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Preface

Artificial Life is an interdisciplinary field of science comprised of experts
from computer science, biology, physics, chemistry, and mathematics, as well
as philosophers and artists. Artificial Life focuses on studying the phenom-
ena of life at all levels of complexity and organization – molecular, cellular,
organismic, and population. These studies not only employ conventional com-
puters (using both software and hardware) but also take place in wetware,
using techniques from the biochemical laboratory. Artificial Life research is
not limited to life-forms that currently exist on the Earth. Rather, it attempts
to study the general principles of life that are common to all instances of life,
those both already recognized and yet unknown.

Contemporary models of life that are implemented in the hardware medium
are covered in the sister book Artificial Life Models in Hardware, which is
also published by Springer and edited by Andrew Adamatzky and Maciej
Komosinski. The book you are reading now is dedicated to software, the
most popular and widely employed medium in the artificial life research.
Software environments offer nearly unlimited opportunities for experiments
that are relatively inexpensive, and easily arranged and modified. Such ex-
periments can be performed with very precise descriptions of experimental
conditions and a high degree of reproducibility. Advances in computational
performance and efficiency allow for the collection of large amounts of data
at a density and resolution that are unavailable in the wetware biological
research environment.

This monograph1 provides an introduction and guide to modern software
tools for modeling and simulating life-like phenomena. Researchers, academi-
cians, and students use this software to verify models and concepts related to
evolutionary dynamics, self-organization, the origins of life, the development
of multicellular organisms, natural and artificial morphogenesis, autonomous

1 The present book is an advancement of earlier publications:
A. Adamatzky and M. Komosinski, editors. Artificial Life Models in Software, first edition.
Springer, 2005.
A. Adamatzky, editor. Kybernetes, 32 (1/2, special issue on artificial life software), 2003.
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and evolutionary robotics, evolvable hardware, emergent collective behaviors,
swarm intelligence, the evolution of communication, and the evolution of so-
cial behaviors. The artificial life software packages described here are essential
components in undergraduate and postgraduate courses in artificial life, com-
plex adaptive systems, multi-agent systems, evolutionary biology, collective
robotics, and nature-inspired computing.

Software systems covered in this book are actively developed and sup-
ported by world experts in artificial life and software design. In most cases,
these programs are created with both professional and amateur users in mind,
and the simulators are employed in published research. Each chapter describes
a single, usually free-to-use software platform, but references to other simi-
lar software packages and related scientific works are included as well. The
origins of software packages, milestones in their development, and the most
important or interesting experiments are also reported.

Every chapter is self-contained and can be read independently. While the
compendium of chapters is divided into four sections, the properties of the in-
dividual software models overlap so there are no distinct boundaries between
parts of the book. Furthermore, while each package has its own specific prop-
erties, the models presented in each chapter are quite general and can be
extended relatively easily to develop and utilize additional features depend-
ing upon their desired use.

The first part of the book – Virtual Environments – presents original set-
tings for agent-based simulation. The chapters introduce Avida: a digital lab-
oratory for studying populations of evolving programs; Repast : an advanced
agent-based simulation toolkit for studying development of natural and arti-
ficial social structures; Sodarace: an online-based interface, learning support,
and environment for construction and competition between two-dimensional
mobile structures; breve: a package that facilitates building three-dimensional
simulations of multi-agent systems; and Framsticks : a platform for modeling
3D creatures that allows for simulation, evolution, and advanced analysis of
artificial life-forms and prototypes of bio-inspired robots.

Two- and three-dimensional grid models are dealt with in the second part –
Lattice Worlds. The following software platforms are discussed in this section
– StarLogo: an educational programming language for simulation of life-like
phenomena, from population dynamics to emergent behavior of complex sys-
tems; NetLogo: a general purpose agent-based environment for modeling com-
plex systems, described here from a specific biomedical perspective; Discrete
Dynamics Lab: an interactive tool for designing and investigating dynam-
ics of discrete dynamical networks, including simulation of cellular automata
and decision networks, generating attraction basins, and automatic discovery
of mobile patterns; and EINSTein: a multi-agent simulator of land combat,
modeling individual traits of combatants.

The third part, Artificial Chemistries, comprises models capable of repre-
senting diverse systems of interacting and reacting molecules while abstract-
ing natural molecular processes. This powerful approach is used to study phe-
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nomena in a variety of fields, including social and ecological modeling, and
evolutionary and chemical computing. Two chapters on artificial chemistries
discuss modeling of complex molecules in a mixed reactor and the behavior
of simple molecules in spatially extended non-stirred reactors. Both chapters
provide a review of available software tools.

The fourth and concluding section – Artificial Life Arts – includes three
chapters focusing on aesthetic issues of artificial life. The first chapter in this
section shows how to breed images and sounds using SBEAT (for graphics)
and SBART (for music) software packages; the computer programs allow
the selection and breeding of genotypes that represent graphical and musical
pieces. The next chapter brings out Eden: an interactive artwork including
hardware implementation of cellular automata and agents, allowing observers
to interact with the installation and to influence the development of the artifi-
cial ecosystem. The last chapter of the book searches for a phenomenological
understanding of what makes artificial life appealing to scientists, artists,
and laymen and presents an explanation of why people become attracted to
certain forms of creative computer art.

The Appendix contains a table that summarizes software packages de-
scribed in this book. For each environment, the table includes a short de-
scription, information about availability on various platforms and operating
systems, software requirements, license type, and the Internet web site ad-
dress.

The book covers hot topics related to computer science, evolutionary and
computational biology, simulation, robotics, cognitive science, cybernetics,
artificial intelligence, optimization, multi-agent societies, virtual worlds, com-
puter graphics and animation, neuroscience, and philosophy. We believe that
academics, researchers, graduate students, and amateurs interested in these
fields will find this monograph a valuable guide to Artificial Life and excellent
supplementary reading.

Maciej Komosinski
May 2009 Andrew Adamatzky
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Chapter 1

Avida: A Software Platform for
Research in Computational
Evolutionary Biology

Charles Ofria, David M. Bryson and Claus O. Wilke

Avida1 is a software platform for experiments with self-replicating and evolv-
ing computer programs. It provides detailed control over experimental set-
tings and protocols, a large array of measurement tools, and sophisticated
methods to analyze and post-process experimental data. This chapter ex-
plains the general principles on which Avida is built, its main components
and their interactions, and gives an overview of some prior research.

1.1 Introduction to Avida

When studying biological evolution, we have to overcome a large obstacle:
Evolution is extremely slow. Traditionally, evolutionary biology has there-
fore been a field dominated by observation and theory, even though some
regard the domestication of plants and animals as early, unwitting evolution
experiments. Realistically, we can carry out controlled evolution experiments
only with organisms that have very short generation times, so that popula-
tions can undergo hundreds of generations within a time frame of months or
years. With the advances in microbiology, such experiments in evolution have
become feasible with bacteria and viruses [18, 49]. However, even with mi-
croorganisms, evolution experiments still take a lot of time to complete and
are often cumbersome. In particular, some data can be difficult or impossible
to obtain, and it is often impractical to carry out enough replicas for high
statistical accuracy.

According to Daniel Dennett, “. . . evolution will occur whenever and wher-
ever three conditions are met: replication, variation (mutation), and differ-
ential fitness (competition)” [13]. It seems to be an obvious idea to set up
these conditions in a computer and to study evolution in silico rather than

1 Parts of the material in this chapter previously appeared in other forms [38, 37].
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in vitro. In a computer, it is easy to measure any quantity of interest with
arbitrary precision, and the time it takes to propagate organisms for sev-
eral hundred generations is only limited by the processing power available.
In fact, population geneticists have long been carrying out computer simula-
tions of evolving loci, in order to test or augment their mathematical theories
(see [21, 22, 28, 35, 40] for some examples). However, the assumptions put
into these simulations typically mirror exactly the assumptions of the analyt-
ical calculations. Therefore, the simulations can be used only to test whether
the analytic calculations are error-free or whether stochastic effects cause a
system to deviate from its deterministic description, but they cannot test the
model assumptions on a more basic level.

An approach to studying evolution that lies somewhere in between evo-
lution experiments with biochemical organisms and standard Monte Carlo
simulations is the study of self-replicating and evolving computer programs
(digital organisms). These digital organisms can be quite complex and inter-
act in a multitude of different ways with their environment or each other, so
that their study is not a simulation of a particular evolutionary theory but
becomes an experimental study in its own right. In recent years, research with
digital organisms has grown substantially ([5, 9, 17, 19, 24, 29, 53, 55, 56, 57],
see [3, 51] for reviews) and is being increasingly accepted by evolutionary bi-
ologists [39]. (However, as Barton and Zuidema [6] note, general acceptance
will ultimately hinge on whether artificial life researchers embrace or ignore
the large body of population-genetics literature.) Avida is arguably the most
advanced software platform to study digital organisms to date and is cer-
tainly the one that has had the biggest impact in the biological literature so
far. Having reached version 2.8, it now supports detailed control over exper-
imental settings, a sophisticated system to design and execute experimental
protocols, a multitude of possibilities for organisms to interact with their en-
vironment (including depletable resources and conversion from one resource
into another), and a module to post-process data from evolution experiments
(including tools to find the line of descent from the original ancestor to any
final organism, to carry out knock-out studies with organisms, to calculate
the fitness landscape around a genotype and to align and compare organisms’
genomes).

1.1.1 History of Digital Life

The most well-known intersection of evolutionary biology with computer sci-
ence is the genetic algorithm or its many variants (genetic programming,
evolutionary strategies, and so on). All these variants boil down to the same
basic recipe: (1) create random potential solutions, (2) evaluate each solu-
tion assigning it a fitness value to represent its quality, (3) select a subset of
solutions using fitness as a key criterion, (4) vary these solutions by making
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random changes or recombining portions of them, then (5) repeat from step
2 until you find a solution that is sufficiently good.

This technique turns out to be an excellent method for solving problems,
but it ignores many aspects of natural living systems. Most notably, natu-
ral organisms must replicate themselves, as there is no external force to do
so; therefore, their ability to pass their genetic information on to the next
generation is the final arbiter of their fitness. Furthermore, organisms in a
natural system have the ability to interact with their environment and with
each other in ways that are excluded from most algorithmic applications of
evolution.

Work on more naturally evolving computational systems began in 1990,
when Steen Rasmussen was inspired by the computer game “Core War” [14].
In this game, programs are written in a simplified assembly language and
made to compete in the simulated core memory of a computer. The win-
ning program is the one that manages to shut down all processes associated
with its competitors. Rasmussen observed that the most successful of these
programs were the ones that replicated themselves, so that if one copy were
destroyed, others would still persist. In the original “Core War” game, the di-
versity of organisms could not increase, and hence no evolution was possible.
Rasmussen designed a system similar to “Core War” in which the command
that copied instructions was flawed and would sometimes write a random
instruction instead on the one intended [43]. This flawed copy command in-
troduced mutations into the system, and thus the potential for evolution.
Rasmussen dubbed his new program “Core World,” created a simple self-
replicating ancestor, and let it run.

Unfortunately, this first experiment was only of limited success. While the
programs seemed to evolve initially, they soon started to copy code into each
other, to the point where no proper self-replicators survived – the system
collapsed into a non-living state. Nevertheless, the dynamics of this system
turned out to be intriguing, displaying the partial replication of fragments of
code and repeated occurrences of simple patterns.

The first successful experiment with evolving populations of self-replicating
computer programs was performed the following year. Thomas Ray designed
a program of his own with significant, biologically inspired modifications. The
result was the Tierra system [44]. In Tierra, digital organisms must allocate
memory before they have permission to write to it, which prevents stray copy
commands from killing other organisms. Death only occurs when memory fills
up, at which point the oldest programs are removed to make room for new
ones to be born.

The first Tierra experiment was initialized with an ancestral program that
was 80 lines long. It filled up the available memory with copies of itself,
many of which had mutations that caused a loss of functionality. Yet other
mutations were neutral and did not affect the organism’s ability to replicate
– and a few were even beneficial. In this initial experiment, the only selective
pressure on the population was for the organisms to increase their rate of
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replication. Indeed, Ray witnessed that the organisms were slowly shrinking
the length of their genomes, since a shorter genome meant that there was
less genetic material to copy, and thus it could be copied more rapidly.

This result was interesting enough on its own. However, other forms of
adaptation, some quite surprising, occurred as well. For example, some or-
ganisms were able to shrink further by removing critical portions of their
genome and then to use those same portions from more complete competi-
tors, in a technique that Ray noted was a form of parasitism. Arms races
transpired where hosts evolved methods of eluding the parasites, and they, in
turn, evolved to get around these new defenses. Some would-be hosts, known
as hyper-parasites, even evolved mechanisms for tricking the parasites into
aiding them in the copying of their own genomes. Evolution continued in
all sorts of interesting manner, making Tierra seem like a choice system for
experimental evolution work.

In 1992, Chris Adami began research on evolutionary adaptation with
Ray’s Tierra system. His intent was to have these digital organisms evolve
solutions to specific mathematical problems, without forcing them use a pre-
defined approach. His core idea was the following: If he wanted a population
of organisms to evolve, for example, the ability to add two numbers together
– he would monitor organisms’ input and output numbers. If an output ever
was the sum of two inputs, the successful organisms would receive extra CPU
cycles as a bonus. As long as the number of extra cycles was greater than
the time it took the organism to perform the computation, the leftover cycles
could be applied toward the replication process, providing a competitive ad-
vantage to the organism. Sure enough, Adami was able to get the organisms
to evolve some simple tasks, but he faced many limitations in trying to use
Tierra to study the evolutionary process.

In the summer of 1993, Charles Ofria and C. Titus Brown joined Adami
to develop a new digital life software platform, the Avida system. Avida
was designed to have detailed and versatile configuration capabilities, along
with high-precision measurements to record all aspects of a population. Fur-
thermore, whereas organisms are executed sequentially in Tierra, the Avida
system simulates a parallel computer, allowing all organisms to be executed
effectively simultaneously. Since its inception, Avida has had many new fea-
tures added to it, including a sophisticated environment with localized re-
sources, an events system to schedule actions to occur over the course of an
experiment, multiple types of CPUs to form the bodies of the digital organ-
isms, and a sophisticated analysis mode to post-process data from an Avida
experiment. Avida is under active development at Michigan State University,
led by Charles Ofria and David Bryson.
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1.2 The Scientific Motivation for Avida

Intuitively, it seems that natural systems should be used to best understand
how evolution produces the variation in observed in nature, but this can be
prohibitively difficult for many questions and does not provide enough detail.
Using digital organisms in a system such as Avida can be justified on five
grounds:

(1) Artificial life-forms provide an opportunity to seek generalizations about
self-replicating systems beyond the organic forms that biologists have stud-
ied to date, all of which share a common ancestor and essentially the same
chemistry of DNA, RNA, and proteins. As John Maynard Smith [27] made
the case: “So far, we have been able to study only one evolving system and
we cannot wait for interstellar flight to provide us with a second. If we want
to discover generalizations about evolving systems, we will have to look at
artificial ones.” Of course, digital systems should always be studied in paral-
lel with natural ones, but any differences we find between their evolutionary
dynamics open up what is perhaps an even more interesting set of questions.

(2) Digital organisms enable us to address questions that are impossible
to study with organic life-forms. For example, in one of our current experi-
ments we are investigating the importance of deleterious mutations in adap-
tive evolution by explicitly reverting all detrimental mutations. Such invasive
micromanaging of a population is not possible in a natural system, especially
without disturbing other aspects of the evolution. In a digital evolving sys-
tem, every bit of memory can be viewed without disrupting the system, and
changes can be made at the precise points desired.

(3) Other questions can be addressed on a scale that is unattainable with
natural organisms. In an earlier experiment with digital organisms [26], we
examined billions of genotypes to quantify the effects of mutations as well as
the form and extent of their interactions. By contrast, an experiment with
E. coli was necessarily confined to one level of genomic complexity. Digital
organisms also have a speed advantage: Population with 10,000 organisms can
have 20,000 generations processed per day on a modern desktop computer.
A similar experiment with bacteria took over a decade [25].

(4) Digital organisms possess the ability to truly evolve, unlike mere nu-
merical simulations. Evolution is open-ended and the design of the evolved
solutions is unpredictable. These properties arise because selection in digital
organisms (as in real ones) occurs at the level of the whole organism’s pheno-
type; it depends on the rates at which organisms perform tasks that enable
them to metabolize resources to convert them to energy and on the efficiency
with which they use that energy for reproduction. Genome sizes are suffi-
ciently large that evolving populations cannot test every possible genotype,
so replicate populations always find different local optima. A genome typical
consists of 50 to 1000 sequential instructions. With commonly 26 possible
instructions at each position, there are many more potential genome states
than there are atoms in the universe.
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(5) Digital organisms can be used to design solutions to computational
problems where it is difficult to write explicit programs that produce the de-
sired behavior [20, 23]. Current evolutionary algorithm approaches are based
on a simplistic view of evolution, leaving out many of the factors that are
believed to make it such a powerful force. Thus, there are new opportuni-
ties for biological concepts to have a large impact outside of biology, just as
principles of physics and mathematics are often used throughout other fields,
including biology.

1.3 The Avida Software

The Avida software2 is composed of two main components: The first is the
Avida core, which maintains a population of digital organisms (each with
their own genomes, virtual hardware, etc.), an environment that maintains
the reactions and resources with which the organisms interact, a scheduler
to allocate CPU cycles to the organisms, and various data collection objects.
The second component is a collection of analysis and statistics tools, includ-
ing a test environment to study organisms outside of the population, data
manipulation tools to rebuild phylogenies and examine lines of descent, mu-
tation and local fitness landscape analysis tools, and many others, all bound
together in a simple scripting language. In addition to these two primary com-
ponents, two forms of interactive user interface (UI) to Avida are currently
available: a text-based console interface (avida-viewer) and an education
focused graphical UI, Avida-ED [41]. These interfaces allow the researcher to
visually interact with the rest of the Avida software during an experiment.

In this chapter, we will discuss the two primary modules of Avida that
are relevant for experiments with digital organisms: the Avida core and the
analysis and statistics tools.

1.3.1 Avida Organisms

In Avida, each digital organism is a self-contained computing automaton
that has the ability to construct new automata. The organism is responsible
for building the genome (computer program) that will control its offspring
automaton and handing that genome to the Avida world. Avida will then
construct virtual hardware for the genome to be run on and determine how
this new organism should be placed into the population. In a typical Avida
experiment, a successful organism attempts to make an identical copy of

2 Avida packages are available at [1]. For additional information, see [2].
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its own genome, and Avida randomly places that copy into the population,
typically by replacing another member of the population.

In principle, the only assumption made about these self-replicating au-
tomata in the core Avida software is that their initial state can be described
by a string of symbols (their genome) and that it is possible through process-
ing these symbols to autonomously produce offspring organisms. However,
in practice, our work has focused on automata with a simple von Neumann
architecture that operate on an assembly-like language inspired by the Tierra
system. Future research projects will likely have us implement additional or-
ganism instantiations to allow us to explore additional biological questions.

In the following sub-sections, we describe the default hardware of our
virtual computers, and explain the principles of the language on which these
machines work.

1.3.1.1 Virtual Hardware

The structure of a virtual machine in Avida is depicted in Fig. 1.1. The
core of the machine is the central processing unit (CPU), which processes
each instruction in the genome and modifies the states of its components
appropriately. Mathematical operations, comparisons, and so on can be done
on three registers, AX, BX, and CX. These registers each store and manipulate
data in the form of a single, 32-bit number. The registers behave identically,
but different instructions may act on different registers by default (see below).
The CPU also has the ability to store data in two stacks. Only one of the
two stacks is active at a time, but it is possible to switch the active stack, so
that both stacks are accessible.

The program memory is initialized with the genome of the organism. Exe-
cution begins with the first instruction in memory and proceeds sequentially:
Instructions are executed one after the other, unless an instruction (such as
a jump) explicitly interrupts sequential execution. Technically, the memory
space is organized in a circular fashion, such that after the CPU executes the
last instruction in memory, it will loop back and continue execution with the
first instruction again. However, at the same time, the memory has a well-
defined starting point, important for the creation and activation of offspring
organisms.

Somewhat out of the ordinary in comparison to standard von Neumann
architectures are the four CPU components labeled heads. Heads are essen-
tially pointers to locations in the memory. They remove the need of abso-
lute addressing of memory positions, which makes the evolution of programs
more robust to size changes that would otherwise alter these absolute posi-
tions [36]. Among the four heads, only one, the instruction head (ip), has a
counterpart in standard computer architectures. The instruction head cor-
responds to the instruction pointer in standard architectures and identifies
the instruction currently being executed by the CPU. It moves one instruc-
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tion forward whenever the execution of the previous instruction has been
completed, unless that instruction specifically moved the instruction head
elsewhere.

CPU

Registers

AX:FF0265DC

BX:00000100

CX:1864CDFE

Stacks

nand

nop-A

nop-B

nop-D

h-search

h-copy

if-label

nop-C

h-divide

h-copy

mov-head

nop-B

IP

OP1?

FLOW

WRITE

READ

Memory

Heads

Input

Output

Environment

Fig. 1.1 The standard virtual machine hardware in Avida: CPU, registers, stacks, heads,
memory (genome), and environment I/O functionality.

The other three heads (the read head, the write head, and the flow

head) are unique to the Avida virtual hardware. The read and write heads
are used in the self-replication process. In order to generate a copy of its
genome, an organism must have a means of reading instructions from memory
and writing them back to a different location. The read head indicates the
position in memory from which instructions are currently being read, and the
write head likewise indicates the position to which instructions are currently
being written. The positions of all four heads can be manipulated with special
commands. In that way, a program can position the read and write heads
appropriately in order to self-replicate.

The flow head is used for controlling jumps and loops. Several commands
will reposition the flow control head, and other commands will move specific
heads to the same position in memory as the flow control head.

Finally, the virtual machines have an input buffer and an output buffer,
which they use to interact with their environment. The way in which this
communication works is that the machines can read in one or several numbers
from the input buffer, perform computations on these numbers with the help
of the internal registers AX, BX, CX, and the stacks, and then write the results
to the output buffer. This interaction with the environment plays a crucial
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role in the evolution of Avida organisms, and will be explained in detail in
Sect. 1.3.2.4.

1.3.1.2 Genetic Language

It is important to understand that there is not a single language that con-
trols the virtual hardware of an Avida organism. Instead, we have a collection
of different languages. The virtual hardware in its current form can execute
hundreds of different instructions, but only a small fraction of them are used
in a typical experiment. The instructions are organized into subsets of the
full range of instructions. We call these subsets instruction sets. Each in-
struction set forms a logical unit and can be considered a complete genetic
programming language.

Each instruction has a well-defined function in any context; that is, there
are no syntactically incorrect programs. Instructions do not have arguments
per se, but the behavior of certain instructions can be modified by succeeding
instructions in memory. A genome is therefore nothing more than a sequence
of symbols in an alphabet composed of the instruction set, similar to how
DNA is a sequence made up of 4 nucleotides or proteins are sequences with
a standard alphabet of 20 amino acids.

Here, we will give an overview of the default instruction set, which contains
26 instructions. This set is explained in more detail in the Avida documen-
tation, for those who wish to work with it.

Template Matching and Heads: One important ingredient of most Avida
languages is the concept of template matching. Template matching is a
method of indirectly addressing a position in memory. This method is similar
to the use of labels in many programming languages: Labels tag a position
in the program, so that jumps and function calls always go to the correct
place, even when other portions of the source code are edited. The same rea-
soning applies to Avida genomes, because mutations may cause insertions
or deletions of instructions that shift the position of code and would oth-
erwise jeopardize the positions referred to. Since there are no arguments to
instructions, positions in memory are determined by series of subsequent in-
structions. We refer to a series of instructions that indicates a position in the
genome as a template.

Template-based addressing works as follows. When an instruction is exe-
cuted that must reference another position in memory, subsequent nop in-
structions (described below) are read in as the template. The CPU then
searches linearly through the genome for the first occurrence of the comple-
ment to this template and uses the end of the complement as the position
needed by the instruction. Both the direction of the search (forward or back-
ward from the current instruction) and the behavior of the instruction if no
complement is found are defined specifically for each instruction.
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Avida templates are constructed out of no-operation (nop) instructions;
that is, instructions that do not alter the state of either CPU or memory
when they are directly executed. There are three template-forming nops,
nop-A, nop-B, and nop-C. They are circularly complementary; that is, the
complement of nop-A is nop-B, the complement of nop-B is nop-C, and
the complement of nop-C is nop-A. A template is composed of consecutive
nops only. A template will end with the first non-nop instruction.

Non-linear execution of code (“jumps”) has to be implemented through
clever manipulation of the different heads. This happens in two stages. First,
the instruction h-search is used to position the flow head at the desired
position in memory. Then, the ip is moved to that position with the command
mov-head. Fig. 1.2 shows an example of this.

... Some code.
10 h-search Prepare the jump by placing the

flow head at the end of the
complement template in forward direction.

11 nop-A This is the template. Let’s call it α.
12 nop-B

13 mov-head The actual jump. Move the flow head
to the position of the ip.

14 pop Some other code that is skipped.
..
.

18 nop-B The complement template ᾱ.
19 nop-C

... The program continues . . .

Fig. 1.2 Example code demonstrating flow control with heads-based instruction set.

Although this example looks somewhat awkward on first glance, evolution
of control structures such as loops are actually facilitated by this mechanism.
In order to loop over some piece of code, it is only necessary to position the
flow head correctly once and to have the command mov-head at the end of
the block of code that should be looped over. Since there are several ways in
which the flow head can be positioned correctly, of which the above example
is only a single one, there are many ways in which loops can be generated.

nop’s as Modifiers: The instructions in the Avida programming language
do not have arguments in the usual sense. However, as we have seen above for
the case of template matching, the effect of certain instructions can be mod-
ified if they are immediately followed by nop instructions. A similar concept
exists for operations that access registers. The inc instruction, for exam-
ple, increments a register by one. If inc is not followed by any nop, then
by default it acts on the BX register. However, if a nop is present immedi-
ately after the inc, then the register on which inc acts is specified by the
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type of the nop. For example, inc nop-A increments the AX register, and
inc nop-C increments the CX register. Of course, inc nop-B increments
the BX register and, hence, works identical to a single inc command. Sim-
ilar nop modifications exist for a range of instructions, such as those that
perform arithmetic like inc or dec, stack operations such as push or pop,
and comparisons such as if-n-equ. The details can be found in [38] or in
the Avida documentation. For some instructions that work on two registers
– in particular, comparisons – the concept of the complement nop is impor-
tant because the two registers are specified in this way. Similar to nops in
the template matching, registers are cyclically complementary to each other
(i.e., BX is the complement to AX, CX to BX, and AX to CX). The instruction
if-n-equ, for example, acts on a register and its complement register. By
default, if-n-equ compares whether the contents of the BX and CX regis-
ters are identical. However, if if-n-equ is followed by a nop-A, then it will
compare AX and BX. Fig. 1.3 shows a piece of example code that demonstrates
the principles of nop modification and complement registers.

01 pop We assume the stack is empty. In that case,
the pop returns 0, which is stored in BX.

02 pop Write 0 into the register AX as well.
03 nop-A

04 inc Increment BX.
05 inc Increment AX.

06 nop-A

07 inc Increment AX a second time.
08 nop-A

09 swap The swap command exchanges the contents
of a register with the one of its complement
register. Followed by a nop-C, it exchanges
the contents of AX and CX. Now, BX= 1, CX= 2,
and AX is undefined.

10 nop-C

11 add Now add BX and CX and store the result
in AX.

12 nop-A The program continues with BX= 1, CX= 2,
and AX= 3.

...

Fig. 1.3 Example code demonstrating the principle of nop modification.

nop modification is also necessary for the manipulation of heads. The
instruction mov-head, for example, by default moves the ip to the position
of the flow head. However, if it is followed by either a nop-B or a nop-C,
it moves the read head or the write head, respectively. A nop-A following
a mov-head leaves the default behavior unaltered.

Memory Allocation and Division: When a new Avida organism is created,
the CPU’s memory is exactly the size as its genome; that is, there is no ad-
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ditional space that the organism could use to store its offspring-to-be as it
makes a copy of its program. Therefore, the first thing an organism has to
do at the start of self-replication is to allocate new memory. In the default
instruction set, memory allocation is done with the command h-alloc. This
command extends the memory by the maximal size that an offspring is al-
lowed to have. As we will discuss later, there are some restrictions on how
large or small an offspring is allowed to be in comparison to the parent organ-
ism, and the restriction on the maximum size of an offspring determines the
amount of memory that h-alloc adds. The allocation always happens at a
well-defined position in the memory. Although the memory is considered to
be circular in the sense that the CPU will continue with the first instruction
of the program once it has executed the last one, the virtual machine never-
theless keeps track of which instruction is the beginning of the program and
which is the end. By default, h-alloc (as well as all alternative memory
allocation instructions, such as the old allocate) inserts the new memory
between the end and the beginning of the program. After the insertion, the
new end is at the end of the inserted memory. The newly inserted memory
is either initialized to a default instruction, typically nop-A, or to random
code, depending on the choice of the experimenter.

Allocate

Divide

Fig. 1.4 The h-alloc command extends the memory, so that the program of the off-
spring can be stored. Later, upon successful execution of h-divide, the program is split
into two parts, one of which becomes the genome of the offspring.

Once an organism has allocated memory, it can start to copy its program
code into the newly available memory block. This copying is done with the
help of the control structures we have already described, in conjunction with
the instruction h-copy. This instruction copies the instruction at the posi-
tion of the read head to the position of the write head and advances both
heads. Therefore, for successful self-replication, an organism mainly has to
assure that, initially, the read head is at the beginning of the memory and
the write head is at the beginning of the newly allocated memory, and then
it has to call h-copy for the correct number of times.
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After the self-replication has been completed, an organism issues the
h-divide command, which splits off the instructions between the read

head and the write headand uses them as the genome of a new organism.
The new organism is handed to the Avida world, which takes care of placing
it into a suitable environment and so on. If there are instructions left between
the write head and the end of the memory, these instructions are discarded,
so that only the part of the memory from the beginning to the position of
the read head remains after the divide.

In most natural asexual organisms, the process of division results in organ-
isms literally splitting in half, effectively creating two offspring. As such, the
default behavior of Avida is to reset the state of the parent’s CPU after the
divide, turning it back into the state it was in when it was first born. In other
words, all registers and stacks are cleared, and all heads are positioned at the
beginning of the memory. The full allocation and division cycle is illustrated
in Fig. 1.4.

Not all h-divide commands that an organism issues lead necessarily to
the creation of an offspring organism. There are a number of conditions that
have to be satisfied, otherwise the command will fail. Failure of a command
means essentially that the command is ignored, and a counter keeping track
of the number of failed commands in an organism is increased. It is possible
to configure Avida to punish organisms with failed commands. The following
conditions are in place: An h-divide fails if either the parent or the offspring
would have less than 10 instructions, the parent has not allocated memory,
less than half of the parent was executed, less than half of the offspring’s
memory was copied into, or the offspring would be too small or too large (as
defined by the experimenter).

1.3.1.3 Mutations

So far, we have described all of the elements that are necessary for self-
replication. However, self-replication alone is not sufficient for evolution.
There must be a source of variation in the population, which comes from
random mutations.

The principal form of mutations in typical Avida experiments are so-called
copy mutations, which arise through erroneously copied instructions. Such
miscopies are a built-in property of the instruction h-copy. With a certain
probability, chosen by the experimenter, the command h-copy does not
properly copy the instruction at the location of the read head to the location
of the write head, but instead writes a random instruction to the position
of the write head. It is important to note that the instruction written will
always be a legal one, in the sense that the CPU can execute it. However,
the instruction may not be meaningful in the context in which it is placed
in the genome, which, in the worst case, can render the offspring organism
non-functional.
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Another commonly used source of mutations are insertion and deletion
mutations. These mutations are applied on h-divide. After an organism
has successfully divided off an offspring, an instruction in the daughter or-
ganism’s memory may, by chance, be deleted or a random instruction may
be inserted. The probabilities with which these events occur are again deter-
mined by the experimenter. Insertion and deletion mutations are useful in
experiments in which frequent changes in genome size are desired. Two types
of insertion/deletion mutations are available in the configuration files; they
differ in that one is a genome-level rate and the other is a per-site rate.

Next, there are point (or cosmic ray) mutations. These mutations affect
not only organisms as they are being created (like the other types described
above), but all living organisms. Point mutations are random changes in the
memory of the virtual machines. One of the consequences of point mutations
is that a program may change while it is being executed. In particular, the
longer a program runs, the more susceptible it becomes to point mutations.
This is in contrast to copy or insertion and deletion mutations, whose impact
depends only on the length of the program, not on the execution time.

Finally, it is important to note that organisms in Avida can also have
implicit mutations. Implicit mutations are modifications in a offsping’s pro-
gram that are not directly caused by any of the external mutation mechanisms
described above, but rather by an incorrect copy algorithm of the parent or-
ganism. For example, the copy algorithm might skip some instructions of the
parent program or copy a section of the program twice (effectively a gene
duplication event). Another example is an incorrectly placed read head or
write head on divide. Implicit mutations are the only ones that cannot
easily be controlled by the experimenter. They can, however, be turned off
completely by using the FAIL IMPLICIT option in the configuration files,
which gets rid of any offspring that will always contain a deterministic dif-
ference from its parent, as opposed to one that is associated with an explicit
mutation.

1.3.1.4 Phenotype

Each organism in an Avida population has a phenotype associated with it.
Phenotypes of Avida organisms are defined in the same way as they are
defined for organisms in the natural world: The phenotype of an organism
comprises all observable characteristics of that organism. As an organism in
Avida goes through its life cycle, it will self-replicate and, at the same time,
interact with the environment. The primary mode of environmental interac-
tion is by inputting numbers from the environment, performing computations
on those numbers, and outputting the results. The organisms receive a benefit
for performing specific computations associated with resources as determined
by the experimenter (see Sect. 1.3.2.4).
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In addition to tracking computations, the phenotype also monitors several
other aspects of the organisms behavior, such as the organism’s gestation
length (the number of instructions the organism executes to produce an off-
spring, often also called gestation time), its age (the total number of CPU
cycles since it was born), if it has been affected by any mutations, how it
interacts with other organisms, and its overall fitness. These data are used
both to determine how many CPU cycles should be allocated to the organism
and for various statistical purposes.

1.3.1.5 Genotypes

In Avida, organisms are classified into several taxonomic levels. The lowest
taxonomic level is called genotype. All organisms that have exactly the same
initial genomes are considered to have the same genotype. Certain statistical
data are collected only at the genotype level. We pay special attention to the
most abundant genotype in the population – the dominant genotype – as a
method of determining what the most successful organisms in the population
are capable of. If a new genotype is truly more fit than than the dominant
one, organisms with this higher fitness will rapidly take over the population.

We classify a genotype as threshold if there are three or more organisms
that have ever existed of that genotype (the value 3 is not hard-coded, but
configurable by the experimenter). Often, deleterious mutants appear in the
population. These mutants are effectively dead and disappear again in short
order. Since these mutants are not able to successfully self-replicate (or at
least not well), there is a low probability of them reaching an abundance of
three. As such, for any statistics we want to collect about the living por-
tion of the population, we focus on those organisms whose genotype has the
threshold characteristic.

1.3.2 The Avida World

In general, the Avida world has a fixed number N of positions or cells. Each
cell can be occupied by exactly one organism, such that the maximum popu-
lation size at any given time is N . Each of these organisms is being run on a
virtual CPU, and some of them may be running faster than others. Avida has
a scheduler that divides up time from the real CPU such that these virtual
CPUs execute in a simulated parallel fashion.

While an Avida organism runs, it may interact with the environment or
other organisms. When it finally reproduces, it hands its offspring organism to
the Avida world, which places the newborn organism into either an empty or
an occupied cell, according to rules described below. If the offspring organism
is placed into an already occupied cell, the organism currently occupying that
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cell is killed and removed, irrespective of whether it has already reproduced
or not.

1.3.2.1 Scheduling

In the simplest of Avida experiments, all virtual CPUs run at the same speed.
This method of time-sharing is simulated by executing one instruction on
each of the N virtual CPUs in order, then starting over to execute a second
instruction on each one, and so on. An update in Avida is defined as the
point where the average organism has executed k instructions (where k = 30
by default). In this simple case, for one update, we carry out k rounds of
execution.

In more complex environments, however, the situation is not so trivial.
Different organisms will have their virtual CPUs executing at different speeds
(the details of which are described below) and the scheduler must portion out
cycles appropriately to simulate that all CPUs are running in parallel. Each
organism has associated with it a value that determines its metabolic rate
(sometimes referred to as merit). The metabolic rate indicates how fast the
virtual CPU should run. Metabolic rate is a unitless quantity and is only
meaningful when compared to the metabolic rates of other organisms. Thus,
if the metabolic rate organism A is twice that of organism B, then A should,
on average, execute twice as many instructions in any given time frame as B.

Avida handles this with two different schedulers (referred to as the
SLICING METHOD in the configuration files). The first one is a perfectly
integrated scheduler, which comes as close as possible to portioning out CPU
cycles proportional to each organisms’ metabolic rate. Obviously, only whole
time steps can be used; therefore, perfect proportionality is not possible in
general for small time frames. For time frames long enough such that the
granularity of individual time steps can be neglected, the difference between
the number of cycles given to an organism and the number of cycles the
organism should receive at its current metabolic rate is negligible.

The second scheduler is probabilistic. At each point in time, the next
organism to be executed is chosen at random, but with the probability of an
individual being chosen proportional to its metabolic rate. Thus, on average,
this scheduler is perfect, but there are no guarantees.

The perfectly integrated scheduler can be faster under various experimen-
tal configurations, but occasionally it can cause odd effects, because it is pos-
sible for the organisms to become synchronized, particularly at low mutation
rates where a single genotype can represent a large portion of the population.
The probabilistic scheduler avoids this effect and, in practice, is comparable
in performance with recent versions of Avida. The default configuration used
the probabilistic scheduler.
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1.3.2.2 World Topologies and Birth Methods

The N cells of the Avida world can be assembled into different topologies
that affect how offspring organisms are placed and how organisms interact
(as described below). Currently, there are three basic world topologies: a
2D bounded grid with Moore neighborhood (each cell has eight neighbors),
a 2D toroidal grid with Moore neighborhood, and a fully connected, clique
topology. In the latter, the fully connected topology, each cell is a neighbor
to every other cell. New topologies can easily be implemented by listing the
neighbors associated with each cell. A special type of meta-topology, called
demes, is described below.

When a new organism is about to be born, it will replace either the parent
cell or another cell from either its topological neighborhood or any cell within
the population (sometimes called well stirred or mass action). The specifics
of this placement strategy are set up by the experimenter. The two most
commonly used methods are replace random, which chooses randomly from
the potential cells, or replace oldest, which picks the oldest organism from
the potential organisms to replace (with a preference for empty cells if any
exist).

Mass action placement strategies are used in analogy to experiments with
microbes in well-stirred flasks or chemostats. These setups allow for expo-
nential growth of new genotypes with a competitive advantage, so that tran-
sitions in the state of the population can happen rapidly. Two-dimensional
topological neighborhoods, on the other hand, are more akin to a Petri dish,
and the spatial separation between different organisms puts limits on growth
rates and allows for a slightly more diverse population [8].

In choosing which organism in a neighborhood to replace, a random place-
ment matches up well with the behavior of a chemostat, where a random
portion of the population is continuously drawn out to keep population size
constant. Experiments have shown [4], however, that evolution occurs more
rapidly when the oldest organism in a neighborhood is the first to be killed
off. In such cases, all organisms are given approximately the same chance to
prove their worth, whereas in random replacement, about half the organisms
are killed before they have the opportunity to produce a single offspring. In-
terestingly, when replace oldest is used in 2D neighborhoods, 40% of the time
it is the parent that is killed off. This observation makes sense, because the
parent is obviously old enough to have produced at least one offspring.

Note that in the default setup of Avida, replacement by another organism
is not the only way for an organism to die. It is also possible for an organism
to be killed after it has executed a specified number of instructions, which
can either be a constant or proportional to the organism’s genome length, the
default. Without this setting, it is possible in some cases for a population to
lose all ability to self-replicate, but it persist since organisms have no means
by which to be purged.
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1.3.2.3 Demes

Demes, a relatively new feature of Avida, subdivide the main population into
sub-populations of equal size and structure. Each deme is isolated, although
the population scheduler is shared among all demes. Typical experiments us-
ing demes provide a mechanism for deme-level replication. Such mechanisms
will either test for the completion of a group activity or replicate demes based
on a measured value (the latter being akin to mechanisms used in a genetic
algorithm). There are several possible modes of deme replication. The de-
fault replication method creates a genome-level copy of each organism in the
parent deme, placing the offspring into the target deme. The experimenter
can configure Avida to perform a variety of alternative replication actions,
including germline replication, where each deme has base genotype that is
used to seed new copies with a single organism.

1.3.2.4 Environment and Resources

All organisms in Avida are provided with the ability to absorb a default re-
source that gives them their base metabolic rate. An Avida environment can,
however, contain other resources that the organisms can absorb to modify
their metabolic rate. The organisms absorb a resource by carrying out the
corresponding computation or task.

An Avida environment is described by a set of resources and a set of
reactions that can be triggered to interact with those resources. A reaction
is defined by a computation that the organism must perform to trigger it,
a resource that is consumed by it, a metabolic rate effect on the organism
(which can be proportional to the amount of resource absorbed or available),
and a byproduct resource if one should be produced. Reactions can also have
restrictions associated with them that limit when a trigger will be successful.
For example, another reaction can be required to have been triggered first,
or a limit can be placed on the number of times an organism can trigger a
certain reaction.

A resource is described by an initial quantity (which can be infinite if a re-
source should not be depletable), an inflow rate (the amount of that resource
that should come into the population per update), and an outflow rate (the
fraction of the resource that should be removed each update.) If resources
are made to be depletable, then the more organisms trigger a reaction, the
less of that resource is available for each of them. This setup allows multiple,
diverse sub-populations to stably coexist in an Avida world [10].

The default Avida environment rewards nine boolean logic operations,
each associated with a non-depletable resource, but organisms can receive
only one reward per computation. Other pre-built environments that come
with Avida include one with 77 different logic operations rewarded, one sim-
ilar to the default 9-resource environment, but with the resources set up to
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be depletable, with fixed inflow and outflow rates, and one with 9 compu-
tations rewarded, and where only the resources associated with the simplest
computations have an inflow into the system, and those for more complex
operations are produced as byproducts, in sequence, from the reactions using
up resources associated to simpler computations.

An important aspect of Avida is that the environment does not care how a
computation is performed, only that the output of the organism being tested
is correct given the inputs it took in. As a consequence, the organisms find
a wide variety of ways of computing their outputs, some of which can be
surprising to a human observer, seeming to be almost inspired.

Even though organisms can carry out tasks and collect associated resources
at any time in their gestation cycle, these reactions typically do not imme-
diately affect the speed at which their virtual CPU runs. The CPU speed
(metabolic rate) is set only once at the beginning of the gestation cycle and
then held constant until the organism divides. At that point, both the or-
ganism and its offspring have their metabolic rates adjusted, reflecting the
resources the organism collected during the gestation cycle it just completed.
In a sense, the organisms collect resources for their offspring, rather than for
themselves. The reason why we do not change an organism’s metabolic rate
during its gestation cycle is to level the playing field between old and young
organisms. If organisms were always born with a low initial CPU speed, then
they may never execute enough instructions to carry out tasks in the first
place. At the same time, mutants specialized in carrying out tasks but not
dividing could concentrate all CPU time on them, thus effectively shutting
down replication in the population. It can be shown that the average fitness
of a population in equilibrium is independent of whether organisms get the
bonuses directly or collect them for their offspring [50].

1.3.2.5 Organism Interactions

As explained above, populations in Avida have a firm cap on their size,
which makes space for the fundamental resource for which the organisms must
compete. In the simplest Avida experiments, the only interaction between
organisms is that an organism is killed when another gives birth, in order
to make room for the offspring. In slightly more complex experiments, the
organisms collect resources that increase their metabolic rate and hence earn
a larger share of the CPU cycles for performing tasks. Since there are only a
fixed number of CPU cycles given out each update, the competition for them
becomes a second level of indirect interactions among the organisms. As the
environment becomes more complex still, multiple resources take the place of
fixed metabolic rate bonuses for performing tasks, and the organisms must
now compete over each of these resources independently. In the end, however,
all these interactions boil down to the indirect competition for space: More
resources imply a higher metabolic rate, which, in turn, grants the organisms



22 Ofria, Bryson and Wilke

a larger share of the CPU cycles, allowing them to replicate more rapidly and
claim more space for their genotype.

In most Avida experiments, indirect competition for space is the only
level of interaction we allow; organisms are not allowed to directly write to
or read from each other’s genomes, so that Tierra-style parasites cannot form
(although the configuration files do allow the experimenter to enable them).
The more typical way of allowing parasites in Avida is to enable the inject
command in the Avida instruction set. This command works similar to divide,
except that instead of replacing an organism in a target cell, the would-be
offspring is inserted into the memory of the organism occupying the target
cell; the specific position in memory to which it is placed is determined by
the template that follows the inject.

In Tierra, parasites can replicate more rapidly than non-parasites, but an
individual parasite poses no direct harm to the host whose code it uses. These
organisms could, therefore, be thought of more directly as cheaters in the
classic biological sense, as they effectively take advantage of the population
as a whole. In Avida, a parasite exists directly inside of its host and makes use
of the CPU cycles that would otherwise belong to the host, thereby slowing
down the host’s replication rate. Depending on the type of parasite, it can
either take all of the host’s CPU cycles (thereby killing the host) and use
them for replicating and spreading the infection, or else spread more slowly
by using only a portion of the hosts CPU cycles (sickening it) but reducing
the probability of driving the hosts, and hence itself, into extinction.

Two additional forms of interaction, resource sensors and direct commu-
nication, can be enabled by the experimenter. Resources sensors allow or-
ganisms to detect the presence of resources in the environment, a capability
that could be used to exchange chemical signals. Direct communication can
allow organisms to send numbers to each other and possibly distribute com-
putations among themselves to solve environmental challenges more rapidly.
Avida supports a variety of communication forms, including directional mes-
saging to adjacent organisms, organism constructed communication networks,
and population-wide broadcast messaging.

1.3.3 Test Environments

Often when examining populations in Avida, the user will need to know the
fitness or some other characteristic of an organism that has not yet gone
through a full gestation cycle during the course of the run. For this reason,
we have constructed a test environment for the organisms to be run in, with-
out affecting the rest of the population. This test environment will run the
organism for at least one gestation and can either be used during a run or as
part of post-processing.
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When an organism is loaded into a test environment, its instructions are
executed until it produces a viable offspring or a time-out is reached. Un-
fortunately, it is not possible to guarantee identification of non-replicative
organisms (this is known as the Halting Problem in computer science), so
at some point we must give up on any program we are testing and assume
it to be dead. If age-based death is turned on in the actual population, this
becomes a good limit for how long a CPU in the test environment should be
run.

The fact that we want to determine if an organism is viable can also cause
some problems in a test environment. For example, we might determine that
an organism does produce an offspring but that this offspring is not identical
to itself. In this case we take the next step of continuing to run the offspring
in the test environment and, if necessary, its offspring until we either find
a self-replicator or a sustainable cycle. By default, we will only test three
levels of offspring before we assume the original organism to be non-viable
and move on. Such cases happen very rarely, and not at all if you turn off
implicit mutations from the configuration file.

Two final problems with the test environments include that they do not
properly reflect the levels of limited resources (this can be difficult to know,
particularly if we are post-processing) and that they do not handle any special
interactions with other organisms since only one is being tested at a time.
Both of these issues are currently being examined and we plan to have a much
improved test environment in the future. Test environments do, however,
work remarkably well in most circumstances.

In addition to reconstructing statistics about organisms as they existed in
the population, it is also possible to determine how an organism would have
fared in an alternate environment, or even to construct entirely new genomes
to determine how they perform. This last approach includes techniques such
as performing all single-point mutations on a genome and testing each result
to determine what its local fitness landscape looks like or artificially crossing
over pairs of organisms to determine their viability. Test environments are
most commonly used in the post-processing of Avida data, as described in
the next section.

1.3.4 Performing Avida Experiments

Currently, there are two main methods of running Avida – either with one of
the user interfaces described above or via the command line executable (which
is faster and full featured but requires the user to pre-script the complete
experimental protocol). Researchers will often use one of the user interfaces
to get an intuitive feel of how an experiment works, but then they will shift to
the command line executable when they are ready to perform more extensive
data collection.
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The complete configuration of an Avida experiment consists of five differ-
ent initialization files. The most important of these is the main configuration
file, called avida.cfg by default and typically referred to as simply the
‘config’ file. The config file contains a list of variables that control all of the
basic settings of a run, including the population size, the mutation rates, and
the names of all of the other initialization files necessary. Next, we have the
instruction set, which describes the specific genetic language used in the ex-
periment. Third is the ancestral organism with which the population should
be seeded. Fourth, we have the environment file that describes which re-
sources are available to the organisms and defines reactions by the tasks that
trigger them, their value, the resource that they use, and any byproducts
that they produce. The final configuration file is events, which is used to
describe specific actions that should occur at designated time points during
the experiment, including most data collection and any direct disruptions to
the population. Each of these files is described in more detail in the Avida
documentation.

Once Avida has been properly installed and the configuration files set up,
it can be started in command line mode by simply running the avida exe-
cutable from within the directory that contains the configuration files. Some
basic information will scroll by on the screen (specifically, current update
being processed, number of generations, average fitness, and current popula-
tion size). When the experiment has completed, the process will terminate
automatically, leaving a set of output files that described the completed ex-
periment. These output files are, by default, placed in a subdirectory called
data. Each output file begins with a comment header describing the contents
of file.

1.3.5 Analyze Mode

Avida has an analysis-only mode (short: analyze mode), which allows for
powerful post-processing of data. Avida is brought into the analyze mode
by the command-line parameter “-a”. In analyze model, Avida processes the
analyze file specified in the configuration file (“analyze.cfg” by default). The
analyze file contains a program written in a simple scripting language. The
structure of the program involves loading in genotypes in one or more batches
and then either manipulating single batches or doing comparisons between
batches.

In the following subsections, we present a couple of example programs
that will illustrate the basics of the analyze scripting language. A full list of
commands available in analysis mode is given in the Avida documentation.



1 Avida 25

1.3.5.1 Testing a Genome Sequence

The following program will load in a genome sequence, run it in a test envi-
ronment, and output the results of the tests in a couple of formats:

VERBOSE

LOAD_SEQUENCE rmzavcgmciqqptqpqctletncoggqxutycuastva

RECALCULATE

DETAIL detail_test.dat fitness length viable sequence

TRACE

PRINT

The program starts off with the VERBOSE command, which causes Avida
to print to the screen all details of what is going on during the execution
of the analyze script; the command is useful for debugging purposes. The
program then uses the LOAD SEQUENCE command to define a specific genome
sequence in compressed format. (The compressed format is used by Avida
in a number of output files. The mapping from instructions to letters is
determined by the instruction set file and may change if the instruction set
file is altered.)

The RECALCULATE command places the genome sequence into the test
environment and determines the organism’s fitness, metabolic rate, gestation
time, and so on. The DETAIL command that follows prints this information
into the file “detail test.dat”. (This filename is specified as the first argument
of DETAIL.) The TRACE and PRINT commands will then print individual files
with data on this genome, the first tracing the genome’s execution line by line
and the second summarizing several test results and printing the genome line
by line. Since no directory was specified for these commands, the resulting
output files are created in “archive/”, a subdirectory of the “data” directory.
If a genotype has a name when it is loaded, then that name will be kept.
Otherwise, it will be assigned a name starting with “org-S1”, then “org-S2”,
and so on. The TRACE and PRINT commands add their own suffixes (“.trace”
and “.gen”) to the genome’s name to determine the filenames they will use.

1.3.5.2 Finding Lineages

The portion of an Avida run that we will often be most interested in is the lin-
eage from a genotype (typically the final dominant genotype) back to the orig-
inal ancestor. There are tools in the analyze mode to obtain this information,
provided that the necessary population and historical data have been written
out with the events SavePopulation and SaveHistoricPopulation.
The following program demonstrates how to make use of these data files.
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FORRANGE i 100 199

SET d /Users/brysonda/research/instset/is_ex_$i

PURGE_BATCH

LOAD $d/detail-100000.pop

LOAD $d/historic-100000.pop

FIND_LINEAGE num_cpus

RECALCULATE

lineage-$i.html depth parent_dist html.sequence

END

The FORRANGE command runs the contents of the loop once for each
possible value in the range, setting the variable i to each of these values in
turn. Thus the first time through the loop, ‘i’ will be equal to the value 100,
then 101, 102, and so on, all the way up to 199. In this particular case, we
have 100 runs (numbered 100 through 199) with which we want to work.

The first thing we do once inside the loop is to set the value of variable ‘d’
to be the name of the directory with which we are going to be working. Since
this directory name is long, we do not want to have to type it every time we
need it. If we set it to the variable ‘d’, then all we need to do is type “$d”
in the future.3 Note that in this case we are setting a variable to a string
instead of a number; that is fine, and Avida will figure out how to handle the
contents of the variable properly. The directory we are working with changes
each time the loop is executed, since the variable ‘i’ is part of the directory
name.

We then use the command PURGE BATCH to get rid of all genotypes from
the last execution of the loop (lest we are accumulating more and more geno-
types in the current batch) and refill the batch by using LOAD to read in all
genotypes saved in the file “detail-100000.pop” within our chosen directory.
A detail population (“.pop”) file contains all of the genotypes that were cur-
rently alive in the population at the time the detail file was printed, whereas
a historic file contains all of the genotypes that are ancestors of those that
are still alive. The combination of these two files gives us the lineages of the
entire population back to the original ancestor. Since we are only interested
in a single lineage, we next run the FIND LINEAGE command to pick out a
single genotype and discard everything else except for its lineage. In this case,
we pick the genotype with the highest abundance (i.e., the highest number
of organisms, or virtual CPUs, associated with it) at the time of output.

As before, the RECALCULATE command gets us any additional information
we may need about the genotypes, and then we print that information to a file
using the DETAIL command. The filenames that we are using this time have
the format “lineage-$i.html” that is, they are all being written to the “data”
directory, with filenames that incorporate the run number. Also, because the
filename ends in the suffix “.html”, Avida prints the file in html format, rather
than in plain text. Note that the specific values that we choose to print take

3 Analyze mode variable names are currently limited to a single letter.

DETAIL
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advantage of the fact that we have a lineage (and hence have measured things
like the genetic distance to the parent) and are in html mode (and thus can
print the sequence using colors to specify where exactly mutations occurred).

These examples are only meant to present the reader with an idea of the
types of analyses available in this built-in scripting language. Many more are
possible, but a more exhaustive discussion of these possibilities is beyond the
scope of this chapter.

1.4 A Summary of Avida Research

Avida has been used in several dozen peer-reviewed scientific publications,
including Nature [26, 24, 53] and Science [7]. We describe a few of our more
interesting efforts ahead.

1.4.1 The Evolution of Complex Features

When Darwin first proposed his theory of evolution by natural selection, he
realized that it had a problem explaining the origins of vertebrate eye [11].
Darwin noted that “In considering transitions of organs, it is so important
to bear in mind the probability of conversion from one function to another.”
That is, populations do not evolve complex new features de novo, but instead
modify existing, less complex features for use as building blocks of the new
feature. Darwin further hypothesized that “Different kinds of modification
would [. . . ] serve for the same general purpose,” noting that just because
any one particular complex solution may be unlikely, there may be many
other possible solutions, and we only witness the single one lying on the
path evolution took. As long as the aggregate probability of all solutions is
high enough, the individual probabilities of the possible solutions are almost
irrelevant.

Substantial evidence now exists that supports Darwin’s general model for
the evolution of complexity (e.g., [12, 20, 31, 32, 54]), but it is still diffi-
cult to provide a complete account of the origin of any complex feature due
to the extinction of the intermediate forms, imperfection of the fossil record,
and incomplete knowledge of the genetic and developmental mechanisms that
produce such features. Digital evolution allowed us to surmount these diffi-
culties and track all genotypic and phenotypic changes during the evolution
of a complex trait with enough replication to obtain statistically powerful
results [24]. We isolated the computation EQU (logical equals) as a com-
plex trait and showed that at least 19 coordinated instructions are needed
to perform this task. We then performed an experiment that consisted of
100 independent populations of digital organisms being evolved for approx-
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imately 17,000 generations. We evolved 50 of these populations in a control
environment where EQU was the only task rewarded; we evolved the other 50
in a more complex environment where an assortment of 8 simpler tasks were
rewarded as well, to test the importance of intermediates in the evolution of
a complex feature.

Results: In 23 of the 50 experiments in the complex environment, the EQU
task was evolved, whereas none of the 50 control populations evolved EQU,
illustrating the critical importance of features of intermediate complexity
(P ≈ 4.3 × 10−9, Fisher’s exact test). Furthermore, all 23 implementations
of the complex trait were unique, with many quite distinct from each other
in their approach, indicating that, indeed, this trait had numerous solutions.
This observation is not surprising, since even the shortest of the implemen-
tations found were extraordinarily unlikely (approximately 1 in 1027). We
further analyzed these results by tracing back the line of decent for each pop-
ulation to find the critical mutation that first produced the complex trait. In
each case, these random mutations transformed a genotype unable to perform
EQU into one that could, and even though these mutations typically affected
only 1 to 2 positions in the genome, a median of 28 instructions were required
to perform this complex task – a change in any of these instruction would
cause the task to be lost, thus it was complex from the moment of its creation.
It is noteworthy to mention that in 20 of the 23 cases the critical mutations
would have been detrimental if EQU were not rewarded, and in 3 cases the
prior mutation was actively detrimental (causing the replication rate for the
organisms to drop by as much as half), yet it turned out to be critical for the
evolution of EQU; when we reverted these seemingly detrimental mutations,
EQU was lost.

1.4.2 Survival of the Flattest

When organisms have to evolve under high mutation pressure, their evolu-
tionary dynamics is substantially different from that of organisms evolving
under low mutation pressure, and some of the high-mutation-rate effects can
appear paradoxical at first glance. Most of population genetics theory has
been developed under the assumption that mutation rates are fairly low,
which is justified for the majority of DNA-based organisms. However, RNA
viruses, the large class of viruses that cause diseases such as the common
cold, influenza, HIV, SARS, or Ebola, tend to suffer high mutation rates, up
to 10−4 substitutions per nucleotide and generation [16]. The theory describ-
ing the evolutionary dynamics at high mutation rates is called quasispecies
theory [15].

The main prediction for the evolutionary process at high mutation rates
is that the selection acts on a cloud of mutants, rather than on individual se-
quences. We tested this hypothesis in Avida [53]. First, we let strains of digital
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organisms evolve to both a high-mutation-rate and a low-mutation-rate en-
vironment. The rationale behind this initial adaptation was that strains that
evolved at a low mutation rate should adapt to ordinary individual-based se-
lection, whereas strains that evolved at a high mutation rate should adapt to
selection on mutant clouds, which means that these organisms should max-
imize the overall replication rate of their mutant clouds, rather than their
individual replication rates. This adaptation to maximize overall replication
rate under high mutation pressure takes place when organisms trade individ-
ual fitness for mutational robustness, so that their individual replication rate
is reduced, but, in return, the probability that mutations cause further reduc-
tion in replication rate is also reduced [52]. Specifically, we took 40 strains of
already evolved digital organisms and let each evolve for an additional 1000
generations in both a low-mutation-rate and a high-mutation-rate environ-
ment. As result, we ended up with 40 pairs of strains. The two strains of each
pair were genetically and phenotypically similar, apart from the fact that
one was adapted to a low mutation rate and one to a high mutation rate. As
expected, we found that in the majority of cases the strains evolved at a a
high mutation rate had a lower replication speed than the ones evolved at a
low mutation rate.

Next, we let the two types of strains compete with each other, in a setup
where both strains would suffer from the same mutation rate, which was
either low, intermediate, or high. Not surprisingly, at a low mutation rate
the strains adapted to that mutation rate consistently outcompeted the ones
adapted to a high mutation rate, since, after all, the former ones had the
higher replication rate (we excluded those cases in which the strain that
evolved at a low mutation rate had a lower or almost equal fitness to the
strain evolved at a high mutation rate). However, without fail, the strain
adapted to a high mutation rate could win the competition if the mutation
rate during the competition was sufficiently high [53]. This result may sound
surprising at first, but it has a very simple explanation. At a high mutation
rate (one mutation per genome per generation or higher), the majority of
an organism’s offspring differ genetically from their parent. Therefore, if the
parent is genetically very brittle, so that most of these mutants have a low
replication rate or are even lethal, then the overall replication rate of all of
the organism’s offspring will be fairly moderate, even though the organism
itself may produce offspring at a rapid pace. If a different organism produces
offspring at a slower pace, but is more robust toward mutations, so that the
majority of this organism’s offspring have a replication rate similar to that
of the parent, then the overall replication rate of this organism’s offspring
will be larger than the one of the first organism. Hence, this organism will
win the competition, even though it is the slower replicator. We termed this
effect the “survival of the flattest,” because at a sufficiently high mutation
rate, a strain that is located at a low but flat fitness peak can outcompete
one that is located on a high but steep fitness peak.
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1.4.3 Evolution of Digital Ecosystems

The experiments discussed above have all used single-niche Avida popula-
tions, but evolutionary design is more interesting (and more powerful) when
we consider ecosystems. The selective pressures that cause the formation
and diversity of ecosystems are still poorly understood [46, 48]. In part, the
lack of progress is due to the difficulty of performing precise, replicated, and
controlled experiments on whole ecosystems [30]. To study simple ecosys-
tems in a laboratory microcosm (reviewed in [49]), biologists often use a
chemostat, which slowly pumps resource-rich media into a flask containing
bacteria, simultaneously draining its contents to keep the volume constant.
Unfortunately, even in these model systems, ecosystems can evolve to be more
complex than is experimentally tractable and understanding their formation
remains difficult [33, 34, 42].

We set up Avida experiments based on this chemostat model [10] wherein
nine resources flow into the population, and 1% of unused resources flow out.
We used populations with 2500 organisms, each of which absorbed a small
portion of an available resource whenever they performed the corresponding
task. If too many organisms focus on the same resource, it will no longer be
plentiful enough to encourage additional use.

Fig. 1.5 Visualizations of phylogenies from the evolution of (a) a single-niche population,
and (b) a population with limited resources. The x-axis represents time, and the y-axis
is depth in the phylogeny (distance from the original ancestor). Intensity at each position
indicates the number of organisms alive at a time point, at a particular depth in the tree.

Theory predicts that an environment with either a single resource or
with resources in unlimited quantities is capable of supporting only one
species [47], and this is exactly what we see in the standard Avida exper-
iments. It is the competition over multiple, limited resources that is believed
to play a key role in the structuring of communities [45, 49]. In 30 trials
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under the chemostat regime in Avida, a variety of distinct community struc-
tures developed [10]. Some evolved nine stably coexisting specialists, one per
resource, while others had just a couple of generalists that divided the re-
sources between them. Others still mixed both generalists and specialists. In
all cases, the ecosystems proved to be stable because they persisted after all
mutations were shut off in the system, and if any abundant phenotype were
removed, it would consistently reinvade.

Phylogeny visualizations provide a striking demonstration of the differ-
ences between populations that evolved in a single niche and those from
ecosystems, as displayed in Fig. 1.5. Single-niche populations can have
branching events that persist for a short time, but in the long term, one
species will out compete the others or simply drift to dominance if the fitness
values are truly identical. By contrast, in ecosystems with multiple resources,
the branches that correspond to speciation events persist.

We also studied the number of stably coexisting species as a function
of resource availability [7]. We varied the inflow rate of resources over six
orders of magnitude and found that multi-species communities evolved at
intermediate resource abundance, but not at very high or very low resource
abundance. The reason for this observation is that if resources are too scarce,
they cannot provide much value to the organisms and the base metabolic
rate dominates, while if resources are too abundant, then they are no longer
a limiting factor, which means that space becomes the primary limit. In both
cases, the system reduces down to only a single niche that organisms can take
advantage of.

1.5 Outlook

Digital organisms are a powerful research tool that has opened up methods to
experimentally study evolution in ways that have never before been possible.
We have explained the capabilities of the Avida system and detailed the
methods by which researchers can make use of them. We must be careful,
however, not to be lured into the trap of thinking that because these systems
can be set up and examined so easily that any experiment will be possible.
There are definite limits on the questions that can be answered.

Using digital organisms, we cannot learn anything about physical struc-
tures evolved in the natural world, nor the specifics of an evolutionary event
in our own history; the questions we ask must be about how evolution works
in general and how we can harness it. Even for the latter type of questions,
it is sometimes difficult to set up experiments in such a way that they give
meaningful results. We must always remember that we are working with an
arguably living system that will evolve to survive as best it can, not always
in the direction that we intended. Avida has become, in many ways, its own
bug tester. If we make a mistake, the organisms will exploit it. For exam-
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ple, we originally had only 16-bit inputs for the organisms to process; they
quickly discovered that random guessing often took less time than actually
performing the computation. In this case, the organisms indeed found the
most efficient way to solve the problem we gave them, only that it was not
the problem we had thought we were giving. This error happened to be easy
to find and easy to fix – now all inputs are 32 bits long – but not all “cheat-
ing” will be so simple to identify and prevent. When performing an Avida
experiment, it is always important that we step through the population and
try to understand how some of the organisms are functioning. More often
than not, they will surprise us with the cleverness of the survival strategies
that they are using. Also, sometimes they will even make us step back to
rethink our experiments.

Many possible future directions exist in the development of Avida. On-
going efforts include (among others) the implementation new CPU models
that are more powerful and general purpose, an overhaul of the user inter-
face framework that will support enhanced visualization and cross-platform
graphical interaction with all of the analysis tools, continued refinement of
deme features and organism communication, and the implementation of more
complex and realistic topologies, including physical environments in which
organisms move and grow. Finally, a major new feature in development for
Avida 3.0 will be a full-featured scripting language. The new AvidaScript will
expose all of the power of populations and analysis tools, allowing researchers
to create vastly more sophisticated experiments right out of the box.
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Chapter 2

Foundations of and Recent Advances
in Artificial Life Modeling with
Repast 3 and Repast Simphony

Michael J. North and Charles M. Macal

2.1 Introduction

Artificial life focuses on synthesizing “life-like behaviors from scratch in com-
puters, machines, molecules, and other alternative media” [24]. Artificial
life expands the “horizons of empirical research in biology beyond the ter-
ritory currently circumscribed by life-as-we-know-it” to provide “access to
the domain of life-as-it-could-be” [24]. Agent-based modeling and simulation
(ABMS) are used to create computational laboratories that replicate real or
potential behaviors of actual or possible complex adaptive systems (CAS).
The goal of agent modeling is to allow experimentation with simulated com-
plex systems. To achieve this, agent-based modeling uses sets of agents and
frameworks for simulating the agent’s decisions and interactions. Agent mod-
els show how complex adaptive systems may evolve through time in a way
that is difficult to predict from knowledge of the behaviors of the individual
agents alone. Agent-based modeling thus provides a natural framework in
which to perform artificial life experiments. The free and open source Re-
cursive Porous Agent Simulation Toolkit (Repast) family of tools consists of
several advanced agent-based modeling toolkits.

2.1.1 Artificial Life

The discipline of artificial life studies the synthesis of forms and functions that
appear alive. Artificial life allows scientific studies of biological systems out-
side the currently observable accidents of history. According to Langton [24]:

Biology is the scientific study of life – in principle, anyway. In practice, biology is the
scientific study of life on Earth based on carbon-chain chemistry. There is nothing
in its charter that restricts biology to carbon-based life; it is simply that this is the
only kind of life that has been available to study. Thus, theoretical biology has long

37
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faced the fundamental obstacle that it is impossible to derive general principles from
single examples.

Without other examples, it is difficult to distinguish essential properties of life –
properties that would be shared by any living system – from properties that may be
incidental to life in principle, but which happen to be universal to life on Earth due
solely to a combination of local historical accident and common genetic descent.

In order to derive general theories about life, we need an ensemble of instances to
generalize over. Since it is quite unlikely that alien life-forms will present themselves
to us for study in the near future, our only option is to try to create alternative
life-forms ourselves – artificial life – literally “life made by Man rather than by
Nature.”

Langton’s description of artificial life indicates the depth but belies the age
of the discipline. According to Di Paolo [12]:

To say that artificial life is a young discipline in name only is to exaggerate, but it
would be mistaken to think that its goals are new. The marriage of synthetic scientific
aims with computational techniques makes artificial life a product of the last fifteen
years, but its motivations have much deeper roots in cybernetics, theoretical biology,
and the age-old drive to comprehend the mysteries of life and mind. Little wonder
that a good part of the work in this field has been one of rediscovery and renewal
of hard questions. Other disciplines have sidestepped such questions, often for very
valid reasons, or have put them out of the focus of everyday research; yet these
questions are particularly amenable to be treated with novel techniques such as
computational modeling and other synthetic methodologies. What is an organism?
What is cognition? Where do purposes come from?

2.1.2 Agent-Based Modeling for Artificial Life

Agent-based modeling and simulation are used to create computational labo-
ratories that replicate selected real or potential behaviors of actual or possible
complex adaptive systems. A complex adaptive system is made up of agents
that interact, mutate, replicate, and die while adapting to a changing envi-
ronment. Holland has identified the three properties and four mechanisms
that are common to all complex adaptive systems [19]:

1. The nonlinearity property occurs when components or agents exchange
resources or information in ways that are not simply additive. An example
is a photosynthetic cell agent that returns 1 calorie of energy when 1
calorie is requested, 2 calories of energy when 2 calories are requested, and
3 calories of energy when 10 calories are requested.

2. The diversity property is observed when agents or groups of agents dif-
ferentiate from one another over time. An example is the evolutionary
emergence of new species.

3. The aggregation property occurs when a group of agents is treated as a
single agent at a higher level. An example is the ants in an ant colony.

4. The flows mechanism involves exchange of resources or information be-
tween agents such that the resources or information can be repeatedly
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forwarded from agent to agent. An example is the flow of energy between
agents in an ecosystem.

5. The tagging mechanism involves the presence of identifiable flags that let
agents identify the traits of other agents. An example is the use of formal
titles such as “Dr.” in a social system.

6. The internal models mechanism involves formal, informal, or implicit rep-
resentations of the world embedded within agents. An example is a preda-
tor’s evolving view of the directions prey are likely to flee during pursuit.

7. The building blocks mechanism is used when an agent participates in more
than one kind of interaction. An example is a predator agent that can also
be prey for larger predators.

Of course, these properties and mechanisms are interrelated. For example,
with aggregation, many agents can act as one. With building blocks, one agent
in some sense can act as many. Agent-based models normally incorporate
some or all of the properties and mechanisms of complex adaptive systems.

The goal of agent modeling is to allow experimentation with simulated
complex systems. To achieve this, agent-based modeling uses sets of agents
and frameworks for simulating the agent’s decisions and interactions. Agent
models can show how complex adaptive systems can evolve through time in
a way that is difficult to predict from knowledge of the behaviors of the in-
dividual agents alone. Agent modeling focuses on individual behavior. The
agent rules are often based on theories of the individual such as rational
individual behavior, bounded rationality, or satisficing [39]. Based on these
simple types of rules, agent models can be used to study how patterns emerge.
Agent modeling may reveal behavioral patterns at the macro or system level
that are not obvious from an examination of the underlying agent rules alone:
These patterns are called emergent behavior. Agent-based modeling and sim-
ulation thus provide a natural framework in which to perform artificial life
experiments.1

Agent-based modeling and simulation are closely related to the field of
Multi-agent Systems (MAS). Both fields concentrate on the creation of com-
putational complex adaptive systems. However, agent simulation models the
real or potential behaviors of complex adaptive systems and MAS often fo-
cuses on applications of artificial intelligence to robotic systems, interactive
systems, and proxy systems.

1 ABMS, agent-based modeling (ABM), agent-based simulation (ABS), and individual-
based modeling (IBM) are all synonymous. ABMS is used here since ABM can be confused
with anti-ballistic missile, ABS can be confused with anti-lock brakes, and IBM can be
confused with International Business Machines Corporation.
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2.1.3 Chapter Organization

This chapter provides an overview of the Repast agent modeling toolkit from
the perspective of artificial life. This chapter is organized into four parts.
The introduction describes artificial life and agent-based modeling and sim-
ulation. The second section discusses the Repast agent modeling toolkit’s
development ecosystem and underlying concepts. The third section reviews
a series of Repast artificial life models of artificial evolution and ecosystems,
artificial societies, and artificial biological systems. The final section presents
a summary and conclusions.

2.2 REPAST

The Recursive Porous Agent Simulation Toolkit (Repast) family of tools is
one of several agent modeling toolkits available. Repast borrows many con-
cepts from the Swarm agent-based modeling toolkit [40]. Repast is differen-
tiated from Swarm in several respects that are discussed later.

Two generations of the Repast toolkit family are in widespread use. The
first, Repast 3, is available in pure Java and pure Microsoft.Net forms and uses
a library-oriented approach to model development [33]. The second, Repast
Simphony, is available in pure Java. It can be used as a library, but the
preferred model of development is to use its point-and-click wizard-based
system to create models, execute them, and analyze the results [21, 36].

Repast is a free open-source toolkit that was originally developed by Sal-
lach, Collier, Howe, North, and others [9]. Repast was created at the Uni-
versity of Chicago. Subsequently, it has been maintained by organizations
such as Argonne National Laboratory. Repast is now managed by the non-
profit volunteer Repast Organization for Architecture and Design (ROAD).
ROAD is led by a board of directors that includes members from a wide range
of government, academic, and industrial organizations. The Repast system,
including the source code, is available directly from the web [38].

Repast seeks to support the development of extremely flexible models of
living social agents, but it is not limited to modeling living social entities
alone. From the ROAD home page [38]:

Our goal with Repast is to move beyond the representation of agents as discrete, self-
contained entities in favor of a view of social actors as permeable, interleaved, and
mutually defining; with cascading and recombinant motives. . .We intend to support
the modeling of belief systems, agents, organizations, and institutions as recursive
social constructions.
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2.2.1 Repast 3

At its heart, Repast toolkit version 3 can be thought of as a specification for
agent-based modeling services or functions. There are three concrete imple-
mentations of this conceptual specification. Naturally, all of these versions
have the same core services that constitute the Repast system. The imple-
mentations differ in their underlying platform and model development lan-
guages. The three implementations are Repast for Java (RepastJ), Repast for
the Microsoft.Net framework (Repast.Net), and Repast for Python Script-
ing (RepastPy). RepastJ is the reference implementation that defines the
core services. The fourth version of Repast, namely Repast for Oz/Mozart
(RepastOz), is an experimental system that partially implements the Repast
conceptual specification while adding advanced new features [30, 42]. An ex-
ample Repast model user interface is shown in Fig. 2.1.

Fig. 2.1 A Repast 3 model user interface using the ESRI ArcGIS agent analyst extension.

Repast 3 has a variety of features, including the following:

• Repast 3 includes a variety of agent templates and examples. However, the
toolkit gives users complete flexibility as to how they specify the properties
and behaviors of agents.
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• Repast 3 is fully object-oriented.
• Repast 3 includes a fully concurrent discrete event scheduler. This sched-

uler supports both sequential and parallel discrete event operations.
• Repast 3 offers built-in simulation results logging and graphing tools.
• Repast 3 has an automated Monte Carlo simulation framework.
• Repast 3 provides a range of two-dimensional agent environments and

visualizations.
• Repast 3 allows users to dynamically access and modify agent properties,

agent behavioral equations, and model properties at run time.
• Repast 3 includes libraries for genetic algorithms, neural networks, random

number generation, and specialized mathematics.
• Repast 3 includes built-in Systems Dynamics modeling.
• Repast 3 has social network modeling support tools.
• Repast 3 has integrated geographical information systems (GIS) support.
• Repast 3 is fully implemented in a variety of languages including Java and

C#.
• Repast 3 models can be developed in many languages including Java, C#,

Managed C++, Visual Basic.Net, Managed Lisp, Managed Prolog, and
Python scripting.

• Repast 3 is available on virtually all modern computing platforms, includ-
ing Windows, Mac OS, and Linux. The platform support includes both
personal computers and large-scale scientific computing clusters.

Repast 3’s features directly support the implementation of models with
Holland’s three properties and four mechanisms [19]:

1. Repast 3 allows nonlinearity in agents since their behaviors are completely
designed by users. Repast’s Systems Dynamics, genetic algorithms, neural
networks, random number generation, and social networks libraries make
this process easy.

2. Repast 3 supports diversity by giving users complete control over the way
their agents are defined and initialized. Again, the Repast libraries simplify
the specification of diversity.

3. Repast 3 allows the aggregation property by allowing users to specify and
maintain groups of agents.

4. Repast 3 supports the flows mechanism with features such as its Systems
Dynamics tools and social network library.

5. Repast 3 provides for the tagging mechanism by allowing agents to present
arbitrary markers.

6. Repast 3 makes the internal models mechanism available through both its
flexible definition of agents and its many behavioral libraries.

7. Repast 3 supports the building blocks mechanism through its object-
oriented polymorphism.

Repast 3 for Python Scripting (RepastPy) enables visual model construc-
tion with agent behaviors defined in Python [27]. RepastPy models can be
automatically converted to RepastJ models using RepastPy’s export option.
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RepastPy users work with the interface shown in the upper left-hand win-
dow of Fig. 2.2 to add the components to their models. RepastPy users then
employ Python to script the behaviors of their agents, as shown in the lower
right-hand window of Fig. 2.2.

Fig. 2.2 The RepastPy interface.

The components in the example model are shown on the left-hand side
of the upper window of Fig. 2.2. These components include the simulation
environment specification, the model specification (“Schelling GIS”), the ZIP
code region agent specification (“ZipRegion”), and the residential agent spec-
ification (“Resident”). Properties for the model specification such as the “Ac-
tions,” “Display Name,” and “Master Schedule” are shown on the right-hand
side of the upper window in the figure. The Actions “Edit” button is used to
access the Python scripting for the agent behaviors.

The Python scripting window for the example model is shown in the lower
window of Fig. 2.2. The agent properties (“Variables”), the agent behavior
libraries (“Java Imports”), and behavior code (“Source”) can be seen in this
window.

There is a special version of RepastPy known as the Agent Analyst that
is an extension to the ESRI ArcGIS geographical information systems plat-
form. ESRI ArcGIS is the leading commercial GIS, with well over one mil-
lion users. Agent Analyst is a fully integrated ArcGIS Model Tool. This
means that Agent Analyst has drag-and-drop integration with ArcGIS. Agent
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Analyst users can create RepastPy models from within ArcGIS with a few
mouse clicks. Fig. 2.1 shows the SLUDGE Geographical Information System
(SluGIS) Agent Analyst model running within ArcGIS. SluGIS is described
in the section on artificial societies.

Fig. 2.3 The RepastJ Hexabugs model.

RepastJ is written entirely in Java [15]. An example RepastJ model, Hex-
abugs, is shown in Fig. 2.3. The Hexabugs model is discussed in the section on
artificial biological systems. Since RepastJ is pure Java, any development en-
vironment that supports Java can be used. The free and open-source Eclipse
development environment is recommended [13]. Eclipse provides a variety of
powerful editing and development features, including code authoring wizards,
automatic code restructuring tools, design analysis tools, Unified Modeling
Language (UML) tools, extensible markup language (XML) tools, and in-
tegration with version control systems. Fig. 2.4 shows part of the RepastJ
AgentCell model in Eclipse. The AgentCell modules are shown in the upper
left “Package Explorer” tab. The cell agent component is highlighted in this
tab. Part of the cell agent code is shown in the upper middle “Cell.java”
tab. Some of the cell agent properties and methods can be seen in the “Out-
line” tab on the far right. Part of the cell agent documentation is shown in
the button right tab. Additionally, a code module dependency graph can be
seen in the lower left “Dependency Graph View” tab. This graph shows the
connections between some of the main AgentCell modules.

Both RepastJ and RepastPy models can be developed and executed on
nearly any modern computing platform. This is particularly beneficial for
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Fig. 2.4 RepastJ in the Eclipse development environment.

artificial life researchers since models can be constructed on readily avail-
able workstations and then executed on large-scale clusters without changing
code. An example of this will be provided along with the description of the
AgentCell model.

Repast for the Microsoft.Net framework (Repast.Net) is written entirely
in C# [2]. An example Repast.Net named Rocket Bugs is shown in Fig. 2.5.
The Rocket Bugs model is a Cartesian elaboration of the Hexabugs model
in which some of the agents herd the other agents in the system. Some of
the code for this model is displayed in the Visual Studio Environment in
Fig. 2.6. It can be seen in the three windows on the left in the figure that
the Rocket Bugs simulation uses a combination of Managed C++, C#, and
Visual Basic.Net, all in a single seamless model. Additionally, note in the
lower right that Repast.Net comes with a full set of specialized Visual Studio
templates. These templates automate the initial creation of both Repast.Net
models and model components such as agents.

All three versions of Repast are designed to work well with other software
development tools. For example, all three versions are integrated with GISs
such as the RepastPy Agent Analyst example shown in Fig. 2.1. However,
since RepastJ is the most widely used version of Repast, the integration
examples will focus on Java. See ROAD for many other examples [38].

RepastJ easily permits aspect-oriented software development. Aspects im-
plement cross-cutting concerns that allow software idioms repeated through-
out a model to be factored to reduce redundancy [14]. See Walker, Baniassad,
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Fig. 2.5 Repast.Net Rocket Bugs model.

and Murphy for a discussion of the use of Aspects for software develop-
ment [43].

RepastJ includes its own built-in logging facilities but also works with
the high-performance Log4j system and also with the National Center for
Supercomputing Applications’ (NCSA) Hierarchical Data Format 5 (HDF5)
data storage system [18, 32]. The use of Log4j, among other logging tools, in
conjunction with AspectJ is discussed briefly by Cloyer et al. [8].

RepastJ unit testing is performed with JUnit as outlined in Beck and
Gamma [3]. Unit testing allows software to be tested on an incremental mod-
ular level. The combination of these and other tools with RepastJ allows
sophisticated models to be constructed reliably and efficiently.

The Repast 3 system has two layers. The core layer runs general-purpose
simulation code written in Java or C#. This component handles most of the
behind-the-scenes details. Repast users do not normally need to work with
this layer directly. The external layer runs user-specific simulation code writ-
ten in Java, C#, Python, Managed C++, Managed Lisp, Managed Prolog,
Visual Basic.Net, or other languages. This component handles most of the
center stage work. Repast users regularly work with this layer.
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Fig. 2.6 Repast.Net in Microsoft Visual Studio.Net.

The Repast 3 system has four fundamental components, as shown in
Fig. 2.7. The components are the simulation engine, the input/output (I/O)
system, the user interface, and the support libraries. Each of these compo-
nents is implemented in the core layer and is accessed by the user in the
external layer. A Unified Modeling Language (UML) diagram showing the
relationships between these components is presented in Fig. 2.8. Information
on UML notation can be found in Booch [5].

The Repast 3 simulation engine is responsible for executing simulations.
The Repast engine has four main parts, namely the scheduler, the model,
the controller, and the agents. The relationship among these components is
indicated in Figs. 2.7 and 2.8 and is discussed later in this section.

The Repast 3 scheduler is a full-featured discrete event scheduler. Simula-
tions proceed by popping events or “actions,” as they are called in Repast, off
an event queue and executing them. These actions are such things as “move
all agents one cell to the left,” “form a link with your neighbor’s neighbor,” or
“update the display window.” The model developer determines the order in
which these actions execute relative to each other using ticks. As such, each
tick acts as a temporal index for the execution of actions. For example, if
event X is scheduled for tick 3, event Y for tick 4, and event Z for tick 5, then
event Y will execute after event X and before event Z. Actions scheduled for
execution at the same tick will be executed with a simulated concurrency. In
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Fig. 2.7 Repast overview diagram.

this way, the progression of time in a simulation can be seen as an increase
in the tick count.

The Repast 3 scheduler includes full support for concurrent task execu-
tion. Tasks become concurrent when actions are given both a starting time
and duration. When durations are specified, actions that can be started in
the background are run concurrently. Actions with nonzero durations will
run concurrently with other actions with compatible tick counts as well as
block the execution of other actions with higher tick counts until the current
action is completed. For example, consider a process that contains some long-
running and complicated behavior that can be started at time t with results
needed at t + 5. Imagine that there are actions that can be run concurrently
over time t to t+5. This behavior can be modeled as an action with a five-tick
duration. In terms of implementation, this action will run in its own thread
that is amenable to being run on a separate processor or even on another
computer. This allows the natural introduction of complex concurrent and
parallel task execution into Repast simulations. Since durations are optional,
modelers can begin by creating sequential simulations and then introduce
concurrency as needed.

Repast 3 schedulers are themselves actions that can be recursively nested
following the composite design pattern [16]. This allows a Repast action to be
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Fig. 2.8 Core Repast UML diagram.

as complex as needed for a given application. It even allows advanced multi-
scale simulations to be constructed by combining existing models such that
the full schedules of lower-level models run as simple actions in higher-level
models.

Repast 3 models contain the definition of the simulation to be run by
the scheduler. Repast models include the list of agents to be executed, the
simulation initialization instructions, and the user interface specification.

Repast 3 controllers connect models and schedulers. They activate the
selected model and then manage the interactions between the user or batch
execution system and the model.

Repast 3 agents are created by users from components within Repast. A
variety of options are available, including geographically situated agents and
network-aware agents. Agents receive data from, and provide results to, the
Repast I/O system.

The Repast 3 I/O system allows agents to be created based on input
properties. It also can store data from both agents and overall models. Repast
includes a set of results loggers that support a range of storage formats.

The Repast 3 user interface supports the display of model results and
allows user to interact with running models. Repast user interface examples
are shown in Figs. 2.1, 2.3, 2.5 and 2.9. Model user interfaces can include
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graphical outputs or maps of the agent states as well as interactive probes
that allow users to view and modify agent states. An agent map is shown in
the lower left of Fig. 2.3 and an agent probe is shown in the upper left. Users
have full control over what is available through both maps and probes.

Fig. 2.9 Padgett, Lee, and Collier’s RepastJ Hypercycle model.

The Repast 3 support libraries include a variety of tools for both mathe-
matics and modeling. The mathematics support includes a range of random
distribution generators and statistical aggregation tools commonly found in
all kinds of simulation toolkits [25]. The modeling support includes genetic
algorithms and neural network tools among other features [22].

2.2.2 Repast Simphony

Repast Simphony (Repast S) represents a substantial advance in artificial
life modeling, and agent-based modeling in general, compared to previous
technologies. As described in [21], Repast S builds upon the Repast 3 model
development approach by introducing the following model creation process:

• The modeler creates model pieces, as needed, in the form of plain old Java
objects (POJOs), often using automated tools or scripting languages such
as Groovy [23]. An example agent behavior flowchart is shown in Fig. 2.10.
The contents of the flowchart are automatically compiled to Groovy source
code and then to Java bytecode.

• The modeler uses declarative configuration settings to pass the model
pieces and legacy software connections to the Repast S runtime system.
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• The modeler uses the Repast S runtime system to declaratively tell Repast
S how to instantiate and connect model components.

• Repast S automatically manages the model pieces based on both interac-
tive user input and declarative or imperative requests from the components
themselves.

Fig. 2.10 An example agent behavior flowchart.

The POJO model components can represent anything but are most com-
monly used to represent the agents in the model. Although the POJOs can
be created by using any method, this chapter discusses one powerful way to
create POJOs for Repast S: the Repast S development environment. How-
ever, modelers can use any method – from hand coding to wrapping binary
legacy models to connecting into enterprise information systems – to create
the Repast S POJO model components.

Regardless of the source of the POJOs, the Repast S runtime system is
used to configure and execute Repast S models. The Repast S runtime system
includes the following:

• Point-and-click model configuration and operation;
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• Integrated two-dimensional, three-dimensional (3D), and other views (see
Fig. 2.11 for an example 3D GIS view);

• Automated connections to enterprise data sources;
• Automated connections to powerful external programs for conducting sta-

tistical analysis and visualizing model results.

Fig. 2.11 An example 3D GIS view.

2.2.3 Using Repast 3 and Repast Simphony

As previously mentioned, all versions of Repast are distributed under a vari-
ation of the BSD license [38]. This license states that Repast can be used
for virtually any purpose without fees and without a requirement to release
propriety model source code. See ROAD for details [38]. This license allows
Repast to be freely used in education, research, and entertainment by non-
profit, government, and commercial organizations.

Many educational institutions are now using or have used Repast for either
education or research. These institutions include the University of Chicago,
the University of Michigan, Iowa State University, the Swiss Federal Institute
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of Technology Zurich, the Illinois Institute of Technology, and Harvard Uni-
versity. In particular, the University of Chicago is the birthplace of Repast.
The educational uses generally focus on providing students with a labora-
tory environment for experiments with complex systems and for instructing
students on agent-based modeling concepts. The research work includes the
development of models in a variety of domains as well as model-theoretic stud-
ies. Several of the models are discussed in the following sections. The model-
theoretic work mostly involves additions to and extensions of the Repast
framework itself. This list of educational institutions using Repast is rapidly
growing.

A significant number of U.S. federal government agencies and other orga-
nizations are using or have used various versions of Repast. These users have
Repast models that focus on a range of mission-critical applications such as
infrastructure security and network communications planning.

Several commercial organizations are working with Repast. These organi-
zations include software developers such as ESRI and other private organi-
zations. These corporations are using Repast for several purposes, including
strategic planning and commercial software enhancement.

2.3 Repast Artificial Life Models

Agent-based modeling has been used in an enormous variety of applications
to social systems, covering human as well as nonhuman systems. Applications
range from modeling ancient civilizations that have been gone for hundreds
of years, to modeling how to design new markets that do not currently exist,
such as space tourism and digital news. Selected applications are listed in
Table 2.1 for the period 2004 to 2008. Earlier models can be found in the
first edition of this book [35]. All of the applications listed acknowledge using
Repast as the underlying agent-based modeling toolkit.

Several of the works contend that using agent-based modeling versus other
modeling techniques is necessary because agent-based models can explicitly
model the complexity arising from individual actions and interactions that
exist in the real world. All of the works support the use of Repast as the
tool of choice based on reasons having to do with usability, ease of learning,
cross-platform compatibility, and its sophisticated capabilities to connect to
databases, graphical user interfaces, and GISs.

Griffin and Stanish [17] developed an agent-based model, using Repast,
for the Lake Titicaca basin of Peru and Bolivia covering the late prehis-
toric period, 2500 BC to AD 1000. The model was used to study hypotheses
for the causal variables affecting prehistoric settlement patterns and polit-
ical consolidations. The model’s geo-spatial structure consists of a 50,000
km2 grid composed of 1.5-km square cells. Each cell modeled the geography,
hydrology, and agricultural potential. Agents consist of settlements, peoples,
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Application area Model description and reference

Air Traffic Control An agent-based model of air traffic control to analyze control policies
and performance of a capacity constrained air traffic management
facility (Conway [10]).

Anthropology An agent-based model of prehistoric settlement patterns and polit-
ical consolidation in the Lake Titicaca basin of Peru and Bolivia
(Griffin and Stanish [17]).
An agent-based model of linguistic diversity (de Bie and de Boer [4]).

Ecology Agent-based model of predator–prey relationships between transient
killer whales and other marine mammals (Mock and Testa [29]).
Aphid population dynamics in agricultural landscapes using agent-
based modeling (Parry, et al. [37]).

Energy Analysis An agent-based model for scenario development of offshore wind
energy (Mast et al. [28]).
Agent-based model of residential energy generation (Houwing and
Bouwmans [20]).

Epidemics An agent-based computer model to retrospectively simulate the
spread of the 1918–1919 influenza epidemic through the small fur-
trapping community of Norway House in Manitoba, Canada (Car-
penter [6]).

Marketing An agent-based simulation to model the possibilities for a future
market in sub-orbital space tourism (Charania et al. [7]).
A multi-agent based simulation of news digital markets (López-
Sánchez et al. [26]).
An agent-based model of Rocky Mountain tourism (Yin [45]).
An agent-based computational economics model using Repast to
study market mechanisms for the secondary use of the radio spec-
trum (Tonmukayakul [41]).

Organizational
Decision Making

Agent based modeling approach to allow negotiations in order to
achieve a global objective, specifically for planning the location of
intermodal freight hubs (van Dam et al. [11]).
An evaluation framework for supply chains based on corporate cul-
ture compatibility using agent-based modeling (Al-Mutawah and
Lee [1]).
Emergency response (Narzisi et al. [31]).

Social Science Simulating the process of social influence within a population, using

dynamic social impact theory (Wragg [44]).

Table 2.1 Selected recent Repast applications

political entities, and leaders that interact with each other and with the envi-
ronment (grid). Agent behavior is modeled as a set of condition-action rules
that are based on hypothesized causal factors affecting agriculture, migra-
tion, competition, and trade processes. The authors report that through a
series of simulation runs, the model produced a range of alternative political
prehistories and the emergence of macro-level patterns that corresponded to
observed patterns in the archaeological record. Simulation results provided
insights into region-wide political consolidation.

De Bie and de Boer [4] developed an agent-based model of linguistic di-
versity implemented in Repast. The authors model language diversity as the
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result of language mutation. Agents adopt mutations from other agents based
on social impact theory, in which less common varieties of language have a
relatively greater influence per individual speaking the variety. Using the
model, they demonstrate how different language patterns can exist at the
same time.

Carpenter [6] constructed an agent-based model with Repast to retrospec-
tively simulate the spread of influenza in the 1918–1919 pandemic through
the small fur-trapping community of Norway House in Manitoba, Canada.
According to the author, historical information about the influenza pandemic
was used to create a computer simulation that could be manipulated in ways
that would not be possible, or ethical, in real life. Carpenter contends that
by using agent-based modeling, an artificial landscape can be populated with
heterogeneous agents who move and interact in ways that more closely resem-
ble human behavior than is possible to do using other modeling techniques.
The model was used to address research questions on the influence of changes
in population movement patterns on the transmission of disease, specifically
whether the seasonal population movements could influence the spread of
the influenza through the community and whether a winter epidemic could
differ from a summer epidemic predominantly due to changes in seasonal
population movement.

Charania et al. [7] used agent-based simulation and Repast to model pos-
sible futures for a market in sub-orbital space tourism. Each agent is a repre-
sentation of an entity within the space industry, such as consumers, produc-
ers, the government, etc., that provides or demands different products and
services. Tourism companies seek to maximize profits while they compete
with other companies for sales. Individual companies decide the price they
will charge for a flight aboard their vehicle. Customers evaluate the products
offered by the companies according to their individual tastes and preferences.

López-Sánchez et al. [26] developed a multi-agent-based simulation of news
digital markets called SimwebAB, using Repast. Their approach is to adapt
traditional business models to the new market. They use the model to inves-
tigate the dynamics of the new market and gain insights into how to exploit
the impending paradigm shift in news contents, marketing, and distribution.
The authors contend their model is useful for informing business strategy
decisions.

Yin [45] used Repast to develop an agent-based model of Rocky Mountain
tourism and applied it to the town of Breckenridge, Colorado. The model
was used to explore how homeowners’ investment and reinvestment decisions
are influenced by the level of investment and amenities available in their
neighborhoods. The dynamics and indirect spatial impacts of amenity-led
mountain tourism on development were explored. The author found that
individual levels of appreciation of amenities and continuing investment in
a neighborhood attracted investment and reinvestment and created pressure
for high-density resort housing development at the aggregate level.
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Tonmukayakul [41] developed an agent-based computational economics
model using Repast to study market mechanisms for the secondary use of
the radio spectrum. Secondary use is the temporary access of the existing
licensed spectrum by users who do not own a spectrum license. Using trans-
action cost economics as the theoretical framework, the objective of the model
was to identify the preconditions for when and why the secondary use market
could emerge from the repeated interactions of agents in the simulated market
and what form it might take. Understanding the dynamics for this hypothet-
ical market could lead to policy instruments to more effectively manage the
spectrum.

Al-Mutawah and Lee [1] developed an agent-based supply chain model
for evaluating supply chain corporate culture compatibility, using Repast.
The model focuses on a three-level supply chain. The model integrates the
framework for cultural learning to evaluate the management performance of
the supply chain under different scenarios and assumptions.

Wragg [44] used agent-based modeling and Repast to simulate the process
of social influence within a population, using dynamic social impact theory.
The motivation was to understand the social processes and power dynamics
of local populations in response to recent military operations in Afghanistan
and Iraq. The author contends that the simulations reproduced the expected
characteristics of social influence, such as opinion clustering, opinion polariza-
tion, minority opinion decay, and, more generally, the nonlinearity of public
opinion change. The author highlights the need for accurate data concern-
ing a population’s social hierarchy, social networks, behavior patterns, and
human geography. These data are essential for determining the impacts of
word-of-mouth and mass-media-driven information campaigns on the popu-
lation.

Narzisi et al. [31] developed a agent-based disaster simulation framework,
using Repast, to simulate catastrophic, emergency scenarios that required op-
timized emergency response. Incidents included the release of chemical agents,
bomb explosions, food poisonings, and small pox outbreaks. The model in-
cludes large numbers of agents in several categories, including individuals in
the population, hospitals, ambulances and on-site responders.

Conway [10] used Repast to build an agent-based model of air traffic con-
trol. The model was used to analyze the effectiveness of control policies for
a capacity-constrained air traffic management facility. The model is used to
address situations where capacity is overburdened and there is a potential for
resultant delays to propagate throughout the flight schedule. The model in-
cludes representations of air traffic system attributes such as system capacity,
demand, airline schedules and strategy, and aircraft capability.

Van Dam et al. [11] applied an agent-based modeling approach to modeling
the negotiation process. The objective was to investigate the conditions under
which a global objective could be achieved by individual decision makers
acting in their own interests. The model incorporates the agent’s decision-
making process for planning the location of intermodal freight hubs.
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Mast et al. [28] developed an agent-based model using Repast for investi-
gating scenarios for developing offshore wind energy resources in the Nether-
lands. A simple model was developed that includes the actors involved in the
supply chain, represented at a relatively high level of aggregation. The model
was used to investigate opportunities and threats to this emerging industry.

Houwing and Bouwmans [20] developed an agent-based model of residen-
tial energy generation to investigate how distributed energy resources will
contribute to the European Union’s stated policy goals of (1) energy market
liberalization and (2) decreasing environmental impacts from energy use. The
modeling study focused on residential power and heat generation through the
use of micro-combined heat and power units; options for heat storage were
modeled. The authors estimated the impact of residential power units on
household energy flows, energy costs, and CO2 emissions. The model results
show that the operational impacts are highly dependent on the control mode
adopted for heating and power units. Agent-based modeling proved useful in
modeling both the individual technology units and the individual decision
making behaviors of the consumers to operate the units.

Mock and Testa [29] use Repast to develop an agent-based model of
predator–prey relationships between transient killer whales and threatened
marine mammal species in Alaska. Threatened species include sea lions and
sea otters. The authors state that previously only simplistic, static models of
killer whale consumption had been constructed due in part to the fact that
the interactions between transient killer whales and their marine mammal
prey are poorly suited to classical predator–prey modeling approaches such
as those based on the Lotka–Volterra differential equation framework. This
killer whale model is an agent-based model at both the individual and hunting
group levels. Individual agents eat, grow, reproduce, and die. Hunting groups
change in size and composition while encountering other marine mammals.

Parry et al. [37] modeled the dynamics of aphid populations in agricul-
tural landscapes using a spatially explicit agent-based simulation model and
Repast. Aphid agents interact with one another and with the landscape en-
vironment over time. The model is heavily parameterized and coupled to a
GIS for geo-spatial realism. The authors demonstrate that a spatial model
that explicitly considers environmental factors (e.g., landscape properties,
wind speed and direction, etc.) provides greater insight into aphid popula-
tion dynamics over spatial and temporal dimensions than other modeling
approaches.

2.4 Conclusions

Artificial life focuses on synthesizing “life-like behaviors from scratch in com-
puters, machines, molecules, and other alternative media” [24]. Artificial life
expands the “horizons of empirical research in biology beyond the territory
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currently circumscribed by life-as-we-know-it” to provide “access to the do-
main of life-as-it-could-be” [24]. Agent-based modeling and simulation are
used to create computational laboratories that replicate selected real or po-
tential behaviors of actual or possible complex adaptive systems. Agent-based
models can be used to escape the accident of history in the form of “life-as-
we-know-it” by revealing alterative forms of “life-as-it-could-be.”

Repast is a family of free and open-source agent modeling toolkits.
Repast’s features directly support the implementation of models with Hol-
land’s three properties and four mechanisms of complex adaptive systems [19].
As such, Repast 3 and Repast Simphony are natural frameworks in which to
perform artificial life experiments. More information on the use of Repast
and other modeling tools can be found in North and Macal [34].

Repast has many academic, government, and industry users. These users
are involved in a variety of application areas, including educational, research,
and commercial uses. In particular, there are many examples in which Repast
has been used extensively for artificial life applications in topical areas such as
artificial evolution and ecosystems, artificial societies, and artificial biological
systems.
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18. Gülcü C (2003) The Complete Log4j Manual: The Reliable, Fast, and Flexible Logging
Framework for Java. QOS.ch, Lausanne, Switzerland

19. Holland J (1996) Hidden Order: How Adaptation Builds Complexity. Addison-Wesley,
Reading, MA.

20. Houwing M and Bouwmans I (2007) Agent-Based Modelling of Residential En-
ergy Generation with Micro-CHP, Delft University of Technology, Available on-
line at http://wiki.smartpowersystem.nl/images/d/dc/M_Houwing&I_

Bouwmans_Napa2006_FIN.pdf.
21. Howe TR, Collier NT, North MJ, Parker BT, and Vos JR (2006) Containing Agents:

Contexts, Projections, and Agents. In: Proceedings of the Agent 2006 Conference on
Social Agents: Results and Prospects, Argonne National Laboratory, Argonne, IL.

22. Java Object Oriented Neural Engine (Joone) Home Page (2004) http://www.

jooneworld.com/

23. König D, Glover A, King P, Laforge G, and Skeet J (2007) Groovy in Action. Manning
Publications, Greenwich, CT.

24. Langton C (1994) What is Artificial Life?, The Digital Biology Project. Available at
http://www.biota.org/papers/cglalife.html.

25. Law AA (2007) Simulation Modeling and Analysis. 4th ed. McGraw-Hill, New York.
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Chapter 3

Sodarace: Continuing Adventures in
Artificial Life

Peter W. McOwan and Edward J. Burton

3.1 The Sodarace Project

Much like life, the Sodarace project [8] continues to defy easy description;
see [9] and [15]. As the project matures with a new raft of software, the
story develops further fascinating twists. Originally developed as an online
Olympics pitching human against machine intelligence, the project has ex-
panded to incorporate an impressive range of science- and arts-based activ-
ities. Sodarace uses creative play as a bridge to foster dialogue and shared
awareness between two very different audiences: a broad public of learners,
both in and out of school, and the artificial intelligence and artificial life
research communities. The Sodarace project is an extension of the Sodacon-
structor software, an online construction kit comprising masses, springs, and
muscles, providing tools for open-ended discovery and exploration. Although
the mechanics are simple, the forms created often have a very life-like ap-
pearance and gait and, as such, are frequently anthropomorphized by users.

For Sodarace, the most recent focus has been to create new software that
makes available powerful, but simple to use, applications allowing users to
actively engage with, and experience themselves, the process of digital evo-
lution. In addition, central to this new framework is a continued wish to
foster every opportunity for cross-fertilisation between disciplines, combined
with applications supporting a multitude of potential user interests. This is
achieved by placing together, for the first time on a single web site, all of
the various incarnations of the Soda created family of free-to-use physics and
artificial intelligence simulation software. Access to this software is combined
with the user support forums and an easy to use and learn from repository
containing the myriad creations built and explored by using these applica-
tions. This new centralised software resource [7] draws together all of the
activities and enhances the educational goals and future sustainability of the
project.
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3.2 Introduction

Sodarace comprises a flexible environment for races between virtual robots,
either built by the public with the Sodaconstructor interface and learning
support from the Sodarace community forums or created by artificial intelli-
gences using a new suite of software that focuses on evolutionary algorithms
to introduce the public to the basics of Artificial Intelligence. These intuitive
tools combined with an active user forum and the provocative Humans vs.
Machines narrative have proved to be both popular, educational, and fun [9].

3.2.1 Sodarace: The Story Begins

Officially, the Sodaconstructor was released in March 2000. It started 10 years
earlier with a simple version, programmed in Basic, and developed by Burton,
which was later updated to Java when he joined the team of digital artists at
Soda Creative in London. The applet was placed online as an element of the
Play section content on Soda web site, where over a short period of time its
clear design, high quality interactivity, and addictive open-ended problem-
solving play made it extremely popular. Sodaconstructor exploded across
the Internet through e-mails, newsgroup postings, and other such informal
“word-of-mouth” advertising, the perfect example of viral marketing. By the
end of the month there were one million constructors using the applet each
week.

In September 2000, the applet was redeveloped in order to allow Soda-
constructions to be saved, and from this the Sodazoo was developed, where
creations could be sent and the best archived for all to see and learn from.
It was at this stage that the educational merit of the project and its natural
symbiosis with artificial life research began to crystallize, as a number of re-
search groups around the world contacted Soda, interested in exploring this
application of the software.

In April 2002, the Sodarace project was launched, supported by funds from
the UK Engineering and Physical Sciences Research Council (EPSRC). Core
to Sodarace’s construction and subsequent development were the Sodarace
community forums, where constructors and artificial intelligence researchers
could interact and get involved in developing the specifications for the new
software. This proved an extremely worthwhile experience for those involved,
as it gave a transparent view into the development of a major software project
while also ensuring that user requirements were met. The first human versus
machine races occurred in December 2003. It took the form of a race over flat
terrain with simple wheel-like creations, named amoebas by the community.
The artificial intelligence technique of genetic algorithms was used to optimise
the parameters of the wheel to cover the racetrack in a competitive time. For
the record, the humans won the first race, but only just!
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Since then the project has grown both in profile and, perhaps as impor-
tantly, in accessibility and future sustainability. The new framework was de-
signed to focus on the specific theme of digital evolution, as this had proved
to be the most popular and accessible form of artificial intelligence algorithm
explored in the earlier stages. It also moved to develop a centralised ‘one-stop
shop’, to facilitate more of the interdisciplinary and peer-to-peer interactions
that the project had shown to be successful in the past. This new software
was launched in 2005 by an event at the UK Royal Society Summer Exhibi-
tion. There followed a UK-wide tour of science centres and festivals of new
stand-alone kiosk software, which encapsulated the interactive, educational
and playful nature of the Sodarace project and greatly enhanced the national
profile of the project.

3.2.2 Previous Work

Sodarace makes no attempt to simulate more than two-dimensional (2D)
physical interactions between the mass, spring, and muscle racers and the
terrain. It is within this world that both artificial intelligence and humans
compete and evolve. However, as will be discussed later, these constraints
do not significantly hinder user creativity. An obvious related artificial life
project is Framsticks [6] described in Chapter 5, which allows the study of
evolution capabilities of three-dimensional (3D) creatures in simplified Earth-
like conditions. The creatures in this case also have genotype representations
of their physical body, sensors, neural network, and effectors.

Karl Sims’ earlier work in visualising simulated block creatures performing
evolved behaviours was also an inspiration for the Sodarace project [12, 11].
Sims’ research project involved simulated Darwinian evolutions, using genetic
algorithms, to develop again 3D virtual block creatures. An initial random
population of several hundred creatures is created, and each creature is then
tested for its ability to perform a given task, such as the ability to swim in
a simulated water environment. The fittest creatures for the task are then
passed into the next generation and mutations are applied to produce a new
population. The new creatures are again tested, and through the mutation
process, some may be conferred with improvements on their parents’ abilities.
As this iterative cycle of variation and selection continues, creatures with
more and more successful niche behaviours can emerge.

Sodarace builds on these previous works but reduces the dimensionality
and complexity of the simulation in an effort to increase interaction and ease
of learning. In addition, the central driving presence of the discussion forums
provides both an evolving archive of human and artificial intelligence design
activity and educational support.
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3.3 Sodarace, the Scientific Background

3.3.1 Sodaconstructor: The Physics Engine of
Sodarace

Sodarace is based on the popular Sodaconstructor software [9], which allows
the simulation of structures comprised of a linked set of node masses and
interconnecting springs, simulated using a simple implementation of New-
tonian and Hook’s law mechanics. To provide movement, constructors may
select springs to drive in simple harmonic motion (SHM). These are called
‘muscles’. The interface also provides an intuitive graphical representation of
the phase relations of the driven muscle elements through a moving sine wave.
The muscles are mapped to appropriate positions on the wave generator to
fix their relative oscillation phases; see Fig. 3.1. By connecting both static
and appropriately phased SHM-driven elements together, it is possible to
create a whole menagerie of lively perambulating creations. The amplitude,
initial wave phase offset, and speed of the driving sinusoidal wave may also be
controlled. The new upgrade of the Constructor software, finally released in
2007 after extensive discussions with the user community, was an enhanced
redesign that builds upon the previous functionality but, in addition, allows
users to copy, cut, and paste elements of their creations and to accurately
position masses, and set spring rest lengths and muscle phase differences. See
Fig. 3.2.

Fig. 3.1 The format of the ‘muscle’ wave generator, used to drive the creatures.
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Fig. 3.2 The new Sodaconstructor interface, displaying Sodarace mascot Daintywalker,
showing the additional design functionality.

3.3.2 Sodarace: The Racing Environmental Variables

To enable terrain construction, essentially the ground for the racers to race
on, a simple geometric collision detection algorithm is used. In effect, these
Sodarace ‘bar springs’ do not allow other structures to pass through them –
they can be used to construct terrain that models can walk over; by default,
these collisions are ‘sticky,’ meaning they lose energy to friction, and this can
be changed to ‘slippery’ for friction-free collisions. The racers are held in the
form of XML files (Fig. 3.3), which allows the manual editing of components
but also allows the computer generation of these files.

Access to the XML also allows interested users to make the connection
between a stored data structure and what is seen on the screen. Often the
inner workings of software seems mysterious to a general audience. Allowing
users this direct examination of ‘computer code’, and the ability to play and
explore with it, facilitates awareness of one of the basic elements of computer
programming.

One user writes in the forum

I was doing some experiments with the xml.

Another user takes their exploration further:
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<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE sodaconstructor>

<model>

<comment></comment>

<container width="651" height="422"/>

<environment gravity="0.3" friction="0.05" springyness="0.2"/>

<collisions surface_friction="0.1" surface_reflection="-0.75"/>

<wave amplitude="0.5" phase="0.0" speed="0.001"/>

<settings gravitydirection="down" wavedirection="forward"

autoreverse="on"/>

<nodes>

<mass id="m0" x="254.0" y="291.0" vx="0.0" vy="0.0"/>

<mass id="m1" x="332.0" y="194.0" vx="0.0" vy="0.0"/>

<mass id="m2" x="259.0" y="157.0" vx="0.0" vy="0.0"/>

</nodes>

<links>

<spring a="m0" b="m1" restlength="124.0"/>

<muscle a="m1" b="m2" restlength="82.0" amplitude="0.5"

phase="0.5"/>

</links>

</model>

Fig. 3.3 An example of the structure of an XML file.

I have just done a few experiments in XML. I found the “speed limit” to be around
10. Also, I found that you can break the speed limit by setting friction to a negative
number. I made a mass go around with this method. Also, I found that by setting
K to a negative number, springs avoid their rest length. If the spring is compressed
below its restlength, it will act similar to a zipspring in 0F, vibrating at a high rate
of speed. If it is expanded past its restlength, it will basically explode. At very low
K settings, springs will only take a frame to turn into a box across the screen, then
be pulled into various shapes, depending on the starting position.

The environmental variables that can be set globally are length and height
of the environment, gravity (both strength and direction up/down), spring
damping friction, and spring constant. For the terrain there are two param-
eters – the surface friction and the surface reflectance – which are related
to the portion of velocity parallel to the surface and perpendicular to the
surface, respectively, which is lost in a collision. These parameters are set by
graphics sliders.

One happy user comments,

This site is way better that the old one.

3.3.3 Taking Sodarace Out and About

The software allows the users to save their creatures and to promote their
creativity through the range of social networking sites, such as Facebook,
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which have recently come to prominence. Storage of a creature or a race can
now be promulgated through a feature that allows image-based links back to
the main sodaplay.com storage site. Specifically, the new framework allows
users to use the BBCode snipplet to add a thumb nail image to most forums,
and to use the HTML snipplet to add a thumb nail image to most sites.

3.4 Software for Artificial Life in Sodarace

In the earlier stage of the project there were a number of approaches to de-
veloping artificial creatures to compete in the Sodaraces. The accessibility
of the XML import/export format plus timing information from the original
race application itself naturally allowed the application of optimization algo-
rithms such as genetic algorithms [2, 1] and simulated annealing [5] to the
task of building better racers.

It is interesting to note how the audience reacted to the issues raised by
simply using an algorithm to optimize a previous human-designed racer, that
we specifically chose Daintywalker, a well-beloved early creation of Burton
that had, in effect, become the Sodarace mascot. The initial feeling in the
forum was that this was somehow ‘cheating.’ However, on later reflection, the
general consensus was that nature and human creativity frequently work by
modifying and improving on earlier designs, which, in turn, led to some deep
discussions on evolution.

Using the previous race software Wodka, an Austrian AI group, created
a program that generates robots from scratch instead of optimizing exist-
ing robots. Wodka used a genetic algorithm that generates a random set
of muscles, masses, and springs, forming multiple Sodarace creatures. These
creatures are then loaded and raced, and those that finish quickest breed,
and their fastest offspring breed, and so on. Initially, they started off as sim-
ple segmented sticks that bounced across the screen. However, later the best
creatures start to develop structure and look as if they have powered ‘flippers’
in the front. This software was made open source and was used by others in
the community to experiment with digital evolution.

3.5 Lessons Learned on Approaches for Artificial Life in
Sodarace

Although a range of algorithms was originally applied to the process of cre-
ating creatures, it was clear from the user forum responses that there were
two significant lessons to learn. First, to engage the broader user community
in the Artificial Intelligence theme, the race software and ability to interact
directly with AI elements needed to be more accessible. Second, the biological
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evolution analogy of trial and errors combined with survival of the fittest was
the most accessible approach to pull new users into the educational experi-
ence. It was also clear that the initial Humans vs. Machines narrative was
giving way to a broader view on cooperation. Artificial Intelligence, rather
than being a competitive threat, was seen as a tool that could help enhance
human creativity. With these views in mind, the new framework was devel-
oped.

3.5.1 Easy-to-Use Point-and-Click Racing

The Sodarace application, rather than requiring computer programming
skills, now allows users to easily create terrains for the race using a point-
and-click system. The terrain starts as a flat race, with start and finish flags,
but by selecting and moving sections of the ground, this can be reconfigured
into an appropriately challenging race course. These new challenges can then
be saved to allow others to see how their racers do over the course. New crea-
tures can easily be added to the race; they can be creatures created directly
or selected by the user scouring the online archive of previously stored cre-
ations. In both cases, all that is required is that the user enters the URL for
the stored creature, and this then loads that creature into the race software;
see Fig. 3.4.

Fig. 3.4 The new Sodarace interface, allowing users to easily load racers and design their
own terrains.

In selecting creatures for a race and experimenting on the creatures’ viabil-
ity over particular race terrains, users are pulled into a covert understanding
of both physical principles and the ethos of adaptation of form (creature)
to function (performance over the terrain). Trial-and-error engineering ap-
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proaches then often ensue, where users optimise their or another’s racing
creatures to complete the pre-defined course and come in first:

New sodarace is great, I like that it is possible to change the race track without
opening the constructor first, and it is a lot easier to load models! I’ve been waiting
for this.

3.5.2 Amoebamatic: An Easy Start for the New
Engineer

Amoebamatic is a new tool for automatically generating a variety of rolling
constructor models known informally as ‘Amoebas.’ This form of racers first
named in the forums are robust wheel-like creatures, which can survive and
prosper over a number of different terrain types. The Amoebamatic appli-
cation, based on the idea first put forward on a fan web site, allows users
to select the number of masses, number of interconnecting muscles, and am-
plitude and frequency of these drivers to create amoebas with a range of
differing properties. Users can then tune their creatures by hand, via a range
of graphics sliders and a repression of relative movement over the racetrack,
to automatically create viable creatures. This both engenders the beginnings
of engineering principles, the interaction of physical parameters giving rise
to differing creature performance, and allows new users an easy entry into
building a racer that is both stable and viable.

The amoebamatic is perfect for this. I love breeding faster amoebas with it.

3.5.3 AI and the Travelling Kiosk Software

Examination of digital evolution is facilitated with new kiosk software; see
Fig. 3.5. This software formed the basis of the activity during the UK tour of
Science Centres. The application is deliberately designed to be stand-alone.
Users are presented with three pre-created amoebas, one of which they select.
They then select a race terrain from the three pre-defined races presented.
Their selected amoeba then runs the selected race against a group of other
differing types of soda creatures. The software then displays the race and the
first three racers across the finish line are shown on a podium graphic. The
user is challenged to ensure that the selected racer comes in at the number
one position.

Users may chose to try and improve their racer by hand (see Fig. 3.6) or au-
tomatically. If they select by hand, they are presented with an Amoebamatic-
like interface allowing them to manipulate the amoeba’s parameters, masses,
lines, amplitude, and frequency. They can then race again to see if their
changes have improved performance.
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Fig. 3.5 The new stand-alone educational Sodarace kiosk application, used on the UK
tour and now available for download.

Fig. 3.6 The Amoebamatic-like user interface for manual enhancement of racers.

This trial-and-error approach exposes users to a fun incarnation of the
basis of engineering experimentation: What changes will improve their racer
to work best on the selected racetrack terrain? However, in addition, users
can select at any time to allow the software to assist and to automatically try
to improve their racer. If selected, the users view a screen showing multiple
instances of their racers with small random changes of parameters applied;
see Fig. 3.7. This population of potentially improved racers is then raced
‘behind the scenes’ and the best performing solution is highlighted. This
random mutation, followed by survival of the fittest cull, continues and a
graph showing users the race time for the best current racer is displayed.
When the best racer has evolved to users’ satisfaction, they may then watch
it race by returning to the main race screen .
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We deliberately selected a very reduced implementation of genetic algo-
rithms for this process; the inclusion of crossover was felt to complicate the
story for this application. The random mutation stage, however, means that
each run of the software has the potential to create differing solution to the
race-winning problem, which successfully engages users.

Fig. 3.7 The digital evolution user interface for automatic enhancement of racers.

Users have found that blending their by-hand optimisation with automatic
computer optimisation, in effect cooperative turn-taking, has led to enhanced
solutions. The direct analogy of human trial and error and computer optimi-
sation as an approach to artificial intelligence has helped to de-mystify the
field. Users feel they now understand a basic optimisation technique, because
they have been an active part of that process. The parallels of the automated
computer optimisation to biological evolution are also obvious and frequently
commented on:

It was interesting how evolution worked.

This rocks, it is really fun and a nice challenge, I am going to do this at home.

And perhaps the best of all,

I’ve got an idea.

3.6 Interactions in Sodarace: The Evolution of the
Forums

Interactions via the user forums drive the project. It is fair to say that there
is no typical usage or user for Sodarace; the range and diversity of usage are
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among the great strengths of the ‘tools not rules’ philosophy. The following
section highlights some of the fascinating stories that have evolved through
the project. The Sodarace forums realise the audience’s own potential to cre-
ate, contribute, and share significant ideas and to interact with the Artificial
Intelligence and Artificial Life research communities. To date, highlights have
included the spontaneous emergence amongst users of peer-to peer learning,
mentoring, an embryonic scientific research process of hypothesis, experi-
ment, theory development and subsequent racers exploitation of developed
technologies, and a surprisingly seamless integration of creative and techni-
cal dialogues. There has also been a spontaneous expansion of community
learning on the subject of artificial intelligence programming, with tutorial
web sites and open-source code to allow interested users to construct and
experiment with their own AI systems.

3.6.1 Community Development of Peer-to-Peer
Learning Web Sites

Independent superuser sites have been created by model-making masters
within the community. With step-by-step tutorials for beginners and expert
engineering tips, they prove an invaluable resource for the model-making
community and support peer-to-peer learning. Of particular interest was the
spontaneous emergence of peer review of tutorials and other learning mate-
rials by accepted ‘Sodarace experts’ to merit inclusion on these sites.

3.6.2 The Pandora’s Box: An Example of the
Spontaneous Development of Scientific Method

A deceptively simple yet mind-bending model was created. As community
members collaborated to study its mysterious properties, hypothesize about
how it works, and construct experiments to prove their theories, we witnessed
a remarkable and spontaneous microcosm of scientific method emerge.

• The Initial Discovery – A user in the forum writes

Have you ever made something and then just sat and stared at the screen and
said “Hummmm. . . ” Just mess with it for a little bit.

• The Experiments – A short time later another user posts

Think I figured out this phenomena. Step1: in Sodaconstructor, value of spring
force has relation with only extension of the spring proportional maybe, and does
not have any relation with the length at rest. See this. these are a variety length
of springs. left-side one is a zero-length spring, 2nd one is 1-pixel-length, 3rd is 2-
pixel, and so on. Besides, they are located as the free masses line up horizontally,
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try drag G value up slowly. Then, you will see all of them are elongated similarly,
and not related to their length at rest. Step2: think about a rectangular with
diagonal lines. as we see in step1, the pulling force of spring is related to its
extension. Now, let’s assume that the force is proportional to extension. so, for
example, if the ratio of two side lines = 2 : 3, the forces acting on the springs
= 2 : 3 also. so, the direction of the resultant of these two vectors overlaps the
diagonal line. the resultant of these two vectors and the expanding force acting
on the diagonal line are completely on a straight line and the direction of the
force is opposite. So, the length of these lines come to settle in a fixed value. This
happens only the shape is rectangle and the side springs are zero-length.

• The Pandora’s Calculus: Engineering Formalism and Commer-

cial Exploitation – The development of an empirical understanding and
experimental validation of the by then named ‘Pandora’ effect was followed
by a formalization into the Pandora’s Calculus,

I wanted to share something I figured out in case people wanted to learn a new
technique. Basically I came up with a Pandora Calculus that is similar to the way
Tension Spring Calculus works. It allows you to: 1. Create Pandoras to fit any
specific size you need. 2. Create multiple Pandoras on the same base. 3. Embed
any Pandora on a tension spring. This means that Pandoras can be used like
hubless bearings to mount rotors or turbines on, and who knows what else.

This technique is now widely used in the community to develop numerous
virtual motors to drive Sodaracers. Another user develops ‘motors’ for use
in others racers and writes

So far i found out that motor 4 is just 2 RAM’s connected in the middle with
some crossbeams..but because of the fact that the crossbeams get compressed
they make the 2 RAM’s much sturdier..and better..1 and 3 look mesmeriz-
ing. but aren’t really stable. . . but ill work on that. . . PLZ DONT JUST READ
OVER THIS. . . . I WOULD REALLY LIKE TO WORK WITH SOME OF THE
GREAT CONSTRUCTORS. . . TO IMPROVE MOTORS.

3.6.3 Interdisciplinary Interaction: Art and Music
Meet Science and Engineering in Sodarace

Sodarace also raises awareness of the important interactions between science,
design, and engineering, and the arts. For over 10 years artist Theo Jansen [3]
has been building incredibly engineered walking constructions on the beaches
of Holland that feed on the wind [4]. It looks uncannily as if some of the most
complex Sodaconstructor models have left the screen and become real. In the
forum, the artist agreed to discuss his work and explain the mechanisms by
which his creations move. A teacher commented in the forum: ‘I am also an
art teacher who tries to convince colleagues of the cross-curricular potential
of sodaplay. I really want to bring interactive media into the art-classroom –
even if only to showcase it as an example of emergent creative culture.’
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The Sodarace project has also been part of a retrospective at the UK’s
Institute of Contemporary Arts, archived in the Texas Museum of Digital
Art and used as part of the content to the Arnold Schwarzenegger T3: Rise
of the Machines movie web site.

3.6.4 Sodarace in Schools

The Sodarace project is widely used in schools around the world. Forum
users often mention the education benefit that they find over a number of
science and technology curricula. Specialist education resources are also being
developed for release soon. Here are some representative samples taken from
the forums; there are many more:

I found out about sodaplay at school, from a friend. At the moment, I am using it
to help me survive Physics, particularly waves.

I am a High School student. I use sodaplay for geometry classes. It is easier to un-
derstand the properties of shapes and how different support loads can be dispersed.
I enjoy working with the program and it helped me achieve an above average grade
for the class.

My whole 8th grade class has been using sodaplay. They all love it. We have learned
ton of physics, I did a project for my physics class on your Sodaconstructor. I recre-
ated Galileo’s “Leaning Tower of Pisa” experiment and made a simple pendulum.

The project has also impacted university students.

SodaSumo is a Java application I have been writing as my university third year
project.

The discussion forums is also supporting a growing teachers’ user com-
munity to develop allowing a peer-to-peer interchange of teaching ideas and
materials. Younger users not yet competent or confident enough to develop
racers themselves still have an active voice in the community, often creat-
ing animated artworks or cartoons, designing terrain racetrack as challenges
to others, or undertaking to build interactive ‘games’. All of these projects
require the user to covertly develop an understanding of simple physical pro-
cesses and principles of the Sodarace world.

3.7 Experiments with Sodarace

One of the significant findings during both human- and machine-generated
racer construction is the ability to effectively exploit the limitations of the
simulator physics to solve particular problems. Examples abound of creatures
exploiting so-called ‘holes’ in the simulation to allow creations to fly. This



3 Sodarace 75

Fig. 3.8 Experiments with Sodaconstructor. A virtual structure and its real-world coun-
terpart.
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ability to capitalize on particular simulation-world niches has produced a
rich range of unexpected behaviours, which still also manifest themselves in
the kiosk software. In the software upgrade, we left these digital loop holes,
as they were responsible for generating a whole ecosystem of creatures.

Please do not remove these “bugs,” as I think they will be a very interesting area of
study.

Another study of particular interest was the Berta’s Tower [14] study (see
Fig. 3.8) conducted at the University of Wisconsin–Madison Center for Edu-
cation. Using the theory of pedagogical praxis [10], which argues that profes-
sional practices are useful models for technology-supported school learning
environments, the researchers designed and implemented workshops for mid-
dle school students based on the professional practices of engineers. During
the experiment, the participants engaged in a series of engineering design
challenges on Sodarace as a pathway for learning concepts in physics. The
students demonstrated a statistically significant gain in understanding about
the concept of center of mass and a high level of interest and engagement
when using the tool [13]. The data further suggest that the short, rapid iter-
ations of the engineering design-build-test cycle on Sodarace simultaneously
increased their motivation and understanding. The study offers an example of
how the use of Sodarace in a rich activity system promotes scientific learning
and thus provides a potential new vision for physics education.

3.8 Summary: The Future of Sodarace

The community forums of Sodarace, central to its creation and success, show
no signs of running out of new and creative ideas. The new Sodarace software,
which is more powerful and easier to use, has been developed to effectively
reduce the technical hurdles to entry. We have also elected to simplify the ar-
tificial intelligence story and parcel it up for wider audience who just want to
play with the concepts. We have therefore shifted the focus more onto explo-
ration of evolutionary approaches to Artificial Intelligence, as this algorithmic
approach provides a clearer analogy for a wider public. The Amoebamatic
design software, and the race kiosk software allow in-depth explorations of
the advantages and limits of this form of optimisation. Bringing together on
a single site the forums and the full range of free to use software from the
Soda family such as Moovil, software aimed at engaging younger construc-
tors, and Newtoon, easy to use software to develop physics-based games for
mobile phones, will increase the opportunities for interplay, interaction and
new creative explorations. This central storage of all materials on a single
site [7] also enhances future sustainability for the project. The Sodaplay site
is now self-supporting in terms of finance through the inclusion of appropri-
ately filtered advertisements. As ever-engaging play will be central to user
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learning, and we believe the new Sodarace project framework will ensure this
serious fun continues into the foreseeable future.
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Chapter 4

3D Multi-Agent Simulations in the
breve Simulation Environment

Jon Klein and Lee Spector

4.1 Overview

Artificial life is often described as the study of life “as it could be,” meaning
that it involves the exploration of life-like interactions of agents with novel
behaviors in novel environments. Although these behaviors and environments
can be explored using mathematical models or even real-world experiments,
one of the most commonly employed techniques is multi-agent simulation.
Using multi-agent simulation software, users can define the rules of an envi-
ronment and the behaviors of individual agents in order to examine how they
behave collectively, their so-called “emergent behaviors.”

One of the more challenging and time-consuming tasks in exploring multi-
agent systems is developing the software infrastructure for modeling and sim-
ulation. Even models of conceptually simple interactions between agents often
require a great deal of software infrastructure to manage and coordinate agent
behaviors.

Many artificial life and multi-agent system models rely on realistic three-
dimensional (3D) spaces, especially those that aim to produce results relevant
in explaining real-world behaviors (such as simulations that give insights into
biology) or those that may eventually be implemented in the real world (such
as simulations of traffic or sensor networks). Moreover, some simulations, such
as those dealing with robotics, require realistic simulation of physical inter-
actions between agents and their environments. These applications present a
particular challenge in simulation development because they require sophisti-
cated spatial and physical simulation algorithms in order to produce accurate
simulation results.

Breve is a free, open-source software package that aims to simplify the
creation of 3D simulations of multi-agent systems and artificial life.1 Breve

1 Breve was developed and is maintained by Jon Klein. The breve-based research described
in this chapter is the product of both authors.
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frees simulation authors to focus on the definition of agent behaviors and on
descriptions of the simulated environment, whereas the breve engine manages
simulation data and algorithms. Agents’ behaviors can be written in Python,
or using a simple scripting language called “steve.” Breve includes support
for physical simulation and collision detection for the simulation of realistic
creatures or robotics and an OpenGL display engine for the visualization of
simulated worlds. Breve runs on a number of platforms and is distributed
as a pre-built package for Mac OS X, Linux, and Windows from the breve
website [7].

Breve is analogous in many ways to 3D game engines that allow for the
rapid development of games while abstracting away many of the details of
their implementation. Breve aims to do the same for multi-agent simulations.
The similarity is more than conceptual – breve actually preforms many of the
same types of computation that 3D game engines do, such as 3D rendering,
management of agent interaction, and collision detection. Unlike game en-
gines, however, breve is designed for simulation applications, especially those
relating to artificial life and artificial intelligence. To this end, breve includes
a rich library of features suited to simulation applications.

4.1.1 Agent-Based Modeling Paradigms

Aside from breve, there are several other multi-agent simulation software
packages that can be used to study artificial life. These environments vary
greatly in their representations of space and time, and these representations
strongly influence the types of simulations to which an agent-based modeling
system is best suited.

Some simulation environments have no explicit modeling of space. In these
environments, abstract spatial structures (such as networks) can be achieved
via connections between individual agents. Another popular representation
of space in agent-based modeling is a discrete two-dimensional (2D) or 3D
grid. The grid introduces a realistic spatial structure and allows agents to
interact based on spatial proximity, but it somewhat limits the granularity of
these spatial interactions. Breve uses a fully continuous representation of 3D
space, which allows it to be used for realistic 3D simulation of phenomena
such as swarms, robots, and vehicles.

Certain phenomena, such as chemical concentrations or temperature (in
addition to many other kinds of environmental states), are difficult to accu-
rately and efficiently model using individual agents and benefit greatly from
the use of a discrete 2D or 3D grid. To facilitate the simulation of these
phenomena, breve supports discrete 2D and 3D grids, which can be used in-
dependently or in concert with continuous spaces. This allows agents to move
through continuous 3D spaces while interacting with discrete environmental
states.
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With respect to representation of time, the differences between the var-
ious simulation environments can be more subtle. Some systems use large,
discrete time-steps to represent a period of time passing. Others, like breve,
integrate arbitrarily small time-steps to simulate fully “continuous” time (al-
though at the lowest levels, the representation of time is still discrete). In
these environments, it is understood that the time-step is generally as small
as possible, given the practical computation constraints of arbitrary small
integration steps.

StarLogo
breve ,Digital Spaces continuoustime

continuousspace
discretetime

discretespaceGame of Life
OtherCellularAutomata Swarms

Robotics

Fig. 4.1 Continuum of representations of space and time in simulation environments.

Fig. 4.1 shows a general representation of the “simulation space” defined
by the spectra of discrete and continuous representations of time and space,
along with the locations of common simulation paradigms and the general
locations of some common agent-based modeling toolkits.

This diagram represents only a broad illustration of the distinction be-
tween discrete and continuous time and space in simulation. In reality, the
distinction is often less clear, as any sufficiently extensible agent-based mod-
eling environment is capable of modeling any representation of time or space,
although doing so may require additional development effort on the part of
the simulation author. In particular, some common agent-based modeling
systems do not have single built-in representations of time and space. These
systems may provide basic multi-agent simulation functionality such as man-
agement of agents and their interactions, while leaving the modeling of time
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Fig. 4.2 Sample simulations in breve. Clockwise, from top left: flocking agents; a Braiten-
berg vehicle; a 3D game-of-life cellular automata; a DNA molecule visualized from a PDB
file.

and space as a detail for the simulation author to implement according to
their needs.

Fig. 4.2 shows a sample of the different simulation paradigms that can be
represented in breve, including continuous non-physical simulations, contin-
uous physical simulation, and discrete 3D cellular automata.

4.1.2 Comparison to Other Agent-Based Modeling
Systems

There are several other agent-based simulation modeling environments that
are useful for exploring artificial life and multi-agent systems. Some of the
more notable environments are discussed here briefly.
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As alluded to earlier while describing representations of space and time in
simulation environments, choosing between simulation packages for a partic-
ular simulation application is, by and large, not a matter of a “laundry list”
comparison of simulation features among the packages. All of the environ-
ments described here are powerful and extensible environments with support
for authoring custom simulations. The important differences between the
environments is generally found in the types of simulations they are best
equipped to model.

• StarLogo and StarLogo TNG – StarLogo [17] is the oldest of the agent-
based simulation packages described here. StarLogo allows users to model
multi-agent systems through simultaneous manipulation of multiple Logo
“turtles” in a discrete 2D world, using an integrated programming lan-
guage derived from Logo. In addition to its multi-agent simulation appli-
cations, StarLogo (like the original Logo) is used as an educational tool
to teach students and novice programmers how to program and how to
construct multi-agent models based on simple agent behaviors.

StarLogo was one of the original inspirations for breve. Although breve
does not place as strong an emphasis on education applications as Star-
Logo, the inspiration to use an integrated, interpreted language grew di-
rectly out of StarLogo’s implementation.

StarLogo TNG (“The Next Generation”) described in Chapter 6 is a
new version of StarLogo currently in development that includes support
for continuous 3D space and for a visual programming language.

• Repast – Repast [16] described in Chapter 2 is a Java-based agent simula-
tion toolkit that is geared toward social simulation and that also allows for
visual construction of simulations. Although Repast does include support
for simulation and visualization of agents in 3D spaces, it does not provide
support for physical simulation.

• MASON – MASON [12] is a Java-based simulation toolkit that supports
2D/3D simulation as well as network topologies. Like Repast, MASON
supports simulation and visualization of agents in 3D spaces but does not
include physical simulation functionality.

• Swarm – Swarm [13] is an Objective-C-based simulation library originally
developed at the Santa Fe Institute. Compared to the other systems de-
scribed here, Swarm provides support for multi-agent modeling at a rel-
atively low level. Swarm provides a library of tools for managing agent
behaviors and relationships, with less of an emphasis on features such as
spatial representation and visualization. Swarm does offer a “Space” li-
brary with support for discrete 2D spaces, and sample code on the Swarm
website details how Swarm can be extended to model discrete 3D spaces.

• Digital Spaces – One of the newest additions to this list is the Digital
Spaces simulator, which is also the most similar to breve in terms of sim-
ulation “niche.” Digital Spaces includes support for 3D physics in sim-
ulations and for importing complex 3D environments. Although Digital
Spaces has not been used heavily for artificial life research, it does offer
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an impressive feature set that makes it an excellent candidate for such
applications.

• Framsticks – Framsticks [9] described in Chapter 5 was not originally de-
veloped as a general-purpose agent-based modeling toolkit, but it does
deserve a special mention in comparison to breve because it models artifi-
cial life agents with articulated bodies in 3D physical worlds. Framsticks
has traditionally taken a more specialized simulation approach with a fo-
cus on evolved virtual creatures, although versions 2 and 3 provide more
general agent-based modeling capabilities in the software.

4.2 Motivations

The fundamental goal of breve as a simulation environment is to abstract
away simulation implementation details as much as possible and to allow
users to instead focus on constructing agent behaviors and the environment.

4.2.1 A Personal Motivation

Although there was a considerable amount of academic inspiration behind
the development of breve, an equally important inspiration (for Jon Klein,
breve’s primary author) came on a more personal level from a college friend
with a great interest and insight in artificial life and artificial intelligence,
but (to put it gently) no particular talent in computer programming.

This friend would observe a simulation or other programming project,
typically the product of several weeks of work, and cheerfully make an astute
suggestion for a “simple” improvement that would invariably require several
more weeks of work. This particular interaction was repeated so many times
that, in frustration, one would eventually snap “do it yourself!” to which the
friend cheerfully retorted “I can’t!”

And so a small – but genuine – motivation for the development of breve
was to silence this friend.

4.2.2 Design Principles and Goals

The guiding motivation in the implementation of breve is that experimenta-
tion with artificial life and multi-agent systems should be simple and should
not be limited by programming ability. To this end, a number of design prin-
ciples behind breve are described here. Given the rapid pace of evolution in
the fields of multi-agent simulation and artificial life (and computing in gen-
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eral), these principles represent moving targets, so even after several years
and many revisions of the software, these concepts still guide the continued
development of breve.

• breve should be approachable by people of all programming abilities. Practi-
cally speaking, this means breve should use a simple language and simple
interfaces to artificial life simulation features such as evolvable code, ge-
netic algorithms, and physical simulation.

• breve should be an integrated development environment, not a software
library or application programming interface (API). Although some pow-
erful agent-based simulation toolkits, such as Swarm, are implemented as
a software library, it can represent a considerable barrier for new users,
especially those without a great deal of prior programming experience.

The decision to implement an integrated environment instead of an
external library does come with downsides. Integrating breve into other
software projects, for example, is a more complicated prospect than inte-
grating an environment that is distributed as a software library.

• breve should allow users to immediately see the connection between code
and simulation behavior. Breve is intended not only to enable the devel-
opment of of multi-agent systems but also to encourage the exploration of
these systems through an integrated visualization engine and by stream-
lining the write/run/revise cycle of simulation development. This principle
(and especially its manifestation in StarLogo) strongly influenced the de-
cision to make an integrated scripting language a main component of the
simulation environment.

Ironically, the decision to implement a custom language to make breve
more accessible to new users may have had the opposite of its intended ef-
fect. Although the steve language is arguably simpler and more approach-
able than many other languages used for simulation software (such as Java,
C, C++), the main breve developer may have overestimated the enthusiasm
that potential users would feel for learning a new, proprietary language. With
programming languages, familiarity may trump simplicity.

Because of this, and keeping in line with breve’s development goals, breve
now supports the Python language and is in the process of transitioning
toward Python as the preferred simulation language.

As for the college friend who so greatly influenced the development of
breve, he still does not use breve to implement his simulation ideas. Whether
this is a shortcoming of breve or a character flaw is, after all these years, not
entirely clear.
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4.3 Writing Simulations in breve

This section provides a conceptual overview of how simulations are con-
structed in breve. Although breve simulations can be written in either a
proprietary language called steve or in the popular Python language, this
section describes general concepts which apply to writing simulations regard-
less of which language frontend is used. The details of the individual scripting
languages supported by breve are described later in Sections 4.3.5 and 4.3.6.

4.3.1 Object Orientation and the Built-in breve Classes

The breve environment makes extensive use of object-oriented concepts both
as a programming model and as a more general representation of the simu-
lated world. Every object in a simulation corresponds directly to a program-
ming language object in the steve or Python frontend language.

Furthermore, all programming in breve is preformed by extending the
built-in classes – there is no code or data in the steve language that is not
associated with an object. (Although the Python language frontend does
allow code outside of classes, this code is not able to interact directly with
the breve engine.) The breve distribution includes a standard library of classes
that interface with the internal features of the breve engine or that themselves
implement useful simulation features. These classes are then subclassed to
implement custom behaviors.

The special class “Object” represents the root object class in breve, and all
other objects are subclasses, either directly or indirectly, of the Object class.
Practically speaking, very few classes inherit directly from Object. Instead,
breve defines two Object subclasses that serve as a logical distinction of all
objects in breve: the Real subclass, which includes all objects which have a
physical presence in the simulated world, and Abstract, which includes those
that do not. Abstract objects are most often used to encapsulate data and
computation, and they more closely resemble objects in traditional program-
ming languages than do Real objects.

4.3.2 The Controller Object

The “controller” object in breve is a special object that is created by the
engine when the simulation begins. The controller object is a custom subclass
of the class “Control” that the user implements to set up and manage the
simulation. Because the controller object is the only object created when a
simulation begins, it is responsible for creating all other objects from its init
method.
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The controller object is accessible to every object in the simulation and,
because there are no global variables in the steve language, the controller
plays an important role in holding global simulation state data and in facili-
tating communication between the agents.

4.3.3 The breve Simulation Loop

Agents in a breve simulation are simulated following a pattern called the
breve simulation loop. The basic behavior of each agent is summarized in the
following pseudocode:

init agent [run user defined ‘‘init’’ method]

while ( simulation running )

foreach agent:

iterate agent [run user defined ‘‘iterate’’ method]:

examine internal/external states (using sensors)

perform computation

change behavior (using actuators)

virtual world
init method
sensor inputcomputationactuatoroutput

iterate method
Fig. 4.3 The breve simulation loop.

An abstract diagram of this process is illustrated in Fig. 4.3, and two
examples of how this process is implemented with actual simulations are
shown in Fig. 4.4 and Fig. 4.5.

Fig. 4.4 shows the simulation loop for Creatures, a demo breve simulation
of physically simulated creatures evolving via a genetic algorithm. In spite
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iterate method

Fig. 4.4 The breve simulation loop for an agent in the “Creatures” simulation.init m ethod• create "Push" p rogram(random or inherited)• create agent bodies• exam ine neighboring agents• exam ine food sources• execute push program w ithsensor inp uts• app ly acceleration v ectorand change colors usingoutput of Push program
iterate method

Fig. 4.5 The breve simulation loop for each agent in the “SwarmEvolve 2.0” simulation.

of the complexity of the simulation behind the scenes, the simulated agent’s
behavior is rather straightforward: The agent takes simple inputs from its
internal state and from its genome and produces outputs in the form of
forces applied to joints.

Fig. 4.5 shows a breve demo, SwarmEvolve-2.0, with more complex in-
teractions between agents and their environment. In this simulation, agents
are initialized by creating evolvable code in the Push programming language
(described in detail in Sect. 4.4.4) that will control their behavior. Then at
each time-step, the agents sense the world to provide input to their Push
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programs, execute the Push programs, and then use the results to change
various behaviors, such as heading and color. This figure shows only a con-
ceptual overview of the SwarmEvolve-2.0 agent behaviors and many of the
details are omitted. The SwarmEvolve agents, for example, have access to
many other types of input sensors and output actuators than those shown.
A more detailed description of the simulation is described in Sect. 4.6.1.

4.3.4 Defining Callbacks and Agent Behaviors

Callback functions are used in breve to allow the simulation engine or front-
end application to trigger events in simulation code. When possible, callback
behaviors are automatically defined through the presence of methods with
special names. In some cases, though, callbacks are defined explicitly via re-
quests from simulation code. Some of the main callback types are described
here.

• In response to collisions. Breve handles the collisions between objects at
two different levels. First, if physical simulation is enabled for an object,
the collision is resolved in the physics engine. Then the collision triggers a
callback to one or more agents at the user simulation level. This callback
can be handled by providing the breve engine with a callback method to
be executed upon collisions with a certain object type.

• In response to object “announcements”. Object announcements in breve
provide a simple way for agents to communicate general events or state
changes to all interested parties, without keeping track of message recip-
ients or making method calls directly. With object announcements, any
agent can register itself as a listener for another agent and can sched-
ule a method call to be executed when a specific announcement is made.
Agents may have any number of different announcement types identified
by unique strings. Methods in the Object class are provided for both mak-
ing announcements and for registering as listeners to announcements in
other objects.

• In response to keyboard and mouse input. A number of special callbacks
are defined that are executed automatically in the simulation controller
object in response to keyboard and mouse events. Support for keyboard
or mouse interaction can be added to a simulation simply by defining
callback methods with the the proper names.

• In response to network events. Breve includes rudimentary network trans-
fer support, and, as with other events, network transfers trigger method
calls in the simulation’s controller object. This allows users to react and
respond to simulation objects sent over the network from other simula-
tions.
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4.3.5 The steve Programming Language

Breve simulations can be written in a simple object-oriented language called
“steve.” The steve language resembles and borrows features from languages
like C, Objective-C, and SmallTalk and includes support for 3D vectors and
matrices as native types.

Table 4.1 shows a simple demo simulation written in the steve language.
In this simple simulation, agents are given an initial upward velocity and a
downward acceleration to simulate the behavior of a fountain of particles.

@include "Mobile.tz"

@include "Control.tz"

Controller Fountain.

Control : Fountain {

+ to init:

250 new Particles.

self point-camera at (0, 9, 0) from (40.0, 2.1, 0.0).

}

Mobile : Particle (aka Particles) {

+ to iterate:

if (self get-location)::y < -6.0:

self reset.

+ to init:

self set-acceleration to (0, -9.8, 0.0).

self reset.

+ to reset:

self set-color to random[(0, 1, 1)].

self move to (0, 0, 0).

self set-velocity to random[(10, 20, 10)] + (-5, 4, -5).

self set-rotational-velocity to random[(.6, .6, .6)].

}

Table 4.1 A sample simulation in steve.

Method calls in steve resemble SmallTalk and Objective-C in that they use
keywords to designate method arguments and the method arguments may be
placed in any order. This feature enhances the readability of method calls for
readers not familiar with the breve APIs.

Although steve is object-oriented, simple data-types such as int, float, ma-
trix, vector, list, and hash are not first class objects in steve. Steve’s type sys-
tem treats these simple datatypes differently than true objects that are added
to the breve engine and follow the simulation-loop pattern described above.
Similar to typing in Objective-C, the simple data-types are statically typed,
while the true objects follow a dynamic-typing scheme in which method calls
are resolved at runtime and do not depend on the object type, so long as the
object responds to the given method.
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Steve also includes garbage collection via a reference counting scheme.
This garbage collection is used automatically for the simple datatypes, but
it must be manually enabled for other objects on a per-object basis. This is
because objects in a breve simulation are referenced internally by the breve
engine and may continue to play a role in a simulation (through their iter-
ation methods) even when they are not referenced explicitly by any other
simulation object. In addition, objects not explicitly referenced by others (in
the classical programming sense) may reacquire references through simulation
events (such as announcements or collisions) or through the steve language’s
“all” command, which provides a list of all objects of a requested type.

4.3.6 The Python Programming Language

As of breve version 2.6, simulations can be written in the popular Python
language. Because of Python’s powerful reflection and introspection features,
most of the benefits of steve’s tight integration with breve can be emulated
with Python, so that, by and large, the user experience and APIs are identical
for simulations written in both steve and Python. Table 4.2 shows the same
sample simulation listed in Table 4.1 but this time implemented in Python.

The Python and steve languages can communicate seamlessly through
bridge objects, allowing code from both languages to be mixed together in
a single simulation. This allows even existing simulations written in steve to
take advantage of the rich library of Python modules, one of Python’s greatest
strengths. Python objects can be instantiated and manipulated directly from
steve, and vice versa.

4.4 Breve Features and Technical Details

This section describes some of the basic simulation features that breve pro-
vides and details on how they are implemented.

4.4.1 3D Spatial Simulation

The foundation of the simulation functionality provided by breve, and the
one upon which the others are built, is a subsystem that manages objects
and their interactions in 3D worlds. The spatial simulation system handles
placement of objects, manages collisions, and integrates accelerations and
velocities to compute object positions. This system preforms all of the non-
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import breve

class Fountain( breve.Control ):

def __init__( self ):

breve.Control.__init__( self )

Fountain.init( self )

def init( self ):

breve.createInstances( breve.Particle, 250 )

self.pointCamera(

breve.vector( 0, 9, 0 ),

breve.vector( 40.0, 2.1, 0.0 ) )

class Particle( breve.Mobile ):

def __init__( self ):

breve.Mobile.__init__( self )

self.setAcceleration( breve.vector( 0, -9.8, 0.0 ) )

self.reset()

def iterate( self ):

if ( self.getLocation().y < -6.0 ):

self.reset()

def reset( self ):

self.setColor( breve.randomExpression( breve.vector( 0, 1, 1 ) ) )

self.move( breve.vector( 0, 0, 0 ) )

self.setVelocity( (

breve.randomExpression( breve.vector( 10, 20, 10 ) ) +

breve.vector( -5, 4, -5 ) ) )

self.setRotationalVelocity(

breve.randomExpression( breve.vector( 0.6, 0.6, 0.6 ) ) )

# Create an instance of our controller object to initialize the simulation

Fountain()

Table 4.2 A sample simulation in Python.

physical simulation tasks, although it is tightly integrated with the physical
simulation engine, which is described below.

4.4.2 Physical Simulations

Breve includes support for realistic rigid body dynamics for simulation of
virtual creatures and robotics. While the core functionality and interface
to the breve physics engine has stayed the same over the years, the under-
the-hood implementation has evolved, piece by piece, from a home-grown
implementation to its current state, which largely uses the Open Dynamics
Engine (ODE) library, a physical simulation engine based on a generalized
coordinate method which models articulated bodies as a series of differential
equations.

The original physics engine implementation was based heavily on Brian
Mirtech’s work on impulse-based rigid body simulation [15]. The original
release of breve included its own physics engine based on the Featherstone
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dynamics algorithm, a reduced coordinated algorithm that calculates the mo-
tion of articulated bodies by recursively computing force and mass properties
for subtrees of jointed bodies. Physical contact in the engine was modeled
using a micro-collision model in which resting contact is simulated through
the use of a large number of low-velocity collisions and impulses. Collision
detection was implemented as a two-pass process: The first stage, a prune-
and-sweep sweep, found potential collisions by maintaining lists of sorted
bounding box minima and maxima in all three dimensions; the second stage,
which determined which candidate pairs were intersecting, used Mirtech’s V-
Clip algorithm [14], based on the Lin-Canny closest feature collision detection
algorithm, with extensions to properly handle the interiors of polyhedra.

The prune-and-sweep portion of the original collision detection model is
still used for collision detection and for the breve’s neighbor detection. For this
task, the prune-and-sweep algorithm efficiently discovers object pairs over-
lapping by a user-defined threshold, without running a second-stage collision
check. This allows objects to quickly and efficiently discover nearby objects
without preforming an O(n2) search of the entire simulation space – because
of spatial coherence between simulation steps, this method of discovering
neighbors is very close to O(n).

Although the physical simulation in breve is a useful tool for developing
simulations involving artificial life, evolution of creature morphologies, and
robotics, it should be stressed that neither the original breve physics engine
nor the ODE engine are intended to be truly predictive of real-world physical
behaviors. Although the physics engine used in breve does place an emphasis
on stability, it is still important for simulation developers to include sanity
checks in physical simulations to avoid situations that can lead to instabilities
or inaccuracies. In particular, excessively large velocity and mass values can
cause simulations to “blow up” and should be avoided.

When used in conjunction with evolutionary computation, this aspect of
physical simulation represents a particular challenge due to the uncanny abil-
ity of the evolutionary process to exploit any available means of improving
performance, including exploiting bugs or inaccuracies in physical simula-
tion. Karl Sims described this problem in his work on evolving virtual crea-
tures [20]. For this reason, work with physical simulation often requires ad-
ditional care and attention to detail.

4.4.3 Visualization

Breve includes an OpenGL-based visualization engine that renders 3D sim-
ulations in realtime. On several occasions (described later in more detail),
breve’s visualization engine has allowed for the discovery or understanding
of phenomena that may have otherwise gone unnoticed.
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Beyond simply rendering agents and their environment, the visualization
engine can render lines, drawings, and a variety of “special effects” that may
be used to enhance understanding of the simulation state. Shadows and re-
flections, for example, provide additional visual cues of agent location and
orientation.

In addition to conveying “literal” information about agents in a simulation
(size, location, orientation), the visualization engine can be used to convey
arbitrary information about an agent’s state by changing display qualities
using a number of visualization features. High-dimensional agent states can
be represented using visual qualities such as color, size, and transparency. In
this way, even simulations modeling abstract agents or non-spatial simulation
can benefit from 3D visualization.

The performance impact of high-quality visualization in breve is mini-
mal. Most modern computers include powerful graphics cards that support
hardware-accelerated 3D rendering, so in most cases visualization can be
achieved with virtually no computational costs and thus no with impact on
simulation speed.

4.4.4 The Push Programming Language

Push [40] is a stack-based programming language intended primarily for use
in evolutionary computation systems. Although the steve and Python lan-
guages, in which breve simulations are written, are intended to be simple
for human programmers to use, neither is well suited for use in evolutionary
computation due to syntactical and semantical language constraints.

Push has an unusually simple syntax that facilitates program evolution.
Despite its simple syntax, Push provides more expressive power than most
other program representations that are used for program evolution. Push
programs can process multiple data types (without the syntax restrictions
that usually accompany this capability), and they can express and make
use of arbitrary control structures (e.g., recursive subroutines and macros)
through the explicit manipulation of their own code (via the “CODE” stack
and data type) and through manipulation of their own execution (via the
“EXEC” stack).

These features allow Push to support the automatic evolution of modular
program architectures in a particularly simple way. Push can also support
entirely new evolutionary computation paradigms such as “autoconstructive
evolution,” in which genetic operators and other components of the evolu-
tionary system themselves evolve (as in the Pushpop [22] system, and in
SwarmEvolve2, described in Sect. 4.6.1).

Push offers a powerful way to evolve open-ended agent behaviors in breve.
By providing Push programs with direct access to agent methods via callback



4 breve 95

instructions into simulation code, agent behaviors can be fully controlled via
evolving code.

4.5 Development History and Future Development

Breve was originally developed by Jon Klein as part of master’s thesis work
at Chalmers University in Göteborg, Sweden. The first version of breve was
released in late 2001. The initial versions of the breve integrated development
environment were released for Mac OS X only, although the breve engine was
available as a command-line application for Linux and Windows platforms.
Since 2002, continued development of breve has been largely supported by
Hampshire College.2

4.5.1 Transition to Open Source

With the release of breve 1.7, in late 2003, breve made the conversion from
a closed-source project to a fully open-source project with source code avail-
able under the GPL. Since opening the source code to breve, users have
contributed many improvements to the code, such as an integrated graph-
ical interface for breve on Linux and Windows platforms as well as initial
revisions of code to interface with Python and other frontend languages.

4.5.2 Push3

Beginning with version 2.0, released in late 2004, breve includes built-in sup-
port for the Push programming language designed specifically for use with
genetic programming. The Push programming language is described in more
detail in Section 4.4.4 and its applications in breve are described in Sec-
tion 4.6.

2 This material is based upon work supported by the National Science Foundation under
Grant No. 0308540 and Grant No. 0749184. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.



96 Jon Klein and Lee Spector

4.5.3 Python Integration

As of version 2.6, released in late 2007, breve features support for writing
simulations and accessing all breve engine functionality through the Python
scripting language. Because of its power and its popularity, Python is now
the preferred language for new simulation development.

4.5.4 Future Development

Currently in development for the next release of breve is enhanced support
for XML import and export of data. Simulation parameters in particular will
be separated into standard XML files to be loaded when a simulation begins.
This change will greatly simplify the process of exploring the parameter space
of a simulation, which currently requires user interface interaction or changes
to simulation files themselves.

Also in development for the next release of breve is a new graphical user in-
terface, using the open-source Qt environment, that will unify the simulation
experience on Mac OS X, Linux, and Windows. Among other improvements,
the new interface will provide graphical user interfaces for managing the sim-
ulation parameter sets described above.

A final area of breve development in the longer term is providing greatly
enhanced networking support. Breve currently offers support for simple net-
work transfer of individual objects. Future enhancements will expand this
functionality to support real-time interactions of agents in different simula-
tions, similar to networking capabilities of modern game engines.

4.6 ALife/AI Research with breve

Here we demonstrate the range of breve’s applicability by describing, briefly,
some of the AI and ALife research that we have conducted using the soft-
ware. Other individuals and research groups have been putting it to addi-
tional uses in a diverse set of areas including physically simulated evolving
creatures [11], evolving ecologies [10], swarm robotics [6, 42], artificial intel-
ligence applied to homeland security applications [43], simulations of sorting
behaviors in ants [5], cognitive science research [4], and self-assembly in phys-
ical systems [2].
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4.6.1 Evolving Swarms

The original distribution of breve included a Swarm demo that was essen-
tially a re-implementation of Reynold’s Boids system [18]. SwarmEvolve is
an evolutionary extension of the original Swarm demo, in which the flying
agents reproduce and evolve in the context of a simple energy dynamics:
They collect energy from “feeders” and expend energy when they fly, collide,
or crowd one another.

In the simplest, most highly constrained version of SwarmEvolve (1.0),
the velocities of agents are computed as weighted combinations of environ-
mental vectors (toward the nearest feeder, toward the closest agent, etc.),
following the general scheme used in Reynold’s Boids but extended for a
modestly enriched environment. The weights used by each agent are derived
from its genome, which is a sequence of floating-point numbers. Each agent
is a member of one of three pre-defined species, and when an agent dies, it
is replaced by a new agent whose genome is inherited, with mutation, from
the most fit member of its own species.3 In SwarmEvolve 2.0 there are no
pre-specified species groups, behavior patterns, or reproductive regimes; an
agent’s genome is a program expressed in a Turing-complete language (Push),
and its behavior (including perceptual, motor, and reproductive behavior) is
the result of executing that program.

The SwarmEvolve systems have been used to demonstrate the emergence
of several types of collective behavior, including multicellular organization,
altruistic feeding behaviors, and tag-mediated cooperation [38, 37, 39]. They
also produce life-like, visually compelling displays of 3D flocking behav-
ior [30]. Screen shots of SwarmEvolve are shown in Fig. 4.6.

Fig. 4.6 A screenshot of SwarmEvolve 1.0 (left). The large pentagons are feeders from
which the agents receive energy. In SwarmEvolve 2.0 (right), the feeders are spheres that
shrink when they are eaten and re-grow slowly. The dark cones falling to the ground are
corpses of agents that have run out of energy.

3 Fitness is calculated as the product of age and energy.
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4.6.2 Evolution of Cooperation

Using breve, we investigated the evolution of tag-mediated cooperation –
altruism toward other agents that share a similar “tag” marker [19] – in
multiple simulation paradigms in order to understand the phenomenon from
different perspectives and in different contexts. Some of these studies used
breve’s 2D or 3D spatial simulation facilities to explore the interaction be-
tween neighborhood structures and the emergence of cooperation [37, 32, 33].

Breve’s visualization engine played an important role in understanding the
underlying mechanism of how colonies of cooperators were able to flourish
in the spatial simulations. Without writing additional simulation code for
visualization, we were able to step through simulations generation by gener-
ation, to observe altruistic donations as they took place, and to determine
the conditions under which such cooperative activities would spread through
the population.

4.6.3 Division Blocks

The Division Blocks project [34] combines several of breve’s facilities, includ-
ing complex physical simulation, high-quality graphical output, and support
for efficient neural network processing, to explore the open-ended evolution
of development, form, and behavior. Division Blocks are simulated rectan-
gular blocks that can grow and shrink, divide and form joints, exert forces
on joints, and exchange resources. They are controlled by recurrent neural
networks that evolve, along with the blocks, by natural selection. Energy is
approximately conserved, and all energy derives ultimately from a simulated
sun via photosynthesis. A screen shot of the Division Blocks system is shown
in Fig. 4.7.

4.6.4 Genetic Programming Research

Breve has proven to be useful as a vehicle for a wide range of evolutionary
computation research – even research that does not use the system’s core
facilities for three-dimensional simulation. Breve’s incorporation of the Push
programming language [21, 41, 40, 36], in particular, has supported several
research projects that extend or apply genetic programming techniques. Ex-
amples of such projects include:

• Automatic Quantum Computer Programming. In this project we used
breve’s support for PushGP in combination with its support for the
QGAME quantum computer emulator to evolve quantum algorithms that
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Fig. 4.7 A screen shot of the Division Blocks system.

compute functions of interest. This project has produced several human-
competitive results [24, 26, 25, 1, 27, 23].

• Trivial Geography. In this project we used breve’s PushGP implementa-
tion to develop and test a simple population-structuring technique that
produced surprisingly dramatic improvements in problem-solving perfor-
mance on a suite of test problems (ten symbolic regression problems and
a quantum computing problem) [31].

• Unwitting Distributed Genetic Programming. In this project we developed
a web-based system for distributed computation of genetic programming
via asynchronous javascript and XML (AJAX), requiring no explicit user
interaction and no installation of client-side software. Clients automatically
and unknowingly participated in a distributed genetic programming run
simply by visiting a webpage, thereby allowing for the solution of genetic
programming problems without running a single local fitness evaluation [8].
Breve was used to handle server-side tasks such as population management
and reproduction.

• Genetic Programming for Finite Algebras. In this project we applied ge-
netic programming to problems in pure mathematics, in the study of finite
algebras. We documented the production of human-competitive results in
the discovery of particular algebraic terms, using both breve’s implementa-
tion of PushGP and the ECJ genetic programming system [44]. We showed
that GP can exceed the performance of every prior method of finding the
relevant terms in either time or size by several orders of magnitude [28].
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4.7 Educational Applications of breve

One of the more rewarding and unexpected uses of breve has been its appli-
cation in educational settings. Because breve offers a relatively low barrier of
entry to experimenting with multi-agent systems, it has been a useful tool
in many educational contexts, even in those that do not deal explicitly with
artificial life or simulation.

4.7.1 Artificial Life and Braitenberg Vehicles

The Braitenberg vehicles simulation included with breve has served as a useful
introduction to many topics related to agent-based simulation, artificial life,
artificial intelligence, and computer programming in general. It has been used
for this purpose in several artificial life courses at Hampshire College.

Braitenberg vehicles, named after Valentino Braitenberg, are simple robotic
designs that are capable of displaying surprisingly life-like behaviors from very
simple circuitries of sensors and wheels [3]. One of the simplest creatures,
dubbed “aggressor,” demonstrates aggressive light-chasing behavior with a
simple criss-crossed connection of light sensors and motors: Light sensed with
the right sensor causes activation of the left wheel and vice versa, such that
the vehicle turns toward and speeds in the direction of any lights in the
environment.

Even by the standards of the rest of the breve demos, which are designed
to be easy to use and to modify, the Braitenberg Vehicles simulation is excep-
tionally simple. A set of Braitenberg classes included with breve allows for
the creation of Braitenberg vehicles and for placement of wheels and sensors
in only a few lines of code. Students with no programming experience at all
are quickly able to learn to design vehicles and place them in environments
with lights (which the vehicles sense) and other obstacles. The students are
thus able to quickly design and run simple robotics experiments with realistic
physical simulation. A breve Braitenberg vehicle is shown in Fig 4.2.

4.7.2 Reactive Bouncy Balls for Kids

The “bouncy” breve simulation was developed for use in an activity with a
fifth grade class at the Smith College Campus School. Like the Braitenberg
vehicle simulation, the bouncy simulation allows users to create agents simply,
but here the quest for simplicity has been taken to an extreme: The user can
create an agent and specify its behavior with a single line of code such as

new bouncy with size 3.0 color (0.7, 0, 0.4) preferences (0, -1, 0.1).
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Fig. 4.8 The breve “bouncy” simulation.

This creates a “bouncy” ball with size 3, color reddish-purple (the three
numbers in parentheses specify amounts of red, green, and blue), and a pref-
erence to move quickly away from green and slowly toward blue. Users can
create arbitrary numbers of such balls, with different sizes, colors, and pref-
erences, and observe the often complex dynamics that emerge as the balls
bounce around in a physically simulated arena. A slightly more complex
syntax allows for the specification of balls that change their colors and pref-
erences when they collide with other balls, producing extremely complex pat-
terns of activity. A screen shot of the bouncy simulation is shown in Fig. 4.8.

4.7.3 Biology and SuperDuperWalker

SuperDuperWalker is a software-based framework for experiments on the
evolution of locomotion. It simulates the behavior of evolving agents in a 3D
physical simulation environment and displays this behavior in real time. A
genetic algorithm controls the evolution of the agents. Students manipulate
parameters with a graphical user interface and plot outputs using standard
utilities. The software supports an inquiry cycle that has been piloted in
a course titled “Biocomputational Developmental Ecology” at Hampshire
College [35]. A screen shot of the SuperDuperWalker simulation is shown in
Fig. 4.9.
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Fig. 4.9 The breve SuperDuperWalker simulation.

4.7.4 Artificial Intelligence in 3D Virtual Worlds

Breve has been used as the foundation for a new approach to the introductory
artificial intelligence curriculum, which has been presented as a course twice
(as of this writing) at Hampshire College under the title “Artificial Intelli-
gence in 3D Virtual Worlds.” This course covers roughly the same material as

Fig. 4.10 The breve WubWorld simulation.
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Fig. 4.11 The breve PushImageEvolve simulation.

is covered in other “agent-based” introductory AI courses, with an emphasis
on reactive agents, neural networks, and evolutionary computation. Tradi-
tional AI topics such as knowledge representation, heuristic search, planning,
and logic-based approaches are also covered but in less detail. The primary
novelty of the course is that students work within breve, creating programs to
control agents in engaging, dynamic, and visually rich virtual worlds. These
virtual worlds include “WUB World,” an environment inhabited by monsters
(Wildly Unpredictable Biots, or WUBs), agents, obstacles, worm-holes, and
energy sources, and a world in which teams of agents compete in a “capture
the flag” game. The materials for this course, including the breve simulation
files, are available online [29]. A screen shot of the WubWorld simulation is
shown in Fig. 4.10.

4.7.5 Algorithmic Art

Breve’s rich visualization subsystem is useful not only for developing and
observing simulations but also for work in the computational arts. An “Algo-
rithmic Arts” course, taught at Hampshire College (twice as of this writing),
has used breve to provide students with tools for dynamically manipulating
images, lines, shapes, and color in 3D space. The integration of these tools
with breve allowed students to develop portfolios of algorithmic artwork that
employed turtle graphics, Lindenmayer systems, iterated function systems,
reaction/diffusion systems, texture mapping, 3D simulation, and interactive
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genetic algorithms. Fig. 4.11 shows a screen shot of the PushImageEvolve
simulation for interactive image evolution, which allows the user to evolve
image-generating Push programs using a simple point-and-click interface.

4.8 Conclusion

Breve is a powerful, free software package for multi-agent simulation. With
features such as realistic physical simulation, real-time 3D visualization, sup-
port for evolutionary computation, and integration with powerful scripting
languages, breve greatly simplifies the rapid development and exploration of
advanced artificial life experiments. We have successfully applied breve to the
development of multi-agent systems to study artificial life and a wide variety
of other fields.
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Chapter 5

Framsticks: Creating and
Understanding Complexity of Life

Maciej Komosinski and Szymon Ulatowski

Life is one of the most complex phenomena known in our world. Researchers
construct various models of life that serve diverse purposes and are applied
in a wide range of areas – from medicine to entertainment. A part of artificial
life research focuses on designing three-dimensional (3D) models of life-forms,
which are obviously appealing to observers because the world we live in is
three dimensional. Thus, we can easily understand behaviors demonstrated
by virtual individuals, study behavioral changes during simulated evolution,
analyze dependencies between groups of creatures, and so forth. However, 3D
models of life-forms are not only attractive because of their resemblance to
the real-world organisms. Simulating 3D agents has practical implications:
If the simulation is accurate enough, then real robots can be built based on
the simulation, as in [22]. Agents can be designed, tested, and optimized in a
virtual environment, and the best ones can be constructed as real robots with
embedded control systems. This way artificial intelligence algorithms can be
“embodied” in the 3D mechanical constructs.

Perhaps the first well-known simulation of 3D life was Karl Sims’ 1994
virtual creatures [34]. Being visually attractive, it demonstrated a successful
competitive coevolutionary process, complex control systems, and interesting
(evolved) behaviors. However, this work did not become available for users
as documented software. A number of 3D simulation engines was developed
later (see [36] for a review), but most of them are either used for a specific
application or experiment (and are not available as general tools for users) or
focus primarily on simulation (without built-in support for genetic encodings,
evolutionary processes or complex control). Notable exceptions are the breve
simulation package described in Chapter 4 and a recent version of StarLogo
– StarLogo TNG (Chapter 6).

Framsticks [19, 17, 18], a software platform described in this chapter, does
not address a single purpose or a single research problem. On the contrary,
it is built to support a wide range of experiments and to provide all of its
functionality to users, who can use this system in a variety of ways. The
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significance of understanding is central for the development of Framsticks.
Although the system is a simplified model of reality, it is easily capable of pro-
ducing phenomena more complex than a human can comprehend [14]. Thus,
it is essential to provide automatic analysis and support tools. Intelligible vi-
sualization is one of the most fundamental means for human understanding
of artificial life-forms, and this feature is present in the software.

The Framsticks system is designed so that it does not introduce restrictions
concerning complexity and size of creatures. Therefore, neural networks can
have any topology and dimension, allowing for a range of complex behaviors,
some described in Section 4 of [14]. Avoiding limitations is important because
Framsticks is ultimately destined to experiments with open-ended evolution,
where interactions between creatures and the environment are the sources of
competition, cooperation, communication, and intelligence.

Further sections of this chapter focus on the following issues:

5.1 — history of Framsticks and available software
5.2 — simulation model, morphology, control system, communication, en-

vironment
5.3 — genetics, genotype–phenotype relationship, mutation and crossing

over, evolution
5.4 — scripting, experiment definitions and system framework, creating

custom neurons and experiments, popular experiments
5.5 — selected tools provided to support research and education
5.6 — sample experiments that have already been performed, as well as

some new ideas
5.7 — entertaining Framsticks applications
5.8 — summary.

5.1 Available Software and Tools

Framsticks was first released in late 1996, but the first official releases became
available on the Internet in June 1997. Versions 1.x provided numerous pa-
rameters to customize experiments, but the experiment logic, visualization,
and neurons were hard-coded.

In 2002, starting with version 2.0, the scripting language FramScript was
introduced, which allows for flexible control of most parts of the software
– on both high level (adjusting parameters) and low level (creating custom
procedures). Scripting is addressed in Section 5.4.

In 2004, the first official release of the Framsticks Theater (a simple-
interface, attractive graphical application) took place, with unofficial releases
available since 2002.

In 2008, version 3.0 introduced an accurate mechanical simulation mode.
Useful features were added to the particle agents simulation mode and sup-
port for agent communication was greatly enhanced. A few applications were
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joined: The Framsticks Viewer was included in the Framsticks Theater, and
the Framsticks Server was included in the Framsticks Command-Line Inter-
face.

The Framsticks family of programs includes the following:

• Framsticks GUI (Graphical User Interface) – the most popular program,
where simulated creatures, genotypes, and the virtual world are presented
visually and allow for user interaction (dragging creatures, online genotype
visualization, etc.).

• Framsticks CLI (Command-Line Interface) – a program where commands
are issued using text. Useful for long, time-consuming and/or well-defined
experiments, which can be performed automatically (batch processing) or
remotely. This program has no overheads of the GUI and can be compiled
for most operating systems. The CLI also acts as the Framsticks Network
Server. The server communication protocol is published, which allows for
development of third-party clients.

• Framsticks Theater – a complete Framsticks simulator with a simple menu
and predefined actions (“shows”), described in more detail in Section 5.7.
The Theater can also be used as a viewer of genotypes specified by users
or read from files.

• Framsticks Editor (FRED) – a simple open-source graphical editor that
allows users to easily design creatures without any knowledge about genetic
encodings. It is mentioned in Section 5.7.

• Framsticks Network Clients – open-source programs that interact with
the Framsticks Server (server(s) and client(s) can also be run on a single
computer). Two basic roles of clients are (1) the GUI for the server and
(2) visualization of the virtual world simulated on the server, as shown in
Figs. 5.1 and 5.2. However, clients can use the server in a number of ways,
including distributed evolution, modeling of ecosystems and migration,
real-time interaction in mixed realities, and much more. Many clients can
connect to the same server at the same time, and clients can exchange
information between themselves.

• Other helper programs and scripts: brain optimizers, analyzers of experi-
ment output data, graph generators, and so forth.

The above applications are in continuous development, with new releases
coming out periodically. Framsticks genotypes and experiment proposals can
be browsed, downloaded, and uploaded using the Internet database – Fram-
sticks Experimentation Center.

Framsticks software documentation is available in many forms, including
web site information [19], single-document Framsticks Manual, step-by-step
tutorials (strongly recommended for beginners [20]), a web forum, and the
FramScript reference that describes objects and functions useful when writing
scripts.
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Fig. 5.1 Two sample network clients: the GUI and the virtual world viewer.

Fig. 5.2 Selected 3D real-time display styles in the Java-based network client. Top row:
Basic, Fur, and Stone. Bottom row: Metal, Cartoon, and Glass.
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5.2 Simulation

5.2.1 Creature Model

Creatures in Framsticks are modeled as bodies and brains. Bodies consist of
body parts connected by body joints; this constitutes an undirected, spatial
3D graph structure. Brain is made of neurons (signal processing units, recep-
tors, and effectors) and neural connections; these form a directed graph that
may be connected to body where the neural units are embodied.

The four elements of the model – parts, joints, neural units, and neural
connections – can be characterized by a variable number of properties like
mass, position, orientation, friction, stiffness, durability, assimilation ability,
weight, and neural parameters. For details on implementation of this model,
refer to the GDK [37].

5.2.2 The Three Modes of Body Simulation

There is always a trade-off between simulation accuracy and simulation time.
To perform evolution and evaluate thousands of individuals, fast simulation is
required; on the other hand, the model should be realistic (detailed) enough
to allow for realistic behaviors. When we expect emergence of more and
more sophisticated phenomena, the evolution takes more time – thus simula-
tion needs to be faster, and therefore less accurate. While some experiments
are focused on realistic 3D mechanical simulations (e.g., in robotics), others
are only concerned with information processing in the agent’s brain (e.g., in
Agent-Based Modeling applications).

In Framsticks step-by-step simulation, all major kinds of interactions be-
tween basic physical objects are considered: static and dynamic friction,
damping, action and reaction forces, energy losses after deformations, gravita-
tion, and uplift pressure – buoyancy (in a water environment). However, some
experiments do not require such complexity and realism, therefore Framsticks
provides three simulation modes to meet diverse requirements.

It is possible to adjust gravity force in all the three simulation modes. To
improve performance, collision detection may be deactivated between agents
or groups of agents (inter-creature collisions) when collisions are not of inter-
est.

Accurate Rigid Body Dynamics

In this mode, Framsticks uses the Open Dynamics Engine [35] to simulate
bodies made of boxes or cylinders that correspond to body parts and joints
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Fig. 5.3 Accurate collision
detection in the rigid body
dynamics mode.

(Figs. 5.3 and 5.4, left). The simulation of physics is accurate enough to
expect similar behavior from the real-world robotic equivalent. A number of
parameters are provided to customize simulation (cf. [16]); it is also possible
to deactivate collisions among creature parts (intra-creature) when these are
not required.

Simplified Elastic Body Dynamics

This mode uses the native Framsticks simulation engine, Mechastick (Fig. 5.5).
It provides much better performance than ODE at the cost of realism. In or-
der to avoid computational complexity in this simulation mode, intra-creature
collisions are not detected. Creatures are built of interconnected linear seg-
ments (“sticks”) corresponding to body parts and joints. Articulations exist
between sticks where they share an endpoint; the articulations are unre-
stricted in all three degrees of freedom (bending in two planes plus twisting).

In this simulation mode, bodies exhibit elastic dynamics which limits size
and complexity of constructs under normal gravity conditions. On the other

Fig. 5.4 Body dynamics
simulation modes: rigid
(left) and elastic (right).
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Fig. 5.5 Forces considered
in Mechastick.
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hand, flexibility and elastic deformations are extremely advantageous for ef-
ficient locomotion techniques (compare Fig. 5.4) and other activities. It is
much harder to design or evolve naturally moving structures when rigid body
dynamics is employed.

For each simulated element, Mechastick provides information about axial
and angular stress values (Fig. 5.6). This information can be used to test and
evolve stable, durable, and robust structures.

Particle Agents

When studying mechanics of the animal limb or robotic leg, one can spend
many simulation steps to make the structure perform a single movement.
However, there are many applications where morphology of agents is not
considered at all, or the complete agent body is considered solid. Such exper-
iments include navigation, communication, swarming and group behaviors,
various massive multi-agent setups, and settings where agents are primarily
considered as brains, not bodies.

Fig. 5.6 Visualizations of axial stress in the Mechastick simulation engine.
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Fig. 5.7 Particle agents simulation mode. Dynamics of arrow-shaped bodies is not re-
garded in this experiment.

These experiments do not need true simulation of body dynamics – sim-
ple “move forward” or “turn left” commands are sufficient. In the “particle
agents” mode, simple high-level methods can be used (rotating agents, set-
ting their direction and speed) to facilitate experiment design (Figs. 5.7, 5.10,
and 5.12). When bodies are not important, the simulation can be extremely
simplified by making each agent a point of mass.

5.2.3 Brain

Brain (the control system) is made of neurons and their connections. A neuron
may be a signal processing unit, but it may also interact with body as a
receptor (sensor) or effector (actuator). There are some predefined types of
neurons, for example:

• “N”: the standard Framsticks neuron, which is a generalized version of the
popular weighted-sum, sigmoid transfer function neuron used commonly
in AI. The three additionally introduced parameters influence speed and
tendency of changes of the inner neuron state and the steepness of the
sigmoid transfer function. In a special case, when the three parameters
are assigned specific values, the characteristics of the “N” neuron become
identical to the popular, reactive AI neuron. In this case, neural output
reflects instantly input signals. More information and sample neuronal
runs can be found in the simulation details section at [19].

• “Sin”: a sinusoidal generator with frequency controlled by its inputs.
• “Rnd”: random noise generator.
• “Thr”: thresholding neuron.
• “Delay”: delaying neuron.
• “D”: differentiating neuron.

It is possible to easily add custom, user-designed neurons using Fram-
Script; an example is shown in Section 5.4.
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The neural network can have any topology and complexity. Neurons can
be connected with each other in any way (some may be unconnected). Inputs
should be connected to outputs of another neuron (including sensors), while
outputs should be connected to inputs of other neurons (including effectors).
Sample control systems are shown in Fig. 5.8. Note that a single control
system may contain many unconnected or independent subsystems.

Neurons can send multiple values in their output. This extension allows
one to design complex neurons that provide a vector of output values, which
is used, for example, in the Fuzzy and the Vector Eye neurons described later.

A section in Part I of the Framsticks tutorial [20] concerns understanding
and designing control systems, and there are exercises in Part IV on the
development of custom script-based neurons.

Fig. 5.8 Sample neural networks. Triangles are the standard signal-processing neurons
(“N”). Receptors act as inputs (shown usually on the left side: gyroscope, touch, smell).
Controlled muscles (rotating, bending) are usually on the right side. Some inputs are
connected to the output of the sinus generator ( ) or the constant signal generator ( ).
Note recurrent connections. Parallel connections are also allowed.
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5.2.4 Receptors and Effectors

Receptors and effectors are interacting between body and brain. They must
be connected to brain in order to be useful, but they also interact with crea-
ture’s body and the world. The three basic Framsticks receptors (sensors)
include “G” for orientation in space (equilibrium sense, gyroscope), “T” for
detection of physical contact (touch), and “S” for detection of energy (smell);
see Figs. 5.8 and 5.9.

The two basic Framsticks effectors are muscles: bending and rotating. Pos-
itive and negative changes of muscle control signal make adjacent sticks move
in either direction, which is analogous to the natural systems of muscles, with
flexors and extensors. The strength of a muscle determines its effective ability
of movement and speed (acceleration). If energetic issues are considered in
an experiment, then muscle strength affects energy consumption.

A sample framstick equipped with basic receptors and effectors is shown
in Fig. 5.9. Other examples of receptors and effectors are energy level meter,
water detector, vector eye, linear actuator, and thrust.

Fig. 5.9 Basic receptors
(equilibrium, touch, smell)
and effectors (muscles).

touch
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muscle

smell
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5.2.5 Communication

Since agents, their neurons, and the experiment logic are all script based, it is
possible to implement virtually any kind of communication. Creatures, their
components, and properties of these components are all accessible in script
objects and can be modified by the experimenter according to their needs.

There are also dedicated objects and functions that facilitate implemen-
tation of the most common communication settings. The two basic commu-
nication objects are Channel and Signal.

• Channel objects are defined by unique names that represent either a phys-
ical medium (e.g., “light”, “smell”), some abstract information (“danger”,
“goal”), or characterize a group of signal holders (“flock”, “team 23”).
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• Signal objects store the value that is actually transmitted in a channel.
The type of the value is arbitrary so that objects can be transmitted apart
from simple values. For a signal, one can also set its power and flavor
(which can be used to differentiate between multiple signals in a single
channel). Signals belong to other objects – World, Creature, and Neuro
– as members of their signals collections. World signals are stationary,
while Creature signals and Neuro signals are carried by their owner.

• Functions used to receive signals can read the aggregated signal intensity
from a channel (useful for physical quantities), find the strongest signal in a
channel (taking into account location of transmitters and signal intensity),
or enumerate all nearby signals.

Framsticks allows for visual presentation of signals in the world, which is
useful both for debugging and as a part of the experiment visualization.

Communication: The Fireflies Example

In this example, Framsticks communication features are used to simulate light
transmission, and two specialized neural units (the SeeLight receptor and the
Light effector) are required. Agents equipped with these units are able to
synchronize their flashing patterns only using local information (aggregated
light intensity). See Fig. 5.10 and the Framsticks Theater show for a live
demonstration.

A manually designed neural network that handles synchronization of flash-
ing is shown in Fig. 5.11. The output of the light receptor contributes to the
charging potential of neuron #6, effectively shortening the flashing cycle.
Agents that flash “too late” receive most of the incoming light signal during
their charging phase. This makes them charge faster and catch up with the
other agents.

Fig. 5.10 The fireflies example and spatial intensity of the “light” signals.



118 Maciej Komosinski and Szymon Ulatowski

Fig. 5.11 A sample neural network that handles synchronization of flashing of a firefly.

The representation of this network in the f1 genetic encoding (cf. Sec-
tion 5.3) is as follows:

X [SeeLight,flavor:0] [*] [-1:2.26,6:-2,in:0.01,fo:0.01,si:1]

[*] [-2:1,-1:-0.5,si:9999,fo:1,in:0]

[*] [-2:2,-6:0.3,-1:-0.4,in:0.01,fo:0.01,si:1]

[*] [-2:1,-1:-0.5,si:9999,fo:1,in:0] [Light,-1:-1,flavor:0]

This genotype can be subject to evolution to obtain various flashing be-
haviors, depending on the fitness function used. The full source code for the
the Light effector and SeeLight receptor is available in the “scripts” subdi-
rectory of the Framsticks distribution (cf. Section 5.4 on scripting). In short,
the Light effector, when created, registers one signal in the “light” channel:

Neuro.signals.add("light");

In each simulation step, this effector adjusts the power of this signal de-
pending on its neural input value:

Neuro.signals[0].power=...;

The SeeLight receptor is very simple. In each step, it just sets its neural
output to the amount of light perceived:

Neuro.state=Neuro.signals.receive("light");

Communication: The Boids Example

The implementation of boids [31] uses flexibility of the Framsticks communi-
cation to efficiently obtain the list of neighbor creatures. The data being com-
municated between agents are references to their own objects. The neighbor
list is processed on each step by the creature handler to calculate aggregated
direction of flight based on the motion of the neighbors. See Fig. 5.12 and
the Framsticks Theater show for a live demonstration.
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When an agent is created (the onBorn() function), it registers one signal
in the “flock” channel and sets the signal value to reference its own body:

var signal=Creature.signals.add("flock");

signal.value=Creature.getMechPart(0);

To receive data, each agent in every simulation step receives a set of sig-
nals (i.e., references to neighbors within the specified range) and then can
enumerate this array to perform necessary calculations:

var neighbors=creature.signals.receiveSet("flock",maxrange);

for(i=0;i<neighbors.size;i++) {...}

Fig. 5.12 The boids show in the Framsticks Theater. Creatures consist of one part only.
They are assigned a visual style that uses a bird 3D model for display.

5.2.6 Environment

The world can be flat, built of smooth slopes, or built of blocks. It is possible
to adjust the water level, so that not only walking/running/jumping creatures
but also the swimming and amphibian ones are simulated. The boundaries
of the virtual world can be one of three types:

• hard (surrounding wall: it is impossible to cross the boundary);
• wrap (crossing the boundary means teleportation to the other side of the

world);
• none (the world is infinite).
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These options are useful in various kinds of experiments and measurements
of creature performance.

World heightfields are defined in a simple way, and a number of Framsticks
heightfield generators exist. Real geographic information system (GIS) data
from Earth or other planets can also be used: The PrettyMap conversion
utilities can convert raster elevation and symbolic maps from most file formats
into the Framsticks world heightfield format.

5.3 Genetics and Evolution

Framsticks supports multiple genetic encodings (also called representations
or “genotype languages”) [21]. The system manipulates and transforms geno-
type strings expressed in various representations and ultimately decodes them
into the internal representation used by the simulator to construct a creature
(phenotype). This means that one can describe a creature using genomes
expressed in different “languages.”

Any creature can be completely described using a low-level representation
named f0, by listing all of the creature components and their properties. Other
higher-level encodings convert their representations into the corresponding f0
version (possibly through another intermediary representation), as shown in
Fig. 5.13. The reverse mapping from lower-level into higher-level encodings is
usually difficult or impossible to compute, which is also true in the biological
realm. As a consequence, in the general case it is not possible to convert a
lower-level representation into a higher-level one (or a higher-level one into
another higher-level one).

Each encoding has its own genetic operators (mutation, crossover, and the
optional repair) and a translation procedure that allows users to compute a
phenotype from each genotype expressed in this encoding. A new encoding
can be added relatively easily by implementing these components. Fram-
sticks software is accompanied by the Genotype Development Kit (GDK)

Fig. 5.13 A graph illus-
trating the idea of hierar-
chical genetic encodings (as
nodes) and their translation
procedures (as arcs). The
dashed arrow depicts an
approximate translation.

Multiple, alternative trans-
lation methods may exist,
as shown for the translation
from fNew to f0.
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which simplifies this process [37]. The most popular genetic encodings are
characterized below.

The direct low-level, or f0, encoding describes agents exactly as they are
represented in the model (Sect. 5.2.1). It does not use any higher-level fea-
tures to make genotypes more compact or flexible. Its useful characteristics
are that it has a minimal decoding cost and that every possible creature can
be described using this encoding. Each f0 genotype consists of a list of de-
scriptions of all the elements a creature is composed of: parts, joints, neurons,
and neural connections.

The recurrent direct encoding (labeled f1 ) also describes all the parts of
the corresponding phenotype. Body properties are represented locally, so that
most of the properties (and neural network connections) are maintained when
a genotype section is moved to another place of the genotype. Control ele-
ments (neurons, receptors) are described near the elements under their control
(muscles, sticks). Only tree-like body structures can be represented in f1 (no
cyclic bodies can be described, but arbitrary neural network topologies are
possible). This concise encoding is relatively easy for humans to manipulate
and manually design creatures by editing their genotypes. For example, the
‘X’ char means a stick, parentheses are used to branch body structure, ‘r’
and ‘R’ letters are used to rotate the branching plane, neurons are described
in square brackets with their relative links and weights, and so forth.

The developmental encoding (f4 ) is development-oriented, similar to the
encodings applied for evolving neural networks [6]. An interesting merit of
developmental encoding is that it can incorporate symmetry and modular-
ity, features commonly found in natural systems, yet difficult to formalize. f4
seems similar to f1, but codes are interpreted as commands by cells (sticks,
neurons, etc.). Cells can change their properties and divide. Each cell main-
tains its own pointer to the current command in the genetic code. After
division, cells can execute different codes in parallel and differentiate them-
selves. The final body (phenotype) is the result of a development process.
It starts with an undifferentiated ancestor cell and ends with a collection of
interconnected differentiated cells (sticks, neurons, and connections).

Other available representations include similarity-based encoding, biologi-
cal encoding (with a finite genetic alphabet and start/stop codons), chemical
encoding (metabolic rules of growth), messy encoding (any sequence of sym-
bols is valid), and a parametric Lindenmayer system encoding [9].

Each of the genetic encodings and the corresponding genetic operators
have been carefully designed and tested, and each encoding was based on
theoretical considerations and experimental tests. More detailed descriptions
can be found in [18]. Examples of simple genotypes and corresponding phe-
notypes (creatures) are shown in Fig. 5.14.

The procedure of genotype translation may provide additional information
regarding the relation of individual genes in the source and target encodings.
If this information is available, then it is possible to track the relationship
between parts of a genotype (genes) and parts of the corresponding creature
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Fig. 5.14 Left: example of the f1 genotype XXX(XX,X(X,X)). Right: example of the f4
genotype with the repetition gene: rr<X>#5<,<X>RR< <llX>LX>LX> >X.

(phenes). Details of this process and examples are shown in [21]. Fig. 5.15
illustrates how this information can be visualized and used both ways.

In the Framsticks software, it is possible to select parts of the phenotype
and genotype to get an instant visual feedback and understand their relation-
ship; see Fig. 5.16. Users can move the cursor along the genotype to see which
phenotype parts are influenced by the genotype character under the cursor.
Another feature related to “genetic debugging” (a feature not yet available
for biological genomes. . . ) is the ability to modify a genotype by adding,
deleting, or editing its parts while the corresponding phenotype is instantly
computed and displayed. Framsticks can be used to illustrate the phenomena
of polygeny and pleiotropy and to perform direct experiments with artificial
genetic encodings, increasing comprehension of the genotype-to-phenotype
translation process, and properties of genetic encodings – modularity, com-
pression, redundancy, and many more.

X(X, X(X,X(X,X)))RR X X X(X, X( ,X(X, )))RR

Fig. 5.15 A simple mapping between an f1 genotype and the corresponding phenotype.

Left: user selected a part of the genotype, corresponding phenes are highlighted. Right:

user highlighted some parts of the body, corresponding genes are underlined.
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Fig. 5.16 A sample genotype and the corresponding creature (body and brain). Some
genes are selected by a user, and the corresponding parts of body and brain are highlighted.

5.4 Scripting

The Framsticks environment has its own virtual machine, thus it can interpret
commands written in a simple language – FramScript. FramScript can be
used for a range of tasks, from custom fitness functions, macros, and user-
defined neurons, to user-defined experiment definitions, creature behaviors,
events, and even 3D visualization styles. Understanding FramScript allows
one to exploit the full potential of Framsticks, because scripts control the
Framsticks system.

The FramScript syntax and semantics are very similar to JavaScript,
JAVA, C, or PHP. In FramScript,

• All variables are untyped and declared using var or global statements.
• Functions are defined with the function statement.
• References can be used for existing objects.
• No structures and no pointers can be declared.
• There is the Vector object which handles dynamic arrays.
• FramScript code can access Framsticks object fields as “Object.field”.
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5.4.1 Creating Custom Script-Based Neurons

To demonstrate how scripting can be used, we will design a “noisy” neuron
which generates occasional noise (random output). Otherwise it will pass
the weighted sum of inputs into its output. In neuron definitions, inputs
can be read, any internal function can be defined, output can be controlled
directly, and internal states can be stored using “private” neuron properties.
“Public” neural properties can be used to influence the neuron behavior;
genetic operators (mutation, crossing over) will by default operate on public
properties.

For a neuron, two functions can be defined: the initialization function (init)
and the working function (go) which is executed in each simulation step. For
our noisy neuron, we do not need the initialization function – there are no
internal properties to initialize. However, the public “error rate” property will
be useful to control how much noise is generated. For each neuron, we first
have to define its name, long name, description, and the number of preferred
inputs (any number in this case) and outputs (the noisy neuron provides one
meaningful output signal):

class:

name:Nn

longname:Noisy neuron

description:Occasionally generates a random value

prefinputs:-1

prefoutput:1

The error rate property (“e”) will be a floating-point number (f) within
the range of 0.0 and 0.1:

prop:

id:e

name:Error rate

type:f 0.0 0.1

Finally, we implement the working function, which uses the rnd01 func-
tion of the Math object to obtain a random value in the range from 0.0 to
1.0:

function go()

{

if (Math.rnd01 < Fields.e)

Neuro.state = Neuro.weightedInputSum;

else

Neuro.state = (Math.rnd01 * 2) - 1.0;

}
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#0 - Sin #1 - Nn

Fig. 5.17 The noisy neuron defined by the script, connected to the sinus generator. Ran-
dom output values are generated with the rate of 0.1.

We join these three fragments into a single file, name it “noisy.neuro”,
place it in the appropriate directory, run Framsticks, build a creature that
uses the noisy neuron with the error rate set to 0.1, and start the simulation
to see the result shown in Fig. 5.17. Now the FramScript source of the neuron
can be easily modified to extend its functionality and to exhibit more complex
behaviors. The noisy neuron is ready to be used in neural networks, and even
in evolution, without any additional work.

5.4.2 Experiment Definitions

A very important feature of Framsticks is that you may define custom rules
for the simulator. There are no predetermined laws, but there is a script called
the experiment definition. It is analogous to the neuron definition explained
in the previous section. The experiment definition script is more complex and
defines behavior of the Framsticks system in a few related areas:

• Creation of objects in the world. The script defines where, when, and how
much of which objects will be created. An object is an evolved organism,
food particle, or any other element of the world designed by a researcher.
Thus, depending on the script, food or obstacles might appear, move, and
disappear, their location might depend on where creatures are, and so
forth.

• Objects interactions. Object collision (contact) is an event, which may
cause some action defined by the script developer. For example, physical
contact may result in energy ingestion, pushing each other, exchange of
information, destruction, or reproduction.

• Evolution. Any model of evolution or coevolution can be employed, in-
cluding many gene pools and many populations (generally called groups);
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independent evolutionary processes can be performed under different con-
ditions.

• Evaluation criteria. These are flexible and do not have to be as simple
as the basic performances supplied by the simulator. For example, fitness
may depend on time or energy required to fulfill some task, or degree of
success (distance from target, number of successful actions, etc.).

The script is built of “functions” assigned to system events, which include:

• onExpDefLoad – occurs after experiment definition has been loaded. This
procedure should prepare the environment, create necessary gene pools and
populations, etc.

• onExpInit – occurs at the beginning of the experiment.
• onExpSave – occurs on “save experiment data” request.
• onExpLoad – occurs on “load experiment data” request.

The script should restore the system state saved by onExpSave.
• onStep – occurs in each simulation step.
• onBorn – occurs when a new organism is created in the world.
• onKill – occurs when a creature is removed from the world.
• onUpdate – occurs periodically, which is useful for efficient performance

evaluation.
• on[X]Collision – occurs when an object of population [X] has touched

some other object.

Therefore, researchers may define the behavior of the system by imple-
menting appropriate actions within these events. A single script may in-
troduce parameters which allows users to perform a number of diversified
experiments using one experiment definition.

5.4.3 Illustrative Example (“Standard Experiment”
Definition)

The file “standard.expdef” contains the source for the standard experiment
definition script used to optimize creatures on a steady-state (one-at-a-time)
basis, with fitness defined as a weighted sum of their performances. This
script is quite versatile and complex. Below, its general concept is explained,
with much simplified actions assigned to events. This digest gives an idea of
what components constitute a complete experiment definition.

• onExpDefLoad:

– create a single gene pool named “Genotypes”
– create two populations: “Creatures” and “Food”
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• onExpInit:

– empty all gene pools and populations
– place the initial genotype in “Genotypes”

• onStep:

– if too little food: create a new object in “Food”
– if too few organisms: select a parent from “Genotypes”; mutate, crossover,

or copy it. Based on the resulting genotype, create a new individual in
“Creatures”

• onBorn:

– move the new object into a randomly chosen place in the world
– set its starting energy depending on the object’s type (creature or food)

• onKill:

– if “Creatures” object died, save its performance in “Genotypes” (pos-
sibly creating a new genotype). If there are too many genotypes in
“Genotypes”, remove one.

• onFoodCollision:

– send a piece of energy from the “Food” object to the colliding “Crea-
ture” object.

5.4.4 Popular Experiment Definitions

The most popular experiment definitions are outlined below. More specific
experiments are referred to in Section 5.6.7.

• standard is used to perform a range of common evolutionary optimization
experiments. It provides one gene pool, one population for individuals, one
“population” for food, steady-state evolutionary algorithm, fitness as a
weighted sum of performance values, support for custom fitness formulas,
fitness scaling, roulette or tournament selection, and stagnation detection.
It can log fitness and automatically produce charts using gnuplot [38].

• generational is a simple generational optimization experiment that re-
sembles a popular “genetic algorithm” setup. It provides two gene pools
(previous and current generation), one population for creatures, genera-
tional replacement of genotypes, roulette selection, and script-defined fit-
ness formula.

• reproduction models asexual reproduction in the world. Each creature
with a sufficient energy level produces an offspring, which is located to its
parent. Food is created at a constant rate and placed randomly (Fig. 5.29).

• neuroanalysis simulates all loaded creatures one by one and computes
the average and standard deviation of the output signal for each neuron
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in each creature. After evaluation, a simple statistics report is printed. No
evolution is performed.

• boids models emergent, flocking behavior of birds [31]. Users can activate
or deactivate individual behavior rules (separation, alignment, cohesion)
and instantly see results (Fig. 5.12).

• evolution demo demonstrates the process of evolution. Individuals are
placed in a circle. One individual is selected and then cloned, mutated, or
crossed over. It is then evaluated in the middle of the circle and, depending
on its fitness, may replace a poorer, existing individual or disappear.

• learn food illustrates a social phenomenon of knowledge sharing in the
context of exploration of the environment and exploitation of knowledge
about the environment (Fig. 5.7). When an individual encounters food,
it eats a bit, remembers its location, and gets a full amount of energy.
The energy of each individual provides information on how current its
information about food coordinates is. When agents collide, they learn
from each other where the food was (e.g., by weighted averaging their
knowledge). An individual that cannot find food for a long period of time
loses all energy and dies, and a newborn one is created.

It is interesting to see how knowledge sharing (cooperation, dependence)
versus no sharing (self-sufficiency, risk) influences minimal, average, and
maximal life span in various scenarios of food placement (e.g., neighboring
and random). The dynamics in this experiment depends on the number
of individuals, size and shape of their body (affects collisions and thus
chances of sharing knowledge), world size, food eating rate, food place-
ment, learning strategy, and the behavioral movement pattern.

• mazes evaluates (and evolves) creatures walking between two specified
points in a maze.

• deathmatch is an educational tool intended for use in practical courses
in evolutionary computing, evolutionary robotics, artificial life, and cog-
nitive science. Following the “education by competition” approach, it im-
plements a tournament among teams of creatures, as well as among teams
of students. To win, a team has to provide (design or evolve) a creature
that stays alive longer than creatures submitted by other teams. To sur-
vive, creatures need energy which can be collected by touching energy
resources, winning fights, avoiding fights, or cooperation.

• standard-eval evaluates loaded genotypes thoroughly one by one and
produces a report of fitness averages, standard deviations, and average
evaluation times. No evolution is performed.

• standard-log logs genetic and evaluation operations, producing a detailed
history of evolutionary process.

• standard-tricks serves as an example of a few advanced techniques: Ran-
dom force can be applied to parts of a living creature during its life span,
neural property values can be used in the fitness function, and statistical
data can be acquired regarding movement of simulated body parts.
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5.5 Advanced Features for Research and Education

Research works in the area of artificial life often concern studies of evolution-
ary and coevolutionary processes – their properties, dynamics and efficiency.
Various methods and measures have been developed in order to analyze evo-
lution, complexity, and interaction in complex adaptive systems (CAS). An-
other line of research focuses on artificial creatures themselves, regarding
them as subjects of survey rather than “black boxes” with assigned fitness,
and thus helping understand their behaviors.

Artificial life systems – especially those applied to evolutionary robotics
and design [3, 4, 22] – are so complex that it is difficult or impossible to
fully understand behaviors of artificial agents. The only way is to observe
them carefully and use human intelligence to draw conclusions. Usually, be-
haviors of such agents are nondeterministic, and their control systems are
sophisticated, often coupled with morphology and very strongly connected
functionally [24]. Using artificial life techniques, humans are able to generate
successful and efficient solutions to various problems, but they are unable to
comprehend their internals and logic. This is because evolved structures are
not designed by a human, not documented, and inherently complex.

Therefore, to effectively study behaviors and populations of individuals,
one needs high-level, intelligent support tools [17]. It is not likely that auto-
matic tools will soon be able to produce understandable, nontrivial explana-
tions of sophisticated artificial agents. Nonetheless, their potential in helping
researchers is huge. Even simple automatic support is of great relevance to a
human; this becomes obvious after spending hours on investigating relatively
simple artificial creatures.

One of the purposes of Framsticks is to allow creating and testing such
tools and procedures and to develop methodology needed for their use. Re-
alistic artificial life environments are the right place for such research. In the
future, some of the advanced analysis methods developed within artificial life
methodology may become useful for real-life studies, biology, and medicine.

In education, it is primarily important to make complex systems attractive
and easier to understand. Visualization of relations between genotypes and
phenotypes described in Section 5.3 is an example of such an educational
instrument.

5.5.1 Brain Analysis and Simplification

An (artificial) creature is composed of body and brain. Bodies can be easily
seen, and basic statistical information is easy to obtain (the number of parts,
body size, weight, density, degree of consistency, etc.). Brains are much more
difficult to present and comprehend. Framsticks provides a dedicated algo-
rithm for laying out neural networks so that their structure can be exposed.
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After it is applied, complex neural networks that initially looked chaotic have
their brain structures revealed; see Fig. 5.8. Additionally, if a neuron that is
embodied (located in body) is selected, it is highlighted in both the body
view and the brain view (Fig. 5.16).

Signal flow charts are useful to understand how the brain works. Users
can open multiple views of a single brain and connect probes to neurons, as
shown in Figs. 5.17 and 5.18. It is also possible to enforce states of neurons
using these probes so that parts of the brain can be turned off, oscillation
can be stopped, or the desired signal shape can be interactively “drawn.” In
this way, muscles can be directly controlled while simulation is running.

Some sensors reflect states of the body. If the body is moved, output
values of these neurons change (e.g., equilibrium or touch sensors) which is
immediately seen in the neural probes. Fig. 5.18 shows a creature under such
analysis.

Fig. 5.18 A simulated creature with the control system under investigation. Four neural
probes are attached showing signals in different locations of the neural network.

A simple automatic tool for brain analysis is the “neuroanalysis” experi-
ment definition. During simulation, it observes each neuron in each creature
and computes averages and standard deviations for all neural output signals.
The final report summarizes the activity of brains and helps in the location
of inactive and redundant brain areas. It also gives clues on possible ways of
simplification of analyzed neural networks.
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The “brain simplifier” macro is also available. It prunes neurons that do
not directly or indirectly influence bodies, thus making evolved neural net-
works simpler and easier to apprehend.

5.5.2 Numerical Measure of Symmetry of Constructs

There is no agreement among scientists on why symmetry in biology is such
a common evolutionary outcome, but this phenomenon must be certainly
related to the properties of the physical world. According to one of the hy-
potheses [23], a bilaterally symmetrical body facilitates visual perception, as
such a body is easier for the brain to recognize while in different orientations
and positions. Another popular hypothesis suggests that symmetry evolved
to help with mate selection. It was shown that females of some species pre-
fer males with the most symmetrical sexual ornaments [29, 30]. For humans,
there are proved positive correlations between facial symmetry and health [41]
and between facial symmetry and perception of beauty [32].

It is hard to imagine the objective measure of symmetry. The only thing
that can be assessed objectively is whether a construct is entirely symmetrical
or not. The natural language is not sufficiently precise to express intermediate
values of symmetry – we say that something is nearly symmetrical, but we
are not able to the degree of symmetry numerically in the same manner
as, for instance, angles can be described. This lack of expressions in natural
languages describing partial symmetry is reasonable since many objects in
the real world are symmetrical.

However, symmetry is not such a common concept in artificial worlds, and
in order to study the phenomenon of symmetry and its implications, there
was a need for defining a numerical, fully automated, and objective measure
of symmetry for creatures living in artificial environments as well constructs,
models, and 3D objects simulated in virtual settings. In Framsticks, the im-
plementation of parametrized, numerical symmetry measure is provided in
the Symmetry object; see [11] for a detailed description and Section 5.6.3 for
a sample application.

5.5.3 Estimating Similarity of Creatures

Similarity is sometimes considered to be a basic or simple property. However,
automatic measures of similarity can be extremely helpful! Similarity can be
identified in many ways, including aspects of morphology (body), brain, size,
function, behavior, performance, or fitness, but once a quantitative measure
of similarity is established, it allows one to do the following:
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• analyze structure of populations of individuals (e.g., diversity, convergence,
etc.), facilitating better interpretation of experimental results,

• discover clusters in groups of organisms,
• reduce large sets or populations of creatures to small subsets of diverse

representatives, thus reducing the complexity and size of experimental
data and making it more comprehensible,

• infer dendrograms (and, hopefully, phylogenetic trees) based on morpho-
logical distances between organisms,

• restrict crossing over to only involve similar parents and thus avoid im-
paired offspring,

• introduce artificial niches, or species, by modifying fitness values in evolu-
tionary optimization [5, 28],

• test correlation between similarity and quality of individuals, determine
global convexity of the solution space [13], and develop efficient distance-
preserving crossover operators [39, 27].

For the model of morphology considered in this chapter, a heuristic method
was constructed that is able to estimate the degree of dissimilarity of two
individuals. This method treats body as a graph (with parts as vertices and
joints as edges) and then matches two body structures taking into account
both body structure and body geometry. For a more detailed description of
this method, see [15]; a sample application is presented in Section 5.6.4.

5.5.4 History of Evolution

In real life it is possible to trace genetic relationships within existing creatures,
but we do not precisely know what happened during mutations and crossing
overs of their genomes. Moreover, it is hard to trace all genetic relations over
a longer timescale and in high numbers of individuals.

Framsticks as an artificial life environment allows one not only to retain
all parent–child relationships but also to estimate genotype shares of related
individuals (how many genes have mutated or have been exchanged). This
lets users derive and render the real tree of evolution as shown in Fig. 5.19.
The vertical axis is time, and the horizontal one reflects a degree of local
genetic dissimilarity (between each pair of individuals). Vertices in this tree
are single individuals. This way of visualizing evolution exposes milestones
(genotypes with many descendants), and these can be automatically iden-
tified. The overall characteristics of the evolutionary process (convergence,
high selective pressure, or random drift) can also be seen in such pictures.
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Fig. 5.19 The real tree of evolution; single ancestor and the beginning of time on top.

Dark lines represent mutations, and white lines are crossovers.

5.5.5 Vector Eye

Vector Eye is a high-level sensor that provides a list of edges in the scene that
are visible from some location in space. This information can be accurate –
with no noise or imperfections that would exist if these edges were detected
in a raster image.

Many simple sensors that are commonly used in robotics (touch, proximity,
3D orientation) provide either single-valued outputs or a constant rate of
information flow (e.g., camera). Vector Eye provides a variable amount of
information depending on the shape perceived and the relative position and
orientation of the sensor with respect to the shape.

Vector Eye as a neuron uses multiple-valued output to send coordinates of
perceived edges. This neuron is usually attached to some element of creature
body, and a convex object to be watched is supplied as a parameter of this
neuron; see the right part of Fig. 5.24 for illustration.
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5.5.6 Fuzzy Control

Framsticks provides support for evolvable fuzzy control based on the Mam-
dani model: Both premises and conclusions of fuzzy rules are described by
fuzzy variables [25]. The fuzzy system may be considered as a function of
many variables, where input signals are first fuzzily evaluated by particular
fuzzy rules, the outcomes of firing rules are then aggregated, and the resulting
fuzzy set is defuzzified [33, 40].

Fuzzy sets in Framsticks are represented in a trapezoidal form, each set
being defined by four real numbers within the normalized domain of [−1, 1].
The fuzzy rule-based control system is implemented in the Fuzzy neuron, with
fuzzy sets and rules described as parameters of this neuron. Dedicated mu-
tation and crossing-over operators have been developed; see [8, 7] for details
and Section 5.6.6 for a sample application.

5.6 Research and Experiments

5.6.1 Comparison of Genotype Encodings

There are a number of studies on the evolution of simulated creatures that
exhibit realistic physical behavior. In these systems, the use of a physical sim-
ulation layer implements a complex genotype–fitness relationship. Physical
interactions between body parts, the coupling between control and physical
body, and interactions during body development can all add a level of indirec-
tion between the genotype and its fitness. The complexity of the genotype–
fitness relationship offers a potential for rich evolutionary dynamics.

The most important element of the genotype-to-fitness relationship is the
genotype-to-phenotype mapping determined by the genotype encoding. There
is no obvious simple way to encode a complex phenotype – which consists of
a variable-size, structured body and the corresponding control system – into
a simpler genotype. Moreover, performance of the evolutionary algorithm can
greatly vary from encoding to encoding for reasons not immediately appar-
ent. This makes genetic encodings and genetic operators a subject of intense
research.

The flexibility of the genetic architecture in Framsticks allowed one to
analyze and compare various genotype encodings in a single simulation en-
vironment. The performance of the three encodings described in detail in
Section 5.3 was compared in three optimization tasks: maximization of pas-
sive height, active height, and velocity [18]. Solutions produced by evolution-
ary processes were examined and considered successful in these tasks for all
encodings. However, there were some important differences in the degree of
success. The f0 encoding performed worse than the two higher-level encod-
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ings. The most important differences between these encodings are that f0 has
a minimal bias and is unrestrictive, while the higher-level encodings (f1 and
f4 ) restrict the search space and introduce a strong bias toward structured
phenotypes. These results indicate that a more structured genotype encoding,
with genetic operators working on a higher level, is beneficial in the evolu-
tion of 3D agents. The existence of a bias toward structured phenotypes can
overcome the apparent limitation that entire regions of the search space are
inaccessible for the optimization search. This bias may be useful in some ap-
plications (engineering and robotics, for example). The significant influence
of encodings can be clearly seen in the obtained creatures: Those described
by the f0 encoding displayed neither order nor structure. The two encod-
ings restricting morphology to a tree produced more clear constructs, with
segmentation and modularity visible for developmental encoding (Fig. 5.20).

Fig. 5.20 Representative agents for three distinct genetic encodings and height maxi-
mization task.
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5.6.2 Automatic Optimization Versus Human Design

Designing agents by hand is a very complex process. In professional appli-
cations, it requires extensive knowledge about the control system, sensors,
actuators, mechanics, physical interactions, and the simulator employed. De-
signing neural control manually may be especially difficult and tedious (see
for example [16]). For this reason, agents built by humans usually have lower
fitness than agents generated by evolution. However, human creations are
often interesting because of their explicit purpose, elegance, simplicity (a
minimum of means), symmetry, and modularity. These properties are op-
posed to evolutionary outcomes, which are characterized by hidden purpose,
complexity, implicit and very strong interdependencies between parts, as well
as redundancy and randomness [18].

The difficult process of designing bodies and control systems manually
can be circumvented by a hybrid solution: Bodies can be hand-constructed
and control structures evolved for them. This popular approach can yield
interesting creatures [14, 17, 1, 19], often resembling in behavior creatures
found in nature [10].

5.6.3 Symmetry in Evolution and in Human Design

Following considerations from Section 5.5.2, the bilateral symmetry estimate
allows one to compute the degree of symmetry for a construct (Fig. 5.21); it
is therefore another automatic tool that helps a human examine and evaluate
virtual and real creatures and designs [11].

It is also possible to rank creatures according to their symmetry value.
The ranking shown in Fig. 5.22 presents 30 diversified constructs – small,
big, symmetric, asymmetric, human-designed, and evolved. The horizontal
axis shows values of symmetry. Creatures are oriented such that the plane of

Fig. 5.21 Highest-symmetry planes for three sample constructs. Symmetry values are 1.0,
0.92, and 0.84.
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symmetry for each of them is a vertical plane perpendicular to the horizontal
axis. Constructs that were hand-designed and have regular shapes are the
most symmetrical ones (located on the right side, with symmetry close to 1.0).
On the other hand, large evolved bush-like creatures, for which symmetry
planes were not obvious, are located on the far left (low values of symmetry).

Symmetry has long dominated in architecture and it is an unifying concept
for all cultures of the world. Some famous examples include the Pantheon,
Gothic churches, and the Sydney Opera House. A question comes up about
the symmetry of human designs compared to the symmetry of evolved con-
structs. To investigate this issue, a set of 84 representative individuals has
been examined. This set included evolved constructs originated from various
evolutionary processes oriented toward speed and height and designed con-
structs that served various purposes – most often efficient locomotion, specific
mechanical properties or aesthetic shape.

Analysis revealed that the vast majority (92%) of designed creatures ap-
peared to be symmetrical or nearly symmetrical (symmetry higher than 0.9).
Moreover, 82% of designed creatures were completely symmetrical – with the
symmetry value 1.0. Clearly, human designers prefer symmetry, and there
were no human designs in the set with symmetry less than 0.6.

Although half of the evolved creatures were highly symmetrical, symmetry
of the rest is distributed fairly uniformly. It has to be noted that among
evolved creatures with complete symmetry, many structures were very simple
and symmetrical human designs were much more complex. Simple structures

Fig. 5.22 30 diverse constructs arranged horizontally according to their values of symme-
try (the most symmetrical on the right).
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may exhibit symmetry by chance, while complex ones require some purpose
or bias to be symmetrical.

5.6.4 Clustering with Similarity Measure

The similarity measure outlined in Section 5.5.3 allowed one to perform a
number of experiments [15]; a sample clustering application is presented here.
The UPGMA clustering method has been applied after computing dissimi-
larity for every pair of considered individuals. Fig. 5.23 shows the result of
clustering of 10 individuals resulting from the experiments with maximization
of body height. The clustering tree is accompanied by creature morphologies.

Fig. 5.23 The clustering tree for 10 best individuals in the height maximization task.
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It can be seen that the three large organisms are grouped in a single, dis-
tinct cluster. They are similar in size but different in structure, so the distance
in between them is high. Moreover, the measure also captured functional sim-
ilarity (hp 1, 3, 6, 9, 7); all of these agents have a single stick upward and
a similar base. The agents hp 0 and hp 4 are of medium size, but certainly
closer to the group of small organisms than to the large ones. They are also
similar in structure – this is why they constitute a separate cluster.

The similarity measure is very helpful for the study and analysis of groups
of individuals. Manual work of classification of the agents shown in Fig. 5.23
yielded similar results, but it was a mundane and time-consuming process. It
also lacked objectivism and accuracy, which are properties of the automatic
procedure.

5.6.5 Bio-Inspired Visual Coordination

One of the factors that play an important role in the success of living organ-
isms is the way they acquire information from the environment. Their senses
are interfaces between neural systems and the outer world. Living organisms
exhibit a vast number of sensor types, including olfactory, tactile, auditory,
visual, electric, and magnetic ones. Among these, visual sensing provides a
lot of information about the environment; it is therefore popular in natural
systems and often used in artificial designs.

In the area of machine vision, considered problems usually concern object
recognition and classification. The domain of artificial life adds the aspect of
active exploration of the environment based on information that is perceived.
The Vector Eye sensor described in Section 5.5.5 allows one to build and test
models of complex cognitive systems, while Framsticks allows these systems
to be embodied and situated in a virtual world. The purpose of building
such biologically inspired cognitive models is twofold. First, they help un-
derstand cognitive processes in living organisms. Second, implementations of
such models can cope with the complexity of real-world environments be-
cause these models are inspired by solutions that proved to be successful in
nature.

A sample experiment [12] concerns a visual–motor model that facilitates
stimulus–reaction behaviors, as it is the basic schema of functioning of liv-
ing organisms. In this case the stimulus is visual, and the motor reaction is
movement of an agent. This visual–motor system consists of three compo-
nents: the Vector Eye sensor, the visual cortex, and the motor area. Vector
data acquired by the sensor are transformed and aggregated by the visual
cortex and fed to the motor area, which controls agent movements, as shown
in Fig. 5.24. This biologically inspired visual–motor coordination model has
been verified in a number of navigation experiments and perceived 3D shapes
and proved to be flexible and appropriate for such purposes.
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Fig. 5.24 Left: the agent equipped with the Vector Eye sensor circles around a 3D object.
Right: Vector Eye perceives edges; this variable-rate information stream is processed by the
visual cortex module and ultimately transformed into motor actions of the agent. Thus,
agent behavior depends on what it perceives, which depends on its behavior.

5.6.6 Understanding Evolved Behaviors

Traditional neural networks with many neurons and connections are hard to
understand. They are often considered “black boxes,” successful but impos-
sible to explain – and therefore not trustworthy for some applications. How-
ever, there is another popular paradigm used in control: the fuzzy control. It
is employed in many domains of our life, including washing machines, video
cameras, ABS in cars, and air conditioning. It is often applied for controlling
nonlinear, fast-changing processes, where quick decisions are more important
than exact ones [40]. Fuzzy control, just as neural networks, can cope with
uncertainty of information. It is also attractive because of the following:

• It allows for linguistic variables (like “drive fast,” where “fast” is a fuzzy
term).

• It is easier to understand by humans. The fuzzy rule “if X is Big and Y is
Small then Z is Medium” is much easier to follow than the crisp one “if X
is between 32.22 and 43.32 and Y is less than 5.2 then Z is 19.2.”

To evolve controllers whose behavior is explainable, fuzzy control has been
developed in Framsticks (cf. Sect. 5.5.6). It has been applied in a number of
artificial life evolutionary experiments; here, we outline a variant of the popu-
lar “inverted pendulum” problem [8, 7]. This experiment tested the efficiency
of evolution in optimizing fuzzy control systems, verified if the evolved sys-
tems can really explain behaviors in a human-friendly way, and compared
evolved fuzzy and neural control.
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The base of the pendulum was composed of three joints (J0, J1, J2)
equipped with two actuators (bottom and top) working in two planes; see
Fig. 5.25. The top part of the pendulum was composed of four perpendic-
ular sticks, each having a single equilibrium sensor (G0, G1, G2, G3). The
sensors provide signal values from the [−1, 1] range depending on the spa-
tial orientation of the joint in which they are located. Sensory information is
further processed by the control system that controls actuators; this consti-
tutes a loop of relations between the agent and the environment known from
Section 5.6.5.

G3

G2

G0

J0

J1
J2

G1

Bottom actuator

Top actuator

A0

A1

Fig. 5.25 The pendulum body structure (shown in a bent position).

The optimization task was to evolve a control system capable of keeping
the head of the inverted pendulum from falling down for as long as possible.
Evolved fuzzy systems were compared to evolved neural networks in the same
experiment (cf. Fig. 5.26), and their performance was similar. Since evolved
fuzzy systems were quite complex, they were simplified by performing an ad-
ditional, short optimization phase with “add fuzzy set” and “add fuzzy rule”
operators disabled. Modifications and deletions were allowed. Thus, the com-
plexity of the control system was radically decreased without deteriorating
its fitness.

Control systems considered in this experiment have four inputs and two
outputs. Input signals s0, s1, s2, and s3 come from four equilibrium sensors.
Based on their values, the fuzzy system sends two outputs signals for actua-
tors: bend bottom and bend top. Linguistic variables for inputs (upright, lev-
eled, and upside down) and outputs characterizing bending directions (right,
none, left) need to be defined to present the fuzzy system in a human-readable
form. After they are introduced, the best evolved fuzzy system consisting of
five rules can be rendered as follows:

1. if (s2=leveled and s0=leveled) then (bend bottom=left and bend top=left)
2. if (s3=leveled and s1=upside down) then (bend top=left)
3. if (s1=upright) then (bend bottom=left and bend top=left)
4. if (s3=upside down) then (bend bottom=right and bend top=left)



142 Maciej Komosinski and Szymon Ulatowski

#6 − Fuzzy

2

#7 − ChSel

#8 − ChSel

Fig. 5.26 Fuzzy and neural pendulum control. Left: a fuzzy system that provides two
values in a single output (further separated by the Channel Selector neurons). Right: a
sample neural network with two recurrent connections.

5. if (s1=upside down) then (bend bottom=left and bend top=none)

Although evolution of both neural and fuzzy controllers yielded similar
pendulum behaviors in this experiment, careful analysis of the evolved fuzzy
knowledge confirmed an additional, explanatory value of the fuzzy controller.
The evolved fuzzy rules referenced to the pendulum structure and behavior
are easily understandable by a human. This approach employed in evolving
artificial life agents allows one to present evolved control rules in a human-
readable form.

5.6.7 Other Experiments

The open architecture of Framsticks lets users define diverse genetic represen-
tations, experimental setups, interaction and communication patterns, and
environments (see Sects. 5.4 and 5.4.2). Possible ideas include cooperative or
competitive coevolution of species, predator–prey relationships, and multi-
ple gene pools and populations. Sample experiment ideas related to biology
include introducing geographical constraints and investigating differences in
clusters obtained after a period of time, or studying two or more populations
of highly different sizes. The latter, under geographical constraints, can be
used to simulate and understand speciation.

A number of interesting experiments regarding evolutionary and neuro-
computational bases of the emergence of complex cognition forms and a dis-
cussion about semantics of evolved neural networks, perception, and memory
are presented in [26].

In the Virtual life lab at Utrecht University, Framsticks has been used
to investigate evolutionary origins and emergence of behavior patterns. In
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Fig. 5.27 A snapshot of the predator–prey simulation. The two dark creatures are preda-
tors, hunting down the lighter prey. Prey have evolved to smartly flee from their predators.

contrast to the standard evolutionary computation approach – with selection
criteria imposed by the experimenter outside of the evolving system (“exoge-
nous” or artificial selection) – in these studies selection emerges from within
the system (“endogenous” or natural selection). Experiments are designed
to include the problems of survival and reproduction in which creatures are
born, survive (by eating food), reproduce (by colliding with potential mates),
and die (if their energy level is insufficient). This approach enables the in-
vestigation of environmental conditions under which certain behaviors offer
reproductive advantages, as in the following experiments:

• Coevolutionary processes in predator–prey systems are considered to
result in arms races that promote complexification. For such complexifica-
tion to emerge, the system must exhibit (semi)stable population dynamics.
The primary goal of this experiment is to establish the conditions in which
the simulated ecosystem is stable. Food, prey, and predator creatures are
modeled in a small food chain and allowed to consume each other and
reproduce (see Fig. 5.27). The resulting population dynamics are analyzed
using an extended Lotka–Volterra model. When the relations between the
parameters in the biological model and the simulation are established,
stable conditions can be predicted which enables studies in long-term co-
evolutionary complexification [2].

• Semiosis is the establishment of connections between a sign and the sig-
nified via a situated interpretant. The segregation of the sign and the
signified from the environment is not given a priori to agents: A sign be-
comes a part of an agent’s subjective environment only if it offers benefits
in terms of survival and/or reproduction. In this experiment, the evolu-
tionary emergence of the relation between signs and signified is studied:
Through natural selection, agents that have established behavioral rela-
tions between the signs and the signified are promoted. A sample of such
a relation is movement toward the sign (chemotaxis). In varieties of this
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experiment, agents can leave trails of signs (e.g., pheromones) in the en-
vironment or evolve the ability to signal to each other by using symbols.

• Usually, speciation occurs through geographical isolation, which disables
gene flow and promotes genetic drift. Such speciation is called allopatric.
This experiment reproduces another kind of speciation: sympatric spe-

ciation which happens in populations that live in the same geographical
area.

5.7 Education with Entertainment

Simulating evolution of three-dimensional agents is not a trivial task. On the
other hand, 3D creatures are very attractive and appealing to both young
and older users who spend much time enjoying the simulation. Many users
wish to design their own creatures, simulate them, improve, and evaluate,
but designing creatures is not very obvious when it takes place on the ge-
netic level. To simplify this process, the Framsticks graphical editor (FRED)
was developed: It helps in building creatures just as CAD programs sup-
port designing 3D models. The user-friendly graphical interface (shown in
Fig. 5.28), drag-and-drop operations, and instant preview allow users to de-
velop structures of their imagination. Designing neural networks lets users
understand basic principles of control systems, their architecture, and their
behavior. The editor can also browse and download existing genotypes from
the Internet database.

Framsticks can be used to illustrate basic notions and phenomena like
genes and genetics, mutation, evolution, user-driven evolution and artificial
selection, walking and swimming, artificial life simulation, and virtual world
interactions. However, the simulator has numerous options and parameters
that make it complicated for the first-time users to handle. Thus, a prede-
fined set of parameters and program behaviors was created primarily for the
purposes of demonstration.

Since predefined simulation parameters shift users’ focus from creating and
modifying to observing what is happening in the virtual world, the demon-
stration program was named the Framsticks Theater. It is an easy-to-use
application that includes a number of “shows,” and new shows can be added
by advanced users or developers using scripts (Sect. 5.4). The shows already
included have their script source files available. Each show available in the
Theater has a few major options to adjust (like the number of running crea-
tures, length, and difficulty for the “Race” show) . The list of shows (see also
Fig. 5.29) includes the following:

• Biomorph – illustrates user-driven (interactive, aesthetic) evolution. Users
iteratively choose and double-click a creature to create eight mutated off-
spring.
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Fig. 5.28 FRED: the graphical editor of the Framsticks creatures.

• Dance – effectors of all simulated creatures are forced to work syn-
chronously.

• Evolution – shows evolutionary optimization with predefined fitness crite-
ria, 50 genotypes in the gene pool, and tournament selection.

• Mixed world – no evolution takes place, creatures are just simulated in a
mixed land-and-water environment.

• Mutation – presents a chain of subsequent mutants.
• Presentation – shows various walking and swimming methods of creatures

evolved or constructed by the Framsticks users.
• Race – creatures compete in a terrain race running to the finish line.
• Reproduction – illustrates spontaneous evolution. Each creature with a

sufficient energy level produces an offspring that appears near its parent.
Food is created at a constant rate and placed randomly.

• Touch of life – creatures pass life from one to another by touching.
• Framsbots – the aim of this simple game is to run away from hostile

creatures and make all of them hit one another.

The Framsticks Theater can be run on stand-alone workstations as a show
(artistic installations, shops, fairs), as well as for education (e.g., in biology,
evolution, optimization, simulation, robotics), illustration, attractive graph-
ical background for music, advertisement, entertainment, or screen-saving
mode.
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Fig. 5.29 Four Framsticks Theater shows: introduction, dance, biomorph, and reproduc-
tion.

5.8 Summary

This chapter presented Framsticks, a tool for modeling, simulation, optimiza-
tion, and evolution of three-dimensional creatures. Sections 5.5, 5.6, and 5.7
demonstrated selected features and applications in education, research, and
entertainment. Framsticks is developed with a vision of combining these three
aspects, to make research and education attractive, playing for fun – edu-
cationally involving, and education – a demonstration and introduction to
research. The software is used by cognitive scientists, biologists, roboticists,
computer and other scientists and also by students and non-professionals of
various ages.

Although the Framsticks system is versatile and complex, it can be sim-
plified when some features are not needed. For example, control systems can
be neglected if only static structures are of interest; genetic encoding may
only allow for two-dimensional structures if 3D is not required; simulation or
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evolution can be restricted to a specific type of a neuron; local optimization
techniques can be used if the problem at hand does not require evolutionary
algorithms.

Complexity is useless when it cannot be understood or applied. This is
why Framsticks software tries to present information in a human-friendly and
clear way, encouraging development of automated analysis tools and helping
to understand the phenomena of life and nature.
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Chapter 6

StarLogo TNG: Making Agent-Based
Modeling Accessible and Appealing to
Novices

Eric Klopfer, Hal Scheintaub, Wendy Huang, and Daniel Wendel

Computational approaches to science are radically altering the nature of
scientific investigatiogn. Yet these computer programs and simulations are
sparsely used in science education, and when they are used, they are typically
“canned” simulations which are black boxes to students. StarLogo The Next
Generation (TNG) was developed to make programming of simulations more
accessible for students and teachers. StarLogo TNG builds on the StarLogo
tradition of agent-based modeling for students and teachers, with the added
features of a graphical programming environment and a three-dimensional
(3D) world. The graphical programming environment reduces the learning
curve of programming, especially syntax. The 3D graphics make for a more
immersive and engaging experience for students, including making it easy
to design and program their own video games. Another change to StarLogo
TNG is a fundamental restructuring of the virtual machine to make it more
transparent. As a result of these changes, classroom use of TNG is expand-
ing to new areas. This chapter is concluded with a description of field tests
conducted in middle and high school science classes.

6.1 Computational Modeling

New skills and knowledge will be required to successfully navigate the com-
plex, interconnected, and rapidly changing world in which we live and work.
Older paradigms alone are not sufficient to handle these challenges. The field
of complexity science is providing the insights scientists and engineers need
to push our thinking in new directions [16, 28], providing the tools to move
beyond the reductionist point of view and look at whole systems [31, 4, 10].
This approach has been driven by advances in computer technology that have
facilitated the development of advanced multi-agent simulations. This pow-
erful new modeling approach has been called the third way of doing science,
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with traditional experimentation and observation/description being the other
two [16]. The increasing importance of computational modeling has changed
the knowledge base required to practice science. Scientists in all fields now
rely on a variety of computer skills, from programming computer simulations,
to analysis of large-scale datasets, to participation in the globally networked
scientific communities.

While this explosion in technology and the increased importance of mod-
ern paradigms has radically altered the landscape of science and engineering
practice, these changes have not yet impacted the way high school students
learn and perform science. We believe that computational science and simu-
lation can and should modernize secondary school science courses by making
these tools, practices, and habits of mind an integral part of the classroom
experience. Although the mere use of computer simulations may aid in under-
standing both the scientific concepts and the underlying systems principles,
a deeper understanding is likely to be fostered through the act of creating
models. These principles center on the idea that we must create a culture in
which students can navigate novel problem spaces and collaboratively gather
and apply data to solutions. Resnick [20] suggested that an equally important
goal is for educational programs to foster creativity and imagination. In other
words, students should be acquiring habits of mind that will not only enable
them to address today’s problems and solutions but will also allow them to
venture into previously unimagined territories. To achieve this, they should
have a facility with tools to create manifestations of their ideas so that they
can test them and convey their ideas to others.

6.1.1 Simulations and Modeling in Schools

Science has long relied on the use of scientific models based on ordinary
differential equations (ODEs) that can be solved (in simple cases) without
computers. These models describe how aggregate quantities change in a sys-
tem, where a variable in the model might be the size of a population or the
proportion of individuals infected by a disease. The mathematics required for
these models is advanced, but several commonly used modeling programs like
Model-It 1.1 [29], Stella [24], and MatLab [15] have graphical interfaces that
make them easy to construct. These programs have become very popular in
the classroom as well as the laboratory. The user places a block on the screen
for each quantity and draws arrows between the blocks to represent changes
in those quantities. While this interface does not remove the need for the
user to learn math, it lowers the barrier for entry. However, the abstraction
required to model these systems at an aggregate level is a difficult process for
many people, which often limits the utility of this modeling approach [33].

With the increase of accessibility to the Internet in schools, teachers are
turning to the World Wide Web for visual and interactive tools in the form
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of Java applets or Flash applications to help students better understand
important scientific processes. However, most of these on-line applications
are simulation models whose rules and assumptions are opaque to students.

Additionally, many of the systems that are studied in the classroom are
more amenable to simulation using agent-based modeling. Rather than track-
ing aggregate properties like population size, agent-based models track indi-
vidual organisms, each of which can have its own traits. For instance, to
simulate how birds flock, one might make a number of birds and have each
bird modify its flight behavior based on its position relative to the other
birds. A simple rule for the individual’s behavior (stay a certain distance
away from the nearest neighbor) might lead to a complex aggregate behavior
(flocking) without the aggregate behavior being explicitly specified anywhere
in the model. These emergent phenomena, where complex macro-behaviors
arise from the interactions of simple micro-behaviors, are prevalent in many
systems and are often difficult to understand without special tools.

6.1.2 Computer Programming

Computer programming is an ideal medium for students to express creativ-
ity, develop new ideas, learn how to communicate ideas, and collaborate with
others. The merits of learning through computer programming have been dis-
cussed over the years [8, 11, 12, 18]. As a design activity, computer program-
ming comes along with the many assets associated with “constructionist” [9]
learning. Constructionism extends constructivist theories, stating that learn-
ing is at its best when people are building artifacts. These benefits of learning
through building include [23]:

1. Engaging students as active participants in the activity
2. Encouraging creative problem-solving
3. Making personal connections to the materials
4. Creating interdisciplinary links
5. Promoting a sense of audience
6. Providing a context for reflection and discussion

Other learning outcomes from programming are more broadly applica-
ble. Typical programming activities center on the notion of problem-solving,
which requires students to develop a suite of skills that may be transferable
to other tasks. As students learn to program algorithms, they must acquire
systematic reasoning skills. Modeling systems through programs teaches stu-
dents how to break down systems into their components and understand
them. Many problems require students to acquire and apply mathematical
skills and analysis to develop their programs and interpret the output. To-
gether these skills comprise a suite of desirable learning outcomes for stu-
dents, many of which are difficult to engender through typical curriculum.
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They can also form the cornerstones of true inquiry-based science [2], provid-
ing students with a set of skills that allows them to form and test hypotheses
about systems in which they are personally interested.

6.1.3 Programming in Schools

Computer programming was widely introduced to schools in the early 1980s,
largely fueled by inexpensive personal computers and inspired by Papert’s
manifesto, Mindstorms [17], which advocated that programming in Logo was
a cross-cutting tool to help students learn any subject. Logo was popularly
used to enable students to explore differential geometry, art, and natural lan-
guages. Microworlds Logo [13] extended this use into middle school, where
students continued to learn about mathematics, science, reading, and sto-
rytelling. KidSim/Cocoa/Stagecast Creator [5] brought modeling and simu-
lation to children through a simple graphical programming interface, where
they could learn thinking skills, creativity, and computer literacy. Subsequent
work with Stagecast Creator has shown some success in building students’
understand of simple mathematical concepts through building games [14].
Boxer [7] is used to help students in modeling physics and mathematical rea-
soning while building understanding of functions and variables. Kafai [12]
introduced novel paradigms for helping students learn about mathematics
and social and relational skills through programming of games. Through this
paradigm, older elementary school students use Logo to develop mathemat-
ical games for younger elementary students. It is of note that most of these
efforts have been targeted at elementary-school-aged children. Few efforts
have targeted the middle school and high school audience.

Despite many small-scale research efforts to explore programming in
schools, Papert’s larger vision of pervasive programming in school curricula
encountered some serious problems. Programming did not fit into traditional
school structures and required teachers to give up their roles as domain ex-
perts to become learners on par with the children they were teaching [1].
Computers were used to teach typing skills, and Papert’s vision of program-
ming as a vehicle for learning seemed to be dead in the water.

With the growing popularity of the Internet, many schools have revisited
the idea of computers in the classroom and rediscovered their utility in the
educational process. Schools now use computers to target job-oriented skills,
such as word processing and spreadsheets. Some schools encourage children
to create mass media, such as computer-based music, animations, or movies.
For the last several years, the state of Maine has provided laptops to all of its
7th and 8th grade students (and teachers) to make computers a ubiquitous
tool in every subject in school [30].

Now that computers in school are enjoying a resurgence in popularity, it
is time to reconsider programming as a vehicle toward fluency in information
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technology and advancing science education through building simulation and
complex systems models.

6.2 Original Design Criteria

In designing an appropriate modeling tool for use in the K–12 classroom
we needed to consider several design criteria. One criterion is the choice of
agent-based as opposed to aggregate-based modeling. This approach is not
only more amenable to the kinds of models that we would like to study in
the classroom, but it is also readily adopted by novice modelers.

The next criterion is to create a modeling environment that is a “transpar-
ent box.” Many of the simulations that have been used in classrooms to date
are selected for the purpose of exploring a specific topic such as Mendelian
genetics or ideal gases. Modeling software has been shown to be particu-
larly successful in supporting learning around sophisticated concepts often
thought to be too difficult for students to grasp [26, 32]. Such software al-
lows students to explore systems, but they are “black box” models that do
not allow the students to see the underlying models. The process of creating
models – as opposed to simply using models built by someone else – not only
fosters model-building skills but also helps develop a greater understanding
of the concepts embedded in the model [21, 25, 32]. When learners build their
own models, they can decide what topic they want to study and how they
want to study it. As learners’ investigations proceed, they can determine the
aspects of the system on which they want to focus and refine their models as
their understanding of the system grows. Perhaps most importantly, building
models helps learners develop a sound understanding of both how a system
works and why it works that way. For example, to simulate a cart rolling
down an inclined plane in the popular Interactive Physics program, a stu-
dent could drag a cart and a board onto the screen and indicate the forces
that act about each object. In doing so, the student assumes the existence
of an unseen model that incorporates mass, friction, gravity, and so forth,
calculates the acceleration of the cart, and animates the resulting motion. It
would be a much different experience to allow the student to construct the
underlying model herself and have that act on the objects that she created.

We also considered the level of detail that we felt would be appropriate
in student-built models. All too often, students want to create extremely
intricate models that exhaustively describe systems. However, it is difficult
to learn from these “systems models” [27]. It is more valuable for students to
design and create more generalized “idea models” that abstract away as much
about a system as possible and boil it down to the most salient element. The
ability to make these abstractions and generalize scientific principles is central
to the idea of modeling. For example, a group of students might want to create
a model of a stream behind their school, showing each species of insect, fish,
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and plant in the stream. Building such a model is not only an extremely large
and intricate task, but the resulting model would be extremely sensitive to
the vast number of parameters. Instead, the students should be encouraged
to build a model of a more generalized system that includes perhaps one
animal and one plant species. The right software should support the building
of such “idea models.”

Based on these criteria, we originally created a computer modeling envi-
ronment named StarLogo, which we describe in the next section.

6.3 StarLogo

StarLogo is a programmable modeling environment that embraces the con-
structionist paradigm of learning by building, and it has existed in numerous
forms for many years. StarLogo was designed to enable people to build mod-
els of complex, dynamic systems. In StarLogo [19], one programs simple rules
for individual behaviors of agents that “live” and move in a two-dimensional
(2D) environment. For instance, a student might create rules for a bird, which
describe how fast it should fly and when it should fly toward another bird.
Because StarLogo makes use of graphical output, when the student watches
many birds simultaneously following those rules, she can observe how patterns
in the system, like flocking, arise out of the individual behaviors. Building
models from the individual, or “bird” level, enables people to develop a good
understanding of the system, or “flock”-level behaviors (Fig. 6.1 shows the
graphical interface for the growth of an epidemic, another phenomenon that
can be studied through simulation).

6.3.1 StarLogo Limitations

For years we worked with students and teachers in the Adventures in Mod-
eling (AIM) program, a program which helps secondary school students and
teachers develop an understanding of science and complex systems through
simulation activities using our StarLogo programming environment. AIM of-
fered computer modeling to science and math teachers as part of their profes-
sional development. AIM-trained teachers developed simulations that were in-
tegrated into their standard classroom practices. However, activities in which
students program their own simulations have been limited to a small number
of classrooms. Our research shows that there are several barriers to students
developing their own models in science classes (instead of isolated computer
classes). These barriers include the time it takes to teach programming basics
and teacher and student comfort with the syntax of programming languages.
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Fig. 6.1 The left-hand panel shows a StarLogo model of an epidemic in action. One can
see the interface area, in which users can start and stop the model and adjust parameters,
the running model where the different colors code for different states, and the graphs at
the bottom tracking model data. The right-hand panel shows the code that was written
to generate this model.

These barriers stand in the way of the deeper learning we have observed when
students are given the opportunity to develop their own models.

6.4 StarLogo: The Next Generation

We designed StarLogo: The Next Generation (TNG) to address these prob-
lems and to promote greater engagement of students in programming. Star-
Logo TNG provides two significant advances over the previous version. First,
the programming is now done with graphical programming blocks instead
of text-based commands. This innovation adds a powerful visual component
to the otherwise abstract process of programming. The programming blocks
are arranged by color based on their function, which enables students to as-
sociate semantically similar programming blocks with each other. Since the
blocks are puzzle-piece shaped, blocks can fit together only in syntactically
sensible ways. This eliminates a significant source of program bugs that stu-
dents encounter. Blocks snap together to form stacks, which visually help
students organize their mental models of the program. StarLogo TNG’s in-
terface also encourages students to spatially organize these block stacks into
“breed drawers,” which affords an object-oriented style of programming. Star-
Logo TNG’s second significant advance is a 3D representation of the agent
world. This provides the ability to model new kinds of physical phenomena,
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as shown in Section 6.7, and allows students to take the perspective of an
individual agent in the environment, which helps them bridge the description
of individual behaviors with system-level outcomes.

StarLogo TNG retains the basic language and processes of StarLogo.
Many of the favorite StarLogo complex systems simulations have been repro-
grammed and included in the TNG download. Now users can see “termites”
build 3D mounds in the termite simulation. In the predator-prey simulation
called “Rabbits,” users can choose from a variety of agent-shapes to play the
role of predator and prey; and novice students can build their own African
Plains predator–prey simulation in just two class periods.

6.4.1 Spaceland

As people today are inundated with high-quality 3D graphics on even the sim-
plest of gaming platforms, students have come to expect such fidelity from
their computational experiences. While the 2D “top-down” view of StarLogo
is very informative for understanding the dynamics and spatial patterns of
systems, it is not particularly enticing for students. Additionally, students
often have difficultly making the leap between their own first-person experi-
ences in the kinesthetic participatory simulation activities and the systems-
level view of StarLogo.

Enter “Spaceland,” a 3D OpenGL-based view of the world. This world can
be navigated via keyboard and mouse controls and an on-screen navigator. In
the aerial 3D view (Fig. 6.2), the user can zoom in on any portion of the world
for a closer look and view the 3D landscape as they fly by. First-person views
include the “Agent Eye” and “Over Shoulder” view (Fig. 6.2). In these views,
the user sees out of the “eyes” or over the shoulder of one of the agents in the
system. As the agent moves around, the user sees what the agent sees. This
works particularly well in seeing how agents bump off of objects or interact
with other agents. Shapes can be imported so that the agents in the system
can be turtles or spheres or firefighters (Fig. 6.2). The ability to customize
the characters provides a sense of personalization, concrete representation,
and also of scale. Lending further to the customization capabilities are the
abilities to change the “Skybox” background (the bitmap image shown in the
distance) as well as the texture, color, and topography of the landscape. Since
the top-down view is also still quite useful, that 2D view is seen in an inlaid
“mini-map” in the lower-left corner of the screen. The 2D and 3D views can
be swapped by toggling the Overhead button.

In runtime mode, users will see not just the 3D representation of the world
but also the tools to edit the landscape and the runtime interface (buttons
and sliders) with which a user can interact to start and stop the model or
change parameters on the fly (Fig. 6.3).
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Fig. 6.2 Top-down and turtle’s-eye views in TNG.

Additional 3D Benefits

Making it easier to initially engage students through a more up-to-date look,
a 3D representation has additional advantages. A 3D view can make the
world feel more realistic. This can actually be a limitation in modeling and
simulation, in that students feel that more realistic-looking models actually
represent the real world, but in the proper context, a more realistic-looking
world can be used to convey useful representations of scale and context -
for example, conveying the sense of a landscape or the changing of seasons.
Moreover, the 3D view of the world is what people are most familiar with
from their everyday experiences. Making the leap into programming already
comes with a fairly high cognitive load. Providing people with as familiar
an environment as possible can lighten that load and make that leap easier.
Similarly, a navigable 3D landscape can provide a real sense of scale to a
model that otherwise appears arbitrary and abstract to a novice modeler.
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Fig. 6.3 Runtime view.

Finally, with the proliferation of 3D tools (particularly for “modding” games)
we can tap into the growing library of ready-made 3D shapes and textures
to customize the world.

6.4.2 StarLogoBlocks

StarLogoBlocks is a visual programming language in which pieces of code are
represented by puzzle pieces on the screen. In the same way that puzzle pieces
fit together to form a picture, StarLogo blocks fit together to form a pro-
gram. StarLogoBlocks is inspired by LogoBlocks [3] (Fig. 6.4), a Logo-based
graphical language intended to enable younger programmers to program the
Programmable Brick [22] (a predecessor to the Lego Mindstorms product).

StarLogoBlocks is an instruction-flow language, where each step in the
control flow of the program is represented by a block. Blocks are introduced
into the programming workspace by dragging a block from a categorized
palette of blocks on the left side of the interface. Users build a program by
stacking a sequence of blocks from top to bottom. A stack may be topped
by a procedure declaration block, thereby giving the stack a name, as well
as enabling recursion. Both built-in and user-defined functions can take ar-
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gument blocks, which are plugged in on the right. Data types are indicated
via the block’s plug and socket shapes.

The workspace is a large horizontally oriented space divided into sections:
one for setup code, one for global operations, one for each breed of turtles,
and one for collisions code between breeds. A philosophy we espouse in the
programming environment is that a block’s location in the workspace should
help a user organize their program. While separating code by section appears
to the user as a form of object-oriented programming, in reality the system
does not enforce this. All code may be executed by any breed of turtle. Fish
can swim and birds can fly, but that certainly should not prevent the user
from successfully asking a fish to fly.

Fig. 6.4 The LogoBlocks interface. A simple program is shown that includes logical state-
ments, random behaviors, and movement. The blocks are assembled into a complete pro-

cedure, drawing upon the palette of blocks at the left.

Graphical Affordances

The “blocks” metaphor provides several affordances to the novice program-
mer. In the simplest sense, it provides quick and easy access to the entire
vocabulary, through the graphical categorization of commands. As program-
mers build models they can simply select the commands that they want from
the palette and drag them out. Perhaps more importantly, the shape of the
blocks is designed so that only commands that make syntactic sense will ac-
tually fit together. That means that the entire syntax is visually apparent
to the programmer. Finally, it also provides a graphical overview of the con-
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trol flow of the program, making apparent what happens when. For example,
Fig. 6.5 shows text-based StarLogo code on the left and the equivalent graph-
ical StarLogoBlocks code on the right for a procedure which has turtles turn
around on red patches, decrease their energy, eat, and then die with a 10%
chance or continue moving otherwise.

Fig. 6.5 StarLogo and StarLogoBlocks representations of the same code.

While the code in StarLogoBlocks takes up more space, it can be seen that
the syntax is entirely visible to the user. In contrast, the StarLogo code has
mixtures of brackets [ ], parentheses ( ), and spaces that are often confusing
to users. The if-else conditional fully specifies what goes in which socket. The
if predicate socket has a rounded edge, which can only fit Booleans, such as
the condition shown. Similarly, functions which take integers have triangular
sockets. The two other two sockets (for “then” and “else”) are clearly labeled
so that a programmer (or reader of a program) can clearly see what they are
doing.

Blocks create more obvious indicators of the arguments taken by pro-
cedures, as compared to text-based programming. This enables us, as the
software developers, to provide new kinds of control flow and Graphical User
Interfaces (GUIs) for the blocks without confusing the programmer. Adding
a fifth parameter to a text-based procedure results in children (and teachers)
more often consulting the manual, but introducing this fifth parameter as a
labeled socket makes the new facility more apparent and easier to use. Graph-
ical programming affords changes in these dimensions because a change in
the graphics can be more self-explanatory than in a text-based language.

While StarLogoBlocks and LogoBlocks share the “blocks” metaphor, Star-
LogoBlocks is presented with much greater challenges due to the relative
complexity of the StarLogo environment. LogoBlocks programs draw from a
language of dozens of commands, are typically only 10–20 lines long, have a
maximum of 2 variables, have no procedure arguments or return values, and
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have no breeds. StarLogo programs draw from a language with hundreds of
commands and can often be a hundred lines or more long. Screen real estate
can become a real limit on program size. Driven by this challenge, we cre-
ated a richer blocks environment with new features specifically designed to
manage the complexity and size of StarLogo code.

Fig. 6.6 The StarLogoBlocks interface.

One of the most important innovations is to incorporate dynamic animated
responses to user actions. We use this animation to indicate what kinds of
user gestures are proper and improper while the user is performing them.
For example, when a user drags a large stack of blocks into an “if” statement
block, the “if” block will stretch to accommodate the stack. See the “Move
to Tree” procedure in Fig. 6.6. The first part of the if-else command has
two commands to run (Move With Wind and inc Energy), while the else has
many (starting with a nested if command inside of it). The blocks expand to
fit as many commands as necessary so that the else clause could in theory
have dozens of commands.

If a user tries to use a procedure parameter in a different procedure from
which the parameter was declared, all of the block sockets in the incorrect
stacks of blocks close up. When a user picks up a number block to insert
into a list of values (which in Logo may contain values of any type), all block
sockets in the list will morph from an amorphous “polymorphic” shape into
the triangular shape of a number, to indicate that a number block may be
placed in that socket. We plan to continue adding new kinds of animations
to help prevent users from making programming errors in the system.
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These animations are implemented using vector-based drawing. Vector
drawing enables a second important feature: the zoomable interface. Using a
zoom slider, the user can zoom the entire interface easily (see the zoom slider
in the upper right of Fig. 6.6) to look closely at a procedure they are writing
or to expand their view to see an overall picture of their project.

Another innovation has been “collapsible” procedures. Individual proce-
dures can be collapsed and expanded to see or hide their contents. This allows
the programmer to build many small procedures and then “roll up” the pro-
cedures that they are not using and put them on the side. Fig. 6.6 shows
the “Move To Tree” procedures in its unrolled state. The individual com-
mands are visible, but they can be hidden by clicking on the plus sign on the
block. Additional advances provide for the easy creation of new procedures,
including procedures with an arbitrary number of parameters and variables.
Also of note is the ability to enter blocks simply by typing, a method we call
“typeblocking.” Typeblocking allows for quick entry of blocks, making the
construction of sophisticated projects quite rapid for experts.

Together, these innovations lower the barrier of entry for programming,
thus facilitating model construction/deconstruction in the context of science,
math, or social science classes.

6.5 The StarLogo TNG Virtual Machine

The StarLogo TNG virtual machine (VM) is responsible for executing the
commands that make up a StarLogo TNG program. It is at the core of Star-
Logo TNG, giving virtual life to the agents living in Spaceland and running
their StarLogoBlocks programs. The VM has several advancements aimed at
making StarLogo TNG programs faster, more flexible, and easier to under-
stand than their StarLogo 2 counterparts.

6.5.1 The Starting Point: StarLogo 2

The StarLogo TNG virtual machine is based on the design of the StarLogo
2 virtual machine, which allows thousands of agents to execute programs
in pseudo-parallel, meaning that execution, although serial in actuality, is
switched so quickly between agents that it appears to be almost parallel. In
StarLogo 2, each agent executes a handful of commands and then the VM
switches to the next agent, allowing it to execute a handful of commands, and
so on. Each time an agent moves, changes color, or changes any of its state,
its visible representation on the screen is updated immediately. Additionally,
movement commands such as forward (fd) and back (bk) are broken up into
single-step pieces, effectively converting fd 5 into five copies of fd 1. This
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causes the execution to appear almost as if it is parallel, as each agent only
takes a small step or does a small amount of execution at a time.

6.5.1.1 Synchronization

The design of StarLogo 2’s VM is effective for many types of programs, but
it also leads to several conceptual difficulties stemming from the problem of
synchronization. In any pseudo-parallel system where two agents interact,
synchronization takes place when the agents momentarily enter the same
frame of time. For example, if two agents meet and each decides to take the
color of the other, one of them will in actuality go first, leading to unexpected
behavior. In the colors example, if a red and blue agent meet, and the red one
goes first, it will take the color of the other, thereby becoming blue itself. The
blue agent, then, because it executes second, will take the color of its now
blue partner, producing a net result different from what is expected at first
glance. Another synchronization-related difficulty is getting agents to move
at the same pace. In StarLogo 2’s VM, an agent with fewer commands in its
program will execute the entirety of its program more quickly than one with
more commands, causing that agent to appear to move more quickly even
if both agents’ only movement command in each iteration of the program is
fd 1.

6.5.1.2 Speed Control

Another difficulty stemming from the StarLogo 2 VM is that agents cannot
predictably be made to move faster or slower. As described above, adding
commands to an agent’s program can slow it down, but if the programmer
tries to make the agent go, for example, fd 2 to make up for lost time, the
command is broken down and run as two separate steps of fd 1, making fd
1 the absolute fastest speed possible. Additionally, because the extra com-
mands slow the overall movement rate, there is no guarantee that an agent
executing fd .5 as a part of its program will be moving half as fast as an
agent executing fd 1, unless both agents also have an identical number of
other commands. This makes any type of model where velocity needs to be
explicitly controllable difficult to program in StarLogo 2.

6.5.1.3 Atomicity

A third, and perhaps the most important, drawback to the StarLogo 2 VM is
that it does not allow agents to execute sequences of commands atomically,
or as one command without interruption. By enforcing its pseudo-parallel,
instantly visually updated execution model, the VM causes all agent com-
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mands to be reflected on the screen. For example, the command sequence left
90, forward 1, right 90 (lt 90, fd 1, rt 90 in StarLogo 2) causes the agent to
turn twice, even though the final heading is the same as the initial heading.
If a programmer wanted to program a sidestep, in which the agent simply
slid to the left while still facing forward, he or she would be out of luck. In
fact, StarLogo 2’s VM requires a new built-in primitive command for every
action that needs to be animated as one fluid action rather than steps.

6.5.2 StarLogo TNG: The Next Step Forward

StarLogo TNG’s VM was designed with the pros and cons of StarLogo 2
in mind, and it specifically addresses the issues of synchronization, speed
control, and atomicity mentioned above. The StarLogo TNG VM is similar
to the StarLogo 2 VM in that it allows agents to execute commands, but
its execution model is substantially different. Rather than letting each agent
execute one or a handful of commands before switching to the next agent,
the StarLogo TNG VM actually lets each agent run all of its commands
before switching. Additionally, visible updates to the agents and the world
are only displayed at the end of the execution cycle after all of the agents
have finished. In this way, although agents run fully serially, the visible output
is indistinguishable from that of truly parallel execution, as every agent is
updated graphically at the same time.

6.5.2.1 Synchronization

Synchronization issues, although still existent in StarLogo TNG, are now
explicit and more easily understandable. Whereas in StarLogo 2 one could
never be sure which agent would execute a command first, in StarLogo TNG
the agent with the lower ID number is guaranteed to go first, leading to
behavior that can be predicted and therefore explicitly programmed. In the
example with the red and blue agents, if the programmer knew the red agent
would always execute first, he or she could tell the red agent to save its
old color to variable before setting its new color. Then when the blue agent
executes, it can look at the value in the variable rather than at the other
(previously red) agent’s current color. Note that such a solution only works
because of the explicit nature of synchronization in StarLogo TNG. If the
programmer were unsure of which agent was going to execute first, he or she
would not know which agent should look at the actual color and which should
look at the color stored in the variable.
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6.5.2.2 Speed Control

StarLogo TNG’s VM also addresses the issue of controlling movement speed.
Rather than breaking up movement commands into smaller steps (which
would be futile since all commands are executed before switching anyway),
it executes the commands fully and relies on Spaceland to draw the changes
properly. Spaceland takes the difference in location and heading between con-
secutive execution cycles of each agent and draws several intermediate frames
of animation connecting the two, making for smoothly animated movement
at the user-programmed speed rather than jerky jumps as agents change lo-
cations instantly. To the users, an agent moving forward .5 simply appears
to be moving half as fast as an agent moving forward 1.

6.5.2.3 Atomicity

Probably the most powerful benefit of StarLogo TNG’s revised execution
model is that it allows programmers to define new atomic actions. Sidestep-
ping, for example, is the automatic result of turning left 90, moving forward 1,
and turning right 90. Because Spaceland only interpolated between the previ-
ous execution cycle and current one and because the heading ended up where
it started, no heading change is animated, making for a smooth sidestep. This
same pattern holds for arbitrarily complex sequences of commands, allowing
the agents to perform complex measurements such as walking to every neigh-
boring patch to see which is higher, while only appearing to move the distance
between the prior execution cycle and the current one.

In fact, although extremely powerful, this atomicity can be difficult to
grasp at first because it causes some commands to be executed invisibly.
StarLogo TNG addresses this problem with the introduction of the yield
command, which causes the agent executing it to save its current state and
end its turn in the execution cycle, thereby allowing Spaceland to draw its
state at that intermediate moment in its execution. Then, in the next exe-
cution cycle, the agent restores its state and continues from where it left off
rather than starting from the beginning of its program again. By making the
execution model more explicit, StarLogo TNG avoids confusion while giving
more power and flexibility to the programmer.

6.5.3 An Addition in StarLogo TNG: Collisions

StarLogo TNG’s VM also implements a new form of interaction that is easy
for programmers to understand and use: collisions. The collisions paradigm
allows for event-driven programming, in that users can specify commands for
each type of agent to run in the event of a collision, and the VM constantly
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checks for collisions and tells the agents to execute the specified commands
as appropriate. For example, a common collision interaction would be for one
agent, the “food,” to die, while the other, the “consumer,” increments its
energy. This pattern is also particularly useful in games where a character
collects items for points or additional capabilities. An additional benefit of
introducing collisions as an event-driven paradigm is that it allows the VM
to calculate collisions once, for all agents, rather than having agents ask for
surrounding agents, as they do in StarLogo 2.

All of the features in StarLogo TNG, including the virtual machine, were
made with the goals of providing the user with more power and flexibility
while simultaneously lowering the barrier to entry for novices. By starting
with a proven capable VM from StarLogo 2 and improving it with the ad-
ditions and adjustments described above, all based on feedback from users
and careful thought, StarLogo TNG moves closer to those goals. By doing so,
it opens up new possibilities and new domains for StarLogo TNG, including
games and physics simulations, as discussed in Section 6.7.

6.6 StarLogo TNG Example Model

To illustrate the features of StarLogo TNG, this section describes how to
build a simple model of an epidemic – a model in which red agents represent
sick individuals and green agents represents healthy individuals. When a red
individual touches a green one, the green one will get sick. Then we add a
recovery variable that can be adjusted by the user and graph the changing
number of sick and healthy agents.

6.6.1 Setup

First, we will create some agents and put them on the screen. In the Setup
section of the canvas, we put together the following blocks:

The Setup block runs once to set the initial conditions of the simulation. In
this case, we want to delete all agents from the previous run, create 500 turtle
agents and set their color to green (to represent 500 healthy individuals), and
scatter them randomly in Spaceland. Note that turtles are the default agent,
but both the name and shape can be changed in the Breed Editor:

To test the Setup block, look at the Runtime space connected to Spaceland.
You should see a button named Setup. Click it and you will see the agents
created and dispersed as seen in Fig. 6.9.
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Fig. 6.7 Setup block for epidemic model.

Fig. 6.8 Breed Editor.

6.6.2 Seeding the Infection

To infect some of the turtles at the start, we put together some blocks in
a Run Once block and put them in the Setup area. We edit the Run Once
name to say Infect to identify the purpose of this Run block (Fig. 6.10).

Notice that the Infect code is connected to a hook that is labeled “Turtles.”
This means that every turtle agent runs this If block once. The If block test
condition randomly selects a number between 1 and 100 and compares it to
10. If the randomly selected number is less than 10, the turtle agent executes
the then section of the block, which tells it to set its color to red. Since
random 100 means that every number between 1 and 100 is equally likely to
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Fig. 6.9 Five hundred healthy agents created and scattered in Spaceland.

Fig. 6.10 Infect Run Once code to seed the infection at the start of the simulation.

be selected, there’s a 10% chance that the number selected will be less than
10 and thus, approximately 10% of the 500 turtles will be infected.

We can test the Infect code by clicking on it in the Runtime window. The
results are seen in Fig. 6.11.

6.6.3 Motion

To get the agents moving, we use a Forever block, which works as a loop.
As seen in Fig. 6.12, we put the Forever block in the Runtime section of the
programming canvas and attach some movement blocks to it to make the
turtle agents move forward, with some random left and right “wiggle.”
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Fig. 6.11 Result of the Infect code as shown in Spaceland.

Fig. 6.12 Forever (loop) code to make the agents move.

The forever block also appears in the Runtime window and clicking on it
will produce a green highlight to show that the forever block’s code is running
continuously in a loop until it is clicked again to stop (Fig. 6.13).

Fig. 6.13 Forever block turned on in Runtime window.
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Fig. 6.14 Collision code between two turtle agents to spread the infection.

6.6.4 Infection

We program a Collision block to get the agents to infect each other when they
“touch” when moving around in Spaceland. The Collisions blocks are found
in the My Blocks palette, where breed-specific blocks are located. We drag
the Collisions block between Turtles and Turtles to the Collisions section of
the canvas (Fig. 6.14) and put in some blocks that tests if the color of the
turtle being collided with is red. If it is, then the turtle agent turns its own
color to red, showing that it has been infected by the other red (and sick)
turtle. We use the same test for both turtles in the collision to make sure
that we cover both cases where either of the turtles in the collision can be
red.

Now when we run the model, we can see the infection spreading as more
and more agents turn red from contact with other red agents (as seen in
Fig. 6.15).

6.6.5 Recovery

To make our model more complex, we can add a recovery element, which is
represented by a percent change of recovery (change color to green). Thus,
during each iteration of the Forever loop, all turtle agents will have some
chance of recovering, according to a percent chance variable that the user
can set with a slider. A high number means a higher chance of recovering
and a low number means a lower chance of recovering.

First, we create a global variable called Recovery by dragging out a “shared
number” block from the Variables drawer to the Everyone page of the canvas
and renaming it Recovery as seen in Fig. 6.16. Because we want the user to
set the variable, we also drag out a slider block and snap it in front of the
shared number block.
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Fig. 6.15 Most of the agents infected after some time as a result of the Collision code.

Fig. 6.16 Slider block attached to variable declaration.

In the Runtime window, the slider appears as in Fig. 6.17.

Fig. 6.17 The slider appears in the Runtime window so that the user can adjust the value
of the Recovery variable.

The minimum and maximum values of the slider can be adjusted by click-
ing on the numbers below the slider and typing in new values.

To give the turtles a chance to recover, we write a procedure called Recover.
To define a procedure, we grab a Procedure block and put it in the Turtles
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section of the canvas. Rename the procedure Recover and put in the code as
shown in Fig. 6.18, noting that it uses the recovery variable.

Fig. 6.18 Recover procedure for epidemic model.

Now we have the turtle agents call the Recover procedure in the Forever
block so that the turtle agents run the Recover code after they move during
each iteration (Fig. 6.19).

Fig. 6.19 Turtle agents call the Recover procedure as part of Forever code.

6.6.6 Graphs

It is useful to track and compare the numbers of healthy and sick turtles over
time so the code in Fig. 6.20 shows how to set up a double-line graph.

Fig. 6.20 Code to set up a line braph that tracks the number of green and red agents.

The line graph appears in the Runtime window and can be double-clicked
to enlarge in a separate window with other options (Fig. 6.21).
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Fig. 6.21 How the line graph appears in the Runtime window.

These are just some of the basic features of programming a simulation
model in StarLogo TNG: Setup, Forever, Breed Editor, Movement, Collisions,
Slider, Variables, Procedures, and Line Graph.

6.7 Field Testing

StarLogo TNG has been downloaded by more than 10,000 users to date and
it is being used in a variety of schools, clubs, and learning environments. We
have used StarLogo TNG for introducing programming to students, teaching
complex systems, and providing in-depth insights into a variety of scientific
concepts. One of the most recent forays that StarLogo TNG has enabled is
its use in physics classes. The following subsection is a description of this use.

6.7.1 Learning Physics Through Programming

diSessa [6] showed that fundamental physics concepts could be made accessi-
ble to students as early as the sixth grade by using simple programming
activities. We believed that at the high school level, programming could
help students build a deep understanding of traditionally difficult physics
concepts, so we introduced StarLogo TNG programming basics through a
series of physics-based activities to three high school physics classes at a
private school in the Boston metropolitan area. A video-game-building activ-
ity helped establish a relationship between students and TNG that enabled
them to use TNG effectively as a learning tool. Students programmed real-
istic motion in their games, including velocity, acceleration, friction, gravity,
and other aspects of Newtonian physics. The algorithmic thinking of the 2D
motion activities provided a new and useful entry point for learning physics
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concepts that along with labs and problem-solving formed a stable, three-
legged platform for learning that aided classroom dynamics and appealed to
a diversity of learning styles. While students in this study were not randomly
assigned, three other comparable physics classes at the same school were used
for comparison. Data were collected in the form of written assessments, lab
reports, surveys, and interviews.

We found that TNG programming and simulations were useful in the
physics classroom, because TNG added a new dimension to the ways stu-
dents think and learn physics. For example, a physics teacher usually defines
velocity as displacement/time, v = d/t. Then she describes the motion of
an object by stating that it has a velocity of, say, 1 meter per second. With
TNG, students program motion by building the code (Fig. 6.22): set x [x
+1]. The 1 is called stepsize – the distance an agent moves in each time-step.
Stepsize is equivalent to the concept of velocity. The code is abstract, but
less so than the equation. When executing the code, students see the agent
stepping 1 unit each time-step. TNG has graphing capabilities, so they can
see how their agent, executing the code they built, generates a linear position
versus time graph.

TNG proved to be more than a programming environment; it was a tool
with which one could think and ask questions. If some students in the class
are setting x [x+1] while others are setting y [y+1], there is a good chance
someone in the class will ask, “What if I set x [x+1] and set y [y +1] to-
gether?” If the physics teacher creates an environment where some students
are programming motion in the x direction and others in the y direction,
there is a very good chance that someone in the room will “discover” that
if x and y direction codes are executed simultaneously, the agent will move
diagonally. TNG made the discovery of the vector addition of motions more
likely.

The concept of simultaneous but independent change that is central to
understanding 2D motion is difficult and frustrating to teach and learn. We
hypothesized that by adding the programming of 2D motion in a virtual
world, in addition to the usual mathematical analysis of that motion in the
physical world, we could enhance the understanding of this difficult concept.
Below are some programming activities that both introduced and supported
the new concepts students would need to develop a deep understanding of
2D motion.

Students began the unit by building separate simple programming proce-
dures that changed agent attributes like color, size, or location. Keys could
be pressed individually or simultaneously, producing many humorous combi-
nations of change.

Students recognized that the value “1” represented the distance covered
in a given iteration. This number, designated “stepsize,” was linked to the
concept of velocity – the distance covered in a given second. With stepsize
as a variable (Fig. 6.23), students could change “velocity” by using a slider
that sets that variable and moves their agent in any desired direction.
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Fig. 6.22 Simultaneous and Independent change – code of keyboard controls that change
agent attributes.

Fig. 6.23 Stepsize and Variables – code of keyboard controls for movement where the
steps taken can be adjusted as slider variables.

The teaching of the advanced programming concept of variables and the
addition of vertical and horizontal motions occurred naturally, linked by the
students’ desire to create a variety of motions for their agents. Because stu-
dents were comfortable with TNG as a learning tool, the new ideas were
introduced and the learning occurred in an environment where students had
competence, comfort, and confidence.

The culmination of the kinematics section was a unit on projectile motion.
To get realistic vertical motion, students added a procedure for the negatively
directed acceleration of freefall in the z direction to independent motions on



178 Klopfer, Scheintaub, Huang, and Wendel

the ground. To give students experience with this hard-to-picture situation,
a game was used. Students built a jumping game from instructions and the
help of two students in the class who had used jumping in their video game.
To get an agent to jump over an obstacle, students had to separately build
yet simultaneously execute a constant-velocity, move-forward procedure and
a vertical-jump procedure that employed acceleration. The goal of the game
was to get a raccoon to jump over a wall and hit a target (Fig. 6.24).

Fig. 6.24 Jumping game screenshot – students adjust variables to get the racoon to jump
over the wall and land on the target on the other side.

Here, solid, experiential learning is achieved with the game-like simulation.
“To get the raccoon to hit the donut, I had to. . . I changed the horizontal
stepsize smaller, and increased the raccoon’s jump start speed (initial vertical
velocity). I did this because a large horizontal stepsize made the agent exceed
past the donut.”

The acquisition of new skills and confidence through programming is
demonstrated in this anecdote. In a junior physics class, students built
swimmer-in-river simulations as part of a unit on vectors. The model has
a swimmer with velocity, s, swimming at a given heading across a river of
given width with current velocity, r. After building and playing with the sim-
ulation, students were assigned 2D motion problems for homework. During a
class discussion about the answer to a contested problem, one student went,



6 StarLogo TNG 179

unprompted, to the computer and opened his swimmer model. He plugged
the variables of the problem into the code of the model and ran the model.
As the swimmer reached the opposite shore, he exclaimed, “I told you I was
right!” When asked in an interview why he chose to use the computer rather
than mathematical analysis to prove his point, he said. “This way you could
see I was right.” StarLogo simulations were a comforting, concrete, and use-
ful refuge for some students in the sometimes troubling abstract world of
physics equations. One student commented in an interview after the projec-
tile motion test, “When I do TNG everything makes sense and I can do it.
Once . . . the questions are all on paper, it really messes me up and I have
problems doing it.” In one of the physics class that used StarLogo TNG, while
75% of the surveyed students agreed with the statement that the StarLogo
unit was more difficult than other units, 100% of the students felt the unit
was more rewarding.

6.7.2 From Models to Games

We developed and piloted StarLogo TNG curricula at two middle schools in a
low-income town in Massachusetts. At one school, students learned program-
ming by creating a first-person perspective treasure hunt game, in which the
player controlled an agent using the keyboard to “collect” treasure and avoid
hazards. Students had little to none prior programming experience. What is
most striking from this field test is students’ motivation to learn advanced
programming concepts because they want to add a “cool” feature in their
games, like shooting a projectile or creating a pattern in Spaceland’s terrain.
Also, when one student discovers how to use a particular block, such as “say”
or “play sound,” the knowledge quickly spread throughout the class and are
incorporated into the students’ own games. These two elements – a “need-to-
know” desire to learn and informal peer learning – are features of classrooms
where students are excited and motivated to persevere through challenging
activities.

At another middle school pilot site, students made observations of and
conducted experiments by manipulating variables of simulation models of
forest fires and virus epidemics. The interesting twist is that they then turned
these simulations into games by adding breeds and keyboard controls. The
first activity took about 1 hour and the second activity took between 1 and 2
hours. So within 3 hours, students were able to both learn to use a simulation
and program a basic game, with the guidance of a teacher and supporting
worksheets.

When interviewed about their experiences, students shared the following:

• “You changed my mind. I thought that I was never going to be a program-
mer. I thought that the computer was just for work, and to look [up] stuff,
and research on the Internet. . . it’s more than just work and stuff, you can
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do whatever you want on the computer. It was a process ‘cause to tell you
the truth. I thought it was going to be boring. I usually play video games,
not make them. But it was fun.”

• “It’s like science, but better. It’s not all textbook. You get to do what
you’re learning. We were doing things that we’re going to remember be-
cause with Starlogo, I’m going to keep on keep on using it, using it, using
it and I’m going to keep on getting better. . . I’m not going to forget it, like
if I was reading a book or something.”

• “It makes me think about how to control things. I have to think. I have
to use calculations.”

6.8 Conclusion

The testing and focus groups that we have used so far have suggested that the
blocks design will promote the use of StarLogo as a programming tool in the
classroom. Teachers can feel more secure using a tool that removes anxiety
about getting the syntax right and makes learning programming easier. While
it is still early to tell, it seems that it may also provide a more female-friendly
programming environment than other tools.

The 3D world is “definitely cool,” in the words of many of the students.
While teachers have been more lukewarm in their reception of this aspect,
they recognized that it will be more attractive to students. It is clear that
both 2D and 3D representations will have a place in the learning environ-
ment, and the ability to customize the world and make it look like something
recognizable (although not realistic – which is important in conveying that
these are simply models) is a big plus for students as they approach modeling
for the first time. It also allows students to invest themselves personally in
their products, which is empowering and motivating.

StarLogo TNG will be in development for some time. Some of the next
steps involve adding features like network connectivity and joystick control,
in order to add to the attraction of those wishing to build games. However,
we also will be building libraries of blocks for specific academic domains
(e.g., ecology, mechanics, etc.) that will allow students to quickly get started
building science games using some higher-level commands, which can, in turn,
be “opened up” and modified as their skills progress.
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Chapter 7

From Artificial Life to In Silico
Medicine: NetLogo as a Means of
Translational Knowledge
Representation in Biomedical Research

Gary An and Uri Wilensky

Biomedical research today stands at a crossroads. There is a widening gulf be-
tween the extent of knowledge regarding basic mechanistic processes and the
ability to integrate that information into explanatory hypotheses of system-
level behavior. Techniques from the Artificial Life community can aid in
bridging this gulf by providing means for visualizing and instantiating mech-
anistic hypotheses. This will allow the development of in silico laboratories
where conceptual models can be examined, checked, and modified. NetLogo is
a “low threshold, high ceiling” software toolkit that has been used to develop
agent-based models (ABMs) in a multiplicity of domains and provides a good
platform for the computational instantiation of biomedical knowledge. This
chapter presents a brief overview of NetLogo and describes a series of ABMs
of acute inflammation at multiple levels of biological organization.

7.1 Introduction

7.1.1 A Different Type of “Artificial Life”

Artificial life, as the name suggests, consists of reproducing the processes of
life in a man-made, often computational, setting. A great deal of Artificial
Life research has focused on examining the core properties of life by stripping
away those aspects that may be present in our world resulting from histor-
ical accidents in order to develop general theories of life [43]. Software tools
that have arisen to enable this type of investigation have the capabilities
to reproduce those presumptive central characteristics of biological systems.
However, the development of these tools has also led to a parallel but related
area of investigation, one that focuses on the use of Artificial Life-derived
methods to recreate and represent existing biological systems. This capabil-
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ity has enabled the creation of a new laboratory environment, an “in silico”
environment that can serve as a vital adjunct to traditional in vitro (in a test
tube) and in vivo (in an experimental animal) experimental methods. In this
fashion, Artificial Life-derived techniques and the use of ABMs, in particu-
lar, can serve a vital integrating role to address some of the major hurdles
facing biomedical research. In this chapter we present examples of the use of
the NetLogo integrated agent-based modeling environment [79] as a labora-
tory environment for biomedical research. NetLogo is a widely used general-
purpose agent-based modeling environment. It is designed with the principle
of “low threshold, high ceiling” [67] – that is, easy learnability for novices yet
high performance for researchers. As such, NetLogo is in widespread use in
both research and educational contexts. This dual-audience flexibility makes
NetLogo ideal for use in interdisciplinary research contexts where its general-
ity and ease of use enable all the research team members to participate in the
modeling activity and to communicate via the NetLogo model. As such, Net-
Logo is well suited to the context of biomedical research, where, in general,
most biomedical researchers are not cross-trained in mathematical modeling
or computer simulation and often do not have the spare intellectual capital
to invest in acquiring the expertise required to master general-purpose com-
puter programming. The “low threshold, high ceiling” property of NetLogo
has the following potential benefits as a biomedical research tool:

can produce a tangible in silico representation of their existing mental mod-
els provides vital early positive feedback to encourage continued pursuit
of a new methodology.

2. Enabling the researchers themselves to do the actual coding and modeling
provides a basic practical literacy with respect to the application of simu-
lation and computational tools to biomedical problems and will facilitate
future communications with computer scientists/applied mathematicians
as these applications develop and may evolve to other platforms.

3. The actual exercise of creating a NetLogo model enables formalization of
existing mental models, can stimulate beneficial introspection on the part
of the biomedical researcher regarding his/her underlying assumptions,
and help hone in on further directions in a particular research plan.

4. The ease of “reading” and widespread use of NetLogo enable researchers
to communicate and disseminate their work clearly and broadly.

The examples of NetLogo models presented in this chapter take advantage of
all these benefits, with the overall goal of demonstrating dynamic knowledge
representation of a particular multi-scale biomedical system: acute inflamma-
tion.

1. The rapidity with which non-computer-programming biomedical researchers
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7.1.2 Modern Medicine and Limits of Reductionism:
The Translational Challenge

Over the last 50–75 years biomedical research has made huge strides. The
advent of molecular biology, arising from the discovery of DNA, opened a
new mechanistic frontier for the examination and analysis of biological sys-
tems. Based on the principle of reductionism, the concept that finer and
finer-grained analysis of components and mechanisms would provide under-
lying core principles and understanding, biomedical research generated huge
volumes of data and hypotheses regarding the basic processes associated with
health and disease. However, starting in the 1970s, it was becoming evident
that biological behavior and the health/disease dynamic were very much more
than the sum of their parts. The efficacy of biomedical research to provide ad-
vances in the areas of infectious disease, public health, and surgical technique
was not being reproduced in addressing “systems” diseases such as cancer,
critical illness, autoimmunity, diabetes, and acquired immune deficiency syn-
drome (AIDS). This simmering crisis was crystallized in the United States by
a publication by the United States Food and Drug Administration (USFDA)
of a monograph titled Innovation or Stagnation: Challenge and Opportunity
on the Critical Path to New Medical Products [27]. The central problem ad-
dressed was the steadily decreasing efficiency of the output of health-care
research dollars between 1993 and 2003 in terms of release of effective medi-
cal therapeutics. This represented a widening translational gulf between the
bench and the bedside.

What is the basis of the translational divide? To a great degree the
translational challenge arises from a combination of the multi-scale, multi-
hierarchical nature of biological systems and the existing research structures
that have evolved to study them. The hierarchical structure of biological sys-
tems is well recognized: gene to protein/enzyme to cell to tissue to organ
to organism. The existence of these levels (which can be thought of as rep-
resenting successive levels of emergent phenomena) presents significant bar-
riers to the inference of‘cause-and-effect mechanistic knowledge at one level
to behavior at a higher one. This epistemological barrier between scales of
biological organization is one of the hallmarks of complex systems and why
these systems need to be studied in an integrated fashion [94]. Conversely,
the organization of the biomedical research community that has evolved to
study these different scales has been based on a reductionist paradigm. The
treatment of each of these levels as a separate focus of investigation has led to
a compartmentalized structure and organization of the biomedical research
community. As pointed out in the USFDA Critical Path statement referenced
above, the consequences of structure are seen primarily in attempts to develop
effective therapies for diseases resulting from disorders of internal regulatory
processes. Examples of such diseases are cancer, autoimmune disorders, and
sepsis, all of which demonstrate complex, non-linear behavior and are insuf-



186 Gary An and Uri Wilensky

ficiently characterized when their components are studied in isolation. The
investigation of such processes therefore presents a significant challenge that
must be met by the development of translational methodologies that need to
function as bridges both vertically from the bench to the bedside and link
horizontally across multiple researchers focused on different diseases.

Thus, there is a growing recognition within the biomedical research com-
munity of the limits of reductionism and the need to apply a systems- level
approach to attempt to reintegrate the mechanistic knowledge being gen-
erated [68, 71, 59]. In particular, it was recognized that such attempts to
apply complex systems analysis to biomedical problems should not strive to
supercede reductionist methods, but rather provide a synthetic adjunct to
ongoing research endeavors [68, 8]. The development of in silico biomedical
research is the response to this recognition.

Accomplishing this goal requires dealing with the “nine hundred pound
gorilla” in the room of biomedical research: a seemingly unsolvable paradox
between the volume of information and the completeness of information. On
one hand, the sheer volume of biomedical knowledge that has been (and con-
tinues to be generated) is overwhelming. It is extremely challenging for a
single researcher to have even semi-comprehensive knowledge of the state of
even a small fraction of this information; expanding the scope of this knowl-
edge to approach the integrative goal needed for translational interpretation
is functionally impossible. However, even if it were possible for a researcher
to know everything that was published regarding and connected to a par-
ticular disease process or biological function, that knowledge would still be
incomplete, as the multiplicity of components and their interactions neces-
sarily means that there likely will always be additional information yet to be
identified. Therefore, the common charges against the use of computer sim-
ulation and mathematical modeling focus on these two paradoxical aspects:
(1) there is too much information to include and (2) something is left out.

The solution to this paradox lies in maintaining appropriate expectations
and placing the development of synthetic translational tools in the appro-
priate context: Mathematical modeling and computer simulation are not in-
tended to be a panacea to the challenge of integrating biomedical knowledge,
but rather as improvements on methods currently employed. The synthetic
process of integrating experimental results into hypotheses and conceptual
models relies, as it is currently executed, heavily upon intuition. As such, it
is poorly formalized and thus difficult to probe and parse when things do
not turn out as expected. What is sought, therefore, are methods of formal-
izing the process of knowledge representation, particularly in terms of the
dynamic instantiation of knowledge as a means of hypothesis visualization
and evaluation. The goal is to produce probeable synthetic constructs that
can be tested by both their creator and other researchers and unambigu-
ously communicated to the community as a whole. In this context, the use
of computational models should be considered a means of “conceptual model
verification” [90], in which mental or conceptual models that are generated
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by researchers from their understanding of the literature and used to guide
their research are brought to life such that the behavioral consequences of
the underlying beliefs can be evaluated. It is in addressing the synthetic as-
pect of science that the lessons of Artificial Life, and agent-based modeling
in particular, come to the fore.

7.1.3 Agent-Based Dynamic Knowledge
Representation and In Silico Laboratories

One of the major lessons from Artificial Life research is that biologically com-
plex behaviors can be generated and substantial insights can be obtained,
with relatively simple, qualitative models. The fact is that biological systems
are robust, existing in a wide range of conditions while retaining a great de-
gree of stability with respect to form and function. When Artificial Life is
used to examine core biological processes (such as evolution, swarm behavior,
and morphogenesis), the search for the minimal rule-set that can recogniz-
ably reproduce the desired behavior is seen as a proxy for identifying the
most general and therefore most basic principles. If, however, the goal is to
narrow the focus of investigation and increase the resolution of the behaviors
under study, then the progressive addition of more and more details provides
a mechanism for approaching a more realistic model. While one must always
be careful to conflate a plausible solution with an exact solution, the cor-
relative relationship between a set of generative mechanisms and observed
recognizable behaviors has a strong tradition within both the Artificial Life
and bioscience community as a basis of inference and hypothesis formation.
In particular, this has been formalized as Pattern Oriented Analysis as a
means of developing and interpreting ABMs, one of the primary computa-
tional techniques used in the Artificial Life community [31].

The development of ABMs is a computational modeling methodology that
employs computational objects, and is rule based, discrete event and discrete
time. Agent-based modeling focuses on the rules and interactions between
the individual components (“agents”) of a system, generating populations
of those components and simulating their interactions in a virtual world to
create an in silico experimental model. There are several characteristics of an
ABM that sets it apart from other rule-based modeling systems:

• ABMs are spatial. As the field of agent-based modeling was much influ-
enced by work in two-dimensional (2D) cellular automata many ABMs are
grid based. This legacy enables spatial representation of structural rela-
tionships within a system. Non-mathematicians can model fairly complex
topologies with relative ease, leading to more intuitive knowledge transla-
tion into a model. The spatial nature of an ABM also supports modeling
agents with limited knowledge (i.e., input constrained by locality rules that
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determine its immediate environment). The emphasis on behavior driven
by local interactions also matches closely with the mechanisms of stimulus
and response observed in biology.

• ABMs utilize parallelism. In an ABM, each agent class has multiple in-
stances within the model, forming a population of agents that interact
in (an usually emulated) parallel processing environment. Thus, heteroge-
neous individual agent behavior within a population of agents results in
systemic dynamics that yield observable output that mirrors the behavior
at the higher-hierarchical level. A classic example of this is how relatively
simple interaction rules among birds can lead to sophisticated flocking
patterns [58, 74].

• ABMs incorporate stochasticity. Many systems, particularly biological
ones, include behaviors that appear to be random. “Appear to” is an
important distinction, since what may appear to be random is actually
deterministically chaotic. However, from a practical point of view, despite
the fact that a particular system may follow deterministic rules, at the
observational level it is impossible to actually define the initial conditions
with enough fidelity to apply formal deterministic mathematics. Thus,
capturing the sensitivity of a system to initial conditions is obscured by
limitations on the resolution in characterizing the state of the system.
Agent-based modeling addresses this issue via the generation of popula-
tions of agents, and a subsequent distribution of agent-behaviors. It is
possible to establish probabilities of a particular behavior for an agent
population as a whole (i.e., an experimentally determined response distri-
bution of a particular cell type to a particular stimulus). This allows the
generation of a probability function for the behavior of a single agent-type,
which is, in turn, incorporated into the agent-type’s rules. For instance, a
rule may look like “In the presence of Stimulus A there is a 80% chance
Receptor B will be activated.” When the entire ABM consisting of a pop-
ulation of agents is instantiated, each individual agent follows a particular
trajectory of behavior as its behavior rules’ probabilities are resolved with
each step of the ABM’s run. The behavior of the overall system is gen-
erated by the aggregated behavioral trajectories of the individual agents,
each model run producing one instance of system behavior. Performing
multiple runs of the ABM thus generates a “population” of behavioral
outputs to produce system behavior spaces consistent with epidemiologi-
cal biological observation.

• ABMs reproduce emergent properties. Due to the parallelism, intrinsic
stochasticity, and locally-based agent rules, a central hallmark of agent-
based modeling is the fact that they generate systemic dynamics that often
could not have been reasonably inferred from examination of the rules of
the agents, resulting in so-called emergent behavior. To return to the ex-
ample of the bird flock, superficial observation would seem to suggest the
need for an overall leader to generate flock behavior, and therefore rules
would seem to need to include a means of determining rules for flock-wide
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command and control communication. This, however, is not nature’s way:
Birds function on a series of locally constrained interaction rules and the
flocking behavior emerges from the aggregate of these interactions [58].
The capacity to generate emergent behavior is a vital advantage of using
an ABM for conceptual model verification, as it is often the paradoxi-
cal, non-intuitive nature of emergent behavior that “breaks” a conceptual
model. The structure of ABMs facilitates the development of aggregated
multi-scale models [8, 100]. They have an intrinsically modular structure
via the classification of agents based on similar rules of behavior. ABM
rules are often expressed as conditional statements (“if–then” statements),
making agent-based modeling suited to expressing the hypotheses that
are generated from basic scientific research. Individual agents encapsulate
mechanistic knowledge in the form of a set of rules concerning a particular
component. The importance of this encapsulation in agent-based mod-
eling (as opposed to the compressed representation of knowledge with a
mathematical formula, such as a biochemical rate law) is the placement
of the mechanistic knowledge within a compartmentalized object. Instan-
tiating agents and their governing rules in a virtual world creates an in
silico experimental environment, or a virtual laboratory [6, 7, 65]. In do-
ing so, agent-based modeling goes beyond the mere instantiation of this
knowledge as a single case by concurrently generating multiple instances
of a particular encapsulation/object. Because of this property, an ABM
is an expansion of mere rule-based and object-oriented methods. Multiple
individual instances have differing initial conditions by virtue of exist-
ing in a heterogeneous environment. Because stochastic components are
embedded in their rule systems (a well-recognized property of biological
objects [45]), individual agents have differing behavioral trajectories as
the ABM is executed. This results in population-level dynamics derived
from the generation of these multiple trajectories, population dynamics
that, when viewed in aggregate, form the nested, multi-scalar/hierarchical
organization of biological systems [90, 91, 92].

In this environment, researchers can instantiate thought experiments in an
in silico environment, to test the veracity and validity of their conceptual
models by comparing the simulated experiments against more traditional
in vitro and in vivo experimental results. ABMs have been used to study
biomedical processes such as sepsis [6, 7, 9], cancer [100], inflammatory cell
trafficking [11, 64], and wound-healing [49, 73].

One vital aspect of the use of agent-based modeling is to perform the
trans-hierarchical function desired in an integrative modeling framework.
This moves toward the goal of communicable dynamic knowledge representa-
tion, easing the way for biomedical researchers to translate their conceptual
models into executable form. While the era of multi-disciplinarily trained
researchers is dawning, it is most likely that for the foreseeable future the
majority of biomedical researchers will not be extremely facile in the use
of computational tools and methods. Agent-based modeling, by its object-
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oriented nature, maps well to the current expression of biomedical knowledge.
It is generally more intuitive for non-mathematicians/computer scientists to
use. Nonetheless, it is a daunting software engineering task to provide a user-
friendly ABM development environment for computer/math novices while
including sufficient, comprehensive capabilities to capture the full richness of
ABM utilization. Fortunately, the introduction and ongoing development of
NetLogo provides just such a platform.

7.2 Facilitating Dynamic Knowledge Representation:
The NetLogo Toolkit

7.2.1 Description and Origins of NetLogo

NetLogo is a general-purpose agent-based modeling environment for model-
ing complex systems. It includes the core NetLogo modeling language as well
as an integrated modeling environment with a graphical user interface and
many modeling tools. NetLogo was designed by Wilensky in the mid-1990s.
Having collaborated with Resnick on StarLogo in the late 1980s and early
1990s [56, 55, 93, 57, 94], Wilensky set out to remedy limitations of StarL-
ogo and create the next generation of the Logo-based agent-based modeling
environment. Like StarLogo, NetLogo borrowed from the Logo programming
language [25, 52] both core syntactic language elements and the central object
of a “turtle,” the default name for a mobile agent in NetLogo. Basic NetLogo
also includes stationary agents called “patches” and connective agents called
“links.” New classes of agents can be defined using the “breeds” construct, so
users can populate their models with wolves and sheep, atoms and molecules,
or buyers and sellers. Constructing a NetLogo model involves choosing agents
to represent aspects of the to-be-modeled system and giving them rules of
behavior and interaction which they execute at every tick of a clock. One
can then run the model and observe the emergent behavior of the system.
Patches are typically used to model aspects of the environment, such as earth,
grass, or atmosphere, that are computationally active, though stationary. So,
at each time tick, grass may grow and be available for sheep agents to eat,
earth may absorb percolating oil, and atmosphere patches may harbor car-
bon dioxide molecules [77, 76, 66]. In most natural science models, mobile
agents affect each other through local interaction, thus the spatiality of the
patches becomes the vehicle for agent interaction. Agents interact with their
spatial neighbors. In many social science models, spatiality is not the domi-
nant form of interaction. Agent communication can happen at a distance and
is governed by social connection between (human) agents. The “links” agents
typically model these social connections. In such models, agents interact with
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their “link neighbors,” the agents with whom they are linked regardless of
their spatial locations.

NetLogo comes with an extensive library of sample models (over 300 as
of release 4.0.2 of NetLogo in December 2007) from a wide variety of con-
tent domains [80], including natural sciences such as physics, chemistry, and
biology, and social sciences such as sociology, psychology, and linguistics,
and engineering domains such as materials science, industrial engineering,
and computer science, and professional disciplines such as medicine, law,
and business. NetLogo is freely available from [86] and comes with extensive
documentation, code examples, and tutorials. For a good introduction to
the methodology of agent-based modeling, including exploring constructing,
testing and verifying models, see the textbook by Wilensky and Rand [90].

7.2.2 Design Philosophy Behind NetLogo

A core design principle of NetLogo, also originating in the early Logo com-
munity, is the principle of “low threshold, high ceiling” (sometimes rendered
as “low threshold, no ceiling”) [52, 67]. What this principle means, on the
one hand, is that the language should be simple enough for a novice without
programming background to be able to learn and productively use within
minutes of starting. On the other hand, the language should be powerful
and robust enough to be used by researchers in their scientific work. These
twin design objectives are traditionally seen as conflicting: One either designs
an educational tool for novices and students or one designs a professional
tool suitable for scientists in their research. However, Wilensky started out
with the hypothesis that these goals could be reconciled in one environment
and, together with his colleagues at the Center for Connected Learning and
Computer-Based Modeling (CCL), has been continuously developing and re-
fining NetLogo so as to be more useful to each of these communities.

Core aspects of NetLogo design addressed to novices are natural-language-
inspired syntax, graphical world present at start-up, easy-to-build drag and
drop interfaces, and extensive help, documentation, sample models, and code
examples. Core design features addressed to power users include an exten-
sions application programming interface (API) through which users can write
their own NetLogo libraries (in Java), support for replicability of model runs,
programmatic control of agent execution order, and support for probability
distributions of agent variables and for a variety of network layouts.

Although the criterion of low threshold is typically interpreted as being
targeted to novices and high ceiling being targeted to researchers and ad-
vanced users, the design rationale for NetLogo hypothesized that both goals
are actually important to both communities [82, 67]. On the high-ceiling side,
the reasoning is that novices benefit from being able to smoothly move from
elementary modeling to more advanced modeling without having to change
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modeling languages or platforms. Moreover, and this is important for educa-
tional adoption, schools are much more easily persuaded to adopt software
that is used in universities and in research contexts – one need not convince
them that the software helps the students learn better, one can just point
them to the scientific and commercial uses and they become interested in
giving their students the same tool as they will use later on in life. On the
low-threshold side, we have argued that low threshold is very important for
researchers as well. Many researchers do not consider themselves program-
mers, and therefore, once they have created a conceptual model, they delegate
the task of implementing the model to a programmer. This practice can lead
to mismatches in understanding between the two parties and, consequently,
to incorrect models [89]. Moreover, if the researcher can build the model him-
self/herself, then the researcher can much more rapidly and fluidly explore
the design space of the model and make better progress in his/her research.
Finally, the easy readability of a low-threshold language enables researchers
to read and verify each others’ models, leading to greater cumulativity in
the scientific community. From the widespread adoption of NetLogo in both
scientific research communities and in educational contexts, we conclude that
the hypothesized compatibility of the two design goals has been successfully
implemented. NetLogo has a large and active community numbering in the
tens of thousands, with over 160,000 downloads in 2008 (and millions of web
page hits). Its discussion lists are very active and include researchers, ed-
ucators, students, businesspeople and policy-makers. NetLogo is in use in
scientific research across a wide range of content domains and there is a
rapidly increasing inclusion of NetLogo models in scientific research publi-
cations (e.g., [4, 37, 18, 42, 44, 17, 32, 38, 40, 64, 62, 29, 69]). This list is
not intended to be comprehensive, as it is constantly being added to; inter-
ested parties should visit the NetLogo homepage and look in the “Community
Models” section for an updated list of projects [85].

In a recent comparison of research-oriented agent-based modeling plat-
forms [54], the authors admitted that, at first, they did not plan to include
NetLogo in the comparison set, as, given its educational intent, they assumed
it would be too limited for research purposes. However, after examining it
more closely, they found that it was eminently suitable for research: “we found
we could implement all our test models in NetLogo, with far less effort than
for other platforms,” that “NetLogo is by far the most professional platform
in its appearance and documentation,” and that it “is quite likely the most
widely used platform for ABMs.”

NetLogo is also in use in many thousands of educational contexts, es-
pecially in middle schools, high schools, and universities as well as muse-
ums and other informal learning contexts. Wilensky and colleagues have
designed a number of effective model-based curricula for use in both pre-
collegiate and undergraduate contexts. Topics covered include probabil-
ity and statistics, kinetic molecular theory, reaction chemistry, electricity
and magnetism, ecology, evolution, robotics, materials science, and micro-
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economics [12, 87, 2, 13, 1, 14, 88, 95, 61]. The CCL and colleagues have con-
ducted hundreds of NetLogo workshops for teachers, researchers, students,
and would-be modelers of all stripes.

7.2.3 NetLogo Features

NetLogo is a full-featured agent-based modeling environment and contains
many sophisticated capabilities suitable for modeling Artificial Life. NetLogo
is in continuous active development. Since version 1.0 in 1999, NetLogo has
advanced considerably on both low-threshold and high-ceiling dimensions.
Notable features include the HubNet [98] architecture that supports partic-
ipatory simulations [57, 80, 19, 97, 41], where users can assume the role of
agents alongside virtual agents, facilitating social science experimentation on
a large scale [39, 30]. NetLogo also contains (1) NetLogoLab[15] that connects
NetLogo to external hardware-based actuators and sensors and enables the
grounding of models in local real-world data, (2) BehaviorSpace [96], a model
analysis package that enables automated parameter sweeping, experimental
analysis, and parameter space visualization, and (3) System Dynamics Mod-
eler [83], a stocks and flows simulator that can be used alone or integrated
with multi-agent simulations to create hybrid models that combine ABM and
System Dynamics features [72]. Furthermore, NetLogo 4.0.2 was released in
December of 2007 and contains many new and improved features. For in-
stance, a major component of NetLogo is its models library, which contains
hundreds of pre-built models, each with detailed explanations and extensive
curricular activities, ready to be used as seed models. In the latest version of
NetLogo, there are new models of biological evolution, mathematics, physics,
neural networks, evolution of social cooperation, linguistics, psychology, man-
agement, and geographic information software (GIS). Some major new com-
ponents that have been recently added include the integration of language
primitives that facilitate the building, analysis, and examination of network
models, enhancements to analysis and visualization of multiple model runs,
and enhanced facilities for user-authored extensions of the core language.
Users have taken advantage of the latter to build many such extensions. Of
particular note to researchers and Artificial Life modelers are two new ex-
tensions: an extension that enables NetLogo to import GIS data files into a
model and to generally play well with existing GIS software and a second
extension that provides a library of genetic algorithm primitives for use in
evolutionary computation.

The features and design philosophy of NetLogo offer several benefits to its
use in the biomedical community. In keeping with its legacy as an educational
tool, we note that there is great potential for use of NetLogo in medical school
education, and we have made plans to integrate NetLogo into medical edu-
cation here at Northwestern University. As alluded to above in Section 7.1,
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its “low threshold, high ceiling” characteristics make NetLogo well suited to
implementation as a computational adjunct to current biomedical research.
Evidence of its utility can be demonstrated in the range of research areas
where NetLogo has been applied: intracellular signaling [10], acute inflam-
mation [6, 7, 9, 72], inflammatory cell trafficking [64, 11], wound healing [49],
and morphogenesis [46]. This chapter will focus on demonstrating how Net-
Logo can be used to effect multi-scale knowledge integration through the use
of agent-based modeling, as well as demonstrating some of the capabilities
of the NetLogo toolkit, particularly with respect to three-dimensional (3D)
topologies.

7.3 NetLogo Models of Acute Inflammation

This chapter presents a series of NetLogo ABMs representing multiple scales
of organization and integration. These models all involve aspects of the acute
inflammatory response (AIR). The inflammatory response represents the
body’s initial reaction to injury and infection and is a ubiquitous process
found in all tissues. In addition to dramatic expression in the face of severe
infection or injury (as seen in sepsis and massive trauma), inflammation also
provides a key link between damage and repair, as the healing process relies
upon signals initiated during the AIR. Furthermore, it is increasingly recog-
nized that inflammatory processes are essential to the maintenance of normal
homeostasis, as the body exists in an ever-changing environment and is in-
volved in such ubiquitous conditions as atherosclerosis, obesity, and aging.
Therefore, acute inflammation is a prototypical example of a multi-scale bio-
complex system and thus suited to examination and characterization using
agent-based modeling.

The series of NetLogo ABMs have been developed at multiple levels of res-
olution, extending from intracellular signaling leading up to simulated organ
function and organ–organ interactions. The specific model reference system
for these ABMs is the clinical manifestation of multi-scale disordered acute in-
flammation, termed systemic inflammatory response syndrome (SIRS), mul-
tiple organ failure (MOF), and/or sepsis. These clinical entities form a con-
tinuum of disseminated disordered inflammation in response to severe levels
of injury and/or infection and represent one of the greatest clinical challenges
in the current health-care environment.

7.3.1 NetLogo ABM of Intracellular Processes: The
Response to Inflammatory Signals

Perhaps the greatest translational challenge for biomedical research exists in
the step between intracellular mechanism and the behavior of cellular pop-
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ulations. The extensive characterization of intracellular processes forms the
bulk of ongoing biomedical research, and the ability to integrate this infor-
mation is the subject to the burgeoning field of Systems Biology. While there
are notable exceptions (see [16, 53] for examples of ABMs used to character-
ize intracellular processes), in general, the systems biology community has
used more traditional methods of mathematical modeling based on differen-
tial equations and stochastic algorithms. This method has been successful
in modeling kinetic processes in well-mixed systems, classically manifested
as biochemical reactions. However, at a basic level, biochemical processes
involve discrete events between molecules and particles. If the goal is to char-
acterize these processes in the context of their influence on cellular behavior,
it is possible to accept a level of abstraction that eliminates the details of
the molecule–molecule interaction by labeling them generically as interac-
tion events. The emphasis is shifted to representing the interaction–event.
Accomplishing this requires two realizations (1) Molecules do not have voli-
tion to direct their movement to find their reaction partner and (2) cells are
not bags of molecules (i.e., cells are not well mixed systems), and because
molecules have no volition, spatial and environmental conditions within the
cell must somehow direct signaling pathways by increasing the likelihood
that participants in steps of a signal cascade will actually contact each other.
Incorporating a spatial component to the characterization of signaling path-
ways, such as relating enzymes to the internal cytoskeletal architecture or
simulating the effects of molecular crowding (that suggest that biochemical
rate constants are dependent on an intracellular context [59]), can accom-
modate this. A modeling system can utilize abstraction at the level of the
signaling event, without details as to what happens at a molecular struc-
tural level during the event. Interaction rates can be qualitatively scaled,
as similar classes of interactions act within the same general time frame,
and the emphasis on physical proximity renders fine parsing of these rates
unnecessary. Rather, the focus is on characterizing conditions that lead to
interaction events: molecular movement across space, likelihood of interac-
tion events occurring, and the ordering of signaling enzymes. This leads to
a particle view of signal transduction, where interactions within a reaction
cascade follow a spatial architecture that is defined by the sequence of the
signaling pathway. “Particles” are used to represent signaling events, and
viewing the trajectory of the particle through the various reaction spaces can
simulate transduction through a signal cascade. This modeling architecture
is termed Spatially Configured Stochastic Reaction Chambers (SCSRC) [10].
Of note, the SCSRC utilizes and expands upon one particular type of ba-
sic NetLogo model, the GasLab models in the Models Library representing
gas behavior via particle dynamics [78, 80, 81]. The transition from discrete
particle behavior to the global system behavior expressible via the Ideal Gas
Law equations provides an analogy for the underlying precept of the SCSRC:
modeling biochemical reactions, which are usually expressed as rate equa-
tions, from a discrete, particle-based standpoint. This is an example of how
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Fig. 7.1 Architecture of NetLogo ABM of intracellular signaling and metabolism: A SC-
SRC model of a gut epithelial cell.

NetLogo’s extensive model library can serve as a source of seed models to aid
in the development of specific biomedical models.

In the SCSRC each simulation space represents a single cell. The space is
a grid of 2D squares. The agent level is at the particle level, where each agent
represents an abstracted molecule within the signal transduction cascade. The
space is subdivided into a series of smaller rectangular compartments. The
particular example presented here represents the pro-inflammatory signaling
events in a gut epithelial cell and the effect those events have on tight-junction
protein metabolism, an important component of epithelial barrier function
(Fig. 7.1). The design features of the SCSRC are derived from the two central
premises listed above: (1) Molecules do not behave volitionally and (2) spatial
and structural factors influence the sequence of molecular interactions and
signal transduction. The movement rules for agent-molecules in the SCSRC
follow a semi–Brownian random-walk while they are simulating the molecu-
lar events of signal transduction. The subdivided compartments are reaction
spaces that represent the close proximity of spatially located signaling en-
zymes. This proximity simulates either the arrangement of enzymes along cy-
toskeletal elements or the effects of molecular crowding in the cytoplasm. The
apposed borders of the reaction spaces represent sequential enzymes of the
signal cascade. The entry of a molecule-agent into the reaction space through
one of these “enzyme” borders represents the chemical reaction event cat-
alyzed by the enzyme, producing the signal molecule and introducing it into
the reaction space. The molecule-agent moves in a random fashion eventually
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encountering the opposite border representing the next enzyme in the signal-
ing pathway, and is transformed as it passes through that border into the next
reaction chamber. As mentioned above, the specifics of the chemical reactions
are abstracted into a state transition for the molecule-agent. Primarily, the
state transition is merely a change in the labeling of that molecule-agent (to
keep track of the signal as it propagates), but occasionally it results in altering
the way it interacts with subsequent enzyme-borders. For instance, inhibitory
activity is simulated by agent–border interactions that lead to the affected
areas of the enzyme border being unable to execute the signaling state transi-
tion for subsequent encounters with up stream molecule-agents. The number
of molecule-agents of a particular type represents the strength of a signal.
The spatial configuration of the chambers of the SCSRC is defined by the se-
quence of a signaling/synthetic pathway. Each enzymatic step is represented
by the horizontal “bars” abutting a reaction chamber. Specific qualitative
types of enzymatic reactions, such as signal amplification, inhibition, or ac-
tivation, can be specified in the encounter rules between the agent-molecules
and the enzyme-borders. The reference model for the molecular processes
in this SCSRC model is a well-described human cultured enterocyte model
(Caco–2) and its responses to inflammatory mediators, including nitric oxide
(NO) and a pro-inflammatory cytokine mix (“cytomix”) that includes tumor
necrosis factor (TNF), interleukin–1 (IL–1), and interferon-gamma (IFN–
gamma) [33, 36, 35, 60]. Figure 7.1 demonstrates the structural architecture
of these signaling pathways. This is a screenshot of the SCSRC model of
a single gut epithelial cell, representing the pro–inflammatory signaling and
tight-junction protein components. The inflammatory signaling complexes
are at the top of the model and tight-junction protein pathway chambers are
at the bottom. “Dots” present in each chamber represent molecules being
synthesized and transported by the various enzyme complexes. In this fig-
ure, the only “Dots” present are in the tight-junction proteins present in the
baseline cellular state.The response of the model to inflammatory stimuli can
be seen in the screenshots displayed in Fig. 7.2.

7.3.2 NetLogo ABM of In Vitro Gut Epithelial Barrier
Experiments

This subsection describes the translation of the mechanisms and behaviors of
the SCSRC into a cell-as-agent-level ABM as seen in an in vitro experimental
model of gut epithelial barrier function (epithelial barrier agent-based model
= EBABM) [9]. As opposed to the agents being molecules and signaling en-
zymes in the SCSRC, each agent in the EBABM represents a single cell. The
output of the SCSRC has been translated into a series of algebraic relation-
ships for agent state variables corresponding to the molecular agent classes in
the SCSRC. The EBABM utilizes a model architecture derived from another
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Fig. 7.2 Screenshots of gut epithelial cell SCSRC in response to inflammatory stimuli.
The top panel is a screenshot of the SCSRC just after the addition of the inflammatory
signal. “Dots” representing signaling molecules can be seen in each chamber. The graphs
demonstrate the rise in levels of “NF–kB,” and the activation of “iNOS” and “NO.” The
bottom panel is a screenshot of the SCSRC near the end of a run. The signaling molecules
have disappeared, “iNOS” is starting to decrease while residual “NO” is still present.

paradigmatic type of NetLogo model, the “patch-centric” cellular automata–
like 2D grid models [75, 76, 66].

The topology of the EBABM is a 2D square grid. The grid has 21 × 21
cells, in each of which there is an epithelial cell agent (“epi-cell”). The size of
this grid was chosen as a representative portion of a total cell culture surface
for reasons of computational efficiency; the processes being modeled by the
EBABM are proportional to the cell surface area and the model could be,
if desired, scaled up to any size. There are also two additional simulation
“spaces” – one layer representing the apical extracellular space (from which
the diffusate originates) and another layer representing the basal extracellu-
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Fig. 7.3 Screenshot of the graphical user interface of the EBABM. Control buttons are
on the left; Graphical Output of the simulation is in the center. In the Graphical Output,
Caco–2 agents are seen as squares, those with intact tight junctions with light borders
(letter A), those with failed tight junctions are bordered in black (letter B). This particular
run is with the addition of cytomix (letter C) seen after 12 hours of incubation (letter D).
The heterogeneous pattern of tight-junction failure can be seen in the Graphical Output.
Graphs of variables corresponding to levels of mediators (letters E and F) and tight-junction
proteins (letters G and H) are at the bottom and right. This figure is reprinted under the
terms of the Creative Commons license from [9].

lar space (into which the diffusate flows if there is permeability failure). A
screenshot of the EBABM during an experimental run can be seen in Fig. 7.3.

Each epi-cell has eight immediate neighbors, and at each contact point
there is a simulated tight junction (TJ). The integrity of the TJ requires
both apposed epi-cells to have adequate production and localization of TJ
proteins.

The importance of the EBABM lies in the translational function it plays
as a transitioning step between the intracellular behavior represented and
modeled using the SCSRC, and the aggregated cell-type models that are de-
scribed in the following subsections. The EBABM is thus a critical validation
step in the modular construction of a multi–scale ABM architecture.
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7.3.3 NetLogo ABM of Organ Function: Gut Ischemia
and Inflammation

The next level of ABM development is intended to simulate organs as a syn-
thesis of two distinct hypotheses of disseminated inflammation and organ
failure: viewing disordered systemic inflammation as either a disease of the
endothelium [5] or a disease of epithelial barrier function [26]. The endothe-
lial surface is the primary communication and interaction surface between the
body’s tissues and the blood, which carries inflammatory cells and mediators.
Endothelial activation is a necessary aspect of the initiation and propagation
of inflammation, particularly in the expansion of local inflammation to sys-
temic inflammation [5]. On the other hand, end-organ dysfunction related
to inflammation can be seen as primarily manifest in a failure of epithelial
barrier function. Pulmonary, enteric, hepatic, and renal organ systems all dis-
play epithelial barrier dysfunction that has consequences at the macro-organ
level (impaired gas exchange in the lung, loss of immunological competence
in the gut, decreased synthetic function in the liver, and impaired clearance
and resorptive capacity in the kidney) [26]. The organ-level ABM recon-
ciles these two hypotheses by integrating the epithelial barrier component,
used to represent the consequence of individual organ failure, and the en-
dothelial/inflammatory cell component that provides the binding interaction
space that generates, communicates, and propagates the inflammatory re-
sponse [9]. The primary cell classes in this architecture are endothelial cells,
blood-borne inflammatory cells (with their attendant subtypes), and epithe-
lial cells. Therefore the structure of the organ ABM involves the 3D linkage of
the cellular surface ABMs already developed representing these two systems,
the EBABM representing epithelial function and a previously published en-
dothelial/inflammatory cell ABM [6, 7]. The result is a bilayer organ model
(see Fig. 7.4).

Both the original endothelial/inflammatory cell ABM and the EBABM
were developed as 2D models. In order to create the bilayer topology of the
organ ABM, it was necessary to convert both of these models to the 3D
version of NetLogo [84], with each model represented as a layer of agents
projected in the XY plane. The two layers were then juxtaposed: the en-
dothelial layer below and the epithelial layer above along the Z axis. The
simulated blood vessel luminal space occupied another XY plane one place
inferior to the endothelial surface along the Z axis. Inflammatory cells move
only in this plane. The organ luminal space occupied the XY plane at one
place superior to the epithelial axis along the Z axis. This space contains the
“diffusate” that leaks into the gut in cases of epithelial tight-junction failure.

In vivo models that examine the inflammatory behavior of the gut either
look at a local effect from direct occlusion of gut arterial flow [70, 63] or as a
result of some systemic insult, be it hemorrhagic shock, endotoxin adminis-
tration [50], or burn injury [47, 24]. These studies suggest that the primary
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Fig. 7.4 Screenshots of bilayer configuration of the gut ABM, following the structure for
hollow organs described in the text. The left panel is the view of bilayer from endothelial
surface. The lower surface consists endothelial cell agents, with spherical inflammatory cell
agents seen just below. Inflammatory cell agents move in the plane immediately below the
endothelial surface. The right panel is the view of bilayer from epithelial surface. Each
cube represents an epithelial cell agent, governed by rules transferred from the EBABM.
Impairment of TJ protein metabolism is shown by darkening of the shade of the epithelial
cell agent, with the epithelial cell agents eventually turning black and changing their shape
to a “cone” when TJs have failed. This figure is reprinted under the terms of the Creative
Commons license from [9].

process that initiates inflammation in the gut is ischemia and reperfusion and
the subsequent effects on the endothelial surfaces within the gut. The measur-
able outputs of the reference models exist at different scales. At the cellular
level, tight-junction integrity and epithelial barrier function is one measured
endpoint [99, 35], however, the organ as a whole also has an output: the
nature of the mesenteric lymph. Multiple studies suggest that ischemia to
the gut (and subsequent inflammation) leads to the excretion of an as-of-yet
unidentified substance in the mesenteric lymph that has pro-inflammatory
qualities. Some characteristics of the substance can be identified from the
literature: It is an acellular, aqueous substance [21], is greater than 100 kDa
in size [3], does not correspond to any currently recognized cytokine, and
is bound or inactivated by albumin [51]. The time course of the production
of the substance is identified to some degree [22, 20] but it is unclear if it
arises from a late production of inflamed cells or is a product of cellular
degeneration or apoptosis (programmed cellular death) or is a transudated
bacterial product from the intestinal lumen. The uncertainty with respect to
an identified mediator provides a good example of how the ABM architecture
deals with incomplete knowledge. Based on the characteristics defined above,
we make an hypothesis regarding this substance with respect to its origin,
but we acknowledge that this is, to a great degree, a “best guess.” Doing so
establishes a knowledge bifurcation point, allowing the development of po-
tential experiments and/or data that would nullify the particular hypotheses.
A specific example will be demonstrated next.

The nature of the initial perturbation was altered to match that seen in
the reference experiments (i.e., tissue ischemia). With the premise that the
inflammatory response was generated at the endothelial surface, the initial
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perturbation was modeled focusing at the endothelial layer, with the response
of the epithelial component being subsequently driven by the output of the
endothelial–inflammatory cell interactions. Rather than having a localized in-
sult with either infectious agents (simulating infection) or sterile endothelial
damage (simulating tissue trauma), as was the case in the base endothelial–
inflammatory cell ABM, gut ischemia was modeled as a percentage of the
total endothelial surface rendered ischemic. The degree (or percentage af-
fected) of the initial ischemia was controlled with a slider in the NetLogo
interface. Therefore, “Percentage Gut Ischemia” (= %Isch) represents the in-
dependent variable as initial perturbation for this model. To address the issue
of modeling the production of the post-ischemic, pro-inflammatory lymph, at-
tention is focused on linking the knowledge that has been acquired regarding
the characteristics of the substance and relating this information to the com-
ponents of the organ ABM. The known characteristics listed above are used
to exclude potential candidate substances/actors from consideration. Specif-
ically, this group comprises any of the cellular agents and any of the included
cytokines. Therefore, the search is limited to the following:

1. An as-of-yet unidentified compound linked to cellular damage. An exam-
ple of such a compound would be high-mobility box protein 1 (HMGB–
1), which to date has not been looked for in the post-ischemic mesen-
teric lymph. In the organ ABM, this variable is termed “cell-damage-
byproduct,” and it is calculated as a function of total endothelial damage
with a set decay rate consistent with that of other bio-active compounds
associated with inflammation.

2. A luminal compound that diffuses in response to TJ barrier failure. This
would correspond to potential byproducts of gut bacterial metabolism, or
bacterial toxins, or other soluble aspects of the gut luminal environment
that would leak into the gut tissue by virtue of the loss of barrier function.
This variable is represented by “gut-leak,” which is equal to the “solute”
(from the EBABM) that penetrates the failed barrier.

3. A downstream metabolite of compounds generated by the inflammatory
process. These would most likely be compounds generated by superoxide
and nitric oxide (NO) reactions. For purposes of these simulations, levels
of NO will be used as a proxy for this possible candidate.

Therefore, the goal of the organ ABM simulation runs will be to exam-
ine the time course levels of these three values and identify which one (if
any) matches the reported time course effects of the post-ischemic mesen-
teric lymph. The first step was to determine the greatest non-lethal level for
“Percentage Ischemia” (%Isch). It should be noted again that the name of
this variable is descriptive for how it is implemented in the ABM, and not
intended to match quantitatively, per se, with measured ischemia in vivo.
Rather, %Isch is representative of the initial conditions for the simulation
that will produce a pattern of simulation behavior that matches that of the
in vivo system [31]. A parameter sweep of this value was performed, using a
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previously described method [6] with the goal of identifying the greatest non-
lethal level of %Isch, which was %Isch = 35. The output from the organ ABM
with %Isch = 35 evaluated the time courses for three global output variables:
“cell-damage-byproduct,” “gut-leak” and NO. The pro-inflammatory prop-
erties of the post-ischemic mesenteric lymph were noted to increase the most
at 3 hours and 6 hours and remain out to 24 hours [22, 20]. Examining the
time courses of these three global output variables the candidate compound
that most closely approximates the pattern identified in the literature was
the “cell-damage-byproduct.”

As discussed above, this possible source of the unknown compound in the
post-ischemic mesenteric lymph is based on the recognition of certain late pro-
inflammatory mediators produced by activated and damaged cells, HMGB–1
being the most studied as a possible key mediator in the pathogenesis of
sepsis [48]. To date, there have been no studies examining the production or
presence of HMGB–1 in the post-ischemic mesenteric lymph. However, based
on the information generated by the organ ABM, and placed in the context of
the knowledge framework concerning the characteristics of pro–inflammatory
mesenteric lymph, we will make a hypothesis that some later byproduct of
damaged gut tissue, rather than a diffused material or direct metabolite of
first-pass inflammatory mediators, is the responsible compound in the post-
ischemic mesenteric lymph. It is recognized that this is “guided speculation;”
however, it also demonstrates how the construction and use of models in the
ABM architecture is an evolving process that parallels the development and
refinement of conceptual models. As will be seen in the next subsection, the
next scale of biological organization to be addressed in the ABM architecture
involves the extension and integration of this hypothesis.

7.3.4 NetLogo ABM of Multi-organ Interactions: The
Gut–Pulmonary Axis of Inflammation

The ultimate goal of all of these modeling endeavors is to create some facsimile
of clinical conditions, with the hope of developing a platform that represents
the complexity seen clinically. In patients, organs do not exist in isolation;
their mutually complementary functions interact to sustain the organism as
a whole. Disease states can lead to a breakdown of these interactions, causing
a cascade effect, as single-organ dysfunction can lead to multi-system failure.
Sepsis and MOF are characterized by a progressive breakdown in these inter-
actions, leading to recognizable patterns of linked organ failure [28]. There-
fore the next scale of biological organization represented in the multi-scale
ABM architecture is that of organ–organ interaction [9]. The gut–pulmonary
axis of MOF [47, 22, 23] is used as the initial example of organ-to-organ
crosstalk. This relationship is relatively well defined pathophysiologically (al-
though not completely, as indicated by the uncertainty of the identity of
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the pro-inflammatory compound in the post-ischemic mesenteric lymph) and
represents an example of multi–organ effects of disseminated disordered in-
flammation. Disordered acute inflammation of the lung is termed Acute Res-
piratory Distress Syndrome (ARDS) and is manifested primarily by impaired
endothelial and epithelial barrier function, leading to pulmonary edema. This
leads to impaired oxygenation of arterial blood, requiring support of the pa-
tient with mechanical ventilation. While the comprehensive pathogenesis of
ARDS involves additional subsequent issues related, to a great degree, to
the consequences of mechanical ventilation (specifically the effects of baro-
trauma and shear forces on the airways, and the persistent propagation of
inflammation that results), for purposes of this initial demonstration only
the initiating events associated with the development of ARDS will be mod-
eled. Those events concern the production and release into the mesenteric
lymph by ischemic gut (resulting from shock) of various pro-inflammatory
mediators and their effects both on circulating inflammatory cells and the
pulmonary endothelium as they circulate back to the lung via the mesenteric
lymph (as discussed above). At this point, the hypothesis regarding the na-
ture of the pro-inflammatory mediator in the mesenteric lymph is extended
to the assumption that, for modeling purposes, the levels of “cell-damage-
byproduct” will be the proxy for the unidentified compound that is produced
in the ischemic gut and circulated to the lung, leading to inflammation of the
pulmonary endothelium.

Drawing upon the endothelial–epithelial bilayer configuration for a hol-
low organ, a pulmonary ABM was developed utilizing the same endothelial–
inflammatory cell component as the gut ABM and using rules for pulmonary
epithelial cells with respect to tight-junction metabolism and epithelial bar-
rier function [34]. The functional consequence of the intact pulmonary ep-
ithelial barrier is effective oxygenation of arterial blood (expressed at the en-
dothelial lumen) via diffusion from the alveolar epithelial surface. Pulmonary
barrier failure manifests as increased egress of fluid from the endothelial lu-
men into the alveolar space, affecting the transfer of alveolar oxygen to the
endothelial surface. Thus, systemic oxygenation may be altered with the con-
sequence that progressive pulmonary dysfunction would feed back to the sys-
tem as whole. This leads to impaired oxygenation into the endothelial lumen,
which is summed across the surface of the model to produce a measure of
systemic arterial oxygen content.

The topology of the linked gut and pulmonary ABMs consists of two paral-
lel bilayer planes, each bilayer representing one of the organ ABMs (Fig. 7.5).

The Z-axis orientation of both bilayers is the same: to allow conservation
of the agent rules for equivalent agent classes (i.e., endothelial–epithelial–
lumen relationships are consistent). The simulated blood flow continues to be
modeled by movement in the XY plane immediately inferior to the endothelial
surface. Blood flow between organs is simulated by adding a “perfusion”
variable. For purposes of the model, large-caliber blood vessels and the heart
are treated as biologically inert with respect to inflammation. Similarly, the
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A

B

Fig. 7.5 Screenshot of multi-bilayer gut–lung axis ABM. The letter A labels the pul-
monary bilayer, with cubes in the upper portion of the bilayer representing pulmonary
epithelial cell agents, while the lower surface represents pulmonary endothelial cell agents,
and below are spherical inflammatory cell agents. The letter B labels the gut bilayer, with
a similar configuration, epithelial cell agents above and endothelial cell agents below. Cir-
culating inflammatory cell agents move between these two bilayers in the fasion described
in the text. This figure is reprinted under the terms of the Creative Commons license from
[9].

flow of the mesenteric lymph is transferred from the gut ABM endothelial
space to the lung ABM endothelial space.

The effects of mesenteric ischemia on pulmonary barrier dysfunction were
then evaluated using a parameter sweep of %Isch to identify the inflection
point between lethal and sub-lethal perturbation levels. Screenshots of both
these outcomes can be seen in Fig. 7.6.

This parameter sweep demonstrated that the corresponding lethality of
mesenteric ischemia in the gut–lung ABM is significantly increased as com-
pared to the gut ABM alone, dropping the sub-lethal %Isch from 35 for the
gut ABM to 11 for the gut–lung ABM. This results from the addition of
the lung ABM and its effect of decreasing the maximally available “oxy”
to non-perturbed endothelial agents via the consequence of pulmonary ep-
ithelial barrier function (“pulm–edema”). With increasing pulmonary edema
and worsening oxygen delivery, gut epithelial agents “die” owing to a decrease
in the available maximal “oxy” level to below the threshold for generalized
endothelial agent activation. The impaired systemic oxygenation due to a pul-
monary leak arises from pulmonary epithelial barrier failure. At the sublethal
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Fig. 7.6 Effect of gut ischemia on pulmonary barrier dysfunction and pulmonary edema:
sublethal and lethal outcomes. The left panel is a screenshot of a representative run with a
sub-lethal initial %Isch = 11 over a 72-hour run. Pulmonary epithelial cells show gradual
recovery as inflammation subsides up to the screenshot time of 72 hours. The right panel
demonstrates a “lethal” initial level of %Isch = 13, where impaired oxygen delivery from
the lung leads to greater ischemia and cellular death in the gut. This run is terminated
at 24 hours because endothelial damage is nearly complete. The letter A points to black
cubes representing “dead” endothelial cell agents. The letter B points to the only remaining
intact pulmonary epithelial cell agents. The letter C points to the only remaining intact
gut epithelial cell agents. The letter D points to the only remaining patches of surviving
endothelial agents (seen through the cones of “dead” epithelial cell agents). This figure is
reprinted under the terms of the Creative Commons license from [9].

%Isch level of 11 the system is able to correct itself, with attenuation of gut
ischemic damage and recovery of the pulmonary epithelisl cells, mostly oc-
curing by 72 hours. This pattern is consistent with that seen clinically in the
recovery of pulmonary edema secondary to inflammatory causes. However,
the transition to lethal outcome is accomplished by only a slight increase of
%Isch to 13, where the oxygen delivery consequences of pulmonary epithelial
failure leads to a forward feedback loop with progressive gut bilayer ischemia.
Thus, the survival space of the system would appear to be greatly limited,
and it may initially suggest that this model would be unsuited to examining
the range of dynamics of interest in the study of sepsis. However, it should
be noted that the high lethality of mesenteric ischemia, which implies the
presence of hemodynamic shock, is historically correct. Shock states, prior to
the development of fluid resuscitation and respiratory support, were nearly
universally fatal. This is the circumstance that is being represented with the
gut–lung ABM at this point. If the goal is to simulate the clinical conditions
associated with sepsis and MOF, then it is necessary to simulate the effects
of organ support, to shift the survival space to the right. Doing so reproduces
the fact that sepsis and MOF are diseases of the intensive care unit (ICU),
arising only after the advances of resuscitative, surgical, antimicrobial, and
organ-supportive care allowed the maintenance of patients in situations where
they previously would have died. Therefore, sepsis and MOF can be thought
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of as a previously unexplored behavior space of systemic inflammation, one
where the inflammatory system is functioning beyond its evolutionarily de-
fined design parameters [6, 7].

Therefore, a very abstract means of organ support is modeled in the form
of “supplementary oxygen.” This function increases the amount of “oxy”
that is able to be diffused through the pulmonary epithelial barrier and is
the qualitative equivalent of increasing the fraction of inspired oxygen, and
therefore alveolar oxygen, to increase the partial pressure of oxygen diffused
in the blood. It is qualitative insomuch as there is no attempt to reproduce
the dynamics of gas exchange, or the binding of hemoglobin to oxygen in the
blood, or the effects of redistributed ventilation–perfusion matching in the
lung as a result of hypoxia. This degree of detail is beyond the scope of this
initial demonstration model; however, the qualitative behavioral effects do
show that this type of support, even abstractly modeled, increases the rich-
ness of the behavior of the model as a whole and can extend the examinable
behavior space of the model to situations that can approximate the effects of
organ support in the ICU. The corresponding changes in outcome with this
type of simulated organ support can be seen in Fig. 7.7.

Fig. 7.7 Effect of simulated supplementary oxygen on previously lethal gut ischemia.
This is a screenshot of a representative run with an initial %Isch = 15 and the addition of
simulated organ support in the form of “Supplementary Oxygen” at 50%. The stabilization
and initiation of recovery of pulmonary epithelial TJs at 72 hours is consistent with the
clinical time course of ARDS due to an episode of shock. The letter A demonstrates the
intact endothelial agent layer due to “Supplementary Oxygen” support (compare with
Fig. 7.6, the panel on the right). The letter B demonstrates the recovering pulmonary

epithelial cell agents. The letter C demonstrates intact and recovering gut epithelial cell
agents. This figure is reprinted under the terms of the Creative Commons license from [9].
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In Fig. 7.7, the initial %Isch = 15, greater than the lethal level seen in
Fig. 7.6; however, the survival of the overall system is enhanced by blunting
the negative consequences of impaired pulmonary function on the gut. The ef-
fect of “Supplementary Oxygen” is additive to the level of “oxy” generated by
the lung ABM and distributed to the endothelial surface, effectively blunting
the effect of the resulting pulmonary edema and keeping the “oxy” level above
the threshold ischemic level for activation of the generalized endothelial cell
agent population. As a result, the endothelial surface is maintained through
the period of most intense inflammation and this allows the epithelial cells
to begin recovery of their TJs. This dynamic is consistent with current man-
agment of these types of patients and thus needs to be effectively modeled if
the appropriate disease state is to be examined.

This sequence illustrates an important point in creating translational mod-
els of disease states. The tendency may be to attempt to model the patholog-
ical state being studied (i.e., creating a model of sepsis). However, it needs
to be remembered that pathological states result from transitions from nor-
mal physiological behavior, and if the intent of a model is to facilitate the
eventual transition from disease back to health, then the normal mechanism
must be the basis of a translational model. The need to capture transitions
from one state to another takes on further importance when the pathological
state results, as with sepsis, from medical/clinical interventions. Therefore,
the architecture of a modeling structure needs to be flexible enough to ac-
commodate the addition and integration of these factors, and it is hoped that
the presented modular structure of the ABM architecture demonstrates this
capability.

7.4 Conclusion

The biomedical research community today faces a challenge that has paradox-
ically arisen from its own success: As greater amounts of information become
available at increasingly finer levels of biological mechanism, it becomes pro-
gressively more difficult for individual researchers to survey and integrate
information effectively, even within their own area of expertise. It still falls
upon the individual researcher to create mental models to guide the direction
of his/her individual research and, in aggregate, form the components of the
evolving structure of community knowledge. However, the formal expression
of mental models remains poorly defined, leading to limitations in the ability
to share, critique, and evolve the knowledge represented in these conceptual
models, particularly across disciplines.

These limitations can be overcome by developing methods of formal dy-
namic knowledge representation to enable researchers to express and com-
municate their mental models more effectively. By being able to “see” the
consequences of a particular hypothesis–structure/mental model, the mech-
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anistic consequences of each hypothesis can be observed and evaluated. In
addition, this type of dynamic knowledge representation enables the instan-
tiation of thought experiments, of trying out possible alternative solutions,
so long as these hypotheses and assumptions are made explicit. Again, this
draws upon the experience in the Artificial Life community by creating al-
ternative worlds driven by these proposed rules. These models can aid in
the scientific process by providing a transparent framework for this type of
speculation, which can then be used as departure points for the planning and
design of further wet lab experiments and measurements.

In short, the agent-based paradigm, with its defining characteristics of
encapsulation, modularity, and parallelism, can provide an over-arching de-
sign architecture for the computational representation of biological systems.
However, for this to be effective, there needs to be participation on the part
of the biomedical community and its participants. Modeling and simulation
toolkits such as NetLogo serve a vital role in giving novices to computer
modeling an opportunity to represent and visualize their conceptual models.
In particular, NetLogo provides a highly effective mixture of ease-of-use and
modeling capability to make the initial foray into this arena most rewarding.
It is hoped that the increasing use of this type of knowledge representation
and communication will foster the further development of virtual laboratories
and in silico investigations.
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Chapter 8

Discrete Dynamics Lab:
Tools for Investigating Cellular
Automata and Discrete Dynamical
Networks

Andrew Wuensche

DDLab is interactive graphics software for creating, visualizing, and analyzing
many aspects of Cellular Automata, Random Boolean Networks, and Discrete
Dynamical Networks in general and studying their behavior, both from the
time-series perspective – space-time patterns, and from the state-space per-
spective – attractor basins. DDLab is relevant to research, applications, and
education in the fields of complexity, self-organization, emergent phenom-
ena, chaos, collision-based computing, neural networks, content addressable
memory, genetic regulatory networks, dynamical encryption, generative art
and music, and the study of the abstract mathematical/physical/dynamical
phenomena in their own right.

8.1 Introduction

Networks of sparsely interconnected elements with discrete values and up-
dating in parallel are central to our understanding of a wide range of natural
and artificial phenomena drawn from many areas of science: from physics to
biology to cognition; to social and economic organization; to parallel compu-
tation and artificial life; to complex systems of all kinds.

Abstract, idealized networks – Cellular Automata (CA), Random Boolean
Networks (RBN), and Discrete Dynamical Networks in general (DDN) – pro-
vide insights into complexity in nature by providing the simplest models
of self-organization and bottom-up emergence. They are also fascinating in
themselves as mathematical, physical, dynamical, and computational systems
with a large body of literature devoted to their study [1, 5, 6, 8, 9, 14, 15, 16].

The dynamics that play out on these signaling – “decision-making” – dis-
crete networks are difficult if not impossible to investigate by classical math-
ematics; numerical methods are therefore essential.
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Fig. 8.1 Network-graphs of (a) the simplest one-dimensional CA, n=10 cells and k=3
inputs per cell, one from each neighbor and one from itself. Periodic boundary conditions
make the cells form a ring. Wolfram called these “elementary” CA [13]. (b) n=10, k=3
RBN wired at random, and (c) the same RBN unscrambled – nodes rearranged.
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Fig. 8.2 Network-graphs of (a) a small two-dimensional CA, (b) a 2D CA on a hexagonal
lattice, (c) a 3D CA. These network-graphs can be created and manipulated in DDLab.

8.1.1 What Is DDLab?

DDLab is interactive graphics software, able to construct, visualize, and ma-
nipulate a hierarchy of discrete systems: CA, RBN, DDN (Figs. 8.1, 8.2
and 8.4), intermediate or hybrid networks, and random maps – and investi-
gate and visualize many aspects of the dynamics on the networks, both from
the time-series perspective – space-time patterns, and from the state-space
perspective – attractor basins, with interactive graphical methods, as well as
data gathering, analysis, and statistics. “Attractor basins” refers to any state
transition graph: basin of attraction fields, single basins, or sub-trees.

Fig. 8.3 gives a glimpse of the main themes in DDLab and also the broad
and slippery categories of the systems available:

• CA: Cellular Automata: a local neighborhood of k inputs (1D, 2D, 3D)
and one rule (but possibly a mix of rules to extend the definition).
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Fig. 8.3 The various themes, methods, functions, and applications in DDLab, loosely
connected. Top left: The expanding hierarchy of networks: CA → RBN/DDN → within
the super-set of random maps (directed graphs with out-degree one), imposing decreasing
constraints on the dynamics. There are also multiple sub-categories; for example, totalistic
rules (T), hybrids (H), and networks of networks.

• RBN: Random Boolean Networks: random wiring of k inputs (but possibly
with mixed k) and a mix of rules (but possibly one rule).

• DDN: Discrete Dynamical Networks: same as RBN, but allowing a value
range v ≥ 2. Binary CA is a special case of RBN, and RBN and multi-value
CA are special cases of DDN.

• Random maps: directed graphs with out-degree one, where each state in
state-space is assigned a successor. CA, RBN, and DDN, which are usually
sparsely connected (k ≪ n) are all special cases of random maps, but if
fully connected (k = n), rule-mix CA and the rest are equivalent to random
maps.

DDLab is used widely in research and education, and has been applied
to study complexity, emergence, and self-organization [8, 9, 14, 16, 23, 27],
in the behavior of bio-molecular networks such as neural [18, 20] and ge-
netic [7, 11, 4, 22] networks, in many other disparate areas. As well as sci-
entific applications, DDLab’s imagery has featured in art exhibitions [24], as
the light show at raves, and has been applied for generative music [2].

There are currently versions of DDLab for Mac, Linux, Unix, Irix, Cygwin,
and DOS. The source code is written in C; it may be made available on request
subject to some conditions, although the intention is to make the code open
source in the near future.
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(a) one node dragged + 2 step inputs (b) unscrambled

Fig. 8.4 Network graphs showing wiring with a power-law distribution of both inputs
(k = 1 to 10) and outputs, n = 100. Nodes are scaled by their number of inputs. (a) A
circle layout, but with one node dragged together with its two-step inputs. (b) The same
network unscrambled – nodes rearranged.

DDLab generates space-time patterns in one, two, or three dimensions and
also constructs attractor basins – graphs that link network states according
to their transitions, analogous to Poincaré’s “phase portrait” that provided
powerful insights in continuous dynamics. A key insight is that the dynamics
on the networks converge, thus falling into a number of basins of attraction.
This is the network’s content addressable memory, its ability to hierarchically
categorize all possible patterns (state-space), as a function of the precise
network architecture [18, 20]. Relating this to space-time patterns in CA, high
convergence implies order and low convergence implies disorder or chaos [16].
The most interesting emergent structures occur at the transition, sometimes
called the “edge of chaos” [9, 23].

DDLab is generalized for multi-value logic. Up to eight values (or colors)
are available, instead of just Boolean logic (two values: 0, 1) in early ver-
sions. Of course, with just two values selected, DDLab behaves like the older
versions. Multi-values open up new possibilities for dynamical behavior and
modeling – for example, fractional gene activation and reaction-diffusion.

Although DDLab is designed to run CA/DDN both forward (space-time
patterns) and backward (attractor basins), it can be constrained to run
forward-only for various types of totalistic and outer-totalistic rules, reduc-
ing memory load by cutting out all basin of attraction functions. This allows
larger neighborhoods (max-k = 25 instead of 13). In 2D, the neighborhoods
are pre-defined to make hexagonal as well as square lattices. Many interesting
cellular automaton rules with “life”-like and other complex dynamics can be
found in totalistic multi-value rule-space, in 3D as well as 2D [26].

DDLab is an applications program, allowing network parameters and the
graphics presentation to be flexibly set, reviewed, and altered interactively,
including changes on-the-fly. This chapter provides a brief of history and



8 Discrete Dynamics Lab 219

Fig. 8.5 The basin of attraction field of a small random Boolean network, k = 3, n = 13.
The 213 = 8192 states in state-space are organized into 15 basins, with attractor periods
ranging between 1 and 7 and basin volume between 68 and 2724 [1.2 second]. The arrow
points to the basin shown in more detail in Fig. 8.6.
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Fig. 8.6 A basin of attraction (one of 15) of the RBN (n = 13, k = 3) shown in Fig. 8.5.
The basin links 604 states, of which 523 are garden-of-Eden states. The attractor period
= 7, and one of the attractor states is shown in detail as a bit pattern. The direction of
time is inward from garden-of-Eden states to the attractor, then clockwise. [0.56 second]
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Fig. 8.7 The basin of attraction field of a binary (v = 2) CA, neighborhood k = 3, lattice
size n = 14 [0.2 second]. There are in fact 15 basins, but equivalent basins have been
suppressed, leaving just the 6 prototypes; note also the equivalent trees typical of CA [16]
but not in RBN. State nodes have been omitted. This is the famous “elementary” rule
110 [13], which is computationally universal.

gives the flavor of DDLab with a range of examples. The figures presented
are drawn with various DDLab functions, including vector PostScript. The
operating manual [25] (a new update is in progress) describes all of the many
functions and includes a “quick start” chapter. DDLab, together with many
examples, publications, and all other information, is available in [25].

DDLab remains free shareware for personal, non-commercial, users. Any
other users, including commercial users, companies, government agencies, and
research or educational institutions, must register for a license [25].

8.1.2 A Brief History

Two friends in London in the late 1980s became interested in CA – as to
why, that is another story. They were not academic scientists. The only ar-
ticle they had read on the subject was “Statistical Mechanics of Cellular
Automata” [13], the first of Wolfram’s many influential papers [14].

The question soon arose: Can CA be run backward as well as forward? Not
knowing that this was supposed to be impossible, an algorithm was invented
the next day working on an Apple2 – computing a state’s predecessors for
rule 150. Extending the algorithm for any rule took more time and effort.
Basins of attraction were computed and painfully drawn by hand.

This eventually led to the publication of their book in 1992, in the Santa
Fe Institute series in the sciences of complexity: The Global Dynamics of
Cellular Automata, subtitled An Atlas of Basin of Attraction Fields of One-
Dimensional Cellular Automata [16]. A floppy disk was attached inside the
back cover, with DOS software for drawing space-time patterns and basins
of attraction – the origin of what later became DDLab.

The book introduced a reverse algorithm for finding the pre-images (pre-
decessors) of states for any finite 1D binary CA with periodic boundary
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Fig. 8.8 The front covers of Wuensche and Lesser’s (1992) The Global Dynamics of Cel-
lular Automata [16] and Kauffman’s (1993) The Origins of Order [6]. The attractor basins
of a CA and RBN were computed and drawn with the precursor of DDLab.
.

conditions, making it possible to reveal the precise nature of their “basins of
attraction” – represented by state transition graphs (i.e., states linked into
trees rooted on attractor cycles, which could be drawn automatically). CA
could henceforth be studied from a state-space perspective as well as from a
time-series perspective.

Two important personalities at the Santa Fe Institute (SFI) at the time
were Stuart Kauffman and Chris Langton. Stuart Kauffman was famous for
his Random Boolean Network (RBN) model of genetic regulation [5, 6], where
cell types are seen as attractors in the dynamics on the genetic network. A
meeting was arranged in the summer of 1990 in his office at the Department
of Biochemistry and Biophysics, University of Pennsylvania – “OK, you’ve
got 2 minutes” – but he was amazed to see the hand-drawn “atlas” of basins
of attraction. Professor Kauffman ordered: “take the next flight to Santa Fe.”

A long relationship with SFI began, also with Chris Langton, founder
of Artificial Life, which sprang from his important early CA work [8, 9].
Langton wrote the preface [10] to The Global Dynamics of Cellular Automata,
comparing the work with Poincaré, and promoted its publication. Kauffman
later wrote a generous review [7].

I continued my research with the new methods, gaining new insights [17,
18, 20]. As to the software, the next task I set for myself was to find an reverse
algorithm for Kauffman’s RBN; the CA reverse algorithm could cope with
different rules at each cell, but for inputs that could arrive from anywhere –
random wiring instead of wiring from a 1D CA neighborhood – that required
a completely different algorithm. I invented this algorithm in 1992, in time
to provide Kauffman with the cover image for his The Origins of Order [6]
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Fig. 8.9 A 1D space-time pattern shown as a ring of cells. scrolling diagonally towards
the top left. The present moment is the ring at the bottom right. The space-time pattern
is colored according to neighborhood, and has been filtered. 1D binary CA, k=5, hex rule
e9 f6 a8 15, n=150 (as in Fig.8.16).

(Fig. 8.8) and to present my results [18] at the Artificial Life III conference
in Santa Fe in 1992.

In 1992 I had also started a doctorate at COGS, University of Sussex
(completed in 1997 [21]), but by 1995 I was settled in Santa Fe and working
at the Santa Fe Institute – in Langton’s group. They where starting the
Swarm project, whereas I focused on porting the DOS version of DDLab
to Unix, then to Linux, with some help from the Swarm team. I named the
software “Discrete Dynamics Lab” in 1993; the first DDLab website appeared
in 1996 on ALife Online and then was hosted by SFI itself in 1997.

I collaborated a great deal with Kauffman and his colleagues [4] in theo-
retical biology – and do still. It was at his insistence that I added a number of
new RBN features to DDLab – for example, damage-spread, canalizing func-
tions, the Derrida plot, and the attractor and skeleton frequency histograms.

8.1.3 DDLab Updates

DDlab has continued to grow and evolve, adding new ideas, features, and plat-
forms. Multi-value logic was added in 2003 and, recently, vector PostScript
for most graphic output. Below is a summary of the most significant updates
with official releases on the DDLab website.
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Fig. 8.10 Basin of attraction field of a three-value CA, [v, k, n] = [3, 3, 8], rule
020120122021201201011011022. There are in fact 17 basins, but equivalent basins have
been suppressed leaving just the 7 prototypes. One attractor state is shown for each basin
[0.16 second].

• 1995: Although still in DOS, this version already had many of the im-
portant DDLab functions, described in a 63-page manual [19]: CA and
RBN, 1D, 2D and 2D+time space-time patterns, cell color by neighbor-
hood look-up or frozen, look-up frequency and entropy, sub-trees, basins
of attraction and the basin of attraction field (for a range of network size),
reverse algorithms for CA, RBN, and random graphs, in-degree frequency,
1D and 2D wiring graphic and spread-sheet to review and amend the net-
work, garden-of-Eden density, mutation, state-space matrix, learning and
forgetting algorithms, filing for the network – rules – wiring.

• 1997: Unix and Linux added; sequential updating, noise, hypercube net-
work, categorizing rule-space, attractor and skeleton frequency histograms
for large networks.

• 1999: 3D networks and neighborhoods, biases for random wiring, untan-
gling wiring, effective neighborhoods, inverse problem – pruning a fully
connected network, wiring – degrees of separation, setting rules and wiring
for parts of the network – layers – rows – range, filtering, value frequency
color code.

• 2002: Irix added; New Manual (421 pages, 209 figures), network-graph and
attractor jump-graph, where nodes can be dragged, rearranged or unrav-
elled and space-time patterns run on the graph, 1D circle wiring graphic,
wiring – power-law distribution, chain-rules for encryption, Derrida coef-
ficient, fractal return-map.

• 2003: Mac added; all aspects of DDLab generalized for multi-value logic
(up to 8 values or colors), instead of just Boolean logic (0, 1). Option to
constrain DDLab to run forward only for totalistic rules, allowing larger
neighborhoods (up to k = 25), hexagonal lattices and neighborhoods, un-
slanting 1D space-time patterns, 2D and 3D falling-of-edge boundary con-
ditions, Post functions.
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• 2005: Cygwin added; outer-totalistic rules, reaction–diffusion dynamics,
diagonal scrolling of 1D circle and 2D space-time patterns.

• 2008: A layout-graph for the basin of attraction field allowing basins
to be dragged/rearranged into any position. Vector PostScript for most
DDLab graphic output: space-time patterns, attractor basins, network-
graph, jump-graph and layout-graph; partial-order updating; many other
significant improvements. In the pipeline is the updated manual for the
latest version of DDLab.

8.1.4 Basins of Attraction

In continuous dynamical systems, all possible time-series make up the vector
field, represented by the system’s phase portrait. This is the the field of flow
imposed on phase-space by the system’s dynamical rule. A set of attractors,
be they fixed point, limit cycles, or chaotic, attract various regions of the
vector field, the basins of attraction (paraphrasing Langton [9]).

Analogous concepts and terminology apply to discrete networks; although
an important difference is that transients merge outside the attractor, within
trajectories, far from equilibrium [20] – in continuous systems they cannot.

8.1.5 Times for Attractor Basins

The elapsed times to generate attractor basins are displayed in DDLab.
To give an idea of these times, they are shown in the relevant figure
captions in square brackets, i.e., [30.1 seconds] (1.66GHz Laptop running
Linux/Ubuntu).

8.1.6 Forward and Backward in Time

DDLab looks at the dynamics on networks in two ways:

• from a time-series perspective, local dynamics, running forward
• from a state-space perspective, global dynamics, running backward

Running forward in time generates the network’s space-time patterns from
a given initial state. Many alternative graphical representations of space-
time patterns and methods for gathering and analyzing data are available to
illustrate different aspects of local dynamics, including “filtering” to show up
emergent structures more clearly, as in Fig. 8.16.

Running backward in time generates multiple predecessors rather than a
trajectory of unique successors. This procedure reconstructs the branching
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sub-tree of ancestor patterns rooted on a particular state. States without
predecessors are disclosed – the so-called garden-of-Eden states, the leaves of
the sub-trees.

Subtrees, basins of attraction (with a topology of trees rooted on attrac-
tor cycles), or the entire basin of attraction field can be displayed as di-
rected graphs in real time, with many presentation options and methods for
gathering/analyzing data. The attractor basins of “random maps” may be
generated, with or without some bias in the mapping.

Attractor basins represent the network’s “memory” by their hierarchical
categorization of state-space; each basin is categorized by its attractor and
each sub-tree by its root [18, 20]. Learning/forgetting algorithms allow attach-
ing/detaching sets of states as predecessors of a given state by automatically
mutating rules or changing connections.

Fig. 8.11 provides a summary of the idea of how state-space is organized
into attractors and basins of attraction in discrete systems, where there is
one future but many pasts.

For a binary network size n, a state B might be 1010 . . . 0110 –
there are 2n states in State-space (vn for multi-value)

A trajectory in state-space, A→ B → C

B may have other pre-images besides A (the in-degree), which can
be directly computed with reverse algorithms. States with zero
pre-images (leaves) are known as garden-of-Eden states.

The trajectory must arrive at an attractor, a cycle of states with
period one or more.

Find the pre-images of an attractor state (excluding the one on
the attractor) – then the pre-images of the pre-images until all

leaf states have been reached – the graph of linked states is the
transient tree – part of the transient tree is a sub-tree defined by
its root.

Construct each transient tree (if any) from each attractor state.
The complete graph is the basin of attraction.

Find every attractor and construct its basin of attraction – this
is the basin of attraction field – all states in state-space linked by
the dynamics – each discrete dynamical network imposes a specific
basin of attraction field on state-space.

Fig. 8.11 State-space and basins of attraction – the idea: one future, many pasts.
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(a) Ordered rule 01dc3610 (b) Complex rule 6c1e53a8 (c) Chaotic rule 994a6a65

Fig. 8.12 Ordered, complex, and chaotic dynamics of 1D binary CA are illustrated by the
space-time patterns and sub-trees of three typical k = 5 rules (shown in hex). The bottom
row shows the space-time patterns from the same random initial state. The bit strings
(n = 100) of successive time-steps (represented by white and black squares) are shown
horizontally one below the other; time proceeds down. Above each space-time pattern is a
typical sub-tree for the corresponding rule. The 1D sub-tree roots are shown in 2D: n = 40
(4×10) for the ordered rule and n = 50 (5×10) for the complex and chaotic rules. The root
states were reached by first iterating the system forward by a few steps from a random
initial state, then tracing the sub-tree backward. The ordered sub-tree is complete; the
complex and chaotic sub-trees were stopped after 12 and 50 backward time-steps. Note
that the convergence in the sub-trees, their branchiness or typical in-degree, relates to
order-chaos in space-time patterns, where order has high, chaos low, convergence. [(a) 30.1
second, (b) 42.3 second, (c) 5.8 second].

8.2 DDLab’s Interface and Initial Choices

DDLab’s graphical user interface allows setting, viewing, and amending net-
work parameters and provides presentation, output, and analysis options, by
responding to prompts or accepting defaults. Navigating the interface takes a
bit of practice, but it is designed to be both powerful and flexible, bypassing
the more specialized options unless required – with CA the simplest to set
up.
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Fig. 8.13 Space-time patterns of the Game-of-Life scrolling diagonally upward (k = 9,
n = 66×66). States are stacked in front of each other in an isometric projection, with new
seeds set at intervals and alternate time-steps skipped.

The prompts are fairly self-explanatory. They present themselves in a main
sequence for the most common 1D CA parameters and also in a number
of context-dependent pop-up prompt windows for 2D, 3D, random wiring,
various special settings, and during an output run if interrupted, or when the
run stops. A flashing cursor prompts for input. To navigate the interface:

• Enter return for a working default, which gives the next prompt. Re-
peat return to move forward through the prompt sequence. Eventually
something interesting will happen even if no actual entries are made. All
prompts have a default and some retain previous entries. An alternative
to return is a click of the left mouse button.

• Enter q to backtrack to the preceding prompt. Repeat q to backtrack up
the prompt sequence. q will also revise an entry and interrupt a running
process being generated, such as space-time patterns or attractor basins.
An alternative to q is a click of the right mouse button.

• Any time a top-center notice is showing with accept defaults-d, enter d

to skip a series of specialist prompts.
• Enter appropriate input from the keyboard in response to a prompt, fol-

lowed by return to move to the next prompt. Revise with q or backspace.
• To exit DDLab enter Ctrl-q at any prompt, followed by q (except in DOD

– press q to backtrack until exit).
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Fig. 8.14 A 2D CA space-time pattern on a hexagonal lattice. n = 88 × 88, [v, k] =
[3, 7]. The k-totalistic rule 000200120021220221200222122022221210 gives rise to a zoo of
interacting mobile and static emergent structures [27]: spiral glider-guns, mobile glider-
guns, and self-reproduction by glider collisions.

8.2.1 TFO, SEED, and FIELD Modes

Some initial choices in the prompt sequence set the stage for all subse-
quent DDLab operations. TFO-mode constrains DDLab to run totalistic rules
forward-only. This reduces memory load by cutting out full look-up tables and
all attractor functions allowing larger neighborhoods as shown in Table 8.2.

If DDLab is not constrained in TFO-mode, there is a further choice:
FIELD-mode to show the whole basin of attraction field, or SEED-mode
to show something that requires an initial state (a space-time pattern, a sin-
gle basin of attraction, or a sub-tree). At the conclusion of an output run
FIELD-mode and SEED-mode can be toggled without having to backtrack.
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see detail

Fig. 8.15 Top: The space-time pattern of a 1D binary CA where interacting gliders
emerge [23]. n = 700, k = 7, 250 times-steps from a random initial state. Center: The
basin of attraction field for the same rule, n = 16. The 216 states in state-space are con-
nected into 89 basins of attraction, but only the 11 nonequivalent basins are shown, with
symmetries characteristic of CA [6.9 seconds]. Bottom: A detail of the second basin in the
basin of attraction field, where states are shown as 4× 4 bit patterns.
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Fig. 8.16 A space-time pattern of a complex 1D CA, [v, k] = [2, 5], n = 150, hex rule e9
f6 a8 15 (as in Fig. 8.9); 350 time-steps, and some analysis shown by default. Left: The
space-time pattern colored according to neighborhood look-up, and progressively “filtered”
on-the-fly three times, suppressing the background domain to show up interacting gliders
more clearly. Center: The input-entropy plot of – right: the look-up frequency histogram,
relative to a moving window of 10 time-steps. The filtered neighborhoods are indicated
with a dot. The entropy variance is a sign of emergent structure.

8.3 Network Parameters

The parameters to define the network are presented in roughly the following
sequence, but this depends on the mode chosen in Sect. 8.2.1: TFO, SEED,
and FIELD modes and subsequent choices. To make corrections, backtrack
with q. Depending on what is selected, some of these parameters may not
apply or there may be extra options in pop-up windows.

value-range v → system size n → neighborhood size k or k-mix
→ dimension 1D, 2D, 3D → wiring scheme
→ rule or rule-scheme → initial state

Wiring, rules, and the initial state can also be amended during an output
run or at its conclusion, including changes on-the-fly.

These parameters, described in the sub-sections below, may appear some-
what intimidating with their many alternatives and diversions, but DDLab
provides defaults to all prompts and bypasses the more specialized prompts
if not needed.
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5.

6.

7.

8.

9.

10.

11.

12.

Fig. 8.17 Basin of attraction fields for a range of network size n = 5− 12, [v, k] = [2, 3],
rule 30 [0.59 second].

Fig. 8.18 The cell value color key window that appears when the value-range is selected
– here for v = 8. The values themselves are indexed from 7 to 0.

8.3.1 Value Range, v

The value-range v is the number of possible cell-states, or colors, or letters
in the cell’s “alphabet.” v can be set from 2 to 8 only at this early prompt. If
v=2, DDLab behaves as in the old binary version. The value-range is indexed
from 0 to 7, and is assigned a color code.

As v is increased, max-k will decrease (Table 8.1), and max-n in FIELD-
mode will also decrease (Table 8.2).



232 Andrew Wuensche

Fig. 8.19 Snapshot of a 2D CA on a hexagonal lattice. n = 40 × 40, where spirals have
emerged. [v, k] = [3, 6]. The k-totalistic rule depends on just the frequency of the v = 3
colors (2,1,0) in the k = 6 neighborhood, as shown below:

black: 2→ 6 5 5 4 4 4 3 3 3 3 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0
red: 1→ 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0 5 4 3 2 1 0 6 5 4 3 2 1 0

white: 0→ 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6







frequencies

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 1 1 2 2 2 0 0 0 2 1 1 1 0 ← rule-table

8.3.2 Network Size, n

In FIELD-mode (for basin of attraction fields) the maximum network size
(max-n) decreases with increasing value-range v as set out in Table 8.1. Note
that, in practice, smaller sizes than max-n are recommended because of ex-
pected time and memory constraints.

In TFO-mode, and SEED-mode (for space-time patterns, single basins, or
sub-trees), the network size is limited to max-n=65,025. A 2D square network
is limited to (i, j)=255×255 and a 3D cubic network to (i, j, h) = 40×40×40,
but within the limits of n = 65025 there can be any combination of (i, j) and
(i, j, h).

v 2 3 4 5 6 7 8

max-n 31 20 15 13 12 11 10

Table 8.1 For a basin of attraction field (FIELD-mode): the maximum network size,
max-n, for different value-ranges v.
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Max-n works fine for space-time patterns, but for single basins and sub-
trees, in practice much smaller sizes are appropriate, except when generating
sub-trees for maximally chaotic CA chain-rules (Sect. 8.8).

The network size n for 1D is set early on in the prompt sequence, but this
is superseded if a 2D (i, j) or 3D (i, j, h) network is selected in a subsequent
prompt window.

Unconstrained
FIELD/SEED-mode
v max-k table size S

2 13 8162

3 9 19683

4 7 16484

5 6 15629

6 5 16807

7 5 16807

8 4 4096

Constrained
TFO-mode

v max-k table size S

2 25 26

3 25 351

4 25 3276

5 25 23551

6 17 26334

7 13 27132

8 11 31824

Table 8.2 The maximum neighborhood size, max-k, for value-ranges v. Left: For FIELD-
mode or SEED-mode, with a full (unconstrained) rule-table. Right: For TFO-mode, for
running totalistic rules forward-only, where the totalistic rule-tables are shorter, so max-k
can be larger. In both cases the size S of the rule-tables for v and max-k is shown.

[v, k]=[2,7] totalistic rule [v, k]=[3,6] totalistic rule

Fig. 8.20 Snapshots of 3D CA from random initial states. The projection is axonometric
seen from below, as if looking up at the inside of a cage. Left: n = 40×40×40. The binary
totalistic rule 11101000, k = 7, but with a bias of 1s of 45%. Cells are shown colored
according to neighborhood look-up for a clearer picture, instead of by value: (0, 1). Right:
n = 50×26×50, [v, k] = [3, 6]. The k-totalistic rule 0200001020100200002200120110 allows
the emergence of gliders and other complex structures.
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8.3.3 Neighborhood Size, k

The neighborhood size, k, is the number of input wires to each cell. If k is
not homogeneous, the k-mix needs to be defined.

k can be set from 1 to max-k, but an effective k = 0 is also possible.
Permissible max-k decreases with increasing value-range v because look-up
tables may become too large. A full look-up table vk is larger than a k-
totalistic look-up table (v+k−1)!/(k!(v−1)!), so max-k depends on whether
DDLab was constrained in TFO-mode or unconstrained in SEED-mode or
FIELD-mode. Max-k, for increasing value-range v, for both cases is given in
Table 8.2, which also show the size of the corresponding rule-tables S.

The k-mix may be set and modified in a variety of ways, including defining
the proportions of different k’s to be allocated at random in the network or
a scale-free distribution as in Fig. 8.4. A k-mix may be saved/loaded, but it
is also implicit in the wiring scheme.

1D neighborhoods: for even k the extra asymmetric cell is on the right.

2D neighborhoods k=4–25: top row square, bottom row hex – black indicates the default.

3D neighborhoods

Fig. 8.21 Predefined 1D, 2D, and 3D neighborhood templates. For 1D and 2D, k-max≤25
in TFO-mode, otherwise k-max≤13. For 3D, k-max≤13. For 2D, the neighborhood/lattice
can be either square or hexagonal.
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Fig. 8.22 The wiring of a cell: For random wiring, cells anywhere in the network are
wired back to each position in a “pseudo-neighborhood,” which corresponds to the CA
neighborhood. Each cell’s wiring can be shown (and amended) by moving around the
network with the mouse or keyboard. Left: 1D: The wiring is shown between two time-
steps. Center: 2D: k = 5. Right: 3D: k = 7.

8.3.4 Dimensions

Fig. 8.21 shows some of the predefined neighborhoods templates in 1D, 2D, or
3D, where each neighbor is indexed from 0 to k−1. The templates, which are
designed to maximize symmetry, are assigned automatically when the dimen-
sions are selected (the default is 1D) and conform to k or the k-mix. In 2D,
there is a choice of square or a hexagonal neighborhood template. A hexag-
onal template results in a lattice with hexagonal tiling (Figs. 8.19 and 8.14).
The choice of dimensions also sets the network’s native geometry, with peri-
odic boundary conditions, where lattice edges wrap around to their opposite
edges. The presentation geometry can be different from the native geome-
try. The neighborhood templates also serve as the pseudo-neighborhoods for
random wiring, because the rule requires an indexed neighborhood.

8.3.5 Wiring or Connections

The wiring scheme, the network connections, defines the location of the out-
put terminals of each cell’s input wires (Fig. 8.22), which connect to each
neighbor in the indexed neighborhood or pseudo-neighborhood. For CA, the
output terminals correspond to the neighborhood, but for random wiring,
they could be anywhere within the network.

Wiring is perhaps the least studied aspect of the dynamics on networks.
DDLab makes it possible to weave the tapestry.

The 1D, 2D, or 3D networks, whether CA or randomly wired, can be set
up automatically, with a wide variety of constraints and biases. For example,
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random wiring can be confined within a local patch of cells with a set diameter
in 1D, 2D or 3D (Fig. 8.24, Right). Some wires can be released from the
neighborhood or patch. Part of the network only can be designated to accept
a particular type of wiring scheme, for example rows in 2D and layers in 3D.
The wiring can be biased to connect designated rows or layers.

A wiring scheme can be set and amended just for a predefined sub-network
within the network, which may be saved/loaded, and hybrid networks of
CA/DDN can be created, or a network of sub-networks in any combination.

Random wiring can be set or amended by hand. The wiring may be hy-
percube if k = log2 n or log2 n + 1; for example, k = 3 or 4, n = 8.

The network parameters including wiring can be displayed and amended
in a 1D, 2D, or 3D graphic format (Figs. 8.22 and 8.26) or in a “spreadsheet”
(Fig. 8.27). The wiring can also be shown in a network-graph which can be
rearranged in many ways, including dragging nodes with the mouse as in
Figs. 8.1, 8.2, 8.4, and 8.28.

8.3.6 Rule or Rule Mix

A network may have one rule or a rule-mix. The rule mix can be confined to
a subset of preselected rules. Rules may be set and modified in a wide variety
of ways: in decimal, hex, as a rule-table bit or value string, at random, or
loaded from a file. A rule scheme can be set and amended just for a predefined
sub-network within the network, and may be saved/loaded.

In its most general form of update logic, a rule is expressed as a full look-
up table, but there are sub-sets of the general case, two types of totalistic
rules, and their corresponding outer-totalistic rules.

The simplest, t-totalistic rules, depend on the sum of values in the neigh-
borhood. k-totalistic rules depend on the frequency of each value (color) in
the neighborhood (see Fig. 8.19). If k = 2, these two types are identical.

Fig. 8.23 Examples of the neighborhood matrix of full look-up tables (rule-tables), show-
ing all possible neighborhoods (vertically). The position of each neighbor is indexed from
k − 1 to 0. Above: [v, k] = [2, 6] all 64 neighborhoods, from all-1s to all-0s. Below:
[v, k] = [4, 3] all 81 neighborhoods, from all-3s to all-0s.
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Fig. 8.24 Reaction-Diffusion or excitable media [3] dynamics. Left: [v, k] = [8, 8], thresh-
old interval is 1 to 6, n = 122 × 122. Right: [v, k] = [8, 11], threshold interval is 2 to 7,
n = 255× 255, random connections within a 24-diameter local zone.

Both types of totalistic rules can be made into outer-totalistic rules, where
a different rule applies for each value of the central cell; the Game-of-Life is
one such rule (Fig. 8.13).

Totalistic and outer-totalistic rules can be run in either SEED-mode or
TFO-mode – transformations and mutations then apply to to either the full
or the totalistic look-up table.

There are also subsets of rules that can be automatically selected at ran-
dom, including isometric rules – where rotated and reflected nhoods (1D,
2D or 3D) have the same output, chain-rules [28] described in Sect. 8.8, and
Altenberg rules (Fig. 8.35).

Rules can be biased by various parameters, λ [9], Z [16, 23], canalizing
inputs [4], and Post functions [12]. The Game-of-Life, majority (Fig. 8.25),
and other predefined rules can be selected.

Rules may be changed into their equivalents (by reflection and nega-
tive transformations) and transformed into equivalent rules with larger or
smaller neighborhoods. Rules transformed to larger neighborhoods are use-
ful to achieve finer mutations (Fig. 8.33). Rule parameters λ and Z and the
frequency of canalizing inputs in a network can be set to any arbitrary level.

DDlab is also able to implement reaction-diffusion or excitable media dy-
namics [3] (Fig. 8.24), which can be set as an outer-k-totalistic rule in TFO-
mode or as a full look-up table in SEED-mode.

8.3.7 Initial State, the Seed

An initial network state, the seed, is required to run a network forward and
generate space-time patterns. A seed is also required to generate a sub-tree
or a single basin by first running forward to find the attractor, then backward
to generate the sub-tree from each attractor state. A basin of attraction field
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Fig. 8.25 Top Left: A 2D seed, n = 88 × 88, drawn with the mouse and keyboard,
[v, k] = [8, 4]. Colors 0 to (v − 1) can be selected. The image/seed can be moved, rotated,
and complimented. Sub-patterns saved earlier can be loaded into specified positions within
the main pattern. In this example the seed is then transformed by applying a CA majority
rule for three time-steps.

does not require setting a seed, because appropriate seeds are automatically
provided.

To generate a sub-tree from a random seed it is usually necessary to run
forward by a few steps to penetrate the sub-tree before running backward
(Fig. 8.12). This is because for most DDN and CA (except chain-rules [28]
Sect. 8.8), most states in state space have no predecessors; they are the sub-
tree leaves or Garden-of-Eden states (Fig. 8.40).

As in setting a rule, there are a wide variety of methods for defining the
seed: in decimal or hex, drawing bits or values in 1D, 2D, or 3D – a mini-
paint program (Fig. 8.25), at random (with various constraints or biases), or
loaded from a file.
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Fig. 8.26 The 1D wiring graphic, showing wiring to a block within a 1D network. k = 5,
n = 150. The block was defined from cells 60–80. Revisions to rules and wiring can be the
confined just to the block. The “active cell” is still visible and can be moved as usual. The
1D wiring graphic can also be shown as a circle.

8.4 Network Architecture

Once the network is defined, DDLab provides tabular and graphical methods
for examining, amending, duplicating, unraveling, and displaying the net-
work. These functions can be accessed from the initial sequence of prompts,
or during an output run if interrupted, or when the run stops.

8.4.1 Wiring Graphic

The wiring graphic (Figs. 8.22 and 8.26) can be displayed in 1D, 2D, or 3D.
The network’s wiring and rules can be examined, changed, and tailored to
requirements, including biased random settings to predefined parts of the
network. Individual cells can be examined by moving around the diagram
with the keyboard, and the cell’s rule or individual wires modified. A block
of cells can be defined and its wiring randomized or relocalized. These are
very flexible methods, and for RBN/DDN it is usually easier to set up a
suitable dummy network initially, and then tailor it in the wiring graphic.

From the wiring graphic it is possible to create a system of independent or
weakly coupled sub-networks either directly, or by saving smaller networks
to a file, and then loading them at appropriate positions in a base network.
Thus, a 2D network can be tiled with sub-networks, and 1D, 2D, or 3D
sub-networks can be inserted into a 3D base network.

The parameters of the sub-networks can be different from the base net-
work, provided the base network is set up appropriately, with the right at-
tributes to accommodate the sub-network. For example, to load a DDN into
a CA, the CA may need be set up as if it were a DDN. To load a k-mix sub-
network into a homogeneous-k base network, k in the base network needs to
be at least as big as the biggest k in the sub-network. Options are available
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12. 11. 10. 9. 8. 7. 6. 5. 4. 3. 2. 1. 0. rule(hex)

8 13: 12 9 9 0 4 10 6 34 fc 75 b9 3e 08 ae 7a 3a 49 69 96 b2 58 51 04 

8 12: 11 02 

11 11: 2 7 12 7 11 4 0 50 a6 4d a2 49 60 55 f4 03 22 f0 bf e2 17 de c6 

1 10: 0 13 4 9 11 7 7 4 11 0 13 7 de ea ae 45 0d e9 72 ef 3c 42 0e 8b 75 bb 78 06 11 5d a5 a8 b5 1c d0 41 d0 75 9f 67 4d 6e e5 6f 
9 9: 13 5 8 4 9 9 5 3 01 39 69 d9 48 74 58 81 b6 bf c3 59 4c e3 df 59 3e 05 3b c6 bb 2e a3 28 7d a9 b6 89 ae 9c f1 aa 

7 8: 7 9 2 11 5 5 5 6 11 33 c1 65 eb 95 ff 98 f8 61 e8 37 14 6c 7f 9d 66 09 e3 cd 60 1e 31 50 d2 1d df 48 20 1a c4 1b 27 

12 7: 5 1 5 13 49 fa 

3 6: 13 8 7 1 12 8 7 7 2 71 bd 34 26 01 43 d7 f0 10 4a 9c 6c fd 05 a4 ad 4b fa 2e bc 8e e9 4c ec 17 3f e1 a9 06 15 27 91 

12 5: 11 3 4 1 5 11 8 9 11 12 1 12 8 ab 62 1d ba 2b 84 a8 6d e1 2e 35 74 91 39 f4 7e e6 98 f3 8d 6a 7a ea 74 e8 a5 7b 95 6c d2 ae d1 

8 4: 4 0 0c 

3 3: 9 8 7 0 7 12 11 7 5 5 8 a0 07 60 8b 68 04 db 7d 36 2c 22 ab 20 41 20 4b 29 a2 00 5b 12 94 bf 16 4c 88 7d f2 e6 59 75 5a 

5 2: 4 12 1 12 13 d1 09 5c e0 

8 1: 13 1 5 2 6 2 11 1 1 9 a7 f9 88 27 2b d8 5b 24 d1 84 33 bf d8 40 78 ea 7d 2d 01 16 88 5f f2 63 5b a8 fb 86 5d ed 80 1f 

6 0: 3 13 5 70 


Fig. 8.27 The wiring matrix for a mixed k network with random wiring. n = 14, k = 2−13.
Rows 13. . . 0 show the wiring and rule for each cell. Columns 12. . . 0 show from where each
pseudo-neighborhood position is wired. The far left column shows the “out-degree” of each
cell, the number of output wires that link to it, as a histogram. The far right column shows
the rules in hex (as much as will fit). It is possible to move around the wiring matrix as in
a spreadsheet to change wiring settings.

to set up networks in this way. Once loaded, the wiring can be fine-tuned to
interconnect the sub-networks.

A network can be automatically duplicated to create a total network made
up of two identical sub-networks. There is a function to see the difference
pattern (or damage-spread) between two networks from similar initial states.

Connectivity measures from the wiring graphic include the following:

• Average k (inputs), and the number of reciprocal links and self-links.
• Histograms of the frequency distribution of inputs k, of outputs, or both

(all connections) in the network.
• The recursive inputs/outputs to/from a network element, whether direct

or indirect, showing the “degrees of separation” between cells.

8.4.2 Wiring Matrix

The wiring matrix (Fig. 8.27) displays the wiring and rule information in a
tabular format, like a spread-sheet. For each cell tabulated against its pseudo-
neighborhood index, the position of the input cell is shown. You can move
around the matrix with the keyboard and amend this position.

8.4.3 Network-Graph

Another method of reviewing network architecture is an adjacency matrix and
network-graph (Figs. 8.1, 8.2, 8.4, and 8.28) that looks just at the network
connections, nodes linked by directed edges. It does not allow changes to
the underlying network, but includes flexible methods for representing the
network and rearranging and unraveling its graph.
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5 4 3 2 1 0

Fig. 8.28 Network-graphs of a 2D and 3D CA. Left: A 2D hexagonal network, showing
a node and its 1-step inputs dragged out. Right: A 3D network shown as an axonometric
projection seen from below as if looking up into a cage. A vertical slice has been defined
and dragged from the graph.

– in fact the functions below apply equally to the jump-graph.
For example, single nodes, connected fragments, or whole components can

be dragged with the mouse to new positions with “elastic band” edges. Frag-
ments depend on inputs, outputs, or both, and the link distance of a fragment
from a node can be defined.

Dragging can include the node + its immediate links (step 1), the node +
immediate links + their immediate links (step 2), etc. The average directed
shortest path and non-directed small-world distance can be calculated. Arbi-
trary 1D, 2D, and 3D blocks can be dragged. Nodes with the fewest links can
be automatically moved to the outer edges. This makes it possible to unravel
a graph. The pre-programmed graph layouts available are a circle of nodes,
a spiral, or 1D, 2D, or 3D, jiggled, and random. The graph can be rotated,
expanded, contracted, and various other manipulations can be performed.
The graph layout can be saved/loaded. An “ant” can be launched into the
network that moves according to the link probabilities (as in a Markov chain)
keeping a count of node hits.

8.5 Running Space-Time Patterns and Attractor Basins

Once the network is defined, a further series of prompts set the presentation
and analysis in advance of the final output. The prompts depend on the
context and previous selections and are presented in a succession of pop-up
windows. They are arranged into the following categories:

• For attractor basins: various, layout, display, pause/data and mutation.
• For space-time patterns: various, analysis, and histograms.

The methods and options are similar to those of the jump-graph (Sect. 8.5.3)
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←−———– space ———–−→

time
↓

Fig. 8.29 Space-time patterns of a 1D binary CA, [v, k] = [2, 3], n = 51, rule 90. Twenty
four time-steps from an initial state with a single central 1. Two alternative presentations
are shown. Left: cells by value. Right: cells colored according to their look-up neighborhood.

These options all have default setting, so you can skip them entirely or
skip just the remaining categories at any point with d, or backtrack with q

and skip to the required category.
After these prompts, space-time patterns start. Attractor basins start after

some further final options. During the running process there are many inter-
rupt and on-the-fly options, especially for space-time patterns. These are too
numerous to list in full, but the sub-sections below provide some flavor.

8.5.1 Options for Space-Time Patterns

There are many alternative forms of presentation of space-time patterns
and these can be changed on-the-fly, with a key press, while the space-time
patterns are running. Cells in space-time patterns are colored according to
their value or, alternatively, according to their neighborhood at the previ-
ous time-step, the entry in the look-up table that determined the cell’s value
(Fig. 8.29). Space-time patterns can be filtered to suppress cells that updated
according to the most frequently occurring neighborhoods, thus exposing
“gliders” and other structures (Figs. 8.16 and 8.30).

The presentation can highlight cells that have not changed in the previ-
ous x generations, where x can be set to any value. The emergence of such
frozen elements are a sign of order, which can be induced by “canalizing in-
puts,” applied in Kauffman’s RBN model of gene regulatory networks [6, 4].
A 1D space-time pattern is presented scrolling vertically, or by successive
vertical sweeps. The 2D networks can be toggled between square and hexag-
onal layout, and presented with a time dimension (2D+time), scrolling either
vertically or diagonally (Fig. 8.13). The 3D networks are presented within a
3D “cage” (Fig. 8.20), but can also be shown in slices. The presentation of
space-time patterns can be switched on-the-fly among 1D, 2D, 2D+time, and
3D, irrespective of their native dimensions. DDLab automatically unravels or
bundles up the dimensions.

Space-time patters may iterate too fast for comfort, especially for 1D.
They can be slowed down progressively on-the-fly or restored to full speed
with the arrow keys.
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Fig. 8.30 Filtering a binary 1D space-time pattern with interacting gliders embedded
in a complicated background. Left: unfiltered. Right: the same space-time pattern filtered.
Filtering is done on-the-fly for any rule. In this example, k = 3 rule 54 was first transformed
to its equivalent k = 5 rule (hex: 0f3c0f3c). n = 150, 75 time-steps from a random initial
state.

There are many other on-the-fly options which do not interrupt the run-
ning space-time patterns, in whatever form of presentation. These include
skipping time-steps, pausing after x time-steps, reversing to previous time-
steps, changing the scale, changing or perturbing the current state, changing
rules, toggling wiring between local and random, and showing cell stabil-
ity. Bits/values in a rule can be progressively flipped and unflipped. Various
qualities of noise can be added. Synchronous updating can be toggled with
asynchronous in a random or a predefined partial order.

Concurrently with the standard presentations, space-time patterns can be
displayed in a separate window according to the network-graph layout, which
can be rearranged in any arbitrary way, including various default layouts. For
example, a 1D space-time pattern can be shown in a circular layout and then
scrolled diagonally (Fig. 8.9).

8.5.2 Options for Attractor Basins

Many options are provided for the layout of attractor basins, their size, po-
sition, spacing, rotation, and type of node display – as a spot, in decimal,
hex, or a 1D or 2D bit pattern. Just the transient nodes, Garden-of-Eden
nodes (or none) can be displayed. The in-degree spread or fan-angle can be
adjusted.

Sub-trees, single basins, and the basin of attraction field can be draw
for a range of network sized (Fig. 8.17). The basin of attraction field can
be generated within the movable nodes of a jump-graph or layout-graph to
achieve any arbitrary layout (Figs. 8.31 and 8.32).

Regular 1D and 2D CA produce attractor basins where sub-trees and
basins are equivalent by rotational symmetry [16]. This allows “compres-
sion” of basins into just nonequivalent prototypes and also their sub-trees.
As attractor basins are generating, the reverse space-time pattern can be
simultaneously displayed.
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Fig. 8.31 The DDLab screen showing two layouts of a basin of attraction field. Top: The
normal layout but with spacing adjusted after each basin. Inset below: The layout-graph
where nodes (thus basins) can be dragged into any position. Both results can be saved
as vector PostScript files. This example is for a binary 1D CA, k = 5, totalistic rule 53,
n = 15 [2.4 second].

An attractor basin run can be set to pause to see data on each transient
tree, each basin, or each field. Any combination of these data, including the
complete list of states in basins and sub-trees, can be displayed in the termi-
nal window or saved to a file. When pausing, the default position, spacing,
rotation, and other properties of the next basin can be amended.

When an attractor basin has finished, a key-press will generate a “mutant”
according to the mutant setting – for example, flipping a bit or value in
the rule table, or moving a wire. The pause may be turned off to create
a continuous demo. A “screensave” option shows mutant basins continually
growing at random positions.

Attractor basins can be generated according to synchronous updating or
asynchronous updating in a pre-defined partial order.
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Fig. 8.32 The jump-graph with the basins of attraction field (RBN k = 3, n = 13,
in Fig. 8.5) redrawn within its nodes. The jump-graph shows the probability of jumping
between basins due to single bit-flips to attractor states. Nodes representing basins are
scaled according the number of states in the basin (basin volume), and can be rearranged
and dragged. Links are scaled according to both basin volume and the jump probability.
Arrows indicate the direction of jumps. Short stubs are self-jumps. When jump-graph links
are eliminated, this becomes a layout-graph with mobile nodes where basins can be redrawn
at node positions.

8.5.3 Attractor Jump-Graph and Layout-Graph

The stability of basins of attraction is especially relevant to the stability of cell
types in biology, following the genetic regulatory network approach [5, 11].

DDLab provides an analysis of the basin of attraction field, tracking where
all possible 1-bit flips (or 1-value flips) to attractor states end up, whether to
the same or to another basin. The information is presented in two ways, as
a jump-table – a matrix showing the jump probabilities between basins, and
graphically as the attractor jump-graph – a graph with weighed vertices and
edges giving a graphic representation of the jump-table (Fig. 8.32).

The jump-graph can be analyzed and manipulated in many ways, and re-
arranged and unraveled, including dragging vertices and defined components
to new positions with “elastic band” edges; the same methods as for the
network-graph (Sect. 8.4.3).

If the jump links are eliminated, this becomes a layout-graph (Fig. 8.31) where
dragging/rearranging nodes provides an alternative flexible method for posi-
tioning basins – the resulting graphics can be saved as vector PostScript –
for example, Figs. 8.7, 8.10, and 8.15 (center).

Basins of attraction can be redrawn within the jump-graph nodes (Fig. 8.32).
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Fig. 8.33 Mutant basins of attraction of the [v, k] = [2, 3] rule 60 (n = 8, seed all 0s).
Top left: The original rule, where all states fall into just one very regular basin. The rule
was first transformed to its equivalent k = 5 rule (f00ff00f in hex), with 32 bits in its rule
table. All 32 one-bit mutant basins are shown. If the rule is the genotype, the basin of
attraction can be seen as the phenotype [0.02 seconds]

8.5.4 Mutation

As well as on-the-fly changes to presentation, a wide variety of on-the-fly
network “mutations” can be made.

When running forward, key-press options allow mutations to wiring, rules,
and current state. A number of “complex” CA rules (with glider interactions)
are provided as files with DDLab, and these can be activated on-the-fly.

When attractor basins are complete, a key-press will regenerate the at-
tractor basin of a mutant network. Various mutation options can be preset
including random bit/value-flips in rules and random rewiring of a given
number of wires. Sets of states can be specified and highlighted in attractor
basins to see how mutations affect their distribution. The complete set of
one-bit mutants of a rule can be displayed together as in Fig. 8.33.

8.5.5 Learning and Forgetting

Learning and forgetting algorithms allow attaching and detaching sets of
states as predecessors of a given state by automatically mutating rules or
altering wiring couplings [18, 20]. This allows “sculpting” the basin of at-
traction field to approach a desired scheme of hierarchical categorization, the
network’s content addressable memory. Because any such change, especially
in a small network, usually has significant side effects, the methods are not
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good at designing categories from scratch, but are useful for fine-tuning a
network that is already close to where it is supposed to be.

More generally, a very preliminary method for reverse engineering a net-
work, also known as the inverse problem, is included in DDLab, by pruning
the connections in a fully connected network to satisfy an exhaustive map
(for network sizes n ≤ 13). The inverse problem is to find a minimal network
that will satisfy a full or partial mapping, fragments of attractor basins, or
trajectories.

8.5.6 Sequential Updating

By default, network updating is synchronous, in parallel. DDLab also allows
sequential updating, both for space-time patterns and attractor basins. Se-
quential orders are forward, backward, or a random order, but any specific
order can be set from the n! possible sequential orders for a network of size n.
The order can be saved/loaded from a file.

An algorithm in DDLab computes the neutral order components (limited
to network size n ≤ 12). These are sets of sequential orders with identical
dynamics. DDlab treats these components as sub-trees generated from a root
order and can generate a single component sub-tree or the entire set of com-
ponents sub-trees making up sequence space (the neutral field) which are
drawn in an analogous way to attractor basins [21].

DDLab can also set a sequential partial order, where cells are allocated
to groups which update sequentially in a given order, but with synchronous
updating within each group. This allows the updating to be tuned between
fully synchronous and fully sequential.

Setting an update probability can also achieve asynchronicity, where only
a part of the network, randomly assigned, updates at each time-step.

8.5.7 Vector PostScript of Graphic Output

Graphic output in DDLab can be captured as vector PostScript, which is
preferable for publication quality images over bitmap graphics, as they can
be scaled without degrading the resolution. Many of the figures in this chapter
are vector images; others are bitmap graphics captured with a screen grabber.
At the time of writing, vector PostScript files are available for the following:
space-time patterns in 1D and 2D, attractor basins of all kinds, the network-
graph, attractor jump-graph, and layout-graph.

Vector PostScript files are ASCII files in the PostScript language and so
can be edited for changes and additions. If selected, functions in DDLab
generate these files automatically according to the the current presentation
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of the DDLab graphic, but also with various options for the PostScript image
itself such as color or gray scale. There is no limit on the size of a PostScript
file, so for large attractor basins with many links and nodes, proceed with
caution to avoid excessively large files. If an attractor basin is interrupted,
the PostScript file of part of the graphic generated up to that point will be
valid.

8.5.8 Filing Network Parameters, States, and Data

Network parameters and states can be saved and loaded for the following:
k-mix, wiring schemes, rules, rule schemes, wiring/rule schemes, and network
states. Data on attractor basins, at various levels of detail, can be auto-
matically saved. A file of “exhaustive pairs,” made up of each state and its
successor, can be created.

Various data including mean entropy and entropy variance of space-time
patterns can be automatically generated and saved, allowing a sorted sample
of CA rules to be created, discriminating between order, complexity, and
chaos [23], as in Fig. 8.37. A large collection of complex rules, those featuring
“gliders” or other large-scale emergent structures, can be assembled. Pre-
assembled files of CA rules sorted by this method are provided with DDLab.

8.6 Measures and Data

DDLab provides static measures for rules, wiring and various quantitative,
statistical, and analytical measures, and data on both space-time patterns
and attractor basin topology. The measures and data are shown graphically
in most cases as well as numerically.

Section 8.4 listed connectivity measures from the wiring graphic. Other
measures are listed in the following subsections.

8.6.1 Static Rule Measures

DDLab provides various static measures depending just on the rule-table, or
rule-tables in mixed-rule networks. These measures or parameters are gener-
alized for multi-value.

• The λ-parameter [9] which measures the density of non-quiescent values
in the rule-table. λ approximates the Z-parameter.

• The λ-ratio [16] equivalent to λ, but defined differently.
• The P -parameter [4] equivalent to λ for binary systems, but defined dif-

ferently again.
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0 or 1 ←————– λ-parameter —————→ 0.5
0 ←——————– Z-parameter —————→ 1
max ←————— convergence —————→ min

Fig. 8.34 A view of rule-space after Langton and his λ-parameter [9]. Tuning the Z-
parameter from 0 to 1 moves the dynamics from maximum to minimum convergence, from
order to chaos, traversing a phase transition where complexity might be found. The chain-
rules, added on the right, are maximally chaotic and have the very least convergence,
decreasing with system size, making them suitable for dynamical encryption.

• The Z-parameter [16], a probability measure, which predicts the conver-
gence, bushiness, of sub-trees in attractor basins, thus order/chaos in the
dynamics (Fig. 8.34).

• The (weighted) average λ and Z in a rule-mix.
• Canalizing inputs [6, 4] and the frequency of canalizing “genes” and in-

puts, which can be tuned to required values and displayed graphically.
Canalizing inputs induce order in RBN/DDN (Fig. 8.38).

• Post functions [12], which also induce order in RBN, and where the dy-
namics are closed under composition.

Single rules or a rule-mix can be tuned to adjust any of these measures to
any arbitrary level.

8.6.2 Measures on Space-Time Patterns

Some measures on space-time patterns are listed below:

• The rule-table look-up-frequency histogram in a moving window of time-
steps, and its input-entropy plot (Fig. 8.16). This is the basis of the method
for automatically filtering space-time patterns [23] (Figs. 8.16 and 8.30).

• The space-time color density in a moving window of time-steps (Fig. 8.35).

• The variance or standard deviation of the entropy, and an entropy/density
scatter plot [23], where complex rules have their own distinctive signatures
(Fig. 8.36).
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Fig. 8.35 Left: A 1D CA space-time pattern, from a random initial state, of an Altenberg
k-totalistic rule [v, k] = [8, 7], n = 150, where the probability of a rule-table output depends
on the fraction of colors in its neighborhood, resulting inevitably in emergent structure.
Right: The color density plotted for each of the 8 colors, relative to a moving window of
10 time-steps.

• A scatter plot of mean entropy against the standard deviation (or an alter-
native “min-max” measure) of the entropy for an arbitrarily large sample of
CA rules, which allows ordered, complex, and chaotic rules to be classified
automatically [21, 23], also shown as a 2D frequency histogram (Fig. 8.37).
Ordered, complex, and chaotic dynamics are located in different regions,
allowing a statistical measure of their frequency. The rules can be sorted
by the various measures, allowing complex rules to be found automatically.

• Various methods for showing the activity/stability of network cells, or
frozen “genes” [4].

• The damage-spread [21], or pattern-difference, between two networks, in
1D or 2D. A histogram of damage-spread frequency can be automatically
generated for identical networks with initial states differing by 1 bit.

• The Derrida plot [4, 6], and Derrida coefficient, analogous to the Lia-
punov exponent in continuous dynamical systems, which measures how
pairs of network trajectories diverge/converge in terms of their Hamming
distance, indicating if a RBN/DDN is in the ordered or chaotic regime
(see Fig. 8.38).

• A scatter plot of successive iterations in a 2D phase plane, the “return
map” (Fig. 8.39), which has a fractal structure for chaotic rules.
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Fig. 8.36 Entropy/density scatter plot [23]. Input-entropy is plotted against the density
of 1s relative to a moving window of 10 time-steps. Plots for a number of [v, k] = [2, 5]
complex rules (n = 150) are show superimposed in different colors, each of which has
its own distinctive signature, with a marked vertical extent (i.e., high entropy variance).
About 1000 time-steps are plotted from several random initial states for each rule.

Fig. 8.37 Classifying a random sample of [v, k] = [2, 5] rules automatically by plotting
mean entropy against the standard deviation of the entropy. The 2D histogram shows
the frequency of rules falling within a 128 × 128 grid. The rules can be sorted, and their
space-time patterns can be selectively examined.
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Fig. 8.38 Derrida plots for random Boolean networks ([v, k] = [2, 5], n = 36 × 36). This
is a statistical measure of how pairs of network trajectories diverge/converge in terms of
their Hamming distance. A curve above the main diagonal indicates divergence and chaos,
below the diagonal – convergence and order. A curve tangential to the diagonal indicates
balanced dynamics. This example shows four plots where the the percentage of canalizing
inputs in the randomly biased network is 0%, 25%, 52%, and 75%, showing progressively
greater order, with the 52% curve balanced at the edge of chaos.

Fig. 8.39 Left: The return map for the space-time patterns of the binary 1D k = 3
rule 30, which is a maximally chaotic chain-rule, n = 150. The space-time pattern
was run for about 10,000 time-steps. Note the fractal structure. Each state (bit-string)
B0, B1, B2, B3, . . . , Bn−1 is converted into a decimal number 0–2 as follows: B0 + B1/2 +
B2/4 + B3/8 + · · ·+ Bn−1/2n−1. As the network is iterated, this value at time-step t (x-
axis) is plotted against the value at time-step t+1 (y-axis). Right: The space-time pattern
itself, showing 250 time-steps.
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← rule 250: order
Z=0.5

← rule 110: complexity
Z=0.75

← rule 30: chaos
chain-rule, Zright=1

Fig. 8.40 A plot of leaf (Garden-of-Eden) density with increasing system size, for an
ordered, complex, and maximally chaotic chain-rule, n = 5 to 20. The measures are for
the basin of attraction field, and so for the entire state-space. For rule-space in general,
leaf-density increases with greater n, but at a slower rate for increasing Z, but uniquely,
leaf-density decreases for chain-rules (Sect. 8.8) where either Zleft = 1 or Zright = 1, but
not both.

8.6.3 Measures on Attractor Basins

Some measures on sub-trees, basins of attraction, and the basin of attraction
field are listed below:

• The number of basins in the basin of attraction field, their size, attractor
period, and branching structure of transient trees. Details of states be-
longing to different basins, sub-trees, their distance from attractors or the
sub-tree root, and their in-degree.

• A histogram showing the frequency of arriving at different attractors from
random initial states. This provides statistical data on the basin of attrac-
tion field for large networks. The number of basins, their relative size, pe-
riod, and the average run-in length are measured statistically. The data can
be used to automatically generate an attractor jump-graph as in Fig. 8.32.
An analogous method shows the frequency of arriving at different “skele-
tons,” consisting of patterns that have frozen to a specified degree.

• Garden-of-Eden or leaf-density plotted against the λ and Z parameters,
and against network size as in Fig. 8.40.

• A histogram of the in-degree frequency in attractor basins or sub-trees.
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• The state-space matrix, a plot of the left half against the right half of each
state bit string, using color to identify different basins, or attractor cycle
states.

• The attractor jump-graph (Fig. 8.32) as described in Section 8.5.3.

8.7 Reverse Algorithms

There are three different reverse algorithms for generating the pre-images of
a network state. These have all been generalized for multi-value networks.

• An algorithm for 1D CA, or networks with 1D CA wiring but mixed rules.
• A general algorithm for RBN/DDN, which also works for the above.
• An exhaustive, brute force, algorithm that works for any “random map-

ping,” including the two cases above.

The first two reverse algorithms generate the pre-images of a state di-
rectly; the speed of computation decreases with both neighborhood size k
and network size. The speed of the third, exhaustive, algorithm is largely
independent of k, but is especially sensitive to network size.

The method used to generate pre-images will be chosen automatically, but
can be overridden. For example, a regular 1D CA can be made to use either of
the two other algorithms for benchmark purposes and for a reality check that
all methods agree. The time taken to generate attractor basins is displayed
in DDLab. For the basin of attraction field, a progress bar indicates the
proportion of states in state space used up so far.

The 1D CA algorithm [16, 23] is the most efficient and fastest. Further-
more, compression of 1D CA attractor basins by rotation symmetry speeds
up the process [16].

Any other network architecture, RBN or DDN, with non-local wiring, will
be handled by the slower general reverse algorithm [17, 23]. A histogram
revealing the inner workings of this algorithm can be displayed (Fig. 8.41).

Fig. 8.41 Computing RBN pre-images. The changing size of a typical partial pre-image
stack at successive elements. n = 24, k = 3. This histogram can be automatically generated
for a look at the inner workings of the RBN/DDN reverse algorithm.
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Regular 2D or 3D CA will also use this general reverse algorithm. Compres-
sion algorithms come into play in orthogonal 2D CA to take advantage of the
various rotation symmetries on the torus.

The third, brute-force, exhaustive reverse algorithm first sets up a map-
ping, a list of “exhaustive pairs,” of each state in state space and its successor
(this can be saved/loaded). The pre-images of states are generated by refer-
ence to this list. The exhaustive method is restricted to small systems because
the size of the mapping increases exponentially as vn, and scanning the list
for pre-images is slow compared to the direct reverse algorithms for CA and
DDN. However, the method is not sensitive to increasing neighborhood size k
and is useful for small but highly connected networks. The exhaustive method
is also used for sequential and partial order updating.

A random mapping routine can assign a successor to each state in state
space, possibly with some bias. Attractor basins can then be reconstructed
by reference to this random map with the exhaustive algorithm. The space of
random maps for a given system size corresponds to the space of all possible
basin of attraction fields and is the super-set of all other deterministic discrete
dynamical networks.

8.8 Chain-Rules and Dynamical Encryption

The CA reverse algorithm is especially efficient for a sub-set of maximally
chaotic 1D CA rules, the “chain-rules,” which can be automatically generated
in DDLab for any [v, k]. These are rules based on special values of the Z-
parameter, where either Zleft=1 or Zright=1, but not both [16, 28]. The
approximate number of chain-rules for binary CA is the square root of rule-

space 22k−1

.
Chain-rules are special because in contrast to the vast majority of rule-

space (Fig. 8.34), the typical number of predecessors of a state (in-degree) is
extremely low, decreasing with system size. For larger systems, the in-degree
is likely to be exactly 1. Consequently, the leaf-density is also very low, also
decreasing with system size (Fig. 8.40), becoming vanishingly small in the
limit. This means nearly all states have predecessors, embedded deeply along
chain-like transients.

Large 1D CA can be therefore run backward very efficiently with chain-
rules, generating a chain of predecessors. As the rules rapidly scramble pat-
terns, they allow a method of encryption [28] which is available in DDLab;
run backward to encrypt, and forward to decrypt (Figs. 8.42 and 8.43). When
decrypting, the information pops out suddenly from chaos and merges back
into chaos. A chain-rule (of which there is a virtually inexhaustible supply)
is the cypher key and, to a lesser extent, the number of backward steps.
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Fig. 8.42 The portrait was made with the drawing function in DDLab (as Fig. 8.25).
However, this is a 1D pattern displayed in 2D, n = 7744, 88 × 88. As v = 8 there are 3
bits per cell, so the size of the bit string=23,232, which could be an ASCII file, or any
other form of information. With a [v, k] = [8, 4] chain-rule constructed at random, and the
portrait as the root state, a sub-tree was generated with the CA reverse algorithm and set
to stop after four backward time-steps. The sub-tree has no branching, and branching is
highly unlikely to occur. The state reached is the encryption [50.5 second].

Fig. 8.43 To decrypt, starting from the encrypted state in Fig. 8.42, the CA with the
same chain-rule was run forward to recover the original image. This figure shows time-steps
−2 to +7, to illustrate how the portrait was scrambled both before and after time-step 4.
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8.9 DDLab Website, Manual, and Reviews

DDlab continues to be developed with updates at irregular intervals. A new
manual for the multi-value version is in the process of being written, and
parts are already posted on DDLab’s website. This, together with the existing
manual, will provide a useful guide.

The latest information, downloads, manuals, updates, examples, lecture
slides, galleries, reviews, publications, and preprints can be found in [25].

Some reviews of DDLab and “The Global Dynamics of Cellular Au-
tomata” [16]:

• John E. Myers in Complexity, Vol. 3, No. 1, Sept./Oct. 1997.
• Andrew Adamatzky in Kybernetes, Vol. 28, No. 8 and 9, 1999.
• Stuart Kauffman in Complexity Vol. 5, No. 6, July/Aug. 2000.
• H. Van Dyke Parunak in JASSS, The Journal of Artificial Societies and

Social Simulation, Vol. 4, Issue 4, Oct. 2001.
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Chapter 9

EINSTein: A Multiagent-Based Model
of Combat

Andrew Ilachinski

Artificial Life techniques – specifically, multiagent-based models and evolu-
tionary learning algorithms – provide a powerful new approach to under-
standing some of the fundamental processes of war. This chapter introduces
a simple artificial “toy model” of combat called EINSTein. EINSTein is de-
signed to illustrate how certain aspects of land combat can be viewed as
self-organized, emergent phenomena resulting from the dynamical web of
interactions among notional combatants. EINSTein’s bottom-up, synthesist
approach to the modeling of combat stands in stark contrast to the more tra-
ditional top-down, or reductionist, approach taken by conventional military
models, and it represents a step toward developing a complex systems theo-
retic toolbox for identifying, exploring, and possibly exploiting self-organized,
emergent collective patterns of behavior on the real battlefield. A description
of the model is provided, along with examples of emergent spatial patterns
and behaviors.

9.1 Background

“War is. . . not the action of a living force upon lifeless mass. . . but always the
collision of two living forces.”

— Carl von Clausewitz, Prussian military strategist (1780–1831)

In 1914, F. W. Lanchester introduced a set of coupled ordinary differential
equations – now commonly called the Lanchester equations (LEs) – as models
of attrition in modern warfare [1]. In the simplest case of directed fire, for
example, the LEs embody the intuitive idea that one side’s attrition rate is
proportional to the opposing side’s size:
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{

dR
dt

= −αBB(t), R(0) = R0,

dB
dt

= −αRR(t), B(0) = B0,
(9.1)

where R0 and B0 are the initial red and blue force levels, respectively, and αR

and αB represent the effective firing rates at which one unit of strength on
one side causes attrition on the other side’s forces. The closed-form solution
of these equations is given in terms of hyperbolic functions as
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(9.2)

and satisfies the simple “square-law” state equation

αR

[

R2
0 −R(t)2

]

= αB

[

B2
0 −B(t)2

]

. (9.3)

Similar ideas were proposed around that time by Chase [2] and Osipov
[3]. These equations are formally equivalent to the Lotka–Volterra equations
used for modeling the dynamics of interacting predator–prey populations [4].
Despite their relative simplicity, the LEs have since served as the fundamental
mathematical models upon which most modern theories of combat attrition
are based and are to this day embedded in many “state-of-the art” military
models of combat. Taylor [5] provided a thorough mathematical discussion.

On the one hand, there is much to like about the LEs, since they are
very intuitive and therefore easy to apply, and they provide relatively sim-
ple closed-form solutions. On the other hand, as is typically the case in the
more general setting of nonlinear dynamical system theory, knowing the “ex-
act” solution to a simplified problem does not necessarily imply that one has
gained a deep insight into the problem. Moreover, almost all attempts to
correlate LE-based models with historical combat data have proven incon-
clusive, a result that is in no small part due to the paucity of data. Most data
consist only of initial force levels and casualties, and typically for one side
only. Moreover, the actual number of casualties is usually uncertain because
the definition of “casualty” varies (killed, killed + wounded, killed + missing,
etc.).

Two noteworthy battles for which detailed daily attrition data and daily
force levels do exist are the battle of Iwo Jima in World War II and the Inchon-
Seoul campaign in the Korean War. While the battle of Iwo Jima is frequently
cited as evidence for the efficacy of the classic LEs, the conditions under which
it was fought were very close to the ideal list of assumptions under which the
LEs themselves are derived. A detailed analysis of the Inchon-Seoul campaign
has also proved inconclusive [6]. Weiss [7], Fain [8], Richardson [9], and others
analyzed attrition in battles fought from 200 B.C. to World War II.

While the LEs may be relevant for the kind of static trench warfare and
artillery duels that characterized most of World War I, they lack the spatial
degrees of freedom to realistically model modern combat. They are certainly
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too simple to adequately represent the more modern vision of combat, which
depends on small, highly trained, well-armed autonomous teams working in
concert, continually adapting to changing conditions and environments. The
fundamental problem is that the LEs idealize combat much in the same way
as Newton’s laws idealize physics.

The two most significant drawbacks to using LEs to model land combat are
that (1) they are unable to account for any spatial variation of forces (no link
is established, for example, between movement and attrition) and (2) they
do not incorporate the human factor in combat (i.e., the uniquely individual,
often imperfect, psychology and decision-making capability of the human
soldier.) While there have been many extensions to and generalizations of
the LEs over the years, all designed to minimize the deficiencies inherent in
their original formulation (including reformulations as stochastic differential
equations and partial differential equations), most existing models remain
essentially Lanchesterian in nature, the driving factor being force-on-force
attrition.

9.2 Land Combat as a Complex Adaptive System

To address all of these shortcomings, the Center for Naval Analyses and the
Office of Naval Research are exploring developments in a complex adaptive
systems theory – particularly the set of agent-based models and simulation
tools developed in the artificial life community – as a means of understanding
land warfare in a fundamentally different way.

Military conflicts, particularly land combat, possess the key characteris-
tics of complex adaptive systems (CASs) [10, 11, 12, 13]: Combat forces are
composed of a large number of nonlinearly interacting parts and are orga-
nized in a command and control hierarchy; local action, which often appears
disordered, induces long-range order (i.e., combat is self-organized); military
conflicts, by their nature, proceed far from equilibrium; military forces, in
order to survive, must continually adapt to a changing combat environment;
and there is no master “voice” that dictates the actions of each and every
combatant (i.e., battlefield action effectively proceeds according to a decen-
tralized control).

A number of recent papers discuss the fundamental role that nonlin-
earity plays in combat. See, for example, Beckerman [14], Beyerchen [15],
Hedgepeth [16], Ilachinski [17, 18], Miller and Sulcoski [19], Saperstein [20],
and Tagarev and Nicholls [21]. The general approach of the EINSTein project
is to extend these largely conceptual and general links that have been drawn
between properties of land warfare and properties of complex systems into a
set of practical connections and analytical research tools.



262 Andrew Ilachinski

9.3 Agent-Based Modeling and Simulation

Models based on differential equations homogenize the properties of entire
populations and ignore the spatial component altogether. Partial differential
equations – by introducing a physical space to account for movement – fare
somewhat better, but still treat the agent population as a continuum. In con-
trast, agent-based models (ABMs) consist of a discrete heterogeneous set of
spatially distributed individual agents, each of which has its own character-
istic properties and rules of behavior. These properties can also change as
agents evolve in time.

Agent-based models of CASs are becoming an increasingly popular ex-
ploratory tool in the artificial life community and are predicated on the ba-
sic idea that the (often complicated) global behavior of a real system de-
rives, collectively, from simpler, low-level interactions among its constituent
agents [22]. Insights about the real-world system that an ABM is designed
to model can then be gained by looking at the emergent structures induced
by the interactions taking place within the simulation, as well as the feed-
back that these patterns might have on the rules governing the individual
agents’ behavior.1 Agent-based simulations engender a significant shift in
the kinds of questions that are asked of the real system being simulated.
For example, where traditional models ask, effectively, “How can I character-
ize the system’s top-level behavior with a few (equally top-level) variables?”
ABMs instead ask, “What low-level rules and what kinds of heterogeneous,
autonomous agents do I need to have in order to synthesize the system’s
observed high-level behavior?”

Perhaps the most important benefit of using an agent-based simulation
to gain insight into why a system behaves the way it does – whether that
system is a collection of traders on the stock market floor, neurons in a brain,
or soldiers on the battlefield – is that once the simulation is used to generate
the desired behavior, the researcher has immediate and simultaneous access
to both the top-level (i.e., generated) behavior of the system and a low-level
description of the system’s underlying dynamics. Because they take an ac-
tively generative, or synthesist, approach to understanding a system, from
the bottom up, ABMs are thus a powerful methodological tool for not just
describing behaviors but also explaining why specific behaviors occur. While
an analytical solution may provide an accurate description of a phenomenon,
it is only with an agent-based simulation that one can fine-tune one’s un-
derstanding of the precise set of conditions under which certain behaviors
emerge.

1 Two excellent recent texts on agent-based modeling, as applied to a variety of disciplines,
are by Ferber [23] and Weiss [24]. Collections of papers focusing on systems that involve
aspects of “human reasoning” are by Gilbert and Troitzsch [25], Gilbert and Conte [26],
and Conte et al. [27]. More recently, ABMs have been applied successfully to traffic pattern
analysis [28] and social evolution [29, 30].
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In the context of modeling combat, agent-based simulations represent a
fundamental shift from focusing on simple force-on-force attrition calcula-
tions to considering how complex, high-level properties and behaviors of
combat emerge out of (sometimes coevolving) low-level rules of behaviors
and interactions. The final outcome of a battle – as defined, say, by measur-
ing the surviving force strengths – takes second stage to exploring how two
forces might coevolve as a series of firefights and skirmishes unfold. ABMs
are designed to allow the user to explore the evolving patterns of macroscopic
behavior that result from the collective interactions of individual agents, as
well as the feedback that these patterns might have on the rules governing
the individual agents’ behavior.

9.4 EINSTein

EINSTein (Enhanced ISAAC Neural Simulation Tool) is an adaptive ABM
of combat and is an outgrowth of a more far-reaching project to develop a
complexity-based fundamental theory of warfare [31]. EINSTein [32] builds
upon and extends an earlier proof-of-concept, DOS-based combat simula-
tor called ISAAC (Irreducible Semi-Autonomous Adaptive Combat), which
was developed for the US Marines Corps [33]. All approved-for-public-release
documents, project reports and summaries, tutorials, sample runs, and an
auto-install program for Windows-based PCs may be downloaded from [70].
Details of the EINSTein toolkit are provided in [34].

EINSTein represents one of the first systematic attempts, within the mil-
itary operations research community, to simulate combat – on a small to
medium scale – by using autonomous agents to model individual behaviors
and personalities rather than specific weapons. Because agents are all en-
dowed with a rudimentary form of “intelligence,” they can respond to a very
large class of changing conditions as they evolve during battle. Because of the
relative simplicity of the underlying dynamical rules, EINSTein can rapidly
provide outcomes for a wide spectrum of tunable parameter values defining
specific scenarios and can thus be used to effectively map out the space of
possible behaviors.

Fundamentally, EINSTein addresses the basic question: “To what extent
is land combat a self-organized emergent phenomenon?” Or, more precisely,
“What are the conditions under which high-level patterns (such as penetra-
tion, flanking maneuvers, attack, etc.) emerge from a given set of low-lying dy-
namical primitive actions (move forward, move backward, approach/retreat-
from enemy, etc.).” As such, EINSTein’s intended use is not as a full system-
level model of combat but as an interactive toolbox – or “conceptual play-
ground” – in which to explore high-level emergent behaviors arising from var-
ious low-level (i.e., individual combatant and squad-level) interaction rules.
The idea behind developing this toolbox is emphatically not to model in de-
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tail a specific piece of hardware (an M16 rifle or M101 105mm howitzer, for
example). Instead, the idea is to explore the middle ground between – at one
extreme – highly realistic models that provide little insight into basic pro-
cesses and – at the other extreme – ultraminimalist models that strip away
all but the simplest dynamical variables and leave out the most interesting
real behavior that is, to explore the fundamental dynamical trade-offs among
a large number of notional variables.

The underlying dynamics is patterned after mobile cellular automata
rules [35] and are somewhat reminiscent of Braitenberg’s vehicles [36]. Mobile
cellular automata have been used before to model predator–prey interactions
in natural ecologies [37]. They have also been applied to combat modeling [38],
but in a much more limited fashion than the one used by EINSTein.

9.4.1 Features

EINSTein’s major features include the following:

• Dialog-driven I/O, using a Windows graphical user interface (GUI) front-
end

• Object-oriented C++ source code base
• Integrated natural terrain maps and terrain-based adaptive decisions
• Context-dependent and user-defined agent behaviors
• Multiple squads, with intersquad communication links
• Local and global command-agent dynamics
• Genetic algorithm toolkit to tailor agent rules to desired force-level behav-

iors
• Data collection and multidimensional visualization tools
• Mission fitness-landscape profilers
• Over 250 user-programmable functions on the source code level

Fig. 9.1 provides a screenshot of a typical run-session in EINSTein. The
screenshot contains three active windows: main battlefield view (which in-
cludes passable and impassable terrain elements), trace view (which shows
color coded territorial occupancy), and combat view (which provides a gray-
scaled filter of combat intensity). All views are simultaneously updated during
a run. Toward the right-hand side of the screenshot appear two data dialogs
that summarize red and blue agent parameter values. Appearing on the lower
left side and along the bottom of the figure are time-series graphs of red and
blue center-of-mass coordinates (as measured from the red flag) and the aver-
age number of agents within red and blue agent’s sensor ranges, and a dialog
that allows the user to define communication relays among individual squads.
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Fig. 9.1 Screenshot of EINSTein’s GUI front-end.

9.4.2 Source Code

EINSTein is written and compiled using Microsoft’s Visual C++ and makes
use of Pinnacle Publishing Inc.’s Graphics Server2 for displaying time-series
plots and three-dimensional (3D) fitness-landscapes. EINSTein consists of
roughly 100K lines of object-oriented source code.

The source code is divided into three basic parts: (1) the combat engine
(parts of which are summarized below); (2) the graphical user interface; and
(3) the data-collection/data-visualization functions. These parts are essen-
tially machine (i.e., CPU and/or operating system) independent and may be
compiled separately. EINSTein’s source code base is thus highly portable and
is relatively easy to modify to suit particular problems and interests. For ex-
ample, an EINSTein-based combat environment may be developed as a stand-
alone program on a CPU platform other than the original MS Windows target
machine used for EINSTein’s original development. Any developer/analyst
interested in porting EINSTein over to some other machine and/or operat-
ing system is tasked only with providing his own machine-specific GUI as
a “wrap-around” to the stand-alone combat and data-visualization engines
(that may be provided as dynamic-link libraries – DLLs). Moreover, it is very

2 Graphics Server is a commercial plug-in, licensed from Pinnacle Publishing, Inc. [68].
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easy to add, delete, and/or change the existing source code, including making
complicated changes that significantly alter how agents decide their moves.

At the heart of EINSTein lies the combat engine (discussed later). The
combat engine processes all run-time, combat-related logical decisions and
is the core script upon which multiple time-series data collection, fitness-
landscape sweeps over the agents’ parameter space, and genetic algorithm
searches all depend.

9.4.3 Design Philosophy

“Things should be as simple as possible, but not simpler.” — Albert Einstein

EINSTein’s design is predicated upon two guiding principles: (1) to keep
all dynamical components and rules as simple as possible (with a view toward
optimizing the trade-off between run time and realism) and (2) to treat all
forms of information (and the way in which all information is processed locally
by agents) in a contextually consistent manner. The meaning of this second
principle will become clear in the exposition below.

9.4.3.1 Simplicity

The first guiding principle is to keep things simple. Specifically, EINSTein
is designed to make it as intuitive as possible for the user to program spe-
cific agent behaviors. This is done by deliberately keeping the set of combat
and movement rules small and by defining those rules as simply as possible.
Thus, the power projection rule is essentially “target and fire upon any enemy
agent within a threshold fire range” rather than some other, more compli-
cated (albeit, possibly more physically realistic) prescription. The idea is to
qualitatively probe the behavioral consequences of the interaction among a
large number of notional variables, not to provide an explicit detailed model
of the minutiae of real-world combat.

9.4.3.2 Consistency

The second guiding principle is keep things consistent. All dynamical de-
cisions – whether they are made by individual agents, by local or global
commanders, or by the user (when scripting a scenario’s objectives) – con-
sist of boundedly rational (i.e., locally optimal) penalty assessments. Actions
are based on an agent’s personality (see later), which consists of numerical
weights that attach greater or lesser degrees of relative importance to each
factor relevant to selecting a particular move in a given local context (from
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the point of view of a given agent). It is in this sense that all forms of infor-
mation, on various levels, are treated on a consistent basis.

The decisions taking place on different levels of the simulation all follow
the same general template of probing and responding to the environment.
Each decision consists of a personality-mediated “answer” to the following
three basic questions:

• What are my immediate and long-term goals?
• What do I currently know about my local environment?
• What must I do to attain my goals?

As we will see in detail ahead, at the most primitive level, each agent
cares only about “moving toward” or “moving away from” all other agents
and/or his own and the enemy’s flag. An agent’s personality prescribes the
relative weight assigned to each of these immediate “goals.” On the other
hand, a global commander must weigh such features as overall force strength,
casualty rate, rate of advance, and so on in order to attain certain long-term
goals. Local and supreme commanders have their own unique concerns. While
the actual decisions are different in each case and on each information level –
for example, an individual agent’s decision to “stay put” in order to survive
is quite different and uses a different form of information, from a global
commander’s drive to “get to the enemy flag as quickly as possible” – the
general manner in which these decisions are made is the same.

9.4.4 Program Flow

A typical sequence of programming steps during an interactive run consists
of multiple loops through the following basic steps:

1. Initialize battlefield and agent distribution parameters.
2. Initialize time-step counter.
3. Adjudicate combat.
4. Refresh battlefield graphics display.
5. Find context-dependent personality weight vector for each red and blue

agent.
6. Compute local penalty function to determine best move.
7. Move agents to their newly selected position (or leave them where they

are).
8. Refresh graphics display and loop through steps 3–7.

The most important parts of this skeletal structure are the adjudication
of combat, the adaptation of personality weights, and the decision-making
process that each agent goes through in choosing its next move. Before de-
scribing the details of what each of these steps involves, we must first discuss
how each agent partitions its local information. During interactive runs (i.e.,
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whenever the fitness-landscape profiler and genetic algorithm breeder batch
modes are both inactive), the user can pause the simulation at any time to
make on-the-fly changes to any, or all, agent parameters (including adding
or subtracting “playing” agents) and then resume the run with the changed
values.

9.5 Combat Engine

9.5.1 Agents

The basic element of EINSTein is an agent, which loosely represents a primi-
tive combat unit (infantryman, tank, transport vehicle, etc.) that is equipped
with the following characteristics:

• Doctrine: a default local-rule set specifying how to act in a generic envi-
ronment

• Mission: goals directing behavior
• Situational awareness: sensors generating an internal map of environment
• Adaptability: an internal mechanism to alter behavior and/or rules

Each agent exists in one of three states: alive, injured, or killed. Injured
agents can (but are not required to) have different personalities and offen-
sive/defensive characteristics from when they were alive. For example, the
user can specify that injured agents are able to move half as far, and shoot
half as accurately, as their “alive” counterparts. Up to 10 distinct groups (or
“squads”) of personalities, of varying sizes, can be defined. The user can also
specify how agents from one squad react to agents from other squads.

Each agent has associated with it a set of ranges (sensor range, fire range,
communications range, etc.), within which it senses and assimilates various
forms of local information, and a personality, which determines the general
manner in which it responds to its environment. A global rule set determines
combat attrition, reconstitution, and (in future versions) reinforcement. EIN-
STein also contains both local and global commanders, each with their own
command radii and obeying an evolving command-and-control (C2) hierarchy
of rules.

9.5.2 Battlefield

The putative combat battlefield is represented by a two-dimensional lattice
of discrete sites. Each site of the lattice may be occupied by one of two kinds
of agents: red or blue. The initial state consists of user-specified formations



9 EINSTein 269

of red and blue agents positioned anywhere within the battlefield. Forma-
tions may include squad-specific bounding rectangles or may be completely
random. Red and blue flags are also typically (but not always) positioned in
diagonally opposite corners. A typical goal, for both red and blue agents, is
to reach the enemy’s flag.

EINSTein includes an option to add terrain elements. Terrain can be either
impassable or passable. If passable, the user can also tune an agent’s behavior
to a particular terrain type. For example, if an agent is positioned within
“heavy brush,” its movement range and visibility (from other nearby agents)
may be curtailed.

9.5.3 Agent Personalities

Each agent is equipped with a user-specified personality – or internal value
system – nominally defined by a six-component personality weight vector,
w = (w1, w2, . . . , w6), where −1 ≤ wi ≤ 1 and Σi|wi| = 1. The compo-
nents of w specify how an individual agent responds to specific kinds of local
information within its sensor range.

The personality weight vector may be health dependent; that is, walive

need not, in general, be equal to winjured. The components of w can also be
negative – in which case they signify a propensity for moving away from,
rather than toward, a given entity.

9.5.4 Penalty Function

An agent’s personality weight vector is used to rank each possible move ac-
cording to a penalty function. The simplest penalty function effectively mea-
sures the total distance that the agent will be from other agents (including
both friendly and enemy agents) and from its own and enemy flags, weighing
each component distance by the appropriate component of the personality
weight vector, w. An agent moves to the position that incurs the least penalty;
that is, an agent’s move is the one that best satisfies its personality-driven
desire to “move closer to” or “farther away from” other agents in given states
and either of the two flags. The general form of the penalty function is given
by:
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where Bx,y is the (x, y) coordinate of battlefield B; AF , IF , AE, and IE
represent respectively the sets of alive friends, injured friends, alive enemies,
and injured enemies within the given agent’s sensor range, rS ; wi are the
components of the personality weight vector;

√
2rS is a scale factor; NX is

the total number of elements of type X within the given agent’s sensor range
(e.g., NF is the number of alive friends within range rS); DA,B is the distance
between elements A and B; FF and EF denote the friendly and enemy flags,
respectively; and represent distances computed using the given agent’s new
(candidate move) position and old (current) position, respectively.

A penalty is computed for each possible move; that is, for each of the
N = (2rm + 1)

2
possible sites to which an agent can “step” in one time

step: Z1(Bx,y), Z2(Bx+1,y), Z3(Bx−1,y), . . . , ZN (Bx+n,y+n). The actual move
is the one that incurs the least penalty. If there is a set of moves (consisting
of more than one possible move) all of whose penalties are within ǫPenalty ≥ 0
of the minimal penalty, an agent randomly selects the actual move among
the candidate moves making up that set. Users can also define paths near
which agents must try to stay while maneuvering toward their ultimate goal.

The penalty function shown above includes only a few relative-proximity-
based weights. In practice, the penalty function is more complicated and
incorporates more terms, although its basic form is the same. Additional
terms can include the propensity for maintaining the minimum distance from
friendly or enemy agents, staying near a designated patrol area, the cost of
traversing terrain, desire for finding local cover (from fire) and/or conceal-
ment (from enemy sensors), and combat intensity (see Table 9.1).

9.5.5 Meta-rules

An agent’s personality may be augmented by a set of meta-rules that tell
it how to alter its default personality according to dynamic environmental
contexts. A typical meta-rule consists of altering a few of the components of
an agent’s personality vector according to a set of associated local thresh-
old constraints. The three simplest meta-rule classes effectively define the
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Weight Meaning = Relative Weight for...

wAF ...moving toward/away from alive friendly agents
wIF ...moving toward/away from injured friendly agents
wAE ...moving toward/away from alive enemy agents
wIE ...moving toward/away from injured enemy agents
wFF ...moving toward/away from friendly flag
wEF ...moving toward/away from enemy flag
wBB ...moving toward/away from the boundary of battlefield
warea ...staying near some (squad-specific) area
wsquad ...maintaining formation with own squad-mates
wfire−team ...maintaining formation with own fireteam-mates
Sij ...how agents from squad Si react to agents from squad Sj

SS′

ij ...how agents from squad Si react to agents from enemy squad Sj

wLC ...moving toward/away from local commander
wobeyLC ...obeying orders issued by local commander
wterrain ...moving toward/away from terrain elements
wenemy−fire ...moving toward/away from enemy agents that have fired on agent

Table 9.1 A partial list of EINSTein’s primitive weight set

local conditions under which an agent is allowed to advance toward enemy
flag (class 1), cluster with friendly forces (class 2), and engage the enemy in
combat (class 3).

For example, a class-1 meta-rule prevents an agent from advancing to-
ward the enemy flag unless it is locally surrounded by a threshold number
of friendly agents; that is, it is a notional indicator of local combat support.
A class-2 meta-rule can be used to prevent an agent from moving toward
friendly agents once it is surrounded by a threshold number. Finally, a class-
3 meta-rule can be used to fix the local conditions under which an agent is
allowed to move toward or away from possibly engaging an enemy agent in
combat. Specifically, an agent is allowed to engage an enemy if and only if
the difference between friendly and enemy force strengths locally exceeds a
given threshold.

Other meta-rule classes include retreat, pursuit, support, and hold position.
A global rule set determines combat attrition (see later), communication, re-
constitution, and (in future versions) reinforcement. EINSTein also contains
both local and global commanders, each of which is equipped with its own
unique command-personality and area of responsibility, and obeys an evolv-
ing command and control hierarchy of rules. Table 9.2 summarizes some of
EINSTein’s meta-rules.3

3 Note that threshold constraints (τAdvance, τCluster, and ∆Combat) are explicitly defined
only for the first three meta-rules. These meta-rules are used in the sample runs discussed
later. In fact, each of the meta-rules appearing in Table 9.2 has one or more threshold
constraints associated with it, and the set also requires additional logic to dynamically
resolve ambiguities as they arise during the course of a run. Details are in [31].
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Meta-rule Description

wAF ...moving towards/away from alive friendly agents
Advance Advance to enemy flag if the number of friends ≥ τAdvance

Cluster Stop seeking friends if number of friends ≥ τCluster

Combat Engage enemy if the Nfriends −Nenemies ≥ ∆Combat

Hold Hold current position
Pursuit-I Temporarily turn off pursuit of enemy agents
Pursuit-II Temporarily turn exclusive pursuit on
Retreat Retreat toward own flag
Run Away Run away, fast, from enemy agents
Support-I Provide support for nearby injured
Support-II Seek support from nearby friends
Min-D Friend Maintain minimum distance from all friendly agents
Min-D Enemy Maintain minimum distance from all enemy agents
Min-D Flag Maintain minimum distance from all friendly flags
Min-D Terrain Maintain minimum distance from terrain
Min-D Area Maintain minimum distance from a fixed area on battlefield

Table 9.2 A partial list of EINSTein’s meta-rule set

9.5.6 Combat

During the combat phase of an iteration step for the whole system, each
agent X (on either side) is given an opportunity to fire at all enemy agents
Yi that are within a fire range rF of X ’s position. If an agent is shot by
an enemy agent, its current state is degraded either from alive to injured or
from injured to dead. Once killed, an agent is permanently removed from the
battlefield. The probability that a given Yi is shot is fixed by user-specified
single-shot probabilities. Weapons are assigned to individual agents and are
either point-to-point (i.e., rifles) or area destruction (i.e., grenades).

By default, all enemy agents within a given agent’s fire range are targeted
for a possible hit. However, the user has the option of limiting the number
of enemy targets that can be engaged simultaneously. If this option is se-
lected and the number of enemy agents within an agent’s fire-range exceeds
a user-defined threshold number (say N), then N agents are randomly chosen
among the agents in this set. Grenades include additional targeting logic (to
maximize expected inflicted damage on the enemy).

This basic combat logic may be enhanced by three additional functions:
(1) defense, which adds a notional ability to agents to be able to withstand a
greater number of “hits” before having their state degraded; (2) reconstitu-
tion, which adds a provision for previously injured agents to be reconstituted
to their alive state; and (3) fratricide (“friendly fire”), which adds an element
of realism by making it possible to inadvertently hit friendly forces.
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9.5.7 Run Modes

EINSTein can be run in three basic modes (see EINSTein’s User’s Guide
[31]):

• Interactive mode, in which the combat engine is run interactively using
a fixed set of rules. This mode, which allows the user to make on-the-
fly changes to the values of any (or all) parameters defining a given run,
is particularly well suited for playing simple “What if?” scenarios. The
interactive mode also makes it easy to search for interesting emergent
behavior.

• Data-collection mode, in which the user can (1) generate time series of var-
ious changing quantities describing the step-by-step evolution of a battle
and (2) keep track of certain measures of how well mission objectives are
met at a battle’s conclusion. Additionally, the user can generate behavioral
profiles on two-dimensional slices of EINSTein’s N -dimensional parameter
space.

• Genetic algorithm “breeder” mode, in which a genetic algorithm is used
to breed an agent force that is optimally suited for performing a specific
mission against a fixed enemy force. This mode is designed to suggest ways
in which ABMs may eventually be used to evolve real-world tactics and
strategies.

9.6 Sample Patterns and Behavior

EINSTein possesses a large repertoire of emergent behaviors: forward ad-
vance, frontal attack, local clustering, penetration, retreat, attack posturing,
containment, flanking maneuvers, and “Guerrilla-like” assaults, among many
others. Moreover, behaviors frequently arise that appear to involve some form
of intelligent division of red and blue forces to deal with local firestorms and
skirmishes, particularly those forces whose personalities have been bred (via a
genetic algorithm) to perform a specific mission. It is important to point out
that such behaviors are not hard-wired but are, rather, an emergent property
of a decentralized, but dynamically interdependent, swarm of agents.

Fig. 9.2 shows screen captures of spatial patterns resulting from 16 different
rules and illustrates the diversity of behaviors that emerges out of a relatively
simple set of rules. (Note that the sample patterns shown here are for clashing
red and blue forces consisting of a single squad. Multisquad scenarios, in
which agents belonging to different squads obey different rules, and interact
with one another according to an additional layer of micro-rules, often result
in considerably more complicated emergent behaviors.) An important long-
term goal is for EINSTein to be flexible enough to serve as a general tool (that
transcends the specific notional combat environment to which it is obviously
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tailored) for exploring the still very poorly understood mapping between
micro-rules and emergent macro-behaviors in complex adaptive systems.

Fig. 9.2 A sampling of emergent spatial patterns of agents obeying EINSTein’s micro-
rules. Each of the 16 squares represents a different rule and contains a single snapshot of
a typical run.

9.6.1 Qualitative Classes of Behavior

Simulations run for many different scenarios and initial conditions suggest
that EINSTein’s collective behavior generally falls into one of six broad qual-
itative classes (labeled, suggestively, according to different kinds of fluid flow):
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• Laminar flow, which typically consists of one (or, at most, a few) well-
defined “linear” battlefronts. This class is so named because it is visually
suggestive of laminar fluid flow of two fluids and is reminiscent of static
trench warfare in World War I. Laminar rules can actually be divided
into two types of behaviors, characterized according to a system’s overall
stability (i.e., according to whether the system is stable, or not stable, to
initial conditions).

• Viscous flow, in which the unfolding battle typically consists of a single
tight cluster (or, at most, a few clusters) of interpenetrating red and blue
agents.

• Dispersive flow, in which – as soon as red and blue agents maneuver within
view of the opposing side’s forces – the battle unfolds as a single, explosive,
dispersion of forces. Dispersive systems exhibit little, if any, of the “front-
like” linear structures that form for laminar-flow rules.

• Turbulent flow, in which combat consists of either spatially distributed, but
otherwise confined and/or clustered individual combat zones, or a series of
close-to space-filling local firestorms. In either case, there is almost always
a significant degree of local maneuvering.

• Autopoeitic flow , in which agents self-organize into persistent dissipative
structures. These formations typically maintain their integrity for long
times (on the scale of individual agents entering and leaving the structure)
and undergo “higher-level” maneuvering, including longitudinal motion
and rotation.4

• Swarming, in which agents self-organize into nested swarms of attacking
and/or defending forces.

We should be quick to point out that this taxonomy is neither complete nor
well defined, in a mathematical sense. Because of the qualitative distinctions
among classes, there is considerable overlap among them. Moreover, a given
scenario, as it unfolds in time, usually consists of several phases of behavior
during which one class predominates at one time and other classes at other
times. Indeed, for such cases, which occur frequently, it is of considerable
interest to understand the nature of the transition between distinct behavioral
phases. For example, the initial stages of a scenario may unfold in typically
laminar fashion and suddenly transition over into a turbulent phase.

A finer distinction among these six classes can be made on the basis of
a more refined statistical analysis of emergent behavior. There is strong ev-
idence to suggest, for example, that while attrition rates for certain classes
of rules display smooth Gaussian statistics, other classes (overlapping with
viscous-flow and turbulent-flow rules) display interesting fractal power-law
scaling behaviors [40]. Insofar as the “box-counting” fractal dimension [41]
is useful for describing the degree of agent clustering on the battlefield, it

4 Autopoiesis refers to dynamical systems that are simultaneously self-creating and self-
maintaining. It was introduced as an explanatory mechanism within biology by Maturana
and Varela [39].
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can also be used as a simple discriminant between laminar and turbulent
classes of behavior. Measuring temporal correlations in the time series of var-
ious statistical quantities describing combat is also useful in this regard. The
case studies presented here are selected mainly to highlight the qualitative
behavioral classes described previously.

9.6.2 Lanchesterian Combat

On the simplest level, EINSTein is an interactive, exploratory tool that allows
users to take conceptual excursions away from Lanchesterian oversimplifica-
tions of real combat. It is therefore of interest to first define a Lanchesterian
scenario within EINSTein that can subsequently be used as a test bed to
which the outcomes of other, non-Lanchesterian, scenarios can be compared.
The set of simulation parameters that are appropriate for simulating a ma-
neuverless, Lanchester-like combat scenario in EINSTein includes a red/blue
movement range of rm = 0 (so that the position of all agents is fixed) and a
red/blue sensor range that is large enough so that all agents have all enemy
agents within their view (for the example below, rS = 40).

Fig. 9.3 shows several snapshots of a typical run. Initial conditions consist
of 100 red and 100 blue agents (in a tightly packed block formation, with
block-centers 15 units distant on a 60-by-60 battlefield) and a red/blue single-
shot probability of hit Phit = 0.005. Note that the outcome of the battle is
a function of the initial sizes of red and blue forces and Phit alone and does
not depend on maneuver or any other agent, squad, or force characteristics.

Fig. 9.3 Screenshots of a typical run using an EINSTein rule-set that approximates LE-
like combat.

While the Lanchester scenario shown here is highly unrealistic, of course, it
is important to remember that most conventional military models (even those
that include some form of maneuvering) adjudicate combat by effectively
sweeping over a series of similarly idealized maneuverless skirmishes until
one side, or both sides, of the conflict decide to withdraw after sustaining a
threshold number of casualties. Most models are still almost entirely attrition
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driven. The only substantive role that maneuver and adaptability play is in
getting the individual combatants into position to fight.

A typical signature of such Lanchesterian-like combat scenarios is a linear
dependence of the mean attrition rate – defined as the average number of
combatants lost, 〈α〉, during some specified time interval, ∆τ = t− t0 – on
the single-shot kill (or, in our case here, single-shot hit) probability, Pss:

〈α〉 =

〈

∆n

∆τ

〉

=

〈

n(t0 + t)− n(t0)

∆τ

〉

=
N

∑

i=1

Pss(i) = NPss, (9.5)

where N is the total number of agents, n(t) is the number of agents at time t,
Pss(i) is the single-shot hit probability of the ith agent, and we have assumed,
for the final expression on the right, that Pss(i) = Pss for all i.

What happens if agents are allowed to maneuver? If the maneuver is in any
sense “intelligent” (i.e., if agents react reasonably intelligently to changing
levels of combat intensity as a battle unfolds), intuitively we should not expect
the same linear dependence between 〈α〉 and Pss to hold. In the extreme case
of infinitely timid combatants that run away at the slightest provocation, no
fighting at all will occur. In the case where one side applies sophisticated
targeting algorithms to maximize enemy casualties but minimize friendly
casualties, we might expect a marked increase in that force’s relative fighting
ability.

To illustrate these ideas, consider an “explosive skirmish” scenario, which
is characterized by a rapid, explosive burst of agents as they collide and ma-
neuver close-in during a series of local firefights and skirmishes as the battle
slowly dissipates (see screenshots in Fig. 9.4). Table 9.3 lists the parameters
values used for these runs.

Sample 1 Sample 2
Parameter Red Blue Red Blue

Agents 250 250 100 100

rS 5 5 5 5

rF 3 3 3 3

rM 2 2 1 1

ω1 10 10 10 10

ω2 40 40 40 25

ω3 10 10 10 10

ω4 40 40 40 25

ω5 0 0 0 0

ω6 25 25 5 50

τAdvance 3 3 3 3

τCluster 8 3 5 8

∆Combat –99 –3 –10 –3

Table 9.3 Parameter values used for scenarios shown in Fig. 9.4
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Fig. 9.4 Screenshots of typical runs of the “explosive skirmish” scenario using parameters
given in Table 9.3.

9.6.2.1 Fractal Dimensions of Spatial Dispositions

If one were to plot attrition rate, 〈α〉, versus single-shot probability of hit,
Pss – for either of the two “explosive skirmish” scenarios shown in Fig. 9.4
– one would find that 〈α〉 ∝ Pn

ss, where n ≈ 1/2. Moreover, careful analysis
of the spatial patterns, as they emerge in multiple runs, suggests that what
lies at the core of a certain class of non-Lanchesterian scenarios is a fractal
scaling of combat forces.

Recall that fractal dimensions – such as the capacity dimension (or “box-
counting” dimension) – are measures that provide useful structural (and/or,
in the case of information dimension, statistical information) about a given
point set. Fractals are geometric objects characterized by some form of self-
similarity; that is, parts of a fractal, when magnified to an appropriate scale,
appear similar to the whole. Fractals are thus objects that harbor an effec-
tively infinite amount of detail on all levels. Coastlines of islands and con-
tinents and terrain features are approximate fractals. A magnified image of
a part of a leaf is similar to an image of the entire leaf. Strange attractors
also typically have a fractal structure. Loosely speaking, a fractal dimen-
sion specifies the minimum number of variables that are needed to specify
an object. For a one-dimensional line, for example, say the x-axis, one piece
of information, the x-variable, is needed to specify any position on the line.
The fractal dimension of the x-axis is said to be equal to 1. Similarly, two
coordinates are needed to specify a position on a two-dimensional plane, so
that the fractal dimension of a plane is equal to 2. Fractals are objects whose
fractal dimension is noninteger-valued.

How might fractals relate specifically to combat? Intuitively, since real com-
bat consists of anything but a series of random skirmishes in which opposing
sides constantly shoot at each other, we expect attrition data to contain spa-
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Fig. 9.5 Single-time estimates of DF for two spatial dispositions of real-world forces and
a snapshot of notional forces as arrayed in EINSTein. The (x, y) locations of the real-world
data are the longitudes and latitudes of Coalition ground forces during Operation Iraqi
Freedom in 2003. See the text for additional details.

tiotemporal correlations. Because EINSTein includes rules for maneuver, we
expect to see spatiotemporal correlations emerge as a consequence of ma-
neuver (as we would expect to also see in other multiagent-based combat
simulations that contain intelligent maneuver).

Spatial distributions of agents on a battlefield are nothing more than sets
of abstract points on a lattice. The degree of clustering and maneuver can
therefore be measured by calculating a fractal dimension for the distribution
in exactly the same way one typically calculates the fractal dimension for
point sets representing various one- and two-dimensional attractors of dy-
namical systems. The only real difference between using the (x, y) positions
of agents and points of an attractor, in practice, is that when dealing with
agents, we are naturally limited in the number of “data points” with which
we have to work. Even large scenarios are limited to about 500 agents or so
to a side. Moreover, agents are allowed to sit only on integer-valued sites, so
that the set of possible (x, y)’s is also more limited. Nonetheless, the actual
calculation of fractal dimensions proceeds in exactly the same manner for the
two cases; just as for continuous dynamical systems, the measures provide an
important insight into the geometry of the spatial distributions.

As a concrete example, consider the capacity dimension, which is de-
fined by DF = limǫ→0 ln [N(ǫ)] / ln(1/ǫ), where N(ǫ) is the number of
d-dimensional boxes of side ǫ that contain at least one agent. Alternatively,
we can write that N(ε) = ε−DF and call DF the power-law scaling expo-
nent. For a solid block of maneuverless agents, such the solid red and blue
blocks of agents dueling it out in the Lanchesterian scenario shown in Fig. 9.3,
DF ∼ 2; DF will be less than 2 if the agents occupy only a portion of the
entire battlefield, as the whole battlefield is be used to estimate DF .

Fig. 9.5 compares single-time estimates of DF for (1) two spatial disposi-
tions of real-world forces (Figs. 9.5a and 9.5b) and (2) a snapshot of notional
forces as arrayed during the dispersive-flow phase of the explosive skirmish
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scenario in EINSTein (Fig. 9.5c). The (x, y) locations of the real-world data
consists of the longitudes and latitudes of Coalition ground forces during
Operation Iraqi Freedom in 2003.5 In each case, the (x, y) locations are first
scaled so that the real and notional battlefields assume the same effective
“size” of 1-by-1 sites and the scaled battlefield is then divided into a total
of Ntotal = ε−2 boxes of length ε. Several different values of ε are chosen,
and for each ε, the number of boxes, N(ε), that contain at least one agent
are counted. Since we are limited by how finely we are able to partition the
battlefield (as well as by the relatively limited number of agents that define
our set of (x, y) locations: ∼ 500), the fractal dimension is estimated by the
slope of a linear fit on a plot of log [N(ε)] versus log [1/ε]. (Note that we are
not in any way suggesting that a finite distribution of either real or notional
combatants represents a genuine fractal in a mathematically rigorous sense.
We are only suggesting that for limited domains (in battlefield size, dura-
tion of conflict, and number of agents) their distribution is such that it can
reasonably well be characterized by a fractal-like power-law scaling.)

The point of Fig. 9.5 is not to compare the absolute values of DF for
the different cases – which we could have anticipated as being different, par-
ticularly since EINSTein’s explosive skirmish example does not intention-
ally model any real-world scenario – but rather to illustrate the important
fact that EINSTein is able to reproduce a spatial fractal scaling at all (at
least for the limited spatial ranges being considered). In EINSTein, as in the
real world, “intelligent maneuvering” implies an agent’s position at time t is
strongly correlated with local combat conditions. While it has for a long time
been known, on the basis of empirical evidence, that real-world forces tend
to arrange themselves in self-organized fractal fashion (see [9] and [44]), no
satisfactory generative explanation for why this is so has yet appeared.

How does the fractal dimension change during combat? To illustrate the
kinds of spatial configurations that can arise in different combat scenarios,
consider Fig. 9.6. It shows three plots each (using different initial configura-
tions of agents) of DF as a function of time for (1) the Lanchesterian scenario,
(2) a scenario in which the agents are allowed to move but do so completely
randomly (and are initially distributed randomly on the battlefield), and (3)
the Sample 1 explosive skirmish scenario defined by the parameters appearing
in Table 9.3.

These three cases are defined by first using the explosive skirmish scenario
to select a single-shot probability of hit, Pss, for which the mean attrition
after 100 time steps is equal to 20%. That same value is then used for the
other two cases as well. Also, in order to better place the random scenario
in between the Lanchester scenario (in which all agents “see” and “fire at”
all other agents at all times) and the explosive skirmish scenario (in which
agents’ sensor and fire ranges are relatively small), agents in the random sce-

5 These scaled geo-locations are from software databases maintained, and kindly provided
to the author, by Dr. Michael Shepko and Dr. David Mazel of the Center for Naval Analyses,
Alexandria, Virginia.
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Fig. 9.6 Three sample plots, each (using different initial configurations of agents) of the
fractal dimension DF as a function of time for the Lanchesterian (i.e., maneuverless)
scenario, a scenario in which the agents are allowed to move but do so completely randomly,
and the Sample 1 explosive skirmish scenario defined by the parameters appearing in
Table 9.3.

nario are assigned sensor and fire ranges equal to three times their value for
the explosive skirmish scenario. Because these three cases represent qualita-
tively different combat scenarios that range from maneuverless, all-seeing/all-
shooting agents to intelligently maneuvering agents able to sense, and adapt
to, only local streams of information, it is instructive to use them as a basis
for comparing simulation output. Except for a small drift of values among
different runs for the same scenario and/or differences in precise values at a
given time for a given run, the scenarios are each characterized by the unique
manner in which the fractal dimension of its associated spatial distribution
evolves in time; that is, the time evolution of DF represents a kind of behav-
ioral signature of a given scenario. There is also evidence to suggest a deeper
coupling between DF and combat dynamics.

9.6.2.2 Power-Law Scaling of Attrition

Lauren [40] has used EINSTein (and other ABMs of combat; see [42]) to iden-
tify some significant differences between agent-based attrition statistics and
results derived from stochastic LE-based models. In particular, he has found
evidence to suggest that the intensity of battles obeys a fractal power-law
dependence on frequency and displays other traits characteristic of high-
dimensional chaotic systems, such as fat-tailed probability distributions and
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intermittency. Specifically, the attrition rate appears to depend on the cube
root of the kill probability, which stands in marked contrast to results ob-
tained for stochastic variants of LE-based models, in which, typically, the
attrition rate scales linearly with an increase in kill probability.6 If the ABM
more accurately represents real combat processes, an ∼ 1/3 power-law scaling
implies that a relatively “weak” force, with a small kill probability, may ac-
tually constitute a much more potent force than a simple LE-based approach
suggests. The potency of the force comes from its ability to maneuver (which
is never explicitly modeled by LE-based approaches) and to selectively con-
centrate firepower on the enemy while maneuvering. This deceptively simple
result has an important consequence for peacekeeping activities in the Third
World, in which a strong, modern force may (and often, does) significantly
underestimate the ability of ostensibly poorly trained and/or poorly armed
militia to inflict damage.

The appearance of fractal power-law scaling in EINSTein (and other agent-
based combat models) is particularly interesting in light of the fact that it
has been observed before in real combat [44]. While it has been previously
argued, on intuitive grounds, that this must be due to the dynamical cou-
pling between local information processing and maneuver – features that are
completely ignored by Lanchesterian models – no generative “explanation”
for why fractal power-law scaling appears in combat has heretofore existed.
It is therefore tempting to speculate that there are phases of real combat that
are poised at self-organized critical states (see e.g. [45, 46]).

9.6.3 A Step Away from Lanchester

With an eye toward exploring non-Lanchesterian scenarios, consider an ex-
ample that includes both simple maneuver and terrain. Fig. 9.7 shows the
initial state, consisting of 12 red and 12 blue agents positioned near their
respective “flags” (in the lower left and upper right corners, respectively).
The red agents are arrayed along a berm (i.e., a permeable terrain element,
which appears green in the figure), whose dynamical effect is to reduce their
visibility to the approaching blue enemy agents to 15% of the nominal value.
As blue agents approach the red flag, red agents remain fixed at their posi-

6 The key observation is that the attrition rate generally depends not just on Pss (as in
Eq. 9.5), but on both Pss and DF , the latter measure representing the spatial distribution
of agents [34, 42]. To derive Eq. 9.5, for Lanchesterian combat, one assumes that one
side’s attrition rate is proportional to the opposing side’s size (and nothing else); in the
general case, one must assume that the attrition rate also depends on the probability
that an agent actually “sees” an enemy (or cluster of enemy agents) in a given period
of time. The likelihood of this happening, in turn, may be expressed in terms of DF .
Lauren et al. [43] have recently introduced the generalized Lanchester equation 〈∆B/∆t〉 ∝
kDF /2 ·∆tDF /2−1 ·R (t), where B and R are the number of red and blue agents, k is the
rate at which red (or blue) kill blue (or red) agents, and t is the time.
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tions (simulating a notional “hunkered-down” condition). The red and blue
weapon characteristics (probability of hit and range) are equal.

Fig. 9.7 Initial state for simple non-Lanchesterian scenario; see text for details.

Runs typically proceed as follows. Because of the stealth afforded the dug-
in red agents by the berm, red agents are targeted and engaged with a much
lower probability than the approaching blue force. The attrition of the at-
tacking force (blue) is significantly higher than the attrition of the defending
force (red). When the attackers are able to survive (with some of their force
intact) – on some particular run of the scenario – it is because they are able
to maneuver out of range (which occurs when the force strength drops below
the combat effective threshold of 50% and attempts to withdraw) and red is
unable to pursue. (As an aside, EINSTein’s ability to prescribe retreat con-
ditions adds a certain realism to the model. Faced with mounting attrition,
real squads fall back and regroup.)

The red force usually remains at full strength after the engagement (the
probability of zero red casualties is about 80%). This result is intuitively satis-
fying, since, historically (all other factors being equal), defending forces have
the advantage over an attacking force traversing open ground. An obvious
question to ask is, “How large must the blue force be in order to overcome the
advantage of the red’s terrain?” Fig. 9.8 plots the fraction of the initial forces
that remain at the end of the engagement (150 steps) versus the attacker-
to-defender force-size ratio (the lines are simple fits to the data to guide the
eye). In the runs used to generate this graph, the size of the blue force ranges
from 12 to 40 agents, while the red force remains at 12. Note that the red
and blue survival curves merge at roughly a 2.8:1 ratio; which is interesting
in light of the well-known “rule of thumb” that attackers require a 3:1 force
ratio against a defended position [47].
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Fig. 9.8 Impact of attacker-to-defender force ratio on survival for the simple non-
Lanchesterian scenario shown in Fig. 9.7. The red and blue survival curves merge at about
a 2.8:1 ratio, which compares favorably to the well-known “rule of thumb” that attackers
require a 3:1 force ratio against a defended position [47].

9.6.4 Swarming Forces

One of the first detailed studies of swarming, as a major theme in military
history, was recently conducted by Sean Edwards, as part of the Swarming
and the Future of Conflict project at RAND [48]. Edwards’ report focuses
on 10 carefully selected historical examples of swarming, includes a series of
important lessons-learned distilled from these examples about the advantages
and disadvantages of swarming, and provides some examples of successful
countermeasures that have been used against swarming in the past.

Edwards noted that swarming consists of four overlapping stages: (1) lo-
cation, (2) convergence, (3) attack, and (4) dispersion. Moreover, swarming
forces must be capable of a sustainable pulsing; that is, networks of swarming
agents must be able to come together rapidly and stealthily on a target, then
redisperse, and, finally, recombine for a new pulse:

The swarm concept is built on the principles of complexity theory, and it assumes
that blue units have to operate autonomously and adaptively according to the over-
all mission statement . . . It is important that swarm units converge and attack
simultaneously. Each individual swarm unit is vulnerable on its own, but if it is
united in a concerted effort with other friendly units, overall lethality can be mul-
tiplied, because the phenomenon of the swarm effect is greater than the sum of its
parts. Individual units or incompletely assembled groups are vulnerable to defeat
in detail against the larger enemy force with its superior fire-power and mass.

The report noted that swarming scenarios have already played a role in
certain high-level war-gaming exercises, such as at the Dominating Maneu-
ver Game, held at the US Army War College in 1997. Edwards concluded
his survey by speculating about the feasibility of a future “swarming doc-
trine” that would consist of small, distributed, highly maneuverable units
converging rapidly on specific targets.

Because of its decentralized rule-base and rich space of behavioral prim-
itives, EINSTein is an ideal test bed with which to explore the nature of
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battlefield swarming and the efficacy of swarm-like tactics. Typically, but
not always, one side appears to swarm the other when there is a signifi-
cant mismatch in firepower, total force strength, and/or maneuvering ability.
(Swarming also occasionally emerges as a useful “tactic” to use against cer-
tain opponents when EINSTein’s built-in genetic algorithm is tasked with
finding optimal attack strategies.) While it is common to find swarm-like be-
havior for personalities that include large cluster meta-rule thresholds, τCluster

(which increases the likelihood that agents will remain in close proximity to
friendly agents), the most interesting “self-organized” examples of swarming
are those for which τCluster is, at most, a few agents.

Table 9.4 lists some of the parameter values defining four representative
swarm scenarios (I–IV). In scenario I, blue attacks red; in scenario II, blue
defends. Blue agents are more aggressive than red in all four scenarios (as de-
fined by the values of their respective combat meta-rule thresholds, ∆Combat).
Note that in scenarios II and III defending blue agents are able to communi-
cate with other blue agents that are within a range rC = 25 of their position.
Fig. 9.9 show snapshots of typical runs using parameters for scenarios I–IV.

I I II II III III IV IV

Force Red Blue Red Blue Red Blue Red Blue
Size 150 225 90 125 25 100 200 200
rS 5 5 5 10 3 7 3 7
rF 3 3 3 7 2 5 2 5
rM 1 1 1 2 1 1 1 1
wAF 25 10 10 0 5 0 5 0
wAE 25 50 40 99 40 5 40 5
wIF 75 0 10 0 5 0 5 0
wIE 25 99 40 99 90 50 90 50
wFF 0 0 0 0 0 0 0 0
wEF 75 25 50 0 0 0 0 0

τAdvance 5 1 3 N/A N/A N/A N/A N/A
τCluster 15 3 3 12 5 5 5 5
∆Combat 5 −7 0 −15 −5 −10 −5 −10
Comms no no no yes, rC = 25 no yes, rC = 25 no no

Table 9.4 Agent parameter values for scenarios I–IV shown in Fig. 9.9

9.6.5 Nonmonotonicity

For a fixed set of force characteristics, number, type, and lethality of weapon
systems, and tactics, one might intuitively expect that as one side’s capabil-
ity is unilaterally enhanced – say, by increasing sensor range or its ability to
maneuver – the other side’s ability to perform its mission ought to be com-
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Fig. 9.9 Sample runs of swarm scenarios I–IV. See Table 9.4 for parameter values.

mensurately diminished. In other words, our expectations are that mission
success scales monotonically with force capability.

In fact, nonmonotonicities abound in both real-world behavior and simu-
lations. With respect to models and simulations, of course, one must always
be on guard against the possibility that nonmonotonic scaling is an artifact
of the code and therefore does not represent real processes. As pointed out
by a RAND study that addressed this issue [49], “a combat model with a
single decision based on the state of the battle . . . can produce nonmonotonic
behavior in the outcomes of the model and chaotic behavior in its underlying
dynamics.”

Fig. 9.10 shows an instructive example of genuinely nonmonotonic behav-
ior; genuine in the sense that the nonmonotonicity emerges directly out of
the primitive rule set. The three rows in Fig. 9.10 contain snapshots of three
separate runs in which red’s sensor range is systematically increased in incre-
ments of 2: rS,red = 5 for the top sequence; rS,red = 7 for the middle sequence;
rS,red = 9 for the bottom sequence. Blue’s sensor range, rS,blue, remains fixed
at rS,blue = 5 throughout all three runs. The values of other pertinent red
and blue agent parameters are given in Table 9.5.

In each of the runs, there are 100 red and 50 blue agents. Red is also
the more the aggressive force. Blue engages red in combat if the number of
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Fig. 9.10 An example of nonmonotonic behavior. The three rows contain snapshots of
three separate runs in which red’s sensor range is increased in increments of 2 (from
rS,red = 5 on the top row to rS,red = 9 on the bottom). Blue’s sensor range is fixed
at rS,blue = 5 throughout. Comparing the bottom row to the top two rows, we see that
increasing red’s sensor appears to have a detrimental effect on red’s overall ability to
penetrate blue’s defense.

friendly and enemy agents is locally about even, while red will fight blue
even if outnumbered by four enemy combatants. Both sides have the same
fire range (rF = 4), and the same single-shot probability (Phit = 0.005) and
can simultaneously engage the same maximum of three enemy targets. (Note
that the flags for this run are near the middle of the left and right edges of
the notional battlefield rather than at the corners.)

The top row of Fig. 9.10 shows screenshots of a run in which red’s sensor
range is equal to blue’s. Here the red force easily penetrates the blue defense
as it moves toward the blue flag. During red’s advance, a number of agents

N rS rF rM w = (wAF, wAE, wIF, wIE, wFF, wEF) τAdv τCluster ∆Combat

Red 100 5, 7, 9 4 1 wRed = (10, 90, 10, 50, 0, 99) 2 4 −4
Blue 50 5 4 1 wBlue = (10, 90, 10, 50, 0, 99) 2 4 0

Table 9.5 Agent parameter values for nonmonotonic run appearing in Fig. 9.10
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are “stripped” away from the main red-blue cluster in the center as they
respond to the presence of nearby blue agents. The snapshots in the middle
row of Fig. 9.10 show that when red’s sensor range is two units greater than
blue’s, red is not only able to mass almost its entire force on the blue flag (by
t = 90 – not shown – blue’s flag is completely enveloped by red forces), but to
also defend its own flag from all blue forces as well. In this instance, the red
force knows enough about and can respond quickly enough to enemy action
such that it is able to march into enemy territory effectively unhindered by
enemy forces and “scoop up” blue agents as they are encountered.

What happens as red’s sensor range is increased still further? One might
intuitively guess that red can only do at least as well, certainly no worse;
that is, red’s mission performance scales monotonically with the amount of
information that each red agent is allowed to have about the engagement.
However, as the snapshots for bottom row of Fig. 9.10 reveal, when red’s
sensor range is increased to rS,red = 9 – so that all red agents are locally
aware of more information – red, as a force, turns in an objectively weaker
mission performance than on the preceding runs. “Weaker” here meaning
that red is less effective in (1) establishing a presence near the blue flag and
(2) defending blue’s advance toward the red flag.

The nonmonotonic behavior is immediately obvious from Fig. 9.11, which
shows a 3D fitness landscape for mission objective = maximize number of red
agents near blue flag (where “near” is defined as anywhere within 10 bat-
tlefield units). The landscape sweeps over rS,red (= 1, 2, . . . , 16) and the red
combat meta-rule threshold ∆Combat (= −15,−14, . . . ,+15). Higher-valued
fitness values translate to mean better performance.

Fig. 9.11 Fitness landscape for mission = maximize number of red agents near blue flag,
as a function of combat aggressiveness (∆Combat) and red sensor range (rS,red). Higher-
valued fitness values translate to mean better performance. Note that (this particular
fitness measure) does not scale monotonically with sensor range.
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This example illustrates that when the resources and personalities of both
sides remain fixed in a conflict, how well side X does over side Y does not nec-
essarily scale monotonically with X ’s sensor capability. As one side is forced
to assimilate more and more information (with increasing sensor range), there
will inevitably come a point when the available resources will be spread too
thin and the overall fighting ability will therefore be curtailed. Agent-based
models such as EINSTein are well suited for providing insights into more
operationally significant questions such as, “How must X’s resources and/or
tactics (i.e., personality) be altered in order to ensure at least the same level
of mission performance?”

9.7 Genetic Algorithm Breeding

One of EINSTein’s most powerful built-in features is a genetic algorithm
“breeder” run-mode. Genetic algorithms (GAs) are a class of heuristic search
methods and computational models of adaptation and evolution based on
natural selection. In nature, the search for beneficial adaptations to a con-
tinually changing environment (i.e., evolution) is fostered by the cumula-
tive evolutionary knowledge that each species possesses of its forebears. This
knowledge, which is encoded in the chromosomes of each member of a species,
is passed on from one generation to the next by a mating process in which
the chromosomes of “parents” produce “offspring” chromosomes. GAs mimic
and exploit the genetic dynamics underlying natural evolution to search for
optimal solutions of general combinatorial optimization problems. They have
been applied to the traveling salesman problem, VLSI circuit layout, gas
pipeline control, the parametric design of aircraft, neural net architecture,
models of international security, and strategy formulation [50].

Fig. 9.12 illustrates how GAs are used in EINSTein. Chromosomes define
individual agents. Genes encode the components of the personality weight
vector, sensor range, fire range, meta-rule thresholds, and so forth. The initial
GA population consists of a set of randomly generated chromosomes. The
fitness function represents a user-specified mission “fitness” (see later). The
target of the GA search is, by default, the red force. The parameter values
defining the blue force – once they are defined at the start of a search – are
held fixed.

9.7.1 Search Space

EINSTein uses up to 80 genes to conduct a GA search; the actual number
depends on the particular region of the parameter space the user wishes to
explore. Some genes are integer-valued (such as the agent-to-agent commu-
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Fig. 9.12 Schematic of EINSTein’s GA. The blue force and mission fitness are both fixed
by the user. The GA encodes components of the agents’ personality weight vector, sensor
range, fire range, meta-rule thresholds, and so forth and breeds the “best” red force using
populations of N red force “candidate” solutions; see the text for details.

nication links), while others are real-valued. All appropriate translations to
integer values and/or binary toggles (on/off ) are performed automatically
by the program. Typically, each gene encodes the value of a basic parameter
defining the red force. For example, g1 encodes red’s sensor range when an
agent is in the alive state, g3 encodes red’s alive-state fire range, and so on.
Some special genes encode the sign (+ or−) of an associated parametric gene.
Thus, the actual value of each of the components of red’s personality weight
vector, for example, is actually encoded by two genes : one gene specifying
the component’s absolute value, and the other gene specifying its sign.

EINSTein’s GA can conduct its search over five spaces:

• Single-squad personality: GA searches over the personality-space defining
a single squad.

• Multiple-squad personality: GA searches over the personality-space defin-
ing multiple squads. The number of squads and the size of each squad
remain fixed throughout this GA run mode.

• Squad composition: GA searches over squad composition space. The per-
sonality parameters defining squads 1 through 10 are fixed according to
the values defined in the default input data file used to start the interac-
tive run. The GA searches over the space defined by the number of squads
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(1–10) and size of each squad (constrained by the total number of agents
as defined by the data file).

• Intersquad communications connectivity: GA searches over the zero-one
entries defining the communications matrix. The number of squads and
the number of agents per squad are kept fixed at the values defined in the
default input data file used to start the interactive run.

• Intersquad weight connectivity: GA searches over (real-valued) entries
defining the squad interconnectivity matrix. The number of squads and
the number of agents per squad are kept fixed at the values defined in the
default input data file.

9.7.2 Mission Fitness

The mission fitness (MF) is a measure of how well agents perform a user-
defined mission. Typical missions are “Get to blue flag as quickly as possible,”
“Minimize red casualties,” and “Maximize the ratio of blue to red casualties,”
or some combination of these. MFs are always defined from red’s perspective.
The user assigns weights (0 ≤ wi ≤ 1)7 to represent the relative degree
of importance of each mission-fitness primitive, mi (see Table 9.6). While
the mission primitives are relatively few in number and simple, they can be
combined to define more complicated multiobjective functions.

Weight Primitive Description

w1 m1 Minimize time to goal
w2 m2 Minimize friendly casualties
w3 m3 Maximize enemy casualties
w4 m4 Maximize friendly-to-enemy survival ratio
w5 m5 Minimize friendly center-of-mass distance to enemy flag
w6 m6 Maximize enemy center-of-mass distance to friendly flag
w7 m7 Maximize Nfriends within distance D of enemy flag
w8 m8 Minimize Nenemy within distance D of friendly flag
w9 m9 Minimize number of friendly fratricide hits
w10 m10 Maximize number of enemy fratricide hits
w11 m11 Maximize friendly territorial possession
w12 m12 Minimize enemy territorial possession

Table 9.6 EINSTein’s GA mission-fitness primitives

The mission-fitness function, M , used by the GA, is a weighted sum of
mission primitives: M =

∑

i mi. (It is left up to the user to ensure that mis-
sion objectives are both logically consistent and amenable to a “solution.”)

7 Mission fitness weights must not be confused with the personality weights; agent per-
sonalities discussed earlier.
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Future versions of EINSTein will include a richer set of mission-fitness prim-
itives, including: locate and kill enemy squad leaders, stay close to friends,
stay away from enemies, have combat efficiency (as measured by cumulative
number of hits on enemy), clear specified area of enemy agents, occupy area
for specified period of time, take the enemy flag under specific conditions
(e.g., the user is asked to specify the number of agents that must occupy a
given area around the enemy flag for a given length of time), among others.

9.7.3 EINSTein’s GA Recipe

The GA uses EINSTein’s agent-movement/combat engine to conduct its
searches. In pseudocode, the main components of EINSTein GA recipe are
as follows:

for generation=1,Gmax

for personality=1,Pmax

decode chromosome
for initial condition IC=1 toICmax

run combat engine
calculate fitness (for given IC)

next initial condition
calculate mission fitness

next personality
find the best personality
select survivors from population
perform (single-point) crossover operation
perform mutation operation
update progress/status

next generation

write best personality to file

In words, the GA uses a randomized pool of chromosomes to define an
initial generation of red personalities. For each red personality, and for each
of the ICmax initial spatial configurations of red and blue forces, the program
then runs EINSTein’s combat engine to determine the mission fitness. After
looping through all personalities and initial conditions, the GA first sorts
and ranks the personalities according to their mission-fitness values, then
selects some to be eliminated from the pool and others to breed. The GA
then performs the basic operations of crossover and mutation. Finally, after
defining a new generation of red personalities, the entire process is repeated
until either the user interrupts the evolution or the maximum generation
number has been reached (see Fig. 9.12).
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9.7.4 Sample GA Breeding Experiment #1

Consider the following mission (as stated from the red force’s point of view):
“Keep blue agents as far away from the red flag as possible, for as long as
possible (up to a maximum 100 iteration steps)”; that is, set all GA mission
weights to zero, except for w6 = w8 = 1/2; see Table 9.6. This means that
the mission fitness M will be close to its maximal value one only if red is
able to keep all blue agents pinned near their own flag (at a point farthest
from the red flag) for the entire duration of the run, and M will be near its
minimal value zero if red allows blue agents to advance completely unhin-
dered toward the red flag. Combat unfolds on a 40-by-40 battlefield, with 35
agents per side. The GA is run using a pool of 50 red personalities for 50
generations, and each personality is averaged over 25 initial spatial config-
urations. Blue agents are each assigned (a fixed) personality weight vector
wBlue = (wAF, wIF, wAE, wIE, wFF, wEF) = (0, 10, 0, 10, 0, 90).

Fig. 9.13 shows a typical learning curve, where “Best” refers to the fit-
ness of the highest-ranking candidate solution and “Average” refers to the
average fitness among all candidate solutions per generation. The GA run de-
scribed here (using a 1-GHz Pentium IV PC) each requires roughly an hour
to complete.

Fig. 9.13 Typical GA learning curve for GA breeding experiment discussed in the text.

Screenshots from a typical run using the highest-ranked red personality
(as sampled from “solution” pool representing generation 30) that the GA
is able to find for this mission are shown along the top row of Fig. 9.14.
They show that red is very successful at keeping blue forces away from its
own flag; the closest that red permits blue agents to approach the red flag
– during the entire allotted run time of 100 iteration steps – is some point
roughly near midfield. In words, the “tactic” here seems to be – from red’s
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Fig. 9.14 Screenshots from several sample runs of GA breeding experiment #1. The top
row shows a run using the highest-ranked red agents after 50 generations. The second
row shows the second highest-ranked red force. The third row shows how the red force
adapts to a more aggressive blue force. Finally, the fourth row shows an example of how
a suboptimal red force performs representing a pool of agents occupying an early portion
(generation 10) of the GA’s learning curve.
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perspective – “fight all enemy agents within sensor range, and move toward
the enemy flag slowly enough to drive the enemy along.” Note that this emer-
gent tactic is also fairly robust, in the sense that if the battle is initialized
with a different spatial disposition of red and blue forces (while keeping all
personality parameters fixed), red performs this particular mission about as
well, on average, as evidenced by these screenshots.

Screenshots from a typical run using the second highest-ranking red per-
sonality are shown along the second row of Fig. 9.14. These show a slightly
less successful, but nonetheless innovative, alternative tactic. Initially, red
agents move away from their own goal to meet the advancing blue forces,
just as in the first case (at t = 25). Once combat ensues, however, any red
agents that find themselves locally isolated now “double back” toward their
own flag (positioned in the lower left corner of the battlefield) to regroup with
other remaining friendly agents. The red force thus, effectively, forms an im-
promptu secondary defense against possible blue leakers. Because a few blue
agents do manage to fight their way near the red flag at later times (at least
in the particular run these screenshots have been taken from; see snapshot
for t = 90), the red agent parameter values underlying this emergent tactic
are not as highly ranked as the parameter values underlying the run shown
in the top row.

The series of screenshots appearing in the third row of Fig. 9.14 show the
emergent tactic used by the highest-ranked red personality found by the GA
after the blue force is made more aggressive. For this case, prior to initializ-
ing the GA search, blue’s personality weight-vector components for moving
toward red (i.e., wAE = w3, and wIE = w4) are first increased by 50%. We
see that EINSTein’s GA discovers an entirely different (and more effective)
tactic to use. Here, the red force quickly spreads out to cover as much ter-
ritory as possible and individual agents attack the enemy as soon as they
come within view. As red agents’ local territorial coverage is thinned – either
through attrition or gradual advance toward the blue flag – other red agents
(namely agents that had previously been positioned near the periphery of the
battlefield) move closer to the center of the battlefield, thus filling emerging
voids. This tactic succeeds in preventing any blue agents from reaching the
red flag and also manages to push most of the surviving blue force back to-
ward its own flag (near the top right corner of the battlefield)! As is true of
the other cases in this experiment, this tactic is also fairly robust and is not
a strong function of the initial spatial disposition of red and blue forces.

The last row of plots in Fig. 9.14 contains snapshots from a run using
interim red agent parameter values, before the GA has had a chance to eval-
uate a large number of candidate solutions. This example illustrates how an
obviously sub-optimal pool of agents behaves differently from their optimized
counterparts. The mission parameters and blue force agent personalities are
the same as in the case represented by the screenshots in the third row. We
see that, initially at least, there does not seem to be much difference in the
optimal and sub-optimal behaviors; red agents quickly disperse outward to
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cover a large area. However, because the GA has not yet had the time to fine-
tune all of red’s genes, the red force is, in this instance, unable to prevent
blue agents from penetrating deeply into its territory. The defensive tactic,
however it may be characterized, is obviously ineffective.

9.7.5 Sample GA Breeding Experiment #2

Consider a scenario in which the blue force is tasked with defending its flag
against a smaller attacking red force. We use the GA to find a red force that
is able to penetrate the blue defense. Table 9.7 lists some pertinent parameter
values defining the two forces. The third column of the table (i.e., red trial
values) lists baseline red force parameter values (as defined by us, not the
GA) used to test the scenario. The fourth and fifth columns (i.e., GA-bred
values) list the GA-bred red force “solution.” Notice that, in both cases, the
number of agents is the same and is fixed (with blue outnumbering red, 100
to 50 in all runs). All baseline red-trial alive and injured parameter values
are equal.

Blue Red Trial Red GA Bred
Agents Agents Alive Agents Injured Agents

NAgents 100 50 50 50
rS 5 5 8 5
rF 3 3 8 5
rM 2 2 2 2
wAF 0 10 3 −22
wAE 100 40 40 95
wIF 0 10 46 −86
wIE 100 40 38 −14
wFF 0 0 −70 14
wEF 0 25 65 31

τAdvance N/A 3 3 1
τCluster 5 10 13 17
∆Combat −20 0 −19 +20

Table 9.7 Agent parameter values for GA sample run appearing in Figs. 9.15 and 9.16

Fig. 9.15 shows screenshots from a typical run using the red-trial values.
Red agents attack, unsuccessfully, in a tight cluster. The larger blue force
(whose agents initially move about randomly around their starting position
until a red agent comes within their sensor range) dispels the red force rather
easily (within the 30 time steps shown here).

The GA-bred parameters listed along the bottom row in Table 9.7 define
the highest-ranked red force that EINSTein’s GA is able to find (after 30 gen-
erations) with respect to performing the mission = “maximize the number of
red agents able to penetrate within a distance d = 7 units of the blue flag



9 EINSTein 297

Fig. 9.15 Trial red attacking force (consisting of typical parameter values that are not
explicitly tuned for performing any specific mission). Red performance is used simply as a
reference for interpreting the output of the sample GA breeding experiment discussed in
the text.

within 40 time steps.” A population size of 75 was used (i.e., each generation
of the GA search consists of 75 red force candidate “solutions”) and mission
fitness, for a given candidate solution, is averaged over 10 initial configura-
tions of red and blue forces. The fitness equals one if a candidate solution
performs the specified mission in the best possible manner (i.e., if the red
force sustains zero casualties and all agents remain within d = 7 of the blue
flag starting from the minimal possible time at which they move to within
that distance of the flag, for all 10 initial states) and equals zero if a candidate
solution fails to place a single red agent within d = 7 of the blue flag for all
10 initial states (within the mission time limit). Fig. 9.16 shows screenshots
from a typical run using the GA-bred red force values. (The arrows are in-
cluded as visual aids and simply trace the motion of the red agent clusters.)
Comparing this sequence of steps to those in the trial run shown in Fig. 9.15,
it is obvious that the respective “attack strategies” in the two cases are very
different. Indeed, the GA has found just the right mix of agent-agent prox-
imity weights and meta-rules to define a red force that effectively exploits a
relative weakness in the randomly maneuvering blue defenders. The emergent
“tactic” is to separate into two roughly equal-sized units, regroup beyond en-
emy sensor range, and then simultaneously strike, as a pincer, into the heart
of the defending enemy cluster.

Apart from the anecdotal evidence supplied by screenshots of this particu-
lar run, the efficacy of this simple GA-bred tactic is illustrated by comparing
graphs of the number of agents near the blue flag (averaged over 50 runs)

Fig. 9.16 Screenshots from a typical run using the GA-bred red force for the sample GA
breeding experiment discussed in the text. Red agents are defined by GA-bred parameter
values that are the highest ranked (after 30 generations) with respect to performing the
mission = “maximize the number of red agents able to penetrate within a distance d=7
units of the blue flag within 40 time steps.”
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as a function of time for the red-trial and GA-bred cases. Fig. 9.17 shows
that whereas fewer than three red-trial agents, on average, penetrate close
to the blue flag (Fig. 9.17a), almost 80% of the entire GA-bred red force is
able to do so (Fig. 9.17b) and begins penetrating at an earlier time. Other
(well-performing) tactics are possible, of course. A representative sampling is
generally provided by looking at the behaviors of some of the higher-ranking
red forces remaining at the end of a GA search. It is interesting to run a
series of GA runs to systematically probe how red forces “adapt” to different
blue personalities. What one observes, typically, is that as the behavior of
the blue agents changes, various – often dramatically different – GA-bred red
personalities emerge to exploit any new weaknesses in the blue’s defensive
posture.

Fig. 9.17 A comparison between the average number of red agents that approach within
a distance d = 7 of the blue flag for (a) trial and (b) GA-bred red forces. We see that the
GA-bred red force typically performs this mission an order of magnitude more successfully
than the trial force.

9.8 Discussion

“The musical notes are only five in number,
but their melodies are so numerous that one cannot hear them all.
The primary colors are only five in number,
but their combinations are so infinite that one cannot visualize them all.
In battle there are only the normal and extraordinary forces,
but their combinations are limitless; none can comprehend them all.”

— Sun Tzu, The Art of War

The high-level, or poetic, description of EINSTein owes much to the sug-
gestive metaphors appearing in the quote from The Art of War. In the same
way as, for Sun Tzu, rainbows and melodies are all natural outcomes of com-
bining primary colors and musical notes, EINSTein may be viewed as an
“engine” that converts a primitive grammar (i.e., a grammar composed of
the basic notes and colors of combat) into the limitless patterns and possibil-
ities of war. The researcher chooses and/or tunes primitive, low-level agents
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and rules; EINSTein provides the dynamic arena within which these rules
interact and spawn high-level patterns and behaviors. On a more practical
level, EINSTein was developed with these three important goals in mind:

1. To demonstrate the efficacy of agent-based simulation alternatives to more
traditional Lanchester-equation-based models of combat [5].

2. To be used as a general prototype artificial life model/toolkit that can
be used as a testbed for exploring self-organized emergent behavior in
complex adaptive systems.

3. To provide the military operations research community with an easy-to-
use, intuitive agent-based combat-simulation laboratory that – by respect-
ing both the principles of real-world combat and the dynamics of complex
adaptive systems – may lead researchers one step closer to a fundamental
theory of combat.

To better appreciate how each of these motivations has contributed to EIN-
STein’s (still evolving) architecture, consider the conceptual map of its de-
sign, as illustrated schematically in Fig. 9.18. Self-organized patterns emerge
out of a set of primitive local rules of combat, both on the individual agent
level – via interactions among internal motivations (on the Phenotype-I level,
which appears as the middle level in Fig. 9.18) – and squad and force levels
(labeled Phenotype-II in Fig. 9.18, and which appears as the topmost level
in the figure) – via mutual interactions among many agents in a changing
environment.

Of course, a deeper understanding of phenomena governing behaviors on
the topmost level can only be achieved by developing a suite of appropriate
pattern recognition tools (the need for which is indicated symbolically at the
top of Fig. 9.18). Although a number of interesting, and highly suggestive,
high-level patterns have already been discovered, much still remains to be
done. Consider, for example, the frequent appearance of various power-law
scalings and fractal dimensions describing space-time patterns and attrition
rates ([34, 40]). The existence of power-law scalings, in particular, strongly
suggests that a self-organized, critical-like dynamical mechanism might gov-
ern turbulent-like phases of combat. However, the data collection and analysis
necessary to rigorously establish the nature of these findings (as well as to
establish a mathematically precise set of conditions under which power-law
scalings either do or do not occur) has only just started.

One of the directions in which EINSTein’s design is moving (some details
of which are described in the next section) is toward a fully developed onto-
logical architecture that assigns specific meaning to the symbolic relationship
between environment and action. The hope is to be able to explore the com-
plementary problem of reverse behavior engineering; that is, the problem of
finding an appropriate set of primitives (properties and rules) that lead ei-
ther to empirically observed or desired macroscopic patterns of combat (or,
in Fig. 9.18, of finding ways of going from either phenotype level I or II to
the genotype level).



300 Andrew Ilachinski

Fig. 9.18 A hierarchy of conceptual levels that illustrate EINSTein’s core design.

9.8.1 Why Are Agent-Based Models of Combat Useful?

The most important immediate payoff to using EINSTein is the radically
new way at looking at fundamental issues. However, agent-based models are
best used to enhance understanding, not as prediction engines. Specifically,
EINSTein is being designed to help researchers do the following:

• Understand how all of the different elements of combat fit together in
an overall combat phase space: “Are there regions that are ‘sensitive’ to
small perturbations, and, if so, might there be a way to exploit this in
combat (as in selectively driving an opponent into more sensitive regions
of phase space)?”

• Assess the value of information: “How can I exploit what I know the enemy
does not know about me?”
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• Explore trade-offs between centralized and decentralized command-and-
control (C2) structures: “Are some C2 topologies more conducive to infor-
mation flow and attainment of mission objectives than others?” “What do
emergent forms of a self-organized C2 topology look like?”

• Provide a natural arena in which to explore consequences of various qual-
itative characteristics of combat (unit cohesion, morale, leadership, etc.).

• Explore emergent properties and/or other “novel” behaviors arising from
low-level rules (even combat doctrine if it is well encoded): “Are there
universal patterns of combat behavior?”

• Provide clues about how near-real-time tactical decision aids may eventu-
ally be developed using evolutionary programming techniques.

• Address questions such as “How do two sides of a conflict coevolve with one
another?” and “Can one side exploit what it knows of this coevolutionary
process to compel the other side to remain ‘out of equilibrium?’ (or be
otherwise trapped in a supoptimal dynamical combat state).”

EINSTein has been used to explore the following: patrol dynamics, secu-
rity, and ambush tactics [52]; reconnaissance [53]; counter reconnaissance [54];
communications [55]; distributed operations in open [56] and urban environ-
ments [57]; the historical evolution of squad and fire-team composition and
weapon-mix [47]; small unit combat [59]; C2 [60]; situational awareness [58];
civil disobedience [61]; peacekeeping operations [62]; and maritime ship sta-
tioning [63]. In all, there are some 800 registered users of EINSTein, including
researchers from the US Department of Defense, academia, research and de-
velopment centers and private companies.

9.8.1.1 Command and Control

EINSTein contains embedded code that hardwires in a specific set of C2 func-
tions (i.e., both contain a hierarchy of local and global commanders), so that
it can be used to explore the dynamics of a given C2 structure. However, a
more compelling question is, “What is the best C2 topology for dealing with a
specific threat, or set of threats?” One can imagine using a genetic algorithm,
or some other heuristic tool to aid in exploring potentially very large fitness
landscapes, to search for alternative C2 structures. What forms should local
and global command take, and what is the optimal communications matrix
among individual combatants, squads, and their local and global comman-
ders?

9.8.1.2 Pattern Recognition

An even deeper issue has to do with identifying the primitive forms of in-
formation that are relevant on the battlefield. Traditionally, the role of the
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combat operations research analyst has been to assimilate and provide use-
ful insights from certain conventional streams of battlefield data: attrition
rate, posture profiles, available and depleted resources, logistics, rate of rein-
forcement, Forward Edge of the Battle Area (FEBA) location, morale, and so
forth. While all of these measures are obviously important, and will remain so,
having an ABM of combat permits one to ask the following deeper question:
“Are there any other forms of primitive information – perhaps derived from
measures commonly used to describe the behavior of nonlinear and complex
dynamical systems – that might provide a more thorough understanding of the
fundamental dynamical processes of combat?” We have already mentioned,
for example, that evidence suggests that the intensity of battles – both in the
real world and in ABMs of combat – obeys a fractal power-law dependence on
frequency and displays other traits characteristic of high-dimensional chaotic
systems. Are there other, similar but heretofore unexamined, measures that
may provide insight into the dynamics of real-world combat?

9.8.1.3 “What If?” Experimentation

The strength of ABMs lies not just in their providing a potentially powerful
new general approach to computer simulation but also in their infallible abil-
ity to prod researchers into asking a host of interesting new questions. This is
particularly apparent when EINSTein is run interactively, with its provision
for making quick “on-the-fly” changes to various dynamical parameters. Ob-
servations immediately lead to a series of “What if?” speculations, which in
turn lead to further explorations and further questions. Rather than focus-
ing on a single scenario and estimating the values of simple attrition-based
measures of single outcomes (“Who won?”), users of agent-based simulations
of combat typically walk away from an interactive session with an enhanced
intuition of what the overall combat fitness landscape looks like. Users are
also given an opportunity to construct a context for understanding their own
conjectures about dynamical combat behavior. The agent-based simulation
is therefore a medium in which questions and insights continually feed off one
another.

9.8.1.4 Validation

Before any combat model – agent based or not – is judged “useful” to a mili-
tary operations researcher, it must pass two important tests in the affirmative:
(1) Does it provide insight into the specific set of problems the researcher is
interested in studying, in a well-defined and self-contained conceptual con-
text? (which is an obvious requirement of even the most basic mathematical
model) and (2) Is its output consistent with behavior that is either accepted
to be true or has otherwise been observed to occur in the real-world? Most
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Fig. 9.19 Schematic of the interplay between experience and theory in the forward and
inverse problems of simulating combat.

importantly, a successful model of combat must respect the critical interplay
between real-world experience and simulation outcome. That is to say, the
model must at some point be validated.

Fig. 9.19 illustrates, schematically, the interplay between the forward prob-
lem of using the model to predict behaviors and identify patterns and the
inverse problem of using experience and real-world data to add to, change,
and/or refine the rules and behaviors that define the model. The forward
problem consists of observing real-world behavior, with the objective be-
ing to identify any emergent high-level behavioral patterns that the system
might possess. The inverse problem deals with trying to induct a set of low-
level rules that describe observed high-level behaviors. Starting with observed
data, the goal is to find something interesting to say about the properties of
the source of the data. Solving the forward problem requires finding the right
set of theoretical tools that can be used to identify patterns, while the inverse
problem needs tools that can be used to induct low-level rules (or models)
that generate the observed high-level behaviors.

Since EINSTein was conceived primarily as an exploratory model, valida-
tion is less of an issue than it might be for more ostensibly realistic models.
As long as EINSTein’s outcomes are intuitive and its inputs are easy to gen-
eralize (or translate) for use by more realistic models, EINSTein will remain
useful for many different kinds of exploratory analyses. Nonetheless, because
EINSTein is already powerful enough to simulate many real-world scenarios,
it is proper to ask about how the model may be validated.

One such recent attempt to validate (a beta version of) EINSTein was
undertaken at the United States West Point Military Academy’s Operations
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Research Center for Excellence by Klingaman and Carlton [64], by comparing
its output to that of another well-established combat simulation model, called
JANUS (a high-resolution conventional – i.e., not agent based – simulation of
red and blue forces, with resolution down to the individual platform and sol-
dier). The study endeavored to establish the combat effectiveness of EINSTein
agents executing a standard National Training Center combat scenario that
consists of a single armored company of 14 blue force tanks engaged versus a
similar size force of 14 red battle tanks. One set of blue agents is allowed to
gain knowledge (or “learn”) by using EINSTein’s built-in GA agent breeder
function. The behavior of another set of blue agents is kept fixed, and the
agents are not allowed to learn. In both cases, EINSTein’s combat results for
all agent actions are recorded. These observed actions are then programmed
into JANUS (EINSTein’s automatic record of center-of-mass positions are
used to define the routes in JANUS), and, for each case, the combat effec-
tiveness resulting from JANUS is compared to the outcome in EINSTein.
The validation test consisted of verifying the reasonable expectation that the
knowledgeable agents exhibit noticeably different (and, hopefully, improved)
behavior and have a significantly better loss-exchange ratio (LER) in both
EINSTein and JANUS.

Using a general linear model analysis of two factors (agent type and model)
with two levels each (default/GA-bred and EINSTein/JANUS), the study
found that although the LER was different for the two models, the LER data
in both models follow similar trends. The standard deviations of the mean
LER also decrease from the default agents to GA-bred agents in both mod-
els. Overall, the study found that EINSTein’s agents may be used to portray
similarities of combat vehicles reasonably well and that learning as portrayed
in EINSTein can be transferred into another combat model. However, citing
various limitations due to model-specific constraints on translating agent and
environmental characteristics from one model to the other, as well as unavoid-
able conceptual differences between the two models, Klingaman and Carlton
concluded their report by offering three suggestions: (1) that ABMs need in-
creased fidelity in terms of terrain and weapons performance (limitations that
are no longer an issue for newer versions of EINSTein; see discussion in the
next section), (2) traditional models, such as JANUS, ought to incorporate
ABM-like personality traits and decision-making algorithms to allow for more
realistic combatant actions, and (3) traditional models ought to incorporate
some mechanism to allow for adaptive learning.

One other important suggestion that belongs on Klingaman and Carlton’s
list of general recommendations is due to Axtell et al. [65], who argued for
the need to align (or “dock”) simulation models. Docking refers to a pro-
cess of testing to see whether two models can produce the same results, or
using one model to check the output of another, but in a more general and
systematic manner than was used in the one-time EINSTein-to-JANUS com-
parison discussed above. The idea is similar to a common practice among
technical researchers to use not one, but two or more mathematical packages
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(such as Mathematica [66] and Maple [67]) to help check their calculations.
The authors illustrate this concept by using, as their testbed simulations, a
model of cultural transmission designed by Axelrod [76] and the Sugarscape
multiagent-based simulation of evolution that takes place on a notional sugar
field, developed by Epstein and Axtell [29]. Since the models differ in many
ways (and have been designed with quite different goals in mind), the com-
parison was not an especially easy one to make. Nonetheless, the authors
report that the benefits of the sometimes arduous process of alignment far
outweighed the hardships. In the end, the user communities of both models
benefited from the alignment process by gaining a deeper understanding of
how each program works, of their similarities and differences, and of how the
inputs and outputs of each program must be modified before a fair compari-
son of what really happens in either model can be made.

As the list of combat agent models grows beyond those that have already
appeared (such as CROCADILE, MANA, SEM, Socrates, and SWarrior;
see [34]), the need to “align” the output of these models – in the sense defined
by Axtell et al. [65] – can only become more important.

9.8.1.5 Universal Grammar of Combat?

What lies at the heart of an artificial life approach to simulating combat is the
hope of discovering a fundamental relationship between the set of higher-level
emergent processes (penetration, flanking maneuvers, containment, etc.) and
the set of low-level primitive actions (movement, communication, firing at
an enemy, etc.). Wolfram [77] has conjectured that the macro-level emergent
behavior of all cellular automata rules falls into one of only four universality
classes, despite the huge number of possible local rules. While EINSTein’s
rules are obviously more complicated than those of their elementary cellular
automata brethren, it is nonetheless tempting to speculate about whether
there exists – and, if so, what the properties are – a universal grammar of
combat. A step toward achieving this far-reaching goal is being taken with
EINSTein’s recent integration within Python, a scripting language that allows
programming-savvy users to extend EINSTein (see discussion below).

9.9 Overview of Features in Newer Versions

EINSTein has evolved considerably beyond the snapshot of the program that
appears in the previous sections of this chapter, although the core of the
model remains essentially the same and is consistent with everything thus
far discussed.8 This section summarizes the state of the model as it appears

8 Version 2.1 may be downloaded from [71], and older versions may be downloaded
from [72].
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at the time of this writing (April 2008) and highlights some of the main
changes and additions that have been made to the program since the first
edition of this book came out in 2005.

Loosely speaking, EINSTein’s emphasis as a CAS-based “combat simu-
lator” has gradually shifted away from describing the mutual interactions
among many simple agents (although EINSTein’s original capability in this
regard is still there, of course) to describing interactions among a relatively
few, but complex agents that are also endowed with a richer internal structure
and dynamics. Thus, where earlier versions have focused on the complexity
of emergent behaviors on the system level, more recent work adds the ability
to explore emergent behaviors on the individual agent level as well. Details
are discussed in [34].

Apart from (mostly self-explanatory) changes to the GUI and file I/O
(see below), the newest version of EINSTein includes three general classes
of enhancements over earlier releases: (1) agent attributes, (2) battlefield
environment and behavior functions, and (3) integration within Python.

9.9.1 Agent Attributes

An agent’s “personality” may now be tuned using many more primitive at-
tributes than previously available. For example (in alphabetical order),9 (1)
Acuity , which regulates the strength of an agent’s focus on its priorities and
is used to “sharpen” decisions that are made probabilistically (its range of
possible values varies from +1, for which an agent only considers options of
maximum value, to +1, for which an agent gives equal consideration to all
options); (2) Camouflage, which defines how well an agent can hide from
other agents in the context of a local environment (if the value is 0, an agent
is 100% visible to other agents; if the value is 1, an agent is effectively invisible
to both friends and enemies; and intermediate values determine an agent’s in-
herent probability of being detected); (3) Frazzle, which specifies how much
an agent’s firing accuracy degrades when the agent is presented with multiple
simultaneous targets (and increases linearly with the number of simultane-
ous targets an agent fires at, reaching its maximum value at the weapon’s
maximum target limit); (4) Mass, which specifies the rate at which agents
burn their energy (all agents expend energy while moving, the amount being
determined by their “velocity” – i.e., how far they move in a single time step –
and by the nature of the terrain over which they are moving); (5) Memory ,
which regulates how long does an agent retains information about certain in-
ternal state variables (and is computed using a time-averaging technique: the
contribution of past values decays exponentially, with the value of memory
controlling the rate of that exponential decay); (6) Recovery rate, which

9 This is only a partial list of agent attributes that have been added to EINSTein since
version 1.0. For a complete list, please refer to EINSTein’s programming guide [75].



9 EINSTein 307

defines how much health an agent regains in a single time step (a value of 0
means an agent never recovers from injury and a value of 1 means an agent
fully recovers from all injuries in a single time step; all intermediate values
are interpreted as the probability an agent will recover from injuries); (7)
Resupply rate, which specifies how frequently an agent reloads its weapon
with new ammunition (a value of 0 means that an agent never reloads; a value
of 1 means that an agent reloads at the start of every time step; intermediate
values are interpreted as the probability of reload); (8) Stamina , which is
the rate at which agents regain their energy (energy expenditure is propor-
tional to agent mass, and the amount recovered is proportional to stamina,
if mass = stamina then an agent can traverse 100% passable terrain indef-
initely); and (9) Tremor , which is the degree to which an agent’s “inherent
fallibility” reduces its weapon firing accuracy (if the value is 0, then weapon
accuracy is unaffected; if the value is 1, then one standard deviation is added
to the agent’s weapon’s average hit distance from an intended target). Health
has also been generalized from a binary variable (healthy/not-healthy) to a
continuous one (ranging in value from 0 to 1). And movement range is now
effectively free to vary from 0 to the size of the battlefield.

9.9.2 Environment and Behavior Functions

There are six major additions to EINSTein’s battlefield environment and
repertoire of behavior functions and modifiers: (1) Pathfinding , which uses
a priority-queue variant of Dijkstra’s optimal path algorithm [51] to give
agents an innate “intelligence” to find paths between any two points on the
battlefield (an ability which, among other things, prevents agents from be-
coming trapped at corners of an obstacle and generally yields more realistic
“flow” around terrain elements); (2) Waypoint scripting , which allows the
user to define arbitrarily complex paths (or roads) on the battlefield and
tune the way in which agents traverse them (that also allows for far more
complex scenarios to be constructed than before)10; (3) Obstacles, which
are fixed objects in the terrain that interfere with weapon fire and agent
movement (and can therefore be used as building blocks to populate a bat-
tlefield with notional buildings). A weapon’s loft and an obstacle’s height
properties determine whether a weapon round reaches an intended target11;
(4) Weapon-construction class, which allows users to design their own

10 The “battlefield” that appears on the upper left of the screenshot shown in Fig. 9.1
contains two red and two blue user-defined paths defined using waypoints.
11 Impenetrability defines how much energy an obstacle may absorb from a weapon blast.
If an obstacle exists along the straight-line path between a weapon and its target and
height > loft, then all rounds fired by the weapon will be blocked from reaching its target.
If height ≤ loft, a weapon’s blast energy is reduced by a factor ∝ Impenetrability. If there
are multiple obstacles between a weapon and its kill-zone center, then the reduction in
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weapons-of-choice12 using a palette of 10 primitives (range, firing rate, ca-
pacity, blast radius, power, armor, deviation, reliability, loft, and ammunition
capacity); (5) Weapon-targeting logic, which provides agents with an in-
telligent targeting capability (and with which agents can discriminate targets
by weighing the relative potential benefit of firing at the given coordinate on
the battlefield). Agents consider factors such as expected blast size, the dam-
age likely to be inflicted on friends and enemies near the target coordinate,
and the value or threat that specific enemy agents represent. A targeting
penalty function is used to evaluate each of the possible targeting strate-
gies that may be used in a given context and is an analog of the movement
penalty function defined in Eq. 9.4; and (6) Trigger states, which generalize
EINSTein’s older meta-rules (which are still available) by allowing users to
associate certain predefined environmental conditions with agent behaviors
(i.e., agent actions may now be adaptively triggered by dynamic contexts).

Meta-rules have always allowed agents to tailor their behavior to simple
contexts – the ∆Combat meta-rule, for example, defines the conditions under
which agents either engage (or do not engage) the enemy (see Table 9.2) –
but also constrain the user to making basic either/or decisions (and limit an
agent’s context-specific behavior modification to changing a single compo-
nent of its default personality weight vector). EINSTein’s newer trigger-state
logic is vastly more flexible and allows essentially arbitrary modifications of
an agent’s behavior to be made contingent upon arbitrary environmental con-
ditions. Aside from obviously adding a great deal of realism to scenarios, the
new logic also allows analysts to more deeply explore interactions between
agent personalities and their dynamic environment.

Fig. 9.20 shows a screenshot of a sample work session in which the user has
elected to define a trigger state called “Hunker Down.” We see that it depends
on three activation conditions (health, energy, and fire density) and that the
response (shown along the right-hand side of the figure) consists of chang-
ing the value of 7 of 12 personality features (maximize rest and propensity
to flock, replace values for alive ally, own flag, and enemy flag with 0, re-
place the value for alive foe with −100, and replace value for moving toward
the local commander with +100). The probability that a given condition
becomes “active” may be defined as a piecewise discontinuous probability
density function using another dialog (not shown) that pops up by pressing
the “Define PDF. . . ” button associated with a given condition. The proba-
bility, PA, that a trigger state (in this case, “Hunker Down”) is active is the
product of the conditional probability distribution functions, P i

a, applied to

blast energy is cumulative (additive) along the straight-line path connecting the site and
the kill-zone center.
12 The user is presented with a default – but modifiable – selection of bolt-action rifle
(accurate, reliable, low range, low power); semiautomatic rifle (higher rate, lower range,
less accurate); machine gun (high rate, higher power, lower reliability); grenade (lower
range, larger spread, hard to target); and mortar (long range, large spread, high power,
accurate).
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Fig. 9.20 Screenshot of EINSTein’s new trigger-state edit dialog.

their corresponding activation conditions, Ci, is PA ≡
∏

i P i
a (Ci). Up to five

activation conditions may be active at one time. However, there is no limit
on the number of trigger states that may be defined in a scenario for any
given agent.

9.9.3 GUI and File I/O

While most of the older elements of EINSTein’s GUI (see Fig. 9.1) remain
intact, albeit in a modified form to accommodate the growing palette of agent
attributes and behaviors, entirely new elements have been added to make it
easier for the user to interact with the program as it is running. A click of the
right mouse button now calls up a series of menus (see Fig. 9.21) that provide
quick access to essentially all of EINSTein’s key data-entry dialogs. There are
also additional options to both probe and alter the environment. For example,
the user may choose to “inspect a site” to see the properties of a particular
terrain element (if the site is “empty”) or to be given a complete list of agent
attributes if the site is occupied by an agent. Or, the user can pick up an
agent (or a goal), move it from one part of the battlefield to another, and
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Fig. 9.21 Screenshots of pop-up menus that appear after clicking with the right mouse
button in EINSTein versions 2.0 and higher.

continue running the same scenario. Terrain elements, obstacles, waypoints,
and paths can also all now be drawn freehand directly on the battlefield.

The types and contents of the scenario and data files depends on the ver-
sion of the program. Versions 1.0 and older use basic ASCII text files. Starting
with versions 1.1 (and newer), EINSTein uses Apache Software’s open-source
Xerces XML (eXtensible Markup Language) parser in C++ (version 2.3 [73])
to provide XML I/O functionality. Compatibility with EINSTein’s older *.dat
file format has been retained in the form of I/O functions that appear under
the Load and Save options of the main File menu. EINSTein has also been
significantly enhanced with data logging and data exporting functions.

9.9.4 Python and wxWidgets

One of the most exciting changes that has been made to EINSTein in recent
years is its integration within Python. Python is an interpreted, interac-
tive, object-oriented programming scripting language. It is freely available
in source or binary form from the Python developer homepage [69]. Since
Python is easily extended with new functions and data types implemented
in C or C++ (or other languages callable from C), when combined with the
300+ source-level functions of EINSTein’s core engine, Python becomes a
powerful programming environment in which to build custom “combat sce-
nario” applications.

PyE (version 2.1) is an extension of EINSTein that allows the simulation
to be run directly within the Python programming environment. On the
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GUI level, PyE builds on (the pre-Python) EINSTein source code but is
without the earlier versions’ embedded graphical visualization tools (although
the data-extraction routines remain the same). The idea is to first use PyE
interactively to generate (and/or fine-tune) desired scenarios and then run
PyE in batch mode to generate statistics for follow-on analysis by some other
program. A sample Python-script for multiple time-series runs is included in
the automatic Windows install file [71].

Future versions of EINSTein (and PyE) will migrate entirely away from
EINSTein’s original Windows MFC codebase and use wxWidgets [74] as the
development platform. wxWidgets is a cross-platform, open-source GUI li-
brary that provides a single API for simultaneously developing applications
on multiple platforms (such as Win32, Linux/Unix, Mac OS X, X11, and
Motif) using a single codebase.

9.10 Next Step

While EINSTein continues to be developed and new capabilities are still be-
ing added to the program as of this writing (April 2008), a new direction has
recently been taken in a related project. The project’s goal is to develop an
EINSTein-based model of terrorist-counterterrorist coevolutions called SOT-
CAC (= Self-Organized Terrorist-Counterterrorist Adaptive Coevolutions).

SOTCAC leverages and generalizes EINSTein’s “combat agents” to a class
of “terrorist agents” that live in an abstract social-information space – that
is, a mathematical graph whose vertices possess an inner semantic structure,
and assimilate, process, and adapt to various forms of information (such
as a multidimensional feature space that describes the properties of the Al
Qaeda terrorist network, as derived from intelligence sources). SOTCAC uses
adaptive agents to describe the self-organized, emergent behavior of terrorist
networks – conceived as complex adaptive systems – on three interrelated dy-
namical levels: (1) dynamics on networks, in which notional terrorist agents
process and interpret information, search and acquire resources, and adapt to
other agents’ actions; (2) dynamics of networks, in which the terrorist network
itself is a fully dynamic, adaptive entity and whose agents build, maintain,
and modify the network’s local (and therefore, collectively, its global) topol-
ogy; and (3) dynamics between networks, in which the terrorist network and
counterterrorist network mutually coevolve; the terrorist network’s “goal” is
to achieve the critical infrastructure (of manpower, weapons, financial re-
sources, and logistics) required to strike, while the counterterrorist network’s
mission is to prevent the terrorist network from achieving its goal.

For all of EINSTein’s “complexity” on the source code level (EINSTein
consists of roughly 150K lines of C++ code, contains over 350 agent func-
tions, and requires a programming manual that is about 400 pages long to
define its class structure and primitive behaviors), EINSTein’s basic dynamics
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is – conceptually speaking – very simple: Red and blue agent swarms inter-
penetrate on a notionally physical battlefield with the “goal” of annihilating
the other side and/or “controlling” a certain region of the battlefield (such
as the opponent’s “flag”). There are effectively two – and only two – kinds
of actions that agents must adjudicate as a battle unfolds: (1) where to move
and (2) whom to fight ; and everything “happens” in a single notional space
(i.e., the “battlefield”).

In contrast, the behaviors in SOTCAC depend on (and take place in) four
coupled spaces: (1) a physical space, analogous to EINSTein’s “battlefield”;
(2) a social space, in which terrorist agents forge/break social bonds and ex-
change information and materiel resources; (3) an “image” of the physical
space that represents the counterterrorist network’s “best guess” view of the
terrorist’s activity in the physical space; and (4) an “image” of the social
space that represents the counterterrorist network’s “best guess” view of the
terrorist network’s activity in its social arena. Not only are the physical and
social spaces obviously coupled, but because all counterterrorist actions are
fundamentally grounded on what the counterterrorist network “believes” the
terrorist network is “doing” at any given time (possibly erroneously), the cou-
pled terrorist physical/social space (“ground truth”) is also tightly coupled
with the counterterrorist belief network.

SOTCAC’s agents must fuse multiple streams of (often conflicting infor-
mation), decide to whom (and when, and for how long) to establish commu-
nication (and/or material flow) links, and – in the case of counterterrorist
forces – decide on courses of action based on an incomplete “snapshot” view
of what is currently known about (and/or can be inferred from) existing data.
Consequently, SOTCAC’s effective “space of possible interactions” (i.e., its
emergent fitness landscape) is significantly larger than EINSTein’s. SOTCAC
is currently in development.
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Chapter 10

From Artificial Chemistries to Systems
Biology: Software for Chemical
Organization Theory

Christoph Kaleta

Artificial Chemistries abstract from real-world chemistries by reducing them
to systems of interacting and reacting molecules. They have been used to
study phenomena in a wide array of fields like social and ecological mod-
elling, evolution or chemical computing. Artificial Chemistries are inherently
difficult to study and, thus, methods have been proposed to analyze their
complexity. This chapter outlines how the concept of chemical organization
and software dedicated at their analysis can help to ease this task. The chem-
ical organizations of a reaction network correspond to sets of molecules that
can coexist over long periods of (simulation-) time. Thus, they can be used
to study the full dynamic behavior a system can exhibit without the need to
simulate it in every detail. Due to this appealing property, Chemical Organi-
zation Theory has been used in the study of a wide array of systems ranging
from Artificial Chemistries to real-world chemistries and biological systems.
Especially the analysis of biological systems motivated an integration of the
tools dedicated to the study of chemical organizations into an application
framework from Systems Biology. The benefit of this integration is that tools
from Systems Biology can be used without much effort along with the tools
for the computation of chemical organizations and vice versa. Thus, soft-
ware for the analysis of chemical organizations seamlessly integrates into a
framework covering almost any aspect of network design and analysis.

10.1 Introduction

The quest of understanding the emergence and development of life on Earth
has a long-standing history in research. While the concept of Darwinian Evo-
lution readily explains the appearance of more and more complex organisms
through inheritance, mutation and selection, it is still not fully understood
how the first organism for selection to act upon came to life. Artificial Life
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and, in particular, Artificial Chemistry are trying to shed light on this ques-
tion by taking an approach that is in some parts opposed to the one taken by
biology. These fields try to understand real living systems not by considering
them in mechanistic detail, but from an abstract point of view. Thus, they
study how concepts like self-replication or information processing and storage
might have evolved. An abstraction borrowed from real chemistries that is
common to all systems in Artificial Chemistries is that of colliding molecules.
Thus, [9] defined an Artificial Chemistry as “[..] a man-made system which
is similar to a real chemical system.” Formally, an Artificial Chemistry is
defined by the triple (S, R, A), with S denoting the set of possible species, R
denoting the set of collision rules among the species, commonly also referred
to as reactions, and A denoting an algorithm describing the reaction vessel
and how the collision rules are applied to the species [9]. An example for a
simple Artificial Chemistry can be found in Fig. 10.1.

Artificial Chemistries have seen a wide array of applications. Those appli-
cations can be aligned on three broad axes: modelling, information processing
and optimization [9]. In the first direction they have been used to create and
analyze models of ecological and social systems as well as evolution. Promi-
nent fields of Artificial Chemistry in information processing are, for example,
chemical computing or DNA computing. Due to their ability to create evolu-
tionary behavior, they have also been used for optimization in the context of
evolutionary algorithms. More details on some of these applications in con-
nection to Chemical Organization Theory are outlined in Section 10.3.3. For
a comprehensive overview on the field of Artificial Chemistry the reader is
referred to [9].

Due to the inherent complexity of systems in Artificial Chemistry, methods
to analyze their behavior are needed. One of these is Chemical Organization
Theory [8], which allows to study the dynamic behavior of chemical reaction
networks, a particular type of Artificial Chemistry. In contrast to concepts
that explicitly take into account space (e.g., dissipative particle dynamics,
Chapter 11), a chemical reaction network in the context of Chemical Organi-
zation Theory is best visualized as a well-stirred reaction tank containing a
finite set of species reacting with each other through a finite set of reactions.
Thus, the concentrations of the species are assumed to be homogeneous. In
consequence, the system can be described by a set of species, reactions among
the species and the underlying dynamics of the reactions alone (see Fig. 10.1
for an example). Chemical Organization Theory focuses on the structure of a
reaction network (i.e., the set of species and reactions). From this structure
it tries to infer constraints on the dynamics of the reaction network. The set
of chemical organizations of a reaction network consists of sets of species that
are likely to coexist over a long period of simulation-time of the dynamics.
In consequence, the dynamics can be mapped to a movement in the set of
organizations [8].

The relationship between the structure and the dynamics of a reaction
network can be derived by imposing two conditions on a set of species to be
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an organization. Both serve to guarantee the stability of this set. First, the
species set is required to be closed. This condition is fulfilled if there is no
reaction in the network that could produce a species not within the set. Thus,
the dynamic of a reaction network will be restricted to the set of species in
an organization if they were present at the beginning of the simulation (with
some species possibly vanishing). The second condition, self-maintenance,
ensures that there exists a flux through the reactions of the network (i.e., an
instance of the dynamics, such that no species vanishes). Even though the
existence of such a flux does not guarantee that the species of an organization
will persist during a simulation, it can be shown in the other direction that
if such a species set is encountered during a simulation, it corresponds to an
organization. A formal definition of these concepts is given in Section 10.3.1.

Chemical Organization Theory has seen a wide array of applications in
both Artificial Chemistry and Systems Biology. In Artificial Chemistry it has
been used to study systems for chemical computing [23, 25], to serve as a de-
sign principle in chemical computing [7] and to study chemical evolution [24].
In Systems Biology it has been used to study models of HIV infection [22], the
diauxic shift in Escherichia coli [4, 18], as well as the properties of a genome-
scale network of the same organism [5] and effects of gene knock-outs [18].
Some of these applications are presented in more detail in Section 10.3.3.

Due to a close relationship of the concept of a chemical reaction network
to the understanding of a metabolic network in Systems Biology, many tools
from this field can be applied to the study of such networks. In the other
direction, Chemical Organization Theory can be used to complement meth-
ods developed in Systems Biology. Thus, the tools for the study of chemical
organizations were developed with the aim to allow an easy integration into
a whole array of existing tools from Systems Biology.

This integration is achieved on two different levels. First, chemical reaction
networks are represented in the Systems Biology Markup Language (SBML)
format [16]. Even though species and reactions can be stored in a simple text-
file, different kinds of analysis of such networks focus on different aspects.
Thus, a common representation serves, on the one hand, to circumvent the
cumbersome way of interconvert reaction networks between different data
formats. On the other hand, an integrated representation of all aspects that
might be of interest is achieved. One analysis might focus, for example, on the
set of reactions and species, while another analysis necessitates information
on the kinetics of the reactions. If a reaction network has been designed with
the former kind of analysis in mind, the second kind can be applied by “just”
adding information about the kinetics to the already available set of reactions.

Second, an integration on the level of applications is achieved. Using SBML
as a representation already makes available a whole array of tools that use this
standard (see [32] for a comprehensive list of applications using SBML). Fur-
thermore, the Systems Biology Workbench (SBW) [31] offers an even deeper
integration of applications that not only encompasses the exchange of reac-
tion networks between two applications but also the possibility to call specific
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functions offered by each application that interface SBW. Thus, one appli-
cation can be used to design a reaction network. If one wants to study the
dynamic of this network under a particular condition for a certain time span,
a function from another application offering this service through SBW can
be called. Thus, it is, on the one hand, not necessary to develop such a tool
anew or integrate the corresponding code into the own project. On the other
hand, the cumbersome process of saving the network, initializing the simu-
lation tool, loading the network again and specifying the parameters of the
simulation can be circumvented and all functionality is available from the
initial application. A more comprehensive overview on SBML and SBW is
given in Section 10.2.

This chapter is organized as follows. A short overview on the tools from
Systems Biology that can be used with the application for the analysis of
chemical organizations is outlined in Section 10.2. A comprehensive intro-
duction into the concept of chemical organizations is given in Section 10.3.1.
Details on the algorithms for the computation of chemical organizations and
applications of Chemical Organization Theory in the field of Artificial Chem-
istry are presented in Sections 10.3.2 and 10.3.3. Finally, applications for the
computation and analysis of chemical organizations in reaction networks are
outlined in Section 10.4.

10.2 Using Tools from Systems Biology: SBML and
SBW

Even though Chemical Organization Theory has been introduced in the field
of Artificial Chemistries, it has seen a wide array of applications in Systems
Biology. Consequently, it makes use of some tools commonly used in this field
of research.

10.2.1 Systems Biology Markup Language

Reaction networks can be stored using simple text files. However, this sim-
plicity can result in every research group using proprietary formats that are
most appropriate to their needs. In consequence, it is difficult to interconvert
reaction networks between different formats. A standardized representation of
reaction networks that incorporates the most commonly used aspects of their
representation allows a simpler interchange of models and reduces mistakes
made during interconversion.

The Systems Biology Markup Language (SBML) [15, 16] is proposed as
a standard for the representation of reaction networks in the field of Sys-
tems Biology. Through its growing acceptance, SBML is extended to meet
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the needs of its users. In its current version, level 2, it allows the definition of
compartments, species, reactions, units, rules and events. Through the defi-
nition of compartments and relations between the compartments, some basic
spatial differentiation seen in living systems can be integrated into a reac-
tion network. Reactions can be described by rate laws. Since these laws are
formulated using MathML, arbitrary functions can be described. Using rules,
concentrations and parameters can be constrained. Events offer the possibil-
ity to perturbate networks at given time-points by, for example, setting the
concentration of a species or changing a specific parameter. Additionally it is
possible to include user-defined tags that enable, for example, the display of
information in HTML format or the incorporation of positional information
(e.g., for the display in network editors). Since SBML is used by a grow-
ing array of applications virtually covering any aspect of network analysis,
it offers a sophisticated base that can also be useful in the field of Artificial
Chemistry.

10.2.2 Systems Biology Workbench

Using the Systems Biology Workbench (SBW) [31] the unification of reaction
networks based on SBML is extended to the level of applications. SBW allows
the integration of some commonly used steps in network design and analysis.
SBW basically represents a message passing architecture. Its central element
is a broker to which applications, written in a wide variety of programming
languages, can interface. Messages can be passed from one application to an-
other allowing applications that interface to SBW to communicate between
each other. The aim of SBW is to offer a framework that allows the reuse of
software written in heterogeneous programming languages. Each tool inter-
facing to SBW offers a set of methods that can be called by other applications
that interface to SBW. One of the most basic methods is the doAnalysis()
method that is offered by most SBW-compliant applications. This method is
called with a string representing a reaction network in SBML format. This
application then loads the network, which can subsequently be examined with
the analysis methods offered. In connection with SBW interfacing network
editing and design tools like JDesigner [31] and CellDesigner [20], tools for
deterministic and stochastic simulation like Jarnac [31] and Dizzy [30] as well
as analysis tools like METATOOL [27] and Bifurcation Discovery Tool [6],
the applications for the analysis of chemical organizations are integrated into
one easily expandable framework.
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10.3 Chemical Organization Theory

This section introduces formally the concept of chemical organizations and
gives some details about the algorithms that can be used for their computa-
tion. This is followed by an overview on recent applications of this concept.

10.3.1 Background

Extending ideas by Fontana and Buss [12], the theory of chemical organi-
zations [8] provides a new method to analyze complex reaction networks. It
allows one to predict sets of species that are likely to coexist over long periods
of simulation time (i.e, the potential phenotypes of the reaction network). A
reaction network 〈M,R〉 is described by a set of speciesM and a set of reac-
tions R ⊆ PM (M) × PM (M) among these species, with PM (M) denoting
the set of all multisets with elements from M. Furthermore, each reaction
network 〈M,R〉 implies an m × n stoichiometric matrix S = (si,j), where
si,j is the number of molecules of species i ∈M that is produced in reaction
j ∈ R (i.e., right-hand side minus left-hand side). An example for a reaction
network and the associated stoichiometric matrix is given in Fig. 10.1.

To be an organization, a species set has to fulfill two criteria: closure and
self-maintenance. The closure condition ensures that no new species appear
through the reactions among the species of an organization. We call a set of
species M closed if there exists no reaction r = M1 × M2 with M1 ⊆ M
and M2 * M .

The self-maintenance condition ensures that there exists a flux through the
reactions, such that no species in M will vanish over time. The dynamics of
the reaction network can be written using the ordinary differential equation

ẋ(t) = Sv(x(t)),

with x(t) being the concentration values of the species in M at time t and
v(x(t)) being the flux through the reactions as a function of x(t). The self-
maintenance condition requires the existence of a flux vector v ∈ Rn con-
taining positive entries for all reactions among the species in M and zero
entries for the remainder such that the concentration change given as Sv is
nonnegative. Formally, we call a set M self-maintaining if:

1. For every reaction (A → B) ∈ R with A ∈ PM (M), its corresponding flux
is vA→B > 0.

2. For every reaction (A → B) ∈ R with A /∈ PM (M), its corresponding flux
is vA→B = 0.

3. For every species i ∈M , its concentration change is nonnegative:
(Sv)i ≥ 0.
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Please note that this condition also includes the steady state condition
that is a commonly used constraint in the stoichiometric analysis of metabolic
networks like flux balance analysis [34] or elementary mode analysis [33].

R = {

1 a → 2 a

1 a + 1 b → 1 a + 2 b

1 d + 1 c → 1 a + 2 c

1 d → 2 d

1 a →
1 b →
1 c →

}

S =









1 0 1 0 −1 0 0
0 1 0 0 0 −1 0
0 0 1 0 0 0 −1
0 0 −1 1 0 0 0









c

d

a b2

2

2

2

Fig. 10.1 Example for a reaction network. In the upper left, the set of reactions is given.
S is the stoichiometric matrix of the system. Rows correspond to species and columns
correspond to reactions in the same order as in the list of reactions. A schematic drawing
of the reaction network is depicted in the lower half of the figure. The light gray reaction
is added to the network for the computation of the second Hasse diagram of organizations
in Fig. 10.2.

The set of organizations, together with the set inclusion ⊆, forms a par-
tially ordered set that can be visualized as a hierarchical structure in a Hasse
diagram (see Figs. 10.2a and 10.2 for the Hasse diagram of the reaction net-
work in Fig. 10.1). Linking to the dynamics, [8] has shown that all fixed-points
of the system are instances of organizations, given that the dynamics of the
system is described by a set of ordinary differential equations. This represents
one of the most important aspects of chemical organization theory, since it
allows one to infer statements about the possible qualitative states of a reac-
tion network during simulation from its stoichiometry alone. Furthermore, a
simulation of a network can be mapped to a movement in the Hasse diagram
of organizations. For a simulation using ordinary differential equations, the
floating-point concentrations need to be mapped to a set of present species.
This is done by assuming only species present that have a concentrations
above a predefined threshold Θ. This threshold could, for example, relate
to a concentration equaling one molecule of a species. An example for the
mapping of a simulation to the Hasse diagram of organizations can be found
in Figs. 10.2b and 10.2c.
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Fig. 10.2 Example for the movement in the Hasse diagram of organizations. Hasse di-
agrams of the chemical organizations of the reaction network in Fig. 10.1 a without and
b with the self-replicating reaction for species d. c Example for the relation between the
dynamics of a network and a movement in the Hasse diagram in part b. (1) At t = 0, the
network is initialized with [a] = 1 and [b] = 1 corresponding to organization 4. Due to the
kinetic laws, species b vanishes (i.e., its concentration falls below the predefined threshold
Θ), corresponding to a downward movement into organization 2. There is no organization
containing {a, c}; hence, [c] raised to 1 at t = 100 rapidly vanishes (until t = 130). (2)
At t = 130 [d], is raised to 0.1 and rapidly accumulates, since the only reaction consum-
ing d needs c as an additional educt, which is only present in very small amounts. Thus,
the system moves to organization {a, d}, since still [c] < Θ. (3) [c] is raised to 1 to stop
the accumulation of d. In consequence, the system moves upward into {a, c, d}. (4) Until
t = 180, the decay of b was faster than its production through reaction 2. The peaks of
the oscillations of [a] starting in t = 180 allow a production of b greater than its decay.
Thus, it accumulates, finally leading to an upward movement in the Hasse diagram when
[b] > Θ.

10.3.2 Algorithms for the Computation of Chemical
Organizations

Two deterministic and one heuristic algorithm for the computation of chemi-
cal organizations have been developed [5]. While the deterministic algorithms
can be applied to medium-scale networks of up to 100 reactions and molecules,
the heuristic algorithm can find a subset of all organizations in larger net-
works. Thus, even networks with up to 1000 species and reactions have been
analyzed [5].
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Constructive Approach

The constructive approach for the computation of chemical organizations
focuses on the Hasse diagram of organizations. The algorithm starts with the
smallest organization of the network. This organization contains all species
that can be generated by inflow reactions. If no inflow reaction is present, the
smallest organization corresponds to the empty set. Starting from this initial
organization, species sets containing this organization are being searched.

In order to find such organizations, the self-maintenance condition is re-
laxed to the semi-self-maintenance condition. This condition requires that if
a species of an organization is consumed by a reaction that it is also pro-
duced by another reaction of the organization. It can be shown that each
species set that fulfills the self-maintenance condition also fulfills the semi-
self-maintenance condition. Given an initial organization, the algorithm iter-
atively tries to add species to the current organization. Then the closure of
the species set is computed. Thus, for all reactions whose educts are present
in the species set, the products are added if they are not yet present. This
step is iterated until no further product can be added. Subsequently, the al-
gorithm tries to fulfill the semi-self-maintenance condition by adding species
such that producing reactions are available to species that are only consumed.
Any possible combination of such production reactions are tried. By itera-
tively using the resulting species sets as initial species sets, all species sets
fulfilling the closure and the semi-self-maintenance condition are being found.
Using linear programming, each species set is subsequently tested for the self-
maintenance condition. If this condition is fulfilled, the species set represents
an organization.

An approach to accelerate the search for organizations can be to consider
only connected organizations. In this approach, every species that is added to
the network has to take part in a reaction that uses at least one species from
the current species set. By computing only the connected organizations in
the original and a modified version of the reaction network, all organizations
can be found.

Flux Based Approach

The second approach for the computation of chemical organizations focuses
on the self-maintenance condition. All flux vectors satisfying this condition
lie in a convex polyhedral cone P in the n-dimensional flux space. This cone
is defined by its (unique) set of n-dimensional spanning vectors or extreme
rays. Thus, each flux vector representing a solution of the self-maintenance
condition can be written as a positive linear combination of the extreme rays
of P . The inequalities defining P are given by

Sv ≥ 0 and v ≥ 0.
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Various algorithms for the transformation of the representation of P by in-
equalities into the set of extreme rays have been proposed. The most promi-
nent is represented by the the double description method [13].

The extreme rays are further simplified by a transformation into the cor-
responding set of reactions (i.e., the set of nonzero indices). Since all flux
vectors satisfying the self-maintenance condition are positive linear combina-
tions of extreme rays, the algorithm subsequently searches for combinations
of the extreme rays that satisfy the closure condition. The search for such
combinations is split into three steps. In the first step, all elementary organi-
zations of the system are computed. These are organizations that fulfill two
properties. First, they are reactive organizations; that is, each species they
contain participates in at least one reaction of the organization. Second, there
exists no set of other organizations such that their union is equal to any of
the elementary organizations. Consequently, each reactive organization can
be written as the union of elementary organizations. In the second step, the
elementary organizations are combined, yielding all reactive organizations. In
a last step, it is iteratively tested for each organization whether there exist
species that can be added without changing the set of available reactions.
Thus, all organizations are found in the final step.

Heuristic

Empirical results show that the most time-consuming step in the flux-based
approach is represented by the computation of the extreme rays of the convex
polyhedral cone P representing the solution space to the self-maintenance
condition. The number of extreme rays is growing exponentially with system
size and, thus, the time needed for their computation in larger networks can
exceed practical limits.

Since the extreme rays are not necessary for the second and third steps
of the flux-based approach, a heuristic approximating the set of elementary
organizations can be used. A central observation is that since the reactions
of each organization fulfill the self-maintenance condition, also the union of
two such reaction sets fulfills the self-maintenance condition (i.e., there exists
a positive linear combination of both flux vectors satisfying condition (1) of
the self-maintenance condition). Consequently, given a set of organizations,
we just need to search for combinations of these organizations that fulfill the
closure condition to find additional organizations. If this initial set contains
all elementary organizations, the full set of organizations of the complete
system can be found.

To find such an initial set of organizations, a random walk strategy can be
used. This strategy starts with a randomly chosen species that is added to
the current species set. Then randomly selected species that are substrate or
product to at least one reaction also consuming or producing the last added
species are iteratively added. After computing the closure of the final species
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set, it is tested whether the self-maintenance condition is fulfilled. In this
case, an organization has been found.

The random walk strategy is iterated several times, yielding an initial set
of organizations. Subsequently, we can search for combinations of those orga-
nizations that fulfill the closure condition to find all organizations that can
be generated from unions of the initially found organization set. As demon-
strated in [5], this approach can be used to find all organizations in reaction
networks that contain even 1000 species if the number of organizations is
small.

10.3.3 Application of Chemical Organization Theory

Chemical Organization Theory has seen a wide array of applications. In the
field of Artificial Chemistry it has been applied to the study of chemical
programming and chemical or prebiotic evolution. Although first introduced
in the study of Artificial Chemistries, it has also seen many applications in the
study of biological networks. One of its appealing properties is the possibility
to predict the dynamic behavior of a model under simulation. This is of great
importance if the kinetics governing a reaction network are partly or totally
unknown, impossible to tackle in current solvers or too complex to analyze
their potential behavior.

Application in Chemical Computing

Using chemical reactions as a base for computation has first been proposed by
Banâtre and Métayer [1]. Appealing properties of such systems are the mas-
sive parallelism were the solution appears as an emergent global behavior [23].
These concepts have been used in GAMMA [2], CHAM [21], P-systems [28]
and MGS [14]. Such systems are difficult to analyze and, thus, Chemical
Organization Theory has been used to tackle some of the problems in their
analysis.

One example is the analysis of chemical reaction networks derived from
boolean networks. Boolean networks can be transformed into reaction net-
works using a method described in [18] and [23]. This can be done by trans-
forming boolean variables into two species each: one corresponding to the
true state of the variable and one corresponding to the false state of the
variable. System states encompassing both representations of a variable at
once can be resolved by the addition of a reaction mimicking mutual destruc-
tion (i.e., a reaction taking both reactions as educts and producing nothing).

An example of the transformation of the universal Nand operator, pre-
sented in [23], is outlined in Fig. 10.3. If the input of the boolean network
is simulated by inflow reactions with each input variable being set (i.e., ei-
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ther the species presenting the true or the false state is supplied), the
only chemical organizations of the resulting network contains a species corre-
sponding to the output of the Nand operator. Since every boolean function
can be constructed from the Nand operator, arbitrary boolean networks can
be transformed into reaction networks using this approach.

The transformation of boolean networks into reaction networks can also
be used to integrate a regulatory network modelled by a boolean formalism
into a metabolic network. Doing this in a model of the central metabolism of
Escherichia coli [18] showed that the chemical organizations of the resulting
system corresponded to the growth on several available carbon sources. Ad-
ditionally, the results of the knock-out of genes could be correctly predicted
in most cases. The knock-outs can be simulated by removing the correspond-
ing reactions from the network. The lethality of a knock-out can be assessed
through the existence of no organization containing all species that are nec-
essary for the organism to survive.

Design Principles in Chemical Computing

On a more abstract level, Chemical Organization Theory can be used as a
guideline in the construction of systems devised for chemical computation [7].
The construction of such a system can be separated into two stages. In the
first stage, only the set of species and reactions is constructed. The kinetics
governing the reactions are devised in the second step. In the first step,
Chemical Organization Theory is iteratively applied to analyze whether the
constructed model exhibits the desired behavior based on the set of chemical
organizations it contains. After this stage has been completed, kinetic laws
can be assigned to the reactions. As argued in [7], such a design principle leads
to more robust models. This is due to the fact that chemical organizations
confer a structural stability to the system that is independent from the kinetic
laws governing the reactions of the system.

A promising prospect of these design principles lies in the emerging field of
Synthetic Biology [10]. The research in this area focuses on the combination
of components like gene regulatory elements or proteins from different species
to construct systems that exhibit a qualitatively new behavior. In [29], genes
were used from several species to construct a recombinant strain of Saccha-
romyces cerivisae that could detect trace amounts of explosives. As outlined
in [11], principles from engineering can be used to facilitate such develop-
ments organized in several layers. One of these layers includes the design of
new systems. Since biological systems are often represented as reaction net-
works, a promising aspect of Chemical Organization Theory is the application
in the construction of systems in Synthetic Biology.
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Fig. 10.3 Example for the conversion of a boolean Nand function into a reaction network.
a Nand function with input variables A and B and output variable C. b Logic table of the
Nand function. For every possible input of A and B, the output in C is given. c Reaction
network modelling the Nand function. Plain symbol denotes true state of a variable and
overlined symbol the false state. Reactions 5 to 7 are used to avoid inconsistent system
states where the two species representing the state of a variable are present at the same
time. Reactions 8 and 9 are used to reset the “output” of the network. d For every possible
state of the input variables, the only organization of the system is given. It contains the
input variables as well as a form of the output variable C. e Numerical simulation of
the reaction network using mass-action kinetics. At t = 0, the network is initialized with
[A] = 1.1 and [B] = 1.0 corresponding to the input A =false and B =true. The output
of the network is a rising concentration of the true form of variable C (line with crosses).
At t = 100, another input is given by increasing the concentration of A to 1.1 and B to
1.0. Accordingly, this leads to an increase of the concentration of C, corresponding to an
output of C =false (line with squares).
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Using Chemical Organization Theory for Model-checking

The correspondence of each fixed-point of a reaction network to an organi-
zation of the same system can be used to check the consistency of reaction
networks. This property can even be extended to states of the system where
the concentration of some species grows [19]. Thus, Chemical Organization
Theory can be used to check which species of a reaction network can be
present in a long-term simulation of the system. Since the analysis does not
require an explicit knowledge of the kinetics of the reactions, this approach
also extends to networks with partly or completely unknown kinetics.

Analyzing, for example, the reaction network depicted in Fig. 10.1 without
reaction (4) and the associated Hasse diagram of organizations in Fig. 10.2a,
we find that the largest organization does not contain species c. Thus, neither
this species nor reactions using it as a substrate can persist in a long-term
simulation of the reaction network.

Study of Chemical Evolution

Chemical Organization Theory can also be used to study chemical evolution,
a process thought to have preceded the appearance of the first organism on
Earth. Matsumaru et al. [24] analyzed the evolution of a chemistry of bi-
nary strings interacting with each other. The interaction between two strings
produced new strings and, thus, could be transformed into a set of reaction
rules. In a first setting, a system without mutation events was examined.
It was found that the diversity of the system (i.e., the number of different
strings diminished over time) as did the number of chemical organizations.
Finally, only two organizations remained. In a second step, mutation events
randomly flipping a position of a small number of strings at given time-points
were introduced. In this setting, interesting effects could be observed. These
events increased the diversity both in the set of species and organizations
even though there is no trivial relation between the numbers of organizations
and species.

Events in the evolution of a reaction network can be interpreted as either
an upward, downward or sideward movement in the set of organizations of the
system. A downward movement corresponds to the disappearance of certain
organizations of a set of organizations and an upward movement corresponds
to organizations appearing anew. A sideward movement corresponds to a mix-
ture of both types of events. The sideward movement can be caused by species
appearing anew, resulting in a upward movement instantaneously followed by
a downward movement. While downward movements usually correspond to
a decrease in diversity, upward movements correspond to an increase.
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10.4 Software for the Computation of Chemical
Organizations

The three central aspects of the software for the analysis using Chemical
Organization Theory are the computation of chemical organizations, the vi-
sualization of the Hasse diagram of organizations and the integration into
existing software frameworks for the analysis of complex reaction networks.
These aspects are offered by the applications of OrgTools. The applications
can be downloaded from [17]. A schematic overview on the applications of
OrgTools and their integration into SBW is given in Fig. 10.4.

Three different tools allow the computation of the chemical organizations
of reaction networks. Each of them is dedicated to some commonly appearing
setting in which chemical organizations are being computed.

OrgAnalysis aims to offer some basic network editing capabilities and an
integration into SBW [31]. Thus, it integrates into a rich framework of com-
monly used tools for network editing, simulation and analysis.

OrgFinder, in contrast, represents a basic command line tool which offers
almost the same options for organization computation as OrgAnalysis. Thus,
is can be easily integrated into scripts and allows a simple “conversion” of
reaction networks into the corresponding set of chemical organizations.

OrgBatch is focused on the batch computation of chemical organizations.
This is especially of interest if, for example, the evolution of a reaction net-
work is simulated and the chemical organizations of different time steps of
the network should be analyzed.

The central concept in Chemical Organization Theory is represented by
the Hasse diagram of organizations. OrgView visualizes the Hasse diagram of
organizations and thus allows a structured analysis of the chemical organiza-
tions of a reaction network. Additionally, it is possible to compare different
Hasse diagrams at once and, for example, analyze the evolution of chemical
organizations in the course of the evolution of a reaction network.

All of these tools use SBML [16] as a standard for the description of reac-
tion networks. Together with an integration into SBW [31], many commonly
used tools for the design and analysis of reaction networks as described in
Section 10.2 become easily accessible.

10.4.1 OrgAnalysis

OrgAnalysis offers simple network editing capabilities integrated into an ap-
plication for organization computation. It can either be started directly or
by any other SBW-compliant application through its SBW interface. As it
integrates into the Analysis section of SBW, it can be called with a string rep-
resenting a reaction network in the SBML format. When called, for example,
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Fig. 10.4 Schematic drawing of the integration of OrgTools into SBW. Applications with
gray headings denote OrgTools. Black arrows denote reactions networks being passed and
gray arrows correspond to Hasse diagrams. First, the network is designed using, for exam-
ple, CellDesigner. Then the network can be passed through the Analysis section of SBW
(e.g., for simulation or computation of chemical organizations (OrgAnalysis)). The Hasse
diagram of organizations can then be passed to OrgView for visualization. OrgView inter-

faces to MultiLatticeViewer to control the display of several Hasse diagrams at once. If a
second Hasse diagram is loaded into OrgView, it is automatically forwarded to MultiLat-
ticeViewer.
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from a network design tool interfacing with SBW, the corresponding reaction
network is directly loaded without the prior need of saving the network to a
file.

Network Editing

Since there is a whole range of dedicated network editing software available,
OrgAnalysis only concentrates on editing capabilities that help in the analysis
of chemical organizations. Thus, it offers an analysis mechanism that identi-
fies species that are only produced or consumed. Since the self-maintenance
condition requires each species of an organization to be producible if it is
consumed (cf. Section 10.3.1), the addition of an inflow for a species that is
only consumed can lead to new organizations and, thus, to new qualitative
behavior of the model during simulation. The metabolite section of OrgAnal-
ysis allows one to add outflow or inflow reactions for species. Alternatively,
it is possible to set a species to external; that is, it is considered present at
any time and buffered by reactions outside of the system. These capabilities
are complemented by a simple text-based mechanism for editing reactions.

Computation of Chemical Organizations

All of the presented algorithms for the computation of chemical organiza-
tions (Section 10.3.2) are integrated into OrgAnalysis. While the flux-based
approach has been completely implemented in Java, the heuristic and the con-
structive approaches use the linear programming library LpSolve [3] shipped
along with OrgTools as a subroutine.

All algorithms offer a range of options to focus the computation of chem-
ical organizations onto certain aspects. Thus, the constructive algorithm by
default only computes the set of connected organizations. This option can
be of importance if the network contains many organizations that are a su-
perset to a certain reactive organization, without containing any additional
reactions [5]. Thus, they contain molecules that do not participate in any
reaction within the organization. Additionally, it is possible to calculate reg-
ulatory organizations. Following an approach outlined in [18] and [23], this
allows the integration of boolean rules governing the availability of reactions
in the network. Some reactions can, for example, be constrained to zero flux if
certain conditions formulated in a boolean formula are met (see Section 10.3.3
for details on the integration of boolean formalisms into reaction networks).
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SBW Interface

The SBW interface allows the integration of OrgAnalysis into some commonly
used network analysis tools. Additionally, it serves as interface between Org-
Analysis and OrgView to visualize the computed Hasse diagrams. Several
Hasse diagrams can be visualized in the same instance of OrgView to allow
an easier comparison of the results. Additionally, OrgAnalysis can call any
application that possesses an interface to the Analysis section of SBW.

Model-checking

As outlined in Section 10.3.3, Chemical Organization Theory can be used to
analyze the long-term behavior of reaction networks during simulation. Thus,
OrgAnalysis offers the capability to directly examine the chemical organiza-
tions of a network and identify species and reactions that cannot be present
in a long-term simulation. In some cases, only the short-time behavior is of in-
terest. Consequently, if some species or reactions were found absent from any
organization, the analysis is repeated by taking into account species whose
concentration is either initially nonzero or is set to a positive value at a given
time-point. If this second step detects species or reactions that do not appear
in any organization, they cannot have a positive concentration, respectively,
flux during simulation. This hints to possible modelling inconsistencies [19].

10.4.2 Other Applications for Organization
Computation

OrgBatch

In some applications (e.g., in the simulated evolution of a reaction network),
it becomes desirable to compute the organizations of a whole list of reaction
networks at once. In this case OrgBatch can be used. It implements the con-
structive and the flux-based approach for organization computation, includ-
ing various options that can be used with both algorithms. Additionally, it is
possible to process files by size in order to obtain results for those networks
first where computation time is expected to be shortest. For some networks,
the computation of organization does not finish in reasonable time. As dis-
cussed in [5], this might be due to network size or network topology. In such
a case, computation can be aborted either directly or after a user-specified
time-span.
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OrgFinder

In order to offer an the simplest possible mechanism for the computation
of chemical organizations, the commandline tool OrgFinder can be used. By
just providing a network file in SBML format, the organizations are computed
directly and the Hasse diagram is written into a file in the XML-based OrgML
format. Both deterministic algorithms for organization computation with the
same options as in OrgAnalysis can be used.

10.4.3 OrgView

The purpose of OrgView is the visualization of Hasse diagrams of organiza-
tions. The Hasse diagrams can be loaded either through the SBW interface
or from a file. In order to analyze a Hasse diagram, an appropriate placing
of its nodes is necessary. Thus, different placing algorithms have been imple-
mented. Multiple lattices can be loaded at once to allow an easier comparison
of the chemical organizations of different networks.

Loading Hasse Diagrams

Hasse diagrams can be loaded into OrgView in two ways. First, OrgView can
be called with a computed Hasse diagram from OrgAnalysis via the HDTools
section of the SBW menu. Second, a Hasse diagram can be loaded from a
file. This file can be either in the XML-based OrgML or in the text-based .ltc
format.

Since information on the network is necessary for the visualization of the
Hasse diagram, the corresponding network file in SBML format is additionally
required. To facilitate the access to the network file, OrgView automatically
searches for a network file obeying the following naming convention. For an
OrgML file with the name network.orgml.xml or network.ltc, the correspond-
ing network file is expected to be network.xml in the SBML format.

Placing of Hasse Diagrams

The nodes of the Hasse diagram of organizations are normally arranged with
growing size from bottom to top. To allow a more user-friendly display of lat-
tices, two placing algorithms have been implemented. Both offer fine-tuning
of options for user-oriented demands. The simulated annealing-based placer
yields the best results in positioning of nodes but has a high requirement in
computation time for large Hasse diagrams. The parallel placer offers good
results with a reduced requirement in computation time. Additionally, avail-
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able options include the display of species only in nodes, where they appear
anew; that is, each node only displays species that do not appear in any or-
ganization that are subset to this organization. Furthermore, the display of
species can be completely switched off in order to concentrate on the topology
of the Hasse diagram.

Displaying Several Hasse Diagrams at Once

A useful tool in organization analysis is the comparison of the chemical or-
ganizations of several reaction networks. Thus, OrgView allows the display
of several Hasse diagrams at once. The Hasse diagrams of all networks are
united and organizations that appear in several networks are indicated. A
so-called “Hasse diagram of Hasse diagrams” allows the analysis of the re-
lations of the organization of the networks between each other. Thus, if two
networks contain the same set of organizations, they are shown as one node
in this meta-diagram. If one network contains a subset of the organizations of
another network, the node corresponding to the first Hasse diagram lies below
the node corresponding to the second one (see Fig. 10.5 for an example).

The display of several Hasse diagrams at once is facilitated by MultiLat-
ticeViewer integrated into OrgView. It allows one to load a list of lattices
and the specification of the lattices to display. Additionally, it interfaces
with SBW. Thus, if the same instance of OrgView is called several times
with a Hasse diagram from OrgAnalysis, the Hasse diagrams are loaded into
MultiLatticeViewer. Such a functionality is useful when designing a reaction

a b 1

0

Fig. 10.5 a Integrated view of the two Hasse diagrams from Fig. 10.2. b Hasse diagram
of Hasse diagrams of Fig. 10.2. The Hasse diagrams to which each organization belongs
is indicated by a number below the set of species. Hasse diagram 0 contains the chemi-
cal organizations of the initial network from Fig. 10.1 and Hasse diagram 1 contains the
organizations after the addition of one reaction producing species d. All organizations in
Hasse diagram 0 appear in Hasse diagram 1. Hence, the Hasse diagram of Hasse diagram
consists of a node labeled “0” below the node labeled “1.”
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network and examining the changes in the set of chemical organization that
appear through addition or removal of certain reactions.

10.4.4 Organization Computation on the Web

Since one of the algorithms for organization computation and all of the pre-
sented tools have been implemented in Java, an applet that offers a similar
functionality is available from [17]. The advantage of an applet is that it can
be run without any prior installation on all systems that have a Java-capable
web browser. The applet integrates the basic functionalities of OrgAnalysis
and OrgView. Additionally, it contains an interface to a repository of cu-
rated biological networks in SBML format, the BioModels database [26] and
a list of sample networks that have been studied using chemical organization
theory. A tutorial on the use of the applet is linked on [17].

Analysis View

The analysis view allows the loading of network files by pasting a file in
SBML format or a URL linking to such a file into the editor. After loading a
network, it can be edited either directly in a text editor displaying the SBML
or a more human-readable proprietary format, or via the same tools offered in
OrgAnalysis. Thus, species and reactions can be added, deleted or modified.
Additionally, species can be specified as external (i.e., adding an inflow and
an outflow reaction). Subsequently, the chemical organizations of the reaction
network can be computed and visualized. As in OrgAnalysis, it is additionally
possible to analyze the long-term behavior of the model during simulation
(see Sections 10.3.3 and 10.4.1 for more details). Thus, species and reactions
that cannot be present in a long-term simulation of the reaction network or
even cannot have any positive concentration or flux during the simulation
can be identified.

Interface to the BioModels Database

To enlarge the list of networks available to the applet, an interface to the
BioModels database [26] has been implemented. This database contains a
whole list of curated biological models. When selecting a model, information
available from the corresponding SBML file is displayed. Double-clicking on
a model in the list loads it into the applet.
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Visualization View

Some basic functionalities of OrgView are offered by the applet: Two placing
algorithms for Hasse diagrams are available; some of the most commonly used
options for the display of Hasse diagrams can also be specified; additionally,
the visualized Hasse diagram can be exported into the .eps format.

Web-Integration

Another aspect of the applet is the possibility to directly access some of
its capabilities from any webpage. It can be called with several parameters
automatizing some of the most commonly used functions. It is, for example,
possible to directly load a reaction network from a URL and display the Hasse
diagram of organizations in one step. Details on this integration are given in
the tutorial in [17].

10.5 Conclusion

In this chapter, OrgTools, a set of applications dedicated at the analysis of
chemical reaction networks from Artificial Chemistry and Systems Biology,
has been presented. These applications integrate into SBW and, thus, come
along with a framework that covers almost any aspect in network analysis
and design. Chemical Organization Theory is a good example of how work in
Artificial Chemistry can benefit the work in Systems Biology. The applica-
tions of this concept reach from the study of boolean networks, the evolution
of the first life to the study of “real-world” networks from Systems Biology.
One of the most appealing properties of Chemical Organization Theory that
help the study of such systems is the correspondence of each fixed-point of a
reaction network to an organization. Since only information on the algebraic
structure of the network (i.e., the set of species and reactions) is needed,
even networks where information about them is unavailable can be analyzed.
Thus, the species sets in the fixed points of a reaction network can be deter-
mined without needing to solve the corresponding kinetic laws analytically.
In consequence, even the possible phenotypes of a reaction network (i.e., the
set of species that can coexist over a long period of simulation-time) can be
determined without an explicit knowledge of the kinetics of the network.

In a simplified setting, the installation of a whole system for the analy-
sis of chemical organizations might be too much of an afford. Tools for the
computation of organizations without the necessity of installation have been
developed. In consequence, it is possible to compute chemical organizations
and perform most of the analysis that has been described in this work only
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using a Java-capable web browser. Thus, many tools tailored to the specific
needs of the user are available.

Acknowledgements I thank Pietro Speroni di Fenizio and Maciej Komosinski for helpful
comments on the manuscript.
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Chapter 11

Spatially Resolved Artificial Chemistry

Harold Fellermann

Although spatial structures can play a crucial role in chemical systems and
can drastically alter the outcome of reactions, the traditional framework of
artificial chemistry is a well-stirred tank reactor with no spatial representa-
tion in mind. Advanced method development in physical chemistry has made
a class of models accessible to the realms of artificial chemistry that rep-
resent reacting molecules in a coarse-grained fashion in continuous space.
This chapter introduces the mathematical models of Brownian dynamics
(BD) and dissipative particle dynamics (DPD) for molecular motion and
reaction. It reviews calibration procedures, outlines the computational algo-
rithms, and summarizes examplary applications. Four different platforms for
BD and DPD simulations are presented that differ in their focus, features,
and complexity.

11.1 Introduction

The traditional mindset of artificial chemistry (AC) is a well-stirred tank re-
actor with possible inflow and outflow of substrates (see Dittrich et al. [8] for
a review of AC). In this framework, spatial heterogeneities within a chemi-
cal solution are usually not taken into account: The focus lies on the mere
presence, absence, or concentration of chemicals rather than their spatial
organization in the reaction vessel.

It is well known, however, that spatial structures can play a crucial role
in chemical systems and can drastically alter the outcome of reactions. Such
structures can be either imposed from the outside or they can be the re-
sult of the chemical reactions themselves. An example for imposed hetero-
geneities are upheld concentration gradients along a reaction vessel. An ex-
ample for self-organized structures are self-assembled lipid aggregates which
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play a prominent role in molecular biology and its primordial origins and are
thus of primary interest for the field of Artificial Life (AL) and AC.

The surplus of complexity that results from the presence of lipid structures
is manifold: Closed impermeable or semipermeable membranes (liposomes)
compartmentalize the reaction space thereby allowing for a variety of chemi-
cal regimes at once; proteins embedded in such membranes allow for specific
transport of substances (under the use of energy even against a concentra-
tion gradient); and lipid structures can increase the effective concentration of
hydrophobic chemicals and alter rate constants of reactions therein (milieu
effect).

Notable AL and AC models that explicitly incorporate space are the pio-
neering works by Varela and Maturana [46], the lattice molecular automaton
(LMA) by Mayer and colleagues [29, 30], Hutton’s model of self-replicating
DNA strands [24], and a model of self-reproducing abstract cells by Ono and
Ikegami [36]. The common ground of all these models is that space is treated
by means of cellular automata: Molecules or parts of molecules are mod-
eled as point particles that occupy sites on a two-dimensional (2D) or three-
dimensional (3D) lattice. Motion of these particles and reactions between
them are defined by transition rules and an (possibly stochastic) updating
algorithm is used to follow a system state through time.

Advanced method development in computational physical chemistry paired
with the dramatic increase in computational power made a new class of mod-
els accessible to the realm of AC. While being similar to the above-mentioned
cellular automata in that space is modeled explicitly, these models operate
off-lattice; that is, particle positions are not confined to sites on a grid. Instead
of a fixed set of transition rules, particle motion is determined by means of
differential equations. Among these new methods, Brownian dynamics (BD)
and dissipative particle dynamics (DPD) are the most prominent ones.

Off-lattice simulation techniques have several advantages compared to cel-
lular automata: (i) Not being constrained to fixed lattice sites and having
translational invariant interactions results in a significantly smaller set of
required transition rules, (ii) continuous particle coordinates allow one to
closely connect to mechanistic physical theories, and (iii) unconstrained mo-
tion of the particles avoids some of the artifacts found in lattice models (see,
e.g., [3]). However, the price one has to pay for these advantages is generally
a higher computational effort both in implementation and runtime.

The remainder of the chapter is organized as follows: Section 11.2 presents
the theoretical concepts of BD and DPD. First, the general principle behind
coarse-grained off-lattice simulation methods are outlined in Section 11.2.1.
This overview is followed by detailed discussions of individual aspects of
the physics (Sects. 11.2.2 through 11.2.4) and implementation (Sect. 11.2.5).
The theoretical section is concluded by a summary of recent applications
in Section 11.2.6. Section 11.3 is dedicated to the presentation of software
to perform off-lattice simulations with the possible capacity for chemical re-
actions. The software packages – ESPresSo (Sect. 11.3.1), Spartacus (Sect.
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11.3.2), Smoldyn (Sect. 11.3.3), and LAMMPS (Sect. 11.3.4) – are summa-
rized in one section each that list respective features and shows examplary
simulation setups where appropriate.

11.2 Concepts

11.2.1 Basic Principles of Coarse-Grained, Off-Lattice
Simulation Techniques

Both BD and DPD are instances of coarse-grained modeling techniques in
which the spatial structure of molecules is represented explicitly, although
not in full atomistic detail. Instead, groups of atoms within a molecule are
lumped together into point particles, usually called beads. These beads are
then connected by elastic springs to form the whole molecule. Small molecules
such as water are even considered to be lumped together into a single bead by
groups of 3 to 5 molecules (see Fig. 11.2.1). The number of solvent molecules
per bead is referred to as the coarse-graining parameter. While it is possible
to relate coarse-grained representations to physical molecules [20], qualitative
studies often content themselves with simply specifying functional groups like
hydrophobic or charged parts of a molecule without a particular reactant in
mind.

Concerning the treatment of solvent molecules, one can either explicitly
represent them by beads or implicitly account for their effect on the interac-
tions of other beads. If one is not interested in the dynamics of the solvent
(e.g., hydrodynamic modes of the system), its implicit treatment can save
significant computational effort, since most of the calculations are typically
spent on solvent-solvent interactions.

H
O

HHO
H

H

OH CH2

CH2

CH2

CH2 CH2

CH2 CH2 CH3

CH2
O

−

C

O

Fig. 11.1 Example coarse-grained representation of decanoic acid (a fatty acid surfac-
tant) and water. The molecules are modeled by three types of beads: one representing
the hydrophobic tail of the surfactant (3 hydrocarbon groups), one representing the hy-
drophilic carboxyle group, and one representing water molecules of approximately the same
molecular volume.

An off-lattice simulation consists of a set of N beads in a 2D or 3D box.
In explicit simulations, the space is considered to be densely filled, whereas
in implicit simulations, the bead density will depend on the concentration
of solved molecules. Since only a finite volume is simulated, boundary con-
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ditions need to be defined to determine the outcome of collisions with the
wall. Most common are periodic boundary conditions, but closed, reflecting
boundaries or a combination of the two can also be found in the literature.
Each bead has a position, velocity, and a type (for an example configuration,
see Fig. 11.2). The type of the bead determines its mass and its interactions
with other beads. The motion of the beads follows Newton’s Second Law of
Motion according to which a particle accelerates proportional to the force
that acts on it and inversely proportional to its mass. Written as an ordinary
differential equation (ODE) in bead position and velocity, the law reads:

.
ri(t) = vi(t),

.
vi(t) =

1

mi

Fi(t),
(11.1)

where ri is the position, vi is the velocity, mi is the mass of bead i, and dots
denote time derivatives (instantaneous changes in time). Fi, the force that
acts on bead i, collects all bead interactions.

Fig. 11.2 Example configuration of a coarse-grained simulation: The image shows a
bilayer membrane composed of HTT trimers (green-yellow surfactants) in water (not
shown).

If all atoms were simulated individually (as is done in fully atomistic Molec-
ular Dynamics (MD)), the force could be expressed as the negative gradient
of some potential φi such that Eq. 11.1 constantly transforms kinetic into
potential energy and vice versa. However, when individual atoms are lumped
together into coarse-grained beads, energy is also exchanged with the inter-
nal energy of these beads. Instead of explicitly accounting for the internal
energy of each bead, coarse-grained methods employ a Langevin formalism
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to express the energy exchange with internal degrees of freedom: The force
Fi is expressed by three additive components – a conservative one (FC

i ), a
dissipative one (FD

i ), and a random one (FR
i ):

Fi = FC
i + FD

i + FR
i . (11.2)

The dissipative force models friction by which kinetic energy is dissipated
into successively less coherent motion, thereby removing energy from the
explicitly represented mesoscale into the assumed underlying microscale (in-
ternal energy of the beads). This energy flow is counteracted by a random
force that models the effect of microscopic thermal noise on the mesoscale
(Brownian motion). As the name suggests, FR

i involves random variables,
turning Eq. 11.1 into a stochastic differential equation, such that the change
in system energy can be captured by an Uhlenbeck-Ornstein process. Com-
bined, the dissipative and random forces act as a thermostat to regulate the
temperature (i.e., the kinetic energy of the explicitly modeled mesoscale).

Several proposals have been made to combine off-lattice simulations with
chemical reaction kinetics. To enable this, a set of chemical reaction rules is
added to the system description that defines allowed transitions between bead
types. To account for these reactions, the numerical integrator is intertwined
with a stochastic process that applies bead transformations to the reaction
vessel: Within each time step, first the positions and velocities of all beads
are updated, and, second, reaction rules are applied subsequently to all beads
in the system.

To summarize, the coarse-grained models described in this chapter draw
on a set of (possibly interconnected) beads whose motion is governed by
bead-bead interactions expressed by potential functions and by the action of
a thermostat. Additionally, transition rules between beads can be defined to
describe chemical reactions. The following sections will detail each of these
aspects.

A simple example of the overall setup is given in Fellermann and Solé [14]
where the system consists of beads of three molecules: water, fatty acid sur-
factants, and oily fatty acid esters. Water is represented explicitly by beads
of type W, esters are represented as dimers of two interconnected T beads,
and surfactants are modeled as a T bead with a surfactant head H bead
attached to it. The potential interactions are chosen such that the model
qualitatively reproduces the phases of these binary and ternary systems. A
catalytic reaction is defined by which ester molecules are transformed into
surfactant molecules in the vicinity of other surfactant molecules:

TT + HT −→ 2TT. (11.3)

This reaction models the hydrolysis of the ester bond under the assumption
that the produced alcohol is small enough to be neglected.

In this setup, the ester forms oil droplets in water which are coated by
surfactants. The size distribution of these droplets is determined by the wa-
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ter/oil/surfactant ratio. The relatively slow reaction constantly transforms
ester into new surfactants, thereby changing the oil/surfactant ratio of the
system. The change in concentrations is accompanied by a shift in surface-to-
volume ratio of the droplets which respond by a shape change from spherical
to elongated, rod-like aggregates. Once a critical threshold ratio is reached,
the oil core is not sufficiently large to stabilize the aggregate which divides
into two spherical aggregates. When ester is supplied constantly, the growth
and division process continues and leads to exponential growth of the aggre-
gates.

11.2.2 Interaction Potentials

In the picture of Newtonian mechanics, each bead has a potential energy
that results from its interactions with other beads. This energy corresponds,
for example, to pressure in thermally fluctuating fluids, but could also have
other (e.g., electrostatic origins). Alternatively, one might say that the bead
“feels” the potential energy of its neighborhood and responds to it by moving
away from high-energy states – known as the principle of least constraints.

As commonly done in particle-based simulations, BD and DPD assume
that the potential of a bead i can be expressed as the sum of pairwise inter-
actions with neighboring beads:

Vi =
∑

j 6=i

Vij(ri, rj).

Since the space is assumed to be isotropic, the potential between particles i
and j can only depend on their distance rather than their absolute position.
Using

Vij(ri, rj) = φij(rij),

where rij = |ri − rj |, the conservative force in Eq. 11.2 becomes

FC
i = −∇

N
∑

i6=j

φij(rij). (11.4)

For further computational convenience, φij is usually truncated after a certain
distance rc, such that φij(r) = 0 for r ≥ rc.

It has to be pointed out that the potential functions used in coarse-grained
simulation techniques must not be taken for mere mechanical energies as in
atomistic (MD) simulations. Instead, the potential functions used in coarse-
grained simulations are rather to be understood as a free energy that captures
systemic properties of the system such as heat, pressure, pH, or the concen-
tration of cosolvents [37]. This is particularly important for the study of
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entropy-driven processes underlying lipid systems, since entropy is included
in the free energy. Although there is no closed theory to derive the func-
tional form of the potential energy employed in coarse-grained simulations
from first principles, it is still possible to relate the potential functions to
structure properties of the system under consideration. For example, there is
a one-to-one mapping between the potential function and the radial distri-
bution function which expresses the average probability for two beads to be
separated by a certain distance. Measuring the radial distribution function
of detailed atomistic MD simulations allows one to construct energy func-
tions of a coarse-grained representation thereof (see Lyubartsev et al. [27]
and references therein). A further difficulty arises from the fact that the
dynamics in coarse-grained simulations should represent a time average of
the assumed underlying atomistic motion, since the fast degrees of motion,
like most vibrational modes of covalent bonds, are meant to be removed in
the coarse-graining process and instead comprised in the noise term of the
thermostat.

In general, the spatial and temporal averaging of the coarse-graining pro-
cess motivates the use of much smoother interaction potentials than the ones
commonly applied in atomistic MD simulations. In particular, they typically
do not possess a singularity at r = 0, meaning that two beads are allowed
to sit right on top of each other (although under an energy “penalty” that
may render this event practically impossible). This can be justified by the
observation that (i) the bead position merely identifies the center of mass of
a collection of molecules and (ii) even if the bead represents a single molecule
or part thereof, it denotes the average position of the molecule during some
short time interval; for both of these mean positions, it is perfectly legal for
two positions to coincide. Whichever justification one might assent to, the
resulting soft core potential allows one to run the numerical integrator of
Eq. 11.1 with a significantly wider time step compared to functional forms
that include a singularity.

Given these difficulties, many studies (that treat the solvent explicitly)
content themselves with simple potentials of the form

φij(r) =

{

1
2
aij

(

1− r
rc

)2

if r < rc

0 otherwise,
(11.5)

where aij > 0 denotes the mutual repulsion strength between two beads of
type i and j. Note that there is no theoretical foundation for this function
other than being the most simple confined function with continuous deriva-
tive. It has to be pointed out, however, that Eq. 11.5 relies on the explicit
treatment of solvent, since the absence of an energy minimum would not
allow for the formation of structures.

Having fixed the functional form of the potential, the matrix (aij) is the
premier place for model calibration. A standard calibration procedure to
mesoscopic observables has been suggested by Groot and Rabone [20, 21, 28]
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(see, however, Füchslin et al. for issues on its scaling behavior [15]). Generally,
the procedure starts by matching the diagonal interaction parameters aii to
the compressibility of the physical fluid. The off-diagonal elements aij (i 6= j)
express the mutual solubility of substances and are calibrated in a later step
to parameters obtained from mixing theories, in particular the Flory-Huggins
theory of polymer mixing where mutual interaction parameters are derived
from free-energy considerations in a lattice model of polymers. For specific
systems, other mesoscopic observables have been suggested for calibration
(e.g., [9, 13, 18, 28]).

Additional terms can be added to the “ground” potential if needed. Most
prominently, mechanical potentials between bonded beads have been use to
model extended molecules. Venturoli and Smit [48] were the first to introduce
harmonic spring potentials into DPD simulations, where bonded beads feel
the additional potential

φS
ij = kS (rij − rS)

2
,

with rS being the optimal bond distance and kS the spring constant. Shill-
cock and Lipowsky [43] have added a three-body angular potential to model
stiffness in extended polymer chains. Higher-order potentials used in MD sim-
ulations (e.g., torsion potentials) are barely needed in coarse-grained simula-
tions due to the simplistic representation of molecules. Other notable add-ons
are Coulomb forces for electrostatic interactions [19], gravity [50], and shear
forces [6, 44].

11.2.3 Thermostats

As pointed out in Section 11.2.1, thermostats in coarse-grained simulations
are an integral part of the system description: Whereas MD simulations utilize
thermostats merely to keep the system at constant temperature and generally
try to minimize their impact on simulation results, coarse-grained simulations
interpret the energy exchange with a heat bath as physically meaningful. As
a consequence, coarse-grained models employ entirely different thermostats
than the ones found in MD simulations.

The theoretical foundation of thermostats for coarse-grained simulations
is the Langevin formalism for diffusive motion [16]: a spherical particle in a
steady medium will experience a viscous drag proportional to its velocity and
stochastic kicks from other particles randomly hitting it. In the presence of
a possible external force F, the equation of motion reads

.
v(t) =

1

m
(F(t)− γv(t) + ξ(t)) , (11.6)
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where γ > 0 is a friction coefficient and ξ is an uncorrelated random vector
with zero mean and finite variance:

〈

ξi(t), ξj(t
′)

〉

= 2σδijδ(t − t′). In the

context of Eq. 11.2, the first term of the sum represents FC, the second one
represents FD, and the last one represents FR. The equilibrium temperature
is given by γ and σ and resolves to σ/γ. Off-lattice models that employ this
thermostat are commonly referred to as Brownian dynamics (BD). They are
particularly suited for implicit simulations, since the effect of the solvent is
already accounted for in the thermostat. It has to be emphasized, however,
that Eq. 11.6 models motion in a steady medium, as the friction is propor-
tional to the absolute velocity of the bead, rather than the velocity relative to
the surrounding medium. Thus, the dynamics of the system is purely diffusive
and neglects hydrodynamic modes.

To incorporate hydrodynamics into coarse-grained simulations, Hooger-
brugge and Koelman introduced the method of dissipative particle dynamics
(DPD) [22] whose thermostat has become increasingly popular. The DPD
thermostat decomposes all forces into pairwise contributions:

Fi =
∑

j 6=i

Fij =
∑

j 6=i

FC
ij + FD

ij + FR
ij , (11.7)

which are required to be central,

Fij = −Fji and Fij ∝ r̂ij , (11.8)

where r̂ij is the unit vector pointing from bead j to i. The centrality asserts
that the linear and angular momentum of the system is preserved, therefore
allowing one to analyze hydrodynamic flows. In fact, it can be shown that the
DPD thermostat implements a numerical solver for the Navier-Stokes equa-
tions [11]. With these requirements, the only (local and memory-free) way [12]
to achieve an Uhlenbeck-Ornstein process whose equilibrium distribution is
a Gibbs ensemble is to set

FD
ij = − σ2

2kbT
ω2(rij) (vij · r̂ij) r̂ij ,

FR
ij = σω(rij)ζij r̂ij ,

where rij is the Euclidean distance between beads i and j, and vij is the
relative velocity between bead j and i. ζij is an uncorrelated random variable
with zero mean, Gaussian statistics, and a variance of 1/∆t for the numerical
time step ∆t. In order to preserve linear momentum, it has to hold that
ζij = ζji. σ is the friction coefficient of the medium (related to its Reynolds
number), kbT defines the energy unit where T denotes the temperature in
Kelvin, and kb is the Boltzmann constant. ω is a dimensionless weighing
function which is not specified by the general formalism. Most studies employ
a weight function similar to the soft core interaction potential:
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ω =

{
(

1− r
rc

)2

if r < rc

0 otherwise.

While it is known that ω has impact on the overall system dynamics, like
viscosity [10] and temperature conservation [39], no proposal has yet been
made on how to derive the weight function from first principles.

The scalar product in Eq. 11.9 ensures that FD is maximal when two
beads approach each other and zero when the particles move parallel (see
Fig. 11.3). This leads to the alignment and collaborative motion of nearby
beads. As a result, the pairwise coupling of the dissipative and random forces
in DPD results in faster dynamics than the ones observed in BD simulations.
However, the accelerated dynamics of the DPD thermostat are actually an
artifact of the method: In DPD, mass diffusion is too high when compared to
travel of momentum. The Schmidt number (the ratio of kinematic viscosity
vs. self-diffusion coefficient) is about three orders of magnitude lower in the
DPD simulation of water than in the real system [10, 21].

ri

rjvi

vj

r̂ij

vij

(vij · r̂ij)r̂ij

Fig. 11.3 Schematic of the dissipative force (friction) in DPD. The force acts central on
the line given by the bead positions ri and rj (parallel to rij). Its magnitude depends on
the relative velocity vij : Friction is maximal when beads approach each other directly and
zero when they move parallel.

11.2.4 Chemical Reactions

Probably the first approach to extend spatially resolved reactor vessels with
chemical reactions was the work by Ono [36], who incorporated a stochastic
process for reactions into a BD simulation. This approach has later been
put on a more rigorous theoretical foundation (the Smoluchowski model
for diffusion-limited reactions) by Andrews and Bray [1] and Monine and
Haugh [31]. Similar approaches are the work of Buchanan et al. [5, 17], Feller-
mann et al. [13, 14], and Liu et al. [26], who extended DPD by similar means
to incorporate reactions.
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Most chemical reactions can be classified as unimolecular or bimolecular
reactions – depending on the number of molecules that participate as reac-
tants. Higher-order reactions barely occur in nature due to the unlikelihood
of three molecules hitting each other concurrently. Following this formalism,
inflow of chemicals can be regarded as a zeroth-order reaction that has no
educt, whereas outflow of chemicals can be regarded as a first-order reac-
tion that has no product. Reactions can be further classified as syntheses or
analyses, depending on whether covalent bonds are formed or broken by the
reaction. The formation and braking of covalent bonds can result in a change
of physico-chemical properties of the molecular species. In the coarse-grained
representation of BD and DPD, this is expressed as a type change of the
reacting beads. Depending on the coarse-graining level and representation of
molecules, bond braking and formation might even happen completely be-
low the resolution of the model such that chemical reactions are mere type
transformations that do not affect explicitly modeled covalent bonds. In the
formalism presented here, chemical reactions only occur between beads that
represent a single molecule or part of a molecule – no attempt has been made
yet to define chemical reactions between beads that group together several
molecules. Examples of possibles reactions are

k−→ X inflow (zeroth-order)

A
k−→ outflow (first-order)

A
k−→ X molecular reconfiguration (first-order)

AB
k−→ X + Y unimolecular analysis (first-order)

A + B
k−→ XY bimolecular synthesis (second-order)

Here, A, B, X , and Y denote beads that may be part of an extended molecule.
Concatenated symbols refer to bonded beads. For simplicity, all reactions are
written as irreversible reactions. Reversible reactions can be represented as
pairs of irreversible reactions, where each member represents one of the two
directions.

Evidently, bimolecular reactions occur only when the two reagents are
in close vicinity. For diffusion-limited reactions (i.e., in the absence of an
activation energy barrier) this distance is given by the sum of the molecular
radii of the two reagents. If there is an activation barrier, one possibility is
to define an effective binding radius smaller than the sum of molecular radii.
The size of this binding radius can be related to the effective reaction rate
by the Smoluchowski equation

rb =
k

4π(DA + DB)
, (11.9)

where DA and DB are the diffusion coefficients of the two reagents and k is
the effective (measured) reaction rate [1]. Following Collins and Kimball [7],
one can alternatively define a probability for reactions to occur within the
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unaltered reaction radius. Likewise, unimolecular reactions either occur with
a certain probability

1− e−k∆t,

or – if explicit bond breaking is involved in the reaction – once the reacting
beads separate by more than a certain unbinding radius ru > rb. ru can be
related to rb by the equation

ru =
rb

1− k/kr

, (11.10)

where kr is the rate of geminate recombination [1]. When a pair of bond
forming and breaking reactions is used to model a reversible reaction, care
must be taken that the reactants are separated by more than rb after bond
breaking. Note that Eqs. 11.9 and 11.10 are only valid for numerical time
steps ∆t smaller than the root mean square displacement of the reacting
particles. Andrews and Bray [1] give corrected equations for larger simula-
tion time steps, as well as a comparison of the deterministic and stochastic
method. Zeroth-order reactions do not depend on any educt concentration,
and their occurrence is simply determined by comparing the reaction rate to
a Poisson distributed random number with average k∆t for the simulation
time step ∆t.

Ono [35] and Fellermann et al. [13, 14] use an extended variant of the
Collins and Kimball scheme that accounts for the presence of nearby cata-
lysts. Other than modeling the exact reaction mechanism by which the cata-
lyst participates in the reaction scheme, it is assumed that the mere presence
of catalytic molecules enhances the effective reaction rate. The equation to
calculate this effective rate is

k = ki +
∑

C

kC

(

1− r

rcut

)

, (11.11)

where r is the distance between the catalyst and any of the reactants and the
sum runs over all catalysts C with r < rcut.

All of the stochastic approaches assume that reactions occur indepen-
dently, which is violated when a single bead might react with one of several
nearby reagents. A proper mathematical framework to deal with this stochas-
tic independence would be provided by the Master equation [16]. However,
its computation is too expensive to be redone in each updating step, which
is why current studies commonly ignore the problem of interdependence and
merely try to avoid it by using small reaction and catalyst rates and con-
stantly reshuffling the list of reactions and reagents to avoid biases.

Having defined the set of possible reaction rules, the integrator for the
equations of motion is intertwined with a stochastic process such that in
each time step, particle motion and chemical reactions are taken care of
sequentially.
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Further method development needs to be done in connecting the potential,
kinetic, and chemical energy reservoirs: The change in internal (chemical)
energy associated with bond formation and breaking and change of potential
energy due to bead type transformation would need to be accounted for in a
velocity change of the reacting beads leading to local heating. This would, for
example, allow one to capture effects that rely on activation energy barriers
(a first step in this direction has been taken by Yingling and coworkers [54]).

11.2.5 Updating Schemes and Spatial Organization

At the heart of all BD and DPD simulators lies an integrator for the stochastic
differential equation (11.1). Owing to the special form of the Newtonian dy-
namics, an inexpensive high-order integrator can be derived from two Taylor
expansions:

ri(t + ∆t) = ri(t) +
.
ri(t)∆t +

1

2

..
ri(t)∆t2 +

1

6

...
r i(t)∆t3 +O(∆t4),

ri(t−∆t) = ri(t)−
.
ri(t)∆t +

1

2

..
ri(t)∆t2 − 1

6

...
r i(t)∆t3 +O(∆t4).

Adding these two equations and substituting
..
ri(t) = ai(t) leads to a very

simple forth-order integrator known as Verlet integrator [49]:

ri(t + ∆t) = 2ri(t)− ri(t−∆t) + ai(t)∆t2 +O(∆t4).

Verlet-based integrators outperform standard procedures like Runge-Kutta
not only because of their computational inexpensiveness but also because
they preserve phase space volume in conservative systems, which reduces
artifacts such as gradual temperature increase.

If velocities are to be known explicitly (e.g., to compute the kinetic energy
of the system) the substitution vi(t) = (ri(t)− ri(t−∆t)) /∆t + 1

2
ai(t)∆t +

O(∆t2) leads to a variant called the Velocity Verlet algorithm:

ri(t + ∆t) = ri(t) + vi(t)∆t +
1

2
ai(t)∆t2, (11.12)

vi(t + ∆t) = vi(t) +
1

2
(ai(t) + ai(t + ∆t))∆t, (11.13)

which is fourth order in positions ri and second order in velocities vi. This is
a commonly used integrator for BD simulations. There is a subtlety, however,
when accelerations ai do not only depend on positions but also on velocities,
as is the case for FD in the DPD equations. Equation 11.13 then becomes
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vi(t + ∆t) = vi(t) +
1

2mi

(Fi(r(t),v(t)) + Fi(r(t + ∆t),v(t + ∆t))) ,

where the term vi(t+∆t) appears in both sides of the equation. To overcome
this problem, Groot and Warren [21] have suggested a predictor-corrector-like
integrator which has become the de facto standard in DPD simulations. In
their integrator, the positional update is unchanged (Eq. 11.12). To compute
the velocities, the algorithm first makes a prediction (Eq. 11.14) followed by
a correction based on the force field of the predicted state (Eq. 11.15):

ṽi(t + ∆t) = vi(t) +
λ

mi

Fi(r(t),v(t)) λ ∈ [0, 1], (11.14)

vi(t + ∆t) = vi(t)

+
1

2mi

(Fi(r(t),v(t)) + Fi(r(t + ∆t), ṽ(t + ∆t))) .
(11.15)

If Fi does not depend on v, the original Velocity Verlet integrator is recovered
for λ = 0.5. Due to the stochastic nature of the force field, the order of the
integrator is unclear. There is no imperative on how λ should optimally be
chosen. Reported values differ between λ = 0.5 [34] and λ = 0.65 [21]. Thus,
λ clearly depends on other systems parameters and needs to be fine-tuned to
the system under consideration.

Subsequent studies [4, 34, 47] have identified artifacts of the Verlet-based
algorithms, predominantly in the radial distribution function of the sys-
tem [47]. Building upon work by Pagonabarraga et al. [38], Vattulainen et
al. [47] have proposed a more elaborate so-called self-consistent integrator
in which the system temperature is constantly measured and compared to
its target value. The deviance is used to fine-tune the dissipation rate of the
system. In general, the performance of DPD integrators is still an active area
of research due to the stochastic nature of the interactions.

In addition to well-suited integrators, simulators for coarse-grained sim-
ulations need to provide efficient means to access neighbors of beads. Fast
neighbor look-up is essential for the computation of FC in the case of BD
(Eq. 11.4) and FC, FD, and FR in the case of DPD (Eq. 11.7). If all particles
were naively held in a simple list or array, look-up time would scale quadratic
with the number of particles. By taking advantage of the limited cutoff range
rc for all forces, careful bead management can reduce the number of look-
ups to scale linear with the number of beads. To achieve this, an algorithm
called domain decomposition or linked lists is commonly used: The space is
partitioned in cells with a side length of at least the cutoff radius rc. Each
cell holds a list of particles it contains, as well as information about neigh-
boring cells (dashed grid in Fig. 11.4). For each bead, neighbor look-up can
now be restricted to the 3×3 -Moore neighborhood of the cell that holds the
current bead (solid square in Fig. 11.4). If bead interactions are symmetric
(e.g., due to Eqs. 11.4 and 11.8), the number of cells to check can even be
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reduced to a half. With this management, an estimated 62.8% of all tested
pairs will be within the cutoff radius (solid circle in Fig. 11.4) and 29.9%
in three dimensions. It should be emphasized that the grid representation of
the space is only an algorithmic organization principle and does not confine
the actual position of beads within each cell. Implementation can either use
one linked list for all beads or separate lists for each bead type, which can
improve the performance when bead interactions are highly type-specific (as
in case of chemical reactions).

Fig. 11.4 Internal partitioning of a 2D space (dashed grid) filled with beads (black dots).
The size of the cells is at least the cutoff radius of all involved interactions (radius of the
solid circle). To find all interaction partners for a given bead (white dot), it is sufficient to
consider only beads within a 3×3 -Moore neighborhood around the cell that contains the
bead (solid square). Note that the grid representation is only internal and does not restrict
the actual position of beads within each cell.

11.2.6 Applications

Pure BD and DPD models that do not incorporate chemical reactions
have been used extensively in areas as diverse as rheology, material sci-
ences, soft matter studies, and molecular biology. Concerning the latter,
the study of lipid strctures such as membranes and vesicles, their self-
assembly, fission, fusion, rapture, and dissolution has arrested particular at-
tention [20, 32, 33, 48, 52, 53]. The recent incorporation of chemical reactions
into these models has initiated several simulations in the area of artificial
chemistry and artificial life.

Gazzola et al. [17] have used reactive DPD to study the catalytic effect of
self-assembled lipid structures due to effective upconcentration of hydropho-
bic reagents. Simulating abstract chemistries, they observed that the affinity
of reagents to reside either in the solvent or in the interior of self-assembled
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lipid structures (micelles) alters the effective reaction networks that emerge
in the reaction vessel.

Ono [35] and Fellermann and Solé [14] have studied the self-assembly,
growth, and replication of minimal life-like entities: lipid aggregates equipped
with a minimal artificial metabolism. Ono presents 2D BD simulations of
vesicular structures driven by a catalytic turnover of precursor molecules;
Fellermann and Solé performed 3D DPD simulations of surfactant-coated
oil droplets that replicate by means of an auto-catalytic nutrient turnover
(described in Sect. 11.2.1).

Complementary to the above work are qualitative simulations on non-
enzymatic replication of short genetic polymer sequences. Bedau et al. [2]
have analyzed the ability of complementary polymer strands to spontaneously
replicate in solution, whereas Fellermann et al. [13] have studied a similar pro-
cess at the oil-water interface of the aforementioned lipid aggregates. Taken
together, these works present integrated simulations of the spontaneous emer-
gence of artificial life-like aggregates, or “protocells” [42].

11.3 Available Software and Tools

Several BD and DPD simulators exist both in commercial as well as open-
source applications. The following list is not meant to be complete, but tries
to identify those programs that stand out for maturity, extensibility, or inter-
operability. The programs are similar in that they use configuration files to
set up a simulation. The configuration file is sent to a non-interactive simula-
tor that calculates the system trajectory and writes out the result of various
analyzers.

11.3.1 ESPresSo

ESPResSo is a fairly developed and feature-rich open source simulation pack-
age for soft matter research (BD and DPD among others) developed by Lim-
bach et al. [25] and licensed under the GNU General Publishing License
(GPL). The software is available for Windows, Unix/Linux, and Mac OS.
ESPresSo is written in C and can operate in parallel mode via MPI and can
be controlled via Tcl scripts [45]. Online visualization is delegated to VMD,
an independent open-source software for molecular visualization [23]. Out of
the box, ESPresSo does not include chemical reactions.

In ESPresSo, simulations are set up via configuration scripts that define
system size, boundary conditions, bead types, interactions, an initial condi-
tion, analyzers, and so on. These configuration files are actual Tcl scripts
that offer powerful means for arbitrarily complex simulation setups. An ex-



11 Spatially Resolved Artificial Chemistry 359

ample script to set up and run a simulation is shown in Fig. 11.5. The sys-
tem consists of 1780 W beads (water), 600 TT dimers (oil), and 10 HT

dimers (surfactants) in a box of size 103. Bead interaction parameters are
aW,W = 25, aW,H = 15, aW,T = 80, aH,H = 35, aH,T = 80, and aT,T = 15.
The DPD thermostat is chosen with a temperature of 1 and friction param-
eter of 4.5. Integration step size and number of steps is set to 0.01 and 1000,
respectively, and the system is finally integrated. Various analyzers could
further be incorporated.

The package offers support for various boundary conditions, a variety of
potentials for bonded and non-bonded short-range interactions, electrostatics
(Coulomb forces), rigid bonds, as well as bond-angle and dihedral interac-
tions. ESPresSo also provides tabulated interactions to incorporate interac-
tion potentials measured, for example from more detailed interactions (see
Sect. 11.2.2).

ESPresSo comes with a variety of predefined analyzers for common ob-
servables. Among the most common ones are the following:

• statistical physics

– energies (total, kinetic, Coulomb, non-bonded, bonded)
– pressure (total, ideal, Coulomb, non-bonded, bonded)
– stress tensor (total, ideal, Coulomb, non-bonded, bonded)
– mean square displacement

• distribution and correlation functions

– radial distribution function
– structure factor
– van Hove autocorrelation function
– aggregate size distribution
– free-volume distribution

• analyzers for polymer chains

– end-to-end distance
– radius of gyration

In addition, custom analyzers can be defined with ease. Analyzers are or-
dinary functions that can be used anywhere in the configuration script.
ESPresSo provides a few built-in commands for statistics (averaging, errors,
etc.) and plotting, the latter by delegation to gnuplot [51].

Owing to the flexibility of the Tcl-based design, it is easy to incorporate
chemical reactions into ESPreSso. Figure 11.6 shows an exemplary algorithm
that implements the reaction (11.3) based on a simplified version of Eq. 11.11.
The implementation is only meant for the purpose of illustration: For a pro-
ductive setup, the algorithm should be written in a compilable computer
language and wrapped into Tcl.
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# System parameters

set box_l 10. ;# box size

set n_W 1780 ;# number of W beads

set n_TT 600 ;# number of TT dimers

set n_HT 10 ;# number of HT dimers

set n_total 3000 ;# total number of particles

# Integration parameters

set cut 1.0 ;# cut off range r_c

set int_steps 100 ;# micro-integration steps (between analysis)

set int_n_times 1000 ;# macro-integration steps

setmd time_step 0.01

setmd skin 0.4

setmd box_l $box_l $box_l $box_l

thermostat dpd 1.0 4.5 $cut

# Interaction setup

inter 0 harmonic 100 0.75

inter 0 0 soft-sphere 25 2 $cut 0

inter 0 1 soft-sphere 80 2 $cut 0

inter 0 2 soft-sphere 15 2 $cut 0

inter 1 1 soft-sphere 15 2 $cut 0

inter 1 2 soft-sphere 80 2 $cut 0

inter 2 2 soft-sphere 35 2 $cut 0

# Particle setup

# water beads

for {set i 0} { $i < $n_W } {incr i} {

set posx [expr $box_l*[t_random]]

set posy [expr $box_l*[t_random]]

set posz [expr $box_l*[t_random]]

part $i pos $posx $posy $posz type 0

}

# TT dimers

for {} { $i < [expr $n_W+$n_TT] } {incr i 2} {

set posx [expr $box_l*[t_random]]

set posy [expr $box_l*[t_random]]

set posz [expr $box_l*[t_random]]

part $i pos $posx $posy $posz type 1

part [expr $i+1] pos $posx $posy [expr $posz+0.8] type 1 bond 0 $i

part $i bond 0 [expr $i+1]

}

# HT dimers

for {} { $i < [expr $n_W+$n_TT+$n_HT] } {incr i 2} {

set posx [expr $box_l*[t_random]]

set posy [expr $box_l*[t_random]]

set posz [expr $box_l*[t_random]]

part $i pos $posx $posy $posz type 1

part [expr $i+1] pos $posx $posy [expr $posz+0.8] type 2 bond 0 $i

part $i bond 0 [expr $i+1]

}

# Integration

set j 0

for {set i 0} { $i < $int_n_times } { incr i} {

integrate $int_steps

# [...] do some analysis here

}

Fig. 11.5 Example Tcl script to control ESPresSo for the example system of Sec-
tion 11.2.1. See text the for explanations.
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proc react {reaction}

{

# reaction is { educt product rate catalyst cat_rate cat_range}

# educt and product are list of 2 elements, specifying bead types

set educt [lindex $reaction 0]

set product [lindex $reaction 1]

set rate [lindex $reaction 2]

set catalyst [lindex $reaction 3]

set cat_rate [lindex $reaction 4]

set cat_range [lindex $reaction 5]

foreach {part_a} [part]

{

# iterate over all possible educts

set a_id [lindex $part_a 0]

set a_type [lindex $part_a 6]

set a_bonds [lindex $part_a 33]

if { $a_type != [lindex $educt 0] } { continue }

set b_id [lindex [lindex $a_bonds 0] 1]

set b_type [part $b_id print type]

if { "$a_type $b_type" != $educt } { continue }

# compute effective reaction rate

set k $rate

foreach {cat} [analyze nbhood $a_id $cat_range]

{

set c_type [part $cat print type]

if { $c_type != $catalyst } { continue }

set k [expr $k+$cat_rate]

}

# exchange bead types if a reaction occurs

if { [expr $k*[setmd time_step]] > [t_random] }

{

part $a_id type [lindex $product 0]

part $b_id type [lindex $product 1]

continue

}

}

}

# [...]

# This part replaces ‘integrate $int_steps’ from the example in Fig. 11.5

for {set t 0} { $t < $int_steps } { incr t}

{

integrate 1

react "{1 1} {1 2} 0 2 0.5 $cut"

}

# [...]

Fig. 11.6 Algorithm for reconfiguration reactions in ESPresSo that implements a simpli-
fied version of Eq. 11.11 (not implementing the linear decrease with catalyst distance). The
function react is called with 6 arguments: the reactant, product, spontaneous reaction
rate, catalyst bead type, the catalyst’s rate enhancement, and range. Reactant and product
are assumed to be Tcl lists of 2 elements. Together with the system setup in Fig. 11.5, this
implements the example given in Section 11.2.1.
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11.3.2 Spartacus

Spartacus is an experimental open source framework for BD and DPD simula-
tions developed by the author and licensed under the GNU GPL. The software
is available for Mac Os, Linux. Spartacus is similar in function to EsPresSo,
but focuses on chemistry rather than physics. It incorporates all algorithms
for chemical reactions that have been described in Section 11.2.4. The frame-
work consists of a core simulation engine written in C and Python [41] and
can be controlled and extended via Python scripts, and inspected at run-
time by a graphical interface. Figure 11.7 shows the example configuration
of Figure 11.5 implemented for Spartacus.

Spartacus offers predefined analyzers comparable to ESPresSo but with
emphasis on chemistry instead of physics:

• statistical physics

– energies (kinetic, potential)
– pressure (virial and excess pressure)
– mean square displacement

• distribution and correlation functions

– velocity correlation and autocorrelation
– radial distribution function
– aggregate size distribution

• system chemistry

– bead numbers
– reactivity
– compositional entropy (of aggregates)

Additional analyzers can be defined in the configuration file. Spartacus prints
out the result of analyzers for further processing. Alternatively, the system
state or screen shots can be saved along a trajectory. Scripts are provided to
assemble movies from this data.

11.3.3 Smoldyn

Smoldyn is a spatially resolved simulator for chemical reaction networks with
focus on molecular biology. It has been implemented by S. Andrews and li-
censed under the GNU Lesser Publishing License (LGPL). Smoldyn does not
consider bead interactions but merely diffusive motion (implemented as mo-
mentumless random walk). Consequently, molecules can only be represented
by single beads and their internal structure cannot be modeled – the frame-
work is therefore most appropriate for higher coarse-graining parameters.
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# set system size, bead number, and density

from simulation.grid import Space3D

size = 10

space = Space3D

# define bead types

from simulation.chemistry import Particle

class W(Particle) :

pass

class H(Particle) :

color = "green"

class T(Particle) :

color = "yellow"

H.binds = [T]

T.binds = [T,H]

particles = [W,H,T]

# reactions

from simulation.chemistry import Reaction

reactions = [

Reaction(

[T,T], [H,T], # educt, product

1.0, 0.0, # range (unused), spontaneous rate

H, 1.0, 0.5 # catalyst, range, and rate

)

]

# random initial condition

initial_condition = RandomInit(n_W=1780, n_T=600, n_H=10)

# define interactions

import simulation.physics.dpd as dpd

cut = 1

class Physics(dpd.Physics) :

matrix = {

(W,W) : (25,cut),

(W,H) : (15,cut),

(W,T) : (80,cut),

(H,H) : (35,cut),

(H,T) : (80,cut),

(T,T) : (15,cut),

}

# thermostat variables and integration time step

gamma = 4.5

sigma = 3.0

time_step = 0.01

physics = Physics(cut, gamma, sigma, time_step)

Fig. 11.7 The same system setup as in Fig. 11.5 implemented for Spartacus in the Python
programming language. Unlike ESPresSo, Spartacus uses configuration files only for the
system setup but not for the actual integration.
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The main focus of Smoldyn is its accurate incorporation of chemical reac-
tions [1]. Reactions can be zeroth-, first-, and second-order (type change) re-
actions. Smoldyn implements reactions based on the Smoluchowski formalism
(see Sect. 11.2.4). Smoldyn further allows one to define surfaces and compart-
ments for membranes and vesicles by geometrical shapes. These structures
can reflect, absorb, or bind beads and may have an influence on their reac-
tivity and diffusion.

Simulations in Smoldyn are set up by plain text configuration files, im-
plying that the software is not extensible by scripting. The time evolution
of a system can be inspected at runtime via a graphical interface and can
be captured as a movie. Additionally, analyzer results can be printed out for
further analysis. Analyzers focus on bead numbers, either in total, or located
at specific surfaces or compartments.

11.3.4 LAMMPS

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a
fast and feature-rich molecular (MD) dynamics software that includes code
for coarse-grained DPD simulations. The software has been developed by
S. J. Plimpton, P. Crozier, and A. Thompson [40] and licensed under the
GNU GPL. LAMMPS is implemented in C++ and runs on single-processor
desktop machines but is designed with massively parallel architectures in
mind (employing MPI). LAMMPS does not support chemical reactions and
is not extensible by scripting but defines a clear interface for C++ extensions.

LAMMPS consists of a core engine that is controlled by a textual con-
figuration file. It can print out the system’s time evolution. Alternatively,
LAMMPS allows one to print out the results of custom analyzers that can
be defined in the configuration file. Since the configuration file does not de-
fine a full-featured programming language, the range of possible analyzers is
limited (e.g., to time and ensemble averages of per-atom quantities). More
complex observables need to be calculated from the system’s trajectory files.
The package includes scripts to generate movies and can produce output for
VMD [23] and other visualization softwares.

11.4 Conclusion

This chapter has introduced modeling techniques and software for spatially
resolved, coarse-grained artificial chemistry – primarily Brownian dynamics
(BD) and dissipative particle dynamics (DPD) with incorporated chemical
reactions. The chapter has derived the underlying mathematical models and
has reviewed implementation principles, means of calibration. The presented
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methods allow one to simulate molecular motion, reaction, and spatial or-
ganization in an integrated framework, which makes them valuable tools in
the study of emergent physico-chemical structures (e.g., lipid aggregates) and
processes that influence or are influenced by those structures, as the exist-
ing examples from the areas of artificial chemistry, artificial life, and systems
chemistry indicate.

Four existing software packages (ESPresSo, Spartacus, Smoldyn, and
LAMMPS) have been presented. These applications differ in focus and
features and vary in their requirements on hardware and user-knowledge
from pedagogical tools to high-performance computing applications. Most
of the presented programs are scriptable/extensible, so that flexible simula-
tion setup and incorporation into existing simulation environments can be
achieved easily.
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Chapter 12

Simulated Breeding: A Framework of
Breeding Artifacts on the Computer

Tatsuo Unemi

This chapter describes a basic framework of simulated breeding, a type of
interactive evolutionary computing to breed artifacts, whose origin is Blind
Watchmaker by Dawkins. These methods make it easy for humans to de-
sign a complex object adapted to his/her subjective criteria, just similarly to
agricultural products we have been developing over thousands of years. Start-
ing from randomly initialized genome, the solution candidates are improved
through several generations with artificial selection. The graphical user inter-
face helps the process of breeding with techniques of multifield user interface
and partial breeding. The former improves the diversity of individuals that
prevents being trapped at local optimum. The latter makes it possible for
the user to fix features he/she already satisfied. These methods were exam-
ined through artistic applications by the author: SBART for graphics art and
SBEAT for music. Combining with a direct genome editor and exportation
to another graphical or musical tool on the computer, they can be powerful
tools for artistic creation. These systems may contribute to the creation of a
type of new culture.

12.1 Introduction

For over a thousand years, mankind has been utilizing the technique of breed-
ing to obtain useful plants and animals to help human life. Almost all agricul-
tural products and domesticated animals we see now are the results of these
processes of many generations. Even in the new century of highly improved
genetic engineering, it is still impossible to build such a complex living system
by human hands in a similar manner with mechanical and electric machines.

It is also a fact that we already have highly sophisticated technologies in
our hands to make complex machines and systems, such as robots, trans-
portation control systems, hi-tech aircrafts, space shuttles, and so on. Many
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researchers and developers are struggling and competing with each other to
design and implement amazing gadgets day by day in laboratories and private
companies. Recent improvement of information technologies accelerates this
movement. However, it is hard to say that we are receiving enough results on
these technologies because of the bottleneck of the developmental cost. We
need a longer time to design and implement more complex products.

One method to overcome this bottleneck may be to introduce a method
of breeding we have been using for living organisms. Some of the currently
developed machines are complex enough for objects of breeding. Features that
enable us to breed organisms are reproduction with changes, the essential
functions for evolvability. All living systems on the Earth intrinsically have
this mechanism supported by genetic inheritance and mutation. Artifacts
have no ability to reproduce itself in nature, but the computer can help us
to realize it. If we build an interactive software to simulate breeding process,
it might enable us to obtain our desired design in a reasonable time. In
addition, there is the possibility to give us a quite new products that we have
unconsciously given up because of the developmental cost.

This chapter presents a framework of simulated breeding that realizes
breeding the artifacts on the computer through an overview of two sorts
of applications. One is SBART for drawing abstract computer graphics, and
another is SBEAT for composing short musical pieces.

Initializing the population
by random genes

Evaluation

Selection

Genetic operation
(mutation/crossover)

Is a good solution found?
Yes

No

End

Fig. 12.1 A flowchart of a simple genetic algorithm.
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12.2 Basic Framework of IEC

Research on computational intelligence and artificial life has brought some
useful algorithms to produce complex systems inspired from biological mech-
anisms such as morphology, evolution, learning, herding, and so on. One of
the most successful technique in terms of engineering applications may be
evolutionary computing for optimization in various types of problems that
had been thought difficult to solve. This method was originally developed
from a type of optimization of morphological design of living organisms to
gain a high rate of reproductive success in the physical and ecological en-
vironment. Figure 12.1 shows a flowchart of a simple genetic algorithm, a
typical evolutionary computing scheme, consisting of a loop of evaluation,
selection, crossover, and mutation.

An ordinary type of evolutionary algorithm uses a predefined fitness func-
tion to give a criterion of optimization. It just corresponds to the condition
of natural selection. This framework works well if the human designer can
draw an appropriate procedure to compute fitness values to evaluate each
individual. However, we often go through difficulties in figuring it out explic-
itly by some reasons, such as multiobjectivity, subjective criteria, dynamic
environment, and so on. In a design of room arrangement of a house, for
example, each member of the resident family has different preference criteria
from others. They are, of course, subjective and often dynamically changing
with the natural and social environment.

Initializing the population
by random genes

Visualization

Artificial selection

Genetic operation
(mutation/crossover)

User

Fig. 12.2 A schematic framework of interactive evolutionary computing (IEC).

Interactive evolutionary computing (IEC) [16] is a promising technique
to find better solutions in the domains for optimization by user’s subjective
criteria, whose root can be found in Blind Watchmaker by Dawkins [3]. Dif-
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ferently from ordinary methods of evolutionary computing, fitness values are
not calculated automatically by the predefined evaluation function but are
given by the user for each individual in some manner. Some researchers are
calling this method the interactive genetic algorithm (IGA) [15], because it
can be seen as a modified version of the genetic algorithm (GA) [5]. Usually,
the application systems have a method for the user to rate each individual,
typically a graphical user interface using a slider or a set of radio buttons.
In the method called simulated breeding, the user directly picks up his/her
favorite individuals as parents for the next generation. This means that the
fitness values can take only one (selected) or zero (not selected). It disables
stochastic selection, but has an advantage to reduce the number of user’s
operations to assign the fitness values. Figure 12.2 shows a schematic frame-
work of IEC, where the phases of evaluation and selection in simple GA are
replaced with visualization and artificial selection.

Another source of advantage of IEC compared to the other types of de-
sign support framework of generate and test is explicit separation between
genotype and phenotype. Genotype is information on a genome that changes
through genetic operation. Phenotype is the object of evaluation that per-
forms in the environment. In natural living organisms, genotype is genetic
information on DNA, and phenotype is the body and its performance for
survival and reproduction. This separation makes it flexible to design the
search space for an application domain.

12.3 SBART and SBEAT

The author developed several types of applications of simulated breeding over
the years. One is named SBART for computer graphics and another is named
SBEAT for computer music. These artistic domains are mostly suitable for
IEC because they are strongly dependent on subject criteria of evaluation.

12.3.1 SBART

SBART [23] is an application of simulated breeding to breed an abstract
image of two-dimensional (2D) computer graphics. The basic mechanism is
based on the idea by Sims [14], who implemented his system on a combination
of a supercomputer and graphic workstations in 1991. Some researchers who
wanted to experience this innovative system developed their small system
on personal computers. SBART is one of these systems that was developed
in 1993 on a Unix workstation and was exported to MacOS in 1998. The
basic idea is the same between Sims’s system and SBART, but some features
described here were uniquely modified and added in SBART. This software
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Fig. 12.3 A field window of SBART containing 20 individuals.

has been widely distributed through the Internet and CD-ROMs attached
with some books and journals.

Figure 12.3 shows an example of a field window that contains 20 individual
drawings, each of which is a candidate of parents for the next generation.
The user selects one or more of his/her favorite individuals to reproduce
offspring. Through some iterations of generation changes, the user can obtain
satisfactory results.

The structure of the genotype is a mathematical expression that calculates
color value for each pixel from the 2D coordinates x and y. Each of the
intermediate values in the calculation is a three-dimensional (3D) vector that
is interpreted as a color in hue, saturation, and brightness at the result. For
example, the genotype of the bottom left individual in Fig. 12.3 is

and(−(1.180), and(0XY, XY0) + XY0− hypot(hypot(Y0X, 0XY), 1.680)),

where four types of binary functions, +, −, “and,” and “hypot,” and one
unary function, −, are used. 0XY, XY0, and Y0X are variable vectors that
mean 〈0, x, y〉, 〈x, y, 0〉, and 〈y, 0, x〉 respectively. SBART has six types of
vector variables in all permutations of x, y, and 0. Constant scalar values
are expanded into a vector containing three same values; that is, 1.180 in the
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above expression is expanded into 〈1.180, 1.180, 1.180〉. Almost all functions
calculate each element values in a vector independently; that is, 〈x, y, 0〉 +
〈1.180, 1.180, 1.180〉= 〈x+1.180, y+1.180, 1.180〉. Some exceptional functions
calculate the result by combination of elements of argument vectors. In the
case of the function named “max,” for example, the value is defined as

max(〈x1, x2, x3〉, 〈y1, y2, y3〉) =

{

〈x1, x2, x3〉 if x1 > y1

〈y1, y2, y3〉 otherwise.

When more than one individual is selected, crossover operation is applied.
When only one individual is selected, the mutants are produced as the popu-
lation of the next generation. These genetic operations are done in a style of
genetic programming [6]. Crossover is an exchange of subtrees between par-
ents. Mutation is replacement of a node: function, variable, or constant with
a randomly selected one. The target subtree and node are selected randomly.

SBART has not only a breeding mechanism but also some utilities to
import some image files and a single movie file to produce a type of collage,
to draw an arbitrary size of product image to export to another graphics
tool, and to create a movie allocating time variable into the 0 element of
variable vectors. Some visual jockeys (VJs) are using this system to produce
a material of their own video clips for playing at a dance club.

12.3.2 SBEAT

Sound and music are also attractive targets for the application of IEC tech-
niques because they also strongly depend on subjective criteria for artistic
production. One of the key issues for building a successful system in this
domain is how the user checks and selects suitable individuals from a popu-
lation.

Biles [1] has proposed an alternative method to solve this problem and
implemented it in his system named GenJam. This system helps the user to
create improvisational phrases in Jazz music. In GenJam, the user listens to
endless phrases generated from individual genotypes in turn. The user pushes
the “g” or “b” key according to his/her good or bad feelings about the phrase.
It is not necessary for the user to assign fitness values explicitly or to know
the correspondence between the individual and the phrase.

Another type of implementation of musical application of IEC has been
developed as the Sonomorph system by Nelson [8, 9]. It shows nine candidates
on the screen by drawing the scores in the form of a collection of horizontal
line segments just like piano roll paper. SBEAT [21] was developed by the
author in 2000 independently with Sonomorph, which means the author had
no knowledge about Sonomorph when considering the basic idea. SBEAT
shows nine individuals on a field window shown in Fig. 12.4. A phenotype of
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Fig. 12.4 A typical field window of SBEAT containing nine initial individuals.

each individual is a score of 16 beats and several parts, maximally 23 parts
in version 3. Four of the whole parts chosen by the user are shown in the sub-
window. The first version of SBEAT treated only three parts: guitar, bass,
and drums. It was extended to eight parts: five solos, piano, drums, and per-
cussion in the second version SBEAT2 [22]. The next version, SBEAT3 [25],
handles 13 solo parts, 2 piano (or chord) parts, and 8 drums and percussion
parts.

The genotype of SBEAT3 is a set of three 2D arrays for pitches, rhythm,
and velocity. Each array contains 16 by 23 elements, each of which corre-
sponds to beat and part. It uses a type of recursive algorithm to produce a
basic melody from genotype to guarantee a natural similarity between parents
and children. It is also useful to produce individuals in the initial population
acceptable for the user. Refer to [26] for details.

SBEAT2 and SBEAT3 have some utilities to set tempo and scale, to change
the instruments set for each part, to integrate the result scores into a longer



378 Tatsuo Unemi

tune, and to save the score into a file of standard MIDI format (SMF). It is
possible to compose a complete tune only by these systems, but the users may
export the result in an SMF file to another application of music sequencer
or digital audio workstation to mix with another kind of composition and to
add various types of effects.

12.4 Breeding in a Field Window

Visualized phenotypes of a population are displayed together in a field window
as shown in Figs. 12.3 and 12.4. We assume that it is possible to visualize
each phenotype without expensive cost for the computation and that the
population size is about from 9 to 30. A field window is divided into from
3× 3 to 5× 6 grids, showing each individual in each rectangle of grid. These
9 to 30 individuals are the members of the current population and there is
no other member of the population. The user explicitly selects one or more
individuals from the field as parents for the next generation. When only one
individual is selected, all individuals except the selected one are replaced
by mutants of the selected individual in the next generation. When more
than one individual is selected, all individuals are replaced by the children of
selected parents produced with a crossover operation.

From the results of various settings of experimental implementation of
SBART, the appropriate number of individuals simultaneously shown on the
screen should be in the range from 16 to 30. The user often had to produce
alternative children to obtain improved candidate if the number was less than
16. Some good individuals were ignored if the number was greater than 30.

There is another issue in the domain of sound and music. It is possible to
select favorite graphical drawings in seconds, but the user needs a longer time
to evaluate sound and music. It is possible to compare candidates simultane-
ously in graphics domains, but individuals must be examined independently
in sound and musical domains. So a system for sound and music has to have
two types of selection methods for each individual. One is for selection as a
parent, and the other one is for selection for playing. In the case of SBEAT,
three types of buttons are attached to each individual subwindow as show
in Fig. 12.4: a play button with speaker icon, a protection button with lock
icon, and a selection checkbox. The role of protection is described in the
Section 12.5.2.

The collection of genotypes in a field population can be recorded in a disk
file similarly to any other document files of a word processor, a drawing tool,
and so on. It can be opened again as a field window later if the user saved
it. Menu items entitled “New,” “Open,” “Save,” “Save as . . . ,” and “Reset”
are available with functions that can be easily guessed from an analogy with
other documentation tools. A field is always filled with a fixed number of
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individuals, so the “New” field is not empty but initialized with individuals
of random genes.

12.5 Multifield User Interface

In [20], we propose a design of a graphical user interface using the multifield
for simulated breeding method. The term field is used here as a population
of visualized individuals that are candidates of selection from an analogy
with fields in an experimental farm. A multifield interface enables the user
to breed his/her favorite phenotypes by selection independently in each field,
and he/she can copy arbitrary individuals into another field. As known among
the researchers of evolutionary computing, a small population likely leads to
premature convergence trapped by a local optimum, and migration among
plural populations is useful to escape from this trap. For IEC applications,
it is impossible to take a large size of population because the user has to ob-
serve all phenotypes in the population as possible to evaluate them instead of
predefined fitness function in the ordinary framework of evolutionary compu-
tation. The multifield user interface is a suitable method for IEC to provide
easy implementation of migration and wider diversity.

We often suffer a complicated multimodal landscape in a structural op-
timization problem because the search space constructed by solution candi-
dates is usually high dimensional. It is necessary to examine as many candi-
dates as possible to find the best solution because each candidate has a lot of
neighbors in a high-dimensional space. One of the key techniques for success-
ful search is a method to keep a diversity of individuals in the population.
Island model [11] is one of the methods to keep diversity.

After geographical separation of a continent into islands, a population of
species that lived in a continent is divided into subpopulations in each island,
and they usually reach distinct organisms through independent evolutionary
process since mating between different islands is prohibited and there are
many suboptimal points for the structure of an organism. As the scheme
theory [5] in the genetic algorithm indicates, a crossover operation, a com-
bination of parts of different genomes, has the possibility to spawn a better
individual by combination of good genes from different individuals. We can
expect to get better solutions by migration of individuals among different
islands after reaching some convergence in each island. The multifield user
interface is a method to bring a similar effect with the island model.
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Fig. 12.5 Migration of an individual by drag & drop.

12.5.1 Migration Among Fields

The user can open an arbitrary number of field windows by choosing the
“New” and “Open” items from the File menu if the memory capacity is
adequate. In addition to these operations, a new field window spawns when
the user clicks the “new” button at the top right of each field window instead
of “this” to generate a population of the next generation. The new field
window is filled with the children of selected parents.

SBART and SBEAT have two types of methods to migrate an individual
between fields. The first one is to move it by copy & paste. The operation
includes four steps:

1. Select the individual that the user wishes to move on the field.
2. Copy it into the copy buffer.
3. Select the individual that should be discarded by overwriting.
4. Paste it.

Selection of an individual on the field is done simply by clicking the subwin-
dow. A red border frame of a rectangle area indicates that the individual is
selected. It takes six steps if the user uses the Edit menu to both copy and
paste because of invoking the Edit menu from the menu bar. Shortcut keys
can reduce it by two steps.
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The other way is drag & drop. As Fig. 12.5 shows, the user can copy
any individual by pointing to it with the mouse cursor, pressing the left
button, moving the mouse pointer keeping the mouse button pressed, and
releasing the button at the destination rectangle. A small individual image
moves following the mouse’s move. This method needs a fewer number of
operations than the first one. It is easier for the user who knows well another
application with similar operation such as a file manager.

12.5.2 Protection of Individual

Not only to save genes in a disk file, the user sometimes wish to keep some
interesting individuals without modification temporally. It is realized by pro-
tection of individual. The user can protect his/her selected individual by
pushing the “Protect” button in the “Edit menu” and the “Context menu”1

in SBART. This button is attached in each subarea for individuals in SBEAT.
Protected individuals can neither be overwritten by migration nor replaced
by offspring.

An alternative design of individual protection is to facilitate the other
type of window that keeps the arbitrary number of genome as a profile. This
method may lead to a filing system including library files; however, we have
not tried to implement it yet. Some method for efficient retrieval for the
desired genome from a large-scale database will be needed for this type of
filing system.

12.5.3 Effects of Multifiled Interface

Populations processed through independent evolution usually reach unique
features for each. In these cases, we can expect that a new one will be pro-
duced by migration among independent fields. Figure 12.6 shows offspring
produced by crossover between individuals that came from different fields.
Some part of features of both parents pass to the children, but it is un-
known which feature remains because the crossover points are determined
randomly. If the gene coding allows redundant representation or noneffective
part, it may produce children of more unexpected features.

1 “Context menu” is a term in MacOS that is called “pop-up menu” in Motif.
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×

↓

Fig. 12.6 An example of offspring spawned by migration and crossover between two
individuals bred independently in the different fields.

12.6 Partial Breeding

It is a good method to divide a complicated problem into independent sub-
problems to solve it efficiently. However, it is often difficult because of de-
pendency among parts of the problem features. A musical tune consists also
of complex information including melody, rhythm, tempo, timbre, and so on.
We can easily divide information into these functional parts, but evaluation
of the tune usually depends on the combination of them. The combination of
good melody and good timbre is not always good.

One of the advantages of evolutionary computation compared with the
other optimization technique by search is that we can design different struc-
ture of search space than the structure of solution space using mapping be-
tween genotype and phenotype. Phenotype corresponds to the solution can-
didate, and genotype corresponds to the search point. A musical tune can be
divided into sections, parts, bars, and so on. It is also helpful to build each of
the parts or sections independently and to combine them later. In addition,
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we can independently breed each of the functional features of music, rhythm,
melody, timbre, and so on by encoding them in separate parts of a genotype.

Because of dependency among features in terms of the effect for the qual-
ity of the solution, it is difficult to obtain a good solution by optimizing
each feature step by step independently. We often need to revise a feature
previously optimized during optimization of another feature. Even in the or-
dinary style of evolutionary computation, it is still a research theme how we
should apply evolutionary computation to multiobjective optimization prob-
lems. Fortunately in IEC, the user can control the evolutionary process by
indicating which parts and features should be fixed and which parts should
be modified if the system has a user interface of partial protection.

rhythm

pitches

velocity

Solo#1

Percussion#8

Solo#13

16 beats
2
3
 p

a
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s

Percussion#1
Chord#2
Chord#1

Fig. 12.7 Structure of genotype in SBEAT3.

We designed the structure of genotype for SBEAT as consisting of three
types of chromosomes for rhythm, pitches, and velocity, as shown in Fig. 12.7.
Velocity, which means loudness of the sound of note as a technical term in
music, is an important factor for tune to sound natural for humans’ ears. The
individual in SBEAT population is a bar of 16 beats and 23 parts. Each of the
chromosomes is a 2D array of 16 by 23 to include information for each possible
note. Some loci in the chromosomes of pitches and velocity are ignored if the
corresponding loci of rhythm chromosome indicate rest or continuation.

We designed a graphical user interface to make it possible for the user to
indicate which part should be the objects of genetic operation. In ordinary
cases, mutation is applied to all features. We introduced check buttons to
indicate protection against mutation. Figure 12.8 shows the dialog window of
SBEAT, which includes many buttons, sliders, and menus. The short slider
allocated for each part is for setting the correspondence between musical parts
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Fig. 12.8 Part option dialog of SBEAT3.

and genotypical parts. A button with a lock icon is for indicating protection.
These operations are applied to one of three chromosomes indicated by the
pull-down menu at the top row of these sliders and buttons.

It is possible for the user to indicate protection of arbitrary parts of a
genotype that corresponds to functional or physical part of phenotype at any
time he/she wants. To reduce the number of operations for pressing arbitrary
number of buttons at once, we implemented a method to choose them by the
press-drag-release operation of the mouse. The buttons in the rectangular area
indicated by mouse operation act as being clicked. It makes it easy to revise
any part again and again by breeding independently until any acceptable
solution is found.

This method was invented through an application for music, but it will
be useful for another domain where the solution candidates are complex but
well structured [24]. However, it is difficult to apply this method to SBART,
because the user hardly understands which part of a genotype affects which
feature of a phenotype.
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12.7 Direct Genome Operation

Breeding is a good method for producing novelty, but it is mostly redundant
when we know what type of direct modification brings a better result. The
genome editor was designed to answer this requirement by allowing the user
to edit chromosomes directly.

The user is allowed to edit the genome of any individual on the field.
Figure 12.9 shows an example screen shot of genome editor in SBART. As
shown in the right window of the figure, the user selects a node from the tree
structure of a genome to cut, copy, paste, and swap with the subtree in the
copy buffer and to replace it with another symbol. The new function symbol,
variable, and constant can be indicated using the dialog at the left side of
the figure.

Fig. 12.9 Genome editor of SBART.

Figure 12.10 shows an example screen shot of genome editor in SBEAT.
It has two windows, a score of an individual and an editing panel. The user
selects a part to be edited using a pop-up menu2 and then operates buttons
allocated to each beat of each chromosome. The button of each beat has a
different type of function among chromosomes because the data types of the
allele are different among the types of chromosomes.

In the case of SBART, this functionality of direct editing is not so useful
because it is usually difficult for the user to understand the concrete corre-

2 “Pop-up menu” is a term in MacOS that is called “option menu” in Motif.
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Fig. 12.10 Genome editor of SBEAT.

spondence between genotype and phenotype. However, in the case of SBEAT,
it is relatively clear which loci affect which feature and part in a phenotype
even though loci and features do not always have a one-to-one correspon-
dence. It can play a different role that allows the user to input the score
already known if possible.3 Collection of the mutant of a known melody can
be useful for making an arrangement of a tune.

12.8 Production Samples

The readers have already seen some examples of images produced with
SBART in Fig. 12.3, but to understand the potential possibility of this sys-
tem, this section shows other examples produced using augmented functions
to embed an external video data.

Kamei, a VJ in Tokyo, suggested that it would be nice if SBART could
import a movie file to embed and to deform it, similarly to importing image
files to make a collage. It needs a fast and sophisticated smoothing algorithm
among related pixels in video frames that wastes much of computation re-
sources. It seemed to be impossible to process it within a reasonable time by
the personal computer some years ago. However, now GHz CPUs and some
gigabytes of memory on board are available at reasonable prices. The newest
version of SBART includes this feature, and we are investigating some tech-
nical issues and developing new algorithms and user interfaces for achieving
feasible usability [27].

3 In the current implementation of SBEAT, some types of scores cannot be mapped back-
ward to genotype due to the algorithm of morphology.
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Two new nonterminals were added to realize this functionality. One is
named “movief” that extracts pixels’ HSB color values from one frame of time
t at the position indexed by referring to the first and second elements of the
argument vector as x- and y-coordinates. The other one, named “moviec,”
similarly extracts color values, but it assumes the movie data as the 3D
volume and picks a boxel up by referring to three elements.

a. Original external movie.

b. movief(hypot(0.648, XTY) + XTY + YXT)

c. −0.203 + (0.648 + YXT + movief(XYT))

Fig. 12.11 Sample frame sequences produced with the frame image method.

The upper sequence of movie frames in Fig. 12.11 is external movie data
in half-size of NTSC DV format, 320× 240 pixels of frame size, 14.98 frames
per second, and 30 seconds duration. It includes 14.98 × 30 = 449 frames,
then, totally, 320× 240× 449 = 34,483,200 boxels. It was taken by a handy
camcorder in the campus during a campus festival in the fall of 2003.
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moviec(XYT− cos(log(hypot(YXT+ moviec(XTY) + XTY·
−1.227,

√
log XYT) + TYX))) (sin(moviec(YTX))− TXY)

Fig. 12.12 Sample images produced from the external movie in Fig. 12.11 by the boxel
method.

Figure 12.12 shows two typical productions using the boxel method. The
genotype of the left-side image has the function “moviec” at the root of the
tree structure. This makes nonlinear transformation of the shape of original
pattern. The time axis was expanded along the horizontal axis. Some vertical
lines included in the resultant image indicate rapid reaction of automatic
exposure adjustment by the camcorder. Small vertical vibrations along the
horizontal axis means it was difficult to keep the handy gadget steady in the
operator’s hand.

The right-hand image has a more complex genotype that includes “moviec”
at the intermediate nodes. It produces not only deformation of the shape but
also modification of colors. As shown in both images, the boxel method brings
us a new effect to produce more complicated and unpredictable results from
some types of external movies by inheriting the complexity of a 3D pattern
involved in the movie data.

The middle- and lower-frame sequences in Fig. 12.11 are sample movies
produced from genotypes that includes “movief.” The middle one includes
the function at the root, and the lower one includes it at just above a leaf of
variable XYT. The former one produces shape deformation, and the latter
one produces color modification, similar to the two examples for the boxel
method.

We also examined another film taken at a concert of a student big band.
It can produce a very interesting and effective movie clip that seems useful
to create a music video or so on.

Figure 12.13 is a score of example production bred using SBEAT that
consists of six parts. The target of breeding in SBEAT is a bar of 16 beats
and 23 parts, as described before. This tune was composed by integration of
nine bars, each of which restricted only five solo parts and one chord part. A
set of sample tunes composed by the author in both SMF and MP3 format
is available from the web page of SBEAT.
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12.9 Future Works

Of course, there are many types of further works to be tried in the future con-
cerning the simulated breeding method. From the viewpoint of engineering, it
would be important to examine various types of alternative methods usable
for similar purpose and to compare them to each other in several aspects such
as efficiency, usability, flexibility, and so on. For the technical evaluation, it
must be important to execute experiments on the human-machine interface
employing a number of subjects as typical users. One feature that should be
examined is the method of artificial selection. In some application domain or
for some types of users, stochastic selection by fitness-value rating might be
essential to obtain satisfactory results efficiently.

Some researchers are struggling to build similar systems using their original
ideas of musical application of IEC technique such as [18, 19]. Including
the previous pioneers’ approaches including sound filtering [10] and sound
generation [2], it may be fruitful to combine several different ideas to build
up a more practical integrated system to support human activities of music
composition.

SBEAT was designed under the assumption of off-line composition; that
is, the processes of composition and performance are separated. However, it is
also potentially usable for a live performance on time. The system needs some
extension to have two separated channels for sound output for a breeder and
listeners, because mutation may sometimes spawn less interesting sounds.

The combination of SBART and SBEAT should be considered as an in-
tegrated system to make a computer graphics animation with music. The
variety of result products should be enhanced to realize this plan because the
products from current systems seem unsuitable to combine with each other.
Using a video editing tool on the personal computer currently available, it
is possible to combine the products of SBART and SBEAT. However, inter-
active breeding between these two systems seems important to improve the
final results.

It is possible to apply the framework of IEC to a variety of fields other than
graphics and music. Robot motion [7] and group behavior of people [4] are
also interesting targets from a viewpoint of artistic application. The author
is conducting a media art project called Project 72 [28, 29] with Bisig from
2003. It is a challenge to make a variety of artworks by a combination of
audio visual feedback and swarm simulation. We have released four artworks
and have been distributing two softwares on the Internet – DT1: Flocking
Orchestra and DT4: Identity SA. We have not applied IEC to the project
yet, but it would be valuable to try it to breed more interesting behavior of
reactive swarm in a virtual space.
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12.10 Conclusion

The framework of simulated breeding has been described. Through the expe-
rience with SBART and SBEAT, we may expect future expansion of applica-
tion of these systems and their framework. In addition to the basic framework
of IEC, multifield user interface, partial breeding, and direct genome editing
extend efficiency and usefulness of breeding.

Simulated breeding provides not only an alternative method to support
human’s design activity but also quite a new style of production based on
cooperation between human and machine. The only thing the user has to
do is selection according to his/her preference. The user needs to know a
little about the operation of breeding but does not need to know how the
target system can be built up. Although more than 22 years have passed
since the original idea of Blind Watchmaker, and some artists have employed
this idea for their productions, such as Latham [17] and Rooke [13], it is
still not popular enough compared with the potential power. In these years,
some researchers organized workshops on artistic applications of evolutionary
computing and published paper collections and books, such as [12]. These
ideas will contribute to create a type of new culture in the near future.
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Chapter 13

The Evolution of Sonic Ecosystems

Jon McCormack

This chapter describes a novel type of artistic artificial life software environ-
ment. Agents that have the ability to make and listen to sound populate a
synthetic world. An evolvable, rule-based classifier system drives agent be-
havior. Agents compete for limited resources in a virtual environment that
is influenced by the presence and movement of people observing the system.
Electronic sensors create a link between the real and virtual spaces, virtual
agents evolve implicitly to try to maintain the interest of the human audience,
whose presence provides them with life-sustaining food.

13.1 Introduction

One thing that foreigners, computers and poets have in common is that they make
unexpected linguistic associations.

Jasia Reichardt [26]

Music and art are undoubtedly fundamental qualities that help define the
human condition. While many different discourses contribute to our under-
standing of art making and art interpretation, two implicit themes connect all
artworks. The first is the act of creation. Even the most abstract or conceptual
artworks cannot escape the fact that, as ideas, objects, or configurations, they
must be made. Second, the importance of novelty, either perceived or real, is
a fundamental driving force behind any creative impetus or gesture. Artists
do not seek to create works that are identical to their previous creations or
the previous work of others.

Artificial life (AL) methodologies can play an important role in developing
new modes of artistic enquiry and musical composition. For artists, AL can
offer new methodologies for the creative arts. For the first time in the history
of art, AL suggests that, in theory at least, it may be possible to create
artificial organisms that develop their own autonomous creative practices –

393



394 Jon McCormack

to paraphrase the terminology of Langton [16], life-as-it-could-be creating
art-as-it-could-be.

In addition, AL has important contributions to make in our understanding
of genuine novelty,1 often referred to under the generalized term emergence
[6, 11, 21].

13.1.1 Artificial Life Art

Techniques from cybernetics and artificial life have found numerous appli-
cations in the creative arts. General contemporary overviews can be found
in [2, 3, 32, 39], for example.

Cybernetics has a rich and often overlooked history in terms of computing
and the arts. The seminal ICA exhibition Cybernetic Serendipity, held in
London in the summer of 1968, was one of the first major exhibitions to
look at connections between creativity and technology [25]. Even the title
suggests notions of novelty and discovery, a key theme for many works and
critics in the decades that have followed the exhibition. Interestingly, the
curators shunned distinctions between art and science and instead focused
on ideas and methodologies that connected the two.

One particularly relevant concept from cybernetics is that of open-ended
behavior, what Ashby referred to as Descartes dictum: How can a designer
build a device that outperforms the designer’s specifications [1]? Cyberneti-
cist Gordon Pask built an “ear” that developed, not through direct design,
but by establishing certain electrochemical processes whereby the ear formed
and developed in response to external stimuli [7].

The goal of the work described here is to create an open-ended artistic
system that is reactive to its environment. In order to address this goal, two
important problems were explored during the design and development of the
work: first, how we can create a virtual AL world that evolves toward some
subjective criteria of the audience experiencing it, without the audience need-
ing to explicitly perform fitness selection and, second, how the relationship
between real and virtual spaces can be realised in a way that integrates those
spaces phenomenologically. The resultant artwork developed by the author is
titled Eden.

1 The concept of novelty is a vexed one with many different interpretations in the literature
and could easily occupy an entire chapter in itself. Some authors argue that novelty and
emergence have no relation [23], whereas others see them as fundamentally the same [6].
In the sense that the term is used in this chapter, novelty suggests that which has never
existed before, hence the issues surrounding novelty are connected with determinism [11].
For art, almost every new artwork is in some sense novel; however, we may at least be
able to apply criteria that suggest a degree of novelty, such as descriptive causality and
explainable causality. Moreover, in an AL sense, we require not only the artwork to be
novel, but the behavior of the virtual agents to be novel as well.
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In terms of software, Eden is an AL environment that operates over a
cellular lattice, inhabited by agents who have, among other capabilities, the
ability to make and “listen” to sound. Agents use an internal, evolvable, rule-
based system to control their behavior in the world. The virtual environment
that the agents inhabit develops in response to the presence and movement
of people experiencing the system as an artwork. The work is conceptualised
and designed as an artificial ecosystem where virtual and real species interact
with their biotic and a-biotic environment.

This software system will be described more fully in Sections 13.2 and 13.3
of the chapter. Interaction with the work is detailed in Section 13.4, with a
summary of results and brief conclusion in Sections 13.5 and 13.6.

13.1.2 Related Work

The software system described in this chapter draws its technical inspiration
from John Holland’s Echo [15], particularly in the use of classifier systems
for the internal decision-making system of agents. Many others have used
evolutionary systems as a basis for musical composition, but in the main for
compositional simulation [33, 38], rather than as a new form of creative tool
for the artist and audience.

The Living Melodies system [9] uses a genetic programming framework to
evolve an ecosystem of musical creatures that communicate using sound. Liv-
ing Melodies assumes that all agents have an innate “listening pleasure” that
encourages them to make noise to increase their survival chances. The system
described in this chapter, Eden, contains no such inducement, beyond the fact
that some sonic communication strategies that creatures discover should of-
fer a survival or mating advantage. This results in the observation that only
some instances of evolution in Eden result in the use of sonic communication,
whereas in Living Melodies, every instance evolves sonic communication. Liv-
ing Melodies restricts its focus to music composition, whereas Eden is both
a sonic and visual experience.

13.2 Eden: An Artificial Life Artwork

Eden is a “reactive” AL artwork developed by the author. The artwork is
typically experienced in an art gallery setting, but in contrast to more tra-
ditional artworks, it is designed as an experiential environment, whereby
viewers participation and activity within the physical space have important
consequences over the development of the virtual environment.

The artwork is exhibited as an installation and can be experienced by any
number of people simultaneously. It consists of multiple screens, video projec-
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Fig. 13.1 Plan and side views of Eden showing the layout screens, speakers, projectors,
and camera sensor area. The active sensing area extends approximately one metre past the
edge of the screens.
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tors, audio speakers, an infrared camera and lighting system, computers, and
custom electronics. Figure 13.1 shows layout plans and Figure 13.2 shows a
simulated visualisation of the work. As shown in these figures, physically the
work consists of two semitransparent screens suspended from the ceiling of
the exhibition space. The screens are positioned at 90◦ to each other, forming
an X shape when viewed in plan. The ambient lighting is minimal – making
the screens and the light they reflect and transmit the predominant source
of visual interest in the space. The screens’ transparency enables them to be
viewed from either side and creates a layered visual effect that merges the
real and virtual boundaries. Multichannel audio is provided by a number of
speakers placed on the periphery of the main screen area.

In addition to this audio-visual infrastructure, an infrared digital video
camera is placed above the screens, looking down at the space surrounding
the projection screens. This area is illuminated by an infrared lighting system,
which is invisible to the naked eye and so does not affect the perceptual prop-
erties of the work. The purpose of this camera sensor system is to measure
the position and movement of people experiencing the work in its immediate
vicinity. It is not necessary that the audience has any direct knowledge of
this sensing. The purpose of sensing the real space of the artwork is as an
environmental stimulus for the virtual agents’ world and ultimately to con-

Fig. 13.2 Simulation of Eden running in a typical gallery environment, illustrating the
effect of using transparent screens to visualise the work.
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tribute to selective pressures that aim to encourage a symbiotic relationship
between people experiencing the work and the agents populating the virtual
world. The role of sensing and its effect on the development of the virtual
environment portrayed in the work are detailed in Section 13.4.

13.3 Agents and Environments

This section gives technical details on the major software components of the
system, with particular emphasis on the mechanisms that facilitate devel-
opment of sonic agents within the system. Further details, particularly the
payoff and bidding processes for rule selection, may be found in [18].

13.3.1 The Eden World

The environment projected onto the screens is known as the Eden world.
In implementation terms, the world consists of a two-dimensional toroidal
cellular lattice that develops using a global, discrete, time-step model – a
popular AL model based on the theory of cellular automata [8, 35]. Each cell
in the lattice may be populated by one of the following entities:

• Rock: inert matter that is impervious to other entities and opaque to sound
and light. Rock is placed in cells at initialisation time using a variation of
the diffusion limited aggregation (DLA) model [40]. Rocks provide refuge
and contribute to more interesting spatial environmental behavior of the
agents.

• Biomass: a food source for evolving entities in the world. Biomass grows
in yearly2 cycles based on a simple feedback model, similar to that of
Daisyworld [36]. Radiant energy (in “infinite” supply) drives the growth
of biomass. The amount of radiant energy falling on a particular cell is
dependent on a number of factors, including the local absorption rate of
the biomass and global seasonal variation. Probabilistic parameters can be
specified at initialisation time to control these rates and variations. The
efficiency at which the biomass converts radiant energy into more biomass
is also dependent on the presence of people in the real space of the artwork.
This dependency is detailed in Section 13.4.

• Sonic Agents: mobile agents with an internal, evolvable performance sys-
tem. Agents get energy by eating biomass or by killing and eating other
agents. More than one agent may occupy a single cell. Since these agents
are the most complex and interesting entity in the world, they are de-
scribed in detail in Section 13.3.2.

2 An Eden year lasts 600 Eden days, but passes by in about 10 minutes of real time.
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A real-time visualisation of the world produces images that are projected
onto the screens, as illustrated in Fig. 13.1 (in this case, there are two worlds,
each running on a separate computer, but connected as a single logical world
running over two computers). The visualisation process is described more
fully in Section 13.3.3. The sound the agents make as they move about the
world is played with approximate spatial correspondence by a series of loud-
speakers.

13.3.2 Agent Implementation

Sonic agents are the main evolving entity in the world. Essentially, the agent
system uses a learning classifier system (LCS) similar to that of Holland’s
Echo system [15]. An agent consists of a set of sensors, a rule-based per-
formance system, and a set of actuators. This configuration is illustrated in
Figure 13.3. Sensors provide measurement of the environment and internal
introspection of an individual agent’s status. The performance system relates
input messages from the sensors to desired actions. The actuators are used
to show intent to carry out actions in the world. The success or failure of an
intended action will be dependent on the physical constraints in operation at
the time and place the intent is instigated. Actuators and actions are detailed
later in this section.

eden cellular world agent schematic structure

inputs / sensors outputs / actions

active

message

table

rule

table

bidding

process

Fig. 13.3 A section of the Eden cellular lattice in visual form (left). To emphasize the
lattice structure, grid lines have been layered over the image. The image shows rocks
(solid), biomass (outline), and an agent (thick circle). The diagram (right) shows the
agent’s internal schematic structure, consisting of a number of sensors, a performance
system that evolves, and a set of actuators.
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At initialisation of the world, a number of agents are seeded into the pop-
ulation. Each agent maintains a collection of internal data, which includes
the following:

• Current age, an integer measured in time steps since birth. Agents live up
to 100 years and cannot mate in their first year of life.

• Health index: an integer value indicating the overall health of the agent.
A value of 100 indicates perfect health; if the health index falls to 0, the
agent dies. An agent can lose health via a sustained negative energy level
differential (explained next) by bumping into solid objects, such as rocks,
or being hit by other agents. In addition, the loss in health from being hit
by another agent depends on both its mass and health index.

• Energy level: a measure of the amount of energy the agent currently has.
Agents gain energy by eating biomass or other agents. Energy is expended
attempting to perform actions (regardless of their success); a small quan-
tity of energy is expended even if no action is performed at a given time
step. If an agent’s energy level falls to zero, the agent dies and its body is
converted to new biomass in the cell in which it died.

• Mass : an agent’s mass is linearly proportional to its energy level, plus an
initial “birth mass” that is normally distributed over the population.

13.3.2.1 Sensors

Sensors provide a way for an agent to measure itself and its environment [24].
Sensor data are presented as bit strings constructed from local environmental
conditions and from the internal data structures held by the agent. Sensor
data are updated once every time step. An agent can use a range of sensor
types, but the sensors themselves do not undergo any evolution and are fixed
in function, sensitivity, and morphology. It is up to an individual agent’s per-
formance system to make use of a particular sensor, so data from a particular
sensor will only be used in the long term if it provides useful information that
assists the agent’s survival or mating prospects. Sensor use does not incur
any cost to the agent. Sensor information available to an agent consists of:

• A simple local vision system that detects the “colour” of objects on fac-
ing and neighboring cells (the range is limited to a single cell). Rocks,
biomass, and agents all have different “colours,” which enables an agent
to distinguish between them.

• A sensor to detect the local cell nutritional value. Cells that contain
biomass or dead agents have a high nutritional value; rocks and empty
cells do not.

• A sound sensor that detects sound pressure levels over a range of frequency
bands. Sound can be detected over a much larger spatial range than vision
and also with greater fidelity.
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• An introspection of pain. Pain corresponds to a negative health index
differential and would usually indicate attack by another agent or that the
agent is bumping into rocks.

• An introspection of the current energy level.

13.3.2.2 Actuators

Actuators are used to signal an agent’s intent to carry out an action in the
world. The physical laws of the world will determine whether the intended
action can be carried out or not. For example, the agent may intend to “walk
forward one cell,” but if that cell contains a rock, the action will not be
possible. Furthermore, all actions cost energy, the amount dependent on the
type of action and its context (e.g., attempting to walk into a rock will cost
more energy than walking into an empty cell).

As with the sensors, the number and function of actuators are fixed and
do not change as the performance system evolves. Actions will only be used
in the long term if they benefit the agent. Analysis of actions used by agents
who are successful in surviving shows that not all agents make use of the full
set of actuators.

Agents may perform any of the following actions:

• Move forward in the current direction.
• Turn left or right.
• Hit whatever else is in the cell occupied by the agent. Hitting another

agent reduces that agent’s health level using a non-linear combination of
the mass, health, and energy level of the agent performing the hit. Hitting
other objects or being hit will cause pain and a loss of health.

• Mate with whatever is currently occupying the current cell. Obviously, this
is only useful if another agent is in the same cell. In addition, mating is
only possible if the age of both agents is greater than 1 year.

• Eat whatever is currently occupying the current cell. Agent’s can only eat
biomass or dead agents (which turn into biomass shortly after death).

• Sing: make a sound that can be heard by other agents. Sound is detailed
more fully in Section 13.3.4.

Performing an action costs energy, so agents quickly learn not to perform
certain actions without benefit. For example, attempting to eat when your
nutritional sensor is not activated has a cost but no benefit. Attempting to
move into a rock has a cost greater than moving into an empty cell.

Agents may also choose not to perform any action at a given time step
(a “do nothing” action), but even this costs energy (although less than any
other action).
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13.3.2.3 Performance System

It is based on the classification system of [15]. Sensory data arrive from the
sensors in the form of a message, a binary string of fixed length.3 Messages are
placed in an active message table, a first-in, first-out (FIFO) list of messages
currently undergoing processing. Each agent maintains a collection of rules,
stored in a database or rule table. Rules consist of three components: a condi-
tion string, an output message, and a credit. Condition strings are composed
from an alphabet of three possible symbols: {1,0,#}. At each time step, the
message at the head of the active message table is processed by checking for a
match with the condition string of each rule in the rule table. A 1 or 0 in the
condition string matches the corresponding value in the message at the same
index. A # matches either symbol (0 or 1). So, for example, the message
10010111 is matched by any of the condition strings 10010111, 10010##1,
and ########. The condition string #######0, however, would not
match.

Rules whose condition strings match the current message bid for their
output message (also a bit string of the same length as sensor messages) to
be placed in the active message table. This bid is achieved by calculating the
rule’s strength. Strength is the product of the rule’s credit (detailed shortly)
and its specificity. Specificity is a unit normalized value, equal to 1− the
normalised number of # symbols in the condition string. So, for example,
a condition string consisting entirely of # symbols has a specificity of 0; a
string with 75% # symbols has a specificity of 0.25; and so on.

For each rule that matches the current message under consideration, its
strength is calculated. The rule with the highest strength is selected and
then places its output message into the active message table. If more than
one rule has the highest strength, then a uniform random selection is made
from the winning rules. The selected rule places its output message into the
active message table. Most output messages are action messages4, that is,
they trigger an actuator. Action messages are removed from the table once
they have been translated into actuator instructions.

The process outlined in this section is illustrated in Figure 13.4.

13.3.2.4 Credits and Payoffs

Each rule maintains a credit, essentially a measure of how useful this partic-
ular rule has been in the past. Rules begin with a default credit value and

3 A message length of 32 bits is used, but the actual length does not concern the processes
described. Larger message lengths allow more bandwidth in sensor messages, but require
more storage.
4 Action messages are distinguished from other messages by a marker bit in the string
being set – all other message types are guaranteed not to set this bit.

The performance system connects an agent’s sensors to its actuators (Fig. 13.3).
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RULE

MATCHING RULES
ACTIVE MESSAGE TABLE

condition string output message

output message

(of selected rule)

credit specificity strength

1 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

1 0 0 1 100

1 0 0 1 0 # # 1 0 0 0 0 0 0 1 0 1 0 0 0.75  75

1 # # # # # # 1 0 1 0 0 0 0 0 0 2 0 0 0.25  50

1 0 0 1 0 1 1 1

0 0 1 0 1 0 1 1

1 0 0 0 0 0 0 1

0 1 1 0 1 1 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 1 0 1

    .

    .

    .

current

message selected rule

Fig. 13.4 The rule matching and bidding process. The top message from the active mes-
sage table is selected and becomes the current message. Rules whose condition string
matches the current message have a strength calculated as the product of their credit and
specificity. The rule with the highest strength then becomes the selected rule and its output
message is added to the active message table. The current message is then discarded and
the process repeats. Some messages are action messages and trigger actions.

earn or lose credit based on how useful the rule is in assisting the agent to
live and mate in the world. As described earlier in this section, agents main-
tain an energy level and health index. The differentials of these quantities
are monitored, and when they reach a certain threshold, a credit payoff is
performed. The credit payoff rewards or punishes rules that have been used
since the last payoff (held in a separate list), by altering their credit according
to frequency of use and the magnitude of the change in energy since the last
payoff. Further details regarding this process may be found in [18].

The credit payoff system enables rules that, over time, assist in increasing
health and energy to be rewarded; those that decrease health and energy will
decrease in credit. The rationale being that the next time rules have a chance
to bid, if they have been useful in the past, they will probably be useful in
the current situation.

The number of time steps between successive payoffs is dependent on the
rate of change in the agent’s health (i.e., the magnitude of the differential).
For example, if a creature is being attacked and losing health quickly, payoffs
will be more frequent. The rules involved in letting the agent get hit will also
decrease in credit quickly (hopefully soon being outbid by other rules that
may prove more successful if the agent is to survive).

Maintaining a list of rules that have been used since the previous payoff
allows rules that indirectly increase health to receive appropriate credit. For
example, while the rule to “eat when you find food” is a good one, you may
need to walk around and look for food first to find it. The rules for walking
and turning, although they decrease health in the short term, may result
in finding food. This increases health in the longer term. Overall, if such
rules are helpful in increasing health, their credit will increase. A rule whose
strength falls to zero will be automatically removed from the agent’s rule
table, since it is on longer able to bid anything for use.

As specified in Section 13.3.2.3, a rule’s strength is the product of its credit
and specificity. This is necessary, since rules that are more specific will be used
less often, as they match fewer messages. Rules that are more specific will
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have less chance to receive credit payoffs but still may be useful. When two
or more rules with the same credit match a message, the more specific rule
will have greater strength and thus will be selected over the more general
one.

13.3.2.5 Agent Evolution

The credit payoff system allows rules that have contributed to the agent’s
survival to be used more often. However, this will only select the best rules
from the currently available set. The problem remains as to how the agent
can discover better rules than those it currently uses.

Genetic algorithms follow a Darwinian metaphor in that they operate as a
search method over the phase space of possible phenotypes in a given system,
searching over the fitness landscape for individuals of higher fitness [12, 22].
In the Eden system, a rule functions as the genetic unit of selection and
new rules are brought into an agent’s genome via the standard operations of
crossover and mutation (see the references for explanations of these terms).

Recall from Section 13.3.2 that mating is a possible action an agent can
perform. If two agents successfully mate, they produce a new agent whose
rule table is a combination of the parents’ tables. A proportion of rules from
each parent selected based on their strength – the rules of highest strength
from each parent being favoured for selection. These selected rules undergo
crossover and mutation operations, as per the schema system of Holland [14],
resulting in the creation of new rules. Mutation rates vary according to the
behavior of people experiencing the artwork in the exhibition space.

Since rules of highest strength are selected from each parent and those
rules may have been discovered during the parents’ lifetime, the evolutionary
process is Lamarckian [4]. This design decision was used to allow more rapid
adaptation to changing environmental conditions: a necessary feature if the
agents’ in the artificial ecosystem are to adapt to the behavior of people
experiencing the work in real time. Another way to consider this approach is
that parents teach their offspring all the good things they have learnt so far
in their lifetime: a kind of social learning.

13.3.3 Image

Representation of the entities of Eden is achieved using tiling patterns, loosely
based on Islamic ornamental patterns [13]. Only the representation of biomass
will be considered here. The visual representation of the biomass is based on
a 16-tile set. A tile is chosen for a particular cell based on the neighbor rela-
tionships of adjacent cells. For the purposes of tile selection, tiles are selected
based on the binary occupancy condition of the cell’s neighbors, considering
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only cells of the same type. For the 16-tile set, only immediate orthogonal
cells are considered – thus there are 16 possible configurations of neighboring
cells. Figure 13.5 shows the individual tiles and the neighbor relation neces-
sary for the tile to be used. The resultant images formed by a grid of cells
(illustrated in Figure 13.6) form a continuous mass of substance, as opposed
to squares containing individual entities. These minimalist geometric textures
suggest abstract landscapes rather than the iconic or literal individual rep-
resentations that are common in many artificial life simulations. This design
decision forms an integral aesthetic component of the work.

0000
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10101001

00100001 0101 0111

1100

0110

11101011 1101

0011

1111

NESW

Fig. 13.5 Cellular tiling set for Eden’s biomass. Each cell considers the four immediate
neighboring cells (north, south, east, and west). The neighboring relations determine the
image used for each cell. A function returns the bit pattern representing the neighborhood
state for the cell and the tile is selected based on the supplied index. Four bits are required,
each representing the four directions. The bits are encoded NESW (from most to least
significant bit). The symbols above each cell pattern shown here illustrate the bit pattern
and corresponding neighborhood relationships.

Fig. 13.6 Visualisation of the Eden world, showing rocks (solid shapes), biomass (outline
shapes), and agents (circular elements).
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13.3.4 Sound

One of the key elements of Eden is the ability of agents to create and listen to
sound. A large proportion of sensor bandwidth is devoted to sound, allowing
orthogonal sensing of both frequency and sound pressure (volume). Some
basic physical modeling is performed on sound pressure levels, however many
physical sound propagation aspects are simplified in the interests of efficiency.

13.3.4.1 Sound Generation

Actuator messages requesting sound generation need to be converted into
a generated sound. As described in Section 13.3.2, actuator messages are
bit strings. A portion of the string encodes the sound generation command
(“sing”); the remainder encodes the sound generation data (spectral levels
over a range of frequency bands). The current implementation has three dis-
tinct frequency bands, each occupying one-third of the total of the sound
generation data for the “sing” actuator message (see Fig. 13.7).

When an agent “sings,” the spectral signature determined by the sing data
in the actuator message is registered for the current time step. In addition,
the same signature is used to drive a sonification process, so that people
in the exhibition space can hear sounds that correspond to the “singing”
activities of the agents. To drive this sonification process, the three frequency
bands are assigned labels L, M, and H corresponding to low-, medium-, and
high-pitched sounds (e.g., the majority of spectral energy in the 100, 1000,

sing command sing data

actuator message

sound produced

frequency

v
o

lu
m

e

L M H

Fig. 13.7 The “sing” actuator message contains two parts. The first is the command
requesting the agent to perform a sing operation; the remainder contains the sing data:
volume levels for three distinct frequency bands. Using three bits per frequency band results
in 29, or 512, distinct sounds.
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and 10,000 Hz regions respectively). When an agent makes a sound, the
corresponding selection from a precomputed library of sounds is triggered
and sent to the audio subsystem. The audio subsystem does basic sound
spatialisation using the four-channel audio system that is part of the artwork.
Sounds are spatialised according to the position of the agent making the
sound on the screen. Thus, as an agent making sound moves across the screen,
that sound will appear to move with the agent to human observers. The audio
subsystem allows many agents to be making sound simultaneously.

13.3.4.2 Sound Reception

Agents have a significant amount of sensor bandwidth devoted to sound re-
ception. An agent’s sound reception area is a forward-facing conical pattern
that, like the sound generation, is sensitive across three separate frequency
bands (see Figure 13.8). Each band has the same propagation and reception
pattern, that is, there are no frequency-dependent differences in the mod-
elling.

At each time step, the conical reception area for each agent is checked for
any other agent that is singing within that area. A simple physical model
[28] controls the propagation of sound through the environment.5 Sounds
arriving at the agent’s cell are summed on a per-frequency basis and the
resultant sensor message is instantiated.

13.4 Interaction

The Eden system has a unique relationship between the physical and vir-
tual components of the system. As shown in Figure 13.1, an infrared video
camera monitors the immediate space of the installation environment, recog-
nising the presence and movement of people in the space. A video digitisation
sub-system performs basic image processing and analysis, such as background
removal and feature detection. This data is converted into a stream of vectors
indicating the location and movement of individuals in the exhibition area,
and used to drive environmental parameters in the virtual simulation. Before
discussing the details of the mappings between position and movement vec-
tors and the simulated environment, we will present a background discussion
on the rationale for the mappings used.

5 When sound propagates in a medium such as air at standard temperature and pressure,
the perceptual mechanism for loudness behaves in an exponential way, as it does for hu-
mans. The relationship between distance and perceived levels is L = 20 log10(P/Po), where
L is the sound pressure level in decibels (dB), and Po is a reference pressure corresponding
roughly to the threshold of hearing in humans [27].
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range of 

listening sensor

singing agents

world lattice

Fig. 13.8 The reception area of an agent. The listening agent will hear agents who are
making sound within the blue area only. A simple physical model controls the perceptual
volume levels for the agent.

13.4.1 The Problem of Aesthetic Evolution

Typically, genetic algorithms evolve toward finding maxima in fitness, where
fitness is some criterion that can be evaluated for each phenotype of the
population. Many systems define an explicit fitness function that can be
machine evaluated for every phenotype at each generation [22].

The Interactive Genetic Algorithm (IGA, also known as aesthetic evolu-
tion or aesthetic selection) is a popular technique that replaces the machine-
evaluated fitness function with the subjective criteria of the human operator.
Aesthetic evolution was first used by Dawkins [10] in his “Blind Watchmaker”
software to evolve two-dimensional, insect-like shapes. Aesthetic selection has
been used to successfully evolve images [29, 30], dynamic systems [31], mor-
phogenic forms [34, 17], even musical patterns and structures [5]. Regardless
of the system or form being evolved, aesthetic selection relies on the user
to explicitly select the highest-fitness phenotypes at each generation. Users
typically evolve to some subjective criteria – often described as “beautiful,”
“strange” or “interesting” – criteria that prove difficult to quantify or express
in a machine-representable form (hence the use of the technique in the first
place).

However, aesthetic evolution has two significant problems:

• The number of phenotypes that can be evaluated at each generation is
limited by both screen area (in the case of visual representation) and the
ability of people to perform subjective comparisons on large numbers of
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objects (simultaneously comparing 16 different phenotypes is relatively
easy; comparing 10,000 would be significantly more difficult).

• The subjective comparison process, even for a small number of pheno-
types, is slow and forms a bottleneck in the evolutionary process. Human
users may take hours to evaluate many successive generations that in an
automated system could be performed in a matter of seconds.

What we would like is a system that combines the ability to subjectively
evolve toward phenotypes that people find “interesting” without the bottle-
neck and selection problems inherent in traditional aesthetic evolution.

13.4.2 Eden as a Reactive System

The solution to the problem described in the previous section is to map the
presence and motion data of people experiencing the artwork to the envi-
ronmental parameters of the virtual environment. Thus, the virtual world in
which sonic agents live and evolve is dependent not only on the simulated
qualities discussed so far, but also on the presence (or absence) of people
experiencing the work and their behavior within the exhibition space. This
couples the real and virtual worlds into a kind of ecosystem where behaviours
in one world influence behaviours in the other, creating feedback loops of be-
haviour.

Eden has no explicit fitness function. Agents continue to be part of the
system based on how well they can survive and mate in the current envi-
ronment. If certain selection pressures are applied, such as food becoming
scarce, only those agents who can adapt and find food will prosper. By driv-
ing environmental conditions from the presence and movement of people in
the exhibition space, agents must implicitly adapt to an environment that
includes aspects of the world outside the simulation.

In the current system, the following mappings are used:

• Presence in the real environment maps to biomass growth rates. The pres-
ence of people around the screen area affects the rate of biomass growth
in that local area of the Eden world. Areas with no people correspond
to a barren environment: little biomass will grow without the presence of
people in the real environment.

• Movement in the real environment maps to genotype mutation rates. The
greater the movement of people in the space, the higher the mutation rate
for rule evolution (see Section 13.3.2.5).

These mappings are based on certain assumptions. First, people will gen-
erally spend time experiencing something only if it interests them. In the
context of experiencing an artwork, people generally may spend a short time
evaluating their interest in an artwork, but, after a short time, if it no longer
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interests them, they will leave. There may be other reasons for leaving, but
in general, the duration of stay will have some relation to how “interesting”
the experience is.

Agents require food to survive. If people are in the real environment, then
food will grow at a more rapid rate. An agent who is making “interesting”
noises, for instance, would have a better chance of keeping a person’s atten-
tion than one who is not. Moreover, an agent making a progression of sounds,
rather than a just a single, repeating sound, is likely to hold a person’s at-
tention even longer. Agents who encourage and hold a person’s attention in
the space implicitly give the environment a more plentiful food supply.

The mapping of people’s movement in the space to mutation rates is based
on the assumption that people will move over an area looking for something
that interests them and, when they find it, will stay relatively still and observe
it. Hence, the movement of people within the real space serves to inject
“noise” into the genome of agents who are close to the source of movement.
Higher mutation rates result in more variation of rules.6 If an agent or group
of agents are holding the viewer’s attention, then less rule discovery is needed
in the current environment, whereas if people are continually moving, looking
for something “interesting,” this will aid in the generation of new rules.

Further details on the dynamics of this component of the system can be
found in [19].

13.5 Results

At the time of this writing, a number of exhibitions of the work have been
completed. An image from a recent exhibition of the work is shown in
Fig. 13.9. A typical exhibition may last several weeks, giving plenty of oppor-
tunity for the agent evolutionary system to take into account the behavior
of people experiencing the work. Certain factors have a marked effect on this
behavior and require specific compensations in the software. For example,
when the gallery is closed, there will be no people in the space, which dimin-
ishes the food supply for the agents. Thus without compensation for gallery
opening hours, the entire population dies out each night!

Analysis of the rules agents use shows that sound is often used to assist in
mating, as would be expected [37], and with the influence of people, sound is
used in other ways as well. Once the environmental pressures from audience
behavior are incorporated into the system, the generation of sound shows
a marked increase and analysis of the rules discovered shows that making
sound is not only used for mating purposes.

6 Most child rules that mutate will not be “better” than the parent rule, but, in general,
the use of mutation does provide the possibility for the system to discover rules that would
not be possible by crossover alone.
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Fig. 13.9 An image of Eden in operation.

The resulting sounds produced by the system do appear to interest and
engage the audience, and combined with the visual experience, Eden does
incite, from visitors, an interest and curiosity in what it is doing. In many
cases, people are not aware of the learning system, camera sensing, even the
fact that what they are experiencing is a complex artificial life system.

Since the system is reactive to people (rather than interactive), there is
no correct or incorrect way to behave except to appreciate the experience.
Anecdotal accounts from people who have experienced the work describe it as
“having a sense that it is somehow alive,” or “like being in a strange forest at
night.” In a number of exhibitions, people returned to the work over a period
of several days, to see how the qualitative behaviour of the virtual environ-
ment had changed. In one recent exhibition, a local businessman visited the
work during his lunch-hour every day for 3 weeks, describing the experience
as “fascinating. . . one that made me more sensitive to my own environment.”
While these are, of course, subjective evaluations, it does appear that Eden
is able to adapt and evolve to create an ongoing interest for its audience.
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13.6 Conclusion

This chapter has described a novel evolutionary ecosystem, where agents
make use of sound to assist in survival. While the main impetus and method-
ologies are based around the development of an artistic system, it is hoped
that some of the ideas presented here may be of interest to those working in
artificial life from other perspectives or with different agendas and applica-
tions.

In summary, a system has been produced that attempts to integrate the
open-ended nature of synthetic evolutionary systems into a reactive virtual
space. The approach used has been to measure components of the real en-
vironment, incorporating them into that of the virtual one, thus enabling
a symbiotic relationship between virtual agents and the artwork’s audience,
without need for explicit selection of phenotypes that engage in “interesting”
behavior.

Further information, including sample sound recordings and video docu-
mentation of the work, is available on-line [20].
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Chapter 14

Enriching Aesthetics with Artificial
Life

Alan Dorin

Perhaps one day our machines will be able to take us beyond environments
that look more and more familiar as we traverse them, into spaces that con-
tinue to surprise us as we explore. Can our engineered artifacts ever rival the
intricacy of nature?

This chapter explores the application of artificial life software for the pur-
poses of generating dynamic works of audio-visual art that act to some degree
independently of the artist. Autonomous artworks slot neatly into artificial
life’s fascination with the construction of digitally instantiated living systems.
This interest itself reflects the long-standing human desire to construct “liv-
ing” images, clay statues and idols, hydraulically powered figures, mechanical
toys, and electrical robots. The chapter focuses on the elements of dynamic
software art that relate to the concept of the sublime in nature and compu-
tation. It is suggested that artificial life and virtual ecosystems provide an
avenue for the production of rich, dynamic works of software art suited to
this exploration.

14.1 Introduction

Artificial life is studied largely as a means of furthering our understanding
of biology and of complex adaptive systems in general. While it has demon-
strated potential in a number of fields, in particular as a means of solving
engineering problems, artificial life techniques have also been applied by some
in the art community. The field promises to continue to enrich artistic prac-
tice and our approach to contemporary aesthetics, even as its initial flash
of popularity wanes. It is this continued application to aesthetics which the
present chapter begins to address.

The techniques of art based in artificial life form a subset of generative art.
This is an artistic practice that adopts an aesthetic of process. This means
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that although the final outcome of a work may depend for its appeal on
the aesthetics of an image, sound, sculpture, or other form, the process that
generates it is also significant. The generative artist is responsible for setting
up initial conditions and a process to act upon them. The work that unfolds is
the result of this series of changes. This is analogous to a biological phenotype
(usually an organism and its behaviour) being the result of the physical and
chemical interactions that govern its development from a genotype (its genetic
material as stored in DNA). Hence, there are conceptual connections between
generative art and artificial life as well as practical ones.

Generative/process-based art is no longer treated as a fresh field for aes-
thetic exploration. Fascination with its possibilities seemed to fade sometime
after its heyday in the late 1960s. This of course was the time of the Cyber-
netic Serendipity exhibition in London, Jack Burnham’s text Beyond Modern
Sculpture, and much other activity linking art and computer technology in
innovative ways. Recently, artists involved in artificial life have retrodden
some of the ground cleared by their predecessors in cybernetic art and have
cleared some new space for themselves. Now that artificial life is also unfash-
ionable, perhaps a serious assessment of its past and future contributions can
be made while side-stepping the hype that initially accompanied the field.

The following section begins by discussing the sense of wonder people often
feel while contemplating nature or simple physical systems. This is then re-
lated to the tradition of the sublime in aesthetics. The chapter then discusses
means of employing artificial life techniques to explore the computational
sublime such that a computational system emulating the physical world’s ca-
pability to generate complexity and novelty might be devised. In particular,
the chapter describes the application of metaphors adopted from Ecology to
create virtual ecosystems. This avenue has been explored by a few artists to
whom it appears to offer the potential to generate and control complexity in
creative software systems.

14.2 Wonder and the Sublime in Art and Nature

People stare contemplating the ocean as it swells and crashes on a rocky shore.
They gaze fixedly into a fire until the sting of smoke raises their awareness.
People may lie on their backs and follow passing clouds or marvel at the
glittering of stars. There are many things that fascinate us, that mesmerise
us, that cause us to forget ourselves and our situation as we become lost in
a timeless appreciation of nature.

There are also circumstances under which we may have an experience that
reminds or forces us to consider our insignificance: the feeling that accompa-
nies the vastness of spaces such as the ocean, a desert plain, or an endless
mountain range, or the feeling of insignificance when contemplating the age
of the universe or the years over which a trickle of water has eroded a canyon,
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for example. These expanses can nevertheless be made subject to reason. We
are mentally equipped to discuss the concept of infinity, even if we are unable
to quite fathom it intuitively. This paradoxical experience Kant has labeled
the mathematical sublime [15].

Likewise, Kant introduced the dynamically sublime as relating to encoun-
ters with the ferocity of nature and the sense of vulnerability this entails,
coupled with the triumph of reason over fear. In his own writings on the sub-
lime, Edmund Burke took the view that the sensation of incomprehensibility,
the fear of hopelessness or of danger, coupled with the knowledge that one is
able to reason about something beyond one’s senses or one is not inadequate
or in danger, causes a kind of delight through internal conflict – a sublime
experience [19]. That is to say, there is an element of the sublime, perhaps not
an artistic element, in resisting the urge to flee as a tiger roars behind bars.
One’s body responds with fear to the situation, but reason easily overcomes
this and forces the body to stand its ground – generating a sense of delight
tinged with terror. In the case of a painting, the viewer’s separation from a
wild scene of stormy seas or a vast desert is not enforced by iron bars, but
by the picture plane. This is coupled with the knowledge that “it is only a
picture.”

How can a work of art, specifically a work of computer-based, generative
software, approach the sublime? While there is a vast amount of literature on
the sublime in art dating back as far as Longinus [23], the focus of this chapter
is narrower. An earlier publication [25] outlined the computational sublime.
This arises from viewing the computer in terms of its capability to perform
logical operations at a rate and on a scale vastly outside our own abilities in
this area. Due to its speed, the computer is able to mediate between our hu-
man perceptual apparatus and (practically) infinite computationally defined
spaces. Yet, since we are the makers and programmers of these machines, our
power of reason is not only able to overcome but also to define these very
spaces that our senses are unable to grasp fully.

Before discussing computer-based art in more detail, some much simpler
artifacts, possibly just for a moment, rival natural wonders in the fascination
they hold. How does this relate to the sublime? It seems that there are a
number of methods by which the sensation may be encouraged and that
some of these have been recreated in artefacts specifically for this purpose.
They are categorised below for convenience.

Marking Time

Maybe the simplest examples of our mesmerizing creations include a stream
of liquid running from a water-clock or fountain, the shifting sands of the
hourglass, and the oscillating pendulum. Each of these marks time in its
own manner: one a continuous stream; the next a finely particulate flow;
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and the last in clear, discrete stages. The eternal flow, the innumerable sand
particles, the never-ceasing oscillations confront us with the infinite through
this visible marking of time. Although these natural processes were utilised
in desk ornaments to amuse the bored office worker of the 1980s, even in
“serious” art, simple processes like this may give a sense of the sublime.

Exposing Spaces

The wire-suspended mobiles of Calder successfully employ mechanical pro-
cesses in a manner accepted within the art world [29]. Calder’s playful pieces
are captivating and elegant for all their simplicity. Their workings are laid
plainly before the viewer, all that they are is apparent at a glance – and
yet this is not so, for their movement brings a vitality and opens a space
the static sculpture does not possess. The universe a mobile sweeps out is
contained within its wires, rods, and solid forms, so in one sense they may
be held in (and created from) the palm of a hand. Yet, as they are touched
by invisible air currents, their inner complexity is exposed.

Intricacy

Many a visitor has been fascinated by the button-driven clockwork and gear-
ing of exhibits in traditional science museums. Here, a sense of wonder at the
machine in its entirety arises, but also a fascination with the intricacy of the
mechanism. Each gear meshes with another, each component is configured
“just so,” and together the pistons and wheels turn in harmony to produce a
composite that might drive a clock, crush a quartz boulder, pump water, or
power a vehicle. This is not the beauty of a crashing ocean or a sunset, but
the charm of peering into an ant’s nest or through a microscope at a drop of
pond water. There is something in these systems that causes one to marvel
at a complexity that is just beyond grasp.

Defying the Natural Order

There is still another wonder to be described here, that of somehow defying
the natural order of things. It appears wonderful that a huge boulder might
come to be balanced on a slender rock column, that a gyroscopic top remains
on its tip despite interference, that a bird or a massive aeroplane can remain
suspended in the air or a colossal steel ship can float, and that a magnet can
push another away without touching it. These things, of course, are dealt
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with to some extent by simple science. Sadly, only children may wonder at
these things. Yet, implicitly, these interactions remain in need of continual re-
explanation since each instils apprehension through not being quite “right.”
That boulder or spinning top might topple at any moment. That bird should
fall from the sky and the ship ought to take on water. The magnets are
behaving unnaturally. All of these systems cause one to ponder “How can
this be?” even if one can reason about the answer through science.

Curiosity

Related to all of the above phenomena, in particular the previous one, at-
tention can also be held by riddles and intellectual pursuits. Included in this
are mind games such as chess, paradoxes, and mathematical puzzles, but
also scientific enquiry. These all captivate us through our drive to learn why
something behaves as it does, especially if it seems to defy the natural order
of things. Of the algorithmic art exhibition at Xerox PARC in 1994, Bern
writes: “The appearance of algorithmic visual art should raise the temporal
questions of ‘How is this made?’ and ‘Can this be extended?’ ” [3]. While
the use of the term should is of questionable accuracy, nevertheless there is
something of relevance in the idea that algorithmic art may invite a question
and arouse curiosity as much as it satisfies visual aesthetic criteria associated
with traditional media.

Any of the preceding devices (and no doubt many others) may be used
to convey a sense of the sublime. All of them expose the limitations in our
comprehension, experience, or endurance. However, simultaneously, we have
the power to reason about these phenomena, to encapsulate them in a word
or other representation, or we may just have the opportunity to walk away
unharmed. Of course, the context in which the preceding occurrences and ob-
jects are encountered will influence the extent to which the sensation derived
relates to art. However, the potential to employ any of these basic devices for
artistic purposes in search of the sublime experience is present.

14.3 Sublime Software

Now we return to the issue at hand: writing artificial life software for artistic
purposes. There are, of course, infinitely many reasons why an artist might
wish to do this. Let us suppose in this instance that the goal was software that
surprised not only a viewer but also the artist who fashioned the work. This
is in keeping with a proposal made elsewhere by the author [10]. The surprise
required might not be a trivial one-off shock, but a genuine and continuing
fascination with the novelty of the outcome generated, combined with a sense
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of being lost in a complex world beyond one’s grasp. The work requires an
aesthetic quality that exhibits the character listed above as intricacy and also
at the level listed as curiosity.

It so happens, of course, that the techniques of artificial life are well suited
to this application, Conway’s Game of Life cellular automata (CA) being
a case in point [17]. CAs are fascinating for their ability to (practically, if
not theoretically) produce ever-fresh patterns. Like clockwork automata or
Calder’s mobiles, the patterns produced may fall well within a limited do-
main, often even a cycle. However, especially in a large-scale configuration,
there is always some aspect of the system that remains to be discovered in
the vast universe these interactions define.

The innovative design pair, the Eames, understood this aspect of a com-
plex visual field. They used their understanding effectively in the 1964 New
York World Fair exhibit for IBM to build a multiscreen cinema. The screens
displayed related material simultaneously in such a way as to make it impos-
sible to view all of the footage in detail. Viewers could watch the spectacle
as a whole and see it as a multiscreen montage or they could pick and choose
elements to observe in detail – much as one examines a complex clockwork
machine, a microscopic world, or a beehive – piecemeal.

On a related topic, Tufte indicated the benefits of presenting information
in parts grouped carefully together, “Panorama, vista and prospect deliver
to viewers the freedom of choice that derives from an overview, a capacity
to compare and sort through detail” [33]. Such considerations also assist
painters in creating worlds that reward careful study of their detail. For
example, Hieronymous Bosch’s Garden of Delights (ca. 1500) portrays a world
over which the eye may wander at will as it takes in relationships between
couples, groups of people, sections of garden, and so on. Of course, where
the object under study is static, a viewer may take the time to examine
and re-examine the various parts of a display and avoid missing anything of
importance (as Tufte would prefer). When the object is constantly changing,
as with multiscreen cinema or a Game of Life run, an investigation of one
element results in irrevocably missed information about another. Under these
circumstances, no matter where a viewers’ attention is focused, they are left
with the impression that an abundance of chances were missed. Their faculties
are fundamentally unable to absorb all that is before them.

While one of the attractions of the Game of Life occurs at the visual level,
the software is also an attractive subject for philosophical discussions con-
cerning emergence and complex systems [5]. It contains a vast number of
possibilities within the bounds of its simple virtual physics. While its transi-
tion rules may be considered in terms of biological analogy (overcrowding and
mutual support of living cells, for instance), the result is still an intrinsically
digital system. Cells are in one of exactly two states, and their behaviour is
completely deterministic. Yet, from this emerges a milieu of flickering forms
that somehow suggest life, without mimicking it.
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The question “How does it work?” is implied by any given run of the
Game of Life in which it is recognised that the output is not at all random,
but highly organised and structured according to its own internal rules. Even
once the viewer know these rules, that they are capable of creating such
a bewildering outcome remains a source of fascination to the artificial life
researcher and to the newly informed student alike.

14.4 The Betrayal of Points and Lines

Having briefly discussed the concepts of wonder and the sublime, this section
now addresses the representational schemes that may be used to bring the
digital realm to the realm of sublime experience. Of particular interest is
the way in which points of light may be used to give the bounded computer
screen the appearance of intricacy and an ability to expose unbounded space
(see the earlier categorization of methods for approaching the sublime). This
has already been touched upon while discussing the Game of Life in the
previous section.

Taking the lead of Kandinsky, the discussion begins with the geometric
point, an invisible thing too perfect to exist [21]. An artist may approximate
it by instigating a collision between a sharp tool and a flat plane. The artist’s
point has character. It is not one of Plato’s Ideal Forms, but it is beautiful
for all its imperfection.

The point may also be displayed on a CRT or LCD monitor. The size and
shape of the smallest displayable shape are dictated by the display technology.
Beyond a single pixel, the character of the point may also be altered, albeit
with less potential for variation than in the analog world.

Anyone familiar with Islamic or Roman mosaics, medieval tapestry, Pointil-
list painting, the television screen, or a computer monitor is aware that, in
vast numbers, the point may vanish in an ocean of its kind. Here it becomes
simply one atom in a larger texture – mobs of points are not as honest as
individuals.

If the draftsman drags a pen across the page, another form results: a line.
Like the point, the line seems unpretentious, especially if it is straight and
completely surrounded by white space. However, place a few straight lines
together and important transformations may take place. For example, the
triangle is born of three lines and is eventful for its ability to enclose space on
the plane and thereby define a boundary and, with it, an object. The second
transformation of relevance here is the apparent shift into three dimensions
brought about by the Cartesian axes. This is also born of three lines and
is eventful for its ability to suggest space that extends beyond the plane in
which the lines are drawn.

Under some circumstances the three lines that represent Cartesian space
may appear simple and flat; under others, however, the third dimension
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“pops” out of the plane at the viewer. It is outside the scope of this chap-
ter to discuss how this second transformation occurs; the interested reader
is referred to [20]. For now, it is sufficient if it is acknowledged that at least
in some cases, three Cartesian axes suggest a volume where there is none,
this being (of course) the principle that underlies Renaissance painting and
a host of styles up to and, of relevance to this discussion, including mod-
ern computer graphics. Using only lines, one may build a two-dimensional
representation of a solid object in unbounded three-dimensional space.

To return at this stage to the Game of Life, the system is typically dis-
played as, strangely enough, a grid of points. The choice of the point as the
basic element of the simulation excludes the misleading suggestions of line
drawings. Still, even within this limited visual space, the CA is successful at
its evocation of life and with it intricacy. How can similar systems expose or
suggest spaces that are infinitely large and intricate?

14.5 Moving Beyond Two Dimensions

The Game of Life and CA-based generative art such as IMA Traveler [12]
work in the domain of points and suggestion, as outlined. With a computer
monitor it is easy to represent lines and surfaces using a multitude of similarly
lit pixels.

IMA Traveler, while working with points in a plane, recursively sub-divides
these, giving the viewer the sensation of a bottomless plummet. This is an
interesting perceptual phenomenon when it is considered that by continu-
ously zooming in on a two-dimensional image (the points are not modeled
in three-dimensional space), one can instil the sensation of motion through a
continuous and infinitely detailed universe. The fractal zooms of the 1980s are
perhaps the most familiar and overused form of this same trick. In their work
Powers of Ten (1968), the Eames also utilised rapid scale shifts to produce
a film of great effect.

The CA and its artistic derivatives draw attention for evoking natural phe-
nomena and for prompting the viewer to determine the underlying principles
by which they operate. Not all artificial life software is of this type, even if it
is important to the research field for other reasons. One may propose a full
range of works of which the CA-based software falls near the center. This
spectrum runs from abstract systems such as Ray’s Tierra [28] to clearly
representational systems such as Sims’ Virtual Creatures [31].

Ray’s work emphasised the principles of selection and evolution through
rapid reproduction and has itself proved to be a useful model and a starting
point for other researchers such as Pargellis [26] (discussed later) to further
the study of evolutionary systems. However, Ray’s work does not have the
visceral appeal that visual cellular automata may have. Tierra’s space of
machine code instructions is abstract and not typically represented in such
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a way as to be comprehended by the eye. A fascination with Tierra arises
through careful study and is predicated upon an understanding of the core
workings of the system and the way in which the instructions interact and
occupy memory. This contrasts with the CA, in which the rules need not be
known to understand the system at one level. It is this first level of visceral
comprehension that prompts theorizing about what underlies the behaviour
of the CA cells.

At the opposite end of the spectrum, Sims’ Virtual Creatures fascinate
researcher and layperson alike. His jumping, swimming, running and limping
creations are so full of character that one easily takes a leap of faith by re-
ferring to them as “creatures,” even though their bodies are clearly rendered
cuboids. This leap erases any chance of a viewer posing the question “How
does it work?” because it is implied by the visualization that these are crea-
tures! While a graphics researcher or software engineer may see Sims’ video
and wonder at the means of producing such marvelous results, this question
is not implied by the creatures’ visualization as it is by the CA. The virtual
creatures do not operate according to unknown rules; we are tricked into be-
lieving that they operate according to the rules all creatures obey. There is
seemingly nothing here to discover.

This aspect of Sims’ creatures is largely due to the way in which they
are visualised – the representations of three-dimensional space, of solids and
their surfaces, of friction and other forces are all customary. In this case,
the visualization is prescriptive, rather than evocative. McCormack’s Eden,
which was constructed as an artwork (see Chapter 13 in this volume and [24]),
similarly represents organisms and their real-world behaviours. However, it
displays them using iconic forms on a two-dimensional grid (mapped to an
“X” in three-dimensional space) and in a world nevertheless governed by rules
of survival, energy, mating, and space, based on those of the real world. In
contrast with Sims’ work, this underlying link to the physical world is not
prescribed and takes some experience to decipher – if a viewer is able to deci-
pher it at all. Although the system is still considerably more representational
than the Game of Life, what remains is an aesthetic visual experience akin
to viewing an intricate CA, coupled with the implicit question “How does it
work?”

This discussion of Ray’s, Sims’, and McCormack’s work is in no way in-
tended as an evaluation of their worth. These examples only serve to illustrate
the various ways in which a viewer may contemplate a generative process
and its outcome and, therefore, the various ways in which the devices may
be employed for artistic purposes. The next section takes current generative
artworks and artificial life software as a starting point. It explores areas into
which artists might move to further expand the sense of wonder their works
inspire.
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14.6 Spaces That Build Themselves

An artist aiming to produce a system capable of sustaining a continuous in-
crease in complexity shares a goal with many artificial life researchers [2].
Why would an artist wish to do such a thing? To return to the ideas dis-
cussed earlier, the artist searching for the computational sublime would find
it, perhaps in its ultimate form, by generating an experience of open-ended
complexity governed by processes instantiated on a computer. The loss of
control would be complete – the system would build its own structures and
define its own universe. It would do this according to human-engineered rules,
yet in a way that defies humans to anticipate its outcome.

This system would be following the code a programmer laid down and run
on a machine an engineer designed. Would this device behave in a way about
which we could easily reason? In this conflict between control and riot lies
the sublime. Mary Shelley knew this well – her friends and contemporaries
were much interested in the sublime – when she vividly penned Frankenstein
and his monster run amok [30]. For a historical overview of theories of the
sublime in this period, see [19].

How does one write code that will produce the hierarchically organised
composite structures associated with life and ever-increasing complexity? If
we consider the cells of a CA grid as analogous to molecules and, consider
higher-level emergent structures such as gliders as analogous to organelles
(a far stretch when one considers the complexity of interactions a physical
molecule or an organelle may undergo, and the feeble interactions between
neighbouring cellular automata), can we code the system so that still larger-
scale groupings of structure occur? Can it produce structures at the level of
single cells, a multicellular organism, or an ecosystem?

In theory, even gliders, spinners, and other structures of the Game of Life
may be carefully arranged into larger-scale units (such as a self-reproducing
machine incorporating a universal Turing machine, if one has the patience to
arrange its 1013 cells [5]). The question remains though “Is it possible that
such a higher-level structure will appear of its own accord?” If software could
be arranged to facilitate this, the structures that arose would do so on their
own terms and might therefore behave in ways not envisaged by the creator.
This might provide an effective source of complexity to assist an artist in his
search for the computational sublime.

If theories about the process of natural increase in complexity (such as
those extensively discussed by Kauffman, for example [22]) hold true in vir-
tual systems, then the elements in the virtual space might self-assemble into
simple stable structures. Perhaps, if the virtual physics and chemistry of
the world allowed it, simple reactions might occur, possibly some in auto-
catalytic and cross-catalytic sets such as those described by Dorin [6]. These
might form the basis of a recognizable topology with the bare bones of a
metabolism. What next?
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As natural evolution demonstrates, one way to achieve an increase in com-
plexity beyond this is to have the structures engage in a reproductive battle
against one another for resources (see [32]). Pargellis’ system Amoeba man-
ages to initiate reproduction randomly. It establishes conditions in which
practical CPU and memory resources are sufficient for a replicator to appear
spontaneously from the prebiotic soup [26]. In a Tierra run, such an event is
much less likely than in Amoeba. Hence, Ray initially seeded Tierra’s popula-
tion with a replicator to allow evolution to commence. The problem of coding
a simulation that can make the leap from self-organization to spontaneous
evolution of structure seems (as far as this author is aware) unmade by any
researcher.

Setting aside the leap from self-organization to evolution, even though sys-
tems solely employing artificial evolution are readily implemented, getting
these to mimic natural evolution’s progression from molecules to organelles
to cells and on to multicellular creatures and ecosystems has proved a stum-
bling block. Although worlds such as SOCA give rise to auto-catalytic and
cross-catalytic sets, Amoeba may randomly give rise to replicators and Poly-
world [35] gives rise to simple communities, there has been limited success
(arguably no success) in writing software that encompasses more than one
of these important level shifts without resorting to abstractions so high that
the simulations they are contained within become trivial.

The reasons for this difficulty are not yet clear. In part, current compu-
tational resources may be to blame. However, this is quite likely only a part
of the story, and maybe only a small part at that. Rasmussen et al., for
instance, has suggested that the bottom level of our simulations are not com-
plex enough to give rise to the kind of multilayered outcomes we desire. They
proposed that only by adding complexity to the bottom-level elements of a
simulation can we expect to gain extra levels of organised structure on top
of any earlier ones [27]. This claim seems to contradict the “complex systems
dogma” that explicitly treats complex phenomena as emergent from simple
interactions. Since in Rasmussen et al.’s work, notions of “complexity” and
“adding complexity” are only loosely defined, it is not clear exactly how and
to what extent this might be the case. This is discussed in detail elsewhere [8].

Rasmussen et al. supported their view with a claim about a model they
had constructed. Gross and McMullin [18] argued that this model does not, in
fact, demonstrate the emergence of multiple levels and that a similar outcome
can be obtained without adding complexity at the base layer.

It is outside the scope of this chapter to become too deeply embroiled
in this battle. Rasmussen et al.’s suggestion may in some sense prove true.
Either way, further questions need to be addressed simultaneously. Might
there be a limit to all this “complexity adding”? How much added complexity
is necessary to move from one level to the next? Questions like these remain
open and continue to be debated.

Besides issues raised above, there may be fundamental problems with cur-
rent approaches to solving the problem. It is possible that simulations on
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current computer architectures and employing computer programs as they
are currently understood will turn out to be practically limited in their abil-
ity to produce the kind of truly open-ended complexity increase required.
Issues of available resource consumption are an obvious reason why infinite
increase is impossible; however, are there reasons why any interesting string
of increases in complexity may be impossible with current programming and
computer technology?

One potential means for overcoming these limitations has been identified
– several artists, the author included, have employed virtual ecosystems in
order to harness the complexity of interactions between organisms and their
environments over evolutionary time periods. The goal of one day creating a
virtual space as multifaceted as nature may perhaps be realised by adopting
ideas from Ecology. This idea is discussed next.

14.7 An Ecosystemic Approach to Writing Artistic
Software

A virtual ecosystem is a software simulation of organism and environmental
interactions within a real ecosystem. There is a tradition in artificial life,
ecology, and even other fields, of constructing such models. For instance, some
early systems include Polyworld [35], Tierra [28], Echo [16], Sugarscape [14]
and Avida [1]. These all model relationships amongst organisms within virtual
environments inspired by biological counterparts. Purely creative and artistic
applications of these systems have also been devised. The author has been
directly involved with a few as follows:

Listening Sky is an interactive sonic virtual reality environment in which
evolving inhabitants, represented visually as patches of particles, move across
the surface of a globe singing to one another and passing their songs onto
their offspring (Fig. 14.1). Songs are employed to attract mates and therefore
govern the fitness of individuals [4].

Meniscus is an interactive work in which virtual invertebrates breed and
swim. The invertebrates are visualised as a series of connected discs with
tufts of cilia-like hair (Fig. 14.2). Humans can adjust the depth and agitation
of the water to differentially favour the creatures that evolve. The creatures
have preferred depths and certain levels of agitation they find favourable
for breeding; hence, humans indirectly control the virtual population and
therefore the appearance of the work at any time [9].

Eden is an immersive sonic and visual composition written by Jon Mc-
Cormack in which an evolving population of creatures roam a space of vir-
tual plants and minerals that is projected into a gallery onto central screens
arranged in a large X. The creatures communicate their whereabouts and
the location of resources to one another audibly. As they produce offspring
adapted to their environment, musical patterns emerge for mating calls, food
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Fig. 14.1 Listening Sky, generative, interactive virtual-reality installation (detail) [4].

Fig. 14.2 Meniscus, generative, interactive installation (detail) [9].

indicators, and so forth. Humans indirectly alter the conditions in the virtual
environment by moving in physical space around the screens monitored by
infrared sensors [24].

Autumn Squares is a textural, tapestry-like generative animation in which
populations of coloured rectangles roam a two-dimensional grid. The grid
is representative of the paths through any human construction (a city, an
office building); the rectangles (people who populate the construction) wander
down its paths meeting and avoiding one another depending on the kind
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of “boxes” they are (or “fit into”). Rectangle communities form fanning,
intermingling clusters of colour in an evolving visual field [10].

Plague (Diseased Squares) is an epidemiological visualisation and sonifi-
cation exploring the impact of disease on the population dynamics of simple,
evolving coloured agents. A replicating disease is spread by inter-agent con-
tact. It infects agents of particular colours more or less virulently depending
on the disease’s co-evolved preferences for hosts. Agents attempt to evolve
immunity to the co-evolving diseases whilst being constrained by their need
to attract mates [11].

The interactive aesthetic selection and artificial evolutionary technique
introduced by Richard Dawkins and popularised for computer graphics by
Karl Sims has been widely used in artificial life art. One merit of the technique
is its avoidance of prespecified, explicit fitness functions [7]. Whereas the
need for these functions may not present many difficulties in engineering
applications where the final goal is well understood (e.g., a bridge must span a
river without collapsing under load, a sorting algorithm must order numbers,
etc.), in artistic and creative endeavours these functions are as troublesome
to specify as the question “What is beauty?” is to answer. A drawback of the
interactive technique for artistic exploration is the bottleneck introduced by
the user’s manual selection of fit individuals for reproduction. Only a single
evolutionary chain may be explored in this manner at any one time. Selections
of one or a few fit individuals are usually made from a tiny population of
only around sixteen to twenty-five individuals. Many potentially interesting
avenues will always remain unexplored and even unimagined.

In contrast, the “ecosystemic” approach permits simultaneous, multidirec-
tional and automatic exploration of a space of virtual agent traits without
any need for a prespecified fitness function. Instead, the fitness function is
implicit in the design of the agents, their virtual environment, and its physics
and chemistry. If the system is designed to mimic real ecosystems in its for-
mation of niches and habitats, it gives rise to parallel and simultaneous evo-
lutionary trees that interact with one another over evolutionary time periods.
Although even this system cannot explore vast areas of the potential pheno-
typic space, it is at least able to cope with large, interacting populations of
phenotypes. There are several ways in which the design of such a system may
be used as the basis for generative software art. A few include the following:

• Agents’ individual appearance or sonic outbursts may be artistic works
(Meniscus and Listening Sky above).

• Agents’ individual behaviours or constructions may be artistic works
(swarm-built architecture, ant pheromone trails).

• Agents may generate (draw or sound) a collective structure that becomes
the observable artistic output (Eden).

• A property of the ecosystem as a whole (e.g., its population dynamics)
may constitute or generate a dynamic artistic output (Plague).
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Combinations and alternatives to these ideas are also potentially interest-
ing avenues for artistic expression. The character of the virtual ecosystem
that the author has found most appealing is also fourfold:

• It demonstrates complex dynamics over fine and coarse timescales.
• It may explore large search spaces independently of human input.
• It has the potential for user-events to influence its behaviour.
• It has the potential to allow artist-laid constraints on the search spaces.

These traits are discussed in detail elsewhere [10] and the third, in par-
ticular, is discussed in [13]. These are by no means intended to represent
universally appreciated characteristics of generative art, merely aspects of
computer-based works of interest to the author. They are also traits he has
observed in the works of others. It should come as no surprise then that an
artist in search of computationally generated creativity described by these
traits would settle on ecosystems as an avenue worthy of exploration. Ecosys-
tems are, after all, the dominant source of the Earth’s (maybe even the Uni-
verse’s) novelty and complexity. It is this complexity that has given rise to
us and also our concept of the sublime! Since the evolutionary process can
be simulated in isolation and turned to aesthetic purposes, it seems only a
small step to attempt to turn the processes of Ecology to creative endeavour.

14.8 Conclusion

Although the limitations of our abilities to code multiple-level hierarchies are
apparent, clearly this does not imply that our art is similarly constrained. The
element of the sublime in a Caspar David Friedrich canvas does not arise from
the intricacy of its mechanism, but from contemplating nature and our place
in it from behind the safety of a picture plane. Even more apparent is the
irrelevance of intricacy and nature (taken literally) to postmodern interpre-
tations of the sublime such as those discussed by Jean-Francois Lyotard [34].
Hence, works such as the dark canvasses produced in Mark Rothko’s later
years may be discussed in terms of their contribution to the postmodern sub-
lime. The sublime does not lie in a work, rather the work may act to trigger
a sublime experience in a viewer. In the case of Lyotard’s ideas, this relates
to a sense of formlessness and therefore of things that may be better left
unpresented.

Since our machines are faster at mathematics than we are, they will always
maintain the ability to play the role of mediator between us and the vast
computational spaces outside our direct experience. Perhaps one day these
same machines will be able to take us beyond spaces that look more and more
familiar as we travel through them, into spaces that increase in complexity
and continue to surprise us. Here the sublime experience of nature’s vastness
and ferocity may be rivaled through a sense of the computational sublime. We
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will be sensing a space rendered maybe with points on a plane and computed
on-the-fly by our fastest machines, and it will seem to us as terrible and
delightful as standing on an icy summit surveying all the world.
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Index

A

actuator 87, 116, 401
acute inflammatory response (AIR) 194
aesthetic selection see genetic algo-

rithm, interactive
agent personality 269
agent-based modeling (ABM) 38, 79, 111,

153, 187, 262
Amoeba 425
art 73, 103, 374, 394, 415
artificial chemistry (AC) 319, 343

continuous space 344
artificial intelligence (AI) 61, 102, 107
attractor 225
autopoiesis 275
Avida 3, 434

scheduling 18

B

backwards in time 224
basins of attraction 224, 225

layout graph 245
learning 246
mutation 246
trajectory 225

battlefield 268
BehaviorSpace 193
Berta’s Tower 76
biomedical 184
Boids 97, 118
Boolean networks 217
brain 129
Braitenberg vehicles 100, 264
breve 79, 434
Brownian dynamics (BD) 344, 351, 355

C

cellular automata (CA) 82, 216, 264, 344,
420

3D 233
chain-rules 255
dimensions 235
Game of Life 227, 420

gliders 229

guns 228

neighborhood 234

rule 236

self-reproduction 228
cellular automaton 344

chemical

computing 329, 330

evolution 332

organization 324

reactions 352

chemostat 30
chemotaxis 143

client–server architecture see networking

collision detection 89, 93, 111

combat

camouflage 306

command and control 301
Lanchesterian 276

models 260

self-organized criticality 282

targeting logic 308

weapons 307

command-line interface (CLI) 109, 337
communication 116, 395

complexity 27, 151

life 129

computer-aided design (CAD) 144

constructionist 156

content addressable memory 246

control system 114
controller object 86

cooperation 98, 128

Core War 5

crossing over 23, 121, 292, 373, 404

cybernetics 394

D

Daisyworld 398

demes 20

Derrida plots 250
differential equation 152, 346, 347, 355

digital evolution 71

Digital Spaces 83

439



440 Index

discrete dynamical networks (DDN) 217
multivalue 231

parameters 230
pseudo-neighborhood 235
rule-mix 236

Discrete Dynamics Lab, DDLab 215, 435

dissipative particle dynamics (DPD) 344,
351, 355

distributed simulation 96, 109
domain decomposition algorithm 356,

357
dynamic knowledge representation 184

E

Echo 395

ECJ, Evolutionary Computation in Java
99

ecosystem 30, 76, 143, 395
Eden 395, 437
effector see actuator

EINSTein 259, 436
power-law scaling 281

embodiment 107
epidemic 168

influenza 55

ESPresSo 358, 436
evolution

exogenous/endogenous 143
Lamarckian 404

steady-state/generational 127
evolvable code 94
excitable media 237

F

fireflies 117
flocking see swarms

fractals (and combat) 278
Framsticks 107, 434
fuzzy control 134, 140

G

games 80, 145, 154
Garden of Eden 225

density 253
genetic algorithm 70, 127, 289

interactive 144, 373, 408, 428
genetic debugging 122
genetic encoding 120

genetic programming 94, 99, 121, 395
unwitting distributed 99

genetic regulatory network 221

genetics 120, 134
genome 6, 11, 97, 404
genotype 17, 63, 120, 289, 375, 416
geographic information system (GIS) 43,

120, 193

H

HubNet architecture 193
Humans vs. Machines narrative 62

I

IDE, integrated development environment
85

infrared video detection 397
ISAAC 263

K

k-totalistic rules 232

knowledge sharing 128

L

LAMMPS 364, 436
Lanchester equations 259
Langevin equation 346, 350
lattice molecular automaton (LMA) 344
LCS, learning classifier system 399
learning through play 63, 144
learning, peer to peer 72
Lindenmayer system 121
Living Melodies 395
Lotka–Volterra 57, 143, 260

M

market 56
MASON toolkit 83
mathematical sublime 417
Mechastick 112
metabolism 18, 121, 196, 330, 358

model validation 199, 302, 336
conceptual 186

molecular dynamics (MD) 346
multiple organ failure (MOF) 194
music see sound
mutation 15, 121, 246, 292, 373, 404

N

NetLogo 183, 435
NetLogoLab 193
networking 89, 109
neural network 63, 114
Newton’s Second Law of Motion 346



Index 441

Newtonian physics 64, 111, 175

O

OpenGL 93, 110, 158
OrgTools 333, 436

P

P-systems 329
Pandora’s calculus 73
Pask’s ear 394
perception 139, 142
phenotype 16, 120, 121, 376, 404, 408, 416
phylogeny 30, 132
pleiotropy and polygeny 122
Polyworld 425
predator–prey 57, 142
programming

.Net 41
FramScript 123, 124
JavaScript 123
object-oriented 86, 123
Objective C 90
Push 94, 98
Python 42, 91, 310
SmallTalk 90
StarLogoBlocks, visual 160
steve 90

Q

quantum computing 98

R

random map 217
reaction-diffusion 237
receptor see sensor
Repast 37, 83, 434
reverse algorithms 254
robotics 92, 107
rules

classifying automatically 251
λ-parameter 248
rule-space 249
rule-table 236
Z-parameter 249

S

SBART 371, 437
SBEAT 376, 437
scientific method development 72
scripting 42, 123
semiosis 143
sensor 63, 87, 116, 400

sepsis 194
similarity 131, 138
simulation of physics 92, 111

2D 65
3D 79, 107

Smoldyn 362, 436
Smoluchowski equation 353
Sodaconstructor 61
Sodarace 61, 434
Sonomorph 376
sound 374, 406, 426

space
continuous/discrete 80

space-time patterns 242
initial state 237
input entropy 249

Spartacus 362, 436
spatially configured stochastic reaction

chambers (SCSRC) 195
speciation 144
StarLogo 83, 151

TNG 435
state space 225
stimulus–reaction 139
stochastic differential equation 347, 355
Strandbeest 73
Swarm library 83
SwarmEvolve 97
swarms 97, 118, 284
symmetry 131, 136, 235
synthetic biology 330
System Dynamics Modeler 193
systemic inflammatory response syndrome

(SIRS) 194
Systems Biology 195

Markup Language (SBML) 322
Workbench (SBW) 323

T

temperature 351
terrorism 311
thermostats 350
Tierra 5, 425
tourism 55

U

Uhlenbeck-Ornstein process 347, 351

V

vector eye 133, 139
Verlet algorithm 355
virtual machine 10, 123, 164

NOP instruction 12




