
Chapter 8
Memory and Storage

640K [of main memory] ought to be enough for anybody.

– W.H. Gates [alleged, almost certainly misquoted, but still amusing]

Abstract In Chapter 5 we skirted around the idea of long-term memory much like
we did with the idea of computation and the ALU. This was an attractive option at
the time because it meant we could focus on the processor itself, but the concept
of memory and storage is of course central to the operation of the processor: every-
thing it does is oriented toward computation on (large numbers of) values we must
store somewhere if the program being executed is not trivial. To examine these is-
sue in more detail, in this chapter we investigate the design and implementation of a
range of memory and storage devices focusing on those most pertinent to processor
design. Specifically, we include registers and main memory already discussed pre-
viously, describing in basic terms how they can be modelled in Verilog. Ultimately,
our goal is to build a memory hierarchy capable of supplying data and instructions
to our processor data-path via a standard mechanism; to achieve this efficiently and
robustly we include an investigation of cache memory and issues such as error cor-
rection.

8.1 Introduction

A memory, or more generally a storage device, enables us to store items of data
for a period of time. Such devices represent a crucial part of any computer system
since, for example, we need to store values somewhere while the processor performs
computation on them. However, even though the speed of processors has increased
roughly in line with the increase in transistor performance, memory access time has
improved much more slowly; only a few percent each year, about 30% in ten years.
This is a massive problem: for example, it does not matter how fast we can perform
computation in our ALU if loading and storing operands is slow. Furthermore, and
perhaps more importantly, we have already seen that the fetch-decode-execute cycle

269



270 8 Memory and Storage

requires the processor to fetch instructions; we perform at least one load from the
memory where instructions are stored in each processor cycle. If this fetch cannot be
completed quickly, the entire fetch-decode-execute cycle will be dominated by the
cost of accessing memory. This problem is often called the memory wall [68] or von
Neumann bottleneck and it demands we, as computer architects, think carefully
about all aspects of memory and storage device design.

Throughout this chapter, we try to refer only to memories rather than the more
general case of storage devices which might include magnetic and optical disks
for example. This might seem a bit odd but very roughly, only when discussing
their implementation are the two different: abstractly we can follow Chapter 5 and
describe either as an infinite array MEM in which we can store n-bit binary vectors.
Two main functions are required to access the structure:

LOAD(x) : {0,1}∗ → {0,1}n, LOAD(x) = MEM[x]
STORE(x,y) : {0,1}∗ ×{0,1}n →⊥, STORE(x,y) = MEM[x] ← y

In this context x is an address or index, a name or label used to identify a particular
element or location. Given an address x, the LOAD function retrieves an element
while the STORE function updates an element with the value y. Essentially, the main
differences between what we might normally call memories and storage devices are
just how we implement the LOAD and STORE functions in a concrete way, and
exactly how addresses refer to particular elements.

We can categorise our memory or storage devices according to a number of key
characteristics:

• A short-term or volatile memory retains stored data while the device is powered;
when it is powered off, the content is lost. A long-term or non-volatile memory
solves this problem by retaining stored data even after the device is powered off.

• A Read-Write (RW) or mutable memory can be used to overwrite or store
new data items and retrieve existing items. The content of a Read-Only (RO) or
immutable memory cannot be altered; one can only retrieve existing data items.
Read-Only memories are often abbreviated ROMs.

• When using a random-access memory, one can store or retrieve any data item;
one is not restricted in terms of the order the data items can be accessed in. A
sequential-access memory imposes restrictions on the order data items can be
accessed in; one must access them in sequence. Random-access memories are
often abbreviated RAMs.

• A primary memory is connected directly to the processor; usually such a device
will be used to store active items of data which are required for the current task.
A secondary memory does not usually have a direct connection to the processor,
it is accessed as a peripheral via some other interface.

Thus far we have talked about memory being used to store and retrieve operands
for the ALU. In order for the ALU to operate however, we need both operands and
operators: the values that decide which arithmetic function the ALU performs. Thus
we can place stored content into one of two classes: data, which are the values we



8.1 Introduction 271

Figure 8.1 A military quality sub-miniature vacuum tube. (Reproduced by permission un-
der the GNU Free Documentation License, photographer: Unknown, source: http://en.
wikipedia.org/wiki/Image:CV4501.JPG)

operate on, and instructions, which tell us which operation to perform. Given this
definition, and recapping for completeness on the discussion in Chapter 4, one can
reasonably construct two distinct forms of memory organisation:

Harvard Architecture A Harvard architecture treats data and instructions as sep-
arate entities. One would expect two separate memory hierarchies, and hence two
interfaces to said hierarchies, dedicated to storing exclusively either data or in-
structions.

von Neumann Architecture A von Neumann architecture takes the opposite ap-
proach. There is no inherent difference between data and instructions; we have
already seen that both are just numbers, it depends on how you interpret those
numbers. For example, the number 12 might represent the integer value twelve if
used as an ALU operand or represent the code used to invoke the addition func-
tion if used as an ALU operator. Thus a von Neumann architecture has a single,
unified memory hierarchy that is used to store both data and instructions in the
same way.

8.1.1 Historical Memory and Storage

In Chapter 4 we introduced EDVAC, the first practical stored program computer,
which was based on the stored program architecture. EDVAC is typical of even
modern computers in that it used three main forms of storage device: a vacuum
tube-based accumulator to store very short term data that resulted from computation
by the ALU, a mercury delay line-based volatile memory for longer term data and
instructions, and a paper tape reader for non-volatile, long-term storage.

The vacuum tube was the technology replaced by smaller, more reliable devices
such as transistors. Essentially they perform the same function, but are realised us-



272 8 Memory and Storage

Figure 8.2 The infamous Harvard Mark II “bug” ! (A U.S. Navy photograph now in pub-
lic domain, photographer: Unknown, source: http://en.wikipedia.org/wiki/Image:
H96566k.jpg)

ing a different technology; as such they can be used to construct logic and storage
devices. A typical vacuum tube, or thermionic valve, looks very much like a light
bulb: it uses a glass or ceramic envelope to hold a vacuum that surrounds an electron-
producing filament (or cathode) and a metal plate (or anode). When the filament is
heated, electrons are produced into the vacuum which are attracted by the plate re-
sulting in a current between the two. In simple terms, this implements a basic switch:
when the filament is heated the switch is on, when it is cooled the switch is off. Al-
though similar logic and storage devices can be constructed using a vacuum tube as
one would construct using a transistor, the scale of such devices is limited by reli-
ability. Specifically, the filament slowly degrades due to impurities in the tube; the
vacuum in the envelope becomes less pure as time progresses. Furthermore, the fil-
ament is stressed during the heating process which will eventually lead to it burning
out; early users realised that this happened particularly often during powering up or
down of a vacuum tube-based device. Although cooling devices eased this problem,
tube failure was one of the most common causes of early computer crashes.

In fact, the terms “bug” and “debug” in relation to programming both stem (at
least in part) from failure of this sort. In 1945, programmers of the Harvard Mark
II computer developed by Howard Aiken, discovered a moth inside one of the com-



8.1 Introduction 273

ponents; the unfortunate insect had shorted the component which had resulted in
the computer malfunctioning. Although the terms had been used in various areas of
engineering previously, Grace Hopper and her programmers are often cited as in-
troducing them in the context of computer science. Certainly this real-life bug is so
famous that it is still on display in the Smithsonian Museum of American History !

A mercury delay line is essentially a tube filled with liquid mercury with a pair
of microphones and a speaker at each end. To store a value, the speaker at one end
sends a signal representing the value into the mercury tube; due to the high speed of
sound in mercury, the signal then travels along the tube faster than in a medium such
as air. Upon receiving the signal at the other end via the microphone, it was relayed
to the speaker and sent down in the opposite direction. This process was repeated,
effectively storing the value as a perpetually regenerated looping signal within the
tube. To read the value, one simply intercepted the signal as it was received by
one of the microphones. To update the value, one again intercepted the signal as it
was received by one of the microphones but replaced it with the new value before
passing it on to the speaker for reinsertion into the tube. EDSAC stored 512 words of
memory within thirty two delay lines. As one can imagine, the cost and toxicity of
mercury presented a problem in terms of their use. Other problems were presented
by the speed of sound in mercury, which limited the number of bits stored by each
tube to around 576, and the fact that this speed changed as the mercury temperature
altered ! Even so, the devices were much more reliable than other technologies of
the time and have been used in computers as recently as the 1960s.

Although Babbage had proposed to program his Analytical Engine via a system
of paper cards, perhaps the first use of punched card storage was by inventor Joseph
Marie Jacquard in the early 1800s. Jacquard developed a weaving machine or loom
whose operation, i.e., the pattern of weaving, was determined by a primitive pro-
gram encoded as punched holes in a card. Roughly speaking, each hole in the card
controlled a needle in the machine, each card represented one row of the intended
design. The weaving process was therefore simplified from manual configuration
of the machine, to semi-automatic weaving whereby the operator simply swapped
in the right card at the right time. Later, in 1890 Herman Hollerith used a similar
storage medium to encode US census data. He developed a mechanical tabulating
machine which was able to process the cards, each of which represented the details
of an individual, and produce statistics at an unprecedented speed: the 1890 cen-
sus was processed in less than a quarter of the time the 1880 census had taken to
complete by hand. In 1896 Hollerith founded the Tabulating Machine Company, an
early incarnation of the company we now know as IBM, to exploit his invention.

Paper tape storage is a fairly natural progression from punched cards and the two
mediums share much of the same technology. Instead of individual cards, paper tape
is a continuous ream of paper which is notionally divided up into rows. Each row
allowed for a number of holes to be punched; early tape systems allowed five holes
which allowed for the use of Baudot character encodings, later systems allowed up
to eight which allowed for more modern encodings such as ASCII. The tape would
have perforated sprocket holes on the edge which allowed it to be fed through a tape
reader which, using either a mechanical or optical mechanism, was able to translate



274 8 Memory and Storage

Figure 8.3 Maurice Wilkes with an EDSAC mercury delay line. (Copyright Computer Laboratory,
University of Cambridge. Reproduced by permission under the Creative Commons Attribution
Licence, photographer: Unknown, source: http://www.cl.cam.ac.uk/Relics/jpegs/
delay_lines.jpg)



8.1 Introduction 275

Figure 8.4 Experimental EDSAC memory tank. (Copyright Computer Laboratory, University of
Cambridge. Reproduced by permission under the Creative Commons Attribution Licence, pho-
tographer: Unknown, source: http://www.cl.cam.ac.uk/Relics/jpegs/edsac99.
23.jpg)



276 8 Memory and Storage

Figure 8.5 Experimental EDSAC magnetic tape rack. (Copyright Computer Laboratory, Uni-
versity of Cambridge. Reproduced by permission under the Creative Commons Attribution Li-
cence, photographer: Unknown, source: http://www.cl.cam.ac.uk/Relics/jpegs/
edsac99.19.jpg)

Figure 8.6 A fanfold DEC paper tape containing a PDP-11 test program. (Reproduced by per-
mission under the GNU Free Documentation License, photographer: Unknown, source: http:
//en.wikipedia.org/wiki/Image:Papertape2.jpg)



8.1 Introduction 277

Figure 8.7 An IBM 5081 data processing card containing a line of DOS JCL program. (Re-
produced by permission under the GNU Free Documentation License, photographer: Dick Kutz,
source: http://en.wikipedia.org/wiki/Image:Punch-card-5081.jpg)

each row of holes into a binary word representing a character. Although the tape
could be prepared off-line by the operator (encoding either a program of instructions
or simply data values) and read at high speed, two main problems existed. Firstly,
the tape was somewhat unreliable in the sense that it was prone to damage and for
holes to be unreadable due to inaccuracies in the punching mechanism. Secondly,
the tape mechanism was difficult to rewind; the paper tape storage device could thus
be described as sequential-access only.

8.1.2 A Modern Memory Hierarchy

The previous discussion of historical memory and storage devices within the ED-
VAC computer was no accident; the three different levels of device live on today
in modern computers although implemented using more modern technologies. The
different levels form what is commonly termed the memory hierarchy or storage
hierarchy, a tiered description of how the different levels compare to and interact
with each other. The different levels of the memory hierarchy are managed by dif-
ferent parts of the system; access to the registers is performed directly by a program
executing on the processor, access to a disk is usually performed by the operating
system on behalf of the program during execution.

Ideally we would like very large, very fast memories but because of physical
constraints this is usually impossible. To approximate the ideal, we use a combi-
nation of technologies. Roughly speaking, as one reads from top to bottom of the
pyramid in Figure 8.8 the devices get farther away from the processor, are able to
store more elements, are slower to access, and are less expensive to build but larger



278 8 Memory and Storage

Fast

Slow CheapLarge

Small

Cache

Memory

Disk

Registers Expensive

Figure 8.8 A modern memory hierarchy.

Level 1 2 3 4

Name Registers Cache Memory Disk
Size O(1kB) O(1MB) O(1GB) O(1GB)
Access Time O(1ns) O(10ns) O(100ns) O(1000ns)
Bandwidth O(10000MB/s) O(1000MB/s) O(100MB/s) O(10MB/s)
Cost O(100$/MB) O(100$/MB) O(10$/MB) O(0.1$/MB)
Managed By Programmer Processor OS OS

Table 8.1 A tabular description of typical price/performance characteristics for memory hierarchy
components.

in physical size. The registers are at the top: they hold small-sized elements but are
very quick to access. The next levels are the caches and main memory, which are
larger but slower to access due to the fact that they are often implemented as a sep-
arate device to the processor. The next levels incorporate longer-term storage in the
shape of magnetic and optical disks and tapes; these can hold the largest amount of
information but are the slowest to access. The idea of course is that we should use
a combination of all these devices, using the right one for the right job. Where we
need to store information that need to be accessed quickly so we can feed operands
to the ALU, we use a register. Where we need to store less transient information in
larger quantities for the lifetime of the program, we use the main memory. Where
we want to store vast amounts for information for periods of time which span when
the device is powered, we use a disk or tape.



8.1 Introduction 279

12
15 14 13 12

8
11 10 9 8

4
7 6 5 4

0
3 2 1 0

Address 32-bits� �

3
3

2
2

1
1

0
0

Address 32-bits� �

(a) 8-bit resolution (byte addressable). (b) 32-bit resolution (word addressable).

Figure 8.9 8-bit versus 32-bit memory resolution.

8.1.3 Basic Organisation and Implementation

8.1.3.1 Resolution

In reality we cannot build an infinitely large memory so the size of MEM must
be set to say m elements; addresses used to access MEM are then bit-vectors of
length  log2(m)!. Clearly there is a trade-off here: the larger the addresses we have,
the more elements we can address for example. More exactly, if we have larger
addresses we can either address many elements, each of which store elements of a
small size, or fewer elements of a larger size. This relates to the resolution of the
memory. Essentially the resolution dictates the size of each addressable element.

Consider an example using 10-bit addresses. We can clearly address 1024 byte
sized elements in the memory, however we could also address 1024 word sized
elements if we want. In the former case we have that the total memory size is 1024
bytes but, given 32-bit words, in the latter case the total size is 4096 bytes. Figure 8.9
attempts to demonstrate the difference; in each case memory elements are drawn as
boxes with the address in the top-right corner, the elements are arranged in 32-bit
groups with the starting address of the group to the left. In Figure 8.9a each 8-bit
element has a distinct address and is individually accessible; in Figure 8.9b one can
only access each 32-bit element.

Typical processors use byte addressed memory where each element is a byte;
each byte has a unique address. So the operation LOAD(x) retrieves the byte at
address x and STORE(x,y) updates the byte at address x with value y.



280 8 Memory and Storage

12
15 14 13 12

8
11 10 9 8

4
7 6 5 4

0
3 2 1 0

Address 32-bits� �

12
12 13 14 15

8
8 9 10 11

4
4 5 6 7

0
0 1 2 3

Address 32-bits� �

(a) Little-endian ordering. (b) Big-endian ordering..

Figure 8.10 Little-endian versus big-endian memory ordering.

8.1.3.2 Endianness

Chapter 1 touched briefly on the problem of endianness, now we can see the prob-
lem in a more concrete setting. Suppose the memory MEM is byte addressable, i.e.,
holds 8-bit values, and we want to load a 32-bit word that starts at address 0. Clearly
we would have to transfer four 8-bit bytes to construct this word; the question is,
which are the most and least-significant bytes ? We could legitimately load the byte
at address 0 and make this the least-significant continuing so that the byte at ad-
dress 3 is the most-significant. As long as we were consistent, it would be equally
as valid to do exactly the opposite: load the byte at address 0 and make this the
most-significant continuing so that the byte at address 3 is the least-significant. The
solution, which must be consistently enforced between load and store operations, is
dictated by the endianness of the processor. The first choice means the processor is
little-endian, the second choice means the processor is big-endian. Some processors
can operate in both modes, one at a time, with their endian semantics selected by
setting a flag in the status register when powered on. MIPS32 is an example of such
a design; we will assume a little-endian system except where noted otherwise.

Again, Figure 8.10 attempts to demonstrate the difference; in each case memory
elements are drawn as boxes with the address in the top-right corner, the elements
are arranged in 32-bit groups with the starting address of the group to the left. In this
case, Figure 8.10a has the 8-bit elements grouped in a little-endian order (the least-
significant element is to the right, the most-significant to the left) while Figure 8.10b
groups them in a big-endian order.

One can easily write a C function to test if a processor uses a little-endian or big-
endian byte ordering; Listing 8.1 demonstrates this technique. The function places
a 32-bit constant into a value shadowed by an array of four 8-bit bytes; we can then
test which of the bytes in the value have been placed in which locations in the array
and deduce the endian semantics as a result.



8.1 Introduction 281

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main( int argc, char* argv[] )
5 {
6 unsigned char x[4];
7 unsigned int y;
8

9 *( unsigned int* )( x ) = 0x03020100;
10

11 y = ( ( unsigned int )( x[ 0 ] ) << 0 ) |
12 ( ( unsigned int )( x[ 1 ] ) << 8 ) |
13 ( ( unsigned int )( x[ 2 ] ) << 16 ) |
14 ( ( unsigned int )( x[ 3 ] ) << 24 ) ;
15

16 if( y == 0x03020100 )
17 printf( "little endian\n" );
18 else
19 printf( "big endian\n" );
20 }

Listing 8.1 A short C program to test the endianness of a processor.

8.1.3.3 Alignment

Again suppose the memory MEM is byte addressable, i.e., holds 8-bit values, and
that we want to load a 32-bit word. In theory, we can load the four bytes that would
be used to construct our word from any address. For example, we might load 0,1,2
and 3 meaning the address of the word was 0, or load 1,2,3 and 4 meaning the
address of the word was 1. However, in practise there is some difference between
these two cases.

Where an address x ≡ 0 (mod w) we say that it is w-aligned. Less formally,
in our case above if x is a multiple of four, then we say that x is word-aligned. The
address 0 is word-aligned as are 4, 8, 12 and so on; the address 1 is not word-aligned.
Given that the word size is typically a power-of-two, and more exactly a power-of-
two number of bytes, processors often make some distinction between aligned and
unaligned addresses when used in load and store operations. An aligned address
can usually be accessed more quickly than an unaligned address. Firstly, this is
because the byte address of an aligned word address can more easily be calculated
and vice versa: one simply adds or removes bits from the least-significant end of
the address. For example, when we load a 32-bit word we can add two zero bits
to the least-significant end of the word address to get us the byte address; word
address 0 becomes byte address 0, word address 1 becomes byte address 4 and so
on. Secondly, as we will see later, if the addresses are aligned it makes it much easier
to design and build other elements of the memory hierarchy such as caches.

Sometimes the distinction is explicit; an ISA will include different instructions
for aligned and unaligned memory access and cause an error if, for example, an un-
aligned address is used with an instruction expecting an aligned address. Sometimes
the issue is implicit; the ISA only has a single set of access instructions that a micro-



282 8 Memory and Storage

1 module hilevel_mem( input wire clk,
2 input wire rst,
3

4 input wire [7:0] addr,
5 input wire [7:0] data_w,
6 output wire [7:0] data_r,
7 input wire mrq,
8 output reg mrs,
9 input wire re,

10 input wire we );
11

12 reg [7:0] data[0:3];
13

14 always @ ( posedge mrq )
15 begin
16 if ( re )
17 data_r = data[ addr ];
18 else if( we )
19 data[ addr ] = data_w;
20

21 #6 mrs = 1;
22 @( negedge mrq );
23 #6 mrs = 0;
24 end
25

26 endmodule

Listing 8.2 A Verilog module that implements a high-level, 4-element byte-addressable memory.

architecture may execute quicker or slower depending on the alignment properties
of the address.

8.1.3.4 Implementation

Accesses by the processor to the memory via the address and data buses that connect
them are carried out according to a protocol we will call a memory transaction;
this is really a special case of a more general asynchronous bus protocol. Because
it is asynchronous, the protocol cannot rely on the clock to keep the processor and
memory in step with each other. Instead, they use several signals to implement a
handshake, the memory side of which is implemented in Listing 8.2, whereby each
device only progresses once the other is ready:

1. The processor sets the addr signal to the address in memory it wants to access.
If it is performing a LOAD operation, it sets the read enable or re signal to high;
if it is performing a STORE operation, it sets the write enable or we signal to
high. Finally, it sets the memory request or mrq signal to high indicating to the
memory that it wants to actually perform the access.

2. As soon as the memory notices the mrq signal is high, it starts the access. If
re is high, it retrieves the value at address addr and drives this onto the out-
put data_r; if we is high it sets the value at address addr to equal the in-
put data_w. Completion of the actual operation will take some time; this is
termed the memory latency. Once the operation is completed, the memory sets



8.1 Introduction 283

the memory response signal or mrs to high to indicate to the processor it has
finished.

3. As soon as the processor notices the mrs signal is high, it sets mrq to low to
complete that side of the handshake. In the case of a LOAD operation, it stores
the value passed to it on data_r into wherever it needs to.

4. As soon as the memory notices that the mrq signal is low, it sets mrs to low to
complete that side of the handshake. Both processor and memory are now ready
to continue performing more memory accesses or other operations.

The Verilog module uses a 2-dimensional register (confusingly also called a mem-
ory), to store the values. When the memory request signal mrq is raised, the access
process is invoked: if the read enable or re signal is set, the data_r output is as-
signed to the value in memory addressed by addr; if the write enable or we signal
is set, the value in memory addressed by addr is set to the input data_w. Once
the operation is completed, the module introduces an artificial delay, to model the
memory latency, before raising the memory response signal mrs to indicate the end
of the transaction. The behaviour of the module is shown in Figure 8.11. In this
case, the test stimulus performs two STORE operations to addresses 1 and 2 with
the values 10 and 20. Notice how the mrq and mrs signals are used to synchronise
and enforce an order to the transaction. Two LOAD operations are then used to read
addresses 0 and 1; reading address 0 gives an undefined result since we have not
yet stored anything in it, reading address 1 gives the value 10 which was previously
stored.

Because the access speed, or latency, of the devices lower down the memory
hierarchy is slower than those at the top, the unit of transfer is typically bigger
as well. Note that this is not strictly related to the bus width: one might have to
make several bus transactions to transfer a chunk of data, the unit of transfer relates
to the size of the chunks requested at one time. For example, one might expect
to read a single 32-bit value at a time from a register file, but a 4kB page at a
time from a disk. By reading larger chunks at a time, the number of accesses will
be smaller: this somewhat compensates for the overhead associated with a single
access. Although we do not cover it in any depth, this issue is related to the concept
of access via a burst mode. The idea is that several accesses close together in time,
i.e., straight after each other, can be performed quicker than the same number of
accesses performed at arbitrary points in time. Again, this compensates somewhat
for the overhead associated with a single access, this time by sort of treating several
accesses in a row as one.

The problem with this basic module is that it is a little too abstract in the sense
that we have glossed over the issue of how the 2-dimensional register is actually
constructed using known low-level components: a scalable design needs more care-
ful consideration. Figure 8.13 details, in a rough sense, a way of constructing larger
memories; it shows a 4-element memory which holds n-bit words (given the dashed
boxes represent the logic equivalent of continuation dots). The idea is that each row
of the main body of the diagram on the right-hand side is a group of n memory
cells that each store a 1-bit value. Since we have already described how they work,
here we use D-type latches for our memory cells; we will see later how memory



284 8 Memory and Storage

0
10 

ns
20 

ns
30 

ns
40 

ns
50 

ns
60 

ns
70 

ns
80 

ns
90 

ns
100

 ns

X
X
X

1
2

0
1

X
X
X

1
0

2
0

X
X
X

1
0

Ti
me

c
l
k

r
s
t

a
d
d
r
[
7
:
0
]

d
a
t
a
_
i
[
7
:
0
]

d
a
t
a
_
o
[
7
:
0
]

m
r
q

m
r
s

r
e
w
e

Figure 8.11 Behaviour of the high-level, 4-element, byte-addressable memory.



8.1 Introduction 285

0
4 
ns

8 
ns

12
 n
s

16
 n
s

X
X
X

1
2

0
1

X
X
X

1
0

2
0

X
X
X

0
1
0

Ti
me

c
l
k

r
s
t

a
d
d
r
[
7
:
0
]

d
a
t
a
_
i
[
7
:
0
]

d
a
t
a
_
o
[
7
:
0
]

m
r
q

m
r
s

r
e

w
e

Figure 8.12 Behaviour of the low-level, 4-element, byte-addressable memory.



286 8 Memory and Storage

1 module lolevel_mem( input wire clk,
2 input wire rst,
3

4 input wire [7:0] addr,
5 input wire [7:0] data_w,
6 output wire [7:0] data_r,
7 input wire mrq,
8 output reg mrs,
9 input wire re,

10 input wire we );
11

12 wire [3:0] w0;
13 wire [3:0] w1;
14 wire [7:0] w2[0:3];
15 wire [3:0] w3[0:7];
16 wire [7:0] w4;
17

18 assign w0[0] = ( ˜addr[0] & ˜addr[1] );
19 assign w0[1] = ( addr[0] & ˜addr[1] );
20 assign w0[2] = ( ˜addr[0] & addr[1] );
21 assign w0[3] = ( addr[0] & addr[1] );
22

23 genvar i;
24 genvar j;
25 genvar k;
26 generate
27 for( i = 0; i < 4; i = i + 1 )
28 begin:gen_smem_i
29 assign w1[i] = we & w0[i];
30

31 for( j = 0; j < 8; j = j + 1 )
32 begin:gen_smem_j
33 dtype_ff t( .D ( data_w[j] ),
34 .Q ( w2[i][j] ),
35 .en( w1[i] ) );
36

37 assign w3[j][i] = w2[i][j] & w0[i];
38 assign w4[j] = | w3[j];
39 end
40 end
41

42 for( k = 0; k < 8; k = k + 1 )
43 begin:gen_smem_k
44 assign data_r[k] = re ? w4[k] : 8’bZ;
45 end
46 endgenerate
47

48 endmodule

Listing 8.3 A Verilog module that implements a low-level, 4-element byte-addressable memory.

technologies replace these with more efficient cells for this specific context. The
left-hand side of the diagram implements an address decoder: the address addr is
used to select which row we are dealing with using a similar approach as we have
seen when constructing a demultiplexer. For example, if addr0 = 1 and addr1 = 0,
we are dealing with row 1; the horizontal word select signal for that row is set to
1. In this example, the memory is said to have one read port and one write port
in the sense that one value can be read or one value written at a time. For some
applications, it might be advantageous to have more than one read or write port: for



8.1 Introduction 287

ad
dr

0

ad
dr

1

data_w0

data_w1

data_wn-1

data_rn-1

data_r1

data_r0

we

re

D Q

en

D

D

D D

D

D

D D

D

D

D

Q

Q

Q

Q Q

Q

Q

Q

Q

Q

Q

en

en

en en

en

en

en en

en

en

en

word

word

select

enable

Figure 8.13 A diagram of a low-level, 4-element, n-bit memory device.

example, in a memory used as a register file it is common to have two read ports
so two operands can be read at the same time. In such a case we can simply repli-
cate portions of the design that are associated with reading or writing and address
decoding. The key thing to realise is that this design is very regular; there is a lot of
repetition of basic blocks of logic which means fabrication will be somewhat easier.
The knock on effect is that the design is also scalable in the sense that we can easily
add more elements or ports to the memory if we are willing to pay the associated
cost in space.

When we want to read a value from a row, i.e., an address in the memory, we
set the read enable signal to re = 1. Setting the write enable signal to we = 0
causes the word enable signal for the row we are interested in to 0 meaning that
the latches do not receive a signal on their en inputs and a new value is not stored
in the latch. Instead, the Q outputs of each latch in the row are ANDed with the
word select signal for that row, so that only the output of that row is selected, and
fed through to the memory output datar to complete the read. Notice that we have
fed the output through 3-state enable gates: only when re = 1, i.e., we are actually
performing a read operation, are the output wires driven with a value. This allows



288 8 Memory and Storage

256 byte 8-bit memory

addr0

addr1

addr2

addr9

data0

data1

data2

data7

256 byte 8-bit memory

256 byte 8-bit memory

256 byte 8-bit memory

512 byte 8-bit memory

512 byte 8-bit memory

addr0

addr1

addr2

addr9 data7

data2

data1

data0

1024 byte 8-bit memory

addr0

addr1

addr2

addr9

data0

data1

data2

data7

we rebank0 bank1 bank0wewe rere

Figure 8.14 Three different organisations for a 1024 byte memory device.

the output wires (or the data bus more generally) to be shared with other devices or
perhaps be used for input and output. When we want to write a value in a row we
set the read enable re = 0 and write enable we = 1 which, when combined with the
word select for that row, causes a pulse to be sent along the associated word enable
signal into the en ports for the latches in that row. This causes them all to store the
value passed into their D input from dataw. Notice that there is no handshake logic
associated with this implementation: access occurs instantaneously aside from the
effects of propagation delay.

The design is implemented in Listing 8.3 using the same interface as previously.
The wire vector w0 and the associated continuous assignments implement the ad-
dress decoder; one can view components of w0 as word select signals for the asso-
ciated row. The rest of the design is built using a generate statement whose main job
is to instantiate the D-type flip-flops that actually store values. In addition, compo-
nents of w1 act as the word enable signals for the associated row and w4 collects
values from a given column into a single signal that is fed through to the output:
we use a final continuous assignment to implement the 3-state style behaviour such
that when the re signal is low, the memory output drives no value. The associated
behaviour when the device is asked to perform the same accesses as the abstract
memory is shown in Figure 8.12.

8.1.4 Memory Banking

Implementing a simple memory device as described above is attractive in that in-
creasing the size of memory simply means replicating central parts of the basic
design. This is excellent from the point of view of manufacture since replication
of similar basic components makes the process much easier. However, if for ex-
ample you were tasked with building a byte addressable memory device capable
of storing 1kB of content, there are several other possible approaches. Instead of
designing a single monolithic device which stores 1024 bytes, one might for exam-



8.1 Introduction 289

ple opt to build the device from smaller memories, say four memories each storing
256 bytes or two memories storing 512 bytes each. This concept is called banking,
the collection of smaller memories is called a memory bank. To allow the user to
specify which memory within the bank a particular access is targeting, extra inputs
to the memory are required; Figure 8.14 describes three choices for organisation
of the 1024-byte memory and adds bank selector signals bank0 and bank1 to ad-
dress the two and four memories in the respective cases of having a banks of 512
and 256 bytes. The internal logic which uses these signals to access the component
memories is not shown; clearly one would expect it to resemble some type of de-
multipliexer and multiplexer whereby the input and output signals are connected to
the component memories depending on the values of the bank selectors.

There are several reasons why this latter approach might be better. Firstly it pre-
vents scale from becoming a problem: although our previous design was easy to add
to, a limit emerges where doing so starts to become cumbersome from the point of
view of issues such as wire length and so on. Secondly, it allows designers to focus
their attention more. That is, one might decide to specialise in designing and build-
ing memory devices for use by others in larger systems. By using memory banking
the memory designer can concentrate on an efficient design for the basic building
block and the system designer can simply use this rather than having to perform any
alteration. Introduction of standard memory sizes and interfaces makes this an even
more attractive proposition.

Finally, and perhaps most importantly, the use of banked memory allows us to
somewhat improve memory access performance. Consider the use of our imaginary
1kB, byte addressed memory within a 32-bit processor design. Since the word size
of the processor is 32 bits, loading or storing a word to or from the memory re-
quires four accesses each loading or storing an 8-bit value. With a single monolithic
memory, these accesses will probably need to be performed sequentially since the
address decoder can only support one access at a time (unless there is more than one
read or write port). With the banked design where we use four 256-byte memories,
we can split our word into four and store 8-bits of it in each memory in the bank.
As a result, since the four 8-bit parts of the word are scattered amongst different
memories, they can all be accessed in parallel reducing the time required. This is
sometimes called interleaved access. To instrument this, we need to feed the bank
selector inputs with appropriate values so the right address maps to the right bank. In
the case of using four 256-byte memories to build the 1024-byte device, one would
drive bank0 and bank1 with address inputs addr0 and addr1 and then disregard these
when using them as the actual address fed to the memory (say addr′). As such, this
would result in the following mapping:



290 8 Memory and Storage

1 int main( int argc, char* argv[] )
2 {
3 int A[ 1024 ];
4 int B[ 1024 ];
5 int C[ 1024 ];
6

7 for( int i = 0; i < 1024; i++ ) {
8 A[ i ] = B[ i ] + C[ i ];
9 }

10 }

Listing 8.4 An example program to demonstrate the effects of temporal and spatial locality.

addr = 0000(2) → bank = 00(2) addr′ = 00(2)
addr = 0001(2) → bank = 01(2) addr′ = 00(2)
addr = 0010(2) → bank = 10(2) addr′ = 00(2)
addr = 0011(2) → bank = 11(2) addr′ = 00(2)
addr = 0100(2) → bank = 00(2) addr′ = 01(2)
addr = 0101(2) → bank = 01(2) addr′ = 01(2)
addr = 0110(2) → bank = 10(2) addr′ = 01(2)
addr = 0111(2) → bank = 11(2) addr′ = 01(2)

...
...

...

Or, in simpler terms, address 0 maps to address 0 in bank 0 while address 1 maps
to address 0 in bank 1 and so on. As a result, we can access all four bytes held in
address 0 within banks 0 . . .3 in parallel rather than in sequence.

8.1.5 Access Locality

The principle of locality is used to characterise when and where accesses to a stor-
age device are performed. The idea is that given a sequence of accesses, the device
will exhibit two different forms of locality:

Definition 34. Temporal locality means that recently accessed locations are likely
to be accessed again in the near future. Spatial locality means that two locations
with addresses that are close to each other will be accessed close together in time.

Listing 8.4 demonstrates both forms of locality. Consider the instructions that make
up the function; the loop performs 1024 iterations over instructions that add ele-
ments of arrays B and C together and store the result in A. Given one access to the
instruction that performs an addition of the i-th elements of B and C it is likely that
the instruction will be accessed again. Only when the loop terminates will this be
false so 1023 times out of 1024 one access correctly predicts another, i.e., there is
temporal locality in the instruction accesses. Now consider the data items in array
A which we access sequentially. If we access the i-th element of A there is a good



8.2 Memory and Storage Specifics 291

Q
¬Q

en

Q
¬Q

en

V
dd

(a) A functional view. (b) A concrete SRAM cell.

Figure 8.15 A diagram showing transistor level SRAM cell design.

chance we will access the (i + 1)-th element as well; again this prediction is cor-
rect 1023 times out of 1024. Similar arguments can be made for the (i + 2)-th or
(i + 3)-th elements although access to these given an access to the i-th element be-
comes increasingly unlikely; either way we clearly have spatial locality in the data
accesses.

It turns out that most programs we run on a processor will exhibit both forms of
access locality, they are not confined to contrived examples like the above. Thus,
given knowledge of the recent past we can, with reasonable accuracy, predict which
instructions are likely to be required in the near future. The idea then, is to use the
memory hierarchy to improve performance by exploiting the principle of locality.
We try to keep often used data and instructions, the working set, in the faster parts
of the memory hierarchy which are typically smaller and closer to the processor.

8.2 Memory and Storage Specifics

8.2.1 Static RAM (SRAM) and Dynamic RAM (DRAM)

Static Random Access Memory (SRAM) is a method of implementing memory
that uses roughly the same technique as using latches or flip-flops; we saw a small-
scale example of such an approach earlier on. However, for specific use in our mem-
ory design, SRAM cells can be more efficient than a general-purpose latch or flip-
flop. Figure 8.15a shows a functional view of an SRAM cell: in concept, it is built
from two NOT gates which hold the value in a loop (note that this very roughly
matches the approach used by the mercury delay line). The gate behaviour means
that one can read the value Q on one side before it is negated so we can read ¬Q
on the opposite side. This functional view is implemented in Figure 8.15b using a



292 8 Memory and Storage

total of six transistors, four of which store the 1-bit value and two of which are used
to access the value. Notice that the four storage transistors are arranged so that the
resulting circuit has two stable states which are used to represent the values 0 and
1 (one can think of these as similar to the stable states in a latch). Access to the
cell is performed via a control signal labelled en; this signal controls the two ac-
cess transistors. To read the value stored by the cell, one pre-charges the Q and ¬Q
wires to 1. When the en signal is set to 1, either ¬Q or Q is discharged depending
on the stored value; if 1 is stored then ¬Q is discharged, but if 0 is stored then Q
is discharged. To write a value into the cell we discharge Q or ¬Q and pre-charge
the other, which then forces the state to be stored as required when the en signal is
set to 1. Since SRAM cells are based on a similar design to a latch, they only retain
their value for as long as they are powered. The cells have a fast access speed, in
the order of 10ns, but are quite expensive in terms of the space they require. As a
result SRAM is used in situations where performance is more important than size;
examples include cache memory and register files.

From a simplistic point of view, Dynamic Random Access Memory (DRAM)
makes the opposite trade-off to SRAM. Each cell is implemented using a small
capacitor that is charged appropriately to store a 1-bit value. Since capacitors leak
charge over time, the DRAM cell needs to be periodically refreshed; this dictates
some extra, external control logic that implements the refresh cycle at appropriate
intervals so that the content is only lost if the device is powered off. Where the
refresh logic is built into the memory itself, we sometimes term the result Pseudo-
Static RAM since it can be used as if it were SRAM even though internally it is
DRAM.

Access to the capacitor in a DRAM cell is slow (in the order of 50ns) when
compared to an SRAM cell. However, the DRAM cell has a major advantage in
terms of size however: it is significantly smaller than an SRAM cell, up to a quarter
of the size in fact. This means DRAM cells can be closely packed and result in larger
practical memories. Examples of use include main memory which is typically orders
of magnitude larger (and slower) than cache and registers. However, there is a large
taxonomy of DRAM-based memory designs; all operate in roughly the same way
but are typically specialised or improved to suit a particular application:

Video DRAM (VRAM) As described, our normal DRAM architecture has one
read and one write port but only one of those can be used at once; one can perform
a load or a store but not both simultaneously. This is unattractive in some settings,
the obvious example being memory that stores data ready to be sent to some
display device. VRAM solves this problem by offering two ports, one for reading
data onto the display device and one for the processor to update the data read for
display.

Extended Data Out (EDO) DRAM The innovation of EDO DRAM was to use
pipelining techniques in respect to memory accesses. That is, an EDO DRAM
would allow access to the memory to start before the previous one had entirely
completed. Although we discuss pipelining in Chapter 6, this roughly means that
the time taken to perform one access (the latency) is unchanged but the number
of accesses completed per unit of time (the throughput) is increased.



8.2 Memory and Storage Specifics 293

Synchronous Dynamic RAM (SDRAM) In normal DRAM, an enable signal
has to be presented to the memory which provokes it to perform some action;
it has to react as quickly as it can when this signal is raised. SDRAM does away
with this mode of operation by clocking the memory so that load and store oper-
ations can only be initiated on positive clock edges. Thus, the processor is able to
control how quickly the memory operates and the added synchronisation allows
for more complex pipelining than in simpler designs such as EDO.

Double Data Rate (DDR) SDRAM DDR SDRAM extends basic SDRAM by
allowing load and store operations to be initiated on both positive and negative
clock edges, thus doubling the rate at which such operations can be performed.

8.2.2 Non-volatile RAM and ROM

Most slower, secondary storage devices such as magnetic and optical disks retain
their content even after they are powered off: they are non-volatile. However most
faster, primary memories, implemented as SRAM or DRAM for example, only re-
tain their content when powered. If one requires a memory which is non-volatile and
yet faster than typical secondary storage devices, some form of specialist device is
used. Roughly speaking, non-volatile memories are useful in applications where it
is unattractive to use secondary storage devices, due to power or size for example in
mobile or embedded computers, or the access latency for a secondary storage device
is unacceptably long.

Consider for example the time taken for computer to cold-boot, i.e., load the
operating system ready to accept input from the user after being powered on. This
delay is a constant source of annoyance; Raskin [57] describes that the Canon CAT
computer went to the lengths of saving an image of your screen upon logout and re-
displaying it during the boot process to pretend it had completed faster than it had !
Without such trickery, the delay itself is caused largely by the time taken to access
the slow secondary storage; if the operating system were stored on a non-volatile
primary memory, the (legitimate) boot time could be significantly less.

Of the different approaches to non-volatile memories, major differences exist in
how one approaches the construction of ROM and RAM type devices. Although
they are potentially much more useful, non-volatile RAM devices are hard to con-
struct. Although there is some recent progress in the design of devices that are close
to being fast enough, the typical approach is to couple a conventional low-power
RAM with a battery backup which retains the RAM content after the main power
source is turned off. Clearly this is not ideal since the battery will eventually run out
as well. Even so, this method is used extensively in computers to store critical in-
formation: if the clock on your computer suddenly stops working, there is a chance
that the battery for this memory has failed ! Devices that cannot be written to, i.e.,
are read only, are easier to construct; there are roughly four evolutions of device
available:



294 8 Memory and Storage

Mask-Programmed ROM The first approach essentially hard-codes the mem-
ory content in roughly the same way that a logic circuit would be created. That
is, one creates a mask representing the binary content of the memory and uses
the photo-lithography process to etch the image onto some substrate, coupled to
some logic for accessing it, as described in Chapter 2. Once the memory has been
created, the only way to alter it is to build a new one; the process is quite costly
and inflexible as a result.

Programmable ROM (PROM) To avoid the problem of having to reconstruct a
memory produced by the masking approach, the idea of being able to program
a blank device with some image after manufacture was introduced. This process
works in a similar way to the PLA device described in Chapter 2 whereby fuses
are burnt out or left alone so as to produce the binary content of the memory.
Once the image is created, changes are not possible.

Erasable PROM (EPROM) Even PROM type devices are somewhat inflexible
in that as well as being read only when being used, they are read only forever.
This leads to a slightly different definition of ROM: we are interested in a de-
vice that might be read only while in use as a memory, but is writable (or at
least erasable to form a blank device) at other times. This is the goal of EPROM
memory.
The first EPROM devices, invented by engineer Dov Frohman in 1971, were
erasable via exposure to strong ultraviolet light due to their use of special types
of transistor. The memory chip was equipped with a transparent window through
which a special-purpose machine performed the exposure: the erasure process
took about half an hour, the device was then able to retain the memory content
for about ten years. It was common for chips to be equipped with a foil cover to
stop erasure by sunlight !

Electrically Erasable PROM (EEPROM) The process of erasure in EPROM
designs is somewhat cumbersome given the chip needs be taken out of the sur-
rounding circuit and operated on using extra equipment. EEPROM developed on
these basic ideas by allowing erasure via an electrical interface and selective era-
sure so that the memory could be partly updated rather than totally blanked. The
trade-off for this is that unlike EPROM that can typically be erased an unlim-
ited number of times most EEPROMs have a limit due to degradation of storage
medium, typically of ten thousand or so times.
Flash memory is perhaps the most modern example of the EEPROM; they are
fast enough and can be manufactured with enough capacity to replace a read
only magnetic disk for example. These types of memory device are commonly
used in digital cameras for example.

8.2.3 Magnetic Disks

A magnetic disk is a collection of circular platters each of whose surface is coated
with a magnetisable material. The idea in terms of storing information on the plat-



8.2 Memory and Storage Specifics 295

track

inter−sector gap

sector

Figure 8.16 A diagram showing tracks and sectors in a typical hard disk format.

ters is that a disk head is positioned at a given point above the platter and used to
magnetise the surrounding region to encode a single binary digit: the magnetic field
is made to align one way to represent 1 and the other way to represent 0. When the
information is to be read back, the disk head is positioned in the same place. The
magnetic field on the platter induces a current in the disk head which is relayed back
as binary data.

To provide some consistency and interoperability between disks and the devices
that control them, a standard way of sectioning up the platters is employed. This is
the low-level format of the disk. Firstly, a disk may consist of a number of platters;
each platter has a dedicated disk head. A given platter is divided up into a number
of tracks which are arranged in concentric circles on the platter surface; tracks in
the middle of the platter are shorter than those at the edge. The set of tracks, over
all platters, at a given position is called a cylinder. Each track is divided up into a
number of sectors which roughly look like arcs of each concentric circle. Between
each sector is a small blank space called the inter-sector gap. The end of each sector
is punctuated by error correction information that is used to ensure imperfections in
the process can be catered for somewhat invisibly for whoever is using the device.
Figure 8.16 details these features diagrammatically.

In this context, one can think of some function of platter, track and sector as being
the address we are accessing. The access latency is determined by two aspects: the
seek time which determines how quickly the disk head can be moved to the right



296 8 Memory and Storage

pit

land

Figure 8.17 A diagram showing tracks and sectors in a typical CDROM format.

track, and the rotational latency which determines how quickly the right sector
arrives under the disk head as the disk spins. With so-called hard disks the disk head
floats above the platter on a cushion of air and can move very quickly, with floppy
disks the disk head is actually in contact with the platter. This can cause the disk
head and platter to degrade over time; the reliability of floppy disks is questionable
as a result.

8.2.4 Optical Disks

Optical disks take a somewhat similar approach to magnetic disks in the sense that
information is encoded on the surface of a (single) platter. Significant differences
exist, however, in the way the information is encoded and organised. Instead of
magnetic regions information is encoded, as binary digits, using a series of physical
indentations in the surface; the indentations are termed pits, the untouched regions
between pits are termed lands. These features are used to encode 1 and 0, although
not directly but as part of some more complicated scheme (i.e., a pit or land does
not directly encode a 1 or 0). Information is read by positioning a laser, the read
head, over the relevant region and firing it at the platter. The nature of the surface
is such that although both pit and land will reflect the laser, they are such that the
reflection has its phase shifted depending on what it is fired at: this change in phase



8.2 Memory and Storage Specifics 297

is detected by a device that monitors the reflected beam and is converted into binary
data.

The information is encoded as a series of sectors divided into frames; the in-
formation forms a single spiral track on the platter. Header and error correction
information are appended to each frame. Reading the frames is complicated by the
fact that the spiral is tighter at the middle of the platter than at the edge. Using a
Constant Linear Velocity (CLV) scheme means the platter speed is variable but
the pits pass at a constant speed: however, the drive mechanism needs to be quite
complex as a result. In contrast, using a Constant Angular Velocity (CAV) scheme
means the platter speed is constant but the pits pass at a variable rate which leads to
faster transfer when reading from the edge than the middle.

Common forms of optical disks include the Compact Disc Read Only Memory
(CDROM) and Digital Versatile Disc (DVD) both of which are read-only devices;
their content is created using a one-off process called mastering whereby the pits
are permanently etched on the platter. The so-called Rainbow Book standards dic-
tate how information in the frames is interpreted: Red Book specifies the format
for audio CDs, White Book specifies the format of Video CDs (VCDs), and Yel-
low Book specifies the general CDROM format. Read-write versions, for example
Compact Disc Read-Write (CDRW), are possible using a coating on the platter.
The coating can be selectively heated using an infra-red laser to crystallise or anneal
the platter and create or remove pits. This process can repeated around a thousand
times before the platter surface degrades and the encoding is rendered permanent.

8.2.5 Error Correction

Digital components sometimes fail; unlike failures in a processor which would typ-
ically result in catastrophic failure, failures in memory or a storage device can be
somewhat more subtle. For example, consider if a single memory cell were to fail:
this would produce errors so that values transmitted from memory to processor
would be erroneous in just one bit. This might not cause a program to crash, it might
just produce slightly odd results. In addition, both memory and storage devices are
typically implemented as separate devices to the processor so errors might also exist
in transmission rather than storage of values. We can categorise either type of error
as either permanent or transient. Permanent errors are always present, they behave
in the same way at all times. Transient errors only occur occasionally so that, for ex-
ample, a read from memory might be completed without error at one point in time
but produce an erroneous value at another. Sometimes these are termed hard errors
and soft errors respectively.

Techniques for error detection and error correction partly accommodate the
inevitable occurrence of errors in storage and communication devices. In our dis-
cussion we will refer to transmission of values; it is important to see that this is as
relevant to retrieval of values from a storage device by the processor as it is to com-
munication of values along some medium. Error detection hopes to identify when



298 8 Memory and Storage

an error has occurred. This can either result in the processor being signalled so that
for example it can repeat an access in hope of a subsequent success, or simply to
highlight erroneous memory so that it can be replaced. Error correction takes this
one step further so that errors can be corrected and execution can continue without
further intervention; this helps to accommodate the erroneous memory without need
for immediate replacement. Roughly speaking both methods add redundant infor-
mation to the value held in memory so that errors in the value can be detected and
potentially corrected; the more redundant information that is added, the more errors
can be detected or corrected.

8.2.5.1 Parity Codes

Probably the most basic form of error detection is the parity code. The basic idea is
that one should count the number of bits set to 1 in x, that is, the Hamming weight
of x, and call this total t. We then append a bit p to x based on the value of t to get
a new value x′ = x : p which we call the code word. To use even parity the bit p
should be 1 if t is odd, thus making the total number of bits set to 1 in the code word
x′ even. To use odd parity the reverse is true; the bit p should be 1 if t is even, thus
making the total number of bits set to 1 in x′ odd. As an example, consider the value
x = 1001(2) = 9(10), since there are two bits set to 1 in x, we compute x′ using even
and odd parity as

EVEN-PARITY(x) = 10010
ODD-PARITY(x) = 10011

with the parity bit appended in the least-significant position in this case.
Regardless of whether even or odd parity was used, the code word x′ can now be

checked for errors using the extra bit. Specifically, if an odd number of errors occur
in transmitting x′ then we can detect this because the parity bit will differ from
that expected. For example, imagine we construct the even parity-based encoding
of x = 1001(2) as x′ = 10010. Now imagine that instead of transmitting the code
word x′ = 10010 there is some error which flips one bit and causes us to transmit
y′ = 11010 instead. After extracting the parity bit p′ = 0 we can count the number of
bits set to 1 in y′; this time there are three. Since we are using an even parity scheme
we would expect the parity bit to be 1 so that the overall number of bits set to 1 is
even. But p′ = 0 so there must have been some error.

The basic parity code is easy and inexpensive to implement; it just requires a
few extra XOR gates to compute and check the parity bit. However, there are two
main problems. Firstly we cannot tell where the error occurred or how to correct it,
the value must be resent and we must hope that the error is transient; secondly if
an even number of bits are flipped, then a single parity bit can no longer detect the
error. One can address the second problem by using a more involved scheme such
as the Cyclic Redundancy Check (CRC); the first problem requires some more
ingenuity.



8.2 Memory and Storage Specifics 299

8.2.5.2 Hamming Codes

The Hamming Code, named after their inventor Richard Hamming, improves on
simple error detection mechanisms by allowing the correction of errors once they are
detected. This required that more than one bit be appended to the value; Hamming
used the notation (n,m)-code to denote a scheme where there were n bits in the code
word of which m where actually the original value and n−m were added afterwards
to instrument error detection and correction.

The general Hamming Code is somewhat involved to describe, so we concentrate
on the specific and common example of a (7,4)-code introduced in 1950. The basic
idea is to have several parity bits, in this case three. In a code word under this
scheme, all bits in the code word whose index i implies i + 1 is a power-of-two are
parity bits; this means bits x′0, x′1 and x′3, denoted p0, p1 and p3, are parity bits since
0 + 1 = 20, 1 + 1 = 21 and 3 + 1 = 22. The four other bits represent the original
value. Each parity bit deals with a sub-set of the code word: p0 deals with the parity
of x′2,x′4 and x′6; p1 deals with the parity of x′2,x′5 and x′6; p4 deals with the parity of
x′4,x′5 and x′6. Adopting a vector notation, our code word is thus

x′ = (p0, p1,x0, p3,x1,x2,x3)

where xi are from the original value and p j are our parity bits as described above
and calculated as

p0 = x′2 ⊕ x′4 ⊕ x′6
= x0 ⊕ x1 ⊕ x3

p1 = x′2 ⊕ x′5 ⊕ x′6
= x0 ⊕ x2 ⊕ x3

p3 = x′4 ⊕ x′5 ⊕ x′6
= x1 ⊕ x2 ⊕ x3.

Encoding the value x = 1001(2) = 9(10) using even parity would result in the bits
p0 = 0, p1 = 0 and p3 = 1 so that the code would be computed as x′ = 1001100.
An error in any one bit of the original value embedded in this code would affect the
parity bits; in fact, which bits they affect will unique in the sense that by checking
all three we can determine the location of the error. Consider flipping x0 which
corresponds to x′2 so that instead of transmitting the code word x′ = 1001100 we
transmit y′ = 1001000. Recalculating the parity bits we find that

p′
0 = y′2 ⊕ y′4 ⊕ y′6

= 1
p′

1 = y′2 ⊕ y′5 ⊕ y′6
= 1

p′
3 = y′4 ⊕ y′5 ⊕ y′6

= 1.

Since p′
3 = p3 but p′

0 	= p0 and p′
1 	= p1 there is an error. To find where the error is,

we form a vector from the recalculated parity bits



300 8 Memory and Storage

Request

Data

Request

Data

Cache MemoryProcessor

Figure 8.18 A basic block diagram of cache operation.

k = (p′
0 	= p0, p′

1 	= p1, p′
3 	= p3)

and consider this as an integer; the error is then at bit k−1. That is,

k = (1,1,0)

so we have k = 011(2) = 3(10) and the error is detected in bit k− 1 = 2. This error
can now be corrected by flipping y′2 to get the original, error-free code word x′ back
again. Consider another example, this time flipping bit x3 which corresponds to x′6
so that we transmit y′ = 0001100. We compute

p′
0 = y′2 ⊕ y′4 ⊕ y′6

= 1
p′

1 = y′2 ⊕ y′5 ⊕ y′6
= 1

p′
3 = y′4 ⊕ y′5 ⊕ y′6

= 0

and find that p′
0 	= p0, p′

1 	= p1 and p′
3 = p3. Writing the vector of parity bits out we

find that k = 111 so that the error is in bit k−1 = 6. This can now be corrected by
flipping bit y′6 to get back to compute the correct code word x′.

One can show that this (7,4)-code can correct 1-bit errors, or detect but not cor-
rect 2-bit errors. Although the length of the code word is larger we do not need to
retransmit very often because unless there are very many errors, they can be fixed
automatically.

8.3 Basic Cache Memories

A cache is a small area of fast RAM and associated control logic which is placed
between the processor and main memory as shown in Figure 8.18. The cache is
typically invisible to the programmer; the interface between processor and main
memory is unchanged and from a functional point of view, and accesses are ser-
viced as if the cache was not there. The basic idea is that since the cache is smaller



8.3 Basic Cache Memories 301

than main memory, it stores a sub-set of the memory content. However, since the
cache can be implemented using a faster technology than main memory, accesses
to content in the cache are faster than those which are not. As a result of locality in
the incoming address stream, the cache reduces the load on the rest of the memory
hierarchy because it can be managed to hold the current working set of data and
instructions.

The cache is typically organised as a number of cache lines, each of which com-
prises a number of sub-words that are used to store contiguous addresses from main
memory:

Definition 35. A cache C is constructed from Clines cache lines. The i-th cache line,
which we write as C[i], has three fields:

• C[i]tag is a tag used as an identifier for the content within the cache line.
• C[i]valid indicates whether the content is valid or not (i.e., if there is content in

the cache line).
• C[i]data is the actual cache line content which consists of Cwords sub-words each

of whose size matches the resolution of the memory. Where appropriate we refer
to the j-th sub-word within the i-th cache line as C[i]data[ j].

To make life easier, we constrain Clines and Cwords so they can only take values
which are powers-of-two; given a total cache size of 2n sub-words for some n and a
line size of Cwords = 2m for some m, the number of lines is Clines = 2n−m. For byte
addressed memory and a total cache size of 210 = 1024 bytes so that n = 10 for
example, there are many different ways to organise things. We might select any one
of the following three options:

Cwords = 22

= 4
Clines = 210−2

= 256

Cwords = 25

= 32
Clines = 210−5

= 32

Cwords = 28

= 256
Clines = 210−8

= 4

Accesses that are serviced by the cache are termed cache-hits and are completed
very quickly; accesses that are not held by the cache are termed cache-misses and
take much longer to complete since main memory must be accessed. When the
cache accesses main memory, it is said to have fetched data: typically an entire line
is fetched in one go. Selecting the best cache organisation is therefore a trade-off:
more lines typically mean we can better exploit temporal locality and are quicker to
fetch, longer lines mean we can better exploit spatial locality but take more time to
fetch. Standard literature categorises cache misses into three classes [29]:

Definition 36. Compulsory misses are unavoidable misses caused by the first ac-
cess to an element in memory. Capacity misses are misses that are independent of
all factors aside from the size of the cache. Conflict misses are misses where one
element replaces another in the cache.

Since the principle of locality guarantees we should get more cache-hits than cache-
misses, performance of the average case program is improved. Common measures



302 8 Memory and Storage

of cache effectiveness are the hit ratio and miss ratio which are calculated as

HIT-RATIO = TOTAL-HITS
TOTAL-ACCESSES

MISS-RATIO = TOTAL-MISSES
TOTAL-ACCESSES

= 1−HIT-RATIO

It is quite important to stress that performance of only average case programs is
improved. That is, if we have a program that behaves somewhat oddly, for example
it accesses data in a manner which does not respect the principle of locality, the
cache might not be effectual at all.

Beyond the hit and miss ratios, an important performance metric is the idea of
mean access time, the average length of time for a memory access to complete. If
Tcache and Tmemory denote the time required to perform an access to the cache and
memory respectively, we calculate mean access time as

Tcache +Tmemory ·MISS-RATIO

This is easy to see: to access the memory we first check in the cache and if the value
is not present, we need to access the memory. So we pay the price of accessing
the cache plus the price of access to memory for those proportion of accesses that
provoke cache misses. As the miss ratio tends to 0, mean access time tends to Tcache.
As the miss ratio tends to 1, mean access time tends to Tcache +Tmemory. The principle
of locality should ensure the miss ratio is close to 0; if it does not then the addition
of a cache can actually slow down the system ! To get any meaningful speed-up, we
need that

HIT-RATIO >
Tcache

Tmemory
.

To design a real cache using all this theory, we need to consider several key issues:

Addressing Policy Given an access by the processor to an address in memory,
how do we decide where this address should map to in the cache given that it
only stores a sub-set of the memory content ? Application of this mapping is
usually termed address translation.

Fetch Policy Given an access by the processor to an address in memory such that
the location is not resident in the cache, how and where does one load data from
main memory into the cache to satisfy the request ? Furthermore, how does one
cope with the fact that data may already be resident in cache location we want to
fetch new data into ?

Write Policy Given an access by the processor to an address in memory, how
does the cache interact with the memory so that the processor’s view of memory
is consistent when the access is a store ?

In the next sections we explain different fetch and write policies that are common
between most cache architectures. We then introduce three different cache archi-



8.3 Basic Cache Memories 303

tectures that use different addressing policies to implement different performance
trade-offs. Although there can be some differences (e.g., we typically only load in-
structions rather than load and store them), since data and instructions are essentially
the same data and instruction caches are largely the same as well: to make things
easier we concentrate only on data caches.

8.3.1 Fetch Policy

When the processor tries to access an address in memory through the cache and the
cache does not contain the corresponding data, it is fetched from memory into the
cache; once it is located in a cache line it is said to be resident in the cache. In order
to take advantage of the relative speeds and transfer sizes, the cache typically fetches
an entire cache line at once. That is, if the processor tries to access address x, then
the addresses around x that map into the same line will be fetched into the cache as
well. The idea here is to take advantage of any locality: if x has been accessed then
it is probable that the addresses close to x will be accessed soon; if they are, then
the line will already be resident and a cache hit will occur rather than the cache miss
that resulted from the access to x.

The address x is mapped to a cache line by the address translation mechanism.
Once we know which line to fetch the corresponding data into, we need to check
if there is already data resident in that line. Remember that the cache only holds a
sub-set of the memory content so the resident data need not be that relating to x: if it
were, we would have found it, signalled a cache hit and not needed to fetch the line
for x at all ! So if there is already data resident, we need to evict it from the cache
and replace it with the data we do want. If the data has not been altered by a write,
this process is simply a case of overwriting what is already there. If it has been
altered, we have a number of options which are discussed later when examining
write policy.

8.3.1.1 Fetch Ordering

Consider the following example situation where we have a 1024-byte cache with
256 lines and 4 sub-words per-line. The processor issues the cache a load request
for address 2. Suppose the address translation maps address 2 onto cache line 0. The
line will hold data for addresses 0,1,2 and 3 but does not currently hold this data,
we need to fetch it; the cache needs to load data at addresses 0,1,2 and 3 in main
memory to fill line 0. The question is which order should we load these addresses;
there are two main choices:

Critical Word First In this scheme we would load the words in the order 2,3,0,1.
That is, the address we are looking for is loaded first, then the others in cyclic
order.



304 8 Memory and Storage

Natural Word First In this scheme we would load the words in the order 0,1,2,3.
That is, the first address in the cache line is loaded first followed by all the others.

Clearly each has some advantages and disadvantages to both schemes. Loading the
critical word first means the cache can complete the request from the processor
faster since it does not need to wait for other loads from main memory. That is, once
it loads the value at address 2 it can return this to the processor and carry on with
the others behind the scenes; the processor can hence continue execution earlier. On
the other hand, this requires a more complex operational mechanism; loading the
natural word first is much easier and leads to a simpler design.

8.3.1.2 Pre-fetching

We have already seen that a cache-hit can only occur if the corresponding data is
already resident in the cache; if it is not, a cache-miss occurs and we have to load it
from main memory. One method of trying to reduce the number of cache-misses is,
given previous a list of previous accesses, to guess which address will be accessed
next and fetch this into the cache speculatively. If the guess is right, then a cache-hit
occurs and execution continues without the penalty associated with a cache-miss. If
the guess is wrong, we do no worse than the cache-miss that would have occurred
anyway. This technique is called pre-fetching and is typically realised by a second
hardware device that works alongside the cache.

This seems an ideal solution and, if we had a good enough guessing strategy, it is
indeed ideal in theory. In practise, such a guessing strategy is hard to construct for
general programs even given their access locality patterns. Furthermore, aggressive
pre-fetching introduces the new problem of cache pollution. For example, consider
the case where we pre-fetch some data based on our guess and this fetch evicts data
that would have been useful in the near future. We are essentially polluting the cache
with useless data. Pre-fetch systems need to carefully balance their operation as a
result; generally it is only a good idea to employ pre-fetch if the access pattern is
very regular and hence easy to predict with high accuracy.

8.3.2 Write Policy

So far we have ignored what happens when the processor wants to store data into
memory: the processor issues the store operation as usual, but what should the cache
do ? There are two main problems we need to tackle. Firstly, if we update the data
in the cache, what happens to the data in memory ? Secondly, what happens if the
data we want to update is not even in the cache at all ? No matter what solution
is employed the key requirement is that we maintain consistency between what is
stored in the cache and what is stored in memory. That is, it should be impossible to
get confused about the value held in a particular memory location.



8.3 Basic Cache Memories 305

There are two main options as regards solving the problem of maintaining con-
sistency between the cache and memory content:

Write-Through When a store is issued by the processor, a write-through cache
updates the data in the cache, potentially fetching data into the cache if it is not
already present, but also sends the write through to the main memory. This is
the simplest choice of policy: since the cache and memory content is always the
same, it is always consistent. However, one needs to be careful that the cache still
improves performance by eliminating unnecessary accesses to main memory. For
example, if we perform a number of writes to the same address, there is no need
to keep updating the memory.

Write-Back When a store is issued by the processor, a write-back cache updates
the data in the cache but does not immediately write the data through to main
memory. The hardware for a write-back cache is more complex, it has to remem-
ber which lines are inconsistent with main memory; these are said to be dirty.
The cache needs to include an additional field for each line, say C[i]dirty, which
determines whether the content is dirty or not. When a line is evicted, the asso-
ciated dirty flag is checked to see if it should be written to main memory. This
scheme removes unnecessary memory traffic since now we only write to main
memory when we really have to.

When the processor performs a load operation and the corresponding cache line
is not resident, it is read into the cache. When a store operation is executed, this
implication is not necessarily true. If the cache line is resident the store can update
local data in the cache; however, if the cache line is not resident we cannot do this:
to preserve consistency we need to take into account that there will be other memory
locations in the same line. For example, say an example cache has four sub-words
per-line and addresses 0,1,2 and 3 map to line 0. If a store is executed using address
2 and the line is not resident, we cannot just update the cache line because what
values would the sub-words for addresses 0,1 and 3 hold: the cache and memory
would be inconsistent. Hence we have two main choices:

Allocate-on-Write Follow the implication of a read, that the data will be accessed
again in the near future, and fetch the cache line into the cache before completing
the write operation on the resident line.

No Allocate-on-Write Avoid fetching the cache line into the cache and pass the
store directly onto main memory; thus cache lines are only fetched into the cache
by load operations.

8.3.3 Direct-Mapped Caches

To construct a cache, we need an address translation mechanism that takes an in-
coming address that results from a load or store operation, and maps it onto the
specific sub-word within a cache line which holds the associated data. A direct-
mapped cache takes a simple approach to this by operating such that each 2n-th



306 8 Memory and Storage

C[i]tag C[i]valid C[i]data

Equals

AND

A
ta

g
A

w
or

d
A

lin
e

Hit/Miss

Data

Figure 8.19 A block diagram of a direct-mapped cache.

address in memory maps to the same sub-word in the cache. The address translation
mechanism calculates two components which are used to access the cache content:

Aword = A mod Cwords

Aline = �A/Cwords� mod Clines

The value Aline identifies the cache line for address A, while the value Aword iden-
tifies the sub-word within that cache line. Since both Clines and Cwords are selected
to be powers-of-two, calculating these components is not costly. Given a 32-bit ad-
dress and taking Clines = 23 = 8 and Cwords = 22 = 4 so the total cache size is 32
bytes, this amounts to taking the least-significant two bits of A as Aword and the next
least-significant three bits as Aline. For example, given the address

A = 000000000000000000000000001 000︸︷︷︸

A
li

ne

10︸︷︷︸

A
w

or
d

(2)

= 34(10)

we calculate Aline = 000(2) = 0(10) and Aword = 10(2) = 2(10).
However, since a given cache can only hold a sub-set of memory content, it

follows that there is a many-to-one mapping of memory addresses to cache sub-
words. For example, setting A = 34(10) or A = 66(10) gives the same values for Aword

and Aline in both cases: we need a way to distinguish the cases from each other. To
achieve this, each cache line holds a tag; we need to calculate

Atag = ��A/Cwords�/Clines�



8.3 Basic Cache Memories 307

C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]
i = 0 0
i = 1 0
i = 2 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(a) Cache is initially empty.

C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]
i = 0 0 1 0 1 2 3
i = 1 0
i = 2 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(b) Access to address 1 misses, line 0 is filled.

C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]
i = 0 1 1 32 33 34 35
i = 1 0
i = 2 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(c) Access to address 34 misses, line 0 evicted then re-filled; access to
address 35 then hits in line 0.

C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]
i = 0 1 1 32 33 34 35
i = 1 1 1 36 37 38 39
i = 2 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(d) Access to address 36 misses, line 1 is filled; access to address 37
then hits in line 1.

C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]
i = 0 0 1 0 1 2 3
i = 1 1 1 36 37 38 39
i = 2 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(e) Access to address 1 misses, line 0 evicted then re-filled; access to
addresses 38 and 39 then hit in line 1.

C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]
i = 0 0 1 0 1 2 3
i = 1 1 1 36 37 38 39
i = 2 1 1 40 41 42 43

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(f) Access to address 40 misses, line 2 is filled; access to address 41
then hits in line 2.

Figure 8.20 An example of direct-mapped cache operation.



308 8 Memory and Storage

to check that the cache line content is actually what we expected. Again, since Clines

and Cwords are selected to be powers-of-two, calculating Atag amounts to simply
taking the remaining twenty seven bits of the 32-bit address, i.e.,

A = 000000000000000000000000001︸ ︷︷ ︸

A
ta

g

000︸︷︷︸

A
li

ne

10︸︷︷︸

A
w

or
d

(2)

= 34(10).

Now we find that setting A = 34(10) results in

Atag = 000000000000000000000000001(2) = 1(10),

but if we instead set A = 66(10), then

Atag = 000000000000000000000000010(2) = 2(10),

i.e., we can tell when the cache line contains content relating to one address versus
the other. Note that in theory we could use the entire address A as the tag since
this would obviously permit distinguishability. However, this is wasteful: the least-
significant bits are implicit, or the same, for a given line so by not storing this portion
we reduce the amount of logic required to implement the cache.

Figure 8.19 shows a block diagram of a typical direct-mapped cache design. The
basic idea is that given an address A, the cache calculates Aword , Aline and Atag. It
then inspects the value

C[Aline]valid .

If the cache line does not contain valid content, the sub-word we want is not resident
and a cache-miss occurs. However, if the cache line does contain valid content, the
cache inspects the value

C[Aline]tag

and compares this to Atag. If the tags do not match, the sub-word we want is not
resident and a cache-miss occurs. However, if the tags do match, then a cache-hit
occurs and the sub-word we want is resident in

C[Aline]data[Aword ].

Imagine we continue to consider the example cache from above, and feed it a stream
of memory accesses whose addresses are

1,34,35,36,37,1,38,39,40,41.

With our address translation scheme, this produces the cache accesses



8.3 Basic Cache Memories 309

C[i]tag C[i]valid C[i]data

Equals

AND

OR

Multiplexer

A
ta

g
A

w
or

d

C[i]tag C[i]valid C[i]data

AND

Equals

Hit/Miss

Data

Equals

AND

Figure 8.21 A block diagram of a fully-associative cache.

A = 1 Aword = 1, Aline = 0, Atag = 0 → miss
A = 34 Aword = 2, Aline = 0, Atag = 1 → miss
A = 35 Aword = 3, Aline = 0, Atag = 1 → hit
A = 36 Aword = 0, Aline = 1, Atag = 1 → miss
A = 37 Aword = 1, Aline = 1, Atag = 1 → hit
A = 1 Aword = 1, Aline = 0, Atag = 0 → miss
A = 38 Aword = 2, Aline = 1, Atag = 1 → hit
A = 39 Aword = 3, Aline = 1, Atag = 1 → hit
A = 40 Aword = 0, Aline = 2, Atag = 1 → miss
A = 41 Aword = 1, Aline = 2, Atag = 1 → hit .

The sequence produces five cache hits and five cache misses; Figure 8.20 details
the sequence graphically. The first access to address 1 is a compulsory cache-miss
since this is the first time we have used this address; the line for address 1 is then
fetched into the cache and the correct value at offset 1 is returned as the result. The
second access to address 34 maps to the same line, i.e., line 0, as the address 1
whose corresponding line is already resident. This is a conflict cache-miss so the
line for address 1 is evicted and replaced by the line for address 34 that is fetched
from memory; notice that these are distinguishable since they have different tags.
The third access to address 35 provokes a cache-hit since the corresponding line,
fetched when we accessed address 34, is resident.



310 8 Memory and Storage

8.3.4 Fully-Associative Caches

A direct-mapped cache can only ever have one choice of line per address; this can
lead to what is called cache interference or cache contention. This was evident in a
previous example where addresses 1 and 34 interfered when they were both mapped
to line 0. When the resulting eviction happens repeatedly, we say that the access
stream thrashes the cache, a situation where performance is significantly degraded.

One approach to solving this problem is to use the idea of associativity. An
associative cache allows any memory location to map into one of many cache lines;
a fully-associative cache allows a memory location to map to any cache line. Since
the required data could be anywhere in the cache, searching for it is more complex
and the hardware realisation is typically larger and more power hungry. However,
associative caches can exhibit a lower miss ratio than a direct-mapped cache. Again
considering the previous example, if addresses 1 and 34 were mapped to different
lines rather than the same line, then the number of cache-hits would be increased.

Since any memory address can map to any cache line, the problem remains how
to construct an address translation scheme. Firstly we consider how to actually de-
cide which line, i.e., the value Aline to use when we fetch data into the cache. Given
searching for an empty line is typically a bad idea since it is just too costly, we have
a number of options. For example, we might select one of the following:

Random Using a pseudo-random number generator, a line number is chosen at
random regardless of the address and what is already resident in the cache. This
is a low-cost option but can suffer from problems in that “unlucky” random se-
quences still provoke cache contention; the hope is that on average the randomi-
sation will give a good distribution of line usage and hence low levels of con-
tention.

Least Recently Used (LRU) Each time a cache line is accessed, it is moved to the
head of a recently used (LRU) list. When the cache is required to load new data,
the line at the end of the recently used list is selected; the rationale is that this
is the least recently used so is most probable never to be used again. Normally,
the cache will be quite large so maintaining the LRU list is usually too costly an
option.

The word offset Aword is simply given by the least-significant m bits of the address
A, i.e., Aword = A mod Cwords, in both cases; the tag Atag is given by the remaining
bits.

Now, given we have translated the address to a line when fetching the data we
need to consider how to find it again when we want to use it. Essentially, since
a fully-associative cache allows a memory address to map into any cache line we
need to search the entire cache to see if it is resident. Since cache access needs to be
as fast as possible, a linear (or even binary) search is out of the question; we must
search all cache lines in parallel. This feature contributes massively to the cost of a
hardware realisation; Figure 8.21 details a block diagram of the design.

Again consider an example fully-associative cache for a byte-addressed memory
where we have that Clines = 23 = 8 and Cwords = 22 = 4 so the total cache size is 32



8.3 Basic Cache Memories 311

bytes. Imagine we feed it the same stream of memory accesses as before:

1,34,35,36,37,1,38,39,40,41.

It is not difficult to see that using a random line selector, we can achieve optimal
performance. For example, if our pseudo-random number generator happens, very
fortuitously, to give the sequence

0,1,2,3,4, . . .

then our access pattern is

A = 1 Aword = 1, Atag = 0 Aline = 0 → miss
A = 34 Aword = 2, Atag = 8 Aline = 1 → miss
A = 35 Aword = 3, Atag = 8 Aline = 1 → hit
A = 36 Aword = 0, Atag = 9 Aline = 2 → miss
A = 37 Aword = 1, Atag = 9 Aline = 2 → hit
A = 1 Aword = 1, Atag = 0 Aline = 0 → hit
A = 38 Aword = 2, Atag = 9 Aline = 2 → hit
A = 39 Aword = 3, Atag = 9 Aline = 2 → hit
A = 40 Aword = 0, Atag = 10 Aline = 4 → miss
A = 41 Aword = 1, Atag = 10 Aline = 4 → hit .

The only misses that remain are compulsory. However, the pseudo-random number
generator is equally likely, but rather less fortuitously, to produce the sequence

0,0,0,0,0, . . .

in which case the cache performs much worse:

A = 1 Aword = 1, Atag = 0 Aline = 0 → miss
A = 34 Aword = 2, Atag = 8 Aline = 0 → miss
A = 35 Aword = 3, Atag = 8 Aline = 0 → hit
A = 36 Aword = 0, Atag = 9 Aline = 0 → miss
A = 37 Aword = 1, Atag = 9 Aline = 0 → hit
A = 1 Aword = 1, Atag = 0 Aline = 0 → miss
A = 38 Aword = 2, Atag = 9 Aline = 0 → miss
A = 39 Aword = 3, Atag = 9 Aline = 0 → hit
A = 40 Aword = 0, Atag = 10 Aline = 0 → miss
A = 41 Aword = 1, Atag = 10 Aline = 0 → hit .

For the average case we are neither especially lucky nor unlucky, and as a result can
typically expect better hit ratios than a direct-mapped cache.



312 8 Memory and Storage

C[i]tag C[i]valid C[i]data

Equals

AND

OR

Multiplexer

A
ta

g
A

w
or

d
A

se
t

C[i]tag C[i]valid C[i]data

AND

Equals

Hit/Miss

Data

Figure 8.22 A block diagram of a set-associative cache.

8.3.5 Set-Associative Caches

On one hand, direct-mapped caches are simple to build but can exhibit relatively
poor performance. On the other hand, fully-associative caches can improve perfor-
mance but are more costly to realise. What would be ideal is to find a trade-off
between the two designs; the set-associative cache does just this.

The basic idea is that the total cache size is sectioned into Cset sets, each of
which groups N = Clines/Cset cache lines together. Instead of mapping an address to
a cache line we instead map to a set, within each set, searching for a particular line is
performed in a fully-associative manner. Usually we say such a cache is N-way set-
associative since there are N places a cache line can reside in each set. Figure 8.22
gives a rough block diagram of set-associative cache design where Cset = 2. In a
similar way to before, we define our address translation scheme as

Aword = A mod Cwords

Aset = �A/Cwords� mod Cset

Atag = ��A/Cwords�/Cset�

so that the word offset is taken as the bottom m bits of the address A and the set
number Aset is the next  log2(Cset)! bits; since we typically constrain Cset to be a
power-of-two this value is an integer and the address translation scheme is easy to
implement efficiently. To decide which line within the set is used, we just select a
policy that follows our original choices for the fully-associative cache. For example,
we might select a random or LRU selection policy. Since Cset is usually small (say



8.3 Basic Cache Memories 313

Set 0 Set 1
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]

i = 0 0 0
i = 1 0 0
i = 2 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(a) Cache is initially empty.

Set 0 Set 1
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]

i = 0 0 1 0 1 2 3 0
i = 1 0 0
i = 2 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(b) Access to address 1 misses, line 0 in set 0 is filled.

Set 0 Set 1
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]

i = 0 0 1 0 1 2 3 0
i = 1 4 1 32 33 34 35 0
i = 2 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(c) Access to address 34 misses, line 1 in set 0 is filled; access to
address 35 then hits in line 1 of set 0.

Set 0 Set 1
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]

i = 0 0 1 0 1 2 3 4 1 36 37 38 39
i = 1 4 1 32 33 34 35 0
i = 2 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(d) Access to address 36 misses, line 0 in set 1 is filled; access to
address 37 then hits in line 0 of set 1; access to address 1 then hits in

line 0 of set 0; access to address 38 then hits in line 0 of set 1; access to
address 39 then hits in line 0 of set 1;

Set 0 Set 1
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]

i = 0 0 1 0 1 2 3 4 1 36 37 38 39
i = 1 4 1 32 33 34 35 0
i = 2 5 1 40 41 42 43 44 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(e) Access to address 40 misses, line 2 in set 0 is filled; access to
address 41 then hits in line 2 of set 0.

Figure 8.23 An example of set-associative cache operation.



314 8 Memory and Storage

2, 4 or 8) it is feasible to choose a very effective selection policy such as LRU
while limiting the cost this implies in terms of searching in parallel for a given
line amongst the Cset possibilities. This option was moot with the fully-associative
cache since there were too many possibilities to allow an efficient and cost-effective
realisation.

Again consider an example set-associative cache for a byte-addressed memory
where we have that Clines = 23 = 8, Cset = 21 = 2 and Cwords = 22 = 4 so the total
cache size is 32 bytes. There are four sets each of two lines, suppose set 0 groups
together lines 0 and 1, set 1 groups together lines 2 and 3 and so on. Imagine we
feed it the same stream of memory accesses as before:

1,34,35,36,37,1,38,39,40,41

and use an LRU selection policy to determine the line number within each set when
data is fetched. With this architecture, we would expect an access pattern such as

A = 1 Aword = 1, Aset = 0, Atag = 0 Aline = 0 → miss
A = 34 Aword = 2, Aset = 0, Atag = 4 Aline = 1 → miss
A = 35 Aword = 3, Aset = 0, Atag = 4 Aline = 1 → hit
A = 36 Aword = 0, Aset = 1, Atag = 4 Aline = 0 → miss
A = 37 Aword = 1, Aset = 1, Atag = 4 Aline = 0 → hit
A = 1 Aword = 1, Aset = 0, Atag = 0 Aline = 0 → hit
A = 38 Aword = 2, Aset = 1, Atag = 4 Aline = 0 → hit
A = 39 Aword = 3, Aset = 1, Atag = 4 Aline = 0 → hit
A = 40 Aword = 0, Aset = 0, Atag = 5 Aline = 2 → miss
A = 41 Aword = 1, Aset = 0, Atag = 5 Aline = 2 → hit .

This matches the fortuitous case of our fully-associative cache example; we have
clearly used a less costly design however. The main difference is the use of LRU to
determine the line numbers within each set; the fact that each set contains 2 lines
means, for example, that addresses 1 and 34 no longer conflict in this case even
though before they might have mapped to the same cache line. When address 1 is
accessed, none of the lines in set 0 have been used so we simply select line 0 and put
this at the front of the LRU list. When address 34 is accessed, although it maps to
the same set as address 0, we have (at least) one line within the set which has been
used less often than line 0; so we simply select line 1 for example. As the access
pattern continues in this way: consider what happens when address 35 is accessed.
Translation of the address gives set 0 which contains two resident lines that were
loaded when we accessed addresses 0 and 34. Parallel search of the two lines in
that set matches the line loaded for 34 which is the one used for the access thus
producing a cache-hit.



8.3 Basic Cache Memories 315

8.3.6 Cache Organisation

8.3.6.1 Cache Bypass

Sometimes it is attractive to perform uncached access to memory. In this case, as
designers of a cache or processor, we might take one of two options. Firstly, we
could provide explicit instructions (or a processor mode of some sort) that perform
the access without going through the cache; this is called cache bypass. The second
option is to provide a mechanism to turn off the cache somehow. Some processors
allow this to be performed as a one-off configuration by setting a flag in the sta-
tus register when powered on, other processors allow dynamic turning on and off
of the cache during execution. Either way, bypassing use of the cache means that
maintaining consistency between the cache and memory is difficult; it is common
to leave this up to the programmer using it.

8.3.6.2 Split-Use Caches

In terms of caches, we have so far avoided the issue that they might be used to store
instructions as well as data. The first issue here is that one can view the caches, like
the rest of the memory hierarchy, as either a Harvard or stored program architecture.
That is, one either regards access to instructions and data as separate, using separate
caches for each, or as unified and hence sharing one common cache. Either approach
is valid but it is common, to suit the pipelining technique described in Chapter 6,
that separate caches are employed. Even from a more naive standpoint it might
be attractive since separating the accesses might lessen the probability of cache
pollution and contention.

Either way, this affords us some opportunity to optimise our implementation. For
example, an instruction cache will not really require logic to perform writes: we do
not usually write into the instructions, only updating data values once execution has
begun, so the instruction cache can be significantly simpler. In addition, accesses
to data and instructions exhibit different forms of locality; one might optimise the
cache policies to take advantage of this knowledge so that better hit-ratios can be
achieved in each case.

8.3.6.3 Split-Level Caches

It is possible to split the cache into a hierarchy just as we did with the more general
memory hierarchy. In particular, it is attractive to construct the hierarchy to make
a distinction between caches on the same chip as the processor, so-called on-chip
caches, and those which are separate devices or off-chip caches. On-chip caches are
typically faster because there is less of an interface to deal with between devices.
But one can only fit so much logic on-chip, therefore off-chip caches can typically
be larger. One can construct multiple levels of these on-chip and off-chip caches:



316 8 Memory and Storage

Request

Data

Memory

Request

Data

CacheProcessor Cache
Victim

Figure 8.24 A basic block diagram of victim cache operation.

the closest level to the processor is level-one (the cache is an L1 cache), the next
level in the hierarchy is level-two (the cache is an L2 cache) and so on.

This hierarchy represents a trade-off in terms of size and speed; the usual solution
is to have a small on-chip cache and a larger off-chip. The hope is that the L1 cache
will be able to cope with most accesses very quickly, and that it cannot deal with
will mostly be dealt with by the L2 cache rather than main memory. This combined
approach relies on the principle of locality to hold in order to be effective.

8.4 Advanced Cache Memories

8.4.1 Victim Caches

Considering only data caches once again, an important aspect of cache memory de-
sign is the trade-off between hit-ratio and access time. On one hand, more involved
replacement policies and address translation, for example, improve hit-ratio; an im-
provement in hit-ratio typically means a decrease in accesses to main memory. On
the other hand, as implementation of the cache design becomes more complex, the
critical path of access logic becomes longer; this increases the time taken for cache
hits and cache misses alike. A direct-mapped cache makes the trade-off in favour of
lower access latency at the cost of lower hit-ratio; a set-associative cache improves
hit-ratio using a more complex design but typically increases the access latency as
a result.

Consider, for the sake of argument, a cache architecture with one level; there
is a direct-mapped L1 cache between the processor and main memory. The victim
cache design [30] makes a slightly different trade-off between hit-ratio and access
time than a set-associative cache. Both hope to reduce the number of conflict misses,
i.e., misses which are caused by two addresses mapping to the same cache line of
the L1 cache and require access to main memory. Instead of altering the L1 cache
design per se, the victim cache is placed between the two; roughly speaking, one
could consider this level-one-and-a-half of the memory hierarchy. The victim cache
is a small (only a few lines in size), fully-associative cache; problems with design
complexity and access time are limited due to the small size. The aim is to capitalise



8.4 Advanced Cache Memories 317

on the fact that empirically, it is common for cache lines that have recently been
evicted from the L1 cache to be accessed again some time shortly after eviction;
one can think of this as the L1 cache not quite being able to capitalise on access
locality. By placing the victim cache between the L1 cache and main memory, i.e.,
on the fetch path of the L1 cache, it can store these victim lines temporarily and
allow subsequent access to them without the need for a more expensive access to
main memory. In short, the penalty associated with eviction from the L1 cache and
subsequent reloading is minimised.

Figure 8.24 shows a basic block diagram of where the victim cache sits in relation
to our previous discussion of cache memory. The L1 cache and the victim cache are
placed close together on-chip; their access times can thus be as fast as a single
processor cycle. For a given access, the L1 cache and the victim cache are searched
at the same time. When a miss occurs in both caches, an access to main memory is
required with the resulting cache line stored in the L1 cache only; any evicted lines
are stored in the victim cache which operates according to an LRU policy. When a
miss occurs in the L1 cache but the required data is located in the victim cache, the
access can be completed without access to main memory; the value is taken from
the victim cache by the processor and then placed in the L1 cache.

Notice that fast access time is guaranteed: since both the L1 cache and victim
cache are on-chip and accessed in parallel, there is little difference between a hit
in the L1 cache and a hit in the victim cache. Certainly they are still both at least
an order of magnitude less than access to main memory. Furthermore, as long as
the original empirical statement about locality holds, i.e., that recently evicted lines
are often accessed again, hit-ratio moves closer to that of a set-associated cache and
is certainly improved over the basic direct-mapped design. Of course this depends
on the program being executed and the resulting stream of accesses to memory, but
studies in the original proposal [30] show that anywhere between 10% and 70% of
all misses can be removed by a sixteen line victim cache.

To give a concrete example of victim cache operation, recall where we demon-
strated cache behaviours using a stream of memory accesses whose addresses were

1,34,35,36,37,1,38,39,40,41.

We previously used an example direct-mapped cache for a byte-addressed memory
where Clines = 23 = 8 and Cwords = 22 = 4 so the total cache size is 32 bytes. Using
this cache, we obtained the following behaviour:



318 8 Memory and Storage

L1 Cache Victim Cache
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]

i = 0 0 0
i = 1 0 0
i = 2 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(a) Cache is initially empty.

L1 Cache Victim Cache
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]

i = 0 0 1 0 1 2 3 0
i = 1 0 0
i = 2 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(b) Access to address 1 misses, line 0 is filled.

L1 Cache Victim Cache
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]

i = 0 1 1 32 33 34 35 0 1 0 1 2 3
i = 1 0 0
i = 2 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(c) Access to address 34 misses, line 0 evicted then re-filled via victim
cache; access to address 35 then hits in line 0.

L1 Cache Victim Cache
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]

i = 0 1 1 32 33 34 35 0 1 0 1 2 3
i = 1 1 1 36 37 38 39 0
i = 2 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(d) Access to address 36 misses, line 1 is filled; access to address 37
then hits in line 1.

L1 Cache Victim Cache
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]

i = 0 0 1 0 1 2 3 0 0 0 1 2 3
i = 1 1 1 36 37 38 39 1 1 32 33 34 35
i = 2 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(e) Access to address 1 misses, line 0 evicted then re-filled via victim
cache; access to addresses 38 and 39 then hit in line 1.

L1 Cache Victim Cache
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]

i = 0 0 1 0 1 2 3 0 0 0 1 2 3
i = 1 1 1 36 37 38 39 1 1 32 33 34 35
i = 2 1 1 40 41 42 43 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(f) Access to address 40 misses, line 2 is filled; access to address 41
then hits in line 2.

Figure 8.25 An example of victim cache operation.



8.4 Advanced Cache Memories 319

A = 1 Aword = 1, Aline = 0, Atag = 0 → miss
A = 34 Aword = 2, Aline = 0, Atag = 1 → miss
A = 35 Aword = 3, Aline = 0, Atag = 1 → hit
A = 36 Aword = 0, Aline = 1, Atag = 1 → miss
A = 37 Aword = 1, Aline = 1, Atag = 1 → hit
A = 1 Aword = 1, Aline = 0, Atag = 0 → miss
A = 38 Aword = 2, Aline = 1, Atag = 1 → hit
A = 39 Aword = 3, Aline = 1, Atag = 1 → hit
A = 40 Aword = 0, Aline = 2, Atag = 1 → miss
A = 41 Aword = 1, Aline = 2, Atag = 1 → hit .

Notice that addresses 0 . . .3 exactly match our definition of a victim above. That is,
address 1 is initially loaded into line 0 in access one before being evicted by access
two and then reloaded by access six. Figure 8.25 diagrammatically details the cache
behaviour when a victim cache with four lines is added; the victim cache content
is shown below the L1 cache content for each step. The behaviour changes to the
following:

A = 1 Aword = 1, Aline = 0, Atag = 0 → miss
A = 34 Aword = 2, Aline = 0, Atag = 1 → miss
A = 35 Aword = 3, Aline = 0, Atag = 1 → hit
A = 36 Aword = 0, Aline = 1, Atag = 1 → miss
A = 37 Aword = 1, Aline = 1, Atag = 1 → hit
A = 1 Aword = 1, Aline = 0, Atag = 0 → hit
A = 38 Aword = 2, Aline = 1, Atag = 1 → hit
A = 39 Aword = 3, Aline = 1, Atag = 1 → hit
A = 40 Aword = 0, Aline = 2, Atag = 1 → miss
A = 41 Aword = 1, Aline = 2, Atag = 1 → hit .

Essentially, the penalty caused by reloading the line for addresses 0 . . .3 in access six
is eliminated: the reload is performed via the victim cache rather than main memory
and hence we categorise the access a cache-hit rather than a cache-miss.

8.4.2 Gated and Drowsy Caches

Power consumption plays an important role in the design of embedded processors.
Within a mobile telephone, lower power consumption is a good selling point; within
a device such as a sensor node it is a vital operational characteristic. This has led to
significant research into low-power design and manufacturing techniques. The de-
sign of low-power memory hierarchies is a specific area of interest given that mem-
ory, cache memories in particular, form a significant component in overall power
consumption.

Like any transistor-based circuit, the overall power consumption in caches that
use standard SRAM cells can be divided into dynamic and static components. Dy-



320 8 Memory and Storage

Q
¬Q

en

Vdd high
¬ctrl

Q
¬Q

en

Vdd

Vdd

 high

 low

¬ctrl

ctrl

(a) A gated-Vdd cache cell. (b) A drowsy cache cell.

Figure 8.26 Two low-power memory cell designs.

namic power dissipation occurs when a logic gate switches from one state to another
only; static power is dissipated by every logic gate independent of the switching ac-
tivity. Originally the dynamic component dominated the overall power consumption.
However, as transistors have become smaller, and hence their density has increased,
static power dissipation has started to have a major impact on the overall power
consumption.

There are many approaches to reduce power dissipation in cache memories; the
gated-Vdd cache design [54] and the drowsy cache design [22, 31] are both attrac-
tive. Roughly speaking, both designs offer a mechanism to turn cache lines into
a low-power state when they are not serving a useful purpose, i.e., not being reg-
ularly accessed and hence not improving memory access performance. Both de-
signs achieve this by altering the basic SRAM cell design; the resulting cells are
shown in Figure 8.26; the ctrl signal is used to control the cell. Memory cells in a
gated-Vdd cache structure can be powered off using a transistor that disconnects the
power supply to the cell. While this technique clearly reduces overall power dissi-
pation, the information stored in a cell is not preserved; the design is referred to as a
non-state-preserving cache. The drowsy cache offers an alternative, state-preserving
technique. Memory cells in a drowsy cache structure are capable of operating in a
normal mode, where they can be freely read or written to, and a drowsy, low-power
mode where they retain their state but need to be woken before any access can occur.
This low-power mode is facilitated by switching from being powered by the normal
Vdd high input to an alternative low-power voltage labelled Vdd low. The trade-off be-
tween the two designs should be clear: either totally power off the cells (as in the
gated-Vdd cache design) and incur a potential performance penalty if cells need to
be reloaded having been emptied of content, or retain the content (as in the drowsy
cache design) and incur a power dissipation penalty because cells are only in a low-
power state rather than powered off. This trade-off requires careful thought since
cache misses that result from, for example, powering down gated-Vdd cache lines
require more power than a cache hit; therefore any short-term saving from powering
down such lines might be lost if they are accessed again in the longer term.



8.5 Putting It All Together 321

Having replaced the memory cells within a cache design, it remains to control
those cells somehow so they are forced into low-power mode according to some
reasonable heuristic or policy. That is, we need some control logic which detects
when we could benefit from switching a given cache line into low-power mode:
the more accurate this detection (in relation to the associated penalty for getting
it wrong), the better our trade-off between power dissipation and performance be-
comes. Two fairly basic approaches can be identified; see for example [22, Section
2]:

“Simple” Maintain a global counter which is incremented after each processor
cycle; when the global counter reaches some threshold, place all cache lines into
low-power mode.

“No-Access” Maintain a global counter which is incremented after each proces-
sor cycle and a single bit associated with each cache line which is set when the
line is accessed; when the global counter reaches some threshold, place all cache
lines with their access bit not set into in low-power mode.

The “simple” policy is clearly easier to implement and probably requires less control
and state logic; however, it is less accurate at powering down cache lines than the
“no access” policy in the sense that it is wrong more often about lines which are
not being used. More advantages and disadvantages of each policy depend on the
type of cache being used, the program being executed and the resulting stream of
accesses to memory, and the threshold alluded to which triggers updates.

8.5 Putting It All Together

To flesh out the components in the basic Verilog processor model developed at the
end of Chapter 5, we need two main devices which are not obviously implementable
using low-level logic components: a general-purpose register file and a memory sys-
tem (including a cache). Both devices were initially implemented as 2-dimensional
Verilog registers; we now know that there is more involved under the surface. To try
to make it more obvious that the devices can be realised using techniques and com-
ponents we know about, we will try to write modules that more closely model their
real operational behaviour. However, we will still rely on a bit of help from Verilog:
we have already showed how a 2-dimensional register can be implemented using
D-type flip-flops, and continue to rely on the 2-dimensional register to store data as
a result. That is, to make things simple enough to read and explain, the difference
is that our devices will implement associated control logic and assume we can swap
the register for the flip-flop-based memory with additional work.



322 8 Memory and Storage

1 module gpr( input wire [ 4:0] addr_w0,
2 input wire [31:0] data_w0,
3 input wire we0,
4

5 input wire [ 4:0] addr_r0,
6 output wire [31:0] data_r0,
7 input wire re0,
8

9 input wire [ 4:0] addr_r1,
10 output wire [31:0] data_r1,
11 input wire re1 );
12

13 reg [31:0] data[1:31];
14

15 assign data_r0 = re0 ? ( addr_r0 == 0 ? 32’b0 : data[ addr_r0 ] ) : 32’bZ;
16 assign data_r1 = re1 ? ( addr_r1 == 0 ? 32’b0 : data[ addr_r1 ] ) : 32’bZ;
17

18 always @( posedge we0 )
19 begin
20 if( addr_w0 != 0 )
21 data[ addr_w0 ] = data_w0;
22 end
23

24 endmodule

Listing 8.5 A Verilog module that models the general-purpose register file.

8.5.1 Register File

The register file is perhaps the most simple of the devices we require; it is simply
a memory with two read ports and one write port. That is, we can read two values
and write one value at once. In addition, we required that it implements the special
behaviour associated with register number 0 which always produces the value 0
when read and discards any writes.

Listing 8.5 details a simple Verilog module for such a device. The interface in-
cludes three ports which supply an address and an enable signal to indicate that port
is in operation; for example, the write port accepts the register address on addr_w0
and is enabled by we0. Each interface also includes an input or output signal to con-
vey data over depending whether the port is used to read or write data, for example
the write port has data_w0 as input. The register values themselves are held in
a two dimensional Verilog register called data. Notice that the indexing excludes
register number 0 which is not required. Two continuous assignments implement
the read ports. Each assignment tests if the associated port is enabled; if it is not,
the assignment writes 32’bZ onto the output to implement 3-state style behaviour.
If the port is enabled, the assignment firsts tests if register number 0 is being ac-
cessed, and outputs the value 0 as a result, or simply looks up the register value if
not. Writes to the register file are edge triggered. A short process, triggered by we0,
first checks that the write is not to register number 0 and updates the register value
with the input data_w0 if not.



8.5 Putting It All Together 323

1 module mem( input wire clk,
2 input wire rst,
3

4 input wire [31:0] prev_addr,
5 input wire [ 7:0] prev_data_w,
6 output reg [ 7:0] prev_data_r,
7 input wire prev_mrq,
8 output reg prev_mrs,
9 input wire prev_re,

10 input wire prev_we );
11

12 reg [7:0] data[0:1023];
13

14 always @ ( posedge rst )
15 begin
16 $readmemh( "memory/mem.bin", data, 0 );
17 end
18

19 always @ ( posedge prev_mrq )
20 begin
21 if ( prev_re )
22 prev_data_r = data[ prev_addr ];
23 else if( prev_we )
24 data[ prev_addr ] = prev_data_w;
25

26 #6 prev_mrs = 1;
27 @( negedge prev_mrq );
28 #6 prev_mrs = 0;
29 end
30

31 endmodule

Listing 8.6 A Verilog module that models main memory.

8.5.2 Main Memory

Listing 8.6 details the main memory module which closely resembles the one we
developed previously: remember that we claimed that we could replace the 2-
dimensional Verilog register with a concrete memory design based on D-type flip-
flops. The only real difference is that we include a process that can initialise the
memory content.

To initialise the memory, as triggered by a positive edge on the reset signal, we
use the $readmemh system task. This has the effect of reading the file specified as
the first argument into the 2-dimensional register specified as the second argument
at an offset specified by the third argument. In this case, the file mem.bin is filled
with 256 lines which look like

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
.. .. .. ..

Each value represents one byte encoded as two hexadecimal digits; using the file
essentially just zeros the memory content.



324 8 Memory and Storage

1 module dmc( input wire clk,
2 input wire rst,
3

4 input wire [31:0] prev_addr,
5 input wire [ 7:0] prev_data_w,
6 output reg [ 7:0] prev_data_r,
7 input wire prev_mrq,
8 output reg prev_mrs,
9 input wire prev_re,

10 input wire prev_we,
11

12 output reg [31:0] next_addr,
13 output reg [ 7:0] next_data_w,
14 input wire [ 7:0] next_data_r,
15 output reg next_mrq,
16 input wire next_mrs,
17 output reg next_re,
18 output reg next_we );
19

20 ...
21

22 endmodule

Listing 8.7 The interface to a Verilog module that models a direct-mapped cache.

8.5.3 Cache Memory

To describe the cache memory, we again opt for a high-level modelling approach.
Of the three designs introduced, direct-mapped caches are the most conceptu-
ally simple. To follow the example presented previously, we model such a cache
parametrised to house eight lines each holding four 8-bit sub-words. The Verilog
code is too long to present on one page but the interface is shown in Listing 8.7. The
cache module has one interface, whose signals are prefixed with prev, for incom-
ing transactions with the processor and one, whose signals are prefixed with next,
for outgoing transactions with the memory. To operate the memory via the outgoing
interface, two tasks are used; these are shown in Listing 8.8. The ld_byte and
st_byte tasks implement the handshake protocol which allows the cache to load
and store bytes from and into the memory. Their operation is fairly straightforward
but consider the ld_byte task as an example. It starts by waiting for the next pos-
itive clock edge to synchronise the operation; once this is encountered it sets the
address, read enable and memory request signals to initiate the transaction. The task
then waits for a positive edge on the memory response signal which indicates that
the memory has completed the operation; the task clears the read enable and mem-
ory request signals and reads the incoming value from the data bus. Finally it waits
for the memory response signal to be cleared by the memory before continuing.

The cache operation is implemented using two processes shown in Listing 8.9.
This code does not show the definitions of internal cache structures: tag holds
the tags for the cache lines, valid holds the valid flags for the cache lines and
data holds the cache lines themselves. The first process simply initialises the cache
content to empty by setting the valid flags for all lines to false; this is triggered



8.5 Putting It All Together 325

1 task ld_byte( input [31:0] t_addr,
2 output [ 7:0] t_data );
3 begin
4 @ ( posedge clk )
5 begin
6 next_addr = t_addr;
7

8 next_re = 1;
9 next_mrq = 1;

10 end
11

12 @ ( posedge next_mrs )
13 begin
14 next_re = 0;
15 next_mrq = 0;
16

17 t_data = next_data_r;
18 end
19 @ ( negedge next_mrs );
20 end
21 endtask
22

23 task st_byte( input [31:0] t_addr,
24 input [ 7:0] t_data );
25 begin
26 @ ( posedge clk )
27 begin
28 next_addr = t_addr;
29 next_data_w = t_data;
30

31 next_we = 1;
32 next_mrq = 1;
33 end
34

35 @ ( posedge next_mrs )
36 begin
37 next_we = 0;
38 next_mrq = 0;
39 end
40 @ ( negedge next_mrs );
41 end
42 endtask

Listing 8.8 Verilog tasks to access memory via the outgoing cache interface.

by a positive edge on the reset signal. The second process is triggered every time
there is a memory request via the incoming interface, i.e., a memory request from
the processor. It starts by calculating the tag, line number and word offset from
the incoming address. It can then check the associated line to see if it contains the
required data: if the line is not valid or the stored and computed tags do not match,
the line needs to be fetched from memory using the ld_byte task. Once the data is
definitely resident in the line, we can fulfil the request, writing the data through via
the outgoing interface to memory if the request was a write. Finally we instrument
a small artificial delay, to model the cache latency.

It is interesting to see how the cache behaves when connected to the main mem-
ory module described above. Listing 8.10 demonstrates how the two can be instan-
tiated to form a composite cached memory system; essentially one just has to wire



326 8 Memory and Storage

0
100

 ns
200

 ns
300

 ns

XX
X

1
34

35
36

37
1

38
39

40
41

XX
X

XX
X

0

XX
X

0
1

2
3

32
33

34
35

36
37

38
39

0
1

2
3

40
41

42
43

XX
X

XX
X

0

XX
X

0
1

0
1

XX
X

0
1

0
1

2

XX
X

1
2

3
0

1
2

3
0

1

Ti
me

cl
k

rs
t

pr
ev
_a
dd
r[
31
:0
]

pr
ev

_d
at

a_
w[

7:
0]

pr
ev

_d
at

a_
r[

7:
0]

pr
ev

_m
rq

pr
ev

_m
rs

pr
ev
_r
e

pr
ev
_w
e

ne
xt
_a
dd
r[
31
:0
]

ne
xt

_d
at

a_
w[

7:
0]

ne
xt

_d
at

a_
r[

7:
0]

ne
xt

_m
rq

ne
xt

_m
rs

ne
xt
_r
e

ne
xt
_w
e

de
c_

ta
g[

26
:0

]
de

c_
li

ne
[2

:0
]

de
c_

wo
rd

[1
:0

]

Figure 8.27 Behaviour of the composite cached memory system.



8.5 Putting It All Together 327

1 always @( posedge rst )
2 begin
3 for( i = 0; i < 8; i = i + 1 )
4 valid[i] = 0;
5 end
6

7 always @ ( posedge prev_mrq )
8 begin
9 dec_tag = prev_addr[31:5];

10 dec_line = prev_addr[ 4:2];
11 dec_word = prev_addr[ 1:0];
12

13 if( ( !valid[dec_line] ) || ( dec_tag != tag[dec_line] ) )
14 begin
15 tag [dec_line] = dec_tag;
16 valid[dec_line] = 1;
17

18 ld_byte( {dec_tag,dec_line,2’b00}, data[{dec_line,2’b00}] );
19 ld_byte( {dec_tag,dec_line,2’b01}, data[{dec_line,2’b01}] );
20 ld_byte( {dec_tag,dec_line,2’b10}, data[{dec_line,2’b10}] );
21 ld_byte( {dec_tag,dec_line,2’b11}, data[{dec_line,2’b11}] );
22 end
23

24 if ( prev_re )
25 prev_data_r = data[{dec_line,dec_word}];
26 else if( prev_we )
27 data[{dec_line,dec_word}] = prev_data_w;
28

29 if( prev_we )
30 st_byte( {dec_tag,dec_line,dec_word}, data[{dec_line,dec_word}] );
31

32 #2 prev_mrs = 1;
33 @( negedge prev_mrq );
34 #2 prev_mrs = 0;
35 end

Listing 8.9 Verilog processes that determine the cache behaviour.

the two devices so that they can talk to each other. To test the combined system and
inspect the behaviour of the cache, we fed the same sequence of loads to it as in our
more theoretical outline:

1,34,35,36,37,1,38,39,40,41.

Figure 8.27 shows the cache behaviour during these accesses. Remember that the
memory is zeroed during initialisation by the reset signal; the values read are hence
all 0. The actual cache behaviour is much more interesting. We start by loading
the value at address 1. The cache computes the tag as 0, the line number as 0 and
the word offset as 1. Since all the cache lines are initially invalid, this causes a
cache miss and the cache is forced to load the associated line, i.e., addresses 0, 1, 2
and 3, from main memory. The same pattern occurs when we try to load the value
at address 34. However, when we try to access the value at address 35 the access
completes much more quickly; there is no interaction with main memory at all since
the value we require is already resident in line 0. The access pattern continues as



328 8 Memory and Storage

1 module cached_mem( input wire clk,
2 input wire rst,
3

4 input wire [31:0] prev_addr,
5 input wire [ 7:0] prev_data_w,
6 output wire [ 7:0] prev_data_r,
7 input wire prev_mrq,
8 output wire prev_mrs,
9 input wire prev_re,

10 input wire prev_we );
11

12 wire [31:0] next_addr;
13 wire [ 7:0] next_data_w;
14 wire [ 7:0] next_data_r;
15 wire next_mrq;
16 wire next_mrs;
17 wire next_re;
18 wire next_we;
19

20 dmc t0( .clk (clk ),
21 .rst (rst ),
22

23 .prev_addr (prev_addr ),
24 .prev_data_w(prev_data_w),
25 .prev_data_r(prev_data_r),
26 .prev_mrq (prev_mrq ),
27 .prev_mrs (prev_mrs ),
28 .prev_re (prev_re ),
29 .prev_we (prev_we ),
30

31 .next_addr (next_addr ),
32 .next_data_w(next_data_w),
33 .next_data_r(next_data_r),
34 .next_mrq (next_mrq ),
35 .next_mrs (next_mrs ),
36 .next_re (next_re ),
37 .next_we (next_we ) );
38

39 mem t1( .clk (clk ),
40 .rst (rst ),
41

42 .prev_addr (next_addr ),
43 .prev_data_w(next_data_w),
44 .prev_data_r(next_data_r),
45 .prev_mrq (next_mrq ),
46 .prev_mrs (next_mrs ),
47 .prev_re (next_re ),
48 .prev_we (next_we ) );
49

50 endmodule

Listing 8.10 Instantiating the main memory and direct-mapped cache to form a composite cached
memory system.



8.7 Example Questions 329

one would expect with cache-misses producing long access latencies and cache-hits
completing much more quickly.

8.6 Further Reading

• J.L. Hennessy and D.A. Patterson.
Computer Architecture: A Quantitative Approach.
Morgan-Kaufmann, 2002. ISBN: 1-558-60724-2.

• M.D. Hill, N.P. Jouppi and G.S. Sohi.
Readings in Computer Architecture.
Morgan-Kaufmann, 2000. ISBN: 1-558-60539-8.

• D.A. Patterson and J.L. Hennessy.
Computer Organization and Design: The Hardware/software Interface.
Morgan-Kaufmann, 2004. ISBN: 1-558-60604-1.

• C. Petzold.
Code: Hidden Language of Computer Hardware and Software.
Microsoft Press, 2000. ISBN: 0-735-61131-9.

• A.S. Tanenbaum.
Structured Computer Organisation.
Prentice-Hall, 2005. ISBN: 0-131-48521-0.

8.7 Example Questions

33. Draw a diagram of a typical memory hierarchy explaining the types of device
one would expect to find in each level, their key characteristics and the principles
that allow the memory hierarchy to improve system performance.

34. A given processor accesses memory using 32-bit addresses. Suppose there is a
cache between the processor and a byte-addressable main memory of 512 bytes total
size and with a line size of 8 bytes. For each of the following cache architectures
specify how the 32-bit address would be used by the address translation mechanism
in the cache:

a. Direct-mapped cache.
b. 2-way set-associative cache.
c. 4-way set-associative cache.
d. Fully-associative cache.

For example, in the direct-mapped case you would need to specify which bits of the
address are used for the tag, the line number and the word offset.

35. Cache misses can be classified as either compulsory misses, capacity misses or
conflict misses. For each class of cache miss, explain why it might occur and how
changes in the cache architecture can reduce how often it occurs.



330 8 Memory and Storage

36. A given 32-bit processor has a unified level-one cache. The cache is 1 kilobyte
in size, holds 4 bytes per-line and is direct-mapped. A programmer writes, compiles
and executes the following program on the processor:

char A[1024], B[1024], C[1024];

int main( int argc, char* argv[] )
{
for( int i = 0; i < 1024; i++ ) {
A[i] = B[i] + C[i];

}
}

a. Calculate the number of bits of an address required for each of the following
quantities required to locate items in the cache:

i. cache word address,
ii. cache line address,

iii. cache tag.

and show how they are mapped onto the address.
b. Explain the following terms in relation to the cache hardware using the above

program as an example:

i. spacial locality,
ii. temporal locality,

iii. cache interference or contention.

c. Describe the sequence of cache hits and misses caused by accesses to A[i],
B[i] and C[i] as the loop progresses.

d. The definition of arrays A, B and C are changed to read:

char A[1025], B[1025], C[1025];

i. Explain how this changes the sequence of cache hits and misses described
above and why it improves on the original program.

ii. Outline a different cache architecture that could increase the performance of
the original program without changing.


