
Chapter 2

Foundations of and Recent Advances
in Artificial Life Modeling with
Repast 3 and Repast Simphony

Michael J. North and Charles M. Macal

2.1 Introduction

Artificial life focuses on synthesizing “life-like behaviors from scratch in com-
puters, machines, molecules, and other alternative media” [24]. Artificial
life expands the “horizons of empirical research in biology beyond the ter-
ritory currently circumscribed by life-as-we-know-it” to provide “access to
the domain of life-as-it-could-be” [24]. Agent-based modeling and simulation
(ABMS) are used to create computational laboratories that replicate real or
potential behaviors of actual or possible complex adaptive systems (CAS).
The goal of agent modeling is to allow experimentation with simulated com-
plex systems. To achieve this, agent-based modeling uses sets of agents and
frameworks for simulating the agent’s decisions and interactions. Agent mod-
els show how complex adaptive systems may evolve through time in a way
that is difficult to predict from knowledge of the behaviors of the individual
agents alone. Agent-based modeling thus provides a natural framework in
which to perform artificial life experiments. The free and open source Re-
cursive Porous Agent Simulation Toolkit (Repast) family of tools consists of
several advanced agent-based modeling toolkits.

2.1.1 Artificial Life

The discipline of artificial life studies the synthesis of forms and functions that
appear alive. Artificial life allows scientific studies of biological systems out-
side the currently observable accidents of history. According to Langton [24]:

Biology is the scientific study of life – in principle, anyway. In practice, biology is the
scientific study of life on Earth based on carbon-chain chemistry. There is nothing
in its charter that restricts biology to carbon-based life; it is simply that this is the
only kind of life that has been available to study. Thus, theoretical biology has long

37

38 Michael North and Charles Macal

faced the fundamental obstacle that it is impossible to derive general principles from
single examples.

Without other examples, it is difficult to distinguish essential properties of life –
properties that would be shared by any living system – from properties that may be
incidental to life in principle, but which happen to be universal to life on Earth due
solely to a combination of local historical accident and common genetic descent.

In order to derive general theories about life, we need an ensemble of instances to
generalize over. Since it is quite unlikely that alien life-forms will present themselves
to us for study in the near future, our only option is to try to create alternative
life-forms ourselves – artificial life – literally “life made by Man rather than by
Nature.”

Langton’s description of artificial life indicates the depth but belies the age
of the discipline. According to Di Paolo [12]:

To say that artificial life is a young discipline in name only is to exaggerate, but it
would be mistaken to think that its goals are new. The marriage of synthetic scientific
aims with computational techniques makes artificial life a product of the last fifteen
years, but its motivations have much deeper roots in cybernetics, theoretical biology,
and the age-old drive to comprehend the mysteries of life and mind. Little wonder
that a good part of the work in this field has been one of rediscovery and renewal
of hard questions. Other disciplines have sidestepped such questions, often for very
valid reasons, or have put them out of the focus of everyday research; yet these
questions are particularly amenable to be treated with novel techniques such as
computational modeling and other synthetic methodologies. What is an organism?
What is cognition? Where do purposes come from?

2.1.2 Agent-Based Modeling for Artificial Life

Agent-based modeling and simulation are used to create computational labo-
ratories that replicate selected real or potential behaviors of actual or possible
complex adaptive systems. A complex adaptive system is made up of agents
that interact, mutate, replicate, and die while adapting to a changing envi-
ronment. Holland has identified the three properties and four mechanisms
that are common to all complex adaptive systems [19]:

1. The nonlinearity property occurs when components or agents exchange
resources or information in ways that are not simply additive. An example
is a photosynthetic cell agent that returns 1 calorie of energy when 1
calorie is requested, 2 calories of energy when 2 calories are requested, and
3 calories of energy when 10 calories are requested.

2. The diversity property is observed when agents or groups of agents dif-
ferentiate from one another over time. An example is the evolutionary
emergence of new species.

3. The aggregation property occurs when a group of agents is treated as a
single agent at a higher level. An example is the ants in an ant colony.

4. The flows mechanism involves exchange of resources or information be-
tween agents such that the resources or information can be repeatedly

2 Repast 39

forwarded from agent to agent. An example is the flow of energy between
agents in an ecosystem.

5. The tagging mechanism involves the presence of identifiable flags that let
agents identify the traits of other agents. An example is the use of formal
titles such as “Dr.” in a social system.

6. The internal models mechanism involves formal, informal, or implicit rep-
resentations of the world embedded within agents. An example is a preda-
tor’s evolving view of the directions prey are likely to flee during pursuit.

7. The building blocks mechanism is used when an agent participates in more
than one kind of interaction. An example is a predator agent that can also
be prey for larger predators.

Of course, these properties and mechanisms are interrelated. For example,
with aggregation, many agents can act as one. With building blocks, one agent
in some sense can act as many. Agent-based models normally incorporate
some or all of the properties and mechanisms of complex adaptive systems.

The goal of agent modeling is to allow experimentation with simulated
complex systems. To achieve this, agent-based modeling uses sets of agents
and frameworks for simulating the agent’s decisions and interactions. Agent
models can show how complex adaptive systems can evolve through time in
a way that is difficult to predict from knowledge of the behaviors of the in-
dividual agents alone. Agent modeling focuses on individual behavior. The
agent rules are often based on theories of the individual such as rational
individual behavior, bounded rationality, or satisficing [39]. Based on these
simple types of rules, agent models can be used to study how patterns emerge.
Agent modeling may reveal behavioral patterns at the macro or system level
that are not obvious from an examination of the underlying agent rules alone:
These patterns are called emergent behavior. Agent-based modeling and sim-
ulation thus provide a natural framework in which to perform artificial life
experiments.1

Agent-based modeling and simulation are closely related to the field of
Multi-agent Systems (MAS). Both fields concentrate on the creation of com-
putational complex adaptive systems. However, agent simulation models the
real or potential behaviors of complex adaptive systems and MAS often fo-
cuses on applications of artificial intelligence to robotic systems, interactive
systems, and proxy systems.

1 ABMS, agent-based modeling (ABM), agent-based simulation (ABS), and individual-
based modeling (IBM) are all synonymous. ABMS is used here since ABM can be confused
with anti-ballistic missile, ABS can be confused with anti-lock brakes, and IBM can be
confused with International Business Machines Corporation.

40 Michael North and Charles Macal

2.1.3 Chapter Organization

This chapter provides an overview of the Repast agent modeling toolkit from
the perspective of artificial life. This chapter is organized into four parts.
The introduction describes artificial life and agent-based modeling and sim-
ulation. The second section discusses the Repast agent modeling toolkit’s
development ecosystem and underlying concepts. The third section reviews
a series of Repast artificial life models of artificial evolution and ecosystems,
artificial societies, and artificial biological systems. The final section presents
a summary and conclusions.

2.2 REPAST

The Recursive Porous Agent Simulation Toolkit (Repast) family of tools is
one of several agent modeling toolkits available. Repast borrows many con-
cepts from the Swarm agent-based modeling toolkit [40]. Repast is differen-
tiated from Swarm in several respects that are discussed later.

Two generations of the Repast toolkit family are in widespread use. The
first, Repast 3, is available in pure Java and pure Microsoft.Net forms and uses
a library-oriented approach to model development [33]. The second, Repast
Simphony, is available in pure Java. It can be used as a library, but the
preferred model of development is to use its point-and-click wizard-based
system to create models, execute them, and analyze the results [21, 36].

Repast is a free open-source toolkit that was originally developed by Sal-
lach, Collier, Howe, North, and others [9]. Repast was created at the Uni-
versity of Chicago. Subsequently, it has been maintained by organizations
such as Argonne National Laboratory. Repast is now managed by the non-
profit volunteer Repast Organization for Architecture and Design (ROAD).
ROAD is led by a board of directors that includes members from a wide range
of government, academic, and industrial organizations. The Repast system,
including the source code, is available directly from the web [38].

Repast seeks to support the development of extremely flexible models of
living social agents, but it is not limited to modeling living social entities
alone. From the ROAD home page [38]:

Our goal with Repast is to move beyond the representation of agents as discrete, self-
contained entities in favor of a view of social actors as permeable, interleaved, and
mutually defining; with cascading and recombinant motives. . .We intend to support
the modeling of belief systems, agents, organizations, and institutions as recursive
social constructions.

2 Repast 41

2.2.1 Repast 3

At its heart, Repast toolkit version 3 can be thought of as a specification for
agent-based modeling services or functions. There are three concrete imple-
mentations of this conceptual specification. Naturally, all of these versions
have the same core services that constitute the Repast system. The imple-
mentations differ in their underlying platform and model development lan-
guages. The three implementations are Repast for Java (RepastJ), Repast for
the Microsoft.Net framework (Repast.Net), and Repast for Python Script-
ing (RepastPy). RepastJ is the reference implementation that defines the
core services. The fourth version of Repast, namely Repast for Oz/Mozart
(RepastOz), is an experimental system that partially implements the Repast
conceptual specification while adding advanced new features [30, 42]. An ex-
ample Repast model user interface is shown in Fig. 2.1.

Fig. 2.1 A Repast 3 model user interface using the ESRI ArcGIS agent analyst extension.

Repast 3 has a variety of features, including the following:

• Repast 3 includes a variety of agent templates and examples. However, the
toolkit gives users complete flexibility as to how they specify the properties
and behaviors of agents.

42 Michael North and Charles Macal

• Repast 3 is fully object-oriented.
• Repast 3 includes a fully concurrent discrete event scheduler. This sched-

uler supports both sequential and parallel discrete event operations.
• Repast 3 offers built-in simulation results logging and graphing tools.
• Repast 3 has an automated Monte Carlo simulation framework.
• Repast 3 provides a range of two-dimensional agent environments and

visualizations.
• Repast 3 allows users to dynamically access and modify agent properties,

agent behavioral equations, and model properties at run time.
• Repast 3 includes libraries for genetic algorithms, neural networks, random

number generation, and specialized mathematics.
• Repast 3 includes built-in Systems Dynamics modeling.
• Repast 3 has social network modeling support tools.
• Repast 3 has integrated geographical information systems (GIS) support.
• Repast 3 is fully implemented in a variety of languages including Java and

C#.
• Repast 3 models can be developed in many languages including Java, C#,

Managed C++, Visual Basic.Net, Managed Lisp, Managed Prolog, and
Python scripting.

• Repast 3 is available on virtually all modern computing platforms, includ-
ing Windows, Mac OS, and Linux. The platform support includes both
personal computers and large-scale scientific computing clusters.

Repast 3’s features directly support the implementation of models with
Holland’s three properties and four mechanisms [19]:

1. Repast 3 allows nonlinearity in agents since their behaviors are completely
designed by users. Repast’s Systems Dynamics, genetic algorithms, neural
networks, random number generation, and social networks libraries make
this process easy.

2. Repast 3 supports diversity by giving users complete control over the way
their agents are defined and initialized. Again, the Repast libraries simplify
the specification of diversity.

3. Repast 3 allows the aggregation property by allowing users to specify and
maintain groups of agents.

4. Repast 3 supports the flows mechanism with features such as its Systems
Dynamics tools and social network library.

5. Repast 3 provides for the tagging mechanism by allowing agents to present
arbitrary markers.

6. Repast 3 makes the internal models mechanism available through both its
flexible definition of agents and its many behavioral libraries.

7. Repast 3 supports the building blocks mechanism through its object-
oriented polymorphism.

Repast 3 for Python Scripting (RepastPy) enables visual model construc-
tion with agent behaviors defined in Python [27]. RepastPy models can be
automatically converted to RepastJ models using RepastPy’s export option.

2 Repast 43

RepastPy users work with the interface shown in the upper left-hand win-
dow of Fig. 2.2 to add the components to their models. RepastPy users then
employ Python to script the behaviors of their agents, as shown in the lower
right-hand window of Fig. 2.2.

Fig. 2.2 The RepastPy interface.

The components in the example model are shown on the left-hand side
of the upper window of Fig. 2.2. These components include the simulation
environment specification, the model specification (“Schelling GIS”), the ZIP
code region agent specification (“ZipRegion”), and the residential agent spec-
ification (“Resident”). Properties for the model specification such as the “Ac-
tions,” “Display Name,” and “Master Schedule” are shown on the right-hand
side of the upper window in the figure. The Actions “Edit” button is used to
access the Python scripting for the agent behaviors.

The Python scripting window for the example model is shown in the lower
window of Fig. 2.2. The agent properties (“Variables”), the agent behavior
libraries (“Java Imports”), and behavior code (“Source”) can be seen in this
window.

There is a special version of RepastPy known as the Agent Analyst that
is an extension to the ESRI ArcGIS geographical information systems plat-
form. ESRI ArcGIS is the leading commercial GIS, with well over one mil-
lion users. Agent Analyst is a fully integrated ArcGIS Model Tool. This
means that Agent Analyst has drag-and-drop integration with ArcGIS. Agent

44 Michael North and Charles Macal

Analyst users can create RepastPy models from within ArcGIS with a few
mouse clicks. Fig. 2.1 shows the SLUDGE Geographical Information System
(SluGIS) Agent Analyst model running within ArcGIS. SluGIS is described
in the section on artificial societies.

Fig. 2.3 The RepastJ Hexabugs model.

RepastJ is written entirely in Java [15]. An example RepastJ model, Hex-
abugs, is shown in Fig. 2.3. The Hexabugs model is discussed in the section on
artificial biological systems. Since RepastJ is pure Java, any development en-
vironment that supports Java can be used. The free and open-source Eclipse
development environment is recommended [13]. Eclipse provides a variety of
powerful editing and development features, including code authoring wizards,
automatic code restructuring tools, design analysis tools, Unified Modeling
Language (UML) tools, extensible markup language (XML) tools, and in-
tegration with version control systems. Fig. 2.4 shows part of the RepastJ
AgentCell model in Eclipse. The AgentCell modules are shown in the upper
left “Package Explorer” tab. The cell agent component is highlighted in this
tab. Part of the cell agent code is shown in the upper middle “Cell.java”
tab. Some of the cell agent properties and methods can be seen in the “Out-
line” tab on the far right. Part of the cell agent documentation is shown in
the button right tab. Additionally, a code module dependency graph can be
seen in the lower left “Dependency Graph View” tab. This graph shows the
connections between some of the main AgentCell modules.

Both RepastJ and RepastPy models can be developed and executed on
nearly any modern computing platform. This is particularly beneficial for

2 Repast 45

Fig. 2.4 RepastJ in the Eclipse development environment.

artificial life researchers since models can be constructed on readily avail-
able workstations and then executed on large-scale clusters without changing
code. An example of this will be provided along with the description of the
AgentCell model.

Repast for the Microsoft.Net framework (Repast.Net) is written entirely
in C# [2]. An example Repast.Net named Rocket Bugs is shown in Fig. 2.5.
The Rocket Bugs model is a Cartesian elaboration of the Hexabugs model
in which some of the agents herd the other agents in the system. Some of
the code for this model is displayed in the Visual Studio Environment in
Fig. 2.6. It can be seen in the three windows on the left in the figure that
the Rocket Bugs simulation uses a combination of Managed C++, C#, and
Visual Basic.Net, all in a single seamless model. Additionally, note in the
lower right that Repast.Net comes with a full set of specialized Visual Studio
templates. These templates automate the initial creation of both Repast.Net
models and model components such as agents.

All three versions of Repast are designed to work well with other software
development tools. For example, all three versions are integrated with GISs
such as the RepastPy Agent Analyst example shown in Fig. 2.1. However,
since RepastJ is the most widely used version of Repast, the integration
examples will focus on Java. See ROAD for many other examples [38].

RepastJ easily permits aspect-oriented software development. Aspects im-
plement cross-cutting concerns that allow software idioms repeated through-
out a model to be factored to reduce redundancy [14]. See Walker, Baniassad,

46 Michael North and Charles Macal

Fig. 2.5 Repast.Net Rocket Bugs model.

and Murphy for a discussion of the use of Aspects for software develop-
ment [43].

RepastJ includes its own built-in logging facilities but also works with
the high-performance Log4j system and also with the National Center for
Supercomputing Applications’ (NCSA) Hierarchical Data Format 5 (HDF5)
data storage system [18, 32]. The use of Log4j, among other logging tools, in
conjunction with AspectJ is discussed briefly by Cloyer et al. [8].

RepastJ unit testing is performed with JUnit as outlined in Beck and
Gamma [3]. Unit testing allows software to be tested on an incremental mod-
ular level. The combination of these and other tools with RepastJ allows
sophisticated models to be constructed reliably and efficiently.

The Repast 3 system has two layers. The core layer runs general-purpose
simulation code written in Java or C#. This component handles most of the
behind-the-scenes details. Repast users do not normally need to work with
this layer directly. The external layer runs user-specific simulation code writ-
ten in Java, C#, Python, Managed C++, Managed Lisp, Managed Prolog,
Visual Basic.Net, or other languages. This component handles most of the
center stage work. Repast users regularly work with this layer.

2 Repast 47

Fig. 2.6 Repast.Net in Microsoft Visual Studio.Net.

The Repast 3 system has four fundamental components, as shown in
Fig. 2.7. The components are the simulation engine, the input/output (I/O)
system, the user interface, and the support libraries. Each of these compo-
nents is implemented in the core layer and is accessed by the user in the
external layer. A Unified Modeling Language (UML) diagram showing the
relationships between these components is presented in Fig. 2.8. Information
on UML notation can be found in Booch [5].

The Repast 3 simulation engine is responsible for executing simulations.
The Repast engine has four main parts, namely the scheduler, the model,
the controller, and the agents. The relationship among these components is
indicated in Figs. 2.7 and 2.8 and is discussed later in this section.

The Repast 3 scheduler is a full-featured discrete event scheduler. Simula-
tions proceed by popping events or “actions,” as they are called in Repast, off
an event queue and executing them. These actions are such things as “move
all agents one cell to the left,” “form a link with your neighbor’s neighbor,” or
“update the display window.” The model developer determines the order in
which these actions execute relative to each other using ticks. As such, each
tick acts as a temporal index for the execution of actions. For example, if
event X is scheduled for tick 3, event Y for tick 4, and event Z for tick 5, then
event Y will execute after event X and before event Z. Actions scheduled for
execution at the same tick will be executed with a simulated concurrency. In

48 Michael North and Charles Macal

Model

Controller

Agents

Simulation Engine

User Interface

I/O Support Libraries

Scheduler

Fig. 2.7 Repast overview diagram.

this way, the progression of time in a simulation can be seen as an increase
in the tick count.

The Repast 3 scheduler includes full support for concurrent task execu-
tion. Tasks become concurrent when actions are given both a starting time
and duration. When durations are specified, actions that can be started in
the background are run concurrently. Actions with nonzero durations will
run concurrently with other actions with compatible tick counts as well as
block the execution of other actions with higher tick counts until the current
action is completed. For example, consider a process that contains some long-
running and complicated behavior that can be started at time t with results
needed at t + 5. Imagine that there are actions that can be run concurrently
over time t to t+5. This behavior can be modeled as an action with a five-tick
duration. In terms of implementation, this action will run in its own thread
that is amenable to being run on a separate processor or even on another
computer. This allows the natural introduction of complex concurrent and
parallel task execution into Repast simulations. Since durations are optional,
modelers can begin by creating sequential simulations and then introduce
concurrency as needed.

Repast 3 schedulers are themselves actions that can be recursively nested
following the composite design pattern [16]. This allows a Repast action to be

2 Repast

User Agent(s)

step

<<SimModel>>
Simple Model

Setup
Build Model

<<SimModel>>
User Model

Setup
Build Model

1 1

<<IController>
Controller

1

N

Schedule

1

1

N 1

Support Libraries
and I/O System

User Interface

Fig. 2.8 Core Repast UML diagram.

as complex as needed for a given application. It even allows advanced multi-
scale simulations to be constructed by combining existing models such that
the full schedules of lower-level models run as simple actions in higher-level
models.

Repast 3 models contain the definition of the simulation to be run by
the scheduler. Repast models include the list of agents to be executed, the
simulation initialization instructions, and the user interface specification.

Repast 3 controllers connect models and schedulers. They activate the
selected model and then manage the interactions between the user or batch
execution system and the model.

Repast 3 agents are created by users from components within Repast. A
variety of options are available, including geographically situated agents and
network-aware agents. Agents receive data from, and provide results to, the
Repast I/O system.

The Repast 3 I/O system allows agents to be created based on input
properties. It also can store data from both agents and overall models. Repast
includes a set of results loggers that support a range of storage formats.

The Repast 3 user interface supports the display of model results and
allows user to interact with running models. Repast user interface examples
are shown in Figs. 2.1, 2.3, 2.5 and 2.9. Model user interfaces can include

2 Repast 4499

50 Michael North and Charles Macal

graphical outputs or maps of the agent states as well as interactive probes
that allow users to view and modify agent states. An agent map is shown in
the lower left of Fig. 2.3 and an agent probe is shown in the upper left. Users
have full control over what is available through both maps and probes.

Fig. 2.9 Padgett, Lee, and Collier’s RepastJ Hypercycle model.

The Repast 3 support libraries include a variety of tools for both mathe-
matics and modeling. The mathematics support includes a range of random
distribution generators and statistical aggregation tools commonly found in
all kinds of simulation toolkits [25]. The modeling support includes genetic
algorithms and neural network tools among other features [22].

2.2.2 Repast Simphony

Repast Simphony (Repast S) represents a substantial advance in artificial
life modeling, and agent-based modeling in general, compared to previous
technologies. As described in [21], Repast S builds upon the Repast 3 model
development approach by introducing the following model creation process:

• The modeler creates model pieces, as needed, in the form of plain old Java
objects (POJOs), often using automated tools or scripting languages such
as Groovy [23]. An example agent behavior flowchart is shown in Fig. 2.10.
The contents of the flowchart are automatically compiled to Groovy source
code and then to Java bytecode.

• The modeler uses declarative configuration settings to pass the model
pieces and legacy software connections to the Repast S runtime system.

2 Repast 51

• The modeler uses the Repast S runtime system to declaratively tell Repast
S how to instantiate and connect model components.

• Repast S automatically manages the model pieces based on both interac-
tive user input and declarative or imperative requests from the components
themselves.

Fig. 2.10 An example agent behavior flowchart.

The POJO model components can represent anything but are most com-
monly used to represent the agents in the model. Although the POJOs can
be created by using any method, this chapter discusses one powerful way to
create POJOs for Repast S: the Repast S development environment. How-
ever, modelers can use any method – from hand coding to wrapping binary
legacy models to connecting into enterprise information systems – to create
the Repast S POJO model components.

Regardless of the source of the POJOs, the Repast S runtime system is
used to configure and execute Repast S models. The Repast S runtime system
includes the following:

• Point-and-click model configuration and operation;

52 Michael North and Charles Macal

• Integrated two-dimensional, three-dimensional (3D), and other views (see
Fig. 2.11 for an example 3D GIS view);

• Automated connections to enterprise data sources;
• Automated connections to powerful external programs for conducting sta-

tistical analysis and visualizing model results.

Fig. 2.11 An example 3D GIS view.

2.2.3 Using Repast 3 and Repast Simphony

As previously mentioned, all versions of Repast are distributed under a vari-
ation of the BSD license [38]. This license states that Repast can be used
for virtually any purpose without fees and without a requirement to release
propriety model source code. See ROAD for details [38]. This license allows
Repast to be freely used in education, research, and entertainment by non-
profit, government, and commercial organizations.

Many educational institutions are now using or have used Repast for either
education or research. These institutions include the University of Chicago,
the University of Michigan, Iowa State University, the Swiss Federal Institute

2 Repast 53

of Technology Zurich, the Illinois Institute of Technology, and Harvard Uni-
versity. In particular, the University of Chicago is the birthplace of Repast.
The educational uses generally focus on providing students with a labora-
tory environment for experiments with complex systems and for instructing
students on agent-based modeling concepts. The research work includes the
development of models in a variety of domains as well as model-theoretic stud-
ies. Several of the models are discussed in the following sections. The model-
theoretic work mostly involves additions to and extensions of the Repast
framework itself. This list of educational institutions using Repast is rapidly
growing.

A significant number of U.S. federal government agencies and other orga-
nizations are using or have used various versions of Repast. These users have
Repast models that focus on a range of mission-critical applications such as
infrastructure security and network communications planning.

Several commercial organizations are working with Repast. These organi-
zations include software developers such as ESRI and other private organi-
zations. These corporations are using Repast for several purposes, including
strategic planning and commercial software enhancement.

2.3 Repast Artificial Life Models

Agent-based modeling has been used in an enormous variety of applications
to social systems, covering human as well as nonhuman systems. Applications
range from modeling ancient civilizations that have been gone for hundreds
of years, to modeling how to design new markets that do not currently exist,
such as space tourism and digital news. Selected applications are listed in
Table 2.1 for the period 2004 to 2008. Earlier models can be found in the
first edition of this book [35]. All of the applications listed acknowledge using
Repast as the underlying agent-based modeling toolkit.

Several of the works contend that using agent-based modeling versus other
modeling techniques is necessary because agent-based models can explicitly
model the complexity arising from individual actions and interactions that
exist in the real world. All of the works support the use of Repast as the
tool of choice based on reasons having to do with usability, ease of learning,
cross-platform compatibility, and its sophisticated capabilities to connect to
databases, graphical user interfaces, and GISs.

Griffin and Stanish [17] developed an agent-based model, using Repast,
for the Lake Titicaca basin of Peru and Bolivia covering the late prehis-
toric period, 2500 BC to AD 1000. The model was used to study hypotheses
for the causal variables affecting prehistoric settlement patterns and polit-
ical consolidations. The model’s geo-spatial structure consists of a 50,000
km2 grid composed of 1.5-km square cells. Each cell modeled the geography,
hydrology, and agricultural potential. Agents consist of settlements, peoples,

54 Michael North and Charles Macal

Application area Model description and reference

Air Traffic Control An agent-based model of air traffic control to analyze control policies
and performance of a capacity constrained air traffic management
facility (Conway [10]).

Anthropology An agent-based model of prehistoric settlement patterns and polit-
ical consolidation in the Lake Titicaca basin of Peru and Bolivia
(Griffin and Stanish [17]).
An agent-based model of linguistic diversity (de Bie and de Boer [4]).

Ecology Agent-based model of predator–prey relationships between transient
killer whales and other marine mammals (Mock and Testa [29]).
Aphid population dynamics in agricultural landscapes using agent-
based modeling (Parry, et al. [37]).

Energy Analysis An agent-based model for scenario development of offshore wind
energy (Mast et al. [28]).
Agent-based model of residential energy generation (Houwing and
Bouwmans [20]).

Epidemics An agent-based computer model to retrospectively simulate the
spread of the 1918–1919 influenza epidemic through the small fur-
trapping community of Norway House in Manitoba, Canada (Car-
penter [6]).

Marketing An agent-based simulation to model the possibilities for a future
market in sub-orbital space tourism (Charania et al. [7]).
A multi-agent based simulation of news digital markets (López-
Sánchez et al. [26]).
An agent-based model of Rocky Mountain tourism (Yin [45]).
An agent-based computational economics model using Repast to
study market mechanisms for the secondary use of the radio spec-
trum (Tonmukayakul [41]).

Organizational
Decision Making

Agent based modeling approach to allow negotiations in order to
achieve a global objective, specifically for planning the location of
intermodal freight hubs (van Dam et al. [11]).
An evaluation framework for supply chains based on corporate cul-
ture compatibility using agent-based modeling (Al-Mutawah and
Lee [1]).
Emergency response (Narzisi et al. [31]).

Social Science Simulating the process of social influence within a population, using

dynamic social impact theory (Wragg [44]).

Table 2.1 Selected recent Repast applications

political entities, and leaders that interact with each other and with the envi-
ronment (grid). Agent behavior is modeled as a set of condition-action rules
that are based on hypothesized causal factors affecting agriculture, migra-
tion, competition, and trade processes. The authors report that through a
series of simulation runs, the model produced a range of alternative political
prehistories and the emergence of macro-level patterns that corresponded to
observed patterns in the archaeological record. Simulation results provided
insights into region-wide political consolidation.

De Bie and de Boer [4] developed an agent-based model of linguistic di-
versity implemented in Repast. The authors model language diversity as the

2 Repast 55

result of language mutation. Agents adopt mutations from other agents based
on social impact theory, in which less common varieties of language have a
relatively greater influence per individual speaking the variety. Using the
model, they demonstrate how different language patterns can exist at the
same time.

Carpenter [6] constructed an agent-based model with Repast to retrospec-
tively simulate the spread of influenza in the 1918–1919 pandemic through
the small fur-trapping community of Norway House in Manitoba, Canada.
According to the author, historical information about the influenza pandemic
was used to create a computer simulation that could be manipulated in ways
that would not be possible, or ethical, in real life. Carpenter contends that
by using agent-based modeling, an artificial landscape can be populated with
heterogeneous agents who move and interact in ways that more closely resem-
ble human behavior than is possible to do using other modeling techniques.
The model was used to address research questions on the influence of changes
in population movement patterns on the transmission of disease, specifically
whether the seasonal population movements could influence the spread of
the influenza through the community and whether a winter epidemic could
differ from a summer epidemic predominantly due to changes in seasonal
population movement.

Charania et al. [7] used agent-based simulation and Repast to model pos-
sible futures for a market in sub-orbital space tourism. Each agent is a repre-
sentation of an entity within the space industry, such as consumers, produc-
ers, the government, etc., that provides or demands different products and
services. Tourism companies seek to maximize profits while they compete
with other companies for sales. Individual companies decide the price they
will charge for a flight aboard their vehicle. Customers evaluate the products
offered by the companies according to their individual tastes and preferences.

López-Sánchez et al. [26] developed a multi-agent-based simulation of news
digital markets called SimwebAB, using Repast. Their approach is to adapt
traditional business models to the new market. They use the model to inves-
tigate the dynamics of the new market and gain insights into how to exploit
the impending paradigm shift in news contents, marketing, and distribution.
The authors contend their model is useful for informing business strategy
decisions.

Yin [45] used Repast to develop an agent-based model of Rocky Mountain
tourism and applied it to the town of Breckenridge, Colorado. The model
was used to explore how homeowners’ investment and reinvestment decisions
are influenced by the level of investment and amenities available in their
neighborhoods. The dynamics and indirect spatial impacts of amenity-led
mountain tourism on development were explored. The author found that
individual levels of appreciation of amenities and continuing investment in
a neighborhood attracted investment and reinvestment and created pressure
for high-density resort housing development at the aggregate level.

56 Michael North and Charles Macal

Tonmukayakul [41] developed an agent-based computational economics
model using Repast to study market mechanisms for the secondary use of
the radio spectrum. Secondary use is the temporary access of the existing
licensed spectrum by users who do not own a spectrum license. Using trans-
action cost economics as the theoretical framework, the objective of the model
was to identify the preconditions for when and why the secondary use market
could emerge from the repeated interactions of agents in the simulated market
and what form it might take. Understanding the dynamics for this hypothet-
ical market could lead to policy instruments to more effectively manage the
spectrum.

Al-Mutawah and Lee [1] developed an agent-based supply chain model
for evaluating supply chain corporate culture compatibility, using Repast.
The model focuses on a three-level supply chain. The model integrates the
framework for cultural learning to evaluate the management performance of
the supply chain under different scenarios and assumptions.

Wragg [44] used agent-based modeling and Repast to simulate the process
of social influence within a population, using dynamic social impact theory.
The motivation was to understand the social processes and power dynamics
of local populations in response to recent military operations in Afghanistan
and Iraq. The author contends that the simulations reproduced the expected
characteristics of social influence, such as opinion clustering, opinion polariza-
tion, minority opinion decay, and, more generally, the nonlinearity of public
opinion change. The author highlights the need for accurate data concern-
ing a population’s social hierarchy, social networks, behavior patterns, and
human geography. These data are essential for determining the impacts of
word-of-mouth and mass-media-driven information campaigns on the popu-
lation.

Narzisi et al. [31] developed a agent-based disaster simulation framework,
using Repast, to simulate catastrophic, emergency scenarios that required op-
timized emergency response. Incidents included the release of chemical agents,
bomb explosions, food poisonings, and small pox outbreaks. The model in-
cludes large numbers of agents in several categories, including individuals in
the population, hospitals, ambulances and on-site responders.

Conway [10] used Repast to build an agent-based model of air traffic con-
trol. The model was used to analyze the effectiveness of control policies for
a capacity-constrained air traffic management facility. The model is used to
address situations where capacity is overburdened and there is a potential for
resultant delays to propagate throughout the flight schedule. The model in-
cludes representations of air traffic system attributes such as system capacity,
demand, airline schedules and strategy, and aircraft capability.

Van Dam et al. [11] applied an agent-based modeling approach to modeling
the negotiation process. The objective was to investigate the conditions under
which a global objective could be achieved by individual decision makers
acting in their own interests. The model incorporates the agent’s decision-
making process for planning the location of intermodal freight hubs.

2 Repast 57

Mast et al. [28] developed an agent-based model using Repast for investi-
gating scenarios for developing offshore wind energy resources in the Nether-
lands. A simple model was developed that includes the actors involved in the
supply chain, represented at a relatively high level of aggregation. The model
was used to investigate opportunities and threats to this emerging industry.

Houwing and Bouwmans [20] developed an agent-based model of residen-
tial energy generation to investigate how distributed energy resources will
contribute to the European Union’s stated policy goals of (1) energy market
liberalization and (2) decreasing environmental impacts from energy use. The
modeling study focused on residential power and heat generation through the
use of micro-combined heat and power units; options for heat storage were
modeled. The authors estimated the impact of residential power units on
household energy flows, energy costs, and CO2 emissions. The model results
show that the operational impacts are highly dependent on the control mode
adopted for heating and power units. Agent-based modeling proved useful in
modeling both the individual technology units and the individual decision
making behaviors of the consumers to operate the units.

Mock and Testa [29] use Repast to develop an agent-based model of
predator–prey relationships between transient killer whales and threatened
marine mammal species in Alaska. Threatened species include sea lions and
sea otters. The authors state that previously only simplistic, static models of
killer whale consumption had been constructed due in part to the fact that
the interactions between transient killer whales and their marine mammal
prey are poorly suited to classical predator–prey modeling approaches such
as those based on the Lotka–Volterra differential equation framework. This
killer whale model is an agent-based model at both the individual and hunting
group levels. Individual agents eat, grow, reproduce, and die. Hunting groups
change in size and composition while encountering other marine mammals.

Parry et al. [37] modeled the dynamics of aphid populations in agricul-
tural landscapes using a spatially explicit agent-based simulation model and
Repast. Aphid agents interact with one another and with the landscape en-
vironment over time. The model is heavily parameterized and coupled to a
GIS for geo-spatial realism. The authors demonstrate that a spatial model
that explicitly considers environmental factors (e.g., landscape properties,
wind speed and direction, etc.) provides greater insight into aphid popula-
tion dynamics over spatial and temporal dimensions than other modeling
approaches.

2.4 Conclusions

Artificial life focuses on synthesizing “life-like behaviors from scratch in com-
puters, machines, molecules, and other alternative media” [24]. Artificial life
expands the “horizons of empirical research in biology beyond the territory

58 Michael North and Charles Macal

currently circumscribed by life-as-we-know-it” to provide “access to the do-
main of life-as-it-could-be” [24]. Agent-based modeling and simulation are
used to create computational laboratories that replicate selected real or po-
tential behaviors of actual or possible complex adaptive systems. Agent-based
models can be used to escape the accident of history in the form of “life-as-
we-know-it” by revealing alterative forms of “life-as-it-could-be.”

Repast is a family of free and open-source agent modeling toolkits.
Repast’s features directly support the implementation of models with Hol-
land’s three properties and four mechanisms of complex adaptive systems [19].
As such, Repast 3 and Repast Simphony are natural frameworks in which to
perform artificial life experiments. More information on the use of Repast
and other modeling tools can be found in North and Macal [34].

Repast has many academic, government, and industry users. These users
are involved in a variety of application areas, including educational, research,
and commercial uses. In particular, there are many examples in which Repast
has been used extensively for artificial life applications in topical areas such as
artificial evolution and ecosystems, artificial societies, and artificial biological
systems.

References

1. Al-Mutawah K and Lee V (2008) An Evaluation Framework for Supply Chains Based
on Corporate Culture Compatibility. In: Supply Chain, Theory and Applications, Ko-
rdic V (ed.) pp. 59–72, I-Tech Education and Publishing, Vienna, Austria.

2. Archer T (2001) Inside C#. Microsoft Press, Redmond, Washington.
3. Beck K and Gamma E (1998) Test infected: Programmers love writing tests. Java

Report 3:37–50.
4. de Bie P and de Boer B (2007) An Agent-Based Model of Linguistic Diversity. In: Proc.

ESSLLI 2007 Workshop on Language, Games, and Evolution, Benz A, Ebert C and van
Rooij R (eds.), pp. 1–8, Available online at http://frim.frim.nl/Dublin.pdf.

5. Booch G (1993) Object-oriented Design with Applications. Addison-Wesley, Reading,
MA.

6. Carpenter, C., 2004, Agent-Based Modeling of Seasonal Population Movement and
the Spread of the 1918–1919 Flu: The Effect on a Small Community, University of
Missouri-Columbia, Master’s Thesis, Department of Anthropology.

7. Charania AC, Olds JR, and DePasquale D (2006) Sub-Orbital Space Tourism Mar-
ket: Predictions of the Future Marketplace Using Agent-Based Modeling, Space-
Works Engineering, Inc., Atlanta, GA, Available online at http://www.sei.aero/
uploads/archive/IAC-06-E3.4.pdf.

8. Cloyer A, Clement A, Bodkin R, and Hugunin J (2003) Practitioners report: Using
aspectJ for component integration in middleware. In: Companion of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications. R. Crocker and G. Steele Jr. (eds.) ACM, New York.

9. Collier N, Howe T, and North M (2003) Onward and upward: The transition to Repast

2.0. In: Proc. of the 1st Annual North American Association for Computational Social
and Organizational Science Conference, Electronic Proceedings. Pittsburgh, PA.

10. Conway SR (2006) An Agent-Based Model for Analyzing Control Policies and
the Dynamic Service-Time Performance of a Capacity-Constrained Air Traffic

2 Repast 59

Management Facility, ICAS 2006 – 25th Congress of the International Coun-
cil of the Aeronautical Sciences Hamburg, Germany, 3–8 September 2006. Avail-
able online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.

gov/20060048296_2006250468.pdf.
11. van Dam KH, Lukszo Z, Ferreira L, and Sirikijpanichkul A (2007) Planning the Lo-

cation of Intermodal Freight Hubs: An Agent Based Approach, In: Proceedings of the
2007 IEEE International Conference on Networking, Sensing and Control, pp. 187–192,
London, UK, 15–17 April 2007.

12. Di Paolo E (2004) Unbinding biological autonomy: Francisco Varela’s contributions to
artificial Life. Journal of Artificial Life, Vol. 10, Issue 3, 231–234.

13. Eclipse Home Page (2008) http://www.eclipse.org/.
14. Elrad T, Filman R, and Bader A (2001) Aspect-oriented programming: Introduction.

Communications of ACM 44:29–32.
15. Foxwell H (1999) Java 2 Software Development Kit. Linux Journal. Specialized Systems

Consultants, Seattle, Washington.
16. Gamma E, Helm R, Johnson R, and Vlissides J (1995) Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, MA.
17. Griffin AF and Stanish C (2007) An agent-based model of prehistoric settlement

patterns and political consolidation in the Lake Titicaca Basin of Peru and Bo-
livia, structure and dynamics: eJournal of Anthropological and Related Sciences, 2(2).
Available online at http://repositories.cdlib.org/imbs/socdyn/sdeas/
vol2/iss2/art2.

18. Gülcü C (2003) The Complete Log4j Manual: The Reliable, Fast, and Flexible Logging
Framework for Java. QOS.ch, Lausanne, Switzerland

19. Holland J (1996) Hidden Order: How Adaptation Builds Complexity. Addison-Wesley,
Reading, MA.

20. Houwing M and Bouwmans I (2007) Agent-Based Modelling of Residential En-
ergy Generation with Micro-CHP, Delft University of Technology, Available on-
line at http://wiki.smartpowersystem.nl/images/d/dc/M_Houwing&I_

Bouwmans_Napa2006_FIN.pdf.
21. Howe TR, Collier NT, North MJ, Parker BT, and Vos JR (2006) Containing Agents:

Contexts, Projections, and Agents. In: Proceedings of the Agent 2006 Conference on
Social Agents: Results and Prospects, Argonne National Laboratory, Argonne, IL.

22. Java Object Oriented Neural Engine (Joone) Home Page (2004) http://www.

jooneworld.com/

23. König D, Glover A, King P, Laforge G, and Skeet J (2007) Groovy in Action. Manning
Publications, Greenwich, CT.

24. Langton C (1994) What is Artificial Life?, The Digital Biology Project. Available at
http://www.biota.org/papers/cglalife.html.

25. Law AA (2007) Simulation Modeling and Analysis. 4th ed. McGraw-Hill, New York.
26. López-Sánchez M, Noria X, Rodriguez JA, and Gilbert N (2005) Multi-agent based

simulation of news digital markets. International Journal of Computer Science & Ap-
plications, II(I). Available online at http://www.tmrfindia.org/ijcsa/v21.
html.

27. Lutz M and Ascher D (1999) Learning Python. O’Reilly Press, Sebastopol, CA.
28. Mast EH, van Kuik GAM, and van Bussel GJW (2007) Agent-Based Modelling for

Scenario Development of Offshore Wind Energy, T. Chaviaropoulos (ed.), Proceed-
ings of the 2007 European Wind Energy Conference & Exhibition in Milan, pp. 1–4,
Brussels, EWEA.

29. Mock KJ and Testa JW (2007) An Agent-Based Model of Predator–Prey Relationships
between Transient Killer Whales and Other Marine Mammals, University of Alaska
Anchorage, Anchorage, AK, May 31, 2007. Available online at http://www.math.
uaa.alaska.edu/˜orca/.

30. Mozart Consortium: Mozart Programming System 1.3.1 (2004). Available online at
http://www.mozart-oz.org/.

60 Michael North and Charles Macal

31. Narzisi GV, Mishra B (2006) Multi-Objective Evolutionary Optimization of Agent-
Based Models: An Application to Emergency Response Planning, New York Univer-
sity, Available online at http://www.cs.nyu.edu/mishra/PUBLICATIONS/06.
ci06PlanC.pdf.

32. NCSA, HDF 5 Home Page (2004) http://hdf.ncsa.uiuc.edu/HDF5/.
33. North M, Collier N, and Vos R (2006) Experiences creating three implementations

of the Repast agent modeling toolkit. ACM Transactions on Modeling and Computer
Simulation, 16(1):1–25.

34. North M and Macal C (2007) Managing Business Complexity: Discovering Strategic
Solutions with Agent-Based Modeling and Simulation, Oxford University Press, New
York.

35. North MJ and Macal CM (2005) Escaping the Accidents of History: An Overview
of Artificial Life Modeling with Repast, In: Adamatzky A and Komosinski M (eds.).
Artificial Life Models in Software, 1st ed., pp. 115–141, Springer, Heidelberg.

36. North MJ, Tatara E, Collier NT, Ozik J (2007) Visual Agent-based Model Develop-
ment with Repast Simphony. In: Proceedings of the Agent 2007 Conference on Complex
Interaction and Social Emergence, Argonne National Laboratory, Argonne, IL.

37. Parry H, Evans AJ and Morgan D (2004) Aphid Population Dynamics in Agricul-
tural Landscapes: An Agent-Based Simulation Model, International Environmental
Modelling and Software Society iEMSs 2004 International Conference University of
Osnabrück, Germany, 14–17 June 2004. Available online at http://www.iemss.

org/iemss2004/pdf/landscape/parraphi.pdf.
38. ROAD: Repast 3.0 (2004) http://repast.sourceforge.net/.
39. Sandler T (2001) Economic Concepts for the Social Sciences. Cambridge University

Press, Cambridge.
40. Swarm Development Group: Swarm 2.2 (2004) http://wiki.swarm.org/.
41. Tonmukayakul A (2007) An Agent-Based Model for Secondary Use of Radio Spectrum.

Ph.D. thesis, University of Pittsburgh, School of Information Sciences.
42. Van Roy P and Haridi S (2004) Concepts, Techniques, and Models of Computer Pro-

gramming. MIT Press, Boston, MA.
43. Walker R, Baniassad E, and Murphy G (1999) An initial assessment of aspect-oriented

programming. In: Proc. 1999 Int. Conf. Software Engineering. IEEE, Piscataway, NJ,
pp. 120–135.

44. Wragg T (2006) Modelling the Effects of Information Campaigns Using Agent-Based
Simulation, DSTO Defence Science and Technology Organisation, Edinburgh South
Australia, DSTO-TR-1853.

45. Yin L (2007) Assessing indirect spatial effects of mountain tourism development:
An application of agent-based spatial modeling. Journal of Regional Analysis
& Policy 37(3):257–265. Available online at http://www.jrap-journal.org/

pastvolumes/2000/v37/F37-3-8.pdf.

