
Chapter 1
Mathematical Preliminaries

In mathematics you don’t understand things. You just get used to them.

– J. von Neumann

Abstract The goal of this chapter is to give a fairly comprehensive overview of the
theory that underpins the rest of the book. On first reading, it may seem a little dry
and is often excluded in other similar books. However, without a solid understand-
ing of logic and representation of numbers it seems clear that constructing digital
circuits to put this theory into practise would be much harder. The theory here will
present an introduction to propositional logic, sets and functions, number systems
and Boolean algebra. These four main areas combine to produce a basis for formal
methods to describe, manipulate and implement digital systems such as computer
processors. Those with a background in mathematics or computer science might
skip this material and use it simply for reference; those approaching the subject
from another background would be advised to read the material in more detail.

1.1 Propositions and Predicates

Definition 1. A proposition is a statement whose meaning, termed the truth value,
is either true or false. Less formally, we say the statement is true if it has a truth
value of true and false if it has a truth value of false.

A predicate is a proposition which contains one or more variables; only when
concrete values are assigned to each of the variables can the predicate be called a
proposition.

Since we use them so naturally, it almost seems too formal to define what a proposi-
tion is. However, by doing so we can start to use them as a building block to describe
what logic is and how it works. The statement

“the temperature is 90◦C”

3

4 1 Mathematical Preliminaries

is a proposition since it is definitely either true or false. When we take a proposition
and decide whether it is true or false, we say we have evaluated it. However, there
are clearly a lot of statements that are not propositions because they do not state any
proposal. For example,

“turn off the heat”

is a command or request of some kind, it does not evaluate to a truth value. Propo-
sitions must also be well defined in the sense that they are definitely either true or
false, i.e., there are no “gray areas” in between. The statement

“90◦C is too hot”

is not a proposition since it could be true or false depending on the context, or
your point of view: 90◦C probably is too hot for body temperature but probably not
for a cup of coffee. Finally, some statements look like propositions but cannot be
evaluated because they are paradoxical. The most famous example of this situation
is the liar paradox, usually attributed to the Greek philosopher Eubulides, who stated
it as

“a man says that he is lying, is what he says true or false ?”

although a clearer version is the more commonly referenced

“this statement is false” .

If the man is telling the truth, everything he says must be true which means he is
lying and hence everything he says is false. Conversely, if the man is lying every-
thing he says is false, so he cannot be lying since he said he was ! In terms of the
statement, we cannot be sure of the truth value so this is not normally classed as a
proposition.

As stated above, a predicate is just a proposition that contains variables. By as-
signing the variable a value we can turn the predicate into a proposition and evaluate
the corresponding truth value. For example, consider the predicate

“x◦C equals 90◦C”

where x is a variable. By assigning x a value we get a proposition; setting x = 10,
for example, gives

“10◦C equals 90◦C”

which clearly evaluates to false. Setting x = 90◦C gives

“90◦C equals 90◦C”

which evaluates to true. In some sense, a predicate is an abstract or general proposi-
tion which is not well defined until we assign values to all the variables.

1.1 Propositions and Predicates 5

1.1.1 Connectives

Definition 2. A connective is a statement which binds single propositions into a
compound proposition. For brevity, we use symbols to denote common connectives:

• “not x” is denoted ¬x.
• “x and y” is denoted x∧ y.
• “x or y” is denoted x∨ y, this is usually called an inclusive-or.
• “x or y but not x and y” is denoted x⊕ y, this is usually called an exclusive-or.
• “x implies y” is denoted x → y, which is sometimes written as “if x then y”.
• “x is equivalent to y” is denoted x ↔ y, which is sometimes written as “x if and

only if y” or further shortened to “x iff. y”.

Note that we group statements using parentheses when there could be some confu-
sion about the order they are applied; hence (x∧ y) is the same as x∧ y.

A proposition or predicate involving connectives is built from terms; the connective
joins together these terms into an expression. For example, the expression

“the temperature is less than 90◦C ∧ the temperature is greater than 10◦C”

contains two terms that propose

“the temperature is less than 90◦C”

and

“the temperature is greater than 10◦C” .

These terms are joined together using the ∧ connective so that the whole expression
evaluates to true if both of the terms are true, otherwise it evaluates to false. In a
similar way we might write a compound predicate

“the temperature is less than x◦C ∧ the temperature is greater than y◦C”

which can only be evaluated when we assign values to the variables x and y.

Definition 3. The meaning of connectives is usually describe in a tabular form
which enumerates the possible values each term can take and what the resulting
truth value is; we call this a truth table.

x y ¬x x∧ y x∨ y x⊕ y x → y x ↔ y

false false true false false false true true
false true true false true true true false
true false false false true true false false
true true false true true false true true

The ¬ connective negates the truth value of an expression so considering

¬(x > 10)

6 1 Mathematical Preliminaries

we find that the expression ¬(x > 10) is true if the term x > 10 is false and the
expression is false if x > 10 is true. If we assign x = 9, x > 10 is false and hence
the expression ¬(x > 10) is true. If we assign x = 91, x > 10 is true and hence the
expression ¬(x > 10) is false.

The meaning of the ∧ connective is also as one would expect; the expression

(x > 10)∧ (x < 90)

is true if both the expressions x > 10 and x < 90 are true, otherwise it is false. So if
x = 20, the expression is true. But if x = 9 or x = 91, then it is false: even though
one or other of the terms is true, they are not both true.

The inclusive-or and exclusive-or connectives are fairly similar. The expression

(x > 10)∨ (x < 90)

is true if either x > 10 or x < 90 is true or both of them are true. Here we find that
all the assignments x = 20, x = 9 and x = 91 mean the expression is true; in fact it
is hard to find an x for which it evaluates to false ! Conversely, the expression

(x > 10)⊕ (x < 90)

is only true if only one of either x > 10 or x < 90 is true; if they are both true then
the expression is false. We now find that setting x = 20 means the expression is false
while both x = 9 and x = 91 mean it is true.

Inference is a bit more tricky. If we write x → y, we usually call x the hypothesis
and y the conclusion. To justify the truth table for inference in words, consider the
example

(x is prime)∧ (x 	= 2) → (x ≡ 1 (mod 2))

i.e., if x is a prime other than 2, it follows that it is odd. Therefore, if x is prime then
the expression is true if x ≡ 1 (mod 2) and false otherwise since the implication
is invalid. If x is not prime, the expression does not really say anything about the
expected outcome: we only know what to expect if x was prime. Since it could still
be that x ≡ 1 (mod 2) even when x is not prime, and we do not know anything better
from the expression, we assume it is true when this case occurs.

Equivalence is fairly simple. The expression x ↔ y is only true if x and y evaluate
to the same value. This matches the idea of equality of numbers. As an example,
consider

(x is odd) ↔ (x ≡ 1 (mod 2)).

This expression is true since if the left side is true, the right side must also be true
and vice versa. If we change it to

(x is odd) ↔ (x is prime),

then the expression is false. To see this, note that only some odd numbers are prime:
just because a number is odd does not mean it is always prime although if it is prime

1.1 Propositions and Predicates 7

it must be odd (apart from the corner case of x = 2). So the equivalence works in
one direction but not the other and hence the expression is false.

Definition 4. We call two expressions logically equivalent if they are composed of
the same variables and have the same truth value for every possible assignment to
those variables.

An expression which is equivalent to true, no matter what values are assigned
to any variables, is called a tautology; an expression which is equivalent to false is
called a contradiction.

Some subtleties emerge when trying to prove two expressions are logically equiv-
alent. However, we will skirt around these. For our purposes it suffices to simply
enumerate all possible values each variable can take, and check the two expressions
produce identical truth values in all cases. In practise this can be hard since with n
variables there will be 2n possible assignments, an amount which grows quickly as
n grows ! More formally, two expressions x and y are only equivalent if x ↔ y can
be proved a tautology.

1.1.2 Quantifiers

Definition 5. A free variable in a given expression is one which has not yet been
assigned a value. Roughly speaking, a quantifier is a statement which allows a free
variable to take one of many values:

• the universal quantifier “for all x,y is true” is denoted ∀ x [y].
• the existential quantifier “there exists an x such that y is true” is denoted ∃ x [y].

We say that applying a quantifier to a variable quantifies it; after it has been quanti-
fied we say it has been bound.

Put more simply, when we encounter an expression such as

∃ x [y]

we are essentially assigning x all possible values; to make the expression true just
one of these values needs to make the expression y true. Likewise, when we en-
counter

∀ x [y]

we are again assigning x all possible values. This time however, to make the expres-
sion true, all of them need to make the expression y true. Consider the following
example:

“there exists an x such that x ≡ 0 (mod 2)”

which we can re-write symbolically as

8 1 Mathematical Preliminaries

∃ x [x ≡ 0 (mod 2)].

In this case, x is bound by the ∃ quantifier; we are asserting that for some value of
x it is true that x ≡ 0 (mod 2). To make the expression true just one of these values
needs to make the term x ≡ 0 (mod 2) true. The assignment x = 2 satisfies this so
the expression is true. As another example, consider the expression

“for all x, x ≡ 0 (mod 2)”

which we re-write
∀ x [x ≡ 0 (mod 2)].

Here we are making a more general assertion about x by saying that for all x, it is
true that x ≡ 0 (mod 2). To decide if this particular expression is false, we need
simply to find an x such that x 	≡ 0 (mod 2). This is easy since any odd value of x
is good enough. Therefore the expression is false.

Definition 6. Informally, a predicate function is just a shorthand way of writing
predicates; we give the function a name and a list of free variables. So for example
the function

f (x,y) : x = y

is called f and has two variables named x and y. If we use the function as f (10,20),
performing the binding x = 10 and y = 20, it has the same meaning as 10 = 20.

1.1.3 Manipulation

Definition 7. Manipulation of expressions is governed by a number of axiomatic
laws:

1.1 Propositions and Predicates 9

equivalence x ↔ y ≡ (x → y)∧ (y → x)
implication x → y ≡ ¬x∨ y
involution ¬¬x ≡ x
idempotency x∧ x ≡ x
commutativity x∧ y ≡ y∧ x
association (x∧ y)∧ z ≡ x∧ (y∧ z)
distribution x∧ (y∨ z) ≡ (x∧ y)∨ (x∧ z)
de Morgan’s ¬(x∧ y) ≡ ¬x∨¬y
identity x∧ true ≡ x
null x∧ false ≡ false
inverse x∧¬x ≡ false
absorption x∧ (x∨ y) ≡ x
idempotency x∨ x ≡ x
commutativity x∨ y ≡ y∨ x
association (x∨ y)∨ z ≡ x∨ (y∨ z)
distribution x∨ (y∧ z) ≡ (x∨ y)∧ (x∨ z)
de Morgan’s ¬(x∨ y) ≡ ¬x∧¬y
identity x∨ false ≡ x
null x∨ true ≡ true
inverse x∨¬x ≡ true
absorption x∨ (x∧ y) ≡ x

A common reason to manipulate a logic expression is to simplify it in some way
so that it contains less terms or less connectives. A simplified expression might be
more opaque, in the sense that it is not as clear what it means, but looking at things
computationally it will generally be “cheaper” to evaluate. As a concrete example
of simplification in action, consider the exclusive-or connective x⊕ y which we can
write as the more complicated expression

(y∧¬x)∨ (x∧¬y)

or even as
(x∨ y)∧¬(x∧ y).

The first alternative above uses five connectives while the second uses only four; we
say that the second is simpler as a result. One can prove that these are equivalent by
constructing truth tables for them. The question is, how did we get from one to the
other by manipulating the expressions ?

To answer this, we simply start with one expression and apply our axiomatic laws
to move toward the other. So starting with the first alternative, we try to apply the
axioms until we get the second: think of the axioms like rules that allow one to re-
write the expression in a different way. To start with, we can manipulate each term
which looks like p∧¬q as follows

(p∧¬q) = (p∧¬q)∨ false (identity)
= (p∧¬q)∨ (p∧¬p) (null + inverse)
= p∧ (¬p∨¬q) (distribution)

10 1 Mathematical Preliminaries

Using this new identity, we can re-write the whole expression as

(y∧¬x)∨ (x∧¬y) = (x∧ (¬x∨¬y))∨ (y∧ (¬x∨¬y))
= (x∨ y)∧ (¬x∨¬y) (collect)
= (x∨ y)∧¬(x∧ y) (de Morgan’s)

which gives us the second alternative we are looking for. A later chapter shows
how to construct an algorithm to do this sort of simplification mechanically so as to
reduce our workload and reduce the chance of error.

1.2 Sets and Functions

The concept of a set and the theory behind such objects is a fundamental part of
mathematics. Informally, a set is simply a well defined collection of elements. Here
we mainly deal with sets of numbers, but it is important to note that the elements
can be anything you want.

We can define a set using one of several methods. Firstly we can enumerate the
elements, writing them down between a pair of braces. For example, one might
define the set A of whole numbers between two and eight (inclusive) as

A = {2,3,4,5,6,7,8}.

The cardinality of a finite set is the number of elements it contains. For the set A,
this is denoted by |A| such that from the example above

|A| = 7.

If the element a is in the set A, we say a is a member of A or write

a ∈ A.

The ordering of the elements in the set does not matter, only their membership or
non-membership. So we can define another set as

B = {8,7,6,5,4,3,2}

and be safe in the knowledge that A = B. However, note that elements cannot occur
in a set more than once; a set where repetitions are allowed is sometimes called a
bag or multi-set but is beyond the scope of this discussion.

There are at least two predefined sets which have a clear meaning but are hard to
define using any other notation:

Definition 8. The set /0, called the null set or empty set, is the set which contains
no elements. Note that /0 is a set not an element, one cannot write the empty set as
{ /0} since this is the set with one element, that element being the empty set.

1.2 Sets and Functions 11

Definition 9. The contents of the set U , called the universal set, depends on the
context. Roughly speaking, it contains every element from the problem being con-
sidered.

As a side note, since the elements in a set can be anything we want they can po-
tentially be other sets. Russell’s paradox, discovered by mathematician Bertrand
Russell in 1901, is a problem with formal set theory that results from this fact. The
paradox is similar to the liar paradox seen earlier and is easily stated by considering
A, the set of all sets which do not contain themselves. The question is, does A con-
tain itself ? If it does, it should not be in A by definition but it is; if it does not, it
should be in the set A by definition but it is not.

1.2.1 Construction

The above method of definition is fine for small finite sets but when the set is large or
even infinite in size, writing down all the elements quickly becomes an unpleasant
task ! Where there is a natural sequence to the elements, we write continuation dots
to save time and space. For example, the same set A as above might be defined as

A = {2,3, . . . ,7,8}.

This set is finite since there is a beginning and an end; the continuation dots are
simply a shortcut. As another example, consider the set of numbers exactly divisible
by two that might be defined as

C = {2,4,6,8, . . .}.

Clearly this set is infinite in size in the sense there is no end to the sequence. In this
case the continuation dots are a necessity in order to define the set adequately.

The second way to write down sets is using what is sometimes called set builder
notation. Basically speaking, we generate the elements in the set using f , a predicate
function:

D = {x : f (x)}.
One should read this as “all elements x ∈ U such that the predicate f (x) is true”.
Using set builder notation we can define sets in a more programmatic manner, for
example

A = {x : 2 ≤ x ≤ 8},
and

C = {x : x > 0∧ x ≡ 0 (mod 2)}
define the same sets as we explicitly wrote down above.

12 1 Mathematical Preliminaries

A B A B

(a) A∪B (b) A∩B

A B
A

(c) A−B (d) A

Figure 1.1 A collection of Venn diagrams for standard set operations.

A B

1

2

3

4

5

6

7

8

9

10

Figure 1.2 An example Venn diagram showing membership of two sets.

1.2.2 Operations

Definition 10. A sub-set, say B, of a set A is such that for every x ∈ B we have that
x ∈ A. This is denoted B ⊆ A. Conversely, we can say A is a super-set of B and write
A ⊇ B.

1.2 Sets and Functions 13

Note that every set is a sub-set and super-set of itself and that A = B only if A ⊆ B
and B ⊆ A. If A 	= B, we use the terms proper sub-set and proper super-set and
write B ⊂ A and B ⊃ A respectively.

Definition 11. For sets A and B, we have that

• The union of A and B is A∪B = {x : x ∈ A∨ x ∈ B}.
• The intersection of A and B is A∩B = {x : x ∈ A∧ x ∈ B}.
• The difference of A and B is A−B = {x : x ∈ A∧ x 	∈ B}.
• The complement of A is A = {x : x ∈ U ∧ x 	∈ A}.

We say A and B are disjoint or mutually exclusive if A∩B = /0. Note also that the
complement operation can be re-written A−B = A∩B.

Definition 12. The power set of a set A, denoted P(A), is the set of every possible
sub-set of A. Note that /0 is a member of all power sets.

On first reading, these formal definitions can seem a bit abstract and slightly scary.
However, we have another tool at our disposal which describes what they mean
in a visual way. This tool is the Venn diagram, named after mathematician John
Venn who invented the concept in 1881. The basic idea is that sets are represented
by regions inside an enclosure that implicitly represents the universal set U . By
placing these regions inside each other and overlapping their boundaries, we can
describe most set-related concepts very easily.

Figure 1.1 details four Venn diagrams which describe how the union, intersec-
tion, difference and complement operations work. The shaded areas of each Venn
diagram represent the elements which are in the resulting set. For example, in the
diagram for A∪B the shaded area covers all of the sets A and B: the result contains
all elements in either A or B or both. As a simple concrete example, consider the
sets

A = {1,2,3,4}
B = {3,4,5,6}

where the universal set is

U = {1,2,3,4,5,6,7,8,9,10}.

Figure 1.2 shows membership in various settings; recall that those elements within
a given region are members of that set. Firstly, we can take the union of A and B as
A∪B = {1,2,3,4,5,6} which contains all the elements which are either members
of A or B or both. Note that elements 3 and 4 do not appear twice in the result.
The intersection of A and B can be calculated as A∩B = {3,4} since these are the
elements that are members of both A and B. The difference between A and B, that is
the elements in A that are not in B, is A−B = {1,2}. Finally, the complement of A
is all numbers which are not in A, that is A = {5,6,7,8,9,10}.

The union and intersection operations preserve a law of cardinality called the
principle of inclusion in the sense that we can calculate the cardinality of the output
from the cardinality of the inputs as

14 1 Mathematical Preliminaries

|A∪B| = |A|+ |B|− |A∩B|.

This property is intuitively obvious since those elements in both A and B will be
counted twice and hence need subtraction via the last term. We can even check it: in
our example above |A|= 4 and |B|= 4. Checking our results we have that |A∪B|= 6
and |A∩B| = 2 and so by the principle of inclusion we should have 6 = 4 + 4− 2
which makes sense.

1.2.3 Numeric Sets

Using this basic notation, we can define three important numeric sets which are used
extensively later on in this chapter.

Definition 13. The integers are whole numbers which can be positive or negative
and also include zero

Z = {. . . ,−3,−2,−1,0,+1,+2,+3, . . .}.

The natural numbers are whole numbers which are positive

N = {0,1,2,3, . . .}.

The rational numbers are those which can be expressed in the form p/q where p
and q are integers called the numerator and denominator

Q = {p/q : p ∈ Z∧q ∈ Z∧q 	= 0}.

Clearly the set of rational numbers is a super-set of both Z and N since, for example,
we can write p/1 to represent any integer p as a member of Q. However, not all
numbers are rational. Some are irrational in the sense that it is impossible to find
a p and q such that they exactly represent the required result; examples include the
value of π .

1.2.4 Functions

Definition 14. If A and B are sets, a function f from A to B is a process that maps
each element of A to an element of B. We write this as

f : A → B

where A is termed the domain of f and B is the codomain of f . For an element
x ∈ A, which we term the preimage, there is only one y = f (x) ∈ B which is termed
the image of x. Finally, the set

1.2 Sets and Functions 15

{y : y = f (x)∧ x ∈ A∧ y ∈ B}

which is all possible results, is termed the range of f and is always a sub-set of the
codomain.

As a concrete example, consider a function INV which takes an integer x as input
and produces the rational number 1/x as output:

INV : Z → Q, INV(x) = 1/x.

Note that here we write the function signature which defines the domain and
codomain of INV inline with the definition of the function behaviour. In this case
the domain of INV is Z since it takes integers as input; the codomain is Q since it
produces rational numbers as output. If we take an integer and apply the function to
get something like INV(2) = 1/2, we have that 1/2 is the image of 2 or conversely
2 is the preimage of 1/2 under INV.

From this definition it might seem as though we can only have functions with
one input and one output. However, remember that we are perfectly entitled to have
sets of sets so we can easily define a function f , for example, as

f : A×A → B.

This function takes elements from the Cartesian product of A as input and produces
an element of B as output. So since pairs (x,y) ∈ A×A are used as input, f can in
some sense accept two input values. As a concrete example consider the function

MAX : Z×Z → Z, MAX(x,y) =
{

x if x > y
y otherwise.

This is the maximum function on integers; it takes two integers as input and pro-
duces an integer, the maximum of the inputs, as output. So if we take a pair of
integers, say (2,4), and apply the function we get MAX(2,4) = 4 where we usually
omit the parentheses around the pair of inputs. In this case, the domain of MAX

is Z×Z and the codomain is Z; the integer 4 is the image of the pair (2,4) under
MAX.

Definition 15. For a given function f , we say that f is

• surjective if the range equals the codomain, i.e., there are no elements in the
codomain which do not have a preimage in the domain.

• injective if no two elements in the domain have the same image in the range.
• bijective if the function is both surjective and injective, i.e., every element in the

domain is mapped to exactly one element in the codomain.

Using the examples above, we clearly have that INV is not surjective but MAX is.
This follows because we can construct a rational 2/3 which does not have an integer
preimage under INV so the function cannot be surjective. Equally, for any integer x
in the range of MAX there is always a pair (x,y) in the domain such that x > y so

16 1 Mathematical Preliminaries

MAX is surjective, in fact there are lots of them since Z is infinite in size ! In the
same way, we have that INV is injective but MAX is not. Only one preimage x maps
to the value 1/x in the range under INV but there are multiple pairs (x,y) which map
to the same image under MAX, for example 4 is the image of both (1,4) and (2,4)
under MAX.

Definition 16. Given two functions f : A → B and g : B →C, the composition of f
and g is denoted

g◦ f : A →C.

Given some input x ∈ A, this composition is equivalent to applying y = f (x) and
then z = g(y) to get the result z ∈C. More formally, we have

(g◦ f)(x) = g(f (x)).

The notation g◦ f should be read as “apply g to the result of applying f ”.

Definition 17. The identity function I on a set A is defined by

I : A → A, I (x) = x

so that it maps all elements to themselves. Given two functions f and g defined by
f : A → B and g : B → A, if g ◦ f is the identity function on set A and f ◦ g is the
identity on set B, then f is the inverse of g and g is the inverse of f . We denote this
by f = g−1 and g = f −1. If a function f has an inverse, we hence have f −1 ◦ f = I .

The inverse of a function maps elements from the codomain back into the domain,
essentially reversing the original function. It is easy to see not all functions have an
inverse. For example, if the function is not injective then there will be more than one
potential preimage for the inverse of any image.

At first glance, it might seem like our example functions both have inverses but
they do not. For example, given some value 1/x, we can certainly find x but we have
already said that numbers like 2/3 also exist in the codomain so we cannot invert
all the values we might come across. However, consider the example of a successor
function on integers

SUCC : Z → Z, SUCC(x) = x+1

which takes an integer x as input and produces x + 1 as output. The function is
bijective since the codomain and range are the same and no two integers have the
same successor. Thus we have an inverse and it is easy to describe as

PRED : Z → Z, PRED(x) = x−1

which is the predecessor function: it takes an integer x as input and produces x−1
as output. To see that SUCC−1 = PRED and SUCC−1 = PRED note that

(PRED ◦SUCC)(x) = (x+1)−1 = x

1.2 Sets and Functions 17

which is the identity function. Conversely,

(SUCC ◦PRED)(x) = (x−1)+1 = x

which is also the identity function.

1.2.5 Relations

Definition 18. We call a sequence of n elements (x0,x1, . . . ,xn−1) an n-tuple or sim-
ply a tuple when the number of elements is irrelevant. In the specific case of n = 2,
we call (x0,x1) a pair. The i-th element of the tuple x is denoted xi, and the number
of elements in a particular tuple x may be written as |x|.

Definition 19. The Cartesian product of n sets, say A0,A1, . . . ,An−1, is defined as

A0 ×A1 ×·· ·×An−1 = {(a0,a1, . . . ,an−1) : a0 ∈ A0,a1 ∈ A1, . . . ,an−1 ∈ An−1}.

In the most simple case of n = 2, the Cartesian product A0 × A1 is the set of all
possible pairs where the first item in the pair is a member of A0 and the second item
is a member of A1.

The Cartesian product of a set A with itself n times is denoted An. To be complete,
we define A0 = /0 and A1 = A. Finally, by writing A∗ we mean the Cartesian product
of A with itself a finite number of times.

Cartesian products are useful to us since they allow easy description of sequences,
or vectors, of elements. Firstly, we often use them to describe vectors of elements
from a set. So for example, say we have the set of digits A = {0,1}. The Cartesian
product of A with itself is

A×A = {(0,0),(0,1),(1,0),(1,1)}.

If you think of the pairs as more generally being vectors of these digits, the Cartesian
product An is the set of all possible vectors of 0 and 1 which are n elements long.

Definition 20. Informally, a binary relation f on a set A is like a predicate function
which takes members of the set as input and “filters” them to produce an output. As
a result, for a set A the relation f forms a sub-set of A×A. For a given set A and a
binary relation f , we say f is

• reflexive if f (x,x) = true for all x ∈ A.
• symmetric if f (x,y) = true implies f (y,x) = true for all x,y ∈ A.
• transitive if f (x,y) = true and f (y,z) = true implies f (x,z) = true for all x,y,z ∈

A.

If f is reflexive, symmetric and transitive, then we call it an equivalence relation.

18 1 Mathematical Preliminaries

The easiest way to think about this is to consider a concrete example such as the
case where our set is A = {1,2,3,4} such that the Cartesian product is

A×A =

⎧⎪⎪⎨
⎪⎪⎩

(1,1), (1,2), (1,3), (1,4),
(2,1), (2,2), (2,3), (2,4),
(3,1), (3,2), (3,3), (3,4),
(4,1), (4,2), (4,3), (4,4)

⎫⎪⎪⎬
⎪⎪⎭

.

Imagine we define a function

EQU : Z×Z → {true, false},EQU(x,y) =
{

true if x = y
false otherwise

which tests whether two inputs are equal. Using the function we can form a sub-set
of A×A (called AEQU for example) in the sense that we can pick out the pairs (x,y)

AEQU = {(1,1),(2,2),(3,3),(4,4)}

where EQU(x,y) = true. For members of A, say x,y,z ∈ A, we have that EQU(x,x) =
true so the relation is reflexive. If EQU(x,y) = true, then EQU(y,x) = true so the
relation is also symmetric. Finally, if EQU(x,y) = true and EQU(y,z) = true, then
we must have that EQU(x,z) = true so the relation is also transitive and hence an
equivalence relation.

Now imagine we define another function

LTH : Z×Z → {true, false},LTH(x,y) =
{

true if x < y
false otherwise

which tests whether one input is less than another, and consider the sub-set of A

ALTH = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}

of all pairs (x,y) with x,y∈A such that LTH(x,y)= true. It cannot be that LTH(x,x)=
true, so the relation is not reflexive; we say it is irreflexive. It also cannot be that
if LTH(x,y) = true then LTH(y,x) = true, so the relation is also not symmetric;
it is anti-symmetric. However, if both LTH(x,y) = true and LTH(y,z) = true, then
LTH(x,z) = true so the relation is transitive.

1.3 Boolean Algebra

Most people are taught about simple numeric algebra in school. One has

• a set of values, say Z,
• a list of operations, say −, + and ·,
• and a list of axioms which dictate how −, + and · work.

1.3 Boolean Algebra 19

You might not know the names for these axioms but you probably know how they
work, for example you probably know for some x,y,z ∈ Z that x +(y + z) = (x +
y)+ z.

In the early 1840s, mathematician George Boole combined propositional logic
and set theory to form a system which we now call Boolean algebra [4]. Put (rather
too) simply, Boole saw that working with a logic expression x is much the same as
working with a number y. One has

• a set of values, {false, true},
• a list of operations ¬, ∨ and ∧,
• and a list of axioms that dictate how ¬, ∨ and ∧ work.

Ironically, at the time his work was viewed as somewhat obscure and indeed Boole
himself did not necessarily regard logic directly as a mathematical concept. How-
ever, the step of finding common themes within two such concepts and unifying
them into one has been a powerful tool in mathematics, allowing more general think-
ing about seemingly diverse objects. It was not until 1937 that Claude Shannon, then
a student of both electrical engineering and mathematics, saw the potential of using
Boolean algebra to represent and manipulate digital information [60].

Definition 21. A binary operation � on some set A is a function

� : A×A → A

while a unary operation � on A is a function

� : A → A.

Definition 22. Define a set B = {0,1} on which there are two binary operators ∧
and ∨ and a unary operator ¬. The members of B act as identity elements for ∧ and
∨. These operators and identities are governed by a number of axioms which should
look familiar:

20 1 Mathematical Preliminaries

equivalence x ↔ y ≡ (x → y)∧ (y → x)
implication x → y ≡ ¬x∨ y
involution ¬¬x ≡ x
idempotency x∧ x ≡ x
commutativity x∧ y ≡ y∧ x
association (x∧ y)∧ z ≡ x∧ (y∧ z)
distribution x∧ (y∨ z) ≡ (x∧ y)∨ (x∧ z)
de Morgan’s ¬(x∧ y) ≡ ¬x∨¬y
identity x∧1 ≡ x
null x∧0 ≡ 0
inverse x∧¬x ≡ 0
absorption x∧ (x∨ y) ≡ x
idempotency x∨ x ≡ x
commutativity x∨ y ≡ y∨ x
association (x∨ y)∨ z ≡ x∨ (y∨ z)
distribution x∨ (y∧ z) ≡ (x∨ y)∧ (x∨ z)
de Morgan’s ¬(x∨ y) ≡ ¬x∧¬y
identity x∨0 ≡ x
null x∨1 ≡ 1
inverse x∨¬x ≡ 1
absorption x∨ (x∧ y) ≡ x

We call the ∧, ∨ and ¬ operators NOT, AND and OR respectively.

Notice how this description of a Boolean algebra unifies the concepts of proposi-
tional logic and set theory: 0 and false and /0 are sort of equivalent, as are 1 and true
and U . Likewise, x∧ y and A∩B are sort of equivalent, as are x∨ y and A∪B and
¬x and A: you can even draw Venn diagrams to illustrate this fact. It might seem
weird to see the statement

x∨ x = x

written down but we know what it means because the axioms allow one to manipu-
late the statement as follows:

x∨ x = (x∨ x)∧1 (identity)
= (x∨ x)∧ (x∨¬x) (inverse)
= x∨ (x∧¬x) (distribution)
= x∨0 (inverse)
= x (identity)

Also notice that the ∧ and ∨ operations in a Boolean algebra behave in a similar
way to · and + in a numerical algebra; for example we have that x ∨ 0 = x and
x ∧ 0 = 0. As such, ∧ and ∨ are often termed (and written as) the “product” and
“sum” operations.

1.3 Boolean Algebra 21

1.3.1 Boolean Functions

Definition 23. In a given Boolean algebra over the set B, a Boolean function f can
be described as

f : B
n → B.

That is, it takes an n-tuple of elements from the set as input and produces an element
of the set as output.

This definition is more or less the same as the one we encountered earlier. For ex-
ample, consider a function f that takes two inputs whose signature we can write
as

f : B
2 → B

so that for x,y,z ∈ B, the input is a pair (x,y) and the output for a given x and y is
written z = f (x,y). We can define the actual mapping performed by f in two ways.
Firstly, and similarly to the truth tables seen previously, we can simply enumerate
the mapping between inputs and outputs:

x y f (x,y)
0 0 0
0 1 1
1 0 1
1 1 0

However, with a large number of inputs this quickly becomes difficult so we can
also write f as a Boolean expression

f : B
2 → B, f (x,y) = (¬x∧ y)∨ (x∧¬y)

which describes the operation in a more compact way.
If we require more than one output, say m outputs, from a given function, we can

think of this just m separate functions each of which produces one output from the
same inputs. For example, taking m = 2 a function with the signature

g : B
2 → B

2

can be split into two functions

g0 : B
2 → B

g1 : B
2 → B

so that the outputs of g0 and g1 are grouped together to form the output of g. We can
again specify the functions either with a truth table

22 1 Mathematical Preliminaries

x y g0(x,y) g1(x,y)
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

or a pair of expressions

g0 : B
2 → B, g0(x,y) = (¬x∧ y)∨ (x∧¬y)

g1 : B
2 → B, g1(x,y) = (x∧ y)

such that the original function g can be roughly described as

g(x,y) = (g0(x,y),g1(x,y)).

This end result is often termed a vectorial Boolean function: the inputs and outputs
are vectors over the set B rather than single elements of the set.

1.3.2 Normal Forms

Definition 24. Consider a Boolean function f with n inputs, for example f (x0,x1, . . . ,
xn−1).

When the expression for f is written as a sum (i.e., OR) of terms which each
comprise the product (i.e., AND) of a number of inputs, it is said to be in disjunctive
normal form or Sum of Products (SoP) form; the terms in this expression are
called the minterms. Conversely, when the expression for f is written as a product
(i.e., AND) of terms which each comprise the sum (i.e., OR) of a number of inputs,
it is said to be in conjunctive normal form or Product of Sums (PoS) form; the
terms in this expression are called the maxterms.

This is a formal definition for something very simple to describe by example. Con-
sider a function f which is described by

x y f (x,y)
0 0 0
0 1 1
1 0 1
1 1 0

The minterms are the second and third rows of this table, the maxterms are the first
and fourth lines. An expression for f in SoP form is

fSoP(x,y) = (¬x∧ y)∨ (x∧¬y).

Notice how the terms ¬x∧ y and x∧¬y are the minterms of f : when the term is 1
or 0, the corresponding minterm is 1 or 0. It is usually crucial that all the variables

1.4 Number Systems 23

appear in all the minterms so that the function is exactly described. To see why this
is so, consider writing an incorrect SoP expression by removing the reference to y
from the first minterm so as to get

(¬x)∨ (x∧¬y).

Since ¬x is 1 for the first and second rows, rather than just the second as was the
case with ¬x∧ y, we have described another function f ′ 	= f with the truth table

x y f ′(x,y)
0 0 1
0 1 1
1 0 1
1 1 0

In a similar way to above, we can construct a PoS expression for f as

fPoS(x,y) = (x∨ y)∧ (¬x∨¬y).

In this case the terms x∨ y and ¬x∨¬y are the maxterms. To verify that the two
forms represent the same function, we can apply de Morgan’s axiom to get

fPoS(x,y) = (x∨ y)∧ (¬x∨¬y)
= (¬x∧¬y)∨ (x∧ y) (de Morgan’s).

Although this might not seem particularly interesting at first glance, it gives us quite
a powerful technique. Given a truth table for an arbitrary function, we can construct
an expression for the function simply by extracting either the minterms or maxterms
and constructing standard SoP or PoS forms.

1.4 Number Systems

Definition 25. One can write an integer x as

x = ±
n−1

∑
i=0

xi ·bi

where each xi is taken from the digit set D = {0 . . .b− 1}. This is called the base-
b expansion of x; the selection of b determines the base or radix of the number
system x is written in. The same integer can be written as

x = ±(x0,x1, . . . ,xn−1)(b)

which is called the base-b vector representation of x.

24 1 Mathematical Preliminaries

Definition 26. We use x(b) to denote the integer literal x in base-b. Where it is not
clear, we use |x(b)| to denote n, the number of digits in the base-b expansion of x. At
times this might look a little verbose or awkward, however it allows us to be exact
at all times about the meaning of what we are writing.

We are used to working in the decimal or denary number system by setting b =
10, probably because we (mostly) have ten fingers and toes. In this case, we have
that xi ∈ {0 . . .9} with each digit representing a successive power of ten. Using this
number system we can easily write down integers such as

123(10) = 1 ·102 +2 ·101 +3 ·100.

Note that for all y, we define y0 = 1 and y1 = y so that in the above example 100 = 1
and 101 = 10. Furthermore, note that we can also have negative values of i so, for
example, 10−1 = 1/10 and 10−2 = 1/100. Using this fact, we can also write down
rational numbers such as

123.3125(10) = 1 ·102 +2 ·101 +3 ·100 +3 ·10−1 +1 ·10−2 +2 ·10−3 +5 ·10−4.

Of course, one can select other values for b to represent x in different bases. Com-
mon choices are b = 2, b = 8 and b = 16 which form the binary, octal and hex-
adecimal number systems. Irrespective of the base, integer and rational numbers
are written using exactly the same method so that

123(10) = 1 ·26 +1 ·25 +1 ·24 +1 ·23 +1 ·21 +1 ·20

= 1111011(2)

and

123.3125(10) = 1 ·26 +1 ·25 +1 ·24 +1 ·23 +1 ·21 +1 ·20 +1 ·2−2 +1 ·2−4

= 1111011.0101(2).

The decimal point we are used to seeing is termed the binary point in this case.
Considering rational numbers, depending on the base used there exist some values
which are not exactly representable. Informally, this is obvious since when we write
1/3 as a decimal number we have 0.3333r(10) with the appended letter r meaning
that the sequence recurs infinitely. Another example is 1/10 which can be written
as 0.1(10) but is not exactly representable in binary, the closest approximation being
0.000110011r(2).

There are several properties of the binary expansion of numbers that warrant a
brief introduction. Firstly, the number of digits set to 1 in a binary expansion of some
value x is called the Hamming weight of x after Richard Hamming, a researcher at
Bell Labs. Hamming also introduced the idea of the distance between two values
which captures how many digits differ; this is named the Hamming distance. For
example, consider the two values

1.4 Number Systems 25

x = 9(10) = 1 ·23 +0 ·22 +0 ·21 +1 ·20 = 1001(2)
y = 14(10) = 1 ·23 +1 ·22 +1 ·21 +0 ·20 = 1110(2).

The Hamming weights of x and y, say H(x) and H(y), are 2 and 3 respectively; the
Hamming distance between x and y is 3 since three bits differ.

Using the hexadecimal numbers system is slightly complicated by the fact we
are used to only using the ten decimal digits 0 . . .9 yet need to cope with sixteen
hexadecimal digits. As a result, we use the letters A . . .F to write down the base-10
numbers 10 . . .15. This means we have

7B(16) = 7 ·161 + B ·160

= 7 ·161 + 11 ·160

= 123(10) .

Each octal or hexadecimal digit represents exactly three or four binary digits respec-
tively; using this shorthand one can more easily write and remember long vectors of
binary digits.

Aside from the issue of not being able to exactly represent some rational numbers
in some bases, it is crucial to realise that an actual number x and how we represent
it are largely independent. For example we can write any of

123(10) = 1111011(2)
= 173(8)
= 7B(16)

yet they all represent the same number, they still mean the same thing, exactly the
same rules apply in all bases even if they seem unnatural or unfamiliar. The choice
of base then is largely one of convenience in a given situation, so we really want to
select a base suitable for use in the context of digital computers and computation.

1.4.1 Converting Between Bases

Considering just integers for the moment, converting between different bases is a
fairly simple task. Algorithm 1.1 demonstrates how it can be achieved; clearly we
need to be able to do arithmetic in both bases for it to be practical. Simply put,
we extract one digit of the result at a time. As an example run, consider converting
123(10) into binary, i.e., x = 123, b̂ = 10 and b̄ = 2:

26 1 Mathematical Preliminaries

Input: An integer number x represented in base-b̂.
Output: The same number represented in base-b̄.

INTEGER-BASE-CONVERT(x, b̂, b̄)1

i ← 02

t ← x3

if x < 0 then4

t ← −t5

r ← 06

while t 	= 0 do7

m ← t mod b̄8

t ← �t/b̄�9

r ← r +(m · b̄i)10

i ← i+111

if x < 0 then12

r ← −r13

return r14

end15

Algorithm 1.1: An algorithm for converting integers from representation in one base to another.

Input: A rational number x represented in base-b̂, an integer d determining the
number of digits required.

Output: The same number represented in base-b̄.

FRACTION-BASE-CONVERT(x, b̂, b̄,d)1

i ← 12

t ← x3

if x < 0 then4

t ← −t5

r ← 06

while t 	= 0 and i < d do7

m ← t · b̄8

n ← �m�9

r ← r +(n · b̄−(i+1))10

t ← m−n11

i ← i+112

return r13

end14

Algorithm 1.2: An algorithm for converting the fractional part of a rational number from one
base to another.

1.4 Number Systems 27

i m t r

− − 123(10) 0000000(2) = 0
0 1 61(10) 0000001(2) = 20

1 1 30(10) 0000011(2) = 20 +21

2 0 15(10) 0000011(2) = 20 +21

3 1 7(10) 0001011(2) = 20 +21 +23

4 1 3(10) 0011011(2) = 20 +21 +23 +24

5 1 1(10) 1111011(2) = 20 +21 +23 +24 +25

6 1 0(10) 1111011(2) = 20 +21 +23 +24 +25 +26

One can see how the result is built up a digit at a time by finding the remainder of
x after division by the target base. Finally, if the input was negative we negate the
accumulated result and return it.

Dealing with rational numbers is more tricky. Clearly we can still convert the
integer part of such a number using Algorithm 1.1. The problem with using a similar
approach with the fractional part is that if the number cannot be represented exactly
in a given base, our loop to generate digits will never terminate. To cope with this
Algorithm 1.2 takes an extra parameter which determines the number of digits we
require. As another example, consider the conversion of 0.3125(10) into four binary

digits, i.e., x = 0.3125, b̂ = 10, b̄ = 2 and d = 4:

i n t r

− − 0.3125(10) 0.0000(2) = 0
1 1 0.6250(10) 0.0100(2) = 2−2

2 0 0.2500(10) 0.0100(2) = 2−2

3 1 0.5000(10) 0.0101(2) = 2−2 +2−4

On each step, we move one digit across to the left of the fractional point by multi-
plying by the target base. This digit is extracted using the floor function; �x� denotes
the integer part of a rational number x. Then, so we can continue processing the rest
of the number, we remove the digit to the left of the fractional point by subtract-
ing it from our working accumulator. We already set the sign of our number when
converting the integer part of the input so we do not need to worry about that.

1.4.2 Bits, Bytes and Words

Concentrating on binary numbers, a single binary digit is usually termed a bit. To
represent numbers we group together bits into larger sequences; we usually term
these binary vectors.

Definition 27. An n-bit binary vector or bit-vector is a member of the set B
n where

B = {0,1}, i.e., it is an n-tuple of bits. We use xi to denote the i-th bit of the binary

28 1 Mathematical Preliminaries

vector x and |x| = n to denote the number of bits in x. Instead of writing out x ∈ B
n

fully as the n-tuple (x0,x1, . . . ,xn−1) we typically just list the digits in sequence.

For example, consider the following bit-vector

(1,1,0,1,1,1,1)

which can be less formally written as

1111011

and has seven bits in it. Note that there is no notation for what base the number is in
and so on: this is not a mistake. This is just a vector of binary digits, in one context
it could be representing a number but in another context perhaps it represents part
of an image: there is a clear distinction between a number x and the representation
of x as a bit-vector.

Definition 28. We use the concatenation operator (written as x : y) to join together
two or more bit-vectors; for example 111 : 1011 describes the bit-vector 1111011.

We do however need some standard way to make sure we know which bits in the
vector represent which bits from the more formal n-tuple; this is called an endi-
anness convention. Usually, and as above, we use a little-endian convention by
reading the bits from right to left, giving each bit is given an index. So writing the
number 1111011(2) as the vector 1111011 we have that

x0 = 1
x1 = 1
x2 = 0
x3 = 1
x4 = 1
x5 = 1
x6 = 1

If we interpret this vector as a binary number, it therefore represents 1111011(2) =
123(10). In this case, the right-most bit (bit zero or x0) is termed the least-significant
while the left-most bit (bit n−1 or xn−1) is the most-significant. However, there is
no reason why little-endian this is the only option: a big-endian naming convention
reverses the indices so we now read them left to right. The left-most bit (bit zero
or x0) is now the most-significant and the right-most (bit n−1 or xn−1) is the least-
significant. If the same vector is interpreted in big-endian notation, we find that

1.4 Number Systems 29

x0 = 1
x1 = 1
x2 = 1
x3 = 1
x4 = 0
x5 = 1
x6 = 1

and if interpreted as a binary number, the value now represents 1101111(2) =
111(10).

We have special terms for certain length vectors. A vector of eight bits is termed
a byte (or octet) while a vector of four bits is a nibble (or nybble). A given context
will, in some sense, have a natural value for n. Vectors of bits which are of this
natural size are commonly termed words; one may also see half-word and double-
word used to describe (n/2)-bit and 2n-bit vectors. The word size is a somewhat
vague concept but becomes clear with some context. For example, when you hear
a computer processor described as being 32-bit or 64-bit this is, roughly speaking,
specifying that the word size is 32 or 64 bits. Nowadays, the word size of a processor
is normally a power-of-two since this simplifies a number of issues. But this was not
always the case: the EDSAC computer used a 17-bit word since this represented a
limit in terms of expenditure on hardware !

The same issues of endianness need consideration in the context of bytes and
words. For example, one can regard a 32-bit word as consisting of four 8-bit bytes.
Taking W , X , Y and Z as bytes, we can see that the word can be constructed two
ways. Using a little-endian approach, Z is byte zero, Y is byte one, X is byte two and
W is byte three; we have the word constructed as W : X : Y : Z. Using a big-endian
approach the order is swapped so that Z is byte three, Y is byte two, X is byte one
and W is byte zero; we have the word constructed as Z : Y : X : W .

1.4.3 Representing Numbers and Characters

The sets Z, N and Q are infinite in size. But so far we have simply written down such
numbers; our challenge in using them on a computer is to represent the numbers
using finite resources. Most obviously, these finite resources place a bound on the
number of digits we can have in our base-b expansion.

We have already mentioned that modern digital computers prefer to work in bi-
nary. More specifically, we need to represent a given number within n bits: this
includes the sign and the magnitude which combine to form the value. In discussing
how this is achieved we use the specific case of n = 8 by representing given numbers
within a byte.

30 1 Mathematical Preliminaries

Decimal BCD Encoding

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Table 1.1 A table showing a standard BCD encoding system.

1.4.3.1 Representing Integer Numbers

The Binary Coded Decimal (BCD) system is one way of encoding decimal digits
as binary vectors. Believe it or not, there are several standards for BCD. The most
simple of these is called Simple Binary Coded Decimal (SBCD) or BCD 8421:
one represents a single decimal digit as a vector of four binary digits according to
Table 1.1. So for example, the number 123(10) would be represented (with spacing
for clarity) by the vector

0001 0010 0011.

Clearly there are some problems with BCD, most notably that there are six unused
encodings, 1010 . . .1111, and hence the resulting representation is not very compact.
Also, we need something extra at the start of the encoding to tell us if the number
is positive or negative. Even so, there are applications for this sort of scheme where
decimal arithmetic is de rigueur.

Consigning BCD to the dustbin of history, we can take a much easier approach
to representing unsigned integers. We simply let an n-bit binary vector represent our
integer as we have already been doing so far. In such a representation an integer x
can take the values

0 ≤ x ≤ 2n −1.

However, storing signed integers is a bit more tricky since we need some space to
represent the sign of the number. There are two common ways of achieving this: the
sign-magnitude and twos-complement methods.

The sign-magnitude method represents a signed integer in n bits by allocating
one bit to store the sign, typically the most-significant, and n−1 to store the magni-
tude. The sign bit is set to one for a negative integer and zero for a positive integer
so that x is expressed as

x = −1xn−1 ·
n−2

∑
i=0

xi ·2i.

1.4 Number Systems 31

Hence we find that our example is represented in eight bits by

01111011 = +1 · (26 +25 +24 +23 +21 +20) = +123(10)

while the negation is represented by

11111011 = −1 · (26 +25 +24 +23 +21 +20) = −123(10).

In such an n-bit sign-magnitude representation, an integer x can take the values

−2n−1 −1 ≤ x ≤ +2n−1 −1.

For our 8-bit example, this means we can represent −127 . . .+127.
Note that in a sign-magnitude representation there are two versions of zero,

namely ±0. This can make constructing arithmetic a little more tricky than it might
otherwise be. As alternative to this approach, the twos-complement representation
removes the need for a dedicated sign bit and thus the problem of there being two
versions of zero. Essentially, twos-complement defines the most-significant bit of
an n-bit value to represent −2n−1 rather than +2n−1. Thus, an integer x is written as

x = xn−1 ·−2n−1 +
n−2

∑
i=0

xi ·2i.

Starting with the value
+123(10) = 01111011

we obtain the twos-complement negation as

−123(10) = 10000101

since
−123(10) = 1 ·−27 +1 ·22 +1 ·20.

The range of values in an n-bit twos-complement representation is slightly different
than using sign-magnitude; an integer x can represent the values in the range

−2n−1 ≤ x ≤ +2n−1 −1.

So for our 8-bit example, this means values in the range −128 . . . + 127 with the
difference from the sign-magnitude version coming as a result of there only being
one version of zero: the twos-complement of zero is zero. As you might expect,
calculating the twos-complement negation of a number can be done with a sim-
ple algorithm; we see how this works when we introduce methods for performing
arithmetic with numbers in Chapter 7.

It is crucial to realise that the representation of a number in either method is
dependent on the value of n we need to fit them in. For example, setting n = 4 the
sign-magnitude representation of −2(10) is 1010 while with n = 8 it is 10000010. A

32 1 Mathematical Preliminaries

similar argument is true of twos-complement: it is not a case of just padding zeros
onto one end to make it the right size.

1.4.3.2 Representing Characters

Imagine that we want to represent a sequence or string of letters or characters;
perhaps as used in a call to the printf function in a C program. We have already
seen how to represent integers using binary vectors that are suitable for digital com-
puters, the question is how can we do the same with characters ? Of course, this
is easy, we just need to translate from one to the other. More specifically, we need
two functions: ORD(x) which takes a character x and gives us back the correspond-
ing integer representation, and CHR(y) which takes an integer representation y and
gives us back the corresponding character. But how do we decide how the functions
should work ?

Fortunately, people have thought about this and provided standards we can
use. One of the oldest, from circa 1967, and most simple is the American Stan-
dard Code for Information Interchange (ASCII), pronounced “ass key”. ASCII
has a rich history but was originally developed to communicate between early
“teleprinter” devices. These were like the combination of a typewriter and a tele-
phone: the devices were able to communicate text to each other, before innovations
such as the fax machine. Later, but long before monitors and graphics cards existed,
similar devices allowed users to send input to early computers and receive output
from them. Table 1.2 shows the 128-entry ASCII table which tells us how charac-
ters are represented as numbers; 95 are printable characters that we can recognise
(including SPC which is short for “space”), 33 are non-printable control characters.
Originally these would have been used to control the teleprinter rather than to have
it print something. For example, the CR and LF characters (short for “carriage re-
turn” and “line feed”) would combine to move the print head onto the next line; we
still use these characters to mark the end of lines in text files. Other control charac-
ters still play a role in more modern computers as well: the BEL (short for “bell”)
characters play a “ding” sound when printed to most UNIX terminals, we have key-
boards with keys that relate to DEL and ESC (short for “delete” and “escape”) and
so on.

Given the ASCII table, we can see that for example CHR(104) = ‘h’, i.e., if we
see the integer 104 then this represents the character ‘h’. Conversely we have that
ORD(‘h’) = 104. Although in a sense any consistent translation between characters
and numbers would do, ASCII has some useful properties. Look specifically at the
alphabetic characters:

• Imagine we want to convert a character x from lower case into upper case.
The lower case characters are represented numerically as the contiguous range
97 . . .122; the upper case characters as the contiguous range 65 . . .90. So we can
convert from lower case into upper case simply by subtracting 32. For example:

CHR(ORD(‘a’)−32) = ‘A’.

1.4 Number Systems 33

y CHR(y) y CHR(y) y CHR(y) y CHR(y)
ORD(x) x ORD(x) x ORD(x) x ORD(x) x

0 NUL 1 SOH 2 ST X 3 ET X
4 EOT 5 ENQ 6 ACK 7 BEL
8 BS 9 HT 10 LF 11 V T
12 FF 13 CR 14 SO 15 SI
16 DLE 17 DC1 18 DC2 19 DC3
20 DC4 21 NAK 22 SY N 23 ET B
24 CAN 25 EM 26 SUB 27 ESC
28 FS 29 GS 30 RS 31 US
32 SPC 33 ! 34 " 35 #
36 $ 37 % 38 & 39 ’
40 (41) 42 * 43 +
44 , 45 - 46 . 47 /
48 0 49 1 50 2 51 3
52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ;
60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C
68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K
76 L 77 M 78 N 79 O
80 P 81 Q 82 R 83 S
84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 [
92 \ 93] 94 ˆ 95 _
96 ‘ 97 a 98 b 99 c

100 d 101 e 102 f 103 g
104 h 105 i 106 j 107 k
108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s
116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 {
124 | 125 } 126 ˜ 127 DEL

Table 1.2 A table describing the ASCII character encoding.

34 1 Mathematical Preliminaries

• Imagine we want to test if one character x is alphabetically before some other y
(ignoring the issue of case). The way the ASCII translation is specified, we can
simply compare their numeric representation: if we find ORD(x) < ORD(y), then
the character x is before the character y in the alphabet.

The ASCII table only has 128 entries: one represents each character with a 7-bit
binary vector, or an integer in the range 0 . . .128. However, given that an 8-bit
byte is a more convenient size, what about characters that are assigned to the range
128 . . .255 ? Strict ASCII uses the eighth bit for error correction, but some systems
ignore this and define a so-called “extended” ASCII table: characters within it are
used for special purposes on a per-computer basis: one computer might give them
one meaning, another computer might give them another meaning. For example,
characters for specific languages are often defined in this range (e.g., é or ø), and
“block” characters are included and used by artists who form text-based pictures.

The main problem with ASCII in a modern context is the lack of spare space
in the encoding: it only includes characters suitable for English, so if additional
language specific characters are required it cannot scale easily. Although some ex-
tensions of ASCII have been proposed, a new standard for extended character sets
called unicode is now more prevalent.

1.4.3.3 Representing Rational Numbers

The most obvious way to represent rational numbers is simply to allocate a number
of bits to the fractional part and the rest to the whole part. For example, given that
we have

123.3125(10) = 1111011.0101(2),

we could simply have an 11-bit value 11110110101(2) with the convention that the
four least-significant bits represent the fractional part while the rest represent the
whole part. This approach, where we have a fixed number of digits in the fractional
part, is termed a fixed-point representation. The problem however is already clear:
if we have only eight bits to store our value in, there needs to be some compromise
in terms of precision. That is, since we need seven bits for the whole part, there is
only one bit left for the fractional part. Hence, we either truncate the number as

1111011.0(2) = 123.0(10)

or perform some form of rounding. This underlines the impact of our finite re-
sources. While n limits the range of integers that can be represented, it also impacts
on the precision of rational numbers since they can only ever be approximations.

Definition 29. We say that a number x is in a base-b fixed point representation if
written as

x = ±m ·bc

where m,c ∈ Z. The value m is called the mantissa while the fixed value c is the
exponent; c scales m to the correct rational value and thus determines the number

1.4 Number Systems 35

of digits in the fractional part. Note that c is not included in the representation of x,
it is a fixed property (or parameter) across all values.

Taking the example above, setting b = 2, c = 1 and m = 11110110(2) we see that

11110110(2) ·2−1 = 1111011.0(2)
= 123.0(10).

Not many languages have built-in types for fixed point arithmetic and there are no
real standards in this area. However, despite the drawbacks, lots of applications exist
where only limited precision is required, for example in storing financial or money-
related values where typically only two fractional digits are required.

Floating point numbers are a more flexible approximation of rational numbers.
Instead of there being a fixed number of digits in the fractional and whole parts, we
let the exponent vary.

Definition 30. We say that a number x is in a base-b floating point representation
if written as

x = −1sm ·be

where m,e ∈ Z. The value m is called the mantissa while e is the exponent; s is the
sign bit used to determine the sign of the value.

Informally, such numbers look like

x = ±dd . . .dd.dd . . .dd︸ ︷︷ ︸
p digits

where there are p base-b digits in total. Roughly speaking, p relates to the precision
of the number. We say that x is normalised if it is of the form

x = ±d.dd . . .dd︸ ︷︷ ︸
p digits

such that there is a single non-zero digit to the left of fractional point. In fact, when
dealing with binary numbers if this leading digit is non-zero it must be one. Hence
we do not need to store the leading digit and hence get one bit more of precision
instead; this implicit leading digit is often called a hidden digit.

So that computers can inter-operate with common data formats, IEEE-754 of-
fers two standard floating point formats which allow one to represent floating point
numbers as bit-vectors. These two formats are termed single and double precision;
they fit into 32-bit and 64-bit representations respectively. Both formats, described
in Figure 1.3 and Listing 1.1, consist of three parts; these parts are concatenated
together to form one bit-vector. A sign-magnitude method is adopted for the whole
number in that a single bit denotes the sign.

The integer exponent and mantissa are both represented by bit-vectors. We need
the exponent to be signed so both large and small numbers can be specified; the

36 1 Mathematical Preliminaries

1-
bi

t

8-
bi

t

23
-b

it

s e m

(a) The 32-bit, single precision format.
1-

bi
t

11
-b

it

52
-b

it

s e m

(b) The 64-bit, double precision format.

Figure 1.3 Single and double precision IEEE floating point formats (as bit-fields).

1 struct ieee32
2 {
3 uint32 m : 23, // mantissa
4 e : 8, // exponent
5 s : 1; // sign
6 }
7

8 struct ieee64
9 {

10 uint64 m : 52, // mantissa
11 e : 11, // exponent
12 s : 1; // sign
13 }

Listing 1.1 Single and double precision IEEE floating point formats (as C structures).

mantissa need not be signed since we already have a sign bit for the whole number.
One might imagine that a twos-complement representation of the exponent might be
appropriate but the IEEE-754 standard uses an alternative approach called biasing.
Essentially this just means that the exponent is scaled so it is always positive; for the
single precision format this means it is stored with 127 added to it so the exponent
0 represents 2−127 while the exponent 255 represents 2+128. Although this requires
some extra decoding when operating with the values, roughly speaking all choices
are made to make the actual arithmetic operations easier.

Again consider our example number x = 123.3125(10) which in binary is x =
1111011.0101(2). First we normalise the number to get

x = 1.1110110101(2) ·26

because now there is only one digit to the left of the binary point. Recall we do not
need to store the hidden digit. So if we want a single precision, 32-bit IEEE-754
representation, our mantissa and exponent are the binary vectors

1.4 Number Systems 37

m = 11101101010000000000000
e = 10000101

while the sign bit is 0 since we want a positive number. Using space simply to
separate the three parts of the bit-vector, the representation is thus the vector

0 10000101 11101101010000000000000.

In any floating point representation, we need to allocate special values for certain
quantities which can occur. For example, we reserve particular values to represent
+∞, −∞ and NaN, or not-a-number. The values +∞ and −∞ occur when a result
overflows beyond the limits of what can be represented; NaN occurs, for example,
as a result of division by zero. For single precision, 32-bit IEEE-754 numbers these
special values are

0 00000000 00000000000000000000000 = +0
1 00000000 00000000000000000000000 = −0
0 11111111 00000000000000000000000 = +∞
1 11111111 00000000000000000000000 = −∞
0 11111111 00000100000000000000000 = NaN
1 11111111 00100010001001010101010 = NaN

with similar forms for the double precision, 64-bit format.
Finally, consider the case where the result of some arithmetic operation (or con-

version) requires more digits of precision than are available. Most people learn a
simple method for rounding in school: the value 1.24(10) is rounded to 1.2(10) us-
ing two digits of precision because the last digit is less than five, while 1.27(10) is
rounded to 1.3(10) since the last digit is greater than or equal to five. Essentially,
this rounds the ideal result, i.e., the result if one had infinite precision, to the most
suitable representable result according to some scheme which we call the round-
ing mode. In order to compute sane results, one needs to know exactly how a given
rounding mode works. IEEE-754 specification mandates the availability of four such
modes; in each case, imagine we have an ideal result x. To round x using p digits of
precision, one directly copies the digits x0 . . .xp−1. The task of the rounding mode is
then to patch the value of xp−1 in the right way. Throughout the following descrip-
tion we use decimal examples for clarity; note that essentially the same rules with
minor alterations apply in binary:

Round to nearest Sometimes termed Banker’s Rounding, this scheme alters ba-
sic rounding to provide more specific treatment when the result x lies exactly half
way between two values, i.e., when xp = 5 and all trailing digits from xp+1 on-
ward are zero:

• If xp ≤ 4, then take xp−1 and do not alter it.
• If xp ≥ 6, then take xp−1 and alter it by adding one.
• If xp = 5 and at least one of the digits xp+1 onward is non-zero, then take xp−1

and alter it by adding one.

38 1 Mathematical Preliminaries

• If xp = 5 and all of the digits xp+1 onward are zero, then alter xp−1 to the
nearest even digit. That is:
– If xp−1 ≡ 0 (mod 2), then do not alter it.
– If xp−1 ≡ 1 (mod 2), then alter it by adding one.

Again considering the case of rounding for two digits of precision we find that
1.24(10) is rounded to 1.2(10) since the p-th digit is less than than or equal to four;
1.27(10) is rounded to 1.3(10) since the p-th digit is greater than or equal to six;
1.251(10) is rounded to 1.3(10) since the p-th digit is equal to five and the (p+1)-
th digit is non-zero; 1.250(10) is rounded to 1.2(10) since the p-th digit is equal
to five, digit (p + 1) and onward are zero, and the (p− 1)-th digit is even; and
1.350(10) is rounded to 1.4(10) since the p-th digit is equal to five, digit (p + 1)
and onward are zero, and the (p−1)-th digit is odd.

Round toward +∞ This scheme is sometimes termed ceiling. In the case of a
positive number, if the p-th digit is non-zero the (p − 1)-th digit is altered by
adding one. In the case of a negative number, the p-th digit onward is discarded.
For example 1.24(10) and 1.27(10) would both round to 1.3(10) while 1.20(10)
rounds to 1.2(10); −1.24(10), −1.27(10) and −1.20(10) all round to −1.2(10).

Round toward −∞ Sometimes termed floor, this scheme is the complement of
the round toward +∞ above. That is, in the case of a positive number the p-th
digit onward is discarded. In the case of a negative number, if the p-th digit is
non-zero the (p− 1)-th digit is altered by adding one. For example, −1.24(10)
and −1.27(10) would both round to −1.3(10) while −1.20(10) rounds to −1.2(10);
1.24(10), 1.27(10) and 1.20(10) all round to 1.2(10).

Round toward zero This scheme operates as round toward −∞ for positive num-
bers and as round toward +∞ for negative numbers. For example 1.27(10),
1.24(10) and 1.20(10) round to 1.2(10); −1.27(10), −1.24(10) and −1.20(10) round
to −1.2(10).

The C standard library offers access to these features. For example the rint func-
tion rounds a floating point value using the currently selected IEEE-754 rounding
mode; this mode can be inspected using the fegetround function and set us-
ing the fesetround function. The latter two functions use the constant values
FE_TONEAREST, which corresponds to the round to nearest mode; FE_UPWARD,
which corresponds to the round toward +∞ mode; FE_DOWNWARD, which corre-
sponds to the round toward −∞ mode; and FE_TOWARDZERO, which corresponds
to the round toward zero mode.

Using a slightly cryptic program, we can demonstrate in a very practical way that
floating point representations in C work as expected. Listing 1.2 describes a C union
called ieee32 which shares space between a single precision float value called
f and a 32-bit int called i; since they share the same physical space, essentially
this allows us to fiddle with bits in i so as to provoke changes in f. The program
demonstrates this; compiling and executing the program gives the following output:

bash$ gcc -std=gnu99 -o F F.c
bash$./F
00000000

1.4 Number Systems 39

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4 #include <fenv.h>
5

6 typedef union __ieee32
7 {
8 float f;
9 uint32 i;

10 }
11 ieee32;
12

13 int main(int argc, char* argv[])
14 {
15 ieee32 t;
16

17 t.f = 2.8;
18

19 printf("%08X\n", (t.i & 0x80000000) >> 31);
20 printf("%08X\n", (t.i & 0x7F800000) >> 23);
21 printf("%08X\n", (t.i & 0x007FFFFF) >> 0);
22

23 t.i |= 0x80000000;
24 printf("%f\n", t.f);
25

26 t.i &= 0x807FFFFF;
27 t.i |= 0x40800000;
28 printf("%f\n", t.f);
29

30 t.i = 0x7F800000;
31 printf("%f\n", t.f);
32

33 t.i = 0x7F808000;
34 printf("%f\n", t.f);
35 }

Listing 1.2 A short C program that performs direct manipulation of IEEE floating point numbers.

00000080
00333333
-2.800000
-5.600000
inf
nan

The question is, what on earth does this mean ? The program first constructs an in-
stance of the ieee32 union called t and sets the floating point field to 2.8(10). The
printf statements that follow extract and print the sign, exponent and mantissa
fields of t.f by examining the corresponding bits in t.i. The output shows that
the sign field is 0(16) (i.e., the number is positive), the exponent field is 80(16) (i.e.,
after considering the bias, the exponent is 1(16)) and the mantissa field is 333333(16).
If we write this as a bit-vector as above, we have

0 10000000 01100110011001100110011

which is representing the actual value

40 1 Mathematical Preliminaries

−10 ·1.011001100110011001100110011(2) ·21

or 2.8(10) as expected. Next, the program ORs the value 80000000(16) with t.i
which has the effect of setting the MSB to one; since the MSB of t.i mirrors the
sign of t.f, we expect this to have negated t.f. As expected, the next printf
produces −2.8(10) to verify this. The program then ANDs t.iwith 807FFFFF(16)
and then ORs it with 40800000(16). The net effect is to set the exponent field of t.f
to the value 129(10) rather than 128(10) as before, or more simply to multiply the
value by two. Again as expected, the next printf produces −5.6(10) = 2 ·−2.8(10)
to verify this. Finally, the program sets t.i to the representations we would expect
for +∞ and NaN to demonstrate the output in these cases.

1.5 Toward a Digital Logic

We have already hinted that digital computers are happiest dealing with the binary
values zero and one since they can be easily mapped onto low and high electrical
signals. We have also seen that it is possible to define a Boolean algebra over the
set B = {0,1} where the meaning of the operators ∧, ∨ and ¬ is described by the
following table:

x y ¬x x∧ y x∨ y x⊕ y

0 0 1 0 0 0
0 1 1 0 1 1
1 0 0 0 1 1
1 1 0 1 1 0

Note that we have included x⊕ y to denote exclusive-or, which we call XOR. In a
sense, this is just a shorthand since

x⊕ y = (¬x∧ y)∨ (x∧¬y)

such that XOR is defined in terms of AND, OR and NOT. Now consider all the
pieces of theory we have accumulated so far:

• We know that the operators AND, OR and NOT obey the axioms outlined pre-
viously and can therefore construct Boolean expressions and manipulate them
while preserving their meaning.

• We can describe Boolean formula of the form

B
n → B

and hence also construct functions of the form

B
n → B

m

1.6 Further Reading 41

simply by having m functions and grouping their outputs together. It thus makes
sense that NOT, AND, OR and XOR can be well-defined for the set B

n as well
as B. We just define n Boolean functions such that, for example,

fi : B → B, fi(x,y) = xi ∧ yi.

So for x,y,z ∈ {0,1}n we can write zi = fi(x,y) with 0 ≤ i < n to perform the
AND operation component-wise on all the bits from x and y. In fact, we do not
bother with this long-winded approach and just write z = x∧ y to mean the same
thing.

• We know how to represent numbers as members of the set B
n and have described

how bit-vectors are just a short hand way of writing down such representations.
Since we can build arbitrary Boolean functions of the form

B
n → B

m,

the results of Shannon which show how such functions can perform arithmetic
on our number representations should not be surprising. For example, imagine
we want to add two integers together. That is, say x,y,z ∈ Z are represented as
n-bit vectors p,q,r ∈ B

n. To calculate z = x + y, all we need to do is make n
similar Boolean functions, say fi, such that ri = fi(p,q). Each function takes p
and q, the representation of x and y, as input and produces a single bit of r, the
representation of z, as output.

In short, by investigating how Boolean algebra unifies propositional logic and set
theory and how to represent numbers using sets, we have a system which is ideal for
representing and manipulating such numbers using digital components. At the most
basic level this is all a computer does: we have formed a crucial link between what
seems like a theoretical model of computation and the first step toward a practical
realisation.

1.6 Further Reading

• D. Goldberg.
What Every Computer Scientist Should Know About Floating-Point Arithmetic.
In ACM Computing Surveys, 23(1), 5–48, 1991.

• N. Nissanke.
Introductory Logic and Sets for Computer Science.
Addison-Wesley, 1998. ISBN: 0-201-17957-1.

• C. Petzold.
Code: Hidden Language of Computer Hardware and Software.
Microsoft Press, 2000. ISBN: 0-735-61131-9.

42 1 Mathematical Preliminaries

• K.H. Rosen.
Discrete Mathematics and it’s Applications.
McGraw-Hill, 2006. ISBN: 0-071-24474-3.

• J. Truss.
Discrete Mathematics for Computer Scientists.
Addison-Wesley, 1998. ISBN: 0-201-36061-6.

1.7 Example Questions

1. For the sets A = {1,2,3}, B = {3,4,5} and U = {1,2,3,4,5,6,7,8} compute the
following:

a. |A|.
b. A∪B.
c. A∩B.
d. A−B.
e. A.
f. {x : 2 · x ∈ U }.

2. For each of the following decimal integers, write down the 8-bit binary represen-
tation in sign-magnitude and twos-complement:

a. +0.
b. −0.
c. +72.
d. −34.
e. −8.
f. 240.

3. For some 32-bit integer x, explain what is meant by the Hamming weight of x;
write a short C function to compute the Hamming weight of an input value.

4. Show that
(¬x∧ y)∨ (¬y∧ x)∨ (¬x∧¬y) = ¬x∨¬y.

