ is then spanned by the basis dxi. Thus, w is a covariant tensor

of order (0,1) and its coordinates wi is written with a lower index. Using the same

convention w is written as

w = w1dx1 +w2dx2 + · · ·+wdxd = widxi. (2)



On Geometric Transformations of Local Structure Tensors 181

In the same way a contravariant second order tensor S ∈V ⊗V has coordinates Si j.

It is said to be of order (2,0) with two upper indices and we write

S = ∑
i, j

Si j ∂
∂xi

∂
∂x j = Si j ∂

∂xi
∂

∂x j . (3)

Moreover, a covariant tensor T ∈V ∗ ⊗V ∗ has coordinates Ti j and is of order (0,2)
with two lower indices. T is written as

T = ∑
i, j

Ti jdxidx j = Ti jdxidx j. (4)

The metric tensor g defines an inner product in V and is a covariant second order

tensor, with components gi j, i.e.

g(u,v) = 〈u,v〉= gi juiv j. (5)

The metric makes it possible to identify elements in V ∗ with elements in V as follows

w = g(·,v) = 〈·,v〉= widxi. (6)

Such operations are called index gymastics and allows us to move between covariant

and contravariant tensors. The components wi of a covariant vector is obtained by

lowering an index, i.e.

wi = gi jv j, (7)

where vi are components of a contravariant vector. Since the metric tensor in the

Euclidean space is the Kronecker delta, i.e. gi j = δi j, covariant and contravariant

tensors are equivalent in a Cartesian coordinate system. Such tensors are called

Cartesian tensors.

3 Tensor Transformations

Before deriving how different tensors transform let us study how we can draw ten-

sors of different types in the same space. Although a contravariant vector v ∈V and

covariant vector w ∈V ∗ belongs to different spaces it is of interest to interpret them

in terms of glyphs in V .

A contravariant vector are drawn as an arrow in V as we are used to. Without

knowledge about the metric we can draw covariant tensors of the first and second

order as the iso-curves defined formed by the ensemble of contravariant vectors

which satisfy the equations:

wivi = 1 (8)

Ti jviv j = 1 (9)
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Fig. 1 The contravariant vector (left) is drawn as we are used to. Suppose that its components are
vi are expressed in meter. A dual vector (middle ) with components w1, w2 are then expressed per
meter. Subsequently, the measure wivi has no unit and we can form the iso-curve of all covariant
vectors v such that wivi = r, where r is a constant. The components Ti j of a second order covariant
tensor (right) are expressed per square meter, i.e. the iso-curve formed by the vectors v satisfying
Ti jviv j = r then represent T .

Note that the glyphs in Fig. 1 are obtained without knowledge about the metric,

i.e. they are by construction invariant to a change of coordinate system. The glyph

used for the second order tensor presumes T to be symmetric and positive semidef-

inite. In the same fundamental way as a contravariant vector of length 1 meter does

not change direction or length if it is expressed in inches, a tensor S must be pre-

served even if the coordinate system is changed. Let us study the tensor

S = S̃i j ∂
∂ x̃i

∂
∂ x̃ j = Si j ∂

∂xi
∂

∂x j , (10)

where the coordinate system is changed from x to x̃. This implies new tensor com-

ponents S̃i j expressed in a new basis ∂
∂ x̃i . The transformation behavior for the second

order contravariant tensor S is then easily derived by the chain-rule:

S̃i j =
∂ x̃i

∂xk
∂ x̃ j

∂xl Skl (11)

A covariant second order tensor T expressed in the new coordinate system can then

be written as

T = T̃i jdx̃idx̃ j = Ti jdxidx j. (12)

The relation between the elements Ti j and T̃i j is in the same way as before derived

by the chain rule, i.e.

T̃i j =
∂xk

∂ x̃i
∂xl

∂ x̃ j Tkl . (13)

Note how a uniform stretch of the coordinate system, i.e. the transformation x̃i = axk

with a > 1, causes covariant tensor components Ti j to shrink whereas contravariant

components Si j grow. We can draw the tensors from Fig. 1 in non-Cartesian coor-

dinate system as illustrated in Fig. 2. With the grid-lines as a guide we see that the
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components vi, wi and Ti j are altered, whereas the shape of the glyphs are main-

tained.

Fig. 2 This non-Cartesian coordinate system has a metric g̃i j �= δi j . A change of coordinate system
does not change the geometric objects, e.g. the contravariant vector (left) is preserved although
its components ṽi are larger compared to vi in Fig. 1. Its length can be calculated by ‖v‖= g̃i j ṽiṽ j

using the proper metric. As opposed to the contravariant vector the components w̃i of the covariant
vector (middle) are smaller, which causes the components ṽi forming the iso-curve to increase in
order to satisfy w̃iṽi = r. The same reasoning holds for the ensemble of contravariant vectors that
form the glyph for the second order covariant tensor (right).

A general tensor of order (p,q), with p > 0 and q > 0 is called a mixed tensor

and has p contravariant indices and q covariant indices. The components of T are

T i1,i2,...ip j1, j2,..., jq . By using the metric tensor we can move between different types

of tensors, e.g. mixed second order tensors can be obtained by index gymnastics

Si
j = ∑

k
gikSk j = gikSk j, (14)

T i
j = ∑

k
gikTk j = gikTk j, (15)

where the contravariant metric tensor gi j = (gi j)−1. The transformation of a general

tensor is derived by the chain rule in the same way as for the second order. Note

that the components T i
j of a mixed second order tensor is preserved for a uniform

stretch of the coordinate system. By decomposing the second order mixed tensor

T (w, ·) = T i
jw j = (uiu j + viv j)w j = g(u,w)u+g(v,w)v, (16)

we see that a mixed tensor, here in 2D, can be interpreted as a projection operator.

4 Local Structure Tensor Fields

A local structure tensor field, as shown in Fig. 3, describes how the signal energy is

locally distributed over orientation, i.e. it is a measure of signal energy per square
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meter. This indicate that the tensor is a second order covariant tensor. For the sake

of simplicity let us study the local structure tensor formed by the outer product of

the gradient, i.e.

T = ∇ f ⊗∇ f =
∂ f
∂xi

∂ f
∂x j dxidx j, (17)

The tensor T is then a second order covariant tensor T ∈V ∗ ⊗V ∗ with components

Ti j =
∂ f
∂xi

∂ f
∂x j . (18)

By construction this tensor has only one eigenvalue, which is a drawback of this es-

timate since it says nothing about the energy distribution in directions orthogonal to

∇ f . Moreover, interesting feature points vanish when ∇ f = 0. In practice spatial av-

eraging is used to reduce these effects, i.e. the tensor components are element-wise

filtered with an isotropic low-pass filter. Smoothing the tensor in this way implies

that more than one eigenvalue may deviate from zero and for points where ∇ f = 0,

the neighboring tensors will determine the estimate of T .

Fig. 3 A local structure tensor field describes the distribution of signal energy locally in an image.
The close up tensor field (right) shown, is estimated from a T1-weighted magnetic resonance image
(left). The glyph shown is the solution to Ti jviv j = r, which means that the local energy is low along
the major axis and high along the minor axis of an anisotropic glyph. To increase the visibility of
tensors which describe a high signal energy the radius r is increasing with ‖T‖, i.e. each tensor is
uniformly scaled with r. The color represent the orientation of the major axis.

There are more sophisticated ways in which local structure can be estimated

based on higher order derivatives or Riesz-transforms [7, 4, 15, 5]. An example

of a straightforward extension to the outer product of gradients is given in (19).

Such estimates do not require spatial averaging and can be made more spatially

localized [13]. This means that the resolution of the tensor field is better preserved

in comparison to spatial averaging of the tensor in (17). Estimating local structure
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using Riesz-transforms is based on the underlying assumption that local phase is an

important feature and elegantly removes the sensitivity to vanishing feature points

mentioned earlier.

T = ∇ f ⊗∇ f − f (∇⊗∇) f =
∂ f
∂xi

∂ f
∂x j dxidx j− f

∂ 2 f
∂xix j dxidx j (19)

It is easy to see that this construction also is a covariant second order tensor T ∈
V ∗ ⊗V ∗. In fact, all local structure tensors that contain the outer product of the

gradient must be of order (0,2) to fulfill the fundamental requirements of a tensor

[20], e.g. adding two geometric objects from different spaces is not a well-defined

operation. The same argument applies also to estimates based on Riesz-transforms.

In general, local structure tensors are formed by combining responses from lin-

ear filters as in the previous chapter. Since these filters are discrete operators, they

can be applied to arbitrary arrays of sampled data. But without taking into account

the sampling distances, i.e. the local metric, this operation is carried out under the

implicit assumption that the samples are acquired in a Cartesian coordinate system.

A straightforward example is the use of central differences, which approximate the

signal gradient. The components of the gradient is then approximated by

∂ f
∂x1

≈ f (x1 +Δx1,x2)− f (x1−Δx1,x2)
2Δx1

∂ f
∂x2

≈ f (x1,x2 +Δx2)− f (x1,x2−Δx2)
2Δx2

, (20)

where Δx1 and Δx2 are the sampling distances. Obviously, if Δx1 �= Δx2, or more

generally if the metric gi j �= δi j the filters must be adapted to the underlying geom-

etry in order to produce a geometrically correct gradient.

To achieve rotational invariance the filters which produce local structure tensors

are required to be polar separable, which is not the case for (20). Such filters can be

decomposed into a radial band-pass filter followed by a directional filter which is

sensitive to signal orientation. In a Cartesian coordinate system, the radial band-pass

function is spherically symmetric. In multi-dimensional differentiation this is often

referred to as a pre-filter and can be seen as a regularization to avoid amplification

of high-frequency noise. Another interpretation is that the gradient is averaged over

a small signal neighborhood and by letting radius of this neighborhood tend to zero

the true gradient is obtained. It is however important to realize that the shape of

this neighborhood becomes anisotropic in a warped coordinate system. Also the

direction might change, which in the context of local structure is less critical since

this may be corrected for when combining the filter responses.

Since the filters are discrete operators, aliasing must be taken into account and

it is not straightforward to reshape the spatial support of the filters in a way which

correspond to the anisotropic neighborhood. The approach used here is to formulate

the desired operator in the continuous Fourier domain and then design an operator

in the non-Cartesian grid which has the closest fit possible to this desired frequency

response [18]. For practical reasons this approach was limited for non-Cartesian co-
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ordinate systems which locally are well described by an affine transformation. This

is because the the Shannon sampling theorem is still applicable for such transfor-

mations.

5 Local Structure Analysis

Since the tensor originally was designed to represent signal orientation, this is per-

haps the most obvious application. The dominant signal orientation, i.e. the direction

of maximal detected signal energy is obtained by finding the vector v of unit length

which maximizes Ti jviv j, i.e.

max
v

Ti jviv j, subject to gi jviv j = 1. (21)

It is easy to see the resemblance with the direction of maximal variance, which im-

plies that the local structure tensor can be interpreted as covariance estimate of a

local signal neighborhood. The dominant orientation is then the eigenvector corre-

sponding to the largest eigenvalue, after solving the eigenvalue equation

T i
jv j = gikTk jv j = ∑

j,k
gikTk jv j = λvi. (22)

Note that eigenvalue decomposition of a second order tensor is only defined for

mixed tensors, i.e. if the tensor is not mixed, eigenvalue decomposition can not be

performed without a metric. With a metric gi j equal to the identity operator, i.e. a

Cartesian coordinate system, the standard eigenvalue equation is obtained.

Since T is symmetric we see that if v maximize (21) then so does −v, i.e. we can

not distinguish between between v and −v. This was one of the the main motiva-

tions for the representation known as the orientation tensor, which is a continuous

representation of orientation that maps v and −v to the same geometric object [12].

This is accomplished by forming the outer product, e.g. the contravariant tensor with

components

T i j = λviv j. (23)

However, since the metric is known the same tensor can equivalentely be represented

as a mixed order tensor with components

T i
j = λviv j, (24)

or as the covariant tensor

Ti j = λviv j. (25)

The orientation tensor is defined only for signals f which are intrinsically one-

dimensional. Such signals satisfy the simple signal constraint

f (x) = f (〈x,v〉v), (26)
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i.e. signals which locally are constant in directions orthogonal to v. This definition

is invariant to the choice of coordinate system but require knowledge of the inner

product. Actually, the simple signal constraint in itself also defines the orientation

tensor, since

f (x) = f (〈x,v〉v) = f (T x), (27)

where T is a projection operator. From the simple signal constraint the orientation

tensor T is then defined by

T = 〈·,v〉⊗ v = w⊗ v, (28)

where w = 〈·,v〉 by definition is the dual vector of v. Therefore, the orientation

tensor is most naturally described as a mixed second order tensor, but since it is not

meaningful to talk about orientation without a metric we are free to raise or lower

the indices as we like.

Now consider a signal sampled in a non-Cartesian coordinate system. Of practi-

cal reasons it is often convenient to present and look at the signal samples as if the

pixels were of quadratic size. This implies that the image is warped to an incorrect

geometry. Fig. 4 illustrate the same tensors that was used in the previous examples,

but now the entire image is warped such that the basis ∂
∂xi appears to be orthonormal.

How data is presented is of course irrelevant for analysis, but Fig. 4 illustrates what

happens if the metric, which compensates for this geometric distortion, is neglected.

Fig. 4 With the data presented and the incorrect geometry shown, it is tempting to make the as-
sumption that g̃i j = δi j . This implies that computations are carried out in an image with warped
geometry. The length of the contravariant vector (left) is altered and the covariant vector (mid-
dle) is altered in the opposite way. Disregarding from the metric when performing eigenvalue
decomposition of a second order tensor (right) in a non-Cartesian coordinate system implies that
eigenvectors are not orthogonal and that the order of eigenvalues might change.

From eigenvalue decomposition of the local structure tensor, various shape mea-

sures can be extracted. For instance the tensor carries information about the degree

of anisotropy, how plane-like and how line-like a signal neighborhood is. Such mea-

sures are in general based on the tensor eigenvalues. The eigenvalues obtained from

solving the eigenvalue equation are invariant to a change of coordinate system as
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opposed to the eigenvectors. The eigenvectors obtained by solving the eigenvalue

equation in (22) are contravariant vectors and will follow the transformation rules

of such vectors. Consequently, shape measures based on the eigenvalues such as

fractional anisotropy are invariant to a change of coordinate system. The color-code

used in Fig. 3 is a good example of this.

The color-code used in Fig. 3, 7 and 8 consists of two parts. The color is a one-

to-one mapping of the double angle representation, i.e. a vector u with coordinates

ui determined by the eigenvector v corresponding to the largest eigenvalue λ . The

color is then scaled by the intensity, which represent the degree of anisotropy α i.e.

α = λ −μ ,

(u1,u2) =
(
(v1 + v2)(v1− v2),2v1v2

)
, (29)

where α is the difference between the two eigenvalues λ and μ . Since the intensity

only depends on the eigenvalues it is invariant to a change of coordinate system,

whereas the color based on u must be transformed as a contravariant vector.

Fig. 5 Left: The acquired samples of an ultrasound image displayed as quadratic pixels, the image
presented is warped to an incorrect geometry. Right: The ultrasound image resampled to a correct
geometry.
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6 Experiments

Samples from ultrasound imaging are acquired in a polar coordinate system. The ex-

ample in Fig. 5 shows a human heart. The radial sampling distance is Δr = 0.31mm

and the angular sampling distance is Δϕ = 0.72◦. Bilinear interpolation was used to

resample the acquired samples to a geometrically correct image. The size of this im-

age is 128mm ×129mm with a sampling distance Δx = Δy = 0.31mm. Displaying

the samples as an image with pixels of quadratic size implies the coordinate sys-

tem in (30) is used, where the constant c is the ratio between the radial and angular

sampling distance c = Δr
Δϕ .

x1 = r(x,y) =
√

x2 + y2

x2 = cϕ(x,y) = c arctan(
y
x
)

x̃1 = x(r,ϕ) = r cosϕ

x̃2 = y(r,ϕ) = r sinϕ (30)

Fig. 6 The close-up marked in Fig. 5 in a non-Cartesian coordinate systam (left) and in a Carte-
sian coordinate system (right).

In this case there are two main reasons for estimating local structure in the orig-

inal grid instead of resampling the image prior to feature extraction. Firstly, the

original sample grid contains five times less samples. Consequently analysis made

in this coordinate system is much faster due to fewer samples. Secondly, resampling

introduce a bias in to the tensor field, i.e. the degree of anisotropy in the angular di-

rection are overestimated. By studying the close up of the resampled image in Fig. 6

it should be fairly obvious that it is difficult to obtain an unbiased estimate of local

structure in the lower parts of the image.

As mentioned in section 4 and illustrated in Fig. 4 we can estimate and analyze

the tensor field if we take into account the local metric. Two different tensor fields
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were estimated, one field where the spatially varying metric was not taken into ac-

count, i.e. spherical filters were applied to the warped image. The other tensor field

was estimated with an elliptic filter which is geometrically correct for the central

parts of close-up. In order to estimate the dominant orientation the tensor field must

be transformed to a Cartesian coordinate system. With the coordinate relation be-

tween the Cartesian coordinates and the polar coordinates given in (30) we compute

the partial derivatives with respect to x̃i required to compute the transformation from

xi to x̃i for a second order covariant tensor is given by:

∂x1

∂ x̃1
=

∂ r
∂x

= cosϕ

∂x1

∂ x̃2
=

∂ r
∂y

= sinϕ

∂x2

∂ x̃1
= c

∂ϕ
∂x

=−c
r

sinϕ

∂x2

∂ x̃2
= c

∂ϕ
∂y

=
c
r

cosϕ (31)

From section 2 we have that the tensor field components T̃i j in Cartesian coordinates

is obtained by the transformation T̃i j = ai j
klTkl where Tkl is the components of the

tensor field in polar coordinates and ai j
kl is obtained from the partial derivatives, its

components are:

a11
kl =

[
cos2 ϕ − c

r cosϕ sinϕ
− c

r cosϕ sinϕ c2

r2 sin2 ϕ

]

a12
kl =

[
cosϕ sinϕ c

r cos2 ϕ
− c

r sin2 ϕ − c2

r2 sinϕ cosϕ

]

a21
kl =

[
cosϕ sinϕ − c

r sin2 ϕ
c
r cos2 ϕ − c2

r2 sinϕ cosϕ

]

a22
kl =

[
sin2 ϕ c

r cosϕ sinϕ
c
r cosϕ sinϕ c2

r2 cos2 ϕ

]
(32)

The tensor fields are displayed in Figs. 7 and 8 using the glyph presented in sec-

tion 3 and the color-code presented in the previous section. The color-code requires

eigenvalue decomposition, which is performed on both tensor fields.

7 Results

Fig. 7 (middle) shows the result from a tensor field estimated under the assumption

that the polar grid is Cartesian, i.e. applying spherical filters to the original sam-
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pling grid. By comparing this tensor field to the close-up (Fig. 6, left) we see that

it describes the structure of the image quite well. The color-code used describes

the anisotropy and the dominant orientation according to (29) but under the incor-

rect assumption that the underlying coordinate system is Cartesian. It is for instance

easy to see that the curved image structure in the upper right part of (Fig. 6, left)

is correctly described under this assumption, but the geometrically correct close-up

(Fig. 6, right) reveals that this image structure is not curved at all. Computing the

correct color-code by transforming the tensor field to a Cartesian coordinate system

and then performing eigenvalue decomposition to obtain the true signal orientation

reveals a strong bias of the estimated local structure (Fig. 7 right). Note however

that the degree of anisotropy is not affected by this computation, since eigenvalues

are invariant to a change of coordinate system.

Fig. 7 Left: A tensor field estimated with with elliptic filters and with correct eigenvalue decompo-
sition. (same as in Fig. 8). Middle: A tensor field estimated with spherical filters and with incorrect
eigenvalue decomposition. Right: A tensor field estimated with spherical filters and with correct
eigenvalue decomposition.

The tensor field estimated using elliptic filters to compensate for the spatially

variant metric is shown in Fig. 8 (left). The same tensor field is also shown in a

Cartesian coordinate system in Fig. 8 (right) and by visual inspection we can see that

it reflects the structure of the image in the true geometry Fig. 6 (right). By studying

the color code which represents signal orientation, it is fairly easy to see that the

presented approach produce a plausible tensor field. Note also that the geometric

distortion is far from being negligible. In the lower parts of the image, the pixels in

the geometrically correct image are stretched approximately four times compared to

the original grid.
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Fig. 8 A local structure tensor field estimated with filters which take into account the underlying
geometry is presented in a non-Cartesian coordinate system (left) and a Cartesian coordinate
system (right).

8 Summary

Under the assumption that the underlying geometry is important, we saw that for

non-Cartesian coordinate system we must distinguish between covariant and con-

travariant tenors. For a geometrically correct description of local structure the ten-

sor field must be transformed in accordance to theory. However, we saw how to

utilize a spatially variant metric in order to perform eigenvalue analysis in a warped

image without transforming the tensor field. Geometrically correct shape estimates

based on eigenvalues can then be obtained directly, whereas the eigenvectors must

be transformed in order to be geometrically correct. The limitations brought on by

only having access to sampled data makes it difficult to estimate a tensor, which

in a strict sense is consistent with the theory presented. The presented work relies

on that the transformation between the coordinate systems can be approximated by

an affine transformation, at least locally. Moreover, the benefits of a iso-metric ten-

sor glyph was demonstrated. Experiments were carried out on an ultrasound image

acquired in a polar coordinate system.
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Part III
Tensors in Computer Vision



Multi-View Matching Tensors from Lines for
General Camera Models

Simone Gasparini and Peter Sturm

Abstract General camera models relax the constraint on central projection and char-

acterize cameras as mappings between each pixel and the corresponding projection

rays. This allows to describe most cameras types, including classical pinhole cam-

eras, cameras with various optical distortions, catadioptric cameras and other ac-

quisition devices. We deal with the structure from motion problem for such general

models. We first consider an hierarchy of general cameras first introduced in [28]

where the cameras are described according to the number of points and lines that

have a non-empty intersection with all the projection rays. Then we propose a study

of the multi-view geometry of such cameras and a new formulation of multi-view

matching tensors working for projection rays crossing the same 3D line, the coun-

terpart of the fundamental matrices and the multifocal tensors of the standard per-

spective cameras. We also delineate a method to estimate such tensors and recover

the motion between the views.

1 Introduction

Tensors have been widely used in the field of computer vision as they provide frame-

works that conveniently represent the multi-view geometry of cameras, help the

matching of features across views and, once estimated, they allow to compute the

camera motion. Many works dealt with systems of central cameras and studied the

geometric and algebraic relations between correspondences of points and lines in

an arbitrary number of images, thus finding multifocal tensors [8, 16, 17] useful to

Simone Gasparini
INRIA Grenoble–Rhône-Alpes, 38334 Montbonnot St. Martin, France
e-mail: simone.gasparini@inrialpes.fr

Peter Sturm
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compute the intrinsic and extrinsic parameters of the cameras. Other efforts have

been made on non conventional cameras that can still be modeled as a central pro-

jection [1], such as central catadioptric cameras (cameras in front of a curved mirror)

[3, 12, 13, 29] or the mixture of them and standard perspective cameras [27].

In this work we relax the constraint on central projection and we deal with a more

general imaging model inspired by the one proposed by Grossberg and Nayar in

[14], where the camera is modeled as a set of pixels that capture the light travelling

along rays in 3D. Therefore the camera is fully described by the mapping of each

pixel to the corresponding 3D ray expressed in any suitable reference frame. Such a

general model can be used to represent cameras with various optical distortions (e.g.

barrel, pincushion, wide-angle), camera clusters [24, 30], non central catadioptric

cameras [2, 9, 18, 22], and other special acquisition devices such as rotating cameras

[20, 23, 26] or the so-called compound cameras [10, 11] that try to emulate insect

eyes.

Some efforts have been done in order to define the multiview geometry of such

cameras. Thirthala and Pollefeys [32] proposed a study of the geometry of 1D radial

cameras that allows to model some central and non central cameras, such as pinhole

cameras, low distortion cameras, fish-eye cameras and catadioptric cameras. They

developed a quadrifocal tensor working on uncalibrated images that allows to relate

the features seen across four views.

A general approach that applies to a broader set of cameras has been proposed

by Sturm in [28]: it introduced a new hierarchy of camera models that allows to de-

scribe the camera according to the number of points and lines that have a non-empty

intersection with all the projection rays of the camera. Then, assuming known the

camera calibration, multi-view matching tensors have been developed by using cor-

responding projection rays in multiple views of fully non central cameras, in which

the rays are unconstrained, axial cameras, in which all the rays cross a common line,

x-slit cameras [34], in which all the rays cross two common lines, and central ones

in which all the rays meet at a common point (see Figure 1).

In this work we use such an hierarchy and we extend the multi-view geometry

of general camera models by developing novel multi-view matching tensors for line

images, i.e. that work on projection rays that cross the same 3D line. By imposing

that the projection rays associated to the images of the same 3D line across dif-

ferent views cross a common line in space, we propose the theoretical formulation

and a complete characterization of the matching tensors for any kind of cameras de-

scribed by the model. Using line correspondences can have some advantages: lines

can be detected with a better accuracy than points (e.g. via fitting and interpola-

tion algorithms) and, above all, they are not affected by (partial) occlusions that

may occur between the views. However, it is worth noting that we follow a differ-

ent approach w.r.t. other classical multifocal formulations using image line corre-

spondences [8, 16]: once the line correspondences are available we work with the

projection rays of pixels on line images, that are known by calibration.

The chapter is organized as follows. In Section 2 and Section 3 we briefly recall

Plücker coordinates and some useful properties of lines in space that will be used

throughout the chapter; Section 4 introduces the formulation of the multifocal ten-
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(a) Fully non central camera: the
rays are totally unconstrained and,
according to the model proposed in
[14], each pixel is associated to a
3D direction.

(b) Central camera: all the rays
meet at a common point, the view-
point.

(c) Axial camera: all the rays cross
a common line, the axis of the cam-
era.

(d) X-Slit camera: all the rays
cross two common lines, the axes
of the camera.

Fig. 1 The hierarchy of cameras introduced by Sturm in [28] that describes the camera according
to the number of points and lines that have a non-empty intersection with all the projection rays.

sor for the general camera models which is then derived for other specific camera

models in Section 5. Section 6 presents a method to estimate the tensors and some

preliminary results obtained with axial cameras. Section 7 concludes the chapter.

2 Plücker Coordinates

For our purposes, we represent the rays and lines in 3D space via Plücker coordi-

nates, as it is a convenient representation for lines in space, widely used in many

problems involving lines in computer graphics, computational geometry and com-

puter vision.
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Given two 3D points A and B, the line L joining them can be expressed (up to

scale) via the Plücker coordinate vector of length 6

L =
[
(A−B)T (A×B)T

]T
(1)

Given two lines L1 and L2, their side product is defined as

side(L1,L2)
Δ= LT

1

[
0 I
I 0

]
L2, (2)

that is zero if they intersect or are parallel, and non-zero otherwise. Any 6-vector L
corresponds to a “real” 3D line if and only if it satisfies the constraint side(L,L) = 0.

Let us consider a 3D point Q and a rototranslation P defined by a rotation R and

a translation t so that

Q′ → PQ =
[
R t

0T 1

]
Q;

the Plücker line representation is then transformed according to the transformation

matrix P̂

L′ → P̂L =
[

R 0
− [t]× R R

]
L. (3)

3 Lines in Space

In [28] the multi-view geometry was defined by using matching rays, i.e. the rays

associated to the matching points, and imposing the constraint that they meet at a

point in space. In this work we do not need to match the projection rays, but we use

rays associated to pixels lying on matching line images. It is not necessary that pixels

in different images match one another, i.e. that they correspond to the same point

on the 3D line. We show how to build multifocal tensors by imposing the constraint

that they cross a common line in space. To this end, we express the projection rays

in Plücker coordinates so that such a constraint can be conveniently expressed using

the side relation (2): since each given projection ray Ln crosses the common space

line L (which is, of course, unknown), the relation side(Li,L) = 0 must hold for all

i, thus leading to the following linear system⎡⎢⎣LT
1
...

LT
n

⎤⎥⎦[0 I
I 0

]
L = ML = 0. (4)

The problem of finding the transversal L of a set of rays Li has been studied in [31]

for computer graphics applications and then in [7, 21] to reconstruct lines from sin-

gle, non central, catadioptric images. Degenerate configurations of rays may occur,
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(b) Hyperbolic paraboloid

Fig. 2 Doubly-ruled quadrics are surfaces composed by two families of lines so that each line of
one family (e.g. the blue ones) crosses all the lines of the other family (e.g. the red ones) and the
lines of the same family are mutually skew. If the rays lie on one of the family, then there are
infinitely many lines crossing them and there is no unique solution to the system (4).

in which there is no unique solution to the system (4). The six rays could lie, e.g.,

on the same plane, so that there will be infinitely (more precisely, ∞2) many lines

crossing all of them; thus the system (4) is of rank 2 because only two of the rays

are enough to define the plane and all the others can be seen as a linear combination.

On the other hand, the rays could also lie on a double ruled quadric, a surface

composed by two families of lines so that each line of one family crosses all the

lines of the other family and the lines of the same family are mutually skew. There

are only two double ruled quadrics, the hyperboloid of one sheet and the hyperbolic

paraboloid (see Figure 2), while the plane is also a degenerate case of ruled quadric.

In this case, there will be infinitely (more precisely, ∞1) many lines crossing all of

them; the system (4) will be of rank 3 because any three skew lines define a ruled

quadric [19].

Finally, given four lines in space in general position, there could be 0, 1, 2 or,

again, an infinite number of lines intersecting them [5]. All these degenerate config-

urations may occur according to the camera model considered and the displacement

of the line L in space w.r.t. the camera. As we consider rays coming from differ-

ent views of general cameras, we can likely assume that the linear system has just

one (non-trivial) solution L defined up to scale by the 1-D null space of M. We will

discuss (possible) degenerate configurations that may occur in Section 5 when we

derive the multi-view tensors for specific camera models.

4 Multi-Focal Tensors from Lines

In this section we define multi-focal tensors for general cameras. The cameras are

supposed to be calibrated, i.e. for each pixel of an image the associated 3D ray is
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known and expressed in a local metric coordinate frame. Then we apply rotations

and translations to put all cameras in a global coordinate system.

The uncalibrated case has already been treated in the case of central perspective

cameras, as calibrated and uncalibrated images are linked together by 2D projective

transformations. In the case of non central cameras there is not, in general, an an-

alytical relationship among the pairs of pixels and projection rays as they could be

completely independent or related by a transformation that depends on the specific

camera model.

We first consider the most general model in which the pairs pixel and ray are to-

tally unconstrained and then we derivate the results for other models than the fully

non-central one, where the camera rays are constrained to meet a common point

(central cameras), a line (axial cameras) or two skew lines (x-slit). As in [28], in-

stead of projection matrices used in perspective cameras, we consider pose matrices

(rototranslation matrices) associated to each view i that map space points from some

global reference into each camera local reference. Then, we consider a set of 6 rays

coming from the views and crossing the space line L: Table 1 reports useful choices

of rays from each camera according to the number of views. From now on we call

a,b, . . . f the 6 rays and A,B . . .F the relevant rototranslation matrices (cf . (3)). We

also denote with A j
i the element of the i-th row and j-th column of A and with Ai

(A j) its i-th row ( j-th column). Thus, for each ray, e.g. a, combining (2) and (3) the

side relation becomes:

aT

[
0 I
I 0

]
ÂL = aTĀL = 0, (5)

where Ā is the remapped pose matrix. Then the linear system (4) becomes:⎡⎢⎣aTĀ
...

fTF̄

⎤⎥⎦L = M L = 0. (6)

The 6×6 matrix M must be rank deficient since it has a null vector, L: we can use

the constraint detM = 0 in order to determine a matching tensor T. In the following

we show that this constraint can be written in terms of the rays’ Plücker coordinates

in the form
6

∑
q1=1

6

∑
q2=1

. . .
6

∑
q6=1

aq1bq2cq3dq4eq5 f q6 Tq1,...q6
= 0, (7)

where Tq1,...q6
is the element of the 6× 6× 6× 6× 6× 6 multifocal tensor. The

constraint det(M) = 0 can be expressed in Einstein’s notation as

det(M) = εi jklmn Mi
1 M j

2 Mk
3 Ml

4 Mm
5 Mn

6 = 0,

where, e.g., Mi
1 = aTĀ1 is the element in the first row of the i-th column of M, so

that

εi jklmn aTĀi bTB̄ j cTC̄k dTD̄l eTĒm fTF̄n = 0.
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#views Case Non central Central Axial X-Slit

2 5-1 � �
4-2 � �
3-3 � � �

3 4-1-1 �
3-2-1 � � �
2-2-2 � � � �

4 3-1-1-1 � � �
2-2-1-1 � � � �

5 2-1-1-1-1 � � � �
6 1-1-1-1-1-1 � � � �

Table 1 For each camera model, each n-tuple in the second column indicates the possible choices
of rays from the n views, that lead to a non trivial matching constraint.

Each term of the previous sum is composed in turn of a sum of 66 elements; since

for each ray it holds aTĀ j = ∑i aiĀ j
i and the product of summations is the sum of

products, each term can also be written as

6

∑
q1=1

. . .
6

∑
q6=1

aq1bq2cq3dq4eq5 f q6 Āi
q1

B̄ j
q2

C̄k
q3

D̄l
q4

Ēm
q5

F̄n
q6

.

It can be noted that any choice of indices i jklmn does not affect the first part of the

product involving the Plücker coordinates of the rays and only the term involving

the pose matrices Ai
q1

B j
q2

. . .Fn
q6

changes. So, finally, the constraint can be written as

detM =
6

∑
q1=1

. . .
6

∑
q6=1

aq1 . . . f q6
(
εi jklmnĀi

q1
B̄ j

q2
. . . F̄n

q6

)
= . . .

. . . =
6

∑
q1=1

. . .
6

∑
q6=1

aq1bq2cq3dq4 eq5 f q6 Tq1,...q6
= 0,

where T is the 6× 6× 6× 6× 6× 6 tensor relating the projection rays. It is

worth to note that, for any given choice of indices qw w ∈ {1, . . .6}, the sum

εi jklmnĀi
q1

B̄ j
q2

. . . F̄n
q6

is the determinant of the 6× 6 matrix Sq1,...,q6
obtained by as-

sembling together each qw-th row from the corresponding pose matrix, i.e.

Tq1,...q6
= detSq1,...,q6

= det

⎡⎢⎢⎢⎣
Āq1

B̄q2

...

F̄q6

⎤⎥⎥⎥⎦ , (8)
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which is, in general, a sum of 6! = 720 terms, where Aq1
is the q1-th row of the

matrix A, according to the notation introduced before.

This expression allows to compute the elements of the tensor in the most general

case in which each of the 6 rays belongs to a different view. It varies straightfor-

wardly according to the number of views and the chosen case (cf . Table 1) where

effectively the number of pose matrices involved varies.

The size of the tensor is very large, but some of its elements are zero. Consider

the structure of the matrices Ā . . . F̄ containing the pose information: if one of the

indices qw > 3 w ∈ {1, . . .5}, then the last three elements of the corresponding w-

th row in Sq1,...,q6
are zero (due to the 03×3 submatrix in the pose matrices (3)). It

follows that Tq1,...,q6
= detSq1,...,q6

= 0 if the values of at least 4 of the indices qw are

greater than 3: in such cases, indeed, the last 3 columns of Sq1,...,q6
are not linearly

independent, hence the determinant is zero. Moreover, if there are more than one ray

belonging to the same view, the indices qw that are associated to those rays, must

have distinct values, otherwise the corresponding rows of S are identical, hence the

determinant is zero.

Without loss of generality, we can also assume that the global coordinate system

coincides with the first camera’s local coordinate system, i.e. the first camera pose

matrix A is the identity matrix. Hence, the corresponding rows in S contain just

one non-zero element. In order to determine the exact number of non-zero elements

of T for a given case, one should solve a combinatorial problem which takes into

account all the combinations of the indices qw for which at least 4 of the indices qw
are greater than 3 and the indices associated to the same view have distinct values,

up to a permutation.

Finally, from the structure of the matrices A . . .F we can observe that they con-

tain 9 zero elements, and only 18 of the remaining elements are unique, since the

elements of the rotation matrix R appear twice. Therefore, different elements of T
may be identical (up to sign), as they can be derived from detS with different com-

binations of the pose matrices’ rows.

We collect in Table 2 the number of non-zero elements and the number of unique

elements (up to sign) for each useful case according to the number of the views.

5 Constrained Camera Models

We consider now more specific camera models than fully non central ones where

the camera rays are no more unconstrained but are subject to a constraint, such as

central, axial and x-slit cameras. For each case, we briefly report the parameteriza-

tions introduced in [28] and then we study the possible cases (cf . Table 1) and the

relevant properties of the tensor T (cf . Table 2).
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Cases Non Central Central Axial X-Slit
(cf . Table 1) finite infinite finite infinite 2 finite finite+infinite

5-1 3240 18 n.a. 600 5 240 2 n.a.
4-2 7776 117 n.a. 2256 46 1104 22 n.a.
3-3 10152 200 n.a. 3276 87 1620 41 576 16 432 12

4-1-1 9072 270 n.a. 2712 109 1344 52 n.a.
3-2-1 14796 900 n.a. 5244 417 2724 207 1152 96 816 68
2-2-2 18360 1701 216 27 64 8 6912 824 3680 420 1728 216 1216 152

3-1-1-1 17496 2106 n.a. 6420 1022 3396 518 1518 253 1056 176
2-2-1-1 21708 4050 324 81 96 24 8460 2011 4564 1037 2268 566 1568 391

2-1-1-1-1 25758 9720 486 243 150 75 10404 4946 5696 2592 2988 1491 2048 1021

1-1-1-1-1-1 30618 27702 729 729 233 233 12825 12185 7120 6480 3942 3942 2688 2678

Table 2 For each camera model, the first column collects the number of non-zero elements in the
tensor T for each possible case, while the second column collects the number of unique elements
(up to sign) in the tensor T (the cases marked with n.a. give no useful constraint).

5.1 central cameras

Since all rays go through a single point, i.e. the optical center (possibly, at an in-

finite point), we can consider at most two projection rays for each view: any other

projection ray in the same view would be a linear combination of the previous ones,

hence no useful constraint can be exploited from the matrix M as it is always rank

deficient. Therefore, and since we need 6 rays to build the tensor, two views do not

provide useful constraint and do actually not allow a projective reconstruction, as

stated in [33]. Table 1 reports the useful cases according to the number of views.

A degenerate configuration occurs when the cameras share a common baseline,

i.e. the viewpoints are collinear. Then all the projection rays cross the baseline at the

relevant viewpoints. Such a configuration can be seen as a particular case of axial

cameras (cf . Section 5.2).

We distinguish the cases of a finite and infinite optical center.

5.1.1 Finite Optical Center

Setting the optical center as the origin O of the local coordinate system, each ray

is described by a Plücker vector having the last three elements equal to zero, i.e.

according to (1) each ray is of the form

a =
[
a1 a2 a3 0 0 0

]T
.

Hence the base size of the multi-focal tensor T can be reduced from 6 to 3, and (7)

becomes
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detM =
3

∑
q1=1

. . .
3

∑
q6=1

aq1bq2cq3dq4eq5 f q6 Tq1,...,q6
= 0.

so that only the first three rows of each pose matrix Ā, . . . , F̄ can contribute to S.

5.1.2 Infinite Optical Center

Choosing a suitable coordinate system where the viewpoint V has (homogeneous)

coordinates V =
[
0 0 1 0

]T
, each ray is described by a Plücker vector of the form

a =
[
0 0 a3 a4 a5 0

]T
.

Again, the base size of the multi-focal tensor T can be reduced from 6 to 3 so that

(7) becomes

detM =
5

∑
q1=3

. . .
5

∑
q6=3

aq1bq2cq3dq4eq5 f q6 Tq1,...,q6
= 0.

Since the indices qw run from 3 to 5, only the rows from the 3rd to the 5th of each

matrix Ā, . . . , F̄ contribute to the matrix S. Looking at the structure of those matrices,

we can note that the tensor T will contain only elements from the rotation matrices

Ri and elements from the last row of matrices − [ti]× Ri.

5.2 Axial Cameras

In axial cameras, all the projection rays cross a line, the camera axis, but otherwise

they can be mutually skew. In such cameras, if the considered 3D line lies in an axial

plane, i.e. a plane containing the axis, we should consider at most two rays for each

view: any other ray in the same view, indeed, would be a linear combination of the

previous ones, hence no useful constraint can be exploited from the matrix M, as it

would be always rank deficient.

Similarly, if the space line lies in a horizontal plane, i.e. a plane perpendicular

to the axis, its projection rays are coplanar and, again, only two rays have to be

considered from each view. On the other hand, the space line and the axis might

be contained in a ruled quadric, hence at most three projection rays should be con-

sidered from each view. This is not the case for most axial-symmetric catadioptric

cameras, as it has been proved in [6].

Another degenerate configuration occurs when the cameras are coaxial, e.g. they

differ in terms of a rototranslation along the axis, then there are always two lines

(the 3D line and the two coincident axes) that cross the projection rays.

We distinguish axial cameras that have a finite or an infinite axis.
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5.2.1 Finite Axis

Assume that the camera axis is the Z-axis. Then, all projection rays have Plücker co-

ordinates with L6 = 0. The base size of the multi-focal tensor T can be reduced from

6 to 5, and the expression (7) becomes

detM =
5

∑
q1=1

. . .
5

∑
q6=1

aq1bq2 cq3dq4eq5 f q6 Tq1,...,q6
= 0.

so that only the last row of each matrix Ā, . . . , F̄ does not contribute to S.

5.2.2 Infinite Axis

We choose a local coordinate system where the axis is the line at infinity with co-

ordinates
[
1 0 0

]T
(line coordinates on plane at infinity), so that the camera axis’

Plücker coordinates are α =
[
0 0 0 1 0 0

]T
and all the projection rays have the

first Plücker coordinate equals to zero, i.e. the rays are of the form

a =
[
0 a2 a3 a4 a5 a6

]T
.

Multi-view relations for infinite axial cameras can thus be formulated via tensors of

base size 5, and the expression (7) becomes

detM =
6

∑
q1=2

. . .
6

∑
q6=2

aq1bq2cq3dq4eq5 f q6 Tq1,...,q6
= 0.

so that only the first row of each matrix Ā, . . . , F̄ does not contribute to S.

5.3 X-Slit Cameras

In x-slit cameras there exist two lines, i.e. camera axes, that cut all projection rays.

Linear pushbroom cameras [15] is a special case of such cameras. The case of the

two axes cutting one another, i.e. being coplanar, is not of interest here, so we con-

sider two mutually skew axes. As discussed in the case of axial cameras, if the space

line and one of the axes are coplanar then all the projection rays associated to the

space line lie on a plane: thus, just in this case, we should consider at most two rays

for each view.

Similarly, for any 3D line that is skew w.r.t. the camera axes the projection rays

lie on a ruled quadric, since three skew lines completely define a ruled quadric [19].

Therefore, we should consider configurations with at most three rays from each

view.
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Finally, similarly to axial cameras, if the cameras share a common axis, then

there are always two lines crossing all the rays associated to the space line.

Two cases are possible for x-slit cameras: (i) both axes are finite lines or (ii) one

of the two axes is a line at infinity. Since at least one axis is a finite line, we adopt

the same reference system used for axial cameras. As for the second axis, we have

to distinguish the two cases.

5.3.1 Two Finite Axes

Having fixed the first axis α , we still have the freedom to rotate about it and translate

along it. Since the two axes are skew, we may thus obtain a local coordinate system,

where the second axis goes through a point on the Y -axis, and is parallel to the

XZ-plane. Hence, it will be defined by two points as follows:

QT
1 =
[
0 Y 0 1

]
QT

2 =
[
X 0 Z 0

]
.

The second axis’ Plücker coordinates are thus given by

βT =
[
X 0 Z −Y Z 0 Y X

]
.

Since each projection rays a must cut the two axes, by imposing the side constraint

with both axes, the rays must be of the form:

aT =
[
a1 a2 a3 (Wa1−Ya3) a5 0

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

W 0 −Y 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣

a1

a2

a3

a5

⎤⎥⎥⎦= G

⎡⎢⎢⎣
a1

a2

a3

a5

⎤⎥⎥⎦ ,

where W = Y Z
X

1 and Y can be seen as the intrinsic parameters of the camera. Then,

after some straightforward computations, (5) becomes[
a1 a2 a3 a5

]
ÃL = 0,

where

Ã4×6 = GTĀ.

The base size of the multi-focal tensor T is then reduced from 6 to 4 so that the

expression (7) becomes

detM =
{1,2,3,5}

∑
q1

. . .
{1,2,3,5}

∑
q6

aq1bq2cq3dq4eq5 f q6 Tq1,...,q6
= 0.

1 We divide by X since it can not be zero, otherwise the second axis would be parallel to the first
one, and thus coplanar, which is excluded here.
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where the indices qw run on the discrete set {1,2,3,5} and Tq1,...,q6
can be computed

as in (8) by replacing each matrix Ā, . . . , F̄ with the corresponding matrix Ã, . . . , F̃.

5.3.2 Finite + Infinite Axis

Having fixed the first axis, we still have the freedom to rotate about it and translate

along it. Translation has no effect on the infinite second axis, but we may rotate

about the first axis, such that the second one has coordinates
[
0 cosθ sinθ

]T
(ho-

mogeneous coordinates of a line at infinity). The second axis’ Plücker coordinates

are thus

βT =
[
0 0 0 0 cosθ sinθ

]
.

Projection rays cut the two axes, so must be of the form

aT =
[
a1 Wa3 a3 a4 a5 0

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 W 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣

a1

a3

a4

a5

⎤⎥⎥⎦= H

⎡⎢⎢⎣
a1

a3

a4

a5

⎤⎥⎥⎦ ,

where W = − tanθ is the intrinsic parameter of the camera. Straightforwardly, (5)

becomes [
a1 a3 a4 a5

]
ÃL = 0,

where

Ã4×6 = HTĀ.

The base size of the multi-focal tensor T is then reduced from 6 to 4 so that the

expression (7) becomes

detM =
{1,3,4,5}

∑
q1

. . .
{1,3,4,5}

∑
q6

aq1bq2 cq3dq4eq5 f q6 Tq1,...,q6
= 0.

where the indices qw run on the discrete set {1,3,4,5} and Tq1,...,q6
can be computed

as in (8) by replacing each matrix Ā, . . . , F̄ with the corresponding matrix Ã, . . . , F̃.

6 Experimental Results

In order to estimate the tensor elements and retrieve the camera motion (i.e. the

rototranslation), we note that (7) can be written as

detM =
Z

∑
s=1

αsTs = 0,
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where Z is the the number of unique terms of the tensor for the considered case, Ts
is the s-th unique element, and αs is a coefficient that collects together all the contri-

butions aq1bq2 . . . f q6 from coordinates of rays (known from calibration) associated

to the same (unique) element Ts. Moreover, each Ts is a function of the 6(n−1) un-

knowns of the n− 1 rototranslations relating the views). Since the explicit form of

each Ts is known and can be easily computed once from (8), a minimization process

on the 6 unknowns can be run in order to get the motion between cameras and the

elements of the tensor T as well.

In order to test the effectiveness of the proposed estimation method, we per-

formed some tests with images taken from a standard perspective camera (cf .

Figure 3) and a central catadioptric one (cf . Figure 4). In both cases, we first cal-

ibrated the cameras using two image datasets of a calibration grid. The perspective

camera has been calibrated with the Camera Calibration Toolbox for perspective

cameras [4], while the catadioptric one has been calibrated with the “OcamCalib”

Toolbox [25]. Then, for each camera, we chose three images from the dataset and

we extracted the lines from the squares of the calibration grid. Since in the case of

central camera at most two rays have to be considered, for each line we considered

the two projection rays associated to the two extreme points of the line lying on

the outer border of the grid. We estimated the tensors with the above method and

from them we extracted the motion among the views finding in both cases the same

rototranslations obtained by calibration.

The main issue we experienced was that the minimization procedure tends to

find the transformations that just align the three cameras: thus all the projection rays

cross a common line, the common baseline, satisfying (6). To avoid such degenerate

solutions, we added some constraints to the minimization process so that it avoids to

align the cameras unless then the rays also cross another common line in space. In

general it requires some runnings (with different initial guesses) before converging

to the optimal solution, although the initial guess does not have to be close to the

real solution.

7 Conclusions

We presented a new formulation of multifocal tensors for general camera models

working on projection rays crossing the same 3D line. We extended the theoreti-

cal framework proposed in [28] and based on matching rays that meet at a point

in space. We also proposed a method to estimate the tensors and retrieve the mo-

tion parameters of the camera and performed some preliminary experiments in the

special case of axial cameras.
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Fig. 3 Three views of the calibration grid (a,b,c) taken with a standard perspective camera with
the lines used to estimate the matching tensor and (d) the displacement among cameras computed
from the tensor.
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Binocular Full-Body Pose Recognition and
Orientation Inference Using Multilinear
Analysis

Peng and Qian

Abstract In this chapter, we propose an approach to full-body pose recognition and

body orientation estimation using multilinear analysis. We extract low-dimensional

pose and body orientation coefficient vectors by performing tensor decomposition

and projection on silhouette images obtained from wide baseline binocular cam-

eras. The coefficient vectors are then used as feature vectors in pose recognition

and body orientation estimation. To do pose recognition, pose coefficient vectors

obtained from synthesized pose silhouettes are used to train a family of support

vector machines as pose classifiers. Using orientation coefficient vectors, a 1-D ori-

entation manifold is learned and further used for the estimation of body orienta-

tion. Experiment results obtained using both synthetic and real image data showed

that the performance of our approach is comparable to existing pose recognition

approaches, and that our approach outperformed the traditional tensor-based recog-

nition approach in the comparative test.

1 Introduction

Poses are important cues for inter-personal communication as well as human-

computer interaction (HCI). Vision-based pose recognition has been applied to

many movement-based human computer interactions (MB-HCI), such as automatic

sign language analysis and interpretation [30], embodied gestural control of media

[33], interactive dance performances [3, 14, 18, 31] and interactive robots [15, 22].
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In an MB-HCI environment, subjects communicate with the background through

their movement to control audio and visual effects. Static body poses and continuous

body gestures can both be used as communication cues. A vital part in such envi-

ronment is a robust movement analysis engine that accurately and time-efficiently

analyzes the movement of the performers. In [14] and [31], a marker-based mo-

tion capture system is utilized to obtain body kinematics for pose recognition. This

system can reliably capture the 3D coordinates of the markers placed on bony land-

marks of the body. Therefore, it works very well in real life performances. However,

wearing a set of markers can be cumbersome to the subjects.

To overcome such limitations, markerless video-based systems are preferred.

Vision-based pose recognition has been extensively studied in the literature [40].

Existing methods can be mainly categorized into three groups according to types of

features extracted, namely body kinematics [21, 29], 3D volumetric reconstruction

[5] and 2-D silhouettes [10, 12].

One important feature for vision-based pose recognition required in many MB-

HCI applications is view-independence. Despite the extensive research on pose

recognition, view-invariant, reliable, and computationally effective pose recogni-

tion algorithms are yet to be developed. Most of the existing pose recognition meth-

ods, especially the single-view approaches, are view-based, i.e., assuming that the

relative torso orientation with respect to the camera is known. While it is a valid

assumption in some of the applications, such as automatic sign language interpre-

tation in a controlled environment, having to know body orientation with respect

to the camera presents an undesired constraint which hampers the flexibility and

sometimes, the usability of an MB-HCI system in applications such as interactive

dance and media control. In these applications, it is preferable that a pose can be

recognized from any view point with respect to the cameras so that the user can

freely move and orient in the space.

Another important issue related to the poses is the torso orientation of the sub-

ject. The same pose may be performed with different torso orientations (rotation

about the axis perpendicular to the ground plane) relative to the camera system.

Such different performances of a pose can carry totally different information (e.g. a

pointing pose facing different directions). Therefore, body orientation information

should also be taken into account in pose recognition tasks.

View-invariant pose recognition would be straightforward when body kinemat-

ics such as joint angles can be reliably recovered from the input images. Recently

video-based motion capture has seen tremendous progress using various generative-

based (e.g. [4, 13, 16]) and discriminative-based (e.g. [7, 32]) approaches. Various

dynamical models have been used to represent the movement dynamics and at the

same time reduce the dimensionality of the movement state space [25, 35]. Recent

literature surveys can be found in [27, 28, 39]. Once body kinematics are recovered,

poses can be recognized using body joint angles as the feature. In this case, body

orientation angles of the performer can also be easily estimated. However, reliable

recovery and tracking of poses for general movement which has not been seen in

the training remains a very challenging task for video-based motion capture. For

example, in a dance performance, the performer can easily go through a variety of
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movements. Thus, it is unrealistic to train a video-based motion capture system that

can keep tracking through such untrained movement. Hence to obtain pose recog-

nition and body orientation estimation through pose estimation is impractical for

interactive environments.

An alternative approach is to first recover the 3D volumetric reconstruction of

the performer using e.g. visual-hull techniques [4, 5] and then conduct pose recog-

nition and body orientation estimation based on the 3D voxel data. In this way,

view-invariant pose recognition is readily achievable. However, the limitation of

such strategy is that to recover a 3D body structure with sufficient accuracy for pose

recognition, a certain amount of calibrated cameras (e.g. 6) are usually needed. In

addition, matching the observed body shapes to templates possibly in different ori-

entations remains a challenging research problem.

As another alternative, many methods have been developed for silhouette based

pose recognition. Boulay, Bremond and Thonnat [2] applied a 3D human model in

a pose recognition system. Recognition is achieved by comparing observed silhou-

ette with the silhouettes projected from the 3D models of a set of poses. Similarly,

Howe [10] achieved pose tracking by looking up a collection of silhouettes of known

poses. Huang, Di and Xu [12] proposed a viewpoint insensitive recognition system

using “envelope shape” representation of poses, and performed experiments on sev-

eral simple actions. We have also performed research on dance pose recognition

in [8] previously. We used Gaussian Mixture Model (GMM) for feature extraction

of the silhouette and relevance vector machine (RVM) for pose recognition. One

common weakness of such methods is that they can only recognize poses. Body

orientation cannot be estimated.

In this chapter, we present an approach to simultaneous view-invariant pose

recognition and body orientation recovery using a simple set-up of two video cam-

eras. The cameras do not need to be calibrated. The only requirement for the camera

setup is their looking directions are parallel to the ground plane and orthogonal to

each other. Multilinear analysis is used to extract pose and body orientation vectors.

Based on the pose vectors, support vector machine (SVM) are trained to conduct

pose recognition. Using the body orientation vectors, a 1-D manifold is constructed.

Using this manifold, torso orientation estimation is cast into a nonlinear least square

problem.

2 Overview of the Proposed Approach

In this chapter, we propose a tensor-based approach to full-body pose recognition.

The input for recognition is a pair of normalized silhouette image acquired from a

pair of orthogonal cameras. By performing a bilinear analysis of dance pose images

with a 3-mode tensor, we are able to not only effectively recognize different dance

poses, but also estimate the body orientation of the performer.

To the best of our knowledge, our tensor-based method is unique compared with

previous methods for pose recognition. Furthermore, we have extended the tradi-
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tional tensor-based methods by overcoming limitations of such methods in two as-

pects. Firstly, traditional tensor methods cannot incorporate intra-class variations in

their training sets. For example, only one pair of images can be included in a ten-

sor for one pose in one orientation, while there is certainly a range of variation of

joint angles when performing one pose, which yields variation in the silhouettes. To

solve this problem, we generated good “representatives” of each pose in each orien-

tation to form the tensor. Meanwhile, we incorporate more training inputs and solve

their pose coefficient vectors with the decomposed tensor. The coefficient vectors

are then used to train several SVM classifiers for pose recognition. In this way we

applied the coefficient vectors as the low-dimensional view-invariant representation

of poses. Secondly, when dealing with continuous quantities like orientation angle

in this case, a traditional tensor can only perform classification into discrete ranges.

However, in our approach, we performed a manifold learning method to solve the

continuous value of the orientation angle.

Our proposed method worked effectively both on synthetic data and real data,

and the computation efficiency is high. A block diagram of our proposed system is

shown in Figure 1.

3 Theoretical Background

3.1 Background of Tensor Algebra

As introduced in [36], a tensor, also known as n-way array or multidimensional

matrix or n-mode matrix, is a higher order generalization of a vector (1-mode tensor)

and a matrix (2-mode tensor). High-order tensors can represent a collection of data

in a more complicated way. When a data vector is determined by a combination of

m factors, the collection of the data vectors can be represented as an (m +1)-mode

tensor T ∈ RNv×Nf 1×Nf 2···×Nf m , in which Nv is the dimensionality of the data vector

and Nf i, (i = 1,2, . . . ,m) is the number of possible values of the ith contributing

factor.

A tensor can be unfolded into a matrix along each mode. The mode- j unfolding

matrix of a tensor A∈RN1×N2···×Nn is denoted as A( j), and A( j) ∈RNj×(N1...Nj−1Nj+1...Nn).

An illustration of the unfolding of a 3-mode tensor is shown in Figure 2.

As an analogue to matrix-matrix multiplication, an n-mode tensor can be multi-

plied by compatible matrices in each mode. The mode- j multiplication of a n-mode

tensor A ∈ RN1×N2···×Nn with a matrix M ∈ R
N′j×Nj can be denoted as R = A× j M,

R ∈ R
N1×···×Nj−1×N′j×Nj+1×···×Nn . The entries of R are defined as

Ri1,...,i j−1,i,i j+1...,in =
Nj

∑
k=1

Ai1,...,i j−1,k,i j+1,...,inMi,k, (1)
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Fig. 1 An overview of the proposed pose recognition system

in which i = 1,2, . . . ,N′j. The unfolding matrix representation of mode- j multiplica-

tion of A by M is as follows.

R( j) = MA( j). (2)

As an example, the multiplication of a 3-mode tensor and a matrix in each mode

is illustrated in Figure 3. When a 3-mode tensor is multiplied by a compatible row

vector, it will degenerate into a matrix, as illustrated in Figure 4.
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Fig. 2 Unfolding of a 3-mode tensor

Fig. 3 Multiplication of a 3-mode tensor with a matrix in each mode

3.2 High Order SVD and Multilinear Analysis

As a generalization of singular value decomposition (SVD) on matrices, we can

also perform high order singular value decomposition (HOSVD) [19] on tensors. A

tensor A ∈ RN1×N2···×Nn can be decomposed into
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Fig. 4 Multiplication of a 3-mode tensor with a vector in each mode

A = S×1 U1×2 U2 · · ·×n Un, (3)

where U j ∈ R
Nj×N′j (N′j ≤ Nj) are mode matrices containing orthonormal column

vectors which are analogous to the left and right matrices in SVD. S ∈ RN′1×N′2···×N′n

is called the core tensor which is analogous to the diagonal matrix in SVD.

In order to calculate mode matrices U j ( j = 1 . . .n), we can first calculate the

SVD of the unfolding matrix A( j). Then U j can be obtained by taking the columns

of the left matrix of the SVD of A( j) corresponding to the N′j largest singular value.

Then, the core tensor S can be calculated as follows.

S = A×1 UT
1 ×2 UT

2 · · ·×n UT
n . (4)

Denote u j,k to be the k’th row vector of matrix U j, then the decomposed tensor

possesses the property as follows [6].

Ai1,i2,...,in = S×1 u1,i1 ×2 u2,i2 · · ·×n un,in . (5)

Denote A(i1, . . . , i j−1, :, i j+1, . . . in) to be the column vector containing the elements

of Ai1,...,i j ,...,in , i j = 1 . . .Nj. Then we can also get

A(i1, . . . , i j−1, :, i j+1, . . . in)
= S× j U j×1 u1,i1 ×2 u2,i2 · · ·× j−1 u j−1,i j−1

× j+1 u j+1,i j+1
· · ·×n un,in .

(6)

In this way, A(i1, . . . , i j−1, :, i j+1, . . . in) can be represented as a multilinear combi-

nation of the column vectors (S× j U j)(i1, . . . , i j−1, :, i j+1, . . . in), i j = 1 . . .Nj, j =
1 . . .n. The coefficients uk,ik in each mode can be considered as independent factors
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contributing to the data vector, and the interaction of these factors are governed by

the tensor S× j U j.

4 Multilinear Analysis of Dance Pose Images

4.1 Previous Applications of Multilinear Analysis

Multilinear factorization has been used successfully in decomposing ensembles of

static data such as image and 3D volumetric data, into perceptually independent

sources of variations. Previous successful applications include multifactor face im-

age representation in the form of TensorFace [36], modeling of 3D face geometry

[38], texture and reflectance [37], and image synthesis for articulated movement

tracking [20].The TensorFace framework [36] is a well known framework, which

incorporates many factors that affect the resulting face image, such as facial ge-

ometry (different person), head pose, and illumination. With mutilinear analysis by

tensor decomposition, each of these affecting factors can be analyzed separately.

4.2 Tensor Decomposition of Pose Images

It is the similar case in the situation of pose recognition. The images of a subject

performing a pose is affected by the joint angle configuration (different poses), body

orientation with respect to the camera system (rotation about the vertical axis), the

texture of the subject’s cloths and the illumination angle. By taking the binary sil-

houette of the subject, we can rule out other factors and concentrate on the first

two factors affecting the resulting images. Given a new pair of images, coefficient

vectors in these two modes can be extracted in a TensorPose framework.

4.2.1 Input Data Format

In our system, the input data for training and recognition is a pair of images taken

from two cameras whose looking directions are parallel to the ground plane and

orthogonal to each other. The purpose of applying two cameras instead of one is to

reduce occlusion in some conditions (e.g. side view of poses that all the limbs are

in the frontal plane). By setting up two cameras orthogonal to each other, the two

captured images can be complementary most of the time.

These cameras are mounted at approximately half body height. Each captured

silhouette is normalized to the same height and horizontally centered. The size of

each normalized image is 50×50. The two normalized images are then vectorized

and concatenated to form a complete input vector.
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Fig. 5 20 dance poses in our training set

4.2.2 Formulation of the Tensor

In our approach, we used 20 dance poses (as shown in Figure 5) performed in 16

different orientations (evenly distributed between 0◦ and 360◦) in the training set.

The vecotrized images spanned along the orientation mode and pose mode to form

a tensor. The dimension of the tensor is 5000×16×20.

4.2.3 Tensor Decomposition using HOSVD

As described in Section 3.2, we performed high order singular value decomposi-

tion (HOSVD) on the 3-mode training tensor. The tensor A ∈ R5000×16×20 can be

decomposed into:

A = S×1 U1×2 U2×3 U3, (7)

in which S is the core tensor of the same size as A, U1 ∈ R5000×5000, U2 ∈ R16×16,

U3 ∈ R20×20 are orthogonal matrices representing respectively the image pixel

mode, orientation mode and pose mode.

Denote
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D = S×1 U1. (8)

The decomposed tensor possesses the property as follows:

A(:, i, j) = D×2 u2i×3 u3 j, (9)

where A(:, i, j) stands for a vector in a tensor that contains the pixels of the image

pair of pose j in orientation i. u2i and u3 j are respectively the ith row of U2 and the

jth row of U3. Alternatively speaking, u2i is the coefficient vector representing the

ith orientation, and u3 j is the coefficient vector representing the jth pose.

4.3 Pose Coefficient and Body Orientation Coefficient Estimation

When dealing with a new input vector, one important step of our procedure is to

solve for the corresponding orientation coefficient and pose coefficient vectors. This

bilinear problem can be defined as

z = D×2 uo×3 up, (10)

where uo is the orientation coefficient vector and up is the pose coefficient vector.

This problem can be solved using the alternating linear least squares algorithm

[17] as follows. If the orientation coefficient is known to be uo∗ , we can denote

Co = D×2 uo∗ , (11)

where D is degenerated into a matrix Co by multiplying a row vector. Insert (11)

into (10) we can get

z = Coup. (12)

Then, up can be easily obtained by solving a linear equation.

Similarly, if the pose coefficient is known to be up∗ , we can get

z = Cpuo, (13)

in which

Cp = D×3 up∗ . (14)

Given initial values of up or uo, we can solve both vectors by solving (12) and

(13) alternately.

When applying ALS algorithm, different initial values of up or uo may converge

to different solutions. Since the ground truth of body orientation angle should be

close to one of the standard angles (the maximum deviation is 360/16/2 = 11.25◦),
one possible method to find a stable solution is to use each row vector in U2 (stan-

dard orientation vectors) as the initial value of uo and solve a set of candidate solu-
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tions. We can choose our final solution to be the one with minimum reconstruction

error.

However, applying multiple initial values is computationally expensive because

the ALS procedure should be performed multiple times. In order to compromise

the computational efficiency and the stability of the solution, we have developed an

initialization method as follows. Firstly, we use each row vector in U2 as the initial

value of uo and solve (12) once for a candidate initial value of up. Denote these

initial values to be ui
p,(i = 1,2, . . .16), then the final initial value of up is chosen to

be

up = arg max
ui

p,(i=1,2,...16)
( max

j=1,2...20

ui
p ·u3 j

‖ui
p‖ · ‖u3 j‖

). (15)

In other words, we choose a initial value of up that is the most similar to one of the

standard poses to initialize ALS. Since we choose only one initial value, the compu-

tational efficiency is much higher, and the solutions obtained using this initialization

method performed stably in the experiments.

4.4 Traditional Methods of Tensor-based Recognition

When both coefficient vectors uo and up are solved, the traditional recognition

procedure [6] is to compare the solved coefficients with the standard coefficients,

namely the row vectors of U2 and U3. For example, if the difference between up
and U3 j is below certain threshold, then the input can be recognized as pose j. To

deal with torso orientation estimation, what traditional methods can do is to classify

the orientation coefficient vector into one of the 16 classes and find the correspond-

ing standard orientation angle. This classification can be done by finding the nearest

neighbor in the row vectors of U2.

As mentioned in Section 2, the traditional procedure is limited in the sense that it

cannot incorporate variations in the same class and it can only solve discrete values

for a continuous quantity. Also, we can see that it’s hard to find a solid rule to

determine the threshold for recognition, and in turn to distinguish outliers from good

poses. Dealing with orientation estimation, traditional methods offers only discrete

solutions. In the following two sections, we will discuss our proposed SVM and

manifold learning methods to overcome these limitations.

5 SVM-based Pose Recognition Using Pose Vectors

The aim of pose recognition is to classify an input into one of the 20 standard poses

or identify it as an outlier. In order to achieve this task more effectively, we in-

tegrated our TensorPose framework with SVM classifiers. The input data fed into
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SVM classifiers are the pose coefficient vectors, as described in Section 2.2, ex-

tracted from a pair of input image. Therefore, the 20-dimensional pose vectors ac-

tually serve as the descriptor of poses.

5.1 Formation of Training Data

The silhouette images used in our training sets were synthesized using Maya anima-

tion software. Each pose was performed twice by a professional dancer, and the joint

angle data of the subject was captured by a marker based mocap system. In addition

to the 20 standard poses, we also captured some “trick poses”, which means the

poses that are somehow similar to one of the standard poses but cannot be accepted

as that pose by the dancer. Using the captured skeleton (joint angle) data, we gen-

erated silhouettes of the same pose with different 3D surface models and different

torso orientations in Maya.

In our standard tensor, only one pair of image can represent each pose in each

orientation. In order to incorporate some individual differences at this stage, we

applied 3 human surface models and generated 6 pairs of images for each pose in

each orientation. The final representing data to put into the tensor is obtained by

taking average of these pairs of images.

In order to train the SVM classifiers, training sets containing a reasonable number

of samples are required. In the process of tensor formation, we synthesized 6 pairs

of images for each pose in each of the 16 orientation. Therefore, there are in total 96

pairs of images for one pose and in turn 96 pose vectors can be obtained. We refer

to these vectors as “standard pose vectors”.

In practical case, a range of variation in joint angle configuration should be toler-

ated for each pose. To incorporate these variations, we added small Gaussian noise

into the joint angle data of poses and synthesized 96 pairs of images for each pose,

32 using each human surface model. Therefore, another 96 pose vectors can be ob-

tained for each pose. We refer to these vectors as “noisy pose vectors”.

We also synthesized 36 pairs of images for the “trick poses” of each pose, so sim-

ilarly 36 coefficient vectors can be obtained. We refer to these vectors as “trick pose

vectors”. These 3 sets of vectors composed the training sets of our SVM classifiers.

5.2 Pose Recognition Using SVM

In order to accomplish the task of pose recognition, we trained 20 SVM classifiers

that perform classification of data into 2 classes.

For each pose, we train a binary SVM classifier to identify whether the input “is”

or “is not” the pose. The training set of the classifier consists of positive samples and

negative samples. Positive samples includes the standard and noisy pose vectors of
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the corresponding pose, and negative samples includes the standard pose vectors of

all other 19 poses and the trick pose vectors of the corresponding pose.

When all the 20 classifiers are trained, pose recognition can be achieved by a

traversal of all the classifiers and see which one accepts the input as the correspond-

ing pose. If none of the 20 classifiers accepts an input, it will be identified as an

outlier. With this algorithm, there is possibility that one input may be recognized

as more than one pose. However, if the classifiers are properly trained, it can be

justified by the experimental results that this possibility will be very low. Even if

this situation does happen, we can solve this problem by referring to temporal and

spatial context in practical situations.

6 Body Orientation Estimation Using Orientation Vector
through Manifold Learning and Nonlinear Minimization

Once a pose has been recognized from a pair of input images, we need to estimate

the body orientation angle θ of the performer in the camera coordinate system from

the body orientation vector. In our approach, we first construct a 1D manifold us-

ing body orientation vectors of training data, which is essentially a cubic spline of

the body orientation angle. Then, we solve the body orientation angle estimation

problem using nonlinear least square techniques.

A body orientation space Ψ can be obtained through the tensor decomposition

and projection presented in Section 3. Since the training data was obtained from

16 body orientation angles, Ψ is a 16-dimensional space. As discussed previously,

this body orientation is actually describing the rotation angle θ of the performer’s

body about the axis perpendicular to the ground plane, which has only 1 degree-

of-freedom. Hence Ψ forms a 1D manifold, which can be recovered as a function

of θ . Recovery of such a 1D manifold has been addressed by other researchers

[20]. In our approach, we follow the method described in [20]. Essentially, we fit a

cubic spline as a function of θ in the 16D Ψ , so that a body orientation coefficient

vector can be represented as ψi = g(θi). This step is implemented using the CSAPE

Cubic spline interpolation function in MATLAB. Figure 6 shows the resulting θ -

parameterized 1D spline function embedded in the first three dimensional subspace

of Ψ . In Figure 6, The red circles are the centers of the ψ ′s for different views,

denoted by the corresponding θ ′s.

Given a new body orientation coefficient vector ψ∗, we would like to estimate the

corresponding body orientation angle θ ∗. We cast this problem into a nonlinear least

square problem using the Mahanalobis distance as the cost function. The problem is

defined as

θ ∗ = argmin
θ

(g(θ)−ψ∗)Σ−1(g(θ)−ψ∗)T , (16)

where Σ is the covariance matrix of the variations of the body orientation coefficient

vectors for the same pose. Let ψ(n)
k be the body orientation coefficient vector of the
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Fig. 6 1D spline embedding of the body orientation space Ψ (the first three dimensions are shown
here in 2 view angles)

n’th sample training data of the k’th view, where n = 1, . . . ,N, and k = 1, . . . ,K. Σ
is then obtained from the training data as the following:

Σ =
1

K(N−1)

K

∑
k=1

N

∑
n=1

(ψ(n)
k − ψ̄k)T (ψ(n)

k − ψ̄k), (17)

ψ̄k =
N

∑
n=1

ψ(n)
k . (18)
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We applied Levenberg-Marquardt method [23] to solve the least square prob-

lem. The initialization is performed using the result of tensor-based classification of

orientation vector, as described in Section 3.

7 Experimental Results

We tested our proposed system with both synthetic silhouette images and silhouettes

extracted from real images. The performances of our system in both cases were

analyzed.

7.1 Criteria of Performance Analysis

We evaluated the performance of our system in both pose recognition tasks and

orientation angle estimation tasks.

For pose recognition tasks, we evaluated the performances by recognition rate,

ambiguity rate and false detection rate. Assume that in a testing set, there are Np
pairs of images of good poses and Nn pairs of images of “trick poses”. Define Nrec
to be the number of inputs our system has correctly recognized, and Na to be the

number of inputs that are correctly recognized but with ambiguity (more than one

pose is assigned to it). Then the recognition rate Rrec can be calculated as Nr/Np,

and the ambiguity rate Ramb can be calculated as Na/Nr. Define Nf to be the number

of the inputs that are actually not the standard poses while being recognized as good

poses. Then the false positive rate R f p can be calculated as Nf /Nn.

For body orientation estimation tasks, we compared the estimated angle with the

ground truth data and evaluated the error.

7.2 Experiments on Synthetic Images

Using Maya software, we synthesized 640 pairs of good pose images and 640 pairs

of non-pose images. There are 32 pairs of each good pose, 2 in each orientation. To

test the sensitivity of the system to body orientation change, we applied different

orientation angles in testing images from the training images by shifting each train-

ing orientation 10 degrees. We also added a small white Gaussian noise (σ2 = 4 )

on each joint angle, in order to better simulate the realistic situation. With these im-

ages, the recognition rate of our system is 99.53% with 0 ambiguity rate. The false

positive rate is 6.09%. The performance of body orientation estimation with syn-

thetic data is shown in Figure 7. The mean estimation error is 4.22◦ with a standard

deviation of 6.07◦ .
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Fig. 7 Body orientation estimation performance with synthetic data

7.3 Experiments on Real Images

To evaluate how our system performs in practical situations, we had a non-dancer in

our lab to perform the 20 standard poses as well as some trick poses. The images of

the poses were taken from two 1394 video cameras mounted with about 90 degrees

with each other. For each pose and trick pose, the subject performed 4 times in

difference orientations in the space. Therefore, there are totally 80 pairs of images

of standard poses and 80 pairs of trick poses.

7.3.1 Pose Recognition Results of the Proposed System

We have performed pose recognition on real data with our proposed method. In the

process of SVM classification, we applied the RBF kernel defined as follows.

k(x,y) = e−‖x−y‖2/2σ2
. (19)

We applied different configurations of the parameter σ and the regulation con-

stant C. The results are listed in Table 1.
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Table 1 Pose recognition results of the proposed system using different parameter settings

σ C Rrec Ramb R f p

25 5 65.00% 0% 0%

24 6 77.50% 0% 2.50%

22 6 83.75% 0% 5.00%

24 8 90.00% 0% 7.50%
21 7 93.75% 0% 10.00%
25 11 95.00% 0% 11.25%
17 20 96.25% 1.3% 15.00%

7.3.2 Comparison with Existing Pose Recognition Methods

We have compared our system with some existing pose recognition systems in terms

of gesture set used, method applied and recognition results. The results are listed in

Table 2. The working conditions and data sets of these systems are different from

ours, but it can be shown that our system is comparable to existing systems.

7.3.3 Comparison with Existing Tensor-based Recognition Methods

We have also compared our method with some other methods of recognition using

coefficient vectors obtained by multilinear analysis. The methods we compared with

were traditional Fixed-Threshold (FT) method (with different threshold of angular

differences), as defined in Section 3.4, and probabilistic von Mises-Fisher (vMF)

method [1] (with different probability threshold). The recognition rate versus false

positive rate plot of the three methods is shown in Figure 8. It can be shown that the

proposed method outperforms the existing tensor-based methods.

7.3.4 Comparative Test on Body Orientation Estimation

In order to obtain the ground truth data of body orientation in real images, we

aligned the video camera system with the marker-based motion capture system. A

set of 4 makers is imposed on the back of the performer. When each pair of images

were captured, the motion capture system obtained the 3D coordinates of the mark-

ers at the same time, and afterwards the ground-truth data of body orientation can

be calculated with these coordinates.

The body orientation estimation performance on real data is shown in Figure 9.

The mean and standard deviation of estimation error is listed in Table 3 and com-

pared with Nearest-Neighbor (NN) Method, as mentioned in Section 3.4.

In practice, it is possible that the orientation estimation error of some inputs are

around 180 degrees. This happened to only 1 input in our testing set, as shown in
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Table 2 Pose recognition results compared with existing systems

System Pose Set Feature

Extraction

Recognition

Method

Orientation

Invariance

Rrec R f p

Urano, 2004

[34]

6 daily-life

poses

Outline

Diameter &

HLAC

features

Hieratical

feature

matching

Yes 89.7% N.A.

Chu, 2005 [5] 12 hand

postures

Visual Hull

& 3-D

Shape

Descriptor

Matching

Posture

atoms

Yes 87.8% N.A.

Li, 2006 [24] Stand and

sit

Geometric

Measure-

ment

Rule based No 94.7% N.A.

Boulay, 2006

[2]

8 daily-life

poses

H.&V.

projection

Comparison

with 3-D

model

generated

silhouettes

No 74% N.A.

Guo, 2006 [8] 20 dance

poses

Gaussian

Mixture

Model

RVM Yes 81.9% 14%

Hu, 2007 [11] 8 daily-life

poses

Fourier

descriptor

of 2-D

contour

Similarity

measure-

ment

Yes 89.6% N.A.

Guo, 2008 [9] 9 daily-life

poses

Histogram

projection

& universal

eigenspace

Hieratical

matching

No 92.67% N.A.

The proposed
system
(Parameter I)

20 dance
poses

Multilinear
analysis

SVM (σ =
24, C = 8)

Yes 90.00% 7.5%

The proposed
system
(Parameter II)

Same as
above

Same as
above

SVM (σ =
21, C = 7)

Yes 93.75% 10.00%

The proposed
system
(Parameter
III)

Same as
above

Same as
above

SVM (σ =
25, C = 11)

Yes 95.00% 11.25%
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Fig. 8 Pose recognition results compared with existing tensor-based methods

Figure 9. Such 180◦ ambiguity is inherent. One example of such scenario is a subject

performing pose #1 facing the middle point of the two camera centers. When an am-

biguous pose and torso orientation pair is obtained by the system, all the associated

solutions with similar silhouettes will be returned. If 180◦ ambiguity is removed,

the mean error of orientation estimation drops to 15.78◦ and the standard deviation

drops to 14.45.

Table 3 Comparison of our recognition results with Nearest Neighbor Method.

Mean Error Standard Deviation

NN Estimation 25.98◦ 32.51

The Proposed Method 17.99◦ 23.16

7.4 Computational Efficiency

The system was implemented on a PC with Intel Xeron 3.6GHz CPU using Matlab

without any optimization. When running, the system takes only 35% of CPU. Under

this condition, the average time to process each frame is 0.68 seconds, while under

similar conditions our previous approach [8] needs 2.21 s/frame. We are developing
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Fig. 9 The body orientation estimation performance on real data

a C++ implementation that will greatly speed up the system, e.g. to 10 Hz or higher.

Such processing rate will be sufficient for most interactive applications requiring

on-line pose recognition.

8 Conclusions and Future Work

In this chapter, we present an effective pose recognition and body orientation system

based on multilinear analysis. This system performed very well in our experiments

on both synthetic and real data.

Our current system has a great potential of future improvement because of our

effort to incorporate variations in the tensor-based framework. In the future we may

improve the robustness of the system by incorporating probabilistic methods in the

TensorPose framework.
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Applications of Multiview Tensors in Higher
Dimensions

Marina Bertolini, GianMario Besana, and Cristina Turrini

Abstract This chapter is devoted to applications of multiview tensors, in higher

dimension, to projective recostruction of segmented or dynamic scenes. Particular

emphasis is placed on the analysis of critical configurations and their loci in this

context, i.e. configurations of chosen scene-points and cameras that turn out to pre-

vent successful reconstruction or allow for multiple possible solutions giving rise to

ambiguities. A general geometric set up for higher dimensional spaces ad projec-

tions is firstly recalled. Examples of segmented and dynamic scenes, interpreted as

static scenes in higher dimensional projective spaces, are then considered, following

Shashua and Wolf. A theoretical approach to multiview tensors in higher dimension

is presented, according to Hartley and Schaffalitzky. Using techniques of multilinear

algebra and proper formalized language of algebraic geometry, a complete descrip-

tion of the geometric structure of the loci of critical configurations in any dimension

is given. Supporting examples are supplied, both for reconstruction from one view

and from multiple views. In an experimental context, the following two cases are

realized as static scenes in P4: 3D points lying on two bodies moving relatively to

each other by pure translation and 3D points moving independently along parallel

straight lines with constant velocities. More explicitly, algorithms to determine suit-

able tensors used to reconstruct a scene in P4 from three views are implemented

with MATLAB. A number of simulated experiments are finally performed in order

to prove instability of reconstruction near critical loci in both cases described above.
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1 Introduction

The analysis of certain dynamic and segmented scenes has recently brought to the

fore the consideration of projective geometry in higher dimensional spaces, as for

example in [7], [12], [14], [15], [21], [22], [23]. Different approaches lead to differ-

ent contexts, but the process follows the same essential steps that can be summarized

as follows. First, a mathematical framework is developed to encode the dynamic or

segmented scenes, in which higher dimensional spaces play a key role. As a second

step, within this framework, necessary tools to perform projective recostruction,

given a set of marked corresponding points on multiple images, are introduced. As

a third step, algorithms to concretely compute the necessary tools are designed and

implemented. Finally one addresses the problem of identifying critical configura-

tions of points for which projective recostruction is not possible in a unique way, up

to projective equivalence.

As far as the first two steps are concerned, in one approach, Wolf and Shashua,

[23], extended the use of classical projection matrices for projections from P3 to P2

to higher-dimensional mappings from Pk to P2, for k = 4,5,6, with the purpose of

giving a static, and hence more manageable, representation in a higher dimensional

space of some dynamic or segmented scenes of the usual space. In this approach,

multiview tensors expressing linear constraints between multiple views are intro-

duced and Hartley and Schaffalitzky, [14], gave a general theoretical approach for

the construction of multiview tensors for projections from Pk to Ph, for all k and h,
clearly describing what kind of multilinear constraints one may use for this purpose.

In another approach, Vidal et al, [7], [12], [21], [22], analyzed scenes with n
segmented bodies. Their approach leverages a classical technique in algebraic ge-

ometry in which the Veronese embeddings of low dimensional spaces into higher

dimensional ones are introduced in order to transform higher degree constraints into

linear ones. The corresponding tools introduced in this approach are the multibody

fundamental matrix and multibody tensors.

Algorithms to obtain classical multifocal tensors in P3 are well established, see

for example [13]. In higher dimensions one contribution, following guidelines given

in [23], is contained in [4].

Finally, concerning the last step in the process, critical configurations for projec-

tive recostruction of various types of static scenes in 3-space have been the object

of interest for several authors for quite some time. In the case of simple camera cali-

bration (one view) the classical result of the criticality of a twisted cubic curve goes

back to [6]. Quadric surfaces were shown to be critical for two views in [17], [19].

Contributions in the case of three or more views are found in [10], [16], and [20]. A

comprehensive, detailed analysis both in the case of two and in the case of multiple

views was conducted in [11].

In the context of projections from higher dimensional spaces to P2, interest in

understanding critical configurations has recently grown. Critical configurations and

their loci in the case of one view in any dimension were theoretically described in

[5]. Experimental evidence of the instability of reconstruction near such critical loci
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was given in [2]. A general framework to understand critical loci for projective

recostruction from multiple view in higher dimensions was given in [3].

This chapter fits into a long term project the authors are conducting with twofold

purpose: determining in detail the algebro-geometric structure of critical loci for

projective reconstruction from multiple views for projections from Pk to Ph; giving

experimental evidence of instability of reconstruction for configurations that are

close to being critical.

The structure of this chapter follows the same pattern as the process described

in this introduction. More specifically, the mathematical framework for some seg-

mented and dynamic scenes which admit a representation as static scenes in P4,
following [23], is presented in Section 3. Multiview tensors, which are the neces-

sary tools for projective recostruction in this framework, are presented in Section

4. Algorithms to compute multiview tensors are presented in Section 5. Section 6

is focused on the theoretical presentation of critical configurations and their loci.

Examples of critical loci are then computed in Section 7. Experimental evidence of

instability of the reconstruction from configuration of points that are close to being

critical is presented in Section 8.

2 Notation and Background Material

Pk denotes the k−dimensional real (or complex) projective space. Whenever multi-

plication by a nonzero scalar is utilized, the scalar will be real or complex accord-

ingly. Once a projective frame is chosen, coordinate vectors X of points of Pk are

written as columns, thus their transpose are XT = (X1, . . . ,Xk+1). A linear projec-

tive subspace Λ ⊆ Pk spanned by m + 1 linearly independent points will be called

m-space or subspace of dimension m. By convention the empty set is considered

as a (−1)-space. Given an m1-space Λ1 and an m2-space Λ2 in Pk, the join of Λ1

and Λ2 is the smallest projective linear subspace < Λ1,Λ2 >⊆ Pk containing both of

them. The dimensions of Λ1, Λ2, < Λ1,Λ2 > and Λ1∩Λ2 are linked by Grassmann’s

formula:

dimΛ1 +dimΛ2 = dim < Λ1,Λ2 > +dim(Λ1∩Λ2). (1)

For the convenience of the reader, we fix our notation for cameras, centers of

projection and multiple views in the context of projective recostruction. As usual, a

scene is a set of N points Xi ∈ Pk. A camera is represented as a central projection

P of points in k-space, from a linear center CP, onto a suitable Ph, h < k, where in

the traditional setting of real still images are k = 3 and h = 2. We usually do not

make any formal distinction between the projection map P and one of its matrix

representations, for which we use the same symbol P. Accordingly, if X is a point

in Pk, we denote its image in the projection equivalently as P(X) or P ·X. In ho-

mogeneous coordinates, the projection mapping P : Pk \{CP}→ Ph is described by

μx = P ·X, where μ is a non-zero constant and P is a (h+1)× (k +1)-matrix with

maximal rank rk(P) = h+1. The center of projection CP is the right annihilator of
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P, hence a (k− h− 1)-space. For a given point X ∈ Pk, the projecting ray, i.e. the

join < CP,X > is a (k− h)-space. While in all our applications we will consider

projections from Pk to several spaces all of the same dimension, the general set-up

allows for projections P j : Pk \ {CP} → Ph j to spaces of different dimensions. In

this context we will denote by xij the image xij = P j(Xi) of the point Xi under the

map P j. Two different images xij and xim of the same point Xi are corresponding
points while < CP j,Xi > and < CPm,Xi > are corresponding rays. More generally,

r linear subspaces Si ⊂ Phi , i = 1, . . . ,r are said to be corresponding if there exists

at least one point X ∈ Pk such that Pi(X) ∈ Si for i = 1, . . . ,r.
Given a matrix A = [ai, j] with real or complex entries, AT denotes its transpose

and, for a real matrix A, ||A||= (∑i, j a2
i j)

1/2 denotes its Frobenius norm. The i-th row

of A is denoted Ai, while the i-th column is denoted by Ai. Given two matrices A and

B, with the same number of rows, [A|B] denotes the matrix obtained by juxtaposing

the columns of B after the columns of A. Analogously, for a (3,3,3) real tensor

T = [ti, j,k], ||T || denotes its norm (∑i, j,k t2
i jk)

1/2. As customary, see [13], εi jk denotes

the (3,3,3) tensor with zero elements unless (i jk) is an even (respectively odd)

permutation of (123) in which case εi jk = 1, (respectively −1).

In the following sections we make use of terminology and basic definitions from

Algebraic Geometry for which we refer the reader to [9].

3 Higher Dimensional Spaces As Frameworks For Some
Dynamic And Segmented Scenes

As mentioned in the introduction, the first step in the analysis of certain dynamic

and segmented scenes is the development of a mathematical framework.

In the context of projective recostruction of such scenes, a natural approach is

to increase the dimension of the ambient space by treating several parameters (e.g.

velocity, relative displacement of two segmented bodies in translation) used to de-

scribe dynamic or segmented aspects of the scene as additional coordinates. This

is essentially the approach of [23] and we present here two examples with natural

ambient space P4. Example i) could be easily generalized to cases in which velocity

vectors span a 2D or 3D space, thus giving rise to models in P5 or P6. The interested

reader can find details in [23] and [5].

In this approach then, successful reconstruction of the scene in Pk corresponds

then to recovering in P3 both the starting position of the points and values of the

other parameters utilized as additional coordinates, hence critical configurations

found in Pk account for positions and other parameters which are critical for the

dynamic scene in P3.

i) Three dimensional dynamic scene k = 4. A significant example leading to pro-

jections from P4 involves a 3D configuration of points {Xi} where each point

moves independently along a straight-line path with constant velocities λi and

all trajectories are parallel to each other, i.e. the linear span of all velocity vec-
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tors is one-dimensional. Following Shashua and Wolf [23], let P(t) denote the

projection matrix from P3 to P2, at time t, and assume that the common di-

rection of the trajectories is given in R3 by the unit vector (dx0,dy0,dz0)T . If

(x,y,z)T are affine coordinates in R3 and point Xi starts at (x,y,z)T at time

t = 0, then the homogeneous coordinates of point Xi at time t, in P3, are

Xi = (x+ tλidx0,y+ tλidy0,z+ tλidz0,1)T . One can embed this case in P4, with

coordinates (X1, . . . ,X5)T by setting X1 = x,X2 = y,X3 = z,X4 = 1,X5 = λi. In this

setting it is immediate to verify that considering the following 3× 5 projection

matrix P from P4 to P2:[
P1(t)| P2(t)| P3(t)| P4(t)| tdx0P1(t)+ tdy0P2(t)+ tdz0P3(t)

]
(2)

one has P · (x,y,z,1,λi)T = P(t) ·Xi. Thus the dynamic scene in P3 has been

transformed into a static one in P4.

ii) Two-body segmentation k = 4. Here we consider a 3D point configuration con-

sisting of two bodies moving relatively to each other by pure translation. Let P
and R respectively denote the 3× 4 camera matrices associated to the first and

second body and P j and R j the j− th column of P and R. Recall that P j = R j
for j = 1,2,3, for the pure translation assumption. In this case the coordinates

of a point (X1,X2,X3,X4,X5)T in P4 are (x,y,z,1,0)T , for points of the first body

and (x,y,z,0,1)T , for points of the second body, and the projection matrix to P2

is the 3×5 matrix [P1| P2| P3| P4| R4].

4 Multiview Tensors in Higher Dimension

In the classical case of projections from P3 to P2, it is well known that projec-

tive reconstruction is possible from two views and that, in this context, a pair of

corresponding points on both image planes imposes a bilinear constraint on their

coordinates. The coefficients coming from a constraint obtained in this way are then

packaged in the well known fundamental matrix. Noticing that a point in the image

plane can be considered as a linear space of codimension 2, one could think of the

fundamental matrix as a 3×3 tensor, born out of initial data of codimensions (2,2).
When one considers three views P3 → P2, it is well known that to have mean-

ingful constraints one is led to consider triplets of corresponding subspaces in the

image planes where one is a point and two are lines. Again, one can package the

coefficients of the trilinear relations obtained this way into the classical trifocal ten-

sor, obtaining a 3× 3× 3 tensor where the initial data this time has codimensions

(2,1,1) (or any of its permutations).

Going one step further to 4 views from P3 to P2, constraints are obtained from

4-ple of corresponding lines, one from each view. One then obtains a 3×3×3×3

tensor, the quadrifocal tensor, coming from initial data of codimensions (1,1,1,1).
Hartley and Schaffalitzky, in [14], generalized these observations and gave a

comprehensive theoretical framework for the study of multiview tensors, to which
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they refer as Grassmann tensors, in any dimension. Here we recall the basic ele-

ments of their approach. Consider a set of projections Pi : Pk to Phi , i = 1, . . . ,r and

a partition (α1,α2, . . . ,αr) of k + 1, i.e. ∑αi = k + 1. Let {Si}, i = 1, . . . ,r, where

Si ⊂ Phi , be a set of general (hi−αi)-spaces. Hartley and Shaffalitzky show that

imposing to {Si} to be a set of corresponding subspaces, leveraging the assump-

tion that ∑αi = k + 1, translates into a multilinear relation among the Grassmann

(Plücker) coordinates of the Si. The coefficients of these relations are then packaged

into a multi-view tensor, called a Grassmann tensor with profile (α1, . . . ,αr). In

these notations then one revisits our initial examples to see that for k = 3 and h = 2

all possible profiles are: (2,2), in which case the Grassmann tensor is simply the

fundamental matrix; (1,1,2) or any of its permutations, in which cases the tensor is

the 3×3×3 usual trifocal tensor; (1,1,1,1) which gives the usual quadrifocal tensor.

Notice that Grassmann coordinates are really necessary only for target spaces of di-

mension 3 or higher because for spaces of maximum codimension hi (i.e. points) or

minimum codimension 1 (i.e. hyperplanes) Grassmann coordinates are nothing but

ordinary point coordinates or usual dual hyperplane coordinates. Under the same

assumptions, Hartley and Schaffalitzky also show that from Grassmann tensors it

is possible to recover projection matrices (uniquely up to projective equivalence)

unless hi = 1 for all i.
For more details on this approach we refer the reader to [14]. Although our ap-

proach is essentially the same, because all our applications will deal with projections

to P2, we refrain from a heavy use of Grassmann coordinates.

4.1 Minimum Number of Views

From now on we assume that all target spaces have the same dimension, i.e.

h1 = h2 = · · · = hr = h. Given multiple views of a scene, from the projective re-

construction point of view, there are two kind of problems: reconstruction of the

cameras and reconstruction of the scene. It is worthwhile recalling that, as in the

case of projections P3 → P2, the camera center is the only property of the camera

which is preserved under homographies of the image space, see [5], hence recon-

struction of the cameras is equivalent to reconstruction of their centers. From the

approach of [14] one can quickly deduce the minimal number of views ωk,h nec-

essary to successfully accomplish projective recostruction of the cameras, although

no explicit formula is given. For example, in the case of k = 6 and h = 3, starting to

fill possible profiles from the left with the largest possible codimension α1 = h = 3,
α2 = h = 3, one quickly sees that at least three views are necessary and a possible

profile is (3,3,1), and thus ω6,3 = 3.
Another useful information in this context is the minimum number μk,h of views

necessary for the reconstruction of the scene points, once the camera centers are

known. In this subsection we are working under the assumption that the centers CP j
of the projections we consider are in general position.

A preliminary example can be helpful to illustrate the situation.
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Example 0.1. Let k = 4,h = 2. Centers of projections being lines, projecting rays are

2-spaces, i.e. planes. From (1) it follows that, in general, two planes in P4 intersect

at a point. This shows that two views are not sufficient to give necessary constraints

and a third view is required. Each triple of corresponding points (or a pair of cor-

responding points and a corresponding line), indeed gives two (or one) constraints

as described in [23] or [14]. Hence, from a large enough set of triples of correspon-

dences, one can reconstruct the cameras. Once the cameras are known, a scene point

can be uniquely reconstructed from just two of the three given views, as any pair of

corresponding rays intersect at a point. Thus, for projections P4 to P2, the minimum

number of views necessary for projective recostruction is 3 for the cameras and 2

for the scene, assuming the cameras are known.

The following two propositions, whose proofs rely on geometric arguments, give

explicit formulas for ωk,h and μk,h.

Proposition 1 Assume k− 1 = σh + λ , where σ and λ are non negative integers
and λ ≤ h− 1. Assuming that cameras are known (up to projective equivalence),
the minimum number of views necessary to reconstruct a scene for projections from
Pk to Ph is

μk,h = σ +1.

Proposition 2 Assume k = sh + l, where s and l are non negative integers and
l ≤ h−1. The minimum number of views necessary to reconstruct the cameras for
projections from Pk to Ph is

ωk,h = s+1.

5 Algorithms

After having introduced a mathematical framework and corresponding tools to per-

form reconstruction in the previous sections, we now turn to algorithm develop-

ment. The experimental part of this chapter will present results related to situations

described in Section 3 i) and ii), thus we limit our presentation here to algorithms

targeted at these two examples. Nonetheless one could develop in similar ways algo-

rithms to address other situations for different Pk’s and different number of views.

Both examples under consideration here deal with three views in P4. Algorithms

to obtain the corresponding 3×3×3 trifocal tensors are needed with two different

sets of inputs: the projection matrices P j : P4 to P2, j = 1,2,3, and a large enough

set of triplets of corresponding points P j(X)T = xj
T = (x j

1,x
j
2,x

j
3), j = 1,2,3. Let

xj, j = 1,2,3, be a triplet of corresponding image points, and let � = (l1, l2, l3)
be the row-vector of Plücker coordinates of a line in the third view-plane passing

through x3. Each such point-point-line set imposes one multi-linear constraint on

T, as ∑i ∑ j ∑k x1
j x

2
i ti jklk = 0, as in [23, Section 2.1, Problem Definition 2 ] or [14].

These multi-linear constraints are the basis of both algorithms.
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5.1 Trifocal Tensor from Projection Matrices

Let P j,xj and � be as in the introduction of this section. Here the entries of P j are

given, while the coordinates of xj, and obviously the entries of T, are unknown. Let

r j = (0,x j
3,−x j

2), s j = (x j
3,0,−x j

1). Then s j ·xj = s j ·P j(X) = 0, r j ·xj = r j ·P j(X) =
0, and � ·P3(X) = 0, and thus the matrix

M =

⎡⎢⎢⎢⎢⎣
s1P1

r1P1

s2P2

r2P2

�P3

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
x1

3P11− x1
1P13

x1
3P12− x1

2P13

x2
3P21− x2

1P23

x2
3P22− x2

2P23

�P3

⎤⎥⎥⎥⎥⎦
must have vanishing determinant. Because the determinant is a multi-linear function

of the rows, one sees from the right hand side representation of M that detM must

be divisible by x1
3x2

3. Without loss of generality here we can assume that X is not

on any of the hyperplanes mapped to to the lines at infinity of the three images and

thus x j
3 �= 0, for all j. Let D = detM/(x1

3x2
3). Entries ti jk of the tensor, as functions

exclusively of the entries of the projection matrices P j, can now be isolated as the

coefficients of x1
j x

2
i lk in D. MATLAB�code to obtain ti jk with this algorithm is

available from the authors.

5.2 Trifocal Tensor from Triplets of Image Points

Let xj, j = 1,2,3 be a triplet of corresponding visible points in the three images,

as in the introduction of this section. Here the coordinates of xj are given and the

entries of T are unknown. Let �m = (lm
1 , lm

2 , lm
3 ), m = 1,2, be the Plücker coordinates

of two randomly generated lines through x3. Then each triplet xj generates two

point-point-line correspondences and thus gives rise to two multi-linear constraints

on the entries of T : ∑i ∑ j ∑k x1
j x

2
i ti jklm

k = 0, m = 1,2. As T has 27 entries and it

is defined up to a multiplicative constant, 13 triplets of corresponding points are

theoretically sufficient. Let’s assume we have n triplets. The constraints described

above give a system of 2n homogeneous equations in the 27 variables ti jk. Each

row of the matrix of this system consists of 27 possible products x1
j x

2
i lm

k properly

arranged. A solution is obtained performing SVD on such a matrix and extracting

from the right hand side matrix of the decomposition the column corresponding to

the smallest singular value. The 27 elements of this column are then re-packaged

into a tensor. MATLAB�code to obtain ti jk with this algorithm is available from the

authors.
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6 Critical Configurations and Their Loci

An interesting issue that accompanies the reconstruction problem is the determina-

tion of the so called critical configurations: is reconstruction possible, in a suitably

unique way, independent of the mutual positions of the chosen scene-points and

cameras? Are there configurations of chosen scene-points and cameras that turn out

to be critical in the sense that they prevent successful reconstruction or allow for

multiple possible solutions giving rise to ambiguities? Which geometric object de-

scribes these critical configurations?

Answers to these questions are well known to the community of experts in sev-

eral cases, as detailed in the introduction. The following definitions introduce the

necessary language to address these critical situations both in case of one and of

multiple views. For the sake of simplicity in the following sections we will always

consider projections from Pk to P2, i.e. we always set h = 2.

6.1 Critical Configurations for Projective Reconstruction from
One View: Definitions

Definition 1 A set of points {Xi}, i = 1, . . . ,N, N ≥ 5, in Pk is said to be a critical
configuration for projective recostruction from 1-view if there exist two 3× (k + 1)
full-rank projection matrices P and Q such that the two sets of points {P ·Xi} and
{Q ·Xi} are projectively equivalent, i.e. up to homography on the projection planes,
P ·Xi = μiQ ·Xi, with μi a non zero constant, for each i. Matrices P and Q are called
associated matrices to the critical configuration.

Assume now that {Xi} is a critical configuration for projective reconstruction

from 1-view, as above, with associated projection matrices P and Q. As P ·Xi =
μiQ ·Xi, then each Xi is in the right null-space of a matrix P−μiQ. This leads one

to consider matrices P(ϕ,ψ) = ϕP + ψQ, for some (ϕ,ψ) �= (0,0), and their null

spaces. The following definition is in the spirit of [13, Section 21.1.2].

Definition 2 If {Xi} is a critical configuration for projective reconstruction from
1-view, with associated projection matrices P and Q, the associated critical lo-
cus for projective reconstruction from 1-view in Pk is the subvariety (technically
a subscheme) Ck

(P,Q) of Pk defined by the parametric equations P(ϕ,ψ) ·X = 0, where

(ϕ,ψ) ∈ P1.

In this context, Λ(ϕ,ψ) will denote the right null space of P(ϕ,ψ). Sometimes it

will be more convenient to use an affine parameter θ = ψ/ϕ, and in this case P(1,θ)
and Λ(1,θ) will be denoted simply by Pθ and Λθ .
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6.2 Critical Loci for Projective Reconstruction from One View:
Geometric Description

This section contains basic results on critical loci Ck
(P,Q). Only non degenerate cases

(technically irreducible and reduced) are described here (without proof: for the proof

see [5], Propositions 3.1 and 3.2) as they are the cases addressed by the authors’

experiments in Section 7 and 8. A detailed description of the degenerate cases can

be found in [13, Section 21.1.2] for k = 3 and [5] for k ≥ 4.

Proposition 3 The critical locus for projective recostruction of a set of points in Pk

from one view, if irreducible, is an algebraic variety of dimension k−2 and degree 3

which is the union of a 1D family of Pk−3 parameterized by a smooth rational cubic
curve in P3. If k = 4 the variety can be either a smooth surface (a linear P1-bundle
over a rational cubic curve) or a cone with vertex a point over a cubic rational
curve. If k = 5 the variety can be either a smooth 3D variety (a linear P2-bundle
over a cubic rational curve) or a cone with vertex a point over a cubic surface P4

(the surface described above), or a cone with vertex a line over a cubic rational
curve. If k ≥ 6 the variety is always a cone, the vertex of which has dimension at
least k−6.

From the assumption, each Xi belongs to the null-space Λθ = Λ(ϕ,ψ), for θ =
ψ/ϕ, of a matrix Pθ = P(ϕ,ψ), for some (ϕ,ψ) �= (0,0). From above one easily

sees that the critical locus is the union of infinitely many (k− 3)-dimensional lin-

ear spaces Λθ parameterized by θ . With the help of some standard techniques in

algebraic geometry one can show that such null spaces Λθ describe a cubic curve

Cθ in the Grassmannian G(k−3,k), which generates a (k−2) dimensional variety

of degree 3 in Pk. In cases k = 4,5 the variety can be either smooth, in case the

null-spaces of P and Q, i.e. the centers of the two projections, do not intersect, or

cones over a cubic surface with center V , in case the two null spaces intersect in

V . If k ≥ 6 the centers of the two projections given by P and Q always intersect in

a linear subspace V , hence all the null-spaces Λθ contain V . This implies that the

variety is never smooth, but a cone with vertex V over a suitable 3D variety.

6.3 Critical Configurations for Projective Reconstruction from
Multiple Views: Definitions

Here we deal with the case of multiple views.

Definition 3 A set of points {Xi}, i = 1, . . . ,N, N ≥ k + 3, in Pk is said to be a
critical configuration for projective recostruction from n-views if there exist a non-
projectively equivalent set of N points Yi ∈Pk and two collections of 3×(k+1) full-
rank projection matrices P j and Q j ( j = 1, . . . ,n) such that, for all i and j, P j ·Xi =
Q j ·Yi, up to homography in the image planes. The two sets {Xi} and {Yi} are
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called conjugate critical configurations, with associated conjugate matrices {P j}
and {Q j}.

The notion of conjugate critical configurations is inspired by [11].

The natural setting to study the loci of all critical configurations associated to

sets of conjugate matrices is the product variety Pk × Pk, endowed with the two

standard projections π1 and π2 onto the two factors. Let {(Xi,Yi)} be conjugate

critical configurations as above, with associated conjugate matrices {P j} and {Q j}.
For (X,Y) ∈ Pk×Pk (generalizing to k ≥ 3 the approach of [20]), imposing P j ·X
and Q j ·Y to be proportional one gets a pair of equalities

XT ·P jT ·Eh ·Q j ·Y = 0, (3)

h = 1,2, where E1rs = εr2s and E2rs = εrs1, in other words

E1 =

⎛⎝0 0 0

0 0 1

0 −1 0

⎞⎠ E2 =

⎛⎝ 0 0 1

0 0 0

−1 0 0

⎞⎠ .

Definition 4 If {(Xi,Yi)} in Pk×Pk are pairs of conjugate critical configurations,
with associated conjugate matrices {P j} and {Q j}, the associated unified criti-
cal locus for projective recostruction from n-views in Pk×Pk is the locus (techni-
cally subscheme) U k = U k

({P j},{Q j}) ⊆ Pk×Pk defined by 2n equations (3). More-
over the corresponding critical locus (respectively conjugate critical locus) for
projective reconstruction from n-views in Pk is the locus (technically subscheme)
X k = X k

({P j},{Q j}) = π1(U k) (respectively Y k = Y k
({P j},{Q j}) = π2(U k)).

6.4 Critical Loci for Projective Reconstruction from Multiple
Views: Geometric Description

Definition 4 implies that explicit equations for X k are obtained by imposing that the

linear system of 2n equations (3) with j = 1, . . . ,n, h = 1,2, in the k +1 unknowns

Y1, . . .Yk has nontrivial solutions. One is lead naturally to consider the following

matrix:

M = XT ·P jT ·Eh ·Q j =

⎡⎢⎢⎢⎢⎢⎢⎣
(−P13 ·X)Q12 +(P12 ·X)Q13

(−P13 ·X)Q11 +(P11 ·X)Q13

. . .

(−Pi3 ·X)Qi2 +(Pi2 ·X)Qi3

(−Pi3 ·X)Qi1 +(Pi1 ·X)Qi3
. . .

⎤⎥⎥⎥⎥⎥⎥⎦
If 2n ≥ k + 1 (i.e. n ≥ ωk,2), equations for X k are given by the vanishing of maxi-

mum (k +1) rank minors Gs, s = 1, . . . ,
(

2n
k+1

)
of M.
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Remark 1 If 2n < k +1 (i.e. n < ωk,2) the linear system MY = 0 has nontrivial so-
lutions for every choice of X . Thus every possible configuration of points is critical,
i.e. X k = Pk. Hence from now on we assume 2n≥ k +1.

Our goal is to give a geometric description of X k, which, from above, is the

variety described by the vanishing of all minors of maximal rank k+1 of M. Such a

variety is usually called a determinantal variety. In order to give a rigorous rationale

of our description of critical loci with appropriate tools from algebraic geometry, a

few technical issues need to be addressed. We do this in the following Remark 2.

The reader who is interested only in the resulting description of the loci is invited to

jump to Lemma 1.

Remark 2 Let M(2n,k+1) be the projective space associated to the vector space of
matrices 2n×(k+1) and consider the subvariety Mk = Mk(2n,k+1) of all matrices
with rk(M) ≤ k. A well known formula in algebraic geometry (Porteous’ formula,
[1, Formula 5.1, p. 95]) computes its degree: degMk =

(
2n
k

)
. Moreover, it is not diffi-

cult to compute the codimension of Mk in M(2n,k+1). Choosing a fixed k×k minor
Nk, one can achieve the vanishing of all maximal rank minors, on the open subset
where Nk does not vanish, simply by annihilating the 2n−k minors obtained by ad-
joining one of the remaining rows and the remaining column to Nk. This implies that
locally Mk is described by 2n− k equations which are algebraically independent;
therefore the codimension of Mk in M(2n,k+1) is 2n−k. As entries of M are linear
forms in X1, . . .Xk+1, and because of the particular structure of the matrix M, it is
not difficult to see that the map φ : Pk →M(2n,k + 1) sending X to M, is a linear
embedding, i.e. φ(Pk) is a linear subspace of M(2n,k + 1) of dimension k. Hence
X k is the intersection of the linear subspace φ(Pk) with Mk and thus its degree is
the same as that of Mk provided that:

(∗)The linear embedding φ given by the entries of the matrix M is sufficiently gen-
eral, i.e. the codimension of φ(X k) in φ(Pk) is the same as the codimension of
Mk in M, i.e. 2n− k.

Some of the results that follows in this work are stated under this assumption which
will be made explicit according to the specific context in which it will be applied,
see Propositions 4 and 5.

To conduct detailed investigations in concrete cases, one can utilize a standard
technique from algebraic geometry, relying on the semicontinuity principle for the
dimension of elements of an algebraic family of varieties. In essence this principle
states that given a reasonably well behaved family of varieties, parametrized in an
algebraic way, the dimension of elements of the family is generically constant, with
possible exceptional elements whose dimension may be larger, never smaller, than
the dimension of the general element. One can then choose a specific numerical
case of the situation at hand, compute with the help of a Computer Algebra package
(Macaulay2, Singular, Bertini, Cocoa or Magma) the desired dimension, and infer
that the dimension of the generic element of the family is less than or equal to
the computed one. An instance of this method is fully described later in this work
(Section 7) in the case of k = 4.
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The previous discussion shows that a good understanding of the factorization of

minors of M is crucial to obtain explicit equations for critical loci. The following

Lemma will be useful in this direction.

Lemma 1 For n views Pi in Pk, let Πi be the hyperplane mapped to the line at
infinity of the image plane in the ith view. Then for all X ∈Πi the two rows XT ·PiT ·
E1 ·Qi and XT ·PiT ·E2 ·Qi of the matrix M are linearly dependent.

Proof. Let Pi and Qi be projection matrices as above. Let’s assume to have chosen

homogeneous coordinates [X1,X2,X3] in the image plane so that the line at infinity

L∞ is X3 = 0. Then a point X ∈ Pk is mapped in the i-th view to a point on L∞ if

and only if PiX = [a,b,0] for some (a,b) �= (0,0). Thus XT PiT E1 = [0,0,b] and

XT PiT E2 = [0,0,a] and therefore XT PiT E1Qi is a scalar multiple of XT PiT E2Qi.

In view of Remark 1, the first significant case in which critical loci can be studied is

for ωk,2 views, and in the following of this section we will assume n = ωk,2.

In the case of a space of odd dimension, k = 2r−1,n = ωk,2 = k+1
2 and the matrix

M is a (k + 1)× (k + 1) square matrix, thus 2n− k = 1. Condition (∗) can be made

explicit as follows:

(∗1) G1 = det(M) is not identically zero.

Proposition 4 Let k = 2r− 1 and let n = ωk,2 = k+1
2 . Let Πi be the hyperplane

mapped to the line at infinity of the image plane in the ith view. Then X k =∪iΠi∪Z
where Z is defined by a single homogeneous polynomial of degree r = k+1

2 , provided
that (∗1) holds.

Proof. In this case M is a square matrix of dimension (k + 1)× (k + 1). Lemma 1

implies that for all X ∈Πi it is G1 = det(M) = 0 and thus every Πi is an irreducible

component of X k. As entries of M are linear in the coordinates of X, the critical

locus is given by one equation of degree k + 1, which can be factored as a product

of k+1
2 linear factors and a residual polynomial of degree (k +1)− k+1

2 = k+1
2 .

An analogous result holds for k = 2r, even, and n = ωk,2 = r + 1. In this case the

matrix M is a (k+2)×(k+1) matrix, thus 2n−k = 2 and condition (∗) can be made

explicit as follows:

(∗2) The maximal minors Gs, s = 1, . . . ,
(

2n
k+1

)
of M have no common factor.

The result is contained in Proposition 5 (which in the case of k = 4 is contained in

[4]). The proof in the case of even dimension is significantly more involved then in

the odd one.

Let k = 2r and let Πi be the hyperplane mapped to the line at infinity of the

image plane in the ith view. Notice that Πi is given by the equation Pi3 ·X = 0,
where, we recall, Pis is the s-th row of the matrix Pi. Let Λi j be the Pk−2 obtained

as intersection of Πi and Π j. The Λi js contain the linear space L = Π1∩·· ·∩Πωk,2 ,

which, if the centers of projections are in general positions, is a ( k−2
2 )-space.
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Proposition 5 Let k = 2r. The critical locus for n = ωk,2 = r +1 views in Pk is:

X k = (∪r+1
i< j=1Λi j)∪ (∪r+1

i=1 Zi)∪W

where Zi is the hyperplane section of a hypersurface of degree k
2 , via the hyper-

plane Πi mapped to infinity in the i-th view, Λi j = Πi
⋂

Π j, and W is a variety of
codimension 2 and degree (k+4)(k+2)

8 , provided that (∗2) holds.

Proof. Because of the structure of the matrices Ei, the (k + 2)× (k + 1) matrix M
has the following form:

M =

⎡⎢⎢⎢⎢⎢⎢⎣
(−P13 ·X)Q12 +(P12 ·X)Q13

(−P13 ·X)Q11 +(P11 ·X)Q13

. . .

(−Pi3 ·X)Qi2 +(Pi2 ·X)Qi3

(−Pi3 ·X)Qi1 +(Pi1 ·X)Qi3
. . .

⎤⎥⎥⎥⎥⎥⎥⎦
The critical locus X k is defined by the k + 2 minors Gs = detMs where Ms is ob-

tained from M by removing the s-th row. Let s = 2h−1 or s = 2h, according to its

parity and let t = s+2−2h. Then the row that was removed in Ms corresponds to the

h-th view. In what follows, the symbol .̂ . . on top of a quantity will mean that such

quantity needs to be removed. Let us also denote by (∗) all possible combination of

indices 1≤ j1, . . . , ĵh, . . . jn ≤ 3. As the determinant is a multi-linear function of the

rows, one can write each determinant Gs = detMs as follows:

Gs = (P13 ·X) . . . ̂(Ph3 ·X) . . .(Pn3 ·X)((Ph3 ·X)Zh
t +(Pht ·X)Zh

3)

where,

Zh
t = ∑

(∗)
(P1 j1 ·X) . . . ̂(Ph jh ·X) . . .(Pn jn ·X)detQt

h,

Zh
3 = ∑

(∗)
(P1 j1 ·X) . . . ̂(Ph jh ·X) . . .(Pn jn ·X)detQ3

h

and where Qt
h and Q3

h denote (k+1)×(k+1) matrices with constant entries, whose

rows are suitable Qi j. In particular Qt
h contains Qht while Q3

h contains Qh3.

Recall that the linear spaces Λi j are defined by the equations Pi3 ·X = Pj3 ·X =
0 for all i, j = 1, . . . ,r + 1, i < j, and consider the varieties Zh defined by Ph3 ·
X = Zh

3 = 0. Notice that Zh
3 cannot have Ph3 ·X as a factor. If this were the case,

then Gs would have (P13 ·X), . . . ,(Pn3 ·X) as factors for all s, but this contradicts

assumption (∗2). Thus Zh are codimension 2 varieties of degree degZh = degZh = r.
From the expression of Gs one immediately sees that each Gs vanishes on all the

(k−2)-spaces Λi j and on all the Zh, and hence all Λi j and all the Zh are contained in

the critical locus. As the total degree of X k is
(k+2)(k+1)

2 , see Remark 2, the residual
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component W, outside of all Πi, has codimension 2 and degree
(k+2)(k+1)

2 − r(r +
1)− r(r+1)

2 = (k+2)(k+1)
2 − 3k(k+2)

8 = (k+4)(k+2)
8 .

Proposition 5 applies in particular to the case of P4, see [4]. In this case the crit-

ical locus consists of 3 planes and the solution set of 6 polynomial equations of

degree 3. The latter set, for general choices of projection matrices, can be investi-

gated with the help of Macaulay2 c©[8]. Outside of the planes which are mapped to

infinity in each view, it turns out to be a surface of degree 6 which, when consid-

ered over C, if irreducible and smooth, is a very well understood object in algebraic

geometry, called a Bordiga surface.

7 Examples of Critical Loci for Projective Reconstruction

In this section we give some explicit example of critical loci, both in the case of

one and multiple views, arising from dynamic or segmented scenes. In particular

we refer to two situations which correspond to projections from P4 to P2, described

in Section 3.

7.1 Three Dimensional Dynamic Scene

We start with case i) of Section 3. In order to obtain the critical locus for one view,

recall that, with notation of Proposition 3, one sees that the matrix Pθ is

[P1(θ)| P2(θ)| P3(θ)| P4(θ)| tdxP1(θ)+ tdyP2(θ)+ tdzP3(θ)]

The critical locus is an irreducible ruled surface in P4, which is a cone, since the cen-

ters of projection intersect in the point V = (−tdx,−tdy,−tdz,0,1). More explicitly

one gets the following parametric equations of the critical locus:

x =−aD0−btdx,y = aD1−btdy,

z =−aD2−btdz,−1 = aD3,λ = b,

where Di, i = 0, ...,3 is the 3×3 minor obtained by the matrix

[P1(θ)| P2(θ)| P3(θ)| P4(θ)]

eliminating the (i+1)-th column. Notice that when t = 0 or λ = b = 0 one gets the

standard critical locus for projections from P3 to P2.
In order to explicitly determine the critical locus for three views (also in view of

the next section in which we will investigate instability of the reconstruction in an

experimental fashion) we chose a specific case: A dynamic scene obtained from a

static one given in Hartley and Kahl [11, Example 8.5.1]. This example was chosen



252 Bertolini et al.

as it represents the generic case for three views in P3, in which the critical locus

consists of 7 distinct points. The projection matrices for the static scene, from [11,

Example 8.5.1], are:

P0 =

⎡⎣2 0 0 −1

0 3 0 −1

0 0 6 −1

⎤⎦ Q0 =

⎡⎣−2 0 0 5

0 1 0 5

0 0 10 5

⎤⎦
P1 =

⎡⎣−2 0 0 −1

0 4 0 −1

0 0 −8 −1

⎤⎦ Q1 =

⎡⎣−4 0 0 3

0 −2 0 3

0 0 −6 3

⎤⎦
P2 =

⎡⎣3 0 0 −1

0 2 0 −1

0 0 −6 −1

⎤⎦ Q2 =

⎡⎣3 0 0 5

0 −1 0 5

0 0 15 5

⎤⎦
The corresponding two sets of projection matrices in P4 are obtained from the

ones above by following (2) of Section 3, where t = t1 for P0,Q0, t = t2 for P1,Q1,
and t = t3 for P2,Q2.

In accord with Proposition 5, the critical locus X 4 consists of three planes given

by the intersection of pairs of hyperplanes chosen from the following three:

6X3−X4 +(6t1dz)X5 = 0

−8X3−X4− (8t2dz)X5 = 0

6X3−X4 +(6t3dz)X5 = 0

and a residual variety defined by six polynomial equations of degree 3. Setting t1 =
0.1, t2 = 0.2, t3 = 0.3,dx = 1,dy = 0,dz = −1 ((dx,dy,dz) not being a unit vector,

the velocities of the bodies are given by λi
√

2) the six equations can be processed

by Macaulay2 c©[8] to reveal that beside the three planes defined above, the critical

locus consists of 3 quadrics Zi and a residual Bordiga surface W.

7.2 Two-Body Segmentation

We now consider case ii) of Section 3. In the notations of Proposition 3, the matrix

Pθ is of the form [P1(θ)| P2(θ)| P3(θ)| P4(θ)| R4(θ)].
For generic choice of the projections matrices P and R, the two centers of projec-

tion do not intersect, hence the critical locus is a smooth cubic surface in P4, ruled

in lines. It cuts the hyperplane X4 = 0 in the rational cubic curve which is the critical

locus for the projection of the first body and the the hyperplane X3 = 0 in the cubic

curve which is the critical locus for the projection of the second one.

Also in this case, in order to study the critical locus for three views, we chose a

specific case, corresponding to the following pairs of conjugate matrices P j and Q j:
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P1 =

⎡⎣2 0 0 −1 2

0 3 0 −1 0

0 0 6 −1 1

⎤⎦ Q1 =

⎡⎣−2 0 0 5 1

0 1 0 5 2

0 0 10 5 3

⎤⎦
P2 =

⎡⎣−2 0 0 −1 4

0 4 0 −1 4

0 0 −8 −1 0

⎤⎦ Q2 =

⎡⎣−4 0 0 3 −4

0 −2 0 3 1

0 0 −6 3 −1

⎤⎦
P3 =

⎡⎣3 0 0 −1 0

0 2 0 −1 2

0 0 −6 −1 −1

⎤⎦ Q3 =

⎡⎣3 0 0 5 2

0 −1 0 5 −1

0 0 15 5 1

⎤⎦
In accord with Proposition 5, the critical locus X 4 consists of three planes given

by the intersection of pairs of hyperplanes chosen from the following three:

6X3−X4 +X5 = 0

8X3 +X4 = 0

6X3 +X4 +X5 = 0

and of a residual variety consisting of three quadrics Zi and a Bordiga surface W.

8 Instability Results

The probability that, in practice, all points chosen in a scene constitute a critical

configuration is extremely low. Nonetheless, as pointed out in [11] and [3], it is of

practical relevance to understand the behavior of the reconstruction for configura-

tions of points that are near the critical locus. The simulated experiments described

in this section show that, in these circumstances, reconstruction solutions are ex-

tremely unstable. Although experiments were conducted in a variety of cases, we

focus our attention here on the situations described in Section 3 i) and ii), both in

the case of one view and of multiple views.

8.1 The Case of One View

This section contains a description of simulated experiments which were performed

with MATLAB�and a compilation of sample results. The philosophy of these ex-

periments is inspired by Appendix C Practical implications of [11]. Instability of

solutions obtained from configurations “close” to critical ones were tested. All ex-

periments involve the reconstruction of a projection matrix, therefore an implemen-

tation of the standard algorithm to compute the reconstruction of the projection ma-

trix given N points Xi in Pk and their projections xi in P2, was written by the authors
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generalizing [13, Section 6]. For convenience of the reader we summarize here the

strategy of the algorithm. Given N pairs (Xi,xi = P(Xi)), from λxi = P ·Xi, one gets

the N relations xi∧P ·Xi = 0 each of which corresponds to two equations. Since the

matrix P depends on 3k + 2 affine parameters, [(3k + 2)/2] + 1 pairs (Xi,xi) are

theoretically enough to get P. From a practical point of view, the computation is

approximate; thus the more pairs are involved the more precise the result is. The

resulting linear system is solved using the MATLAB�built-in Singular Value De-

composition function.

The instability phenomenon for one view is verified in various situations using a

unified approach, whose steps are described below.

1 Random generation of critical configurations
Let’s assume as usual that {Xi} is a critical configuration, with associated pro-

jection matrices P and Q, and associated irreducible critical locus Ck
(P,Q). As all

irreducible Ck
(P,Q) involved in Proposition 3 admit a rational parametrization, a

critical configuration {Xi} of N points can be generated using independent uni-

formly distributed sequences of parameters in assigned ranges. For all the results

reported below, N = 30 and parameters were chosen in the range [−10,10].
2 Perturbation of critical configurations

Points {Xi} are then perturbed with a k-dimensional noise, normally distributed

with zero mean and assigned standard deviation σ , obtaining a new configuration

{Xi
pert} which is now close to being critical. This configuration is now projected

via P and the resulting images are again perturbed with normally distributed 2D

noise with zero mean and standard deviation 0.01 to obtain {xi
pert}.

3 Reconstruction
The reconstruction algorithm quoted above is applied to pairs (Xi

pert ,xi
pert), i =

1, . . . ,N, to obtain an estimated projection matrix Prec.
4 Estimating instability

Notice that Prec is generated by SVD as a matrix with ||Prec||= 1. As projection

matrices are defined up to multiplication by a non-zero constant, we also normal-

ize P(ψ,φ), and identify the space of projection matrices with a quotient of the unit

sphere in R3k+3, S3k+2/�, where� denotes antipodal identification. It is simple

to account for antipodal identification when computing distances: for any pair

of matrices with unit norm A and B, we set d(A,B) = min(||A−B||, ||A + B||).
Using this notion of distance, the value of θ = φ/ψ corresponding to the P(ψ,φ)
that is closest to Prec is then computed. Extra care is needed here, as the distance

function to be minimized is defined over the real projective line P1[ψ,φ ]. The

above procedure is then repeated 1000 times for a fixed value of σ .
5 Displaying the results

Instability of the reconstruction is best highlighted by the spread of the obtained

values of θ . Results are then presented in graphs showing the standard deviation

of the values of θ against the values of σ utilized. As expected, the larger the

value of σ , the stabler the solution gets, with standard deviation of θ quickly

approaching zero (and the average value of θ also approaching zero).

The above process is now applied to examples 7.1 and 7.2.
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Fig. 1 Instability of reconstruction from one view: dynamic scene as in Section 3 i) and 7.1 in P4.
Standard deviation of θ , see step 4 in 8.1, for 1000 reconstructions, as a function of a fixed value
of the standard deviation of the 4D perturbation.
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Fig. 2 Instability of reconstruction from one view: segmented scene as in Section 3 ii) and 7.2 in
P4. Standard deviation of θ , see step 4 in 8.1, for 1000 reconstructions, as a function of a fixed
value of the standard deviation of the 4D perturbation.
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Instability Of Reconstruction for 7.1
This case refers to example 7.1, thus k = 4. To perform the experiment we have

chosen a specific numerical case. In particular v = (0,1,0)T has been chosen

as the common direction of all trajectories, and the projection matrices are the

following:

P =

⎡⎣1 0 0 0 0

0 1 0 0 t
0 0 1 0 0

⎤⎦ Q =

⎡⎣0 1 0 0 t
0 0 1 0 0

0 0 0 1 0

⎤⎦ .

In this case the critical locus has equations [θ 3,−θ 2−bt;θ ,1,b], in the notations

of example 7.1. Fig. 1 shows results obtained as described in steps 1 through 5

above. Here t was set to 1 for simplicity, and σ ∈ [0,0.5] with iterations every

0.0125.
Instability Of Reconstruction for 7.2
This case refers to example 7.2, thus k = 4. Also here, to perform the experiment,

we have chosen a specific numerical case. In particular the projection matrices

are the following:

P =

⎡⎣4 0 0 0 0

0 1 0 1 0

0 0 1 0 1

⎤⎦ Q =

⎡⎣0 0 1 1 0

0 1 0 0 1

1 0 0 0 0

⎤⎦ .

In this case the critical locus has equations [1, 4−v2

v(1+v) − u,−v− u, v2−4
v + u,u].

Fig. 2 shows results obtained as described in steps 1 through 5 above. Here σ ∈
[0,0.2] with iterations every 0.0005.
As Fig. 2, top graph, indicated that in this case reconstruction gets fairly stable

quite quickly as σ grows, Fig. 2, bottom graph, was obtained using a finer grid for

σ than in other previous cases. This enables one to see instability still occurring

when σ is in the range [0,0.005].

8.2 The Case of Multiple Views

Results of instability of projective reconstruction from several views in situations

described in Section 3 i) and ii) are contained in [3] and [4]. We reproduce here

the experiments from the latter, which leverage the implementation of algorithms

described in Section 5. Essential steps of the experimental process in these cases are

described below.

1 Generation of Critical Configurations
Given two sets of projection matrices {Pi} and {Qi}, i = 0,1,2 of the appropriate
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Fig. 3 Instability of reconstruction of a dynamic scene of multiple bodies moving along straight,
parallel trajectories with constant velocities, as described in Section 3 ii) and 7.1, near the critical
locus: frequency with which the reconstructed solution is close or not to the true solution as func-
tion of the standard deviation of the 4D perturbation. “Close” here is defined as being within half
the distance between the true solution and the known conjugate solution

type, see Subsections 7.1 and 7.2, equations of the Bordiga surface, which is the

essential part of the critical locus in both cases, are obtained with the help of

Maple [18]. Equations are then solved to retrieve critical configurations {Xi} of

at least 13 points in P4. Extra care is taken in order to obtain points with rational

coordinates, lying on the Bordiga surface, to avoid numerical approximations at

this stage.

2 Perturbation of critical configurations
Points {Xi} are then perturbed with a 4D noise, normally distributed, with zero

mean, and with assigned standard deviation σ , obtaining a new configuration

{Xi
pert}, which is close to being critical. This configuration is projected via

P1,P2,P3, where the P j′s are as in Subsections 7.1 and 7.2. The resulting im-

ages xij = P jXi
pert are again perturbed with normally distributed 2D noise with

zero mean and standard deviation 0.001 to obtain {xij
pert}.

3 Reconstruction
The trifocal tensor corresponding to the true reconstruction, TP and its known

conjugate, TQ, are computed respectively from P1,P2,P3 and Q1,Q2,Q3, where

again the P j′s and Q j′s are as in Subsections 7.1 and 7.2, using algorithm 1
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Fig. 4 Instability of reconstruction of a 2-body segmented scene as described in Section 3 ii) and
7.2 near the critical locus: Frequency with which the reconstructed solution is close or not to the
true solution as function of the standard deviation of the 4D perturbation.“Close” here is defined
as being within half the distance between the true solution and the known conjugate solution

described in Section 5. An estimated trifocal tensor T is computed from {xij
pert},

using algorithm 2 described in Section 5.

4 Estimating instability
As trifocal tensors are defined up to multiplication by a non-zero constant,

TP,TQ and T are normalized and the space of trifocal tensors is then identi-

fied with a quotient of the unit sphere in R27, S26/ �, where � denotes an-

tipodal identification. It is simple to account for antipodal identification when

computing distances: for any pair of tensors with unit norm A and B, we set

d(A,B) = min(||A− B||, ||A + B||). Using this notion of distance, we estimate

whether T is close to TP, or not, where “close” means within a hypersphere of

radius
d(TP,TQ)

2 . The above procedure is then repeated 1000 times for every fixed

value of σ .
5 Displaying the results

Results are then presented in Figs. 3 and 4, showing the frequency with which the

reconstructed solution is close or far from the true solution TP, against the values

of σ utilized. In both cases we ran a number of simulated experiments. Here we

present two graphs for each case, the dynamic scene, described in Section 3 i)

and 7.1, in Fig. 3, and the segmented scene, described in Section 3 ii) and 7.2,

in Fig. 4. In Fig. 3 it is σ ∈ (10−6,10−4), sampled every 10−6. In Fig. 4 it is

σ ∈ (10−6,10−2), sampled every 10−4.

In all graphs both the x-scale and y-scale are linear.
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These results show that reconstruction in both cases is indeed unstable for config-

urations of points that are close to the critical locus. For example, in the segmented

case, stabilization of the solution become apparent only for σ > 0.01.
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Constraints for the Trifocal Tensor

Alberto Alzati and Alfonso Tortora

Abstract In this chapter we give an account of two different methods to find con-

straints for the trifocal tensor T , used in geometric computer vision. We also show

how to single out a set of only eight equations that are generically complete, i.e. for

a generic choice of T , they suffice to decide whether T is indeed trifocal. Note that

eight is minimum possible number of constraints.

1 Introduction

The trifocal tensor is the mathematical object relating three camera views with each

other. It solves the following problem: given three cameras, whose positions and

internal parameters are known, and given the images of two of them, reconstruct the

image of the third one.

Mathematically, a camera is a projection π : P3 → P2, thus it is represented,

up to a nonzero factor, by a 3× 4 matrix M (of maximal rank). Now, given three

cameras π,π ′,π ′′ and the images of π ′ and π ′′, the recovery (from them) of the

image of π translates into a map P2×P2 → P2, which in turn is equivalent, up to a

nonzero factor, to a bilinear map R3×R3 →R3, i.e. it is a tensor T ∈R3⊗R3⊗R3,

the trifocal tensor; since it is defined up to a factor, T is actually an element of

P(R3⊗R3⊗R3) = P26.

Since not all tensors in R3⊗R3⊗R3 are trifocal tensors of a suitable configu-

ration of cameras, the problem arises of finding the constraints, i.e. equations that

determine all trifocal tensors.
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Alfonso Tortora
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Let us recall how a trifocal tensor is computed, given the three cameras (see

[2] ch. 14 and 15, whose notations and conventions we broadly follow). Choosing

suitable coordinates in the ambient space P3, we can always assume that the matrix

M of the camera π is of type M = [I3 | 0], then the matrices of π ′ and π ′′ are M′ =
[A | a4] and M′′ = [B | b4] respectively, with detA,detB �= 0,A = [a1 a2 a3],B =
[b1 b2 b3]. The 3×3×3 tensor T can be written as T = [T1 | T2 | T3], each Ti being

a 3×3 matrix—think of it as the i-th level “slice” of the “cube” T .

It is possible to prove that

Ti = aib�4 −a4b�i .

Also, the set of all trifocal tensors (what we call the trifocal locus) has dimension

18. At this point, the task of finding constraints for the trifocal locus Θ is seemingly

straightforward: just eliminate the parameters a’s and b’s in the relations above—

explicitly, they are the 27 equations (2) of section 4—and get equations in the entries

of T , and those are a full set of constraints. Since Θ has codimension 8 in its ambient

space P26, a full set of constraints contains at least eight equations. The elimination

is, alas, unworkable: too many variables and parameters, linked by relations of sec-

ond degree.

Thus we find constraints using two different methods: one based on group theory,

another using more down–to–earth geometric arguments. We give an account of

the results, with a broad outline of the arguments leading thereto, referring to our

forthcoming paper [1] for the details of the proofs.

Remark To use standard methods and results of group theory and algebraic ge-

ometry, it is easier to switch from R to C—technically, we want the base field to be

algebraically closed. Especially, a camera will be a projection P3(C)→ P2(C) and

trifocal tensors will belong to T ∈ C3⊗C3⊗C3. Nevertheless, the constraints that

we find, are defined over R.

2 The Trifocal Tensor

Let K be a field, either R or C; also, we denote V := K3,W := K4.

Definition 2.1 A (projective) camera is a projection π from a point C, the center of
the camera,

π : P3 = P(W ∗)→ P2 = P(V ∗).

It is represented by a 3×4 matrix M having maximal rank; hence x = π(X)⇔ x =
MX

The points X = (X1,X2,X3,X4)� ∈P3 and x = (x1,x2,x3)� ∈P2 are (contravariant)

column vectors; identifying π with M, which is itself determined up to a nonzero

factor, a camera is then an element of P(W ⊗V ∗) = P11.

The trifocal tensor describes the following geometric situation. Given three cam-

eras π,π ′,π ′′ in general position (i.e. whose centers are not collinear), a line L of
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the ambient space P3 is imaged as l = π(L), l′ = π ′(L) and l′′ = π ′′(L); conversely,

given two of these images, e.g. l′ and l′′, it is possible to recover the third one, l.
So we have a map T : (l′, l′′) ∈ P2∗ ×P2∗ → l ∈ P2∗, coming from a bilinear map

V ×V →V , hence it is represented by a tensor T = [t jk
i ]i, j,k=1,2,3 ∈V ⊗V ∗⊗V ∗, the

trifocal tensor.

Recall that a line l ∈ P2 = P(V ) is represented by a (covariant) row vector l =
(l1, l2, l3), so the trifocal tensor is 1–covariant and 2–contravariant and the map T is

given by

T (l′, l′′) = (t jk
i l′jl

′′
k )i=1,2,3

(here we observe the convention that repeated indices in covariant and contravariant

positions imply summation).

A trifocal tensor T , being defined up to a nonzero factor, is an element of P(V ⊗
V ∗ ⊗V ∗) = P26.

Definition 2.2 The trifocal map

T : (V ∗ ⊗W )3 →V ⊗V ∗ ⊗V ∗.

maps a triple of matrices (M,M′,M′′) representing three cameras to the trifocal
tensor T = [t jk

i ] associated to them.

Write M =

⎡⎣ m1

m2

m3

⎤⎦, where mi = (mi
1,m

i
2,m

i
3) is the (covariant) i–th row vector, and

similarly M′,M′′; also , let {i,r,s}= {1,2,3} and let ε(irs) =±1 be the sign of the

permutation

(
1 2 3

i r s

)
.

Proposition 2.3 ([1]) The entries of the trifocal tensor T = [t jk
i ], associated to the

matrices M,M′,M′′, are

t jk
i = ε(irs)det

⎛⎜⎜⎝
mr

ms

m′ j

m′′k

⎞⎟⎟⎠ . (1)

Note that, although defined for any triple of matrices, T (M,M′,M′′) is actually a

trifocal tensor only if the matrices represent cameras (i.e their ranks are maximal)

that are in general position (i.e. their centers are not collinear).

T induces a map, still referred to as the trifocal map

T : (P(V ∗ ⊗W ))3 → P(V ⊗V ∗ ⊗V ∗).

The map T is not defined everywhere, but only on an open dense set; in the lan-

guage of algebraic geometry, it is a rational map. The image of T contains the set

of all trifocal tensors, for all configurations of three cameras in general position. It
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is well known that ImT has dimension 18; since T, as a rational map, is not defined

everywhere, ImT is not closed in P26 = P(V ⊗V ∗ ⊗V ∗).

Definition 2.4 The trifocal locus Θ is the (Zariski) closure of the image of the tri-
focal map:

Θ := ImT.

A full set of constraints is a set of homogeneous polynomials (in the 27 variables

t jk
i ) whose common zeroes in P26 are exactly the elements of the trifocal locus Θ .

Since Θ has codimension 8 in its ambient space, the best one can hope for is to find

exactly eight polynomials that cut out Θ .

3 Constraints via Group Theory

The group Γ := GL(W ) of all linear transformations of W parametrizes also all

changes of coordinates in the ambient space P3 = P. Given a configuration of three

cameras π,π ′,π ′′ in general position, represented by the matrices M,M′,M′′, let

T = T (M,M′,M′′) be the relative trifocal tensor; if L is a line in the ambient space

P3 and l, l′, l′′ its images in the three cameras, then T (l′, l′′) = l. Suppose now to

change coordinates in P3 via γ ∈ Γ —recall that γ is a 4× 4 nonsingular matrix—

but to leave coordinates unchanged in the images P2 of the three cameras. What

happens is that the line L in the ambient space becomes γL, while its images l, l′, l′′
stay put, and π,π ′,π ′′ are represented by Mγ,M′γ,M′′γ .

If T̃ = T (Mγ,M′γ,M′′γ) is the trifocal tensor relative to this “new” configura-

tion, since it satisfies the same relation T̃ (l′, l′′) = l as before, then T̃ = T up to a

nonzero factor. Technically, this means that the trifocal map is invariant under the

action of the group Γ , i.e.

∀γ ∈ Γ T (Mγ,M′γ,M′′γ) = T (M,M′,M′′).

Similarly, the group G := GL(V ) parametrizes changes of coordinates in the image

P2 = P(V ∗) of a camera. Arguing as before, it can be seen that the trifocal map is

equivariant under the action of the group G3 := G×G×G, i.e.

∀g1,g2,g3 ∈ G T (Mg1 ,M′g2 ,M′′g3) = T (M,M′,M′′)(g1,g2,g3)

(there is a technical point here: the action of G on V ∗ is the so called dual action).

The equivariance of the trifocal map implies that its image (whose closure in P26

is the trifocal locus) is invariant under the action of G3 on V ⊗V ∗ ⊗V ∗, thus it is an

orbit of this action.

Such an orbit has long since been known to mathematicians, so we can use re-

sults of [3] to pinpoint the orbit whose elements are trifocal tensors and find the

constraints.

We now give a brief summary of the results of [3]. Given a tensor A∈V ⊗V ⊗V ,

in a fixed coordinate system A is represented by a 3× 3× 3 numerical tensor A =
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(ai jk)i, j,k=1,2,3; in the notation of [3], we can identify A with a trilinear form (on V )

F(x,y,z) = ∑i jk ai jkxiy jzk, where x = (x1,x2,x3), y = (y1,y2,y3), z = (z1,z2,z3) are

three sets of three variables each.

The matrix Hx = [ ∑i ai jkxi]i, j=1,2,3, associated to A (or F), is a 3× 3 matrix

whose entries are linear forms in the variables xi; define X(x) := det(Hx), a cu-

bic form in the xi. Similarly, we consider the matrices Hy = [ ∑ j ai jky j]i,k=1,2,3 and

Hz = [ ∑k ai jkzk] j,k=1,2,3, and define the corresponding cubic forms Y (y) := det(Hy)
and Z(z) := det(Hz).

The main results of [3] are:

i the projective classes of the plane cubics, given by the following equations

X(x) = 0,Y (y) = 0,Z(z) = 0 in P2, are invariants of the tensor A with respect

to the G3 action, defined in [3], on the trilinear form F ;

ii the projective classes of the plane cubics determine the orbit of the tensor A.

At this point, we only need an actual trifocal tensor, and compute the relative plane

cubics X(x) = 0,Y (y) = 0,Z(z) = 0, in order to find the orbit whose elements are all

trifocal tensors. Such a trifocal tensor Δ = [d jk
i ] is e.g.

Δ1 =

⎡⎣ 0 −1 0

0 0 0

1 0 0

⎤⎦ , Δ2 =

⎡⎣ 0 0 0

0 −1 0

0 1 0

⎤⎦ , Δ3 =

⎡⎣ 0 0 0

0 0 0

0 −1 1

⎤⎦ ,

where we write Δi := [d jk
i ] j,k=1,2,3, i = 1,2,3. The trilinear forms associated to Δ

are

X(x)≡ 0, Y (y) = y2
3(y3− y2), Z(z) = z2

2(z3− z2).

Looking at the table of [3, p. 689], we see that there is a unique orbit with these

invariants—it is the one corresponding to the entry in the second row and last col-

umn in that table. Hence, a numerical tensor T = [t jk
i ] is a trifocal tensor if and only

if the associated cubics are of the following types: X(x) is identically zero, Y (y) and

Z(z) are reducible, both being the union of a double line and another line.

To translate these conditions into equations on the entries of T we recall that the

coefficients of X(x),Y (y),Z(z) are in turn homogeneous polynomials of degree three

in the entries t jk
i of T , thus X(x)≡ 0 amounts to impose that all these 10 coefficients

are zero, i.e. ten cubic equations.

The requirement that Y (y) is the union of a double line and another line is equiv-

alent to the following two conditions:

(i) Y (y) has a triple point (so that the curve is reducible into 3 concurrent lines) and

(ii) given any three non concurrent lines, e.g. the coordinate lines (in P2), each of

them has at least a double intersection with the curve Y (y).
Condition (i) translates into imposing that the Hessian of Y (y) be identically zero.

The Hessian being in this case a form of degree three (in y), whose coefficients

are homogeneous polynomials of degree nine in the t jk
i , condition (i) is eventually

equivalent to ten equations of degree 9. Condition (ii) is shown (cf. [1]) to be equiv-

alent to three equations of degree 4 in the coefficients of Y (y), hence of degree 12
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in the t jk
i . Clearly the number of equations arising from conditions (i) and (ii) must

be doubled, taking into account Z(z); the upshot is the following

Theorem 3.1 ([1]) A complete set of constraints for the trifocal locus Θ is given by
10 equations of degree three, 20 equations of degree 9 and 6 equations of degree 12
on the 27 entries of a generic 3×3×3 tensor.

4 Constraints via Geometry

In the previous section we saw that the trifocal map T is invariant under the action

of Γ = GL(W ) on P(V ∗ ⊗W ); since M, the matrix representing the camera π has

rank three, then there exists a γ ∈ Γ such that Mγ =

⎡⎣ 1 0 0 0

0 1 0 0

0 0 1 0

⎤⎦. In other terms,

it is always possible to choose coordinates in the ambient space P3 = P(W ∗) so

that the matrices representing the three cameras are of the form M = [I3 | 0],M′ =
[a j

i ],M
′′ = [b j

i ]. For such a choice of matrices, the relations (1) expressing the entries

of the trifocal tensor T = [t jk
i ] become

t jk
i = a j

i bk
4−a j

4bk
i . (2)

As pointed out in the introduction, finding the constraints of Θ by eliminating the

parameters in (2) seems to be computationally too hard, due to the great number

of variables and parameters (27 and 24 respectively) linked by relations of second

degree. We write now a tensor T as T = [T1 | T2 | T3], where Ti is a 3× 3 matrix

Ti = [t jk
i ] j,k=1,2,3. We denote by t j•

i and t•ki the j-th row vector and the k-th column

vector of the matrix Ti respectively; for example t3•
2 = (t31

2 , t32
2 , t33

2 ). We denote by Ri
and Ci the subspaces (of K3) generated by the row vectors and the column vectors

of Ti respectively, i.e. Ri = 〈t1•
i , t2•

i , t3•
i 〉 and Ci = 〈t•1i , t•2i , t•3i 〉.

With these notations, (2) becomes

Ti = aib�4 −a4b�i i = 1,2,3 (3)

where ai and bi are the i-th column of the matrices M′ and M′′ respectively; thinking

of Ti as an element of V ∗ ⊗V ∗ �K3⊗K3, we have

Ti = ai⊗b4−a4⊗bi. (4)

Our goal is to find conditions that a tensor T = [t jk
i ] must satisfy in order to be of

the form (3)—or equivalently (4).

To begin with, the spaces Ri and Ci must have dimension (at most) two: indeed,

Ri = 〈b�i ,b�4 〉 and Ci = 〈ai,a4〉; algebraically, this implies

detTi = 0, i = 1,2,3. (5)
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Now, assuming dimCi = 2, i = 1,2,3, the subspaces C1,C2,C3 must intersect, in K3,

along a subspace of dimension (at least) one, since C1∩C2∩C3 ⊇ 〈a4〉. This in turn

means that, given vectors vi normal to Ci, i = 1,2,3, the vectors vi are coplanar,

hence linearly dependant.

The vectors t•ri ∧ t•si ,r �= s are either zero or perpendicular to Ci and, since

dimCi = 2, at least one of them is nonzero (if dimCi < 2, all of them are zero).

Thus the condition dimC1∩C2∩C3 = 1 implies

det(t•r1
1 ∧ t•s1

1 t•r2
2 ∧ t•s2

2 t•r3
3 ∧ t•s3

3 ) = 0; (6)

these are relations of degree six, and there are 27 of them. Likewise, considering the

spaces Ri another 27 relations of degree six occur; they are

det

⎛⎝ tp1•
1 ∧ tq1•

1

tp2•
2 ∧ tq2•

2

tp3•
3 ∧ tq3•

3

⎞⎠= 0. (7)

Being now in the situation: dimCi = dimRi = 2,dimC1 ∩C2 ∩C3 = dimR1 ∩R2 ∩
R3 = 1, we want that Ti ∈Ci⊗Ri be in the form (4). This is a little trickier to trans-

late into algebraic relations; in [1] we show that it implies the following algebraic

relations

(tp•
k ∧ tq•

k ) ·T i · (t•rj ∧ t•sj ) = 0, (8)

for any i, j,k, p,q,r,s = 1,2,3, with j �= i, k �= i, p �= q, r �= s, where · represents

the usual row–column product of matrices—recall that tp•
k ∧ tq•

k is a row vector and

t•rj ∧ t•sj is a column vector, so we end up with a scalar. These are quintic relations

and there are 108 of them.

The relations (5)—(8) just found are necessary conditions for a tensor to be tri-

focal, i.e. of the form (3). In general they are not sufficient. More precisely, (5)—(8)

are sufficient if we assume furthermore that dimCi = dimRi = 2 (note that (5) im-

plies only that dimCi = dimRi ≤ 2) and dim∩Ci = dim∩Ri = 1 (while (6) and (7)

implies only that dim∩Ci,dim∩Ri ≥ 1). A careful analysis shows that the locus of

(5)—(8) in P26 has several components, of which the trifocal locus Θ is one of

maximal dimension. Summing up:

Theorem 4.1 ([1]) Let Ω be the subvariety of P26 defined by equations (5)—(8),
then the trifocal locus Θ is an irreducible component, of maximal dimension, of the
variety Ω .

5 A Minimal Set of Constraints

Both set of constraints that we found contains many more relations than the possible

minimum, i.e. eight relations.

Whether it is possible to achieve such a minimal complete set of eight constraints

is not yet clear (technically, this means that the trifocal locus Θ is a complete inter-
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section); the best we can do is to find a set of eight constraints that is generically
complete, i.e. they cut out Θ almost everywhere (outside of a Zariski closed subset

of P26).

We do so by taking all three cubic equations (5), two sextic equations, one chosen

among the relations (6) and another among (7), and three quintic equations among

(8), one for each of the slices T i; then we add, as inequalities, two suitably chosen

2×2 minors of the matrices

A :=

⎡⎣ tr1•
1 ∧ ts1•

1

tr2•
2 ∧ ts2•

2

tr3•
3 ∧ ts3•

3

⎤⎦ , B := [t•p1
1 ∧ t•q1

1 t•p2
2 ∧ t•q2

2 t•p3
3 ∧ t•q3

3 ].

For example, we take, besides (5), the following sextic equations

det(t1•
1 ∧ t2•

1 t1•
2 ∧ t2•

2 t1•
3 ∧ t2•

3 ) = 0,

det(t•11 ∧ t•21 t•12 ∧ t•22 t•13 ∧ t•23 ) = 0
(9)

and quintic equations

(t1•
2 ∧ t2•

2 ) ·T 1 · (t•12 ∧ t•22 ) = 0,

(t1•
1 ∧ t2•

1 ) ·T 2 · (t•13 ∧ t•23 ) = 0,

(t1•
1 ∧ t2•

1 ) ·T 3 · (t•12 ∧ t•22 ) = 0.

(10)

We denote the quartic inequalities by

F(t) �= 0, G(t) �= 0 (11)

where: F(t) is the determinant of the 2×2 submatrix of the matrix A, determined by

the first and second rows and the first and second columns; G(t) is the determinant

of the 2×2 submatrix of the matrix B, determined by the first and second rows and

the second and third columns.

The idea is that the inequalities (11), coupled with (5), imply that dimCi =
dimRi = 2 and dim∩Ci = dim∩Ri = 1, and also that all vectors t1•

1 ∧ t2•
1 , t1•

2 ∧
t2•
2 , t•12 ∧ t•22 , t•13 ∧ t•23 are nonzero, so the argument of the previous section, showing

that (5), (9) and (10) are necessary conditions, can be reversed; what we get is the

following

Theorem 5.1 ([1]) Let I be the ideal generated by the eight polynomials (5), (9) and
(10), then it defines the trifocal locus Θ , outside the hypersurface F(t)G(t) = 0.
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Review of Techniques for Registration of
Diffusion Tensor Imaging

Emma Muñoz-Moreno, Rubén Cárdenes-Almeida and Marcos Martin-Fernandez

Abstract Image registration is a common image processing task, and therefore,

many algorithms have been proposed and described to carry it out for different

image modalities. However, the application of these algorithms to diffusion ten-

sor imaging is not straightforward due to the special features of this kind of data,

where a tensor is defined at each voxel. The information provided by the diffusion

tensor is related to the anatomical structures in tissues, and this relation should be

preserved, even though the image has been transformed by a registration proce-

dure. On the other hand, the registration problem can be viewed as an optimization

problem, where a similarity measure has to be maximized. The appropriate defini-

tion of this similarity measure is indeed an important issue for the registration of

diffusion tensor images. In this paper, we compile the different approaches for the

registration of diffusion tensor images that have been published. Special attention is

paid to the aforementioned topics: how to preserve the coherence between the ten-

sor and the underlying tissue structure, and how to measure the similarity between

two diffusion tensors. Methods to evaluate results are also reviewed, since a reliable

validation leads to more conclusive results, specially in the comparison of differ-

ent techniques. Most challenging issues for diffusion tensor images registration are

underlined, and open research lines about this topic are pointed out.

1 Introduction

Diffusion Tensor Imaging (DTI) [8] has become a powerful imaging technique,

playing an important role in neurological and neurosurgical applications, since it

allows to identify and visualize fiber tracts and, thus, to analyze the connectivity

inside the brain white matter. The Diffusion Tensor (DT) represents the local diffu-
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sion anisotropy of water molecules. The diffusion of water molecules in the brain

is constrained by the myelin coat of the axons that constitute the nerve fibers, and

therefore, there is high anisotropy inside the fiber tracts, where the diffusion occurs

mainly in the direction along the fiber. Thus, it is possible to identify anatomical

structures that cannot be visualized by means of other image modalities. One of the

most extended applications of DTI is the tractography or fiber tracking, that is the

computation of the nerve fiber trajectories inside the brain [30]. The algorithms that

compute such trajectories are mainly based on the information given by the principal

eigenvector of the tensor, that is related to the principal diffusion direction.

Image registration consists in the assessment of a geometric transformation that

maps one image into another, so that objects or structures in both images are

aligned [21]. This technique has a great importance in medical image process-

ing, since it allows, for instance, diagnosis assistance, patient follow-up or surgi-

cal planning applications. The registration of DT-MRI (Diffusion Tensor Magnetic

Resonance Image) is useful for the diagnosis and following-up of diseases such

as epilepsy, multiple sclerosis or tumors [42]. Moreover, brain connectivity atlases

can be built by spatial normalization of a set of images, what is done by applying

registration algorithms [46]. Atlases based on DT-MRI can be used in the study of

pathologies such as schizophrenia or Alzheimer diseases.

A large number of works dealing with the registration of traditional image modal-

ities, whose values are scalar magnitudes, have been reported. For instance, a review

of image registration techniques can be found in [54]. Nevertheless, literature about

DTI registration is not yet so extensive, and there is not an exhaustive review of

existing techniques. The most remarkable problem definition appears in [23], where

the problem description is complemented with a brief review of the state of the art,

and in [20], where a rigorous statement for the DTI registration problem is intro-

duced. The main difference between scalar and tensor registration is that, in the

latter case, not only a spatial transformation must be computed, but also the tensor

data in each voxel must be transformed, to remain consistent with the underlying

fiber structures. This is the main reason, but not the only, because of which the

scalar registration algorithms cannot be directly applied to tensor images.

Another challenging issue in the DTI registration problem, is the choice of the

appropriate similarity or error measure between tensor data. The registration algo-

rithms are usually driven by a measure that must be optimized. Its definition has an

influence on the registration result, that is not negligible. Hence, several criteria have

been proposed in the scalar case in order to achieve the best registration result. Some

of these measures have been extended to the tensor case and other new ones have

also been proposed to manage the special features of DT. Moreover, usual similar-

ity criteria for scalar data are also used for scalar magnitudes associated with DTI,

such as anisotropy measures (see Apendix) or the tensor eigenvalues. They can be

also computed for images related to the acquisition procedure such as the baseline

T1-weighted or T2-weighted images.

Regarding to the quality evaluation, there is not a common method to assess the

quality of a registration algorithm and to compare it with other proposals. In some

cases only visual inspection is considered, whereas in others, quantitative error mea-
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sures are defined. The quality assessment is an important issue, since it is necessary

for achieving conclusive results in the comparison of the different techniques for

DTI registration.

In this chapter, an extensive review of the state of the art of DTI registration is

presented. The chapter is structured as follows: in the next section, the problem of

DT-MRI registration is described, paying special attention to new challenges that

arise from this kind of images. In Sect. 3, registration algorithms that have been

applied to DT-MRI are compiled. Next, a review of the similarity measures defined

for DTI is shown in Sect. 4, whereas Sect. 5 exposes different methods to preserve

the coherence between tensors and the underlying structure. The evaluation of the

registration results is treated in Sect. 6, where different techniques to validate the

registration performance are described. Finally, the conclusions are summed up in

Sect. 7.

2 Registration of DT-MRI

As previously defined, image registration is the procedure that finds the geometri-

cal transformation that better matches two images, so that structures in both images

become aligned [21]. Usually, the optimal transformation is searched within a previ-

ously defined set of allowed functions, such as rigid, affine or higher order. The two

images implied in the registration procedure are named moving and fixed image.

The transformation obtained by the registration algorithm is applied to the moving

image, so that the structures in the registered image are supposed to be aligned with

the structures in the fixed image.

Because of the special features of DT images, registration of this kind of images

is an involved task. On the one hand, tensor provides more information than a simple

scalar value, and, for this reason, it provides more data for finding the matching

between images, mainly in areas that seem homogeneous in other modalities. On the

other hand, this more complete information implies that more complex processing is

required for registration of DT images. The advantages of exploiting the information

provided by the DT have been proved in papers such as [4, 31, 33]. Likewise, the

problems and peculiarities of DT registration have also been widely analyzed in the

literature.

The two main topics that should be taken into account in DT-MRI registration

are the coherence between the tensors and the transformed image structures and the

computation of similarity or error measures to drive the algorithm. Other topics are

related to the interpolation of the diffusion tensor field, the computational load and

the evaluation of results. Below, we comment in detail these issues.

The DT orientation in a voxel is related to the diffusion direction, and therefore,

to the fiber structure within the brain. If a geometrical transformation is applied

to the image grid, the fiber structure is also modified. If DTs are directly arranged

in their new locations, incoherence between their orientation and the fiber orienta-

tion arises. For this reason, each DT should be transformed in order to preserve the
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coherence with the underlying image structure. It can be viewed in the synthetic

example in Fig. 1, where tensors are represented by ellipses, whose axes length and

directions are given respectively by the tensor eigenvalues and eigenvectors. The

image in Fig. 1.a is rotated, and the tensors are translated to the new locations, so

the image in Fig. 1.b is obtained. The tensor orientation does not coincide with the

fiber orientation, since fiber has been rotated. Therefore, the same rotation should

be applied to tensors in order to be aligned with the fiber, as it is shown in Fig. 1.c.

Thus, the warping of DT is necessary to realign the diffusion direction with the fiber

structure, and some strategies have been developed to tackle this problem. They as-

sume that the size of a DT is related to the amount of diffusion per volume unit,

and that for this reason it should remain constant, although the image size changes.

Therefore, they search for a rotation matrix that should be estimated from the image

transformation, to reorient the tensor without changing its size. Although in [23]

it is explained that the assumption of only rotations may be not valid when fibers

cross, it is considered reasonable, since it is said that effects of the fiber crossing are

minor in real brain images. The methods that have been proposed for estimate the

tensor warping are detailed in Sect. 5.

(a) (b) (c)

Fig. 1 Synthetic example that shows the need for warping tensors after the transformation of the
tensor field. a) Synthetic tensor field with a vertical fiber; b) rotation of (a) without tensor warping;
c) rotation of (a) with tensor warping.

The second issue that must be considered in DT-MRI registration is related to

the measure that drives the registration algorithm. Most registration algorithms are

based in a measure of similarity between the moving and fixed images. This mea-

sure must be optimized along the registration procedure in order to achieve the best

matching. Conventional scalar measures may not reflect all the tensor features, such

as its orientation and shape. In order to make the most of the information provided

by the tensor, specific DT similarity measures have been defined and used to drive

the registration algorithms. In the literature, some scalar similarity measures have

been extended to the tensor case, such as correlation index [40] or Euclidean dis-

tance based measures [4]. In other cases, new criteria based on DT features have
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been considered [33, 34, 52, 53]. In Sect. 4, similarity measures that have been used

for DT-MRI registration are thoroughly reviewed.

The two previous problems are the more tackled in works about DTI registra-

tion, and different approaches have been developed to correctly warp tensors or to

define an appropriate cost function for the algorithms. Nevertheless, there are other

important topics that are related to the registration task, but less attention has been

paid to them. For instance, the tensor field interpolation method influences the reg-

istration result although it is usually not described when registration algorithms are

proposed.

Usually, registration algorithms require the application of interpolation strate-

gies. For instance, it is common the use of multiresolution schemes to obtain the

geometrical transformation with lower computational burden. In these schemes, in-

terpolation is necessary to evolve from the displacement field or the transformed

image at a given level to the next higher resolution level. Also, interpolation is re-

quired when the computed transformation is applied to the moving image, since

the resulting new location for a voxel does not necessarily correspond to a grid

point in the fixed image. Moreover, some registration algorithms consist in an it-

erative scheme to optimize a similarity measure. In these cases, interpolation must

be done at each iteration step. This shows the importance of interpolation inside

a registration scheme. However, this topic has been left aside in the description of

registration techniques for DTI. Only in few works the interpolation method applied

to the tensor field is mentioned. This is the case of [31] that carries out a trilinear

interpolation and [33] where Log-Euclidean metric is used to interpolate the tensor

field. Nevertheless, specific works about DT interpolation have been done, which

show that the specific tensor features should be taken into consideration to avoid

undesired effects in the interpolation result. For instance, if Euclidean metrics are

considered a swelling effect may appear, that makes the determinant of the mean

tensor of a given set is bigger than the tensors of such set [5]. Thus, specific algo-

rithms have been described for tensor field interpolation, that are usually based on

non-Euclidean metrics [5, 11].

Regarding the computational load, it is obvious that tensor processing implies

higher burden than scalar processing. For this reason, multiresolution schemes be-

comes even more important in this case. An alternative approach is the application

of the registration algorithm only to areas of higher local structure and then, to inter-

polate the transformation in the rest of the image, as implemented in [40]. Anyway,

the importance of the computation time always depends on the requirements of the

application for which registration is used.

Finally, another open issue is how to evaluate the performance of a registration

algorithm. The assessment of the quality of matching can be made both qualitatively

and quantitatively. In the literature, several algorithms have been evaluated by visual

inspection of the results [26, 40]. Regarding quantitative evaluation, the problem is

closely related to the definition of similarity measures appropriate for DT, and in

some papers, the same measures defined to drive the algorithm have been used to

evaluate the registration result [4]. In most cases, the objective of the registration

procedure is to find matching between structures, and therefore quality assessment
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could require the definition of structural based measures. Thus, some authors com-

pare the fiber structures computed from the fixed DT-MRI and from the transformed

moving image in order to asses the validity of their algorithms. In other cases, voxel

based measures that compare for instance the eigenvector directions, or the tensor

component values have been described. A more detailed description of evaluation

techniques is compiled in Sect. 6.

3 Review of DT-MRI registration Algorithms

Several of the well-known registration methods whose goodness have been widely

proved with other image modalities have been adapted to deal with DT-MRI reg-

istration. In this section, these methods are classified according to the degree of

freedom of the desired transformation: rigid, affine and elastic registration. We will

focus on the algorithms themselves. The considerations about reorientation strate-

gies and similarity measures, are detailed in further sections.

In some cases, the registration algorithm is applied to scalar images in order to

compute the transformation, and this transformation is then applied to the tensor

image. Such scalar images may be derived from the tensor data, such as anisotropy

images (described in the Appendix), or they may be related to DT-MRI acquisition

procedure, such as T1 or T2 weighted images or Diffusion Weighted Magnetic Res-

onance Images (DW-MRI), which are other kind of magnetic resonance images, that

reflect the diffusion inside brain.

3.1 Rigid Registration

The rigid registration allows to find the best rigid transformation (translation and

rotation) that makes two images match. It is used to align images from different

acquisitions of the same patient, or as a first registration step, to align the basic

structures before applying more complex registration algorithms.

Since a rigid transformation can be expressed in a 3D space with six parameters

(three for translation and three for the rigid rotation), the registration problem can

be reduced to the resolution of a linear system of equations. Thus, in [25] a closed-

form expression is given to compute the parameters of the rigid transformation that

matches two DT-MRIs.

3.2 Affine Registration

An affine transformation allows rotation, translation and scaling of the image, and

therefore, for 3D images, is defined by twelve parameters. Just like rigid, affine reg-
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istration can be reduced to solve a linear system of equations if the correspondence

between a set of landmarks in both images is known. In this case a closed alge-

braic form for registration can be achieved as proved in [25]. If this correspondence

between landmarks is not known, an iterative multiscale scheme can be applied to

compute the coefficients of the affine transformation. These coefficients are those

that minimize the difference between tensors in both images. In Sect. 4 we further

describe how this difference is computed.

Additionally, some authors use affine registration due to its simplicity to better

analyze other features of the registration algorithm. This is the case of [2, 3, 15, 16],

where reorientation influence is analyzed or [33, 34] that are focused on the defini-

tion and performance analysis of similarity measures. The affine registration in [16],

is carried out by means of an optimization method called gradient annealing, which

consists in a combination of a local and a global optimization, and such implemen-

tation is used in [17] to compare different similarity measures.

As stated previously, in some cases, registration is applied not directly over the

tensor field itself, but over some quantities related to the tensor. This is the case

in [28], where an affine transformation is computed by means of a multichannel

affine registration algorithm between DW-MRI. Then, the registered tensor field is

calculated from the registered DW-MRIs.

In some cases the affine registration belongs to a more complex registration al-

gorithm. Thus, in [18, 52, 53] a piece-wise affine registration algorithm for DT-MRI

is proposed. Thus, the images are split into regions, and the affine transformation

is computed for each region, whose coefficients minimize a given target function.

In [52, 53] the target function is based on the diffusion profiles, whereas in [18],

the objective function is based on the differences between anisotropy measures and

eigenvectors in both images. It is necessary to impose continuity conditions in the

interfaces between regions to ensure a smooth transformation. Moreover, a mul-

tiscale framework is defined and therefore the final transformation is not globally

affine, but it allows higher degrees of deformation.

Furthermore, in [45], affine registration is carried out on the Fractional Anisotropy

(FA) images, and the transformation is then refined, so higher order deformations

are allowed. The refinement is based on features of the tensor at each voxel, that are

computed by means of a bank of oriented Gabor filters. These features are arranged

into an attribute vector, and the difference between such attribute vectors in voxels

of both images is considered to obtain the best matching.

Moreover, affine registration is performed in some cases to align images before

the application of higher order registration algorithms such as the ones compiled in

the next section.

3.3 Elastic Registration

We call elastic registration to those algorithms that search for curved transforma-

tions, that is, transformations that allow higher degree of freedom than global trans-
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lation, rotation and scaling. Thus, some of the aforementioned registration algo-

rithms, such as [18, 52, 53] could be also included in this section, since the global

transformation is curved, although they are based on locally affine registration.

Elastic matching algorithms consider the image an elastic medium that is de-

formed by certain forces under some constraints. These constraints are represented

by an energy term that should be optimized by means of the registration algorithm.

Different approaches can be distinguished within this group of techniques: first, the

registration can be viewed as an optimization problem, where a displacement field

is searched, that minimizes the difference between the fixed and moving images.

The optimum displacement field can also be found by means of a block matching

algorithm, that searches for correspondences between templates in both images. In

other cases, the registration is viewed as a variational problem, so that an optimum

functional that makes both images to be aligned is searched from a space of contin-

uous functionals. Such functionals can depend on every tensor components, or on

other magnitudes, such as the eigenvectors or anisotropy measures. Another group

of techniques are the multichannel schemes that have been applied to DT-MRI to

elastically register the images. Finally, we mention the elastic algorithms that have

been applied to images related to DT-MRI, instead of to the DT-MRI itself.

Displacement Field-Based Registration Algorithms

The first approach to the DT-MRI elastic matching has been described in [4], where

a multiresolution elastic matching algorithm is applied. The displacement at each

voxel is computed by minimizing a given energy function, that is composed by a

deformation and a similarity term. Since elastic matching has already been defined

and broadly used for scalar images registration, higher efforts have been made in

the definition of the similarity term [4, 24]. The tensor reorientation is included in

the energy term in [24],

Another earlier approach to DT-MRI registration is the block matching algorithm

described in [40]. It searches for correspondence between templates in both images.

On behalf of better results and lower computation burden, the matching is only

applied in highly structured areas, and then the displacement field is interpolated all

over the image. The algorithm that is used to detect structured areas can be found

in [38], and the displacement field is interpolated by an algorithm based on the

Kriging estimator [37].

Variational Frameworks

There are a number of works that focus the registration problem as a variational

problem. An exhaustive description of the DTI registration from this point of view

can be found in [20], where analytical expression of the gradient of the energy func-

tion is developed. Also in [14], a variational framework is considered to estimate

the optimum transformation between two DT-MRIs. Moreover, this framework is
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extensible to higher order tensors, which allows to better describe the diffusion,

specially in areas where fibers are crossing. Likewise, [6] searches for the optimum

transformation inside a variational framework, where a four-term energy function is

defined to obtain a smooth transformation that correctly warps both the image and

the tensors.

Moreover, in some cases the transformation is imposed to be diffeomorphic.

Thus, the elastic registration approach in [12, 13] finds the optimum dipheomorfic

transformation that matches two DT-MRIs by means of the resolution of a varia-

tional problem. A multiscale scheme is again used to achieve better matching in

reduced computational time. In [13] the registration is carried out between the vec-

tor fields corresponding to the major eigenvector of the tensor, meanwhile in [12]

all the components of the tensor are considered. It is shown that the tensor matching

performance is better than the vector matching, which is better than the intensity

matching. Therefore, it is shown than the more information taken into account to

match the images, the better matching is achieved. Diffeomorphism is also searched

in [51], that applies to DTI the diffeomorphic version of the demons algorithms

proposed in [44].

Multichannel Approaches

In several cases, the registration of DT-MRI has been viewed as a multichannel

registration problem, where scalar channels out of the DT have been defined, for

instance, DT trace, its components or some anisotropy images. In Fig. 2 some ex-

amples of these magnitudes are shown, namely, Fractional Anisotropy (FA), Mean

Diffusivity (MD) and T2-weighted images, three tensor components and the three

tensor eigenvalues. FA and MD are defined in Eqs. (17, 20) in the Appendix. A mul-

tichannel elastic registration based on radial basis function is proposed in [35, 36],

where different channel configurations are defined. Specifically, in [35] combina-

tions of the following three channels are considered: trace of the tensor, Relative

Anisotropy (RA) index and skewness measure (see Eqs. (18, 25) in the Appendix

for definition), whereas in [36] two other multichannel configurations are taken into

account: the former consists of two channels, the trace and the RA; and the latter

consists of six channels, each of them corresponding to one of the diffusion tensor

components. Better results are achieved with the second approach, which exploits

all the information that the tensor provides.

A multichannel approach is also introduced by [26], that implements a multi-

channel demons algorithm [43]. A multiresolution scheme is also defined in order

to achieve better matching with lower computational times. Three channel config-

urations are compared: only the T2 channel, the T2 channel and the three tensor

eigenvalues; and the T2 channel and the six tensor components. Opposite to the

conclusions in other works, where the importance of including orientation informa-

tion is highlighted, [26] argues that the use of the tensor components or the tensor

eigenvalues leads to similar results, though the seven channel configuration is com-

putationally more expensive. Multichannel demons algorithm is also used in [31]
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Scalar magnitudes associated with tensor data: (a) FA, (b) MD, (c) T2-weighted, (d), (e),
(f) DWI in three different gradient directions, and (h), (i), (j) eigenvalues (from higher to lower)
represented in a RGB color map.

for spatial normalization of DT-MRI. Among the six combinations of channels that

are compared, the one that uses all the tensor components achieves the more reliable

results.

Elastic Registration of Scalar Images

As explained above, there are some works that compute the transformation from

scalar images related to the DT-MRI, instead of directly from the tensor image.

In the approach proposed by [50] the HAMMER (Hierarchical Attribute Matching

Mechanism for Elastic Registration) [41] algorithm is applied to the T1-weighted

image, and then the transformation obtained by the registration procedure is applied

to the DT images. This chapter focuses more on the reorientation of DT after the
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transformation, instead of on the registration algorithm itself, and for this reason a

specific registration method has not been developed.

4 Similarity Measures

One of the most important challenges in DT-MRI registration is the definition of

an appropriate measure to quantify similarity between DTs. Since registration al-

gorithms have been applied to DTI, similarity measures for this kind of data have

become necessary. In some cases, cost functions are defined from scalar magnitudes

computed from the DT (anisotropy measures, trace...) or other images related to the

DT-MRI such as T1 or T2-weighted images, see Fig. 2. Thus, in [50] T1-weighted

images are used for the registration and in [27], registration is applied to the FA

images. Moreover, measures based on T1-weighted images, and based on the trace

and the Volume Ratio (defined in the Appendix, Eq. (19)) are compared with other

criteria based on the whole DT in [4]. Usual criteria for the assessment of simi-

larity between scalar images can be applied to these magnitudes, such as squared

differences (SD) or correlation [4].

Scalar based similarity measures have also been used in multichannel algorithms:

the demons registration defined in [26, 31, 51] are based on the SD of each of the im-

age channels, whereas the multichannel affine registration described in [28] is based

on mutual information [47] computed for each channel. Furthermore, a definition

for multivariated mutual information can be found in [35, 36].

A different approach consists in the computation of measures regarding all the

information provided by the tensor. In most cases, the extension of the SD to the ten-

sor case, that is the Frobenius norm of the difference between two DT, is computed.

This measure can be viewed as the Euclidean distance (ED) between two tensors.

The formulation of the ED between two DTs, A and B, whose components are Ai, j
and Bi, j, is given by:

ED(A,B) =

√√√√ 3

∑
i=1

3

∑
j=1

(Ai, j−Bi, j)2 =
√

trace [(A−B)2]. (1)

The registration algorithms compiled in [4, 6, 12, 16, 24, 25, 40] are driven by a cost

function based on this measure. In [39] a formal definition of this metric for tensors

can be found, whereas in [24] the difference is computed between the reoriented and

the fixed tensor.

A set of pointwise similarity measures are defined in [1]. In addition to the ED

between tensors, they propose a comparison term based on the scalar product of

tensors:

A ·B =
3

∑
i=1

3

∑
j=1

Ai, jBi, j, (2)
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and other measure, that has been previously defined in [32] to quantify the similarity

between the diffusion in two media:

A : B =
3

∑
i=1

3

∑
j=1

λ A
i λ B

j
(
eA

i · eB
j
)2

, (3)

where λ A
i and λ B

i stands for the i-th eigenvalue of the tensors A and B respectively,

and eA
i and eB

i are the corresponding eigenvectors.

Among these three measures proposed in [1], the ED was found to be the one that

produces a better matching, and therefore it was used in further works such as [4].

Moreover, the same three measures in Eqs. (1, 2, 3) are applied to the deviatoric

(see Appendix, Eq. (21) for definition) that is a measure of the anisotropic part of

the DT. Once again, the ED produces the best results, and for this reason is used in

further works.

Also the angle between the major eigenvector of tensors is defined as similarity

measure in [1, 4]. This angle is weighted by some anisotropy measure, since the

more isotropic the diffusion, the less significant the direction difference is. Thus,

this measure, that we will denote as orientation difference (OD), is given by:

OD(A,B) =
√

ν(A)ν(B)eA
1 · eB

1 , (4)

where ν(A) stands for a measure of the anisotropy, such as VR [4], RA [17] or lattice

anisotropy [1] (see Eq. (26) in the Appendix). The difference between eigenvectors

is also used in [13] since their algorithm is applied directly over the vector field.

Likewise, the registration algorithm in [18] is also based on the difference between

eigenvectors weighted by the anisotropy, although in this case the cost function also

includes the square differences between FA images. The orientation difference is

also considered in [19], where the similarity measure consists of two terms: the

former takes into account the tensor eigenvalues and the latter is a region-based

measure for orientation matching.

In the Gabor-features based algorithm proposed in [45] the similarity measure is

based on the computation of the distance between the attribute vectors. These vec-

tors are composed by features detected by means of a bank of Gabor filters. They

also contains the value of the FA and the angle that forms the major eigenvector

with the dominant orientation in a neighborhood of the tensor. This dominant ori-

entation is computed by Principal Component Analysis of the main eigenvector of

every tensors in the neighborhood. The registration minimizes the square difference

between such vectors, that is defined by two terms: the difference between angles,

and the Euclidean distance between the vector composed by the values obtained by

the Gabor filters.

Furthermore, the correlation coefficient has also been extended to diffusion ten-

sor. A rigorous definition can be found in [40]. Since this is a costly measure, the

block matching based on this measure is only applied to a set of highly structured

areas of the image.
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On the other hand, there are a set of measures that take into account most specif-

ically the nature of the data in their definition. For instance, two similarity measures

based on the comparison of diffusion profiles, that are assumed to be Gaussian, are

proposed in [53]. These metrics, that we denote as diffusion profile based distance

(DPBD), are defined as:

DPBD1(A,B) =

√
8π
15

(
||A−B||2 +

1

2
trace2(A−B)

)
(5)

DPBD2(A,B) =

√
8π
15

(
||A−B||2− 1

3
trace2(A−B)

)
, (6)

where || · || stands for the Frobenius norm of the matrices. The latter measure

is more focused on the comparison of the anisotropic components of the tensor.

Other approach based on the Gaussian model of the diffusion can be found in [14],

where the tensor is modeled as the covariance matrix of the Gaussian probability

density function. Thus, the symmetrized Kullback-Leibler divergence, also known

as J-divergence is minimized by the registration algorithm. It is argued that this

measure can be extended to higher order diffusion models, besides the conventional

3×3 tensors. It is computed as:

sKL(A,B) =
1

4

(
trace(A ·B−1)+ trace(B ·A−1)−6

)
. (7)

Also a specific measure is defined in [33, 34], where the physical meaning of

the DT is taken into account in the definition of the Mode Based Similarity (MBS).

It classifies tensors in three types according to its shape, described by three geo-

metric coefficients [48]: the lineal cl , planal cp and spherical cs coefficients (see

Eqs. (22, 23, 24) in the Appendix). Then, the main features for each type of diffu-

sion are compared. Thus three similarity terms are defined, the linear similarity:

Sl(A,B) = |eA
1 · eB

1 |, (8)

the planar similarity:

Sp(A,B) = |eA
3 · eB

3 |, (9)

and the spherical similarity:

Ss =
1

2

(
2− |trace(A)− trace(B)|

max(trace(A), traceB))
− |bA

0 −bB
0 |

max(bA
0 ,bB

0 )

)
. (10)

eA
1 and eB

1 stands for the major eigenvector of the tensors A and B respectively,

and eA
3 and eB

3 are their minor eigenvectors. Moreover, the spherical comparison term

includes comparison between MRIs without diffusion that are acquired to obtain the

DTI. These images are known as baselines, and are denoted as b0. These three terms

are combined to define the MBS measure, that is given by:
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MBS(A,B) = cA
l cB

l Sl + cA
pcB

pSp + cA
s cB

s Ss (11)

A comparison of this measure with other similarity measures can be found

in [33].

Finally, since DTI are often used to identify fiber tracts, in [29] the registration

algorithm is based on comparison between such structures. It defines two param-

eters to describe the fiber tracts, namely curvarture and torsion. The mean square

difference of these parameters between two fiber tracts is minimized to find the best

matching between DTIs.

5 Diffusion Tensor Reorientation

As mentioned, not only the image grid should be transformed by means of the reg-

istration procedure. The tensors must also be transformed in order to preserve the

coherence with the underlying fiber structure. It has been assumed that the only

transformation that should be applied to tensors is rotation, and therefore, algo-

rithms that estimates a rotation matrix from the image transformation have been

proposed. The only work that applies a shear term besides the rotation matrix is

the approach in [6], although it assumes that tensor shear should be small. In this

work, the warping matrix is included in the energy term that is optimized by the

registration. Thus, the rotation angle and shear parameters are computing by the op-

timization procedure. A compatibility term is defined to ensure the relation between

image transformation and tensor warping.

In the other works, the algorithms proposed to preserve the coherence between

tensors and structures aim to compute the appropriate rotation matrix R. Thus, the

tensor value in a given voxel is computed as RT DR, where D is the original DT. De-

pending on the freedom degree of the transformation, the same rotation matrix can

be applied to every tensors in the image or a different matrix is required to describe

the transformation at each voxel. The first option is valid for rigid registration, such

as the rigid algorithm in [25]. In this case, the global image transformation can be

split into a translation and a rotation part, and therefore, the same rotation applied to

the image is applied to tensors. For more complex transformations, some strategies

to compute the rotation matrix have been proposed. The first approach to this topic

is found in [2, 3], where three methods are defined: small strain (SS), finite strain

(FS) and preservation of the principal direction (PPD).

The SS strategy is defined for very small deformations or rigid models. It con-

sists in the decomposition of the gradient of the deformation field into a rotation

and a pure deformation component [2]. It is supposed that the gradient of this defor-

mation field can be decomposed into a symmetric and a skew-symmetric matrices:

J = E + Ω , where the first term E is the symmetric part and it corresponds to the

deformation and the second one, the skew-symmetric matrix Ω is related to the

rotation. Therefore, the rotation matrix R is computed from Ω . The same rotation

matrix will be applied to every tensor in the image. Since this strategy is only valid
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in case of rigid or globally affine transformations, it has not been further applied in

the literature.

The second strategy in [2, 3], FS, was first described for affin transformations,

that are given by a matrix F, that can be decomposed into a strain and a pure rota-

tion component F = UR, according to the Polar Decomposition Theorem. Thus, the

rotation matrix can be computed as:

R = (FFT )−1/2F (12)

If the transformation is not affine, the FS strategy works on the assumption

that it can be considered locally affine. In this case, the jacobian matrix J of the

transformation is computed, and the rotation matrix is computed by substituting in

Eq. (12) F by J. The same strategy based on the Polar Decomposition Theorem is

also described in [40], and it has been widely used in the literature, for instance

in [16, 26, 36, 40, 51, 53].

However, the tensor orientation may be changed by the shear effect that is de-

scribed in the deformation term U. This effect is discarded by the FS strategy, but

its influence in the tensor field is not negligible, as is shown in Fig. 3. The original

tensor fields in Fig. 3.a and Fig. 3.c are sheared by the same transformation. How-

ever, the tensors in Fig. 3.b remain aligned with the fiber structure, whereas tensors

in Fig. 3.d require to be rotated in order to be aligned with the fiber, as in Fig. 3.e.

For this reason in [3] a third approach, named PPD, is proposed. Let notice that

the shear effect depends on the original tensor orientation, and for thus, the PPD

reorientation strategy is based on the major eigenvector in order to ensure that it

is correctly reoriented taking into account both the pure rotation and the rotational

effect of shear. Thus, the proposed method consists of the next steps:

1. The transformation matrix F, if it is affine, or the Jacobian matrix of the trans-

formation J, if it is not affine, is applied to the major eigenvector e1, so the new

direction is obtained. Then, the rotation matrix R1 is computed as the matrix that

converts the original eigenvector e1 into the unitary vector in the new direction:

e′1 =
Fe1
||Fe1||

.

2. Since the second eigenvector must be orthogonal to the first, the projection of the

transformed second eigenvector Fe2 or Je2 on the plane defined by its normal

vector e′1 is computed. The projection vector is then normalized, so the reori-

ented second eigenvector e′2 is obtained. A rotation matrix R2 is computed, that

converts the original eigenvector e2 into the new e′2.

3. The rotation matrix R, that is applied to the tensor, is computed as R = R1R2

Besides the description of this method in [3], another formulation of it can be

found in [28]. The analysis of this method and its comparison with other reori-

entation strategies is detailed in [3, 16], where it is proved that better results are

obtained by means of PPD, specially in the case of high order deformations, where
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(a) (b)

(c) (d) (e)

Fig. 3 Synthetic example showing the rotation effect of shearing: a) Horizontal fiber; b) Shear
of the synthetic field in (a); c) Vertical fiber; d) Shear of the synthetic field in (c) without tensor
reorientation; e) Shear of the synthetic field in (c) with tensor reorientation.

shear effect is higher. However, it should be taken into account that this algorithm

is computationally more expensive than the FS strategy, and for this reason the FS

algorithm is preferred in some cases. Nevertheless, PPD has been chosen by many

authors, such as [14, 17, 27, 31, 33, 52].

In the literature, most efforts have been made in the analysis of registration algo-

rithms or the definition of new similarity measures, meanwhile research about new

reorientation techniques has been left aside and the previous reorientation strate-

gies FS and PPD have been applied. In the earlier approaches, the rotation matrix

is computed once the final image transformation is assessed. However, it have been

proved that better results can be achieved if reorientation is explicitly included in the

cost function [24, 51, 52]. Furthermore, in [6] the reorientation and shear parame-

ters are computed together with the transformation parameters by the optimization

algorithm.

Moreover, the work in [49, 50] analyzes the drawbacks of the FS and PPD meth-

ods and it proposes a new method to compute the rotation matrix, based on statistics

of the fiber direction and procrustean estimation. It considers that the assumption

made for the definition of the PPD strategy is not valid in presence of noise. Due

to acquisition noise, the diffusion tensor could not be exactly aligned with the fiber

structure. For this reason, it computes the fiber orientation taking into account the

mean values of the eigenvectors in a neighborhood of the voxel. The neighborhood

assessment is based on the average of tensors inside it and it is computed by an

iterative algorithm. The major eigenvectors of tensors in the neighborhood are con-
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sidered as random samples of the fiber direction, and a matrix B is composed with

such samples. Another matrix A is built by the eigenvectors obtained when the dis-

placement field is applied, so that they can be viewed as random samples of the

transformed fiber. The rotation matrix will be the one that minimizes ||A−R ·B||2,

and it can be computed by means of a Procrustean estimation as R = V ·WT ,

where V and W are the matrices resulting from the singular value decomposition

of A ·BT = V ·Σ ·WT . Moreover, the random samples could be weighted in order

to give more importance to those closer to the voxel.

6 Performance Evaluation

The evaluation of the performance of a registration algorithm is not a trivial task.

The computation of the difference between images may not be a valid measure,

since the best matching of structures is not necessarily the best intensity matching.

For this reason, indexes based on structural information have been defined to assess

the performance of scalar registration algorithms. When evaluating the registration

of DT-MRI, not only this question should be taken into account, but also the aspect

related with the comparison between tensors. Thus, several methods to analyze the

performance of the registration algorithms have been described in the literature.

Although the visual inspection [26] and the difference between images [4, 12,

16, 45] have been used to establish the goodness of the registration, other more

objective validation techniques have been also proposed. In some cases, the error

measures are based on the similarity measures defined to drive the registration al-

gorithm. This is the case in [4] where a set of similarity criteria are defined and

then their average value in the image is considered as a performance measure. Also

in [6] the same measure defined to assess the similarity between the target and fixed

images is considered to evaluate the error. Likewise, the angle between the major

eigenvectors has been used as similarity criterion and its average value has also been

used as a quality measure, specially to compare the reorientation strategies perfor-

mance [3, 12, 13, 16]. Since orientation matching is more interesting in areas of

higher anisotropy values, which contain fiber tracts, the angle between eigenvectors

is usually weighted by some anisotropy measures [16, 52]. Another similar option

is to compute the angle only in the white matter, that is, the region where anisotropy

measures are higher than a given threshold, as proposed in [12] .

Also quality measures are computed over scalar images related to the DT-MRI.

For instance, in [3], the average difference is computed between T1-weigthed im-

ages, the trace of the tensor or the anisotropy images to give a measure of the reg-

istration error, and in [34] the normalized mutual information is computed for both

T2-weighted images and FA images. The difference between the FA images also

appears in [12].

As mentioned previously, registration allows for the construction of anatomical

atlases. They are built by spatial normalization of a set of brain images acquired

from a certain group of control subject. In this case, the registration algorithm is



290 Muñoz-Moreno et al.

applied to the set of images, and its performance can be evaluated by means of

statistics computed in the normalized set. For instance, in [35], the variance of the

data in each voxel is computed for each scalar channel, whereas, in [36] the variance

of the trace and the anisotropy images in the normalized set is computed. Compar-

ison between the mean value of the FA in the white matter region is also used to

evaluate performance in [31]. Notice that, since these scalar magnitudes do not pro-

vide information about the orientation and shape of the diffusion, they do not allow

to evaluate orientation matching.

The variability of tensors in a set of normalized images is also computed in [27]

by measuring dispersion about the mean and the median. Thus, definitions for the

mean and median tensors are provided, that are based on the Fréchet definitions [22].

Then the normalized standard deviation is defined as the dispersion about the mean,

normalized by the norm of the mean tensor. Moreover, the dispersion about the

median is also defined, as well as its normalized form, that in this case is obtained

normalizing by the median tensor. The normalized standard deviation is also used

in [53] to quantify the variability of tensors in a set of images.

Moreover, in [27], the quality of the registration is also analyzed by means of

scattergrams of the FA and the dyadic coherence. This last measure was formulated

in [9], and it is based on the dyadic tensor, that is formed by the components of the

principal eigenvector in a voxel. Thus, if a set of N subjects is considered, the dyadic

tensor 〈eieT
i 〉 is defined as:

〈eieT
i 〉=

1

N

N

∑
j=1

e j
i e jT

i , (13)

where e j
i stands for the i-th component of the major eigenvector of the DT of the

j subject. The dyadic coherence κ is defined in function of the three eigenvalues

β1,β2 and β3 of the dyadic tensor:

κ = 1−
√

β2 +β3

2β1
(14)

Therefore, it is a method to quantify the alignment of the principal eigenvectors

among a set of DT-MRI. It was afterwards used by [14, 53]. Other quality indexes

based on the measures proposed in [9] have been defined to evaluate registration

algorithms: the overlap of eigenvalue-eigenvector pairs [14, 31, 52]; and the mean

diffusion index [31]. The former measure is computed between pairs of images,

where the white matter has been segmented. Let be W the set of voxels that belong

to the white matter region, and W the number of elements of such set, the overlap is

defined as:

OV L =
1

W ∑
x∈W

∑3
i λi(x)λ R

i (x)(ei(x) · eR
i (x))2

∑3
i λi(x)λ R

i (x)
, (15)
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where λi(x) and ei(x) are the i-th eigenvalue and eigenvector of the tensor in the x
voxel of the fixed image, and λ k

i (x) and ek
i (x) are the i-th eigenvalue and eigenvector

of the tensor in in the x voxel of the registered images.

The mean dispersion index is also computed in the voxels that are segmented as

white matter. It is based on the dyadic tensor and is defined as:

MDI =
1

W ∑
x∈W

√
β2(x)+β3(x)

2β1(x)
(16)

On the other hand, one of the most common applications of DT-MRI is fiber

tracking, that estimates the fiber structures in the brain, following the diffusion di-

rection given by the tensor. For this reason, a way to evaluate the registration proce-

dure is to compare the fiber tracts computed from the fixed and registered DT-MRI.

Thus, [31] computes the mean dissimilarity between fiber tracts in the set of nor-

malized images. The dissimilarity is based on two measures: the mean square error

between tracts, that is the mean distance between fiber tracts normalized by the tract

length; and the endpoint divergence, that computes the difference between the end-

points of two tracts computed from the same seed point. The distance between fiber

tracts is also considered in [53], where the mean of the closest distance for every

fiber in two bundles is computed. As well, the Euclidean distance between fibers

is computed in [18], where the registration algorithm is focused on obtaining good

results for fiber tracking applications.

Furthermore, synthetic data or transformations have also been used to better un-

derstand and analyze the performance of the registration algorithms [3, 25, 28, 40,

45]. For instance, in [25] a synthetic transformation is applied to the data, and then

the ability to recover this transformation in presence of noise is studied. Synthetic

transformations are also applied in [35, 36], where the recovered parameters are

compared to the known parameters.

7 Discussion and Conclusions

Although the registration of DT-MRI is a relatively new problem, several approaches

to deal with it can be found in the literature. In general, these approaches consist in

the adaptation of existing registration algorithms for other image modalities to the

DTI data. When adapting these algorithms, the special features of DT-MRI must

be borne in mind especially regarding two questions: the importance of the orien-

tation information that provides the tensor, that should remain coherent with the

underlying fiber structure; and the definition of similarity measures that exploit the

information given by the tensor.

Although the warping of the tensors after the image transformation has been ac-

cepted as a necessary task, few research has been done to find the best method to

estimate the transformation. Rotation has been assumed to be the only allowed trans-

formation, and most authors have adopted the PPD and the FS strategies proposed
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by [3]. Only in [49, 50] the drawbacks of such algorithms have been analyzed and

a new approach to the problem is proposed. This new technique seems to be more

rigorous because it takes into account the noise that appears in real DT-MRI, but it

has higher computational requirements than the PPD strategy. In addition, the only

approach that applies shear to the tensor data is [6], which supposes that tensors

can be both rotated and sheared. However, undesired effects can occur if tensors are

sheared, for instance, isotropic tensors become anisotropic due to the shear effects,

what implies that gray matter regions can be transformed into white matter. Anyway,

since only small shears are allowed, this problem may be negligible. Nevertheless,

to the best of our knowledge, there are no conclusive comparison studies between

the previous methods, and therefore it is not possible to conclude what is the best

approach to warp tensors. Moreover, it should be taken into account that the warping

is defined from the transformation that was estimated by the registration algorithm,

and therefore the orientation matching depends on the quality of such estimation.

It is supposed that, if registration gives more reliable transformation, more reliable

warping would be computed. Moreover, when the Jacobian matrix of the transfor-

mation is used to assess the warping, the numerical method used to compute the

gradient of the displacement field also influences in the tensor matching. Due to the

influence of these factors, the evaluation of the reorientation strategies for real data

is not a simple issue.

On the other hand, the influence in the final matching of the similarity measure

defined to drive the registration algorithm has been proved. Most works conclude

that the more information is taken into account, the better matching is achieved.

Thus, the inclusion of orientation information, such as the major eigenvectors, im-

proves the results obtained when using rotational invariant characteristics. A set of

similarity measures based on all the tensor components have been proposed. Some

of them are based only on mathematical considerations, such as the Euclidean dis-

tance between tensors, and others exploit features related to the data acquisition

or the physical interpretation of the data, such as diffusion profiles based metrics or

measures based on the diffusion shape. There are some comparisons between purely

mathematical measures and DT-specific measures that point out the advantages of

the use of DT-specific measures. However, more work should be done to get more

conclusive results. Moreover, since more rigorous frameworks for tensor calculus

have been developed, similarity measures that takes into account these computa-

tional frameworks could lead to better matching results. This also should be borne

in mind when interpolation of tensor fields is required by the registration algorithm.

It has been proved that the consideration of Euclidean metrics for the DT calculus is

not correct, since it can produce effects of swelling when interpolation is carried out.

Therefore, the advances in interpolation of diffusion tensor fields should be included

in the implementation of registration algorithms.

Finally, an important topic, especially to compare different registration ap-

proaches, is the evaluation of the results. In some cases, evaluation is based on the

difference of voxel values, what does not necessary reflects the quality of the struc-

tural matching. Also structural measures, such as mutual information, have been

used but only applied between scalar images related to the tensor, and therefore
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they do not indicate the goodness of the tensor matching. In some cases, the orienta-

tion matching is directly evaluated by computing the angle between eigenvectors in

the same location in both images. However, pointwise comparison loose the infor-

mation about the quality of the structural matching. More specific ways to evaluate

the performance are based on the fiber tracts computed from the DT-MRI. In such

a way, both the structural and orientation matching would be taken into account in

the results evaluation. Nevertheless, the need for fiber tracts computation introduces

a new factor in the problem, and the tractography algorithm performance has a non

negligible influence in the quality measure. For this reason, more work should be

done in the definition of quality measures that comprise both the underlying struc-

ture and the orientation matching information. If a standard quality evaluation proto-

col would be available, more conclusive comparisons between different algorithms

could be performed.
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Appendix. Scalar Measures of the Diffusion

Several scalar measures can be computed to describe the diffusion from the tensor

data. In this appendix, a review of such measures is presented. Some of them de-

scribe the anisotropy of the diffusion, and other are more related to the amount of

diffusion or its shape. Moreover, a structural measure of the diffusion in a neighbor-

hood is defined.

Anisotropy Measures

Let be D a diffusion tensor, whose ordered eigenvalues, from highest to lowest, are

λ1,λ2 and λ3, and whose eigenvectors are e1,e2 and e3. The Fractional Anisotropy

(FA) is defined as [10]:

FA(D) =
1√
2

√
(λ1−λ2)2 +(λ1−λ3)2 +(λ2−λ3)2√

λ 2
1 +λ 2

2 +λ 2
3

(17)

The Relative Anisotropy (RA) is given by [10]:

RA(D) =
1√
2

√
(λ1−λ2)2 +(λ1−λ3)2 +(λ2−λ3)2

λ 2
1 +λ 2

2 +λ 2
3

(18)

Both measures take values between 0, for isotropic diffusion, and 1, when diffu-

sion occurs in only one direction.
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Moreover, the Volume Ratio is other anisotropy measure defined as [4]:

V R(D) = 1− 27 ·λ1 ·λ2 ·λ3

(trace(D)3
(19)

Measures of the Amount of Diffusion

The Mean Diffusivity (MD) provides an idea of the amount of diffusivity [10] and

is defined as:

MD(D) =
λ1 +λ2 +λ3

3
(20)

The deviatoric of a tensor dev(D) quantifies the anisotropic part of a tensor, and

it is defined as:

dev(D) = D− trace(D)
3

(21)

Diffusion Shape Measures

The shape of the diffusion can be described by the linear cl , planar cp and spherical

cs coefficients defined in [48], whose values are comprised between 0 and 1. They

are computed by:

cl =
λ1−λ2

λ1
(22)

cp =
λ2−λ3

λ1
(23)

cs =
λ3

λ1
(24)

In addition, the skewness defined in [7] allows to distinguish between prolate

(λ1 >> λ2,λ3) and oblate (λ1,λ2 >> λ3) tensors. It is defined as:

Sk(D) =
(λ1−MD(D))3 +(λ2−MD(D))3 +(λ3−MD(D))3

3
(25)

Structural Measure

The lattice index is a structural measure that is computed at each voxel x in the

image taking into account the tensors in a neightborhood N (x). It is defined as:

LI(D) = ∑
k

ak

(
3

8

√
dev(D) ·dev(Dk)√

D ·Dk
+

3

4

dev(D) ·dev(Dk)
||D|| · ||Dk||

)
, (26)
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where Dk are the tensor at the voxel xk ∈ N (x) and ak is a spatial mask whose

coefficient sum is equal to one. The “·” stands for the scalar product between tensors.
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Practical and Intuitive Basis for Tensor Field
Processing with Invariant Gradients and
Rotation Tangents

Gordon L. Kindlmann and Carl-Fredrik Westin

Abstract Recent work has outlined a framework for analyzing diffusion tensor gra-

dient and covariance tensors in terms of invariant gradient and rotation tangents,

which span local variations in tensor shape and orientation, respectively. This chap-

ter hopes to increase the adoption of this framework by giving it a more intuitive

conceptual description, as well as providing practical advice for its numeric imple-

mentation. Example applications are described, with an emphasis on decomposing

the third-order gradient of a diffusion tensor field.

1 Introduction

Diffusion tensor imaging (DTI) analysis aims to describe the complex and subtle

architecture of white matter in the central nervous system based on multi-variate

MRI measurements [3]. One of the challenges in tensor-valued image processing is

determining how to handle the multiple degrees of freedom in each tensor sample.

Many algorithms treat the coefficients of the tensor (as measured in the laboratory

coordinate frame of the scanner) as channels in a multi-scalar image, similar to the

independent color channels of an RGB image. The mathematics of tensor analysis,

however, provide ingredients for designing tensor processing algorithms in a way

that respects the biologically meaningful shape and orientation properties associated

with the diffusion tensor.

The basic idea of this approach is to treat diffusion tensors as elements of a six-

dimensional vector space, and to build at each tensor value D a coordinate system

with three basis tensors (the invariant gradients) that span local variations in ten-

sor shape, and three basis tensors (the rotation tangents) that span local variations

in tensor orientation. This allows, for example, an edge detector to be sensitive to

changes in anisotropy (part of tensor shape) but not fiber direction. Recent work [22]
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gives a detailed account of invariant gradients and rotation tangents, and the current

chapter will not reproduce all the derivations. Rather, we hope here to give a better

intuitive description of the method, to give more concrete information about how

to implement it, and to provide an additional demonstration of its value for edge

detection in tensor fields.

2 Mathematical Background

Describing our framework is easier with coordinate-free tensor expression. While it

is always more concrete to represent tensors with their 3×3 matrix of coefficients,

coordinate-free expressions can permit more concise derivations, and can also build

on existing intuition about vector spaces and their bases. The notation reviewed here

respects the difference between coordinate-free and coordinate-based expressions.

Our notation is summarized in Table 1, much of which is based on conventions of

tensor analysis [10, 19]. A coordinate-free vector v has a representation in basis B
as three coefficients [v1 v2 v3]t = v = [v]B or just [v] where B is assumed. Each of the

vi coefficients is determined by vi = v ·bi. We use Einstein notation: a repeated index

within a term implies summation over that index, e.g., [Dv]i = Di jv j = ∑3
j=1 Di jv j;

and D = Di jbi⊗b j = ∑3
i=1 ∑3

j=1 Di jbi⊗b j.

This work starts with the recognition that tensors are linear transforms, and that

linear transforms constitute a vector space. We stress these points because they ap-

pear infrequently in the tensor analysis commonly used for DTI. The tensor product

u⊗ v is a linear transform defined by (u⊗ v)w = u(v ·w) for all vectors w [19].

Any linear transform T can be expressed as a linear combination of tensor prod-

ucts of orthonormal basis vectors bi, according to T = Ti jbi⊗b j and Ti j = bi ·Tb j.

Tensor contraction A :::B is an inner product on tensors. A principal frame E = {ei}
is an orthonormal basis of eigenvectors of D, which diagonalizes the matrix rep-

resentation [D]E = diag(λ1,λ2,λ3). The spectral decomposition D = λiei⊗ ei is a

coordinate-free expression of a tensor D in terms of its eigensystem.

While it is common to think of D as the covariance matrix of molecular displace-

ments due to diffusion, it also revealing to recognize that a diffusion tensor D is a

symmetric linear transform that maps (by Fick’s first law) from concentration gra-

dient vector ∇c to diffusive flux vector j = −D∇c [12]. This fundamental property

was pointed out by Basser in his original DTI work [3]. Diffusion tensors are also

positive-definite [3], the significance of which for diffusion tensor image processing

is discussed in Section 8.

Sym3 is a six-dimensional vector space, as seen by forming an orthonormal basis

BBB = {Biii}iii=111..666 for Sym3 from an orthonormal basis B = {bi}i=1,2,3 for W .
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Table 1 Mathematical Conventions and Notation

W three-dimensional space

W ⊗W three-dimensional second-order tensors

Sym3 symmetric tensors in W ⊗W

SO3 three-dimensional rotations

B = {bi}i=1,2,3 orthonormal basis for W

δi j δi j = 1 if i = j, 0 otherwise

v vector in W

v = [v]B matrix representation of v in B; vi = v ·bi

D second-order tensor in Sym3

D = [D]B matrix representation of D in B; Di j = bi ·Db j

I identity tensor

u⊗v ∈W ⊗W , tensor product of u and v; [u⊗v]i j = uiv j

A :::B = tr(ABt) = Ai jBi j ∈ R; contraction of A and B
|A| =

√
A :::A, tensor norm of A, the Frobenius norm of matrix [A]

A = tr(A)I/3, isotropic part of A
Ã = A−A, deviatoric part of A

{λi},{ei} eigenvalues, eigenvectors of D = λiei⊗ ei ; λ1 ≥ λ2 ≥ λ3

{Ki},{Ri} orthogonal invariant sets; K1 = trace; R2 = FA; K3 = R3 = mode

{∇̂∇∇DKi(D)} cylindrical invariant gradients, basis for shape variation around D
{∇̂∇∇DRi(D)} spherical invariant gradients, basis for shape variation around D
{Φ̂ΦΦ i(D)} rotation tangents, basis for orientation variation around D

GGG third-order tensor in Sym3⊗W ; matrix representation G = [GGG ]

F(x) tensor field; the DTI volume

D :::GGG = Di jGi jkbk ∈W contraction of GGG with D
∇J = ∇∇∇DJ :::∇F, spatial gradient of J in F
∇Ĵ = ∇̂∇∇DJ :::∇F, projected gradient of J

∇φ̂i = Φ̂ΦΦ i :::∇F, spatial “gradient” of ei rotation

B111 = b1⊗b1

B222 = (b1⊗b2 +b2⊗b1)/
√

2

B333 = (b1⊗b3 +b3⊗b1)/
√

2

B444 = b2⊗b2

B555 = (b2⊗b3 +b3⊗b2)/
√

2

B666 = b3⊗b3

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

Tensors in Sym3 can be decomposed into vector components by

D = DiiiBiii = (D :::Biii)Biii. (2)

We use bold subscripts iii to index components of Sym3 considered as vectors rather

than tensors. In addition to the coordinate-free description by (1), the treatment of
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symmetric tensors as vectors can also be shown with matrix representations:

[D]BBB =

⎡⎢⎢⎢⎢⎢⎢⎣
D111

D222

D333

D444

D555

D666

⎤⎥⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎣

D11√
2D12√
2D13

D22√
2D23

D33

⎤⎥⎥⎥⎥⎥⎥⎦ (3)

[D]B =

⎡⎣D11 D12 D13

D22 D12

sym D33

⎤⎦=

⎡⎣ D111 D222/
√

2 D333/
√

2

D444 D555/
√

2

sym D666

⎤⎦ . (4)

3 Conceptual Overview

As described in [22], a tensor D is rotated by R in SO3 by

ψ(R,D) = RDRt (5)

which changes the eigenvectors but not the eigenvalues (and hence not the shape)

of D. The orbit SO3(D) of D is the set of all possible values of ψ(R,D), that is, all

reorientations of D. Two tensors have the same shape if and only if they are on the

same orbit. An invariant J is a scalar-valued function of tensors that is constant on

orbits: ψ: SO3(D0) = SO3(D1)⇒ J(D0) = J(D1). Trace tr() and determinant det()
are invariants, as are the eigenvalues, and any function of the eigenvalues.

We create at each tensor D a local orthonormal Sym3 basis, with basis vectors (or

“basis tensors”) aligned with biologically meaningful degrees of freedom, namely

shape and orientation. The tensor-valued invariant gradients are perpendicular to

the orbits, and thus span local variations in tensor shape. The tangents to orbits,

which we term rotation tangents, span local variations in tensor orientation, see

Figure 1. In the following we develop expressions for the invariant gradients and

Fig. 1 Schematic view of
degrees of freedom of shape
and orientation variation
around a given tensor D.
The tangents to the orbit
SO3(D) (the rotation tangents,

notated Φ̂ΦΦ i) span variation
in orientation around D.
The gradients of invariants

(notated either ∇̂∇∇DKi or ∇̂∇∇DRi
depending on the invariant
set chosen) span variations in
shape around D.

D

SO
3(D)

invariant gradients 
(shape variation)

rotation tangents
(orientation variation)

Φ̂1

Φ̂2
Φ̂3

∇̂DK1

∇̂DK2
∇̂DK3
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rotation tangents that can be applied for practical operations. The full explanation

for these derivations can be found in [22].

4 Invariant Gradients

Just as a scalar function defined over three-dimensional space has a vector-valued

gradient that points in the direction of greatest increase, the gradient of a tensor

invariant is a tensor-valued direction of fastest increase in the invariant. In terms of

a first-order Taylor expansion [19],

J(D0 +dD) = J(D0)+
∂J
∂D

(D0) :::dD+O(dD2) (6)

∇∇∇DJ =
∂J
∂D

. (7)

We use ∇∇∇D to denote the gradient of a function with respect to its tensor-valued

argument (while gradients with respect to position in W are denoted by the usual

∇). Two invariants J1 and J2 are orthogonal if ∇∇∇DJ1(D) ::: ∇∇∇DJ2(D) = 0 for all D,

which intuitively means their level-sets are everywhere perpendicular.

Previous work has advocated two particular sets of three orthogonal invariants,

notated Ki and Ri [15]

K1(D) = tr(D) R1(D) = |D|
K2(D) = |D̃| R2(D) = FA(D)

K3(D) = R3(D) = mode(D) .

(8)

The mode invariant is [13]

mode(D) = 3
√

6det(D̃/|D̃|). (9)

The Ki and Ri invariant sets can be understood as cylindrical (Ki) or spherical (Ri)

coordinate systems on the three-dimensional space of diagonal matrices (D12 =
D13 = D23 = 0), centered on a central axis where D11 = D22 = D33 [15]. We adopt

these invariant sets because they naturally isolate biologically significant tensor at-

tributes of size (tensor trace K1 [28, 34] or norm R1), amount of anisotropy (eigen-

value standard deviation K2 or fractional anisotropy FA = R2 [5, 24, 25, 33, 35]),

and type of anisotropy (mode K3 = R3) [22]. Note that Trace (K1) and FA (R2) are

not part of the same invariant set and are therefore not orthogonal, despite their

common paired use as two complementary shape measures [20, 27].

The third invariant in both sets is mode [13]. Mode is a dimensionless parameter

of anisotropy type, varying between -1 and +1, proportional to eigenvalue skewness

[15]. Negative mode indicates planar anisotropy (oblateness, two large eigenvalues

and one small eigenvalue); positive mode indicates linear anisotropy (prolateness,

one large eigenvalue and two small). Fig. 2 illustrates the space spanned by tensor
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Fig. 2 Illustration of the bivariate space of FA = R2 and Mode = R3 = K3 for tensors of fixed norm
R1. Tensors not shown (at high FA and negative mode) have negative eigenvalues.

mode and FA, using superquadric tensor glyphs [16]. Mode becomes less meaning-

ful when K2 or R2 is low.

The tensor-valued gradients of Ki and Ri span local shape variations [15]:

∇∇∇DK1(D)=I ∇∇∇DR1(D)=D/|D|
∇∇∇DK2(D)=θ(D) ∇∇∇DR2(D)=

√
3
2

(
θ(D)
|D| −

|D̃|D
|D|3
)

∇∇∇DK3(D) = ∇∇∇DR3(D) = 3
√

6θ(D)2−3K3(D)θ(D)−
√

6I
K2(D)

(10)

where θ(D) = D̃/|D̃|. To create elements of an orthonormal Sym3 basis, we nor-

malize the invariant gradients. ∇̂∇∇DJ denotes the unit-norm tensor-valued gradient of

invariant J:

∇̂∇∇DJ(D) = ∇∇∇DJ(D)/|∇∇∇DJ(D)| . (11)

These formulae obscure the fact that the numerical implementation of the invari-

ant gradients is fairly simple. Finding the coefficients for the matrix representation

of ∇̂∇∇DK1 = ∇∇∇DK1 and ∇̂∇∇DR1 = ∇∇∇DR1 is straightforward. With
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[D̃]B =

⎡⎣ 1
3 (2D11−D22−D33) D12 D13

1
3 (2D22−D11−D33) D23

sym 1
3 (2D33−D11−D22)

⎤⎦ ,

(12)

∇̂∇∇DK2 = ∇∇∇DK2 = D̃/|D̃| is easily computed. Knowing that the magnitude of ∇∇∇DR2

will be normalized to compute ∇̂∇∇DR1, we can easily compute

E =

√
2

3
|D|2∇∇∇DR2 =

|D|
|D̃|

D̃− |D̃||D|D (13)

and then ∇̂∇∇DR2 = ∇̂∇∇DFA = E/|E|. The formula for the remaining gradient ∇∇∇DK3 =
∇∇∇DR3 = ∇∇∇Dmode is unwieldy, but it can be found by starting with the gradient of the

determinant, which is is known from tensor analysis as [19]

∇∇∇D det(D) = det(D)D−1 . (14)

Subtracting out the components of ∇∇∇D det(D) parallel to ∇̂∇∇DK1 and ∇̂∇∇DK2 gives

G = ∇∇∇Ddet− (∇∇∇Ddet ::: ∇̂∇∇DK1)∇̂∇∇DK1− (∇∇∇Ddet ::: ∇̂∇∇DK2)∇̂∇∇DK2 (15)

which is simple to compute as a matrix given the equations above. It can be

shown [23] that G vanishes only at the extremum of mode (where the gradient of

mode vanishes anyway), so without loss of generality we can then define

∇̂∇∇DK3 = G/‖G‖ . (16)

which completes the numerical implementation of the normalized invariant gradi-

ents.

5 Rotation Tangents

The rotation tangents are defined in terms of the tensor eigenvectors {e1,e2,e3},
which are important for DTI applications. In nervous tissue, the principal eigenvec-

tor e1 is aligned with the direction of the white matter fiber tracts [9, 14, 32], which

is the basis of most deterministic fiber tracking algorithms [7, 11].

Let Rv(φ)∈ SO3 be rotation by angle φ around v. We define the rotation tangent
ΦΦΦ i(D) associated with eigenvector ei of D as the change in tensor value due to

infinitesimal rotations (5) around ei [22]:
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ΦΦΦ i(D) =
∂ψ(Rei(φ),D)

∂φ

∣∣∣∣
φ=0

⇒ (17)

ΦΦΦ1(D) = (λ2−λ3)(e2⊗ e3 + e3⊗ e2) , (18)

ΦΦΦ2(D) = (λ1−λ3)(e1⊗ e3 + e3⊗ e1) , (19)

ΦΦΦ3(D) = (λ1−λ2)(e1⊗ e2 + e2⊗ e1) . (20)

The rotation tangents ΦΦΦ i(D) are mutually orthogonal, and all ΦΦΦ i(D) are orthogonal

to all invariant gradients [22].

The eigenvalue differences that scale the magnitude of the ΦΦΦ i correspond to

the intuition that if two eigenvalues are equal, then the tensor is rotationally sym-

metric, and there is no effect of rotating around its symmetry axis. To strengthen

this intuition, for a tensor D = λi(ei ⊗ ei) (spectral decomposition), we define

P = ‖ΦΦΦ i‖(ei⊗ ei) which has the same eigenvectors as D, but has eigenvalues that

reflect the magnitudes of the corresponding rotation tangents. These tensors are vi-

sualized in Figure 3(e). When D has rotational symmetry, either with linear or planar

anisotropy (where mode K3 is extremal), the orientation space of D is only two-

dimensional (instead of three-dimensional), thus one eigenvalue of P is zero, and

the P glyph is a flat disc. Note also that the overall size of P varies with anisotropy,

as measured by K2. Interestingly, although the space of orientation variation is in

general three-dimensional, it is never isotropic: the P glyphs are never spheres (ex-

cept at P = 0). Thus, the P glyphs provide an general sense of how the space of

orientation variation depends on tensor anisotropy and mode. The total number of

degrees of freedom in the tensor is always six, but at rotational symmetries, the dis-

tinction between directions of shape variation and directions of orientation variation

becomes blurred, as described in [22].

Unit-norm rotation tangents are defined as

Φ̂ΦΦ1(D) = (e2⊗ e3 + e3⊗ e2)/
√

2 (21)

Φ̂ΦΦ2(D) = (e3⊗ e1 + e1⊗ e3)/
√

2 (22)

Φ̂ΦΦ3(D) = (e1⊗ e2 + e2⊗ e1)/
√

2 . (23)

There are no simple matrix expressions for the Φ̂ΦΦ i in the laboratory frame because

they depend on the tensor eigenvectors, but they are simple to create once the eigen-

vectors are found. Our approach for tensor analysis is the combination of normalized

invariant gradients (either {∇̂∇∇DKi} or {∇̂∇∇DRi}) and rotation tangents {Φ̂ΦΦ i}, which to-

gether constitute an orthonormal Sym3 basis, designed around a given tensor, to

span the sub-spaces of shape and orientation variation.

6 Example Application: Edge Detection

With the machinery of invariant gradients and rotation tangents in place, one of

the simplest applications is edge detection, based on measuring the spatial gradient
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within the tensor data. Let F be a smooth tensor-valued image, or tensor field that

represents DTI data:

F : W �→ Sym3 (24)

F(x) = D. (25)

The spatial gradient of F is a third-order tensor [19], previously described by Pajevic

et al., as part of their spline-based reconstruction [29]:

∇F : W �→ Sym3⊗W

∇F(x) = GGG

[GGG ]i jk = Gi jk = [∇F(x)]i jk =
[

∂F(x)
∂xk

]
i j

(26)

(26) describes how to compute the third-order gradient tensor; each Di j in the matrix

representation of the tensor is replaced by the spatial gradient of Di j in the field.

Dxx

Dyy

Dzz

K1 = const

(a) Isocontour of K1 (b) Isocontours of K2 (c) Isocontours f K3

(d) Glyphs of D (e) Glyphs of P

Fig. 3 The space of effective orientation change in D = λi(ei⊗ei), visualized by P = ‖ΦΦΦ i‖(ei⊗ei).
Symmetries in D correspond to zero eigenvalues in P.
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Considering the coordinate-free representation, however, we see that the contraction

of the full tensor gradient GGG with a fixed second-order tensor T

T :::GGG = T :::∇F(x) = ∇(T :::F(x)). (27)

is the vector-valued gradient of the scalar T:::F(x). Thus, contractions of the gradient

tensor ∇F can access the differential structure of attributes of F. Invariant gradients

and rotation tangents provide the tensors with which we contract ∇F, generating

three spatial gradient vectors of tensor shape, and three spatial gradients of tensor

orientation.

Using the normalized invariant gradients, we define the projected gradient of

invariant J in tensor field F by contracting ∇F with the unit-norm ∇̂∇∇DJ

∇Ĵ : W �→ W

∇Ĵ(x) = ∇̂∇∇DJ(F(x)) :::∇F(x) (28)

= ∇∇∇DJ(F(x)) :::∇F(x)/|∇∇∇DJ(F(x))| (29)

∇Ĵ is an abuse of notation to indicate normalization by tensor norm |∇∇∇DJ|, rather

than vector length |∇J|; i.e., ∇Ĵ �= ∇̂J. ∇̂∇∇DJ differs from the regular spatial gradient

of the invariant ∇J by a scaling factor that depends on the parameterization of J. By

using normalized invariant gradients, the specifics of parameterization are removed.

To numerically compute the projected invariant gradient of an invariant J, one first

computes the 3× 3 matrix [∇̂∇∇DJ] (Sect. 4 describes this for ∇̂∇∇DKi and ∇̂∇∇DRi), then

computes the 3× 3× 3 matrix [∇F] of the tensor field spatial derivative by finding

the spatial gradient of each tensor coefficient Di j (26). The project gradient is then

found by contraction:

[∇Ĵ(x)]k = ∇̂∇∇DJ(F(x)) :::∇F(x)

= ∑
i=1,2,3

∑
j=1,2,3

[∇̂∇∇DJ(F(x))]i j[∇Di j]k (30)

Using the rotation tangents, we define three spatial gradients of orientation, one

for each of the tensor eigenvectors

∇φ̂i : W �→ W

∇φ̂i(x) = Φ̂ΦΦ i(F(x)) :::∇F(x) . (31)

∇φ̂i is also clearly an abuse of notation: there is no scalar field φi in which we can

measure the spatial gradient. Rather, ∇φ̂i indicates the direction (in W ) along which

the tensor orientation “φi” around eigenvector ei varies fastest. Indeed, this shows

the utility of the rotation tangents: it allows the rate of rotation around eigenvector

ei to be isolated and measured, even though there is no global φi scalar quantity that

represents the orientation around ei. The numerical computation of the orientation

gradients is similar to that in (30).
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To demonstrate this machinery for edge detection in a slice of a brain scan, Fig. 4

illustrates the tensor field gradient |∇F| and its decomposition along the invariant

gradients and rotation tangents. Note that most of the gradient ∇F is aligned along

∇̂∇∇DR1, variation of tensor norm R1, because of the large difference in diffusivity

between the parenchyma (white and gray matter) and CSF. Previous work which
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Fig. 4 Decomposition of tensor field gradient the magnitudes of the projected Ri invariant gradi-

ents |∇F| (a) with ri = |∇R̂i|, and the magnitudes of the orientation gradients pi = |∇φ̂i|. Splitting
r1 (b) from the rest of the gradient (c) shows how most of the gradient is aligned with variation
in tensor norm R1, isolating the parenchyma-CSF boundary. Splitting (c) further, the remaining
invariant gradients (d) capture tissue boundaries better than rotation tangents (e). The component

along R2 = FA (f) in particular clearly shows the white matter boundary. The combination of |∇φ̂3|
(j) and |∇R̂3| (g) into (k) delineates white matter tracts that are adjacent yet distinctly oriented, such
as between the cingulum bundle and corpus callosum, and between the tapetum, posterior corona
radiata, and superior longitudinal fasciculus. Previous work terms (k) Adjacent Orthogonality [22].
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introduced the study of tensor field gradients in DTI decomposed ∇F into the gra-

dient of the isotropic ∇F and deviatoric ∇F̃ components, which is equivalent in our

framework to separating out the component of ∇F along ∇̂∇∇DK1. Both trace K1 and

norm R1 measure over-all size, so either will capture the CSF boundary. Our frame-

work offers a more fine-grained decomposition of the gradient, enabling for example

the Adjacent Orthogonality (AO) measure (Fig. 4(k)) that indicates locations where

distinctly-oriented white matter pathways touch [22].

For comparison, Fig. 5 shows the decomposition of the tensor gradient in terms

of the gradients of the individual tensor components, as measured in the BBB basis

defined in (1).

The gradient components associated with the on-diagonal tensor coefficients em-

phasize the CSF boundary, while the gradients of off-diagonal coefficients do not,

but the decomposition is not as specific as the decomposition along invariant gra-

dients and rotation tangents, nor is it rotationally invariant. Comparing Figs. 4 and

5 supports our claim that the invariant gradients and rotation tangents offer a more

biologically meaningful basis for tensor analysis.

|∇F:B1|

|∇F:B2| |∇F:B3|

|∇F:B4|

|∇F:B5|

|∇F:B6|

Fig. 5 Decomposition of tensor field gradient |∇F| with the BBB basis (1) corresponding to variation
in the individual tensor components Di j; compare to (4).
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7 Other Applications

With the ability to selectively detect different kinds of tissue boundaries with the

specialized edge detectors described above, one interesting application of invari-

ant gradients and rotation tangents is to non-linear filtering of tensor fields. Just as

Perona-Malik filtering [31] and most subsequent approaches to anisotropic (inho-

mogeneous) diffusion are based on a conductance function of a gradient magnitude,

one can imagine a PDE-based tensor filtering algorithm that is based on a conduc-

tance function of some of the select edge components illustrated in Fig. 4. It might

also be possible to restrict the updates to the per-sample tensor value according to

variation in shape or orientation alone. Note also that the gradients in Fig. 4 are

shown only as gradient magnitudes, but the gradient vectors also have spatial direc-

tion that is likely useful for describing the orientation of tissue interfaces.

Another application of the invariant gradients and rotation tangents is for the task

of tensor interpolation. Previous work has described geodesic-loxodromes that are

geodesics along tensor orientation orbits (Sect. 3), and loxodromes through variation

of tensor shape [21]. These paths have the property that the angles between the

interpolation path P(s) and three orthogonal invariant gradients (for example ∇̂∇∇DRi)

are constants ci:
dP
ds

::: ∇̂∇∇DRi = ci ∀i = 1,2,3. (32)

One can also imagine, however, an interpolation path that is also a loxodrome in

orientation, which obeys (32) as well as

dP
ds

:::Φ̂ΦΦ i = ki ∀i = 1,2,3. (33)

Along such a path, the rate of rotation around each eigenvector is constant. Investi-

gations of such interpolation paths and their properties is ongoing.

8 Discussion

Our framework is “Euclidean” in that we consider diffusion tensors as elements of a

vector space, even though this overlooks the positive-definiteness of diffusion. This

simplifying assumption has established precedent in the DTI literature [4, 6, 7], even

in the context of reconstructing tensors from discrete samples [1, 29]. In some ap-

proaches DTI analysis, tensors are located on a Riemannian manifold endowed with

a metric that effectively creates an infinite distance between valid tensors and those

with zero determinant [2, 8, 17, 18, 26, 30]. While these methods can leverage a

wide range of Riemannian formalisms, we do not feel that the positive-definite con-

straint is a necessary ingredient for effective DTI processing, because we view the

larger goals of image analysis (such as generating geometric models of anatomical

features) as more important than maintaining the physical plausibility of the sam-
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ple values at every stage in the analysis. By analogy, much work with traditional

scalar-valued MR images use interpolation methods (e.g. windowed sinc) that do

not necessarily preserve the positiveness of each pixel value, even though, as the

magnitude of a complex-valued MR signal, it must be positive. We feel that the im-

mediate practical utility of our tensor gradient decomposition (shown in Fig. 4) is

adequate justification for our Euclidean approach to tensor analysis; the Rieman-

nian methods have not produced a decomposition of the same specificity. We hope

that invariant gradients and rotation tangents will provide a means of extending and

creating a wide variety of image processing methods to tensor fields.

Acknowledgements This work supported by NIH grants NIBIB T32-EB002177, U41-RR019703,
R01-MH074794, and NCRR P41-RR13218.
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From Second to Higher Order Tensors in
Diffusion-MRI

Aurobrata Ghosh and Rachid Deriche

Abstract Diffusion MRI, which is sensitive to the Brownian motion of molecules,

has become today an excellent medical tool for probing the tissue micro-structure

of cerebral white matter in vivo and non-invasively. It makes it possible to recon-

struct fiber pathways and segment major fiber bundles that reflect the structures in

the brain which are not visible to other non-invasive imaging modalities. Since this

is possible without operating on the subject, but by integrating partial information

from Diffusion Weighted Images into a reconstructed ‘complete’ image of diffu-

sion, Diffusion MRI opens a whole new domain of image processing. Here we shall

explore the role that tensors play in the mathematical model. We shall primarily

deal with Cartesian tensors and begin with 2nd order tensors, since these are at the

core of Diffusion Tensor Imaging. We shall then explore higher and even ordered

symmetric tensors, that can take into account more complex micro-geometries of

biological tissues such as axonal crossings in the white matter.

1 Introduction

The Brownian motion or diffusion of particles observed by Robert Brown in 1828

was first modelled independently by Albert Einstein in 1905 while trying to pro-

vide an experimentally testable hypothesis for the kinetic-molecular theory of mat-

ter [12]. Nuclear Magnetic Resonance (NMR) was discovered by Felix Bloch [7]

and Edward M. Purcell [32] in 1946. In 1950 Erwin L. Hahn published a paper [16]

where he noted that the amplitude of the observed NMR spin echo in the presence of

a magnetic field inhomogeneity would be attenuated due to the inherent Brownian

motion of the spins. Shortly after, in 1954 Herman Y. Carr and Purcell developed a

set of equations [10] to describe this attenuation as a function of discrete motion of

the spins. H. C. Torrey subsequently developed the continuum description in 1956

Project Team Odyssée, INRIA Sophia Antipolis – Méditerranée
Aurobrata.Ghosh@sophia.inria.fr
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[35]. And about a decade later in 1965 E. O. Stejskal and J. E. Tanner designed

the classical pulsed gradient spin echo (PGSE) experiment that made it possible to

measure the coefficients of molecular diffusion from Diffusion NMR [33].

Magnetic Resonance Imaging (MRI) was developed by Paul C. Lauterbur in 1973

[19] making it possible to generate two and three dimensional images using NMR

principles. Peter Mansfield developed the magnetic gradient scheme called Echo

Planar Imaging (EPI) in [25]. This facilitated the development of Diffusion MRI

(D-MRI), which saw its development in [20, 26, 34].

Since then, D-MRI has come a long way today to become a state-of-the-art med-

ical tool for probing the tissue micro-structure of cerebral white matter in vivo and

non-invasively. This became possible due to the concept of Diffusion Tensor Imag-

ing (DTI) introduced in [5, 6] and due to the development of the diffusion propa-

gator formalism. DTI and the diffusion propagator formalism provide ways to infer

the geometry of the underlying medium.

Here we shall take a look at the role played by Cartesian tensors in the mathemat-

ical model of the diffusion propagator and the aquired Diffusion Weighted Images

(DWI) or signal. Second order diffusion tensors were first introduced by Peter J.

Basser in 1994 [5, 6] to accomodate anisotropic diffusion phenomenon in biologi-

cal tissues, and it became the corner stone in medical D-MRI as DTI. Higher Order

and symmetric Tensors (HOT) were recent additions to the propagator and signal

model and were introduced to take into account more complex micro-geometries of

the underlying tissue such as axonal crossings in the white matter.

We shall begin with the fundamental equations that describe the phenomenon of

D-MRI. DTI shall be presented in this framework. DTI with the 2nd order tensor de-

scribes Gaussian diffusion or free or unrestricted diffusion. However, the anisotropy

that the 2nd order diffusion tensor can describe can only arise from restriction,

which would seem to present a contradiction [36]. This shall be resolved by explor-

ing Generalized DTI (GDTI) which will consider the Gaussian model to be a low

spatial frequency approximation of the propagator. Two distinct models of GDTI

were developed and are often known by the names GDTI-1 and GDTI-2. Both shall

be presented, and both employ HOTs to formulate the propagator and signal model.

Finally we shall take a look at recent attempts to apply the positivity constraint on

the diffusivity function while estimating 2nd and 4th order diffusion tensors from

the signal. This is motivated by the fact that diffusion is a positive quantity and neg-

ative diffusion has no physical meaning. However, since the DWIs contain noisy

signal the estimated tensorial diffusivity functions can often have negative values.

2 Principles of Diffusion MRI

We shall begin by examining the fundamental equations governing the principles of

D-MRI, namely the Bloch-Torrey equation and the Stejskal-Tanner equation. These

will provide the basic framework for the 2nd order diffusion tensor and its role

in DTI to describe diffusion anisotropy. We shall then go back to the physics of
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Fig. 1 The PGSE sequence. For the idealised case of rectangular gradient pulses, g represents
gradient intensity, δ gradient duration, and Δ gradient spacing. Courtesy [27].

the problem and present the propagator formulation which will make it possible to

describe more complex anisotropies by introducing HOTs in later sections.

2.1 The Bloch-Torrey Equations

Torrey proposed the addition of two terms to the Bloch equation to account for flow

and diffusion, which gives the Bloch-Torrey equation[9, 35] in the rotating frame

and in the absence of radio frequency (RF) field to describe diffusion NMR as

∂M+

∂ t
=−iγr.g(t)M+−

M+

T2
+∇.(D∇M+)−∇.vM+ (1)

where M+ is the complex magnetization vector, r is the spin position vector, g(t)
is the applied magnetic gradient as a function of time, γ is the gyromagnetic ratio,

T2 is the spin-spin or the transverse relaxation time, v is the flow velocity, D is

the diffusion coefficient, and ∇.(D∇M+) is Fick’s first law of diffusion. We shall

consider the case of pure diffusion where the net flow term ∇.vM+ is zero. The

following development follows closely [9, 36].

The PGSE experiment was designed by Stejskal and Tanner to quantitatively

measure the diffusion coefficient (Fig-1). Essentially the spin system is excited with

a π/2 RF pulse and a magnetic gradient field constant over time δ (which is not

always achievable in practice) is applied to encode the spin positions. Then the

spins are flipped around by a π RF pulse and the same time constant magnetic

gradient is re-applied after a time Δ . The echo signal is finally aquired after a time

TE. If a spin diffuses during the time Δ , then its phase will not return to its original

orientation after the second gradient is applied. This increase of disorder in the spin

phase distribution will cause the spin echo signal to attenuate proportionally to the

mean phase difference.

Equation (1) can be solved by realizing that M+ is a function of both r and t and

by making the substitution
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M+(r, t) = M(t)exp(−ir.G(t))exp(−t/T2), (2)

with

G(t) = γ
∫ t

0
g(t ′)dt ′, (3)

in (1), where we now consider g to be the ‘effective gradient’ incorporating also the

effect of the phase inversion RF pulses. Solving from there for only the real part of

M+(r, t) which corresponds to attenuation due to diffusion, we obtain

M(t) = M(0)exp

(
−D
∫ t

0
G(t ′)T G(t ′)dt ′

)
, (4)

which is the well known Stejskal-Tanner equation [33].

Equation (4), can be rewritten in the following manner by introducing the b-factor

for t = T E

b =
∫ T E

0
G(t ′)T G(t ′)dt ′, (5)

and u a unit vector along the gradient direction g, giving us

M = M(0)exp
(
−bDuT u

)
. (6)

It can be shown that b = γ2g2δ 2(Δ − δ
3 ) [20, 9].

Equation (4) can also be modified to introduce the B-matrix which can take into

account greater variations in the gradient term to account for imaging and spoiling

gradients

B =
∫ T E

0
G(t ′)G(t ′)T dt ′, (7)

then equation (4) becomes

M = M(0)exp(−Dtr(B)) . (8)

The B-matrix was introduced by Basser [5] and is more generic than the scalar b-

factor. This can be seen when the diffusion is anistropic and the diffusion coefficient

D is replaced by the 2nd order diffusion tensor D. We will see the 2nd order diffusion

tensor shortly. In that case equation (8) becomes

M = M(0)exp(−tr(BD)) . (9)

This formulation improves the accuracy by allowing the off-diagonal terms of the

B-matrix to couple imaging and diffusion gradient pulses in orthogonal directions

over and above only the diagonal terms which account for interactions between dif-

fusion and imaging gradient pulses in the same direction [5]. The orthogonal effects

are, however, often overlooked, since their strength is typically small in comparison

to the diffusion-weighting gradients, and using the b-factor (b = B11 + B22 + B33)

greatly simplifies calculations (reference 44 in [27]).
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2.2 Diffusion Tensor Imaging (2nd Order)

The diffusion phenomenon is called isotropic when the apparent diffusion is in-

dependent of the diffusion direction. Anisotropic diffusion occurs when the ap-

parent diffusion varies for different directions. It is generally caused by strongly

aligned micro-structures in the medium. Diffusion can therefore occur more freely

along the aligned micro-structure, while it is restricted in the perpendicular direc-

tion. Anisotropic diffusion provides a convenient way to infer the alignment in the

structure of the medium.

To describe Gaussian anisotropy, Basser introduced the 2nd order diffusion ten-

sor, a 3imes3 symmetric positive definite matrix D to replace the scalar diffusion

coefficient D [5, 6]. Its effect was to modify equation (8) to (9) and (6) to

M = M(0)exp
(
−buT Du

)
. (10)

The uT Du is known as the diffusivity function and is often written as D(g) = gT Dg
with the letter g replacing the letter u.

DTI provided quantitative framework for describing anisotropic diffusion. It

made it possible to identify the alignment of the medium’s micro-structure by di-

agonalizing D and associating its major eigenvector to this dominant alignment di-

rection. This in turn made it possible to trace fibers in the brain’s white matter.

The six independent coefficients {Di j} of D and the unweighted MR image M(0)
can be estimated from a set of seven or more DWIs. The estimation is linear in

its simplest form and can be computed by linearizing equation (10) by taking the

logarithms on both sides

ln(M) = ln(M(0))−buT Du. (11)

By creating a vector out of the unknowns d = [D11,D12,D13,D22,D23,D33,
ln(M(0))]T , by computing an Nx7 matrix Y for the N gradient directions {u}N

i=1

and b-values from (11) such that the i-th row is bi.[ui1ui1,ui1ui2,ui1ui3,
ui2ui2,ui2ui3,ui3ui3,1/bi], and by storing the logarithms of the N observed diffusion

signals along the corresponding gradient directions {ln(Mi)}N
i=1 in an Nx1 vector S,

the unknowns can be estimated as

dopt = argmin
d
||(Yd−S)||2, (12)

which gives

dopt = ((YT Y)−1YT )S, (13)

which is the Moore-Penrose pseudoinverse or the linear Least Square (LS) approach.

More sophisticated methods exist [39], many also estimate the diffusion tensor

D in the presence of noisy signal. Basser in [5] takes into account a Gaussian noise

model, while other approaches constrain the problem further to guarantee positive

diffusivity or to apply spatial smoothing [11, 13, 22, 28, 31, 37].
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2.3 The Diffusion Propagator

It is important to understand that the signal from the PGSE experiment measures

the diffusion of spin bearing particles, and that it is an average of the superimposed

signals of a large number of such particles. Therefore to understand and model the

signal generation one has to be able to both describe the diffusion motion of a spin

bearing particle and also be able to compute something of an ‘ensemble average’

quatity.

Since the Brownian motion of a particle is erratic and random it is convenient to

describe it using a conditional probability density function (PDF) P(r′|r, t) which is

the probability of finding a particle at position r′ at time t given that it was at the

position r at time 0. This PDF or propagator has to then satisfy the diffusion process

described by Fick’s first law

J(r) =−D∇rP(r′|r, t), (14)

with the initial condition

P(r′|r,0) = δ (r− r′), (15)

where J is the particle probability density flux and D is the diffusion coefficient.

Conservation of total conditional probability implies the continuity theorem

∇rJ =−∂P/∂ t (16)

which states that the rate of change of particle displacement probability is equal to

the loss of probability due to the particle flux. Combining (14) and (16) gives us

Fick’s second law

∂P/∂ t = D∇r.(∇rP) . (17)

The differential equation (17) can be solved for unrestricted or free diffusion which

has the special boundary condition P→ 0 as r′ → ∞ and with the initial condition

(15) [9], yielding

P(r′|r, t) = (4πDt)(−3/2) exp
{
−(r− r′)2/4Dt

}
. (18)

Notice in this equation that P only depends on r− r′ and not on the initial position

r.

The Ensemble Average Propagator (EAP) defined as

P(R, t) =
∫

P(r+R|r, t)ρ(r)dr, (19)

can then be computed, where ρ(r) is the particle density. It is a useful quantity and

gives the average probability of any particle to have a displacement R over time t.
For the free diffusion propagator (18), since it is independent of the starting position,

the EAP is the same for all the particles and can be written as



From Second to Higher Order Tensors in Diffusion-MRI 321

P(R, t) = (4πDt)(−3/2) exp
{
−R2/4Dt

}
, (20)

by dropping the overhead bar.

This Gaussian propagator describing free or unrestricted diffusion is defined for

isotropic diffusion by the diffusion coefficient D. It can be generalized to the case of

anisotropic diffusion by introducing the 2nd order diffusion tensor D in the equation

(14) to yield

P(R, t) = (|D|(4πt)3)(−1/2) exp
{
−RT D−1R/4t

}
. (21)

DTI, therefore, not only provides a framework for describing anisotropic diffu-

sion, for identifying the major micro-structural alignment direction of the medium

from the eigen-decomposition of D, but also for connecting the signal (10) to the

Gaussian propagator formulation (21) using the tensor D.

The simplicity of the Gaussian or free diffusion both in terms of a model and

computational load make DTI today the preferred approach in D-MRI. The decom-

position and easy geometric interpretation of the 2nd order tensor D also plays in

its favour. However, one would notice the paradox that though free diffusion is de-

scribed by a Gaussian EAP, anisotropy can occur only in the presence of restriction.

This seeming contradiction is the motivation to move on to a more generic prop-

agator formulation. It will help us understand the Gaussian propagator as a low

spatial frequency approximation of the EAP. It will also provide us with a frame-

work to introduce HOTs to be able to describe more complex geometries such as

fiber crossings.

2.4 The Fourier Relationship

Let us assume that δ is infinitesimally short, which we shall denote as the short

gradient pulse (SGP) condition. For the sake of simplicity let us also assume at first

without loss of generality that the gradients are applied along the x-axis and that

g denotes only the magnitude of the gradient vector (Fig-1) [27]. The dephasing

resulting from the two gradient pulses is then

φ1 = γ
∫ δ

0
gx1dt = γgδx1, (22)

φ2 = γ
∫ Δ+δ

Δ
gx2dt = γgδx2, (23)

where x1 = x(t = 0) and x2 = x(t = Δ) are the position vectors. The SGP condition

allows for x(t) to be constant over the integrals. The sign of φ1 and φ2 are opposite

due to the π RF pulse. Therefore the total dephasing due to both the gradient pulses

of one particle is

φ = φ2−φ1 = γgδ (x2− x1). (24)
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And so the complex signal from one particle is

c = eiφ = eiγδg(x2−x1) = eiγδgX , (25)

where X is the net displacement due to diffusion along the x-axis. In the general

case without assumptions on the gradient, which would then have the value g and

the net displacement vector R the complex signal is given by

c = eiγδg.R . (26)

To compute the ensemble average complex signal, we have to again take into

account that the signal is the superimposed signals from a large number of spin

bearing particles whose displacement probability is the EAP P(R, t), therefore

C(q, t) =
〈
eiq.R〉 =

∫ ∞

−∞
eiq.RP(R, t)dR (27)

= F [P(R, t)], (28)

where q = γδg, and 〈...〉 denotes the ensemble average. The ensemble average com-

plex signal is, therefore, the Fourier transform of the EAP. The propagator can there-

fore be estimated by taking the inverse Fourier transform of the complex signal

P(R, t) = F−1[C(q, t)]. (29)

What is interesting, however, is that it can be shown that for a pure diffusion

process, the inverse Fourier transform of the complex signal is equal to the inverse

Fourier transform of the modulus of the signal [36]

P(R, t) = F−1[|C(q, t)|] = F−1[S(q, t)], (30)

which we shall call the modulus Fourier transform. Hence the diffusion signal

C(q, t) is equal to its modulus C(q, t) = |C(q, t)|= S(q, t).
This establishes the Fourier relation between the signal and the EAP. Diffusion

Spectrum Imaging (DSI) uses this relation to compute the propagator from the signal

[38]. However, it requires aquiring the signal from a detailed sampling of q-space

and therefore suffers from lengthy aquisition times.

2.5 Cumulant Expansion of the Propagator

Equation (27) can also be used to interpret the signal as the characteristic function

or the complex cumulant generating function of the EAP. This realization permits

us to rewrite the logarithm of the signal in function of the cumulants of the EAP. For

simplicity of notation we do this for the one dimensional case along, say, the x-axis
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ln(C) =
∞

∑
n=1

κn
(iγδg)n

n!
, (31)

where κn are the cumulants. We shall see in the three dimensional case that these

cumulants are HOTs. Assuming a pure diffusion process it can be shown that all

odd order cumulants are zero or that the EAP is an even function with respect to the

displacement variable. The signal is therefore the modulus signal S.

Truncating the cumulant expansion (31) after the second term yields a signal

from a Gaussian EAP with κ1 = μ the mean and κ2 = σ2 the variance. Comparing

to the free Gaussian propagator from equation (20) and considering it in the one

dimensional case gives κ1 = 0 and κ2 = 2Dt. This implies that the logarithm of the

diffusion signal is

ln(S) =−κ2
(γgδ )2

2
= −γ2g2δ 2ΔD (32)

≈ −bD, (33)

Equation (33) is essentially equation (6). The SGP condition therefore yields a sig-

nal that differs from the finite pulse experiment (33) by δ/3.

Hence, assuming the SGP condition, the Gaussian propagator or the free diffu-

sion can be viewed as the low spatial frequency approximation of the EAP.

2.6 Diffusion Kurtosis Imaging

The cumulant expansion allows us to naturally characterize the deviation of the

diffusion from the Gaussian behaviour due to restriction by considering the higher

order cumulants [18]. For example truncating the expansion after the fourth order

[27] yields

ln(S) =−κ2
(γgδ )2

2
+κ4

(γgδ )4

4!
. (34)

By defining the excess kurtosis, or the fourth standardized moment as

K =
κ4

κ2
2

, (35)

and again substituting the value of κ2 from (20) gives

κ4 = Kκ2
2 = 4KD2Δ 2, (36)

which therefore yields
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ln(S) = −bD+
4KD2Δ 2(γgδ )4

4!
(37)

= −bD+
1

6
b2D2K. (38)

This makes it possible to directly estimate the diffusion kurtosis by taking three

DWI measurements for different b-values along any gradient direction (including

the b = 0 unweighted image). This approach is, therefore, known as Diffusion Kur-

tosis Imaging (DKI) [18].

For anisotropic diffusion in three dimensions the diffusion coefficient D is a 2nd

order Cartesian tensor D and the kurtosis coefficient K becomes a 4th order Carte-

sian tensor K(4).

The kurtosis is a measure of the peakedness of the EAP and tells us if the diffu-

sion is more sharply peaked or less sharply peaked than a Gaussian or free diffusion.

Gaussian diffusion corresponds to K = 0. The cumulant expansion has, however, a

finite radius of convergence centered around b = 0, and, therefore, DKI is useful at

intermediate and low b-values.

3 Higher Order Tensors in D-MRI

Tensors in the form of 2nd order diffusion tensors at the core of the DTI framework

allow for the inference of the medium’s micro-structure analytically and quanti-

tatively. The EAP formulation, however, generalizes the anisotropy model of the

diffusion tensor by considering the Gaussian propagator as a low spatial frequency

approximation. This is done from the cumulant expansion of the EAP. In DKI we

see higher order cumulants being used, especially the 4th order cumulant which is a

4th order Cartesian tensor to examine the deviation of the diffusion from Gaussian

or free diffusion.

The EAP formulation offers the possibility of extracting more complex geomet-

ric information of the medium’s micro-structure, such as fiber crossings, by admit-

ting more general anisotropy models. The anisotropy is often modelled using HOTs,

such as in GDTI, which lend greater geometric details to the propagator with their

increased multi-linearity. However, it must be noted that the GDTI models are phe-

nomenoligical or that the order of the tensors are increased to fit the diffusion signal

data more closely.

At this point it is relevant to mention D-MRI reconstruction schemes that attempt

to be model-free or model-independent. The classical approach along this line is

DSI. Q-Ball Imaging (QBI) is another [36]. QBI computes a function known as the

Orientation Distribution Function (ODF) which is the radial integration of the EAP.

No models are set for the propagator however.
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3.1 Generalizing Fick’s Laws

Generalized Diffusion Tensor Imaging tries to model the diffusion signal containing

anisotropies suspected to be more complex than Gaussian anisotropy using higher

order tensors. Two GDTI models have been proposed. Both modify Fick’s laws of

diffusion to accomodate non-Gaussian diffusion.

Let us go back to equations (14) and (17) and rewrite them for J the flux, D the

diffusion coefficient, and C the concentration as:

J = −D∇C (39)

∂C
∂ t

= D∇2C. (40)

And in the case of Gaussian-anisotropic three dimensional diffusion the equations

become

J = −Di j∇ jC (41)

∂C
∂ t

= tr(Di j∇2
i jC), (42)

where Di j are the coefficients of the 2nd order tensor D. In equations (41) and (42),

we use Einstein’s notation convention and a repetition of indices, such as Di j∇ jC,

implies a summation over the repeated index over all its possible values ∑ j Di j∇ jC.

Two generalizations to Fick’s laws were proposed independently by the authors

in [24] and [30]. They are sometimes referred to as GDTI-1 and GDTI-2 respectively

[27].

In GDTI-1, Fick’s laws in three dimensions are written as an infinite sum of

products of tensors of increasing orders with partial derivatives of C of increasing

orders

Ji1 = −
∞

∑
k=2

[
D(k)

i1i2...ik

∂ (k−1)C
∂xi2∂xi3 . . .∂xik

]

= −
∞

∑
k=2

[
D(k)

i1i2...ik
∇(k−1)

i2...ik
C
]

(43)

∂C
∂ t

=
∞

∑
k=2

[
D(k)

i1i2...ik
∇(k)

i1i2...ik
C
]
, (44)

where D(k)
i1i2...ik

are the coefficients of the k-th order three dimensional Cartesian

diffusion tensor D(k), by an abuse of notation ∇(k)
i1i2...ik

C denotes the k-th order partial

derivatives of C, and we again employ Einstein’s notation convention of a repetitive

index to represent summation. GDTI-1 modifies the fundamental relation between

the flux and the concentration in Fick’s laws.

In GDTI-2, Fick’s laws in three dimensions for spin bearing particles under the

influence of a magnetic gradient g are written for a given order k as
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J = −Di1i2...ik gi1gi2 . . .gik ∇C (45)

∂C
∂ t

= Di1i2...ik gi1gi2 . . .gik ∇2C, (46)

where Di1i2...ik are the coefficients of D(k), gii . . .gik are components of the gradient

g, and we use Einstein’s notation convention for the indices. GDTI-2 modifies Fick’s

law by replacing the diffusion coefficient by a generalized diffusion function.

3.2 GDTI-1

In [24] the author uses the modified Fick’s law (44) in the Bloch-Torrey equation

(1). Solving this yields the diffusion function

D(g) =
∞

∑
k=1

[
i2kD(2k)

l1l2...l2k
B(2k)

l1l2...l2k

]
, (47)

where i is the imaginary number, B(k)
l1l2...lk

are the coefficients of the k-th order Carte-

sian tensor B(k) that is the generalization of the B-matrix (7), and we again use Ein-

stein’s summation notation. We only retain the even ordered diffusion tensors here,

unlike in the authors presentation [24]. This is justified by the explanation that the

even ordered tensors account for the magnitude of the signal while the odd ordered

tensors (on the imaginary axis) account for the phase, and as we have seen earlier,

for a pure diffusion process the signal is equal to the modulus Fourier transform of

the propagator.

What makes GDTI-1 attractive is that with this form of the diffusion function

and given the Fourier relation between the propagator and the signal, it is possible

to reconstruct the propagator as a function of the estimated higher order diffusion

tensors. This can be seen by replacing the diffusion function (47) in the linearized

model of the signal, given by taking logarithms on both sides of equation (9), which

yields

ln

(
M

M(0)

)
=

∞

∑
k=1

[
i2kD(2k)

l1l2...l2k
B(2k)

l1l2...l2k

]
. (48)

The cumulant expansion of the signal (31) written in the three dimensional case

using Einstein’s summation notation is

ln(S) =
∞

∑
j=1

⎡⎣i2 j
K(2 j)

l1l2...l2 j
ql1 ql2 . . .ql2 j

2 j!

⎤⎦ , (49)

where only the even ordered cumulants are non-zero, K( j)
l1l2...l j

are the coefficients

of the j-th order cumulant K( j) which is now a j-th order Cartesian tensor, and
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ql1ql2 . . .ql2 j are the coefficients of q = γδgu with u the unit vector in the direction

of the gradient pulse satisfying the SGP condition.

Comparing equations (48) and (49) reveals [24]

K(n)
l1l2...ln = (−1)nn!D(n)

l1l2...ln

(
Δ − n−1

n+1
δ
)

≈ (−1)nn!D(n)
l1l2...lnΔ , (50)

or in other words the higher order cumulants K(n) can be computed from the dif-

fusion tensors of the same order D(n) that parameterize the generalized Fick’s law

(46), while the diffusion tensors can be estimated from the signal or DWIs using the

linear LS approach [23].

It is then possible to reconstruct the propagator as a function of the cumulants

using the Gram-Charlier series [24]

P(r) = N(0,K(2)
l1l2

)×

⎛⎝1+
K(4)

l1l2l3l4
4!

Hl1l2l3l4(r)+ ...

⎞⎠ , (51)

where N(0,K(2)
l1l2

) is the normal distribution with zero mean and covariance matrix

K(2)
l1l2

, and Hl1l2...ln(r) is the n-th order Hermite tensor.

If pl1l2 be the components of N(0,K(2)
l1l2

)−1, and if wl1 = pl1l2rl2 , then [24]

Hl1l2l3l4(r) = wl1wl2wl3wl4 −6w(l1 wl1 pl3l4) +3p(l1l2 pl3l4), (52)

where indices within parantheses designate that the term is to be averaged over

all permutations of those indices that produce different terms, remembering that

pl1l2 = pl2l1 and wl1wl2 = wl2wl1 . This gives the components of the fourth order

Hermite tensor for completeness.

3.3 GDTI-2

In [30] the author modifies the Bloch-Torrey equation (1) by replacing the diffusion

term described by Fick’s classical law by the modified diffusion law of equation

(46). Solving this modified Bloch-Torrey equation yields the diffusion function of

order k

D(g) =
3

∑
i1=1

3

∑
i2=1

. . .
3

∑
ik=1

Di1i2...ik gi1gi2 . . .gik . (53)

which can be seen as a extension of the Gaussian diffusion function defined for the

2nd order tensor
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D(g) = gT Dg =
3

∑
i=1

3

∑
j=1

Di jgig j. (54)

The k-th order diffusion tensor D(k) has to be of even order and symmetric. The

symmetry constraint implies that the coefficients Di1i2...ik are equal under any per-

mutation of the indices, yielding

N(k) = (k +1)(k +2)/2 (55)

independent coefficients. These unknowns can be estimated from the diffusion sig-

nal or DWIs in exactly the same fashion as the unknowns of DTI were estimated –

by constructing the vectors d, S and the matrix Y appropriately. One can then again

use the linear Least Squares approach (13).

The estimated diffusion function D(g) allows to approximate the diffusion signal,

by extrapolating, everywhere in q-space. The EAP has to be, therefore, computed

from the diffusion function by extrapolating the diffusion signal and then by numer-

ically computing its inverse Fourier transform (29). This does not give a closed form

for the propagator. However, since the diffusion function is more complex, it allows

the propagator to model complex anisotropies such as fiber crossings.

4 Positivity Constraints

Diffusion is a positive quantity and negative diffusion does not correspond to any-

thing physical. This is the reason behind introducing a positive definite 2nd order

diffusion tensor by Basser in DTI [6]. However, since the signal is often noisy it

is common to estimate non-positive definite tensors using the linear LS approach.

Tackling this problem revealed that 3×3 symmetric positive definite diffusion ten-

sors belong to a Riemannian space, with a Riemannian metric which assigns an

inner product to each point of this space. In fact two affine invariant metrics were

proposed that rendered the space of symmetric positive definite matrices S+ com-

plete, allowing various tasks like interpolation and geodesic computation to be natu-

rally confined to this space. These were the Riemannian metric [13, 28, 31, 22] and

the Log-Euclidean metric [1, 2]. The linear LS approach uses the Euclidean metric

of R3x3.

It is well known, and as we have seen, DTI, using 2nd order tensors, cannot

model complex anisotropic diffusion phenomenon like fiber crossings. It is lim-

ited to a single dominant alignment direction (one major eigenvector), and in the

case of crossing fibers the tensors become oblate or spherical. GDTI overcomes this

shortcoming by estimating the diffusion function with HOTs. However, HOTs in

GDTI are also estimated using the linearized LS approach which doesn’t guaran-

tee a positive diffusion function. The problem of guaranteeing a positive diffusion

using HOTs is rendered hard by the increased multi-linearity of the tensors. Two ap-
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proaches were proposed recently to tackle 4th order diffusion tensors in the GDTI-2

model. These shall be presented here.

4.1 Riemannian Approach

In [15] the authors propose to extend the Riemannian framework from 2nd order

tensors to the space of 4th order tensors by mapping a 4th order 3D tensor to a 2nd

order 6D tensor which is a 6×6 matrix. Then they proceed to use the Riemannian

framework for S+ in the space S+(6) to guarantee a positive diffusion function.

A 4th order tensor is defined to be a linear transformation A(4) : Lin(V ) →
Lin(V ), where V is a vector space over Rn [29]. The double-dot-product is intro-

duced as A(4) : D(2) = Ai jklDkl , using Einstein’s summation notation, where D(2)

is a 2nd order tensor. Transpose A(4)T is then defined as 〈A(4) : D(2) | C(2)〉 =
〈D(2) | A(4)T : C(2)〉 using the inner-product 〈. | .〉 in the space of 2nd order ten-

sors. And the Euclidean inner-product in the space of 4th order tensors is defined to

be 〈A(4) | B(4)〉= tr(A(4)T B(4)).
A 4th order tensor satisfying major and minor symmetries has 21 independent

coefficients, in three dimensions, and has an eigen decomposition. If it satisfies to-
tal symmetry it has 15 independent coefficients. This symmetry corresponds to the

symmetric HOTs in GDTI, and by replacing k = 4 in (55) one can arrive at the same

number of independent coefficients.

A proposition [29] states that

〈A(4)
s | B(4)

a 〉= tr(A(4)
s B(4)

a ) = 0, (56)

where B(4)
a is the remainder or anti-symmetric part that remains when the totally

symmetric part B(4)
s of a tensor B(4) is subtracted from itself.

When a 4th order tensor in three dimensions A(4,3), satisfies major and minor

symmetries it can be mapped to a symmetric 2nd order tensor in six dimensions

A(2,6) [4, 29]. The double-dot-product, for a symmetric 2nd order tensor D(2,3),

can be rewritten as a matrix vector product A(4,3) : D(2,3) = A(2,6)d(1,6), where

d(1,6) = [D11,D22,D33,
√

2D12,
√

2D13,
√

2D23]T , where Di j are the six independent

coefficients of D(2,3). The diffusion function of GDTI-2 (53) for order 4 can then be

written as

D(g) = D(2,3) : A(4,3) : D(2,3)

= tr(A(4,3)G(4,3)), (57)

where D(2,3) = g⊗g, with g the gradient, ⊗ the outer-product, and G(4,3) = g⊗g⊗
g⊗g, a totally symmetric 4th order tensor. For computations the equivalent matrix

formulation can be used instead

D(g) = d(1,6)T
A(2,6)d(1,6). (58)
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The 4th order diffusion tensor A(4,3) can be estimated in S+(6) by using the

Riemannian metric and an M-estimator Ψ , to account for outlier data, along the

lines of [21]. The error energy functional that has to be minimized is

E(A(2,6)) =
N

∑
i=1

Ψ
(

1

bi
ln

(
M

M(0)

)
+

d(1,6)T
i A(2,6)d(1,6)

i

)
, (59)

where N is the number of DWIs aquired, as a non-linear gradient descent problem.

The gradient of this functional using the Riemannian metric in S+(6) is

∇E =
N

∑
i=1

Ψ ′(ri(A(2,6)))A(2,6)d(1,6)
i

(
A(2,6)d(1,6)

i

)T
, (60)

where ri(A(2,6)) = 1
bi

ln
(

M
M(0)

)
+ d(1,6)T

i A(2,6)d(1,6)
i . Since A(2,6), is estimated in

S+(6), the diffusion function (58) is guaranteed to be positive for any g. However,

since A(2,6) is estimated in S+(6), it has 21 independent coefficients, while a 4th

order diffusion tensor is totally symmetric and can have only 15. This indeterminacy

can be overcome by noticing that G(4,3) is totally symmetric, therefore

D(g) = tr(A(4,3)G(4,3))

= tr((A(4,3)
s +A(4,3)

a )G(4,3))

= tr((A(4,3)
s G(4,3)), (61)

where the last equality comes from equation (56), A(4,3)
s contains the coefficients of

the 4th order diffusion tensor and A(4,3)
a , the residue, contains the excess parameters.

The symmetry constraint of ||A(4,3)
a || = 0 can, therefore, be applied by projecting

A(4,3) to its symmetric part A(4,3)
s .

4.2 Ternary Quartics Approach

The authors in [3] were the first to attempt a positivity constraint on the 4th order

diffusion tensor. The diffusion function of GDTI-2 (53) for order 4 was rewritten as

D(g) = ∑
i+ j+k=4

Di jkgi
1g j

2gk
3, (62)

due to the bijection that exists between a symmetric tensor of order k and a homo-

geneous polynomial of degree k. In this form, the diffusion function can be seen to

be a function of the three variables g1,g2,g3, and of total degree four. It is a Ternary
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Quatic. The positivity constraint on the diffusion function requires the ternary quar-

tic to be positve for any values of the three variables. Hilbert proved in 1888 [17]

that

Theorem 1 Every non-negative real ternary quartic form is a sum of three squares
of quadratic forms.

Using this theorem, the diffusion function (62) can be parameterized as

D(g) = (vT q1)2 +(vT q2)2 +(vT q3)2

= vT QQT v = vT Gv, (63)

where v contains the monomials consisting of the gradient coefficients [g2
1,g

2
2,

g2
3,g1g2,g1g3,g2g3]T , Q = [q1|q2|q3] is a 6× 3 matrix, and G = QQT is the 6× 6

Gram Matrix which contains 18 independent coefficients, of which 15 are of the

4th order diffusion tensor. The coefficients of the diffusion tensor can be extracted

from G using a map described in [3], and which closely resembles the map used in

[4, 29].

Parameterized in this fashion, with Q estimated from the DWIs, G computed

from Q, to finally extract the coefficients of the 4th order diffusion tensor from G,

ensures that the diffusion function, a ternary quartic, is always non-negative. The

energy functional to estimate Q from N DWIs is

E(Q) =
N

∑
i=1

(
Mi−M(0)e−bivT

i QQT vi
)2

. (64)

For any given Q, however, it is possible to compute a whole family of {Q′}s
such that Q′Q′T = QQT = G, from the group of rotation matrices R, since they

are orthogonal and, therefore, RRT = I, where I is the identity matrix. This can be

seen by constructing Q′ = QR, since Q is 6imes3 and R is 3imes3, and computing

Q′Q′T = (QR)(QR)T = QQT . To reduce this infinite solution space to a finite set

of solutions, Q is separated into its upper and lower 3imes3 blocks A and B and

re-parameterized via a QR-decomposition of its upper block A as

Q =
(

TR
B

)
=
(

T
C

)
R, (65)

where TR is the QR decomposition of A, T is a lower trangular matrix, R is an or-

thogonal matrix, and C = BRT . Re-parameterized in this fashion Q now has exactly

15 independent coefficients which corresponds to the number of unknowns of the

4th order diffusion tensor, and R is simplified when computing QQT .

The authors also proposed a distance function between two 4th order diffusion

tensors A1 and A2 for spatial regularization. It is defined as

dist(A1,A2) =
1

4π

∫
S2

(D1(g)−D2(g))2 dg, (66)
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where D1(g) and D2(g) are the diffusion functions that correspond to A1 and A2, and

the integral is over the unit sphere S2. This metric is invariant to rotations and can

be computed analytically as a function of the coefficients of the 4th order difference

5 Conclusion

Since its inception in the mid 1900s, Diffusion MRI has today become a state-of-

the-art medical tool for probing cerebral white matter. Its strength lies in being able

to infer the micro-structure of the biological tissue non-invasively and in vivo by

reconstructing a ‘complete’ diffusion image by integrating the partial information

from DWIs. This is possible due to the anisotropic phenomenon of diffusion in

mediums with strongly alligned micro-structures.

Starting from the fundamental equations that describe the diffusion phenomenon,

we have presented here the role played by Cartesian tensors in modelling this

anisotropic diffusion and from there extracting the geometric information of the un-

derlying tissue. DTI, using 2nd order diffusion tensors was able to model Gaussian-

anisotropy and from there extract a single major diffusion direction or structural

alignment from its eigen-decomposition. This allowed to trace fibers in the white

matter.

However, we saw how the propagator formulation generalized on DTI by con-

sidering the Gaussian propagator to be a low order spatial approximation of the

actual EAP. It was then possible to model the general EAP by employing higher or-

der Cartesian diffusion tensors which were capable of accounting for more complex

anisotropic diffusion phenomena such as fiber crossings.

In the last section we tackled the problem of the positivity constraint on the dif-

fusion function. Diffusion being a physical phenomenon, negative diffusion does

not correspond to anything. However, in the presence of noisy data straightforward

linear Least Squares approximation can result in a non-positive diffusion function.

This had been tackled by the Riemannian metric formulation in the case of DTI. We

saw two recent methods which attempted to tackle this problem in the case of 4th

order diffusion tensors using the GDTI-2 model.

Tensors play an important role in Diffusion MRI. Higher order tensors are a re-

cent addition, but the 2nd order diffusion tensor in DTI is a cornerstone technique

in the clinical scenario today. Recent work in [8, 14] have shown how it is possible

to use higher order Cartesian tensors to extract the maxima from relevant spherical

functions such as the Orientation Distribution Function (ODF) with great precision.

Since the maxima of the ODF indicate fiber directions, extracting them correctly

is of fundamental importance in tracing fiber tracts in regions where complex fiber

configurations like crossings are possible.

Acknowledgements: We would like to thank Peter Basser, Evren Ozarslan and
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tensor ∆∆∆ = A1−A2.
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DT-MRI Connectivity and/or Tractography?:
Two New Algorithms

Burak Acar and Erdem Yörük

Abstract Diffusion Tensor MRI (DTI) is a special MR imaging technique where the

second order symmetric diffusion tensors that are correlated with the underlying fi-

brous structure (eg. the nerves in brain), are computed based on Diffusion Weighted

MR Images (DWI). DTI is the only in vivo imaging technique that provides infor-

mation about the network of nerves in brain. The computed tensors describe the

local diffusion pattern of water molecules via a 3D Gaussian distribution in space.

The most common analysis and visualization technique is tractography, which is a

numerical integration of the principal diffusion direction (PDD) that attempts to re-

construct fibers as streamlines. Despite its simplicity and ease of interpretation, trac-

tography algorithms suffer from several drawbacks mainly due to ignoring the infor-

mation in the underlying spatial distribution but using the PDD only. An alternative

to tractography is connectivity which aims at computing probabilistic connectivity

maps based on the above mentioned 3D Gaussian distribution as described by the

DTI data. However, the computational cost is high and the resulting maps are usu-

ally hard to visualize and interpret. This chapter discusses these two approaches and

introduces two new tractography techniques, namely the Lattice-of-Springs (LoS)
method that exploits the connectivity approach and the Split & Merge Tractography
(SMT) that attempts to combine the advantages of tractography and connectivity.
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1 Introduction

Proton self-diffusion provides inherent tissue contrast in MRI, which is utilized in

diffusion-weighted imaging (DWI) [1, 2]. Since the early 1990s DWI has been used

successfully for the diagnostic work up of acute stroke patients [3, 4] and later also

for abscesses [5] and Creutzfeld Jacob disease (CJD) [6]. In biological tissue, such

as brain white matter (WM), diffusion is normally anisotropic [7]; that is, the mo-

bility of diffusing protons is different if measured along different directions. While

WM appears homogeneous on conventional imaging, its underlying tissue structure

is truly more complex and comprises a complex network of axonal bundles routing

electrophysiological signals from and to cortical regions, as well as basal ganglia,

the cerebellum, and the periphery. A large number of pathological processes tar-

get WM structures and can have critical impact on the well-being of a patient. It

has been shown that certain WM abnormalities, such as multiple sclerosis (MS) [8]

or amyotrophic lateral sclerosis (ALS) [9], as well as genetically defined psychi-

atric disorders, such as fragile X syndrome [10, 11], or velocardiofacial syndrome

[12] are paralleled by reduced diffusion anisotropy. In fact, in some of these dis-

eases, diffusion anisotropy changes occur much earlier than any other abnormality

seen in conventional imaging. Altered diffusion might therefore be a helpful factor

that needs to be considered for earlier diagnosis that in turn would provide access

to more advanced treatment options. In addition, the understanding how different

areas of the brain connect to each other is not only of great interest for basic neu-

roscientists but also for clinicians to further their knowledge on how diseases and

injuries might alter functional and anatomical connectivity, which ultimately could

improve diagnosis and treatment.

In the past, the interrogation of WM fiber tracts could only be performed in-

vasively and normally destroyed the tissue [13, 14, 15, 16]. Various methods have

been tested in animal studies, but clinically there exists no test to image axonal fiber

paths. Several years ago diffusion tensor imaging (DTI) [17, 18, 19], an improved

variant of DWI, has been introduced to quantify diffusion anisotropy. In DTI, it is

widely assumed that the significant diffusion anisotropy is due mostly to the re-

striction the myelin sheaths impose on water protons as they diffuse across axons.

Conversely, diffusion along the axons demonstrates more or less no restriction. This

highly anisotropic diffusion property lays the foundation of DT-MRI analysis and

visualization techniques, specifically of fiber tracking [20, 21, 22]. However, it is

of utmost importance to understand what the DT-MRI signal represents in order

to develop adequate analysis and visualization methods and understand the short-

comings of tractography. DT-MRI measures the average signal attenuation within a

small subvolume (i.e. a voxel) due to water molecules spinning out-of-phase.

The basis of MRI is to perturb the water molecules (the dipoles) that were aligned

in a constant magnetic field (B0≈ 1−7Tesla) and let them re-orient themselves with

B0 during which the dipoles rotate around B0 according to the Bloch’s Equation.

This rotation causes a temporal change in total magnetic field which induces a time-

varying current at the receiving coils of the MR scanner. The time it takes for the

dipoles to fully relax depends on the environment (i.e. the tissue). Thus, the amount



DT-MRI Connectivity and/or Tractography?: Two New Algorithms 337

of current induced is proportional to the number of dipoles (i.e water concentration)

and the tissue type. These current measurements are transformed to monochromatic

images in which each pixel value is also a function of water concentration and tissue

type 1.

In DT-MRI, extra spatially varying magnetic fields, the so called Diffusion

Weighting Gradients (DWG), G, are applied together with B0. Due to this added

G field, the water molecules under continuous Brownian motion experience differ-

ent total magnetic field at different locations. This causes then to rotate at different

frequencies, i.e. to be out-of-phase. The effect of out-of-phase dipoles on the in-

duced current is attenuation. So, the amount of attenuation in the received signal

(equivalently in the diffusion weighted MR images) is a function of the Brownian

motion (i.e diffusion) of water molecules and the applied G field.

This phenomenon is described by the superposition of the Bloch’s Equation and

the Diffusion Equation as follows:

∂M
∂ t

= γM× (B0 +G)−

⎛⎝M−

⎡⎣ 0

0

Mz

⎤⎦⎞⎠
⎡⎢⎣

1
T2

0 0

0 1
T2

0

0 0 1
T1

⎤⎥⎦−∇ ·D∇M (1)

where the first term is the rotation, the second term is the relaxation and the third

term is the diffusion components of the temporal change of the magnetic field, con-

sequently of the induced current which is related to the MR image. The solution to

the transverse component of M, i.e. m = Mx + jMy, just before the imaging sequence,

is given as,

m(T E) = m0exp(−∑
i, j

bi jDi j) , (i, j) ∈ {x,y,z} (2)

The six independent components of the symmetric diffusion tensor D can be com-

puted using at least 6 linearly independent equations of the form of Equation 2.

When the diffusing water molecules are in a restricted media, such as nerve fibers,

then the physical barriers (the membrane) limit the space into which the particles

diffuse, thus the apparent diffusion pattern is correlated with these barriers, i.e. the

structure. The underlying assumption of DT-MRI tractography is that the principal

diffusion direction is tangent to the fiber.

The diffusion component of Equation 1 is the well known diffusion PDE based on

Fick’s Law which establishes the relation between concentration gradient and flux as

Fk =−Dkl
∂C
∂xl

for (k, l)∈ {1,2,3} in 3D. However, as suggested by Liu et al. in [23],

if the gaussianity assumption of the underlying diffusion process is removed, then

the physical process can be characterized by using higher order diffusion tensors.

This corresponds to generalizing the Fick’s Law as

1 In order to compute this for each voxel in 3D, spatial coding magnetic fields must be applied,
which is equivalent to saying that B0 must be a function of space. For the sake of clarity, we ignored
spatially varying B0 and assumed that our space consists of a single voxel.
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Fk =−D(2)
kl

∂C
∂xl

−D(3)
klm

∂ 2C
∂xl∂xm

−D(4)
klmn

∂ 3C
∂xl∂xm∂xn

− ... (3)

The details of Generalized Diffusion Tensor can be found in [23]. The points we

would like to emphasize regarding the nature of the DT-MRI data are,

- The second order diffusion tensor is a second order approximation to the diffu-

sion process which assumes a Gaussian distribution of diffusing particles

- The measured diffusion tensor in DT-MRI is computed using the average MR

signal acquired from a subvolume (a voxel)

Consequently, the DT-MRI data provides a coarse picture of the underlying fiber

structure. Not only its spatial resolution is insufficient to identify the individual

fibers, but also its modeling of the diffusion process relies on the gaussianity as-

sumption. Nevertheless, DT-MRI data does provide useful clinical information as

has been shown by numerous studies in literature.

2 Connectivity or Tractography?

There are two basic approaches in utilizing the information DT-MRI provides: Trac-

tography and Connectivity Mapping. The former approach relies on either the de-

terministic pathway tracing or probabilistic pathway sampling with a likelihood es-

timation. The basic tool used for deterministic tractography is numerical integration

of the principal diffusion direction (PDD, the major eigenvector of the diffusion

tensor) among which the most popular method is the 4th order Runge-Kutta inte-

gration [24]. Deterministic tracking is prone to cumulative errors, can not overcome

the partial volume effect and disregards large part of the information embedded

in the diffusion tensor (which itself is an approximation based on the gaussianity

assumption of the diffusion process). Yet, these pathways are easy to compute, vi-

sualize and interpret. The probabilistic tractography methods, on the other hand,

use a pathway sampling strategy and a likelihood model to score and order the sam-

pled pathways [25, 26, 27, 28, 29, 30]. However, low probability estimations for

known to exist pathways have been reported, which makes the selection of the most

probable pathway questionable [31, 32]. Recently, a new approach to probabilistic

tracking has been proposed [33]. Different than the previous approaches, the method

has been proposed to assess the known pathways rather than estimating the existence

of a pathway. It is composed of three steps, the likelihood scoring of pathways to

select anatomically correct ones, pathway sampling and selecting the most likely

pathways. Typically these methods generate a set of pathways, ordered with respect

to their likelihood. This approach addresses the above mentioned problems of de-

terministic tractography but still fails to communicate the stochastic nature of the

underlying DT-MRI data. The Connectivity Mapping approach, on the other hand,

attempts to utilize the true nature of the DT-MRI data, i.e. the Gaussian diffusion

process, by estimating connectivity maps rather than single pathways. They con-

sider each and every possible connection with weights set by the dataset. Several
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approaches in this group are based on some sort of Monte-Carlo simulations of the

random walk model [34, 35, 36]. Related to probabilistic tracking, we should also

mention the approaches based on recasting the problem to the Riemannian differen-

tial geometry framework by defining local metrics using the diffusion tensors and

solving for the geodesics and/or performing DT-MRI segmentation based on tensor

similarities [37, 38].

The output of deterministic or probabilistic tractography methods is composed

of single pathways pretending to follow a single fiber. At points of high uncertainty

(crossing and kissing fibers), the deterministic approaches choose a direction to pro-

ceed or stops tracking while the probabilistic methods explore a large space of pos-

sible pathways to select the one with the highest likelihood. On the other hand, the

connectivity mapping based methods provide a scalar field of connectivity probabil-

ities that, unlike tractography, allows branching. Although anatomically branching

is not valid, presenting the DT-MRI data in this way is more loyal to the nature of

the acquired data (localized Gaussian maps of diffusing particles). Thus, we can say

that connectivity mapping is a more direct way of communicating the information

embedded in DT-MRI data. However, it is not trivial to visualize and interpret the

connectivity maps.

We will focus on two methods recently proposed for DT-MRI analysis: The
Lattice-Of-Springs (LoS) [41] and The Split & Merge Tractography (SMT) [39].

The LoS method is based on a lattice-of-springs system that models the local con-

nectivity based on diffusion tensors and allows us to query for connectivity between

multiple seed points simultaneously. It is essentially an efficient diffusion simula-

tion governed by the defined tensor similarity (local connectivity). As such, LoS

provides a framework that can be used with different tensor similarity/connectivity

definitions. The SMT, on the other hand, is an attempt to combine the advantages

of tractography and connectivity. The pathways are defined as groups of local and

deterministically computed short tracks. A critical property of SMT is that it al-

lows for branching of pathways at points of uncertainty, thus representing the true

information in DT-MRI data.

3 Lattice-of-Springs (LoS)

3.1 Method

Before going into details of LoS method, let us first layout, how we interpret con-

nectivity. We will consider connectivity in white matter, as a positive function de-

fined on the volume, that is always associated to a point of reference, which we call

the “seed” or “source”. Intuitively, connectivity should decrease with distance from

the seed while revealing the neural pattern underneath, that is, it should decay less

along the fibers than across them. With these design objectives at hand, we propose
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a physical “Lattice of Springs” model, as an intuitive tool to obtain white matter

connectivity maps from DTI data, with respect to user defined seeds.

To better explain our model and our motivation, we will make use of graph no-

tation. As in Markov Random Fields applied on images, we will consider an undi-

rected graph G = (V,E) such that the vertex set V = {1,2, ...,n} corresponds to the

lattice of n voxels (where we will use words vertex, node and voxel interchange-

ably), and the edge set E is composed of links (i j) between adjacent vertices i and

j ∈ Ni, where Ni is the 6-neighborhood of i.
As in Figure 1, we imagine a mechanical system embedded in graph G, where

at each node i ∈ V , there is a virtual object, which can physically move within

its virtual framework, perpendicular to some fixed reference, the so called ground.

We assume that the object at i is connected to the ground with a ground spring of

stiffness Ki, and to each neighboring object of j ∈ Ni with a corresponding neighbor

spring of stiffness Ki j. The overall system is arranged such that, depending on the

vertical positions xi and x j of adjacent objects at i and j, we have elongations xi
and |xi− x j|, at the ground spring of i and at the neighbor spring between i and j,
respectively.

Given the configuration x, an n-dimensional vector formed by xi’s (i ∈ V ), the

total energy stored in the lattice of springs is given by

U(x) =
1

2

[
∑
i∈V

Kix2
i + ∑

(i j)∈E
Ki j(xi− x j)2

]
.

Now, suppose s ∈V is the seed node, we assume xs ≡ 1, which is kept constant.

Then, with appropriate choices for spring constants, we will take

xs = argminU(x)
∣∣
xs=1

as the connectivity of the volume with respect to seed s. That is, the ith entry (i ∈V )

in the U’s minimizer subject to the seed constraint xs = 1, will give how strong

voxel i is connected to seed s. The configuration xs will be the state where there is

equilibrium in the system and to avoid possible confusion with other definitions of

connectivity in the literature, we will call it xMap, in the following sections.

Note that, with U containing an energy term for each possible clique c ∈
{{i},{i, j} : i ∈ V,(i j) ∈ E} in G, xs will also correspond to the most likely con-

figuration given the seed constraint, if one models the conditional random vector

(X|Xs = 1) to be a Gibbs random field with U’s clique potentials.

To solve this constrained minimization problem, we introduce a Lagrange multi-

plier λ , to write

Ũ(x,λ ) =
1

2

[
∑
i∈V

Kix2
i + ∑

(i j)∈E
Ki j(xi− x j)2

]
+λ (xs−1).

Then we get
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Fig. 1 1D model of the proposed system. a) The undisturbed system with all node potentials being
zero. b) The seed node’s potential is fixed at 1, which is distributed to other nodes through the inter-
connecting springs. Higher spring constants are assigned to higher local connectivity links, which
is proportional to the local interaction of two diffusion tensors (the shaded regions). More stiff
springs transport energy more effectively, which causes the nodes that are connected to the seed(s)
via stiff springs, have higher node potentials (eg. w2 vs. w1). The node potentials are interpreted as
the connectivity maps.

(xs,λs)T = argminŨ(x,λ ) = A−1
s b

where (n+1)× (n+1) symmetric matrix As has entries
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ai j =

⎧⎪⎪⎨⎪⎪⎩
Ki +∑k∈Ni Kik, if i = j ≤ n;

−Ki j, if (i j) ∈ E;

1, if (i, j) = (s,n+1) or (i, j) = (n+1,s);
0, otherwise.

and b is n+1-dimensional column vector with

bi =
{

1, if i = n+1;

0, otherwise.

However, For DTI data, number of voxels n can be very large, so that one would

prefer numerical approximation instead of a huge matrix inversion. As a positive

sum of convex functions, U is convex, so subject to seed condition it will have

a unique global minimum which can be achieved by gradient descent, namely by

iterating x(t) = x(t−1)−α(t)∇U |x(t−1) with an appropriate step size α(t) and x(t)
s = 1

for all steps t. Moreover, since the minimum is global, one can replace α∇U by any

vector v of sufficiently small norm, provided that vT ∇U > 0. In other words, one

always decreases U , if one moves from the current point in a direction which makes

a negative dot product with the current gradient. If we take v such that

vi =
∂U
∂xi
|x(t−1)

Ki +∑ j∈Ni Ki j
,

then one descent iteration at voxel i ∈V becomes

x(t)
i =

⎧⎨⎩ 1, if i = s;

∑ j∈Ni Ki jx
(t−1)
j

Ki+∑ j∈Ni Ki j
, otherwise.

which locally minimizes U in the neighborhood of i, where the total spring force

Kixi +∑ j∈Ni Ki j(xi− x j) vanishes.

In order to obtain anatomically meaningful connectivity maps, one should define

spring constants in accordance with DTI data. Especially, for neighbor springs, we

want constants Ki j ((i j) ∈ E) to be proportional to the amount of neural interaction

between adjacent points μi and μ j of white matter. We will quantify this interaction

by inducing it from diffusion tensors and what they measure.

Recall that, the diffusion tensor Di ∈R3×3 at voxel i ∈V , with its center μi ∈R3,

identifies the probability density

fi(y) =
1

(2π)
3
2 |Di|

exp

{
− 1

2
(y−μi)T D−1

i (y−μi)
}

of the position Yi ∈ R3 of a Brownian particle, which has been traveling from μi
for a small period of time that is implicit in Di. Then, fi j(δ ) =

∫
R3 fi(y) f j(y+δ )dy

will be the probability density of the spatial difference Δ = Yi−Yj between such

two particles, simultaneously and independently diffusing from points μi and μ j
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with respective tensors Di and D j. We will simply set Ki j = fi j(0) ((i j) ∈ E), as a

measure of how likely it is, that these two particles end up in the same vicinity to

interact with each other.

According to this definition, Ki j is the overlap integral between the densities

fi and f j, and can be evaluated by Laplace’s method. Note that, the integrand

h(y) = fi(y) f j(y) has a local maximum at μi (as well as at μ j), and so does its

logarithm. Thus, logh(y) has a vanishing gradient at μi, and moreover, with Gaus-

sian densities fi and f j, it is a quadratic polynomial in y’s components, such that all

of its third or higher order partial derivatives are zero, as well. Therefore, logh(y)’s
Taylor expansion around μi, will only have zero and second order terms, which af-

ter taking back the exponential, yields a much simpler integrand, namely multiple

of another Gaussian, that can now be integrated exactly. In this way, we define the

spring constant for edge (i j) ∈ E to be

Ki j =
1

(2π)
3
2 |Di +D j|

1
2

exp

{
− 1

2
(μi−μ j)T (Di +D j)−1(μi−μ j)

}
as a function of Di and Di of neighboring voxels i and j, located at respective volume

points μi and μ j. On the other hand, for ground springs we set the stiffness Ki = κ
to be constant for all voxels i ∈V .

Now, with these spring definitions, spring energy U is more concentrated at edges

(i j) ∈ E, which are aligned with principal directions of anisotropic tensors, i.e. with

fiber bundles, than those between isotropic tensors, especially with small overlap.

Hence, after minimizing U , we will observe less decay in the xMap along fibrous

structures, so that given the seed, its anatomic connections are revealed.

Suppose, we want to find connectivity with respect to a region rather than a single

point, then we can specify the seed to be a set of voxels, and not just one of them.

In this general case, the only change in the method will be specifying s as a set,

introducing multiple seed constraints xk = 1 k ∈ s, and hence multiple Lagrange

multipliers during constrained minimization, whereas the descent approach remains

the same.

3.2 Results

The experiments were conducted on DT-MRI data of a healthy individual and brain

tumor patient to demonstrate its correlation with known anatomy and tumor. The

real patient data set were acquired by single-shot EPI scans with diffusion encoding

along 12 non-collinear directions plus one reference without diffusion-weighting.

The FOV was 25-26cm, TE was minimum with partial k-space acquisition. TR

was ∼ 10s and b-value was ∼ 800− 850s/mm2. The computed connectivity maps

(xMaps) are all shown with a color scale ranging from 0 (blue) to 1 (red). The tensor

fields were linearly interpolated along the vertical direction for isotropic sampling

and smoothed with a Gaussian kernel of variance 1 voxel for noise suppression.
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Fig. 2 The connectivity map (xMap) associated with two seed points, marked by red dots, on the
corpus callosum is overlaid with the FA map. The xMap clearly marks the most likely connection,
which follows the ridge of the xMap and it agrees with the known anatomy.

(a) (b)

Fig. 3 The connectivity map (xMap) associated with two seed regions, marked by red dots, at the
inferior part of the cortico-spinal tracks demonstrates a spread of connectivity as well as marking
a single path (the ridge of xMap) as the most likely path. These are in agreement with the known
anatomy of pyramidal tracks.

Figure 2 shows the xMap for two seed points on left and right sides of the corpus

callosum / optic radiation of a healthy individual, on the same axial slice. The xMap
follows the known anatomy and clearly marks the connection between these two

seed points. The ridge of the xMap (i.e. the path of the least change on xMap)

marks the path between the seed points. This experiment also demonstrates the use

of multiple seed points in LoS framework.

Figure 3 shows the computed xMap for two seed regions selected on the same

axial slice at the inferior part of the cortico-spinal tracks of the same healthy individ-

ual, both on the left and right sides. The cortico-spinal tracks are known to spread
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(a) (b) (c)

Fig. 4 (a) The axial slice with two seed regions on the cortico-spinal tracks, marked by red dots,
(b,c) Axial slices superior to the seed positions, marking the cortical-spinal tracks. The mass effect
of the tumor in the left hemisphere causes the visible fiber displacement.

as they extend to the superior regions. The xMap clearly shows this spread in the

superior axial slices.

Figure 4 shows the xMap for two seed regions selected on the cortico-spinal

tracks on the same axial slice. The patient has a brain tumor in the left hemisphere.

The mass effect of the tumor has caused a midline shift and markedly displaces the

left cortico-spinal track bundle. The right cortico-spinal track bundle, on the other

hand, is only moderately affected by this mass effect. The fiber displacement caused

by the mass effect is clearly reflected by the xMap. It also shows that the tumor, at

least on a macroscopic level, is only displacing the cortico-spinal track rather than

diffusely infiltrating it.

4 Split and Merge Tractography (SMT)

Split & Merge Tractography (SMT) aims at combining the ease of interpretation

of the tractography approach with the theoretical soundness (and loyalty to data)

of the connectivity approach [39, 40, 42]. The fiber tracks are modeled as clusters

of short, local tracks and the Markov Chain Monte Carlo (the MCMC) approach is

used to estimate the unknown distribution of the clusters of short fiber tracks, where

clusters represent full pathways. Unlike previously proposed methods that exploit

the stochastic nature of DT-MRI data for tractography [28, 33, 43], the output of

SMT is not the full tracks but rather clusters of short tracks. Reconstruction of the

full tracks is left to the users’ visual interpretation. Thus, SMT provides a tool to

explore the DT-MRI data. The underlying rationale behind using short tracks is to

avoid the error accumulation during tracking and the MCMC approach is used to

exploit the stochastic nature of the data itself.
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4.1 Method

The short tracks are computed by the numerical integration of the PDD field using

the fourth order Runge-Kutta method [24]. SMT avoids such error accumulation in

PDD tracking by using short tracks. PDD tracking is started from each voxel unless

that voxel is on a previously computed short tract. The maximum length of the short

tracks is set to 2.8mm, the tracking is terminated when the Fractional Anisotropy is

below 0.25 or the curvature exceeds 20◦ per step. This is the splitting step where

the whole brain is populated with short tracks. Since these fiber tracks are of limited

length, the error does not accumulate during their computation. The merging part

of SMT groups these short tracks into clusters based on their interconnectivity. The

groupings are dynamic and varies with a confidence threshold.

The merging step is composed of estimating a co-occurrence matrix, M, for this

abundant set of short tracks. The element Mi j of M, represents the probability of hav-

ing the short tracks Si and S j connected. M matrix is estimated using the Metropolis-

Hastings algorithm (MHA) [44].

Let Γi be a cluster of short tracks that includes Si. Γi represents a full fiber. Then,

SMT aims at estimating

Mji = P(S j ∈ Γi|Si ∈ Γi) , Mi j = Mji , i, j = 1, · · · ,N (4)

where N is the total number of short tracks that populates the complete brain.

Let S(k)
i ; i = 1, · · · ,N;k = 1,2 represent the kth endpoint of Si, without any specific

ordering of endpoints. For a short track Si, a bridge is built between S(e)
i and the S(s)

j

with the highest probability of being connected to S(e)
i . If we denote the position of

S(s)
i with r(s)

i and the diffusion tensor at that position with D(e)
i , then the probability

of bridging r(e)
i and r(s)

j can be approximated by

ci→ j = P(r(e)
i ,r(s)

j ) = (
1

4πD̃
)

3
2 exp

⎛⎝−‖r(e)
i − r(s)

j ‖2

4πD̃

⎞⎠ (5)

D̃ =
(r(e)

i − r(s)
j )T D(e)

i (r(e)
i − r(s)

j )

‖r(e)
i − r(s)

j ‖2

This is the Gaussian distribution as represented by D(e)
i . Without loss of generality,

let all bridges originate from the first end-point (k = e) and terminate in the second

end point (k = s). We repeat the whole process starting from r(e)
j , until no bridge

with high enough (an arbitrarily small threshold, ε) probability can be built. This

completes forward clustering. The whole process is repeated for backward cluster-

ing starting from the other end-point of Si. Thus, we get the initial cluster for a given

Si. Figure 5 depicts bridging from Si to S j.
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Fig. 5 A bridge is built from
the current short track Si
(initially a seed tract) to S j ,
which is selected based on the
Gaussian PDF described by

D(e)
i .

This initial cluster is a sample from the distribution of all clusters that include

Si. Let us denote this cluster by Γ 0
i . Mi j and Mji are incremented by one for all j

such that S j ∈Γ 0
i . The whole process is iterated K times, generating {Γ 0

i , ...,Γ K−1
i }.

Consecutive iterations are performed by breaking the weakest bridge of the current

cluster, building a new one originating from the end-point of the retained section of

the broken cluster and completing the rest of forward clustering as explained above.

SMT targets to estimate the distribution of these clusters for each Si as the seed

tract. In other words, SMT approximates the probability distribution function (PDF)

of the connectivity of Si to all other short tracks. Connectivity between Si and S j
is conjectured to be proportional to the probability of the existence of a cluster that

includes them both. The ith row of M corresponds to the histogram approximating

this PDF. The complete M matrix is thus the collection of histograms representing

the connectivity of each one of the short tracks. During the iterations, each new

cluster is accepted/rejected using the Metropolis-Hastings algorithm (MHA)[44].

The components of MHA are i) a sampling strategy, ii) a sample fitness function,

f (.), iii) a candidate generating density, q(., .), which is the probability of generating

a new sample from a given sample. Let Γ (m)
i denote the mth sample selected from

the space of clusters that include Si. The corresponding SMT components are as

follows:

1. Sampling Strategy: Given a cluster of short tracks, Γ (m)
i , the weakest bridge be-

tween two short tracks is identified. The strength of a bridge between r(e)
p and r(s)

q

is represented by the Fractional Anisotropy (FA) of D(e)
p because the reliability of

PDD tracking decreases with decreasing FA. Recall that forward and backward

clustering is based on bridging the neighbouring short tracks with the highest

connectedness probability which is analogous to conventional PDD tracking. Let

us denote the FA at D(e)
p with F(e)

p . Removing the weakest bridge, the section of

Γ (m)
i that includes Si, is retained. A new bridge between r(e)

p and one of its neigh-

bours is built at random and a new cluster is formed beyond the new bridge. The

new bridge is constrained to have a curvature angle less than 90◦. Let the new

bridge be built between r(e)
p and r(s)

w .

2. Sample (Short Tract Cluster) Fitness: The fitness of a sample Γ (m)
i , i.e. f (Γ (m)

i )
is chosen to be the minimum of the strengths of its bridges because a cluster’s

reliability is dominated by its weakest bridge.
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3. Candidate Generating Density: Probability of generating a new sample candi-

date cluster from a given one is formulated as the product of the probability of

removing the weakest bridge and building a new one. It is given as,

q(Γ (m)
i ,Γ (m+1)

i ) =
1/F(e)

p

∑ j∈A 1/F(e)
j︸ ︷︷ ︸

Prob. of removing a bridge

× cp→w

∑z∈B cp→z︸ ︷︷ ︸
Prob. of building a bridge

(6)

where F(e)
p is the fitness of the removed bridge, cp→w is the probability of the

newly built bridge originating from r(e)
p , A is the set of short track indices that

belong to Γ (m)
i and B is the set of plausible short track indices that are in the

neighbourhood of r(e)
p .

For a given seed track Si, the MHA is iterated. The newly generated sample at

each iteration is accepted with a probability given as [44],

α(Γ (m)
i ,Γ (m+1)

i ) = min

(
1,

f (Γ (m+1)
i )q(Γ (m)

i ,Γ (m+1)
i ))

f (Γ (m)
i )q(Γ (m+1)

i ,Γ (m)
i )

)
(7)

If Γ (m+1)
i is accepted, then we increment Min,Mni ∀Sn ∈ Γ (m+1)

i , otherwise, we

increment Min,Mni ∀Sn ∈ Γ (m)
i by one. The number is iterations, K, is arbitrarily

set to be 100. The whole process repeated to build M by taking each short track as

the seed tract.

The co-occurrence matrix M is computed and saved off-line. It represents the

whole brain connectivity. The user is required to select a volume of interest to mark a

set of seed tracks and a confidence threshold, τ . For each seed track Si in the volume

interest, all S j’s with Mi j ≥ τ ×max(Mi j) , 0 ≤ τ ≤ 1, are selected and displayed.

The interface is similar to the dynamic queries interface proposed in [45].

The downside of the above scheme is that when the weakest bridge is broken and

rebuilt at random, its strength remains unaffected because the strength of a bridge

is modeled by the FA of the diffusion tensor at the retained end of the broken clus-

ter. A better approach would be to consider the diffusion probability between the

connected endpoints, ie ci→ j. Then the probability of removing a bridge would be

modeled as

Prob. of removing the bridge between Si&S j =
ci→ j

∑k∈A ck→k+1
(8)

where A is the set of short track indices in the current cluster indexed by k and

ordered along the underlying fiber.

The SMT method proposes a framework to find a compromise between the con-

nectivity analysis approach and the fiber tractography approach, both of which have

their complementary advantages and disadvantages. The models proposed for the

current SMT implementation shows the feasibility of the approach. Research on
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different models for MHA, such as the model for bridge removal mentioned above,

is in progress.

4.2 Results

Real patient DT-MRI data, explained in Section 3.2 was used for the initial vali-

dation of the SMT method. The method was implemented within the DTInteract2

together with the conventional fiber tractography using fourth order Runge-Kutta

(RK4) [24]. The initial evaluation is based on visual comparison of SMT tracks and

the RK4 tracks for identical volume of interests (VOIs) as shown in Figure 6.

Seed tracks are selected with a cubic volume of interest (VOI) on the left side of

the corpus callosum / optic radiation of a healthy individual, as marked in Figures 6a

and 6b. VOIs are identical for both images on the same line. low and high confidence

thresholds, τ , are used in Figures 6a and 6b respectively. Note the decrease of the

number of short tracks with increasing confidence.

A second set of seed tracks are selected with a cubic VOI at the inferior part of

the cortico-spinal tracks of the same healthy individual as shown in Figures 6c and

6d. The VOI covers both the left and the right sides. The cortico-spinal tracks are

known to spread as they extend to the superior regions. The confidence threshold, τ ,

is lower in Figure 6c. In addition to the interactive exploration opportunity provided

by τ , we can also observe the branching that SMT allows in these figures.

The final set of seed tracks are selected with a cubic VOI in the inferior longi-

tudinal fasciculus region, close to the uncinate fasciculus, as marked in Figures 6e

and 6f. Again, the confidence threshold, τ , is lower for Figure 6e.

Computation of the short tracks (approximately 38000 short tracks for the current

dataset) throughout the brain and the co-occurrence matrix M takes approximately

8 minutes on a PC with Intel Core 2 Quad CPU (2.66GHz) and 3.25GB RAM.

This computation is performed once for each dataset in batch mode and M is saved.

Visualization and analysis of the data based on the computed M is real-time.

5 Concluding Remarks

DT-MRI is the widely used medical imaging modality that allows researchers and

clinicians to study the fiber network in brain in vivo. As such, it is of great impor-

tance in studies human brain pathways in vivo and does not have an alternative.

However, the processing, visualization and interpretation of the 3D tensor field gen-

erated by DT-MRI is not trivial and may easily lead to wrong interpretations. Specif-

2 DTInteract is a DTI analysis and visualization platform developed at Boğaziçi University, Elec-
trical & Electronics Engineering Department, VAVlab, Istanbul, Turkey. DTInteract is developed
using the VAVlab’s C++ visualization and analysis platform VAVframe. For more information con-
tact http://www.vavlab.ee.boun.edu.tr.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Three sets of seed tracks, one for each row, in different regions of the brain of a healthy
human are selected and the corresponding short track clusters with different confidence levels (low
for the left images, high for the right images) are displayed. Color codes the orientation of short
tracks.
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ically, the users of DT-MRI should keep in mind that the technique does not image

the fibers per se but rather records the stochastic anisotropic (restricted media) diffu-

sion process. Consequently, the data represents the spatial distribution of diffusing

particles in a finite volume (the voxels), which should be larger than the fiber thick-

ness. This restriction leads to a fundamental resolution problem and makes the pop-

ular fiber tractography techniques unreliable especially at problematic points such

as crossing/kissing fibers.

Our major point is that a preferable DT-MRI analysis and visualization technique

should be loyal to the data and be able to communicate the information embedded,

directly to the researchers/clinicians. This approach calls for probabilistic tractogra-

phy and/or connectivity approaches. The LoS method presented proposes a physical

system of springs to model the connectivity and generates connectivity maps for a

given set of seed points simultaneously. The SMT method, on the other hand, com-

bines the advantages of conventional tractography and probabilistic connectivity

analysis, that is the easy interpretation and visualization of tractography with the

stochastic modeling. SMT allows tractography with branching that represents the

stochastic nature of data and thus can communicate the information content directly

to the researchers/clinicians.
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Abstract In this work we propose an alternative method to estimate and visualize

the Strain Rate Tensor (SRT) in Magnetic Resonance Images (MRI) when Phase

Contrast MRI (PCMRI) and Tagged MRI (TMRI) are not available. This alternative

is based on image processing techniques. Concretely, image registration algorithms

are used to estimate the movement of the myocardium at each point. Additionally, a

consistency checking method is presented to validate the accuracy of the estimates

when no golden standard is available. Results prove that the consistency checking

method provides an upper bound of the mean squared error of the estimate. Our

experiments with real data show that the registration algorithm provides a useful de-

formation field to estimate the SRT fields. A classification between regional normal

and dysfunctional contraction patterns, as compared with experts diagnosis, points

out that the parameters extracted from the estimated SRT can represent these pat-

terns. Additionally, a scheme for visualizing and analyzing the local behavior of the

SRT field is presented.

1 Introduction

Mechanical properties of the heart provide a way to determine early diagnosis and

better patient follow-up. Actually, local motion abnormalities (measurable by means

of mechanical anomalies) could precede electrocardiogram disorders [15]. Impaired

myocardial perfusion appears as a consequence of reduced blood flow of the heart

muscle. This is often analyzed with nuclear medicine imaging techniques or with

MRI.

MRI is a very suitable imaging modality for blood flow and tissue motion mea-

surement. It provides excellent contrast between soft tissues, and images can be

acquired at positions and orientations freely defined by the practitioner. From a tem-

poral sequence of MR images, boundaries and edges of tissues can be tracked by

image processing techniques [24]. The local deformation of the myocardium can be
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described by the Strain Tensor (ST) which gives a measure of the deformation of an

object relative to its original length. The instantaneous variation of the deformation

is described by the Strain Rate Tensor (SRT) and also provides information about

myocardial deformation.

There are different possibilities to estimate and visualize the ST. Among those

modalities involving MRI, Tagged MRI (TMRI) and Phase Contrast MRI (PCMRI)

are direct approaches to obtain information about the tensor. TMRI allows deriving

a motion model of the underlying tissue by tracking a temporal sequence of images

which have been previously marked by a pattern of dark lines (called tags). This pat-

tern is achieved by modulation of the image intensity with a magnetic presaturation

pulse [24]. The deformation field of the crossing line points can be calculated just

following the temporal trajectories. On the other hand, PCMRI provides a measure

of the velocity field by means of phase shifts induced in the transverse magnetiza-

tion. The phase of the signal is directly related to the velocity of the material within

each voxel. When TMRI or PCMRI are not available, the estimation of the SRT be-

comes a difficult task, even more if direct 3D information is not available. In section

3 both modalities are briefly explained.

This chapter is focused on an alternative to hardware techniques which need

a TMRI or PCMRI scanner. This alternative is based on registration algorithms

which are able to estimate a deformation field between two consecutive images de-

formed in a non rigid way. In case the deformation between adjoining frames is

small enough, we can assume that the estimated deformation applies for the physics

of the problem, and so we can identify the deformation field with the movement of

the myocardial wall. With such a technique, the ST can be estimated from temporal

sequences of conventional MRI.

Some non-rigid registration algorithms have been applied in MRI tagging and

cine MRI. Concretely, Ledesma et al. [18] proposed a B-spline registration model

that has demonstrated good results with subpixel accuracy. Chandrashekara et al.

[9, 10], proposed a 4D B-spline registration model proving that the radial and lon-

gitudinal displacement provided by the deformation field shows high correlation

coefficients compared to TMRI.

In this chapter, we demonstrate that registration algorithms are able to estimate

the deformation field by means of a consistency checking methodology when no

golden standard is available. This methodology provides an upper bound of the

mean error of the estimated deformation field. Additionally it allows comparing dif-

ferent registration algorithms in terms of the consistency of the deformation field.

The posterior analysis of the SRT proves that the registration stage is accurate

enough when consistency error is beneath the mean displacement of the deformation

field because it provides useful information to detect abnormalities in the behavior

of the myocardium.

Additionally, a scheme to visualize the tensor field is presented based on a geo-

metric point of view of the tensor field. This scheme provides information about the

local behavior of the tensor field.

The chapter is organized as follows: In section 2 we give a formal definition of

the Strain Tensor. With this concept in mind, we can easily understand the different
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MRI modalities which are usually employed to estimate the ST and the SRT, section

3 explains those modalities and their problems.

As an alternative to those modalities, when just cine MRI is provided, registration

algorithms appears as a good alternative to estimate deformation fields. In section 4

different registration algorithms for general purpose are explained. These algorithms

will be compared in further sections.

In order to get a good way to compare registration algorithms when no golden

standard is provided, a phantom is a good alternative to see the real error in the de-

formation estimates. Section 5 describes the models usually employed and explains

the phantom designed to compare registration algorithms.

Obviously, a methodology to compare registration performance in real data is

desired, even more when no other MRI modalities are available. So, a consistency

checking strategy seems to be very suitable. Section 6 explains the consistency strat-

egy and shows the registration algorithms behavior in terms of consistency and real

error when applied to the phantom. At the end of the chapter this strategy is applied

and tested with real data.

Once the tensor field is estimated, a scheme to visualize the tensor field is needed

in order to provide local information which can be useful to physicians. In section 7

a scheme based on a geometric point of view of the ST field is presented.

Section 8 shows the accuracy of registration algorithms by means of the consis-

tency checking method exposed before and its usefulness in classifying normal and

abnormal patients. We also see the coherence of the strain rate estimates by compar-

ing normal and abnormal patient through the heart cycle. Additionally, a sequence

of the heart cycle is presented to see the local behavior of the heart.

Finally, in section 9 the main conclusions extracted from this chapter are sum-

marized.

2 Strain Tensor Definition

The strain tensor E is a symmetric tensor which describes the strain of an object

undergoing infinitesimal deformation.

For a simple description of the strain consider a one-dimensional object, with

two arbitrary points A and B separated a distance L. After deformation these points

move to position A + u(A) and B + u(B) where u is the displacement. So, we can

calculate the strain as the increase in the distance between A and B once deformed

when L tends to 0 (see Fig 1.(a)).

E =
B+u(B)−A−u(A)−L

L
=

B−A+u(B)−u(A)
L

−1 (1)

Since B = A + L and the series expansion of u(A+L) for small deformations is

u(A+L) = A+ ∂u
∂x L, the strain is:
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Fig. 1 (a) 1D before and after deformation. (b) 3D body before and after deformation.

E =
L+u(A)+ ∂u

∂x L−u(A)
L

−1 =
∂u
∂x

(2)

A more general case for 3D strain, let us consider a point A in a material with

coordinates x (see Fig. 1b). If the point moves a small distance u(x), x′ = x+u(x).
Let consider a point B, dx in the neighbourhood of x. After deformation it will

be at the position given by:

x′+dx′ = x+dx+u(x+dx) (3)

For small deformations we can approximate u by the first two terms in its Taylor

Series:

x′+dx′ ≈ x+dx+u(x)+(∇u)dx (4)

Finally, the infinitesimal change in the position of the nearby particle is:

dx′ ≈ dx+(∇u)dx (5)

Note that if ∇u = 0, the transformation becomes a rigid translation. In order to

distinguish rigid translations/rotations from deformation we can write the displace-

ment matrix as a sum of symmetric and antisymmetric matrices:

dx′ = dx+
1

2

(
(∇u)− (∇u)T )dx+

1

2

(
(∇u)+(∇u)T )dx (6)

The first two terms are the Taylor series of a rigid rotation and does not repre-

sent information about the deformation of the material. The last term represents the

deformation of the material and is the strain tensor:

E =
1

2

(
(∇u)+(∇u)T ) (7)

The SRT can be calculated with the same expresion by replacing the displace-

ment field u with the velocity field u̇ associated to the myocardial motion.
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3 MRI Modalities to Estimate Strain and Strain Rate Tensor

3.1 Tagged MRI

The main contribution of TMRI or spatially modulated saturated magnetization pro-

cessing techniques is their ability to obtain precise and reliable local measures of the

myocardium motion [4]. This contribution is based on the intrinsic sensitivity to mo-

tion of MRI. In particular, it is possible to locally alter the tissue magnetization in

a persistent manner (taking into consideration the relaxation times of MR) even in

the presence of motion. TMRI image acquisition can be divided into two different

stages:

1. The generation of a spatially modulated saturated magnetization pattern. A

combination of radiofrequency (RF) and gradient pulses are used for this purpose.

The techniques for generating this pattern have been improved from the ones that

obtain a small set of saturated magnetization planes over the cardiac wall by means

of selective RF excitation [39] to the modern formulation in terms of Spatial Mod-
ulation of Magnetization (SPAMM), that generates a set of saturated magnetization

patterns along all the image by non selective excitation [5]. The main problem of

this technique is the fading of the saturated patterns by the relaxation time and the

repetition of RF excitations during image acquisition.

Complementary SPAMM (CSPAMM) [13] tries to confront this problem by us-

ing the subtraction of two images acquired with complementary SPAMM sequences

to improve the contrast and allow for a complete tracking of the grid throughout the

cardiac cycle. Finally, Delays Alternating with Nutations for Tailored Excitation
(DANTE) pulse sequences are based on the generation of a set of RF pulses that

are superimposed over the gradients, so acquisition times are reduced [21]. Multiple

combinations and variations of these basic techniques have been developed during

the last years.

2. The generation of an image of the pattern deformation using pulse sequence syn-
chronized with the electrocardiogram signal. Almost any conventional acquisition

technique for MRI can be used in this step. The choice of a given technique, as in

the general case, must pay attention to the balance among the image resolution, its

signal-to-noise ratio (SNR) and the acquisition time. Additionally, the contrast to

noise ratio between tagged and untagged myocardium appears as an important fac-

tor for accurately detecting tags over the cardiac cycle. If the purpose is to measure

the ST, spatial resolution of the grid has to supply at least two tagging lines along

the myocardium and temporal resolution has to be sufficiently high to avoid tagging

lines indefinition caused by motion.

A basic problem in TMRI motion reconstruction is to consider the component

through the acquisition planes, that is, the longitudinal component. It is obvious that,

due to movement, images acquired in different phases of the cardiac cycle could not

represent the same myocardium material slice. Slice tracking methods [26] can help
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in the correction of this effect, although a consistent approach for its treatment would

typically lay on the combination of multiple long axis and short axis 2D views [20,

38] or on direct 3D TMRI acquisition [27]. Multi-slice 2D acquisition techniques are

based on the selective excitation along the axis over which the slices are acquired.

They are easily implemented, but the resolution along the axis of acquisition is

limited. Volumetric techniques are based on the gradient modulation along three

orthogonal directions. In general they present a larger SNR but they are more prone

to motion related artifacts due to breathing. Two ways to partially overcome this

problem are to avoid patient breathing by faster acquisition techniques or to couple

the scanner to breathing, but there is no final solution, so the 3D reconstruction

of the SRT by TMRI is susceptible of improvement mainly by a refinement of the

acquisition techniques.

Grid tracking is the main task for the extraction of the myocardium motion mea-

sures in the analysis of TMRI. A great number of methods have been proposed in

the recent years, as for instance the ones in [3, 8, 12, 23].

3.2 Phase Contrast MRI

As noted in previous sections, the local instantaneous deformation of the my-

ocardium is represented by the Strain-Rate (rate of deformation) Tensor (SRT).

Its calculation is straightforward from the equation (7) above by just replacing the

displacement field u with the velocity field u̇ associated to the myocardial motion

[29]. Time-resolved velocity data enabling calculation of the SRT can be obtained

from PCMRI, a non-invasive modality that can measure flow and displacement ac-

curately.

The fundamental basis of PCMRI stands on the use of phase shifts for velocity

encoding. Phase-contrast acquisition is performed by adding two opposing gradient

pulses known as velocity-encoding to the imaging sequence of pulses. These bipo-

lar gradients cause a phase shift in moving spins that is proportional to the velocity

along the gradient’s direction [14]. Since the direction of the velocity-encoding gra-

dient is flexible, the encoding process can be repeated in order to obtain the complete

velocity vector. Static spins on the other hand do not experience the aforementioned

phase shift due to the symmetry of the bipolar gradient.

Conventional (anatomical) MRI is usually displayed as magnitude images. Ve-

locity data in PCMRI is obtained from the phase of the complex signal (phase

image). Since phase has a 2π range, values beyond this range do repeat, causing

wraparound (aliasing). Stationary material is represented in the phase image as mid-

grey (zero-value) pixels. On the other hand, increasing velocities are represented as

either brighter (positive) or darker (negative) pixels.

The relationship between the phase image associated to the each direction and

the corresponding velocity component is given by u̇i = VENC× Δφ
π where u̇i is the

velocity component in the gradient direction, Δφ is the pixel phase shift and VENC

is the velocity encoding value, which is an adjustable parameter that represents the
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sensitivity of the acquisition to velocity measurements. A small VENC represents a

highly velocity-sensitive image.

One of the main problems related to PCMRI is the effect of velocity aliasing

or wraparound. This effect raises when the velocity phase shift exceeds ±π . A

phase shift outside this range cannot be distinguished from one within it, which

is displayed instead. If the true ranges of velocities in the Region Of Interest (ROI)

exceeds 2×VENC they cannot all be correctly displayed simultaneously due to

aliasing. Since VENC is an acquisition parameter it cannot be changed after the

image has been acquired. Thus, if aliasing appears excessive, acquisition should be

repeated with a larger VENC. A simple way to reduce the effect of aliasing is to

offset the measurable velocity range so that wraparound does not affect the ROI.

Other approaches can be found in [6, 11, 36].

Another undesirable effect appearing in PCMRI acquisitions comes from the in-

duction of Eddy currents in the scanner conductors [17]. The effect of these currents

is the introduction of fiducial velocities in the images that result in static zones in-

terpreted as moving tissues. A common methodology to reduce the Eddy currents

effect is to apply linear models based on velocity measurements obtained from static

regions of the image [25]. Correction is performed by comparison between the mea-

sured phases and those obtained from the model. Other artifacts such as those com-

ing from the Maxwell effect associated to additional magnetic fields created during

the acquisition can be easily removed [31].

4 Registration Methods

Registration is defined as the process of recovering an unknown geometrical map-

ping that transform one given image called target or fixed image into the source or

moving image. In some cases, the warped image is the result of interest. In other

cases, as in the problem at hand, we are interested in the mapping itself. Given a

MRI section of the heart at a concrete moment, we consider it as the source image,

and we try to register it with the target image, which is the corresponding section on

a previous time slot. Under some assumptions, the recovered transformation may be

considered as an estimate of the true displacement of physical points. This is only

valid for small displacements, mainly due to the aperture problem. A large number

of approaches to deformable image registration (i.e. not based on rigid movements

or scaling) may be found in the literature [40], either based on landmark-matching

or grey level-based techniques. We are interested in the latter approaches, where a

cost function based on the similarity between the images to register is minimised

according to some model for the movement. This way, we may choose between a

transformation which models the underlying physical behavior of the organs being

imaged, a smooth deformation parametrized by means of some basis function, or a

strictly free-form deformation field defined by a vector field. Given the difficulty to

accurately describe the complex physics of heart movement with enough degrees of
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freedom, we try three state of the art algorithms based on parametric transformations

and free form deformations1.

Local Correlation Coefficient Demons Registration

This registration algorithm is an adaptation of the well-known demons algorithm

proposed by Thirion [30]. We use the implementation of Cachier et al. [7] instead,

because of its more robust behavior.

The original demons proceeds by the alternative optimization of the cost func-

tion and the regularization of the deformation field by means of the convolution

with a Gaussian kernel. The optimization is carried out following the optical flow

equation, and works by aligning the iso-contours of the image. This algorithm has

been proved to be a quasi-Newton optimization of the Mean Squared Error (MSE)

between the images to register, relying on the assumption that the grey level of cor-

responding voxels does not vary from one image to the other, which makes it too

sensitive to small changes in the illumination. Cachier et al. [7] propose a similar-

ity measure based upon local (windowed) correlations between the images, i.e. the

Local Correlation Coefficient (LCC), which is computed using convolutions with

Gaussian kernels. This way, the algorithm is able to cope with severe changes in the

illumination whenever the grey levels of corresponding voxels are linearly related,

which is especially well suited for MRI.

Normalized Mean Squared Difference Demons Algorithm

The problem with the LCC similarity measure is that it is not as local as the Mean

Squared Difference (MSD), which results in a worse adaption to local variations

of the deformation field. To partially overcome this difficulty, in [33] a new simi-

larity measure based on LCC but with better local properties is proposed. Briefly

speaking, it can be shown that the Cross Correlation (CC) may be seen as the expec-

tation of the normalized difference between the two images being compared, I and

J: CC = E
{(

I−E{I}
σI

− J−E{J}
σJ

)2
}

where σI (resp. σJ) is the standard deviation of I

(resp. J). Since the expectations are replaced by spatial convolutions, the additional

expectation of the squared difference introduces an extra blurring of the similar-

ity measure, which motivates the introduction of the Normalised MSD (NMSD),

defined as: NMSD =
(

I−E{I}
σI

− J−E{J}
σJ

)2
.

We cannot avoid the convolutions for the computation of the mean and standard

deviation of the images, since they are necessary to normalize the differences and

therefore to palliate the effect of the changes in illumination.

1 Note that we are not trying to evaluate the goodness of a particular registration algorithm, but
only to prove that image registration may be used to estimate cardiac motion.
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Block-Matching Algorithm

Finally, we use a generic block matching algorithm to test parametric deformations.

The images are sub-sampled in a grid and, for each node, the movement is esti-

mated by comparing it with its neighbouring voxels inside a search window; the

best matching voxel is chosen, and the displacement is computed as the vector from

the original voxel to its best match. To estimate the goodness of fit between two

given voxels, we take a neighborhood of a given fixed size around each of them, and

then compute the linear cross correlation between the blocks. Due to noise as well

as the aperture problem and some other artifacts, these are weak estimates of the

true displacements, so further regularisation is needed. Like in [37], we normalize

the similarities of each block so that they accomplish the requirements to be consid-

ered as probabilities, and use a Bayesian framework in which the local coherence

is introduced as priors. The regularised displacements are extrapolated to non-grid

voxels by means of a multi-level B-spline. Contrary to [37], where the smoothness

of the interpolation is achieved by the variational optimisation of the spline parame-

ters including a penalty term, we use the non-iterative strategy of [19] instead, which

guarantees smooth and accurate representation of the interpolation nodes. Finally,

we use an additional constraint to further improve registration accuracy: together

with the transformation of interest, we estimate the inverse transformation (the one

that drives the target image to the source image), then use the technique of [32] to

pseudo-invert this transformation, and use the result to correct the desired deforma-

tion.

5 Phantom Design

Since the aim of this study is to quantify the motion of the LV and there is no ground

truth, a model with known deformations should be constructed.

The model here prosed is designed to describe the motion of the LV in terms of

the vector deformation field. This makes possible to calculate the exact movement

of each pixel of the image from one moment to the following and, hence, the error

of the deformation field estimate.

As the registration algorithms have to deal with MR images, the deformation of

the phantom should be applied in images as closed as possible to the real MRI. With

this idea in mind, the deformation field will be applied in a real image in a given

instant (End Diastolic) transforming it into each one of the instants of the cardiac

cycle. The scheme of the phantom is depicted in Fig. 2.

The phantom was developed from Late Diastolic images 2D+N. The longitudinal

resolution was not good enough to consider it as a volume, so simulate longitudinal

movements does not make sense. This does not suppose a problem because the

phantom is designed to validate 2D+N movement in cine MRI and real data has no

further information in longitudinal axis.
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Fig. 2 Phantom Scheme. The vector field which governs the deformation of the real image gives
the complete cardiac cycle deforming the real image.

The movement was performed in a cylindrical coordinate system where the cen-

ter was placed in the center of the segmentation provided by physicians. The seg-

mentation defines the area of the maximum movement (endocardium contour) and

the area from which the movement vanishes (beyond the epicardium contour and

inside the endocardium). Two sorts of movements will deform the image. The first

one consists of a radial contraction which depends on the position in the longi-

tudinal edge and the endocardium/epicardium contours. The second is an angular

movement which also depends on the longitudinal coordinate and the segmentation

contours.

Let us call (x,y,z) the coordinates of each voxel of the volume, where z is the

index of each slice and the pair x = (x,y) ∈Ω is each pixel in each slice. Ωend ⊂Ω
is the area inside the endocardium contour. In the cylindrical coordinate system

(ρ,θ ,z), where ρ(x,y) and θ(x,y) are the radius and the angle related to the cen-

ter of the endocardium segmentation. The radial and angular transformations are

performed as it is described in Table 1.

Note that this contraction takes into consideration the endocardium contour in

such a way that the maximum contraction is done in the endocardium neighbour-

hood. Then the contraction vanishes fast for points beyond the epicardium.

The transformation is, then, calculated as It(ρ,θ ,z) = I0(ρ∗,θ ∗,z). As an exam-

ple, in Fig. 3 a cycle of the phantom is depicted with parameters: A = 15, k = 0.01,

B = 0.8, α = 0.08, Zmax = 11, ρmax = 7. The superimposed grid shows a maxi-

mum deformation in a radial and angular way in the endocardium and then vanishes

beyond the epicardium.
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Table 1 Radial and Angular transformation of the phantom†

Radial Transformation: ρ∗ = ρ + fr1(t) · fr2(x) · fr3(z)

fr1(t) = Asin
(

πt
3/4T

)2
e−kt

fr2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

cos
(

π
2

F(x,Cend)
ρ̄end

)
if x ∈Ωend

cos
(

π
4

F(x,Cend)
ρ̄epi−ρ̄end

)
if x ∈Ω ∩ Ω̄end

0 if F(x,Cend) > 2(ρ̄epi− ρ̄end)

fr3(z) = 1− 1−B
Zmax

z

Angular Transformation: θ ∗ = θ − fθ1(t) · fθ2(ρ) · fθ3(z)

fθ1 = α sin(π t
T )2

fθ2(ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αend sin(π
2

ρ
ρ̄ ) if x ∈Ωend

αend−αepi sin(π
2

ρ−ρend
ρepi−ρend

) if x ∈Ωepi∩ Ω̄end

αend−αepi
2 + αend−αepi

2 cos(π ρ−ρ̄epi
ρmax

) if ρ ≤ ρmax

0 if ρ > ρmax

fθ3(z) = cos(π z
Zmax

)

† Where T is the period of cardiac cycle, A is the maximum contraction allowed in

the endocardium contour, k is a constant of temporal vanishment, ρ̄end and ρ̄epi is the

mean radial component endocardium and epicardium respectively. F(x,Cend) is the

Euclidean distance transform between each point x and the endocardium contour.

B, which takes values between 0 and 1, is the amplitude ratio allowed depending on

the longitudinal direction, and Zmax is the total number of slices. α is the maximum

angular transformation, αend is the ratio of the maximum angular value in the endo-

cardium contour. αend is the maximum decrease of αepi in the epicardium contour

and ρmax is the radial distance from ρepi where the angular transformation becomes

null.

6 Consistency Checking

Without a ground-truth of the deformation field to estimate (i.e. without TMRI or

PCMRI), the validation of the results is difficult, so we must accomplish an indi-

rect estimation of the accuracy. To assess the accuracy of the registration, we use

similarity measures: (1) the Structural Similarity (SSIM) index [34], (2) the Quality

Index based on Local Variance (QILV) [2] and (3) the Mean Square Error (MSE).
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Fig. 3 12 of 20 Phantom Sequence instants for parameters: A = 15, k = 0.01, B = 0.8, α = 0.08,
Zmax = 11, ρmax = 7. Time instants goes from left to right from top to bottom. The superimposed
grid shows a maximum deformation in a radial and angular way in the endocardium and then
vanishes beyond the epicardium.
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Fig. 4 Similarity measures for each time slot and slice (MSE –a, d–, SSIM –b, e– and QILV –c,
f–) for LCC Demons case. Top row: we register slot t with slot t +1. Bottom row: slot t with t +2.
For each case, we superimpose the values for the 11 phantom slices in the same time slot together
with the average value for all slices (solid and dashed lines). The results of the registrations are
compared to the similarity before the registration and to the ideal value that could be achieved if
the estimation of the deformation field were exact.

The MSE is a standard measure, so it does not need further explanation. Regarding

SSIM and QILV, they have been widely applied in the literature as measures of the

structural similarity between two given images; both indices are bounded: the closer

to one, the better the image alignment.

The strategy consists in comparing the similarity measures before and after reg-

istration, as well as the ideal value we could get. This value is calculated from the

same image by corrupting it with two independent Rician noises with variance esti-
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Fig. 5 Similarity measures for each time slot and slice (MSE –a, d–, SSIM –b, e– and QILV –c,
f–) for NMSDL Demons case. Top row: we register slot t with slot t + 1. Bottom row: slot t with
t + 2. For each case, we superimpose the values for the 14 slices in the same time slot together
with the average value for all slices (solid and dashed lines). The results of the registrations are
compared to the similarity before the registration and to the ideal value that could be achieved if
the estimation of the deformation field were exact.

mated from real data using the proposed method in [1] and then blurring the second

one to simulate the interpolation effect of the registration algorithm. This way we

obtain two different images I1 and I2 to compare and get an estimation of the best

result we could obtain if the estimation of the deformation field were exact and the

registered images differed only because of noise and interpolation artifacts.

The results obtained from the phantom are shown in Figs. 4-6 for each time

slot from 0 to 19 (we register slot t with t + 1 and t + 2), for each slice (12 slices

in total), and the average of all the values for all slices. Results before and after

registration together with the ideal value are shown. Figs. 4-6 demonstrate that the

registration clearly improves the similarity between the images in all cases: mean

values for all slices and individual values for each slice are closer to the ideal values.

It is clear that the registration of non consecutive slots is more difficult than it is

for consecutive slots, and therefore the registration results are poorer (note that the

similarity measures, both before and after registration, are worse for the pairs t +2, t
than for the pairs t, t + 1). Besides, not all time slots show the same similarity, but

some of them are more difficult (and yield poorer results) than others. Those peaks

shown in the simulated end-systole and end-diastole appear because the phantom

was designed to move slower in those moments in order to simulate the real behavior

of the heart.
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Fig. 6 Similarity measures for each time slot and slice (MSE –a, d–, SSIM –b, e– and QILV –c, f–)
for Block-Matching case. Top row: we register slot t with slot t +1. Bottom row: slot t with t +2.
For each case, we superimpose the values for the 14 slices in the same time slot together with the
average value for all slices (solid and dashed lines). The results of the registrations are compared to
the similarity before the registration and to the ideal value that could be achieved if the estimation
of the deformation field were exact.

Once it has been shown that the algorithm is able to recover the deformations

even for non consecutive time slots, we adapt the consistency checking method-

ology in [22] to estimate the accuracy of the results: for each time slot t, we es-

timate the deformation field Dt,t+1 between this slot and slot t + 1, and respec-

tively Dt+1,t+2 and Dt+2,t . Then we compute for each image voxel the magnitude

M = ‖Dt,t+1 +Dt+1,t+2 +Dt+2,t‖. The composition of Dt,t+1 and Dt+1,t+2 should

ideally equal −Dt+2,t , and therefore M should be 0. If we consider that D are es-

timates of the true displacement field contaminated with some random noise, the

residual M would be the modulus of the addition of three random variables, which

in turn should be independent, since they correspond to three independent experi-

ments. All in all, M may be considered as an estimate of the Euclidean error of the

deformation field D whenever the estimate of D is unbiased.

The reason why we calculate Dt+2,t instead of Dt,t+2 is that we want to get an

unbiased measure of the deformation field so, this way, the fixed image and the

moving image are never repeated.

The corresponding results are shown in Fig. 7, where we show the mean dis-

placements ‖Dt‖ recovered by the registration algorithm, as well as the real mean

displacements. Note that the maximum mean displacements correspond to the sim-

ulated early systole and late diastole, where the strain is maximum, which confirms

once again that the estimation of the displacement fields is adequate. Comparing the
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mean displacements and the mean consistency errors, the latter are well below, so

we may conclude that the registration algorithm is able to recover the deformation

field with an error in the order of the mean discrepancies (consistency errors). Note

that to compute these discrepancies we accumulate the (independent) errors of three

different fields, Dt,t+1, Dt+1,t+2 and Dt+2,t ; moreover, at the sight of Figs. 4-6, the

error in the estimation of Dt+2,t is greater, so in fact the mean discrepancy overes-

timates the true error. This holds with the representation of the true squared error

which is below the consistency error in all the cycle.

In order to calculate the true squared error, the real deformation field in each

time slot is needed. Note that the phantom was designed modifying an initial image

trough the whole cycle, so just the cumulative deformation field is known.
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(a) LCC Demons (b) NMSDL Demons (c) Block-Matching

Fig. 7 Consistency checking of the deformation fields. We present mean values of M = ‖Dt,t+1 +
Dt+1,t+2 +Dt+2,t‖ for all slices and time slots for the phantom, together with the mean values of
the displacements, ‖Dt‖. The computation has been restricted to a ROI containing the myocardial
wall.

7 Visualization

The interpretation of the ST by its components allows an intuitive way to represent

them. The diagonal components (Eii) may be interpreted as the unit elongation or

compression of the material voxel in the xi direction. The other components (Ei j
with i �= j) are the shear strains. So, in an infinitesimal square area strained without

change of area, the shear strains components are approximately the decrease angle

between the axes. In Fig. 8a an infinitesimal square is deformed without change

of area, showing that the sum of shearing strains are approximately equal to the

decrease in angle with the axis of the square element [35] and it is worthy to explain

in detail:

Let us consider an infinitesimal square which is deformed without change of area

(see Fig 8a). The tangent of γ angle is:

tan(γ) =
uy(A+L)

L
(8)
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Fig. 8 (a) Deformation of an infinitesimal square without change of area. The strain components
are approximately the decrease in angle with the axis of the square. (b) Rhombus visualization of
a ST. The dashed lines are the minimum and maximum allowed squares.

and, for small deformations (L → 0), tan(γ) = γ and uy(A + L) ≈ uy(A) + ∂uy
∂x L.

Since, uy(A) = 0 (and proceeding in the same way with ux) we conclude:

γ ≈ ∂uy

∂x
γ ≈ ∂ux

∂y
(9)

and thus,

γ =
1

2

(
∂ux

∂y
+

∂uy

∂x

)
(10)

This shows that the nondiagonal terms of the ST can be interpreted as the increase

in angle so it makes sense to represent the strain by means of the principal directions

given by the eigenvectors where is no shear strain.

If every voxel of an image is represented in the same way as an infinitesimal

rectangle whose diagonals are oriented in the eigenvector directions and the position

of each vertex is related to the eigenvalues, a more intuitive visualization of the

tensor field may be achieved.

Since the eigenvalues can be either positive or negative, the positive eigenval-

ues are represented as elongations in the direction of its corresponding eigenvector,

whereas negative eigenvalues are represented as contractions. Both eigenvalues are

normalized by the largest absolute value of them. The length of each diagonal is:

SDi =
√

2

(
L
4

+
L
4

Ri
1 +

L
2

R2

)
(11)

where L is the side of the square, i = 1,2, R1 is the normalization ratio computed

as Ri
1 = 1

2 (λi +1) and R2 is the Euclidean norm of the deformation field in each

instant. The minimum possible side of the square is L/4, and the maximum is L.

Obviously, when the eigenvalues are equal the eigenvectors do not add much in-

formation and the orientation of the square is random. It seems that a representation
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by an ellipsoid could be better than a square, however when the tensor field is vi-

sualized all the tensors are seen as a whole and the orientation of groups of tensors

are not affected by this effect and it is worth representing them as deformed squares

in the direction of each diagonal in the same way as an infinitesimal square. Fig. 8b

shows a possible representation of a ST. Fig. 9 shows the ST field in the phantom.

Here the ST field has a contraction in the radial direction because the elongation of

the epicardium wall increases less than the endocardium.

(a) (b)

Fig. 9 (a) Tensor visualization. (b) Zoomed area. The ST field has a contraction in the radial
direction because the elongation of the epicardium wall increases less than the endocardium

8 Real Data Results

8.1 Materials

Cine MRI sequences of 17 patients were evaluated in this study. Every segment of

the 16-segment model for wall motion recommended by the American Society of

Echocardiography Committee on Standards was considered [28]. This model is di-

vided into three different levels: Apical, Mid-heart and Base. The apical area com-

prises 4 segments (Anterior, Lateral, Inferior and Septal) whereas Mid and Base

have 6 segments for each level (Anterior, Antero-lateral, Infero-lateral, Inferior,

Infero-septum and Antero-septum). These segments were classified by expert car-

diologists in the following 3 classes: 1. Normal, 2. Hypokinesia (diminished move-

ment) and 3. Akinesia (negligible movement). Among them, 194 segments were

classified as normal, 27 as Hypokinesia and 51 as Akinesia. Images size is 512×512

with pixel size 0.8594×0.8594 mm.

Demons registration algorithm was performed with 5 multiresolution levels with

50 iterations per level and a Gaussian regularization filter with σ = 2.8. Block-
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Matching algorithm was perfomed with 5 multiresolution levels, a block size of 2,

5 iterations per level.

8.2 Registration Performance

To assess the accuracy of the registration, we present a set of results based on the

three image similarity measures explained before: SSIM index [30], QILV [1] and

MSE.

In Figs. 10-12 we present the results for patient 10, for each time slot from 0 to

19 (we register each slot t with t +1 and t +2), for each slice from 1 to 14, and the

average values for all slices.
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Fig. 10 Similarity measures for each time slot and slice (MSE –a, d–, SSIM –b, e– and QILV –c,
f–) for LCC Demons case. Top row: we register slot t with slot t +1. Bottom row: slot t with t +2.
For each case, we superimpose the values for the 14 slices in the same time slot together with the
average value for all slices (solid and dashed lines). The results of the registrations are compared to
the similarity before the registration and to the ideal value that could be achieved if the estimation
of the deformation field were exact.

We show the results before and after registration, together with an ideal value,

computed for each slice and time slot by estimating the noise power σ2
n with the

method explained in [1] and then denoising the corresponding image I ; then we

corrupt I with two independent Rician noisy processes with power σ2
n , and blur

the second image to simulate the effect of the interpolation when we register, so
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Fig. 11 Similarity measures for each time slot and slice (MSE –a, d–, SSIM –b, e– and QILV –c,
f–) for NMSDL Demons case. Top row: we register slot t with slot t + 1. Bottom row: slot t with
t + 2. For each case, we superimpose the values for the 14 slices in the same time slot together
with the average value for all slices (solid and dashed lines). The results of the registrations are
compared to the similarity before the registration and to the ideal value that could be achieved if
the estimation of the deformation field were exact.

that we have two synthetic images I1 and I2 that we compare. This way we obtain

an estimation of the best result we could obtain if the estimation of the deforma-

tion field were exact and the registered images differed only because of noise and

interpolation artifacts.

Figs. 10-12 demonstrate that the registration clearly improves the similarity be-

tween the images in all cases: mean values for all slices and individual values for

each slice are much closer to the ideal values than they are to the values without reg-

istration. As in the case of the phantom, the registration of non consecutive slots is

more difficult than it is for consecutive slots and therefore the registration results are

poorer. Moreover, the shape of the averaged values resembles the shape of the car-

diac cycle: the peaks of end systole and end diastole correspond to the slots where

the myocardium moves the slowest.

Using the consistency checking methodology explained, the results shown in

Figs. 10-12 suggest that in fact we have true estimates of the deformation fields,

both for Dt,t+1 and Dt,t+2, so the proposed methodology makes sense. In Fig. 13

we show as well the mean displacements ‖Dt‖ recovered by the registration algo-

rithms. Note that the maximum mean displacements correspond to early systole and

late diastole, where the strain is maximum, which confirms once again that the esti-

mation of the displacement fields is adequate in the real case. Comparing the mean
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Fig. 12 Similarity measures for each time slot and slice (MSE –a, d–, SSIM –b, e– and QILV –c,
f–) for Block-Matching algorithm case. Top row: we register slot t with slot t + 1. Bottom row:
slot t with t + 2. For each case, we superimpose the values for the 14 slices in the same time slot
together with the average value for all slices (solid and dashed lines). The results of the registrations
are compared to the similarity before the registration and to the ideal value that could be achieved
if the estimation of the deformation field were exact.
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Fig. 13 Demons Consistency checking of the deformation fields. We present mean values of M =
‖Dt,t+1 + Dt+1,t+2 + Dt+2,t‖ for all slices and time slots for patient 10, together with the mean
values of the displacements, ‖Dt‖. The computation has been restricted to a ROI containing the
myocardial wall.

displacements and the mean consistency errors, the latter are lower, so we may con-

clude that the registration algorithms are able to recover in real data the deformation

field with an error in the order of the mean discrepancies (consistency errors).
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(a) Normal Patient (b) Patient with Akinesia

Fig. 14 (a) Normalized strain invariant It of a normal patient in a cardiac cycle. (b) Normalized
strain invariant of a patient with a diagnosed Akinesia in the inferior area. The higher strain at the
beginning and in the mid heart cycle shows the systole and diastole moments. In general, normal
patient shows higher strain through all the heart cycle. In the Inferior and Inferolateral segments
show an even lower strain in the whole cycle, especially in diastole, due to Akinesia.

8.3 Strain Rate Tensor Estimation Performance

In order to see whether ST estimation provides a good description of the dynamic

behavior of the heart, a classification was performed using the dynamic range of

contraction and the maximum of the strain invariant It = λ 2
1 + λ 2

2 as input data. A

Multilayer Perceptron with 3 layers was used with 2 neurons in the first layer, 2 in

the second, and 1 in the output layer [16]. The network was trained with a Bayesian

Regularization of the weights using the Levenberg-Marquardt algorithm. Testing

was performed with a leave-one-out strategy.

A correct rate of 76.67% was reached by classifying into Normal and Abnormal

(Hypokinesia or Akinesia) segments with the LCC Demons algorithm. We decided

to use this algorithm because of its better performance in the consistency checking.

This result makes clear that the SRT estimation can be considered as a feature for

classifying.

In order to test the coherence of the strain estimation, a representation of the

invariant It = λ 2
1 + λ 2

2 in each of the zones was performed for a patient who has

an Akinesia diagnosed in the inferior area of the mid zone compared to a normal

patient (see Fig. 14). In this representation, the strain rate shows its higher values at

the beginning of the cycle (early systole) and in the mid heart cycle, when diastole

begins. Curves obtained for the inferior and inferolateral, show a low strain through

the cardiac cycle even on systole and diastole compared to the normal patient, so

the zone with Akinesia presents low strain as it is expected.

Fig. 15 shows a sequence of the heart cycle represented with tensors drawn in

the myocardial wall. The sequence is zoomed in to analyze the behavior of tensors

in the Anterior and Anterior Septum area of the wall. The intensity of the defor-

mation field is represented by a red level added to the gray level of the image. In

the first frame, tensors are oriented to the endocardium contour showing elonga-

tions in that direction due to the contraction of the wall in the radial direction. An

increased strain in the anterior-septum area is represented in the second frame with
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overlapped tensors in the direction of the deformation. The third frame shows the

myocardium is still contracting as an effect of the inertial movements. This behavior

of the strain is coherent with the strain expected all over the cardiac cycle, where

the strain peaks are in early diastole (when contraction begins) and in systole (when

dilatation begins).

Fig. 15 Sequence of the heart
cycle with tensors represented
in the myocardial wall. Right
sequence corresponds to the
zoomed Anterior and Anterior
Septum area. The intensity
of the deformation field is
superimposed to the gray level
of the image. The sequence
shows how the strain increases
in early systole until it reaches
its maximum represented
in the second frame with
overlapped tensors. After
reached its maximum, the
strain diminishes.

9 Conclusion

In this chapter we have presented a methodology to estimate ST fields when no

golden standard is available. With the proposed methodology, some parametric and

non-parametric registration algorithms were used and tested.

To overcome the absence of a golden standard, a phantom was developed to

test the performance of the registration algorithms. First, three similarity measures

were used to demonstrate that registration algorithms provide a good registration

by means of comparing the registered image and the static image. However this
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method does not provide information about the error in the deformation field so a

Consistency Checking method was additionally proposed when no golden standard

is available.

This methodology has proved to provide an upper bound of the error as showed

all the tests of registration algorithms. Moreover, when real data is used, results

showed that the mean consistency error were below the mean displacements of the

deformation fields provided by the registration algorithms so we conclude that the

registration algorithms are able to recover the deformation field with an error in the

order of the mean consistency error (as an upper bound).

As we have demonstrated the SRT field can be estimated from conventional MRI,

it is worth to show whether this information is useful for diagnosis. With this idea in

mind, we decided to use information from the SRT field and deformation field as in-

puts to classify between normal and abnormal patients. Results on real data yielded

a correct classification rate of 76.76%. This result confirms that the ST fields es-

timated from the deformations provided by the registration algorithm can be used

to detect abnormalities according to the professional diagnosis with good results.

The study of strain in a patient with diagnosed Akinesia shows a coherent behavior

of the strain curves that allows to detect systole, diastole and the areas with less

strain. This classification study, though, should be extended taking into considera-

tion information related to the ejection fraction and other classical measures which

probably will increase the classification rate.

Additionally, a visualization scheme was proposed in order to visualize the be-

havior of the ST field in each time slot. Tensor visualization is consistent with the

deformation of the LV wall through the cardiac cycle showing an elongation in the

radial direction when endocardium is compressing, and a contraction when endo-

cardium is expanding.
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Strain Tensor Elastography: 2D and 3D
Visualizations

Darı́o Sosa-Cabrera, Karl Krissian, Javier González-Fernández,

Luis Gómez-Déniz, Eduardo Rovaris, Carlos Castaño-Moraga and Juan

Ruiz-Alzola

Abstract Elastography measures the elastic properties of soft tissues using prin-

cipally ultrasound (US) or magnetic resonance (MR) signals. The elastic behav-

ior of tissues can be analyzed with tensor signal processing. Different approaches

have been developed to estimate and image the elastic properties in the tissue.

In ultrasound elastography, the estimation of the displacement and strain fields is

mostly based on measures computed from the Radio Frequency signals, such as

time-domain cross-correlation. We propose to estimate the displacement field from

two consecutive B-mode images using a multiscale optical flow method. The tensor

strain field can then be plotted as ellipsoids, visualizing in a single image the stan-

dard scalar parameters that are usually represented separately. This technique can

offer physicians the possibility of extracting new discriminant and useful parameters

related to the elastic behavior of tissues. Although clinical validation is still needed,

our experiments from finite element and ultrasound simulations display consistent

and reliable results.

1 Introduction

Many pathologies such as breast cancer or cardiovascular disfunctions are highly

correlated with changes in the elastic properties of the surrounding tissues. Being

able to efficiently assess these changes either quantitatively or by providing effi-

cient visual tools can lead to early detection of these diseases and better diagnosis

and treatment. For example, the high prevalence of breast cancer make screening

mammography being recommended every year for women older than 40. However,

the use of X-ray radiography can increase the probability of tumors and can also give

false alarms. Elasticity Imaging or Elastography measures the elastic properties of
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soft tissues in response to a controlled external stimulus by means of ultrasound or

magnetic resonance imaging. Ultrasound (US) elastography is an imaging technique

with high specificity that can potentially help eliminate a large number of biopsies

for breast cancer detection without any secondary effects. In this work, we focus on

ultrasound elastography, and we show how the elastic properties of tissues can be

analyzed using tensorial signal processing tools.

The background section reviews the main concepts and protocols used in ultra-

sound elastography, basic tensor elasticity concepts, and the existing approaches for

computing the displacement fields and visualizing tensorial images. Afterwards, the

basis of strain tensor elastography is exposed. The methods used to carry out the ex-

periments in this chapter are described in section 4. In sections 5 and 6, we present

new visualizing techniques for 2D and 3D elastography respectively, and finally, we

discuss new perspectives and conclude.

2 Background

2.1 Elastography

Over the years, palpation has been a standard medical practice that relies on quali-

tative estimation of tissue elasticity. It has been used as a screening method for the

detection of breast, prostate, thyroid, and liver abnormalities, based on the fact that

the pathological state of soft tissues is normally correlated with changes in stiffness

[24]. The concept of elasticity imaging was developed as a qualitative and quantita-

tive methodology to map tissue elasticity, therefore adding new clinical information

to the interpretation of ultrasound, computed tomography or other scans [16]. In

1991, Ophir and co-workers introduced an ultrasound technique (named ultrasound

elastography), for imaging soft tissues stain profiles caused by a quasi-static com-

pressive force which produces a relative deformation into the tissue [4, 22]. Since

then, ultrasound elastography has become an emerging medical imaging tool to as-

sist in the diagnoses of pathology involving tissue stiffness such as prostate tumours

[25] and breast lesions [8, 9]. Elastography can be applied to any tissue accessible

ultrasonically and which can be subjected to compression. The compression is often

applied externally, whereas other techniques take advantage of natural sources of

compression such as arterial pulsation [7] or respiration.

Several ultrasound-based techniques have been developed according to the type

of excitation chosen: quasi-static compression [14], dynamic compression [20], or

pulsed excitations [35]. In quasi-static compression elastography, data are recorded

before and after a controlled mechanical compression has been applied to the tis-

sue. Dynamic and pulsed techniques on the other hand make use of a pulsed low-

frequency or a pulsed high-frequency excitation, respectively. Quasi-static compres-

sion elastography is specially indicated for the cases where there is a strong need to
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determine axial displacements and for the cases related to reconstructing the inverse

problem [5].

Quasi-static techniques appear as a natural choice for free-hand ultrasound elas-

tography. The main characteristic of the free-hand implementation is twofold. First,

it provides superior ease of use and versatility, and two, it has no need for additional

hardware and in this manner can be include in a commercial system at a low cost.

Furthermore, with the addition of a 3D position sensor, 3D ultrasound elastography

can be carried out by scanning volumes by translating the probe in the elevational

direction to sweep out the volume [17].

The complete description of an elastography technique deals with the estima-

tion of the axial displacements and the strain field derived from sonograms. A big

effort has been dedicated to this problem for over a decade [6, 27] and, gener-

ally, elastograms with high Signal-to-Noise Ratios (SRN) are obtained from cross-

correlation methods. Traditionally, the correlation algorithms are applied to selected

fractions of each Radio Frequency (RF) line by means of shifting windows in order

to fit locally the pre- and post-compressed A-line pairs. Strain estimation is a non-

stationary process, due to the fact that the pre-compression and post-compression

RF echo signals (A-scan mode) are jointly non-stationary. In order to formulate the

problem, it is convenient to approximate both RF signals to be jointly stationary,

which can be assumed when small displacements are produced in the tissue (it is

normal to consider displacements no longer than 1%). This assumption makes pos-

sible to de-correlate the RF signals in order to estimate the displacement. Additional

stretching of the pre-compressed RF lines improves the efficiency of the correlation

algorithms [21]. It has been shown that the strain estimation improves when using

a local stretching approach [34] instead of a global strategy. Axial displacements

are obtained from the strain field correlating each RF pre- and post-compressed A-

scan lines. The estimation of lateral displacements require that pairs or even groups

of A-scan lines be compared, which implies a high computational cost. A major

disadvantage when using free-hand ultrasound elastography is that consecutive ul-

trasound frames are non-coplanar, so the level of signal de-correlation is increased.

On the contrary, when using a mechanic actuator, the value of the deformation and

pressure over the tissue are known precisely and, therefore, that information can be

added to the correlation algorithms as a value to be used in the pre-stretching phase.

Due to the nature of the free-hand ultrasound elastography technique, the knowl-

edge about the tissue deformation comes from a mere estimation, resulting in a less

accurate and more erroneous data source.

2.2 Tensor Elasticity

The theory of elasticity provides a consistent set of equations that can be solved in

order to obtain a unique point-wise description of the tensorial distribution experi-

enced at each internal point (stresses) and displacements and deformations (strains)

caused for a particular loading (applied forces) and geometry. If an elastic body is
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compressed, its internal points are affected resulting in a tensional state determined

by the stress tensor. This state produces a deformation, expressed by the strain ten-

sor, which is related to the displacement.

When a stimulus is applied to an elastic solid, the stress tensor completely defines

the state of tension at a point in the body. It is a rank-2 symmetric tensor T that

permits to calculate the tension vector t in any orientation n as the scalar product of

a vector and a tensor

t = T n. (1)

For the sake of simplicity, we will consider rank-2 tensors as matrices and use their

corresponding matricial notations. Deformation caused by a stimulus is related to

the displacement vector field u between the initial and the final positions of the

points:

u(x,y,z) = ux(x,y,z)x+uy(x,y,z)y+uz(x,y,z)z. (2)

The displacement gradient ∇u is a tensor (Jacobian matrix) expressed as:

∇u =

⎛⎜⎝
∂ux
∂x

∂ux
∂y

∂ux
∂ z

∂uy
∂x

∂uy
∂y

∂uy
∂ z

∂uz
∂x

∂uz
∂y

∂uz
∂ z

⎞⎟⎠ , (3)

that can be decomposed as the sum of the symmetric strain tensor Γ with the normal

and shearing strains and the anti-symmetric vorticity tensor Ω [18]:

∇u = Γ +Ω , (4)

where Γ = 1
2 (∇u + ∇ut) and Ω = 1

2 (∇u−∇ut). The strain tensor Γ measures the

changes of shape, while the vorticity tensor Ω informs about local rotations. As-

suming small deformations and no rotations, which is a reasonable assumption in

our case of quasi-static compression, we can focus on the strain tensor component.

The (unitary) strains are expressed as:

Γ = εi j =
1

2

(
∂u j

∂xi
+

∂ui

∂x j

)
, (5)

where the index notation {x1,x2,x3} stands for {x,y,z} and (u1,u2,u3) for (ux,uy,uz).
The unitary angular deformation or shear-strain which characterizes the shearing is

denoted γ and for i �= j, it is defined as γi j = 2εi j. A more extended description of

the theory can be found in [31].

Different parameters describing different elastic or viscoelastic properties of the

materials have been investigated and visualized:

• Longitudinal strains: εx, εy and εz.

Depending on the axis disposition, they are named axial strain, lateral strain and

elevational strain. In the standard elastographic set-up, axial and lateral strains

correspond to the plane of the 2D probe, the former in the compression axis. The

elevational direction is used to define the out-of-plane parameters.
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• Shear strains: γxy, γxz, γyx.

Normally we refer with shear strain to that occurring in the plane defined by the

2D probe.

• Poisson’s ratio. ν = −εl
εa

.

Some researchers refers to the lateral-to-axial strain ratio = εl
εa

.

In both cases, l and a subindex meaning lateral and axial longitudinal strains.

• Axial-shear strain = ∂ux
∂y , considering x the axial axis and y the lateral. Mathe-

matically, this parameter is known as the cross-derivative xy.

Some examples are the axial strain, the shear strain, Young’s modulus, shear

modulus, Poisson’s ratio, viscosity, shear viscosity, lateral-to-axial strain ratio, etc.

In [31], other parameters with clinical potential are presented. One of them is the

vorticity that can be extracted from the rotation tensor and is related to the amount

of circulation or rotation. Another parameter used to visualize elastic properties is

the strain index, related to the trace of the tensor. The latter is not described phys-

ically in the theory of elasticity, and is more related to the tensorial, mathematical

or algebraic properties of the tensor. Other different properties of the strain and/or

stress tensors may be investigated with this tensorial approach in order to obtain

more tools for the clinicians to help the diagnosis of different pathologies related

with changes in the elastic properties of tissues. As there are many pathologies,

with their specific behaviors and physical reactions, some parameters can suit better

to one pathology than another.

Scalar visualizations can be represented in gray scale (the darker areas represent-

ing stiffer regions, i.e. less strain), or in pseudo-color images. The gray scale has

been the standard for ultrasound imaging in general and also for elasticity imaging.

However, the color images for the elastograms are becoming widely used. This is

due to the fact that elastograms are usually represented beside the B-mode image or

onto it. Therefore, it is easier to appreciate the colored image in contrast to the gray

scale one. In this work, both of them are used and, in any case, the clinician should

decide which one brings him the more relevant information.

2.3 Displacement Estimation

Ultrasonic strain assessment methods rely on the estimation of displacements be-

tween ultrasound signals acquired before and after mechanical compression. Once

an array of one, two or even three dimensional displacements estimates has been cal-

culated, strain is computed from a spatial derivative of the displacement to produce a

strain image. These methods require highly accurate estimates of the small deforma-

tions that occur between successive frames in an ultrasound scan. Several methods

have been described in the literature. Conventionally, each displacement estimate is

produced by identifying the closest matching windows of the pre-deformed frame in

the post-deformed frame. Either radio frequency (RF) or complex baseband signals

are used for accuracy.
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A measure of similarity is required in these window-matching approaches. Nor-

malized correlation coefficient has been traditionally utilized, although many alter-

native estimators have been reported with nearly identical performance figures [37],

such as the sum of squared differences (SSD), sum of absolute differences (SAD),

and phase root seeking of the complex cross-correlation function [27]:

SSD =
t=i+W

∑
t=i

(x1(t)− x2(t))
2 (6)

SAD =
t=i+W

∑
t=i

|x1(t)− x2(t)|, (7)

where x1(t) and x2(t) denote a pair of signals which represent the reference and

the delayed signals received by the transducer, which may have been de-correlated

by physical processes and additive noise introduced from electronic sources. Under

these conditions, a pattern matching algorithm can be used to estimate the shift be-

tween x1(t) and x2(t). The normalized-cross correlation (NCC) method determines

the displacement that maximizes normalized correlation between pairs of windowed

ultrasonic data over a predefined search region (Fig. 1). NCC coefficient can be de-

fined as [40]:

NCC =
∑t=i+W

t=i x1(t) x2(t)√
∑t=i+W

t=1 x2
1(t)
√

∑t=i+W
t=1 x2

2(t)
, (8)

where t is the iteration index, i is the in-window index and W is the window size.

Fig. 1 Precompressed and postcompressed RF data and the corresponding normalized cross-
correlation.

The corresponding maximum of the NCC coefficient is an indicator of the ac-

curacy of the displacement estimate. To estimate displacements with subsample ac-
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curacy, parabolic, cosine or sync interpolation is required [3]. Due to its simplicity,

parabolic interpolation is frequently used [3].

Alternatively, to find the absolute maximum of the cross-correlation function,

time shift can be estimated from the phases of either the analytic (complex) RF sig-

nals or base-banded signals. Pesavento et al. [26] proposed a Phase Root Seeking

algorithm to find the phase root of the correlation function of the analytic signals.

This root is found using an iterative formula, derived from a Newton iteration, in

which the derivative of the phase was approximated by the transducer center fre-

quency.

In addition, other methods such as adaptive stretching [2] and spectral cross-

correlation [36], estimate the strain directly without involving the use of gradient

operators but at huge computational cost and loss of precision, although they have

been shown to produce quality elastograms for large applied strains. Spectral meth-

ods estimate the strain field in a direct manner [1, 11] based on the Fourier scaling

properties, which state that compression of a temporal signal (RF in this case) pro-

duces a proportional expansion in the corresponding power spectrum. In this way,

spectral methods formulate the problem in the frequency domain, while the conven-

tional methods use the temporal domain.

3 Strain Tensor Elastography (STE)

An important contribution of this work is the visualization of the full strain tensor

for elasticity imaging. Traditionally this medical imaging modality has visualized

scalar parameters components of the strain and the elastic moduli tensors or related

parameters. We propose a new technique, Strain Tensor Elastography, hereinafter

STE, which visualizes in one image the standard scalar parameters that are usu-

ally represented separately in elasticity imaging. By using this technique physicians

would have additional information. Besides, it offers them the possibility of ex-

tracting new discriminant and useful parameters related to the elastic behavior of

tissues. Synthetic experiments from finite element and ultrasound simulations, and

commercial phantoms are presented in this section. This tensorial approach as well

as its visualization, can be extended to other elasticity imaging techniques.

The strain tensor will be used for the new visualizations presented in this chap-

ter. It gives a relative measure of the elasticity of different tissues that can be used

for the diagnosis of several pathologies. As opposed to the estimation of the elastic

modulus tensor, the estimation of the strain tensor does not require any assumption

about isotropy or problem configurations to shorten the independent constitutive

equations. Also, it does not add computational cost to the procedure. The visualiza-

tion schemes applied here to the strain tensor can equally be applied to the stress

tensor.

Tensors and tensor fields are basic tools in differential geometry and physics that

describe geometric and physical quantities which remain invariant under coordinate

transformations, as the ones we face in the theory of elasticity. In a 3D Euclidean
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space, such as ordinary physical space, the number of components of a tensor is

3n, denoting n the dimensionality of the space. The strain and stress tensors are

both second order tensors, therefore defined by nine components in 3D and four

components in 2D. As this two tensors are by definition symmetric, we have six

independent components for the 3D case and three for the 2D case.

3.1 Filtering the Strain Tensor Field

The estimated strain tensor field is noisy and susceptible to be filtered. The authors

in [29] proposed a non-iterative anisotropic method to regularize vector and higher

order tensor fields having in mind DT-MRI applications. The description that fol-

lows below has been inspired from that article. We extended its use to the strain ten-

sor field, obtaining a more aligned and anisotropically averaged tensor field, while

the edges are preserved. Results are shown in Fig. 2.

Fig. 2 Tensorial images filtering pipeline. Top: bounded case (malign); bottom: unbounded case
(benign). Left: noisy data (US simulation); right: anisotropically filtered data after regularization.
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The method is based on first estimating the local structure of the field and, then,

combining the outputs of a set of steerable filter basis responses to the tensor field,

which are adaptively weighted depending on the local structure [28].

The filtering scheme for tensor fields is based on the independent application

of the same scalar filter to every component, though the local structure tensors are

obtained from the whole input tensor field and not from each independent compo-

nent. We first give details of the scalar filter to be applied to each component. The

scalar filter consists of a bank of steerable filters forming a basis: one of the filters

is low-pass (ideally a Wiener filter), intended to get the coarse information, and the

remaining ones form a set of high-pass filters oriented in different directions, that

give the level of detail at each direction.

As the results obtained for our case tend to round the strain tensor ellipses,

loosing the orientation although preserving the borders, we finally decided to filter

each component of the tensor separately, what gave us better results. However the

anisotropic filtering might yield better results optimizing it for our images through

weighting, masks and different borders strategies.

3.2 Strain Tensor Visualization

As mentioned before, most representations used in elasticity imaging are based on

scalar parameters, which can be grouped in a matrix format to form the strain tensor

(see equation 5). Each component of this tensor (4 for the 2D case and 9 for the 3D

case), is obtained from the first order derivatives of the displacement vector field,

through pre and post-compression operations. The derivatives are usually computed

by means of a Least Square Estimator filter. Tensors formulations are not widely

used in image processing and computer vision, but they are gaining a increasing

interest. For example, in the field of biomedical research, they are used in appli-

cation of diffusion tensor magnetic resonance imaging (DT-MRI) [10, 38], and in

cardiac strain rate imaging (SRI) [30], where major efforts have been focused on

representing the tensor field.

Although the DT-MRI visualization techniques are quite well developed, their

application to strain tensor fields is not straightforward, since the strain tensor does

not always satisfy the positive semidefinite condition. In our case, the relevant clin-

ical information can be recovered from the absolute value of the tensor eigenvalues.

Further explanation for the sign of the eigenvalues is detailed in section 5.

In this work, we applied two different displacement algorithms: the first one

based on the standard elastography cross-correlation for the Radio Frequency (RF)

A-lines, and the second one through the optical flow method applied to the B-mode

images. Note that the B-mode consists of calculating the envelope for each RF A-

line and this information is obtained directly from the sonogram image, in contrast

to the RF-lines, which are not always available for the researcher (it depends on the

ecograph hardware/software architecture). Representation of results by means of the

strain tensor is independent to the applied method to estimate the strain. In Figs. 3
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Fig. 3 Displacement vector field overlaid on the strain tensor field for a virtual phantom, ideal
case. Unbounded case (benign) with symmetric boundary conditions.

Fig. 4 Displacement vector field overlaid on the strain tensor field for a virtual phantom, ideal
case. Unbounded case (benign) with non symmetric boundary conditions.
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and 4, we present results for a virtual phantom. As it can be seen, the vector field

at each point of the region-of-interest (ROI) is superimposed on the strain tensor

with different boundary conditions, i.e. the ideal case output of the Finite Element

Method. These images show the potential of the tensorial representation and the

information it provides.

4 Experiments

4.1 Field II Simulations

Field II is a program for simulating ultrasound imaging using linear acoustics and

summed spatial impulse responses through a series of MATLAB (Mathworks, USA)

scripts [12].

Field II proposes a point scatterer approach for simulation. It approximates the

medium as filled with elementary objects distributed randomly from which ultra-

sound deflects and disperses, i.e. scatters. The contributions of the spatial impulse

responses at each scatterer are thus summed to form the simulated image. These US

reflective points emulate the real tissue scatters in the body insonified by the US

transducer.

Parameters Used in the Simulation

The probe parameters model an L5-12 MHz ultrasound probe (Prosonic Co., Korea)

commonly used in breast imaging. The probe has a central frequency of 7.5 MHz,

80% fractional bandwidth, 128 physical elements and captures a linear image sector

from the phantom image built with 200,000 scatterers distributed according to a

Gaussian distribution. The simulated B-mode dynamic range was 42 dB. Sample

rate for the simulations was 100 MHz. The mechanical deformation produced with

the Finite Element (FE) simulation, was reproduced by displacing each scatterer.

Synthetic pre- and post-compression B-mode images were generated using FIELD

II ultrasound simulator.

4.2 Commercial Phantom

Figure 5 shows a convention scan (a) and elastogram (b) of a breast elastography

phantom (Model 059, Computerized Imaging Reference Systems, Inc., USA) which

contains several solid masses that appear isoechoic to the simulated breast tissue

under normal ultrasound, but are three times stiffer than the background. Depicted

lesion is about 10 mm in size. This phantom was imaged with a linear array of
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128 elements with a 7.5-MHz centroid frequency, 80% fractional bandwidth trans-

ducer of an Ultrasonix 500-RP ultrasound scanner (Ultrasonix Medical Corporation,

Canada).

5 2D Strain Tensor Elastography

Visualization of the tensor field improves the understanding and interpretation of

tensor data. In the last years, tensor field visualization has brought great interest

within researchers, partly due to the rapid improvement of graphics hardware, and

to recent advances in fiber visualization given by DT-MRI.

As in [30], we propose to visualize tensors as ellipsoids colored according to the

sign of the largest eigenvalue representing stretch or compression in the principle

direction. We chose a range of colors from blue to red for representing shortening

to stretching respectively, when displaying the tensorial image alone or overlaid

on a gray scale image. In the case where the tensorial image is displayed over a

color image, the black color is used for shortening, allowing a distinction from the

background colors.

The ellipses are aligned with the the principal directions of the tensor, given by its

eigenvectors, and representing maximum and minimum values for the strain. This

representation, called the Lamé ellipsoids, has been used to visualize the stress and

the strain tensors in [23].

In our case, as in Figs. 5 and 2, all the ellipses appear in a unique color: blue

or black. Later in this chapter, other visualization schemes are presented where the

ellipses (ellipsoids in 3D) have different colors. Because we are applying a com-

pression in the axial direction to an incompressible target, that deformation expands

in the target to both lateral directions, namely the Poisson’s effect. The axes of the

ellipses aligned with the axial direction, where the compression is applied, have

higher values. The strain, i.e. the derivative of the displacement, gives an idea of the

change in the displacement. In the quasi-static elastographic set-up, this change is

expected to be higher in the axial direction.

This representation visualizes the complete tensor in one plot giving information

about magnitude, direction and the ratio between the strain principle values. This

representation can detect possible abnormalities and regions with different local be-

havior than the surrounding.

Two sets of experiments are shown next. First, we present the results for a vir-

tual phantom with the malign and benign tumors simulated. Afterwards, we report

the experiments carried out with our optical flow estimation algorithm on physical

phantoms.



Strain Tensor Elastography: 2D and 3D Visualizations 393

5.1 Tumor Discrimination Experiments

Two different cases of boundary conditions between the inclusion (the simulated

tumor) and its surrounding (the background) were studied: one of them with the

inclusion loosely bounded to the background and the other fully connected, simu-

lating respectively the benign and malign tumors. These experiments were carried

out with virtual phantoms and displacements were estimated with cross-correlation

of the RF A-lines of pre- and post-compression data.

The experiments used to investigate the vorticity, showed that an inclusion may

rotate when a compression is applied, depending on the boundary conditions. The

strain tensor is expected to behave differently for this two cases, i.e. when the inclu-

sion is firmly bounded and when it is loosely bounded to the surrounding, especially

at the boundaries of the tumor. We used the same experiments to test the capabili-

ties of the standard Lamé visualizations of the strain tensor. The output of the finite

element software is considered the ground truth for comparison of the ultrasound

simulated phantoms (Figs. 5–7).

5.2 Optical Flow Experiments

For this set of experiments, we use a multiscale variational method to estimate the

displacement field. Further information on this technique can be found in [32, 33].

Three experimental phantoms were devised to progressively take into account

both the elastic response of the tissue and the dynamic range of conventional ultra-

sound images:

• Phantom A: Simulated data generated using Finite Element Analysis.

• Phantom B: Computer-simulated ultrasound images.

• Phantom C: A commercial breast elastography phantom, model 059, CIRS Inc.,

USA.

Phantom C contains several lesions three times stiffer than the background. In

Fig. 8, the displacement field (red vectors) is overlaid on the B-mode image for

phantom C. A green square delimits the ROI, whose elastograms are shown after-

wards in Figs. 11 and 12. The scalar and tensorial elastograms for phantoms A and

B, are plotted separetely in Fig. 9, while the plot of the ellipses overlaid on the axial

strain for both of them, are presented in Fig. 10.

Besides the color-coded information about the stretching or shortening of the tis-

sue locally, the ellipses present the principal directions of deformation, their mag-

nitude, and the ratio between these magnitudes. While the scalar representations

show the deformation in axial or lateral directions, the ellipses account for both the

magnitude and the direction of the tissue deformation.
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Fig. 5 Scalar and tensorial images comparison for a virtual phantom, ideal case. Top: axial elas-
tograms; (0.02 = 2%). Bottom: tensor elastograms. Left: bounded case (malign); right: unbounded
case (benign).

6 3D Strain Tensor Elastography

For the 3D experiments, finite element simulations have been used. Because we

compute three eigenvectors and eigenvalues for each voxel instead of two, the sign

of the eigenvalues must be considered in a different way. The aim of this section is

to give a set of tools and considerations for a useful 3D visualization of the strain

tensor.

In order to have usability for the clinicians, some parameters such as the plot of

the whole volume or different slices through the axial, lateral and elevational planes,

the size of the ellipsoids, the orientation of the views, etc., should be determined by

the physician.

We used the an interface generated by the free software AMILab [15], to allow

tuning the parameters for a specific application. A screenshot is presented in Fig.

13.
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Fig. 6 Scalar and tensorial images comparison for an US simulation of the virtual phantom. Top:
axial elastograms; (0.02 = 2%). Bottom: tensor elastograms. Left: bounded case (malign); right:
unbounded case (benign).

In this section, we present visualizations corresponding to phantom A, an ideal

case as we do not estimate the displacements but obtain them directly from the

FEA. The visualizations presented hereafter are independent from the estimation

algorithm used to obtain the displacement field.

6.1 Visualizations

The ellipsoids represented at each voxel are Lamé visualizations of the strain tensor

as described in section 5. In Figs. 14–16, several 3D visualizations of phantom A

are presented.

Different coloring stragegies have been experimented. First, we colored the el-

lipses according to the following three parameters:
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Fig. 7 Tensorial images overlaid on the axial strain. Comparison of the virtual phantom between
the Ideal case and the US simulation. Top: Ideal case; bottom: US simulation Left: bounded case
(malign); right: unbounded case (benign). Note that the tensor field dimensions are different be-
tween the ideal case and the US simulated phantoms because several ultrasonic beams cover the
areas corresponding to the nodes of the FE, resulting on the elliptical shape of the inclusions.

cl =
λ1−λ2

∑i λi
, cp =

λ2−λ3

∑i λi
, cs =

λ3

∑i λi
(9)

where cl , cp and cs stand for linear and planar anisotropy and isotropy coefficients,

as described in [39]. The red, green and blue components of the color are set as

proportional to cl , cp and cs respectively.

Although the ellipsoids within a stiff object that is compressed inside a softer

one (as it is the case of phantom A), are more spherical, having a bigger cs and a

smaller cl , this color coding permits a first discrimination of the inclusion from the

background, and renders different colors within each tissue class.
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Fig. 8 Left, picture of the commercial breast elastography phantom. Right, estimated displacement
field overlaid on the pre-compression US B-mode image of the phantom C.

Fig. 9 Scalar versus tensorial and ideal versus US-simulated elastograms. Top: axial elastograms;
bottom: tensorial elastograms. Left: phantom A (ground truth); right: phantom B (US simulation).
Note that the tensor field dimensions are different between the ideal case and US simulation be-
cause several ultrasonic beams cover the areas corresponding to the nodes of the FE.
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Fig. 10 Tensorial images overlaid on the axial strain for phantom B (virtual). Left: mapped in gray;
right: mapped with colors. (0.02 = 2%).
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Fig. 11 Tensorial image overlaid on the axial strain mapped to gray scale for phantom C (tissue-
mimicking commercial breast); (0.02 = 2%).

We also tried a volume factor with linear operations from the three eigenvalues

λ1, λ2 and λ3, and finally decided to design the color coding using the cl for the

red component and λ1 for the green and blue components. As in the elastographic

setup, the compression is applied vertically, λ1, the biggest eigenvalue, will be most

probably oriented in the Y axis, and it will determine the biggest shape difference

between the background and the inclusion.
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0
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0.02

Fig. 12 Tensorial image overlaid on the axial strain mapped to colors for phantom C (tissue-
mimicking commercial breast); (0.02 = 2%).

Fig. 13 Screenshot of AMILab freeware used to visualize 3D tensor fields.

7 Conclusions

Other works visualize scalar values such as axial strain, shear strain and Poisson’s

ratio, and have shown the usefulness of the information contained in them to assess

the mobility of the tumor and therefore its malignancy [8, 13]. As the strain tensor

integrates these parameters, its representation may provide new criteria and addi-
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Fig. 14 Visualization of the 3D strain tensor from phantom A using two slices orthogonal slices.
The image at the right displays all the voxels of the inclusion based on its segmentation.

Fig. 15 3D strain tensor image of phantom A. The surface of the inclusion is rendered with 50%
of opacity to allow the visualization of the ellipsoids.

tional information which complement the scalar images. The color-coded ellipses

representation of the strain tensor has a big potential in studying the elastic behavior

of tissues.

The visualization approach presented in this chapter, may be applied to many ap-

plications in different elastographic modalities, not only quasi-static elastography.

As an example, tensorial representations may be useful detecting the calcification in

the arteries [19]. Further investigation must be done, to find other ways to visualize
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Fig. 16 Two more example showing different points of view for the 3D strain image, the one at
the right with the surface object rendered. The image at the left, has the inclusion’s voxels visible
too.

the strain tensor in elastography suitable to handle both the information and the util-

ity for the physicians, extracting information clinically useful for the diagnosis and

prognosis of diseases such as breast and prostate cancer. Following the approach

presented in this work, novel parameters for the visualization of the elastic proper-

ties of the tissues might be found.

Commercial and gelatin phantoms, and clinical validation are under study, as

well as other tensorial data representations that can be extracted from the mathe-

matical approach presented here.
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Abstract This chapter describes a framework for storage of tensor array data, useful

to describe regularly sampled tensor fields. The main component of the framework,

called Similar Tensor Array Core (STAC), is the result of a collaboration between

research groups within the SIMILAR network of excellence. It aims to capture the

essence of regularly sampled tensor fields using a minimal set of attributes and can

therefore be used as a “greatest common divisor” and interface between tensor ar-

ray processing algorithms. This is potentially useful in applied fields like medical

image analysis, in particular in Diffusion Tensor MRI, where misinterpretation of

tensor array data is a common source of errors. By promoting a strictly geometric

perspective on tensor arrays, with a close resemblance to the terminology used in

differential geometry, STAC removes ambiguities and guides the user to define all

necessary information. In contrast to existing tensor array file formats, it is mini-

malistic and based on an intrinsic and geometric interpretation of the array itself,

without references to other coordinate systems.
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tion (CMIV), Linköping University, Linköping, Sweden. · 4 Laboratorio de Procesado de Imagen
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1 Introduction

Trying to describe facts of the world, facts of worlds that may only exists in our

imagination, or regularly sampled tensor fields, it is appropriate to start with a quote:

“Wovon man nicht sprechen kann, darüber muss man schweigen.”1

– Ludwig Wittgenstein, from Tractatus Logico-Philosophicus [19]

In this chapter, we define a minimalistic tensor array file format called Similar Ten-

sor Array Core (STAC). It is designed to capture the essence of tensor arrays and it

makes no effort to describe anything else. If something is not a regularly sampled

tensor field, it cannot be described by STAC. It is also with a reference to the late

thinking of Wittgenstein that we now write this chapter. We define a canonical stan-

dard for storage of tensor arrays, to be used as such. However, we also define this

standard to curiously see what response such an action will trigger in on the tensor

image processing community.

Tensors and tensor fields are basic tools in differential geometry and physics, to

describe geometric and physical quantities that remain invariant under coordinate

transformations. Examples include mathematics and physics in general [10], con-

tinuum mechanics [8], general relativity [16], diffusion in the human body [17], and

local image features in 2-D and higher dimensional images [1]. In computer pro-

grams, tensors and tensor fields are often implemented using arrays, with indices

corresponding to both spatial dimensions (e.g. x, y and z) and tensor indices (e.g. i
and j). Due to the lack of support for tensors in most programming languages, pro-

grammers have themselves come up with different conventions for storing tensor

data. One of the things that has caused confusion in Diffusion Tensor MRI appli-

cations is the relation between the basis vectors of the tensors and the basis vectors

of the space where the tensors have been sampled. Perhaps due to a limited view of

diffusion tensors, that they are simply 3×3 matrices, the geometric nature of tensors

has sometimes been overlooked and lost. For this reason, we propose a standard for

storage of tensor arrays, to promote a geometric view of tensors in the image pro-

cessing community and make it easier to exchange data between computer programs

and between researchers.

We propose a compact file format that is able to store regularly sampled tensor

fields, in arbitrary dimensions. The approach is minimalistic, canonical and geo-

metric. It can store tensor arrays, and nothing but tensor arrays. There is a unique

encoding of a particular tensor array and the tensor components are strictly coupled

to the geometric arrangement of the array of samples. It aims to capture the very

essence of tensor fields, using arrays, in a way that is compatible with mathematics,

physics and computer programming. We have divided the work on Similar Tensor

Arrays into two parts:

• Similar Tensor Array Core (STAC). This is the basic data type for storage of

tensor arrays. It promotes simplicity and safety in processing, communication

and storage of regularly sampled tensor field data.

1 “Whereof one cannot speak, thereof one must be silent.”
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• Similar Tensor Array Extensions. Application specific attributes and conven-

tions, e.g. for storing diffusion tensor MRI data and structure tensor fields. Ad-

ditional pieces of information that might be necessary are for instance SI units,

experimental parameters and the relation to application specific coordinate sys-

tems.

It is fair to say that STAC alone is sufficient to mathematically describe any regularly

sampled tensor field and one may think of STAC as a tensor array datatype. In many

applications however, it is also convenient to embed other information than the ten-

sor array in a dataset and therefore there is a need for extensions. This chapter only

describes STAC, but it includes examples on how STAC alone can be used in real

applications.

We first review the few existing standards for storage of tensor arrays, then we

present our geometrical interpretation of arrays and explain how images and later

tensor arrays can be included in the same geometric framework. The necessary

attributes are described, named and defined with mathematical formulas. Finally,

STAC is described, which includes a Python-inspired syntax and details on how to

store data as files on disk. A special section is dedicated to examples of STAC syntax

and common operations on tensor arrays. An overview of basic linear algebra and

tensor mathematics is presented in an appendix, which may be useful in particu-

lar if the reader is unfamiliar with the tensor index notation or other tensor-related

concepts that are used throughout this chapter.

2 Related Work

To the best of our knowledge, there are few well-documented file formats that are

capable of storing sampled tensor field data, even though there are evidently many

computer programs that use tensors. Within the medical imaging and visualization

community, two file formats for storage of sampled tensor fields should be men-

tioned; one is the Visualization Toolkit (VTK) [14] from Kitware and the other one

is the Nearly Raw Raster Data (NRRD) [11] by Kindlmann.

VTK is able to store 0th, 1st and 2nd order tensors in 3-D using its data format.

It supports the formats: structured points, structured grid, rectilinear grid, polygonal

data and unstructured grid. It does not have support for separating covariant and

contravariant tensor indices, concepts that we present in more detail in the appendix.

A distinction between covariant and contravariant indices is important, since these

two classes of indices behave very differently. VTK also lacks support for tensors of

higher-order than two. VTK is on the other hand versatile in describing the geometry

of the dataset, going far beyond regularly spaced rectangular sampling by using so-

called unstructured grids where data, such as tensors, may be attached to arbitrary

points and cells in space. VTK is a popular library for visualization and it has been

used in many applications such as the 3-D Slicer [6]. Writers and readers for this

file format are available in the extensive VTK software library, that is coded in C++

and easily accessible from scripted languages like Python [15] and TCL [13].
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The other format, the NRRD, is a data format for N-dimensional data arrays. It is

a fairly complex data format and it has several features that make it suitable for med-

ical applications. It is not only a tensor array file format, but also a file format that

is able to handle non-spatial dimensions and store for instance RGB color images.

NRRD has been used in NA-MIC [20] (National Alliance for Medical Image Comput-

ing) and is supported by a set of freely available command line tools and software

libraries from the same author. The NRRD format is flexible and a NRRD file header

can be used as a wrapper to many other array data file formats, including STAC2.

The downside of such flexibility is of course that the data file reader must be able to

handle many special cases, and thus it is very different from the design principles of

STAC. Since NRRD is also a software library for processing of N-dimensional array

data, written in C, the most convenient use of NRRD is probably through this library.

In summary, both VTK and NRRD have capabilities going beyond storing regu-

larly sampled tensor fields. In contrast, the goal of this chapter is to present a mini-

mal data object, STAC, which can only store tensor arrays. To this core data format,

additional layers of abstraction (extensions) may be added in the future to provide

extended functionality for particular applications. In for instance Diffusion Tensor

MRI, additional information about the data acquisition protocol and SI units may be

useful to store. It should however be pointed out that for processing of tensor arrays,

the STAC part of tensor data is sufficient in many cases, including e.g. filtering, seg-

mentation, registration, resampling, fiber tracking and visualization3. Just like PNG

image files [2] can be used in different applications such as microscopy and astron-

omy, STAC can be used to store and process tensor arrays in different applications:

STAC is a “tensor image file format”.

3 Geometric Arrays

In general, an array contains a set of objects, indexed by a fixed number of positive

or non-negative integers. Throughout this chapter, we will follow the convention

that indices start at 1. Arrays have no explicit connection to geometry, but a natural

extension is to regard its d indices as coordinates in a vector space V = Rd spanned

by an orthonormal (ON) basis. In this interpretation, each array element corresponds

to a point in space and elements are uniformly spaced in all d dimensions, like in

Fig. 1.

If elements are regarded as space-filling, like “pixels” or “voxels”, a natural in-

terpretation is that each point is regarded as a cell that extends 0.5 coordinate-units

from its center position in both directions for each dimension, forming a square in

2-D and a cube in 3-D.

2 From personal communication with Gordon Kindlmann at the Tensor Toolbox Workshop in Las
Palmas de Gran Canaria in 2006, where we concluded that NRRD did not have support for a metric
tensor at the time, but indirectly it already supported the notion of contravariant and covariant
indices.
3 With the reservation that STAC contains no information about handedness.
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Fig. 1 The geometry of a 4×6 array placed in its natural coordinate system in R2 along with the
usual Euclidean ON basis.

In medical imaging, it is sometimes necessary to consider the actual shape of

each sample to be different from a square or cube. The sample can be an average

over a diamond shape, the value in a point (an average over a Dirac distribution), an

average over a sinc-function or something else. It is also possible to make a distinc-

tion between regarding a datapoint as 1) a sample or 2) a reconstruction coefficient.

A sample is a value obtained from some functional, e.g. a linear functional such

as a weighted average using a Gaussian kernel. A reconstruction on the other hand

is when the value is interpreted a coefficient, which together with a basis function,

represents a reconstructed signal. Most algorithms in image processing and image

analysis do not take the actual shape of the pixels/voxels into account, i.e. the sam-

ples are regarded as either box averages or point values. In STAC, the exact shape

of a sample is undefined. The anisotropy of the sample pattern is stored however, in

the so called metric tensor, which is described in the following sections.

4 Scalar Arrays

With a geometric interpretation of arrays, as regularly spaced points in a vector

space, we now proceed to define a data format for geometric scalar arrays. Scalars

are different from higher-order tensors, because they are not geometric objects and

their representation is invariant to any change of coordinate system. A scalar value

is just a number. Table 1 describes a minimalistic data format for geometric scalar

arrays. This simple data format specifies the scalar array data, the number of spatial

dimensions, the spatial size of the array and an optional metric tensor to encode

the equivalent of pixel- or voxel size. From their mathematical definitions, some of

the values of these attributes are bounded and coupled to eachother. This short file

format also includes optional naming of the array and its indices, to make it easy to

identify the scalar array with the notation of a corresponding mathematical scalar

field. While not particularly important for the processing of array data, it may be
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Variable name Mathematical notation
[scalar name] f
[array index names] ci = [c1,c2, . . . ,cd ]T,1≤ ci ≤ m(i),

ci ∈ N, c ∈V
[array metric tensor] gi j ∈V ∗ ⊗V ∗, stored in row-order and p.d.

array size m(1) m(2) . . . m(d),m(i) ∈ N

array dimensionality d = dim(V ) ∈ N

data f (c1, . . . ,cd), stored in row-order

Table 1 A table of a minimalistic scalar array format.

convenient to keep the original names of variables and indices, to be faithful to the

terminology of a particular data modality or scientific paper.

The metric tensor is a generalization of what is commonly known as pixel- or

voxel spacing in digital imaging. Given the metric tensor, it is possible to measure

the length of a vector in the geometric array,

||c||=
√

cTGc =

√√√√ d

∑
i, j=1

c jcigi j,

and more generally to calculate the scalar product between two vectors a and c ∈V ,

〈a,c〉= aTGc =
d

∑
i, j=1

a jcigi j.

Using the metric it possible to for instance define a unit circle in V , i.e. the set of all

vectors c such that

cTGc =
d

∑
i, j=1

c jcigi j = 1.

Choosing the metric appropriately enables the encoding of oblique sampling pat-

terns, which is not possible with pixel- and voxel-spacing alone. However, the metric

does not reveal any information about the orientation of the scalar array in relation

to any real world coordinate system, it only contains information on how to measure

distances and angles within V . Depending on the application, these distances may

be measured in some physical unit such as meter (m), millimeter (mm) or feet (ft),

or they may be dimensionless.

While there is no notion of handedness or any other information on how to trans-

form the geometric scalar array into the real world in which we live, our simple

scalar array format does not say anything about how the scalar array should be dis-

played on a screen. It could be displayed rotated, large or small, upside-down and

even mirrored. Only the relative distances of the data points are known. However,

most algorithms in image processing do not need more information than a metric

to process scalar image data. An image that is rotated 90◦ and mirrored does not
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need any special treatment because most algorithms are invariant to such geometric

transformations.

5 Tensor Arrays

Some of the most annoying problems related to storage of tensor arrays, at least in

the medical imaging community, can be explained by geometric transformations.

A typical scenario is that somewhere in the process of image acquisition and re-

construction of tensor arrays, there has been a change of coordinate system for the

image volume (translation, rotation, scaling and/or mirroring) without an appropri-

ate transformation of the tensor components. Tensors that were originally aligned

with the image volume are suddenly oriented completely wrong. The effect of this

can be seen in Fig. 2. The mathematically correct way to transform tensors is to

let the tensors transform and change coordinates in a similar way that the overall

geometry change, like in Figs. 3 and 4.

Fig. 2 An example of transforming only the geometry without changing the tensors. Note that the
relation between the tensors and the geometry changes during the transformation. Typically this is
not a desirable outcome.

The components of the tensors are related to a basis. In STAC, similar to the com-

monly used conventions in differential geometry, the basis vectors of the tensors are

derived from the coordinate system of the array, which is also known as the coor-

dinate basis. The i:th basis vector in V is the tangent vector obtained as the partial

derivative of the position in V when all coordinates but i are fixed. In STAC, this hap-

pens to be the standard ON basis for V . The interesting thing is that whenever we

change coordinate system, for instance when the data is resampled or transformed

into some physical coordinate system like RAS [6], either these basis vectors must

be transformed or the tensor components must change to respect the new coordi-

nate basis. This is described in more detail later in examples and in the appendix.

One analogy of coordinate transformations and tensors is to imagine that the tensor
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Fig. 3 An example of transforming both the geometry and the tensors. Note that the tensors and
the geometry are aligned before and after the transformation. This is usually the correct way to
transform tensor arrays, since tensors in this chapter are regarded as geometric objects that are
attached to the image or volume.

Fig. 4 Another example of transforming both the geometry and the tensors, which includes both
rotation and anisotropic scaling.

glyphs4 are painted on a data volume made of rubber. When the volume is rotated

and stretched, the tensor glyphs are rotated and stretched in a similar manner, i.e.

they are tightly related to the geometry of the dataset.

There are exceptions from this rule. During stretching and rotation of DT-MRI

data, e.g. when performing medical image registration of two human brains, the

transformation of the tensors should only reorient them and now allow them to

change in shape [1].Thus, it can be concluded that image registration of DT-MRI

tensor arrays is a more complex process than simply a mapping of one coordinate

system onto another.

5.1 The Tensor Array Core Attributes

The core of the tensor array standard, STAC, is an almost minimal set of parameters

describing the tensor array as a computational and geometrical object. In particu-

4 Tensor glyphs are graphical representations of tensors, e.g. arrows or ellipsoids.
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lar it lacks references to the physical world, including units (e.g. V, m/s and T).

Despite its minimalistic qualities, it encodes a self-contained block of information

that captures the essence of a regularly sampled tensor field. For many tasks in ba-

sic tensor array processing, including filtering, generation of tensor streamlines and

calculation of the trace, this core of data attributes can serve as a “greatest common

divisor” in the pipeline between algorithms.

The lack of references to a physical world has implications on the visualization

of tensor arrays, as described earlier for scalar arrays. Given only the core data, there

is in fact no way to determine whether a tensor array should be displayed to a user

in a regular or mirrored fashion, i.e. the handedness of the dataset is missing. Even

though handedness is important in some applications, for instance in visualization,

this information has not been included in the core. In contrast to the metric tensor,

handedness not an intrinsic geometrical property of the data. Most tensor array pro-

cessing algorithms, e.g. filtering and interpolation techniques, are invariant under

both mirroring and rotation. If an application needs this information to be stored,

then it is an issue that has to be addressed in an extension to STAC, because STAC

itself is only concerned with the intrinsic geomery of tensor arrays. The STAC at-

tributes are described in Table 2. This table contains both optional and required data

fields.

The most important data field is perhaps the dimensionality of the vector space

V in which the tensor array lives, d = dim(V ). If the dimensionality is 3, the array

extends in three spatial dimensions and each of the tensor indices are numbered

from 1 to 3. If for instance the array is a 256× 256 2-D slice of (3-D) diffusion

tensors, this can only be encoded by a 256×256×1 volume.

The spatial indices of the array may also be regarded as the spatial coordinates

describing where each tensor is located in V . The tensor order describe the number

of tensor indices each tensor has, while the index types encode whether each tensor

index is contravariant or covariant. Some redundancy has been allowed for clarity

and error checking. Optional parameters for storing a metric tensor and give natural

names to the tensor array object and indices have also been added. All optional

parameters are denoted within square brackets.

5.2 Storing Tensor Arrays to Disk

While the core attributes give a schematic view of a tensor array format, further

specifications are needed to store a tensor array to disk. The tensor array data is

divided into two parts:

• The STAC header file, contains the STAC attributes describing the data. This file

has the extension .stach.

• The STAC data file, contains the actual tensor components. This file has the ex-

tension .stacd or .stacd.gz.
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Readers and a writers for these STAC files have been implemented in MATLAB, from

the attributes in Table 2 and following some principles as detailed below.

5.2.1 The Header File

The attributes of the STAC header are named and defined in Table 2, all attributes

except data are stored in the .stach file. The header file consists of a series of

lines that define the attributes, see for instance Example 1 and 2. The syntax is a

subset of the Python programming language [15], including only strings, integers,

floating point numbers, lists, variable assignments and comments. The metric tensor

is stored as a list, serialized in row-order. Because the syntax is a subset of Python,

.stach files can also easily be tested and parsed in any Python interpreter.

5.2.2 The Data File

To store the actual array data, the format and byte order of the floating point num-

bers in the array, and the ordering of the array itself, must be specified. STAC re-

quires floating point data to be stored in the IEEE-754 double precision format using

big-endian byte order [9]. This requirement has been added for simplicity and it is

sufficient for a wide range of applications. Single precision floats will not be more

efficient in terms of data size if appropriate data compression is used. Integer or

fixed point data could also save some space, but integers are unnatural to use to

describe tensors.

Row-major order, or “lexicographic order”, has been chosen for the serialization

of the array. This means that first index varies slowly and last index varies fast,

when storing a multi-dimensional array in a sequential memory, which is also the

storage convention for arrays in C-languages. In STAC it has been chosen to ensure

that the tensor components for a single tensor are stored at nearby memory loca-

tions. It is worth to note that MATLAB and Fortran uses column-major order instead

and a conversion is needed when data is read or written in these programming lan-

guages. The reason for not allowing both row- and column-major order is simplicity.

Neither of these two schemes are optimal in all situations and ongoing research in

scientific computing is investigating other orderings for storing multi-dimensional

arrays, such as z-order (Morton order) [18].

Storing the data with a file extension .stacd.gz is also allowed, meaning that

data has been compressed with gzip in accordance to RFC 1951 [4] and RFC 1952

[5].
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Variable name Mathematical notation
[tensor name] T
[tensor index names] s(1) s(2) . . . s(n),1≤ s(p)≤ d,s(p) ∈ N

tensor index types ∈ {′contravariant ′,′ covariant ′}
tensor order n ∈ N

[array index names] ci = [c1,c2, . . . ,cd ]T,1≤ ci ≤ m(i),
ci ∈ N, c ∈V

[array metric tensor] gi j ∈V ∗ ⊗V ∗ stored in row-order and p.d.

array size m(1) m(2) . . . m(d),m(i) ∈ N

array dimensionality d = dim(V ) ∈ N

data T ( j) = T ( j1, . . . , jd+n) =
T (c1, . . . ,cd ,s(1) . . .s(n)) =
T (c1, . . . ,cd)· · ·s(p) · · ·s(q) · · · ,
where j maps to a row-order of

( j1, . . . , jd+n) and 1≤ j ≤ dn ∏d
i=1 m(i).

Table 2 A table of the STAC attributes.

6 Examples of Use

Below we present some examples, to show what the file headers look like and to

explain some of the most important consequences of using STAC for tensor array

processing.

Example 1. (Storing diffusion tensor MRI data). Here the STAC file format is used

to store a diffusion tensor MRI dataset. The sampling is often anisotropic in medi-

cal image volumes, making the metric tensor deviate from unity. In this particular

example, the voxel size is 1mm×1mm×3mm.

# Similar Tensor Array Core header (\textsc{stac})
# File Format release 0.9
array_dimensionality = 3
array_size = [128, 128, 32]
array_index_names = ["r", "a", "s"]
array_metric_tensor = [1, 0, 0,

0, 1, 0,
0, 0, 9]

tensor_order = 2
tensor_index_types = ["contravariant","contravariant"]
tensor_index_names = ["alpha", "beta"]
tensor_name = "T"
description = """A diffusion tensor volume.
All tensors are positive semi definite (PSD),
The metric unit corresponds to 1 millimeter.
The unit of the tensor Tˆ{ab} is secondˆ-1."""
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To access the tensor component T (62,67,15)23, a lookup should be performed in the

data from the corresponding .stacd file. Since the array is serialized in row-major

order, this particular component would be found as a double precision floating point

number in big-endian byte order, from byte index 181427455 to 181427526 (indices

start at 1).

Example 2. (Storing local structure tensors). STAC is used to store the local structure

tensor field [1] of a 2-D image. This is a second order covariant tensor field, consid-

ering that a simple structure tensor estimate can be obtained from averaging outer

products of gradient vectors. Images usually have a unit aspect ratio, i.e. the metric

tensor is the unit matrix.

# Similar Tensor Array Core header (\textsc{stac})
# File Format release 0.9
array_dimensionality = 2
array_size = [64, 64]
array_index_names = ["x", "y"]
array_metric_tensor = [1, 0,

0, 1]
tensor_order = 2
tensor_index_types = ["covariant", "covariant"]
tensor_index_names = ["i", "j"]
tensor_name = "S"
description = """A local structure tensor field
for a 64 x 64 pixel image."""

Example 3. (Inheriting the metric from a physical coordinate system). In medial

applications, a tensor array will frequently be accompanied by a transformation from

the array to a physical coordinate system, which is often aligned with the anatomy

of a human. A common coordinate system is called RAS [6], after the directions of

its basis vectors: Right, from the patients perspective. Anterior, i.e. from the back

to the belly. Superior, from feet to head. These directions constitute a right-handed

coordinate system.

One way to specify the relations between tensor array indices and real-world coor-

dinates is to define an affine transformation,

x = Ac+ t,

where A is a linear transformation and t is a translation. It is up to the user to choose

the basis vectors for the RAS system, which can be measured in e.g. meters (m)

or millimeters (mm). In either case, there is a natural metric in the RAS system,

which can be transferred to the IJK or tensor array index space, to be stored in the

array metric tensor attribute,

5 (62−1) ·128 ·32 ·3 ·3 ·8+(67−1) ·32 ·3 ·3 ·8+(15−1) ·3 ·3 ·8+(2−1) ·3 ·8+(3−1) ·8+1
6 (62−1) ·128 ·32 ·3 ·3 ·8+(67−1) ·32 ·3 ·3 ·8+(15−1) ·3 ·3 ·8+(2−1) ·3 ·8+(3−1) ·8+8
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gi j = G = ATA,

which will have e.g. the unit m2 or mm2 depending on the choice of basis vectors.

The expression for the components of the metric tensor, in the tensor array index

space, can also be derived as a coordinate change of the metric, which is a covariant

tensor, from the world space to index space.
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Fig. 5 Illustrating a change of coordinates, from a coordinate system expressed in the bi basis to
the tensor array expressed in the ei basis. This scenario appears in both resampling of a tensor
array and when there exist a transformation from the tensor array index space to a physical world
coordinate system such as the RAS system.

Example 4. (Resampling of tensor arrays). A common task in image processing is

resampling, either to increase or decrease the resolution of a image or volume. Re-

sampling can also be performed in an anisotropic manner, e.g. to restore an isotropic

sampling pattern in a volume that has been acquired from anisotropic and/or oblique

sampling. In the tensor array framework, resampling can be seen as a change of co-

ordinates, which induce a coordinate change of all tensors in the volume, including

the metric tensor if it has been defined. An affine change of coordinates from c to c̃
can be described by

c̃ = Ac+ t, (1)

e.g. with

A =
[

2 0

0 2

]
to describe an upsampling by a factor 2. Since tensors are expressed in components

relative to the coordinate basis, all contravariant tensor indices transform like con-

travariant vector fields v = vi,

ṽ = Av

This is analogous to Eq. 1, i.e. index position vectors c are contravariant vectors. A

covariant vector field wT, and covariant indices of tensors in general, transform in a
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dual manner,

w̃T = wTA−1,

or equivalently in index notation

w̃i =
n

∑
j=1

w j(A−1) ji.

The metric tensor gi j, which is a second order covariant tensor, is thus transformed

according to

G̃ = g̃i j =
n

∑
a=1

n

∑
b=1

gab(A−1)ai(A−1)b j = (A−1)TG(A−1).

In summary, when resampling a tensor array, both the tensor components and the

metric tensor need to be transformed according to the rules for coordinate changes

if the resampled tensor array should faithfully represent the original tensor field.

Example 5. (Calculating eigenvalues and invariants). In many applications, tensors

are synonymous with 2×2 or 3×3 positive definite symmetric matrices. The eigen-

values of such matrices represent properties of the tensor that are invariant under

rotations and unitary transformations, see e.g. [17]. However, this requires the ten-

sors to be expressed in an orthogonal basis and in STAC, tensors are stored relative

to the coordinate basis, which may not be orthogonal. To further complicate things,

the definition of eigenvalues and eigenvectors suggests that the matrix should be in-

terpreted as a linear transformation, Ax = λx, where x is mapped to λx, i.e. a trans-

formation from a contravariant vector to a contravariant vector. This implies that the

matrix A is a mixed tensor, having one covariant index and one contravariant index.

In many applications where eigenvalues of tensors are calculated however, tensors

are either second order contravariant (like in Diffusion Tensor MRI) or second order

covariant (like in structure tensors). To derive eigenvalues that are invariant to coor-

dinate changes, we need to use the metric tensor to convert the tensors from either

type (2,0) to (1,1) or from (0,2) to (1,1). This is done by raising or lowering one

index of the tensor, a procedure that is well known in tensor algebra and is further

described in the appendix.

For a contravariant tensor array in e.g. DT-MRI, we must calculate the eigenvalues

and eigenvectors of

T ibgbcxb = λxi,

or in matrix notation

TGx = λx.

For a covariant tensor array, e.g. a structure tensor field, eigenvalues and eigenvec-

tors are derived from

Tabgbixa = λxi,

equivalent to

TG−1x = λx
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in matrix notation.

It is worth mentioning that eigenvalues are not invariant to the unit of the metric

tensor. The choice of metric unit, e.g. whether the metric tensor measures length

in meters (m) or millimeters (mm) in the physical world, will have an impact on

the eigenvalues, even though the eigenvectors will be the same. To further compli-

cate things, tensors sometimes have non-geometric units. In Diffusion Tensor MRI,

diffusion may be measured by (mm2s−1) and in this case the (s−1) part is a non-

geometrical aspect of the data that has to be accounted for outside the STAC header

or in an extension specific for this application.

7 Discussion

The STAC approach described here is a minimalistic framework for the storage of

tensor arrays. One of the main purposes of this framework is actually to point out

how little information is needed to store regularly sampled tensor fields that can

be interpreted, visualized and processed by anyone. Some of its properties may be

new to a novice user, especially to those who think of tensors as 3×3 matrices. The

positive thing is that STAC will guide these users to actually learn more about tensors

and how they transform under coordinate changes. And if the user knows this, then

the user knows virtually everything about tensors–because tensors and tensor arrays

are in fact very simple geometric objects.
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Appendix – Tensor Mathematics

This appendix contains some basic definitions and explanations of the mathematics

and notation of tensor algebra. For a more complete introduction to tensors and

index notation, see for instance [16, 10, 8].

7 http://www.similar.cc
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7.1 Linear Algebra

To be able to introduce tensors, it is convenient to first define vectors, vector spaces

and related concepts.

7.1.1 Vector Spaces

Let V be a vector space with dim(V ) = d. A basis for V is a set of elements B =
{b1,b2, . . . ,bd}⊂V , which are linearly independent and spans V , i.e. for any vector

v ∈V there is a set of coordinates xi such that

v =
d

∑
i=1

xibi

and
d

∑
i=1

xibi = 0

has the unique solution xi = 0.

7.1.2 Linear Maps

A linear map f is a map between two vector spaces V and W , f : V →W , that is

additive and homogeneous:

f (u+v) = f (u)+ f (v)
f (λu) = λ f (u).

7.1.3 The Dual Vector Space

The dual vector space V ∗ is the space of all linear maps w : V →R. Thus, w(u) ∈R

and

w(u+v) = w(u)+w(v)
w(λu) = λw(v)

A simple example is the function w(v) = a · v, where u,v ∈ Rd , or more general,

w(v) = 〈a,v〉 where u,v ∈ V , for some V equipped with an inner product. V ∗ is

a vector space with dim(V ∗) = d. An element w ∈ V ∗ operating on a vector v =
∑d

i=1 xibi may be decomposed,
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w(v) = w(
d

∑
i=1

xibi) =
d

∑
i=1

xiw(bi) =
d

∑
i=1

xiwi.

Apparently, the action on the elements of a basis B uniquely determines the action

on any vector expressed in that basis.

A dual basis to B, W = {bi}, is defined by

bi(b j) = δ i
j (2)

where δ i
j is the Dirac delta function,

δ i
j =
{

1 if i = j
0 otherwise

.

V and V ∗ are different vector spaces and there is not necessarily a way to iden-

tify a vector v ∈V with an element w ∈V ∗, unless there is an inner product defined.

Then, v may be identified with the element w, defined by w(u) = 〈v,u〉. One in-

Fig. 6 (a): A contravariant vector xi. (b): A contravariant vector 2xi. (c): a covariant vector wi
and various contravariant vectors zi, for which ziwi = 1. (d): A covariant vector 2wi. Note that the
graphical representation or glyph, of a contravariant vector, which can be thought of as a level curve
of a scalar function, gets narrower when the coefficients are doubled. This behavior is different
from the arrow representing a contravariant vector, which gets longer when the coefficients are
doubled.

terpretation of a dual vector is that it measures some aspect of an ordinary vector.

If ordinary vectors are geometrically depicted as arrows of different length, a dual

vector can be thought of as the slope of a scalar function defined in V or a level

curve to a linear scalar function in V , see Fig. 6.

From Eq. 2 we note the convention that ordinary or contravariant basis vectors

are written in boldface with a lower index, bi, while covariant basis vectors are

written using boldface with an upper index, bi. Consequently, the coordinates of a

covariant vector are denoted xi, and the coordinates of a covariant vector are with a

lower index, wi. From now on, a vector is often denoted by its coordinates, xi or wi,

which is practical since it then becomes possible to distinguish between contravari-

ant and covariant vectors. Sometimes we also use the notation v, usually to denote

a contravariant vector, when there is no way to mix up covariant and contravariant

vectors. This notation is the most well-known notation for most readers after all.
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7.1.4 The Einstein Summation Convention

Since many expressions involving vectors, matrices and soon also tensors, include

summations, it is now time to introduce the so-called Einstein summation conven-

tion. It means that indices that occur in several places in an expression are summed

over from 1 to d, where d = dim(V ), e.g.

v =
d

∑
i=1

xibi = xibi

or

w(v) = w(
d

∑
i=1

xibi) =
d

∑
i=1

xiwibi(bi) = xiwi.

For vectors, this results in a slightly shorter notation. For higher-order tensors how-

ever, this notation is more even practical.

7.1.5 Coordinate Changes

Coordinate changes in the vector space V induce a dual coordinate change in V ∗ if

the dual basis is assumed. Let xi denote ∑d
i=1 xibi and wi denote ∑d

i=1 wibi. Introduce

a coordinate change in the contravariant coordinates, x̃i = ti
jx j. Then, regardless of

coordinate system, we have

xiwi = x̃iw̃i

= x jti
jTi

kwk ⇒
ti

jTi
k = δ j

k

for some coordinate change Ti
k in the dual space. Thus, coordinates of dual vectors

in V ∗ must transform inversely to coordinate changes in V . The following example

gives some intuition to coordinate changes from a simple example in physics.

Example 0.1. Consider a capacitance consisting of two charged metal plates sepa-

rated by a gap d = 0.5m with a potential difference U = 100V, depicted in Fig.

7. Then, the field strength E = 200V/m, since it satisfies the equation U = d ·E.

By changing the spatial coordinate system from meter to feet we obtain d = 1.64ft,

U = 100V and E = 60.98V/ft. Length is a contravariant vector and the coordinate

of d increases during the coordinate change. Field strength is a gradient, a covariant

vector, and is coordinate decreases from this coordinate change. Thus, there are two

types of vectors; covariant and contravariant, which are dual. The type of a vector is

often hinted by the associated physical unit, i.e. whether the spatial unit (m, ft, . . .)
is in the numerator or denominator.
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Fig. 7 When the unit is changed from m to ft, the components of ordinary contravariant vectors
and covariant gradient vectors transform differently.

7.1.6 Inner Products and Metrics

An inner product 〈u,v〉, or equivalently for our purposes a metric g(u,v), is a bi-

linear map (linear in each argument) g : V ×V → R with two additional properties,

〈u+v,w〉 = 〈u,w〉+ 〈v,w〉
〈λu,w〉 = λ 〈u,w〉
〈u,v〉 = 〈v,u〉
〈v,v〉 ≥ 0.

From linearity we have,

g(xibi,y jb j) =
d

∑
i, j=1

xiy jg(bi,b j),=
d

∑
i, j=1

xiy jgi j = xiy jgi j,

i.e. in a given basis d2 components gi j = g(bi,b j) completely define the action of

this map on any pair of vectors. Again, a coordinate change in V induces a change

in the components gi j. Let x̃i = x jt j
i, then

gi jxiyi = g̃i j x̃iỹi

= g̃i jxktkiymtm j ⇒ g̃i j = (t−1)k
igkm(t−1)m

j,

i.e. the components of gi j transform dually relative to the contravariant vectors xi

and y j, because the metric is an example of a second order covariant tensor.
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7.2 Tensors

Tensors generalize scalars, vectors and matrices to higher dimensions. Sometimes

the word “tensor” is used for any multi-dimensional array with more indices than

a matrix, more than two, but we use the term in a more precise meaning that is in

agreement with the notation in physics and differential geometry. In these research

fields tensors are geometric objects that are invariant under coordinate changes, just

like vectors. In physics, the word “tensor” usually refers to what in mathematics

would be called a “tensor field” but in both domains it is meaningful to think of

tensors as objects defined pointwise in a vector space.

Many spatial quantities in physics are tensors, for instance: velocity (m/s), diffu-

sion (m2/s) and electric field strength (V/m). In mathematics, contravariant vectors

are those that behave like we are used to, while the covariant vectors are gradients.

Examples of higher-order tensors in mathematics are quadratic forms.

A tensor F is defined as multi-linear map,

F : V ∗ × . . .×V ∗︸ ︷︷ ︸
r

×V × . . .×V︸ ︷︷ ︸
s

→ R,

i.e. a map that is linear in each of its arguments. Its order is r+s and it has type (r,s),
meaning that it operates on r covariant vectors and s contravariant vectors. In some

contexts, order is called rank and type is called valence, which can be confusing

since rank is also used to describe the rank of matrices. Similar to vectors and the

metric previously defined, the action of tensors can be defined by components that

are derived from the action on all combinations of basis vectors {wi} in V ∗ and {b j}
in V ,

Fi1,i2,...,ir
j1, j2,..., js = T (wi1 , . . . ,wir ,bi1 , . . . ,bir).

The number of components is dr+s. If the coordinates are changed, x̃i = tkixk, then

each contravariant index is transformed as a vector and each covariant index is trans-

formed as a dual vector,

F̃abc
xyz = Fabc

xyz taitb jtck . . .(t−1)x
m(t−1)y

d(t−1)z
o . . .

In physics, this is sometimes how tensors are defined, i.e. as objects that transform

according to certain transformation laws.

7.2.1 Outer Products

The outer product of two vectors, F and G, having type (r,s) and (p,q), is defined

by

(F⊗G)((xi1)a, . . .(xir+p)a,(y j1)
a, . . . ,(y js+q)

a) =

F((x1)a, . . .(xr)a,(y1)a, . . . ,(ys)a)G((x1)a, . . .(xp)a,(y1)a, . . . ,(yq)a)

where (xi)a refers to the i:th covariant vector.



Similar Tensor Arrays – A Framework for Storage of Tensor Array Data 427

7.2.2 Cartesian Tensors

It is common in e.g. continuum mechanics to work solely using Cartesian vectors

and tensors. This means that an ON basis is used and the basis and dual basis coin-

cide and there is no need to differentiate between upper and lower indices.

7.2.3 Index Gymnastics

Many operations in tensor analysis can be performed by manipulation of the indices,

which is sometimes known as index gymnastics. A contravariant vector xi may for

instance be transformed to a covariant vector by multiplication with the metric gi j,

xi = gi jx j. It is called to “lower” an index. In a similar fashion, an index may be

“raised”, wi = gi jw j = (g−1)i jw j.
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User Interfaces to Interact with Tensor Fields

Susana Merino-Caviedes and Marcos Martı́n-Fernández

Abstract Nowadays there is a growing interest in tensor medical imaging modal-

ities. In Diffusion Tensor Magnetic Resonance Imaging (DT-MRI), each pixel is

valued with a symmetric second-order tensor describing the spatial properties of

diffusion at that point. Therefore, it provides significantly more information than

scalar modalities, but this causes the complexity of the interfaces dealing with them

to grow. In this chapter, the current situation of user interfaces for tensor fields is re-

viewed. Tensor user interfaces are difficult to design, given the difficulty of mentally

integrating data with so many parameters. This is why a considerable effort must

be invested in order to achieve intuitive and easy-to-use interfaces. The display of

tensor information plays an important role in this, and we review several existing

visualization methods for tensor fields. We must point out that, although most of the

applications are graphical interfaces, there are also examples of command-line tools

and multimodal interfaces employing virtual environments. We study some of the

current medical user interfaces for diffusion tensor fields.

1 Introduction

Medical imaging has proven to be an invaluable tool for physicians. Among the ex-

isting modalities, Magnetic Resonance Imaging (MRI) obtains good quality images

without exposure to ionizing radiation, measuring instead the response of hydrogen

atoms to strong magnetic fields. Diffusion Tensor MRI (DT-MRI) is an imaging

method that measures the water diffusivity in different space directions and models

it as a second-order tensor. Therefore, this modality detects information about the

internal structure of a tissue that other techniques cannot uncover [3]. For example,

it can detect the fibrous structure of white matter, which is seen by other imaging

modalities as an homogeneous tissue. Neurology and neurosurgery can greatly ben-

Laboratory of Image Processing, University of Valladolid, Spain
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efit from DT-MRI, as it allows the in vivo computation of tractographies, the path-

ways of the nervous fibers. Some medical applications where diffusion tensor imag-

ing plays an important role are [42]: research on multiple sclerosis [27], leucoaraio-

sis, cerebral ischemia, diffuse axonal injury, image-guided neurosurgery [43], neu-

rooncology, white matter abnormalities in schizophrenia [36], epilepsy, etc.

However, due to the complexity of this imaging modality, images must be pro-

cessed before meaningful information can be extracted from them. It is then fun-

damental to develop user interfaces for DT-MRI, in order to profit from the advan-

tages offered by this modality. Additionaly, they should use visualization methods

that represent the information given by the tensors at each point of the image in

an intuitive way for the user. This is not an easy task, and some research has been

conducted in the last years to accomplish this goal.

There are not too many software applications for DT-MRI, but they are growing

in number, and they can be classified into command-line tools, graphical user in-

terface (GUI) applications, and multimodal interfaces. In addition, as most of these

interfaces are fairly recent, they are evolving, improving their usability or adding

new functionalities to the already existing ones.

The rest of the chapter is organized as follows. Firstly, some concepts about dif-

fusion tensors and DT-MRI are explained in Section 2. Then, an overview of the

existing visualization techniques for tensor fields is given in Section 3, as they are

an important part for most user interfaces. Next, the command-line tools, GUIs and

multimodal interfaces are respectively reviewed in Sections 4, 5 and 6. They are

followed by a discussion in Section 7, and some conclusions in Section 8.

2 Diffusion Tensor MRI

The design of user interfaces for diffusion tensor imaging requires at least some

knowledge of tensor theory, especially in order to understand the visualization tech-

niques of this kind of data.

Diffusion is a property of a physical medium that measures the Brownian motion

of the molecules present in it. When the medium is isotropic, only a scalar is needed

in order to characterize diffusion completely. When it is anisotropic, however, the

diffusion depends on the direction along which we are measuring it. This is why a

symmetric tensor is needed to characterize diffusion in this case [3, 32]. We will

refer to such a tensor as D = Di j, where i j = 1,2,3. It must be noted that lower

indices will be used in spite of them being contravariant. This is done for clarity of

notation. In matrix form, the diffusion tensor is usually represented as:

D =

⎛⎝ D11 D12 D13

D21 D22 D23

D31 D32 D33

⎞⎠ (1)

DT-MRI is a method for measuring the relative diffusion coefficients of water

molecules in different directions of an image [32], using magnetic resonance imag-
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ing (MRI). These measures are coded as a diffusion tensor at each point of the

image.

Diffusion tensors cannot be directly observed from the real world. Instead, they

are estimated from a set of diffusion weighted images (DWI) and a baseline image.

The DWI are taken using different noncollinear magnetic field gradients, and the

baseline image is taken with a null gradient. We name the former Si, the latter S0,

and the unitary gradients ĝi, where i = 1,2, . . . ,N. These images follow the Stejskal-

Tanner equation system [46], given below in its logarithmic form:

log(Si) = log(S0)−bĝT
i Dĝi (2)

where b is the diffusion sensitization [38], which depends on gradient pulse charac-

teristics and gyromagnetic properties of protons, and D is the diffusion tensor.

Since there are six degrees of freedom in the diffusion tensor, at least six DWI

images Si besides the baseline are needed to completely determine the diffusion

tensor. We must take into account that the diffusion tensor is obtained through an

estimation, and that the presence of noise in the images affects this computation,

adding a degree of uncertainty to the result. Frequently, more than six DWI images

are used to determine the diffusion tensor in order to achieve better estimations.

Diffusion tensors are symmetric and positive semi-definite. This means that all

their eigenvalues λi are nonnegative, and their eigenvectors ei form an orthogonal

basis. This is of great importance in DT-MRI visualization. Eigenvalues are usually

listed in a decreasing order, so that λ1 ≥ λ2 ≥ λ3 are called the major, medium and

minor eigenvalues respectively.

Given that diffusion tensors are symmetric, only six components of the 3× 3

matrix are independent quantities, which means that we have six degrees of freedom

in order to characterize a tensor at each point of a DT-MRI image.

Data from a DT-MRI image are representations of the diffusion tensor corre-

sponding with infinitesimal volumes (voxels) of a human body. The molecule mobil-

ity in different directions is characterized by the degree of anisotropy, which allows

to determine not only the type of tissue but also fiber orientation. There are several

parameters used to facilitate the interpretation of the data. These parameters can

be classified as diffusivity measurements, anisotropy measurements and orientation

related parameters:

1. Mean diffusivity. The goal of this parameter is to obtain a measure of the diffu-

sion in a voxel, free of anisotropy effects, and to provide a value that is invariant

with tissue direction or orientation. Using this parameter, tissues with the same

mean diffusivity characteristics will ideally have the same value, independently

of its direction or orientation.

〈D〉=
trace(D)

3
=

D11 +D22 +D33

3
=

λ1 +λ2 +λ3

3
(3)

2. Anisotropy is the property of presenting different characteristics depending on

the orientation. It is the opposite property to isotropy, which is characterized by

presenting equal properties in all directions.
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• The fractional anisotropy (FA) characterizes the ellipsoid eccentricity and has

the expression [4, 33]:

FA =

√
3((λ1−〈D〉)2 +(λ2−〈D〉)2 +(λ3−〈D〉)2)√

2(λ 2
1 +λ 2

2 +λ 2
3 )

(4)

where 〈D〉 = (λ1 + λ2 + λ3)/3 is the mean diffusivity. FA ranges from 0

(isotropic) to 1 (completely anisotropic).

• The relative anisotropy (RA) measures the variations in the eigenvalues and is

as follows [46]:

RA =

√
(λ1−λ2)2 +(λ2−λ3)2 +(λ3−λ1)2

√
2(λ1 +λ2 +λ3)

(5)

• The volume ratio (VR) coefficient is the ratio between the volume of the el-

lipsoid defined by the diffusion tensor and a sphere with the mean diffusivity

as radius [5]:

V R =
λ1λ2λ3

〈D〉3
(6)

This coefficient ranges from 0 (completely anisotropic) to 1 (isotropic), so the

measure (1−V R) is also used in order to make the range consistent with that

of FA.

• The anisotropy shape coefficients cl ,cp,cs were introduced in [46], and they

measure which kind of anisotropy is present in a tensor, whether linear, planar

or spherical, respectively. They have the property that cl + cp + cs = 1. There

are different expressions for them, and we give the ones in [31], because of

their relevance with respect to barycentric mapping:

cl =
λ1−λ2

λ1 +λ2 +λ3
(7)

cp =
2(λ2−λ3)

λ1 +λ2 +λ3
(8)

cs =
3λ3

λ1 +λ2 +λ3
(9)

3. Fiber orientation: DT-MRI facilitates information regarding the direction fol-

lowed by the fibers present in the white matter of the nervous system. These

fibers are composed by axons with a myelin layer, and the water molecules can

move more easily along the fibers than across them. Therefore, the fiber orien-

tation is taken to be the direction of maximum diffusion, which is given by the

major eigenvector of the diffusion tensor.

These coefficients are widely used for tensor processing and visualization. The

latter is described in the following section.
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3 Visualization of Diffusion Tensor Fields

The comprehensive visualization of multidimensional data like a tensor field is a

challenging task. Several methods have appeared in recent years, which are summa-

rized in Table 1. Due to their relevance to DT-MRI user interfaces, glyphs and tract

visualization are explained in the following subsections.

Table 1 Overview of tensor visualization techniques.

Glyphs Ellipsoids, cuboids, cylinders, superquadrics [30], com-

posite shapes [46].

Tract visualization Hyperstreamlines[11], streamtubes (coupled with stream-

surfaces) [49].

Volume visualization Volume deformation [50], topological lines [52], hyper-

LIC [51], reaction-diffusion textures [31].

Rendering techniques Barycentric mapping [31], hueballs [31], lit-tensors [31].

3.1 Glyphs

A popular way of visualizing tensor fields is to represent the tensor at each point of

the field with a glyph [46], which is a geometric figure whose form depends on the

characteristics of the tensor it represents. A glyph is composed of a single or mul-

tiple geometric primitives, whose shape may codify eigenvectors and eigenvalues,

anisotropy coefficients, or other measures like curvature, shear, rotation, etc., of the

tensor field.

The most popular shape for a glyph is an ellipsoid, by which tensor eigenvectors

and their corresponding eigenvalues are represented. The ellipsoid’s major axis is

orientated along the major eigenvector e1, and the medium and minor axes in the

direction of the medium and minor eigenvectors e2 and e3, respectively. We must

point out that this representation is valid only for positive–definite tensors, in order

to make sure that the eigenvalues are real and nonnegative and the eigenvectors are

orthonormal. The size of the ellipsoid axes will be proportional to the corresponding

eigenvalues.

Depending on the relative values of the eigenvalues, the ellipsoid will take one

form or another:

• If λ1 is visibly greater than the other eigenvalues, the ellipsoid shape will be

elongated in the major eigenvector direction. This happens where diffusion is

very linear as for example in some brain regions where neural fiber tracks, also

called tracts, form coherent bundles along the same direction.

• If λ1 � λ2, the ellipsoid shape resembles a disk, and the smaller λ3, the flatter the

disk will be. This type of tensors are often seen in regions where a fiber bundle
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bifurcates or where two bundles cross each other, and bring uncertainty in the

computation of the direction of tracts, as seen in Section 3.2.

• If λ1 � λ2 � λ3, the resulting ellipsoid looks like a sphere. When this happens,

there is no preferred diffusion direction.

We must take into account that the ellipsoid size may suffer great variations from

a region to another, which is not good for visualization. Laidlaw et al. [37] propose

a normalization for ellipsoids, by which the major axis is given an unitary value,

and the size of the other axes is computed accordingly, in order to preserve the

proportion between them. Color can be employed to provide the information lost in

the normalization.

On the other hand, ellipsoids are not the only shapes one can use for representing

tensor eigenvectors and eigenvalues. In [30], cuboids and cylinders were used to

represent eigenvectors and eigenvalues instead of ellipsoids. In Fig. 1, glyphs using

these three geometrical figures can be observed: ellipsoids in Fig. 1(a), cylinders in

Fig. 1(b) and cuboids in Fig. 1(c).

(a) Ellipsoids (b) Cylinders (c) Cuboids (d) Superquadrics

Fig. 1 Comparison between glyphs using different geometric figures.

Composite shapes [46] were developed to provide a better appreciation of the

exact value of the anisotropy shape coefficients. Instead of ellipses or other indi-

vidual shapes, a composite of a headless arrow, a circle and a sphere, each of them

proportional to the coefficients cl , cp and cs respectively is used. Unfortunately this

glyph also presents ambiguity, so they must be given a coloring depending on the

tensor anisotropy to solve this problem. The hue is interpolated between the blue

linear case, the yellow planar case and the red spherical case.

In order to overcome the problems presented by the glyphs seen above, Kindl-

mann proposed a new kind of glyphs called superquadric glyphs [30]. The basic

idea is to use superquadrics to represent a tensor, depending on the anisotropy coef-

ficients cl and cp, and using the eigenvectors to orientate the glyph.

The shape of a superquadric is controlled by two parameters. Spheres, cubes and

cylinders can be expressed as particular cases of a superquadric. The expression of

the geometric primitive of a superquadric glyph varies depending on the anisotropy:

• Case cl ≥ cp: q(x,y,z)≡
(
y2/αl + z2/αl

)αl/βl + x2/βl −1 = 0

• Case cl < cp: q(x,y,z)≡
(
x2/αp + y2/αp

)αp/βp + z2/βp −1 = 0
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where αl = (1− cp)γ , βl = (1− cl)γ , αp = (1− cl)γ and βp = (1− cp)γ , and γ
controls the edge sharpness. The resulting superquadric tensor glyphs for γ = 3 can

be seen in Fig. 1(d). We must point out that their axes are scaled by the tensor

eigenvalues.

3.2 Tract Visualization

One of the main applications of DT-MRI is the computation of tractographies of

the brain white matter, where the structure of the tracts1 appearing in the image is

obtained from the diffusivity measure at each voxel. Usually a large number of seed

points are selected as starting points for tract computation, and afterwards, a culling

algorithm is applied to select the most representative ones [49]. Finding the tracts

passing by a voxel is not a trivial problem, mainly due to the following reasons:

• DT-MRI images have a poor resolution compared to the size of nerve fibers,

whose section can be measured in microns, whereas the volume of a DT-MRI

voxel is of the order of mm3. This is called the partial volume problem. Fortu-

nately, it can be partially solved, because nerve fibers often form large bundles

going in the same direction.

• Tractographies are often computed following the principal direction of diffusion

(PDD), given by e1. When the tensor anisotropy is clearly linear, this method

yields adequate results. Nevertheless, where planar or spherical anisotropy pre-

vails, there is ambiguity about the direction of the tract at that point [46].

Tractography visualization is an important task which overlaps with some tensor

field visualization techniques, such as hyperstreamlines [11] or streamtubes [49].

Streamline visualization methods can also be employed, but only the information

about the tensor major eigenvector is displayed in that case.

3.2.1 Hyperstreamlines

Following the philosophy of streamlines, Delmarcelle and Hesselink [11] propose

hyperstreamlines as a model for the visualization of positive-definite tensor fields.

This concept was inspired by streamlines as a representation technique for vector

fields, where each vector in the field is tangent to a streamline.

The shape of hyperstreamlines is similar to a tube with an elliptical cross-section.

The tube direction at each point is computed from the vector field formed by the ma-

jor eigenvector of each tensor in the field, similarly to streamlines. In addition, the

axes of the cross-section ellipse are proportional to the medium and minor eigenval-

ues, and oriented in the directions of their corresponding eigenvectors.

1 Tract: a bundle of myelinated nerve fibers following a path through the brain.
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Fig. 2 Visualization of DT-MRI using hyperstreamlines, whose color is proportional to the tensor
linear anisotropy at each voxel.

Therefore, this method can be used to represent all tensor information at each

point of a hyperstreamline, and a sense of continuity is achieved as well. It is not

possible, however, to represent this information in the whole volume, because hyper-

streamlines are still discrete elements and may suffer from cluttering, as it happens

with glyphs.

An example of hyperstreamlines can be seen in Fig. 2. In this picture, hyper-

streamlines are given a color at each point depending on their linear anisotropy. Tract

color usually depends on anisotropy measures, but other options can be selected.

Brun et al. [6] use Laplacian eigenmaps to assign color to tracts computed from a

DT-MRI volume, so that similar fibers are similarly colored. Ehricke et al. [12] em-

ploy the probability that a point is crossed by a tract and the conditional probability

that a sample belongs to the tract.

3.2.2 Streamtubes and streamsurfaces

Streamtubes, proposed by Zhang et al. [49], are a tract visualization technique which

is very similar to hyperstreamlines, but tries to overcome some of its limitations.

Firstly, a hyperstreamline cross-section can get quite large, which makes smaller the

number of them that can be visualized in a volume. This can become problematic in

the analysis of biological tissue. Secondly, in regions where the anisotropy is mainly

planar, hyperstreamlines are not very effective [49].

For all these reasons, Zhang et al. propose to split the volume in regions of linear

anisotropy and planar anisotropy, so that the former are visualized by streamtubes,

and the latter by streamsurfaces. Herein lies the problem of setting adequate thresh-

olds for the regions. In [49], these thresholds are manually defined.

Streamtubes are in essence very similar to hyperstreamlines. Their main differ-

ence lies in how the cross-section is computed. Although its shape is an ellipse in

both techniques, the major axis, corresponding to the medium eigenvector and ori-

ented along this direction, is forced to be constant, and the length of the minor axis,

oriented along the minor eigenvector, will be computed so that the proportion be-

tween axes is maintained. This way, more elements may be represented than with
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hyperstreamlines, although the information in the whole volume still cannot be vi-

sualized in one representation. In order to avoid ambiguity between different tensors

with the same quotient λ2
λ3

, the streamtube is given a red hue proportional to the lin-

ear anisotropy coefficient cl . That means that the more linear the diffusion is, the

redder the streamtube will be.

Streamsurfaces are represented in regions where cp has a high value, which

means that the anisotropy is highly planar. At each point, they try to be an ap-

proximation to the surface defined by the major and medium eigenvectors, which

will lie on the tangent plane to the streamsurface at that point. As it happened with

streamtubes, a streamsurface is given a hue proportional to the planar anisotropy

coefficient cp, but in this case the chosen color is green.

4 Command Line Interfaces

Tensor visualization techniques improve the understanding of the information con-

tained in DT-MRI volumes. However, people working with these images need a

user interface to access the aforementioned methods, as well as other image pro-

cessing tasks. Two command-line interfaces for DT-MRI are described below: the

Teem software [23] and the interface Camino [9]. This type of interfaces is based

on typing commands that will be executed by the system.

4.1 Teem

Teem is a collection of libraries created by Gordon Kindlmann, whose purpose is

representing, processing and inspecting scientific raster data [23]. On top of these

libraries two user interfaces have been built. The first one is a command line inter-

face, and the second one is a simple graphical user interface called Deft. However,

both of them can work together.

The NRRD (Nearly Raster Raw Data) file format [21], which allows n-dimen-

sional data to be stored, is a fundamental component of these interfaces. The

command-line tool designed to manage these files is unu. Some of the capabilities of

this command are: creation, conversion, saving in different file formats, type conver-

sion, mapping, certain pixelwise mathematical operations, creation of histograms,

and others like cropping, resampling, merging, etc.

On the other hand, tend is employed for diffusion tensor processing and anal-

ysis. Some of the tasks that can be performed with it are: estimating tensors from

DWI images, generating synthetic tensor fields, computing eigenvectors and eigen-

values, generating postscript renderings of glyphs, computing anisotropy indices, or

modifying some of the tensor characteristics.

Teem commands follow the syntax: command action [options]. For ex-

ample, typing unu head myfile.nrrd, the header of the file myfile.nrrd is
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Fig. 3 Synthetic tensor data created with tend and visualized using Deft.

printed on the standard output. If no options are given, an explanation about the

command is shown.

The goal of the interface Deft is to provide interactive tensor visualization.

It consists of a render window and other windows for controlling the visualiza-

tion, which are called Deft::Viewer, Deft::Hyperstreamline, Deft::TensorGlyph and

Deft::TriPlane. In Fig. 3, a synthetic tensor volume is shown, using superquadric

glyphs. The commands employed for the creation of this figure, using a linux envi-

ronment, are:

tend helix -s 29 30 31 -ip 0.1 0.3 0.6 -mp -0.8 0.1 0.4 \
-r 50 | Deft_dti -i - -a fa -gsc 1200 -atr 0.65 \
-fr 940.805 307.575 1025.14 -at 0 0 0 \
-up -0.521774 -0.557152 0.646014 -rh -ar \
-dn -164.709 -df 164.709 -fv 5.41056 -is 640 480

Teem uses the GNU Lesser General Public License [18], so that it can be freely

distributed and modified, and can also be used with non-free libraries. In fact, these

libraries have been used in the 3D Slicer framework, in ITK for reading data in

NRRD files, etc.

4.2 Camino

Camino [9] is another free open-source command-line tool for DT-MRI. It is writ-

ten in Java, so theoretically it could run on any platform, but it is designed for a

Unix-style interface, with shell wrappers for each program and documentation as

man pages. In order to process data, a pipeline must be built by connecting sev-

eral commands, so that the output of one of them is the input of the following one.

A Camino program reads raw data from a scanner or from a data synthesizer. A

scheme file must be provided with the data acquisition parameters. As of version

1.5, the output of the pipeline is in the form of raw data, which means that other
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applications must be employed if the user wants to visualize the result. The only

exception is the vcthreshselect, which loads the F-test data from the output

of the command voxelclassify and previews the voxel classification.

5 Graphical User Interfaces for Tensor Processing

Nowadays the most frequently seen paradigm for user interfaces is the graphical

user interface (GUI). In them, the user is offered symbols and visual metaphors to

represent the elements of the interface. A pointer is employed to interact with these

elements, often by direct manipulation (clicking, dragging, etc). The user controls

the pointer using a mouse, a touchpad, etc. A 2D desktop screen and a keyboard are

also present in these interfaces.

Most of the applications that work with DT-MRI images have a graphical user

interface (GUI). We will review 3D Slicer, MedINRIA, BioTensor and BioImage.

In order to test the interfaces, either synthetic data or a real DT-MRI volume

were used. The volume was acquired using a General Electrics scanner of 1.5 T,

with b = 1000s ·mm−2, 15 gradient directions, 8 acquisitions per slice, and voxel

size of 1.015×1.015×3mm3.

5.1 3D Slicer

3D Slicer [13, 25, 26] was developed by the MIT AI Laboratory [17] and Brigham

and Women’s Hospital at Harvard [16], and its current development is mainly sup-

ported by the National Alliance for Medical Image Computing (NA-MIC) [20].

3D Slicer is a software environment oriented to image-guided medicine, in particu-

lar for pre-operative planning, surgical guidance, and diagnostic visualization [25].

It allows not only volume data visualization of different kinds of medical image

modalities, but also image processing techniques like filtering, segmentation and

registration. The main goals of this software are to provide a common development

platform for researchers, a familiar user interface for image processing and visual-

ization tasks, and the transfer of algorithms and other techniques from developers

to users [40]. 3D Slicer does not provide any guarantee of clinical accuracy or reli-

ability for research.

This package is open source, and is portable to several operating systems. It is

composed of modules, and its architecture is designed so that new modules can

be added without having to rebuild the whole application. 3D Slicer version 2 uses

Tcl/Tk [45] for the user interface, VTK [41] for visualization and ITK [28] for image

processing. From now on, we refer to 3D Slicer version 2.6.

One of the available modules for 3D Slicer is a module for diffusion tensor image

visualization called DTMRI. It allows the user to load a DT-MRI volume and pro-
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(a) (b)

Fig. 4 (a) Main window and (b) viewer window of 3D Slicer.

cess it to get some image characteristics, like eigenvalues or anisotropy coefficients,

and also to perform a number of tensor processing and visualization methods.

The application interface is divided in three windows: a main window, a viewer

window, and a command console. The first two can be observed in Figs. 4(a)

and 4(b), respectively. The preferred input device is a conventional mouse, although

sometimes the keyboard is needed. It is nonetheless possible to use it in conjunction

with other devices.

Looking at Fig. 4(a), we can see how the main window is divided. It has a menu

bar at the top of the window, some buttons, each for a Slicer 3D module, a frontal

panel divided into tabs, and at the bottom there is a small window with controls

for the viewer window, although it is not always active. A study of website de-

sign [7] for placement and presentation of navigation menus showed that top and
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left placements for navigation elements, and the tabbed navigation style are pre-

ferred by users. Therefore, the layout of 3D Slicer follows these directives.

The viewer window showed in Fig. 4(b) is divided into a window for 3D volume

visualization and three small windows for axial, sagittal or coronal slices. Nonethe-

less this layout can be changed in the main window. It can be seen that there are some

user controls in the viewer window that help the navigation throughout the volume,

changing the point where the slices intersect, allowing to show or hide slices in the

visualization, or choosing what volume to represent. A helpful feature for users is

that a tooltip box is showed when the pointer is over an element a certain amount

of time, as can be seen in Fig. 4(b). The user can zoom the volume in and out using

the right button of the mouse, rotate it with the left button, and also pan it using the

middle one.

(a) (b) (c)

Fig. 5 Main window panels of the DTMRI module for: (a) Choosing which tensor characteristic
to compute. (b) Computing a tractography with a seed ROI. (c) Choosing the glyph visualization
properties.

3D Slicer provides three visualization methods for DT-MRI volumes. Firstly,

volumes of anisotropy indices or tensor invariants can be represented by orthogonal

2D slices. In Fig. 4(b), a volume FA is shown. Secondly, a tract visualization method

based on tubes is available. Thirdly, glyphs can be employed either for slices or

in the whole volume. In Fig. 6(a), a region of a coronal slice is visualized using
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Fig. 6 (a) Visualization of a coronal slice using superquadric glyphs, colored by the FA. (b) Re-
sulting tracts colored by the FA value at each point.

superquadric glyphs. However, it can be noted that their renderization is not too

good. In Fig. 5(a), the diferent options of the DTMRI module for computation of

some of the tensor characteristics are shown. In Fig. 5(b) the tractography panel

can be seen. In this case, an ROI has been chosen as the seeding strategy for the

tractography. Finally, the panel for using glyphs in the visualization is shown in

Fig. 5(c).

If the user wants to select a region of interest (ROI), the Editor module should

be employed. It has a direct access from the main window, and offers methods to

accomplish this, like freehand drawing or thresholding. Slicer offers ways to make

calculations on ROIs using another module called VolumeMath.

Finally we try the tractography visualization method offered by the DTMRI mod-

ule, for which we will use the Tract panel. We make a tractography employing user-

selected seed points, which are taken from the position of the mouse cursor while

the key “S” is pressed. Once a seed point is selected, the corresponding tract is

computed. In Fig. 6(b), the visualization of the results obtained this way can be

observed.

At the present time, the code of 3D Slicer version 2 is being ported to a newer

version that is called Slicer3. It has almost completely changed the user interface,

employing a user-centered design and changing the GUI programming language

from Tcl/Tk to C++ by using the KWWidgets library [34]. The DTMRI module for

Slicer3 is currently being developed.

5.2 MedINRIA

MedINRIA [19] is a software environment originally developed for DT-MRI pro-

cessing and visualization, but now including modules for other purposes. It was

initiated by Pierre Fillard and Nicolas Toussaint, members of the INRIA research

team Asclepios at Sophia Antipolis. Like 3D Slicer, it uses VTK [41] for visualiza-

tion and ITK [28] for image processing, but the wxwidgets library [24] is employed
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Fig. 7 MedINRIA DTI-Track module interface.

for the user interface. It can be freely used, but not redistributed, and its source code

is not available. It can be downloaded from [19]. As of version 1.7.0, MedINRIA

consists of several modules, two of which are specific for diffusion tensor images:

the DTI-Track and the Tensor Viewer.

The DTI-Track module is mainly oriented to the processing of DT-MRI volumes,

as well as fiber tracking. It employs Log-Euclidean metrics [2] in its computations,

which is protected by a french patent. This ensures that the computed tensors remain

in the space of positive semidefinite tensors. The aim of this module is to provide

clinicians with the necessary tools for DTI analysis and fiber tracking [19].

In Fig. 7, the DTI-Track module is shown. The interface has a menubar and sev-

eral toolbars with icons in order to provide an easier access to the menu functions. It

also has a tabbed control panel, where each panel is divided into groups of settings,

which can be hidden from view. This is interesting, because thanks to it the user can

concentrate on the elements of the interface which are relevant to a certain task, and

omit the others. The volume and 2D slices are visualized in a dedicated area, and

there is a log window, that can also be hidden from view.

In order to employ this module, a DTI Study must be created from a set of DWI

images and their respective gradients. Several file formats can be used, although

DICOM series must be preprocessed using the ImageViewer module, which also

belongs to MedINRIA. Once a study is created, image processing techniques can

be applied. As with 3D Slicer, several scalar anisotropy measures can be computed.

However, tracts are computed in the whole volume, and bundles can be selected

afterwards, using a cropping box or one or more regions of interest (ROI). MedIN-

RIA can compute statistical information about fiber bundles, namely histograms of

anisotropy indices and other tensor invariants, their maximum and minimum val-
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Fig. 8 MedINRIA Tensor Viewer module interface.

ues, mean and standard deviation, and others like the bundle volume, the number of

fibers and some information about their length. Tensors can also be computed and

saved so that they can be used with the TensorViewer module.

As in 3D Slicer, the volumes are visualized using 2D orthogonal slices, but vol-

ume rendering can also be employed. Tracts can be visualized as streamlines, 3D

ribbons or 3D streamtubes.

The TensorViewer module represents the tensor volume using glyphs. They can

be lines, arrows, disks, cylinders, cubes, ellipsoids and superquadrics. They are

placed in orthogonal slices which can be shown or hidden from view, and the user

can set a sampling rate on the voxels that appear in the representation. In Fig. 8, the

Tensor Viewer interface is shown when a tensor volume is visualized using cuboid

glyphs.

5.3 BioTensor

BioTensor is a medical application that processes and visualizes tensor fields. It can

estimate tensors from an adequate set of DWI images, which are previously regis-

tered to prevent global distortions caused by eddy currents [15]. The visualization

capabilities are the representation of individual tensor samples, the determination of

anisotropy regions using isosurfaces of different anisotropy metrics, and the visu-

alization of white matter tracts, obtained by following the principal eigenvector or

using the tensorline algorithm [44].

In Fig. 9, this user interface is shown. It is divided in three parts (from left to

right): the tensor processing panel, the rendering window, and a panel for visualiza-
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Fig. 9 BioTensor interface.

tion options. These panels can be detached from the others. We can observe in Fig. 9

that tabbed windows are widely used in this interface.

5.4 DtiStudio

Another interface for DT-MRI is DtiStudio [29]. It is implemented using Visual

C++ and OpenGL, and it must be run on a Windows operating system. It is able

to read data proceeding from different scanners (Philips, General Electric, Siemens

and Toshiba), and perform tasks like estimating the tensor volume from the diffusion

weighted images, computing anisotropy indices and fiber tracking. In Fig. 10, this

interface can be observed.

5.5 Other Graphical Tools

Other interfaces for DT-MRI are:

• Applications provided by scanner manufacturers.

• The Diffusion Tool of the BioImage Suite [39].

• A DT-MRI add-on for Analyze 7.0 [14].

• A diffusion plugin written for the Neurolens application [22].

In addition, Wünsche [47] developed a toolkit for visualizing and exploring ten-

sor fields.
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Fig. 10 DtiStudio interface.

6 Multimodal Interfaces for Tensor Processing

In later years, human-computer interaction (HCI) professionals have tried to make

interfaces that emulate human-human interaction. This has motivated some research

on multimodal interaction, where other input and output devices are used beyond

a keyboard, a mouse and a conventional screen. Nowadays some interfaces that

include modalities beyond those of the GUI paradigm are starting to be accesible to

the average user. Some examples are GPS navigators that include speech recognition

and the iPhone, which allows interaction by touching the screen.

Not every user interface for DT-MRI images belongs to the graphic user interface

paradigm. There are reports of using a virtual environment for this purpose in [48,

49]. We explain below the interaction devices used in this interface.

6.1 Hardware Devices

Hardware devices are meant to facilitate and improve the possibilities for system

interaction and/or visualization. These devices should improve the perception or

communication with the system. Other desirable qualities would be their intuitive

use, functionality, ergonomy, etc.

Input devices are all the features or systems whose goal is to capture or to trans-

mit the user’s stimuli to the system. The devices that capture user motion can be

classified as discrete, continuous or hybrid. Keyboards and mice belong to the dis-

crete and hybrid categories, respectively. There are devices that capture other types

of information, like auditory (sounds, speech) or visual input.

Output devices transfer information from the system to the user. Most of them

use the visual or the auditory channel, but there are also devices that employ haptic
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and tactile feedback to communicate with the user. Some devices of interest for the

rest of the section are described below.

• Trackers

One of the most important aspects of 3D interaction in virtual worlds is provid-

ing a correspondence between the physical and virtual environments. As a result,

having accurate tracking is extremely important to make a virtual environment

usable. Currently there are a number of different tracking technologies in the

marketplace. The different types of trackers are: magnetic, mechanical, acoustic,

inertial, vision/camera and hybrids. These devices often describe an object loca-

tion using three parameters for its spatial coordinates and another three for its

orientation.

• Wand

A wand is an input device for gesture recognition [8]. It includes a tracking sys-

tems and a number of buttons. Its appearance is similar to that of a remote con-

troller.

• The CAVE

The CAVE is a recursive acronym for Cave Audio-Visual Experience Automatic

Virtual Environment. It is composed of three to six faces of a cube surrounding

the viewer.These faces are translucent display screens, where stereo images are

projected onto [10]. A head-tracking device must be included, in order to adapt

the projections to the user’s perspective.

Depending on how many faces there are, it can be classified as either fully im-

mersive (six faces) or partially immersive (three to six faces). This device has

also the advantage that more than one person can use it at the same time. How-

ever, the perspective is only modified according to the user that is wearing the

tracker. It also takes advantage of peripheral vision. However, its dimensions are

very large, and it is very expensive.

• Partially Immersive Displays

While fully immersive displays support the feeling of being a part of the virtual

environment, in partially immersive displays the user has the sensation of looking

at it from the outside [35]. Some devices that belong to this group are panoramic

displays, stereo monitors, etc.

• Haptic Devices

Haptic devices provide a force feedback to the user movements that simulate the

sense of touch.

6.2 Immersive Interface for DT-MRI

There are reports of using virtual immersive environments with tensor field repre-

sentations. In [48, 49] the use of the CAVE for tract visualization is reported. Thanks

to the CAVE, more than one person can use the virtual environment concurrently.

A wand was employed as input device to interact with the virtual world. A ray

was simulated as if it came out from the wand, with the same orientation and direc-
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tion as the latter. This ray stopped when it hit an object [48]. The user could also

interact with the system by leaning toward the represented DT-MRI volume, which

made the visualization grow larger [48]. This method was chosen to emulate the

natural human behavior when a closer look from an object is wanted.

There is a compromise between visual fidelity and interactivity. When the level

of detail is high, the rate of frames per second that can be displayed decreases, di-

minishing the interactive capacity of the system. This is solved by using different

degrees of resolution for different actors in the visualization, prioritizing the objects

of more interest to the user [48]. The neural structures (represented in this case study

by streamtubes and streamsurfaces) are given high priority, whereas the resolution

of anatomical landmarks varies depending on the goal pursued by the visualiza-

tion. For example, if the visualization goal is brain tumor surgery, the blood vessels

surrounding the tumor are given higher priority [48].

6.3 Partially Immersive Interface for DT-MRI

Another virtual reality system is used in [12] for the real-time visualization of fiber

tracts in a collaborative environment. For this purpose, a passive stereo display

with backprojection and two high resolution beamers were used as output devices,

whereas the interactivity was given by an optical tracking system that included a

flystick as input device.

6.4 DTInteract

Another multimodal interface is reported in [1], where the addition of a haptic device

for interacting with a DT-MRI user interface was studied. The available visualization

techniques are 2D orthogonal slices of anisotropy indices or the baseline volume,

hyperstreamlines for tractographies, and the major eigenvector at each point of the

volume could be visualized using arrow-shaped glyphs. A haptic device was used

for controlling the position of the slices, and determining the placement and shape of

a spherical ROI. However, the haptic device is not connected to the main interface.

7 Discussion

Tensor theory is well established, and tensors are widely used in physics and engi-

neering, so there is little work nowadays done in that respect. However, data visu-

alization and intuitive user interfaces for second-order tensor fields are a relatively

new research subject, which is still developing, mainly due to the large amount of

information contained in tensors.
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Tensor visualization has developed greatly in recent years, and many techniques

have arisen, some of which are reviewed in this document. Most of them take as in-

put a second-rank positive definite tensor, like the diffusion tensor, which has been

employed in this document. Other tensors do not have real non-negative eigenval-

ues and can represent a rotation, which complicates both its representation and its

interface.

Glyphs allow the visualization of all the information associated to a tensor. As

most of them may suffer from ambiguity, color is often used to solve this problem,

giving them a hue computed as the interpolation of the tensor anisotropy coefficients

cl , cp and cs. Glyphs, however, have also drawbacks. In the first place, a glyph

corresponds to only one tensor, so the continuity of the tensor field is lost in the

visualization. Another essential point is the number and position of the represented

glyphs, in order to avoid a sensation of cluttering, which might happen if too many

glyphs are represented. Furthermore, overlapping of glyphs must be avoided.

Hyperstreamlines and streamtubes are able to provide continuity to the tensor

field, at least in the direction of the principal eigenvector, and they are especially

well suited for the representation of tractographies. They are not well suited when

the region anisotropy is not linear, but streamtubes are a solution for regions of

linear anisotropy, leaving the representation of planar anisotropy regions to stream-

surfaces. These techniques can also suffer from cluttering, and therefore, selection

methods should be employed in order to make the visualization clearer to the user.

These visualization techniques are an important part of current user interfaces

for tensor fields. We have described user interfaces for DT-MRI images. Most of

them are graphical user interfaces (3DSlicer, MedINRIA, BioTensor, etc.), but, as

we have seen, an interface for DT-MRI visualization has been implemented using

an immersive virtual environment. Also, the Teem libraries can be employed as a

command line interface, or as a graphical interface using Deft. One of the character-

istics of an interface is its usability. We have found documented user feedback for

3D Slicer and the immersive virtual environment seen in Section 6.2. Nevertheless,

it could be interesting to conduct usability tests on the reviewed interfaces, in order

to have quantitative data for a comparison.

A survey about 3D Slicer was conducted from March 2002 to November 2004,

whose results can be accessed at [13]. Looking at the answers given by the users can

be helpful to determine how effective the user interface of this application is. Nev-

ertheless, we must point out that there are factors in interface design that users only

notice when they are absent [7], e.g., if a function in the interface is not working

properly, it is immediately brought into attention, but otherwise it passes unnoticed.

Therefore, this kind of feature is unlikely to appear on the survey, unless they are

unsatisfactory to the participants. One of the most frequent comments is that 3D

Slicer, at least for versions lower than 2.0, needed a better graphic user interface

(GUI), with a cleaner appearance. Also, the addition of pictures and tooltips to the

buttons was desired, which as we have seen is solved in version 2.6. A user found the

menus too long. Also, pop-up windows were disliked for entering data and should

only be used for errors and warnings. In the current version these windows are also

employed for showing measurement results. It was noted, however that sometimes
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the GUI was unresponsive. Furthermore, a wide variety of bugs were reported. The

user interface to the data visualization (viewer window) was one of the best liked

features, as it was displaying the pixel map and the model on a single screen. In-

teraction between the three 2D dataset views would be appreciated, though. It was

also judged useful the ability to overlay labelmaps onto gray scales and to rotate 3D

volumes. A user wished for a memo function that allowed to put notes on 2D slices.

Interactive volume rendering was a desired new feature. One of the most often men-

tioned themes was the drawing features. In general, many users wanted more and

better tools for this purpose, like for example the ability to draw on the surface

anatomy. However, the fact that editing needed multiple layers was disliked. On the

other hand, people complained about the measurement tools of Slicer. In particular,

measuring distances was difficult and time consuming. A certain comment attracted

our attention. Someone admitted not using most of the available features because

he was relatively new to Slicer 3D. However, he/she had been using 3D Slicer for

almost a year. In fact, most of the participants said that they only worked with a few

modules. This shows that 3D Slicer has a large range of functionalities, but many

of them are not used. Users also wished for a full tutorial and a user-friendly man-

ual. The newer version of 3D Slicer, Slicer3, has taken into account many of these

comments, adopting a user-centered design for its new interface.

As for user feedback on the immersive virtual environment for DT-MRI visual-

ization, it was reported that the physicians and medical students that worked with

the system found it easy to use, that the learning time was just a few minutes, and

that the system provided a better understanding of the 3D structures than a desk-

top 2D representation [49]. These systems are, however, very expensive and can be

quite seldom accessed.

This is why it could be interesting to develop new interfaces with more afford-

able interaction devices, briefly reviewed in Section 6.1. These devices could open

up possibilities in the addition of new modalities to these interfaces, like gesture

recognition (used in the CAVE environment [49]) and others. Using devices with

more degrees of freedom could also be a motivating factor for the research into new

interaction techniques with tensor fields, taking into account the multidimensional-

ity of tensors.

8 Conclusions

Thanks to the computational power provided by current computers, tensor field ma-

nipulation has become a reality. The equations and the theory were developed a

long time ago, but for the time being, widespread use has not been possible. A ten-

sor provides a great deal of information, but for the same reason, making good user

interfaces to interact with these fields is a difficult task, which is being strongly

researched and developed.

One of the most active fields related to this purpose is tensor visualization. We

have seen a large number of methods for representing tensor fields. All of them have
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advantages and drawbacks, so each one is more adequate to certain tasks than the

others. For example, the natural way for visualizing tractographies are hyperstream-

lines and streamtubes. One of the issues in glyph visualization and tractographies is

to choose the number and position of the elements to be represented. If this is not

done, we might have cluttered visualizations, which would be confusing to the user.

However, if there is a small number of them, they might not be enough to convey

a sufficiently detailed representation of the tensor field, which could diminish the

comprehension of the tensor field.

Hardware devices are an important part of any user interface, which conditions

the interaction techniques that can be employed on it. Although most of the reviewed

user interfaces employ standard devices like a conventional display, a mouse and a

keyboard, the use of a virtual environment has been reported. The user feedback

points out that this system was easy to learn, and that 3D representations of vol-

ume tensor data helps the understanding of these images. This supports the idea

that multimodal interfaces using emerging hardware, like stereo displays or input

devices with a larger number of degrees of freedom, can help in the design of more

intuitive and usable interfaces. However, their cost is frequently high and many of

them are still under development.

There are not too many implemented user interfaces for tensor visualization, and

although the majority are graphical interfaces, some command-line and multimodal

interfaces have also been reported. One of the GUIs is 3D Slicer version 2, which

has a module for DT-MRI visualization. Although users are satisfied overall with

it, they have reported that a better graphic user interface should be provided, and

that there is a large part of the available functions that they do not use. They would

also like to interact more with the data. This has been taken into account in the

development of Slicer3. Other medical image applications have modules, plug-ins or

add-ons that deal with tensor images, especially DT-MRI volumes, like MedINRIA,

BioTensor, Teem/Deft, etc. Tensor user interfaces are being strongly researched and

developed. Some multimodal interfaces for DT-MRI have been developed, which

received positive feedback from their users.
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S., Marras, I., Muñoz Moreno, E., Tekeli, E., Acar, B., Bammer, R., Martin-Fernández, M.,
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42. Sundgren, P.C., Dong, Q., Gómez-Hassan, D., Mukherji, S.K., Maly, P., Welsh, R.: Diffusion
tensor imaging of the brain: review of clinical applications. Neuroradiol. 46, 339–350 (2004)

43. Talos, I.F., O’Donell, L., Westin, C.F., Warfield, S.K., Wells III, W., Yoo: Diffusion Tensor and
Functional MRI Fusion with Anatomical MRI for Image Guided Neurosurgery. In: Proc. 6th
Int. Conf. Med. Image Comput. Comput.-Assist. Interv. (MICCAI 2003). Montréal, Canada
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T-flash: Tensor Visualization in Medical Studio

J. Wiklund, V. Nicolas, P. Rondao, M. Andersson and H. Knutsson

Abstract Tensor valued data are frequently used in medical imaging. For a 3-

dimensional second order tensor such data imply at least six degrees of freedom

for each voxel. The operators ability to perceive this information is of outmost im-

portance and in many cases a limiting factor for the interpretation of the data. In

this paper we propose a decomposition of such tensor fields using the Tflash ten-

sor glyphs that intuitively conveys important tensor features to a human observer. A

matlab implementation for visualization of single tensors are described in detail and

a VTK/ITK implementation for visualization of tensor fields have been developed

as a Medical Studio component.

1 Introduction

An efficient system development process is crucially dependent on the designers

ability to interpret system behavior. In the present case the system output is a tensor

field and the channel chosen to convey the information is the designers visual sys-

tem. It is equally important that the information is presented in a way that is easily

understood by the end user. In a medical setting it is paramount that the visualiza-
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Université catholique de Louvain, Belgium. e-mail: vincent.nicolas@uclouvain.be

Patrice Rondao Alface
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tion techniques used are able to reduce the complicated tensor field information to

relevant parameters that are useful in the clinical environment.

Tensor valued image data are frequently used to represent targeted structures in

modern medical imaging analysis, e.g. diffusion tensors, strain tensors and local
structure tensors. For second order tensors, the by far most common type today, the

information stored in each voxel is a 3×3 tensor for 3-dimensional data. In the sim-

ple case of symmetric tensors this implies 6 degrees of freedom (inner dimensions).

Visualizing such tensor fields is not a trivial task, showing volume slices of indi-

vidual tensor components will, for example, not make much sense to a human. The

tensor visualization problem is well recognized and a number of approaches have

been presented, e.g. [3].

This chapter presents new tensor visualization software, including a tensor glyph

generator, that we believe to be preferable in many situations.

2 The Tflash Tensor Glyph

Fig. 1 Tflash tensor glyph for λ1 = 1.00 λ2 = 0.50 λ3 = 0.25, see text for details.

The tensor visualization tool presented in this chapter is designed for visualiza-

tion of 2:nd order symmetric tensor fields. Normally the tensor fields are dense. The

standard way of decomposing a symmetric second order tensor is

TTT = λ1 eee1eeeT
1 +λ2 eee2eeeT

2 +λ3 eee3eeeT
3 λ1 ≥ λ2 ≥ λ3

where λi are the eigenvalues and eeei the corresponding eigenvectors.

The glyph is inspired by the traditional decomposition of the (symmetric second

order) local structure tensor into three parts, the linear part, TTT 1, the planar part, TTT 2,

and the isotropic part, TTT 3 where
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Fig. 2 An almost isotropic tensor, λ1 = 0.67 λ2 = 0.63 λ3 = 0.59

TTT = TTT 1 +TTT 2 +TTT 3

where

TTT 1 = (λ1−λ2)eee1eeeT
1

TTT 2 = (λ2−λ3)(eee1eeeT
1 + eee2eeeT

2 )
TTT 3 = λ3 (eee1eeeT

1 + eee2eeeT
2 + eee3eeeT

3 )

The tensor glyph is based on a parametric sphere surface rendering. The mag-

nitude of the isotropic part corresponds to the radius of the sphere. The sphere is

rendered in green, see fig. 1. The poles of the sphere are oriented in the direction of

eee1 and the planar part is visualized as a red spear through the poles where the length

of the spear is proportional to the magnitude of TTT 1. The red part of the glyph is gen-

erated by expanding the segments of the sphere located around the poles. Finally TTT 2

is visualized by an expansion of the two longitudes of the sphere that corresponds

to a plane orthogonal eee3. This area of the glyph is rendered in yellow, see fig. 1.

Since the Tflash glyph is based on ad distorted sphere the visualization becomes

very efficient and the distinct shape together with the coloring improves the ob-

servers ability to perceive the geometry of the glyph from all views. The difficulties

in perceiving the correct geometry using more fundamental glyphs as e.g. an ellip-

soid is one of the main reasons for the introduction of the Tflash glyph.

In fig. 2 another example of the Tflash tensor glyph is shown. The eigenvectors

are identical to the tensor in fig.1 but the distribution of the eigenvalues correspond

to a much more isotropic tensor with λ1 = 0.67 λ2 = 0.63 λ3 = 0.59. For the
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Fig. 3 Planar part, TTT 2, is dominant, λ1 = 0.90 λ2 = 0.85 λ3 = 0.35.

Fig. 4 A negative λ3 is visualized by a change in color of the isotropic part, λ1 = 1 λ2 = 0.6 λ3 =
−0.30.

tensor in fig. 3 the planar part, TTT 2, is dominant (λ1 = 0.95 λ2 = 0.90 λ3 = 0.85).

The yellow part is oriented in a direction orthogonal to eee3.

As the local structure tensor describes the directed energy distribution the Fourier

domain there exists no physical interpretation of an indefinite local tensor. Negative

eigenvalues (λ3 < 0) may, however, occur due to e.g. phase interference within the

filters in complex or low SNR signal neighborhoods. Although this is a relatively

rare event it indicates that the second order tensor model is not sufficient to represent
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such a neighborhood and it is important to convey this information to the observer

of the tensor glyph.

The shape of the Tflash tensor glyph is based on the absolute value of the eigen-

values but a negative sign of the eigenvalues cause a distinct change in the color

rendering. In fig. 4 λ1 = 1 λ2 = 0.6 λ3 =−0.30 which introduce a blue haze in the

isotropic part. It would be straight forward to let the sign of the eigenvalues affect

the shape of the glyph as well. This would on the other hand make the glyph more

difficult to interpret and could cause ambiguities in certain views.

3 Implementation as a MedicalStudio Component

Fig. 5 A single glyph represented in MedicalStudio.

MedicalStudio is a crossplatform framework for visualization, interaction and

processing of medical images. It is based on popular open source libraries such

as VTK for visualization, ITK for image processing, GTKmm for graphical user

interface and DCMTK for Dicom compatibility. Intended to be flexible, the imple-

mentation allows an easy integration of new components. Mono and multimodal

registration, atlas-based segmentation, 3D reconstruction, augmented visualization

are some examples of the already available components.

Tensor field visualization by Tflash glyphs has been implemented on the basis of

the vtkTensorGlyph class of VTK. Starting from a parameterized sphere primitive,

the spear and circle are created by displacing the poles and a meridian in the normal

direction according to the eigenvalues (see Fig. 5). The color code is implemented

by adding face color attributes. The final orientation of the glyph is then obtained

through a transform matrix defined by the tensor eigenvectors.

The integration into MedicalStudio is done by creating only one graphical com-

ponent. This component drives the new TflashGlyphFilter and exposes its parame-

ters to the user, which allows to easily test several configurations according to the
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loaded data. Visualization of the generated glyphs, navigation through the volume,

data management, interaction management, etc., a lot of components are already

implemented into MedicalStudio, letting the programmer to concentrate on its main

task.

4 Result

Fig. 6 Phantom regular grid illustrating some of the many possible configurations of a tensor
glyph.

Fig.6 represents the Tflash glyph on a phantom regular grid with various eigen-

values sets and slowly varying orientations. This figure shows the capability of the

Tflash to naturally highlight global principal directions as well as to illustrate the

various local properties of the tensor data. An illustration of the Tflash glyph on

DTI tensor data is represented on Fig. 7.

When compared to other glyphs, the Tflash necessitates a very small amount of

polygons to be rendered (i.e. as many as the well-known minimalist ellipsoids) while

describing as much information as the superquadrics glyph [2]. This point facilitates

a fast and fluid rendering of the tensor data. However, there is still no objective way

to compare tensor visualization tools. Actually, benchmarking tools are strongly

needed to test the performances of the state of the art tensor visualization techniques.

Their performances mainly relate to the psycho-visual efficiency as well as to the

rendering efficiency. This is an open issue that deserves a common effort of the

tensor processing community.
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Fig. 7 Tflash and DTI tensor visualization in MedicalStudio.

5 Conclusion

This paper has presented the Tflash glyph as an efficient tool to visualize tensor
data. This glyph enables to univocally represent tensor eigenvector directions as
well as the relative amplitudes of tensor eigenvalues in a very simple 3D model.
The generation of the glyph is very simple and fast since it only necessitates the
morphing of a very small number of points of a generic sphere. The color code is
also simple and clear. This chapter has also presented the MedicalStudio platform
as well as the easy integration of the Tflash as a component.
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Appendix: Matlab code for Tflash

function [ht, hxy, hxz, hyz] = Tflash(Lambda, EigVec, norm)

% [ht, hxy, hxz, hyz] = Tflash(Lambda, EigVec, norm)

%

% Tflash visualizes a symmetric 2nd order 3 dimensional tensor.

% The object consists of three parts corresponding to the

% eigenvalues. The absolute value of the eigenvalues in descending
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% order maps to a spear, a disc and a sphere. The orientation of the

% different parts are given by the corresponding eigenvectors. For

% positive eigenvalues the spear is red, the disc yellow and the sphere

% green. A negative eigenvalue will change the color to hazy purple.

%

% Lambda: Eigenvalues (3 component row vector [l1, l2, l3])

% EigVec: Corresponding eigenvectors (3x3 matrix [e1; e2; e3])

% norm: normalize with largest eigenvalue

% ht: Handle to tensor shape object

% hxy: Handle to xy-plane object

% hxz: Handle to xy-plane object

% hyz: Handle to xy-plane object

%

% Author: Johan Wiklund, jowi@isy.liu.se

% Department of Medical Engineering

% Link\"{o}ping University

if nargin ˜= 3

help Tflash

return

end

% Check sign of Lambda

Ls = Lambda >= 0;

Lambda = abs(Lambda);

% Normalize EigVec

EigVec = diag(sum(EigVec’.ˆ2+eps).ˆ-0.5)*EigVec;

% Sort in descending order

[Lambda,I]=sort(Lambda,’descend’);

EigVec=EigVec(:,I);

Ls = Ls(I);

N=24;

if norm

L0=1.0;

L1=Lambda(2)/Lambda(1);

L2=Lambda(3)/Lambda(1);

else

L0=Lambda(1);

L1=Lambda(2);

L2=Lambda(3);

end

if L2 == 0

L2 = eps;

end

gr = [0.95 0.85 1.0];

% Define colormap

if Ls(3)

csphere=[0 1 0];
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else

csphere=gr;

end

if Ls(2)

cdiscus=[1 1 0];

else

cdiscus=gr;

end

if Ls(1)

cspear=[1 0 0];

else

cspear=gr;

end

cgrid=[0 0 0];

colormap([csphere; cdiscus; cspear; cgrid]);

% Sphere controlled by L2

[X,Y,Z]= sphere(N);

X=L2*X;

Y=L2*Y;

Z=L2*Z;

% Discus controlled by L1

edge=L1/L2;

long0=1;

long1=N/2+1;

long2=N+1;

X(:,long0)= edge*X(:,long0);

X(:,long1)= edge*X(:,long1);

X(:,long2)= edge*X(:,long2);

Z(:,long0)= edge*Z(:,long0);

Z(:,long1)= edge*Z(:,long1);

Z(:,long2)= edge*Z(:,long2);

% Spear controlled by L0

Z(1,:)= -L0;

Z(N+1,:)= L0;

% Rotate shape

v1=EigVec(:,1)’;

v2=EigVec(:,2)’;

v3=EigVec(:,3)’;

T=[v2;v3;v1];

NC=[X(:) Y(:) Z(:)]*T;

X=reshape(NC(:,1), N+1, N+1);

Y=reshape(NC(:,2), N+1, N+1);

Z=reshape(NC(:,3), N+1, N+1);

% Set colors

C=zeros([N,N]);

C(:,1)=1;

C(:,N/2)=1;

C(:,N/2+1)=1;
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C(:,N)=1;

C(1,:)=2;

C(N,:)=2;

% Double longitudes at discontinuities

C1=N/2;

C2=N/2+1;

C3=N/2+2;

X=[X(:,1:2) X(:,2:C1) X(:,C1:C2) X(:,C2:C3) X(:,C3:N) X(:,N:N+1)];

Y=[Y(:,1:2) Y(:,2:C1) Y(:,C1:C2) Y(:,C2:C3) Y(:,C3:N) Y(:,N:N+1)];

Z=[Z(:,1:2) Z(:,2:C1) Z(:,C1:C2) Z(:,C2:C3) Z(:,C3:N) Z(:,N:N+1)];

C=[C(:,1:2) C(:,2:C1) C(:,C1:C2) C(:,C2:C3) C(:,C3:N) C(:,N)];

% Double latitudes at discontinuities

X=[X(1:2,:) ; X(2:N,:) ; X(N:N+1,:)];

Y=[Y(1:2,:) ; Y(2:N,:) ; Y(N:N+1,:)];

Z=[Z(1:2,:) ; Z(2:N,:) ; Z(N:N+1,:)];

C=[C(1,:) ; C(1:N,:) ; C(N,:)];

% Render surface

ht=surf(X,Y,Z,C);

caxis([0 3]);

set(ht, ’FaceLighting’, ’phong’)

%set(ht, ’EdgeColor’, ’none’);

set(ht, ’EdgeColor’, cgrid);

%set(ht, ’AmbientStrength’, 0.5);

%set(ht, ’DiffuseStrength’, 0.8);

%set(ht, ’SpecularStrength’, 1.0);

%set(ht, ’SpecularCol\orReflectance’, 0.7);

%set(ht, ’BackFaceLighting’, ’lit’);

%set(ht, ’FaceLighting’, ’phong’,...

% ’EdgeColor’, [0.0 0.0 0.0],...

% ’AmbientStrength’, 0.9,...

% ’DiffuseStrength’, 0.8,...

% ’SpecularStrength’, 1.0,...

% ’SpecularColorReflectance’, 0.7,...

% ’BackFaceLighting’, ’lit’);

axis([-1 1 -1 1 -1 1]);

axis vis3d;

axis off;

% Render eigenvectors

%v1=1.5*v1;

%v2=1.5*v2;\

%patch([0 v1(1)], [0 v1(2)], [0 v1(3)], [1.0 1.0 1.0]);

%patch([0 v2(1)], [0 v2(2)], [0 v2(3)], [1.0 1.0 1.0]);

% Render coordinate axis

as=0.95;

aw=0.01;

vert1=[-1.0 1.0 as as as as]’;

vert2=[ 0.0 0.0 aw aw -aw -aw]’;

vert3=[ 0.0 0.0 aw -aw -aw aw]’;

faces=[1 2 2; 2 3 4; 2 4 5; 2 5 6; 2 6 3];
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% X-axis

hx=patch(’Vertices’, [vert1 vert2 vert3], ’Faces’, faces, ’FaceColor’,

[0 0 0]); set(hx, ’LineWidth’, 1.0);

% Y-axis

hy=patch(’Vertices’, [vert2 vert1 vert3], ’Faces’, faces, ’FaceColor’,

[0 0 0]); set(hy, ’LineWidth’, 1.0);

% Z-axis

hz=patch(’Vertices’, [vert2 vert3 vert1], ’Faces’, faces, ’FaceColor’,

[0 0 0]); set(hz, ’LineWidth’, 1.0);

% Labels

text(1.1, 0, 0, ’\bf X’, ’HorizontalAlignment’, ’Center’);

text(0, 1.1, 0, ’\bf Y’, ’HorizontalAlignment’, ’Center’);

text(0, 0, 1.1, ’\bf Z’, ’HorizontalAlignment’, ’Center’);

% Axis planes

hold on

coord=[-1:0.1:1]’*ones(1,21);

zc=zeros([21,21]);

C=3*ones([21,21]Tflash(L,E));

% XY plane

X=coord;

Y=coord’;

Z=zc;

% Check matlab version

verstr = version;

ver = str2num(verstr(1:3));

if ver < 6

hxy=mesh(X,Y,Z,C);

set(hxy, ’Visible’, ’off’);

% XZ plane

hxz=mesh(X,Z,Y,C);

set(hxz, ’Visible’, ’off’);

% YZ plane

hyz=mesh(Z,X,Y,C);

set(hyz, ’Visible’, ’off’);

else

hxy=mesh(X,Y,Z,C);

set(hxy, ’Visible’, ’off’, ’FaceAlpha’, 0.5, ’EdgeAlpha’, 0.5);

% XZ plane

hxz=mesh(X,Z,Y,C);

set(hxz, ’Visible’, ’off’, ’FaceAlpha’, 0.5, ’EdgeAlpha’, 0.5);

% YZ plane

hyz=mesh(Z,X,Y,C);

set(hyz, ’Visible’, ’off’, ’FaceAlpha’, 0.5, ’EdgeAlpha’, 0.5);

end

hold off

% Camera properties

camproj(’perspective’);

camva(7);
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% Light!

l1=light(’Position’, v3);

l2=light(’Position’, -v3);

rotate3d on;
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Fréchet function 87

Fréchet mean 87, 88
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