
Chapter 3
Hardware Design Using Verilog

If I designed a computer with 200 chips, I tried to design it with 150. And then I would try
to design it with 100. I just tried to find every trick I could in life to design things real tiny.

– S. Wozniak

Abstract The goal of this chapter is not to give a comprehensive guide to Verilog
development but to provide enough of an introduction that the reader can understand
and implement concepts used as examples in subsequent sections. Although these
concepts become increasingly complex they build on the basic principles outlined in
this chapter and, as such, it should provide enough of a reference that no other text
is necessary. We omit the study of low-level concepts like transistor-level design,
subjects related to Verilog such as formal verification, and advanced topics such as
the Programming Language Interface (PLI).

3.1 Introduction

3.1.1 The Problem of Design Complexity

Looking back as recently as fifty years ago, the number of components used to con-
struct a given circuit was in the range of 10 to 100, all selected from a small set of
choices. Operating at this scale, it was not unrealistic for a single engineer to design
an entire circuit on paper and then sit with a soldering iron to construct it by hand.
Malone describes one extreme example of what could be achieved [38, Pages 148–
152]. Development of a floppy disk controller for the Apple II was, in early 1977,
viewed as a vital task so that the computer could remain competitive in a blossoming
market. Steve Wozniak, a brilliant technical mind and co-founder of Apple, devel-
oped and improved on existing designs and within two weeks had a working circuit.
Not content with eclipsing the man-hour and financial effort required by other com-
panies to reach the same point, Wozniak redesigned and optimised the entire circuit
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98 3 Hardware Design Using Verilog

over a twelve-hour period after spotting a potential bug before it was sent into pro-
duction !

As circuit complexity has increased over the years, and lacking a Wozniak to
deploy in every design company, this model fails to scale. For example, a mod-
ern computer processor will typically consist of many millions of transistors and
related components. Just as designing robust, large-scale software is a challenge,
designing a million-component circuit is exceptionally difficult. The sheer number
of states the circuit can be in requires splitting it into modular sub-systems, the in-
terface between which must be carefully managed. Without doing this, verifying the
functional correctness of the circuit is next to impossible; one must instead verify
and test each module in isolation before integrating it with the rest of the design.
Physically building the circuit by hand is equally impossible because of the size of
the features: one would need an exceptionally tiny soldering iron to wire connec-
tions together ! Furthermore, one would need almost infinite patience because of
the number of connections. Since humans are bad at repetitive tasks like this, errors
will inevitably be introduced. Coping with design constraints such as propagation
delay becomes massively time consuming since the act of component layout and
connection with so many items is a mind-bogglingly complex optimisation prob-
lem. The increased number of components introduces further problems; issues of
power consumption and heat dissipation start to become real problems.

Several key advances have tamed the problems in this gloomy picture. Certainly
improvements in implementation and fabrication technologies that allow miniatur-
isation of components have been an enabling factor, but the advent of design au-
tomation (i.e., software tools to help manage the complexity of hardware design)
has arguably been just as important.

3.1.2 Design Automation as a Solution

Verilog is a Hardware Description Language (HDL). A language like C is used to
describe software programs that execute on some hardware device; a language like
Verilog can describe the hardware device itself. Using a HDL, usually within some
form of Electronic Design Automation (EDA) software suite, offers the engineer
similar benefits to a programmer using a high-level language like C over a low-level
machine language.

The Verilog language was first developed in 1984 at a company called Gateway
Design Automation as a hardware modelling tool. Some of the language design
goals were simplicity and familiarity; as a result Verilog resembles both C and Pas-
cal with many similar constructs. Coupled with the provision of a familiar and flex-
ible development environment, Verilog promotes many of the same advantages that
software developers are used to. That is, the language makes it easy to abstract away
from the implementation and concentrate on design; it makes design modularisation
and reuse easier; associated tools such as simulators make test and verification eas-
ier and more efficient. There are two standards for the language: an initial version
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termed Verilog-95 was improved and resubmitted to the IEEE for standardisation
as Verilog-2001 or IEEE 1364-2001. Much of this improvement was driven by in-
put from users in companies such as Motorola and National Semiconductor. This
standardisation, along with the production of software to synthesise real hardware
from Verilog descriptions at a variety of abstraction levels, has made the language a
popular choice for engineers.

Verilog models, so-called because they are somewhat abstract models of physical
circuits, can be described at several different levels. Each level is more abstract than
the last, leaving less work for the engineer and allowing them to be more expressive:

Switch Level At the lowest level, Verilog allows one to describe a circuit in terms
of transistors. Although this gives very fine-grained control over the circuit com-
position, developing large designs is still a significant challenge since the build-
ing blocks are so small.

Gate Level Above the transistor level, and clearly more attractive for actually
getting anything useful done, is the concept of gate-level description. At this
level, the designer describes the functionality of the circuit in terms of basic logic
gates and the connections between them; this is somewhat equivalent to the level
of detail in the previous chapter.

Register Transfer Level (RTL) RTL allows the designer to largely abstract away
the concept of logic gates as an implementation technology and simply describe
the flow of data around the circuit and the operations performed on it.

Behavioural Level The most abstract and hence most expressive form of Verilog
is so-called behavioural-level design. At this level, the designer uses high-level
constructs, similar to those in programming languages like C, to simply specify
the required behaviour rather than how that behaviour is implemented.

Roughly speaking, development of real hardware from a Verilog model is a three-
phase process which we describe as being managed by a suite of software tools
called the Verilog tool-chain:

Simulate During the first phase, the Verilog model is fed into a software tool
which simulates the behaviour of the circuit. This simulation is highly accurate,
modelling how gates and signals change as time progresses, but is abstract in the
sense that many constraints of real hardware are not considered. Since by using
software simulation it is easy to alter the model and debug the result, a develop-
ment cycle is relatively quick. As a result, the simulation phase is typically used
to ensure a level of functional correctness before the model is processed into
real hardware. That is, if the model simulates correctly, then one can progress to
implementing it in real hardware with a greater confidence of success.

Synthesise The second phase of development is similar to the compilation step
whereby a C program is translated into low-level machine language. The Verilog
model is fed into synthesis software which converts the model into a list of real
hardware components which implement the required behaviour. This is often
called a netlist. Optimisation steps may be applied by the synthesiser to improve
the time or space characteristics of the design. Such optimisations are usually
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Figure 3.1 A waterfall style hardware development cycle using Verilog.

conceptually simple but repetitive: ideal fodder for a program but not so for the
engineer.

Implement The synthesis phase produces a list of components and a description
of how they are connected together to form the implementation. However, a fur-
ther step is required to translate this description into real hardware. Firstly, we
need to select components from the implementation technology with which to
implement the components in the netlist. For example, on an FPGA it might be
advantageous to implement an AND gate one way whereas on an ASIC a dif-
ferent method might be appropriate. Secondly, we need to work out where the
components should be placed and how the wiring between them should be or-
ganised or routed. Long wires are undesirable since they increase propagation
delay; the place and route process attempts to minimise this through intelligent
organisation of the components. Again, this is a problem which is well suited to
solution by a computer but not by the engineer.

In reality, these steps form part of a waterfall style development cycle (or similar)
which iterates each stage to remove errors after some form of verification.

3.2 Structural Design

3.2.1 Modules

Programs written in C can be thought of as collections of functions that use each
other to perform some computation. The computation is determined by how the
functions call each other and by what goes on inside each function. The analogous
construct in Verilog is a module. Basically speaking, a module defines the interface
of a hardware component, i.e., the inputs and outputs, and how the component does
computation to produce the outputs from the inputs and any stored state.

Like functions, modules provide us with a first layer of abstraction: we can view
them as a black-box, with inputs and outputs, without worrying how the internals
work. For example, the multiplexer device introduced previously selects between
several values to produce a result; we might draw such a device as previously shown
in Figure 2.16a. From a functional point of view, we do not really care what is inside
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1 module mux2_1bit( output wire r,
2 input wire i0,
3 input wire i1,
4 input wire s0 );
5

6 ...
7

8 endmodule

Listing 3.1 The interface for a 1-bit, 2-way multiplexer.

1 module mux2_1bit( r, i0, i1, s0 );
2

3 output wire r;
4 input wire i0;
5 input wire i1;
6 input wire s0;
7

8 ...
9

10 endmodule

Listing 3.2 The interface for a 1-bit, 2-way multiplexer.

the component. That is, in order to use a multiplexer we do not care how it works or
what gates are used within it, just what it does.

We can describe the interface of Figure 2.16a, i.e., the inputs and outputs rather
than the internals, using the Verilog module definition shown in Listing 3.1. A mod-
ule definition like this specifies a name or identifier, this one is called mux2_1bit,
and a list of inputs and outputs which it uses for communication with other mod-
ules. We term the inputs and outputs defined by a module as the port list; each input
or output is a port over which it communicates, the direction of communication is
determined by the input and output keywords. In this case, we have replaced
the body of the module, which determines how it works, with some continuation
dots that we will fill in later.

Listing 3.2 offers a different way of defining the same interface. This time, in-
stead of describing the input and output characteristics of each port inline with the
definition, we simply name the ports and give them a type inside the module. Al-
though the two methods are largely equivalent, there are some advantages to the sec-
ond method which we will see later. Typically, for simple modules the first method
is more compact and so is preferred unless there is a good reason not to use it.

3.2.2 Wires

In Verilog, a net is the term used to describe the connection between two modules.
By net we essentially we mean a wire which is the exact analogy of the same thing
in real life: a conducting medium that allows a signal to be sent between the two
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1 wire w0; // 1-bit unsigned wire
2 wire [3:0] w1; // 4-bit unsigned wire vector
3 wire [0:3] w2; // 4-bit unsigned wire vector
4 wire [4:1] w3; // 4-bit unsigned wire vector
5 wire signed [3:0] w4; // 4-bit signed wire vector

Listing 3.3 Several different examples of wire definition.

ends. We say that we drive a value onto one end before it propagates along the wire
and can be read at the other end. We define Verilog wires using a similar syntax to
variable declaration in C, as shown in Listing 3.3.

Line 1 defines a wire called w0 capable of carrying 1-bit values. Although 1-bit
values are fine for some situations, often we will want to communicate larger values.
So-called wire vectors allow us to do exactly this by bundling 1-bit wires into larger
groups. Since we can select the individual wires from a given wire vector, we can
think of the vector as either as an array of four 1-bit wires, or a single compound
wire that can carry 4-bit values. Line 2 demonstrates this by defining a wire vector
called w1 which can carry 4-bit values. One can read the range notation [3:0] as
3 down to 0 or 3,2,1,0. This is a means of specifying the size of the wire vector, as
well as the order and index of wires within it. For example, Line 3 defines another
4-bit wire vector but the order of the range is reversed, the left-most bit of w2 is bit
0 while the right-most is bit 3. In the previous example, the left-most bit was bit 3
while the right-most was bit 0. Line 4 uses a third variation where the order of wires
within the wire vector is the same as w1 but their index is changed. This time the
left-most bit of w3 is numbered 4, rather than 3, while the right-most is numbered 1,
rather than 0. These variations might seem confusing but they are useful in practise.
For example, reversing the order of the bits in a wire allows us to easily change the
endianness and hence easily comply with demands set by the system we want to
connect our design to.

It is worth noting that more recent Verilog language specifications include the
facility to declare signed wire vectors, i.e., wire vectors that carry signed, twos-
complement values rather than unsigned values. For example, Line 5 in Listing 3.3
declares a 4-bit signed wire vector called w4; it can take the values between −8
and 7 inclusive. This differs from Line 2 where w1 is declared as a 4-bit unsigned
wire vector capable of taking the values between 0 and 15 inclusive. Clearly this is
a matter of interpretation to some extent since one can view a given bit pattern as
representing a signed or unsigned value regardless of the wire vector type. However,
the addition of the signed keyword “hints” to the Verilog tool-chain that, for exam-
ple, if the value on signed wire w4 is inspected or displayed somehow it should be
viewed as signed.
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Value Meaning

1’b0 Logical low or false
1’b1 Logical high or true
1’bX Undefined or unknown value
1’bZ High impedance value

Table 3.1 A list of the four different value types.

Strength Meaning

supply Strongest
strong

↓
pull
large
weak
medium
small
highz Weakest

Table 3.2 A list of the eight different strength types.

3.2.3 Values and Constants

In a perfect hardware system, a wire should only ever take the values 0 or 1 (i.e.,
true and false) written in Verilog as 1’b0 or 1’b1. However, physical properties
of such systems dictate they are never perfect. As a result, Verilog supports four
different values, shown in Table 3.1, to model the reality of imperfect hardware. In
a sense, there is a similar motivation here as in the discussion of 3-state logic in
Chapter 2.

The undefined or unknown value 1’bX is required to model what happens when
some form of conflict occurs. It is not that we do not care what the value is, we
genuinely do not know what the value is. As a simple example, consider driving the
value 1’b1 onto one end of a wire and the value 1’b0 onto the other end, what
value does the wire take ? The answer is generally undefined, but roughly depends
on how strong the two signals are. Verilog offers a way to model how strong a value
of 1’b0 or 1’b1 is; one simply prefixes the value with one of the strength types
shown in Table 3.2. However, this sort of assumption should be used with care:
generally speaking, if you rely on an unknown value being resolved to something
known, there is probably a better way to describe the design and avoid the problem.
The high impedance value 1’bZ is a kind of pass-through described previously in
the context of 3-state logic. If high impedance collides with any value, it instantly
resolves to that value. This is useful for modelling components which must produce
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some continuous output but might not want to interfere with another component
using the same wire.

Constant values, which one can use to drive wires or to compare against values
read from wires for example, can be written in a variety of ways using the general
format

[<sign>] [<size>’<base>] <value>

such that the fields in square brackets are optional. The <sign> field is an optional
minus symbol to denote negative constants; <size> denotes the number of bits in
the constant; <base> is the number base the constant is expressed in, for example
H or h for hexadecimal, D or d for decimal and B or b for binary; and value is the
actual constant. So, for example we have that:

• 2’b10 is a 2-bit binary value 10(2) or 2(10) or 2(16).
• 4’hF is a 4-bit hexadecimal value 1111(2), 15(10) or F(16).
• 8’d17 is an 8-bit decimal value 17(10) or 00010001(2) or 11(16).
• 3’bXXX is a 3-bit unknown binary value.
• 8’hzz is an 8-bit high impedance value.
• 4’b10XZ is a 4-bit binary value where bit zero is the high impedance value, bit

one is the unknown value, bit two is logical low and bit one is logical high. This
value does not really translate into another base; although some of the bits are
defined, because some are not the whole value is undefined.

Where size is not important, one can omit the <size> field and accept a default.
Likewise, one can omit the <base> field to accept the default of decimal numbers
so that the constant 10 is the same as 4’d10. Clearly we can also specify signed
constants by prefixing them with a negation symbol such as -10 or -4’d10.

3.2.4 Comments

Like most other programming languages, Verilog allows one to comment source
code. Comments are used with the same syntax as C and Java so that single-line
comments

// comment

and multi-line comments

/*
comment
comment
...

*/

are both possible. It goes without saying that since Verilog models can contain just
as many subtle implementation issues as a C program, comments are a vital way to
convey meaning which might not be present in the source code.
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1 module or_gate( output wire r,
2 input wire x,
3 input wire y );
4

5 ...
6

7 endmodule

Listing 3.4 The interface for a 2-input OR gate.

1 or t0( r, x, y ); // 2-input or gate instance
2 or t1( r, x, y, z ); // 3-input or gate instance
3 or t2( r, w, x, y, z ); // 4-input or gate instance

Listing 3.5 Instantiating primitive gates with multiple inputs.

3.2.5 Basic Instantiation

Continuing the analogy between C functions and Verilog modules, a function clearly
does not do anything until it is called: the function is just a description. Equally, a
module does not do anything until it is instantiated. Instantiating a module is the
equivalent of actually placing a physical copy of it down on our design. If we in-
stantiate a multiplexer module, this is the analogy of taking a multiplexer component
from a box and placing it on a circuit board.

Verilog offers a number of primitive modules that represent logic gates. In a
sense you can think of primitive modules as similar to the C standard library which
makes basic operations available to all C programs. We can connect these together to
describe more complex circuits and as such they offer a convenient way to introduce
the instantiation syntax. Consider a primitive two input OR gate. Although it is
provided for us by Verilog, we can think of it having an interface similar to that
shown in Listing 3.4 (we deliberately name it or_gate and not or to avoid conflict
with the built-in name). In fact, Verilog is nicer to us than simply providing a 2-way
version, it provides multi-input versions of these modules; one simply adds more
inputs to the instantiation as shown in Listing 3.5. For example, the instantiation of
t1 in Line 2 names three inputs x, y and z.

Using this primitive OR gate module, and similar ones for AND, NOT and XOR,
we can start filling in the module body of Listing 3.1 so it matches the multiplexer
design from Figure 2.16a whose truth table is shown in Table 2.10a. Listing 3.6 de-
scribes an implementation by first defining some internal wires to connect the com-
ponents and then instantiating primitive modules to represent those components.
Each instantiation is built from a few syntactic parts: the type of the module, an
identifier for the instance, and a port list. In this case, the types are not, and and
or; the identifiers are t0, t1, t2 and t3. The port list describes how wires connect
to the communication ports of the module. For example, in the case of the or gate
we have connected wires w1 and w2 to the or gate input ports, and output of the
multiplexer r to the or gate output port. As another example, consider the imple-
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1 module mux2_1bit( output wire r,
2 input wire i0,
3 input wire i1,
4 input wire s0 );
5

6 wire w0, w1, w2;
7

8 not t0( w0, s0 );
9

10 and t1( w1, i0, s0 );
11 and t2( w2, i1, w0 );
12

13 or t3( r, w1, w2 );
14

15 endmodule

Listing 3.6 An implementation of a 1-bit, 2-way multiplexer using primitive modules.

1 module add_1bit( output wire co,
2 output wire s,
3 input wire ci,
4 input wire x,
5 input wire y );
6

7 wire w0, w1, w2;
8

9 xor t0( w0, x, y );
10 and t1( w1, x, y );
11

12 xor t2( s, w0, ci );
13 and t3( w2, w0, ci );
14

15 or t4( co, w1, w2 );
16

17 endmodule

Listing 3.7 An implementation of a full-adder using primitive modules.

mentation of a full-adder in Listing 3.7. Exactly the same principles apply as in the
multiplexer implementation: we again wire together a number of primitive gate in-
stances to replicate the functionality required by the truth table shown in Table 2.8b.

Stated in the above form, module instantiation appears very similar to a C func-
tion call which will also typically have an identifier and arguments. But there are
some crucial differences between the two:

• Typically, a compiler translates each function declared in a C program into one
implementation in the executable. That is, two separate calls to the same function
actually use the same code: they call the same function implementation. With
module instantiation, rather than being shared, each instance is a separate item
of hardware.

• Within a typical C program, each function call in the program is executed se-
quentially so that at any given time we know where in the program execution is:
it cannot be in two functions at the same time. With a Verilog design, every mod-
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1 module mux4_1bit( output wire r,
2 input wire i0,
3 input wire i1,
4 input wire i2,
5 input wire i3,
6 input wire s0,
7 input wire s1 );
8

9 wire w0, w1;
10

11 mux2_1bit t0( w0, i0, i1, s0 );
12 mux2_1bit t1( w1, i2, i3, s0 );
13 mux2_1bit t2( r, w0, w1, s1 );
14

15 endmodule

Listing 3.8 An implementation of a 1-bit, 4-way multiplexer using user-defined modules.

ule instance executes in parallel with every other instance so that one module
can be doing things at the exact same time as another.

Since each instance executes in parallel with every other, the or gate used above
can be described as continuous in the sense that it does not wait for the inputs
to be ready before computing the output: it is always computing an output. We
could just as well write Listing 3.6 with the or gate instantiated before both the
and gates. In C, this would make no sense because now the results w1 and w2
are not produced before they are used. In Verilog however, all three modules are
continuously working in parallel so it does not matter what order we instantiate
them in as long as they are wired together correctly.

Clearly this continuous behaviour can cause problems if you are used to the se-
quential nature of C. For example, what happens if some of the inputs have values
driven onto them while others do not ? Since the module is continually generating
an output, the output must be something, but it will typically be resolved as the un-
defined value. When executing a C program, the processor deals with this issue for
us by forcing each instruction to execute in order; from a functional perspective a
given instruction never starts until previous instructions are completed. In Verilog
however, we are left on our own to enforce such rules.

This presents us with the first challenge of timing within Verilog models: we
need to be sure that when we use the output of a module, enough time has elapsed
to generate it. We have already seen that propagation delay in gates takes some time
which could impact on when the output becomes valid. As the model size increases
these small delays can accumulate and present a significant delay which needs to
be accommodated. In the simple combinatorial circuits we have looked at thus far,
timing is not a major problem since we typically just drive the input values and wait
until they generate the output. With models that store state, which we encounter
in Section 3.4, timing becomes much more important. For example, we need to
ensure that we only set the value of our state with values that are valid, i.e., are not
undefined.
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3.2.6 Nested Instantiation

Primitive modules are just like modules you describe yourself except that they are
provided by Verilog. Therefore we can consider a design composed of several of our
own modules in the same way as we did above with the 2-way multiplexer. Consider,
for example, extending the 2-way multiplexer so it has four inputs selected between
using two control signals. One can think of at least two methods of implementing
this design which were described previously: either we use the same primitive gates
as in the 2-way case or we build it using our previously defined module. Ignor-
ing which is the most efficient in terms of the number of gates, the latter method
clearly leans on one of the advantages of Verilog in that reuse of modules is made
very easy. Listing 3.8 takes advantage of this by implementing a 4-way multiplexer
called mux4_1bit using three instances of the 2-way multiplexer mux2_1bit.
Exactly the same rules apply when instantiating mux2_1bit as when instantiating
a primitive or gate: we have a type, an identifier and a port list for each instance and
each instance of our 2-way multiplexer operates continuously and in parallel with
every other.

Verilog instantiation creates a hierarchy of instances. Each instance is said to
contain those modules it in turn instantiates. To keep track of this hierarchy, Verilog
outlines a simple naming scheme. For example, the 4-way multiplexer in Listing 3.8
has three instances of a 2-way multiplexer named t0, t1 and t2. Within each of
these 2-way multiplexers there is a not gate named t0, two and gates named t1
and t2 and an or gate named t3. Hierarchical naming means each primitive gate
has a unique name: the not gate within 2-way multiplexer t1 is called t1.t0
while the one in multiplexer t2 is called t2.t0. This is a useful property since we
can embed debugging mechanisms within a module and determine exactly where
the messages are coming from; without the naming scheme, all debugging from the
module mux2_1bit would be mixed together and become useless with respect to
locating errors.

3.2.7 User-Defined Primitives

For some simple functions, building a module from gates is overly verbose. Addi-
tionally, it defeats one of our reasons to use Verilog which was to hand off as much
work to the Verilog tool-chain as we can. The User-Defined Primitive (UDP) offers
a more convenient way to build simple modules by essentially allowing the designer
to specify the truth table and leave the implementation to the tool-chain. Given such
a truth table, the tool-chain tries to find the most optimal way to realise it, using for
example the Quine-McCluskey method.

UDPs have a similar interface to modules. For example, we might define our
2-way multiplexer as shown in Listing 3.9. The body of the UDP is the truth table
which states, given some combination of input, what output should be produced.
Each line in the table lists the values of the input ports followed by a colon and
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1 primitive mux2_1bit( output r,
2 input i0,
3 input i1,
4 input s0 );
5 table
6 0 ? 0 : 0;
7 1 ? 0 : 1;
8 ? 0 1 : 0;
9 ? 1 1 : 1;

10

11 ? ? X : X;
12 endtable
13

14 endprimitive

Listing 3.9 An implementation of a 1-bit, 2-way multiplexer using a UDP.

then the value required on the output port. We are free to include the unknown value
1’bX but the high impedance value 1’bZ is treated as 1’bX. We are also free to
include don’t care states in the table as we might with a Karnaugh map; such states
are written using a question mark. Thus, the first line above can be read as “when
both i0 and s0 are 0 and i1 is any value, set the result r to 0”. The last line can be
read as “when s0 is unknown and both i0 and i1 are any value, set the result r to
unknown”.

Compared to the description of the same module in terms of gates, this seems
a much nicer way to do things. However, there are some caveats to consider when
defining a UDP:

• There can only be one output port although there can be as many inputs as re-
quired; the output port must be specified first in the port list.

• Both input and output ports can only be single wires; wire vectors are not al-
lowed.

3.3 Higher-level Constructs

Expressing a design purely in terms of basic logic gates is analogous to writing soft-
ware directly in a low-level machine language: it offers great control over the result
but progress requires significant effort on the part of the programmer. To combat
this, we can use RTL style design to construct Verilog models at a higher-level of
abstraction. Rather than worrying exactly how the functionality is realised, RTL
allows us to concentrate on how data flows around the design and the operations
performed on it. Clearly there is some overlap between RTL and gate-level design;
essentially RTL offers a short hand way to describe combinatorial logic.
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1 module nand_gate( output r,
2 input w,
3 input x,
4 input y,
5 input z );
6

7 assign r = ˜( w & x & y & z );
8

9 endmodule

Listing 3.10 Using a continuous assignment to replicate the behaviour of a primitive module.

1 module mux2_1bit( output wire r,
2 input wire i0,
3 input wire i1,
4 input wire s0 );
5

6 assign r = ( s0 ? i1 : i0 );
7

8 endmodule

Listing 3.11 An implementation of a 1-bit, 2-way multiplexer using a continuous assignment.

3.3.1 Continuous Assignments

In Section 3.2 we described the operation of primitive gates as continuous in the
sense that they were continuously calculating outputs from their inputs rather than
waiting for the inputs to be available. We can use a higher-level, continuous as-
signment RTL statement to do the same thing. Such a statement looks similar to
an assignment in C in the sense that it has left-hand side (LHS) and right-hand side
(RHS) expressions. The LHS is said to be assigned a value calculated by evaluat-
ing the RHS. In a C program we typically expect the LHS to be a variable; in a
Verilog continuous assignment the LHS is a wire or wire vector. Furthermore, and
unlike in a C program, a Verilog continuous assignment is continually being exe-
cuted rather than only being executed when control-flow reaches the assignment.
This is a fundamental difference and relates to the fact that instantiations of Verilog
modules, which a continuous assignment will be translated into by the tool-chain,
are continuously operating in parallel with each other.

The beauty of the construct is that one can use a huge range of C style logical
and arithmetic operators as part of the RHS expression; Table 3.3 contains a list
of them, their types and number of operands. Consider the construction of a 4-
input NAND gate shown in Listing 3.10 (again we name the module nand_gate
and not nand to avoid conflict with the built-in name). Of course, one could use
a built-in primitive module to achieve the same thing, but this simple assignment
neatly demonstrates the expressive power of a continuous assignment. Instead of
several module instantiations and wire connections, we simply write the required
RHS expression and let the Verilog tool-chain convert this into an efficient low-level
implementation. Virtually all C operators are permitted so, for example, we can re-
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Type Symbol Meaning Operands

Arithmetic * multiply 2
/ divide 2
+ add 2
- subtract 2
% modular reduction 2
** exponentiation 2

Logical ! logical NOT 1
&& logical AND 2
|| logical OR 2

Relational > greater than 2
< less than 2
>= greater than or equal to 2
<= less than or equal to 2
== equal to 2
!= not equal to 2
=== case equal to 2
!== case not equal to 2

Bitwise ˜ bitwise NOT 1
& bitwise AND 2
| bitwise OR 2
ˆ bitwise XOR 2

Reduction & reduce AND 1
˜& reduce NAND 1
| reduce OR 1
˜| reduce NOR 1
ˆ reduce XOR 1
˜ˆ reduce XNOR 1

Shift << logical left-shift 2
<<< arithmetic left-shift 2
>> logical right-shift 2
>>> arithmetic right-shift 2

Misc [ ... ] selection n
{ ... } concatenation n
{ { ... } ... } replication n
... ? ... : ... conditional 3

Table 3.3 A list of Verilog operator types.
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x x∧ y

0 1
1 0
X X

x y x∧ y

0 0 0
0 1 0
1 0 0
1 1 1
0 X 0
1 X X
X 0 0
X 1 X
X X X

x y x∨ y

0 0 0
0 1 1
1 0 1
1 1 1
0 X X
1 X 1
X 0 X
X 1 1
X X X

x y x⊕ y
0 0 0
0 1 1
1 0 1
1 1 0
0 X X
1 X X
X 0 X
X 1 X
X X X

(a) NOT. (b) AND. (c) OR. (d) XOR.

Table 3.4 Logical operators in the presence of unknown values.

implement our 2-way multiplexer using an inline-conditional expression as shown
in Listing 3.11. In this case, the LHS is the output wire r whose value is calculated
by evaluating the RHS expression. If wire s0 is 1, the expression evaluates the value
of i1, otherwise it evaluates to the value of i0.

One subtle caveat exists with the analogy between gates and logical operators: the
latter deals explicitly with cases where one or more of the inputs are the unknown
or high impedance values 1’bX or 1’bZ. Firstly, in this context the value 1’bZ
is treated as unknown or 1’bX. Then, the rules in Table 3.4 are applied to describe
the output based on the inputs. Clearly there are additional entries versus traditional
truth tables for NOT, AND, OR and XOR. These additional entries show that, for
example, if one were to AND together two values using 1’b0 & 1’bX, then the
result would be 1’b0. Intuitively this might seem odd: how can one decide on a
result if one of the inputs is unknown ? In reality, the properties of AND mean this
is possible since when the first input is 0, it does not matter what the other input is
because the output will always be 0. Similar shortcuts exist for the other operators.
For example, if either input of an OR operator is 1 it does not matter what the other
one is (even if it is unknown) because the output will always be 1.

3.3.2 Selection and Concatenation

Although the RHS expression of a continuous assignment closely resembles a C
expression, the fact that C is designed for writing software programs means opera-
tions we expect in hardware are absent. To address this, Verilog includes selection,
concatenation and replication operators which split, join and replicate wires and
wire vectors.
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1 module add_1bit( output wire co,
2 output wire s,
3 input wire ci,
4 input wire x,
5 input wire y );
6

7 assign { co, s } = x + y + ci;
8

9 endmodule

Listing 3.12 An implementation of a full-adder using RTL-level design features.

Given the definitions in Listing 3.3, we can split the wire vector w1 into parts
using an operator similar to array sub-scripting in C. The expression

w1[0]

selects wire number zero from the vector w1; the type of this expression is a 1-
bit wire. If w1 takes the value 4’b1010, then the expression w1[0] evaluates to
1’b0. We can extend this selection to include ranges so that the expression

w1[2:0]

is a 3-bit wire we have split from w1 by selecting bits two, one, and zero. The
expression evaluates to 3’b010.

In a similar way, we can join together wires using the concatenation operator so
that the expression

{ w0, w1 }

is a 5-bit wire vector. Wire number four in this vector is equal to the value of w0
while wires three, two, one and zero are equal to the corresponding wires in w1.
So if w0 takes the value 1’b0 then the above expression evaluates to 5’b01010.
Note that there is something of a duality between selection and concatenation since
the expression

w1[2:0]

is in fact equivalent to

{ w1[2], w1[1], w1[0] }

where in both cases we are creating a 3-bit wire vector with component wires drawn
from the vector w1. Finally, the replication operator allows us to create repeated
sequences by specifying a replication factor and a value. The expression

{ 4{w1[0]} }

is equivalent to the expression

{ w1[0], w1[0], w1[0], w1[0] }

with both evaluating to 4’b0000.
As a demonstration of these operators in a practical context, consider a simpli-

fication of the previous gate-level full-adder design. The power of using a more
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abstract description is shown in Listing 3.12. Instead of a number of very primitive
module instances connected together, we use a single, expressive continuous assign-
ment. The RHS of the assignment is easy to understand: it simply adds together the
two inputs x and y and the carry-in ci. The LHS uses a more cryptic concatenation
of two wires co and s, the result is a 2-bit wire vector. Since the result of the RHS,
i.e., adding together the three input wires, is a 2-bit result. This forces the top bit
into the carry-out and the bottom bit into the sum: exactly what we want. By being
more expressive we not only make the module easier to read, we also open the op-
portunity for the Verilog tool-chain to optimise the design for us. For example, if the
implementation technology offers a particularly efficient hardware structure for an
adder, the tool-chain can spot the operator in our code and capitalise on this fact. In
this case the advantages are perhaps marginal, but for more complex designs it can
make a real difference to the end result.

3.3.3 Reduction

The second class of operation which will be alien to C programmers are those of
reduction. Each Verilog reduction operator takes one operand and produces a 1-bit
result; essentially it applies a logical operator to all the bits in the operand, bit-by-bit
from right to left. Again considering the wire definitions in Listing 3.3 and assuming
w1 is set to the value 4’b1010, the reduction expression

|w1

is exactly equivalent to the expression

w1[0] | w1[1] | w1[2] | w1[3]

which evaluates to 1’b1. Another example could be

&w1

which is exactly equivalent to the expression

w1[0] & w1[1] & w1[2] & w1[3]

and evaluates to 1’b0. This sort of operation does not exist in C because it is word-
oriented with the programmer seldom combining bits from the same word. In Ver-
ilog however, we work more freely and can easily extract and utilise bits from any
value since they are always accessible as 1-bit wires.

3.3.4 Timing and Delays

To model issues of timing in a model, Verilog offers several ways to specify delay.
In the context of continuous assignment, one can utilise regular delay to specify the
time between changes to the RHS expression and the assignment to the LHS. One
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1 reg r0; // 1-bit unsigned register
2 reg [3:0] r1; // 4-bit unsigned register vector
3 reg [0:3] r2; // 4-bit unsigned register vector
4 reg [4:1] r3; // 4-bit unsigned register vector
5 reg signed [3:0] r4; // 4-bit signed register vector
6 reg r5[7:0]; // 1-bit, 8-entry register array
7 reg [3:0] r6[7:0]; // 4-bit, 8-entry register vector array

Listing 3.13 Several different examples of register definition.

can think of this as the analogy of propagation delay whereby it takes some length
of time for values to propagate through the circuit representing the RHS expression
before they result in a value on the LHS. For example, the assignment

assign #10 r = ( x | y );

uses a regular delay of ten time units; the value of r is assigned ten time units after
any change to x or y. One caveat to this simple rule is that the change in x and y
must persist for at least as long as the time delay for r to actually see the result. If
x changes from 1 to 0 and then back again in less than ten time units, r will not
change to represent this change.

3.4 State and Clocked Design

So far we have only considered combinatorial circuits which hold no state but sim-
ply compute some outputs from some input values. This is partly because wires
cannot hold state, their value being maintained only as long as a signal is driven
onto the wire. However, we will often want to maintain some state in a design so
that computation is based not only on the input values but also on previous compu-
tation.

3.4.1 Registers

To maintain state, Verilog allows the definition of registers that retain their value
even when not being continuously driven with that value; registers are more or less
analogous to variables in a C program. While wires in Verilog are literally wires in
real hardware, registers are implemented using flip-flops so that the stored value is
retained as long as the flip-flop is powered. While a wire is continuously updated
with whatever value drives it, a register is only updated when a new value is assigned
into it.

Definition of registers is essentially the same as definition of wires, one simply
replaces the wire keyword with reg; Listing 3.13 describes some examples. How-
ever, the introduction of registers adds some complication in terms of how one uses
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Module

inout wire

output reg or wireinput wirereg or wire wire

wire

Figure 3.2 Connection rules for registers and wires.

inputs and outputs to and from modules. In short, only certain types can be used in
each circumstance; Figure 3.2 describes these rules. For example, if some register
r is defined within a module x, it can be named in the input port list to some mod-
ule instance y within x. However, within y the input must be viewed as a wire: we
cannot be sure that the input will always be a register (and hence retain state) so we
must be pessimistic about its behaviour. In this description, we have introduced a
new type of port, marked with the inout keyword, which can act as both an input
and output.

Although one might describe a register vector above as like being an array of
registers, this is not a great analogy since an array is usually a connection of separate
values whereas a register vector typically represents one value. Verilog does offer
“real” arrays as well, which are somewhat confusingly termed memories. The range
of indices which address the memory is declared after the memory identifier as
described in Line 6 and Line 7 in Listing 3.13. In these declarations we declare two
memories: r5 has eight entries numbered 7,6, . . . ,0, each entry is a 1-bit register;
r6 also has eight entries indexed in the same way but each entry in the memory is a
4-bit register vector.

There are some constraints on where and when one can reference elements in a
memory, but roughly speaking the syntax follows that of register vectors so that the
expression

r5[2]

selects element 2, a 1-bit register, from memory r5 while the expression

r6[1]

selects element 1, a 4-bit register, from memory r6. We can combine the two forms
to select individual wires from this. The expression

r6[1][1:0]

selects element 1 from r6 in the same way as above, then extracts bits 1 and 0 from
the result to finally form a 2-bit vector.



3.4 State and Clocked Design 117

begin
x = 4’b0000;
y = 4’b1111;

end

begin:name
x = 4’b0000;
y = 4’b1111;

end

(a) Basic sequential block. (b) Named sequential block.

fork
x = 4’b0000;
y = 4’b1111;

join

fork:name
x = 4’b0000;
y = 4’b1111;

join

(c) Basic parallel block. (d) Named parallel block.

Table 3.5 Examples of different types of behavioural code block.

3.4.2 Processes and Triggers

Blocks of statements are marked before and after using keywords that act in a similar
way to the { and } braces in C programs. The begin and end keywords denote
a sequential block of statements; each statement in the block is executed in the
order they are listed, any timing control for a statement is relative to the previous
statement. The fork and join keywords denote a parallel block of statements;
each statement in the block is executed at the same time as the others, each timing
control is relative to the start of the block. We can attach a hierarchical name to each
block of code by appending a colon and identifier to the start of block keyword.
Examples of each of these block definitions can be found in Table 3.5. Note that in
a similar way to how { and } braces work in C programs, we can omit the start and
end of block keywords for one line blocks.

All blocks must exist within a Verilog process. A process can be thought of
as a parallel thread of execution. To rationalise this, consider using an RTL-style
approach to drive values onto two wires via two continuous assignments. These
assignments are always being evaluated; they are executing at the same time. How
would one cope with this using a behavioural approach ? The fork and join type
blocks could come in handy but more generally we should split our behavioural
statements into two separate groups, or processes, that each deal with updating one
of the values. The processes will execute in parallel with each other just like the
continuous assignments, they simply use behavioural code rather than RTL-style
constructs to implement the required functionality.

There are two types of Verilog process, one marked with the always keyword
and one with the initial keyword. An always process is like an infinite loop
in that execution of the content starts at the top, continues through the body and
then restarts again at the top. In contrast, an initial process only executes once.
Table 3.6a demonstrates the definition of an always process; we simply decorate
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always
begin

...
end

always @ ( x )
begin

...
end

(a) Untriggered always processes are (b) Triggering by value change.
possible but poor design practice.

always @ ( posedge x )
begin

...
end

always @ ( negedge x )
begin

...
end

(c) Triggering by positive edge. (d) Triggering by negative edge.

Table 3.6 Examples of different process definitions and triggers.

a normal block with the always keyword. Basic processes are somewhat simple in
that they either execute just once or loop forever; there is no way to specify when
they should be executed. We can add a trigger, or sensitivity list, to a process to
specify this sort of information. Having looked at how digital logic works, examples
are easy to come by: we might want a block of code to be triggered by a positive
or negative signal edge or level. Table 3.6b-d demonstrate the addition of triggers
which cause the associated block to execute when the value of x changes from
anything to anything; when a positive edge in x is encountered, that is a change in
value from 0 to 1; and when a negative edge in x is encountered, that is a change
in value from 1 to 0. Here we have included just one signal x in the sensitivity list,
more can be added by separating the extra signals with commas; in this case we
might specify, for example, that a process is triggered when either x or y changes
value.

Note that Table 3.6a which represents an untriggered always block is consid-
ered bad design practice: without some form of delay, we are saying that every
iteration of the block happens at the same time. Since this is clearly impossible,
we need to ensure that there is some delay within the process or, more preferably,
change the design so it is clear when each iteration of the process is triggered.

3.4.3 Procedural Assignments

Within a block of code, we can place a sequence of statements which are executed
when the encompassing process is triggered. The most simple example of a state-



3.4 State and Clocked Design 119

begin
x = 10;
y = 20 + x;

end

begin
x <= 10;
y <= 20 + x;

end

(a) Blocking procedural assignments. (b) Non-blocking procedural assignments.

Table 3.7 Examples of different procedural assignments.

ment is the procedural assignment which evaluates a RHS expression and assigns
the value to an LHS expression. Such assignments come in two flavours, block-
ing assignments and non-blocking assignments. A blocking assignment is said to
block subsequent statements in the sense that they only execute after it has com-
pleted. In contrast, a non-blocking assignments allow subsequent statements to ex-
ecute at the same time as it. For example, consider the two blocks in Table 3.7. The
left-hand example uses blocking assignments; the assignment to y only executes
once the assignment to x is finished. This means that when the assignment to y
executes, x will definitely have been assigned the value 10(10). However, the right-
hand process uses non-blocking assignments; the assignments to x and y execute
at the same time. Here, this causes a problem because we can no longer guarantee
that x will definitely have been assigned the value 10(10) before the assignment to
y is executed; this means y potentially gets the wrong result. Problems like this
are avoided by considering a data-flow graph and avoiding dependent non-blocking
assignments. Additionally, we should not mix blocking and non-blocking assign-
ments within a given block of code so that it is clear when a particular assignment
will occur.

Procedural assignments can incorporate timing and delay specifiers in the same
way as continuous assignments. However, it is important to again note the differ-
ence between the two: continuous assignments are continually being executed while
procedural assignments are only executed when their process block is triggered. Ad-
ditionally, note that procedural assignments can only use registers as the LHS while
continuous assignments can only use wires. This makes sense since the execution
of a procedural assignment is time dependent and hence requires the LHS to retain
state.

Either way, we are now in a position to actually design a meaningful module
using behavioural-level Verilog. Recall that a D-type flip-flop is a component that
can store 1-bit values; it has an output Q which represents the currently stored value
an input D which is used to set the value when a positive edge is driven onto the
enable signal en. Listing 3.14 replicates this interface and implements the required
behaviour using two processes. Firstly, we define a 1-bit register called t which is
used to represent the value stored within the flip-flop; we use a continuous assign-
ment to set the flip-flop output Q to match the value t. Using an initial process,
we ensure that t is set to 0 to start with. Then, we use an always process which
is triggered whenever a positive edge is detected on the input en. Whenever this
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1 module dtype_ff( input wire D,
2 output wire Q,
3 input wire en );
4 reg t;
5

6 assign Q = t;
7

8 initial
9 begin

10 t = 0;
11 end
12

13 always @ ( posedge en )
14 begin
15 t = D;
16 end
17

18 endmodule

Listing 3.14 An implementation of a D-type flip-flop using behavioural Verilog.

occurs the code within is executed; this means the value of input D is assigned to
our register t and Q is updated in turn by the continuous assignment.

3.4.4 Timing and Delays

We previously saw how one can specify regular delays on continuous assignments
to model propagation delay. This is also true of procedural assignment, although the
semantics are slightly different. Using the following

#10 r = ( x | y );

simply specifies that the assignment should be executed 10 time units after the previ-
ous statement completed. This essentially defers execution of the entire assignment
statement for some period of time. Trying to work out how timing delays interact
with non-blocking forms of assignment is difficult and generally it is better not to
mix the two forms.

In contrast to regular delays, intra-assignment delay simply defers update of the
LHS. For example, by moving the timing specifier to the RHS, the assignment

r = #10 ( x | y );

executes immediately after the previous statement completes. The RHS is evaluated
straight away but the assignment of the result to the LHS is only performed 10 time
units later.
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1 module dtype_ff( input wire D,
2 output wire Q,
3 input wire en,
4 input wire rst );
5 reg t;
6

7 assign Q = t;
8

9 initial
10 begin
11 t = 0;
12 end
13

14 always @ ( posedge en )
15 begin
16 if( rst == 1 )
17 t = 0;
18 else
19 t = D;
20 end
21

22 endmodule

Listing 3.15 An implementation of a D-type flip-flop with reset.

3.4.5 Further Behavioural Statements

3.4.5.1 Conditional Statements

Basic conditional behaviour can be implemented almost identically to in C by using
the if statement; this takes the form

if ( x )
statement0;

else if( y )
statement1;

else
statement2;

To decide which of statement0, statement1 or statement2 gets executed
we first evaluate the expression x and, if the value is non-zero, statement0 is ex-
ecuted. Otherwise, we carry on to the next case, evaluate y and test if it is non-zero;
if it is, then statement1 is executed. If neither x or y evaluates to a non-zero
value then statement2 is executed as the default case. A slight problem is intro-
duced by considering whether the unknown value 1’bX “means” zero or non-zero.
For an if statement, this is resolved by defining the unknown value as zero. In this
example, if x and y both evaluate to the unknown value then we end up in the default
case where statement2 is executed. Note that each single statement associated
with each test can in fact be a block of statements surrounded with begin and end
keywords.

As an example of the if statement in action, consider upgrading our D-type flip-
flop design from Listing 3.14 to include a signal which zeros or resets the stored
value. This alteration is shown in Listing 3.15 and simply performs a test on the
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rst signal each time a positive clock edge triggers the process: if rst is equal to
1, then we set the stored value t to 0, otherwise we set it to the input D.

Long or nested if statements can quickly become hard to maintain as the number
of alternatives and complexity of conditions grows. To combat this, Verilog includes
a construct called case which is very similar to the switch statement in C. A
case statement takes an expression which can evaluate to one of several options;
depending on which of these options it does actually evaluate to, one of several
statements is executed. It essentially acts like a multi-way or computed branch and
takes the form

case( x )
value0 : statement0;
value1 : statement1;
value2 : statement2;
...
default : statementN;

endcase

The expression x, which can include operators and so on rather than being simply a
wire or register, is first evaluated. If the value equals value0, then statement0
is executed; if it equals value1, then statement1 is executed and so on. At most
one statement is executed, and there is no need for a break statement as is needed
in C. If the value of x does not equal any of the options then the statement corre-
sponding to the default value is executed; if there is no default option then
no statements are executed. Note that we can never have more than one default
options and that, like an if statement, each single statement associated with a value
can be a block of statements surrounded with begin and end keywords.

A similar problem to usage of if statements is presented when considering what
happens if x evaluates to the unknown or high impedance value; since the case
statement performs a bit-by-bit comparison even a single bit within x which is not
0 or 1 can result in unexpected behaviour. One method to deal with such options is
to explicitly list them so that, for example, if we use

case( x )
2’b00 : y = 1’b0;
2’b01 : y = 1’b1;
2’b10 : y = 1’b1;
2’b11 : y = 1’b0;

2’b0x : y = 1’bX;
2’b1x : y = 1’bX;
2’bx0 : y = 1’bX;
2’bx1 : y = 1’bX;

default : y = 1’b0;
endcase

then when x evaluates to the value 2’b0X we execute the fifth statement rather than
the default statement as would have happened before. The other way to deal
with this problem is to use the casex and casez variations of the basic case
construct. A casez statement treats all occurrences of the high impedance value as
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don’t care; a casex treats both the unknown and high impedance values as don’t
care. This applies to both the case expression (i.e., x in the above) or one of the
case options (e.g., 2’b0X in the above). By treating these values as don’t care we
exclude them from comparison so that, for example, the case value 2’b0X would
match the case option 2’b00 (if not previously matched) when using a casex
statement instead of a standard case statement. Likewise, the case value 2’b00
would match the case option 2’bX0 (if not previously matched) when using casex
instead of case.

As an example of the case statement in action, recall the traffic light controller
we developed previously in the form of a state machine. The idea was that we stored
some state and had a function which moved us to a next state on each positive clock
edge; we also had an associated function to set the value of various traffic lights
based on the state. Listing 3.16 sketches an implementation of this design, omitting
some of the cases for brevity. The module holds the 3-bit current state in the register
S and initialises this to zero using an initial block. On every positive clock
edge the first always process is triggered; we evaluate S and update the value
to match the required next state. Also, each time S changes we trigger a second
always block which again evaluates S but this time sets the value of output wires
corresponding to the traffic lights.

3.4.5.2 Iteration Statements

It is often useful to iterate or loop over a block of statements a given number of
times. Although the if and case statements allow us to control the flow of exe-
cution, they are unsuitable for this task. Likewise, an always process offers some
form of iteration but it is also unsuitable in the sense that it is too coarse grain:
we require a set of statements similar to do, while and for loops available in C
programs.

The forever loop simply performs an infinite loop over the body of statements
associated with it. Although in software this is generally considered a bad idea, in
hardware it can make perfect sense: for example, a keyboard waits in an infinite loop
for keys to be pressed until it is eventually powered off. A forever loop takes the
form

forever
begin
...

end

where the continuation dots represent the body of code which is looped over. In
common with all iteration statements in Verilog, there is no way to exit from the
loop prematurely. In a C loop this is performed using the break statement; there is
no equivalent in Verilog.

The next step up in terms of complexity is a loop which instead of iterating for-
ever, iterates a fixed number of times. The repeat statement, not seen in languages
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1 module traffic( input wire clk,
2

3 output reg Mr,
4 output reg Ma,
5 output reg Mg,
6 output reg Ar,
7 output reg Aa,
8 output reg Ag );
9

10 reg [2:0] S;
11

12 initial
13 begin
14 S = 0;
15 end
16

17 always @ ( posedge clk )
18 begin
19 case( S )
20 0 : S = 1;
21 1 : S = 2;
22 2 : S = 3;
23 3 : S = 4;
24 4 : S = 5;
25 5 : S = 6;
26 default : S = 0;
27 endcase
28 end
29

30 always @ ( S )
31 begin
32 case( S )
33 0 : begin
34 Mr = 0; Ma = 0; Mg = 1;
35 Ar = 1; Aa = 0; Ag = 0;
36 end
37

38 ...
39

40 5 : begin
41 Mr = 0; Ma = 1; Mg = 0;
42 Ar = 1; Aa = 0; Ag = 0;
43 end
44 default : begin
45 Mr = 0; Ma = 0; Mg = 0;
46 Ar = 0; Aa = 0; Ag = 0;
47 end
48 endcase
49 end
50

51 endmodule

Listing 3.16 An implementation of the traffic light controller state machine.
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like C, offers exactly this behaviour. For example, if we want to execute a body of
statements thirty two times we would use

repeat( 32 )
begin
...

end

Note that the value that determines the number of iterations must be a constant rather
than an arbitrary expression. Where an arbitrary number of iterations is required, we
use a while loop such as

while( x )
begin
...

end

In this case the expression x is evaluated and tested before each loop iteration; if
the resulting value is non-zero, then iteration continues, if it is zero then the loop
terminates.

Finally, we have a for loop which offers a powerful but simple way to iterate
over the loop body. Definition of a for loop uses three expressions: an initialiser, a
conditional, and an updater. The idea is that the initialiser expression sets loop coun-
ters to an initial value. Before each time the loop body is executed the conditional
expression is evaluated: if the resulting value is non-zero the loop is executed, oth-
erwise it terminates. After each loop execution the update expression is evaluated to
update the loop counters. An an example which executes a body of statements 32
times we could write

for( i = 0; i < 32; i = i + 1 )
begin
...

end

In this case we have i = 0 as the initialiser which sets the loop counter i to zero;
i < 32 is the conditional which allows the loop to continue as long as i is less than
32; the update expression i = i + 1 increments the loop counter each time the
loop is executed. Note that unlike the equivalent statement in C, we cannot use the
increment or decrement operators: we are forced to use the expression i = i + 1.
Also note that in some sense a for loop is just a shorthand; we could write the above
using just a while loop as

i = 0;
while( i < 32 )
begin
...
i = i + 1;

end

As in the case of always blocks, there is a problem if the body of statements one
iterates over has no delays in it: again we are saying that every iteration happens at
the same time.
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3.4.6 Tasks and Functions

We have already drawn analogies between modules in Verilog and functions in C,
but have tried hard to show that they are different. Even so, it is useful to have some
means of defining shared or common blocks of code rather than replicating that
code wherever required. Two methods of achieving this can be used in Verilog; they
are called tasks and functions respectively. In a rough sense, functions can only
be combinatorial results while tasks can be fairly arbitrary blocks of code. More
exactly, there are some constraints on how tasks and functions can be constructed:

• Tasks can have any number of inputs and outputs; functions must have at least
one input and no (explicit) outputs.

• Tasks can contain fairly arbitrary statements including timing control; functions
cannot contain timing control statements.

• Tasks can call other tasks and other functions; functions can only call other func-
tions.

All tasks and functions are local to the module in which they are defined and can
access all wires and registers defined within that module; neither can contain locally
defined wires or registers.

Consider the following example function which calculates the parity of an input,
i.e., whether there are an odd or even number of 1 bits set in the value:

function parity;
input [7:0] x;

begin
parity = ˆx;

end
endfunction

After giving the function a name or identifier, the 8-bit input x is defined. The body
of the function simply applies the XOR reduction operator to x and forms the return
value by assigning this to a pseudo-value with the same name of the function. The
function can then be called much like one would in C. The following example task
demonstrates this by using the parity function to perform a parity check of an
input x against a parity bit b:

task parity_check
input [7:0] x;
input bit;
output err;

begin
if( parity( x ) == bit )
err = 0;

else
err = 1;

end
endtask

If the calculated parity of input x is equal to the input check bit called bit, then
we set the output err to 0, otherwise we set it to 1 to mark an error has occurred.
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We can then use the task within some block of code. As a slightly more contrived
example, consider reading an 8-bit value and an associated check bit from some
input source; having obtained all the bits we could use the task to check the parity
and perform some operation as a result:

reg err;

always @ ( posedge clk )
begin
x[0] = read_bit();
x[1] = read_bit();
x[2] = read_bit();
x[3] = read_bit();
x[4] = read_bit();
x[5] = read_bit();
x[6] = read_bit();
x[7] = read_bit();

bit = read_bit();

parity_check( x, bit, err );

if( err )
...

else
...

end

If the parity_check task is used often enough within the encompassing module,
then we will have reduced the amount of replicated code (although not necessarily
the logic that implements it) and associated risk of introducing errors. Notice here
that the inputs and outputs of the task must be valid in the context of their use. For
example, the procedural assignment to err in the task means the argument passed
in must be a register.

3.5 Effective Development

Like most forms of programming, hardware design using a HDL like Verilog is more
than simply knowing the language syntax and semantics. Without some experience
actually using the language to produce functioning models, many of the pitfalls and
intricacies will remain hidden. With this in mind, the following section attempts to
convey some good design practises and features in the Verilog language that can
improve the quality of code in terms of maintainability and functional correctness.
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$display( <format>, <args> ... )
Print output to the console.
$monitor( <format>, <args> ... )
Print output whenever values change.
$monitoron
Enable all monitor output.
$monitoroff
Disable all monitor output.
$stop
Halt the simulator.
$finish
Exit the simulator.
<value> = $random( <seed> )
Produce a random value.
<handle> = $fopen( <filename> )
Open a file for input.
$fclose( <handle> )
Close an open file.
$fdisplay( <format>, <args> ... )
Direct $display output to file.
$fmonitor( <format>, <args> ... )
Direct $monitor output to file.
$readmemb( <filename>, <memory>, <start>)
Read ASCII binary file into memory.
$readmemh( <filename>, <memory>, <start>)
Read ASCII hexadecimal file into memory.

Table 3.8 A list of common system tasks.

3.5.1 System Tasks

Since during simulation a Verilog model is, by definition, running on some form of
controlled platform, it makes sense to allow it access to some of the resources on
that platform. For example, it is useful to allow a model to issue messages to the
console or access the file system to load test data or store results. Although such a
facility will not be present in real hardware, the use of a system task as a means of
accessing functionality on the host platform is a massive aid to the development and
debugging cycle.

A system task is similar to a normal Verilog task except that is it executed by
the simulator rather than the model. As such, they are somewhat dependent on the
exact simulator used although standardised Verilog includes a number of system
tasks which should always be available. Table 3.8 lists some common system tasks;
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perhaps the most useful are the $display and $monitor tasks which offer a
simple means of debugging.

The $display task is similar to the printf function in C in that one gives
it a format string and a list of values to fill into the template. Using this task, the
translated string is printed to the console of the simulator so that it can be read by a
user. For example, the following block

begin
x = 10;
y = 20;

$display( "x is %b in binary, y is %d in decimal", x, y );
end

uses the %b formatting parameter to format value x as a binary number and the %d
formatting parameter to format y as a decimal value. The resulting string, “x is 1010
in binary, y is 20 in decimal” is printed to the console so that one can verify that x
and y have the values expected. However, the use of many $display tasks to
track the value of a wire of register can be cumbersome; often we want to just print
the value whenever it changes. The $monitor task offers a simple way to achieve
this. The syntax is similar to a $display task in that it takes a format string and a
list of values but rather than being executed just once, the monitor task is executed
whenever one of the listed value changes. Thus, using the block

begin
$monitor( "x is %b in binary, y is %d in decimal", x, y );

$monitoron;
x = 10;
y = 20;
$monitoroff;

end

we would expect two messages to be printed to the console: one after x is assigned
to and one after y is assigned to.

3.5.2 Using the Pre-processor

Constant values without an obvious meaning in a C program or Verilog program
are often called “magic”: they make things work but it often is not clear why their
specific value is chosen. As a solution to this problem, C allows the use of a pre-
processor with which one can manipulate the source code before it is fed to the
compiler. For example, instances of defined macros are replaced with an associated
value; the program source code is hence more easily understood.

Although less sophisticated than the C pre-processor, Verilog allows similar func-
tionality through directives to the tool-chain. Perhaps the most simple example is the
‘include directive which allows one to include the contents of a Verilog source
file in another. This practise should be used with care so that cycles of inclusion are
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1 ‘define WIDTH 4
2

3 module add_nbit( output wire co,
4 output wire [‘WIDTH-1:0] s,
5 input wire ci,
6 input wire [‘WIDTH-1:0] x,
7 input wire [‘WIDTH-1:0] y );
8

9 assign { co, s } = x + y + ci;
10

11 endmodule

Listing 3.17 Using pre-processor directives to replace global constants.

1 ‘define GATES
2

3 module add_1bit( output wire co,
4 output wire s,
5 input wire ci,
6 input wire x,
7 input wire y );
8

9 ‘ifdef GATES
10 wire w0, w1, w2;
11

12 xor t0( w0, x, y );
13 and t1( w1, x, y );
14

15 xor t2( s, w0, ci );
16 and t3( w2, w0, ci );
17

18 or t4( co, w1, w2 );
19 ‘else
20 assign { co, s } = x + y + ci;
21 ‘endif
22

23 endmodule

Listing 3.18 Using pre-processor directives for conditional source code inclusion.

avoided and is best used, for example, to include a single file of macro definitions
that are common to the entire model.

Continuing the similarity with the C pre-processor, the ‘define directive al-
lows the definition of a macro which is replaced the associated value when used
subsequently. Listing 3.17 shows the use of ‘define in action by implementing
an adder whose input and output ports are wider than 1-bit. By altering the definition
of the macro WIDTH, we can change how wide these ports are without fiddling with
the main module definition. Note that when using a macro in C, one would only
need to use the macro identifier WIDTH while in Verilog we are required to prefix
the identifier with a quote to get ‘WIDTH.

Conditional inclusion or exclusion of Verilog code can be achieved using the
‘ifdef, ‘ifndef, ‘else, ‘elsif and ‘endif directives. This sort of con-
struct can alter the source code fed to the Verilog tool-chain by simply changing
some defined constants rather than major alterations to the source code itself. List-
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ing 3.18 demonstrates an example; we have two different implementations of the
adder module and select which one is used in the design by simply defining or not
defining the GATES macro. Code for whichever branch is taken is fed to the tool-
chain, the branch which is not taken is omitted as if it were never there or simply
commented. Since macros can be defined by the tool-chain as well as in the source
code, conditional inclusion and exclusion of code can offer a neat way to configure
a design for different purposes and situations.

The ‘timescale directive is a means of changing the unit of time during sim-
ulation. This alters the units used to define timing delays without the need to scale
them all by hand, a daunting task in a large design. Use of ‘timescale follows
the general format:

‘timescale <reference> / <precision>;

where the <reference> field determines the unit of measurement while the
<precision> field specifies the precision to which delays are rounded. There are
some constraints as to what values can be used in both fields but these are largely
dependent on the simulator.

3.5.3 Parameters

Although using pre-processor directives to ease maintainability is a useful idea, of-
ten they are not powerful enough to achieve what we want. For example, consider
the definition of an adder module with variable sized input and output ports as de-
scribed in Listing 3.17. By using the macro WIDTH we can easily change the size
of the ports but this is a global change: all add_nbit modules will have the same
sized ports, what if we want one with 4-bit ports and another with 2-bit ports ?

Module parametrisation solves this problem by allowing the declaration of pa-
rameters for each module which can be overridden by each instance. The parameter
keyword is used to declare a parameter with a default value. Essentially similar to a
macro definition, the parameter symbol can then be used freely within the module
body, although it cannot be assigned to since it is not a variable. The major differ-
ence between using a parameter is that each instance can set it to a different value.
This is shown in Listing 3.19 where we parametrise the adder module and then form
two instances. The instance named t0 has the WIDTH parameter set to four so that
the ports are four bits wide; The instance named t1 has the WIDTH parameter set to
two so that the ports are two bits wide. This is performed using the defparam key-
word and utilises the Verilog hierarchical naming scheme to specify exactly which
instance and parameter are being referred to.

Note that we mentioned in Section 3.2 that the form of module definition where
the ports are typed inside the module body is sometimes useful: parameters are
one reason why. Since the parameter is defined inside the body, one cannot use
the symbol before it is defined and hence the parameter symbol cannot exist in the
module header.
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1 module add_nbit( co, s, ci, x, y );
2

3 parameter WIDTH = 0;
4

5 output wire co;
6 output wire [WIDTH-1:0] s;
7 input wire ci;
8 input wire [WIDTH-1:0] x;
9 input wire [WIDTH-1:0] y;

10

11 assign { co, s } = x + y + ci;
12

13 endmodule
14

15 module top();
16

17 wire t0_co, t0_ci;
18 wire t1_co, t1_ci;
19

20 wire [3:0] t0_s, t0_x, t0_y;
21 wire [1:0] t1_s, t1_x, t1_y;
22

23 add_nbit t0( t0_co, t0_s, t0_ci, t0_x, t0_y );
24 add_nbit t1( t1_co, t1_s, t1_ci, t1_x, t1_y );
25

26 defparam t0.WIDTH=4;
27 defparam t1.WIDTH=2;
28

29 endmodule

Listing 3.19 A full-adder implementation whose port width is parametrised.

1 add_1bit t0( w0 , w1 , w2 , w3 , w4 );
2 add_1bit t1( .co(w0), .s(w1), .ci(w2), .x(w3), .y(w4) );
3 add_1bit t2( .co(w0), .s(w1), .ci(w2), .y(w4), .x(w3) );
4 add_1bit t3( .s(w1), .x(w3), .y(w4) );

Listing 3.20 Using named port lists to instantiate a full-adder.

3.5.4 Named Port Lists

As modules get more complex, the number of input and output ports typically grows
quite large. This presents a number of problems. Firstly, it becomes difficult to re-
member the order the ports are declared in and one can easily wrongly connect two
modules as a result. Secondly, it is quite common to want to omit specific connec-
tions to complex modules because one does not use the functionality they provide.
For example, we might ignore the write port of a memory module if the memory
is used in a read-only mode. In this case, we would like to connect the port to null
somehow.

Named port lists solve both of these problems simultaneously. Consider having
to instantiate the full-adder module described in Section 3.2 and Section 3.3. List-
ing 3.20 shows four different ways to do this starting with the conventional method
in Line 1. In fact, the first three lines are equivalent; even though the order or some
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1 module mux2_nbit( r, i0, i1, s0 );
2

3 parameter WIDTH = 0;
4

5 output wire [WIDTH-1:0] r;
6 input wire [WIDTH-1:0] i0;
7 input wire [WIDTH-1:0] i1;
8 input wire s0;
9

10 assign r = ( s0 ? i1 : i0 );
11

12 endmodule
13

14 module top();
15

16 wire [31:0] r;
17 wire [31:0] i0;
18 wire [31:0] i1;
19 wire s0;
20

21 mux2_1bit t0( .r(r), .i0(i0), .i1(i1), .s0(s0) );
22

23 defparam t0.WIDTH = 32;
24

25 endmodule

Listing 3.21 A parametrised implementation of a 1-bit, 2-way multiplexer with 32-bit ports.

wires in Line 2 and Line 3 are different, the fact we name the ports we want to
connect to ensures the instantiations are correct. The final instantiation in Line 4
omits the carry-in and carry-out ports. The carry-in input is therefore wired to zero
for us by the Verilog tool-chain, while the carry-out output is simply ignored or left
dangling.

3.5.5 Generate Statements

Consider the task of creating a 2-way multiplexer where the inputs and outputs are
no longer 1-bit values as previous discussed, but 32-bit values. One way to go about
this is clearly to simply utilise wire vectors and increase the width of the ports. We
might even use parameters as shown in Listing 3.21.

Another way to do the same thing is to use a Verilog generate statement. A gen-
erate statement is designed to programatically and automatically generate hardware
instances; the statement is a means of manipulating the design rather than some-
thing which is executed at run-time. As such, one can think of it as another form of
directive. The idea is that instead of typing out thirty two instantiations of the 2-way
multiplexer with 1-bit inputs, we let the Verilog tool-chain do the work for us. List-
ing 3.22 demonstrates the generate statement in action; the generate block encloses
a for loop which the tool-chain executes to instantiate thirty two multiplexers, each
one taking the i-th bit of the two inputs and producing the i-th bit of the result. Note
that in this case, Verilog demands our loop counter is declared using the genvar
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1 module mux2_1bit( output wire r,
2 input wire i0,
3 input wire i1,
4 input wire s0 );
5

6 assign r = ( s0 ? i1 : i0 );
7

8 endmodule
9

10 module top();
11

12 wire [31:0] r;
13 wire [31:0] i0;
14 wire [31:0] i1;
15 wire s0;
16

17 genvar i;
18 generate
19 for( i = 0; i < 32; i = i + 1 )
20 begin:gen_mux
21 mux2_1bit t( .r(r[i]), .i0(i0[i]), .i1(i1[i]), .s0(s0) );
22 end
23 endgenerate
24

25 endmodule

Listing 3.22 A generate statement building a 1-bit, 2-way multiplexer with 32-bit ports.

type to distinguish it from types used for statements which need to be executed at
run-time.

Looking at the two solutions, the parametrised version seems more sensible; cer-
tainly it does the right job and also promotes reuse of the module. However, there
is a subtle design principle underlying the use of generate which goes beyond sim-
ply reducing work. The Verilog tool-chain is good at taking models and running
simulation and synthesis processes on them. But like any software, it is finite in
computational power and generally fallible in the face of complex inputs. In fact,
a Verilog tool-chain will typically do a much better job of any optimisation when
faced with simple, small constructs rather than large ones. With this in mind, creat-
ing models from lots of modules that operate on small inputs is often more desirable
than using one module that operates on a single large input.

3.5.6 Simulation and Stimuli

One of the major advantages of using Verilog over raw hardware is that one can
simulate and debug a circuit before it is sent through the expensive process of man-
ufacturing. Roughly speaking, there are two types of Verilog simulator:

Cycle-based Simulator The most simple form of simulator assumes that the en-
tire model is clocked and that change occurs synchronously at clock edges. The
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simulator runs a clock and on each transition calculates the new state of the
model; any changes in between the clock transitions are lost.

Event-based Simulator Roughly speaking an event-based simulator waits, watch-
ing for changes in any values within the model and then propagates those changes
to elements they effect. Events occur relative to an internal clock which tracks
the progress of simulation time; the current time is typically stored in a variable
named $time which is accessible for debugging purposes.
For example, the simulator might watch the inputs to a module and, when they
change, evaluate expressions to compute the output or trigger execution of a pro-
cess. Complex scheduling methods determine the order such events are processed
in so that simulation remains valid and to reduce the amount of computation re-
quired.

In some sense, the difference in approach represents a trade-off between simula-
tion speed and accuracy although modern simulators of either type are effective.
They can be further sub-divided into interpreted simulators versus those which per-
form some form of compilation on a model before simulation. Purely interpreter-
based systems process the model line-by-line and as a result are slower. In contrast,
compilation-based simulation translates the model into an internal, easier to deal
with format before executing it. This has the advantage that the simulation can be
much faster; optimisation of the internal format and a global view of the model can
give significant performance benefits. An extreme example of a compiler-based sim-
ulator might translate the model into native executable code for the host machine.
Obviously the drawback is that every time the model changes, it must be recompiled
before simulation can restart so the internal representation matches the design.

None of the modules we have looked at thus far have been self-contained: they
include input and output ports to external systems. In part it is obvious that any
useful module will look like this since if it takes no input and produces no output
as a side effect, we can optimise the design by replacing it with the empty module
! This sort of module with no inputs and no outputs is usually called a top-level
module since it is self-contained, at the top of the hierarchy. To follow convention,
we usually call the top-level module top; clearly it can be called anything.

No matter what simulation system is used, to simulate a model we typically need
to feed it test signals and collect the outputs. This is the job of a top-level stimu-
lus module. Such a module encompasses the design, instantiating an instance of it
and stimulating the inputs in order to provoke execution. For example the stimu-
lus might toggle the reset signal to jump-start the design, emulating the behaviour
of the physical switch one would wire onto the design when implemented in real
hardware.

Figure 3.3 describes diagrammatically how a stimulus for our full-adder inter-
faces with the module. The stimulus module instantiates the full-adder and con-
nects the ports to nets internal to it. These nets can then be set to values in order to
provoke the full-adder to produce output which can be inspected in the simulator.
Listing 3.23 demonstrates an implementation of this: we instantiate the adder and
then use a single process to toggle ci, x and y through all possible values to test
the module. To verify that we are getting the right results on co and s, we use the
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Figure 3.3 A stimulus module encompasses the design and feeds it test values.

1 module top();
2

3 wire co;
4 wire s;
5 reg ci;
6 reg x;
7 reg y;
8

9 add_1bit t0( .co(co), .s(s), .ci(ci), .x(x), .y(y) );
10

11 initial
12 begin
13 $monitor( "%b %b %b %b %b", co, s, ci, x, y );
14

15 #10 ci = 0; x = 0; y = 0;
16 #10 ci = 0; x = 0; y = 1;
17 #10 ci = 0; x = 1; y = 0;
18 #10 ci = 0; x = 1; y = 1;
19 #10 ci = 1; x = 0; y = 0;
20 #10 ci = 1; x = 0; y = 1;
21 #10 ci = 1; x = 1; y = 0;
22 #10 ci = 1; x = 1; y = 1;
23 end
24

25 endmodule

Listing 3.23 Implementation of a stimulus module for a full-adder.

$monitor system task to track their values as they change. The use of $monitor
reduces the amount of typing we do but increases the verbosity of the output; we
might also have used $display to inspect the values at specific points in execu-
tion.

3.6 Further Reading

• D. Harris and S. Harris.
Digital Design and Computer Architecture: From Gates to Processors.
Morgan-Kaufmann, 2007. ISBN: 0-123-70497-9.
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• S. Palnitkar.
Verilog HDL: A Guide in Digital Design and Synthesis.
Prentice-Hall, 2003. ISBN: 0-130-44911-3.

• D.E. Thomas and P.R. Moorby.
The Verilog Hardware Description Language.
Springer-Verlag, 2002. ISBN: 1-402-07089-6.

3.7 Example Questions

12. Write the following as Verilog declarations:

a. An 8-bit little-endian wire vector called a.
b. A 5-bit big-endian wire vector called b.
c. A 32-bit register called c.
d. A signed 16-bit register called d.
e. A memory of 1024 elements, each 8 bits in size, called e.
f. A generate variable called f.

13. Given the declarations:

wire [3:0] a;
wire [3:0] b;
wire [1:0] c;
wire [3:0] d;
wire e;

assign a = 4’b1101;
assign b = 4’b01XX;

what are the values resulting from the following assignments:

a. assign c = a[1:0];
b. assign c = a[3:2];
c. assign d = a & b;
d. assign d = a ˆ b;
e. assign d = { a[3:2], a[1:0] };
f. assign d = { a[1:0], a[3:2] };
g. assign c = {2{b[1]}};
h. assign c = {2{b[2]}};
i. assign e = &a;
j. assign e = ˆa;

14. a. Consider the following Verilog processes for appropriately defined 1-bit
wires a, b, x, y, p and q:
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always @ ( posedge p )
begin
x <= a;
y <= b;

end

always @ ( posedge q )
begin
x <= b;
y <= a;

end

Given that p and q are independent and may change at any time, write down one
potential problem with this design and outline one potential solution.

b. Consider the following Verilog process, for appropriately defined 1-bit wire clk
and 2-bit wire vector state, which implements a state machine with three
states:

always @ ( posedge clk )
begin
case( state )
0 : begin

do_0;
state = 1;

end
1 : begin

do_1;
state = 2;

end
2 : begin

do_2;
state = 0;

end
end

If this process constitutes the entirety of the design, write down one potential
problem with it and outline one potential solution.

15. A Decimal Digit Detector (DDD) is a device that accepts a 1-bit input at each
positive clock edge, and waits until four such bits have been received. At this point,
it sets a 1-bit output signal to true if the 4-bit input (interpreted in little-endian form)
is a valid Binary Coded Decimal (BCD) digit and false if it is not; it then repeats the
process for the next set of four input bits.

Design a Verilog module to model the DDD device. Your design should incorpo-
rate a reset signal that is able to initialise the DDD.

16. A comparator C is a function which takes two unsigned n-bit integers x and y as
input and produces max(x,y) and min(x,y) as outputs. One can think of C as sort-
ing the 2-element sequence (x,y) into the resulting sequence (min(x,y),max(x,y)).
Design a Verilog module to model a single comparator for n-bit numbers.
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17. An n-bit Linear Feedback Shift Register (LFSR) called R is a register whose n-
bit content is shifted right on each positive clock edge; if we use Ri to refer to the i-th
bit of R, this means that R0 is shifted out of the register then provided as output from
the LFSR, and we need to create a new bit to replace Rn−1. The new bit is created
by XORing together bits from the register according to a tap sequence; if the tap
sequence is 0,2,3,5 then the new value for Rn−1 shifted in is R0 ⊕R2 ⊕R3 ⊕R5.
Design a Verilog module to model an 8-bit LFSR with the tap sequence 3,5,7. Your
design should incorporate a reset signal that is able to initialise the LFSR with a
seed value given as input.


