
Chapter 7
Arithmetic and Logic

The whole of arithmetic now appeared within the grasp of mechanism.

– C. Babbage

Abstract So far we have seen how to represent numbers as binary vectors and how,
using transistors, one can implement logic gates that perform the basic Boolean
operations NOT, AND, and OR. In order to realise the goal of performing useful
computation on integer values represented as n-bit vectors, we need to compose
these logic gates into higher-level circuits. Generally speaking, the Arithmetic and
Logic Unit (ALU) packages circuits for different operations into one component
that performs computation for the processor. To aid the discussion in examples we
set n = 8 throughout, i.e., set the size of a word to equal one byte. However, it is
important to see that the methods are presented in a general form: one can easily
extend them to cope with larger word sizes.

7.1 Introduction

The ALU is at the heart of any processor; when one requires an addition or compari-
son to happen, it is the component that performs the computation under the guidance
of a control unit. This design was first formalised by John von Neumann in 1945 in
his pioneering design for the EDVAC computer. Many principles outlined in his de-
sign are still retained today. Specifically he noted that any computer would have to
perform basic mathematical operations on numbers and that it is “reasonable that
[the computer] should contain specialised organs for these operations” [48]. The
modern ALU is an example of such an organ.

In a very rough sense one can view the ALU as a primitive calculator: it accepts
operands as input, waits to be told what operation to perform, and then produces
results as output after some time. As such, one can view the high-level architecture
of a basic ALU as being similar to Figure 7.1. In this diagram, there are a number
of units within the ALU which all take inputs and generate results, potentially in
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Figure 7.1 A high-level architectural design for a basic ALU.

parallel, for their associated operations. For example, we might have one unit for
addition, one unit for multiplication and one unit for shift operations. These results
are selected between by a signal which is determined by the control-path; depending
on which operator it uses, a different result is produced on the ALU output. In
reality it might be advantageous to turn off units which are not being used at any
one time so as to reduce power consumption or heat. Additionally it is very likely
that replicated logic in different units could be shared; for example, the unit for
addition might also be used in multiplication. We will not worry about these sorts of
optimisation here. Finally note that at this high-level, one usually views the ALU as
a single component. However, at a lower-level, it might be attractive to split it into
parts. For example, it is common to have dedicated floating point arithmetic within a
Floating Point Unit (FPU), or to split the integer ALU into two parts for arithmetic
and comparisons. In this way, one can perform different types of computation at
the same time; for example, we might compare two numbers and add another two
numbers at the same time.

7.2 Comparisons

Recall from Chapter 2 that we can easily construct functions that describe 1-bit
equality and less than comparisons; we use equ(x,y) to denote the truth value related
to the test x = y, and lth(x,y) to denote the truth value related to x < y for 1-bit
values x and y. The basic idea in constructing comparators for larger values, n-bit
integers in our case, is to combine many of these 1-bit comparators together in order
to produce the final result.
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Figure 7.2 Design for an unsigned equality comparator.

1 module equ_nbit( r, x, y );
2

3 parameter n = 8;
4

5 output wire r;
6 input wire [n-1:0] x;
7 input wire [n-1:0] y;
8

9 wire [n-1:0] w0 = x ˆ y;
10

11 assign r = ˜( |w0 );
12

13 endmodule

Listing 7.1 Implementation of an n-bit unsigned equality comparator.

7.2.1 Unsigned Comparisons

7.2.1.1 Equality

Implementing a hardware circuit to test values for equality is a simple matter of
using the 1-bit equality test in a component-wise manner on the inputs and then
ensuring all the 1-bit comparisons are true. This final step can be implemented by
ANDing all the 1-bit comparisons together; the whole values are unequal if even
one of the 1-bit comparisons fail, so all must be true for the comparison to be true.
For efficiency, one can arrange this operation as a tree to minimise the critical path.

However, we can be slightly more clever than this naive approach and reduce the
number of required gates somewhat. Instead of 1-bit equality modules we use 1-bit
not-equal modules, which are essentially just XOR gates; this change saves n NOT
gates. By ORing these results together, instead of ANDing, and then negating the
result we compute the same function: we have just rearranged the expression a little.
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Figure 7.3 Design for an unsigned less than comparator.

1 module lth_nbit( r, x, y );
2

3 parameter n = 8;
4

5 output wire r;
6 input wire [n-1:0] x;
7 input wire [n-1:0] y;
8

9 wire [n-1:0] w0 = ˜( x ˆ y );
10 wire [n-1:0] w1 = ( ˜x & y );
11 wire [n-1:0] w2;
12

13 assign w2[0] = w1[ 0];
14 assign r = w2[n-1];
15

16 genvar i;
17 generate
18 begin
19 for( i = 1; i < n; i = i + 1 )
20 begin:gen_lth
21 assign w2[i] = w1[i] | ( w0[i] & w2[i-1] );
22 end
23 end
24 endgenerate
25

26 endmodule

Listing 7.2 Implementation of an n-bit unsigned less than comparator.

The end result is shown in Figure 7.2 and implemented in Listing 7.1, the overall
saving is n−1 NOT gates. Note that the implementation uses a reduction operator:
the assumption is that a Verilog tool-chain will be clever enough to translate this
into a tree structure.

7.2.1.2 Less Than

To test if one n-bit value x is less than another one called y, we compare the i-th bits
of x and y with each other starting from the most-significant and find that x < y if
either of the following is true:
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1. lth(xi,yi).
2. equ(xi,yi) and taking x′ and y′ to be the (i−1)-th down to the 0-th bits of x and

y respectively, we recursively find that x′ < y′.

This is somewhat of an awkward description; more concretely we can write the
operation on 8-bit values as the sequence

t0 = lth(x0,y0)
...

t5 = lth(x5,y5) ∨ (equ(x5,y5)∧ t4)
t6 = lth(x6,y6) ∨ (equ(x6,y6)∧ t5)
t7 = lth(x7,y7) ∨ (equ(x7,y7)∧ t6)

with the final result appearing as t7. Consider an even smaller example where we set
x = 6(10) = 110(2) and y = 7(10) = 111(2) such that n = 3. That is, we want to test if
110(2) < 111(2). Examining each bit of x and y we can clearly see that

lth(x0,y0) = true
lth(x1,y1) = false
lth(x2,y2) = false

and also that
t0 = true
t1 = true
t2 = true

because
t0 = lth(x0,y0)

= true

t1 = lth(x1,y1)∨ (equ(x1,y1)∧ t0)
= false∨ true
= true

t2 = lth(x2,y2)∨ (equ(x2,y2)∧ t1)
= false∨ true
= true

Thus we find that x < y, or rather than 6(10) < 7(10), because the final output in
the sequence is t2 = true. Hopefully it is clear that we can chain together instances
of our 1-bit comparator modules in order to implement the sequence above; this
approach is shown in Figure 7.3 and implemented in Listing 7.2. Wires w0 and w1
implement the 1-bit equality and less than tests respectively; the generate statement
chains these together as described above to produce the result r.
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7.2.2 Signed Comparisons

A signed equality comparison is the same as an unsigned equality comparison since
we are essentially just testing corresponding bits against each other. Signed less than
comparison is a little more tricky however. We can formulate a set of rules for how
signed less than behaves depending on the signs of the inputs x and y:

x +ve and y -ve → x 	< y
x -ve and y +ve → x < y
x +ve and y +ve → x < y if ABS(x) < ABS(y)
x -ve and y -ve → x < y if ABS(y) < ABS(x) .

Thus we can realise a signed less than comparison just using some simple tests of
the MSBs of x and y, which determine their sign, and controlled use of our unsigned
less than comparison circuit.

The final thing to note is that once we have built hardware for equality and less
than comparison, other operations can be derived using low-cost identities rather
than additional dedicated circuits. For example, one can easily verify that

x 	= y → ¬(x = y)
x ≤ y → (x < y)∨ (x = y)
x ≥ y → ¬(x < y)
x > y → ¬(x < y)∧¬(x = y)

such that all six useful comparisons can be generated with hardware to test for equal-
ity and less than, and four extra logic gates.

7.3 Addition and Subtraction

7.3.1 Addition

Most people learn the method for multi-digit addition in school; we describe the
steps in Algorithm 7.1. Say we select example inputs x = 123(10) and y = 218(10).
Using our algorithm, we can produce a trace which details the values before and
after major assignments as execution of the algorithm progresses:

i xi yi c t zi c

0 3 8 0 11 1 1
1 2 1 1 4 4 0
2 1 2 0 3 3 0

and find that the result is z = 341(10). However, we are often used to writing such
operations more diagrammatically. To calculate the sum z = x+y in base b by hand
for example, we first write out the digits of x and y with similar powers of b above
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Input: The n-digit integers x and y in a base-b representation.
Output: The n+1-digit integer z = x+ y in a base-b representation.

ADD(x,y)1

z ← 02

c ← 03

for i = 0 upto n−1 step 1 do4

t ← xi + yi + c5

zi ← t mod b6

c ← �t/b�7

zn ← c8

return z9

end10

Algorithm 7.1: An algorithm for multi-digit addition.

each other. In decimal, this should be a familiar process; again taking x = 123(10)
and y = 218(10) we produce the sum

1 2 3 input x
2 1 8 input y
0 1 0 carry
3 4 1 result z = x+ y

Note the zero in the first carry-in denoting that there is implicitly no carry into the
first addition: we count this as zero. The same algorithm or diagrammatic method
works in any base we care to represent our numbers in. If we consider binary num-
bers x = 123(10) = 1111011(2) and y = 281(10) = 11011010(2), we proceed as fol-
lows:

1 1 1 1 0 1 1 input x
1 1 0 1 1 0 1 0 input y

1 1 1 1 1 0 1 0 0 carry
1 0 1 0 1 0 1 0 1 result z = x+ y

to again compute the result z = x + y = 341(10) = 101010101(2). Notice the carries
propagate from right to left: we produce a carry from the i-th step which is propa-
gated into the sum for the (i+1)-th step.

Although our algorithm works fine in general, we are presented with a problem
when restricted to working with n-bit integers. The problem, termed overflow, is that
the result of adding two n-bit integers together can create an (n+1)-bit result which
is obviously too large to represent in n bits. This occurs when there is a carry-out
of step n−1 of our algorithm and is demonstrated perfectly by the example above.
Specifically, the inputs x = 123(10) = 1111011(2) and y = 281(10) = 11011010(2)
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are both 8 bits long but the result z = x+y = 341(10) = 101010101(2) is 9 bits long.
Given we want to represent z in 8 bits we have two main choices

• Truncate the result to 8 bits such that z = 85(10) = 01010101(2) and signal by
some method that an overflow has occurred so the error can be detected.

• Clamp or saturate the result to the highest value representable in the 8-bit size
so that we have that z = 255(10) = 11111111(2).

Clamped addition is useful in some contexts where accuracy is not important, for
example when computing with graphical information represented as pixels. How-
ever, for other contexts we prefer to simply truncate the result and flag that overflow
has occurred.

This detection of overflow is slightly complicated when one considers signed
numbers. As an example, consider adding together x = 127(10) and y = −127(10)
represented as 8-bit twos-complement binary vectors:

1 1 1 1 1 1 1 input x
1 0 0 0 0 0 0 1 input y

1 1 1 1 1 1 1 1 0 carry
1 0 0 0 0 0 0 0 0 result z = x+ y

We truncate the result to 8 bits and find z = 0(10) = 0(2) but there is a carry-out of the
last step which means z9 = 1. Using the reasoning above, this should mean there is a
carry-out yet we know the result should be zero and this can clearly be represented
as an 8-bit value so what went wrong ? In short, we need to consider the sign of the
two inputs and the sign of the output; detection of overflow can then be formulated
not in terms of the carry-out of the addition but by some simple rules. Assuming z
is the value of the result z = x+ y after truncation has occurred, we have

x +ve and y -ve → no overflow
x -ve and y +ve → no overflow
x +ve and y +ve and z +ve → no overflow
x +ve and y +ve and z -ve → overflow
x -ve and y -ve and z +ve → overflow
x -ve and y -ve and z -ve → no overflow

Overflow cannot occur if the input numbers have differing signs since the result
must lie somewhere in the range of numbers representable. The overflow cases offer
perhaps the most intuitive way to explain the rest: for example if we are adding
two positive numbers together and get a negative result, something has clearly gone
wrong. Given that xn−1 is the MSB of the value x and that this determines the sign of
x in a twos-complement representation, we have that overflow occurs exactly when
the expression

(xn−1 ∧ yn−1 ∧¬zn−1)∨ (¬xn−1 ∧¬yn−1 ∧ zn−1)

is true.
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Figure 7.4 Design for an n-bit ripple-carry adder.

1 module add_nbit( co, ci, r, x, y );
2

3 parameter n = 8;
4

5 output wire co;
6 input wire ci;
7

8 output wire [n-1:0] r;
9 input wire [n-1:0] x;

10 input wire [n-1:0] y;
11

12 wire [n-2:0] w0;
13

14 add_1bit t0( .co(w0[ 0]), .s(r[ 0]),
15 .ci(ci ), .x(x[ 0]), .y(y[ 0]) );
16 add_1bit t1( .co(co ), .s(r[n-1]),
17 .ci(w0[n-2]), .x(x[n-1]), .y(y[n-1]) );
18

19 genvar i;
20 generate
21 for( i = 1; i < n-1; i = i + 1 )
22 begin:gen_add
23 add_1bit t2( .co(w0[i ]), .s(r[i]),
24 .ci(w0[i-1]), .x(x[i]), .y(y[i]) );
25 end
26 endgenerate
27

28 endmodule

Listing 7.3 Implementation of an n-bit ripple-carry adder.

7.3.1.1 Ripple-Carry Adder

We already know how to construct half and full-adders from basic logic gates that
are capable of adding two 1-bit values and a carry-in to give a sum and carry-out as
a result. Our task in using this basic component to add larger n-bit values is fairly
simple: we just need to chain together the carry-in and carry-out signals of n full-
adders. This chaining technique was described previously in Chapter 2 where we
built a 4-bit adder from 1-bit full-adder components.

Following this, Figure 7.4 shows the very similar, but general structure for an
n-bit adder. This design is called a ripple-carry adder since the flow of carries
through the adders mimics the flow of carries in our algorithm: the carries ripple or
propagate from the i-th adder to the (i + 1)-th adder. As such, the design can only
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Figure 7.5 Design for an n-bit carry look-ahead adder.

calculate the i-th bit of the result once the adders to the right (i.e., those for the less-
significant bits) have completed their results and propagated the carry. Implementing
the design is very easy; Listing 7.3 shows a general-purpose n-bit adder module
built assuming we have the standard add_1bit module available to us. To make
the description more compact, we use a generate statement to instantiate the n− 2
full-adders in the middle of the chain and only explicitly instantiate the two at either
end which carry-in and carry-out ci and co respectively.

7.3.1.2 Carry Look-Ahead Adder

The goal of a carry look-ahead adder design is to reduce the propagation delay
associated with the carry chain through a ripple-carry adder. The basic idea behind
achieving this is to directly compute the carry-in for the i-th step rather than have it
fed through from the (i−1)-th step.

We classify each step as either generating a carry-out or propagating a carry-
in. Working in base-b, a step can generate a carry-out if xi + yi ≥ b while it can
propagate a carry-in if xi +yi = b−1. Consider an example with decimal, i.e., base-
10, values:

1 4 5 input x
1 5 5 input y
1 1 0 carry
3 0 0 result z = x+ y

The first step generates a carry-out because 5+5 ≥ 10 so the carry is passed into the
next step. The second step propagates this carry; although it does not directly gen-
erate a carry-out since 4+5 = 9, the carry-in from the previous step increments this
such that the carry is again passed onto the next step. The final step neither generates
nor propagates a carry since 1 + 1 = 2 which, when incremented to accommodate
the carry-in, is still less than the base-10.
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In binary things are again a little more simple than in the general case. To de-
termine if the i-th step of the sum x + y generates or propagates a carry, which we
denote by gi and pi respectively, we can use

gi = xi ∧ yi

pi = xi ⊕ yi.

That is, the step generates a carry-out if both digits are 1 and propagates a carry-in if
either digit is 1 (but not both, otherwise it would generate a carry-out). Using these
simple starting points, we can directly compute ci, the carry-in for the i-th step.
Given c0 is the carry-in for the whole addition, we continue to find

c1 = g0 ∨ (p0 ∧ c0)
c2 = g1 ∨ (p1 ∧ c1) = g1 ∨ (p1 ∧g0)∨ (p1 ∧ p0 ∧ c0)
c3 = g2 ∨ (p2 ∧ c2) = g2 ∨ (p2 ∧g1)∨ (p2 ∧ p1 ∧g0)∨ (p2 ∧ p1 ∧ p0 ∧ c0)

...

Reading the first line, we have a carry-in for step one if step zero generates a carry-
out or if step zero propagates a carry-in and there is a carry-in for step zero. Subse-
quent lines follow a similar reasoning, but are increasingly complex. However, using
this approach we have significantly reduced the propagation delay associated with
generating a result. Figure 7.5 demonstrates the general design of a carry look-ahead
adder circuit.

As an aside, note that it is common to see gi and pi written as

gi = xi ∧ yi

pi = xi ∨ yi.

Of course, when used in the above this change does not alter the meaning: if xi =
1 and yi = 1, then gi = 1 so it does not matter what the corresponding pi is in
this case. As such, use of an OR gate rather than an XOR is preferred because
the former requires less transistors. In the ripple-carry adder case the circuit has
a depth of O(n) gates to generate a result, with carry look-ahead we reduce this
depth to O(logn). The trade-off is that even though the circuit is less deep and
hence generates a result faster, it generally uses many more gates: roughly O(n2)
for a carry look-ahead adder versus O(n) for a ripple-carry adder. As a compromise
between these advantages and disadvantages, it can be attractive to chain together
small carry look-ahead adders, say four 8-bit adders, in a ripple-carry configuration
to form a larger, say a 32-bit, adder.

7.3.2 Subtraction

Subtraction is performed in a similar way to addition except we substitute carries
from the i-th step to the (i + 1)-th step into borrows from the (i + 1)-th step by the
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Input: The n-digit integers x and y in a base-b representation.
Output: The n+1-digit integer z = x− y in a base-b representation.

SUB(x,y)1

z ← 02

c ← 03

for i = 0 upto n−1 step 1 do4

t ← xi − yi + c5

zi ← t mod b6

c ← �t/b�7

return z8

end9

Algorithm 7.2: An algorithm for multi-digit subtraction.

i-th step. In decimal we show this using the values x = 218(10) and y = 123(10) to
make our life slightly easier, and execute Algorithm 7.2 to produce the trace

i xi yi c t zi c

0 8 3 0 5 5 0
1 1 2 0 −1 9 −1
2 2 1 −1 0 0 0

and calculate z = x−y = 95(10). Written in the more conventional diagram form we
get

2 1 8 input x
1 2 3 input y

−1 0 0 borrow
9 5 result z = x− y

Translating this into the binary case results in exactly the same process; for our test
values x = 281(10) = 11011010(2) and y = 123(10) = 1111011(2) we again compute
z = x+ y = 95(10) = 1011111(2) as follows:

1 1 0 1 1 0 1 0 input x
1 1 1 1 0 1 1 input y

−1 −1 −1 −1 −1 −1 −1 0 borrow
1 0 1 1 1 1 1 result z = x− y

However, implementing separate addition and subtraction is somewhat pointless
given we can deal with subtraction by using the identity z = x− y = x+(−y). That
is, we first compute the negation of y and then add this to x to get our result. At
first glance it seems like we will still need an extra circuit to perform the negation,
but in fact this can be achieved using the following convenient method to convert a
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Figure 7.6 Design for an n-bit ripple-carry adder/subtractor.

number y into the twos-complement negation:

−y ≡ ¬y+1.

So we simply invert each bit in y and then add one. However, we need to take
care with regard to the carry-in since in subtraction this is essentially a borrow-
from so we really want to compute x + y + ci during addition and x− y− ci during
subtraction.

Inverting each bit of y is simple: we just have a control wire which determines if
our adder should do an addition or a subtraction and XOR this control wire with each
bit in y. As a result, when the control wire ctrl = 1 we have yi inverted and when
ctrl = 0 we pass yi through unchanged. Adding one to the result is also simple: we
just set the initial carry-in of our adder chain to 1. However, we need to take care to
only do this when required; based on ctrl and ci the four possible cases are

ctrl = 0 and ci = 0 → x+ y+0 = x+ y
ctrl = 0 and ci = 1 → x+ y+1 = x+ y+1
ctrl = 1 and ci = 0 → x+(¬y+1)−0 = x+(¬y)+1
ctrl = 1 and ci = 1 → x+(¬y+1)−1 = x+(¬y)

Therefore, we actually set the initial carry-in of our adder chain to equal ctrl ⊕ci so
that it is 1 only where either we are doing an addition and there is a carry-in, or we
are doing a subtraction and there is no borrow-from.

Figure 7.6 shows a design for a combined circuit that can perform addition and
subtraction depending on a control signal. This design is implemented in Listing 7.4
and looks very similar to our initial adder implementation in that we again rely on
the basic add_1bit module. This time, instead of feeding y into each adder as
the second input, we use w1 which is conditionally negated by using an XOR of
each bit of y with the control value ctrl. This is accomplished using a replication
operator to form an n-bit vector where each bit is equal to ctrl. Then, instead of
feeding in ci as the carry-in to the first adder we use ctrl again so as to get an
extra addition of 1 where negation of y is required. Actually, this is not quite true: to
cope with the fact that we might still need to use the carry-in value in addition, we
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1 module sub_nbit( ctrl, co, ci, r, x, y );
2

3 parameter n = 8;
4

5 input wire ctrl;
6

7 output wire co;
8 input wire ci;
9

10 output wire [n-1:0] r;
11 input wire [n-1:0] x;
12 input wire [n-1:0] y;
13

14 wire [n-2:0] w0;
15 wire [n-1:0] w1 = y ˆ {n{ctrl}};
16

17 add_1bit t0( .co(w0[ 0] ), .s(r[ 0]),
18 .ci(ci ˆ ctrl), .x(x[ 0]), .y(w1[ 0]) );
19 add_1bit t1( .co(co ), .s(r[n-1]),
20 .ci(w0[n-2] ), .x(x[n-1]), .y(w1[n-1]) );
21

22 genvar i;
23 generate
24 for( i = 1; i < n-1; i = i + 1 )
25 begin:gen_sub
26 add_1bit t2( .co(w0[i ]), .s(r[i]),
27 .ci(w0[i-1]), .x(x[i]), .y(w1[i]) );
28 end
29 endgenerate
30

31 endmodule

Listing 7.4 Implementation of an n-bit ripple-carry adder/subtractor.

actually XOR ctrl with ci to form the first carry-in. This allows us, for example,
to set ctrl to 0 for an addition yet still set ci equal to 1.

7.4 Shift and Rotate

Formally, a left or right shift of an integer x represented in base-b by a distance y
multiplies x by b+y or b−y. This basically has the effect of moving the digits left
or right in the expansion. Consider an example value of x = 123(10). Working in
decimal, shifting x left by setting s = 2 multiplies it by 102 = 100 giving

12300(10)

while shifting right by setting y = −2 multiplies it by 10−2 = 0.01, i.e., it divides it
by 100, to give

1.23(10).

This process works exactly the same in binary. So with x = 1111011(2), shifting x
left by setting y = 2 multiplies x by 22 = 4 to give
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111101100(2)

while shifting right by setting y = −2 multiplies x by 2−2 = 0.25, i.e., it divides it
by 4, to give

11110.11(2).

When representing numbers as n-bit binary vectors, there are some additional ques-
tions that need answering. For example, consider the vector x = 01111011 repre-
senting 1111011(2) in 8 bits. Shifting left by setting y = 2 gives

111011??.

We have lost two digits from the left-hand, most-significant end because they cannot
be accommodated in 8 bits. More importantly the right-hand, least-significant end of
the vector needs two extra digits so it remains 8 bits long; these are marked with ?.
The same is true when shifting in the other direction so that shifting right by setting
y = −2 gives

??011110.

This time we have lost two digits from the right-hand, least-significant end and need
two extra digits inserted into the left-hand, most-significant end.

How we fill the bits marked ? depends on the type of operation we require.
Roughly, there are three important operations: logical shifts, arithmetic shifts, and
rotations. These are best explained by example, starting with operations in the left
direction:

• If we are performing a logical left-shift, we fill the least-significant bits of the
result with 0. Thus, a logical left-shift of the vector x = 01111011 by y = 2
results in 11101100.

• If we are performing a left-rotate, we fill the least-significant bits of the result
with the most-significant bits expelled from the most-significant end. Thus, a
logical left-shift of the vector x = 01111011 by y = 2 results in 11101101.

Similar behaviour can be applied to operations in the right direction:

• If we are performing a logical right-shift, we fill the most-significant bits of the
result with 0. Thus, a logical right-shift of the vector x = 01111011 by y = −2
results in 00011110.

• If we are performing an arithmetic right-shift, we fill the most-significant bits of
the result with the most-significant or sign bit. Thus, an arithmetic right-shift of
the vector x = 01111011 by y = −2 results in 00011110 while using the value
x = 11111011 results in 11111110. This preserves the sign so we get the result
we would expect if viewing right-shift as a form of division.

• If we are performing a right-rotate, we fill the most-significant bits of the result
with the least-significant bits expelled from the least significant end. Thus, a
logical right-shift of the vector x = 01111011 by y = 2 results in 11011110.

The idea of differentiating between logical and arithmetic shifts is that arithmetic
shifts preserve the sign of the value involved while logical shifts do not. This can be
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important depending on the context in which the operation is used: if we really want
to view right-shifting as a division by 2y, we need an arithmetic shift otherwise the
sign of the result will be wrong.

Once we know what the various operations should actually do, we can start to
think about ways of implementing them in hardware. There are two main categories
of implementation which are described in detail below. To make things easier for
ourselves, we will only consider shifting values by unsigned distances. The assump-
tion is that the device controlling our shifter will translate, for example, a logical
left-shift by a negative distance into a logical right-shift by a positive distance of
the same magnitude if required. Thus the assumption is that for an n-bit value x we
always have the distance 0 ≤ y < log2(n).

Finally, we will assume that the style of shift performed by our hardware is dic-
tated by some input which can take one of the following constant values:

‘define SHF_R_LOGIC 3’b000
‘define SHF_R_ARITH 3’b001
‘define SHF_R_ROTATE 3’b010
‘define SHF_L_LOGIC 3’b011
‘define SHF_L_ARITH 3’b100
‘define SHF_L_ROTATE 3’b101

with ‘SHF_L_ARITH being an unused placeholder.

7.4.1 Bit-Serial Shifter

The most simple way to realise the required behaviour is to use a sequential or bit-
serial approach. The basic idea is to build a hardware device capable of shifting
values by a distance of one bit and then iterating the use of this hardware using y
steps to shift a distance of y bits. The advantage of this approach is that it uses the
least logic; we only require hardware to shift by distances of one bit coupled to some
control hardware. The drawback is that it is slow to produce a result; we must make
y sequential steps to get the required result.

Listing 7.5 details the implementation of a simple bit-serial shifter. The module
uses the input oper to decide which type of operation is required; one can perform
left or right logical or arithmetic shifts and rotations. In order to realise the iterated
behaviour, we maintain a counter in register r1 that tracks how many iterations we
have performed so far. This value is incremented by add_nbit instance t0 and
compared with the desired number of iterations by equ_nbit instance t1.

Execution of a shift operation is initialised when a positive edge is detected on
the reset input named rst. When this event occurs we reset the iteration counter to
zero and the temporary value r0, which stores the value being shifted, to the initial
input x. On positive edges of the clk signal the shifter state is updated; that is,
one iteration is executed. We start by updating our temporary shifted value r0 by
shifting it by a distance of one bit in a style determined by oper. We then check if
enough iterations have been performed by examining w1, the result of comparing the
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1 module shf_nbit( clk, rst, oper, r, x, y );
2

3 parameter n = 8;
4 parameter m = 3;
5

6 input wire clk;
7 input wire rst;
8

9 input wire [ 2:0] oper;
10

11 output reg [n-1:0] r;
12 input wire [n-1:0] x;
13 input wire [n-1:0] y;
14

15 reg [n-1:0] r0;
16 reg [m-1:0] r1;
17 reg r2;
18

19 wire [m-1:0] w0;
20 wire w1;
21

22 add_nbit t0(.ci(1’b0),.r(w0),.x(r1),.y(1 ) );
23 equ_nbit t1( .r(w1),.x(w0),.y(y[m-1:0]) );
24

25 defparam t0.n = m;
26 defparam t1.n = m;
27

28 always @ ( posedge rst )
29 begin
30 r0 = x;
31 r1 = 0;
32 r2 = 0;
33 end
34

35 always @ ( posedge clk )
36 begin
37 case( oper )
38 ‘SHF_R_LOGIC : r0 = { 1’b0, r0[n-1:1] };
39 ‘SHF_R_ARITH : r0 = { r0[n-1], r0[n-1:1] };
40 ‘SHF_R_ROTATE : r0 = { r0[ 0], r0[n-1:1] };
41 ‘SHF_L_LOGIC : r0 = { r0[n-2:0], 1’b0 };
42 ‘SHF_L_ROTATE : r0 = { r0[n-2:0], r0[n-1] };
43 endcase
44

45 if( !r2 )
46 begin
47 r1 = w0;
48

49 if( w1 )
50 begin
51 r = r0;
52

53 r2 = 1;
54 end
55 end
56 end
57

58 endmodule

Listing 7.5 Implementation of an n-bit bit-serial shifter.
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Figure 7.7 Behaviour of an n-bit bit-serial shifter.
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iteration counter with the desired number of iterations. If we have done enough, we
set the shifter output r to equal our temporary value r0 to complete the operation.
Otherwise we update the iteration counter by incrementing it and wait for clk to
trigger another iteration.

Figure 7.7 demonstrates the behaviour of this design for the inputs x = 123(10) =
1111011(2) and y = 5(10) = 101(2) when asked to perform a left logical shift. The
clock has a period of 2ns and the shifter is reset at time t = 2ns by the positive
edge of rst. Then, on each positive edge of the clock one can see the loop counter,
accumulator and so on being updated. By time t = 12ns the result is set as r =
96(10) = 1100000(2) which is what we expect; the left-most five bits of x have been
shifted off and zeros inserted as padding on the right-hand side.

7.4.2 Logarithmic Shifter

In reality, it is often desirable to generate results quickly rather than to minimise the
amount of logic used. As such, one can consider alternative designs that by using
more logic can produce a result in just one step rather than y steps. This approach
demands that we make a combinatorial circuit rather than a clocked circuit; the
speed one can generate results is then dominated by the critical path of the circuit
rather than the clock speed. We consider a conceptually simple approach which
is termed a logarithmic shifter. Essentially this design is a series of multiplexers
which shift the input by differing constant amounts to form the result.

The key idea is that each bit of the shift distance y determines a shift by a con-
stant amount 2i. So for example, if y1 = 1 then we need to shift by a distance of
two at some point. The combination of the different constant shifts results in the
overall result so if y = 3(10) = 11(2), we have y0 = 1 and y1 = 1 and so need to shift
by a distance of one then a distance of two. Since the different constant shifts are
independent, we can do them separately and have one unit shifting by 1 then feed
this result to a unit shifting by two. Both units are easy to construct since the shift
distances are now constant. The end result is a structure shown in Figure 7.8. The
design is combinatorial and produces the end result in one clock cycle; the obvious
drawback is the amount of logic used and longer associated critical path.

Implementing a general n-bit logarithmic shifter in Verilog is quite hard due to
the constraints on use of generate statements; one could easily write a C program
to generate the required code however. To provide a concrete example, we present
the implementation of a specific 8-bit shifter. Hopefully it is clear that similar tech-
niques can easily be applied to larger designs. Listing 7.6 details the implementa-
tion which consists of three similar stages. Each stage consists of two multiplexers:
a mul8_8bit instance which shifts the input by a constant distance using a style
dictated by oper, and a mul2_8bit instance which decides between the shifted
and unshifted input depending on the associated bit of input y. So for example mul-
tiplexer instance t0 shifts the input w0, an alias for x, by a distance of one bit.
Multiplexer instance t1 then decides whether to feed the original value w0 or the
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1 module shf_8bit( input wire [2:0] oper,
2

3 output wire [7:0] r,
4 input wire [7:0] x,
5 input wire [7:0] y );
6

7 wire [7:0] w0;
8 wire [7:0] w1;
9 wire [7:0] w2;

10 wire [7:0] w3;
11 wire [7:0] w4;
12 wire [7:0] w5;
13 wire [7:0] w6;
14

15 assign w0 = x;
16 assign r = w6;
17

18 mux8_8bit t0( .r(w1),
19

20 .i0({ 1’b0, w0[7:1] }),
21 .i1({ {1{w0[7:7]}}, w0[7:1] }),
22 .i2({ w0[0:0], w0[7:1] }),
23 .i3({ w0[6:0], 1’b0 }),
24 .i5({ w0[6:0], w0[7:7] }),
25

26 .s0(oper[0]), .s1(oper[1]), .s2(oper[2]) );
27

28 mux2_8bit t1( .r(w2), .i0(w0), .i1(w1), .s0(y[0]) );
29

30 mux8_8bit t2( .r(w3),
31

32 .i0({ 2’b0, w2[7:2] }),
33 .i1({ {2{w2[7:7]}}, w2[7:2] }),
34 .i2({ w2[1:0], w2[7:2] }),
35 .i3({ w2[5:0], 2’b0 }),
36 .i5({ w2[5:0], w2[7:6] }),
37

38 .s0(oper[0]), .s1(oper[1]), .s2(oper[2]) );
39

40 mux2_8bit t3( .r(w4), .i0(w2), .i1(w3), .s0(y[1]) );
41

42 mux8_8bit t4( .r(w5),
43

44 .i0({ 4’b0, w4[7:4] }),
45 .i1({ {4{w4[7:7]}}, w4[7:4] }),
46 .i2({ w4[3:0], w4[7:4] }),
47 .i3({ w4[3:0], 4’b0 }),
48 .i5({ w4[3:0], w4[7:4] }),
49

50 .s0(oper[0]), .s1(oper[1]), .s2(oper[2]) );
51

52 mux2_8bit t5( .r(w6), .i0(w4), .i1(w5), .s0(y[2]) );
53

54 endmodule

Listing 7.6 Implementation of an 8-bit logarithmic shifter.
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Figure 7.8 General design of a basic logarithmic shifter architecture.

shifter value w1 through to the result w2 depending on the value of y[0]. The next
stage, comprising the multiplexer instances t2 and t3, performs a similar operation
on w2 to produce w4 but for a shift distance of two bits; t4 and t5 then shift w4
by a distance of four bits to produce w6. The end result w6 is the correctly shifted
value and is assigned to the shifter output r.

7.5 Multiplication

Like addition, most people learn the method for multi-digit multiplication in school.
When calculating z = x · y we term x the multiplicand and y the multiplier; since
multiplication is associative we can switch these roles if we want. To make things
easier for ourselves, we will only consider multiplication of unsigned numbers. Us-
ing some extra logic one can easily deal with signed input by forcing the inputs to
be unsigned and then fixing up the sign of the result.

In a similar way to addition, we can describe multiplication using Algorithm 7.3
and produce a trace of execution for our example inputs x = 123(10) and y = 218(10)



244 7 Arithmetic and Logic

Input: The n-digit integers x and y in a base-b representation.
Output: The n+1-digit integer z = x · y in a base-b representation.

MUL(x,y)1

z ← 02

for i = 0 upto n−1 step 1 do3

c ← 04

for j = 0 upto n−1 step 1 do5

t ← xi · y j + zi+ j + c6

zi+ j ← t mod b7

c ← �t/b�8

zi+w ← c9

return z10

end11

Algorithm 7.3: An algorithm for multi-digit multiplication.

i j xi y j zi+ j c t zi+ j c

0 0 3 8 0 0 24 4 2
0 1 3 1 0 2 5 5 0
0 2 3 2 0 0 6 6 0
1 0 2 8 5 0 21 1 2
1 1 2 1 6 2 10 0 1
1 2 2 2 0 1 5 5 0
2 0 1 8 0 0 8 8 0
2 1 1 1 5 0 6 6 0
2 2 1 2 0 0 2 2 0

Alternatively, we can describe the operation diagrammatically as

1 2 3 input x
2 1 8 input y
9 8 4 partial product for +x ·8

1 2 3 partial product for +x ·10
2 4 6 partial product for +x ·200
2 6 8 1 4 result z = x · y

At the i-th step we produce a partial product equal to (yi ·x) ·bi. That is, we take the
i-th digit of y, multiply it by x and then shift it along i places into the right column
to form the partial product. The partial products are then added together to produce
the result. As with all our algorithms we can work in binary just as easily as decimal
and thus for x = 123(10) = 1111011(2) and y = 211(10) = 11011010(2) we have
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Input: The n-bit integers x and y in a base-2 representation.
Output: The 2n-bit integer z = x · y in a base-2 representation.

MUL-BIT-SERIAL(x,y)1

t ← 02

for i = n−1 downto 0 step −1 do3

t ← 2 · t4

if yi = 1 then5

t ← t + x6

return t7

end8

Algorithm 7.4: A bit-serial algorithm for multiplication of binary numbers.

0 1 1 1 1 0 1 1 input x
1 1 0 1 1 0 1 0 input y
0 0 0 0 0 0 0 0 partial product for +x ·0

0 1 1 1 1 0 1 1 partial product for +x ·10
0 0 0 0 0 0 0 0 partial product for +x ·000

0 1 1 1 1 0 1 1 partial product for +x ·1000
0 1 1 1 1 0 1 1 partial product for +x ·10000

0 0 0 0 0 0 0 0 partial product for +x ·000000
0 1 1 1 1 0 1 1 partial product for +x ·1000000

0 1 1 1 1 0 1 1 partial product for +x ·10000000
1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 result z = x · y

One minor issue that presents itself immediately from this description is that given
two n-bit inputs, any multiplier design we select will generate a 2n-bit result. This
differs from addition and logical operations which both generate n-bit results if one
ignores the carry-out. This is not a major problem: we just need an extra output from
the ALU so we can return the high and low halves of the result to the processor core
from the multiplier.

Either way, since multiplication is one of the most costly operations it is worth-
while considering the best way to realise the functionality of Algorithm 7.3 in hard-
ware. There are a large number of different implementation options but most multi-
pliers fall roughly into one of three categories which are described in detail below.

7.5.1 Bit-Serial Multiplier

At face value, the description of multiplication in binary above seems much more
complicated than the decimal case. However, it is actually made far easier because
at the i-th step, the i-th bit of the multiplier can only be zero or one: we simply either
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1 module mul_nbit( clk, rst, r, x, y );
2

3 parameter n = 8;
4 parameter m = 3;
5

6 input wire clk;
7 input wire rst;
8

9 output reg [2*n-1:0] r;
10 input wire [ n-1:0] x;
11 input wire [ n-1:0] y;
12

13 reg [2*n-1:0] r0;
14 reg [ n-1:0] r1;
15 reg [ m-1:0] r2;
16 reg r3;
17

18 wire [ m-1:0] w0;
19 wire w1;
20 wire [2*n-1:0] w2 = { r0[2*n-2:0], 1’b0 };
21 wire [2*n-1:0] w3;
22

23 add_nbit t0(.ci(1’b0),.r(w0),.x(r2),.y( 1));
24 equ_nbit t1( .r(w1),.x(r2),.y( n-1));
25 add_nbit t2(.ci(1’b0),.r(w3),.x(w2),.y({ {n{1’b0}}, x }));
26

27 defparam t0.n = m;
28 defparam t1.n = m;
29 defparam t2.n = 2*n;
30

31 always @ ( posedge rst )
32 begin
33 r0 = 0;
34 r1 = y;
35 r2 = 0;
36 r3 = 0;
37 end
38

39 always @ ( posedge clk )
40 begin
41 if( r1[n-1] )
42 r0 = w3;
43 else
44 r0 = w2;
45

46 r1 = { r1[n-2:0], 1’b0 };
47

48 if( !r3 )
49 begin
50 r2 = w0;
51

52 if( w1 )
53 begin
54 r = r0;
55 r3 = 1;
56 end
57 end
58 end
59

60 endmodule

Listing 7.7 Implementation of an n-bit bit-serial multiplier.
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Figure 7.9 Behaviour of an n-bit bit-serial multiplier.
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add the partial product into the accumulated total or not. Combined with the fact that
the partial product at the i-th step is simply the multiplicand shifted left i digits, we
can formulate the bit-serial method for multiplication in Algorithm 7.4. To see why
this algorithm works, we need to think about what multiplication “means”. One way
to look at it is that multiplication is just repeated addition. For example

x · y = x+ x+ · · ·+ x+ x︸ ︷︷ ︸
total of y terms

so if we select y = 6(10), then we obviously have

x ·6 = x+ x+ x+ x+ x+ x.

But there is a clear drawback to this in the sense that the bigger y is, the longer
that list of terms is and hence the more additions we are going to need to do if we
actually want to compute x · y. Another way of looking at it is that multiplication
adds another “weight” into the summation above. It might look odd, but imagine we
wrote y out in binary; then we could write x · y as

x · y = x ·
n−1

∑
i=0

yi ·2i.

Again selecting y = 6(10) = 110(2) we find that we still get the result we would
expect to:

x · y = x · y2 ·22 + x · y1 ·22 + x · y0 ·20

= x ·1 ·22 + x ·1 ·22 + x ·0 ·20

= x ·4 + x ·2 + x ·0
= x ·6 .

The problem is, this still looks unpleasant to compute. For example, we keep having
to compute powers of two to “weight” the terms. Fortunately, British mathemati-
cian William Horner worked out a scheme to do this more neatly. Basically we just
bracket the thing we started with in such a way that instead of having to compute
the powers of two independently, we sort of accumulate them; this is best shown by
example:

x · y = ( ( x · y2 ) · 2 + x · y1 ) · 2 + x · y0

= ( ( x ·1 ) · 2 + x ·1 ) · 2 + x ·0
= ( x · 2 + x ·1 ) · 2 + x ·0
= x · 4 + x ·2 + x ·0
= x · 6 .

Working inside out (i.e., from the inner-most term in the nest of brackets to the
outer-most) the computation no longer looks so unpleasant, plus we can see the
relationship to Algorithm 7.4. That is, at the i-th step we take the accumulated value
and double it then add x if yi = 1.

As one can imagine, this approach uses the least area of our three choices since
it requires only an adder to add partial products into the accumulator, a shifter to
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ensure the partial products are added into the right place, and some control logic
to execute the loop. However, it also yields the worst performance in that it takes
us n steps to multiply two n-bit values. Listing 7.7 describes an implementation of
Algorithm 7.4 but requires some explanation. The multiplier is reset to an initial
state on positive edges of the rst signal. On positive edges of the clk signal the
multiplier state is updated; one can think of this as executing one iteration of the loop
on each tick of the clock. To control the loop we use register r2 as the loop counter,
incrementing it via add_nbit instance t0 and comparing it with the loop bound
via equ_nbit instance. The register r0 is used to store the accumulator from
Algorithm 7.4. The wire w2 represents r0 shifted left by one bit, i.e., multiplied by
two. On each iteration of the loop we update r0 with either w3, the result of adding
x to w2 via the add_nbit instance t2, or w2 itself. That is, on each iteration of
the loop we either double r0 or double it and add x depending on the related bit
in y. To make life easier, we store y in register r1 and shift the value left one bit
each time the loop is iterated; this means we always inspect bit n− 1 of r1 rather
than bit i of y. Finally, when we have done enough iterations the accumulator r0 is
assigned to the multiplier result r to complete the operation.

The behaviour of this design when fed our example inputs x = 123(10) and y =
218(10) is shown in Figure 7.9. The clock has a period of 2ns and the multiplier is
reset at time t = 2ns by the positive edge of rst. Then, on each positive edge of the
clock one can see the loop counter, accumulator and so on being updated. At time
t = 16ns the final loop iteration completes and we output the accumulated result on
r, the multiplier is then ready for any subsequent operations required of it.

7.5.2 Tree Multiplier

A parallel multiplier attempts to achieve high-performance by using the largest pos-
sible area of our three options. An example of this type is a tree multiplier; the
basic idea is to generate all the partial products in parallel and then implement a
large combinatorial circuit to add them together. This means that although we use
much more logic than a bit-serial multiplier, we generate a result in one step and in
a time bounded by propagation delay through the adders.

In implementing such a multiplier, instead of using a linear chain of n adders
to accumulate the n partial products we reduce the associated propagation delay by
using a tree. The result is the delay before a result is produced is O(logn) rather
than O(n). The general outline for such a design is shown in Figure 7.10. One can
see how the n partial products would be accumulated by a tree of depth log2 n. The
i-th partial product itself is constructed by ANDing input x with a vector replicated
from the i-th bit of input y; the result is x if we want to add this partial product to
the final result and zero otherwise.

Like the logarithmic shifter, describing a general n-bit parallel multiplier in Ver-
ilog is quite difficult; we again implement an example 8-bit design in Listing 7.8.
The first block of code defines wires w0 to w7 and uses them to represent the eight
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Figure 7.10 Design for a basic parallel multiplier architecture.

partial products. The i-th partial product is shifted left by i bits to place it in the
right position for accumulation. The partial products are then accumulated by the
second block of code which defines t0 to t6, a tree of add_nbit instances which
outputs the final result in r. Note that in this simple example we have padded all our
partial products to 16 bits and parametrised our adder tree accordingly. In reality
this is somewhat wasteful since, for example, in the addition of w0 and w1 we know
some bits of either input are zero: we know that bit eight upwards of w0 and bit zero
of w1 are all zero so this is a “special” addition in a sense. The bottom line is that
by eliminating unnecessary operations that can be identified at design-time, we can
reduce the overall cost in terms of logic.

7.5.3 Digit-Serial Multiplier

One way to view the previous designs is that a bit-serial approach deals with the
multiplier one bit at a time while the parallel approach deals with all n multiplier
bits at once. The natural compromise lies somewhere between these extremes and
deals with say d bits in parallel with 1 < d < n. We term such a design a digit-serial
multiplier; d is said to be the digit size and is normally selected to divide n exactly
to simplify implementation.

Algorithm 7.5 presents a rough outline of the algorithm where we use par to
denote parallel execution of a sequence of statements. The basic idea is that we now
step through the outer loop in steps of d instead of steps of 1 as in the original
bit-serial version; in each iteration of the loop we accumulate d partial products in
parallel. Thus for around a d-fold increase in size, we produce a d-fold increase in
performance. This is a nice trade-off since we can scale d to match our size budget
or our performance goals.
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1 module mul_8bit( output wire [15:0] r,
2 input wire [ 7:0] x,
3 input wire [ 7:0] y );
4

5 wire [15:0] w0 = {8’b0, {8{y[0]}} & x} ;
6 wire [15:0] w1 = {8’b0, {8{y[1]}} & x} << 1;
7 wire [15:0] w2 = {8’b0, {8{y[2]}} & x} << 2;
8 wire [15:0] w3 = {8’b0, {8{y[3]}} & x} << 3;
9 wire [15:0] w4 = {8’b0, {8{y[4]}} & x} << 4;

10 wire [15:0] w5 = {8’b0, {8{y[5]}} & x} << 5;
11 wire [15:0] w6 = {8’b0, {8{y[6]}} & x} << 6;
12 wire [15:0] w7 = {8’b0, {8{y[7]}} & x} << 7;
13

14 wire [15:0] s0;
15 wire [15:0] s1;
16 wire [15:0] s2;
17 wire [15:0] s3;
18 wire [15:0] s4;
19 wire [15:0] s5;
20

21 add_nbit t0(.ci(1’b0),.r(s0),.x(w0),.y(w1));
22 add_nbit t1(.ci(1’b0),.r(s1),.x(w2),.y(w3));
23 add_nbit t2(.ci(1’b0),.r(s2),.x(w4),.y(w5));
24 add_nbit t3(.ci(1’b0),.r(s3),.x(w6),.y(w7));
25

26 add_nbit t4(.ci(1’b0),.r(s4),.x(s0),.y(s1));
27 add_nbit t5(.ci(1’b0),.r(s5),.x(s2),.y(s3));
28

29 add_nbit t6(.ci(1’b0),.r(r ),.x(s4),.y(s5));
30

31 defparam t0.n = 16;
32 defparam t1.n = 16;
33 defparam t2.n = 16;
34 defparam t3.n = 16;
35

36 defparam t4.n = 16;
37 defparam t5.n = 16;
38

39 defparam t6.n = 16;
40

41 endmodule

Listing 7.8 Implementation of an 8-bit parallel multiplier.

7.5.4 Early Termination

To reduce the number of iterations taken by the basic bit-serial multiplier, one can
consider the concept of early termination or early exit. We demonstrate this con-
cept as a continuation of our left-to-right bit-serial multiplier from above. The basic
idea is to check at some iteration i if the remaining bits of y are zero, i.e., yi...0 = 0. In
this case we would simply iterate through the remaining bits always performing the
operation t ← 2 · t but never performing the operation t ← t + x. So instead, we can
exit the loop and scale t in one go, returning t ·2i and thereby replicating the effect
of i iterations of the operation t ← t + t. This is inexpensive because the scaling can
be achieved simply by shifting t by a known distance. The benefit is that we do not
do all those extra iterations, so potentially we can save some time.
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Input: The n-bit integers x and y in a base-2 representation, a digit-size d.
Output: The 2n-bit integer z = x · y in a base-2 representation.

MUL-DIGIT-SERIAL(x,y)1

t ← 02

for i = n−1 downto 0 step −d do3

t ← 2d · t4

par j = 0 upto d −1 step 15

if yi+ j = 1 then6

t ← t + x ·2 j7

return t8

end9

Algorithm 7.5: A digit-serial algorithm for multiplication of binary numbers.

Input: The n-bit integers x and y in a base-2 representation, an integer block
size b|n.

Output: The 2n-bit integer z = x · y in a base-2 representation.

MUL-BIT-SERIAL-ET(x,y)1

for i = n/b downto 1 step −1 do2

if yb·i−1...0 = 0 then3

return 2b·i · t4

else5

for j = 0 upto b−1 step 1 do6

t ← 2 · t7

if yb·i−1− j = 1 then8

t ← t + x9

return t10

end11

Algorithm 7.6: A bit-serial algorithm for multiplication of binary numbers with early termina-
tion.

Algorithm 7.6 roughly models what is going on. The idea is to perform the mul-
tiplication in n/b steps; in the case of n = 32 we might set b = 8 for example to
perform four steps, dealing with eight bits of y in each step. The first thing we do
in each step is check whether the remaining bits of y are all zero: if they are, the
scaled t is returned straight away, otherwise we continue more or less as in the case
of bit-serial multiplication.

Some examples might illustrate better what is going on. Imagine we use the val-
ues n = 32 and b = 8, and consider the inputs x = 5(10) and y = 6(10) = 00000006(16);
by writing y in hexadecimal, it is easy to see that the bottom 8-bit chunk is non-zero.
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Therefore, when the algorithm checks the remaining bits of y at each of the four sets,
there are still some which are non-zero so it behaves the same as the original bit-
serial algorithm:

i j 8 · i−1− j y8·i−1− j t t

4 0 31 0 0 0+0 = 0
4 1 30 0 0 0+0 = 0
4 2 29 0 0 0+0 = 0
4 3 28 0 0 0+0 = 0
...

...
...

...
...

...
1 4 3 0 0 0+0 = 0
1 5 2 1 0 0+0+5 = 5
1 6 1 1 5 5+5+5 = 15
1 7 0 0 15 15+15 = 30

Now consider the inputs x = 5(10) and y = 1536(10) = 0000600(16):

i j 8 · i−1− j y8·i−1− j t t

4 0 31 0 0 0+0 = 0
4 1 30 0 0 0+0 = 0
4 2 29 0 0 0+0 = 0
4 3 28 0 0 0+0 = 0
...

...
...

...
...

...
2 4 11 0 0 0+0 = 0
2 5 10 1 0 0+0+5 = 5
2 6 9 1 5 5+5+5 = 15
2 7 8 0 15 15+15 = 30

At this point, i.e., the final step, the algorithm notices the least-significant 8-bit
chunk of y is zero so returns the value 30 ·28 (which is 7680(10) as expected) without
performing the loop iterations associated with the final step.

Some ARM processors use early termination but combine this with some extra
techniques and use a right-to-left approach rather than left-to-right as we have done.
The reasoning for this is simple: in a normal workload, most multipliers will be
small and hence their more-significant bits are more likely to be zero than their less-
significant bits. For small multipliers (e.g., loop counters, array indices and so on)
the left-to-right approach will yield a higher chance of early termination, and hence
greater reduction in the number of iterations.

7.5.5 Wallace and Dadda Trees

Tree multipliers offer a good trade-off in favour of performance versus size. How-
ever, a drawback of such designs is the long critical path which runs through the tree
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Stage 1 Stage 2 Stage 3
Output Action Output Action Output

Weight-1 1 PT 1 PT 1
Weight-2 2 HA 1 PT 1
Weight-4 3 FA 2 HA 1
Weight-8 4 FA 3 FA 2
Weight-16 3 FA 2 HA 2
Weight-32 2 HA 2 HA 2
Weight-64 1 PT 2 HA 2
Weight-128 0 0 1

(a) Actions in constructing Wallace multiplier for 4-bit inputs.

Stage 1 Stage 2 Stage 3
Output Action Output Action Output

Weight-1 1 PT 1 PT 1
Weight-2 2 PT 2 PT 2
Weight-4 3 FA 1 PT 1
Weight-8 4 FA 3 FA 1
Weight-16 3 FA 2 HA 2
Weight-32 2 PT 3 FA 2
Weight-64 1 PT 1 PT 2
Weight-128 0 0 0

(b) Actions in constructing Dadda multiplier for 4-bit inputs.

Table 7.1 A tabular description of the stages in Wallace and Dadda multipliers for 4-bit inputs.

of adders; if we use ripple-carry adders to build an n-bit tree adder, the number of
1-bit full-adders the critical path passes through is essentially O(n log2 n).

A carry-save adder takes a different approach to ripple-carry and carry look-
ahead adders: instead of computing an addition per-se, it compresses three n-bit
inputs x, y and z into two n-bit outputs. That is, it computes s and c, which we call
the partial sum and shifted carry, where

si = xi ⊕ yi ⊕ zi

ci = (xi ∧ yi)∨ (xi ∧ zi)∨ (yi ∧ zi).

Sometimes this structure is called a 3 : 2 compressor. To compute the real (n+2)-
bit sum of x, y and z one needs to combine s and c in a further addition step by
computing 2c + s using a standard (ripple-carry for example) adder. The idea is
that use of a carry-save adder followed by a ripple-carry adder is faster than two
sequential uses of ripple-carry adders.
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Figure 7.11 An example 4-bit Wallace multiplier.

Wallace multiplier [63] and Dadda multiplier [19] designs capitalise on the
concept of carry-save adders. Both are tree-like multiplier designs in the sense that
they generate and sum partial products in parallel, but improve the critical path
through the multiplier. For n-bit inputs, both are constructed from a number of
stages: an initial stage to generate the partial products; one or more reduction stages
which act to reduce the partial products into two 2n-bit values; and a final stage
which adds the 2n-bit values to produce the result. With a Wallace multiplier the
basic approach to multiplying x and y is as follows:

1. In the first stage, multiply together (i.e., AND together) each xi with each y j to
produce a total of n2 intermediate wires. Each wire is said to have a weight, for
example x0 · y0 has weight 1 as 20 ·20 = 1, x1 · y2 has weight 8 as 21 ·22 = 8.

2. Reduce the number of intermediate wires using additional stages composed of
full-adders and half-adders:

• Combine any three wires with same weight using a full-adder; result in next
stage is one wire of the same weight (i.e., the sum) and one wire a higher
weight (i.e., the carry).

• Combine any two wires with same weight using a half-adder; result in next
stage is one wire of the same weight (i.e., the sum) and one wire a higher
weight (i.e., the carry).

• If there is only one wire with a given weight, just pass it through to the next
stage.

3. In the final stage, all weights have just one or two wires in them: combine the
wires into two 2n-bit values and add them with a standard adder.

The corresponding rules for a Dadda multiplier are similar in concept to the Wallace
multiplier except the reduction stages are more complicated; that is, we replace the
second step above with the following:
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• Combine any three wires with same weight using a full-adder; the result in next
stage is one wire of the same weight (i.e., the sum) and one wire a higher weight
(i.e., the carry).

• If there are two wires with the same weight left, let w be that weight and then:

– If w ≡ 2 mod 3 then combine the wires using a half-adder; the result in next
stage is one wire of the same weight (i.e., the sum) and one wire a higher
weight (i.e., the carry).

– Otherwise, just pass them through to the next stage.

• If there is one wire with the same weight left, just pass it through to the next
stage.

Consider a case were we are dealing with 4-bit inputs x and y; Table 7.1 demon-
strates the actions applied in constructing the various stages of the Wallace and
Dadda multipliers. Since they are similar, we consider only the Wallace case more
carefully. The first stage multiplies each xi with each y j; we have one weight-0
wire from x0 · y0 but three weight-4 wires from x1 · y3, x3 · y1 and x2 · y2 for exam-
ple. Following the first stage, we apply two reduction stages according to the rules.
For example, in the first reduction stage there is one weight-1 wire as input so we
use a pass-through (PT ) operation which results in one weight-1 wire as output;
there are two weight-2 wires so we use a half-adder (HA) operation which results in
one weight-2 wire and one weight-4 wire as output; there are three weight-4 wires
so we use a full-adder (FA) operation which results in one weight-4 wire and one
weight-8 wire as output. Finally, we are left with the output of the second reduction
stage in which all weights have two or less wires in them; we group the wires into
two 8-bit values and add them using, for example, a ripple-carry adder. This might
all sound a bit abstract; consider a concrete example where we want to multiply
x = 0110(2) = 6(10) and y = 1010(2) = 10(10). Figure 7.11 shows the structure of the
entire Wallace multiplier and the intermediate results produced. The final stage com-
putes the result 00111100(2) = 60(10) as the sum of 00111100(2) and 00000000(2)
where zeros are inserted where there are not enough wires.

Notice that the Wallace multiplier used six half-adders and four full-adders and
the final addition has 6-bit inputs; the Dadda multiplier used one half-adder and five
full-adders but the final addition has 5-bit inputs. As such, one can view the two
approaches as a trade-off between complexity in the reduction layers against com-
plexity of the (single) final addition. In each structure, there are O(logn) layers of
reduction plus the initial and final layer. However, notice that within each reduction
stage each half-adder or full-adder can operate independently from the rest. That
is, each reduction stage has an O(1) critical path which is why we see an improve-
ment versus the original tree multiplier: the critical path is essentially through only
O(log2 n) full-adders rather than O(n log2 n).
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7.5.6 Booth Recoding

The technique of recoding either the multiplier or multiplicand to allow more ef-
ficient multiplication can be attractive: essentially we do some extra work before
executing the multiplication so that the actual operation takes less steps. The Booth
encoding technique [5] is a popular example of this; it takes advantage of repeated
sequences of 1 or 0 digits in the multiplier. Using the recoding strategy, addition
operations are only required at the boundaries of such sequences; no additions are
required within the sequences themselves.

For example, consider the 8-bit multiplier value 30(10) = 00011110(2) where one
can see there is a repeated sequence of four 1 digits in the binary representation.
Where such a sequence exists from bits position i to bit position j, we can treat the
sequence as a single digit of weight 2 j+1 −2i. So in this case we re-write the digits
from i = 1 to j = 4 as a single digit of weight 24+1 −21 = 25 −21 = 30. Since we
have recoded a long sequence as a single digit, a generic multiplication algorithm
can take less steps: it requires less additions of partial products resulting from the
combination of multiplier digits and the multiplicand.

Consider the example of multiplying x = 6(10) = 00000110(2) by y = 30(10) =
00011110(2). Using the method introduced previously, we compute the result as

0 0 0 0 0 1 1 0 input x
0 0 0 1 1 1 1 0 input y
0 0 0 0 0 0 0 0 partial product for +x ·0

0 0 0 0 0 1 1 0 partial product for +x ·10
0 0 0 0 0 1 1 0 partial product for +x ·100

0 0 0 0 0 1 1 0 partial product for +x ·1000
0 0 0 0 0 1 1 0 partial product for +x ·10000

0 0 0 0 0 0 0 0 partial product for +x ·000000
0 0 0 0 0 0 0 0 partial product for +x ·0000000

0 0 0 0 0 0 0 0 partial product for +x ·00000000
0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 result z = x · y

If we first recode y using the Booth method, the result is instead calculated as fol-
lows:
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0 0 0 0 0 1 1 0 input x
0 0 0 1 1 1 1 0 input y
0 0 +1 0 0 0 −1 0 recoded y
0 0 0 0 0 0 0 0 partial product for +x ·0

1 1 1 1 1 1 1 1 1 1 1 0 1 0 partial product for −x ·10
0 0 0 0 0 0 0 0 partial product for +x ·000

0 0 0 0 0 0 0 0 partial product for +x ·0000
0 0 0 0 0 0 0 0 partial product for +x ·00000

0 0 0 0 0 1 1 0 partial product for +x ·100000
0 0 0 0 0 0 0 0 partial product for +x ·0000000

0 0 0 0 0 0 0 0 partial product for +x ·00000000
0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 result z = x · y

which requires less addition operations, i.e., additions of non-zero partial products,
during accumulation of the partial products and hence potentially less time.

The problem with this approach is that in the worse case, it actually causes us to
require more addition operations during accumulation of the partial products than
the standard method. To show this, consider a multiplier y = 5(10) = 00000101(2).
Using the standard multiplication method we would require two addition operations,
one for each 1 digit in y. Using a Booth recoding of y, we actually perform four
additions:

0 0 0 0 0 1 1 0 input x
0 0 0 0 0 1 0 1 input y
0 0 0 0 +1 −1 +1 −1 recoded y

1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 partial product for −x ·1
0 0 0 0 0 1 1 0 partial product for +x ·10

1 1 1 1 1 1 1 1 1 1 0 1 0 partial product for −x ·100
0 0 0 0 0 1 1 0 partial product for +x ·1000

0 0 0 0 0 0 0 0 partial product for +x ·00000
0 0 0 0 0 0 0 0 partial product for +x ·000000

0 0 0 0 0 0 0 0 partial product for +x ·0000000
0 0 0 0 0 0 0 0 partial product for +x ·00000000
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 result z = x · y

which is clearly worse not better ! To combat this worst case and exploit the fact that
the recoded multiplier implies less steps in multiplication, we use a further recoding
strategy which is often termed the modified Booth recoding. The basic idea is to
group the recoded digits into pairs (reading them from right to left). Within a pair
(yi+1,yi) grouped from the recoded value y, the digit yi+1 has twice the weight of yi

so one can think of the pair as having the weight 2yi+1 + yi. This allows us to think
of the pair (+1,−1) as 2− 1 = 1 for example. Seven such pairs are possible, with
the other two impossible due to the original Booth recoding technique; the pairs
contribute the following weights:
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yi+1 = 0 and yi = 0 → 0
yi+1 = 0 and yi = +1 → +1
yi+1 = 0 and yi = −1 → −1
yi+1 = +1 and yi = 0 → +2
yi+1 = +1 and yi = +1 → not possible
yi+1 = +1 and yi = −1 → +1
yi+1 = −1 and yi = 0 → −2
yi+1 = −1 and yi = +1 → −1
yi+1 = −1 and yi = −1 → not possible

Thus, using these pairings we can re-write our worst case as

0 0 0 0 0 1 1 0 input x
0 0 0 0 0 1 0 1 input y
0 0 0 0 +1 −1 +1 −1 recoded y

0 0 +1 +1 grouped y
0 0 0 0 0 1 1 0 partial product for +x ·1

0 0 0 0 0 1 1 0 partial product for +x ·100
0 0 0 0 0 0 0 0 partial product for +x ·00000

0 0 0 0 0 0 0 0 partial product for +x ·0000000
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 result z = x · y

which is no worse than using the standard method and makes explicit the fact that
there are less steps: we only need to consider half the number of recoded multiplier
digits versus the original.

7.6 Putting It All Together

To flesh out the components in the basic Verilog processor model developed at the
end of Chapter 5, we need ALU modules to perform comparison and arithmetic on
integer inputs. Previously we assumed that such operations could be created for us
by the Verilog tool-chain, for example we used statements such as

alu_dst_lo = GPR[dec_rs] + GPR[dec_rt]

to model the behaviour of an addition instruction. In reality, we would like to con-
glomerate all such operations within the ALU so that we can minimise the amount
of replicated logic and modularise the overall processor design.

7.6.1 Comparison ALU

The ALU for comparisons is the simplest to construct. We already have modules that
perform unsigned equality and less than comparisons; our task is to use and pack-
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Figure 7.12 Behaviour of the ALU for comparisons.
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1 module alu_cmp( input wire clk,
2 input wire rst,
3

4 input wire [31:0] src0,
5 input wire [31:0] src1,
6

7 output wire dst_equ,
8 output wire dst_neq,
9 output wire dst_lth,

10 output wire dst_lte,
11 output wire dst_gth,
12 output wire dst_gte );
13

14 wire w0;
15 wire w1;
16 wire w2;
17

18 equ_nbit t0( .r(w0), .x(src0[31:0]), .y(src1[31:0]) );
19 lth_nbit t1( .r(w1), .x(src0[30:0]), .y(src1[30:0]) );
20

21 defparam t0.n = 32;
22 defparam t1.n = 31;
23

24 assign w2 = ( src0[31] & src1[31] & ˜w0 & w1 ) |
25 ( src0[31] & ˜src1[31] ) |
26 ( ˜src0[31] & ˜src1[31] & ˜w0 & w1 ) ;
27

28 assign dst_equ = w0;
29 assign dst_lth = w2;
30

31 assign dst_neq = ˜dst_equ ;
32 assign dst_lte = dst_lth |
33 dst_equ ;
34 assign dst_gth = ˜dst_lte ;
35 assign dst_gte = ˜dst_lth ;
36

37 endmodule

Listing 7.9 A Verilog module that models an ALU for comparisons.

age these modules so they perform all variants of signed comparison. The Verilog
module is shown in Listing 7.9. We have the ALU generate all possible comparison
outputs continuously from the inputs src0 and src1. That is, there is no need to
pass the ALU an opcode: the processor simply sets the inputs and then bases any
decision on the right comparison output. For example, if it wants to test if the values
are equal then it examines the dst_equ output. This design is motivated by the
fact that the MIPS32 instructions for conditional branches do not use the funct
field of the R-type instruction encoding to determine the ALU operation like, for
example, an addition would. Branches use the I-type encoding and so the operation
performed is derived just from the opcode field.

The slight complication then is simply that we need signed comparison from our
basic unsigned modules. We achieve this using a slight of hand. Firstly, note that
signed equality is the same as unsigned equality: we just test if each bit is the same or
not. Signed less than is the problem; to solve it we adopt the simple rules presented
previously. That is, because of the way the twos-complement representation works
we have that
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1 module alu_exe( input wire clk,
2 input wire rst,
3

4 input wire [ 5:0] oper,
5

6 input wire [31:0] src0,
7 input wire [31:0] src1,
8

9 output wire [31:0] dst_lo,
10 output wire [31:0] dst_hi );
11

12 ...
13

14 endmodule

Listing 7.10 The interface to a Verilog module that models an ALU for arithmetic.

1. If src0 is negative and src1 is negative, they are not equal, and an unsigned
less than comparison is true, then src0 is less than src1.

2. If src0 is negative and src1 is positive we know src0 is less than src1.
3. If src0 is positive and src1 is positive, they are not equal, and an unsigned

less than comparison is true, then src0 is less than src1.

Testing the sign of src0 and src1 is simply a matter of examining the most-
significant bit. Using this fact we can apply our rules, and an unsigned comparison
on the remaining 31-bit unsigned value, to generate the correct signed comparison.
Then, since we have equality and less than, we construct all other comparisons from
these. For example, src0 is greater than src1 if src0 is not less than or equal to
src1. The behaviour of the result is shown in Figure 7.12.

7.6.2 Arithmetic ALU

The ALU for arithmetic is somewhat more complex, partly because we have more
operations and sub-module instances and partly because some of the operations are
multi-cycle rather than continuous. The latter difference requires that we manage
the clock and reset signals for the multiplier and shifter modules so they operate
correctly. The Verilog code is too long to present on one page but the interface is
shown in Listing 7.10. The general idea is that the ALU perform an operation, using
src0 and src1 as inputs, which is determined by the oper input. The output is
supplied in low and high parts via dst_lo and dst_hi which allows for both
32-bit outputs, for example addition, and 64-bit outputs, for example multiplication.
The design does not include the facility to manage carry or overflow flags.

Listing 7.11 details the instantiation of the main sub-modules within the ALU.
Instances t3, t4 and t5 are the addition/subtraction, multiplier and shifter mod-
ules described previously. Adder instances t0, t1 and t2 are used to manage the
multiplier by ensuring it is supplied only with positive inputs. To achieve this, we
negate src0 and src1 to produce n0 and n1 and select whichever one is pos-
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Figure 7.13 Behaviour of the ALU for arithmetic.
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1 add_nbit t0(.ci(1’b0),.r(n0),.x(˜src0),.y(32’b1));
2 add_nbit t1(.ci(1’b0),.r(n1),.x(˜src1),.y(32’b1));
3 add_nbit t2(.ci(1’b0),.r(n2),.x(˜ w1),.y(64’b1));
4

5 defparam t0.n = 32;
6 defparam t1.n = 32;
7 defparam t2.n = 64;
8

9 assign n3 = src0[31] ? n0 : src0;
10 assign n4 = src1[31] ? n1 : src1;
11 assign n5 = src0[31] != src1[31] ? n2 : w1;
12

13 assign ci = 0;
14

15 sub_nbit t3( .ctrl( s0),
16

17 .ci ( ci),
18 .co ( co),
19 .x ( src0),
20 .y ( src1),
21 .r ( w0) );
22

23 mul_nbit t4( .clk ( clk),
24 .rst (mul_rst),
25

26 .x ( n3),
27 .y ( n4),
28 .r ( w1) );
29

30 shf_nbit t5( .clk ( clk),
31 .rst (shf_rst),
32

33 .oper( s1),
34 .x ( src0),
35 .y ( src1),
36 .r ( w2) );
37

38 defparam t3.n = 32;
39 defparam t4.n = 32;
40 defparam t4.m = 5;
41 defparam t5.n = 32;
42 defparam t5.m = 5;

Listing 7.11 Verilog code to instantiate internal sub-modules.

itive to produce n3 and n4; these are fed to the multiplier. The multiplier output
is patched up to generate the right sign by comparing the input signs and selecting
either the actual multiplier output w1 or the negation n2 to produce the final result
n5. Note also that we tie the addition/subtraction carry-in to 0 although in reality
this value might come from a carry flag stored in the processor status register.

Listing 7.12 details the generation of the basic logic operations and the two multi-
plexers used to select the result from all those possible, which is then fed to the ALU
output. Notice that the multiplexers are controlled by the s3 signal; this is managed
by two processes shown in Listing 7.13. The second process is the most interesting:
whenever the oper signal changes, i.e., we want to perform a new operation, a case
statement is executed which compares the opcode to the list of possibilities and sets
the right control signals in each case. The multiplier and shifter cases are the most
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1 genvar i;
2 generate
3 for( i = 0; i < 32; i = i + 1 )
4 begin:gen_alu_exe
5 and t6( w3[i], src0[i], src1[i] );
6 or t7( w4[i], src0[i], src1[i] );
7 xor t8( w5[i], src0[i], src1[i] );
8 nor t9( w6[i], src0[i], src1[i] );
9

10 mux8_1bit ta( .r(dst_lo[i]), .i0(w0[i]), .i1(n5[i+ 0]),
11 .i2(w2[i]), .i3(w3[i ]),
12 .i4(w4[i]), .i5(w5[i ]),
13 .i6(w6[i]), .i7(1’bZ ),
14

15 .s0(s2[0]), .s1(s2[1]), .s2(s2[2]) );
16

17 mux8_1bit tb( .r(dst_hi[i]), .i0(1’bZ ), .i1(n5[i+32]),
18 .i2(1’bZ ), .i3(1’bZ ),
19 .i4(1’bZ ), .i5(1’bZ ),
20 .i6(1’bZ ), .i7(1’bZ ),
21

22 .s0(s2[0]), .s1(s2[1]), .s2(s2[2]) );
23 end
24 endgenerate

Listing 7.12 Verilog code to generate logic operations and multiplexers.

involved; as well as selecting the right multiplexer control signal, these need to reset
the associated device to clear the internal state and initiate a new operation. The
first process ensures this reset signal is cleared soon afterwards ready for the next
operation to be started. The behaviour of the result is shown in Figure 7.13.

7.7 Further Reading

• M.D. Ercegovac and T. Lang.
Digital Arithmetic.
Morgan Kaufmann, 2003. ISBN: 1-558-60798-6.

• M.J. Flynn and S.F. Oberman.
Advanced Computer Arithmetic Design.
John Wiley, 2001. ISBN: 0-471-41209-0.

• D. Harris and S. Harris.
Digital Design and Computer Architecture: From Gates to Processors.
Morgan-Kaufmann, 2007. ISBN: 0-123-70497-9.

• I. Koren.
Computer Arithmetic Algorithms.
A.K. Peters, 2001. ISBN: 1-568-81160-8.

• J.E. Stine Jr.
Digital Computer Arithmetic Datapath Design Using Verilog HDL.
Kluwer, 2003. ISBN: 1-402-07710-6.



266 7 Arithmetic and Logic

1 always @ ( negedge clk )
2 begin
3 shf_rst = 1’b0;
4 mul_rst = 1’b0;
5 end
6

7 always @ ( oper )
8 begin
9 case( oper )

10 ‘FUNCT_ADD : begin
11 s0 = 0;
12 s2 = 0;
13 end
14 ‘FUNCT_SUB : begin
15 s0 = 1;
16 s2 = 0;
17 end
18 ‘FUNCT_MUL : begin
19 mul_rst = 1;
20 s2 = 1;
21 end
22 ‘FUNCT_MULT : begin
23 mul_rst = 1;
24 s2 = 1;
25 end
26

27 ‘FUNCT_AND : s2 = 3;
28 ‘FUNCT_OR : s2 = 4;
29 ‘FUNCT_XOR : s2 = 5;
30 ‘FUNCT_NOR : s2 = 6;
31

32 ‘FUNCT_SLLV : begin
33 shf_rst = 1;
34 s1 = ‘SHF_L_LOGIC;
35 s2 = 2;
36 end
37 ‘FUNCT_SRLV : begin
38 shf_rst = 1;
39 s1 = ‘SHF_R_LOGIC;
40 s2 = 2;
41 end
42 endcase
43 end

Listing 7.13 Verilog processes that determine the ALU behaviour.

7.8 Example Questions

29. a. Comparison operations for a given processor take two 16-bit operands and
return zero if the comparison is false or non-zero if it is true. By constructing
some of the comparisons using combinations of other operations, show that im-
plementing all of =, 	=,<,≤,> and ≥ is wasteful. State the smallest set of com-
parisons that need dedicated hardware such that all the standard comparisons can
be executed.

b. The ALU in the same processor design does not include a multiply instruction.
So that programmers can still multiply numbers, write an efficient C function to
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multiply two 16-bit inputs together and return the 16-bit lower half of the result.
You can assume the inputs are always positive.

c. A population count operation takes an n-bit value x and computes the Hamming
weight H(x), i.e., the number of bits in x which are set to 1. Some processors
have a dedicated instruction to do this but the proposed one does not; write an
efficient C function to compute the population count of 16-bit inputs.

30. Imagine we want to compute the result of multiplying two n-bit numbers x and y
together, i.e., r = x ·y, where n is even. One can adopt a divide-and-conquer approach
to this computation by splitting x and y into two parts each of size n/2 bits

x = x1 ·2n/2 + x0

y = y1 ·2n/2 + y0

and then computing the full result

r = r2 ·2n + r1 ·2n/2 + r0

via the parts
r2 = x1 · y1

r1 = x1 · y0 + x0 · y1

r0 = x0 · y0.

The naive approach above uses four multiplications of (n/2)-bit values. The Karatsuba-
Ofman method reduces this to three multiplications (and some extra low-cost oper-
ations); show how this is achieved.

31. Assume we are using unsigned integers represented in 4 bits.

a. What is the result of using a normal 4-bit adder circuit to compute the sum 10+
12 ?

b. A saturating or clamped adder is such that if an overflow occurs, that is the result
does not fit into 4 bits, the highest possible number is returned as a result. With a
clamped 4-bit addition denoted by &, we have that 10&12 = 15. In general, for
an n-bit clamped adder

x& y =
{

x+ y if x+ y < 2n

2n −1 otherwise

Design a circuit that implements a 4-bit adder of this type.

32. Give a 1-line C expression to test if a non-zero integer x is an exact power-of-
two; i.e., if x = 2n for some n then the expression should evaluate to a non-zero
value, otherwise it evaluates to zero.


