
Chapter 9

EINSTein: A Multiagent-Based Model
of Combat

Andrew Ilachinski

Artificial Life techniques – specifically, multiagent-based models and evolu-
tionary learning algorithms – provide a powerful new approach to under-
standing some of the fundamental processes of war. This chapter introduces
a simple artificial “toy model” of combat called EINSTein. EINSTein is de-
signed to illustrate how certain aspects of land combat can be viewed as
self-organized, emergent phenomena resulting from the dynamical web of
interactions among notional combatants. EINSTein’s bottom-up, synthesist
approach to the modeling of combat stands in stark contrast to the more tra-
ditional top-down, or reductionist, approach taken by conventional military
models, and it represents a step toward developing a complex systems theo-
retic toolbox for identifying, exploring, and possibly exploiting self-organized,
emergent collective patterns of behavior on the real battlefield. A description
of the model is provided, along with examples of emergent spatial patterns
and behaviors.

9.1 Background

“War is. . . not the action of a living force upon lifeless mass. . . but always the
collision of two living forces.”

— Carl von Clausewitz, Prussian military strategist (1780–1831)

In 1914, F. W. Lanchester introduced a set of coupled ordinary differential
equations – now commonly called the Lanchester equations (LEs) – as models
of attrition in modern warfare [1]. In the simplest case of directed fire, for
example, the LEs embody the intuitive idea that one side’s attrition rate is
proportional to the opposing side’s size:

259

260 Andrew Ilachinski

{

dR
dt

= −αBB(t), R(0) = R0,

dB
dt

= −αRR(t), B(0) = B0,
(9.1)

where R0 and B0 are the initial red and blue force levels, respectively, and αR

and αB represent the effective firing rates at which one unit of strength on
one side causes attrition on the other side’s forces. The closed-form solution
of these equations is given in terms of hyperbolic functions as

{

R(t) = R0 cosh
(

t
√

αBαR

)

−B0

√

αB/αR sinh
(

t
√

αBαR

)

,

B(t) = B0 cosh
(

t
√

αBαR

)

−R0

√

αR/αB sinh
(

t
√

αBαR

)

(9.2)

and satisfies the simple “square-law” state equation

αR

[

R2
0 −R(t)2

]

= αB

[

B2
0 −B(t)2

]

. (9.3)

Similar ideas were proposed around that time by Chase [2] and Osipov
[3]. These equations are formally equivalent to the Lotka–Volterra equations
used for modeling the dynamics of interacting predator–prey populations [4].
Despite their relative simplicity, the LEs have since served as the fundamental
mathematical models upon which most modern theories of combat attrition
are based and are to this day embedded in many “state-of-the art” military
models of combat. Taylor [5] provided a thorough mathematical discussion.

On the one hand, there is much to like about the LEs, since they are
very intuitive and therefore easy to apply, and they provide relatively sim-
ple closed-form solutions. On the other hand, as is typically the case in the
more general setting of nonlinear dynamical system theory, knowing the “ex-
act” solution to a simplified problem does not necessarily imply that one has
gained a deep insight into the problem. Moreover, almost all attempts to
correlate LE-based models with historical combat data have proven incon-
clusive, a result that is in no small part due to the paucity of data. Most data
consist only of initial force levels and casualties, and typically for one side
only. Moreover, the actual number of casualties is usually uncertain because
the definition of “casualty” varies (killed, killed + wounded, killed + missing,
etc.).

Two noteworthy battles for which detailed daily attrition data and daily
force levels do exist are the battle of Iwo Jima in World War II and the Inchon-
Seoul campaign in the Korean War. While the battle of Iwo Jima is frequently
cited as evidence for the efficacy of the classic LEs, the conditions under which
it was fought were very close to the ideal list of assumptions under which the
LEs themselves are derived. A detailed analysis of the Inchon-Seoul campaign
has also proved inconclusive [6]. Weiss [7], Fain [8], Richardson [9], and others
analyzed attrition in battles fought from 200 B.C. to World War II.

While the LEs may be relevant for the kind of static trench warfare and
artillery duels that characterized most of World War I, they lack the spatial
degrees of freedom to realistically model modern combat. They are certainly

9 EINSTein 261

too simple to adequately represent the more modern vision of combat, which
depends on small, highly trained, well-armed autonomous teams working in
concert, continually adapting to changing conditions and environments. The
fundamental problem is that the LEs idealize combat much in the same way
as Newton’s laws idealize physics.

The two most significant drawbacks to using LEs to model land combat are
that (1) they are unable to account for any spatial variation of forces (no link
is established, for example, between movement and attrition) and (2) they
do not incorporate the human factor in combat (i.e., the uniquely individual,
often imperfect, psychology and decision-making capability of the human
soldier.) While there have been many extensions to and generalizations of
the LEs over the years, all designed to minimize the deficiencies inherent in
their original formulation (including reformulations as stochastic differential
equations and partial differential equations), most existing models remain
essentially Lanchesterian in nature, the driving factor being force-on-force
attrition.

9.2 Land Combat as a Complex Adaptive System

To address all of these shortcomings, the Center for Naval Analyses and the
Office of Naval Research are exploring developments in a complex adaptive
systems theory – particularly the set of agent-based models and simulation
tools developed in the artificial life community – as a means of understanding
land warfare in a fundamentally different way.

Military conflicts, particularly land combat, possess the key characteris-
tics of complex adaptive systems (CASs) [10, 11, 12, 13]: Combat forces are
composed of a large number of nonlinearly interacting parts and are orga-
nized in a command and control hierarchy; local action, which often appears
disordered, induces long-range order (i.e., combat is self-organized); military
conflicts, by their nature, proceed far from equilibrium; military forces, in
order to survive, must continually adapt to a changing combat environment;
and there is no master “voice” that dictates the actions of each and every
combatant (i.e., battlefield action effectively proceeds according to a decen-
tralized control).

A number of recent papers discuss the fundamental role that nonlin-
earity plays in combat. See, for example, Beckerman [14], Beyerchen [15],
Hedgepeth [16], Ilachinski [17, 18], Miller and Sulcoski [19], Saperstein [20],
and Tagarev and Nicholls [21]. The general approach of the EINSTein project
is to extend these largely conceptual and general links that have been drawn
between properties of land warfare and properties of complex systems into a
set of practical connections and analytical research tools.

262 Andrew Ilachinski

9.3 Agent-Based Modeling and Simulation

Models based on differential equations homogenize the properties of entire
populations and ignore the spatial component altogether. Partial differential
equations – by introducing a physical space to account for movement – fare
somewhat better, but still treat the agent population as a continuum. In con-
trast, agent-based models (ABMs) consist of a discrete heterogeneous set of
spatially distributed individual agents, each of which has its own character-
istic properties and rules of behavior. These properties can also change as
agents evolve in time.

Agent-based models of CASs are becoming an increasingly popular ex-
ploratory tool in the artificial life community and are predicated on the ba-
sic idea that the (often complicated) global behavior of a real system de-
rives, collectively, from simpler, low-level interactions among its constituent
agents [22]. Insights about the real-world system that an ABM is designed
to model can then be gained by looking at the emergent structures induced
by the interactions taking place within the simulation, as well as the feed-
back that these patterns might have on the rules governing the individual
agents’ behavior.1 Agent-based simulations engender a significant shift in
the kinds of questions that are asked of the real system being simulated.
For example, where traditional models ask, effectively, “How can I character-
ize the system’s top-level behavior with a few (equally top-level) variables?”
ABMs instead ask, “What low-level rules and what kinds of heterogeneous,
autonomous agents do I need to have in order to synthesize the system’s
observed high-level behavior?”

Perhaps the most important benefit of using an agent-based simulation
to gain insight into why a system behaves the way it does – whether that
system is a collection of traders on the stock market floor, neurons in a brain,
or soldiers on the battlefield – is that once the simulation is used to generate
the desired behavior, the researcher has immediate and simultaneous access
to both the top-level (i.e., generated) behavior of the system and a low-level
description of the system’s underlying dynamics. Because they take an ac-
tively generative, or synthesist, approach to understanding a system, from
the bottom up, ABMs are thus a powerful methodological tool for not just
describing behaviors but also explaining why specific behaviors occur. While
an analytical solution may provide an accurate description of a phenomenon,
it is only with an agent-based simulation that one can fine-tune one’s un-
derstanding of the precise set of conditions under which certain behaviors
emerge.

1 Two excellent recent texts on agent-based modeling, as applied to a variety of disciplines,
are by Ferber [23] and Weiss [24]. Collections of papers focusing on systems that involve
aspects of “human reasoning” are by Gilbert and Troitzsch [25], Gilbert and Conte [26],
and Conte et al. [27]. More recently, ABMs have been applied successfully to traffic pattern
analysis [28] and social evolution [29, 30].

9 EINSTein 263

In the context of modeling combat, agent-based simulations represent a
fundamental shift from focusing on simple force-on-force attrition calcula-
tions to considering how complex, high-level properties and behaviors of
combat emerge out of (sometimes coevolving) low-level rules of behaviors
and interactions. The final outcome of a battle – as defined, say, by measur-
ing the surviving force strengths – takes second stage to exploring how two
forces might coevolve as a series of firefights and skirmishes unfold. ABMs
are designed to allow the user to explore the evolving patterns of macroscopic
behavior that result from the collective interactions of individual agents, as
well as the feedback that these patterns might have on the rules governing
the individual agents’ behavior.

9.4 EINSTein

EINSTein (Enhanced ISAAC Neural Simulation Tool) is an adaptive ABM
of combat and is an outgrowth of a more far-reaching project to develop a
complexity-based fundamental theory of warfare [31]. EINSTein [32] builds
upon and extends an earlier proof-of-concept, DOS-based combat simula-
tor called ISAAC (Irreducible Semi-Autonomous Adaptive Combat), which
was developed for the US Marines Corps [33]. All approved-for-public-release
documents, project reports and summaries, tutorials, sample runs, and an
auto-install program for Windows-based PCs may be downloaded from [70].
Details of the EINSTein toolkit are provided in [34].

EINSTein represents one of the first systematic attempts, within the mil-
itary operations research community, to simulate combat – on a small to
medium scale – by using autonomous agents to model individual behaviors
and personalities rather than specific weapons. Because agents are all en-
dowed with a rudimentary form of “intelligence,” they can respond to a very
large class of changing conditions as they evolve during battle. Because of the
relative simplicity of the underlying dynamical rules, EINSTein can rapidly
provide outcomes for a wide spectrum of tunable parameter values defining
specific scenarios and can thus be used to effectively map out the space of
possible behaviors.

Fundamentally, EINSTein addresses the basic question: “To what extent
is land combat a self-organized emergent phenomenon?” Or, more precisely,
“What are the conditions under which high-level patterns (such as penetra-
tion, flanking maneuvers, attack, etc.) emerge from a given set of low-lying dy-
namical primitive actions (move forward, move backward, approach/retreat-
from enemy, etc.).” As such, EINSTein’s intended use is not as a full system-
level model of combat but as an interactive toolbox – or “conceptual play-
ground” – in which to explore high-level emergent behaviors arising from var-
ious low-level (i.e., individual combatant and squad-level) interaction rules.
The idea behind developing this toolbox is emphatically not to model in de-

264 Andrew Ilachinski

tail a specific piece of hardware (an M16 rifle or M101 105mm howitzer, for
example). Instead, the idea is to explore the middle ground between – at one
extreme – highly realistic models that provide little insight into basic pro-
cesses and – at the other extreme – ultraminimalist models that strip away
all but the simplest dynamical variables and leave out the most interesting
real behavior that is, to explore the fundamental dynamical trade-offs among
a large number of notional variables.

The underlying dynamics is patterned after mobile cellular automata
rules [35] and are somewhat reminiscent of Braitenberg’s vehicles [36]. Mobile
cellular automata have been used before to model predator–prey interactions
in natural ecologies [37]. They have also been applied to combat modeling [38],
but in a much more limited fashion than the one used by EINSTein.

9.4.1 Features

EINSTein’s major features include the following:

• Dialog-driven I/O, using a Windows graphical user interface (GUI) front-
end

• Object-oriented C++ source code base
• Integrated natural terrain maps and terrain-based adaptive decisions
• Context-dependent and user-defined agent behaviors
• Multiple squads, with intersquad communication links
• Local and global command-agent dynamics
• Genetic algorithm toolkit to tailor agent rules to desired force-level behav-

iors
• Data collection and multidimensional visualization tools
• Mission fitness-landscape profilers
• Over 250 user-programmable functions on the source code level

Fig. 9.1 provides a screenshot of a typical run-session in EINSTein. The
screenshot contains three active windows: main battlefield view (which in-
cludes passable and impassable terrain elements), trace view (which shows
color coded territorial occupancy), and combat view (which provides a gray-
scaled filter of combat intensity). All views are simultaneously updated during
a run. Toward the right-hand side of the screenshot appear two data dialogs
that summarize red and blue agent parameter values. Appearing on the lower
left side and along the bottom of the figure are time-series graphs of red and
blue center-of-mass coordinates (as measured from the red flag) and the aver-
age number of agents within red and blue agent’s sensor ranges, and a dialog
that allows the user to define communication relays among individual squads.

9 EINSTein 265

Fig. 9.1 Screenshot of EINSTein’s GUI front-end.

9.4.2 Source Code

EINSTein is written and compiled using Microsoft’s Visual C++ and makes
use of Pinnacle Publishing Inc.’s Graphics Server2 for displaying time-series
plots and three-dimensional (3D) fitness-landscapes. EINSTein consists of
roughly 100K lines of object-oriented source code.

The source code is divided into three basic parts: (1) the combat engine
(parts of which are summarized below); (2) the graphical user interface; and
(3) the data-collection/data-visualization functions. These parts are essen-
tially machine (i.e., CPU and/or operating system) independent and may be
compiled separately. EINSTein’s source code base is thus highly portable and
is relatively easy to modify to suit particular problems and interests. For ex-
ample, an EINSTein-based combat environment may be developed as a stand-
alone program on a CPU platform other than the original MS Windows target
machine used for EINSTein’s original development. Any developer/analyst
interested in porting EINSTein over to some other machine and/or operat-
ing system is tasked only with providing his own machine-specific GUI as
a “wrap-around” to the stand-alone combat and data-visualization engines
(that may be provided as dynamic-link libraries – DLLs). Moreover, it is very

2 Graphics Server is a commercial plug-in, licensed from Pinnacle Publishing, Inc. [68].

266 Andrew Ilachinski

easy to add, delete, and/or change the existing source code, including making
complicated changes that significantly alter how agents decide their moves.

At the heart of EINSTein lies the combat engine (discussed later). The
combat engine processes all run-time, combat-related logical decisions and
is the core script upon which multiple time-series data collection, fitness-
landscape sweeps over the agents’ parameter space, and genetic algorithm
searches all depend.

9.4.3 Design Philosophy

“Things should be as simple as possible, but not simpler.” — Albert Einstein

EINSTein’s design is predicated upon two guiding principles: (1) to keep
all dynamical components and rules as simple as possible (with a view toward
optimizing the trade-off between run time and realism) and (2) to treat all
forms of information (and the way in which all information is processed locally
by agents) in a contextually consistent manner. The meaning of this second
principle will become clear in the exposition below.

9.4.3.1 Simplicity

The first guiding principle is to keep things simple. Specifically, EINSTein
is designed to make it as intuitive as possible for the user to program spe-
cific agent behaviors. This is done by deliberately keeping the set of combat
and movement rules small and by defining those rules as simply as possible.
Thus, the power projection rule is essentially “target and fire upon any enemy
agent within a threshold fire range” rather than some other, more compli-
cated (albeit, possibly more physically realistic) prescription. The idea is to
qualitatively probe the behavioral consequences of the interaction among a
large number of notional variables, not to provide an explicit detailed model
of the minutiae of real-world combat.

9.4.3.2 Consistency

The second guiding principle is keep things consistent. All dynamical de-
cisions – whether they are made by individual agents, by local or global
commanders, or by the user (when scripting a scenario’s objectives) – con-
sist of boundedly rational (i.e., locally optimal) penalty assessments. Actions
are based on an agent’s personality (see later), which consists of numerical
weights that attach greater or lesser degrees of relative importance to each
factor relevant to selecting a particular move in a given local context (from

9 EINSTein 267

the point of view of a given agent). It is in this sense that all forms of infor-
mation, on various levels, are treated on a consistent basis.

The decisions taking place on different levels of the simulation all follow
the same general template of probing and responding to the environment.
Each decision consists of a personality-mediated “answer” to the following
three basic questions:

• What are my immediate and long-term goals?
• What do I currently know about my local environment?
• What must I do to attain my goals?

As we will see in detail ahead, at the most primitive level, each agent
cares only about “moving toward” or “moving away from” all other agents
and/or his own and the enemy’s flag. An agent’s personality prescribes the
relative weight assigned to each of these immediate “goals.” On the other
hand, a global commander must weigh such features as overall force strength,
casualty rate, rate of advance, and so on in order to attain certain long-term
goals. Local and supreme commanders have their own unique concerns. While
the actual decisions are different in each case and on each information level –
for example, an individual agent’s decision to “stay put” in order to survive
is quite different and uses a different form of information, from a global
commander’s drive to “get to the enemy flag as quickly as possible” – the
general manner in which these decisions are made is the same.

9.4.4 Program Flow

A typical sequence of programming steps during an interactive run consists
of multiple loops through the following basic steps:

1. Initialize battlefield and agent distribution parameters.
2. Initialize time-step counter.
3. Adjudicate combat.
4. Refresh battlefield graphics display.
5. Find context-dependent personality weight vector for each red and blue

agent.
6. Compute local penalty function to determine best move.
7. Move agents to their newly selected position (or leave them where they

are).
8. Refresh graphics display and loop through steps 3–7.

The most important parts of this skeletal structure are the adjudication
of combat, the adaptation of personality weights, and the decision-making
process that each agent goes through in choosing its next move. Before de-
scribing the details of what each of these steps involves, we must first discuss
how each agent partitions its local information. During interactive runs (i.e.,

268 Andrew Ilachinski

whenever the fitness-landscape profiler and genetic algorithm breeder batch
modes are both inactive), the user can pause the simulation at any time to
make on-the-fly changes to any, or all, agent parameters (including adding
or subtracting “playing” agents) and then resume the run with the changed
values.

9.5 Combat Engine

9.5.1 Agents

The basic element of EINSTein is an agent, which loosely represents a primi-
tive combat unit (infantryman, tank, transport vehicle, etc.) that is equipped
with the following characteristics:

• Doctrine: a default local-rule set specifying how to act in a generic envi-
ronment

• Mission: goals directing behavior
• Situational awareness: sensors generating an internal map of environment
• Adaptability: an internal mechanism to alter behavior and/or rules

Each agent exists in one of three states: alive, injured, or killed. Injured
agents can (but are not required to) have different personalities and offen-
sive/defensive characteristics from when they were alive. For example, the
user can specify that injured agents are able to move half as far, and shoot
half as accurately, as their “alive” counterparts. Up to 10 distinct groups (or
“squads”) of personalities, of varying sizes, can be defined. The user can also
specify how agents from one squad react to agents from other squads.

Each agent has associated with it a set of ranges (sensor range, fire range,
communications range, etc.), within which it senses and assimilates various
forms of local information, and a personality, which determines the general
manner in which it responds to its environment. A global rule set determines
combat attrition, reconstitution, and (in future versions) reinforcement. EIN-
STein also contains both local and global commanders, each with their own
command radii and obeying an evolving command-and-control (C2) hierarchy
of rules.

9.5.2 Battlefield

The putative combat battlefield is represented by a two-dimensional lattice
of discrete sites. Each site of the lattice may be occupied by one of two kinds
of agents: red or blue. The initial state consists of user-specified formations

9 EINSTein 269

of red and blue agents positioned anywhere within the battlefield. Forma-
tions may include squad-specific bounding rectangles or may be completely
random. Red and blue flags are also typically (but not always) positioned in
diagonally opposite corners. A typical goal, for both red and blue agents, is
to reach the enemy’s flag.

EINSTein includes an option to add terrain elements. Terrain can be either
impassable or passable. If passable, the user can also tune an agent’s behavior
to a particular terrain type. For example, if an agent is positioned within
“heavy brush,” its movement range and visibility (from other nearby agents)
may be curtailed.

9.5.3 Agent Personalities

Each agent is equipped with a user-specified personality – or internal value
system – nominally defined by a six-component personality weight vector,
w = (w1, w2, . . . , w6), where −1 ≤ wi ≤ 1 and Σi|wi| = 1. The compo-
nents of w specify how an individual agent responds to specific kinds of local
information within its sensor range.

The personality weight vector may be health dependent; that is, walive

need not, in general, be equal to winjured. The components of w can also be
negative – in which case they signify a propensity for moving away from,
rather than toward, a given entity.

9.5.4 Penalty Function

An agent’s personality weight vector is used to rank each possible move ac-
cording to a penalty function. The simplest penalty function effectively mea-
sures the total distance that the agent will be from other agents (including
both friendly and enemy agents) and from its own and enemy flags, weighing
each component distance by the appropriate component of the personality
weight vector, w. An agent moves to the position that incurs the least penalty;
that is, an agent’s move is the one that best satisfies its personality-driven
desire to “move closer to” or “farther away from” other agents in given states
and either of the two flags. The general form of the penalty function is given
by:

270 Andrew Ilachinski

Z(Bx,y) =
1√
2rS



















ωAF

NAF

NAF
∑

i∈AF

Di,Bx,y
+

ωAE

NAE

NAE
∑

j∈AE

Dj,Bx,y

+
ωIF

NIF

NIF
∑

i∈IF

Di,Bx,y
+

ωIE

NIE

NIE
∑

j∈IE

Dj,Bx,y



















+ωFF

Dnew
FF,Bx,y

Dold
FF,Bx,y

+ ωEF

Dnew
EF,Bx,y

Dold
EF,Bx,y

,

(9.4)

where Bx,y is the (x, y) coordinate of battlefield B; AF , IF , AE, and IE
represent respectively the sets of alive friends, injured friends, alive enemies,
and injured enemies within the given agent’s sensor range, rS ; wi are the
components of the personality weight vector;

√
2rS is a scale factor; NX is

the total number of elements of type X within the given agent’s sensor range
(e.g., NF is the number of alive friends within range rS); DA,B is the distance
between elements A and B; FF and EF denote the friendly and enemy flags,
respectively; and represent distances computed using the given agent’s new
(candidate move) position and old (current) position, respectively.

A penalty is computed for each possible move; that is, for each of the
N = (2rm + 1)

2
possible sites to which an agent can “step” in one time

step: Z1(Bx,y), Z2(Bx+1,y), Z3(Bx−1,y), . . . , ZN (Bx+n,y+n). The actual move
is the one that incurs the least penalty. If there is a set of moves (consisting
of more than one possible move) all of whose penalties are within ǫPenalty ≥ 0
of the minimal penalty, an agent randomly selects the actual move among
the candidate moves making up that set. Users can also define paths near
which agents must try to stay while maneuvering toward their ultimate goal.

The penalty function shown above includes only a few relative-proximity-
based weights. In practice, the penalty function is more complicated and
incorporates more terms, although its basic form is the same. Additional
terms can include the propensity for maintaining the minimum distance from
friendly or enemy agents, staying near a designated patrol area, the cost of
traversing terrain, desire for finding local cover (from fire) and/or conceal-
ment (from enemy sensors), and combat intensity (see Table 9.1).

9.5.5 Meta-rules

An agent’s personality may be augmented by a set of meta-rules that tell
it how to alter its default personality according to dynamic environmental
contexts. A typical meta-rule consists of altering a few of the components of
an agent’s personality vector according to a set of associated local thresh-
old constraints. The three simplest meta-rule classes effectively define the

9 EINSTein 271

Weight Meaning = Relative Weight for...

wAF ...moving toward/away from alive friendly agents
wIF ...moving toward/away from injured friendly agents
wAE ...moving toward/away from alive enemy agents
wIE ...moving toward/away from injured enemy agents
wFF ...moving toward/away from friendly flag
wEF ...moving toward/away from enemy flag
wBB ...moving toward/away from the boundary of battlefield
warea ...staying near some (squad-specific) area
wsquad ...maintaining formation with own squad-mates
wfire−team ...maintaining formation with own fireteam-mates
Sij ...how agents from squad Si react to agents from squad Sj

SS′

ij ...how agents from squad Si react to agents from enemy squad Sj

wLC ...moving toward/away from local commander
wobeyLC ...obeying orders issued by local commander
wterrain ...moving toward/away from terrain elements
wenemy−fire ...moving toward/away from enemy agents that have fired on agent

Table 9.1 A partial list of EINSTein’s primitive weight set

local conditions under which an agent is allowed to advance toward enemy
flag (class 1), cluster with friendly forces (class 2), and engage the enemy in
combat (class 3).

For example, a class-1 meta-rule prevents an agent from advancing to-
ward the enemy flag unless it is locally surrounded by a threshold number
of friendly agents; that is, it is a notional indicator of local combat support.
A class-2 meta-rule can be used to prevent an agent from moving toward
friendly agents once it is surrounded by a threshold number. Finally, a class-
3 meta-rule can be used to fix the local conditions under which an agent is
allowed to move toward or away from possibly engaging an enemy agent in
combat. Specifically, an agent is allowed to engage an enemy if and only if
the difference between friendly and enemy force strengths locally exceeds a
given threshold.

Other meta-rule classes include retreat, pursuit, support, and hold position.
A global rule set determines combat attrition (see later), communication, re-
constitution, and (in future versions) reinforcement. EINSTein also contains
both local and global commanders, each of which is equipped with its own
unique command-personality and area of responsibility, and obeys an evolv-
ing command and control hierarchy of rules. Table 9.2 summarizes some of
EINSTein’s meta-rules.3

3 Note that threshold constraints (τAdvance, τCluster, and ∆Combat) are explicitly defined
only for the first three meta-rules. These meta-rules are used in the sample runs discussed
later. In fact, each of the meta-rules appearing in Table 9.2 has one or more threshold
constraints associated with it, and the set also requires additional logic to dynamically
resolve ambiguities as they arise during the course of a run. Details are in [31].

272 Andrew Ilachinski

Meta-rule Description

wAF ...moving towards/away from alive friendly agents
Advance Advance to enemy flag if the number of friends ≥ τAdvance

Cluster Stop seeking friends if number of friends ≥ τCluster

Combat Engage enemy if the Nfriends −Nenemies ≥ ∆Combat

Hold Hold current position
Pursuit-I Temporarily turn off pursuit of enemy agents
Pursuit-II Temporarily turn exclusive pursuit on
Retreat Retreat toward own flag
Run Away Run away, fast, from enemy agents
Support-I Provide support for nearby injured
Support-II Seek support from nearby friends
Min-D Friend Maintain minimum distance from all friendly agents
Min-D Enemy Maintain minimum distance from all enemy agents
Min-D Flag Maintain minimum distance from all friendly flags
Min-D Terrain Maintain minimum distance from terrain
Min-D Area Maintain minimum distance from a fixed area on battlefield

Table 9.2 A partial list of EINSTein’s meta-rule set

9.5.6 Combat

During the combat phase of an iteration step for the whole system, each
agent X (on either side) is given an opportunity to fire at all enemy agents
Yi that are within a fire range rF of X ’s position. If an agent is shot by
an enemy agent, its current state is degraded either from alive to injured or
from injured to dead. Once killed, an agent is permanently removed from the
battlefield. The probability that a given Yi is shot is fixed by user-specified
single-shot probabilities. Weapons are assigned to individual agents and are
either point-to-point (i.e., rifles) or area destruction (i.e., grenades).

By default, all enemy agents within a given agent’s fire range are targeted
for a possible hit. However, the user has the option of limiting the number
of enemy targets that can be engaged simultaneously. If this option is se-
lected and the number of enemy agents within an agent’s fire-range exceeds
a user-defined threshold number (say N), then N agents are randomly chosen
among the agents in this set. Grenades include additional targeting logic (to
maximize expected inflicted damage on the enemy).

This basic combat logic may be enhanced by three additional functions:
(1) defense, which adds a notional ability to agents to be able to withstand a
greater number of “hits” before having their state degraded; (2) reconstitu-
tion, which adds a provision for previously injured agents to be reconstituted
to their alive state; and (3) fratricide (“friendly fire”), which adds an element
of realism by making it possible to inadvertently hit friendly forces.

9 EINSTein 273

9.5.7 Run Modes

EINSTein can be run in three basic modes (see EINSTein’s User’s Guide
[31]):

• Interactive mode, in which the combat engine is run interactively using
a fixed set of rules. This mode, which allows the user to make on-the-
fly changes to the values of any (or all) parameters defining a given run,
is particularly well suited for playing simple “What if?” scenarios. The
interactive mode also makes it easy to search for interesting emergent
behavior.

• Data-collection mode, in which the user can (1) generate time series of var-
ious changing quantities describing the step-by-step evolution of a battle
and (2) keep track of certain measures of how well mission objectives are
met at a battle’s conclusion. Additionally, the user can generate behavioral
profiles on two-dimensional slices of EINSTein’s N -dimensional parameter
space.

• Genetic algorithm “breeder” mode, in which a genetic algorithm is used
to breed an agent force that is optimally suited for performing a specific
mission against a fixed enemy force. This mode is designed to suggest ways
in which ABMs may eventually be used to evolve real-world tactics and
strategies.

9.6 Sample Patterns and Behavior

EINSTein possesses a large repertoire of emergent behaviors: forward ad-
vance, frontal attack, local clustering, penetration, retreat, attack posturing,
containment, flanking maneuvers, and “Guerrilla-like” assaults, among many
others. Moreover, behaviors frequently arise that appear to involve some form
of intelligent division of red and blue forces to deal with local firestorms and
skirmishes, particularly those forces whose personalities have been bred (via a
genetic algorithm) to perform a specific mission. It is important to point out
that such behaviors are not hard-wired but are, rather, an emergent property
of a decentralized, but dynamically interdependent, swarm of agents.

Fig. 9.2 shows screen captures of spatial patterns resulting from 16 different
rules and illustrates the diversity of behaviors that emerges out of a relatively
simple set of rules. (Note that the sample patterns shown here are for clashing
red and blue forces consisting of a single squad. Multisquad scenarios, in
which agents belonging to different squads obey different rules, and interact
with one another according to an additional layer of micro-rules, often result
in considerably more complicated emergent behaviors.) An important long-
term goal is for EINSTein to be flexible enough to serve as a general tool (that
transcends the specific notional combat environment to which it is obviously

274 Andrew Ilachinski

tailored) for exploring the still very poorly understood mapping between
micro-rules and emergent macro-behaviors in complex adaptive systems.

Fig. 9.2 A sampling of emergent spatial patterns of agents obeying EINSTein’s micro-
rules. Each of the 16 squares represents a different rule and contains a single snapshot of
a typical run.

9.6.1 Qualitative Classes of Behavior

Simulations run for many different scenarios and initial conditions suggest
that EINSTein’s collective behavior generally falls into one of six broad qual-
itative classes (labeled, suggestively, according to different kinds of fluid flow):

9 EINSTein 275

• Laminar flow, which typically consists of one (or, at most, a few) well-
defined “linear” battlefronts. This class is so named because it is visually
suggestive of laminar fluid flow of two fluids and is reminiscent of static
trench warfare in World War I. Laminar rules can actually be divided
into two types of behaviors, characterized according to a system’s overall
stability (i.e., according to whether the system is stable, or not stable, to
initial conditions).

• Viscous flow, in which the unfolding battle typically consists of a single
tight cluster (or, at most, a few clusters) of interpenetrating red and blue
agents.

• Dispersive flow, in which – as soon as red and blue agents maneuver within
view of the opposing side’s forces – the battle unfolds as a single, explosive,
dispersion of forces. Dispersive systems exhibit little, if any, of the “front-
like” linear structures that form for laminar-flow rules.

• Turbulent flow, in which combat consists of either spatially distributed, but
otherwise confined and/or clustered individual combat zones, or a series of
close-to space-filling local firestorms. In either case, there is almost always
a significant degree of local maneuvering.

• Autopoeitic flow , in which agents self-organize into persistent dissipative
structures. These formations typically maintain their integrity for long
times (on the scale of individual agents entering and leaving the structure)
and undergo “higher-level” maneuvering, including longitudinal motion
and rotation.4

• Swarming, in which agents self-organize into nested swarms of attacking
and/or defending forces.

We should be quick to point out that this taxonomy is neither complete nor
well defined, in a mathematical sense. Because of the qualitative distinctions
among classes, there is considerable overlap among them. Moreover, a given
scenario, as it unfolds in time, usually consists of several phases of behavior
during which one class predominates at one time and other classes at other
times. Indeed, for such cases, which occur frequently, it is of considerable
interest to understand the nature of the transition between distinct behavioral
phases. For example, the initial stages of a scenario may unfold in typically
laminar fashion and suddenly transition over into a turbulent phase.

A finer distinction among these six classes can be made on the basis of
a more refined statistical analysis of emergent behavior. There is strong ev-
idence to suggest, for example, that while attrition rates for certain classes
of rules display smooth Gaussian statistics, other classes (overlapping with
viscous-flow and turbulent-flow rules) display interesting fractal power-law
scaling behaviors [40]. Insofar as the “box-counting” fractal dimension [41]
is useful for describing the degree of agent clustering on the battlefield, it

4 Autopoiesis refers to dynamical systems that are simultaneously self-creating and self-
maintaining. It was introduced as an explanatory mechanism within biology by Maturana
and Varela [39].

276 Andrew Ilachinski

can also be used as a simple discriminant between laminar and turbulent
classes of behavior. Measuring temporal correlations in the time series of var-
ious statistical quantities describing combat is also useful in this regard. The
case studies presented here are selected mainly to highlight the qualitative
behavioral classes described previously.

9.6.2 Lanchesterian Combat

On the simplest level, EINSTein is an interactive, exploratory tool that allows
users to take conceptual excursions away from Lanchesterian oversimplifica-
tions of real combat. It is therefore of interest to first define a Lanchesterian
scenario within EINSTein that can subsequently be used as a test bed to
which the outcomes of other, non-Lanchesterian, scenarios can be compared.
The set of simulation parameters that are appropriate for simulating a ma-
neuverless, Lanchester-like combat scenario in EINSTein includes a red/blue
movement range of rm = 0 (so that the position of all agents is fixed) and a
red/blue sensor range that is large enough so that all agents have all enemy
agents within their view (for the example below, rS = 40).

Fig. 9.3 shows several snapshots of a typical run. Initial conditions consist
of 100 red and 100 blue agents (in a tightly packed block formation, with
block-centers 15 units distant on a 60-by-60 battlefield) and a red/blue single-
shot probability of hit Phit = 0.005. Note that the outcome of the battle is
a function of the initial sizes of red and blue forces and Phit alone and does
not depend on maneuver or any other agent, squad, or force characteristics.

Fig. 9.3 Screenshots of a typical run using an EINSTein rule-set that approximates LE-
like combat.

While the Lanchester scenario shown here is highly unrealistic, of course, it
is important to remember that most conventional military models (even those
that include some form of maneuvering) adjudicate combat by effectively
sweeping over a series of similarly idealized maneuverless skirmishes until
one side, or both sides, of the conflict decide to withdraw after sustaining a
threshold number of casualties. Most models are still almost entirely attrition

9 EINSTein 277

driven. The only substantive role that maneuver and adaptability play is in
getting the individual combatants into position to fight.

A typical signature of such Lanchesterian-like combat scenarios is a linear
dependence of the mean attrition rate – defined as the average number of
combatants lost, 〈α〉, during some specified time interval, ∆τ = t− t0 – on
the single-shot kill (or, in our case here, single-shot hit) probability, Pss:

〈α〉 =

〈

∆n

∆τ

〉

=

〈

n(t0 + t)− n(t0)

∆τ

〉

=
N

∑

i=1

Pss(i) = NPss, (9.5)

where N is the total number of agents, n(t) is the number of agents at time t,
Pss(i) is the single-shot hit probability of the ith agent, and we have assumed,
for the final expression on the right, that Pss(i) = Pss for all i.

What happens if agents are allowed to maneuver? If the maneuver is in any
sense “intelligent” (i.e., if agents react reasonably intelligently to changing
levels of combat intensity as a battle unfolds), intuitively we should not expect
the same linear dependence between 〈α〉 and Pss to hold. In the extreme case
of infinitely timid combatants that run away at the slightest provocation, no
fighting at all will occur. In the case where one side applies sophisticated
targeting algorithms to maximize enemy casualties but minimize friendly
casualties, we might expect a marked increase in that force’s relative fighting
ability.

To illustrate these ideas, consider an “explosive skirmish” scenario, which
is characterized by a rapid, explosive burst of agents as they collide and ma-
neuver close-in during a series of local firefights and skirmishes as the battle
slowly dissipates (see screenshots in Fig. 9.4). Table 9.3 lists the parameters
values used for these runs.

Sample 1 Sample 2
Parameter Red Blue Red Blue

Agents 250 250 100 100

rS 5 5 5 5

rF 3 3 3 3

rM 2 2 1 1

ω1 10 10 10 10

ω2 40 40 40 25

ω3 10 10 10 10

ω4 40 40 40 25

ω5 0 0 0 0

ω6 25 25 5 50

τAdvance 3 3 3 3

τCluster 8 3 5 8

∆Combat –99 –3 –10 –3

Table 9.3 Parameter values used for scenarios shown in Fig. 9.4

278 Andrew Ilachinski

Fig. 9.4 Screenshots of typical runs of the “explosive skirmish” scenario using parameters
given in Table 9.3.

9.6.2.1 Fractal Dimensions of Spatial Dispositions

If one were to plot attrition rate, 〈α〉, versus single-shot probability of hit,
Pss – for either of the two “explosive skirmish” scenarios shown in Fig. 9.4
– one would find that 〈α〉 ∝ Pn

ss, where n ≈ 1/2. Moreover, careful analysis
of the spatial patterns, as they emerge in multiple runs, suggests that what
lies at the core of a certain class of non-Lanchesterian scenarios is a fractal
scaling of combat forces.

Recall that fractal dimensions – such as the capacity dimension (or “box-
counting” dimension) – are measures that provide useful structural (and/or,
in the case of information dimension, statistical information) about a given
point set. Fractals are geometric objects characterized by some form of self-
similarity; that is, parts of a fractal, when magnified to an appropriate scale,
appear similar to the whole. Fractals are thus objects that harbor an effec-
tively infinite amount of detail on all levels. Coastlines of islands and con-
tinents and terrain features are approximate fractals. A magnified image of
a part of a leaf is similar to an image of the entire leaf. Strange attractors
also typically have a fractal structure. Loosely speaking, a fractal dimen-
sion specifies the minimum number of variables that are needed to specify
an object. For a one-dimensional line, for example, say the x-axis, one piece
of information, the x-variable, is needed to specify any position on the line.
The fractal dimension of the x-axis is said to be equal to 1. Similarly, two
coordinates are needed to specify a position on a two-dimensional plane, so
that the fractal dimension of a plane is equal to 2. Fractals are objects whose
fractal dimension is noninteger-valued.

How might fractals relate specifically to combat? Intuitively, since real com-
bat consists of anything but a series of random skirmishes in which opposing
sides constantly shoot at each other, we expect attrition data to contain spa-

9 EINSTein 279

Fig. 9.5 Single-time estimates of DF for two spatial dispositions of real-world forces and
a snapshot of notional forces as arrayed in EINSTein. The (x, y) locations of the real-world
data are the longitudes and latitudes of Coalition ground forces during Operation Iraqi
Freedom in 2003. See the text for additional details.

tiotemporal correlations. Because EINSTein includes rules for maneuver, we
expect to see spatiotemporal correlations emerge as a consequence of ma-
neuver (as we would expect to also see in other multiagent-based combat
simulations that contain intelligent maneuver).

Spatial distributions of agents on a battlefield are nothing more than sets
of abstract points on a lattice. The degree of clustering and maneuver can
therefore be measured by calculating a fractal dimension for the distribution
in exactly the same way one typically calculates the fractal dimension for
point sets representing various one- and two-dimensional attractors of dy-
namical systems. The only real difference between using the (x, y) positions
of agents and points of an attractor, in practice, is that when dealing with
agents, we are naturally limited in the number of “data points” with which
we have to work. Even large scenarios are limited to about 500 agents or so
to a side. Moreover, agents are allowed to sit only on integer-valued sites, so
that the set of possible (x, y)’s is also more limited. Nonetheless, the actual
calculation of fractal dimensions proceeds in exactly the same manner for the
two cases; just as for continuous dynamical systems, the measures provide an
important insight into the geometry of the spatial distributions.

As a concrete example, consider the capacity dimension, which is de-
fined by DF = limǫ→0 ln [N(ǫ)] / ln(1/ǫ), where N(ǫ) is the number of
d-dimensional boxes of side ǫ that contain at least one agent. Alternatively,
we can write that N(ε) = ε−DF and call DF the power-law scaling expo-
nent. For a solid block of maneuverless agents, such the solid red and blue
blocks of agents dueling it out in the Lanchesterian scenario shown in Fig. 9.3,
DF ∼ 2; DF will be less than 2 if the agents occupy only a portion of the
entire battlefield, as the whole battlefield is be used to estimate DF .

Fig. 9.5 compares single-time estimates of DF for (1) two spatial disposi-
tions of real-world forces (Figs. 9.5a and 9.5b) and (2) a snapshot of notional
forces as arrayed during the dispersive-flow phase of the explosive skirmish

280 Andrew Ilachinski

scenario in EINSTein (Fig. 9.5c). The (x, y) locations of the real-world data
consists of the longitudes and latitudes of Coalition ground forces during
Operation Iraqi Freedom in 2003.5 In each case, the (x, y) locations are first
scaled so that the real and notional battlefields assume the same effective
“size” of 1-by-1 sites and the scaled battlefield is then divided into a total
of Ntotal = ε−2 boxes of length ε. Several different values of ε are chosen,
and for each ε, the number of boxes, N(ε), that contain at least one agent
are counted. Since we are limited by how finely we are able to partition the
battlefield (as well as by the relatively limited number of agents that define
our set of (x, y) locations: ∼ 500), the fractal dimension is estimated by the
slope of a linear fit on a plot of log [N(ε)] versus log [1/ε]. (Note that we are
not in any way suggesting that a finite distribution of either real or notional
combatants represents a genuine fractal in a mathematically rigorous sense.
We are only suggesting that for limited domains (in battlefield size, dura-
tion of conflict, and number of agents) their distribution is such that it can
reasonably well be characterized by a fractal-like power-law scaling.)

The point of Fig. 9.5 is not to compare the absolute values of DF for
the different cases – which we could have anticipated as being different, par-
ticularly since EINSTein’s explosive skirmish example does not intention-
ally model any real-world scenario – but rather to illustrate the important
fact that EINSTein is able to reproduce a spatial fractal scaling at all (at
least for the limited spatial ranges being considered). In EINSTein, as in the
real world, “intelligent maneuvering” implies an agent’s position at time t is
strongly correlated with local combat conditions. While it has for a long time
been known, on the basis of empirical evidence, that real-world forces tend
to arrange themselves in self-organized fractal fashion (see [9] and [44]), no
satisfactory generative explanation for why this is so has yet appeared.

How does the fractal dimension change during combat? To illustrate the
kinds of spatial configurations that can arise in different combat scenarios,
consider Fig. 9.6. It shows three plots each (using different initial configura-
tions of agents) of DF as a function of time for (1) the Lanchesterian scenario,
(2) a scenario in which the agents are allowed to move but do so completely
randomly (and are initially distributed randomly on the battlefield), and (3)
the Sample 1 explosive skirmish scenario defined by the parameters appearing
in Table 9.3.

These three cases are defined by first using the explosive skirmish scenario
to select a single-shot probability of hit, Pss, for which the mean attrition
after 100 time steps is equal to 20%. That same value is then used for the
other two cases as well. Also, in order to better place the random scenario
in between the Lanchester scenario (in which all agents “see” and “fire at”
all other agents at all times) and the explosive skirmish scenario (in which
agents’ sensor and fire ranges are relatively small), agents in the random sce-

5 These scaled geo-locations are from software databases maintained, and kindly provided
to the author, by Dr. Michael Shepko and Dr. David Mazel of the Center for Naval Analyses,
Alexandria, Virginia.

9 EINSTein 281

Fig. 9.6 Three sample plots, each (using different initial configurations of agents) of the
fractal dimension DF as a function of time for the Lanchesterian (i.e., maneuverless)
scenario, a scenario in which the agents are allowed to move but do so completely randomly,
and the Sample 1 explosive skirmish scenario defined by the parameters appearing in
Table 9.3.

nario are assigned sensor and fire ranges equal to three times their value for
the explosive skirmish scenario. Because these three cases represent qualita-
tively different combat scenarios that range from maneuverless, all-seeing/all-
shooting agents to intelligently maneuvering agents able to sense, and adapt
to, only local streams of information, it is instructive to use them as a basis
for comparing simulation output. Except for a small drift of values among
different runs for the same scenario and/or differences in precise values at a
given time for a given run, the scenarios are each characterized by the unique
manner in which the fractal dimension of its associated spatial distribution
evolves in time; that is, the time evolution of DF represents a kind of behav-
ioral signature of a given scenario. There is also evidence to suggest a deeper
coupling between DF and combat dynamics.

9.6.2.2 Power-Law Scaling of Attrition

Lauren [40] has used EINSTein (and other ABMs of combat; see [42]) to iden-
tify some significant differences between agent-based attrition statistics and
results derived from stochastic LE-based models. In particular, he has found
evidence to suggest that the intensity of battles obeys a fractal power-law
dependence on frequency and displays other traits characteristic of high-
dimensional chaotic systems, such as fat-tailed probability distributions and

282 Andrew Ilachinski

intermittency. Specifically, the attrition rate appears to depend on the cube
root of the kill probability, which stands in marked contrast to results ob-
tained for stochastic variants of LE-based models, in which, typically, the
attrition rate scales linearly with an increase in kill probability.6 If the ABM
more accurately represents real combat processes, an ∼ 1/3 power-law scaling
implies that a relatively “weak” force, with a small kill probability, may ac-
tually constitute a much more potent force than a simple LE-based approach
suggests. The potency of the force comes from its ability to maneuver (which
is never explicitly modeled by LE-based approaches) and to selectively con-
centrate firepower on the enemy while maneuvering. This deceptively simple
result has an important consequence for peacekeeping activities in the Third
World, in which a strong, modern force may (and often, does) significantly
underestimate the ability of ostensibly poorly trained and/or poorly armed
militia to inflict damage.

The appearance of fractal power-law scaling in EINSTein (and other agent-
based combat models) is particularly interesting in light of the fact that it
has been observed before in real combat [44]. While it has been previously
argued, on intuitive grounds, that this must be due to the dynamical cou-
pling between local information processing and maneuver – features that are
completely ignored by Lanchesterian models – no generative “explanation”
for why fractal power-law scaling appears in combat has heretofore existed.
It is therefore tempting to speculate that there are phases of real combat that
are poised at self-organized critical states (see e.g. [45, 46]).

9.6.3 A Step Away from Lanchester

With an eye toward exploring non-Lanchesterian scenarios, consider an ex-
ample that includes both simple maneuver and terrain. Fig. 9.7 shows the
initial state, consisting of 12 red and 12 blue agents positioned near their
respective “flags” (in the lower left and upper right corners, respectively).
The red agents are arrayed along a berm (i.e., a permeable terrain element,
which appears green in the figure), whose dynamical effect is to reduce their
visibility to the approaching blue enemy agents to 15% of the nominal value.
As blue agents approach the red flag, red agents remain fixed at their posi-

6 The key observation is that the attrition rate generally depends not just on Pss (as in
Eq. 9.5), but on both Pss and DF , the latter measure representing the spatial distribution
of agents [34, 42]. To derive Eq. 9.5, for Lanchesterian combat, one assumes that one
side’s attrition rate is proportional to the opposing side’s size (and nothing else); in the
general case, one must assume that the attrition rate also depends on the probability
that an agent actually “sees” an enemy (or cluster of enemy agents) in a given period
of time. The likelihood of this happening, in turn, may be expressed in terms of DF .
Lauren et al. [43] have recently introduced the generalized Lanchester equation 〈∆B/∆t〉 ∝
kDF /2 ·∆tDF /2−1 ·R (t), where B and R are the number of red and blue agents, k is the
rate at which red (or blue) kill blue (or red) agents, and t is the time.

9 EINSTein 283

tions (simulating a notional “hunkered-down” condition). The red and blue
weapon characteristics (probability of hit and range) are equal.

Fig. 9.7 Initial state for simple non-Lanchesterian scenario; see text for details.

Runs typically proceed as follows. Because of the stealth afforded the dug-
in red agents by the berm, red agents are targeted and engaged with a much
lower probability than the approaching blue force. The attrition of the at-
tacking force (blue) is significantly higher than the attrition of the defending
force (red). When the attackers are able to survive (with some of their force
intact) – on some particular run of the scenario – it is because they are able
to maneuver out of range (which occurs when the force strength drops below
the combat effective threshold of 50% and attempts to withdraw) and red is
unable to pursue. (As an aside, EINSTein’s ability to prescribe retreat con-
ditions adds a certain realism to the model. Faced with mounting attrition,
real squads fall back and regroup.)

The red force usually remains at full strength after the engagement (the
probability of zero red casualties is about 80%). This result is intuitively satis-
fying, since, historically (all other factors being equal), defending forces have
the advantage over an attacking force traversing open ground. An obvious
question to ask is, “How large must the blue force be in order to overcome the
advantage of the red’s terrain?” Fig. 9.8 plots the fraction of the initial forces
that remain at the end of the engagement (150 steps) versus the attacker-
to-defender force-size ratio (the lines are simple fits to the data to guide the
eye). In the runs used to generate this graph, the size of the blue force ranges
from 12 to 40 agents, while the red force remains at 12. Note that the red
and blue survival curves merge at roughly a 2.8:1 ratio; which is interesting
in light of the well-known “rule of thumb” that attackers require a 3:1 force
ratio against a defended position [47].

284 Andrew Ilachinski

Fig. 9.8 Impact of attacker-to-defender force ratio on survival for the simple non-
Lanchesterian scenario shown in Fig. 9.7. The red and blue survival curves merge at about
a 2.8:1 ratio, which compares favorably to the well-known “rule of thumb” that attackers
require a 3:1 force ratio against a defended position [47].

9.6.4 Swarming Forces

One of the first detailed studies of swarming, as a major theme in military
history, was recently conducted by Sean Edwards, as part of the Swarming
and the Future of Conflict project at RAND [48]. Edwards’ report focuses
on 10 carefully selected historical examples of swarming, includes a series of
important lessons-learned distilled from these examples about the advantages
and disadvantages of swarming, and provides some examples of successful
countermeasures that have been used against swarming in the past.

Edwards noted that swarming consists of four overlapping stages: (1) lo-
cation, (2) convergence, (3) attack, and (4) dispersion. Moreover, swarming
forces must be capable of a sustainable pulsing; that is, networks of swarming
agents must be able to come together rapidly and stealthily on a target, then
redisperse, and, finally, recombine for a new pulse:

The swarm concept is built on the principles of complexity theory, and it assumes
that blue units have to operate autonomously and adaptively according to the over-
all mission statement . . . It is important that swarm units converge and attack
simultaneously. Each individual swarm unit is vulnerable on its own, but if it is
united in a concerted effort with other friendly units, overall lethality can be mul-
tiplied, because the phenomenon of the swarm effect is greater than the sum of its
parts. Individual units or incompletely assembled groups are vulnerable to defeat
in detail against the larger enemy force with its superior fire-power and mass.

The report noted that swarming scenarios have already played a role in
certain high-level war-gaming exercises, such as at the Dominating Maneu-
ver Game, held at the US Army War College in 1997. Edwards concluded
his survey by speculating about the feasibility of a future “swarming doc-
trine” that would consist of small, distributed, highly maneuverable units
converging rapidly on specific targets.

Because of its decentralized rule-base and rich space of behavioral prim-
itives, EINSTein is an ideal test bed with which to explore the nature of

9 EINSTein 285

battlefield swarming and the efficacy of swarm-like tactics. Typically, but
not always, one side appears to swarm the other when there is a signifi-
cant mismatch in firepower, total force strength, and/or maneuvering ability.
(Swarming also occasionally emerges as a useful “tactic” to use against cer-
tain opponents when EINSTein’s built-in genetic algorithm is tasked with
finding optimal attack strategies.) While it is common to find swarm-like be-
havior for personalities that include large cluster meta-rule thresholds, τCluster

(which increases the likelihood that agents will remain in close proximity to
friendly agents), the most interesting “self-organized” examples of swarming
are those for which τCluster is, at most, a few agents.

Table 9.4 lists some of the parameter values defining four representative
swarm scenarios (I–IV). In scenario I, blue attacks red; in scenario II, blue
defends. Blue agents are more aggressive than red in all four scenarios (as de-
fined by the values of their respective combat meta-rule thresholds, ∆Combat).
Note that in scenarios II and III defending blue agents are able to communi-
cate with other blue agents that are within a range rC = 25 of their position.
Fig. 9.9 show snapshots of typical runs using parameters for scenarios I–IV.

I I II II III III IV IV

Force Red Blue Red Blue Red Blue Red Blue
Size 150 225 90 125 25 100 200 200
rS 5 5 5 10 3 7 3 7
rF 3 3 3 7 2 5 2 5
rM 1 1 1 2 1 1 1 1
wAF 25 10 10 0 5 0 5 0
wAE 25 50 40 99 40 5 40 5
wIF 75 0 10 0 5 0 5 0
wIE 25 99 40 99 90 50 90 50
wFF 0 0 0 0 0 0 0 0
wEF 75 25 50 0 0 0 0 0

τAdvance 5 1 3 N/A N/A N/A N/A N/A
τCluster 15 3 3 12 5 5 5 5
∆Combat 5 −7 0 −15 −5 −10 −5 −10
Comms no no no yes, rC = 25 no yes, rC = 25 no no

Table 9.4 Agent parameter values for scenarios I–IV shown in Fig. 9.9

9.6.5 Nonmonotonicity

For a fixed set of force characteristics, number, type, and lethality of weapon
systems, and tactics, one might intuitively expect that as one side’s capabil-
ity is unilaterally enhanced – say, by increasing sensor range or its ability to
maneuver – the other side’s ability to perform its mission ought to be com-

286 Andrew Ilachinski

Fig. 9.9 Sample runs of swarm scenarios I–IV. See Table 9.4 for parameter values.

mensurately diminished. In other words, our expectations are that mission
success scales monotonically with force capability.

In fact, nonmonotonicities abound in both real-world behavior and simu-
lations. With respect to models and simulations, of course, one must always
be on guard against the possibility that nonmonotonic scaling is an artifact
of the code and therefore does not represent real processes. As pointed out
by a RAND study that addressed this issue [49], “a combat model with a
single decision based on the state of the battle . . . can produce nonmonotonic
behavior in the outcomes of the model and chaotic behavior in its underlying
dynamics.”

Fig. 9.10 shows an instructive example of genuinely nonmonotonic behav-
ior; genuine in the sense that the nonmonotonicity emerges directly out of
the primitive rule set. The three rows in Fig. 9.10 contain snapshots of three
separate runs in which red’s sensor range is systematically increased in incre-
ments of 2: rS,red = 5 for the top sequence; rS,red = 7 for the middle sequence;
rS,red = 9 for the bottom sequence. Blue’s sensor range, rS,blue, remains fixed
at rS,blue = 5 throughout all three runs. The values of other pertinent red
and blue agent parameters are given in Table 9.5.

In each of the runs, there are 100 red and 50 blue agents. Red is also
the more the aggressive force. Blue engages red in combat if the number of

9 EINSTein 287

Fig. 9.10 An example of nonmonotonic behavior. The three rows contain snapshots of
three separate runs in which red’s sensor range is increased in increments of 2 (from
rS,red = 5 on the top row to rS,red = 9 on the bottom). Blue’s sensor range is fixed
at rS,blue = 5 throughout. Comparing the bottom row to the top two rows, we see that
increasing red’s sensor appears to have a detrimental effect on red’s overall ability to
penetrate blue’s defense.

friendly and enemy agents is locally about even, while red will fight blue
even if outnumbered by four enemy combatants. Both sides have the same
fire range (rF = 4), and the same single-shot probability (Phit = 0.005) and
can simultaneously engage the same maximum of three enemy targets. (Note
that the flags for this run are near the middle of the left and right edges of
the notional battlefield rather than at the corners.)

The top row of Fig. 9.10 shows screenshots of a run in which red’s sensor
range is equal to blue’s. Here the red force easily penetrates the blue defense
as it moves toward the blue flag. During red’s advance, a number of agents

N rS rF rM w = (wAF, wAE, wIF, wIE, wFF, wEF) τAdv τCluster ∆Combat

Red 100 5, 7, 9 4 1 wRed = (10, 90, 10, 50, 0, 99) 2 4 −4
Blue 50 5 4 1 wBlue = (10, 90, 10, 50, 0, 99) 2 4 0

Table 9.5 Agent parameter values for nonmonotonic run appearing in Fig. 9.10

288 Andrew Ilachinski

are “stripped” away from the main red-blue cluster in the center as they
respond to the presence of nearby blue agents. The snapshots in the middle
row of Fig. 9.10 show that when red’s sensor range is two units greater than
blue’s, red is not only able to mass almost its entire force on the blue flag (by
t = 90 – not shown – blue’s flag is completely enveloped by red forces), but to
also defend its own flag from all blue forces as well. In this instance, the red
force knows enough about and can respond quickly enough to enemy action
such that it is able to march into enemy territory effectively unhindered by
enemy forces and “scoop up” blue agents as they are encountered.

What happens as red’s sensor range is increased still further? One might
intuitively guess that red can only do at least as well, certainly no worse;
that is, red’s mission performance scales monotonically with the amount of
information that each red agent is allowed to have about the engagement.
However, as the snapshots for bottom row of Fig. 9.10 reveal, when red’s
sensor range is increased to rS,red = 9 – so that all red agents are locally
aware of more information – red, as a force, turns in an objectively weaker
mission performance than on the preceding runs. “Weaker” here meaning
that red is less effective in (1) establishing a presence near the blue flag and
(2) defending blue’s advance toward the red flag.

The nonmonotonic behavior is immediately obvious from Fig. 9.11, which
shows a 3D fitness landscape for mission objective = maximize number of red
agents near blue flag (where “near” is defined as anywhere within 10 bat-
tlefield units). The landscape sweeps over rS,red (= 1, 2, . . . , 16) and the red
combat meta-rule threshold ∆Combat (= −15,−14, . . . ,+15). Higher-valued
fitness values translate to mean better performance.

Fig. 9.11 Fitness landscape for mission = maximize number of red agents near blue flag,
as a function of combat aggressiveness (∆Combat) and red sensor range (rS,red). Higher-
valued fitness values translate to mean better performance. Note that (this particular
fitness measure) does not scale monotonically with sensor range.

9 EINSTein 289

This example illustrates that when the resources and personalities of both
sides remain fixed in a conflict, how well side X does over side Y does not nec-
essarily scale monotonically with X ’s sensor capability. As one side is forced
to assimilate more and more information (with increasing sensor range), there
will inevitably come a point when the available resources will be spread too
thin and the overall fighting ability will therefore be curtailed. Agent-based
models such as EINSTein are well suited for providing insights into more
operationally significant questions such as, “How must X’s resources and/or
tactics (i.e., personality) be altered in order to ensure at least the same level
of mission performance?”

9.7 Genetic Algorithm Breeding

One of EINSTein’s most powerful built-in features is a genetic algorithm
“breeder” run-mode. Genetic algorithms (GAs) are a class of heuristic search
methods and computational models of adaptation and evolution based on
natural selection. In nature, the search for beneficial adaptations to a con-
tinually changing environment (i.e., evolution) is fostered by the cumula-
tive evolutionary knowledge that each species possesses of its forebears. This
knowledge, which is encoded in the chromosomes of each member of a species,
is passed on from one generation to the next by a mating process in which
the chromosomes of “parents” produce “offspring” chromosomes. GAs mimic
and exploit the genetic dynamics underlying natural evolution to search for
optimal solutions of general combinatorial optimization problems. They have
been applied to the traveling salesman problem, VLSI circuit layout, gas
pipeline control, the parametric design of aircraft, neural net architecture,
models of international security, and strategy formulation [50].

Fig. 9.12 illustrates how GAs are used in EINSTein. Chromosomes define
individual agents. Genes encode the components of the personality weight
vector, sensor range, fire range, meta-rule thresholds, and so forth. The initial
GA population consists of a set of randomly generated chromosomes. The
fitness function represents a user-specified mission “fitness” (see later). The
target of the GA search is, by default, the red force. The parameter values
defining the blue force – once they are defined at the start of a search – are
held fixed.

9.7.1 Search Space

EINSTein uses up to 80 genes to conduct a GA search; the actual number
depends on the particular region of the parameter space the user wishes to
explore. Some genes are integer-valued (such as the agent-to-agent commu-

290 Andrew Ilachinski

Fig. 9.12 Schematic of EINSTein’s GA. The blue force and mission fitness are both fixed
by the user. The GA encodes components of the agents’ personality weight vector, sensor
range, fire range, meta-rule thresholds, and so forth and breeds the “best” red force using
populations of N red force “candidate” solutions; see the text for details.

nication links), while others are real-valued. All appropriate translations to
integer values and/or binary toggles (on/off) are performed automatically
by the program. Typically, each gene encodes the value of a basic parameter
defining the red force. For example, g1 encodes red’s sensor range when an
agent is in the alive state, g3 encodes red’s alive-state fire range, and so on.
Some special genes encode the sign (+ or−) of an associated parametric gene.
Thus, the actual value of each of the components of red’s personality weight
vector, for example, is actually encoded by two genes : one gene specifying
the component’s absolute value, and the other gene specifying its sign.

EINSTein’s GA can conduct its search over five spaces:

• Single-squad personality: GA searches over the personality-space defining
a single squad.

• Multiple-squad personality: GA searches over the personality-space defin-
ing multiple squads. The number of squads and the size of each squad
remain fixed throughout this GA run mode.

• Squad composition: GA searches over squad composition space. The per-
sonality parameters defining squads 1 through 10 are fixed according to
the values defined in the default input data file used to start the interac-
tive run. The GA searches over the space defined by the number of squads

9 EINSTein 291

(1–10) and size of each squad (constrained by the total number of agents
as defined by the data file).

• Intersquad communications connectivity: GA searches over the zero-one
entries defining the communications matrix. The number of squads and
the number of agents per squad are kept fixed at the values defined in the
default input data file used to start the interactive run.

• Intersquad weight connectivity: GA searches over (real-valued) entries
defining the squad interconnectivity matrix. The number of squads and
the number of agents per squad are kept fixed at the values defined in the
default input data file.

9.7.2 Mission Fitness

The mission fitness (MF) is a measure of how well agents perform a user-
defined mission. Typical missions are “Get to blue flag as quickly as possible,”
“Minimize red casualties,” and “Maximize the ratio of blue to red casualties,”
or some combination of these. MFs are always defined from red’s perspective.
The user assigns weights (0 ≤ wi ≤ 1)7 to represent the relative degree
of importance of each mission-fitness primitive, mi (see Table 9.6). While
the mission primitives are relatively few in number and simple, they can be
combined to define more complicated multiobjective functions.

Weight Primitive Description

w1 m1 Minimize time to goal
w2 m2 Minimize friendly casualties
w3 m3 Maximize enemy casualties
w4 m4 Maximize friendly-to-enemy survival ratio
w5 m5 Minimize friendly center-of-mass distance to enemy flag
w6 m6 Maximize enemy center-of-mass distance to friendly flag
w7 m7 Maximize Nfriends within distance D of enemy flag
w8 m8 Minimize Nenemy within distance D of friendly flag
w9 m9 Minimize number of friendly fratricide hits
w10 m10 Maximize number of enemy fratricide hits
w11 m11 Maximize friendly territorial possession
w12 m12 Minimize enemy territorial possession

Table 9.6 EINSTein’s GA mission-fitness primitives

The mission-fitness function, M , used by the GA, is a weighted sum of
mission primitives: M =

∑

i mi. (It is left up to the user to ensure that mis-
sion objectives are both logically consistent and amenable to a “solution.”)

7 Mission fitness weights must not be confused with the personality weights; agent per-
sonalities discussed earlier.

292 Andrew Ilachinski

Future versions of EINSTein will include a richer set of mission-fitness prim-
itives, including: locate and kill enemy squad leaders, stay close to friends,
stay away from enemies, have combat efficiency (as measured by cumulative
number of hits on enemy), clear specified area of enemy agents, occupy area
for specified period of time, take the enemy flag under specific conditions
(e.g., the user is asked to specify the number of agents that must occupy a
given area around the enemy flag for a given length of time), among others.

9.7.3 EINSTein’s GA Recipe

The GA uses EINSTein’s agent-movement/combat engine to conduct its
searches. In pseudocode, the main components of EINSTein GA recipe are
as follows:

for generation=1,Gmax

for personality=1,Pmax

decode chromosome
for initial condition IC=1 toICmax

run combat engine
calculate fitness (for given IC)

next initial condition
calculate mission fitness

next personality
find the best personality
select survivors from population
perform (single-point) crossover operation
perform mutation operation
update progress/status

next generation

write best personality to file

In words, the GA uses a randomized pool of chromosomes to define an
initial generation of red personalities. For each red personality, and for each
of the ICmax initial spatial configurations of red and blue forces, the program
then runs EINSTein’s combat engine to determine the mission fitness. After
looping through all personalities and initial conditions, the GA first sorts
and ranks the personalities according to their mission-fitness values, then
selects some to be eliminated from the pool and others to breed. The GA
then performs the basic operations of crossover and mutation. Finally, after
defining a new generation of red personalities, the entire process is repeated
until either the user interrupts the evolution or the maximum generation
number has been reached (see Fig. 9.12).

9 EINSTein 293

9.7.4 Sample GA Breeding Experiment #1

Consider the following mission (as stated from the red force’s point of view):
“Keep blue agents as far away from the red flag as possible, for as long as
possible (up to a maximum 100 iteration steps)”; that is, set all GA mission
weights to zero, except for w6 = w8 = 1/2; see Table 9.6. This means that
the mission fitness M will be close to its maximal value one only if red is
able to keep all blue agents pinned near their own flag (at a point farthest
from the red flag) for the entire duration of the run, and M will be near its
minimal value zero if red allows blue agents to advance completely unhin-
dered toward the red flag. Combat unfolds on a 40-by-40 battlefield, with 35
agents per side. The GA is run using a pool of 50 red personalities for 50
generations, and each personality is averaged over 25 initial spatial config-
urations. Blue agents are each assigned (a fixed) personality weight vector
wBlue = (wAF, wIF, wAE, wIE, wFF, wEF) = (0, 10, 0, 10, 0, 90).

Fig. 9.13 shows a typical learning curve, where “Best” refers to the fit-
ness of the highest-ranking candidate solution and “Average” refers to the
average fitness among all candidate solutions per generation. The GA run de-
scribed here (using a 1-GHz Pentium IV PC) each requires roughly an hour
to complete.

Fig. 9.13 Typical GA learning curve for GA breeding experiment discussed in the text.

Screenshots from a typical run using the highest-ranked red personality
(as sampled from “solution” pool representing generation 30) that the GA
is able to find for this mission are shown along the top row of Fig. 9.14.
They show that red is very successful at keeping blue forces away from its
own flag; the closest that red permits blue agents to approach the red flag
– during the entire allotted run time of 100 iteration steps – is some point
roughly near midfield. In words, the “tactic” here seems to be – from red’s

294 Andrew Ilachinski

Fig. 9.14 Screenshots from several sample runs of GA breeding experiment #1. The top
row shows a run using the highest-ranked red agents after 50 generations. The second
row shows the second highest-ranked red force. The third row shows how the red force
adapts to a more aggressive blue force. Finally, the fourth row shows an example of how
a suboptimal red force performs representing a pool of agents occupying an early portion
(generation 10) of the GA’s learning curve.

9 EINSTein 295

perspective – “fight all enemy agents within sensor range, and move toward
the enemy flag slowly enough to drive the enemy along.” Note that this emer-
gent tactic is also fairly robust, in the sense that if the battle is initialized
with a different spatial disposition of red and blue forces (while keeping all
personality parameters fixed), red performs this particular mission about as
well, on average, as evidenced by these screenshots.

Screenshots from a typical run using the second highest-ranking red per-
sonality are shown along the second row of Fig. 9.14. These show a slightly
less successful, but nonetheless innovative, alternative tactic. Initially, red
agents move away from their own goal to meet the advancing blue forces,
just as in the first case (at t = 25). Once combat ensues, however, any red
agents that find themselves locally isolated now “double back” toward their
own flag (positioned in the lower left corner of the battlefield) to regroup with
other remaining friendly agents. The red force thus, effectively, forms an im-
promptu secondary defense against possible blue leakers. Because a few blue
agents do manage to fight their way near the red flag at later times (at least
in the particular run these screenshots have been taken from; see snapshot
for t = 90), the red agent parameter values underlying this emergent tactic
are not as highly ranked as the parameter values underlying the run shown
in the top row.

The series of screenshots appearing in the third row of Fig. 9.14 show the
emergent tactic used by the highest-ranked red personality found by the GA
after the blue force is made more aggressive. For this case, prior to initializ-
ing the GA search, blue’s personality weight-vector components for moving
toward red (i.e., wAE = w3, and wIE = w4) are first increased by 50%. We
see that EINSTein’s GA discovers an entirely different (and more effective)
tactic to use. Here, the red force quickly spreads out to cover as much ter-
ritory as possible and individual agents attack the enemy as soon as they
come within view. As red agents’ local territorial coverage is thinned – either
through attrition or gradual advance toward the blue flag – other red agents
(namely agents that had previously been positioned near the periphery of the
battlefield) move closer to the center of the battlefield, thus filling emerging
voids. This tactic succeeds in preventing any blue agents from reaching the
red flag and also manages to push most of the surviving blue force back to-
ward its own flag (near the top right corner of the battlefield)! As is true of
the other cases in this experiment, this tactic is also fairly robust and is not
a strong function of the initial spatial disposition of red and blue forces.

The last row of plots in Fig. 9.14 contains snapshots from a run using
interim red agent parameter values, before the GA has had a chance to eval-
uate a large number of candidate solutions. This example illustrates how an
obviously sub-optimal pool of agents behaves differently from their optimized
counterparts. The mission parameters and blue force agent personalities are
the same as in the case represented by the screenshots in the third row. We
see that, initially at least, there does not seem to be much difference in the
optimal and sub-optimal behaviors; red agents quickly disperse outward to

296 Andrew Ilachinski

cover a large area. However, because the GA has not yet had the time to fine-
tune all of red’s genes, the red force is, in this instance, unable to prevent
blue agents from penetrating deeply into its territory. The defensive tactic,
however it may be characterized, is obviously ineffective.

9.7.5 Sample GA Breeding Experiment #2

Consider a scenario in which the blue force is tasked with defending its flag
against a smaller attacking red force. We use the GA to find a red force that
is able to penetrate the blue defense. Table 9.7 lists some pertinent parameter
values defining the two forces. The third column of the table (i.e., red trial
values) lists baseline red force parameter values (as defined by us, not the
GA) used to test the scenario. The fourth and fifth columns (i.e., GA-bred
values) list the GA-bred red force “solution.” Notice that, in both cases, the
number of agents is the same and is fixed (with blue outnumbering red, 100
to 50 in all runs). All baseline red-trial alive and injured parameter values
are equal.

Blue Red Trial Red GA Bred
Agents Agents Alive Agents Injured Agents

NAgents 100 50 50 50
rS 5 5 8 5
rF 3 3 8 5
rM 2 2 2 2
wAF 0 10 3 −22
wAE 100 40 40 95
wIF 0 10 46 −86
wIE 100 40 38 −14
wFF 0 0 −70 14
wEF 0 25 65 31

τAdvance N/A 3 3 1
τCluster 5 10 13 17
∆Combat −20 0 −19 +20

Table 9.7 Agent parameter values for GA sample run appearing in Figs. 9.15 and 9.16

Fig. 9.15 shows screenshots from a typical run using the red-trial values.
Red agents attack, unsuccessfully, in a tight cluster. The larger blue force
(whose agents initially move about randomly around their starting position
until a red agent comes within their sensor range) dispels the red force rather
easily (within the 30 time steps shown here).

The GA-bred parameters listed along the bottom row in Table 9.7 define
the highest-ranked red force that EINSTein’s GA is able to find (after 30 gen-
erations) with respect to performing the mission = “maximize the number of
red agents able to penetrate within a distance d = 7 units of the blue flag

9 EINSTein 297

Fig. 9.15 Trial red attacking force (consisting of typical parameter values that are not
explicitly tuned for performing any specific mission). Red performance is used simply as a
reference for interpreting the output of the sample GA breeding experiment discussed in
the text.

within 40 time steps.” A population size of 75 was used (i.e., each generation
of the GA search consists of 75 red force candidate “solutions”) and mission
fitness, for a given candidate solution, is averaged over 10 initial configura-
tions of red and blue forces. The fitness equals one if a candidate solution
performs the specified mission in the best possible manner (i.e., if the red
force sustains zero casualties and all agents remain within d = 7 of the blue
flag starting from the minimal possible time at which they move to within
that distance of the flag, for all 10 initial states) and equals zero if a candidate
solution fails to place a single red agent within d = 7 of the blue flag for all
10 initial states (within the mission time limit). Fig. 9.16 shows screenshots
from a typical run using the GA-bred red force values. (The arrows are in-
cluded as visual aids and simply trace the motion of the red agent clusters.)
Comparing this sequence of steps to those in the trial run shown in Fig. 9.15,
it is obvious that the respective “attack strategies” in the two cases are very
different. Indeed, the GA has found just the right mix of agent-agent prox-
imity weights and meta-rules to define a red force that effectively exploits a
relative weakness in the randomly maneuvering blue defenders. The emergent
“tactic” is to separate into two roughly equal-sized units, regroup beyond en-
emy sensor range, and then simultaneously strike, as a pincer, into the heart
of the defending enemy cluster.

Apart from the anecdotal evidence supplied by screenshots of this particu-
lar run, the efficacy of this simple GA-bred tactic is illustrated by comparing
graphs of the number of agents near the blue flag (averaged over 50 runs)

Fig. 9.16 Screenshots from a typical run using the GA-bred red force for the sample GA
breeding experiment discussed in the text. Red agents are defined by GA-bred parameter
values that are the highest ranked (after 30 generations) with respect to performing the
mission = “maximize the number of red agents able to penetrate within a distance d=7
units of the blue flag within 40 time steps.”

298 Andrew Ilachinski

as a function of time for the red-trial and GA-bred cases. Fig. 9.17 shows
that whereas fewer than three red-trial agents, on average, penetrate close
to the blue flag (Fig. 9.17a), almost 80% of the entire GA-bred red force is
able to do so (Fig. 9.17b) and begins penetrating at an earlier time. Other
(well-performing) tactics are possible, of course. A representative sampling is
generally provided by looking at the behaviors of some of the higher-ranking
red forces remaining at the end of a GA search. It is interesting to run a
series of GA runs to systematically probe how red forces “adapt” to different
blue personalities. What one observes, typically, is that as the behavior of
the blue agents changes, various – often dramatically different – GA-bred red
personalities emerge to exploit any new weaknesses in the blue’s defensive
posture.

Fig. 9.17 A comparison between the average number of red agents that approach within
a distance d = 7 of the blue flag for (a) trial and (b) GA-bred red forces. We see that the
GA-bred red force typically performs this mission an order of magnitude more successfully
than the trial force.

9.8 Discussion

“The musical notes are only five in number,
but their melodies are so numerous that one cannot hear them all.
The primary colors are only five in number,
but their combinations are so infinite that one cannot visualize them all.
In battle there are only the normal and extraordinary forces,
but their combinations are limitless; none can comprehend them all.”

— Sun Tzu, The Art of War

The high-level, or poetic, description of EINSTein owes much to the sug-
gestive metaphors appearing in the quote from The Art of War. In the same
way as, for Sun Tzu, rainbows and melodies are all natural outcomes of com-
bining primary colors and musical notes, EINSTein may be viewed as an
“engine” that converts a primitive grammar (i.e., a grammar composed of
the basic notes and colors of combat) into the limitless patterns and possibil-
ities of war. The researcher chooses and/or tunes primitive, low-level agents

9 EINSTein 299

and rules; EINSTein provides the dynamic arena within which these rules
interact and spawn high-level patterns and behaviors. On a more practical
level, EINSTein was developed with these three important goals in mind:

1. To demonstrate the efficacy of agent-based simulation alternatives to more
traditional Lanchester-equation-based models of combat [5].

2. To be used as a general prototype artificial life model/toolkit that can
be used as a testbed for exploring self-organized emergent behavior in
complex adaptive systems.

3. To provide the military operations research community with an easy-to-
use, intuitive agent-based combat-simulation laboratory that – by respect-
ing both the principles of real-world combat and the dynamics of complex
adaptive systems – may lead researchers one step closer to a fundamental
theory of combat.

To better appreciate how each of these motivations has contributed to EIN-
STein’s (still evolving) architecture, consider the conceptual map of its de-
sign, as illustrated schematically in Fig. 9.18. Self-organized patterns emerge
out of a set of primitive local rules of combat, both on the individual agent
level – via interactions among internal motivations (on the Phenotype-I level,
which appears as the middle level in Fig. 9.18) – and squad and force levels
(labeled Phenotype-II in Fig. 9.18, and which appears as the topmost level
in the figure) – via mutual interactions among many agents in a changing
environment.

Of course, a deeper understanding of phenomena governing behaviors on
the topmost level can only be achieved by developing a suite of appropriate
pattern recognition tools (the need for which is indicated symbolically at the
top of Fig. 9.18). Although a number of interesting, and highly suggestive,
high-level patterns have already been discovered, much still remains to be
done. Consider, for example, the frequent appearance of various power-law
scalings and fractal dimensions describing space-time patterns and attrition
rates ([34, 40]). The existence of power-law scalings, in particular, strongly
suggests that a self-organized, critical-like dynamical mechanism might gov-
ern turbulent-like phases of combat. However, the data collection and analysis
necessary to rigorously establish the nature of these findings (as well as to
establish a mathematically precise set of conditions under which power-law
scalings either do or do not occur) has only just started.

One of the directions in which EINSTein’s design is moving (some details
of which are described in the next section) is toward a fully developed onto-
logical architecture that assigns specific meaning to the symbolic relationship
between environment and action. The hope is to be able to explore the com-
plementary problem of reverse behavior engineering; that is, the problem of
finding an appropriate set of primitives (properties and rules) that lead ei-
ther to empirically observed or desired macroscopic patterns of combat (or,
in Fig. 9.18, of finding ways of going from either phenotype level I or II to
the genotype level).

300 Andrew Ilachinski

Fig. 9.18 A hierarchy of conceptual levels that illustrate EINSTein’s core design.

9.8.1 Why Are Agent-Based Models of Combat Useful?

The most important immediate payoff to using EINSTein is the radically
new way at looking at fundamental issues. However, agent-based models are
best used to enhance understanding, not as prediction engines. Specifically,
EINSTein is being designed to help researchers do the following:

• Understand how all of the different elements of combat fit together in
an overall combat phase space: “Are there regions that are ‘sensitive’ to
small perturbations, and, if so, might there be a way to exploit this in
combat (as in selectively driving an opponent into more sensitive regions
of phase space)?”

• Assess the value of information: “How can I exploit what I know the enemy
does not know about me?”

9 EINSTein 301

• Explore trade-offs between centralized and decentralized command-and-
control (C2) structures: “Are some C2 topologies more conducive to infor-
mation flow and attainment of mission objectives than others?” “What do
emergent forms of a self-organized C2 topology look like?”

• Provide a natural arena in which to explore consequences of various qual-
itative characteristics of combat (unit cohesion, morale, leadership, etc.).

• Explore emergent properties and/or other “novel” behaviors arising from
low-level rules (even combat doctrine if it is well encoded): “Are there
universal patterns of combat behavior?”

• Provide clues about how near-real-time tactical decision aids may eventu-
ally be developed using evolutionary programming techniques.

• Address questions such as “How do two sides of a conflict coevolve with one
another?” and “Can one side exploit what it knows of this coevolutionary
process to compel the other side to remain ‘out of equilibrium?’ (or be
otherwise trapped in a supoptimal dynamical combat state).”

EINSTein has been used to explore the following: patrol dynamics, secu-
rity, and ambush tactics [52]; reconnaissance [53]; counter reconnaissance [54];
communications [55]; distributed operations in open [56] and urban environ-
ments [57]; the historical evolution of squad and fire-team composition and
weapon-mix [47]; small unit combat [59]; C2 [60]; situational awareness [58];
civil disobedience [61]; peacekeeping operations [62]; and maritime ship sta-
tioning [63]. In all, there are some 800 registered users of EINSTein, including
researchers from the US Department of Defense, academia, research and de-
velopment centers and private companies.

9.8.1.1 Command and Control

EINSTein contains embedded code that hardwires in a specific set of C2 func-
tions (i.e., both contain a hierarchy of local and global commanders), so that
it can be used to explore the dynamics of a given C2 structure. However, a
more compelling question is, “What is the best C2 topology for dealing with a
specific threat, or set of threats?” One can imagine using a genetic algorithm,
or some other heuristic tool to aid in exploring potentially very large fitness
landscapes, to search for alternative C2 structures. What forms should local
and global command take, and what is the optimal communications matrix
among individual combatants, squads, and their local and global comman-
ders?

9.8.1.2 Pattern Recognition

An even deeper issue has to do with identifying the primitive forms of in-
formation that are relevant on the battlefield. Traditionally, the role of the

302 Andrew Ilachinski

combat operations research analyst has been to assimilate and provide use-
ful insights from certain conventional streams of battlefield data: attrition
rate, posture profiles, available and depleted resources, logistics, rate of rein-
forcement, Forward Edge of the Battle Area (FEBA) location, morale, and so
forth. While all of these measures are obviously important, and will remain so,
having an ABM of combat permits one to ask the following deeper question:
“Are there any other forms of primitive information – perhaps derived from
measures commonly used to describe the behavior of nonlinear and complex
dynamical systems – that might provide a more thorough understanding of the
fundamental dynamical processes of combat?” We have already mentioned,
for example, that evidence suggests that the intensity of battles – both in the
real world and in ABMs of combat – obeys a fractal power-law dependence on
frequency and displays other traits characteristic of high-dimensional chaotic
systems. Are there other, similar but heretofore unexamined, measures that
may provide insight into the dynamics of real-world combat?

9.8.1.3 “What If?” Experimentation

The strength of ABMs lies not just in their providing a potentially powerful
new general approach to computer simulation but also in their infallible abil-
ity to prod researchers into asking a host of interesting new questions. This is
particularly apparent when EINSTein is run interactively, with its provision
for making quick “on-the-fly” changes to various dynamical parameters. Ob-
servations immediately lead to a series of “What if?” speculations, which in
turn lead to further explorations and further questions. Rather than focus-
ing on a single scenario and estimating the values of simple attrition-based
measures of single outcomes (“Who won?”), users of agent-based simulations
of combat typically walk away from an interactive session with an enhanced
intuition of what the overall combat fitness landscape looks like. Users are
also given an opportunity to construct a context for understanding their own
conjectures about dynamical combat behavior. The agent-based simulation
is therefore a medium in which questions and insights continually feed off one
another.

9.8.1.4 Validation

Before any combat model – agent based or not – is judged “useful” to a mili-
tary operations researcher, it must pass two important tests in the affirmative:
(1) Does it provide insight into the specific set of problems the researcher is
interested in studying, in a well-defined and self-contained conceptual con-
text? (which is an obvious requirement of even the most basic mathematical
model) and (2) Is its output consistent with behavior that is either accepted
to be true or has otherwise been observed to occur in the real-world? Most

9 EINSTein 303

Fig. 9.19 Schematic of the interplay between experience and theory in the forward and
inverse problems of simulating combat.

importantly, a successful model of combat must respect the critical interplay
between real-world experience and simulation outcome. That is to say, the
model must at some point be validated.

Fig. 9.19 illustrates, schematically, the interplay between the forward prob-
lem of using the model to predict behaviors and identify patterns and the
inverse problem of using experience and real-world data to add to, change,
and/or refine the rules and behaviors that define the model. The forward
problem consists of observing real-world behavior, with the objective be-
ing to identify any emergent high-level behavioral patterns that the system
might possess. The inverse problem deals with trying to induct a set of low-
level rules that describe observed high-level behaviors. Starting with observed
data, the goal is to find something interesting to say about the properties of
the source of the data. Solving the forward problem requires finding the right
set of theoretical tools that can be used to identify patterns, while the inverse
problem needs tools that can be used to induct low-level rules (or models)
that generate the observed high-level behaviors.

Since EINSTein was conceived primarily as an exploratory model, valida-
tion is less of an issue than it might be for more ostensibly realistic models.
As long as EINSTein’s outcomes are intuitive and its inputs are easy to gen-
eralize (or translate) for use by more realistic models, EINSTein will remain
useful for many different kinds of exploratory analyses. Nonetheless, because
EINSTein is already powerful enough to simulate many real-world scenarios,
it is proper to ask about how the model may be validated.

One such recent attempt to validate (a beta version of) EINSTein was
undertaken at the United States West Point Military Academy’s Operations

304 Andrew Ilachinski

Research Center for Excellence by Klingaman and Carlton [64], by comparing
its output to that of another well-established combat simulation model, called
JANUS (a high-resolution conventional – i.e., not agent based – simulation of
red and blue forces, with resolution down to the individual platform and sol-
dier). The study endeavored to establish the combat effectiveness of EINSTein
agents executing a standard National Training Center combat scenario that
consists of a single armored company of 14 blue force tanks engaged versus a
similar size force of 14 red battle tanks. One set of blue agents is allowed to
gain knowledge (or “learn”) by using EINSTein’s built-in GA agent breeder
function. The behavior of another set of blue agents is kept fixed, and the
agents are not allowed to learn. In both cases, EINSTein’s combat results for
all agent actions are recorded. These observed actions are then programmed
into JANUS (EINSTein’s automatic record of center-of-mass positions are
used to define the routes in JANUS), and, for each case, the combat effec-
tiveness resulting from JANUS is compared to the outcome in EINSTein.
The validation test consisted of verifying the reasonable expectation that the
knowledgeable agents exhibit noticeably different (and, hopefully, improved)
behavior and have a significantly better loss-exchange ratio (LER) in both
EINSTein and JANUS.

Using a general linear model analysis of two factors (agent type and model)
with two levels each (default/GA-bred and EINSTein/JANUS), the study
found that although the LER was different for the two models, the LER data
in both models follow similar trends. The standard deviations of the mean
LER also decrease from the default agents to GA-bred agents in both mod-
els. Overall, the study found that EINSTein’s agents may be used to portray
similarities of combat vehicles reasonably well and that learning as portrayed
in EINSTein can be transferred into another combat model. However, citing
various limitations due to model-specific constraints on translating agent and
environmental characteristics from one model to the other, as well as unavoid-
able conceptual differences between the two models, Klingaman and Carlton
concluded their report by offering three suggestions: (1) that ABMs need in-
creased fidelity in terms of terrain and weapons performance (limitations that
are no longer an issue for newer versions of EINSTein; see discussion in the
next section), (2) traditional models, such as JANUS, ought to incorporate
ABM-like personality traits and decision-making algorithms to allow for more
realistic combatant actions, and (3) traditional models ought to incorporate
some mechanism to allow for adaptive learning.

One other important suggestion that belongs on Klingaman and Carlton’s
list of general recommendations is due to Axtell et al. [65], who argued for
the need to align (or “dock”) simulation models. Docking refers to a pro-
cess of testing to see whether two models can produce the same results, or
using one model to check the output of another, but in a more general and
systematic manner than was used in the one-time EINSTein-to-JANUS com-
parison discussed above. The idea is similar to a common practice among
technical researchers to use not one, but two or more mathematical packages

9 EINSTein 305

(such as Mathematica [66] and Maple [67]) to help check their calculations.
The authors illustrate this concept by using, as their testbed simulations, a
model of cultural transmission designed by Axelrod [76] and the Sugarscape
multiagent-based simulation of evolution that takes place on a notional sugar
field, developed by Epstein and Axtell [29]. Since the models differ in many
ways (and have been designed with quite different goals in mind), the com-
parison was not an especially easy one to make. Nonetheless, the authors
report that the benefits of the sometimes arduous process of alignment far
outweighed the hardships. In the end, the user communities of both models
benefited from the alignment process by gaining a deeper understanding of
how each program works, of their similarities and differences, and of how the
inputs and outputs of each program must be modified before a fair compari-
son of what really happens in either model can be made.

As the list of combat agent models grows beyond those that have already
appeared (such as CROCADILE, MANA, SEM, Socrates, and SWarrior;
see [34]), the need to “align” the output of these models – in the sense defined
by Axtell et al. [65] – can only become more important.

9.8.1.5 Universal Grammar of Combat?

What lies at the heart of an artificial life approach to simulating combat is the
hope of discovering a fundamental relationship between the set of higher-level
emergent processes (penetration, flanking maneuvers, containment, etc.) and
the set of low-level primitive actions (movement, communication, firing at
an enemy, etc.). Wolfram [77] has conjectured that the macro-level emergent
behavior of all cellular automata rules falls into one of only four universality
classes, despite the huge number of possible local rules. While EINSTein’s
rules are obviously more complicated than those of their elementary cellular
automata brethren, it is nonetheless tempting to speculate about whether
there exists – and, if so, what the properties are – a universal grammar of
combat. A step toward achieving this far-reaching goal is being taken with
EINSTein’s recent integration within Python, a scripting language that allows
programming-savvy users to extend EINSTein (see discussion below).

9.9 Overview of Features in Newer Versions

EINSTein has evolved considerably beyond the snapshot of the program that
appears in the previous sections of this chapter, although the core of the
model remains essentially the same and is consistent with everything thus
far discussed.8 This section summarizes the state of the model as it appears

8 Version 2.1 may be downloaded from [71], and older versions may be downloaded
from [72].

306 Andrew Ilachinski

at the time of this writing (April 2008) and highlights some of the main
changes and additions that have been made to the program since the first
edition of this book came out in 2005.

Loosely speaking, EINSTein’s emphasis as a CAS-based “combat simu-
lator” has gradually shifted away from describing the mutual interactions
among many simple agents (although EINSTein’s original capability in this
regard is still there, of course) to describing interactions among a relatively
few, but complex agents that are also endowed with a richer internal structure
and dynamics. Thus, where earlier versions have focused on the complexity
of emergent behaviors on the system level, more recent work adds the ability
to explore emergent behaviors on the individual agent level as well. Details
are discussed in [34].

Apart from (mostly self-explanatory) changes to the GUI and file I/O
(see below), the newest version of EINSTein includes three general classes
of enhancements over earlier releases: (1) agent attributes, (2) battlefield
environment and behavior functions, and (3) integration within Python.

9.9.1 Agent Attributes

An agent’s “personality” may now be tuned using many more primitive at-
tributes than previously available. For example (in alphabetical order),9 (1)
Acuity , which regulates the strength of an agent’s focus on its priorities and
is used to “sharpen” decisions that are made probabilistically (its range of
possible values varies from +1, for which an agent only considers options of
maximum value, to +1, for which an agent gives equal consideration to all
options); (2) Camouflage, which defines how well an agent can hide from
other agents in the context of a local environment (if the value is 0, an agent
is 100% visible to other agents; if the value is 1, an agent is effectively invisible
to both friends and enemies; and intermediate values determine an agent’s in-
herent probability of being detected); (3) Frazzle, which specifies how much
an agent’s firing accuracy degrades when the agent is presented with multiple
simultaneous targets (and increases linearly with the number of simultane-
ous targets an agent fires at, reaching its maximum value at the weapon’s
maximum target limit); (4) Mass, which specifies the rate at which agents
burn their energy (all agents expend energy while moving, the amount being
determined by their “velocity” – i.e., how far they move in a single time step –
and by the nature of the terrain over which they are moving); (5) Memory ,
which regulates how long does an agent retains information about certain in-
ternal state variables (and is computed using a time-averaging technique: the
contribution of past values decays exponentially, with the value of memory
controlling the rate of that exponential decay); (6) Recovery rate, which

9 This is only a partial list of agent attributes that have been added to EINSTein since
version 1.0. For a complete list, please refer to EINSTein’s programming guide [75].

9 EINSTein 307

defines how much health an agent regains in a single time step (a value of 0
means an agent never recovers from injury and a value of 1 means an agent
fully recovers from all injuries in a single time step; all intermediate values
are interpreted as the probability an agent will recover from injuries); (7)
Resupply rate, which specifies how frequently an agent reloads its weapon
with new ammunition (a value of 0 means that an agent never reloads; a value
of 1 means that an agent reloads at the start of every time step; intermediate
values are interpreted as the probability of reload); (8) Stamina , which is
the rate at which agents regain their energy (energy expenditure is propor-
tional to agent mass, and the amount recovered is proportional to stamina,
if mass = stamina then an agent can traverse 100% passable terrain indef-
initely); and (9) Tremor , which is the degree to which an agent’s “inherent
fallibility” reduces its weapon firing accuracy (if the value is 0, then weapon
accuracy is unaffected; if the value is 1, then one standard deviation is added
to the agent’s weapon’s average hit distance from an intended target). Health
has also been generalized from a binary variable (healthy/not-healthy) to a
continuous one (ranging in value from 0 to 1). And movement range is now
effectively free to vary from 0 to the size of the battlefield.

9.9.2 Environment and Behavior Functions

There are six major additions to EINSTein’s battlefield environment and
repertoire of behavior functions and modifiers: (1) Pathfinding , which uses
a priority-queue variant of Dijkstra’s optimal path algorithm [51] to give
agents an innate “intelligence” to find paths between any two points on the
battlefield (an ability which, among other things, prevents agents from be-
coming trapped at corners of an obstacle and generally yields more realistic
“flow” around terrain elements); (2) Waypoint scripting , which allows the
user to define arbitrarily complex paths (or roads) on the battlefield and
tune the way in which agents traverse them (that also allows for far more
complex scenarios to be constructed than before)10; (3) Obstacles, which
are fixed objects in the terrain that interfere with weapon fire and agent
movement (and can therefore be used as building blocks to populate a bat-
tlefield with notional buildings). A weapon’s loft and an obstacle’s height
properties determine whether a weapon round reaches an intended target11;
(4) Weapon-construction class, which allows users to design their own

10 The “battlefield” that appears on the upper left of the screenshot shown in Fig. 9.1
contains two red and two blue user-defined paths defined using waypoints.
11 Impenetrability defines how much energy an obstacle may absorb from a weapon blast.
If an obstacle exists along the straight-line path between a weapon and its target and
height > loft, then all rounds fired by the weapon will be blocked from reaching its target.
If height ≤ loft, a weapon’s blast energy is reduced by a factor ∝ Impenetrability. If there
are multiple obstacles between a weapon and its kill-zone center, then the reduction in

308 Andrew Ilachinski

weapons-of-choice12 using a palette of 10 primitives (range, firing rate, ca-
pacity, blast radius, power, armor, deviation, reliability, loft, and ammunition
capacity); (5) Weapon-targeting logic, which provides agents with an in-
telligent targeting capability (and with which agents can discriminate targets
by weighing the relative potential benefit of firing at the given coordinate on
the battlefield). Agents consider factors such as expected blast size, the dam-
age likely to be inflicted on friends and enemies near the target coordinate,
and the value or threat that specific enemy agents represent. A targeting
penalty function is used to evaluate each of the possible targeting strate-
gies that may be used in a given context and is an analog of the movement
penalty function defined in Eq. 9.4; and (6) Trigger states, which generalize
EINSTein’s older meta-rules (which are still available) by allowing users to
associate certain predefined environmental conditions with agent behaviors
(i.e., agent actions may now be adaptively triggered by dynamic contexts).

Meta-rules have always allowed agents to tailor their behavior to simple
contexts – the ∆Combat meta-rule, for example, defines the conditions under
which agents either engage (or do not engage) the enemy (see Table 9.2) –
but also constrain the user to making basic either/or decisions (and limit an
agent’s context-specific behavior modification to changing a single compo-
nent of its default personality weight vector). EINSTein’s newer trigger-state
logic is vastly more flexible and allows essentially arbitrary modifications of
an agent’s behavior to be made contingent upon arbitrary environmental con-
ditions. Aside from obviously adding a great deal of realism to scenarios, the
new logic also allows analysts to more deeply explore interactions between
agent personalities and their dynamic environment.

Fig. 9.20 shows a screenshot of a sample work session in which the user has
elected to define a trigger state called “Hunker Down.” We see that it depends
on three activation conditions (health, energy, and fire density) and that the
response (shown along the right-hand side of the figure) consists of chang-
ing the value of 7 of 12 personality features (maximize rest and propensity
to flock, replace values for alive ally, own flag, and enemy flag with 0, re-
place the value for alive foe with −100, and replace value for moving toward
the local commander with +100). The probability that a given condition
becomes “active” may be defined as a piecewise discontinuous probability
density function using another dialog (not shown) that pops up by pressing
the “Define PDF. . . ” button associated with a given condition. The proba-
bility, PA, that a trigger state (in this case, “Hunker Down”) is active is the
product of the conditional probability distribution functions, P i

a, applied to

blast energy is cumulative (additive) along the straight-line path connecting the site and
the kill-zone center.
12 The user is presented with a default – but modifiable – selection of bolt-action rifle
(accurate, reliable, low range, low power); semiautomatic rifle (higher rate, lower range,
less accurate); machine gun (high rate, higher power, lower reliability); grenade (lower
range, larger spread, hard to target); and mortar (long range, large spread, high power,
accurate).

9 EINSTein 309

Fig. 9.20 Screenshot of EINSTein’s new trigger-state edit dialog.

their corresponding activation conditions, Ci, is PA ≡
∏

i P i
a (Ci). Up to five

activation conditions may be active at one time. However, there is no limit
on the number of trigger states that may be defined in a scenario for any
given agent.

9.9.3 GUI and File I/O

While most of the older elements of EINSTein’s GUI (see Fig. 9.1) remain
intact, albeit in a modified form to accommodate the growing palette of agent
attributes and behaviors, entirely new elements have been added to make it
easier for the user to interact with the program as it is running. A click of the
right mouse button now calls up a series of menus (see Fig. 9.21) that provide
quick access to essentially all of EINSTein’s key data-entry dialogs. There are
also additional options to both probe and alter the environment. For example,
the user may choose to “inspect a site” to see the properties of a particular
terrain element (if the site is “empty”) or to be given a complete list of agent
attributes if the site is occupied by an agent. Or, the user can pick up an
agent (or a goal), move it from one part of the battlefield to another, and

310 Andrew Ilachinski

Fig. 9.21 Screenshots of pop-up menus that appear after clicking with the right mouse
button in EINSTein versions 2.0 and higher.

continue running the same scenario. Terrain elements, obstacles, waypoints,
and paths can also all now be drawn freehand directly on the battlefield.

The types and contents of the scenario and data files depends on the ver-
sion of the program. Versions 1.0 and older use basic ASCII text files. Starting
with versions 1.1 (and newer), EINSTein uses Apache Software’s open-source
Xerces XML (eXtensible Markup Language) parser in C++ (version 2.3 [73])
to provide XML I/O functionality. Compatibility with EINSTein’s older *.dat
file format has been retained in the form of I/O functions that appear under
the Load and Save options of the main File menu. EINSTein has also been
significantly enhanced with data logging and data exporting functions.

9.9.4 Python and wxWidgets

One of the most exciting changes that has been made to EINSTein in recent
years is its integration within Python. Python is an interpreted, interac-
tive, object-oriented programming scripting language. It is freely available
in source or binary form from the Python developer homepage [69]. Since
Python is easily extended with new functions and data types implemented
in C or C++ (or other languages callable from C), when combined with the
300+ source-level functions of EINSTein’s core engine, Python becomes a
powerful programming environment in which to build custom “combat sce-
nario” applications.

PyE (version 2.1) is an extension of EINSTein that allows the simulation
to be run directly within the Python programming environment. On the

9 EINSTein 311

GUI level, PyE builds on (the pre-Python) EINSTein source code but is
without the earlier versions’ embedded graphical visualization tools (although
the data-extraction routines remain the same). The idea is to first use PyE
interactively to generate (and/or fine-tune) desired scenarios and then run
PyE in batch mode to generate statistics for follow-on analysis by some other
program. A sample Python-script for multiple time-series runs is included in
the automatic Windows install file [71].

Future versions of EINSTein (and PyE) will migrate entirely away from
EINSTein’s original Windows MFC codebase and use wxWidgets [74] as the
development platform. wxWidgets is a cross-platform, open-source GUI li-
brary that provides a single API for simultaneously developing applications
on multiple platforms (such as Win32, Linux/Unix, Mac OS X, X11, and
Motif) using a single codebase.

9.10 Next Step

While EINSTein continues to be developed and new capabilities are still be-
ing added to the program as of this writing (April 2008), a new direction has
recently been taken in a related project. The project’s goal is to develop an
EINSTein-based model of terrorist-counterterrorist coevolutions called SOT-
CAC (= Self-Organized Terrorist-Counterterrorist Adaptive Coevolutions).

SOTCAC leverages and generalizes EINSTein’s “combat agents” to a class
of “terrorist agents” that live in an abstract social-information space – that
is, a mathematical graph whose vertices possess an inner semantic structure,
and assimilate, process, and adapt to various forms of information (such
as a multidimensional feature space that describes the properties of the Al
Qaeda terrorist network, as derived from intelligence sources). SOTCAC uses
adaptive agents to describe the self-organized, emergent behavior of terrorist
networks – conceived as complex adaptive systems – on three interrelated dy-
namical levels: (1) dynamics on networks, in which notional terrorist agents
process and interpret information, search and acquire resources, and adapt to
other agents’ actions; (2) dynamics of networks, in which the terrorist network
itself is a fully dynamic, adaptive entity and whose agents build, maintain,
and modify the network’s local (and therefore, collectively, its global) topol-
ogy; and (3) dynamics between networks, in which the terrorist network and
counterterrorist network mutually coevolve; the terrorist network’s “goal” is
to achieve the critical infrastructure (of manpower, weapons, financial re-
sources, and logistics) required to strike, while the counterterrorist network’s
mission is to prevent the terrorist network from achieving its goal.

For all of EINSTein’s “complexity” on the source code level (EINSTein
consists of roughly 150K lines of C++ code, contains over 350 agent func-
tions, and requires a programming manual that is about 400 pages long to
define its class structure and primitive behaviors), EINSTein’s basic dynamics

312 Andrew Ilachinski

is – conceptually speaking – very simple: Red and blue agent swarms inter-
penetrate on a notionally physical battlefield with the “goal” of annihilating
the other side and/or “controlling” a certain region of the battlefield (such
as the opponent’s “flag”). There are effectively two – and only two – kinds
of actions that agents must adjudicate as a battle unfolds: (1) where to move
and (2) whom to fight ; and everything “happens” in a single notional space
(i.e., the “battlefield”).

In contrast, the behaviors in SOTCAC depend on (and take place in) four
coupled spaces: (1) a physical space, analogous to EINSTein’s “battlefield”;
(2) a social space, in which terrorist agents forge/break social bonds and ex-
change information and materiel resources; (3) an “image” of the physical
space that represents the counterterrorist network’s “best guess” view of the
terrorist’s activity in the physical space; and (4) an “image” of the social
space that represents the counterterrorist network’s “best guess” view of the
terrorist network’s activity in its social arena. Not only are the physical and
social spaces obviously coupled, but because all counterterrorist actions are
fundamentally grounded on what the counterterrorist network “believes” the
terrorist network is “doing” at any given time (possibly erroneously), the cou-
pled terrorist physical/social space (“ground truth”) is also tightly coupled
with the counterterrorist belief network.

SOTCAC’s agents must fuse multiple streams of (often conflicting infor-
mation), decide to whom (and when, and for how long) to establish commu-
nication (and/or material flow) links, and – in the case of counterterrorist
forces – decide on courses of action based on an incomplete “snapshot” view
of what is currently known about (and/or can be inferred from) existing data.
Consequently, SOTCAC’s effective “space of possible interactions” (i.e., its
emergent fitness landscape) is significantly larger than EINSTein’s. SOTCAC
is currently in development.

Acknowledgements US Marine Corps LtGen (Ret) Paul van Riper’s vision of applying
the lessons of complexity theory to warfare directly inspired the ISAAC and EINSTein
projects. I would like to thank Lyntis Beard (who coined both of the names ISAAC and
EINSTein), Rich Bronowitz, David Broyles, Dave Kelsey, David Mazel, Katherine Mc-
Grady, Igor Mikolic-Torriera, Mike Shlesinger, Jonathan Schroden, Greg Swider, David
Taylor, and Wendy Trickey, all of whom helped form and shape EINSTein over the years.
Programming support for the EINSTein project continues to be very skillfully provided by

Fred Richards. Funding was provided, in part, by the Office of Naval Research (Contract
No. N00014-96-D-0001).

References

1. Lanchester F W (1995) Aircraft in Warfare. Lanchester Press, Sunnyvale, California
2. Chase J V (1902) A Mathematical Investigation of the Effect of Superiority in Com-

bats Upon the Sea. In: Fiske B A (1994) The Navy as a Fighting Machine. U.S. Naval
Institute Press, Annapolis, Maryland

9 EINSTein 313

3. Osipov M (1995) The Influence of the Numerical Strength of Engaged Forces in Their
Casualties. Naval Research Logistics 42:435–490

4. Hofbauer J, Sigmund K (1988) Evolutionary Games and Population Dynamics. Cam-
bridge University Press, Cambridge, United Kingdom

5. Taylor J G (1983) Lanchester Models of Warfare. Operations Research Society of
America, Arlington, Virginia

6. Hartley D S, Helmbold R L (1995) Validating Lanchester’s Square Law and Other
Attrition Models. Naval Research Logistics 42:609–633

7. Weiss H K (1957) Lanchester-Type Nodels of Warfare. Proceedings of 1st Conference
on Operations Research, Operations Research Society of America. Arlington, Virginia

8. Fain J (1975) The Lanchester Equations and Historical Warfare. In: Proceedings of
the 34th Military Operations Research Symposium. Military Operations Research
Society, Alexandria, Virginia

9. Richardson L F (1960) Statistics of Deadly Quarrels. Boxwood Press, Pittsburgh,
Pennsylvania

10. Cowan G A, Pines D, Meltzer D (1994) Complexity: Metaphors, Models and Reality.
Addison-Wesley, Reading, Massachusetts

11. Kauffman S (1993) Origins of Order. Oxford University Press, New York
12. Langton C G (1995) Artificial Life: An Overview. MIT Press, Cambridge, Mas-

sachusetts
13. Mainzer K (1994) Thinking in Complexity. Springer-Verlag, New York
14. Beckerman Linda P (1999) The Non-Linear Dynamics of War. Science Applications

International Corporation, http://www.calresco.org/beckermn/nonlindy.
htm

15. Beyerchen A (1992) Clausewitz, Nonlinearity, and the Unpredictability of War. Inter-
national Security 17:59–90

16. Hedgepeth W O (1993) The Science of Complexity for Military Operations Research.
Phalanx 26:25–26

17. Ilachinski A (1996) Land Warfare and Complexity, Part I. Center for Naval Analyses,
Alexandria, Virginia

18. Ilachinski A (1996) Land Warfare and Complexity, Part II. Center for Naval Analyses,
Alexandria, Virginia

19. Miller L D, Sulcoski M F (1995) Foreign Physics Research with Military Significance.
Defense Intelligence Reference Document, NGIC-1823-614-95

20. Saperstein A (1995) War and Chaos. American Scientist 83:548–557
21. Tagarev T, Nicholls D (1996) Identification of Chaotic Behavior in Warfare. In: Sulis

W, Combs A (eds) Nonlinear Dynamics in Human Behavior. World Scientific, Singa-
pore

22. Maes P (1990) Designing Autonomous Agents. MIT Press, Cambridge, Massachusetts
23. Ferber J (1999) Multi-Agent Systems. Addison-Wesley, Reading, Massachusetts
24. Weiss G (1999) Multiagent Systems. MIT Press, Cambridge, Massachusetts
25. Gilbert N, Troitzsch K G (1999) Simulation for the Social Scientist. Open University

Press, Philadelphia, Pennsylvania
26. Gilbert N, Conte R (1995) Artificial Societies. UCL Press, London
27. Conte R, Hegselmann R, Terna P (1997) Simulating Social Phenomena. Springer-

Verlag, New York
28. Barrett C (1997) Simulation Science as it Relates to Data/Information Fusion and

C2 Systems. Los Alamos
29. Epstein J M, Axtell R (1996) Growing Artificial Societies. MIT Press, Cambridge,

Massachusetts
30. Prietula M J, Carley K M, Gasser L (1988) Simulating Organizations. MIT Press,

Cambridge, Massachusetts
31. Ilachinski A (2000) EINSTein. Center for Naval Analyses, Alexandria, Virginia
32. Ilachinski A (1999) EINSTein User’s Guide. Center for Naval Analyses, Alexandria,

Virginia

314 Andrew Ilachinski

33. Ilachinski A (1997) Irreducible Semi-Autonomous Adaptive Combat (ISAAC). Center
for Naval Analyses, Alexandria, Virginia

34. Ilachinski A (2004) Artificial War. World Scientific, Singapore
35. Ilachinski A (2001) Cellular Automata. World Scientific, Singapore
36. Braitenberg V (1984) Vehicles. MIT Press, Cambridge, Massachusetts
37. Boccara N, Roblin O, Roger M (1994) Automata Network Predator–Prey Model with

Pursuit and Evasion. Physical Review E 50:4531–4541
38. Woodcock, A E R, Cobb L, Dockery J T (1988) Cellular Automata: A New Method

for Battlefield Simulation. Signal 1:41–50
39. Varela F J, Maturana H, Uribe R (1974) Autopoiesis. Biosystems 5:187–196
40. Lauren M K (2002) Firepower Concentration in Cellular Automata Models. Journal

of the Operations Research Society 53:672–679
41. Krantz H, Schreiber T (1997) Nonlinear Time Analysis. Cambridge University Press,

Cambridge
42. Lauren M K (1999) Characterizing the Difference Between Complex Adaptive and

Conventional Combat Models. Defense Operational Technology Support Establish-
ment, New Zealand

43. Lauren M K, McIntosh G, Moffat J (2007) Fractals: From Physical Science to Military
Science. Phalanx 40:8–10

44. Dockery J T, Woodcock A E R (1993) The Military Landscape. Woodhead Publishing
Limited, Cambridge

45. Bak P (1996) How Nature Works. Springer-Verlag, New York
46. Roberts D C, Turcotte D L (1988) Fracticality and Self-Organized Criticality of Wars.

Fractals 6:351-357
47. Taylor D, Schmal C, Hashim A (2000) Ground Combat Study: Summary of Analysis.

Center for Naval Analyses, Alexandria, Virginia
48. Edwards S J A (2000) Swarming on the Battlefield. RAND Corporation, Santa Mon-

ica, California
49. Dewar J A, Gillogly J, and Juncosa M (1991) Non-Monotonicty, Chaos, and Combat

Models. RAND Corporation
50. Mitchell M (1996) An Introduction to Genetic Algorithms. MIT Press, Cambridge,

Massachusetts
51. Thulasiraman K, Swami M (1992) Graphs: Theory and Algorithms. John Wiley and

Sons, New York
52. Schroden J, Broyles D (2005) EINSTein Simulations of Squad and Fire Team Opera-

tions. Report 11705, Center for Naval Analyses, Alexandria, Virginia
53. Gill A (2001) Impact of Reconnaissance on Mission Success. Defense Science and

Technology Organization, Australia, Briefing Slides
54. Baigent D, Lauren M (2000) Exploring the Recce-Counter Recce Scenario with

ISAAC. Defense Operational Technology Support Establishment, DOTSE Report 171,
NR 1349

55. Schroden J, Broyles D (2005) An EINSTein Simulation of a Conventional Ground
Combat Scenario. Report 10873, Center for Naval Analyses, Alexandria, Virginia

56. Broyles D, Trickey W, Schroden J (2005) Ground Combat Modeling in EINSTein.
Report 13192, Center for Naval Analyses, Alexandria, Virginia

57. Broyles D, Trickey W (2006) Modeling Dispersed Units in Open and Urban Environ-
ments with EINSTein, Volume I. Report 14187, Center for Naval Analyses, Alexandria,
Virginia

58. Perla P, Ilachinski A, Hawk C, Markowitz M, Weuve C (2002) Using Gaming and
Agent Technology to Explore Joint Command and Control Issues. Report 7164, Center
for Naval Analyses, Alexandria, Virginia

59. Woodaman, R (2000) Agent-Based Simulation of Military Operations Other Than
War, Small Unit Combat. Master’s Thesis, Naval Postgraduate School, Monterey,
California

9 EINSTein 315

60. Kewley R (2001) Combat Operations Support System for Adaptive Command and
Control. United States Military Academy, Briefing Slides

61. Freedman T, Ilachinski A (2004) Riots and Civil unrest: An Agent-Based Model
Approach. Center for Naval Analyses Briefing Slides

62. Lauren, M, Stephen R (2000) Modeling Patrol Survivability in a Generic Peacekeep-
ing Setting Using ISAAC. Defense Operational Technology Support Establishment,
DOTSE Report 172, NR 1350

63. Cox G (2002) EINSTein Visits the Persian Gulf (via Monterey, CA): A Naval Require-
ments War “Gamelet” Held at the Naval Postgraduate School, Monterey, California.
Annotated Brief, Center for Naval Analyses, Alexandria, Virginia

64. Klingaman, Randall R, Carlton B (2002) EINSTein Model Validation, Military

Academy, West Point New York, Department of System Engineering, Operations Re-
search Center of Excellence Technical Report DSE-TR-02-03

65. Axtell R, Axelrod R, Epstein J, Cohen M (1996) Aligning Simulations Models: A Case
Study and Results. Computational and Mathematical Organization Theory, 1:123–141

66. Wolfram Mathematica website, http://www.wolfram.com/products/

mathematica/index.html

67. Maple website, http://www.maplesoft.com/products/Maple11/

professionals/

68. Graphics Server website, http://www.graphicsserver.com/
69. Python developer homepage, http://www.python.org/
70. ISAAC website, http://www.cna.org/isaac/
71. EINSTein website, http://www.cna.org/isaac/PyE_setup.htm
72. EINSTein previous releases website, http://www.cna.org/isaac/einstein_

install.htm

73. Apache Software’s Xerces XML parser, http://xml.apache.org/xerces-c/
index.html

74. wxWidgets developer homepage, http://www.wxwidgets.org/
75. EINSTein’s programming guide, http://www.cna.org/isaac/EINSTein/

PyEProgRef.pdf

76. Axelrod R (1997) The Dissemination of Culture: A Model with Global Polarization.
Journal of Conflict Resolution, 41:203–226

77. Wolfram S (1994) Cellular Automata and Complexity: Collected Papers. Addison-
Wesley, Reading, Massachusetts

