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breve Simulation Environment

Jon Klein and Lee Spector

4.1 Overview

Artificial life is often described as the study of life “as it could be,” meaning
that it involves the exploration of life-like interactions of agents with novel
behaviors in novel environments. Although these behaviors and environments
can be explored using mathematical models or even real-world experiments,
one of the most commonly employed techniques is multi-agent simulation.
Using multi-agent simulation software, users can define the rules of an envi-
ronment and the behaviors of individual agents in order to examine how they
behave collectively, their so-called “emergent behaviors.”

One of the more challenging and time-consuming tasks in exploring multi-
agent systems is developing the software infrastructure for modeling and sim-
ulation. Even models of conceptually simple interactions between agents often
require a great deal of software infrastructure to manage and coordinate agent
behaviors.

Many artificial life and multi-agent system models rely on realistic three-
dimensional (3D) spaces, especially those that aim to produce results relevant
in explaining real-world behaviors (such as simulations that give insights into
biology) or those that may eventually be implemented in the real world (such
as simulations of traffic or sensor networks). Moreover, some simulations, such
as those dealing with robotics, require realistic simulation of physical inter-
actions between agents and their environments. These applications present a
particular challenge in simulation development because they require sophisti-
cated spatial and physical simulation algorithms in order to produce accurate
simulation results.

Breve is a free, open-source software package that aims to simplify the
creation of 3D simulations of multi-agent systems and artificial life.1 Breve

1 Breve was developed and is maintained by Jon Klein. The breve-based research described
in this chapter is the product of both authors.
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frees simulation authors to focus on the definition of agent behaviors and on
descriptions of the simulated environment, whereas the breve engine manages
simulation data and algorithms. Agents’ behaviors can be written in Python,
or using a simple scripting language called “steve.” Breve includes support
for physical simulation and collision detection for the simulation of realistic
creatures or robotics and an OpenGL display engine for the visualization of
simulated worlds. Breve runs on a number of platforms and is distributed
as a pre-built package for Mac OS X, Linux, and Windows from the breve
website [7].

Breve is analogous in many ways to 3D game engines that allow for the
rapid development of games while abstracting away many of the details of
their implementation. Breve aims to do the same for multi-agent simulations.
The similarity is more than conceptual – breve actually preforms many of the
same types of computation that 3D game engines do, such as 3D rendering,
management of agent interaction, and collision detection. Unlike game en-
gines, however, breve is designed for simulation applications, especially those
relating to artificial life and artificial intelligence. To this end, breve includes
a rich library of features suited to simulation applications.

4.1.1 Agent-Based Modeling Paradigms

Aside from breve, there are several other multi-agent simulation software
packages that can be used to study artificial life. These environments vary
greatly in their representations of space and time, and these representations
strongly influence the types of simulations to which an agent-based modeling
system is best suited.

Some simulation environments have no explicit modeling of space. In these
environments, abstract spatial structures (such as networks) can be achieved
via connections between individual agents. Another popular representation
of space in agent-based modeling is a discrete two-dimensional (2D) or 3D
grid. The grid introduces a realistic spatial structure and allows agents to
interact based on spatial proximity, but it somewhat limits the granularity of
these spatial interactions. Breve uses a fully continuous representation of 3D
space, which allows it to be used for realistic 3D simulation of phenomena
such as swarms, robots, and vehicles.

Certain phenomena, such as chemical concentrations or temperature (in
addition to many other kinds of environmental states), are difficult to accu-
rately and efficiently model using individual agents and benefit greatly from
the use of a discrete 2D or 3D grid. To facilitate the simulation of these
phenomena, breve supports discrete 2D and 3D grids, which can be used in-
dependently or in concert with continuous spaces. This allows agents to move
through continuous 3D spaces while interacting with discrete environmental
states.
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With respect to representation of time, the differences between the var-
ious simulation environments can be more subtle. Some systems use large,
discrete time-steps to represent a period of time passing. Others, like breve,
integrate arbitrarily small time-steps to simulate fully “continuous” time (al-
though at the lowest levels, the representation of time is still discrete). In
these environments, it is understood that the time-step is generally as small
as possible, given the practical computation constraints of arbitrary small
integration steps.

StarLogo
breve ,Digital Spaces continuoustime

continuousspace
discretetime

discretespaceGame of Life
OtherCellularAutomata Swarms

Robotics

Fig. 4.1 Continuum of representations of space and time in simulation environments.

Fig. 4.1 shows a general representation of the “simulation space” defined
by the spectra of discrete and continuous representations of time and space,
along with the locations of common simulation paradigms and the general
locations of some common agent-based modeling toolkits.

This diagram represents only a broad illustration of the distinction be-
tween discrete and continuous time and space in simulation. In reality, the
distinction is often less clear, as any sufficiently extensible agent-based mod-
eling environment is capable of modeling any representation of time or space,
although doing so may require additional development effort on the part of
the simulation author. In particular, some common agent-based modeling
systems do not have single built-in representations of time and space. These
systems may provide basic multi-agent simulation functionality such as man-
agement of agents and their interactions, while leaving the modeling of time
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Fig. 4.2 Sample simulations in breve. Clockwise, from top left: flocking agents; a Braiten-
berg vehicle; a 3D game-of-life cellular automata; a DNA molecule visualized from a PDB
file.

and space as a detail for the simulation author to implement according to
their needs.

Fig. 4.2 shows a sample of the different simulation paradigms that can be
represented in breve, including continuous non-physical simulations, contin-
uous physical simulation, and discrete 3D cellular automata.

4.1.2 Comparison to Other Agent-Based Modeling
Systems

There are several other agent-based simulation modeling environments that
are useful for exploring artificial life and multi-agent systems. Some of the
more notable environments are discussed here briefly.
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As alluded to earlier while describing representations of space and time in
simulation environments, choosing between simulation packages for a partic-
ular simulation application is, by and large, not a matter of a “laundry list”
comparison of simulation features among the packages. All of the environ-
ments described here are powerful and extensible environments with support
for authoring custom simulations. The important differences between the
environments is generally found in the types of simulations they are best
equipped to model.

• StarLogo and StarLogo TNG – StarLogo [17] is the oldest of the agent-
based simulation packages described here. StarLogo allows users to model
multi-agent systems through simultaneous manipulation of multiple Logo
“turtles” in a discrete 2D world, using an integrated programming lan-
guage derived from Logo. In addition to its multi-agent simulation appli-
cations, StarLogo (like the original Logo) is used as an educational tool
to teach students and novice programmers how to program and how to
construct multi-agent models based on simple agent behaviors.

StarLogo was one of the original inspirations for breve. Although breve
does not place as strong an emphasis on education applications as Star-
Logo, the inspiration to use an integrated, interpreted language grew di-
rectly out of StarLogo’s implementation.

StarLogo TNG (“The Next Generation”) described in Chapter 6 is a
new version of StarLogo currently in development that includes support
for continuous 3D space and for a visual programming language.

• Repast – Repast [16] described in Chapter 2 is a Java-based agent simula-
tion toolkit that is geared toward social simulation and that also allows for
visual construction of simulations. Although Repast does include support
for simulation and visualization of agents in 3D spaces, it does not provide
support for physical simulation.

• MASON – MASON [12] is a Java-based simulation toolkit that supports
2D/3D simulation as well as network topologies. Like Repast, MASON
supports simulation and visualization of agents in 3D spaces but does not
include physical simulation functionality.

• Swarm – Swarm [13] is an Objective-C-based simulation library originally
developed at the Santa Fe Institute. Compared to the other systems de-
scribed here, Swarm provides support for multi-agent modeling at a rel-
atively low level. Swarm provides a library of tools for managing agent
behaviors and relationships, with less of an emphasis on features such as
spatial representation and visualization. Swarm does offer a “Space” li-
brary with support for discrete 2D spaces, and sample code on the Swarm
website details how Swarm can be extended to model discrete 3D spaces.

• Digital Spaces – One of the newest additions to this list is the Digital
Spaces simulator, which is also the most similar to breve in terms of sim-
ulation “niche.” Digital Spaces includes support for 3D physics in sim-
ulations and for importing complex 3D environments. Although Digital
Spaces has not been used heavily for artificial life research, it does offer
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an impressive feature set that makes it an excellent candidate for such
applications.

• Framsticks – Framsticks [9] described in Chapter 5 was not originally de-
veloped as a general-purpose agent-based modeling toolkit, but it does
deserve a special mention in comparison to breve because it models artifi-
cial life agents with articulated bodies in 3D physical worlds. Framsticks
has traditionally taken a more specialized simulation approach with a fo-
cus on evolved virtual creatures, although versions 2 and 3 provide more
general agent-based modeling capabilities in the software.

4.2 Motivations

The fundamental goal of breve as a simulation environment is to abstract
away simulation implementation details as much as possible and to allow
users to instead focus on constructing agent behaviors and the environment.

4.2.1 A Personal Motivation

Although there was a considerable amount of academic inspiration behind
the development of breve, an equally important inspiration (for Jon Klein,
breve’s primary author) came on a more personal level from a college friend
with a great interest and insight in artificial life and artificial intelligence,
but (to put it gently) no particular talent in computer programming.

This friend would observe a simulation or other programming project,
typically the product of several weeks of work, and cheerfully make an astute
suggestion for a “simple” improvement that would invariably require several
more weeks of work. This particular interaction was repeated so many times
that, in frustration, one would eventually snap “do it yourself!” to which the
friend cheerfully retorted “I can’t!”

And so a small – but genuine – motivation for the development of breve
was to silence this friend.

4.2.2 Design Principles and Goals

The guiding motivation in the implementation of breve is that experimenta-
tion with artificial life and multi-agent systems should be simple and should
not be limited by programming ability. To this end, a number of design prin-
ciples behind breve are described here. Given the rapid pace of evolution in
the fields of multi-agent simulation and artificial life (and computing in gen-
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eral), these principles represent moving targets, so even after several years
and many revisions of the software, these concepts still guide the continued
development of breve.

• breve should be approachable by people of all programming abilities. Practi-
cally speaking, this means breve should use a simple language and simple
interfaces to artificial life simulation features such as evolvable code, ge-
netic algorithms, and physical simulation.

• breve should be an integrated development environment, not a software
library or application programming interface (API). Although some pow-
erful agent-based simulation toolkits, such as Swarm, are implemented as
a software library, it can represent a considerable barrier for new users,
especially those without a great deal of prior programming experience.

The decision to implement an integrated environment instead of an
external library does come with downsides. Integrating breve into other
software projects, for example, is a more complicated prospect than inte-
grating an environment that is distributed as a software library.

• breve should allow users to immediately see the connection between code
and simulation behavior. Breve is intended not only to enable the devel-
opment of of multi-agent systems but also to encourage the exploration of
these systems through an integrated visualization engine and by stream-
lining the write/run/revise cycle of simulation development. This principle
(and especially its manifestation in StarLogo) strongly influenced the de-
cision to make an integrated scripting language a main component of the
simulation environment.

Ironically, the decision to implement a custom language to make breve
more accessible to new users may have had the opposite of its intended ef-
fect. Although the steve language is arguably simpler and more approach-
able than many other languages used for simulation software (such as Java,
C, C++), the main breve developer may have overestimated the enthusiasm
that potential users would feel for learning a new, proprietary language. With
programming languages, familiarity may trump simplicity.

Because of this, and keeping in line with breve’s development goals, breve
now supports the Python language and is in the process of transitioning
toward Python as the preferred simulation language.

As for the college friend who so greatly influenced the development of
breve, he still does not use breve to implement his simulation ideas. Whether
this is a shortcoming of breve or a character flaw is, after all these years, not
entirely clear.
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4.3 Writing Simulations in breve

This section provides a conceptual overview of how simulations are con-
structed in breve. Although breve simulations can be written in either a
proprietary language called steve or in the popular Python language, this
section describes general concepts which apply to writing simulations regard-
less of which language frontend is used. The details of the individual scripting
languages supported by breve are described later in Sections 4.3.5 and 4.3.6.

4.3.1 Object Orientation and the Built-in breve Classes

The breve environment makes extensive use of object-oriented concepts both
as a programming model and as a more general representation of the simu-
lated world. Every object in a simulation corresponds directly to a program-
ming language object in the steve or Python frontend language.

Furthermore, all programming in breve is preformed by extending the
built-in classes – there is no code or data in the steve language that is not
associated with an object. (Although the Python language frontend does
allow code outside of classes, this code is not able to interact directly with
the breve engine.) The breve distribution includes a standard library of classes
that interface with the internal features of the breve engine or that themselves
implement useful simulation features. These classes are then subclassed to
implement custom behaviors.

The special class “Object” represents the root object class in breve, and all
other objects are subclasses, either directly or indirectly, of the Object class.
Practically speaking, very few classes inherit directly from Object. Instead,
breve defines two Object subclasses that serve as a logical distinction of all
objects in breve: the Real subclass, which includes all objects which have a
physical presence in the simulated world, and Abstract, which includes those
that do not. Abstract objects are most often used to encapsulate data and
computation, and they more closely resemble objects in traditional program-
ming languages than do Real objects.

4.3.2 The Controller Object

The “controller” object in breve is a special object that is created by the
engine when the simulation begins. The controller object is a custom subclass
of the class “Control” that the user implements to set up and manage the
simulation. Because the controller object is the only object created when a
simulation begins, it is responsible for creating all other objects from its init
method.
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The controller object is accessible to every object in the simulation and,
because there are no global variables in the steve language, the controller
plays an important role in holding global simulation state data and in facili-
tating communication between the agents.

4.3.3 The breve Simulation Loop

Agents in a breve simulation are simulated following a pattern called the
breve simulation loop. The basic behavior of each agent is summarized in the
following pseudocode:

init agent [run user defined ‘‘init’’ method]

while ( simulation running )

foreach agent:

iterate agent [run user defined ‘‘iterate’’ method]:

examine internal/external states (using sensors)

perform computation

change behavior (using actuators)

virtual world
init method
sensor inputcomputationactuatoroutput

iterate method
Fig. 4.3 The breve simulation loop.

An abstract diagram of this process is illustrated in Fig. 4.3, and two
examples of how this process is implemented with actual simulations are
shown in Fig. 4.4 and Fig. 4.5.

Fig. 4.4 shows the simulation loop for Creatures, a demo breve simulation
of physically simulated creatures evolving via a genetic algorithm. In spite



88 Jon Klein and Lee Spectorinit m ethod• setup blocks• setup joints• setup control p arameters• exam ine sim ulation clock• exam ine controlparameters• comp ute joint v elocitiesfrom control equations• app ly joint v elocities
iterate method

Fig. 4.4 The breve simulation loop for an agent in the “Creatures” simulation.init m ethod• create "Push" p rogram(random or inherited)• create agent bodies• exam ine neighboring agents• exam ine food sources• execute push program w ithsensor inp uts• app ly acceleration v ectorand change colors usingoutput of Push program
iterate method

Fig. 4.5 The breve simulation loop for each agent in the “SwarmEvolve 2.0” simulation.

of the complexity of the simulation behind the scenes, the simulated agent’s
behavior is rather straightforward: The agent takes simple inputs from its
internal state and from its genome and produces outputs in the form of
forces applied to joints.

Fig. 4.5 shows a breve demo, SwarmEvolve-2.0, with more complex in-
teractions between agents and their environment. In this simulation, agents
are initialized by creating evolvable code in the Push programming language
(described in detail in Sect. 4.4.4) that will control their behavior. Then at
each time-step, the agents sense the world to provide input to their Push
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programs, execute the Push programs, and then use the results to change
various behaviors, such as heading and color. This figure shows only a con-
ceptual overview of the SwarmEvolve-2.0 agent behaviors and many of the
details are omitted. The SwarmEvolve agents, for example, have access to
many other types of input sensors and output actuators than those shown.
A more detailed description of the simulation is described in Sect. 4.6.1.

4.3.4 Defining Callbacks and Agent Behaviors

Callback functions are used in breve to allow the simulation engine or front-
end application to trigger events in simulation code. When possible, callback
behaviors are automatically defined through the presence of methods with
special names. In some cases, though, callbacks are defined explicitly via re-
quests from simulation code. Some of the main callback types are described
here.

• In response to collisions. Breve handles the collisions between objects at
two different levels. First, if physical simulation is enabled for an object,
the collision is resolved in the physics engine. Then the collision triggers a
callback to one or more agents at the user simulation level. This callback
can be handled by providing the breve engine with a callback method to
be executed upon collisions with a certain object type.

• In response to object “announcements”. Object announcements in breve
provide a simple way for agents to communicate general events or state
changes to all interested parties, without keeping track of message recip-
ients or making method calls directly. With object announcements, any
agent can register itself as a listener for another agent and can sched-
ule a method call to be executed when a specific announcement is made.
Agents may have any number of different announcement types identified
by unique strings. Methods in the Object class are provided for both mak-
ing announcements and for registering as listeners to announcements in
other objects.

• In response to keyboard and mouse input. A number of special callbacks
are defined that are executed automatically in the simulation controller
object in response to keyboard and mouse events. Support for keyboard
or mouse interaction can be added to a simulation simply by defining
callback methods with the the proper names.

• In response to network events. Breve includes rudimentary network trans-
fer support, and, as with other events, network transfers trigger method
calls in the simulation’s controller object. This allows users to react and
respond to simulation objects sent over the network from other simula-
tions.
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4.3.5 The steve Programming Language

Breve simulations can be written in a simple object-oriented language called
“steve.” The steve language resembles and borrows features from languages
like C, Objective-C, and SmallTalk and includes support for 3D vectors and
matrices as native types.

Table 4.1 shows a simple demo simulation written in the steve language.
In this simple simulation, agents are given an initial upward velocity and a
downward acceleration to simulate the behavior of a fountain of particles.

@include "Mobile.tz"

@include "Control.tz"

Controller Fountain.

Control : Fountain {

+ to init:

250 new Particles.

self point-camera at (0, 9, 0) from (40.0, 2.1, 0.0).

}

Mobile : Particle (aka Particles) {

+ to iterate:

if (self get-location)::y < -6.0:

self reset.

+ to init:

self set-acceleration to (0, -9.8, 0.0).

self reset.

+ to reset:

self set-color to random[(0, 1, 1)].

self move to (0, 0, 0).

self set-velocity to random[(10, 20, 10)] + (-5, 4, -5).

self set-rotational-velocity to random[(.6, .6, .6)].

}

Table 4.1 A sample simulation in steve.

Method calls in steve resemble SmallTalk and Objective-C in that they use
keywords to designate method arguments and the method arguments may be
placed in any order. This feature enhances the readability of method calls for
readers not familiar with the breve APIs.

Although steve is object-oriented, simple data-types such as int, float, ma-
trix, vector, list, and hash are not first class objects in steve. Steve’s type sys-
tem treats these simple datatypes differently than true objects that are added
to the breve engine and follow the simulation-loop pattern described above.
Similar to typing in Objective-C, the simple data-types are statically typed,
while the true objects follow a dynamic-typing scheme in which method calls
are resolved at runtime and do not depend on the object type, so long as the
object responds to the given method.
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Steve also includes garbage collection via a reference counting scheme.
This garbage collection is used automatically for the simple datatypes, but
it must be manually enabled for other objects on a per-object basis. This is
because objects in a breve simulation are referenced internally by the breve
engine and may continue to play a role in a simulation (through their iter-
ation methods) even when they are not referenced explicitly by any other
simulation object. In addition, objects not explicitly referenced by others (in
the classical programming sense) may reacquire references through simulation
events (such as announcements or collisions) or through the steve language’s
“all” command, which provides a list of all objects of a requested type.

4.3.6 The Python Programming Language

As of breve version 2.6, simulations can be written in the popular Python
language. Because of Python’s powerful reflection and introspection features,
most of the benefits of steve’s tight integration with breve can be emulated
with Python, so that, by and large, the user experience and APIs are identical
for simulations written in both steve and Python. Table 4.2 shows the same
sample simulation listed in Table 4.1 but this time implemented in Python.

The Python and steve languages can communicate seamlessly through
bridge objects, allowing code from both languages to be mixed together in
a single simulation. This allows even existing simulations written in steve to
take advantage of the rich library of Python modules, one of Python’s greatest
strengths. Python objects can be instantiated and manipulated directly from
steve, and vice versa.

4.4 Breve Features and Technical Details

This section describes some of the basic simulation features that breve pro-
vides and details on how they are implemented.

4.4.1 3D Spatial Simulation

The foundation of the simulation functionality provided by breve, and the
one upon which the others are built, is a subsystem that manages objects
and their interactions in 3D worlds. The spatial simulation system handles
placement of objects, manages collisions, and integrates accelerations and
velocities to compute object positions. This system preforms all of the non-
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import breve

class Fountain( breve.Control ):

def __init__( self ):

breve.Control.__init__( self )

Fountain.init( self )

def init( self ):

breve.createInstances( breve.Particle, 250 )

self.pointCamera(

breve.vector( 0, 9, 0 ),

breve.vector( 40.0, 2.1, 0.0 ) )

class Particle( breve.Mobile ):

def __init__( self ):

breve.Mobile.__init__( self )

self.setAcceleration( breve.vector( 0, -9.8, 0.0 ) )

self.reset()

def iterate( self ):

if ( self.getLocation().y < -6.0 ):

self.reset()

def reset( self ):

self.setColor( breve.randomExpression( breve.vector( 0, 1, 1 ) ) )

self.move( breve.vector( 0, 0, 0 ) )

self.setVelocity( (

breve.randomExpression( breve.vector( 10, 20, 10 ) ) +

breve.vector( -5, 4, -5 ) ) )

self.setRotationalVelocity(

breve.randomExpression( breve.vector( 0.6, 0.6, 0.6 ) ) )

# Create an instance of our controller object to initialize the simulation

Fountain()

Table 4.2 A sample simulation in Python.

physical simulation tasks, although it is tightly integrated with the physical
simulation engine, which is described below.

4.4.2 Physical Simulations

Breve includes support for realistic rigid body dynamics for simulation of
virtual creatures and robotics. While the core functionality and interface
to the breve physics engine has stayed the same over the years, the under-
the-hood implementation has evolved, piece by piece, from a home-grown
implementation to its current state, which largely uses the Open Dynamics
Engine (ODE) library, a physical simulation engine based on a generalized
coordinate method which models articulated bodies as a series of differential
equations.

The original physics engine implementation was based heavily on Brian
Mirtech’s work on impulse-based rigid body simulation [15]. The original
release of breve included its own physics engine based on the Featherstone
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dynamics algorithm, a reduced coordinated algorithm that calculates the mo-
tion of articulated bodies by recursively computing force and mass properties
for subtrees of jointed bodies. Physical contact in the engine was modeled
using a micro-collision model in which resting contact is simulated through
the use of a large number of low-velocity collisions and impulses. Collision
detection was implemented as a two-pass process: The first stage, a prune-
and-sweep sweep, found potential collisions by maintaining lists of sorted
bounding box minima and maxima in all three dimensions; the second stage,
which determined which candidate pairs were intersecting, used Mirtech’s V-
Clip algorithm [14], based on the Lin-Canny closest feature collision detection
algorithm, with extensions to properly handle the interiors of polyhedra.

The prune-and-sweep portion of the original collision detection model is
still used for collision detection and for the breve’s neighbor detection. For this
task, the prune-and-sweep algorithm efficiently discovers object pairs over-
lapping by a user-defined threshold, without running a second-stage collision
check. This allows objects to quickly and efficiently discover nearby objects
without preforming an O(n2) search of the entire simulation space – because
of spatial coherence between simulation steps, this method of discovering
neighbors is very close to O(n).

Although the physical simulation in breve is a useful tool for developing
simulations involving artificial life, evolution of creature morphologies, and
robotics, it should be stressed that neither the original breve physics engine
nor the ODE engine are intended to be truly predictive of real-world physical
behaviors. Although the physics engine used in breve does place an emphasis
on stability, it is still important for simulation developers to include sanity
checks in physical simulations to avoid situations that can lead to instabilities
or inaccuracies. In particular, excessively large velocity and mass values can
cause simulations to “blow up” and should be avoided.

When used in conjunction with evolutionary computation, this aspect of
physical simulation represents a particular challenge due to the uncanny abil-
ity of the evolutionary process to exploit any available means of improving
performance, including exploiting bugs or inaccuracies in physical simula-
tion. Karl Sims described this problem in his work on evolving virtual crea-
tures [20]. For this reason, work with physical simulation often requires ad-
ditional care and attention to detail.

4.4.3 Visualization

Breve includes an OpenGL-based visualization engine that renders 3D sim-
ulations in realtime. On several occasions (described later in more detail),
breve’s visualization engine has allowed for the discovery or understanding
of phenomena that may have otherwise gone unnoticed.
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Beyond simply rendering agents and their environment, the visualization
engine can render lines, drawings, and a variety of “special effects” that may
be used to enhance understanding of the simulation state. Shadows and re-
flections, for example, provide additional visual cues of agent location and
orientation.

In addition to conveying “literal” information about agents in a simulation
(size, location, orientation), the visualization engine can be used to convey
arbitrary information about an agent’s state by changing display qualities
using a number of visualization features. High-dimensional agent states can
be represented using visual qualities such as color, size, and transparency. In
this way, even simulations modeling abstract agents or non-spatial simulation
can benefit from 3D visualization.

The performance impact of high-quality visualization in breve is mini-
mal. Most modern computers include powerful graphics cards that support
hardware-accelerated 3D rendering, so in most cases visualization can be
achieved with virtually no computational costs and thus no with impact on
simulation speed.

4.4.4 The Push Programming Language

Push [40] is a stack-based programming language intended primarily for use
in evolutionary computation systems. Although the steve and Python lan-
guages, in which breve simulations are written, are intended to be simple
for human programmers to use, neither is well suited for use in evolutionary
computation due to syntactical and semantical language constraints.

Push has an unusually simple syntax that facilitates program evolution.
Despite its simple syntax, Push provides more expressive power than most
other program representations that are used for program evolution. Push
programs can process multiple data types (without the syntax restrictions
that usually accompany this capability), and they can express and make
use of arbitrary control structures (e.g., recursive subroutines and macros)
through the explicit manipulation of their own code (via the “CODE” stack
and data type) and through manipulation of their own execution (via the
“EXEC” stack).

These features allow Push to support the automatic evolution of modular
program architectures in a particularly simple way. Push can also support
entirely new evolutionary computation paradigms such as “autoconstructive
evolution,” in which genetic operators and other components of the evolu-
tionary system themselves evolve (as in the Pushpop [22] system, and in
SwarmEvolve2, described in Sect. 4.6.1).

Push offers a powerful way to evolve open-ended agent behaviors in breve.
By providing Push programs with direct access to agent methods via callback
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instructions into simulation code, agent behaviors can be fully controlled via
evolving code.

4.5 Development History and Future Development

Breve was originally developed by Jon Klein as part of master’s thesis work
at Chalmers University in Göteborg, Sweden. The first version of breve was
released in late 2001. The initial versions of the breve integrated development
environment were released for Mac OS X only, although the breve engine was
available as a command-line application for Linux and Windows platforms.
Since 2002, continued development of breve has been largely supported by
Hampshire College.2

4.5.1 Transition to Open Source

With the release of breve 1.7, in late 2003, breve made the conversion from
a closed-source project to a fully open-source project with source code avail-
able under the GPL. Since opening the source code to breve, users have
contributed many improvements to the code, such as an integrated graph-
ical interface for breve on Linux and Windows platforms as well as initial
revisions of code to interface with Python and other frontend languages.

4.5.2 Push3

Beginning with version 2.0, released in late 2004, breve includes built-in sup-
port for the Push programming language designed specifically for use with
genetic programming. The Push programming language is described in more
detail in Section 4.4.4 and its applications in breve are described in Sec-
tion 4.6.

2 This material is based upon work supported by the National Science Foundation under
Grant No. 0308540 and Grant No. 0749184. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.
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4.5.3 Python Integration

As of version 2.6, released in late 2007, breve features support for writing
simulations and accessing all breve engine functionality through the Python
scripting language. Because of its power and its popularity, Python is now
the preferred language for new simulation development.

4.5.4 Future Development

Currently in development for the next release of breve is enhanced support
for XML import and export of data. Simulation parameters in particular will
be separated into standard XML files to be loaded when a simulation begins.
This change will greatly simplify the process of exploring the parameter space
of a simulation, which currently requires user interface interaction or changes
to simulation files themselves.

Also in development for the next release of breve is a new graphical user in-
terface, using the open-source Qt environment, that will unify the simulation
experience on Mac OS X, Linux, and Windows. Among other improvements,
the new interface will provide graphical user interfaces for managing the sim-
ulation parameter sets described above.

A final area of breve development in the longer term is providing greatly
enhanced networking support. Breve currently offers support for simple net-
work transfer of individual objects. Future enhancements will expand this
functionality to support real-time interactions of agents in different simula-
tions, similar to networking capabilities of modern game engines.

4.6 ALife/AI Research with breve

Here we demonstrate the range of breve’s applicability by describing, briefly,
some of the AI and ALife research that we have conducted using the soft-
ware. Other individuals and research groups have been putting it to addi-
tional uses in a diverse set of areas including physically simulated evolving
creatures [11], evolving ecologies [10], swarm robotics [6, 42], artificial intel-
ligence applied to homeland security applications [43], simulations of sorting
behaviors in ants [5], cognitive science research [4], and self-assembly in phys-
ical systems [2].
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4.6.1 Evolving Swarms

The original distribution of breve included a Swarm demo that was essen-
tially a re-implementation of Reynold’s Boids system [18]. SwarmEvolve is
an evolutionary extension of the original Swarm demo, in which the flying
agents reproduce and evolve in the context of a simple energy dynamics:
They collect energy from “feeders” and expend energy when they fly, collide,
or crowd one another.

In the simplest, most highly constrained version of SwarmEvolve (1.0),
the velocities of agents are computed as weighted combinations of environ-
mental vectors (toward the nearest feeder, toward the closest agent, etc.),
following the general scheme used in Reynold’s Boids but extended for a
modestly enriched environment. The weights used by each agent are derived
from its genome, which is a sequence of floating-point numbers. Each agent
is a member of one of three pre-defined species, and when an agent dies, it
is replaced by a new agent whose genome is inherited, with mutation, from
the most fit member of its own species.3 In SwarmEvolve 2.0 there are no
pre-specified species groups, behavior patterns, or reproductive regimes; an
agent’s genome is a program expressed in a Turing-complete language (Push),
and its behavior (including perceptual, motor, and reproductive behavior) is
the result of executing that program.

The SwarmEvolve systems have been used to demonstrate the emergence
of several types of collective behavior, including multicellular organization,
altruistic feeding behaviors, and tag-mediated cooperation [38, 37, 39]. They
also produce life-like, visually compelling displays of 3D flocking behav-
ior [30]. Screen shots of SwarmEvolve are shown in Fig. 4.6.

Fig. 4.6 A screenshot of SwarmEvolve 1.0 (left). The large pentagons are feeders from
which the agents receive energy. In SwarmEvolve 2.0 (right), the feeders are spheres that
shrink when they are eaten and re-grow slowly. The dark cones falling to the ground are
corpses of agents that have run out of energy.

3 Fitness is calculated as the product of age and energy.
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4.6.2 Evolution of Cooperation

Using breve, we investigated the evolution of tag-mediated cooperation –
altruism toward other agents that share a similar “tag” marker [19] – in
multiple simulation paradigms in order to understand the phenomenon from
different perspectives and in different contexts. Some of these studies used
breve’s 2D or 3D spatial simulation facilities to explore the interaction be-
tween neighborhood structures and the emergence of cooperation [37, 32, 33].

Breve’s visualization engine played an important role in understanding the
underlying mechanism of how colonies of cooperators were able to flourish
in the spatial simulations. Without writing additional simulation code for
visualization, we were able to step through simulations generation by gener-
ation, to observe altruistic donations as they took place, and to determine
the conditions under which such cooperative activities would spread through
the population.

4.6.3 Division Blocks

The Division Blocks project [34] combines several of breve’s facilities, includ-
ing complex physical simulation, high-quality graphical output, and support
for efficient neural network processing, to explore the open-ended evolution
of development, form, and behavior. Division Blocks are simulated rectan-
gular blocks that can grow and shrink, divide and form joints, exert forces
on joints, and exchange resources. They are controlled by recurrent neural
networks that evolve, along with the blocks, by natural selection. Energy is
approximately conserved, and all energy derives ultimately from a simulated
sun via photosynthesis. A screen shot of the Division Blocks system is shown
in Fig. 4.7.

4.6.4 Genetic Programming Research

Breve has proven to be useful as a vehicle for a wide range of evolutionary
computation research – even research that does not use the system’s core
facilities for three-dimensional simulation. Breve’s incorporation of the Push
programming language [21, 41, 40, 36], in particular, has supported several
research projects that extend or apply genetic programming techniques. Ex-
amples of such projects include:

• Automatic Quantum Computer Programming. In this project we used
breve’s support for PushGP in combination with its support for the
QGAME quantum computer emulator to evolve quantum algorithms that
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Fig. 4.7 A screen shot of the Division Blocks system.

compute functions of interest. This project has produced several human-
competitive results [24, 26, 25, 1, 27, 23].

• Trivial Geography. In this project we used breve’s PushGP implementa-
tion to develop and test a simple population-structuring technique that
produced surprisingly dramatic improvements in problem-solving perfor-
mance on a suite of test problems (ten symbolic regression problems and
a quantum computing problem) [31].

• Unwitting Distributed Genetic Programming. In this project we developed
a web-based system for distributed computation of genetic programming
via asynchronous javascript and XML (AJAX), requiring no explicit user
interaction and no installation of client-side software. Clients automatically
and unknowingly participated in a distributed genetic programming run
simply by visiting a webpage, thereby allowing for the solution of genetic
programming problems without running a single local fitness evaluation [8].
Breve was used to handle server-side tasks such as population management
and reproduction.

• Genetic Programming for Finite Algebras. In this project we applied ge-
netic programming to problems in pure mathematics, in the study of finite
algebras. We documented the production of human-competitive results in
the discovery of particular algebraic terms, using both breve’s implementa-
tion of PushGP and the ECJ genetic programming system [44]. We showed
that GP can exceed the performance of every prior method of finding the
relevant terms in either time or size by several orders of magnitude [28].
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4.7 Educational Applications of breve

One of the more rewarding and unexpected uses of breve has been its appli-
cation in educational settings. Because breve offers a relatively low barrier of
entry to experimenting with multi-agent systems, it has been a useful tool
in many educational contexts, even in those that do not deal explicitly with
artificial life or simulation.

4.7.1 Artificial Life and Braitenberg Vehicles

The Braitenberg vehicles simulation included with breve has served as a useful
introduction to many topics related to agent-based simulation, artificial life,
artificial intelligence, and computer programming in general. It has been used
for this purpose in several artificial life courses at Hampshire College.

Braitenberg vehicles, named after Valentino Braitenberg, are simple robotic
designs that are capable of displaying surprisingly life-like behaviors from very
simple circuitries of sensors and wheels [3]. One of the simplest creatures,
dubbed “aggressor,” demonstrates aggressive light-chasing behavior with a
simple criss-crossed connection of light sensors and motors: Light sensed with
the right sensor causes activation of the left wheel and vice versa, such that
the vehicle turns toward and speeds in the direction of any lights in the
environment.

Even by the standards of the rest of the breve demos, which are designed
to be easy to use and to modify, the Braitenberg Vehicles simulation is excep-
tionally simple. A set of Braitenberg classes included with breve allows for
the creation of Braitenberg vehicles and for placement of wheels and sensors
in only a few lines of code. Students with no programming experience at all
are quickly able to learn to design vehicles and place them in environments
with lights (which the vehicles sense) and other obstacles. The students are
thus able to quickly design and run simple robotics experiments with realistic
physical simulation. A breve Braitenberg vehicle is shown in Fig 4.2.

4.7.2 Reactive Bouncy Balls for Kids

The “bouncy” breve simulation was developed for use in an activity with a
fifth grade class at the Smith College Campus School. Like the Braitenberg
vehicle simulation, the bouncy simulation allows users to create agents simply,
but here the quest for simplicity has been taken to an extreme: The user can
create an agent and specify its behavior with a single line of code such as

new bouncy with size 3.0 color (0.7, 0, 0.4) preferences (0, -1, 0.1).



4 breve 101

Fig. 4.8 The breve “bouncy” simulation.

This creates a “bouncy” ball with size 3, color reddish-purple (the three
numbers in parentheses specify amounts of red, green, and blue), and a pref-
erence to move quickly away from green and slowly toward blue. Users can
create arbitrary numbers of such balls, with different sizes, colors, and pref-
erences, and observe the often complex dynamics that emerge as the balls
bounce around in a physically simulated arena. A slightly more complex
syntax allows for the specification of balls that change their colors and pref-
erences when they collide with other balls, producing extremely complex pat-
terns of activity. A screen shot of the bouncy simulation is shown in Fig. 4.8.

4.7.3 Biology and SuperDuperWalker

SuperDuperWalker is a software-based framework for experiments on the
evolution of locomotion. It simulates the behavior of evolving agents in a 3D
physical simulation environment and displays this behavior in real time. A
genetic algorithm controls the evolution of the agents. Students manipulate
parameters with a graphical user interface and plot outputs using standard
utilities. The software supports an inquiry cycle that has been piloted in
a course titled “Biocomputational Developmental Ecology” at Hampshire
College [35]. A screen shot of the SuperDuperWalker simulation is shown in
Fig. 4.9.
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Fig. 4.9 The breve SuperDuperWalker simulation.

4.7.4 Artificial Intelligence in 3D Virtual Worlds

Breve has been used as the foundation for a new approach to the introductory
artificial intelligence curriculum, which has been presented as a course twice
(as of this writing) at Hampshire College under the title “Artificial Intelli-
gence in 3D Virtual Worlds.” This course covers roughly the same material as

Fig. 4.10 The breve WubWorld simulation.
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Fig. 4.11 The breve PushImageEvolve simulation.

is covered in other “agent-based” introductory AI courses, with an emphasis
on reactive agents, neural networks, and evolutionary computation. Tradi-
tional AI topics such as knowledge representation, heuristic search, planning,
and logic-based approaches are also covered but in less detail. The primary
novelty of the course is that students work within breve, creating programs to
control agents in engaging, dynamic, and visually rich virtual worlds. These
virtual worlds include “WUB World,” an environment inhabited by monsters
(Wildly Unpredictable Biots, or WUBs), agents, obstacles, worm-holes, and
energy sources, and a world in which teams of agents compete in a “capture
the flag” game. The materials for this course, including the breve simulation
files, are available online [29]. A screen shot of the WubWorld simulation is
shown in Fig. 4.10.

4.7.5 Algorithmic Art

Breve’s rich visualization subsystem is useful not only for developing and
observing simulations but also for work in the computational arts. An “Algo-
rithmic Arts” course, taught at Hampshire College (twice as of this writing),
has used breve to provide students with tools for dynamically manipulating
images, lines, shapes, and color in 3D space. The integration of these tools
with breve allowed students to develop portfolios of algorithmic artwork that
employed turtle graphics, Lindenmayer systems, iterated function systems,
reaction/diffusion systems, texture mapping, 3D simulation, and interactive
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genetic algorithms. Fig. 4.11 shows a screen shot of the PushImageEvolve
simulation for interactive image evolution, which allows the user to evolve
image-generating Push programs using a simple point-and-click interface.

4.8 Conclusion

Breve is a powerful, free software package for multi-agent simulation. With
features such as realistic physical simulation, real-time 3D visualization, sup-
port for evolutionary computation, and integration with powerful scripting
languages, breve greatly simplifies the rapid development and exploration of
advanced artificial life experiments. We have successfully applied breve to the
development of multi-agent systems to study artificial life and a wide variety
of other fields.
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