
Chapter 2
Basics of Digital Logic

Scientists build to learn; Engineers learn to build.

– F. Brooks

Abstract In the previous chapter we made some statements regarding various fea-
tures of digital logic systems; for example, we stated that they could easily repre-
sent the binary digits zero and one because these could be mapped onto low and
high electrical signals. The goal of this chapter is to expand on these statements by
showing how they are satisfied using basic physics. Since most people learn about
physics in school and an in-depth discussion would require another book, our goal
is not rigorous accuracy but simply a rough recap and overview of the pertinent
details. Using this starting point, we build higher level digital logic components ca-
pable of representing meaningful values and performing useful operations on them.
We then look at how simple storage elements can be constructed and how sequences
of operations can be performed using state machines and clocks.

2.1 Switches and Transistors

2.1.1 Basic Physics

Everything in the universe is composed from primitive building blocks called atoms.
An atom in turn is composed from a group of subatomic particles: a group of nu-
cleons, either protons or neutrons, in a central core or nucleus and a cloud of
electrons which orbit the nucleus. The number of protons translates into the atomic
number of the atom which roughly dictates what chemical element or material it is.
Silicon has atomic number fourteen, for example, since there are fourteen protons in
the nucleus. The arrangement of electrons around the nucleus is called the electron
configuration; electrons can orbit the nucleus in one of several levels or shells.

43
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Subatomic particles carry an associated electrical charge which is characteristic
of their type; electrons carry a negative charge, protons have a positive charge and
neutrons have neutral charge. An ion is an atom with a non-neutral charge overall. A
negatively charged ion has more electrons in the electron cloud than protons in the
nucleus, a positively charged ion has fewer electrons than protons. Electrons can be
displaced from an electron cloud, using some energy, in a process called ionisation.
How much energy is required to perform this process relates to how tightly coupled
the electrons are to the nucleus and is dictated in part by the type of atom. For
example, metals generally have loosely coupled electrons while plastics generally
have tightly coupled electrons. We usually term these types of material conductors
and insulators respectively.

Ionisation aside, electrons repel each other but are attracted by holes or space
in an electron cloud. So given the right conditions, electrons may move around be-
tween atoms. In particular, if we apply a potential difference between two points on
a conductor then electrons, and hence their associated charge, will move and create
an electrical current between the points. This is a useful starting point but depends
highly on the materials we are using and their electron configurations: if we do not
have a material with the right number of electrons or holes, it will not behave as
required. However, we can manipulate a material to have the required properties via
a process called doping. We take the starting material and dope it, or mix it, with
a second material called the donor. Depending on the properties of the donor, the
new material will have a different number of electrons or holes but otherwise re-
tain very similar characteristics. As an example, consider pure silicon which has an
electron cloud of four electrons (only about half full): it is more or less an insula-
tor. Doping with a boron or aluminium donor creates extra holes while doping with
phosphor or arsenic creates extra electrons. We call the new materials P-type and
N-type semiconductors respectively; the material is not a conductor or an insulator
but somewhere in between.

In summary, we can more or less create materials with atomic characteristics of
our choosing. The basic idea in building digital logic components from these mate-
rials is to sandwich together wafers of the materials in different ways. For example,
electrons can flow from N-type to P-type semiconductors but not in the other direc-
tion; we can use this fact to build atomic scale switches called transistors.

2.1.2 Building and Packaging Transistors

Although transistors can perform a variety of functions, for example the amplifica-
tion of signals, we will use them almost exclusively as switches. That is, a compo-
nent that conducts, or allows charge to flow, between two terminals when we turn
on the switch and not conduct, or be a resistor, when we turn off the switch. There
are several different types of transistor but we will concentrate on one of the sim-
plest, the Field Effect Transistor (FET) which was originally invented in 1952 by
William Shockley, an engineer at Bell Labs. In this context we term the two tran-
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Figure 2.1 Implementation of N-MOSFET and P-MOSFET transistors.

sistor terminals the source and drain, and call the switch that controls the flow of
current the gate.

To actually create the switch, we combine and layer materials with different prop-
erties. Again there are several ways to approach this: we concentrate on the most
common design which is called a Metal Oxide Semiconductor Field-Effect Tran-
sistor (MOSFET), invented in 1960 by Martin Atalla, also at Bell Labs. Figure 2.1
shows how a typical MOSFET device is built from N-type and P-type semiconduc-
tor materials and layers of metal; the two different types are termed N-MOSFET
and P-MOSFET devices. The rough idea is that by applying a potential difference
between the gate and source, an electric field is created which offers a channel be-
tween the source and drain through which current can flow. The type of channel
depends on the types of semiconductor material used. Changing the potential differ-
ence between gate and source changes the conductivity between source and drain,
and hence regulates the current: if the potential difference is small, the flow of cur-
rent is small and vice versa. Thus, the gate acts like a switch that can regulate the
current between source and drain.

For an N-MOSFET the types of semiconductor material used mean that when
there is a high potential difference between gate and source, the conduction channel
is open and current flows: the switch is on. When there is a low potential difference
between gate and source, the channel closes and the switch is off. A P-MOSFET
reverses this behaviour by swapping around the types of semiconductor material:
when the potential difference is high the switch is off, when it is low the switch
is on. Although we say the switch is off, the transistor still allows a small level
of conductivity between source and drain because of the imperfect nature of the
materials involved; this effect is termed leakage.

Transistors are seldom used in isolation and are more commonly packaged into
larger components before use in larger digital circuits: these components form what
are often called logic styles. The most frequently used style, and one of the rea-
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Figure 2.2 A CMOS cell built from N-MOSFET and P-MOSFET transistors.
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Figure 2.3 Symbolic representations of N-MOSFET and P-MOSFET transistors.

sons behind the popularity of MOSFET type transistors, is called Complementary
Metal-Oxide Semiconductor (CMOS); it was invented in 1963 by Frank Wanlass
at Fairchild Semiconductor. The idea of CMOS is to pair each N-MOSFET transis-
tor with a P-MOSFET partner into a component sometimes termed a cell. Figure 2.2
details a CMOS cell; the two transistors are arranged in a complementary manner
such that whenever one is conducting, the other is not. This arrangements allows
one to form circuits which have two key features: a pull up network of P-MOSFET
transistors which sit between the positive power rail (that supplies the Vdd voltage
level) and the output, and a pull down network of N-MOSFET transistors which
sit between the negative power rail (which supplies the GND voltage level) and the
output. Only one of the networks will be active at once, so aside from leakage a
CMOS cell only consumes power when the inputs are toggled or switched. Since
we commonly aim to build circuits with many very small transistors in close prox-
imity to each other, this feature provides some significant advantages. In particular,
it means that the use of CMOS reduces power consumption and heat dissipation
which in turn aids reliability and enables size reduction. Thus, CMOS can be char-
acterised as a low-power alternative to competitors such as Transistor-Transistor
Logic (TTL) which is usually built from Bipolar Junction Transistors (BJT) and
is operationally faster. It can be common to mix the characteristics of CMOS and
TTL in one circuit, a technology termed bipolar-CMOS (BiCMOS).
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Figure 2.4 Implementations of NOT, NAND and NOR logic gates using transistors.

x y r = NOT x r = x NAND y r = x NOR y

GND GND Vdd Vdd Vdd

GND Vdd Vdd Vdd GND
Vdd GND GND Vdd GND
Vdd Vdd GND GND GND

Table 2.1 Truth tables for transistor implementations of NOT, NAND and NOR.

When constructing higher-level components that utilise these behaviours, we use
the symbols detailed in Figure 2.3 to represent different transistor types. We term
the higher-level components we are aiming for logic gates, the idea being that they
implement some function related to those we saw at the end of Chapter 1 and whose
behaviour is described by Table 2.1.

For example, consider building a component which inverts the input; we call
this a NOT gate. That is, when the input x is Vdd the component outputs GND and
vice versa. We can achieve this using the arrangement of transistors in Figure 2.4a.
To see that this works as required, consider the different states the input can be in
and the properties of N-MOSFET and P-MOSFET transistors. When the input x is
connected to GND the bottom transistor will be closed while the top one will be
open: the output r will be connected to Vdd . When input x is connected to Vdd the
bottom transistor will be open while the top one will be closed: the output will be
connected to GND.

We can build two further components in a similar way; these are the NAND (or
NOT AND) and NOR (or NOT OR) gates in Figure 2.4b-c. We can reason about
their behaviour in a similar way as above. For example, consider the NAND gate.
When input x is connected to GND the bottom transistor will be closed while the
top left transistor will be open: the output r will be connected to Vdd no matter what
input y is connected to. Likewise, when input y is connected to GND the middle
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Figure 2.5 Symbolic representation of standard logic gates.

transistor will be closed while the top right transistor will be open: the output will
be connected to Vdd no matter what input x is connected to. However, when both
x and y are connected to Vdd the top two transistors will be closed but the bottom
two will be open; this means the output is connected to GND. A similar reasoning
applies to the operation of the NOR gate.

Clearly this is a good step toward building useful circuits in that we now have
devices, constructed from very simple components, that perform meaningful opera-
tions. Specifically, we can relate the functions they implement to many of the con-
cepts previously encountered. That is, we have a means of actually building devices
to compute Boolean functions that up until now have been discussed abstractly.

2.2 Combinatorial Logic

2.2.1 Basic Logic Gates

It is somewhat cumbersome to work with transistors because they represent such
a low-level of detail. In order to make our life easier, we commonly adopt a more
abstract view of logic gates by taking two steps: we forget about the voltage levels
GND and Vdd , abstractly calling them 0 and 1, then we forget about the power rails
and just draw each gate using a single symbol with inputs and outputs. The goal
is that by viewing the gates more abstractly, we can focus on their properties as
Boolean logic functions rather than their underlying implementation as transistors
or via another technology. By composing the gates together we can build all manner
of operations which are loosely termed combinatorial logic; the gate behaviours
combine to compute the function continuously, the output is always updated as a
product of the inputs.

Figure 2.5 defines symbols for each of the NOT, NAND and NOR gates built
above and also the AND, OR and XOR operations described at the end of the previ-
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BUF AND OR XOR
x y r = x r = x∧ y r = x∨ y r = x⊕ y

0 0 0 0 0 0
0 1 0 0 1 1
1 0 1 0 1 1
1 1 1 1 1 0

NOT NAND NOR XNOR
x y r = ¬x r = x ∧ y = ¬(x∧ y) r = x ∨ y = ¬(x∨ y) r = x ⊕ y = ¬(x⊕ y)
0 0 1 1 1 1
0 1 1 1 0 0
1 0 0 1 0 0
1 1 0 0 0 1

Table 2.2 Truth tables for standard logic gates.
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Figure 2.6 Identities for standard logic gates in terms of NAND and NOR.
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Figure 2.7 An implementation and symbolic description of a 3-state enable gate.

ous chapter; these symbols represent functions with behaviour described as a truth
table in Table 2.2. Note the use of an inversion bubble on the output of a gate to
invert the value. Using this notation, a buffer (or BUF) is simply a gate that passes
the input straight through to the output and a NOT gate just inverts the input to
form the output. Also note that for completeness we have included the XNOR (or
NXOR) symbol which has the obvious meaning but is seldom used in practise. We
use ∧ , ∨ and ⊕ as a short hand to denote the NAND, NOR and XNOR opera-
tions respectively. Finally, for two input gates such as AND, OR and XOR we often
use a notational short hand and draw the gates with more than two inputs; this is
equivalent to making a tree of two-input gates since, for example, we have that

(w∧ x∧ y∧ z) = (w∧ x)∧ (y∧ z).

The natural question to ask after this is why have we built NAND and NOR when
AND and OR seem to be more useful ? The answer is related to the cost of im-
plementation; it is simply more costly to build an AND gate from transistors, the
cheapest way being to compose a NAND gate with a NOT gate. Since NAND and
NOR are the cheapest meaningful components we can build, it makes sense to con-
struct a circuit from these alone. This is possible because NAND and NOR are both
universal in the sense that one can implement all the other logic gates using them
alone; one simply substitutes gates using the identities in Figure 2.6 to perform the
translation. The reason for wanting to use just one component to implement an en-
tire circuit is related to how the circuit is fabricated: one can typically build much
more reliable and compact circuits if they are more regular.

2.2.2 3-state Logic

Roughly speaking, one can freely connect the output of one logic gate to the input
of another. While it does not really make sense to connect two inputs together since
neither will drive current along the wire, connecting two outputs together is more
dangerous since both will drive current along the wire. The outcome depends on a
number of factors but is seldom good: the transistors which are wired to fight against
each other typically melt and stop working.
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x en r

0 0 Z
1 0 Z
Z 0 Z
0 1 0
1 1 1
Z 1 Z

Table 2.3 A truth table for a 3-state enable gate.

We can mitigate this fact by introducing a slightly different style of logic called
3-state logic; we do not go into a great deal of depth about how such logic gates are
constructed but instead focus on their behaviour. The central component in 3-state
logic is a switch which is sometimes called an enable gate. The single transistor
implementation of the gate and the more common symbolic description are shown
in Figure 2.7. The gate has some interesting characteristics in terms of its behaviour
which is shown as a truth table in Table 2.3.

Notice that we have introduced a new logic state, hence the name 3-state, called
Z or high impedance. When the enable signal en is set to 0 the gate does not pass
anything through to the output r, it is not driven with anything so in a sense some
other device can be connected to and drive the same wire. However, when en is
set to 1, the gate passes through the input x to the output r: nothing else should be
driving a value along this wire or we are back to the situation which caused the
original melted transistor. In summary, the high impedance signal acts as a sort of
“empty” value allowing any other signal to overpower it without causing damage
to the surrounding transistors. Thus, careful use of enable gates allows two or more
normal logic gate outputs to be connected to the same wire: as long as only one of
them is enabled at a time, and hence driving a signal along the wire, there will be no
disasters.

2.2.3 Designing Circuits

The next issue to address is how one combines simple Boolean logic gates to create
higher-level functions. Fortunately we have already covered a lot of material which
enables us to do this in a fairly mechanical form. In particular, given a truth table
that describes the function required, one can perform a simple sequence of steps to
extract the corresponding sum of products (SoP) expression built from a number of
minterms:

1. Imagine there are n inputs numbered 1 . . .n, and one output:

• Use Ii, j to denote the value of input j in row i.
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Figure 2.8 An implementation of an XOR gate.

• Use Oi to denote the value of the output in row i.

2. Find all the rows, a set R, for which given r ∈ R we have that Or = 1. That is, R
is all row numbers where the output is 1.

3. For each such r ∈ R, find

• A set Hr such that for h ∈ Hr, Ir,h = 1.
• A set Lr such that for l ∈ Lr, Ir,l = 0.

4. The expression is then given by

O =
∨
r∈R

(
∧

i∈Hr

Ir,i ∧
∧
j∈Lr

¬Ir, j).

The large ∧ and ∨ symbols used here are similar to the summation and product
symbols (Σ and Π ). They basically AND and OR many terms together in a similar
way to Σ and Π which add and multiply many terms together.

Consider the example of constructing an XOR gate whose truth table can be
found in Table 2.2. Setting x = I1 and y = I2 while numbering the rows of the table
1 . . .4, we find that we want a 1 from our expression in rows 2 and 3 and a 0 in rows
1 and 4. This is expressed using the set R = {2,3} such that H2 = {2}, L2 = {1},
H3 = {1} and L3 = {2}. As a result, our expression is

(I2 ∧¬I1)∨ (I1 ∧¬I2)

or rather
(¬x∧ y)∨ (x∧¬y)

which we can verify as being correct. To build the circuit diagrammatically we sim-
ply replace each of the operators with a gate and connect the inputs and outputs
together as one would expect; for our XOR expression above this is shown in Fig-
ure 2.8.
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w x y z r

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

Table 2.4 An example 4-input function.

2.2.4 Simplifying Circuits

Again using the theory developed in the previous chapter, we can manipulate our
XOR expression from above using the axiomatic laws of Boolean logic. For exam-
ple, we can construct the product of sums (PoS) expression built from a number of
maxterms

(x∨ y)∧ (¬x∨¬y)

or the functionally equivalent expression

(x∨ y)∧¬(x∧ y).

We know that if there were more than one output required, say m outputs for exam-
ple, we can simply construct m such expressions using x and y which each produce
one of the outputs. This raises an important issue in designing circuits: if we can
simplify our expressions in the sense that they use less operators, we use less tran-
sistors and hence less space. This is a valuable step and is coupled to the issue that
if we have multiple expressions, we can potentially share common blocks between
the two; for example, if two expressions include some term x∧ y, we only need one
gate to produce the result, not two.
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Figure 2.9 Karnaugh maps for an example 4-input function.

2.2.4.1 Karnaugh Maps

Consider the truth table in Table 2.4 describing some function r, and how one might
derive a SoP expression for r to implement it. By applying the method from the
previous section we get

r = ( ¬w ∧ ¬x ∧ ¬y ∧ ¬z ) ∨
( ¬w ∧ ¬x ∧ ¬y ∧ z ) ∨
( ¬w ∧ ¬x ∧ y ∧ ¬z ) ∨
( ¬w ∧ x ∧ ¬y ∧ ¬z ) ∨
( ¬w ∧ x ∧ ¬y ∧ z ) ∨
( w ∧ ¬x ∧ ¬y ∧ ¬z ) ∨
( w ∧ ¬x ∧ y ∧ ¬z ) ∨
( w ∧ x ∧ y ∧ z )

which is verbose to say the least ! The Karnaugh map, a method of simplifying
such expressions, was invented in 1953 by Maurice Karnaugh while working as
an engineer at Bell Labs. The idea is to first provide a concise way to write down
lengthy truth tables, and secondly a mechanism to easily create and simplify logic
expressions from said tables without resorting to manipulation by logical axioms.

The first step is to encode the truth table on a grid as shown for our example in
Figure 2.9a. The encoding used is not the natural binary ordering one might expect.
For example, writing the inputs as vectors of the form (w,x,y,z) we might expect
the order to follow the original truth table and produce the sequence



2.2 Combinatorial Logic 55

(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(0,1,0,0)
(0,1,0,1)
(0,1,1,0)
(0,1,1,1)

. . .

such that moving from, for example, (0,0,1,1) to (0,1,0,0) flips the three bits asso-
ciated with x, y and z. Instead, we use what is called a Gray code, named after Frank
Gray who patented the idea in 1953 while also working as a researcher at Bell Labs;
such codes had been known and used for a couple of hundred years before that. The
basic idea is that between neighbouring lines in the sequence only one bit should
change; thus we get a sequence such as

(0,0,0,0)
(0,0,0,1)
(0,0,1,1)
(0,0,1,0)
(0,1,1,0)
(0,1,1,1)
(0,1,0,1)
(0,1,0,0)

. . .

such that moving from (0,1,1,1) to (0,1,0,1) flips only the bit associated with y.
In fact, moving from any line to the previous or next flips only one bit. Looking at
the Karnaugh map, the left most column represents the values where (w,x) = (0,0)
and reading from top to bottom where (y,z) = (0,0), (0,1), (1,1), (1,0). The next
columns are similar for y and z but for the cases where (w,x) = (0,1), (1,1) and
(1,0).

Use of this technique to encode the Karnaugh map grid allows us to easily sim-
plify the function in question. The basic idea is that by locating minterms which
differ in only one input, we can simplify the resulting expression by eliminating this
input. In our example, the minterms (1,0,1,0) and (1,0,1,1) offer a good demon-
stration of this fact. We could implement these minterms using the expressions

w∧¬x∧ y∧¬z

and
w∧¬x∧ y∧ z.

This is clearly wasteful however; it does not matter what value z takes since the
overall function is still 1 as long as w = 1, x = 0 and y = 1. Thus we can eliminate
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x y z r

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 ?
1 1 0 1
1 1 1 ?

Table 2.5 An example 3-input function.

the z term from our expressions above and simply use the single and more simple
minterm

w∧¬x∧ y

to cover both cases.
The next step in realising this simplification from our Karnaugh map is to gather

cells in the grid whose entry is 1 into rectangular groups of size 2n for some integer
n. We can thus form groups of 1 cell, 2 cells, 4 cells and so on: the key thing is
that the groups are rectangular. Due to the properties of the Gray code, these groups
are allowed to wrap around the sides of the grid; this is valid since moving right
from (w,x,y,z) = (0,0,0,0) in the top left-hand corner to (1,0,0,0) in the top right-
hand corner still only flips one bit. Additionally, groups are allowed to overlap if
they want as long as they are still rectangular. The annotated Karnaugh map in
Figure 2.9b demonstrates these concepts by forming four groups.

Each of the final groups represents one term we need to implement in order to
implement the overall function. The bigger the group, the less variables we need to
include in each of the terms. Consider, for example, the group of four cells in the
top left-hand corner. Looking at how the variables are assigned values in the grid,
it does not matter what value x takes as long as w = 0 and it does not matter what
value z takes as long as y = 0 because we still get a 1 as output. We can implement
this term as ¬w∧¬y to cover all four cells in that group; this is much simpler than
the four separate corresponding terms in our original implementation. Applying the
same technique to the function as a whole, we find that

r = ( ¬w ∧ ¬y ) ∨
( w ∧ ¬x ∧ ¬y ∧ ¬z ) ∨
( ¬x ∧ y ∧ ¬z ) ∨
( w ∧ y ∧ z ) .

Clearly this is significantly simpler than our initial effort and does not require te-
dious application of logical axioms. However, it is not the most simple description
of the function; we leave this issue open to explore in the next section.



2.2 Combinatorial Logic 57

�

�

�

�

�

�

�

�0 1

0 1

01

??

x

z

y
�

�

�

	

0 1

0 1

01

??

x

z

y
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Figure 2.10 Karnaugh maps for an example 3-input function.

Karnaugh maps can represent functions with any number of inputs but drawing
them for more than eight or so becomes tricky. More importantly, there is no reason
why they need to be square. For the three input function r in Table 2.5 we can draw
the grid in Figure 2.10a. Another important feature is detailed in this example in that
some of the outputs are neither 0 nor 1 but rather ?. We call ? the don’t care state in
the sense it can take any value we want; it is not that we do not know the value, we
just do not care what the value is. One can rationalise this by thinking of a circuit
whose output just does not matter given some combination of input, maybe this
input is invalid and so the result is never used. Either way, we can use these don’t
care states to our advantage during simplification. By regarding them as 1 values
when we want to include them in our groupings and 0 otherwise, we can further
simplify our implementation. This can be seen in Figure 2.10b where without the ?
state in the middle we are forced to implement two groups but by including it we
can group four cells together into one: remember, less groups and larger groups will
typically mean a simpler implementation.

2.2.4.2 Quine-McCluskey

Although the Karnaugh map method for simplification is attractive, it falls down
when either the number of inputs grows too large or it needs to be implemented
in software. In these cases we prefer Quine-McCluskey minimisation, a method
developed independently by Willard Quine [55] and Edward McCluskey [39] in the
mid 1950s. As an example of applying the method, we re-simplify the function r
used above and detailed in Table 2.4.

The first step is to extract all the minterms from the truth table, i.e., all the combi-
nations of input that result in a 1 in the output. We assign a number to each minterm
and write them, using vectors of the form (w,x,y,z) in this case, within a table; this
is shown in the top, first phase section of Table 2.6. Placed in this form, each entry
is called an implicant. We place the implicants into groups according to the number
of 1 values in their vector representation. For example, implicant 0 corresponding
to (0,0,0,0) has no 1 values and is placed in group 0; implicants 1, 2, 4 and 8 all
have one 1 value and are all placed in group 1.
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Phase 1
0 (0,0,0,0)

√

1 (0,0,0,1)
√

2 (0,0,1,0)
√

4 (0,1,0,0)
√

8 (1,0,0,0)
√

5 (0,1,0,1)
√

10 (1,0,1,0)
√

11 (1,0,1,1)
√

15 (1,1,1,1)
√

Phase 2
0+1 (0,0,0,−)

√

0+2 (0,0,−,0)
√

0+4 (0,−,0,0)
√

0+8 (−,0,0,0)
√

1+5 (0,−,0,1)
√

4+5 (0,1,0,−)
√

2+10 (−,0,1,0)
√

8+10 (1,0,−,0)
√

10+11 (1,0,1,−)
11+15 (1,−,1,1)

Phase 3
0+1+4+5 (0,−,0,−)

0+2+8+10 (−,0,−,0)
0+4+1+5 (0,−,0,−) duplicate

0+8+2+10 (−,0,−,0) duplicate

Table 2.6 Step one of a Quine-McCluskey-based simplification: extraction of prime implicants.

Recall from our simplification using Karnaugh maps that we were able to apply
a rule to cover the pair of minterms

w∧¬x∧ y∧¬z

and
w∧¬x∧ y∧ z

with one simpler minterm
w∧¬x∧ y

because the value of z has no influence on the result. We use a similar basic approach
here. We compare each member of the i-th group with each member of the (i + 1)-
th group and look for pairs which differ in only one place; there is no point in
comparing members of the i-th group with other groups since we know they cannot
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0 1 2 4 8 5 10 11 15

0+1+4+5
√ √ √ √

0+2+8+10
√ √ √ √

10+11
√ √

11+15
√ √

Table 2.7 Step two of a Quine-McCluskey-based simplification: the prime implicants table.

satisfy this criterion since they have different numbers of 1 values. So for example,
we compare implicant 0 from group 0 with implicants 1, 2, 4 and 8 from group 1
and find that in each case the pairs differ in just one place. We write these pairs in
a new table; this is detailed in the middle, second phase section of Table 2.6. In the
new table, we replace the differing value with a − so that, for example, combining
implicants 0 and 1, represented by (0,0,0,0) and (0,0,0,1), produces implicant 0+
1 which is represented by (0,0,0,−). Furthermore, when we have used an implicant
from the original table to produce a combined one in the new table we place a
tick next to it; all of implicants 0, 1, 2, 4 and 8 are ticked as a result of our initial
comparisons between groups 0 and 1. This process is repeated for other groups, so
groups 1 and 2, 2 and 3 and 3 and 4 in this case. We then iterate the whole procedure
to construct further tables until we can no longer combine any implicants. In this
case we terminate after three phases as shown in Table 2.6. However, notice that
in the third phase we start to introduce duplicate implicants; these duplicates are
deleted from further consideration upon detection.

Implicants in any table which are unticked, i.e., have not been combined and used
to produce further implicants, are called prime implicants and are the ones we need
to consider when constructing the final expression for our function. In our example,
we have four prime implicants

0+1+4+5 (0,−,0,−)
0+2+8+10 (−,0,−,0)
10+11 (1,0,1,−)
11+15 (1,−,1,1)

To further simplify the resulting expression, the Quine-McCluskey method uses a
second step. A so-called prime implicant table is constructed which lists the prime
implicants along the side and the original minterms along the top. In each cell where
the prime implicant includes the corresponding minterm, we place a

√
; this is shown

in Table 2.7 for our example. The goal now is to select a combination of the prime
implicants which includes, or covers, all of the original minterms. For example, the
implicant 0+1+4+5 covers the prime implicants 0, 1, 4 and 5 so selecting this as
well as implicant 10+11 will cover 0, 1, 4, 5, 10 and 11 in total.

Before we start however, we can identify so-called essential prime implicants
as being those which are the only cover for a given minterm. Minterm 15 in our
example demonstrates this case since it is only covered by prime implicant 11+15;



60 2 Basics of Digital Logic

it is essential to include this implicant in our final expression as a result. Starting
with the essential prime implicants, we can draw a line through the associated row
in the prime implicants table. Each time the line goes through a

√
, we also draw a

line through that column. The intuition behind this is that the resulting lines show
which minterms are currently covered by prime implicants we have selected for
inclusion in our final expression. Following this procedure in our example, we find
that using only implicants 11+15, 0+1+4+5 and 0+2+8+10 we can cover all
the original minterms. Looking at the associated vectors, we have

0+1+4+5 (0,−,0,−)
0+2+8+10 (−,0,−,0)
11+15 (1,−,1,1).

Treating the entries with − as don’t care, we thus implement the final expression for
the function r as

r = ( ¬w ∧ ¬y ) ∨
( ¬x ∧ ¬z ) ∨
( w ∧ y ∧ z )

which is simpler than our original attempt using Karnaugh maps; we only have three
terms in this case ! The reason is obvious when one looks at the original Karnaugh
map: we formed a group of 1 cell in the top right-hand corner and a group of 2
cells from the bottom left and right-hand corners. We can easily merge these into a
single group of 4 cells which covers all 4 corner cells of the map and overlaps with
the group of 4 cells already in the top left-hand corner. Since less groups and larger
groups mean simpler implementation, we get a simpler expression: the two terms

w∧¬x∧¬y∧¬z

and
¬x∧ y∧¬z

have been merged into the single term

¬x∧¬z

which covers both.
Hopefully it is clear that the Quine-McCluskey method offers something that

Karnaugh maps do not. Although Karnaugh maps are a useful tool for simplifying
functions with a small number of inputs by hand, Quine-McCluskey is easy to auto-
mate and hence ideal for implementation on a computer which can deal with many
more inputs as a result. However, the complexity of the algorithm dictates that the
upper limit in terms of number of inputs is quickly reached; logic simplification
is classed as an NP-complete problem, and the complexity of Quine-McCluskey is
exponential in the number of inputs.
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2.2.5 Physical Circuit Properties

2.2.5.1 Propagation Delay

CMOS-based logic gates do not operate instantaneously because of the way transis-
tor switching works at the physical level; there is a small delay between when the
inputs are supplied and when the output is produced called propagation delay. The
problem of propagation delay in gates, so-called gate delay, is compounded by the
fact that there is also a delay associated with the wires that connect them together.
A wire delay is typically much smaller than gate delay but the same problem ap-
plies: a value takes an amount of time proportional to the wire length to travel from
one end to the other. Although such delays are extremely small, when many gates
are placed in series or wires are very long the delays can add up and produce the
problem of circuit metastability.

Consider for example the XOR circuit developed previously. So far we have
taken a static view of the circuit in the sense that we set some inputs and by assum-
ing that all gates operate instantly, compute the output. The picture changes when
we take a dynamic view that includes time; in particular, we see that depending on
which time period we sample, the circuit can be in a metastable state which does not
correctly represent the required final result. Given the labelled XOR implementation
in Figure 2.8, Figure 2.11 highlights this effect. We start at time t = 70ns when the
circuit is in the correct state given inputs of x = 0 and y = 1. The inputs are then
toggled to x = 1 and y = 1 at t = 80ns but the result does not appear instantly given
example propagation delays for NOT, AND and OR gates as 10ns, 20ns and 20ns
respectively. In particular, we can examine points in the time-line and show that the
final and intermediate results are wrong. For example, it takes until t = 90ns before
the NOT gates produce the correct outputs and the final result does not change to
the correct value until t = 130ns; before then the output is wrong in the sense that it
does not match the inputs.

One can try to equalise the delay through different paths in the circuit using
dummy or buffer gates. A buffer simply copies the input to the output and can also
amplify the input in some cases; essentially it is performing the identity function.
Since the buffer takes some time to operate just like any other gate yet performs
no change in input, one can place them throughout the circuit in order to ensure
values arrive at the same time. An example is shown in Figure 2.12. Although the
circuit may still enter metastable states, we have tamed the problem to some extent
by ensuring that values passing into the two AND gates arrive at the same time.

However, even when the effects of propagation delay are minimised it produces a
secondary feature that acts as a limit. This feature is the critical path of the circuit,
the longest sequential sequence of gates in the circuit that dominates the time taken
for it to produce a result. In the XOR circuit above, the critical path goes through
a NOT gate, an AND gate and then an OR gate: the path has a total delay of 50ns.
We will see later how this feature limits the performance of our designs. For now it
is enough to believe that the shorter the critical path is, the quicker we can compute
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Figure 2.11 A behavioural time-line demonstrating the effects of propagation delay on the XOR
implementation.
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Figure 2.12 Buffering inputs within the XOR gate implementation to equalise propagation delay.

results with our circuit; hence it is advantageous to construct or simplify a design so
as to minimise the critical path length.

2.2.5.2 Fan-in and Fan-out

Fan-in and fan-out are properties of logic gates relating to the number of inputs and
outputs. The problem associated with fan-in and fan-out is that a given logic gate
will have physical constraints on the amount of current which can be driven through
it. For example, it is common for the output of a source gate to be connected to
inputs of several target gates. Unless the source gate can drive enough current onto
the output, errors will occur because the target gates will not receive enough of a
share to operate correctly; fan-out is roughly the number of target gates which can
be connected to a single source. CMOS-based gates have quite a high fan-out rating,
perhaps 100 target gates or more can be connected to a single source.

2.2.6 Basic Building Blocks

2.2.6.1 Half and Full Adders

Ultimately, our goal in constructing digital circuits is to do some computation or,
more specifically, arithmetic on numbers. The most basic key component one can
think of in this context is a 1-bit adder which takes two 1-bit values, say x and y, and
adds them together to product a sum and a carry, say s and co. This is commonly
termed a half-adder, the truth table is shown in Table 2.8a. The truth table makes
intuitive sense: if we add x = 0 to y = 1, the sum is 1 and there is no carry-out;
if we add x = 1 to y = 1, the result is 2 which we cannot represent in 1-bit so the
sum is 0 and the carry-out is 1. The half-adder is easily implementable as shown by
Figure 2.13a. Essentially we use the same techniques as developed above to extract
an expression for each of the outputs in terms of x and y:



64 2 Basics of Digital Logic

x y co s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

ci x y co s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

(a) Half-adder (b) Full-adder

Table 2.8 Truth tables for 1-bit adders.

x
y

co

s

x
y

co

s

ci

(a) Half-adder (b) Full-adder

Figure 2.13 Implementation of a 1-bit half-adder and full-adder.

cico

s x
y

x3 y3 x2 y2 x1 y1 x0 y0s3 s2 s1 s0

add_1bit
co co coci ci

x x x
y yy

s s s

ci 0
add_1bit add_1bit add_1bit

Figure 2.14 A chain of full-adders used to add 4-bit values.
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(a) Basic NAND half-adder. (b) Basic NOR half-adder.

x y

co

s

x y

s

co

(c) Simplified NAND half-adder. (d) Simplified NOR half-adder.

Figure 2.15 NAND and NOR gate implementations of a half-adder.

co = x∧ y
s = x⊕ y.

However, the half-adder is only partly useful since in order to add together numbers
larger than 1-bit we need a full-adder circuit that can accept a carry-in as well as
produce a carry-out. The truth table for a full-adder is shown in Table 2.8b. Again
extracting an expression for each of the outputs, this time in terms of x, y and ci we
find

co = (x∧ y)∨ ((x⊕ y)∧ ci)
s = x⊕ y⊕ ci

which are a little more complicated. To simplify these expressions we note that
there is a shared term x⊕ y which we only need one set of logic for. This produces
the circuit shown in Figure 2.13b. Note that the full-adder is essentially two half-
adders joined together. Using such components, we will see later that one can build
a chain of n 1-bit full-adders that is capable of adding together n-bit values. The
basic structure follows that in Figure 2.14 where each of the i full-adders takes bits
i of the two inputs x and y and produces bit i of the result; the carry-out of the i-th
full-adder is fed into the carry-in of (i+1)-th full-adder.

Finally, as an example of how to implement a circuit using only NAND or NOR
gates consider translating the half-adder implementation above. Essentially we just
use the identities discussed previously in place of each gate in the circuit; this is
shown in Figure 2.15a-b. However, once this translation is completed we can start
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x y equ

0 0 1
0 1 0
1 0 0
1 1 1

x y lth

0 0 0
0 1 1
1 0 0
1 1 0

(a) Equality. (b) less than.

Table 2.9 Truth tables for 1-bit comparators.

to simplify the equations, eliminating and sharing logic. The results are shown in
Figure 2.15c-d. We can re-write the expressions for the NOR version of the half-
adder as follows:

co = ¬x ∨ ¬y
s = ¬((¬¬x ∨ ¬y) ∨ (¬x ∨ ¬¬y))

= ¬((x ∨ ¬y) ∨ (¬x ∨ y))
= (x ∨ y) ∨ (¬x ∨ ¬y)

from which we can then share the term ¬x ∨ ¬y between co and s. This reduces the
number of NOR gates used from thirteen in the original, naive translation to five in
the simplified version.

2.2.6.2 Comparators

In the same way as one might want to perform arithmetic on numbers, comparison of
numbers is also a fundamental building block within many circuits. With our adder
circuits, we looked at the idea of addition of 1-bit numbers with a view to adding
n-bit numbers later on. We take the same approach to comparison of numbers by
looking at some very simple circuits for performing 1-bit equality and less than
comparisons; it turns out we can produce all other comparisons from these two.

Table 2.9 shows the truth tables for 1-bit equality and less than comparison
between two numbers x and y. Both operations produce a 1-bit true or false result,
named equ and lth respectively. The tables are self explanatory although maybe a
little odd given we are dealing with 1-bit numbers: for example, reading the table
for less than we have that 0 is not less than 0, 0 is less than 1, 1 is not less than 0
and 1 is not less than 1. Using the truth tables we can easily produce the following
expressions for the two operations:

equ = ¬(x⊕ y)
lth = ¬x∧ y.
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s0 i1 i0 r

0 ? 0 0
0 ? 1 1
1 0 ? 0
1 1 ? 1

s1 s0 i3 i2 i1 i0 r

0 0 ? ? ? 0 0
0 0 ? ? ? 1 1
0 1 ? ? 0 ? 0
0 1 ? ? 1 ? 1
1 0 ? 0 ? ? 0
1 0 ? 1 ? ? 1
1 1 0 ? ? ? 0
1 1 1 ? ? ? 1

(a) 2-way, 1-bit multiplexer. (b) 4-way, 1-bit multiplexer.

Table 2.10 Truth tables for 2-way and 4-way, 1-bit multiplexers.

2.2.6.3 Multiplexers and Demultiplexers

A multiplexer is a component that takes n control inputs and uses them to decide
which one of 2n inputs is fed through to the single output. A demultiplexer does
the opposite, it still takes n control inputs but uses them to decide which one of 2n

outputs is fed with the single input. We say that a multiplexer or demultiplexer is
n-way if it accepts or produces n inputs or outputs, and m-bit if those inputs and
outputs are m bits in size.

Table 2.10a shows the truth table for a 2-way, 1-bit multiplexer with inputs i0 and
i1, a control signal s0 and an output r. The table shows that when s0 = 0 we feed
the value of i0 through to the output, i.e., r = i0, while if s0 = 1 we have that r = i1.
This behaviour is easily implemented using the expression

r = ( ¬s0 ∧ i0 ) ∨
( s0 ∧ i1 )

which is shown diagrammatically in Figure 2.16a.
A natural question arises given this simple starting point, namely how do we ex-

tend the design to produce n-way, m-bit alternatives ? Building an m-bit multiplexer
is easy, we simply have m separate 1-bit multiplexers where multiplexer i takes the
i-th bit of each input and produces the i-th bit of the output. This technique is the
same no matter how many inputs we have and is sometimes termed bit-slicing since
we chop up the work into bit-sized chunks.

We can produce a multiplexer design with double the number of inputs using two
techniques: either produce a large truth table along the same lines as Table 2.10a but
with four inputs and two control signals, or re-use our 2-way multiplexer. Con-
sidering the truth table for a 4-way multiplexer in Table 2.10b, we can derive an
expression for r as
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i1
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i3

(a) 2-way, 1-bit multiplexer. (b) 4-way, 1-bit multiplexer.

Figure 2.16 Implementations for 2-way and 4-way, 1-bit multiplexers.
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s0
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Figure 2.17 Using cascading to build a 4-way multiplexer from 2-way building blocks.

r = ( ¬s0 ∧ ¬s1 ∧ i0 ) ∨
( s0 ∧ ¬s1 ∧ i1 ) ∨
( ¬s0 ∧ s1 ∧ i2 ) ∨
( s0 ∧ s1 ∧ i3 ) .

This is more complicated than our 2-way multiplexer but still offers easy and ef-
ficient implementation as shown in Figure 2.16b; hopefully it is clear that one can
take this general pattern and extend it to even more inputs. However, in doing so the
truth table and corresponding implementation become more and more complicated
to the point of being unmanageable. To address this issue we can simply re-use
multiplexers with smaller numbers of inputs to build components with more inputs
using a technique called cascading. The idea is to split the large decisional task of
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s0 i r1 r0

0 0 ? 0
0 1 ? 1
1 0 0 ?
1 1 1 ?

s1 s0 i r3 r2 r1 r0

0 0 0 ? ? ? 0
0 0 1 ? ? ? 1
0 1 0 ? ? 0 ?
0 1 1 ? ? 1 ?
1 0 0 ? 0 ? ?
1 0 1 ? 1 ? ?
1 1 0 0 ? ? ?
1 1 1 1 ? ? ?

(a) 2-way, 1-bit demultiplexer. (b) 4-way, 1-bit demultiplexer.

Table 2.11 Truth tables for 2-way and 4-way, 1-bit demultiplexers.

which input to feed through into smaller tasks. Figure 2.17 demonstrates this idea
by building a 4-way multiplexer from 2-way multiplexer building blocks. The con-
trol signal s0 is now used to manage the first two multiplexers; the top one produces
i3 if s0 = 1 or i2 or s0 = 0, the bottom one produces i1 if s0 = 1 or i0 or s0 = 0.
These outputs are fed into a final multiplexer which uses s1 to select the appropriate
input. For example, if s0 = 0 and s1 = 1 the top multiplexer produces i2 while the
bottom one produces i0; the final multiplexer selects i2 and feeds it to the output;
this is what we expect for the given control signals. By using a similar approach one
can construct multiplexers with even more inputs, for example a 16-way component
using 4-way building blocks.

Having discussed multiplexers, demultiplexers are somewhat trivial since they
are essentially just multiplexers in reverse; Table 2.11 details the truth tables for the
2-way and 4-way, 1-bit components which are implemented in Figure 2.18. Note
that the same techniques of bit-slicing and cascading can be applied to demultiplex-
ers as to multiplexers in order to produce n-way, m-bit components.

2.2.6.4 Encoders and Decoders

What we normally called encoder and decoder devices are, roughly speaking,
like specialisations of the multiplexer and demultiplexer devices considered earlier.
Strictly speaking we usually say decoders translate, or map, an n-bit input into one
of 2n possible output values; encoders perform the converse by translating one of 2n

possible input values into an n-bit output. Of course, some inputs or outputs might
be ignored in order to relax this restriction; more generally we say an encoder or
decoder is an n-to-m device if it has n inputs and m outputs, a 4-to-2 encoder for ex-
ample. Some decoders (resp. encoders) demand that exactly one bit of their output
(resp. input) is 1 at a time, these are normally called one-of-many devices although
the term is often dropped when the assumption is that all devices are one-of-many.
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(a) 2-way, 1-bit demultiplexer. (b) 4-way, 1-bit demultiplexer.

Figure 2.18 Implementations for 2-way and 4-way, 1-bit demultiplexers.

i1 i0 r3 r2 r1 r0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

i3 i2 i1 i0 r1 r0

0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

(a) 2-input one-of-many decoder. (b) 2-output one-of-many encoder.

Table 2.12 Truth tables for a simple 2-input decoder and 2-output encoder.

Table 2.12a details the truth table for a simple one-of-many decoder circuit; no-
tice that the structure is similar to a demultiplexer with the inputs tied to suitable
values. This type of decoder is often used to control other circuits. Consider the
case of having say four circuits in a system, only one of which should be active at a
time depending on some control value. A decoder could implement this behaviour
by taking the control value as input and driving 1 onto an output to activate the as-
sociated circuit. The decoder drives 1 onto the output number associated with the
inputs i0 and i1. That is, if one considers the 2-bit value i = (i1, i0), the decoder
drives 1 onto output number i and 0 onto all other outputs.

Considering this example again, there may be occasions where no circuit should
be active; it is therefore typical to equip the decoder with an enable input which,
when set to 0, forces all outputs to 0 thus disabling any control behaviour. This is
easily realised by adding an extra input en to the circuit which is ANDed with the
outputs. Expressions for r0 . . .r3 can be written as
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(a) 2-input one-of-many decoder. (b) 2-output one-of-many encoder.

Figure 2.19 Implementation of a simple 2-input decoder and 2-output encoder.

r0 = en ∧ ¬i0 ∧ ¬i1
r1 = en ∧ i0 ∧ ¬i1
r2 = en ∧ ¬i0 ∧ i1
r3 = en ∧ i0 ∧ i1

with the resulting implementation shown in Figure 2.19a.
Table 2.12a details the truth table for the corresponding encoder circuit which is

implemented in Figure 2.19a. The idea is to perform the converse translation: take
the inputs i = (i3, i2, i1, i0) and decide which value the decoder would have mapped
them to. This is somewhat easier to construct because the many-of-one property
ensures exactly one of i0 . . . i3 is equal to 1; expressions for r0 and r1 can be written
as

r0 = en∧ (i1 ∨ i3)
r1 = en∧ (i2 ∨ i3)

with the resulting implementation shown in Figure 2.19b.
In this context, it is also useful to consider what is termed a priority encoder. In

a one-of-many encoder, exactly one input bit is allowed to be 1 but in practise this
is hard to ensure. To cope with this fact, we might like to give some priority to the
various possibilities. For example, if both bits i0 = 1 and i1 = 1 then the normal one-
of-many encoder fails, we might like to say for example that we give priority to i1
in this case and set the output accordingly. More generally, we are saying that input
bit i j+1 has a higher priority that input bit i j (although other schemes are obviously
possible). Reading the truth table detailed in Table 2.13 enforces this relationship.
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i3 i2 i1 i0 r1 r0

0 0 0 ? 0 0
0 0 1 ? 0 1
0 1 ? ? 1 0
1 ? ? ? 1 1

Table 2.13 Truth table for a simple 2-output priority encoder.

en

r0

r1

i3 i2 i1

Figure 2.20 Implementation of 2-output priority encoder.

Take the bottom row for example: although potentially i0 = 1, i1 = 1 or i2 = 1 the
output gives priority to i3. The resulting implementation of the expressions

r0 = (i1 ∧¬i2 ∧¬i3) ∨ (i3)
r1 = (i2 ∧¬i3) ∨ (i3)

is shown in Figure 2.20.
As a concrete example, consider the task of controlling a 7-segment LED as

found in many calculators and shown in Figure 2.21. The device has seven segments
labelled r0 . . .r6 which are controlled individually in order to create a suitable image:
in our case we deal only with images related to decimal digits 0 . . .9. We need n = 4
bits to represent a decimal digit. Therefore a decoder to translate from a digit to
the corresponding image will have a 4-bit input and 24 = 16 outputs; an encoder to
perform the reverse translation from an image to the corresponding digit will have a
16-bit input and 4-bit output.
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r0

r6

r3

r 5 r 1

r 4 r 2

Figure 2.21 A 7-segment LED.

i3 i2 i1 i0 r6 r5 r4 r3 r2 r1 r0

0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 0 0 0 0 1 1 0
0 0 1 0 1 0 1 1 0 1 1
0 0 1 1 1 0 0 1 1 1 1
0 1 0 0 1 1 0 0 1 1 0
0 1 0 1 1 1 0 1 1 0 1
0 1 1 0 1 1 1 1 1 0 1
0 1 1 1 0 0 0 0 1 1 1
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 0 0 1 1 1

Table 2.14 Truth table for a 7-segment LED decoder.

Table 2.14 describes a truth table for a decoder which could be used to control
the LED. It leaves out unused input and output combinations for brevity. For ex-
ample, we do not use the possible digits 10 . . .15 and some of the potential segment
numbers are not used; there are no segments r7 . . .r15. In reality, these relate to don’t
care states. To implement the decoder, one can derive a logical expression for each
of the outputs via a Karnaugh map or similar technique
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add_1bit add_1bit add_1bit

Figure 2.22 A flawed, nonsensical example of a 4-bit counter where we neither initialise the value
x or allow it to settle before incrementing it.

r0 = i3 ∨ i1 ∨ (i0 ∧ i2) ∨ (¬i0 ∧¬i2)
r1 = i3 ∨ ¬i2 ∨ (i0 ∧ i1) ∨ (¬i0 ∧¬i1)
r2 = i3 ∨ ¬i1 ∨ (¬i3 ∧ i2) ∨ (i0 ∧ i1)
r3 = (¬i0 ∧¬i2) ∨ (¬i0 ∧ i1) ∨ (i0 ∧¬i1 ∧ i2) ∨ (i0 ∧ i1 ∧¬i2)
r4 = (¬i0 ∧¬i2) ∨ (¬i0 ∧ i1)
r5 = i3 ∨ (¬i0 ∧¬i1) ∨ (¬i1 ∧ i2) ∨ (¬i0 ∧ i2)
r6 = (¬i0 ∧ i1) ∨ (¬i2 ∧ i3) ∨ (¬i1 ∧ i2) ∨ (i1 ∧¬i2 ∧¬i3)

Implementation of the decoder is then simply implementation of the expressions
with suitable sharing of common terms to reduce the number of gates required.

2.3 Clocked and Stateful Logic

Combinatorial logic is continuous in the sense that the output is always being com-
puted, subject to propagation delay, as a product of the inputs. One of the limitations
of this sort of component is that it cannot store state, it has no memory. As an exam-
ple of why this could be an issue, consider the problem of implementing a counter
that repeatedly computes x ← x + 1 for some 4-bit value x. That is, it takes x, in-
crements it and stores the result back into the value x ready to start again. Given
we already have a 1-bit adder component, a naive first attempt at realising such an
operation might be to build the component shown in Figure 2.22. Essentially we
take the value x, feed it into the adder and loop the adder output back into the input
ready to start again.

There are two major problems with this approach. Firstly, we have not given x
and initial value so it is unclear what the input to the adder will be when we start.
Secondly and more importantly, we never actually store the value x. The value fed
to the input of the adder is continuously being updated by the output; as the output
changes the input changes and so the output changes again, the circuit is never able
to settle into a consistent state. These problems highlight a big difference between
designing hardware and writing software. In a language such as C, we are given
variables which can store or remember values for us; sequences of statements are
guaranteed to execute in order with each only being executed once previous ones
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Figure 2.23 Features of a clock signal.

have completed. This section aims to address this imbalance by showing how we
can build components to store values and how to perform sequences of operations
in a controlled manner.

2.3.1 Clocks

In order to execute a sequence of operations correctly, we need some means of con-
trolling and synchronising them. The concept of a clock is central to achieving this.
When we say clock in digital circuit design we usually mean a signal that oscillates
between 0 and 1 in a regular fashion rather than something that tells the time. This
sort of clock is more like a metronome; ticks of the clock act as synchronising events
that keep other components in step with each other.

A clock signal is just the same as any other value within a logic design. As such,
there are several items of terminology that relate to general values but are best intro-
duced in the context of clocks. Figure 2.23 details these features. Firstly, we assume
the clock signal approximates a square wave so the signal is either 0 or 1. The phys-
ical characteristics of these components mean this is dubious in reality (the corners
of the signal can be “rounded”), but suffices for the discussion here. Transitions of
the clock from 0 to 1 are called positive clock edges, transitions from 1 to 0 are
negative clock edges. At any point while the clock is 1 we say it is at a positive
level, while the clock is 0 it is at a negative level. The interval between one posi-
tive or negative edge and the next positive or negative edge respectively is termed a
clock cycle; the time taken for one clock cycle to happen is the clock period and
the number of clock cycles that occur each second is the clock frequency or clock
rate. The region between a positive and negative clock edge is termed a clock pulse.
Note that the time the clock signal spends at positive and negative levels need not
be equal; the term duty cycle is used to describe the ratio between these times. The
clocks we use will typically have a duty cycle of a half meaning the signal is at a
positive level for the same time it is at a negative level.

The basic idea in using clocks to synchronise events within a circuit is that on a
clock edge we present values to our combinatorial logic in order to do some com-
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C3 C2 C1 C0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Table 2.15 Values of bits in a 4-bit counter as used for clock division.

putation with them. These values are only updated on clock edges, as a result the
combinatorial logic has one clock cycle to settle into a stable state; note that this
differs from the flawed example above where values are updated instantaneously.
As such, the faster our clock frequency is, the faster we perform computation. How-
ever, there are two limits to how a given circuit can be clocked. Firstly, since the
combinatorial logic must compute a new result within one clock cycle, the clock pe-
riod must be greater than the critical path of that logic. Recall that the critical path
dominates the time taken to compute a result, if it is longer than the clock period
then the result required to update our value with will not be ready. This is a crucial
fact: to perform computation at high speeds it is vital that the critical path of the
combinatorial components is minimised so the clock frequency can be maximised.
Secondly, we must consider the effects of propagation delay in wires to prevent a
phenomenon called clock skew. Clock skew is simply the fact that if a clock signal
arrives at one point along a slightly longer wire than another point, the times of ar-
rival will differ slightly; the clocks will be skewed or unsynchronised. Depending
on the situation this might present a problem because the circuit components are no
longer perfectly in step.

Although the clock is just any other value, we need it to oscillate in a regular and
reliable manner. As such, clock signals are usually generated externally to a given
circuit and fed into it. A common method for generating the required behaviour is
to use a piezoelectric crystal which, when a voltage is applied across it, oscillates
according to a natural frequency related to the physical characteristics of the crys-
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Figure 2.24 Three variations of SR-latch.

tal. Roughly speaking, one can use the resulting electrical field generated by this
oscillation as the clock signal.

Multiplying a reference clock, or increasing the frequency, is best done using a
dedicated component and is somewhat beyond the scope of discussion here. Divid-
ing a reference clock, or decreasing the frequency, is achieved much more easily.
Imagine that on each positive edge of our original clock, a 4-bit counter C is in-
cremented. Table 2.15 shows the progression of the counter with row i representing
the value of bits in C after i clock edges have passed. The value of bit C0 oscillates
from 0 to 1 at half the same speed as the original clock; the value of bit C1 takes
twice as long again, it oscillates from 0 to 1 at a quarter of the speed as the original
clock. Thus by using our counter and examining specific bits, we have created a
component which can divide the clock frequency by powers-of-two. Specifically, if
we want to divide the clock by 2 j (with j > 0), we use a j-bit counter and examine
the ( j−1)-th bit.

2.3.2 Latches

The first step toward building a component which can remember or store values
is somewhat counter-intuitive. We start by looking at the Set-Reset latch, usually
called an SR-latch, as shown in Figure 2.24a. The circuit has two inputs called S
and R which are the set and reset signals, and two outputs Q and ¬Q which are
always the inverse of each other. The circuit design seems a little odd compared to
what we have seen so far because we have introduced a sort of loop; the outputs of
each NOR gate are wired to the input of the other. The result of this odd design is that
the outputs of the circuit are not uniquely defined by the inputs. For example, when
we set the inputs to S = 0 and R = 0, either of the two situations in Figure 2.25a-b
is valid; the circuit is in a stable state in both cases. When we set the inputs to S = 1
and R = 0, we force the latch into the state shown in Figure 2.25c; Q is set to 1 and
¬Q to 0 whatever they were before because the top NOR gate will have to output 0.
Conversely, when we set the inputs to S = 0 and R = 1 we force the latch into the
state shown in Figure 2.25d; Q is set to 0 and ¬Q to 1 because the bottom NOR gate
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Figure 2.25 Stable states for the SR-latch.

current next
S R Q ¬Q Q ¬Q

0 0 0 1 0 1
0 0 1 0 1 0
0 1 ? ? 0 1
1 0 ? ? 1 0
1 1 ? ? ? ?

current next
J K Q ¬Q Q ¬Q

0 0 0 1 0 1
0 0 1 0 1 0
0 1 ? ? 0 1
1 0 ? ? 1 0
1 1 0 1 1 0
1 1 1 0 0 1

(a) SR-latch (b) JK-latch

Table 2.16 Truth tables for an SR-latch and a JK-latch.

will have to output 0. The final issue is what happens if we set the inputs to S = 1
and R = 1. In this case, the circuit enters a contradictory or undefined state: both
outputs should become 0, yet we know they must also be the inverse of each other.

Defining the metastable state S = 1,R = 1 as unknown, the behaviour of the SR-
latch can be described by Table 2.16a. Note that this differs somewhat from previous
truth tables because there is some notion of state in Q and ¬Q. Their value when
they are next latched depends partly on their current value. Essentially we have a
component that we can set into a defined state using the set and reset inputs: if we
want the output Q to be 1 we set S = 1,R = 0 for a while; if we want the output to
be 0 we set S = 0,R = 1 for a while. The key thing to notice is that after waiting a
while, when we return the inputs to S = 0,R = 0 the circuit remembers which of S
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Figure 2.26 Implementation of a master-slave JK-latch.

and R was set last. It offers a means of storing or latching a 1-bit value provided we
control it correctly.

One problem with the basic SR-latch design is that it cannot currently be synchro-
nised with other components in the system, i.e., the latched value can be changed
at any time. It is often convenient to constrain when the value can be changed; as a
result we introduce the variation shown in Figure 2.24b. The basic idea is to AND
an enable signal en with the S and R inputs to provide the latch inputs. By doing so,
the latch is only sensitive to changes in S and R during positive levels of en; when
en = 0 it does not matter what S and R are, the AND gates simply output 0. Since
en will often be a clock signal, but is not required to be, we call this component a
clocked SR-latch. In this context, the latched value can only change value during
the positive phase of a clock cycle.

As a side note, we usually call components which are sensitive to inputs during
positive or negative levels of an enable signal active high and active low respec-
tively. The choice of which to use is usually dictated by cost of implementation and
ease of integration with other components: there is no real advantage in using one
over the other from any other point of view.

Using either an active high or active low approach, a further problem with our
clocked SR-latch is the potential to enter an unattractive, metastable state when
S = 1 and R = 1. The easiest way to avoid this situation is to ensure it never occurs;
we can do this by allowing one input D and using S = D and R = ¬D as inputs to
a clocked latch. This approach is shown in Figure 2.24c. Clearly we can now never
have that S = 1 while R = 1 and so avoid the potential problem. However, we can
also not have that S = 0 while R = 0 which was the state which remembered the
input. This design, termed a D-type latch, is a component which operates such that
when D = 1 and en = 1 the output Q = 1, while if D = 0 and en = 1 the output
Q = 0. If en = 0 the D-type latch simply maintains the current state. We now have a
reliable 1-bit memory. When we want to latch a new value we place it on the input
D and send a clock pulse into en; the currently stored value is always available on
the output Q.

An alternative approach to solving the metastable state problem is to use the
input S = 1, R = 1 for some other purpose. The JK-latch is an example of this
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(a) SR-latch. (b) D-type latch. (c) JK-latch.

Figure 2.27 Symbolic representations of different latches.

which uses the state to toggle the outputs Q and ¬Q; when S = 1 and R = 1 the
outputs swap over as described in Table 2.16b. Although other methods exist, the
classic implementation of a JK-latch uses two SR-latches in series: the first is called
the master while the second is called the slave, an arrangement termed a master-
slave JK-latch and is shown in Figure 2.26. By inverting en and feeding the result
to the slave SR-latch, we enable the master SR-latch during positive levels of the
enable signal while disabling the slave. When the enable signal changes, the value
held in the master SR-latch is transferred to the slave. Roughly speaking, since there
is no longer a feedback path directly from one latch into itself, the metastable state
is eliminated. Or, by feeding Q and ¬Q back into the input AND gates we can never
feed S = 1 and R = 1 because at least one of Q and ¬Q will be 0 in the slave latch.

We typically use the symbols in Figure 2.27 to represent the different latches
presented here so as to simplify the description of large designs. It is common to
further simplify the symbols by omitting ¬Q unless it is explicitly required.

2.3.3 Flip-Flops

Latches are level triggered in the sense that their value can be changed when the
enable signal is at a positive or negative level depending on whether then are ac-
tive high or low. This partly solves the problem of synchronisation but it is often
attractive to constrain things even further and say that the value should only be able
to change at a positive or negative edge rather than at any time during the positive
or negative level. Altering our basic latch component so that it is edge triggered
produces a variation called a flip-flop.

A basic approach for changing a latch into a flip-flop is to construct a pulse
generator circuit which remains at a high-level for a very short period of time after
the enable signal goes high. We use this pulse generator to drive a level triggered
latch; the reasoning is that if the pulse is short enough, the active period of the latch
is essentially limited to the positive edge of the enable signal. Figure 2.28 shows an
implementation of such a device while Figure 2.29 details the resulting behaviour
assuming propagation delays for NOT and AND gates are again 10ns and 20ns
respectively. Propagation in the NOT gate is what makes the circuit work, when en
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Figure 2.28 Implementation of a simple pulse generator.

is set to 1 at time t = 10ns there is a 10ns delay before a changes. This delay means
that for a short time equal to the propagation delay of the NOT gate, both en and a are
equal to 1 meaning that b is also 1. The change in b is delayed by 20ns but the short
pulse we are looking for is still evident; the pulse width is equal to the propagation
delay of the NOT gate, it is skewed by a distance equal to the propagation delay of
the AND gate. Notice that when en is set to 0 again at time t = 70ns we do not get a
similar pulse: this generator produces positive edge triggered devices when coupled
to it. Thus, as long as the propagation delay of the NOT gate is small enough, we
can alter, for example, a standard D-type latch to produce an edge triggered D-type
flip-flop shown in Figure 2.30.

We again use symbols, shown in Figure 2.31, to represent the different flip-flop
types. The only difference from the symbol for the corresponding latch is the inclu-
sion of a vee-shaped marker on the en input which denotes edge triggering rather
than level triggering.

2.3.4 State Machines

Definition 31. A Finite State Machine (FSM) is formally defined by a number of
parts:

• Σ , an input alphabet.
• Q, a finite set of states.
• q0 ∈ Q, a start state.
• A ⊆ Q, a set of accepting states.
• A function δ : Q×Σ → Q which we call the transition function.

More simply an FSM is just a directed graph where moving between nodes (which
represent each state) means consuming the input on the corresponding edge. As an
example, consider a simple state machine that describes a vending machine that sells
chocolate bars. The machine accepts tokens worth 10 or 20 units but does not give
change. When the total value of tokens entered reaches 30 units it delivers a choco-
late bar but it does not give change; the exact amount must be entered otherwise an
error occurs, all tokens are ejected and we start afresh.

From this description we can start defining the state machine components. The
input alphabet is simply the possible input values, in this case the different tokens
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Figure 2.31 Symbolic representations of different flip-flops.
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Figure 2.32 A graph describing the FSM for a chocolate vending machine.

such that Σ = {10,20}. The set of states the machine can be in is easy to imagine: it
can either have tokens totalling 0, 10, 20 or 30 units in it or be in the error state which
we denote by ⊥. Thus, using a hat over numbers to differentiate between states and
input token values, we have that Q = {0̂, 1̂0, 2̂0, 3̂0,⊥} where q0 = 0̂ since we start
with 0 tokens in the machine. The accepting state is 3̂0 since this represents the
state where the user has entered a valid sequence of tokens and obtains a chocolate
bar. Finally we need to define the transition function δ which is best described
diagrammatically as in Figure 2.32. From this we see that, for example, if we are in
state 2̂0 and accept a 10 unit token we end up in state 3̂0, while if we accept a 20
unit token we end up in the error state. Note that the input marked ε is the empty
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Figure 2.34 A corrected example of a 4-bit counter.

input; that is, with no input we can move between the accepting or error states back
into the start state thus resetting the machine.

From this description it should start to become obvious why state machines play
a big part in digital logic designs. Given we now have components that allow us to
remember some state, as long as we can construct combinatorial logic components
to compute the transition function δ , and a clock to synchronise components, we can
think of a design that allows us to step through sequences of operations. A general
structure for digital logic state machines is shown in Figure 2.33. A block of edge
triggered flip-flops is used to store the current state; this is fed into two combinatorial
components whose task it is to update the state by applying the transition function
and compute any outputs based on the state we are in. On each positive clock edge
our flip-flops take the next state and store it, overwriting the current state. Thus the
design steps into a new state under control of the clock.

Using this general structure we can finally solve the problem outlined at the be-
ginning of the section: how to build a 4-bit counter. Clearly we need four flip-flops
to store the 4-bit state of our counter; these constitute the state portion of the general
structure. We do not require any additional output from the circuit, simply that it cy-
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State Next State Main Road Annex Road

0 1 green red
1 2 amber red
2 3 red amber
3 4 red green
4 5 red amber
5 0 amber red

Table 2.17 Description of the traffic light controller state machine.

S2 S1 S0 S′
2 S′

1 S′
0 Mr Ma Mg Ar Aa Ag

0 0 0 0 0 1 0 0 1 1 0 0
0 0 1 0 1 0 0 1 0 1 0 0
0 1 0 0 1 1 1 0 0 0 1 0
0 1 1 1 0 0 1 0 0 0 0 1
1 0 0 1 0 1 1 0 0 0 1 0
1 0 1 0 0 0 0 1 0 1 0 0

Table 2.18 Truth table for the traffic light controller state machine.

cles through values in turn. Thus we only need a simple update portion built from
a 4-bit adder as before. Figure 2.34 demonstrates the final design. When the reset
signal rst is 0, the counter is set to 0 on the following positive clock edge. When the
reset signal is 1, the counter is updated on each positive clock edge by feeding the
current value through the adder. Since there is a whole clock cycle between present-
ing the current value and storing the new value, the adder can settle in a stable state
and we get the correct result.

As a more complete example of state machines in this context, consider the prob-
lem of controlling a set of traffic lights which prevent motorists on a main road
crashing into those turning on to it from an annex road. The idea is that while traffic
is set flowing on the main road via a green light or go sign, the annex road drivers
should be shown a red light or stop sign. Eventually drivers on the annex road get
a turn and the roles are reversed. An amber light is added to the system to offer a
period of changeover where both roads are warned that the lights are changing.

Table 2.17 offers a description of the problem. It describes a state machine with
six states and, given a current state, which state we should move into next: there is no
input in this machine, each of the transitions in the function δ being ε type and based
only on the state we are currently in. Furthermore, it shows what lights should be on
given the current state. So if we are in state 0, for example, we should move to state
1 next and the main and annex road lights should be green and red respectively. We
could draw a graph of the state machine but it would be a bit boring since it simply
cycles through the six inputs in sequence.
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The states can be represented as 3-bit integers since there are six states and 23 >
6. We use S0, S1 and S2 to denote the current state bits and S′

0, S′
1 and S′

2 to denote the
next state bits. There are nine outputs from our combinatorial logic, three outputs
for the next state and six outputs to represent the red, amber and green lights on
each of the roads. We use Mr, Ma and Mg to denote red, amber and green lights on
the main road and Ar, Aa and Ag to denote red, amber and green lights on the annex
road.

As a side note, the encoding of our states is important in some cases; we have sim-
ply used the binary representation of each state number but more involved schemes
exist. For example, one could use a Gray code, mentioned earlier when we intro-
duced Karnaugh maps. Using a Gray code to represent states means that only one
bit changes between adjacent states: this might reduce transistor switching and thus
improve the power efficiency of our design. Alternatively one can consider a tech-
nique called one-hot coding. Essentially this uses one flip-flop for each state; when
the i-th flip-flop stores 1, we are in state i. The state machine is reset by setting all
flip-flops to 0 except the first flip-flop which is set to 1 to store the hot bit. The flip-
flops are chained together so that on each clock edge the hot bit is passed to the next
flip-flop and we transfer from state to state. One advantage of this approach is that
decoding which state we are in is made much easier; one disadvantage is that we
typically use more logic to store the state.

From this tabular description of the traffic light problem we can derive a truth
table, shown in Table 2.18, for each of our outputs given the current state. Note that
for each light we assume a signal of 1 turns the light on while a signal of 0 turns it
off. Using this truth table we can derive expressions for the next state in terms of the
current state:

S′
0 = ( ¬S0 )

S′
1 = ( S0 ∧ ¬S1 ∧ ¬S2 ) ∨

( ¬S0 ∧ S1 ∧ ¬S2 )
S′

2 = ( S0 ∧ S1 ∧ ¬S2 ) ∨
( ¬S0 ∧ ¬S1 ∧ S2 ) .

Note that if our state machine transition function depended on some input as well as
the current state, our expressions above would have to include that input in order to
produce the correct next state given the current one. Either way, we can do a similar
thing to control the traffic light colours on each road:
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Mr = ( ¬S0 ∧ S1 ∧ ¬S2 ) ∨
( S0 ∧ S1 ∧ ¬S2 ) ∨
( ¬S0 ∧ ¬S1 ∧ S2 )

Ma = ( S0 ∧ ¬S1 ∧ ¬S2 ) ∨
( S0 ∧ ¬S1 ∧ S2 )

Mg = ( ¬S0 ∧ ¬S1 ∧ ¬S2 )

Ar = ( ¬S0 ∧ ¬S1 ∧ ¬S2 ) ∨
( S0 ∧ ¬S1 ∧ ¬S2 ) ∨
( S0 ∧ ¬S1 ∧ S2 )

Aa = ( ¬S0 ∧ S1 ∧ ¬S2 ) ∨
( ¬S0 ∧ ¬S1 ∧ S2 )

Ag = ( S0 ∧ S1 ∧ ¬S2 ) .

Thus the current state drives everything; we feed S0, S1 and S2 into two components,
one of which produces the next state we need to move into and one which produces
signals to control the lights. Clearly by sharing terms between the state update and
light components we can reduce the cost of our design significantly.

2.4 Implementation and Fabrication Technologies

Designing a digital circuit is roughly akin to writing a program: once we have writ-
ten a program, one usually intends to use it to perform some real task by executing
it on a computer. The same is true of circuits, except that we first need to realise
them somehow using physical components in order to use them. Although this topic
is somewhat beyond the scope of this book, it is useful to understand mechanisms
by which this is possible: even if that understanding is at a high-level, it can help to
connect theoretical concepts with their practical realisation.

2.4.1 Silicon Fabrication

2.4.1.1 Lithography

The construction of semiconductor-based circuitry is very similar to how pictures
are printed; essentially it involves controlled use of chemical processes. The act
of printing pictures onto a surface is termed lithography and has been used for a
couple of centuries to produce posters, maps and so on. The basic idea is to coat
the surface, which we usually call the substrate, with a photosensitive chemical.
We then expose the substrate to light projected through a negative, or mask, of
the required image; the end result is that a representation of the original image is
left on the substrate where the light reacts with the photosensitive chemical. After
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Figure 2.35 A silicon wafer housing many instances of an INMOS T400 processor design; see
finger tips for scale ! (Copyright remains with photographer, photographer: James Irwin, source:
personal communication)

washing the substrate, one can treat it with further chemicals so that the treated areas
representing the original image are able to accept inks while the rest of the substrate
cannot.

The analogous term in the context of semiconductors is photo-lithography and
roughly involves similar steps. We again start with a substrate, which is usually a
wafer of silicon. The wafer is circular because of the process of machining it from a
synthetic ingot, or boule, of very pure silicon. After being cut into shape, the wafer
is polished to produce a surface suitable for the next stage. We can now coat it with
a layer of base material we wish to work with, for example a doped silicon or metal.

We then coat the whole thing with a photosensitive chemical, usually called a
photo-resist. Two types exist, a positive one which hardens when hidden from light
and a negative one which hardens when exposed to light. By projecting a mask of the
circuit onto the result, one can harden the photo-resist so that only the required areas
are covered with a hardened covering. After baking the result to fix the hardened
photo-resist, and etching to remove the surplus base material, one is left with a
layer of the base material only where dictated by the mask. A further stage of etching
removes the hardened photo-resist completes the process for this layer. Many layers
are required to produce the different layers required in a typical circuit; for example,
we might need layers of N-type and P-type semiconductor and a metal layer to
produce transistors. Using photo-lithography to produce a CMOS-based circuit, for
example, thus requires many rounds of processing.
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Figure 2.36 Bonding wires connected to a high quality gold pad. (Public domain
image, photographer: Unknown, source: http://en.wikipedia.org/wiki/Image:
Wirebond-ballbond.jpg)

2.4.1.2 Packaging

A major advantage of lithography is that one can produce accurate results across
the whole wafer in one go. As such, one would typically produce many individual
but identical circuits on the same wafer; each circuit instance is called a die. The
next step in manufacture is to subject the wafer to a series of tests to ensure the
fabrication process has been successful. Some dies will naturally be defective due
to the circular shape of the wafer and typically rectangular shape of the dies; some
dies will only represent half a circuit ! More importantly, since the manufacturing
process is imperfect even complete dies can be operationally defective. Some circuit
designs will incorporate dedicated test circuitry to aid this process. The ratio of
intended dies to those that actually work is called the yield; clearly a high yield is
attractive since defective circuits represent lost income.

The final step is to cut out each die from the wafer and package the working
components. Packaging involves mounting the silicon circuit on a plastic base and
connecting the tiny circuit inputs and outputs to externally accessible pins or pads
with high quality bonding wires. The external pins allow the circuit to be interfaced
with the outside world, the final component can thus be integrated within a larger
design and forms what we commonly call a microchip or simply a chip. Large or
power-hungry microchips are often complemented with a heat sink and fan which
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Figure 2.37 A massive heatsink (roughly 8”× 4”× 1.5”) sat on top of a 667 MHz DEC Alpha
EV67 (21264A) processor; such aggressive cooling allowed the processor to be run at higher clock
speeds than suggested ! (Copyright remains with photographer, photographer: James Irwin, source:
personal communication)

draws heat away and allow it to more easily operate within physical limits of the
constituent materials.

2.4.2 Programmable Logic Arrays

A Programmable Logic Array (PLA) allows one to implement most combinato-
rial logic functions from a single, generic device. The basic idea is that the PLA
forms a network of AND and OR gates. Considering an AND-OR type PLA as an
example, the first network, or plane, allows one to implement minterms using a
set of AND gates. These minterms are fed into a second plane of OR gates which
implement the SoP expression for the required function. An OR-AND type PLA
reverses the ordering of the planes of gates and thus allows implementation of PoS
expressions.

More than one function that uses the same set of inputs can be implemented by
the same PLA in either case. However, the limit in terms of both numbers of input
and output and design complexity, is governed by the number of gates and wires one
can fit into each plane. Figure 2.38a shows a diagram of a clean AND-OR type PLA



2.4 Implementation and Fabrication Technologies 91

i0

i1

i2

r0

r1

r2

r3

r4

OR plane

AND plane

i0

i1

i2

r0

r1

r2

r3

r4

OR plane

AND plane

(a) A clean PLA. (b) A PLA configured as a half-adder.

Figure 2.38 Implementations of a clean and a configured PLA.

device with three inputs and five outputs. Notice how we construct the inverse of
each input and feed wires across the plane so that they can be connected to produce
the required logic function.

To program or configure a PLA so that it computes the required function, one
starts with a generic, clean device with no connections on the wires. For an AND-
OR type device, connection of the wires, by filling in the black dots on the diagram,
forms the minterms in the AND plane and collects them in the OR plane. From a
physical perspective, this is done by manipulating components placed at the connec-
tion points. Consider the placement of a fuse at each connection point or junction.
Normally this component would act as a conductive material somewhat like a wire;
when the fuse is blown using some directed energy, it becomes a resistive material.
Thus, to form the right connections on a PLA one simply blows all the fuses where
no connection is required. Alternatively, one can consider an antifuse which acts in
the opposite way to a fuse: normally it is a resistor but when blown it is a conduc-
tor. Using antifuses at each junction means the configuration can simply blow those
antifuses at the junctions where a connection is required. Figure 2.38b shows the
originally clean PLA configured to act as a half-adder. We have that i0 and i1 are the
inputs while r0 is the carry-out and r1 is the sum.

PLA devices based on fuses and antifuses are termed one-time-programmable
since once the components at each junction are blown, they cannot be unblown: the
device can only be configured once. However, the advantage of a PLA is the gener-
ality it offers. That is, one can take a single PLA component and easily implement
most combinatorial functions: no costly silicon fabrication is required.
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Figure 2.39 Implementation of a basic FPGA logic block.

2.4.3 Field Programmable Gate Arrays

The problems of one-time-programmable PLA devices are clear: prototyping logic
designs can be costly since any mistake is terminal and the device can only ever
be used for one task which, for large designs, means more cost when redundant
devices are left idle. A Field Programmable Gate Array (FPGA) is one type of
device that acts to solve this problem. Essentially, the idea of an FPGA is to offer a
many-time-programmable device; the FPGA can be configured with one design and
then re-configured with another design at a later date.

Roughly, an FPGA is built from a mesh of logic blocks. Each block can be con-
figured to perform a specific, although limited, range of logic functions. Typical
logic blocks might contain an n-input, 1-output Look-Up Table (LUT). The LUT
operation is simple: one forms an integer index i from the n inputs, looks-up item i
in a table and returns this as the result. By filling the table with the required outputs
for each input, the LUT can implement any n-input, 1-output logic function. Along
side each LUT we typically find one or more flip-flops to enable devices with mem-
ory to be constructed. Most FPGAs also offer a small number of specialist logic
blocks which incorporate high-performance versions of common circuits such as
adders or even small processors. Figure 2.39 details a simple logic block consisting
of a 4-input LUT and a D-type flip-flop; this is typical of many FPGA architectures.

Connections between the logic blocks in the mesh are formed in a similar way to
a PLA in the sense that a component is placed at each connection junction. However,
the FPGA junctions are re-configurable switches that can be turned on and off as
required rather than blown in a one-off act. The idea is that by configuring each
logic block to perform the right task and configuring connections between them,
one can have the mesh compute both combinatorial and stateful logic circuits. For
example, with our simple logic block above the configuration would fill the LUT
with correct values and initialise the select input of the multiplexer with the right
value so the block performs the right role. Connections between the logic blocks are
then configured so that they interconnect and form the required circuit.

FPGA devices typically operate more slowly than custom silicon and use more
power. As such, they are often used as a prototyping device for designs which will
eventually be fabricated using a more high-performance technology. Further, in ap-
plications where debugging and updating hardware is as essential as software the
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FPGA can offer significant advantages. Use of FPGA devices in mission-critical
applications such as space exploration is commonplace: it turns out to be exception-
ally useful to be able to remotely fix bugs in ones hardware rather than write off a
multi-million pound satellite which is orbiting Mars and hence out of the reach of
any local repair men !
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2.6 Example Questions

5. a. Describe how N-type and P-type MOSFET transistors are constructed using
silicon and how they operate as switches.

b. Draw a diagram to show how N-type and P-type MOSFET transistors can be
used to implement a NAND gate. Show your design works by describing the
transistor states for each input combination.

6. Given that ? is the don’t care state, consider the following truth table which de-
scribes a function p with four inputs (a, b, c and d) and two outputs (e and f ):
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a b c d e f a b c d e f
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 1 1 0 0 1 0 0
0 0 1 0 1 0 1 0 1 0 0 1
0 0 1 1 ? ? 1 0 1 1 ? ?
0 1 0 0 0 1 1 1 0 0 ? ?
0 1 0 1 1 0 1 1 0 1 ? ?
0 1 1 0 0 0 1 1 1 0 ? ?
0 1 1 1 ? ? 1 1 1 1 ? ?

a. From the truth table above, write down the corresponding sum of products (SoP)
equations for e and f .

b. Simplify the two SoP equations so that they use the minimum number of logic
gates possible. You can assume the two equations can share logic.

7. Consider the following circuit where the propagation delay of logic gates in the
circuit are NOT= 10 ns; AND= 20 ns; OR= 20 ns; XOR= 60 ns.

c

b

d

b

a

c

d

a

c

d

e

a. Draw a Karnaugh map for this circuit and derive a sum of products (SoP) expres-
sion for the result.

b. Describe advantages and disadvantages of your SoP expression and the dynamic
behaviour it produces.

c. If the circuit is used as combinatorial logic within a clocked system, what is the
maximum clock speed of the system ?

8. You are tasked with building a device for a casino based gambling game. The
device must check when three consecutive heads are generated by a random coin
flipper. Design a hardware circuit which will output 1 when three consecutive heads
are generated and 0 otherwise. You can assume the random coin flipper circuit is
already built or, for extra marks, design one yourself.

9. Imagine you are asked to to build a simple DNA matching hardware circuit as part
of a research project. The circuit will be given DNA strings which are sequences of
tokens that represent chemical building blocks. The goal is to search a large input
sequence of DNA tokens for a small sequence indicative of some feature.

The circuit will receive one token per clock cycle as input; the possible tokens are
adenine (A), cytosine (C), guanine (G) and thymine (T ). The circuit should, given
the input sequence, set an output flag to 1 when the matching sequence ACT is found
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somewhere in the input or 0 otherwise. You can assume the inputs are infinitely long,
i.e., the circuit should just keep searching forever and set the flag when the match is
a success.

a. Design a circuit to perform the required task, show all your working and explain
any design decisions you make along the way.

b. Now imagine you are asked to build two new matching circuits which should
detect the sequences CAG and T T T respectively. It is proposed that instead of
having three separate circuits, they are combined into a single circuit that matches
the input sequence against one matching sequence selected with an additional
input. Describe one advantage and one disadvantage you can think of for the two
implementation options.

10. NAND is a universal logic gate in the sense that the behaviour of NOT, AND
and OR gates can be implemented using only NAND. Show how this is possible
using a truth table to demonstrate your solution.

11. A revolutionary, ecologically sound washing machine is under development by
your company.

When turned on, the machine starts in the idle state awaiting input. The washing
cycle consists of the three stages: fill (when it fills with water), wash (when the wash
occurs), spin (when spin dying occurs); the machine then returns to idle when it is
finished. Two buttons control the machine: pressing B0 starts the washing cycle,
pressing B1 cancels the washing cycle at any stage and returns the machine to idle;
if both buttons are pressed at the same time, the machine continues as normal as if
neither were pressed.

a. You are asked to design a logic circuit to control the washing machine behaviour.
Draw a diagram that shows the washing machine states and the valid transitions
between them.

b. Draw a state transition table for a state machine that could be used to implement
your diagram.

c. Using the Karnaugh map technique, derive logic expressions which allow one to
compute the next state from the current state in your table; note that because the
washing machine is ecologically sound, minimising the number of logic gates is
important.


