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Abstract In nuclear medicine, moving charged particles are released in tissue

through either the radioactive decay processes of Chap. 4 or as a result of the

photon–matter interactions of Chap. 6. Being charged, these particles interact signi-

ficantly with the medium, transferring their kinetic energy resulting in an absorbed

dose to the medium as they slow down to thermal energies. Hence, the study of

charged particle interactions with matter is the fundamental core of ionizing radiation

dosimetry. In this chapter, the two mechanisms of energy loss are presented. Colli-

sion energy losses between the particle and atomic electrons are derived through the

Bohr classical and the Bethe quantum-mechanical means; hard collisions losses are

derived independently from various quantum-mechanical results. Radiative energy

losses resulting from bremsstrahlung are initially derived from classical theory

which then progresses to the Bethe–Heitler quantum-mechanical theory. The polari-

zation effects of a charged particle upon the medium will limit the collision energy

losses and are derived. As energy loss is inherently stochastic, energy straggling

models are also presented. In particular, the Vavilov theory of energy straggling is

derived as are the Gaussian and Landau results which are treated limiting conditions

to that theory. Multiple scatter strongly affects electrons and positrons and the

Fermi–Eyges theory is derived as a means of justifying the Gaussian model. The

Goudsmit–Saunderson and Moliére theories of multiple scattering are derived.

Finally, the mechanisms through which a positron can annihilate on an electron are

derived.
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7.1 Introduction

It has been shown inChaps. 4 and 6 thatmoving charged

particles are products of radioactive decay and photon

scattering. 4He nuclei are emitted in a decay, moving

electrons or positrons are created in b-decay and atomic

electrons are ejected into the medium through internal

conversion or atomic relaxation processes. Compton

scatter sets electrons into motion and atomic electrons

are ejected following photoelectron absorption. These

moving charged particles slow down by transferring

energy to the medium and, as this is the cause of the

absorbed dose to tissue, charged particle–matter inter-

actions with matter will be extensively reviewed.

Charged particles interact with the atoms in the

medium they are traversing through the Coulomb

component of the Lorentz force, q(E þ v � B), by

either transferring energy to (predominantly) the

atomic electrons or else by being scattered by the

nuclear and atomic electron Coulomb fields. These

processes have markedly different consequences.

In the former, a significant fraction of kinetic energy

can be transferred to the atomic electron with, should

the incident particle have a mass m much greater than

that of the electron, negligible effect upon the projec-

tile’s trajectory. If the projectile is an electron or

positron, the large mass differential between it and

the nucleus can result in a significant deflection from

its trajectory by the nuclear Coulomb field resulting in

the emission of electromagnetic energy known as

bremsstrahlung (braking radiation).

There are two fundamental differences between

how photons and charged particles interact with matter

that should be kept in mind. Being a boson, the photon

interacts with matter through either direct absorption

by a charged particle or through second-order effects

such as Compton scatter. On the other hand, a charged

particle will interact with other charged particles at

extended distances through its surrounding Coulomb

field (or, in another picture, the exchange of photons)

resulting in the gradual transfer of energy to the

medium and the eventual stopping of the particle.

Thus, the cross section of the electromagnetic interac-

tion between a charged particle and matter will be

much greater than that for photons. This difference is

made clearly evident by comparing the 10 cm mean

free path of a 1 MeV photon in water with the few

millimeter range of a 1 MeV electron in water.1 The

second fundamental difference between how photons

and charged particles interact with matter is that, as a

photon loses energy, its wavelength will increase and

its frequency decrease but its speed remains constant.2

Because a charged particle has mass, its speed is dimi-

nished through each instance of energy exchange to the

medium until it reaches energies below the minimum

ionization level and thus attains thermal equilibrium

with the medium (although if the charged particle is

a positron, it can annihilate with an electron either in-

flight or once having been thermalized). Thus, unlike a

photon, a charged particle will have a finite range.

1The photon mean free path is the reciprocal of the linear

attenuation coefficient. The exact range of an electron in a

medium is more difficult to define as, due to multiple scatter,

its path will be tortuous.
2Assuming a constancy of photon speed ignores the frequency

dependence of the medium’s index of refraction. Such an effect,

however, is negligible for photons with sufficient energy to

ionize.
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Should the charged particle be hadronic, additional

energy loss channels become available as a result of

the strong nuclear interaction between the projectile

and the atomic nucleus. These include absorption,

nuclear excitation, and even fragmentation of either

the projectile or target nucleus. As previously dis-

cussed, the only hadron used in nuclear medicine is

the a particle in therapy. a particles emitted in radio-

active decay have kinetic energies of only a few MeV

with the result that the a particle’s penetration into

tissue is small and its kinetic energy will be transferred

to a very small volume leading to a high absorbed

dose. The low kinetic energy will also mean that it is

highly unlikely for the a particle to penetrate the

nuclear Coulomb barrier in order to reach the �1 fm

separation from the nucleus in order to interact via the

strong nuclear force and open up any nuclear energy

loss channels.3 Because there is no interest in nuclear

interactions in clinical nuclear medicine, these will be

neglected.

The mechanisms through which a moving charged

particle loses energy in a medium through collisions

can be broadly characterized in terms of the impact

parameter, b, which is the perpendicular distance

between the projectile’s trajectory and a scattering cen-

ter, such as an atom, as shown in Fig. 7.1 (in Bethe’s

theory, this categorization is in terms of the momentum

transfer q which is approximately related to the impact

parameter via b � �hc=q). For large impact parameters

(i.e., b much greater than the atomic radius), the inci-

dent particle will interact with the atom as whole. The

atom can be temporarily polarized (i.e., the electron

cloud displaced from its equilibrium position) or atomic

electrons excited into empty quantum states or, infre-

quently, into the continuum. As only small amounts of

energy are transferred to the atom in such an encounter,

it is described as a soft collision.

If b is comparable to atomic dimensions, the parti-

cle will interact with a single atomic electron rather

than the entire ensemble. This knock on or hard colli-

sion can result in the transfer of substantial energy to

the atomic electron which can be ejected, leading to

the atom’s ionization and subsequent relaxation pro-

cesses. The ejected electron, also referred to as a d ray,
is capable of carrying energy a considerable distance

away from the event site, a feature of considerable

practical importance in dosimetry calculations. As

the energy transfer in this collision type is high, the

interaction can be well-approximated using the

assumption that the atomic electron is unbound.

Because it is more likely that a given charged particle

will be at an extended distance from a given atom

rather than in close proximity to it, the probability of

a soft collision occurring is high and that of a hard

collision will be much lower. However, the net energy

transfers due to soft and hard collisions are roughly

equal in that the cumulative energy transferred

through high-probability low energy transfers is

approximately equal to that for low-probability high-

energy transfers.

If the impact parameter b is much smaller than

atomic dimensions, the particle interacts with the

nucleus rather than the atomic electrons. A light inci-

dent particle, such as an electron or positron, can be

deflected violently from its trajectory by the nuclear

Coulomb field. An accelerated electric charge will

emit electromagnetic radiation. This radiation is

known as bremsstrahlung with the kinetic energy lost

by the projectile carried away by the photon (assuming

negligible nuclear recoil). The bremsstrahlung energy

spectrum is continuous and decreases with increasing

photon energy, thus reflecting the higher probability of

small deflections and a greater production yield of low

energy (or “soft”) photons. The maximum bremsstrah-

lung photon energy in the spectrum equals the kinetic

energy of the incident charged particle and is the result

of the stopping of the particle and the complete con-

version of its kinetic energy to radiation (assuming,

again, zero nuclear recoil).

An obvious metric of interest in describing the

energy loss of a moving charged particle is the rate,

ze

Atom

b

q

Fig. 7.1 Definition of the impact parameter b during an inter-

action between a passing charged particle and an atom

3Although it is possible for an a particle to penetrate the

Coulomb barrier through quantum tunneling, but the likelihood

of this occurring at kinetic energies of a few MeV typical of

therapeutic nuclear medicine is extremely small.
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averaged over many particles, at which energy is trans-

ferred to the medium per unit path length. This ratio is

known as the linear stopping power.4 So as to remove

the influence of the medium’s physical density, it is

useful to define the mass stopping power as the linear

stopping power normalized to the physical density of

the medium. Stopping powers due to soft and hard

collisions with atomic electrons are summed to yield

the collision stopping power.5 The radiative stopping

power is a measure of the rate of energy loss due to

bremsstrahlung alone and the total collision stopping

power is given by the sum of the collision and radiative

stopping powers. As alluded to above, a refinement to

the collision stopping power of significant practical

interest to radiation dosimetry considers only that

energy deposited locally (i.e., neglecting the energy

carried away by a d ray). The restricted stopping

power, or linear energy transfer, is that fraction of the

collision stopping power in which the kinetic energy of

the d ray is less than a specified cut-off value D.
Because a charged particle loses energy as it pene-

trates a medium, it slows down and (excluding positron

annihilation in-flight or the nuclear absorption of hadro-

nic projectiles) is eventually stopped. The range of the

charged particle can be calculated as the integral of

the reciprocal of the linear stopping power between

the limits of zero and its initial kinetic energy. This is

known as the continuous slowing-down approximation

(CSDA) range. There are other refinements of the parti-

cle range which reflect the stochastic nature of a large

number of interactions and multiple scattering events

and these will be discussed. Both the stopping power

and CSDA range are mean quantities resulting from

large numbers of individual interactions which involve

the transfer of small amounts of energy and small angle.

As with the discussion of photon interactions with

matter in the previous chapter, the quantitative examples

of charged particle interactions provided will be those of

carbon (Z ¼ 6) and lead (Z ¼ 82) media. Extension of

these elemental results to compound media such as soft

tissue and bone is provided through Bragg’s additivity

rule. As the charged particles of interest to nuclear medi-

cine are electrons, positrons, anda particles, thesewill be
emphasized in these discussions.6

7.2 Coulomb Scattering With no Energy
Transfer to the Medium

7.2.1 Introduction

Interactions between a charged particle and matter are

frequently categorized in terms of elasticity. Whether

or not a given collision can be defined as being elastic

or inelastic depends upon the number of degrees-

of-freedom available to the system. For example, the

Coulomb scatter of an electron by a free electron (Møller

scatter) is elastic as the kinetic energy lost by the projectile

electron is made manifest as the target electron’s postcol-

lision kinetic energy. Similarly, a charged particle, having

been scattered froman infinitely-massive scattering center

is considered to have been elastically scattered as it retains

its kinetic energy. In both of these cases, the pre- and

postcollision (or sum of postcollision) kinetic energies

are equal. Despite both being elastic,Møller scatter results

in the transfer of energy to the mediumwhereas Coulomb

scatter from an infinitely-massive scattering center does

not. On the other hand, if the target electron in Møller

scatter is an atomic electron bound to a nucleus, additional

energy channels of ionization or excitation will arise and

not all of the lost incident energywill appear in the exiting

electron’s kinetic energy7 and, as such, the scatter from an

atomic electron is referred to as inelastic scatter. While

inelastic scatter will always result in the transfer of energy

to the medium, only some elastic scatters can (e.g., the

projectile and target masses are comparable). Hence, for

dosimetry purposes, it is more reasonable to characterize

charged particle scattering processes in terms of whether

or not they result in the transfer of energy to the medium

rather than elasticity.

4It has been argued that this nomenclature incorrect as the ratio

has the units of force (i.e., 1 N ¼ 1 J/m) rather than power (i.e.,

1 W ¼ 1 J/s). While this proposal is dimensionally correct, it

does not seem realistic to accept it given the decades-long use of

the term stopping power in the context of a charged particle

slowing down.
5Also called the electronic stopping power.

6Protons will also figure in these derivations due to their histori-

cal significance.
7While, strictly speaking, such an interaction would be consid-

ered inelastic, a hard collision can be modeled as being elastic if

the projectile’s incident kinetic energy sufficiently exceeds the

electron binding energy such that the latter can be ignored.
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7.2.2 Elastic Coulomb Scatter

7.2.2.1 Spin-0 Projectiles

Unscreened Potential (Rutherford Scatter)

This was previously studied to yield the differential

cross sections of theCoulomb scatter of a spin-0 charged

projectile from an infinitely-massive charged scattering

center given by (3.61), (3.62), and (3.65).

Screened Potential

The elastic Coulomb scatter differential cross sections

in solid angle of (3.61) and (3.62) for an unscreened

Coulomb potential diverge as y! 0. This problem can

be managed by recalling that small scattering angles

are associated with large impact parameters through

the relationship b / cot y=2. At large impact para-

meters, the projectile will find the nuclear Coulomb

potential screened by the atomic electrons: the screen-

ing parameter k used in the derivation of the scattering

amplitude and appearing in the integral of (3.58) is non-

zero. Repeating the derivation of (3.61) with k 6¼ 0

results in,

dsRuth

dO
¼ 1

4

zZ a�hc
pb

� �2

�hck
2p

� �2

þ sin2
y
2

" #2

¼ 1

4

zZ a�hc
pb

� �2

�lk
2

� �2

þ sin2
y
2

" #2 Screened potential

(7.1)

where �l ¼ �hc=p is the reduced de Broglie wavelength

of the projectile. Equation (7.1) can, for later conve-

nience in the discussion of multiple elastic Coulomb

scatter, be rewritten in the form using the half-angle

identity, sin y=2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos yð Þ=2p

,

dsRuth

dO
¼

zZ a�hc
pb

� �2

w2o
2
þ 1� cos y

� �2 (7.2)

where the effect of screening is described by the

dimensionless parameter, w0 ¼ �lk, the nature of

which can be identified by rewriting the differential

cross section in the small-angle approximation,

dsRuth

dO
¼4

zZah�c
pb

� �2
w20þy2
	 
2

ðSmall - angle approximation; screened potential


:

(7.3)

w0 can be interpreted as a screening angle and repre-

sents a minimum scattering angle so that the differen-

tial cross section remains finite as the scattering angle

y ! 0,

dsRuth

dO
! 4

zZ a�hc
pb

� �2
w40

as y ! 0 (7.4)

as shown schematically in Fig. 7.2.

An expression for the screening angle w0 can be

derived using the statistical Thomas–Fermi model of

the atom by first equating k to the reciprocal of that

model’s atomic radius which is,

RTF ¼ 1

2

3p
4

� �2=3
r1
Z1=3

� 0:885
r1
Z1=3

:

(7.5)

Unscreened

Screened

0o 45o 90o 135o 180o

Scattering Angle

lo
g

d
s

d
W

Fig. 7.2 Representative plot of screened and unscreened elastic

Coulomb scatter differential cross section for spin-0 charged

particles
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From the definition of w0,

w0 ¼ �lk

¼ �l
RTF

� 1:130
�l
a1

� �
Z1=3

(7.6)

This expression for the screening angle w0 is plot-
ted in Fig. 7.3 for electrons in carbon as a function of

electron kinetic energy. The range of electron kinetic

energies shown in this graph is typical of that fol-

lowing Compton scatter, photoelectric absorption, or

b-decay in nuclear medicine applications. It can be

seen that for electrons with a kinetic energy of

50 keV or higher, the screening angle is less than

about 30 mrad.

Mean Free Path Between Elastic Scatters

Using the above results, it is possible to evaluate the

mean free path between each elastic scatter. This

quantity, which is also referred to as the macroscopic

cross section, is of particular importance in that it is

equal to the reciprocal of the probability of an elastic

scatter occurring per unit pathlength, or,

lRuth ¼ A

rNAsRuth

� �
(7.7)

where NA is Avogadro’s number, A is the atomic

number of the medium and r is its physical density.

The total Rutherford cross section is found by integrat-

ing the Rutherford cross section over a solid angle of

4p steradians,

sRuth ¼
ð
dO

dsRuth

dO

¼ 2p
zZ a�hc
pb

� �2 ð1
�1

d cos yð Þ
w2
0

2
þ 1� cos y

h i2
(7.8)

to give,

sRuth ¼ zZ a�hc
pb

� �2
16p

w20 w20 þ 4
	 
 : (7.9)

Figure 7.4 shows the elastic scatter mean free path

as a function of electron kinetic energy in a medium

representative of carbon (i.e., Z ¼ 6, A ¼ 12 and

r ¼ 2 g/cm3).

The combination of this small mean free path

length and the y�4 dependence of the Rutherford

cross section leads to the dominance of forward-

directed multiple elastic scattering of charged particles

traversing a medium.

Elastic Scatter from an Atom

Instead of modeling the atom as a nucleus of infinite

mass with the surrounding atomic electrons treated as

a continuous screening function in radial distance

through the use of a Yukawa-type potential, it is pos-

sible to explicitly calculate for the discrete contribu-

tions of the atomic electrons. Spin is still neglected.

The combined interaction potential is the sum of the

Coulomb potentials due to the nucleus and the indi-

vidual atomic electrons,

U ¼ z a�hc
Z

R
�
XZ
j¼1

1

R� rj
�� ��

" #
(7.10)

where R is the position vector of the projectile and rj is

that of the jth electron. The origin of the system is fixed

at the center of the atomic nucleus and the overall

system vector is r ¼ (R,r1,r2 . . . rZ). The pre- and

300

250

200

150

100

50

0
0 50 100 150

Electron Kinetic Energy, Te (keV)

S
cr

ee
n

in
g

 A
n

g
le

, c
0   (m

ra
d

)

200 250

Fig. 7.3 Screening angle for electrons in carbon (neglecting

spin)

214 7 Charged Particle Interactions with Matter



postscattering states of the projectile-atom system are,

in bra-ket notation,

rh jp; 0i ¼ 1ffiffiffiffiffi
L3

p ei
p�R
�hc 0j i

¼ 1ffiffiffiffiffi
L3

p ei
p�R
�hc c0 r1; r2; . . . rZð Þ

(7.11)

and

rh jp0; 0i ¼ 1ffiffiffiffiffi
L3

p ei
p0�R
�hc c0 r1; r2; . . . rZð Þ (7.12)

where c0 r1; r2; . . . rZð Þ is the ground state atomic

wavefunction and L3 is the usual volume containing

the system and which is to be used for normalization.

As the scatter is elastic, the atomic ground state wave-

function appears in both initial and final system states.

The differential cross section is obtained in the usual

way from the transition rate given by Fermi’s Golden

Rule No. 2,

lfi ¼ 2p
�h

p0; 0h jU p; 0j ij j2rf
where the phase space factor rf is the density of final

states per energy interval dT,

rf dT
0 ¼ L

2p�hc

� �3
d3p0: (7.13)

By expanding the vector differential d3p0,

rf dT
0 ¼ L

2p�hc

� �3

2pp02 dp0 d cos yð Þ

¼ 1

4p2
L

�hc

� �3

p02 dp0 d cos yð Þ:
(7.14)

The phase–space factor is,

rf ¼
1

4p2
L

�hc

� �3

p02
dp0

dT0

� �
d cos yð Þ

¼ 1

4p2 b0
L

�hc

� �3

p02d cos yð Þ
(7.15)

where
	
dp0=dT0
 ¼ 1=b0 has been used. From

Chap. 3, d cos yð Þj j ¼ q=p2 dq, where q is the momen-

tum transfer and the phase–space factor then becomes,

rf ¼
1

4p2 b0
L

�hc

� �3
p0

p

� �2

q dq

¼ 1

4p2 b
L

�hc

� �3

q dq

(7.16)

where b ¼ b0 and p ¼ p0 due to the elasticity of

the scatter and the negligible recoil of the scattering

center.
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The matrix element for both Coulomb interactions

is next calculated for by separating the interactions

into the projectile electron and projectile-nucleus

components. The matrix element due to the Coulomb

interaction between the projectile and the atomic elec-

trons is found by expanding it in position space,8

p0;0h jU p;0j i¼
ð
d3rd3r0 p0;0h jri rh jU r0j i r0h jp;0i

¼
ð
d3rd3r0 p0;0h jriU rð Þ r0h jp;0i

¼ 1

L3

ð
d3Rei

q�R
�h

YZ
j¼1ð

d3rjc
�
0ðr1;r2 ...rZÞU rð Þ

�c0 r1;r2 ...rZð Þ

¼�za�hc
L3

YZ
j¼1ð

d3rjc
�
0

	
r1;r2 ...rZ



c0

	
r1;r2 ...rZ




�
ð
d3R

ei
q�R
�hc

R�rj
�� ��

¼�za�hc
L3

YZ
j¼1ð

d3rjc
�
0

	
r1;r2 ...rZ



c0

	
r1;r2 ...rZ




�
ð
d3R

0 ei
q� R

0 þrjð Þ
�hc

R
0�� ��

¼� za�hc
L3

YZ
j¼1ð

d3rjc
�
0

	
r1;r2 ...rZ



c0

	
r1;r2 ...rZ




�ei
q�rj
�h

ð
d3R

0 ei
q�R0
�hc

R
0�� �� ð7:17Þ

The solution to the integral was given by (3.59) and

the matrix element is,

p0; 0h jU p; 0j i ¼ �4p
z a�hc
L3

�hc

q

� �2YZ
j¼1ð

d3rj c
�
0 r1; r2 . . . rZð Þ

� ei
q�rj
�hc c0 r1; r2 . . . rZð Þ

¼ �4p
z a�hc
L3

�hc

q

� �2

0
XZ
j¼1

ei
q�rj
�hc

�����
�����0

* +

¼ �4p
z a�hc
L3

�hc

q

� �2

F0 q;Zð Þ ð7:18Þ

where F0 q;Zð Þ is the elastic scattering form factor,

which was seen before in the derivation of the photon

coherent scatter cross section (and in a different guise

in elastic scatter from the nucleus). Assuming a con-

tinuous electron spatial distribution rather than the

discrete set of above, the form factor is the Fourier

transform of the electron density. Here, the normaliza-

tion of,

F 0;Zð Þ ¼
ð
d3r reðrÞ

¼ Z

(7.19)

will be imposed. As an example, following from the

Yukawa approximation of the screened nuclear Cou-

lomb potential, the atomic electron density can be

modeled by,

reðrÞ ¼ Y e�kr (7.20)

where the normalization constant Y is found via,

ð
d3r reðrÞ ¼ Y

ð
d3r e�kr

¼ 2pY
ð1
0

dr r2 e�kr

¼ 4p
Y
k3

:

(7.21)

From these, Y ¼ k3Z=4p and the electron density

is now written in the form,

reðrÞ ¼
k3Z
4p

e�kr: (7.22)8This implicitly neglects any electrostatic correlations between

the atomic electrons.
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The expression for the elastic scattering form factor

is,

F q;Zð Þ ¼ k3Z
4p

ð
d3r e� krþi

q�r
�hcð Þ

¼ k3Z
2

ð
dr r2 e�kr

ð
d cos yð Þe�i

qr cos y
�hc

¼ k3Z
2

�hc

q

ð
dr r e�kr sin

qr

�hc

¼ Z
k4

k2 þ q
�hc

	 
2� �2 :

(7.23)

Using the momentum transfer expression of (3.52),

the elastic form factor can be written in terms of the

scattering angle as,

F0 y;Zð Þ ¼ Z
k4

k2 þ 4p2

�hcð Þ2 sin
2 y
2

� �2
¼ Z

1þ 2p
�hck sin y

2

	 
2� �2
¼ Z

1þ 2
w0
sin y

2

� �2� �2
:

(7.24)

Writing the form factor in this manner demon-

strates that F y ¼ 0;Zð Þ ¼ Z at its maximum and

decreases to Z= 1þ 4=w20
	 
2

for y ¼ p (or to zero for

the unscreened potential which corresponds to

w0 ¼ 0). Now return to the evaluation the component

of the matrix element due to the projectile-nuclear

Coulomb potential,

p0; 0h jU p; 0j i ¼
ð
d3r d3r0 p0; 0h jri rh jU r0j i r0h jp; 0i

¼ zZ a�hc
L3

ð
d3R

0 ei
	
q�R0
�hc



R0

YZ
j¼1ð

d3rj c
�
0 r1; r2 . . . rZð Þc0 r1; r2 . . . rZð Þ

¼ zZ a�hc
L3

ð
d3R

0 ei
q�R0
�hc

	 

R0

¼ 4p
zZ a�hc
L3

�hc

q

� �2

ð7:25Þ

The complete matrix element is the sum of the

projectile electron and projectile-nucleus components,

hp0; 0jUjp; 0i ¼ 4p
z a�hc
L3

�hc

q

� �2

Z� F0 q;Zð Þð Þ:
(7.26)

The transition rate is,

lfi ¼ 2p
�h

p0; 0h jU p; 0j ij j2rf

¼ 8p c
b

z a�hcð Þ2
q3L3

Z� F0 q;Zð Þj j2 dq:
(7.27)

The differential cross section in momentum trans-

fer and scattered kinetic energy is obtained from the

transition rate in the usual way by normalizing it to the

incident particle flux,

ds ¼ L3

b c
lfi (7.28)

leading to,

ds
dq

¼ 8p
q3

z a�hc
b

� �2

Z� F0 q;Zð Þj j2 (7.29)

A comparison of this result with the differential

cross section inmomentum transfer obtained previously

for a single scattering center demonstrates that the Z2

term for the unscreened potential has been replaced by

Z� F0 q;Zð Þj j2. That is, the contributions of the atomic

electrons, through interference as described by the elas-

tic scattering form factor, lead to a reduction of the

cross section and, in particular, the elastic scatter cross

section is subject to the destructive interference

between the nuclear and electronic amplitudes.

It has been seen that for zero momentum transfer

(i.e., zero scattering angle), the elastic form factor is

equal to Z. In the general case of small momentum

transfer, the elastic form factor can be expanded to

second order,

F q;Zð Þ ¼
�
0

����XZ
j¼1

ei
q�rj
�hc

����0



�
�
0

����XZ
j¼1

1þ i
q � rj
�hc

� �
� 1

2

q � rj
�hc

� �2� �����0


:

(7.30)
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As the momentum transfer is small, then cos y � 1

so q � rj � qrj. In addition, the matrix element of the

first term of the expansion is equal to zero due to

symmetry. Hence, for small q,

F q;Zð Þ � Z� 1

2

q

�hc

� �2XZ
j¼1

�
0
��r2j ��0�

� Z� 1

2

q

�hc

� �2
r2

(7.31)

and the differential cross section in momentum trans-

fer is,

ds
dq

¼ 8p
q3

z a�hc
b

� �2

Z� F0 q;Zð Þj j2

� 2p
z a�hc
b

� �2
q

�hcð Þ4 r2
� �2

small momentum transferð Þ:

(7.32)

The differential cross section with solid angle can

next be derived in the usual way and by replacing

F0 q;Zð Þ with the F0 y;Zð Þ of,

ds
dO

¼ 8p
q3

z a�hcð Þ2
b

Z� F0 y;Zð Þj j2 p2

2p q

� �

¼ 4p2

q4
za�hcð Þ2
b

Z� F0 y;Zð Þj j2
(7.33)

As q4 ¼ 16p4 sin4 y=2 the differential cross section

can be written in the form,

ds
dO

¼ 1

4

z a�hc
pb

� �2
Z� F0 y;Zð Þj j2

sin4 y=2
(7.34)

which is the analog to the point scattering center

result.

Comparison of Atomic Scattering Results

In later consideration of charged particle transport, in

particular multiple scattering, the elastic Coulomb

scatter process will be significant. Hence, a review of

the elastic Coulomb scatter differential cross sections

calculated so far for an atomic target is now provided.

Figure 7.5 shows the differential cross section in solid

angle as a function of scattering angle for a 100-keV

electron in carbon (the electron spin is, of course,

neglected here but its effects will be considered

explicitly in the next subsection). The two calculations

are for the screened potential and the elastic form

factor with the parameter k defined as the reciprocal

of the Thomas–Fermi atomic radius. For scattering

angles exceeding about 3�, the two methods yield the

same differential cross section, but diverge at smaller

angles, both approaching approach a finite value at

y ¼ 0 due to screening. The differential cross section
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calculated by explicitly including the contributions of

the individual atomic electrons only becomes signifi-

cantly greater than that assuming a continuous screen-

ing of the potential for scattering angles of less than 3�.
However, it is clear that elastic Coulomb scatter is

highly forward directed with a very high differential

cross section (exceeding 108 b for scattering angles of

less than 1�). This feature is highly significant in

describing the transport of charged particles in a

medium. Charged particles will, as a result, undergo

multiple scatters and result in a probability distribution

describing both their spatial distribution and their

angular direction. This will be discussed in detail later.

7.2.2.2 Spin-1/2 Projectiles

The Mott differential cross sections (Mott 1929, 1932)

derived in Sect. 3.2.7 describes the interactions of a

spin-1/2 projectile, such as an electron or positron,

with a Coulomb field. The relevant expressions are

given by (3.89) and (3.90).

7.3 Coulomb Scattering With Energy
Transfer to the Medium

7.3.1 Introduction

While the results of the previous section are important

input to charged particle transport calculations (through,

e.g., evaluation of multiple scatter or range straggling),

they do not lead to energy transfer. On the other hand,

for example, following Møller scatter with an atomic

electron, the atom is left in an excited or even ionized

state. Energy is thus transferred to the medium. This

section focuses on the inelastic collisions between a

projectile and an atom (i.e., impact parameters compa-

rable to or greater than atomic dimensions).

7.3.2 Rutherford Collision Formula

The initial derivation is of the classical formula

describing the energy transfer to an electron via a

Coulomb interaction with a moving heavy charged

particle using the following assumptions:

� The energy loss is local (i.e., emission of electro-

magnetic energy is neglected).

� The particle is not deflected from its straight-line

trajectory (i.e., the impulse approximation is used

and multiple scatter is neglected).

� The ion is not “dressed” (i.e., it is completely

stripped of electrons).9

� The speed of the particle is much higher than the

orbital speed of any atomic electron (allowing the

electron to be treated as being at rest) but is suffi-

ciently low that nonrelativistic kinematics can be

assumed.

Consider the passage of a particle with charge ze,

speed v, and a mass m 	 me in a medium with physi-

cal density r, atomic number Z, and atomic mass

number A. It interacts with an electron through the

Coulomb potential at an impact parameter b, as shown

in Fig. 7.1. The force felt by the target electron is

decomposed into two orthogonal components, one

parallel, and the other perpendicular, to the particle’s

trajectory,

F ¼ �e Ejj þ E?
	 


(7.35)

where Ejj and E? are the two orthogonal electric field

components at the position of the electron,10

Ejj ¼ � z a�hcð Þ
e

� �
gvt

b2 þ gvtð Þ2
h i3

2

v̂jj (7.36)

E? ¼ z a�hcð Þ
e

� �
gb

b2 þ gvtð Þ2
h i3

2

v̂? (7.37)

9The presence of electrons in an ion projectile will have two

effects upon the rate of energy loss. The first is that the effective

charge will be reduced to the screening by these electrons. The

second is that the excitation or ionization of the projectile itself

will provide an additional energy loss channel.
10These transformed values of the electric field result from the

Lorentz transformation corresponding to the boost along an axis

with a speed bc for the particle in one reference frame to that

containing the electron at rest. These are provided here without

derivation, but one may refer to, for example, that provided by

Jackson (1999).
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v̂jj and v̂? are the unit-vectors in the directions parallel

and perpendicular to the projectile’s trajectory. The

magnitudes of these two electric field components are

plotted in Fig. 7.6 as a function of time (weighted by

gv=b, which is a constant in this impulse approxima-

tion since the projectile speed is considered to be

unaffected). The momentum transferred to the elec-

tron is given by the integral over all time of the force

that the electron is subject to,

qjj ¼ �e

ð1
�1

dt Ejj (7.38)

q? ¼ �e

ð1
�1

dt E?: (7.39)

It is clear from both the figure and the gvt multipli-

cative term in the expression for Ejj that the net
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momentum component parallel to the particle trajec-

tory is equal to zero and that the net non-zero momen-

tum transfer will be that perpendicular to the particle’s

trajectory,

q ¼ q?

¼ �e

ð1
�1

dt E?

¼ � z a�hcð Þgb
ð1

�1

dt

b2 þ gvtð Þ2
h i3

2

¼ � z a�hcð Þ g
b2

ð1
�1

dt

1þ gvt
b

	 
2h i3
2

¼ � z a�hcð Þ 1

bv

ð1
�1

dx

1þ x2½ 
32

¼ � 2z a�hcð Þ
bv

(7.40)

where the substitution of variables x ¼ gvt=b has been
used to solve the integral. As the recoil electron is

treated as being nonrelativistic, the energy transferred

to it is,

Q ¼ q2

2me

¼ 2z a�hcð Þ2
2mev2b2

¼ 2me

zr0

bb

� �2

:

(7.41)

It can be immediately seen that the energy transfer

decreases with 1/b2 (i.e., slower particles lose energy

more rapidly) and with 1/b2 (i.e., energy loss decreases

with increasing distance from the atom) and increases

with z2. This result can be used to demonstrate that

collision energy losses will be dominated by the inter-

actions of the projectile with atomic electrons rather

than with the nucleus (whereas it is the converse with

elastic scatter which is dominated by the interaction

with the nucleus). The energy transfer to a nucleus of

charge Ze and mass AmN, where mN is the nucleon

mass, will scale from that to an electron by the ratio,

z2Z2

AmN

me

z2
� Z

2

me

mN

� Z

3760

As an example, the energy transferred to the

nucleus of a carbon atom will be less than 0.2% of

that transferred to an atomic electron. Nonradiative

energy transfer is the result of an electromagnetic

interaction with the nucleus will thus be neglected.

It is now necessary to move beyond consideration

of the energy transfer to a single electron to the more

realistic case of multiple energy transfers to an ensem-

ble of electrons. Assume that the particle is moving

through a sea of electrons and then isolate those elec-

trons contained within a cylinder with its axis coinci-

dent with the particle’s trajectory, as shown in Fig. 7.7.

Because of the correspondence between the energy

transfer and the impact parameter, the probability of

an energy transfer between Q and Q þ dQ to an elec-

tron occurring in a given differential pathlength dx of

the traveling particle is equal to the probability of a

collision with an impact parameter between b and

b þ db. This latter probability is equal to the number

of electrons contained within the differential volume

formed by the cylindrical shell of thickness db and

length dx,

PrðbÞ db dx ¼ rNA

Z

A

� �
2p b db dx (7.42)

where rNAðZ=AÞ is the electron number density of

the medium. The product b db is obtained by differ-

entiating (7.41),

b dbj j ¼ me

zr0

b

� �2
dQ

Q2
(7.43)

From these two expressions, the probability of an

energy transfer between Q and Q þ dQ to an electron

dx
db

b

x

Fig. 7.7 Geometry for calculation of the Rutherford collision

formula
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occurring in a given differential pathlength dx of the

traveling particle is,

PrðbÞ ¼ 2pme NA r20
	 
 Z

A

� �
z

b

� �2
dQ

Q2
r dx (7.44)

This expression is simplified by defining a constant

which will appear frequently in this chapter,

C ¼ 2pmeNAr
2
0

¼ 0:154MeV atom cm2=mole
(7.45)

to give,

PrðbÞ ¼ C
Z

A

� �
z

b

� �2
dQ

Q2
r dx (7.46)

This is Rutherford’s formula for energy loss and

demonstrates the major features of collision energy

loss through electromagnetic interactions with atomic

electrons:

� The probability of a collision with energy transfer

Q is proportional to Q�2, demonstrating that soft

collisions (small Q) are more likely than hard colli-

sions.

� The probability is proportional to b�2 or, crudely,

is greater for short collision times (i.e., the proba-

bility of an energy transfer decreases if the elec-

trons are allowed to react adiabatically).

� The probability is proportional to the electron den-

sity of the medium.

� The probability is independent of projectile mass

� The probability increases with the square of the

incident particle charge, z2.

7.3.3 Soft Collision Stopping Power

7.3.3.1 Introduction

The soft collision stopping power is the energy loss

due to soft collisions per unit distance traveled by a

projectile in a medium. In this subsection, the two

most prominent theories as developed by Bohr and

Bethe are derived. In Bohr’s model, energy is trans-

ferred to the atomic electrons which are treated as

charged harmonic oscillators. The energy loss is cal-

culated using classical electrodynamics for a heavy

projectile interacting with a single electron of a single

atom. On the other hand, the Bethe theory is the

quantum-mechanical description of the inelastic pro-

jectile-atom collision.

7.3.3.2 Bohr Theory

Introduction

The main assumptions of the Bohr theory of soft

collisions are that, firstly, the nucleus has infinite

mass and, secondly, the projectile transfers energy to

harmonically-bound atomic electrons. The Bohr mass

soft collision stopping power is derived in three steps:

� Deriving the role that the impact parameter plays in

separating the regions of soft- and hard collisions.

� Deriving the energy transfer to a harmonically-

bound electron using the assumption that only the

projectile’s electric field acts upon the electron and

that the field is spatially uniform at the position of

the electron.

� Using these results to derive the energy transferred

per unit pathlength traveled.

The Bohr theory uses classical mechanics to calculate

the energy transfer due to soft collisions with the

atomic electron orbital frequencies dictating the

energy transfer to the atomic electrons in the adiabatic

limit.

Impact Parameter

The impact parameter, b, is fundamental to the Bohr

theory. For b greater than some maximum value, bmax,

the projectile will be unable to transfer sufficient

energy to the atom in order to excite or ionize it. On

the other hand, for b less than some minimum value,

bmin, the particle will interact with an individual elec-

tron (i.e., undergo a hard collision). As a result, bmin

and bmax set the boundaries for a soft collision during

which the projectile interacts with the entire ensemble

of atomic electrons.

One method of estimating bmin is to use the impulse

approximation implicit to the Rutherford formula in

which the target electron is assumed to be stationary
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or, in effect, does not recoil a significant distance

compared to the impact parameter. One calculates the

recoil distance and, by fixing it to be much smaller than

the impact parameter, obtain bmin. As the time domain

over which an electron with speed v ¼ bc experiences
the electrostatic force of the projectile is of the order of

b=gv, the recoil distance of the electron will be of the

order of qb=megv, where q is the momentum transfer.

The impulse approximation requires this to be much

less than the impact parameter,

q

me

b

gv
� b

to give

q

megv
� 1: (7.47)

Inserting the expression for the momentum transfer

gives,

2z a�hc
bmegv2

� 1: (7.48)

Rearrangement gives the inequality in terms of the

ratio of the electrostatic potential and kinetic energies,

1

g

z a�hc
b

� �
1

2
mev

2

� �� 1 (7.49)

or,

1

g
2z

b2

� �
r0

b
� 1 (7.50)

from which an expression for bmin can be defined,

bmin ¼ 2
z

gb2

� �
r0 (7.51)

As expected, bmin decreases with increasing projec-

tile speed (or, equivalently, decreasing de Broglie

wavelength).

Another approach to calculating bmin recognizes

that only hard collisions will occur at impact para-

meters below this value. From Chap. 2, the maxi-

mum energy transferred to an electron as a result

of a head-on collision with a massive projectile is

2meg
2b2. Using (7.41),

2meg2b
2 ¼ 2me

zr0

bbmin

� �2

and solving for bmin gives,

bmin ¼ z

gb2

� �
r0 (7.52)

Two classical mechanical proposals for bmin have

been derived, each differing by a factor of 2. As both

show that bmin is associated with increasing particle

momentum (and, hence, reduced de Broglie wave-

length), the quantum-mechanical nature of the inter-

action cannot be ignored. Moreover, the impulse

approximation assumes that the momentum transfer

to the electron is negligible and that the projectile

trajectory is unaffected. A negligible momentum

transfer is clearly unrealistic and, from the Heisenberg

uncertainty principle, the uncertainty of the impact

parameter will be of the order of �hc=megb. One can

thus specify a quantum-mechanical minimum of the

impact parameter based upon the magnitude of this

uncertainty,

bQMmin ¼
�hc

megb
(7.53)

Now review the three values of bmin that have been

derived recognizing that, for any given situation, one

must select the largest of the three values for bmin.

Hence, that expression derived from two-body elastic

scattering is excluded. This leaves the two expressions

derived from the impulse approximation and from the

uncertainty principle. The ratio of these two expres-

sions can be used as the metric for determining which

of the two to use,

bQmin

bmin

¼ �hc

megb

� �
gb2

2zr0

� �

¼ b
2az

:

(7.54)

The appropriate minimum impact parameter

expression is,

bmin ¼ 2z

gb2
r0 if b < 2 az (7.55)
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bmin ¼ �hc

megb
if b > 2a z (7.56)

As an example, for the case of a proton projectile,

the classically-derived impact parameter is used for

b < 2=137 ¼ 0:0118, equivalent to a kinetic energy

of less than 100 keV.

An expression for the maximum impact parameter

bmax which specifies the impact parameter beyond

which the projectile cannot ionize or excite the atom

is now derived. A simple approach would note that the

energy transferred must exceed some (as yet-to-be

specified) mean ionization energy, �I, in order for an

electron to be elevated into the continuum. Equating

this to the energy transfer gives,

�I ¼ 2me

zr0

bbmax

� �2

(7.57)

and solving for bmax,

bmax ¼ zr0

b

ffiffiffiffiffiffiffiffi
2me

�I

r
(7.58)

A related approach to defining bmax was originally

proposed by Bohr and sets the upper limit to the

impact parameter such that the atomic electrons

respond adiabatically. The duration of the interaction

is of the order of b=gbc and, should it be sufficiently

long, the natural motion of the electron can be ignored.

The natural frequency of motion of a bound electron

can be written as,

o0 ¼ EB

�h
(7.59)

where EB is an effective binding energy. An expres-

sion for bmax can be obtained by relating the duration

of the interaction to the reciprocal of this frequency,

bmax

gbc
� 1

o0

(7.60)

to give,

bmax ¼ g b c
o0

¼ g b
�hc

EB

:

(7.61)

There are fundamental differences between these

two expressions of bmax. Equation (7.58) predicts that

the maximum impact parameter will be dependent

upon the charge of the projectile and will decrease

with increasing projectile speed. On the other hand,

the result of (7.61) has no projectile charge depen-

dence and predicts an increase in bmax with projectile

speed.

Energy Transfer to a Harmonically-Bound Electron

The next steps of Bohr result of the soft collision

energy loss are:

� Solve for the equation of motion for a harmoni-

cally-bound electron perturbed by the projectile’s

electric field.

� Use this result to relate the energy loss of the

projectile to the electric field.

� Calculate the rate of energy loss with pathlength.

Equation of Motion of Target Electron

Consider a single atomic electron target harmonically

bound to the atom with an oscillator natural frequency,

o0. As the charged particle passes by, the electron is

subject to a spatially- and time-dependent electric

field, E(x,t) and the resulting equation of motion is,

me

d2x

dt2
¼ �eE x; tð Þ �meo2

0x�meG
dx

dt
: (7.62)

The second and third terms on the right-hand side

are the restorative and damping forces upon the elec-

tron, respectively, where the latter is assumed small

(i.e., o0 	 G) in order to simplify later derivations.

As, by definition, soft collisions occur at large impact

parameters, the spatial variation of the electric field at

the position of the electron is neglected allowing the

removal of the x dependence of the electric field. The

electric field can thus be treated as being spatially

uniform at the position of the electron making it possi-

ble to replace E(x,t) with E(t). This equation of motion

is solved using the method of Fourier transform pairs,

E o0ð Þ ¼ 1ffiffiffiffiffiffi
2p

p
ð1

�1
dt eio

0t EðtÞ (7.63)
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and

EðtÞ ¼ 1ffiffiffiffiffiffi
2p

p
ð1

�1
do0 e�io0t E o0ð Þ: (7.64)

The differential equation of motion is first rear-

ranged,

d2x

dt2
þ G

dx

dt
þ o2

0x ¼ � e

me

� �
E (7.65)

where functional dependencies are omitted for clarity.

Writing both sides of the equation of motion in terms

of the inverse- transforms and differentiating with

respect to time gives,

ð1
�1

do0 �o02 � io0Gþ o2
0

	 

e�io0t x o0ð Þ

¼ � e

me

� � ð1
�1

do0 e�io0t E o0ð Þ: (7.66)

Multiplying both sides by e�iot and integrating over

time,

ð1
�1

dt

ð1
�1

do0 ei o�o0ð Þt �o02 � io0Gþ o2
0

	 

x o0ð Þ

¼ � e

me

� � ð1
�1

dt

ð1
�1

do0 ei o�o0ð Þt E o0ð Þ

results in the integral equation,

ð1
�1

do0 d o� o0ð Þ �o02 � io0Gþ o2
0

	 

x o0ð Þ

¼ � e

me

� � ð1
�1

do0 d o� o0ð ÞE o0ð Þ (7.67)

where the definition of the d-function has been

used. The integration over o0 is trivial and the

resulting frequency-space solution to the equation

of motion is,

x oð Þ ¼ � e

me

� �
E oð Þ

o2
0 � o2

	 
� iGo

 !
: (7.68)

Energy Transfer as a Function of the Electric Field

The projectile energy loss is equal to the energy trans-

ferred to the electron,

Q ¼ �e

ð1
�1

dt
dxðtÞ
dt

EðtÞ: (7.69)

Writing the integrand in terms of the inverse Four-

ier transforms,

Q ¼ �e

ð1
�1

dt
1ffiffiffiffiffiffi
2p

p d

dt

ð1
�1

do e�iotx oð Þ
0
@

1
A

� 1ffiffiffiffiffiffi
2p

p
ð1

�1
do0 e�io0t E o0ð Þ

0
@

1
A

¼ i
e

2p

� � ð1
�1

do0
ð1

�1
do

ð1
�1

dt e�i oþo0ð Þt

0
@

1
A

� ox oð ÞE o0ð Þ

¼ ie

ð1
�1

do0
ð1

�1
dod oþ o0ð Þox oð ÞE o0ð Þ

¼ ie

ð1
�1

doo x oð ÞE �oð Þ: ð7:70Þ

The electric field is a real quantity (i.e.,

E �oð Þ ¼ E� oð Þ), so,

Q ¼ ie

ð1
�1

doo x oð ÞE� oð Þ

¼ 2e Re i

ð1
0

doo x oð ÞE� oð Þ
0
@

1
A:

(7.71)
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The energy transfer as a function of the electric

field can now be obtained by substituting the expres-

sion for x(o) into the integrand,

Q¼ �2e2

me

� �
Re i

ð1
0

do
o E oð Þj j2

o2
0�o2

	 
�iGo

0
@

1
A

¼ �2e2

me

� �
Re i

ð1
0

do
o E oð Þj j2 o2

0�o2
	 
þiGo
	 


o2
0�o2

	 
2þG2o2

0
@

1
A

¼ �2e2

me

� �
Re

ð1
0

do
o E oð Þj j2 �Goþi o2

0�o2
	 
	 


o2
0�o2

	 
2þG2o2

0
@

1
A

¼ 2e2

me

� � ð1
0

do
Go2 E oð Þj j2

o2
0�o2

	 
2þG2o2

0
@

1
A: ð7:72Þ

Solving this integral is simplified as the damping of

the electron motion is small (i.e., G � o). As a result
of this, E(o0) � E(o) and E oð Þj j2 is extracted from

the integrand to give,

Q ¼ 2e2

me

� �
E o0ð Þj j2

ð1
0

do
Go2

o2
0 � o2

	 
2 þ G2o2
:

(7.73)

To complete the derivation, the integral is solved

using the substitution of variable, u ¼ o=G

ð1
0

do
Go2

o2
0 � o2

	 
2 þ G2o2

¼
ð1
0

du
u2

k2 � u2ð Þ2 þ u2
(7.74)

where k ¼ o0=G. The integrand is rearranged,

ð1
0

du
u2

k2 � u2ð Þ2 þ u2
¼
ð1
0

du

u�kð Þ uþkð Þ
u

� �2
þ 1

¼
ð1
�k

dx

x xþ2kð Þ
xþk

� �2
þ 1

(7.75)

where the substitution x ¼ u – k has been used. The

small damping force requirement is equivalent to

x � k which enables the approximation,

ð1
�k

dx

xðxþ2kÞ
xþk

� �2
þ 1

�
ð1
�k

dx
1
k2

	 
ðx2 þ 2kxÞ2 þ 1

�
ð1
�k

dx

1þ 4x2

(7.76)

and to set the lower integration limit to �1. Hence,

ð1
0

do
Go2

o2
0 � o2

	 
2 þ G2o2
�
ð1

�1

dx

1þ 4x2
: (7.77)

Residue theory is used to solve this integral, which

is of the form
Ð1

�1
dz

1
4ð Þþz2

where z ¼ x þ iy. The inte-

grand has poles at z ¼ � i/2 and is holomorphic

everywhere else. Consider the semicircular contour

of radius R in the upper half-plane as shown in

Fig. 7.8. For R > 1/2, the singularity of the integrand

lies within the interior of the contour bounded by the

segment of –R 
 x 
 Rwith y ¼ 0 and the upper half

CR of the circle |z| ¼ R. Integrating counter-clockwise

over this contour,

ðR
�R

dx
1
4

	 
þ x2
þ
ð
CR

dz
1
4

	 
þ z2
¼
ð1

�1

dz
1
4

	 
þ z2

¼ 2p i B

(7.78)

iy

CR

R

2
+

i

−R X

Fig. 7.8 Integration contour in the complex plane z ¼ x þ iy

for calculating the integral of (7.77)
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where B is the residue of the integrand at the point

z ¼ � i/2,

B ¼ lim

z ! i
2

z� i

2

� �
1

1
4

	 
þ z2

 !
¼ �i: (7.79)

Hence,

ð1
�1

dx
1
4

	 
þ x2
¼ 2p�

ð
CR

dz
1
4

	 
þ z2

¼ 2p

(7.80)

which is valid for all R > 1/2 as the integral along the

contour on the right-hand side is equal to zero as can

be shown by considering the point z on the contour CR

for which,

ð
CR

dz

1=4þ z2

 pR

1=4þ R2
(7.81)

where pR is the length of the contour. Thus, as
pR

1=4þR2 ! 0 as R ! 1, then
Ð
CR

dz
1=4þz2

! 0 as R ! 1
and the energy transfer to the electron is,

Q ¼ p
e2

me

� �
E o0ð Þj j2: (7.82)

Calculation of the Electric Field

An expression for the squared modulus of the electric

field at the position of the atomic electrons is found by

first calculating the Fourier transforms of the two

electric field components for impact parameter b, par-

allel and orthogonal to the particle trajectory, by

rewriting (7.36) and (7.37),

E?ðtÞ ¼ z a�hc
eb2

� �
g

1þ gvt
b

	 
2h i3
2

v̂? (7.83)

EjjðtÞ ¼ � z a�hc
eb3

� �
gvt

1þ gvt
b

	 
2h i3
2

v̂jj: (7.84)

The Fourier transform of the perpendicular compo-

nent of the electric field is,

E? oð Þ ¼ 1ffiffiffiffiffiffi
2p

p
ð1

�1
dt eiot E?ðtÞ

¼ gffiffiffiffiffiffi
2p

p z a�hc
eb2

� � ð1
�1

dt
eiot

1þ gvt
b

	 
2h i3
2

v̂?:

(7.85)

The integral is solved by using the substitution of

variable, x ¼ gvt=b,

E? oð Þ ¼ z a�hcffiffiffiffiffiffi
2p

p
ebv

ð1
�1

dx
ei

ob
gvð Þx

1þ x2½ 
32
v̂?

¼
ffiffiffi
2

p

r
z a�hc
ebv

ð1
0

dx
cos ob

gv x
� �

1þ x2½ 
32
v̂?

(7.86)

with the last step following from cos ob
gv x
� �

and

sin ob
gv x
� �

being even and odd functions, respectively.

The integral is a form of the modified Bessel function

of the second kind (Abramowitz and Stegun 1972),

KnðyÞ ¼
2nG nþ 1

2

	 

ffiffiffi
p

p
yn

ð1
0

dx
cos xyð Þ
1þ x2½ 
nþ1

2

(7.87)

where n is 0 or an integer. Use of Kn(y) for n ¼ 0, 1

will be required,

K0ðyÞ ¼
ð1
0

dx
cos xyð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p (7.88)

K1ðyÞ ¼ 1

y

ð1
0

dx
cos xyð Þ
1þ x2½ 
32

: (7.89)

The expression of the electric field orthogonal to

the projectile trajectory is now,

E? oð Þ ¼
ffiffiffi
2

p

r
z a�hc
ebv

ð1
0

dx
cos ob

gv x
� �

1þ x2½ 
32
v̂?

¼
ffiffiffi
2

p

r
z a�hc
ebv

ob
gv

� �
K1

ob
gv

� �
v̂?

¼ e

2pð Þ3=2e0
zo
gv2

� �
K1

ob
gv

� �
v̂?

(7.90)
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and the Fourier transform of the electric field compo-

nent parallel to the particle’s trajectory is,

Ejj oð Þ ¼� gvffiffiffiffiffiffi
2p

p zah�c
eb3

ð1
�1

dt
teiot

1þ gvt
b

	 
2h i3
2

v̂jj: (7.91)

Using, again, the substitution of variable,

x ¼ gvt=b,

Ejj oð Þ ¼ � z a�hcffiffiffiffiffiffi
2p

p
ebgv

ð1
�1

dx
xei

ob
gvð Þx

1þ x2½ 
32
v̂jj: (7.92)

This integral is solved by parts (for clarity,

y ¼ ob=gv),

ð1
�1

dx
xeixy

1þ x2½ 
32
¼
ð1

�1
dr s

¼ s rj 1
�1 �

ð1
�1

ds r

(7.93)

where

s � eixy ds ¼ dx i y eixy

dr � dx
x

1þ x2½ 
32
r ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

to give,

ð1
�1

dx
xei

ob
gvð Þx

1þ x2½ 
32
¼ 2i

ob
gv

� � ð1
0

dx
cos ob

gv x
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

¼ 2i
o b

gv

� �
K0

o b

gv

� �
:

(7.94)

The Fourier transform of the electric field compo-

nent parallel to the particle’s trajectory is now had,

Ejj oð Þ ¼ � i

2pð Þ3=2e0
zeo

gvð Þ2 K0

ob
gv

� �
v̂jj: (7.95)

The squared modulus of the electric field in fre-

quency space is,

E o0ð Þj j2 ¼ E? o0ð Þj j2 þ Ejj o0ð Þ�� ��2
¼ 1

2pð Þ3e20
zeo0

v

� �2
K2

1

o0b

gv

� �
þ
K2

0
o0b
gv

� �
g2

2
4

3
5:

(7.96)

The frequency o0 is written in terms of the maxi-

mum impact parameter, bmax, beyond which no energy

is transferred to the atom, as determined from the

adiabatic response result, o0 ¼ gv=bmax. Hence, the

electric field can be written as a function of the impact

parameter,

EðbÞj j2 ¼ 1

2pð Þ3e20
zeg
bmax

� �2

K2
1

b

bmax

� �
þ
K2

0
b

bmax

� �
g2

2
4

3
5:

(7.97)

The energy transfer to a harmonically-bound elec-

tron is,

Q ¼ p
e2

me

� �
EðbÞj j2

¼ 2me

r0

bmax

� �2
z

b

� �2

K2
1

b

bmax

� �
þ
K2

0
b

bmax

� �
g2

2
4

3
5:

(7.98)

Consider the dependence of the energy transfer as a

function of impact parameter. For small impact para-

meters, the low-argument limits of the modified Bessel

functions are required,

yK0ðyÞ ! 0 as y ! 0 (7.99)

yK1ðyÞ ! 1 as y ! 0: (7.100)

In this case,

Q ! 2me

zr0

b b

� �2

as b ! 0: (7.101)

Note that this is the same result of the energy

transfer calculated from the impulse approximation.

Invoking a minimum impact parameter, an expression

for the maximum energy transfer in a soft collision

corresponding to the minimum impact parameter can

be written,

Qmax ¼ 2me

zr0

bbmin

� �2

: (7.102)

For example, the magnitude of the energy transfer

from a soft collision from an a particle with a kinetic

energy of 5 MeV is Qmax � 200 eV. For large

impact parameters, we can use the large-argument
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approximations of the modified Bessel functions

K0;1ðyÞ �
ffiffiffiffi
p
2y

q
e�y for y 	 1 to give,

Q � pme

r0

bmax

� �2
z

b

� �
1þ 1

g2

� �

� bmax

b

� �
e�2b=bmax (7.103)

The exponential term in this expression introduces

the desired rapid cut-off for very large impact para-

meters at which the energy transfer becomes ineffi-

cient beyond the adiabatically-limited impact

parameter, bmax.

Bohr Soft Collision Mass Stopping Power

Using the Bohr soft energy transfer expression, the

soft collision stopping power, which is the energy

loss per unit pathlength due solely to soft collisions,

is calculated. In a medium of electron density re, the
number of electrons in a differential cylinder section

of length dx with impact parameters between b and

b þ db is 2p re b dx db and the double-differential

energy loss of a particle traversing this section is,

d2E ¼ �2pre b Q db dx

¼ �4pre me

r0

bmax

� �2
z

b

� �2

� K2
1

b

bmax

� �
þ
K2

0
b

bmax

� �
g2

2
4

3
5b db dx

¼ �4pre me

zr0

b

� �2

y K2
1ðyÞ þ

K2
0ðyÞ
g2

� �
dy dx

(7.104)

where the substitution of variable, y ¼ b/bmax, has

been used. Integrating over y, the linear soft collision

stopping power11 is

dE

dx

� �
Col;S

¼ �4p re me

zr0

b

� �2

�
ð1

bmin
bmax
ð Þ

dy y K2
1ðyÞ þ

K2
0ðyÞ
g2

� �

¼ �4p re me

zr0

b

� �2

�
ð1

bmin
bmax
ð Þ

dy y K2
1ðyÞ þ K2

0ðyÞ � b2K2
0ðyÞ

� �
:

(7.105)

The mass soft collision stopping power will be the

linear collision stopping power normalized to the

physical density of the medium the charged particle

is moving through,

dE

r dx

� �
Col

¼ �4pNA

Z

A

� �
me

zr0

b

� �2

ð1
bmin
bmax
ð Þ

dy y K2
1ðyÞ þ K2

0ðyÞ � b2K2
0ðyÞ

� �

¼ �2C
Z

A

� �
z

b

� �2

ð1
bmin
bmax
ð Þ

dy y K2
1ðyÞ þ K2

0ðyÞ � b2K2
0ðyÞ

� �
:

(7.106)

The integral is solved by simplifying the integrand

using the properties of the derivatives ofK0(y) andK1(y),

dK0ðyÞ
dx

¼ �K1ðyÞ (7.107)

and
dK1ðyÞ
dy

¼ �K0ðyÞ � K1ðyÞ
y

: (7.108)

Then,

d

dy
½yK0ðyÞK1ðyÞ
 ¼K0ðyÞK1ðyÞ

þy
dK0ðyÞ
dy

K1ðyÞþyK0ðyÞdK1ðyÞ
dy

¼�y K2
0ðyÞþK2

1ðyÞ
	 


(7.109)

11Although the stopping power is also written as S and the mass

collision stopping power as S=p, it will be written here as a

differential.
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and

d

dy
y2 K2

1ðyÞ � K2
0ðyÞ

	 
� � ¼ �2yK2
0ðyÞ: (7.110)

Incorporating these results into the integral of

(7.106) gives,

ð1
bmin
bmaxð Þ

dy y K2
1ðyÞ þ K2

0ðyÞ � b2K2
0ðyÞ

� �

¼
ð1

bmin
bmax
ð Þ

dy y K2
1ðyÞ þ K2

0ðyÞ
	 
� b2yK2

0ðyÞ
� �

¼
ð1

	
bmin
bmax


dy
"
� d

dy

�
yK0ðyÞK1ðyÞ

�þ b2

2

� d

dy

�
y2ðK2

1ðyÞ � K2
0ðyÞÞ

�#

(7.111)

from which the Bohr mass soft collision stopping

power is obtained,

dE

r dx

� �
Col;S

¼�2C
Z

A

� �
z

b

� �2
bmin

bmax
K0

bmin

bmax

� �
K1

bmin

bmax

� ��

� b2

2

b2min

b2max

K2
1

bmin

bmax

� �
� K2

0

bmin

bmax

� �� ��
(7.112)

The variable of interest is the ratio of the minimum

to maximum impact parameters,

bmin

bmax

� �
¼ bmin

gv
o0

� � ¼ bmino0

gv
: (7.113)

A form of the minimum impact parameter has not

been explicitly provided as this will be dependent

upon the projectile speed and electric charge. The

magnitude of this ratio of impact parameters can be

estimated by recognizing that the resonant frequency

of a harmonically-bound electron is approximated by

o0 ¼ EB=�h which leads to,

bmin

bmax

� �
¼ bminEB

�hc gb

¼ 2zr0EB

�hc g2b3
b < 2aZ (7.114)

¼ EB

me gbð Þ2 b > 2aZ: (7.115)

As the binding energy can be written in approxi-

mate form, EB ¼ ��hcR1Z, then bmin=bmax � 1and it

is then possible to use the properties of the modified

Bessel functions of the second kind for small argu-

ments,

K0ðyÞ � � ln
y

2
� gEM

� ln
2e�gEM

y

� �
for 0 < y � 1

(7.116)

where gEM � 0.5772 . . . is the Euler–Mascheroni

constant, and

K1ðyÞ � 1

y
for 0< y �

ffiffiffi
2

p
: (7.117)

Using these expressions and recalling that

bmin=bmax � 1,

dE

rdx

� �
Col;S

��2C
Z

A

� �
z

b

� �2

ln 2e�gEM
bmax

bmin

� �
�b2

2

� �

��2C
Z

A

� �
z

b

� �2

ln 1:123
bmax

bmin

� �
�b2

2

� �
:

(7.118)

Briefly return to the ratio of impact parameters,

bmax

bmin

� �
¼ gbc=o0

	 

2zr0
�
gb2

� �
¼ g2b3c

2zr0o0

(7.119)

where a single harmonic oscillator with a resonance

frequency, o0, which corresponds to a single atomic

electron has been calculated for. For atoms other than
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hydrogen, this should be replaced by the geometric

average resonance frequency for the Z atomic elec-

trons,

ln �o ¼ 1

Z

X
j

fj lnoj (7.120)

where the Z electrons have been partitioned into

groups each having the same resonance frequency,

oj. Detailed discussion of the oscillator strengths is

deferred until the derivation of the Bethe theory, but it

will be noted here that the oscillator strengths must

satisfy the requirement,

XZ
j¼1

oj

dfj

do
¼ Z: (7.121)

The final expression for the classical Bohr mass soft

collision stopping power is now,

dE

r dx

� �
Col;S

¼ �2C
Z

A

� �
z

b

� �2

ln
1:123 g2b3c

zr0�o

� �
� b2

2

� �
(7.122)

7.3.3.3 Bethe Theory

Introduction

During the 1920s, various attempts were made to

provide a quantum-mechanical description of the

energy loss in inelastic charged-particle collisions

with atoms. Bethe was the first to develop a successful

quantum-mechanical theory12 and which is based

upon the first Born approximation.

This derivation of the Bethe soft collision stopping

power will, for calculational ease, be limited to the

nonrelativistic case.

Collision Kinematics

It is necessary to first define the kinematics of the

collision between the projectile and an atomic elec-

tron. A projectile with momentum p and kinetic

energy T collides with an atomic electron and scatters

through the angle y with momentum p and kinetic

energy T0. The momentum transfer is given through

the derivation of (3.52) for elastic scatter but now

allowing for energy loss, p 6¼ p0,

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ p02 � 2pp0 cos y

p
(7.123)

for the interaction kinematics of Fig. 7.9 for a small

scattering angle. In this derivation, the target atomic

electron is treated as being unbound and initially at

rest, which is a reasonable assumption for high projec-

tile incident kinetic energies. However, if the projec-

tile speed is comparable to the orbital speeds of the

atomic electrons, this assumption becomes untenable

and corrections must be made as will be discussed

later in this chapter. Following the collision, the

kinetic energy of the recoil electron is,

Q ¼ T� T0 (7.124)

which is related to its three-vector momentum through

the relativistic relationship,

Qþmeð Þ2 ¼ q2 þme
2: (7.125)

Upon rearrangement,

Q 1þ Q

2me

� �
¼ q2

2me

(7.126)

which, for the condition of Q � 2me, reduces to the

familiar nonrelativistic form,

Q ¼ q2

2me

: (7.127)

p

p′
q⊥ = pq q

q⎢⎢ = 
En

v

q

Fig. 7.9 Momentum transfer in the small-angle approximation

12Reviews of the derivation of the Bethe theory can be found in

Fano (1964), Inokuti (1971) and Ahlen (1980).
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Following the collision, the atom will be excited

from its ground state 0 with energy eigenvalue E0,

which will be taken as being equal to zero, to a final

state n with the energy eigenvalue, En. The energy

transfer Q need not equal En as the recoil electron

cannot be considered in isolation as a consequence

of it being part of an ensemble of atomic electrons as

energy transferred to it can be shared amongst

others.

It is straightforward to calculate the compo-

nent of the momentum transfer q that is parallel

to the incident momentum p from the excitation

energy,

En � p2

2m
� p� qj j2

2m

� 2p � q� q2

2m

� q � p
m

(7.128)

where m is the projectile mass and, having assumed

soft collisions, terms of the order of q2 are neglected.

This leads to,

qjj ¼
En

v
� En

b
(7.129)

where both q and En are in units of energy. As this is a

soft collision and q is small, the small-angle approxi-

mation can be used and the component of q perpen-

dicular to p is,

q? ¼ py: (7.130)

In this small-angle approximation, the squared

magnitude of the momentum transfer can be written

as,

q2 ¼ q2jj þ q2? ¼ En

b

� �2

þ pyð Þ2 (7.131)

and the energy transfer to the electron is,

Q ¼ q2

2me

¼ E2
n

2meb
2
þ pyð Þ2

2me

: (7.132)

Bethe Soft Collision Cross Section

The calculation of the Bethe mass soft collision stop-

ping power follows that of the elastic atomic Cou-

lomb scattering cross section, but using both of

Fermi’s Golden Rules as there is no direct coupling

between the initial and final atomic states. Consider

the projectile to have an electric charge ze and the

atom to have atomic number Z and to be in its ground

state, 0j i. The projectile is treated as a plane wave and
the atom is excited to the state nj i as a result of the

collision. Hence, the pre- and postcollision system

states are,

rh jp; 0i ¼ 1ffiffiffiffiffi
L3

p ei
p�R
�hc 0j i

¼ 1ffiffiffiffiffi
L3

p ei
p�R
�hc c0 r1; r2; . . . rZð Þ (7.133)

and

rh jp0; ni ¼ 1ffiffiffiffiffi
L3

p ei
p0�R
�hc nj i

¼ 1ffiffiffiffiffi
L3

p ei
p0�R
�hc cn r1; r2; . . . rZð Þ: (7.133)

The system position vector, with the origin specified

at the center of the atom, is given by r ¼ (R, r1 . . . rZ)
where R is the position vector of the projectile and the

rj is the position vector of the jth electron. The overall

interaction between the projectile and the atomic elec-

trons is handled in the Coulomb gauge in which there

are two types of electromagnetic interactions. The first

is the static unretarded potential between the projectile

and electrons with a direct coupling between the initial

and final states allowing the transition rate to be given

by Fermi’s Golden Rule No. 2. This is also referred to

as the longitudinal excitation as it is directed parallel to

the momentum transfer. The second type of interaction

is through the emission and absorption of virtual

photons between the projectile and atomic electrons

which become significant at relativistic speeds.

Because this is the result of the interaction between

the particle currents with the quantized transverse vec-

tor potential, this is often referred to as transverse

excitation. As there is no direct coupling between the

initial 0j i and final nj i states, the transition rate through
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an intermediate state ij i will be given by Fermi’s

Golden Rule No. 1. Combining these two categories,

the transition rate is,

lfi ¼
2p
�h

p0; n
� ��U p; 0j i þ

X
j

p0; nh jU k ; jj i k; jh jU p; 0j i
E0 � Ej

������
������
2

rf

(7.135)

where E0 and Ej are the energy eigenvalues for states

0j i and jj i, respectively, and the summation is over all

available intermediate states.

While the projectile will interact with both the

ensemble of atomic electrons and the nucleus, it can

be proven that the projectile-nucleus interaction does

not lead to atomic excitation. The Coulomb potential

between the projectile and the nucleus (both taken to

be point-like charges) is UðRÞ ¼ �zZ a�hc=R and the

matrix element of the corresponding perturbation in

position space is,

p0;n
� ��U p;0j i

¼
ð
d3rd3r0 p0;n

� ��ri rh jU r0
�� � r0
� ��p;0i

¼ 1

L3

ð
d3R ei

q�R
�hc

YZ
j¼1

d3rjc
�
nðr1; . . . rZÞUðRÞc0ðr1; . . . rZÞ

¼ �zZ
a�hc
L3

ð
d3R

ei
q�R
�hc

R

YZ
j¼1

d3rjc
�
n r1; . . . rZð Þc0 r1; . . . rZð Þ

¼ 0

(7.136)

due to the orthonormality of the two states.

The Coulomb potential between the projectile and

the Z atomic electrons is given by,

U rð Þ ¼ � z a�hcð Þ
XZ
j¼1

1

R� rj
�� ��: (7.137)

The exchange process of transverse photons

between the projectile and an electron has two inter-

mediate states (assume that the electron can be treated

as at rest). In the first, the projectile emits a photon of

momentum q ¼ p � p0 which is absorbed by the elec-
tron to give it a momentum q. In the second, the

electron emits a photon with momentum �q, to give

it a momentum q. The photon is absorbed by the

projectile to give it a momentum p0 ¼ p � q. From

the derivation of the Klein–Nishina cross section

in Chap. 6, the photon emission by the projectile

is proportional to the matrix element of

z a�hc=eð Þ a � «̂mð Þe�i
q�r
�hc where a is the Dirac velocity

operator of the projectile and «̂m is the photon’s unit

polarization vector and where m ¼ 1,2 (see Sect. 24 of

Heitler (1984) for a more detailed description). The

absorption of this photon by the jth atomic electron is

proportional to a matrix element of z a�hc
e

aj � êm
	 


ei
q�rj
�hc .

For clarity, the Bethe collision stopping power due to

the static Coulomb potential (longitudinal excitation)

only will be derived and the final form, which includes

the relativistic term, provided. Full derivations of the

latter can be found in the review articles by Fano

(1964) and Ahlen (1980).

The transition rate from the ground state 0j i, with
an energy eigenvalue considered here to be zero, to the

state nj i, with energy eigenvalue En, through longitu-

dinal excitation is given conveniently by Fermi’s

Golden Rule No. 2,

lfi;long ¼ 2p
�h

p0; nh jU p; 0j ij j2 rf :

The phase–space term is common to both longitu-

dinal and transverse excitations and is of the usual

form rf dT
0 ¼ L=2p�hcÞ3 d3p0

�
. This derivation of

the phase–space term will parallel that of the elastic

Coulomb scatter calculation except that the energy

transfer rather than the momentum transfer will be

used as the kinematic variable. The density of final

sates is, as calculated before,

rf ¼
1

4p2b0
L

�hc

� �3

p02 dp0 d cos yð Þ: (7.138)

From the inelastic momentum transfer,

d cos yð Þ ¼ q=pp0Þð and the momentum transfer is

q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q Qþ 2með Þp

from which one obtains

q dq ¼ me 1þ Q=meÞdQð . This gives the density of

final states as,

rf ¼
me

4p2b0
L

�hc

� �3
p0

p

� �
1þ Q

me

� �
dQ0: (7.139)
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For soft collisions, the energy transfer is much less

than the projectile’s kinetic energy (i.e., Q � T) and

we can approximate p0=p � b0=b � 1 to give,

rf �
me

4p2b
L

�hc

� �3

1þ Q

me

� �
dQ: (7.140)

The matrix element due to the unretarded Coulomb

interactions between the projectile and the atomic

electrons is calculated in the same fashion as in our

calculation of the elastic scatter cross section,

hp0; njU p; 0j i ¼
ð
d3r d3r0 p0; nh jri rh jU r0j i r0h jp; 0i:

(7.141)

The method of solving this matrix element is iden-

tical to that used in previous derivations in Chaps. 3

and 6,

p0; nh jU p; 0j i ¼ �4p
z a�hc
L3

�hc

q

� �2
*
n

�����
XZ
j¼1

ei
q�rj
�hc

�����0
+

¼ �4p
z a�hc
L3

�hc

q

� �2

Fn q;Zð Þ:
(7.142)

where Fn(q, Z) is the inelastic scattering form factor.

The transition rate can be considered independent of

azimuthal angle if the target atom is in the s-state (i.e.,

spherically symmetric) or if the target atoms in the

medium are randomly oriented (as is the case in medi-

cal irradiation). This permits one to replace the vector

momentum transfer q in the argument of the inelastic

form factor with its scalar value, q, to give Fn(q, Z).

The squared amplitude of the matrix element is, in

terms of the energy transfer,

p0; nh jU p; 0j ij j2 ¼ 16p2
z a�hcð Þ2
L6

�hc

q

� �4

Fn q;Zð Þj j2

¼ 4p2
z a�hcð Þ2
L6

�hcð Þ4

m2
eQ

2 1þ Q
2me

� �2
� Fn q;Zð Þj j2:

(7.143)

The inelastic Coulomb scatter transition rate for

longitudinal excitation is,

lfi;long ¼ 2p
�h

p0; nh jU p; 0j ij j2rf

¼ 2p
z a�hcð Þ2 c
bL3 me

Fn q;Zð Þj j2

Q2 1þ Q
2me

� �2 1þ Q

me

� �
dQ

(7.144)

The differential cross section is the transition rate

normalized to the incident particle flux, v=V, or,

dslong ¼ L3

bc
lfi;long

¼ 2p
z2mer

2
0

b2
Fn q;Zð Þj j2

Q2 1þ Q
2me

� �2 1þ Q

me

� �
dQ:

(7.145)

The inelastic form factor Fn(q, Z) is related to the

generalized (dipole) oscillator strength, GOS (which

has already been seen in the derivation of the Bohr

energy loss), which is a generalization of the optical

oscillator strength (see, e.g., Fernández-Varea 1998)

given, in the nomenclature used here, by,

fn q;Zð Þ ¼ En

Q
Fn q;Zð Þj j2: (7.146)

Analytical representations for the GOS are avail-

able for atomic hydrogen and the free electron gas for

which the initial and final states are analytically cal-

culable. In the more practical cases of heavier atoms

and molecules, these wavefunctions are calculated

numerically. This discussion will be limited to the

simple details of the GOS required for obtaining an

expression for the stopping power. The inelastic form

factor can be related to the GOS per unit energy

transfer,

dfn q;Zð Þ
dEn

¼ 1

Q
Fn q;Zð Þj j2: (7.147)

The energy-weighted sum of the oscillator

strengths equals the total number of electrons in the

atom which, in integral form, is,

ð
dEn

dfn q;Zð Þ
dEn

¼ Z: (7.148)
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The GOS can also be used to describe the mean

ionization energy of the atomic system as the first

energy moment of the oscillator strength distribution,

ln�I ¼
Ð
dE df

dE
ln EÐ

dE df
dE

¼ 1

Z

ð
dE

dfn

dE
ln E:

(7.149)

The GOS per unit energy transfer has a useful

interpretation at low momentum transfers. Writing

the GOS per unit excitation energy in bra-ket form,

dfn q;Zð Þ
dEn

¼ 1

Q
Fn q;Zð Þj j2

¼ 1

Q

*
n

����XZ
j¼1

ei
q rj
�hc

����0
+�����
�����
2

¼ 2me

q2

*
n

����XZ
j¼1

ei
q rj
�hc

����0
+�����
�����
2

(7.150)

where, for low q, the nonrelativistic relationship

between momentum and energy transfer has been used.

Expanding the exponential to first order for small q,

dfn q;Zð Þ
dEn

� 2me

q2

�����Zhnj0i þ i

�hc

�
n

����XZ
j¼1

q rj

����0

�����

2

� � 2me

�hcð Þ2
*
n

����XZ
j¼1

rj

����0
+�����
�����
2

small q

(7.151)

where the orthogonality relationship hnj0i ¼ 0 has

been used. dfn q;Zð Þ=dEn ! dfnðZÞ=dEn for small q,

where dfnðZÞ=dEn is the optical oscillator strength per

unit excitation energy and which is proportional to the

square of the dipole-matrix element.

Having introduced the GOS and its properties at

low q, the expression of the differential cross section

for longitudinal excitation is then simplified,

dslong ¼ 2p
z2mer

2
0

b2
Fn q;Zð Þj j2

Q2 1þ Q
2me

� �2 1þ Q

me

� �
dQ

¼ 2p
z2mer

2
0

b2
1þ Q

me

� �
Q2 1þ Q

2me

� �2 dfn q;Zð Þ
dEn

dQ

¼ C

NA

z

b

� �2 1þ Q
me

� �
Q2 1þ Q

2me

� �2 dfn q;Zð Þ
dEn

dQ

(7.152)

For Q � me, the cross section simplifies to,

dslong ¼ C

NA

z

b

� �2
dQ

Q

dfn q;Zð Þ
dEn

: (7.153)

For calculational convenience, the kinetic variable

is temporarily changed from the energy transfer to the

momentum transfer,

dslong ¼ 2C

NA

z

b

� �2
dq

q

dfn q;Zð Þ
dEn

: (7.154)

Integrating over the momentum transfer yields the

total cross section,

slong ¼ 2C

NA

z

b

� �2 ðqmax

qmin

dq
1

q

dfn q;Zð Þ
dEn

: (7.155)

As q is small for soft collisions, dfn q;Zð Þ=dEn is

replaced with the optical oscillator strength per unit

excitation energy, dfnðZÞ=dEn. Then it is removed

from the integrand to obtain the total cross section,

sn;long ¼ 2C

NA

z

b

� �2
dfnðZÞ
dEn

ðqmax

qmin

dq

q

¼ 2C

NA

z

b

� �2
dfnðZÞ
dEn

ln
qmax

qmin

� �
:

(7.156)

This result highlights the fundamental difference

between the Bohr and Bethe theories. Bohr’s theory

uses the impact parameter to distinguish between soft

and hard collisions. This is clearly not possible in

quantum theory in which the localization of a wave

packet of a particle with well-defined momentum is

limited by the uncertainty principle. Hence, one would

expect the classical theory to break down for small

impact parameters. In the Bethe theory, momentum

(or energy) transfer is used to separate the soft and

hard collision regimes. For later convenience when

expressions for soft and hard collision stopping

powers are merged to determine the complete collision

stopping power, instead of using the momentum trans-

fer, the use the energy transfer will be returned to as a

means of defining soft and hard collisions. The colli-

sion is said to be “soft” if Q < QC and to be “hard” if

Q > QC. The exact specification of the transition

energy transfer QC is insignificant as this quantity
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will cancel out when the expressions for the soft and

hard collision stopping powers are summed. Even so,

limits should be applied to QC in order to ensure that

the necessary approximations used in the derivations

remain valid. QC must exceed atomic binding energies

but it must also not be sufficiently great that the pro-

jectile’s de Broglie wavelength becomes comparable

to nuclear dimensions. A value of between 10 and

100 keV for QC would allow both conditions to be

simultaneously met (Uehling 1954).

The limits of the momentum transfers which define

a soft collision are now calculated. The lower limit,

qmin, is given by qjj ¼ En=v. Clearly, qmax will be set

by the energy transfer separation between soft and

hard collisions,

qmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meQC

p
(7.157)

Applying these limits to the momentum transfer,

sn;long ¼ 2C

NA

z

b

� �2
dfn

dEn

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2me QC

p
En

v

� �

¼ C

NA

z

b

� �2
dfn

dEn

ln
2me QC

E2
n

b2
� � (7.158)

Bethe Soft Collision Stopping Power

The mean energy transfer per unit fluence is,

DE long ¼
ð
dEn sn;long

¼ C

NA

z

b

� �2 ð
dEn

dfn

dEn

ln
2me QC

E2
n

b2
� �

:

(7.159)

The logarithm is split,

ln
2me QC

E2
n

b2
� �

¼ �2 ln En þ ln 2meQCb
2

	 

(7.160)

where it is implicitly required for En, me, and QC to

have the same units of energy. This enables the inte-

gral of (7.159) to be written as,

ð
dEn

dfn

dEn

ln
2meQc

E2
n

b2
� �

¼�2

ð
dEn

dfn

dEn

ln En

þ ln 2meQcb
2

	 
ð
dEn

dfn

dEn

¼�2Zln�IþZln 2meQcb
2

	 

¼Zln

2meQc

�I
2

b2
� �

:

(7.161)

Then, the mean energy loss per interaction as,

DElong ¼ C
Z

NA

� �
z

b

� �2

ln
2me QC

�I
2

b2
� �

(7.162)

and the mass soft collision stopping power due to

longitudinal excitations only is,

dE

r dx

� �
Col;S;long

¼ C
Z

A

� �
z

b

� �2

ln
2me QC

�I
2

b2
� �

(7.163)

This is the quantum-mechanical result of the energy

transfer between a charged projectile and an atom due

to an unretarded Coulomb potential and which is the

nonrelativistic result of the Bethe theory. As shown by

Fano (1964) and Ahlen (1980), the full form of the

Bethe mass soft collision stopping power, accounting

for both longitudinal and transverse excitations, is

slightly modified from this result,

dE

rdx

� �
Col;S

¼ C
Z

A

� �
z

b

� �2

ln
2me QC

�I
2

g2b2
� �

� b2
� �

¼ C
Z

A

� �
z

b

� �2
"
ln

2me QC

�I
2

b2
� �

þ ln
1

1� b2

� �
� b2

#

(7.164)

where the ln 1=1� b2
	 


and b2 terms arise from

retarded transverse photon interactions. It can be seen

that, since these two terms go to zero as b! 0, this

relativistic form reduces to the nonrelativistic result.

7.3.3.4 Comparison of Bohr and Bethe Soft

Collision Theories

The Bohr classical and Bethe quantum-mechanical

results are compared by considering the mass soft
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collision stopping powers for protons in carbon as given

in Fig. 7.10. For the Bethe result, the mean ionization

potential has been set to 6hcR, where the Rydberg

energy is hcR1 ¼ 13.61 eV, and stopping powers cal-

culated for the extrema for QC equal to 10 and 100 keV.

For the Bohr result, the mean oscillator frequency has

been set to �o ¼ 6 hcR1=�h ¼ 1:24� 1017 s�1. It should

be recalled that the derivations of the Bohr and Bethe

soft collision theories have been with single ground

state atoms or electrons or, in other words, the medium

throughwhich the projectile travels has been treated as a

cold and dilute monatomic gas rather than as a

condensed medium. The results of Fig. 7.10 are those

for “carbon” in so far as we have calculated for a

homogeneous medium in which Z ¼ 6 and A ¼ 12.

The Bohr result is explicitly truncated for kinetic ener-

gies less than 0.1 MeV: the calculated soft collision

stopping power changes sign, corresponding to the

unphysical condition of the gain of energy by the parti-

cle, due to the condition of 1:123 g2b3c= zr0�oð Þ 
 b2=2
at low energies.

Although the two theories do not agree quantita-

tively (except at low projectile kinetic energies), they

exhibit similar behaviors by demonstrating a decreas-

ing stopping power with increasing projectile energy

proportional to b�2. In both cases the mass collision

stopping powers reach broad minima at proton kinetic

energies of about 3 GeV and then exhibit a slow

increase. Themagnitude of the Bohrmass soft collision

stopping power is greater than that obtained from

the Bethe theory by roughly a factor of 5. The Bethe

result shows a slight dependence upon the selection

of QC with that calculated for QC ¼ 100 keV being

about a factor of 2 greater than that calculated for

QC ¼ 10 keV.

7.3.4 Hard Collision Stopping Power

7.3.4.1 Introduction

In a hard collision, the projectile interacts with a single

atomic electron at a speed much greater than the

orbital speed thus allowing the target electron to be

assumed to be at rest. In this case, the collision can be

treated as being elastic.

7.3.4.2 Differential Cross Sections in Energy

Transfer

Massive Projectile Electron Scatter (m 	 me)

Spin-0

Consider a massive spin-zero projectile (e.g., an a
particle) of charge ze with kinetic energy T. The

differential cross section for the energy transfer

Proton Kinetic Energy (MeV)

Bethe, Qc = 10 keV Bethe, Qc = 100 keV
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Fig. 7.10 Mass soft collision

stopping powers calculated

from the Bohr and Bethe

theories for protons ranging in

kinetic energy from 100 keV

to 1 TeV in carbon. The Bethe

results are shown for two

values of QC which separates

the energy transfers of soft and

hard collisions
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between Q and Q þ dQ to an electron at rest is

(Bhabha 1938),

ds
dQ

¼ 2p r20me

z

b

� �2
1

Q2
1� b2

Q

Qmax

� �
Spin-0

(7.165)

where Qmax is the maximum energy transfer to the

electron

Spin-1/2

Consider the case of a massive spin-1/2 projectile

(e.g., a proton) of mass m and charge ze with kinetic

energy T. The differential cross section for the energy

transfer between Q and Q þ dQ to the electron at rest

is (Bhabha 1938; Massey and Corben 1939),

ds
dQ

¼ 2p r20 me

z

b

� �2
1

Q2

� 1� b2
Q

Qmax

þ 1

2

Q

Tþm

� �2
" #

Spin-1=2:

(7.166)

Spin-1

Finally, for completeness, consider the case of a

massive spin-1 particle with mass m, charge ze, and

kinetic energy T. The differential cross section for the

energy transfer between Q and Q þ dQ to an electron

at rest is (Massey and Corben 1939; Oppenheimer

et al., 1940) is,

ds
dQ

¼ 2p r20me

z

b

� �2
1

Q2

"
1� b2

Q

Qmax

� �
1þ 1

3

Q

Q0

� �

þ 1

3

Q

Tþm

� �2

1þ 1

2

Q

Q0

� �#
Spin-1

(7.167)

where the energy Q0 is defined as Q0 ¼ m2=me:

It will be noted that, for low projectile energies

and low-recoil kinetic energies, the above differential

cross sections for spin-0, spin-1/2, and spin-1 massive

projectiles reduce to the classical Rutherford result.

Hence, spin contributions to the differential cross

section become significant only at high projectile

energies.

Electron–Electron (Møller) Scatter

Now consider the case of the projectile being an elec-

tron with kinetic energy, T. The Feynman diagrams of

electron–electron (Møller) scatter are shown in

Fig. 7.11. Two graphs necessarily arise as a result of

the inability to distinguish between the two exiting

electrons of which was the projectile or the target.

From Chap. 2, the maximum energy transferred to

the target electron is equal to the kinetic energy of

the incident. Because of the indistinguishability

between the projectile and target electrons, the exiting

electron with the highest energy is assumed to be the

primary. As the electron is a fermion, the wavefunc-

tion of an electron pair system must be antisymmetric

in the interchange of the two electrons. Should the

electron spins be parallel (i.e., the system is in the

triplet state), the system will be symmetric under

the exchange of spins thus requiring the spatial wave-

functions to be antisymmetric under the exchange of

the electron’s relative coordinates. Hence, the triplet

state scattering amplitude is,

ft yð Þ ¼ f yð Þ � f p� yð Þ (7.168)

p1

p1− p1¢

p1 − p2¢

p2

p1

p2

p1¢

p2¢

p2¢

p2¢

Fig. 7.11 Feynman diagrams for electron–electron Coulomb

scatter. Top: direct interaction; bottom: exchange interaction
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where f(y) is the scattering amplitude of elastic Cou-

lomb scatter. The transformation from y to p� y is the
equivalent of the interchange of the two electrons. For

antiparallel spins (i.e., the singlet state), the system is

antisymmetric under the interchange of spins and, as a

result, the spatial wavefunctions must be symmetric,

fs yð Þ ¼ f yð Þ þ f p� yð Þ: (7.169)

In dosimetry calculations, the projectile and target

electrons are considered to be unpolarized and e�e�

scatter has a random distribution of spins. Hence,

singlet and triplet states will have a ratio of relative

probabilities of 1:3 and the differential cross section is,

ds
dO

¼ 1

4
fs yð Þj j2 þ 3

4
ft yð Þj j2

¼ 1

4
f yð Þ þ f p� yð Þj j2 þ 3

4
f yð Þ � f p� yð Þj j2

¼ f yð Þj j2 þ f p� yð Þj j2 � f yð Þj j f p� yð Þj j

¼ me a�hc
2p2

� �2
1

sin4 y
2

þ 1

cos4 y
2

� 1

sin2 y
2
cos2 y

2

 !

¼ a�hc
4T

� �2
1

sin4 y
2

þ 1

cos4 y
2

� 1

sin2 y
2
cos2 y

2

 !
:

(7.170)

The first term is that of the elastic Coulomb scatter

cross section, whereas the second reflects the impossi-

bility of distinguishing between the incident and scat-

tered electrons. The third “cross” term is the exchange

term. The full relativistic Møller differential cross

section in energy transfer is, for an incident electron

of kinetic energy T transferring an energy between

Q and Q þ dQ to another electron (Møller 1932;

Rohrlich and Carlson 1954),

ds
dQ

¼ p
T

a�hc
T

� �2
"

T

Q

� �2

þ Q

T� Q

� �
þ g� 1

g

� �2

� 2g� 1

g2

� �
T

Q

� �
Q

T� Q

� �#
(7.171)

This describes the probability that, following Møller

scatter, one electron has a kinetic energy of Q and the

other has T�Q. Thus, all possible outcomes of the

scatter are obtained for Q ranging in value from 0 to

T/2. The nonrelativistic form of the differential cross

section is had by setting g ¼ 1,

ds
dQ

¼p
T

ah�c
T

� �2
T

Q

� �2

þ Q

T�Q

� �
� T

Q

� �
Q

T�Q

� �" #

(7.172)

Electron–Positron (Bhabha) Scatter

Now consider the case of a positron projectile with

kinetic energy, T. The Feynman diagrams for posi-

tron–electron (Bhabha) scatter are given in Fig. 7.12.

While the first graph is similar to that of Møller

scatter, the fact that it is possible for the electron

and positron to annihilate requires the provision of

an additional graph accounting for the production of a

virtual photon from which the exiting electron–posi-

tron pair is created. The differential cross section that

an incident positron with kinetic energy T will suffer

a kinetic energy loss between and Q and Q þ dQ

which is transferred to the target electron is (Bhabha

1936),

p1

p1

p
1 + q

1

p1 − p1¢

p1¢

p1¢

−q1¢

−q1¢

−q1

q1

Fig. 7.12 Feynman diagrams for positron–electron Coulomb

scatter. Top: direct interaction; bottom: annihilation intermediate-

state interaction
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ds
dQ

¼ 2p r20me
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(7.173)

7.3.4.3 Hard Collision Stopping Powers

Massive Projectiles (m 	 me)

As the differential cross sections in energy transfer for

massive spin-1/2 and spin-1 projectiles reduce to that

for a massive spin-0 projectile at low kinetic energies,

the spin-0 case is considered first. The general expres-

sion for the mass hard collision stopping power is,

dE

rdx

� �
col;H

¼ NA

Z

A

� � ðQmax

QC

dQQ
ds
dQ

(7.174)

where the integral limits are QC, which separates soft

and hard collisions, and the maximum energy trans-

ferred to the target electron, Qmax, which is set by the

relevant kinematics as shown in Chap. 2. The mass

hard collision stopping power for a massive spin-0 par-

ticle is,

dE

rdx

� �
col;H

¼ NA

Z

A

� � ðQmax

QC

dQQ
ds
dQ

¼ C
Z

A

� �
z

b

� �2 ðQmax

QC

dQ

Q
1� b2

Q

Qmax

� �

¼ C
Z

A

� �
z

b

� �2

ln
Qmax

QC

� ��

�b2
Qmax � QC

Qmax

� ��
: (7.175)

In a hard collision, the energy transfer is assumed to

be sufficiently high (Qmax 	 QC) to allow this to be

simplified to the form,

dE

rdx

� �
Col;H

¼ C
Z

A

� �
z

b

� �2

ln
Qmax

QC

� �
� b2

� �

Spin-0.

(7.176)

Now consider the mass hard collision stopping

power for a massive spin-1/2 projectile ,

dE

rdx

� �
col;H

¼ C
Z

A

� �
z

b

� �2 ðQmax

QC

� dQ

Q
1� b2

Q
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þ 1

2

Q
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� �2
" #
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�
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ln
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� �
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4

Q2
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#
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Z
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� �
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� �2
"
ln

Qmax
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� �
� b2
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2 Tþmð Þ
� �2

#
Spin-1=2:

(7.177)

where Qmax > QC. Note that, for a massive spin-1/2

projectile with a rest mass much greater than the

maximum energy transfer, the last squared-term in

the square brackets can be neglected and this result

reduces to the simpler spin-0 expression.

Electron and Positron Projectiles

The restricted mass hard collision stopping power for

an electron projectile is,

dE

r dx

� �
Col;H;D

¼ NA

Z

A

� � ðD
QC

dQQ
ds
dQ

(7.178)

where the Møller differential cross section is to be

used in the integral. Unlike the derivations of the

massive particle hard collision stopping powers, an
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upper limit of integration DQmax ¼ T=2 has been spe-

cified so as to ignore those energy transfers greater

than D. Although the restricted mass collision stopping

power can be defined for any projectile, the discussion

here will be limited to the electron projectile for dosi-

metric interest.

The mass collision stopping power for the Møller

cross section is,

dE

rdx

� �
Col;H;D

¼C
Z

A

� �
1

b2T2

ðD
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dQQ

�
"
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� �2

þ Q

T�Q
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þ g�1
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� 2g�1

g2

� �
T

Q

� �
Q

T�Q

� �#

¼C
Z

A

� �
1

b2

"
ln
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C

2T2

� �
� 2g�1
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� �
ln

T�QC

T�D

� �#
:

(7.179)

This expression can be simplified by defining the

normalized kinematic variables,

d � D
T

(7.180)

tC � QC

T
(7.181)

to obtain,

dE

rdx

� �
Col;H;D

¼C
Z

A

� �
1

b2

"
ln

d 1� dð Þ
tC 1� tCð Þ

þ 1

1� d
� 1

1� tC

� �
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� �2

� d2� t2C
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� �
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� �#
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(7.182)

As the selection of QC is somewhat arbitrary, its

value should ensure that tC � 1 which allows the tC
2

term to be neglected and to reduce this expression for

the electron restricted mass hard collision stopping

power to,

dE

r dx

� �
Col;H;D

¼ C
Z

A

� �
1

b2

"
ln
d 1� dð Þ

tC

þ 1

1� d
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� �

þ 2g� 1
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� �
ln 1� dð Þ

#

� Electron restrictedð Þ:
(7.183)

The unrestricted mass hard collision stopping

power is simply that for the parameter d ¼ 1/2, and,

dE

r dx

� �
Col;H;D¼T=2

¼ C
Z

A

� �
1

b2

� ln
1

4tC
þ 1þ

�
1

8

g� 1

g

� �2

� 2g� 1

g2

� �
ln 2

�
� Electron unrestrictedð Þ:

(7.184)

which corresponds to the result originally given by

Rohrlich and Carlson (1954).

The unrestricted mass hard collision stopping

power for a positron projectile is calculated as for an

electron project but with the Bhabha differential cross

section.

7.3.5 Combined Mass Hard and Soft
Collision Stopping Powers

7.3.5.1 Introduction

Having now derived the soft and hard collision stop-

ping powers, these can be combined to form the com-

plete collision stopping power. The Bethe quantum-

mechanical result will be used for the soft collision

stopping power expression.

7.3.5.2 Massive Projectiles (m >> me)

The Bethe mass collision stopping power, for when

spin is neglected, is given by the sum of the Bethe
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mass soft collision and the mass hard collision stop-

ping power of a massive spin-0 projectile,

dE

rdx

� �
Col

¼ dE

rdx

� �
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þ dE
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(7.185)

From Chap. 2, the maximum energy transfer to an

electron for the case of a heavy projectile is

Qmax ¼ 2meg2b
2. Inserting this gives the complete

mass collision stopping power for a massive spin-

0 projectile,

dE

r dx

� �
Col

¼ 2C
Z

A

� �
z

b
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ln
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2
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� �
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(7.186)

For a massive spin-1/2 projectile (proton),
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As m 	 me, it is clear that the mass collision

stopping power for a massive spin-1/2 projectile

reduces to that for a spin-0 projectile at low kinetic

energies (i.e., g2b2! 0). Figure 7.13 shows the mass

collision stopping power calculated for a proton in

carbon and lead. Here, the mean ionization potentials

for carbon and lead are taken to be equal to 78 and

823 eV, respectively. Both curves of dE=r dxð ÞCol
exhibit the same characteristic behavior of a decrease
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Fig. 7.13 Mass collision

stopping powers for protons

in carbon and lead
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with increasing kinetic energy, due to the b�2 factor,

to a broad minimum of about 1–2 MeV cm2/g which

occurs at a particle kinetic energy equal to about three

times its rest mass. This is referred to as the mini-

mally-ionizing region. With increasing kinetic energy,

the mass collision stopping power increases logarith-

mically due to the ln(g2b2) � b2 term. This increase is

monotonic as the medium is still considered to be a

dilute monatomic gas, but could be quenched in

condensed media due to polarization of the medium.

It should be noted that, for a given projectile kinetic

energy, the mass collision stopping power for carbon

(Z ¼ 6) is greater than that for lead (Z ¼ 82). This is a

result of the energy loss being dominated by interac-

tions with atomic electrons over those with the nucleus

and the electron density being proportional to the ratio

Z/A. As a result, the ratio of the carbon to lead mass

collision stopping powers is (excluding the effect of

the mean ionization potential which is limited due to

its placement within the logarithm),

Z

A

� �
C

Z

A

� �
Pb

¼
6

12

� �
82

208

� � ¼ 1:268

In other words, the mass collision stopping power

for carbon is greater than that for lead due to the

greater number of electrons per unit mass.

7.3.5.3 Electron and Positron Projectiles

To obtain the unrestricted mass collision stopping

power of an electron projectile, the Bethe mass soft

collision stopping power and the Møller mass hard

collision stopping power are summed,

dE

rdx

� �
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� �
Col;S

þ dE

rdx

� �
Col;H

¼ C
Z

A

� �
1

b

� �2

ln
2meQC

�I
2

g2b2
� ��

�b2 þ ln
T

4QC

� �
þ 1þ 1

8

g� 1

g

� �2

� 2g� 1

g2

� �
ln 2

�
¼ C

Z

A

� �
1

b

� �2

� ln
meT

2�I
2
g2b2

� �
þ f� gð Þ

� �
(7.188)

where T is the electron kinetic energy and

f� gð Þ¼1�b2þ1

8

g�1

g

� �2

� 2g�1

g2

� �
ln2: (7.189)

By using the relativistic relationship,

meg2b
2 ¼ me g2 � 1

	 

¼ T gþ 1ð Þ

the electron mass hard collision stopping power is

simplified to,
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(7.190)

The electron restricted mass collision stopping

power (i.e., that which excludes energy transfers to

the medium greater than D) is,
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(7.191)
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where,

f� g;Dð Þ ¼ D
T� D

� �
� b2 þ 2g� 1

g

� �

� ln
T� D
T

� �

þ g� 1

g

� �2 D2

2T2
: (7.192)

Similarly, to obtain the positron complete collision

stopping power, the Bethe mass soft and the Bhabha

mass hard collision stopping powers are summed,

dE

rdx

� �
Col

¼ C
Z

A

� �
1

b2
ln

T2 gþ 1ð Þ
2�I

2

� �
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(7.193)

where

fþ gð Þ ¼ 2 ln 2� b2

12

� 23þ 14

gþ 1ð Þ þ
10

gþ 1ð Þ2 þ
4

gþ 1ð Þ3
" #

(7.194)

A comparison of the (unrestricted) electron and

positron mass collision stopping powers shows that

the difference between the electron and positron

mass collisions stopping powers resides within the

difference between f� gð Þ and fþ gð Þ. These two terms

are plotted in Fig. 7.14 as functions of the kinetic

energy of the incident electron/positron (only the unre-

stricted version of D ¼ T=2 is used for the electron

term). At low energies, fþ gð Þ exceeds f� gð Þ by about a
factor of 3 and decreases with positron kinetic energy

to equal f� gð Þ at about 0.32MeV. Note that both f� gð Þ
and fþ gð Þ become negative with increasing kinetic

energy. However, when the electron and positron

unrestricted mass collision stopping powers for carbon

and lead are compared, as shown in Fig. 7.15, it is sees

that there is little difference between the two stopping

powers which reflects the dominance of the logarith-

mic term in the collision stopping power expression

over the magnitudes of f� gð Þ and fþ gð Þ. The mass

collision stopping power curves exhibit the same char-

acteristics as those derived earlier for the proton.

A clear comparison of the curves shows that while

the mass collision stopping power of protons, elec-

trons, and positrons are roughly equal in the mini-

mally-ionizing region, the kinetic energy at which

this region occurs is equal to roughly equal to 3

times the particle rest mass (3 GeV for protons and
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Fig. 7.14 The functions
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1.5 MeV for electrons and positrons) or for a particle

speed of the order of b � 0.8.

7.3.6 Mean Excitation Energy

Except for the atomic number and atomic mass num-

ber, the only other explicit property of the medium

which appears in the expression for the mass collision

stopping power is the mean excitation energy (or ioni-

zation potential) �I, which is contained within the loga-

rithmic term. The logarithm of the mean ionization

potential can be obtained by ab initio calculations for a

gas of free atoms or using measured optical oscillator

distribution data (Nobel et al. 2005). In a closely

related fashion, it is also possible to calculate it from

measured dielectric properties of the medium and, as

explicitly shown later, to extract it from measured

stopping power data. The placement of �I within the
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logarithm ensures that variations in the calculated

collision stopping power are relatively insensitive to

the uncertainty in the value of �I. Hence, for practical

dosimetry evaluations, a theoretical discussion of�I can

be provided in reduced detail. Expansive discussions

of the mean ionization potential can be found in those

reviews by Uehling (1954) and Fano (1964) and in

ICRU Reports 37 (1984) and 49 (1993).

Recall that, as a consequence of the derivation of

the Bethe mass soft collision stopping power, the

mean excitation energy was shown to be described

by the first energy moment of the optical oscillator

distribution,

ln�I ¼ 1

Z

ð
dEn

dfnðZÞ
dEn

ln En

with the normalization,

ð
dEn

dfnðZÞ
dEn

¼ Z:

While it is possible to calculate ln�I for a gas of free

atoms using calculated oscillator strength distribu-

tions, another approach is to use the moments of this

distribution as defined by (Dalgarno 1960),

MðmÞ ¼
ð
dEn

dfnðZÞ
dEn

Em
n (7.195)

where, from the normalization requirement, the zeroth

moment is,

Mð0Þ ¼ Z:

The logarithm of the mean ionization potential can

be written by using dEm
n =dm ¼ Em

n ln En,

ln�I ¼
dMðmÞ
dm

���
m¼0

Mð0Þ : (7.196)

ICRU Report 37 (1993) notes that the moments for

m equal to �1, 1, and 2 can be determined theoreti-

cally and that for m equal to �2 can be extracted from

measured data. An analytical fit to these four moments

and can be made, from which the ratio in (7.196) can

be determined.

Another method was proposed by Lindhard and

Scharff (1953) using a free electron gas model,

ln�I ¼ 1

Z

ð
d3r reðrÞ ln

ffiffiffi
2

p
�hopðrÞ

� �
(7.197)

where op is the electron plasma frequency for the

electron density re(r)
13 and ln �I and �hopðrÞ must

have the same units of energy.

The approaches above are limited to gaseous media

within which the positions of the electrons considered

uncorrelated. For condensed media, ln �I can be calcu-

lated from an expression originally derived by Fano

(1956),

ln�I ¼ 2

po2
p

ð1
0

do Im � 1

eR oð Þ
� �

o ln �ho (7.198)

where eR(o) is the complex relative dielectric permit-

tivity and the imaginary component describes the

absorption of electromagnetic energy.

Parametric expressions of�I are useful for dosimetry

calculations. Because�I is found within the logarithmic

term of the collision stopping power, any effects upon

the stopping power due to uncertainties in �I will be

correspondingly limited. Some authors have approxi-

mated the mean excitation potential as a linear func-

tion of the medium’s atomic number,

�I ¼ Z hcR1 (7.199)

where hcR is the Rydberg energy, 13.6 eV. A number

of semi-empirical representations of �I as a function of

the medium’s atomic number have been provided in

the literature. One particularly useful one is presented

by Segrè (1977),

�I ¼ 9:1 1þ 1:9

Z2=3

� �
eV for Z � 4 (7.200)

13The plasma frequency describes the oscillatory motion of free

electrons in a plasma displaced from a uniform background of

ions. The equation of motion for an electron in the simplest

case is given by med
2x=dt2 ¼ �eE� ree

2=e0Þxð where we have

taken the restoring electric field to be equal to � P=e0 where

P is the polarization. Solving this equation yields the plasma

frequency, op ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ree2=e0me

p
.
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Segrè’s parameterization of �I, normalized to the

atomic number of the medium, is shown in Fig. 7.16.

Also shown are values from ICRU Report 37 for

condensed media. While �I=Z rapidly decreases with

atomic number to an approximately constant value of

about 10 eV, it can be seen that there are irregularities

attributable to atomic shell structure.

7.3.7 Stopping Number

7.3.7.1 Introduction

The mass collision stopping powers derived to this

point are what can be crudely considered to be

“zeroth”-order results is that they were obtained on

the basis of three simplifying assumptions:

� The projectile speed is much higher than the atomic

electron orbital speed allowing the collision kine-

matics to be derived with the electron assumed to

be at rest.

� For a single atom, the atomic electron “cloud” is

not displaced by the electric field of the moving

charged particle.

� The medium is treated as a cold dilute gas which is

not polarized by the projectile’s electric field.

In order to extend the expressions of the mass

collision stopping powers to enable calculations for

more realistic cases, “higher order” correction terms

are applied in order to compensate for these simplify-

ing assumptions. A transparent way of doing so is by

writing the mass collision stopping power as a series in

order to isolate these individual corrections,

dE

r dx

� �
Col

¼ 2C
Z

A

� �
z

b

� �2

L bð Þ (7.201)

where L(b) is defined as the stopping number given in

terms of a summation weighted by powers of the

projectile electric charge (normalized to the unit

charge, e),

L bð Þ ¼
X2
j¼0

zj Lj bð Þ: (7.202)

For convenience, the zeroth-order term of this

expansion is written as a series itself,

L0 bð Þ ¼
X2
k¼0

L0k bð Þ (7.203)

to give,

L bð Þ ¼
X2
k¼0

L0k bð Þ þ
X2
j¼1

zj Lj bð Þ: (7.204)

Note that the stopping number and its terms are

explicit functions of the projectile speed through

momentum or kinetic energy. From the expression of

the mass collision stopping power for a spin-less mas-

sive projectile, the zeroth-order term in the L0(b) sum-

mation is,

L00 bð Þ ¼ ln
2meg2b

2

�I

� �
� b2 (7.205)

The L01 bð Þ term accounts for the reduction in stop-

ping power as a result of the projectile slowing down

to speeds comparable to those of the target atomic

electrons,

L01 bð Þ ¼ �Ce bð Þ
Z

(7.206)

and is known as the shell correction term. As it is to be

independent of the atomic number of the medium, it

0
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Fig. 7.16 Mean ionization potential normalized to atomic

number as a function of atomic number. The curve is the param-

eterization of Segrè and the data points with connecting lines are

from tabulated data provided by ICRU Report 37 (1984)
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contains that quantity in the denominator in order to

cancel the corresponding factor in the leading multi-

plicative term of (7.201). In a dense medium, the

projectile polarizes the atoms and reduces the penetra-

tion of the electric field into the medium thus dimin-

ishing the stopping power. The L02 bð Þ term accounts

for this reduction in stopping power,

L02 bð Þ ¼ d=2: (7.207)

This can be an important effect for fast electrons in

soft tissue. The first-order term of the stopping number,

zL1 bð Þ is actually proportional to the cube of the pro-

jectile’s atomic number due to the z2 in the leading

multiplicative term. Hence, this term accounts for the

minute difference in stopping powers between a particle

and its antiparticle as a result of the differential dis-

placement of the atomic electron cloud by each: a

positively-charged projectile will attract the atomic

electrons to bring them closer to its trajectory to yield

a slightly greater stopping power than its negatively-

charged antiparticle which repels the electrons. Finally,

the second-order term, z2L2 bð Þ, arises from the recon-

ciliation by Bloch of the Bohr and Bethe theories.

The L01 bð Þ, zL1 bð Þ; and z2L2 bð Þ terms are now

discussed; the polarization effect accounted for by

L02 bð Þ is discussed separately.

7.3.7.2 Atomic Electron Shell Correction

Up to this point, in the calculation of the collision

stopping power the orbital speeds of the atomic elec-

trons have been assumed to be much less than the

projectile speed or, equivalently, the electrons are

considered to be initially at rest. Clearly, this simpli-

fied the kinematics of the hard stopping power calcu-

lation. However, for low-energy projectiles with a

speed comparable to the orbital speeds, this simplifi-

cation no longer holds. Moreover, if the slow projec-

tile is an ion (e.g., an a particle), it can capture these

electrons, reducing its effective charge and even fur-

ther diminishing the stopping power.

The first electrons to be affected are those in the

K-shell which are the most tightly bound and have the

greatest speeds, followed by the L-shell electrons, etc.

Thus, as the particle speed decreases, the contributions

to the stopping power decrease sequentially. The term

accounting for this effect is L01 bð Þ given by where the
Ce bð Þ term is averaged over the contributions of all

atomic electrons. Should the density effect described

by L02 bð Þ be negligible, L01 bð Þ can be taken from the

definition of the stopping number,

L01 bð Þ¼ 1

2C

A

Z

� �
b
z

� �2
dE

rdx

� �
Col

�L00 bð Þ

¼ 1

2C

A

Z

� �
b
z

� �2
dE

rdx

� �
Col

� ln
2meg2b

2

�I

� �
þb2:

(7.208)

Thus,

Ce bð Þ ¼ �ZL01 bð Þ

¼ 1

2C
A

b
z

� �2
dE

r dx

� �
Col

þ Z ln
2me g2 b

2

�I

� �
� b2

� � (7.209)

Details of how Ce bð Þ can be derived are provided by
Ziegler (1999) and ICRU Report 37 (1984). A semi-

empirical parameterization of Ce bð Þ, useful for calcula-
tional purposes, was provided by Barkas (1962),

Ce ¼ �I2
0:42237

gbð Þ2 þ 0:0304

gbð Þ4 � 0:00038

gbð Þ6
 !

� 10�6

(

þ�I
3:858

gbð Þ2 �
0:1668

gbð Þ4 þ 0:00158

gbð Þ6
 !

� 10�9

)

(7.210)

where �I is in units of electron volt. The validity of this

expression for Ce is limited to gb > 0.13. Figure 7.17
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Fig. 7.17 Shell correction terms for carbon and lead as a

function of gb
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shows the shell correction term Ce bð Þ=Z for carbon

and lead as functions of proton kinetic energy. The

Ce bð Þ=Z values decrease with increasing kinetic

energy (i.e., increasing particle speed beyond the

atomic electron speeds) with Ce bð Þ=Z greater for

lead than for carbon due to the higher atomic electron

speeds.

7.3.7.3 Barkas Correction Term

As noted earlier, the first-order term of the stopping

number is proportional to z3 due to the z2 weighting

applied to the series. As a result, it will be sensitive to

the sign of that charge. The fact that this should be so

(even though the Bethe result predicts no such depen-

dence due to the z2 term) was first apparent in mea-

surements by Barkas et al. (1956) of the kaon decay to

three pions which showed that the range of the product

pþ was slightly less (of the order of 0.4%) than that of

the p� for the same initial speed. This indicated that

the stopping power for the positively-charged particle

was greater than its negatively-charged antiparticle, an

effect due to the respective repulsion and attraction of

the atomic electrons with a corresponding decrease

and increase in energy transfer. Additional measure-

ments (Barkas et al. 1963) of the K� þ p ! S� þ p�

reaction repeated this observation. Precise work by

Andersen et al. (1969) showed that the a particle

stopping power was greater than the factor-of-four

multiple over those of protons and deuterons as pre-

dicted by the z2-dependence. Ashley et al. (1972,

1973) provided a thorough theoretical evaluation of

the Barkas effect and Lindhard (1976) gave an explicit

representation of this effect. The zL1 bð Þ term in the

stopping number expansion reduces the stopping

power for a negatively-charged projectile relative to

its positively-charged antiparticle. From the work by

Ashley et al., the Barkas correction term can be written

in the form,

zL1 bð Þ ¼ a
b

� �3

zZ F
a
b
b
ffiffiffi
Z

p� �
(7.211)

where F(x) is a numerically-evaluated function and b

is related to the minimum impact parameter. Values

for this correction term are provided in ICRU Report

49 (1993). For high atomic media, Bichsel (1990)

extracted the Barkas correction term from measured

stopping power data and found that it could be accu-

rately described by a power-law dependence upon the

particle speed,

L1 bð Þ ¼ k1 b
�k2 (7.212)

where, for the example of a gold absorber,

k1 ¼ 0:002833

k2 ¼ 1:2

Figure 7.18 shows L1 bð Þ for protons and antipro-

tons in gold as a function of proton kinetic energy.

Clearly, the Barkas term becomes significant at low

projectile speeds only. The only particle–antiparticle

pair of interest to nuclearmedicine is that of the electron

and positron. As the target particle is also an electron,

the Barkas effect would be swamped by the differences

between the Møller and Bhabha cross sections.

7.3.7.4 Bloch Correction Term

In the early 1930s, Bloch reconciled the Bohr classical

and Bethe quantum-mechanical calculations of the

soft collision stopping power by demonstrating that

the Bohr result was valid quantum-mechanically if the

Bohr energy loss were to be interpreted as a mean

value over all possible atomic electron transitions

(Ahlen 1980). Bloch then looked at close collisions

without the assumption that the target electron being

considered as a plane wave in the center-of-mass ref-

erence frame and allowed them to be perturbed by the

projectile’s Coulomb field. This Bloch refinement pro-

duced a correction term that was overall proportional

to z4 or, in terms of the stopping number expansion,

z2L2 bð Þ ¼ cð1Þ � Rec 1þ ia
z

b

� �
(7.213)

where cðzÞ is the logarithmic derivative of the gamma

function,14

c ðzÞ ¼ d lnGðzÞ
dz

¼ 1

GðzÞ
dGðzÞ
dz

: (7.214)

14This is also referred to as the digamma function.
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It is possible to rewrite the Bloch correction term as

a series by using the identity,

cð1Þ ¼ gEM

and the series expansion,

Rec 1þ iyð Þ ¼ �0:5772 � � � þ y2
X1
n¼1

1

n n2 þ y2ð Þ;

to give,

z2L2 bð Þ ¼ � a
z

b

� �2X1
n¼1

1

n n2 þ a z
b

� �2� �: (7.215)

Now consider the asymptotic behaviors of the

Bloch correction term due to the projectile charge

and speed. To do so, use the asymptotic formula,

Rec 1þ iyð Þ ¼ ln yþ 1

12y2
þ 1

120y4
þ 1

252y6
þ � � �

for y ! 1:

Thus, for a slow heavy charged particle (i.e.,

az=b 	 1), the Bloch correction term is,

z2L2 bð Þ � �gEM � ln a
z

b

� �
(7.216)

In this limit, the Bloch correction leads to the Bohr

classical form of the collision stopping power. On the

other hand, one does not achieve the Bethe result in

the relativistic case of az=b ! 0 due to an error in the

original derivation and which is discussed by Ahlen

(1980). This has a negligible calculational conse-

quence, however, as the Bloch term becomes insignif-

icant in such a case.

7.3.7.5 Complete Stopping Number (excluding

density effect)

If the zeroth-, first-, and second-order terms of the

stopping number of the past three sections are

summed, one obtains the complete stopping power,

excluding the L02(b) term,

L bð Þ ¼ ln
2me

�I
g2b2

� �
� b2 � Ce bð Þ

Z
� d
2

þ a
b

� �3

zZ F
a
b
b
ffiffiffi
Z

p� �
� a

z

b

� �2

�
X1
n¼1

1

n n2 þ a z
b

� �2� �:
(7.217)
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Fig. 7.18 Barkas correction

factor in gold for protons and

antiprotons calculated from

Bichsel’s (1990)

parameterization
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7.3.7.6 Effect of Medium Polarization Upon the

Stopping Power

Introduction

So far, the projectile’s electric field has been implicitly

assumed to be in vacuo and, using this approximation,

the medium has been assumed to be a cold and dilute

monatomic gas. Such simplifications ignore any

response of a realistic medium to this moving electric

field. Should the particle be traveling in a dense dielec-

tric medium (such as tissue), atoms will be polarized,

creating an array of electric dipoles which generate a

secondary electric field limiting the particle’s electric

field at a distance and reducing the stopping power.

This effect is expected to be significant at high particle

speeds, as shown by Fig. 7.2, where, as b! 1, the

electric field parallel to the trajectory flattens and the

orthogonal component extends such that the dielectric

response of the medium limits the relativistic rise in

stopping power. Because the magnitude of this dielec-

tric response will be directly related to the number of

secondary electric dipoles, it will clearly depend upon

the medium’s physical density.15 This reduction in

stopping power is referred to as the polarization or

density effect and is characterized by a correction

term, d, which is treated as a higher order correction

term to the zeroth-order term of the Born series

description of the stopping power.

The density effect leads to a reduction in the stopping

power of fast electrons in tissue and its consequences

are to be investigated in detail. The semiclassical work

of Fermi (1940) will guide this derivation.

Electronic Polarization

In order to characterize the properties of a dielectric

medium in a time-varying electric field, begin with

those of an individual atom. The simplest model of

the medium is that of an isotropic monatomic gas with

interatomic distances sufficiently large that an atom

can be treated in isolation. The atom is taken to be a

negatively-charged and mobile spherical electron

cloud of charge �Ze and mass Zme which, in its

unperturbed state, is centered on a fixed nucleus of

charge Ze. The electric field of the passing charged

particle will perturb the position of this electron cloud

and polarize the atom, as shown in Fig. 7.19. At high

particle speeds, the shortness of the time duration of

the electric field “pulse” experienced by the atom, as

shown in Fig. 7.2, will be dominated by high-fre-

quency components and, in frequency space, one can

consider the atom as being exposed to a high-fre-

quency electric field. The displacement, D, will be

limited due to the short duration of the pulse and one

can effectively ignore the spatial variation of the field

over the atom as a result. The electron cloud will

experience a restorative force due to the mutual attrac-

tion between it and the nucleus and thus go into oscil-

latory motion. The attractive force can be calculated

by modeling the electron cloud as a uniformly charged

sphere of radius RA with an electric charge density,

3=4pð ÞZe=R3
A. The radial electric field due to this

charge at a distance D from the center of the atom is

found by applying Gauss’ law to the sphere of radiusD,

e0 4pD2
	 


E ¼ 4p
3
D3 3

4p
Ze

R3
A

� �

from which one obtains an expression for the electric

field in terms of the displacement of the atomic elec-

tron cloud,

E ¼ Ze

4pe0

D
R3
A

(7.218)

E (w)

Electron “cloud”
Centre-of-mass

Nucleus

D(w)

RA

+

Fig. 7.19 Electronic polarization due to an external electric

field

15Because the interatomic spacings in a gas are greater than

those in a solid or liquid, the wider dispersion of atoms in the

gaseous phase will limit the dielectric response such that the

mass collision stopping power for a given medium will be

greater for the condensed phases than for the vapor phase and,

hence, this interest in this phenomenon in tissue.
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The restoring force is F ¼ ZeE, or

F ¼ Zeð Þ2
4p e0R3

A

D ¼ ZD: (7.219)

This gives,

ZeE ¼ Zeð Þ2
4p e0

D
R3
A

from which the magnitude of the product of the charge

and its displacement, electric dipole moment, is

obtained,

p ¼ ZeD ¼ 4p e0 R3
A E (7.220)

or, in terms of vector quantities,

p ¼ 4p e0 R3
A E � ae E (7.221)

where ae is defined as the electronic polarizability. It

will be noted that the magnitude of the ratio,

ae=e0 ¼ 4pR3
A, is the atomic volume.

The resulting equation of motion of the displaced

electron cloud is,

Zme

d2DðtÞ
dt2

¼ ZeEðtÞ � ZDðtÞ

� GZme

dDðtÞ
dt

(7.222)

where a damping force GZme dDðtÞ=dt with a positive
damping constant G has been allowed for. This differ-

ential equation is readily solvable, as demonstrated

earlier in the derivation of the Bohr soft collision

stopping power through the Fourier transform. The

result in frequency space is,

D oð Þ ¼
e
me

� �
E oð Þ

o2
0 � o2

	 
þ iGo
(7.223)

with a resonant frequency given by,

o0 ¼ c

ffiffiffiffiffiffiffiffiffiffi
Z

r0

R3
A

r
: (7.224)

As the atomic radius RA of the order of 10�10 m, the

resonant frequency will consequently be of the order of

1016–1017/s with a corresponding wavelength in the

ultraviolet range of the electromagnetic spectrum.

The electric dipole moment in frequency-space is,

p oð Þ ¼ Z eD oð Þ

¼ Z

e2

me

� �
E oð Þ

o2
0 � o2

	 
þ iGo
:

(7.225)

Next, the scale is expanded from that of the indi-

vidual atom to the macroscopic medium which is

taken to be linear and isotropic.16 The polarization is

the number of electric dipoles per unit volume, or,

P oð Þ ¼ re

e2

me

� �
E oð Þ

o2
0 � o2

	 
þ iGo
: (7.226)

The electric-flux density vector is related to the

electric field and the polarization in frequency space

by,

D oð Þ ¼ e0E oð Þ þ P oð Þ
� e0E oð Þ þ we oð Þe0E oð Þ
¼ e0 1þ we oð Þð ÞE oð Þ
¼ e0 eR oð ÞE oð Þ

(7.227)

where we(o) is the electric susceptibility and

eR oð Þ ¼ 1þ we oð Þ is the relative dielectric constant.

This result is algebraically manipulated to relate the

polarization to the electric field by,

P oð Þ ¼ e0 eR oð Þ � 1ð ÞE oð Þ: (7.228)

By equating these two expressions for the polariza-

tion, the relative dielectric constant can be written as,

eR oð Þ ¼ 1þ
re
e0

e2

me

� �
o2
0 � o2

	 
þ iGo

¼ 1þ o2
P

o2
0 � o2

	 
þ iGo
:

(7.229)

16Should this not be the case, the electric susceptibility and

dielectric permittivity scalars would be replaced by tensors.
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Separate eR(o) into real and imaginary components

in order to form the set of dielectric dispersion for-

mulae,

eR oð Þ ¼ 1þo2
P

o2
0�o2

o2
0�o2

	 
2þG2o2

 ! !

� io2
P

Go

o2
0�o2

	 
2þG2o2

 !

� eR0 oð Þ� ieR00 oð Þ

(7.230)

As the imaginary component of the relative dielec-

tric permittivity is proportional to G, it is also propor-

tional to the power loss within the dielectric.

Electromagnetic Fields in a Dielectric Medium

The next step to calculating the response of a dielectric

medium to a moving charged particle requires the

calculation of the electromagnetic fields of the projec-

tile within the medium. To do this, Maxwell’s equa-

tions are solved in Fourier space,

r � D ¼ r (7.231)

r � B ¼ 0 (7.232)

r� E ¼ � ]B

]t
(7.233)

r�H ¼ Jþ ]D

]t
(7.234)

where

D ¼ eR e0 E (7.235)

and where it is assumed that the magnetic polarizabil-

ity of the medium is negligible,

B ¼ m0 H: (7.236)

The electric field and the magnetic flux density are

also defined through scalar and vector potentials,

E ¼ �rF� ]A

]t
(7.237)

B ¼ r� A: (7.238)

It is possible to determine these potentials using the

four-dimensional Fourier transform,

F k;oð Þ ¼ 1

4p2

ð1
�1

d3x

ð1
�1

dt F x; tð Þe�i k�x�otð Þ

(7.239)

where k is the wavenumber and o is the frequency.

The coordinate system of Fig. 7.20 where the unit

vector v̂jj lies along the particle’s trajectory is used.

The Fourier transforms of the divergence of D and the

curl of B are,

ik � E k;oð Þ ¼ r k;oð Þ
eR oð Þe0 (7.240)

�i k�H k;oð Þ ¼ J k;oð Þ þ ioeR oð Þe0E k;oð Þ:
(7.241)

The Fourier transforms of the fields as defined by

the potentials are,

E k;oð Þ ¼ �ikF k;oð Þ þ ioA k;oð Þ (7.242)

Particle
Trajectory

Ÿ
V

Ÿ
V

Ÿ
V

x

^

çç

Fig. 7.20 Coordinate system used in the calculation of the

electromagnetic fields of a moving charged particle in a dielec-

tric medium
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H k;oð Þ ¼ � i

m0
k� A k;oð Þ: (7.243)

Expressions for E k;oð Þ andH k;oð Þ are derived by
first determining the scalar and vector potentials. Sub-

stituting (7.242) into (7.240),

� ik � ikF k;oð Þ � ioA k;oð Þð Þ ¼ r k;oð Þ
eR oð Þe0

which leads to,

k2F k;oð Þ � o k � A k;oð Þ ¼ r k;oð Þ
eR oð Þe0 : (7.244)

As both the scalar and vector potentials appear in

this equation, we can decouple them by applying the

Lorentz gauge condition. This sets the divergence of

the vector potential to being proportional to the time

derivative of the scalar potential,

r � A x; tð Þ ¼ �m0eRe0
]F x; tð Þ

]t

¼ � eR
c2

]F x; tð Þ
]t

(7.245)

where 1=
ffiffiffiffiffiffiffiffiffi
m0e0

p ¼ c has been used. By transforming

this Lorentz gauge condition into wavenumber- and

frequency-space,

k � A k;oð Þ ¼ oeR oð Þ
c2

F k;oð Þ: (7.246)

Applying this to (7.244) results in the wave equa-

tion for the scalar potential,

k2 � o2 eR oð Þ
c2

� �
F k;oð Þ ¼ r k;oð Þ

eR oð Þe0 : (7.247)

The corresponding wave equation in the vector

potential is next derived by substituting the Fourier

transforms of the electromagnetic fields into the Fourier

transform ofr� B,

1

m0
k� k� A k;oð Þð Þ ¼ J k;oð Þ þ ioeR oð Þe0

� ikF k;oð Þ � ioA k;oð Þð Þ:

Expanding the vector triple cross-product gives,

1

m0
k k � A k;oð Þð Þ � k2A k;oð Þ	 


¼ J k;oð Þ � oeR oð Þe0kF k;oð Þ
þ o2eR oð Þe0A k;oð Þ:

Applying the Lorentz gauge condition to this result

gives,

k2 � o2 eR oð Þ
c2

� �
A k;oð Þ ¼ m0J k;oð Þ: (7.248)

These wave equations provide the first steps in deter-

mining the potentials F k;oð Þ and A k;oð Þ. These are

obtained by first calculating the Fourier transforms of

the charge and current densities, r k;oð Þ and J k;oð Þ.
The net charge distribution is that of the projectile,

r x; tð Þ ¼ ze d x� bct v̂jj
	 


(7.249)

with the Fourier transform,

r k;oð Þ ¼ 1

4p2

ð1
�1

d3x

ð1
�1

dtr x; tð Þe�i k�x�otð Þ

¼ ze

4p2

ð1
�1

d3x

ð1
�1

dt e�i b c k�v̂jj�oð Þt

¼ ze

2p
d o� bckjj
	 


:

(7.250)

The current density is,

J x; tð Þ ¼ bc r x; tð Þv̂jj
and its Fourier transform is,

J k;oð Þ ¼ bc r k;oð Þv̂jj
¼ ze bc

2p
d o� bckjj
	 


v̂jj:
(7.251)

Having obtained these, it is possible to write the

Fourier transforms of the scalar and vector potentials as,

Fðk;oÞ ¼ r k;oð Þ
eR oð Þe0 k2 � o2 eR oð Þ

c2

� �
¼ ze

2p eR oð Þe0 k2 � o2 eR oð Þ
c2

� �
� d o� bckjj
	 


(7.252)
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and

A k;oð Þ ¼ m0J k;oð Þ
k2 � o2 eR oð Þ

c2

� �
¼ ze m0bc

2p k2 � o2 eR oð Þ
c2

� � d o� bckjj
	 


v̂jj

(7.253)

and the fields in wavenumber- and frequency-space,

E k;oð Þ¼ i o
zem0bc

2p k2�o2 eR oð Þ
c2

� �d o�bckjj
	 


v̂jj

0
@

�k
ze

2peR oð Þe0 k2�o2 eR oð Þ
c2

� �d o�bckjj
	 
1A

¼ i
zed o�bckjj
	 


2pe0eR oð Þ k2�o2 eR oð Þ
c2

� �

� oeR oð Þb
c
v̂jj �k

� �
(7.254)

and

H k;oð Þ ¼ i
ze bc

2p k2 � o2 eR oð Þ
c2

� � d o� bckjj
	 


k� v̂jj:

(7.255)

Energy Loss in a Dielectric Medium

Now that the electromagnetic fields E k;oð Þ and

H k;oð Þ arising from a moving charged particle in a

dielectric medium have been evaluated, the energy

loss to a single electron at the position associated

with the impact parameter, b, is calculated at the

vectorial position,

x ¼ b v̂?: (7.256)

This energy loss is equal to the electromagnetic

energy flow which is described by the magnitude of

the Poynting vector. In order to calculate this vector,

begin by taking the inverse Fourier transform of the

previously-derived electric field into the spatial

domain,

E bv̂?;oð Þ ¼ 1

2pð Þ3=2
ð1

�1
d3kE k;oð Þeibk�v̂?

¼ i
ze

2pð Þ5=2e0eR oð Þ

�
ð1

�1
d3k

oeR oð Þ b
c
v̂jj � k

� �
k2 � o2 eR oð Þ

c2

� �
� eibk�v̂?d o� b ckjjÞ

	
E bv̂?;oð Þ ¼ i

ze

2pð Þ5=2e0eR oð Þ

ð1
�1

d3k

�
�kxv̂x þ oeR oð Þ b

c
� kjj

� �
v̂jj � k?v̂?

� �
k2x þ k2jj þ þk2? � o2 eR oð Þ

c2

� �
� eibk?d o� bckjj

	 

(7.257)

In order to evaluate the integral, first use the substi-

tution of variable x ¼ bckjj to take it to the form,

E bv̂?;oð Þ¼ i
ze

2pð Þ5=2e0eR oð Þbc

ð1
�1

dkx

ð1
�1

dx
ð1

�1
dk?

�
�kxv̂xþ oeR oð Þb

c
� x

bc

� �
v̂jj�k?v̂?

k2xþ x
bc

� �2
þþk2?�o2eR oð Þ

c2

� �

�eibk?d o�xð Þ
(7.258)

The integration over x is trivial due to the d-func-
tion and results in,

E bv̂?;oð Þ ¼ i
ze

2pð Þ5=2e0eR oð Þbc

ð1
�1

dkx

ð1
�1

dk?

�
�kxv̂x þ o

bc eR oð Þb2 � 1
	 


v̂jj � k?v̂?

k2x þ k2? þ l oð Þ2
� � eibk?

ð7:259Þ
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where the quantity,

l 2 oð Þ ¼ o
bc

� �2

1� b2eR oð Þ	 

(7.260)

has been defined. In a convenient approach to solving

this integral, it is split it up into the integral expression

for the Fourier transform of the electric field of three

integrals along each orthogonal direction and each are

solved separately,

E bv̂?;oð Þ ¼ i
ze

2pð Þ5=2e0eR oð Þbc
� Ixv̂x þ Ijjv̂jj þ I?v̂?
	 


: (7.261)

The integrals are,

Ix ¼ �
ð1

�1
dk?eibk?

ð1
�1

dkx
kx

k2x þ k2? þ l oð Þ2
� �

¼ 0

(7.262)

and

Ijj ¼
o
bc

eR oð Þb2 � 1
	 
 ð1

�1
dk? eibk?

�
ð1

�1

dkx

k2x þ k2? þ l oð Þ2
� �

¼ po
bc

eR oð Þb2 � 1
	 
 ð1

�1
dk?

eibk?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ l oð Þ2

q

¼ 2po
bc

eR oð Þb2 � 1
	 
 ð1

�1
dk?

cos bk?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ l oð Þ2

q

¼ 2po
bc

eR oð Þb2 � 1
	 
 ð1

0

dk?
l oð Þ

cos l oð Þb k?
l oð Þ
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k?

l oð Þ
� �2r

¼ 2po
bc

eR oð Þb2 � 1
	 


K0 l oð Þbð Þ
(7.263)

and

I? ¼ �
ð1

�1
dk? k? eibk?

ð1
�1

dkx

k2x þ k2? þ l oð Þ2
� �

¼ �p
ð1

�1
dk?

k? eibk?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ l oð Þ2

q

¼ �ip
d

db

ð1
�1

dk?
eibk?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2? þ l oð Þ2
q

¼ �i 2p
d

db

ð1
�1

dk?
cos bk?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ l oð Þ2

q

¼ �i 2p
d

db
K0 l oð Þbð Þ

¼ i 2p l oð ÞK1 l oð Þbð Þ:
(7.264)

The electric field at the position of the electron bv̂?
is, then,

E bv̂?;oð Þ¼ ze

2pð Þ3=2e0eR oð Þbc

�
�
l oð ÞK1 l oð Þbð Þv̂?� i

o
bc

� 1� eR oð Þb2	 

K0 l oð Þbð Þv̂jj

�
:

(7.265)

One can see from the definition of l2 that, for a real
relative dielectric constant,

l2 > 0 for b<
1ffiffiffiffiffiffiffiffiffiffiffiffi
eR oð Þp (7.266)

l2 < 0 for b>
1ffiffiffiffiffiffiffiffiffiffiffiffi
eR oð Þp : (7.267)

In other words, l can only be real if the particle

speed is less than the phase velocity of the medium. It

should be noted that, if polarization is neglected, i.e.,
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eR oð Þ ¼ 1, then l2 oð Þ ¼ o=gbcð Þ2 and the expression
for the electric field reduces to,

E bv̂?;oð Þ ¼ ze

2pð Þ3=2e0bc

 
o
gbc

K1

o
gbc

b

� �
v̂?

� i
o

g2bc
K0

o
gbc

b

� �
v̂jj

!

¼ ze

2pð Þ3=2e0
o

g bcð Þ2

� K1

o
gbc

b

� �
v̂? � i

1

g
K0

o
gbc

b

� �
v̂jj

� �

for eR oð Þ ¼ 1 ð7:268Þ

which is the result which was derived previously for a

heavy charged particle interacting with an harmoni-

cally-bound electron.

In a fashion similar to the above calculation for

the electric field, one can next calculate the mag-

netic field strength at the position of the target

electron,

H bv̂;oð Þ ¼� i
zebc

2pð Þ5=2
ð1

�1
d3k

k� v̂jj

k2� o2eR oð Þ
c2

� �
� eibk�v̂?d o�bckjj

	 


¼� i
zebc

2pð Þ5=2
ð1

�1
dkx

ð1
�1

dkjj

ð1
�1

dk?

� kxv̂? � k?v̂x

k2xþ k2jj þ k2? � o2eR oð Þ
c2

� �
� eibk?d o�bckjj

	 


¼� i
ze

2pð Þ5=2
ð1

�1
dk? eibk?

ð1
�1

dkx

� kxv̂? � k?v̂x
k2xþ k2? þl2 oð Þ	 


¼� i
ze

2pð Þ5=2
Ixv̂xþ I?v̂?ð Þ: ð7:269Þ

where

Ix ¼�
ð1

�1
dk? k? eibk?

�
ð1

�1

dkx

k2x þ k2? þ l2 oð Þ	 

¼ i 2pl oð ÞK1 l oð Þbð Þ (7.270)

and

I? ¼
ð1

�1
dk? eibk?

ð1
�1

dkx
kx

k2x þ k2? þ l2 oð Þ	 

¼ 0

(7.271)

to give,

H bv̂;oð Þ ¼ ze

2pð Þ3=2
l oð ÞK1 l oð Þbð Þv̂x: (7.272)

Now that the electric and magnetic fields have

been derived in Fourier space at the position of the

electron at b v̂?, the energy loss due to collisions at

an impact parameter of b � bmin can be readily cal-

culated from the energy flow through a cylinder of

radius bmin centered on the particle’s trajectory

through the inverse Fourier transform. The energy

flow through this cylinder is equal to the power loss

of the particle,

dE

dx

� �
b�bmin

¼ 1

bc
dE

dt
: (7.273)

The power flow is given by the outgoing compo-

nent of the Poynting vector, P ¼ E � H,

P ¼ Ejjv̂jj þ E?v̂?
	 
� Hxv̂x

¼ E?Hxv̂jj � EjjHxv̂?:
(7.274)

The outgoing component of the vector is �EjjHx

and,
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dE

dx

� �
b>bmin

¼ � 2p bmin

bc

ð1
�1

dxEjjHx

¼ �2p bmin

ð1
�1

dt EjjHx

¼ �2p bmin

 
1

2p

ð1
�1

dt

ð1
�1

do
ð1

�1
do0

� Ejj oð ÞHx oð Þe�i oþo0ð Þt
!

¼ �2p bmin

ð1
�1

doEjj oð ÞH�
x oð Þ

¼ �4p bmin Re

ð1
0

doEjj oð ÞH�
x oð Þ

0
@

1
A

¼ zeð Þ2 bmin

2p2e0 bcð Þ2 Re
 ð1

0

do iol� oð Þð Þ

� 1

eR oð Þ � b2
� �

K0 l oð Þbminð Þ

� K1 l� oð ÞbminÞ
!

(7.275)

 

Although the i can be removed from the integrand

through the use of Re iz ¼ �Im z, it is retained in

anticipation of a future complex integration. In order

to have the result of a non-zero stopping power, this

integral must have a real component which requires

that either l or eR oð Þ be complex. Even if the relative

dielectric permittivity were to be real, it is possible for

the stopping power to be non-zero when l is complex

which is a result of the particle speed exceeding the

phase velocity of the medium. This energy loss is

manifested as the Čerenkov radiation discussed

below. On the other hand, if the particle speed were

to be less than the phase velocity, l would be complex

only if eR oð Þ was. Because of the b2eR(o) term in the

expression for l2, this effect becomes significant at

high projectile speeds. One can simplify the expres-

sion for the stopping power in a dielectric medium by

taking advantage of this and limiting the derivation to

the extreme relativistic case of b � 1 for which,

l2 � o
c

� �2
1� eR oð Þð Þ for b � 1: (7.276)

From the earlier discussion of electronic polariza-

tion, the integral will be significant for o in the ultra-

violet region (1016–1017/s). As bmin is of the order of

the atomic radius, RA, the argument of the modified

Bessel function will thus be of the order of,

l bj j< o0 RA

c

� �
� 0:003:

As a result, one can use the small-argument limits,

K0ðyÞ � ln
1:123

y
andK1ðyÞ � 1

y
:

Substituting these limits into the stopping power

expression gives,

dE

dx
¼ zeð Þ2

2p2 e0 bcð Þ2 Re
 ð1

0

do ioð Þ 1

eR oð Þ � b2
� �

� ln
1:123

l oð Þbmin

!

¼ zeð Þ2
2p2e0 bcð Þ2 Re

 ð1
0

do ioð Þ 1

eR oð Þ � b2
� �

� ln
1:123

obmin

bc

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2eR oð Þ

q
!

¼ zeð Þ2
2p2 e0 bcð Þ2 Re

 ð1
0

do ioð Þ 1

eR oð Þ � b2
� �

� ln
1:123 bc
obmin

� �
� 1

2
ln 1� b2eR oð Þ	 
� �!

(7.277)

(Note that, in the limit of eR oð Þ ! 1,

� 1
2
ln 1� b2eR oð Þ	 
! ln g). In making the extreme

relativistic case even more explicit, set b ¼ 1,

dE

dx
¼ zeð Þ2

2p2 e0 c2
Re

 ð1
0

do ioð Þ 1

eR oð Þ � 1

� �

� ln
1:123 c

obmin

� �
� 1

2
ln 1� eR oð Þð Þ

� �!

(7.278)
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For a small damping constant G, the imaginary part

of the relative dielectric permittivity can be neglected

and the expression for the stopping power becomes,

dE

dx
¼ zeð Þ2
2p2 e0 c2

Re

 ð1
0

do ioð Þ
� o2

P

o2
0
�o2ð ÞþiGo

1þ o2
P

o2
0
�o2ð ÞþiGo

0
B@

1
CA

� ln
1:123c

obmin

� �
�1

2
ln � o2

P

o2
0�o2

	 
þ iGo

 ! !!

¼� zeð Þ2
2p2e0 c2

Re

 
i

ð1
0

doo
o2
P

o2
0�o2þo2

P

	 
þ iGo

 !

� ln
1:123c

obmin

� �
þ1

2
ln

o2�o2
0

	 
þ iGo

o2
P

� �� �!

(7.279)

The integral of (7.279),

i

ð1
0

doo
o2
P

o2
0 � o2 þ o2

P

	 
þ iGo

 !

� ln
1:123 c

obmin

� �
þ 1

2
ln

o2 � o2
0

	 
þ iGo

o2
P

� �� �

¼ i

ð1
0

doo
o2
P

o2
0 � o2 þ o2

P

	 
þ iGo

 !

� ln
1:123 c

oPbmin

� �
þ 1

2
ln

o2 � o2
0

	 
þ iGo
o2

� �� �
(7.280)

is determined using the Cauchy–Goursat theorem by

changing the integration over positive real o (i.e.,

0 
 o 
 1) to that over positive imaginary o
minus the integration over the quarter-circle to infinity,

as shown in Fig. 7.21, with the intent of isolating the

integration IX. It can be seen from the integrand that

poles occur for,

o2
0 � o2 þ o2

P

	 
þ iGo ¼ 0

and

o2 � o2
0

	 
þ iGo
o2

¼ 0:

In both cases, o would be imaginary and the poles

of the integrand exist in the lower half-plane. As there

are no poles within the quarter-circle of the contour,

the total integral is equal to zero, or,

Re IX þ IY þ ISCð Þ ¼ 0

The integral down the imaginary axis is evaluated

first using o ¼ iO,

IY ¼ �i

ð1
0

dOO
o2
P

o2
0 þ O2 þ o2

P

	 
� iGO

 !

� ln
1:123 c

oPbmin

� �
þ 1

2
ln

� O2 þ o2
0 þ GO

	 

iOð Þ

 ! !

(7.281)

It is clear that, as this integral is pure imaginary

(i.e., Re IY ¼ 0), its contribution to the stopping

power will be zero. As a result,

Re IX ¼ �Re ISC: (7.282)

In order to calculate the integral over the quarter-

circle, ISC, write o in terms of complex polar coordi-

nates, or,

o ¼ reiy (7.283)

Iy

iy

IX X

ISC

Fig. 7.21 Integration contour in the complex plane z ¼ x þ iy

used to evaluate the integral of (7.280)
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where r is a constant. Thus,

Re IX ¼�Re ISC

¼�Re

ðp=2
0

dy r2ei2y
o2
P

o2
0� r2ei2yþo2

P

	 
þ iGreiy

 !

�
 
ln

1:123c

oPbmin

� �

þ1

2
ln

r2ei2y�o2
0

	 
þ iGreiy

r2
e�i2y

� �!
:

(7.284)

Maintaining the assumption that the damping G is

small and constant,

�Re

ðp=2
0

dy r2ei2y
o2
P

o2
0� r2ei2yþo2

P

	 
þ iGreiy

 !

� ln
1:123c

oPbmin

� �
þ

�
1

2
ln

r2ei2y�o2
0

	 
þ iGreiy

r2
e�i2y

� ��
¼ReI1þReI2

where, by rearranging the variables within the inte-

grand,

I1 ¼ o2
P ln

1:123 c

oPbmin

� � ðp=2
0

dy
ei2y

o2
0
þo2

P

r2

� �
� ei2y þ i G

r

	 

eiy

� � po2
P

2
ln
1:123

boP

:

(7.285)

The facts that the ratio G= oj j is negligible and that

o2 	 o2
0 þ o2

P

�� �� have been used. The second integral

is,

I2 ¼ 1

2

ðp=2
0

dy r2ei2y
o2
P

o2
0 � r2ei2y þ o2

P

	 
þ iGreiy

 !

�
 
ln

r2ei2y � o2
0

	 
þ iGreiy

r2
e�i2y

� �!

¼ 1

2

ðp=2
0

dy
ei2y

o2
0
þo2

P

r2

� �
� ei2y þ i G

r

	 

eiy

�
 
ln

r2ei2y � o2
0

	 
þ iGreiy

r2
e�i2y

� �!

� � 1

2

ðp=2
0

dy

 
ln

r2ei2y � o2
0

	 
þ iGreiy

r2
e�i2y

� �!

� � 1

2

ðp=2
0

dy ln ei2y � o0

r

� �2
þ i

G
r
eiyr

� �
e�i2y

� �

� � 1

2

ðp=2
0

dy ln 1� o0

r

� �2
e�i2y þ i

G
r
e�iyr

� �

� 0:

Thus,

Re

 
i

ð1
0

doo
o2
P

o2
0 � o2 þ o2

P

	 
þ iGo

 !

� ln
1:123 c

oP bmin

� �
þ 1

2
ln

o2 � o2
0

	 
þ iGo
o2

� �� �!

� po2
P

2
ln
1:123

boP

:

(7.286)

One now writes the linear stopping power in a

dielectric medium in the extreme relativistic limit as,

dE

dx

� �
b>bmin

¼ zeð Þ2o2
P

4pe0c2
ln

1:123 c

bmin oP

: (7.287)

One can recast this as the mass collision stopping

power

dE

r dx

� �
Col

¼ 2C
Z

A

� �
z2 ln

1:123 c

bmin oP

(7.288)

where the identifier of b > bmin has been removed and

the identifier “Col” added to indicate that this is a

stopping power due to collisions (i.e., nonradiative

interactions). A significant difference between this
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expression, which accounts for the medium’s dielec-

tric response to the charged particle, and the relativis-

tic forms of those that do not is that the former is no

longer a function of the medium’s atomic structure,

which appears in the form of �I or �o within the loga-

rithmic term, but rather of the medium’s electron

density which appears through the electron plasma

frequency. That is, in the extreme relativistic regime,

the mass collision stopping powers of two media are

equal provided that the electron densities and the Z/A

ratios are the same.

In the absence of any polarization effect, the

corresponding relativistic mass collision stopping

power is, where for clarity the Bohr result is used,

dE

r dx

� �
b>bmin

¼ 2C
Z

A

� �
z2 ln

1:123 g c
bmin �o

: (7.289)

An analytical form of the density correction term

given by the difference between these two mass colli-

sion stopping powers is,

d ¼ 2C
Z

A

� �
z2 ln

goP

�o
(7.290)

Sternheimer–Peierls Parameterization of the

Density/Polarization Effect

While the above provides a theoretical expression for

the polarization/density effect, for practical purposes,

a parameterization of the effect is frequently required

in dosimetry calculations. A frequently-used parame-

terization which can accelerate the calculation of d is

that of Sternheimer and Peierls (1971) who presented

an expression for d applicable to both condensed

media and gases

d ¼ ð2 ln 10ÞxþF x � x1 (7.291)

d¼ð2ln10ÞxþFþ a x1�xð Þn x0
x
x1 (7.292)

d¼ 0 x < x0 (7.293)

where the kinematic variable is, for a particle of mass

m and momentum p,

x ¼ log10
p

m

� �
(7.294)

and where x0 and x1 are defined below. This repro-

duces the logarithmic increase in the density effect

with p=m � E=m � g at high energies. The remaining

quantities are,

F ¼ �2 ln
�I

�hoP

� �
� 1 (7.295)

a ¼ �F� 2 ln 10ð Þx0
x1 � x0ð Þn (7.296)

The values of x0 and x1 also depend upon the values

of the mean ionization potential,�I, and the phase of the

medium. For liquid and solid media, these are:

x0 ¼ 0:2 if �I< 100eVand�F 
 3:681

¼�0:326F�1:0 if �I< 100eV and�F> 3:681

¼ 0:2 if �I � 100eVand�F 
 5:215

¼�0:326F�1:5 if �I � 100eV and�F> 5:215

(7.297)

x1 ¼ 2:0 if �I < 100 eV

¼ 3:0 if �I � 100 eV
(7.298)

In all cases, n ¼ 3. The relative magnitude of d and
its growth with particle speed are shown in Fig. 7.22

which plots fitted values for d for carbon and lead as a

function of p/m; for example, the value of d for carbon
reaches 2 for p/m ¼ 9.8, corresponding to a kinetic

energy of about 5 MeV for electrons. In the context of

examples of radionuclides used in nuclear medicine,

the maximum b-particle energy of 131I is 606 keV, for

which the value of d in carbon is equal to 0.124. The

maximum recoil electron energy for the 140.5 keV

g ray from 99mTc is 49.6 keV, for which d is essentially
negligible.
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Čerenkov Radiation

Čerenkov (1934) reported his observations of the

eponymous radiation following the irradiation of vari-

ous liquids to g rays. Tamm and Frank (1937) pub-

lished their interpretation of this observation shortly

afterwards. As will be demonstrated, the magnitude of

the energy loss associated with Čerenkov radiation is

negligible for dosimetry considerations and, as a

result, its interest to medical physics applications

will be limited. However, as it is straightforward to

extend the above derivation of the density effect to

explain this phenomenon, Čerenkov radiation is

derived here.

Equation (7.287) gives the energy loss per unit

distance traveled to regions within the medium with

impact parameters greater than a value, bmin. It was

assumed that bmin is of the order of atomic dimensions

and that |lbmin| � 1, so that the small-argument limits

of the modified Bessel functions could be used. Con-

sequently, the final result represents the rate of local

energy deposition with distance. On the other hand, by

permitting |lbmin| � 1, one obtains the rate of energy

deposited at great distances per distance traveled from

the projectile’s trajectory. Recalling the large-argu-

ment expression for the modified Bessel function,

dE

dx

� �
b>bmin

¼ zeð Þ2
4pe0 bcð Þ2

�Re

 ð1
0

do io

ffiffiffiffiffiffiffiffiffiffiffiffi
l� oð Þ
l oð Þ

s !
1

eR oð Þ�b2
� �

� e� l oð Þþl� oð Þð Þbmin

!
: (7.299)

Consider,

l oð Þ ¼ o
bc

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2eR oð Þ

q
: (7.300)

In general, Re l(o) > 0 and the exponential term

in the integrand will, as a consequence, rapidly atten-

uate the energy loss with distance from the trajectory

as expected. However, l(o) will be purely imaginary

if the damping constant G is negligible, which allows

eR(o) to be purely real resulting in beR
2(o) > 1. For

purely imaginary l(o),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� oð Þ
l oð Þ ¼ i

s

1

d
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Fig. 7.22 Polarization/

density correction terms for

carbon and lead as functions

of the ratio of the particle

momentum normalized to

particle mass
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and

e� l oð Þþl� oð Þð Þbmin ¼ 1:

Thus, for the conditions of purely real eR(o) and
b2eR(o) > 1, the stopping power expression simpli-

fies to,

dE

dx

� �
¼ z2�h

ð1
o1

doo 1� 1

b2eR oð Þ

� �
(7.301)

where the lower frequency limit is specified by the

requirement of

eR o > o1ð Þ > 1

b2
(7.302)

and there is no longer a dependence of the energy

transfer upon bmin. This result describes the rate per

distance traveled by the projectile at which energy is

radiated. The projectile’s speed must exceed the phase

velocity of the medium for the given frequency, o, for
Čerenkov radiation to occur.

In Fig. 7.23 the real component of eR(o) is plotted as
a function of o for negligible G (i.e., negligible energy

absorption). There is a discontinuity at o ¼ o0 and the

“Čerenkov band” is shown for which eR oð Þ> 1=b2 and
which identifies the lower frequency integration limit.

Before investigating the spectrum of Čerenkov

radiation, the frequently-used geometrical description

of a charged particle moving through a dielectric

medium at a speed bc exceeding the phase velocity

is investigated. The index of refraction of the medium

is n oð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
eR oð Þp

; however, for conciseness, the fre-

quency dependence is ignored. The electric field will

thus propagate with speed c/n and, for the condition of

bc> c=n, Huygens’ constructions are used for the

electromagnetic waves emitted by the particle as

shown in Fig. 7.24. Let the particle be at point A at

time t ¼ 0. In the time that it takes the particle to

travel the distance AB, which is equal to,

T ¼ AB

bc
(7.303)

(for temporary convenience units where c 6¼ 1 are

used) a wavefront emitted at t ¼ 0 (i.e., at point A)

will have reached point C, where

AC ¼ T
c

n
: (7.304)

Thus,

y ¼ cos�1 AC

AB

¼ cos�1 1

bn
:

(7.305)

Note that Fig. 7.24 shows a single plane and that,

due to axial symmetry about AB, the Čerenkov wave-

fronts form a cone. As Čerenkov radiation can only

occur if the particle speed b> 1=n, this effect will be

limited to high energies in most media of dosimetric

interest (e.g., as n ¼ 1.5 for Perspex, the threshold

value for b is 0.67). The threshold energy for which

Čerenkov Band

w

e R
 (

w
)

ω1 ω0

1

1

b2

Fig. 7.23 The relative dielectric permittivity (assumed to be

purely real) of a medium as a function of frequency. The Čer-

enkov band, within which Cerenkov radiation can occur, is

shown

q

A B

C

Fig. 7.24 Huygens’ reconstruction of the coherent wavefront

of Čerenkov radiation
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Čerenkov radiation will occur follows as bThr ¼ 1=n

where

bThr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

TThr þm

� �2
s

(7.306)

where TThr is the threshold kinetic energy of the

charged particle and m is its mass.

Figure 7.25 shows the variation of the threshold

energy as a function of refractive index for electrons

and for those electrons set in motion by backscattered

photons following incoherent scatter. It can be seen that,

within the energy range of 0.1–0.3 MeV, Čerenkov

radiation presents a means of detecting g rays in low-Z

media where the probability of a photoelectric absorp-

tion is much less than that of incoherent scatter.

The differential spectrum in frequency of Čerenkov

radiation is provided by the integrand of (7.301).

The number of photons emitted per centimeter of

projectile path length with a frequency between o
and o þ do is,

dN ¼ a
c

1� 1

bnð Þ2
 !

do: (7.307)

As do ¼ �2p c dl=l2, we can rewrite this more

conveniently in terms of the photon wavelength,

dN

dl
¼ � 2pa

l2
b2n2 � 1
	 


: (7.308)

This spectrum is plotted as a function of photon

wavelength for Perspex (n ¼ 1.5) for values of b of

0.67 (threshold), 0.75 and 1 in Fig. 7.26. For protons,
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this threshold value corresponds to a kinetic energy of

about 375 MeV. The l�2 dependence shows that the

Čerenkov spectrum is dominated by short wavelength

photons. Integrating the Čerenkov spectrum yields the

number of Čerenkov photons emitted per centimeter

between the spectrum limits of lmin and lmax,

N ¼ 2pa 1� 1

bnð Þ2
 !

1

lmin

� 1

lmax

� �
: (7.309)

Using cos y ¼ 1=bn, one can also write the spec-

trum as,

dN

dl
¼ 2pa sin2y

1

lmax

� 1

lmin

� �
: (7.310)

Within the spectrum limits of 300 and 600 nm, a

total of 764 sin2y Čerenkov photons are emitted per

centimeter of particle path length, which clearly

demonstrates the low level of light output. As for

minimally-ionizing particles in a low-Z medium this

corresponds to a conversion efficiency of about 0.2%,

the contribution of Čerenkov radiation to the overall

energy loss of a charged particle traversing a medium

is small and can be neglected for dosimetry purposes.

7.3.7.7 Empirical Determination of Mean

Excitation Energy and Shell Correction

Factor

It has been noted earlier that, instead of calculating �I

and Ce bð Þ=Z for a given medium, it is possible to

empirically evaluate their combined effect upon the

collision stopping power from detailed experimental

measurements of the energy loss of a charged particle

(typically a proton) traversing a thin foil of the

medium in question (Ammi et al. 2005). At suffi-

ciently low projectile energies, the diminishment of

the stopping power due to polarization of the medium

(described by L02 bð Þ) is negligible and the Barkas

L2 bð Þ term may also be neglected. Radiative energy

transfer is also negligible and the energy loss will be

due solely to collisions between the projectile and the

atomic electrons. Under these conditions, the mass

collision stopping power reduces to,

dE

r dx

� �
Col

¼ 2C
Z

A

� �
z

b

� �2

L0 bð Þ: (7.311)

Consider a proton (z ¼ 1) with speed bc traversing
a thin foil of medium with an areal thickness rDx
sufficiently small that the proton’s measured energy

loss is,17

DE ¼ rDxð Þ dE

r dx

� �
Col

¼ 2C
Z

A

� �
1

b2
L0 bð Þ:

(7.312)

Inverting this to obtain the zeroth-order stopping

power number,

L0 bð Þ ¼ � A

Z

� �
b2

2C

� �
1

rDx
DEmeas (7.313)

where DEmeas is the measured energy loss of the pro-

ton. For the measurement conditions specified,

L0 bð Þ ¼ L00 bð Þ þ L01 bð Þ

¼ ln
2me

I
*

g2b2
 !

� b2 � Ce bð Þ
Z

¼ � ln�Iþ Ce bð Þ
Z

� �
þ ln 2meg2b

2
	 
� b2

(7.314)

where �I and me implicitly have the same units of

energy. Equating these two expressions for L0 bð Þ
and solving for ln�Iþ Ce bð Þ=Zð Þ gives,

ln�Iþ Ce bð Þ
Z

� �
¼ A

Z

� �
b2

2C

� �
1

rDx
DEmeas

þ ln 2meg2b
2

	 
� b2: (7.315)

It is clear that the mean excitation potential and the

shell correction effect are not separated (although at

sufficiently high projectile energies, we can neglect

the latter). However, since both quantities appear in

this combination in the collision stopping power

expression, this is not problematic for calculating the

collision stopping power.

17ICRU Report 49 (1993) provides a comprehensive historical

summary of the various experimental techniques used to mea-

sure the stopping power.
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7.3.8 Mean Energy Required to Create
an Ion Pair

The immediate consequence of ionization in a liquid

or gaseous medium is the creation of an electron-ion

pair. In some solids, ionization can elevate electrons

into the conduction band, thus forming an electron-

hole pair (following the convention used by ICRU

Report No 31 (1979), the term “ion pair” will be

used to describe both electron-ion and electron-hole

pairs). Of fundamental interest to experimental radia-

tion dosimetry is the mean energy expended to create

an ion pair, W, by electrons. Knowledge of W coupled

with the collision stopping power is required in order

to estimate the number of ion pairs produced per unit

pathlength. Measurement of this number (in, e.g., an

ionization chamber) can be used to infer the stopping

power or, equivalently, the energy absorption in the

medium.

It was seen in the derivation of the collision stop-

ping power that the electromagnetic interaction

between an incident charged particle and an atom

can lead to both atomic excitation and the elevation

of an atomic electron into the continuum. Hence, the

competing effects of nonionization energy channels

leads to the fact that the value of W will exceed the

first ionization potential of the atom. Consider a

charged particle with kinetic energy T that has been

completely stopped in a gaseous medium. The equa-

tion of energy balance is,

T ¼ NIon
�EIon þ �eð Þ þ NExc

�EExc (7.316)

where NIon is the total number of electrons generated

through ionization and NExc is the total number of

excited atomic states. �EIon is the mean energy required

to produce an ion, �e is the mean energy of the second-

ary electrons (d rays) which are not energetic enough

to cause further ionizations and �EExc is the mean

energy of the discrete excited atomic states. By defini-

tion, the mean energy expended to produce an ion pair

is given by,

W ¼ T

NIon

¼ �EIon þ �eð Þ þ NExc

NIon

� �
�EExc

(7.317)

and the ratio of W to the ionization energy I is,

W

I
¼

�EIon

I
þ �e

I
þ NExc

NIon

� �
�EExc

I
: (7.318)

It is possible to describe qualitatively the magni-

tude of the three terms on the right-hand side of

(7.318) from first principles. First, one would expect,

�EIon

I
> 1 (7.319)

due to the fact that excitation and other nonionization

channels exist, especially for molecules where there

are rotational and vibrational modes available. Simi-

larly, one would also expect that,

�EExc

I
> 1 (7.320)

although this ratio is not that much different from unity

as the energy levels of most discrete excited states are

relatively near I. The ratio �e=I will be small with values

typically about 0.3 for noble gases and smaller for

molecular gases. Finally, the ratio of the number of

discrete excited states to the number of ionizations,

NExc=NIon is estimated in ICRU Report Number 31

(1979) to be about 0.3 for closed-shell atoms and close

to 1 for closed-shell molecules. Overall, the magnitude

of W=I is greater than unity with values ranging from

about 1.7 for noble gases to up to 3.2 for alkaline earths.

The total number of electrons produced is also

expected to be a function of the particle’s kinetic

energy. Consider a medium in which the atoms have

a single ionization energy, I, through which a single

electron with kinetic energy T slows down and stops.

The number of electrons produced as a result is

(Fowler 1923),

NeðTÞ ¼ sIonðTÞ
sInelðTÞ þ

1

sInelðTÞ
X
n

snðTÞN T� DEnð Þ

þ 1

sInelðTÞ
ð1

2
TþIð Þ

I

d DEnð Þ dsIon T;DEnð Þ
d DEð Þn

� NIon T� DEnð Þ þ NIon DEn � Ið Þð Þ
(7.321)

where sInelðTÞ is the total inelastic cross section,

sIonðTÞ is the total ionization cross section and
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snðTÞ is the total cross section for excitation to the nth
atomic state. Obviously, the total inelastic cross sec-

tion is the sum of the ionization and excitation cross

sections,

sInelðTÞ ¼ sIonðTÞ þ snðTÞ: (7.322)

The first term on the right-hand side of (7.321)

describes the number of secondary electrons produced

as a consequence of the first inelastic collision. If this

collision leads to the excitation of the atom to an

energy level DEn, the incident electron is scattered

with a kinetic energy T� DEn and the mean of the

total number of ion pairs produced by the scattered

electron is given by ðsNðTÞ=sInelðTÞÞN T� DEnð Þ.
The sum of this contribution over all excited states is

the second term on the right-hand side of the equation.

Finally, one must account for the fact that the first

inelastic collision is itself ionizing and results in an

electron-ion pair: the scattered electron with kinetic

energy T� DEn and an ejected electron (d ray) with

kinetic energy DEn � I. This event contributes both to

the first and third terms on the right-hand side.

Obviously, knowledge of the energy dependence of

the inelastic, ionization, and excitation cross sections

is required in order to evaluate (7.322). Another

approach to calculating for Ne(T) was proposed by

Spencer and Fano (1954) and uses the concept of the

degradation spectrum. Imagine a monoenergetic beam

of electrons with kinetic energy T incident to a gas.

Within this medium, these electrons will, through

deceleration and the production of secondary elec-

trons, yield a net flux of electrons with an energy

spectrum. The pathlength of all electrons with kinetic

energies between T0 and T0 þ dT0 is y T;T0ð ÞdT0, which
is also a descriptor of the electron spectrum. This

spectrum will not be derived here; one can note that

in the extreme case of the CSDA for T 	 1 in which

the projectile loses only a small amount of energy, the

number of produced electrons is,

NeðTÞ ¼ rMolec

ðT
I

dT0 sIon T0ð Þy T;T0ð Þ (7.323)

where rMolec is the number of molecules per unit

volume in the medium (i.e., the molecular number

density). A scaling property of y T;T0ð ÞdT0 was found

by Douthat (1975) who showed that the quantity

rMolec T0=Tð Þ ln T=Ið ÞsIon T0ð Þy T;T0ð Þ plotted as a func-
tion of the variable,

x ¼ ln T0
I

	 

ln T

I

	 
 ;
was virtually independent of the projectile electron’s

kinetic energy, Fano and Spencer (1975) subsequently

defined the quantity

z xð Þ ¼ rMolec sSt T
0ð Þ ln T0

I

	 

x

 !
T0

T

� �
y T0;Tð Þ

(7.324)

where sSt xð Þ is the stopping cross section. Using this,

the expression for NeðTÞ can now be rewritten as,

NeðTÞ ¼ T

ð1
0

dx z xð ÞsIon xð Þ
sSt xð Þ (7.325)

which leads to an expression of the mean energy

required to produce an ion pair,

WðTÞ ¼ 1Ð1
0

dx z xð Þ sIon xð Þ
sSt xð Þ

: (7.326)

It should be noted that DT0 sIon xð Þ
sSt xð Þ is the number of

ion pairs produced directly by the projectile electron

within the energy interval T0 � DT0 to T0.
W has a limited sensitivity to the charge, mass and

kinetic energy of the projectile, although the depen-

dence upon projectile kinetic energy increases when

the projectile speed becomes comparable to those of

the valence electrons. This general insensitivity to

projectile kinetic energy at high energies is a conse-

quence of the fact that the ratio of the ionization cross

section to the sum of excitation cross sections has a

limited energy dependence. For dry air as a medium,

WDryAir ¼ 33:85 � 0:15 eV

Thus a 5 MeV a particle completely stopped in dry

air will create about 1.25 � 105 electron-ion pairs.
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Values of W for solids will be much less than for

gases as a result of the difference between the �1 eV

gap between the valence and electron bands of a solid

and the �10 eV ionization energy of gases. For exam-

ple, W for electrons in solid silicon is

WSi ¼ 3:68� 0:02 eV

7.3.9 Restricted Mass Collision Stopping
Power for Electrons

Here, the discussion of the restricted mass collision

stopping power for electrons is returned to,

dE

rdx

� �
Col;D

¼ �C
Z

A

� �
1

b

� �2

� ln
2D T� Dð Þ

�I
2

gþ 1ð Þ
� �

þ f� g;Dð Þ
� �

where,

f� g;Dð Þ ¼ D
T� D

� �
� b2 þ 2g� 1

g

� �
ln

T� D
T

� �

þ g� 1

g

� �2 D2

2T2

and where D is the kinetic energy of the knock-on

electron, D<T=2. The restricted collision stopping

power focuses our attention on the local energy depo-

sition along the electron’s track. A given value for D
will denote the extent of the region around the projec-

tile electron’s trajectory that we are interested in

knowing the energy transferred to or absorbed within

the medium. In particular, if one is interested in the

energy deposited in a small volume that the electron is

passing through, then the use of the unrestricted colli-

sion stopping power will overestimate the deposited

energy (unless the condition of charged particle equi-

librium exists, in which the energy removed from the

volume by the d rays is compensated for by energy

brought into the volume by d rays generated from

outside the volume). This will have important conse-

quences in microdosimetry which we will be consid-

ering in following chapters. Tables of restricted and

unrestricted collision stopping powers for electrons

can be found in ICRU Report 37 (1984).

Figure 7.27 shows dE=rdxð ÞCol;D calculated as a

function of D=T 
 1=2 for 50, 100, 200, and

500 keV electrons in carbon (excluding shell and

polarization correction effects in order to show the

effect of secondary electron energy restriction more

clearly). The unrestricted mass collision stopping

power is that for D ¼ T=2.18 One sees that the

restricted collision stopping power is always less

than the unrestricted and that this difference decreases

with increasing T, as to be expected. The increase in

dE=rdxð ÞCol;D with increasing D=T is the result of

including more collisions which result in the transfer

of energy to the medium. On the other hand, the

decreasing difference between the unrestricted and

restricted collision stopping powers with increasing

T as shown in the figure is due to the approaching

region of minimal ionization.

7.3.10 Summary of the Mass Collision
Stopping Power

As the Barkas polarization term is negligible for prac-

tical dosimetry purposes, it is neglected in this sum-

mary of the collision stopping power. Including the

shell-, density-, and Bloch correction factors, the mean
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Fig. 7.27 Restricted mass collision stopping power for elec-

trons in carbon as a function of the secondary electron kinetic

energy normalized to the incident kinetic energy

18A closely related quantity is the linear energy transfer, or LET,

which is simply the restricted linear collision stopping power.
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collision stopping power for a massive spin-0 projec-

tile with charge ze is,

dE

rdx

� �
Col

¼� 2C
Z

A

� �
z

b

� �2
"
ln

2me

�I
gb2

� �
� b2

� Ce

Z
� d
2
� gEM � ln a

z

b

� �#
:

(7.327)

The mean collision stopping power for electrons

and positrons is,

dE

rdx

� �
Col�

¼ � C
Z

A

� �
1

b

� �2
"
ln

T2 gþ 1ð Þ
2�I

2

� �

þ f� gð Þ � Ce

Z
� d
2
� gEM � ln a

z

b

� �#

(7.328)

The functional dependencies of the mass collision

stopping power are:

� At low projectile energies, the mass collision stop-

ping power decreases with increasing kinetic

energy as b�2 until reaching the minimally-ioniz-

ing region which corresponds to b � 0.8. At very

low energies where the projectile speed is compa-

rable to those of the atomic electrons, dE=rdxð ÞCol
decreases with decreasing projectile energy due to

the shell correction factor.

� This general b�2 dependence competes with the

relativistic increase in the collision stopping

power leading to a minimum of about

1.5 Mev � cm2/g at a kinetic energy equal to

about 3 times the projectile mass.

� The relativistic increase in dE=rdxð ÞCol due to the

ln g2b2
	 


and ln gþ 1ð Þ terms are quenched by the

density correction d=2 term leading to what is also

known as the “Fermi Plateau.”

Neglecting the small effect of the Barkas correction,

further generalizations can be made:

Projectile rest mass, m: There is no dependence of

the mass collision stopping power upon the particle’s

mass. Thus, for example, the mass collision stopping

powers of a proton and a single-ionized helium ion

(i.e., equal charges) at the same speed are the same.

Projectile charge, z: The mass collision stopping

power increases with the square of the particle charge.

Extending the previous example to a proton and an a
particle at the same speed, the dE=rdxð ÞCol for the a
particle will be four times greater than that of the

proton.

Medium atomic number Z and atomic mass number
A: For low atomic media Z=A � 1=2 decreasing with

increasing Z (e.g., Z/A ¼ 0.5 and approaches 0.4 for

carbon and lead, respectively). As a result the mass

collision stopping power at a given kinetic energy is

greater for a low-Z medium than for one with high-Z.

There is an additional dependence upon the atomic

number contained within the � � ln�I term. The

mean ionization potential �I increases with Z thus fur-

ther contributing to the decrease in dE=rdxð Þcol with Z.
Finally, it is of interest to consider the energy loss

resulting from the Coulomb interaction between the

heavy charged particle and the nucleus rather than an

atomic electron. There will be an immediate increase

of a factor of Z2. However, there is a reciprocal depen-

dence upon the target mass, thus the net change in the

collision stopping power will be by a factor of Z2me=M

where M is the nuclear mass. As Z2me=M ¼ 1.6

� 103 for carbon and 1.7 � 102 for lead, it can be

seen that the contribution of the nucleus to the collision

stopping power can be neglected.

7.4 Stochastic Collision Energy Loss:
Energy Straggling

7.4.1 Introduction

It has been assumed in the prior derivations that

energy loss is a continuous function or, for a particle

traversing a distance t through a medium,

DE ¼
ðt
0

dx
dE

dx

� �
Col

ðxÞ (7.329)

However, the energy is lost by the particle through

discrete interactions with atomic electrons and, as a

result, the energy loss process is not continuous but

stochastic. In the simplest approximation, for a beam

of monoenergetic particles incident to the medium,

(7.329) provides the mean energy lost by the ensemble

of particles and the actual energy loss will described

by a probability distribution function with the exiting
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particle beam having an energy spectrum reflecting

this pdf. This phenomenon is commonly referred to

as energy straggling and the energy loss pdfs describ-

ing this phenomenon are the subject of this section.

Practical applications of these pdfs in nuclear med-

icine dosimetry reside primarily in Monte Carlo codes

used to simulate radiation transport and calculate

energy deposition in a medium. Such Monte Carlo

codes have been categorized in terms of how they

calculate for the energy straggling of moving charged

particles in a medium (Chibani 2002). Some codes,

such as MCNP (Briesmeister 2000) and ETRAN

(Seltzer 1991), use a pdf to sample the energy loss

corresponding to a given pathlength. Other codes sim-

ulate the inelastic collision between the projectile and

the secondary electron as a distinct event should the

energy transfer Q exceed the energy level Qc (i.e., the

collision is consider hard). A mean energy loss due to

soft collisions is calculated through the use of the

restricted collision stopping power. An example of

such a code widely used in medical physics is EGSnrc

(Kawrakow and Rogers 2003).19 The GEANT code

can be considered to straddle both categories as pdfs

are sampled to evaluate hard-energy losses, but the

user can also treat hard collisions as independent

events (GEANT Team 2001).20

The pdfs describing these energy losses are derived

in this section.

7.4.2 One-Dimensional Continuity
Equation

Figure 7.28 shows a slab of material with physical

density r to which is incident a monoenergetic beam

of charged particles with kinetic energy T0. The model

is one-dimensional and multiple scatter is neglected,

i.e., the particles travel in straight lines. Let N(x,DE)
be the number of particles that have penetrated a depth

x with a net energy loss DE. Now consider the number

of particles which, traversing an additional distance

Dx, will also have a net energy loss DE (the thickness

Dx is sufficiently small that a particle can only lose

energy within it as the result of a single collision). This

number will be the original number of particles with

energy loss DE at x and which did not lose energy

crossing Dx minus the number of particles with energy

loss DE at x which suffered any additional energy loss

as a result of traversing Dx, and plus the number of

particles with energy loss DE0 < DE at x and which

undergo an additional energy loss DE � DE0 (where
DE0 �DE
Qmax) traversing Dx so that they have a

net energy loss DE at a depth xþDx.
Define Pr(Dx,DE ! DE0) to be the probability that

a particle with an energy loss DE in penetrating to x

will experience an additional energy loss DE0 � DE
through crossing x to have a total energy loss DE0 at a
depth of x þ Dx. Hence, the number of particles with

energy loss DE at the depth x þ Dx is,

N xþDx;DEð Þ ¼N x;DEð Þ

�
ð1
DE

d DE0ð ÞPrðDx;DE! DE0ÞN x;DEð Þ

þ
ðDE
0

d DE0ð ÞPrðDx;DE0 !DEÞN x;DE0ð Þ:

(7.330)

The first integral describes the reduction in particle

number with energy loss DE at the depth x þ Dx due

to particles with energy loss DE at x experiencing an

energy loss while passing through Dx. The second

integral yields the increase in the number of particles

x

T0

Δx

Medium

Fig. 7.28 Geometry for derivation of one-dimensional conti-

nuity equation. A monoenergetic beam of charged particles with

kinetic energy T0 is incident from the left to a medium with

physical density r

19Both classes represent conceptual difficulties: a Class I code

does not link the sampling of the energy loss pdf with secondary

recoil electrons and the Class II code neglects any energy

straggling associated with soft collisions.
20Further discussion of the practical matters of the Monte Carlo

simulation of the transport of charged particles can be found in

the articles by Salvat et al. (1999) and Chibani (2002).
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with energy lossDE at the depth x þ Dx due to particles
with energy lossDE0 < DE undergoing that energy loss

within the thickness Dx to bring the net energy loss at

x þ Dx to DE. The differential change with distance in
particle number with energy loss DE at depth x is,

]N x;DEð Þ
]x

� lim

Dx!0

N xþDx;DEð Þ�N x;DEð Þ
Dx

¼ lim

Dx!0

"
�
ð1
DE

d DE0ð Þ

�Pr Dx;DE!DE0ð Þ
Dx

N x;DEð Þ

þ
ðDE
0

d DE0ð ÞPr Dx;DE
0 !DEð Þ

Dx
N x;DE0ð Þ

#

¼�
ð1
DE

d DE0ð Þo DE0 �DEð ÞN x;DEð Þ

þ
ðDE
0

d DE0ð Þo DE0 �DEð ÞN x;DE0ð Þ

(7.331)

where o(dE) is the probability per unit pathlength of

the particle losing energy dE. One can use the change

of variables to rewrite this integrodifferential equa-

tion, noting that o(dE) ¼ 0 for dE > Qmax, to obtain

]N x;DEð Þ
]x

¼ �
ðQmax

0

dQoðQÞN x;DEð Þ

þ
ðmin Qmax;DEð Þ

0

dQoðQÞN x;DE� Qð Þ:

(7.332)

As the probability distribution function describing

the collision energy loss is,

f x;DEð Þ ¼ N x;DEð ÞÐT0

0

d DE0ð ÞN x;DE0ð Þ
(7.333)

it is possible to write the continuity equation for the

pdf in the integrodifferential form,

]f x;DEð Þ
]x

¼ �f x;DEð Þ
ðQmax

0

dQoðQÞ

þ
ðmin Qmax;DEð Þ

0

dQoðQÞf x;DE� Qð Þ:

(7.334)

7.4.3 Gaussian Probability Distribution
Function for DE

The first solution to the integrodifferential continuity

equation is provided by following an approach first

described by Rossi (1952) and expanded upon by Kase

and Nelson (1978) (Segrè (1977) provides a simpler

and perhaps more intuitive method based on the cen-

tral-limit theorem and which is traceable to early work

by Bohr). A complete derivation of the Gaussian pdf

as a solution to the continuity equation is provided

here. By the use of a number of simplifying assump-

tions, the integrodifferential continuity equation is

converted into a differential equation which can be

solved via Fourier transform pairs. The assumptions

for this solution method are:

� The mean energy lost by the particle penetrating to

depth x is small, DE <<T0:

� The collision stopping power can be approximated

as a constant over the distance traveled x so that the

mean energy loss at the depth of penetration x is

given by

DE ¼ x
dE

dx

� �
Col

(7.335)

� The probability distribution function f x;DEð Þ var-
ies slightly with energy loss enabling f x;DE� Qð Þ
to be expanded into a second-order Taylor’s series

f x;DE�Qð Þ ffi f x;DEð Þ � ]f x;DEð Þ
] DEð Þ Q

þ 1

2

]2f x;DEð Þ
] DEð Þ2 Q2:

(7.336)
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By noting that oðQÞ ¼ 0 for Q>Qmax, the conti-

nuity equation can be rewritten using the Taylor series

expansion to form a differential equation in f x;DEð Þ,

]f x;DEð Þ
]x

¼ �
ð1
0

dQoðQÞf x;DEð Þ

þ
ð1
0

dQoðQÞf x;DE� Qð Þ

¼
ð1
0

dQoðQÞ f x;DE� Qð Þ � f x;DEð Þð Þ

¼
ð1
0

dQoðQÞ
 
� ]f x;DEð Þ

] DEð Þ Q

þ 1

2

]2f x;DEð Þ
] DEð Þ2 Q2

!

¼ � ]f x;DEð Þ
] DEð Þ

ð1
0

dQoðQÞQ

þ 1

2

]2f x;DEð Þ
] DEð Þ2

ð1
0

dQoðQÞQ2

¼ �k1
]f x;DEð Þ
] DEð Þ þ k22

2

]2f x;DEð Þ
] DEð Þ2

(7.337)

where,

k1 ¼
ð1
0

dQoðQÞQ

¼ DE
x

(7.338)

and

k22 ¼
ð1
0

dQoðQÞQ2: (7.339)

As the expression for k1 contains the factor Q

whereas that for k22 contains Q
2, the role of soft colli-

sions will be less significant in the evaluation of k22
than for k1, so one consequently calculates k1 using the

total collision stopping power and uses only the hard

collision stopping power in the determination of k22. In

other words, the width of the pdf is a function of the

hard collision energy transfer alone. This observation

becomes important when considering asymmetric pdfs

for DE.
In order to solve this differential equation, one

again uses the Fourier transform method,

x x; tð Þ ¼ 1ffiffiffiffiffiffi
2p

p
ð1

�1
d DEð Þe�itDE f x;DEð Þ (7.340)

f x;DEð Þ ¼ 1ffiffiffiffiffiffi
2p

p
ð1

�1
dt eit DE x x; tð Þ: (7.341)

The Fourier transform of (7.337) is,

]x x; tð Þ
]x

¼ � ik1tþ k22t
2

2

� �
x x; tð Þ (7.342)

which is straightforward to solve,

x x; tð Þ ¼ x 0; tð Þe� ik1tþ
k2
2
t2

2

� �
x
: (7.343)

The initial condition is determined by noting that

f 0;DEð Þ ¼ d DEð Þ: (7.344)

The Fourier transform of this initial condition is,

x 0; tð Þ ¼ 1ffiffiffiffiffiffi
2p

p (7.345)

Inserting this and the definition of k1 into (7.343)

gives the Fourier transform of the probability distribu-

tion function,

x x; tð Þ ¼ 1ffiffiffiffiffiffi
2p

p e
� itDEþk2

2
t2

2

� �
x
: (7.346)

The pdf is recovered through the inverse Fourier

transform,

f x;DEð Þ ¼ 1ffiffiffiffiffiffi
2p

p
ð1

�1
dt eit DE x x; tð Þ

¼ 1

2p

ð1
�1

dt e�it DE�DEð Þ�k2
2
t2

2
x:

(7.347)
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This integral is solved by first algebraically rearran-

ging the exponent,

it DE� DE
	 
þ k22t

2

2
x ¼ k2t

ffiffiffi
x

2

r
þ i

DE� DE

k2
ffiffiffiffiffi
2x

p
� �2

þ DE� DE
	 
2

2k22x

(7.348)

which allows the pdf to be rewritten as,

f x;DEð Þ ¼ 1

2p
e
�

DE�DEð Þ2
2k2

2
x

ð1
�1

dt e
� k2t

ffiffi
x
2

p
þiDE�DE

k2

ffiffiffi
2x

p
� �2

:

(7.349)

Changing variables,

z ¼ k2t

ffiffiffi
x

2

r
þ i

DE� DE

k2
ffiffiffiffiffi
2x

p (7.350)

dt ¼
ffiffiffi
2

x

r
dz

k2
(7.351)

the integral can be simplified to,

ð1
�1

dt e
� k2t

ffiffi
x
2

p
þiDE�DE

k2

ffiffiffi
2x

p
� �2

¼ 1

k2

ffiffiffi
2

x

r ð1þiy0

�1þiy0

dz e�z2

(7.352)

where

y0 ¼ DE� DE

k2
ffiffiffiffiffi
2x

p (7.353)

The integral is solved by writing it in the complex

form
ÐKþiy0
�Kþiy0

dz e�z2 where K is a real constant to be

later allowed to go to 1. As e�z2 is holomorphic on

and within the contour and there are no singularities

within the contour, the Cauchy–Goursat theorem

states that,

ð
C

dz e�z2 ¼ 0: (7.354)

The closed contour in the complex plane is shown

in Fig. 7.29 and is made up of four individual contours,

C ¼ C1 [ C2 [ C3 [ C4: (7.355)

Thus,

ð
C1

dz e�z2 þ
ð
C2

dz e�z2 þ
ð
C3

dz e�z2

þ
ð
C4

dz e�z2 ¼ 0:

(7.356)

This then leads to,

ðKþiy0

�Kþiy0

dz e�z2 ¼ �
ð
C2

dz e�z2 ¼
ð
C1

dz e�z2

þ
ð
C3

dz e�z2 þ
ð
C4

dz e�z2 :

(7.357)

This type of integral is solved in the Appendices,

ð1þiy0

�1þiy0

dz e�z2 ¼ ffiffiffi
p

p
(7.358)

leading to,

ð1
�1

dt e
� k2t

ffiffi
x
2

p
þiDE�DE

k2

ffiffiffi
2x

p
� �2

¼ 1

k2

ffiffiffiffiffiffi
2p
x

r
: (7.359)
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(              )
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X

X

ΔE – ΔE

Fig. 7.29 Rectangular contour in the complex z ¼ x þ iy

plane for solving the integral of (7.352)
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The above result provides the Gaussian probability

distribution function for energy loss DE at a depth x,

f x;DEð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p k22x

p e
�

DE�DEð Þ2
2k2

2
x : (7.360)

In order to verify that this result is a pdf, it is

necessary to require the normalization,

ð1
0

d DEð Þ f x;DEð Þ ¼ 1

or, since the maximum energy loss cannot exceed

the incident kinetic energy,

ðT0

0

d DEð Þ f x;DEð Þ ¼ 1:

Inserting the expression for the pdf into this

integral,

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p k22x

p e
�

DE�DEð Þ2
2k2

2
x ¼ 1ffiffiffi

p
p

ðy2
y1

dy e�y2 (7.361)

where the change of variables,

y ¼ DE� DEffiffiffiffiffiffiffiffiffiffi
2k22x

p (7.362)

has been used. The limits of integration are,

y1 ¼ DE� T0ffiffiffiffiffiffiffiffiffiffi
2k22x

p (7.363)

and

y2 ¼ DEffiffiffiffiffiffiffiffiffiffi
2k22x

p : (7.364)

If T0 � DE 	
ffiffiffiffiffiffiffiffiffiffi
2k22x

p
and DE 	

ffiffiffiffiffiffiffiffiffiffi
2k22x

p
, then the

result of (7.361) can be written as,

1ffiffiffi
p

p
ð1

�1
dy e�y2 ¼ 1

thus demonstrating that f x;DEð Þ is the pdf sought and
is a Gaussian distribution with mean and most proba-

ble energy loss,

DE ¼ x
dE

dx

� �
Col

(7.365)

and variance,

s2 ¼ k22x: (7.366)

The width of this Gaussian (2s) must be greater

than the maximum energy transferred in a single colli-

sion (i.e., 2k2
ffiffiffi
x

p 	 Qmax, which follows from the cen-

tral-limit theorem) but smaller than the incident kinetic

energy (2k2
ffiffiffi
x

p � T0Þ and the mean energy loss, or

2k2
ffiffiffi
x

p � DE. As an example, calculate the variance

for the limiting case for a massive spin-0 projectile,

ds
dQ

¼ 2pr20me

z

b

� �2
1

Q2
1� b2

Q

Qmax

� �
Q 
 Qmax

¼ 0 Q>Qmax

and the probability of energy loss per unit distance

traveled is,

oðQÞ ¼ NAr
Z

A

� �
ds
dQ

¼ Cr
Z

A

� �
z

b

� �2
1

Q2
1� b2

Q

Qmax

� �

� z
Q2

1� b2
Q

Qmax

� � (7.367)

where C is the constant pervading this chapter and the

factor,

z � Cr
Z

A

� �
z

b

� �2

(7.368)

has been defined. This constant has units of MeV per

centimeter. Hence, the variance of the energy loss pdf

is,

s2 ¼ x

ð1
0

dQoðQÞQ2

¼ xz
ðQmax

0

dQ 1� b2
Q

Qmax

� �

¼ xzQmax 1� b2

2

� �
(7.369)
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The energy inequalities resulting from above are,

Qmax

2
� k2

ffiffiffi
x

p � T0

2
(7.370)

and

k2
ffiffiffi
x

p �
�E

2
: (7.371)

These can be grouped into the requirement that the

ratio

k ¼ xz
Qmax

(7.372)

must be large in order for the probability distribution

function for energy loss to be approximated by a

Gaussian.

7.4.4 Asymmetric Probability
Distribution Functions for DE

7.4.4.1 Introduction

Having demonstrated that a symmetric Gaussian pdf

for the energy loss is the consequence of a large value

of k which corresponds to a thick pathlength x and,

from the definition of z, to nonrelativistic particles

(b � 1). For small k, which corresponds to a thin

absorber and/or increasingly relativistic charged parti-

cles, the mean energy loss will also decrease. However,

because the probability of a hard collision remains

constant, its relative contribution to the statistical dis-

tribution of energy losses will increase as k decreases,

leading to increasing asymmetry in the pdf for DE. In
this case, the integrodifferential form of the continuity

equation cannot be reduced to a simple differential

equation and must, instead, be solved directly.

7.4.4.2 Vavilov Probability Distribution Function

Historically, it was Landau (1944) who first derived a

solution to the general integrodifferential continuity

equation leading to an asymmetric pdf through the use

of Laplace transforms. Landau’s result, however, was

derived for the Rutherford differential cross section

(which is equivalent to neglecting the b2Q=Qmax term

in the Bhabha cross section) and was dependent upon

a variety of approximations. A more general and exact

solution to the one-dimensional continuity equation

was provided by Vavilov (1957) which reaches the

Gaussian pdf as a limit for k!1 and the Landau

result for k! 0. Hence, the Landau probability distri-

bution function for energy loss will be treated as a

special limiting case of the Vavilov. This derivation

follows Vavilov’s approach and solves the integrodif-

ferential continuity equation for f(x,DE) by using

Laplace transform pairs,

x x; tð Þ ¼
ð1
0

d DEð Þ e�tDE f x;DEð Þ (7.373)

f x;DEð Þ ¼ 1

2pi

ðKþi1

K�i1
dt et DEx x; tð Þ (7.374)

O tð Þ ¼
ð1
0

dQ e�tQ oðQÞ (7.375)

oðQÞ ¼ 1

2pi

ðKþi1

K�i1
dt etQ O tð Þ (7.376)

where K is an arbitrary real constant. For a thin

absorber, the energy loss will be small and it is rea-

sonable to assume that the pdf will vary slowly with

energy over this range thus allowing us to make the

approximation f(x,DE) � f(x,DE � Q). Applying the

convolution theorem, then,

]x x; tð Þ
]x

¼ O tð Þx x; tð Þ � x x; tð Þ

�
ðQmax

0

dQoðQÞ (7.377)

which has the solution,

x x; tð Þ ¼ x 0; tð Þ exp O tð Þ �
ðQmax

0

dQoðQÞ
0
@

1
Ax

0
@

1
A:

(7.378)

From the obvious result,

x 0; tð Þ ¼
ð1
0

d DEð Þe�tDE d DEð Þ

¼ 1

(7.379)
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the Laplace transform of the pdf is obtained,

x x;tð Þ¼ exp O tð Þ�
ðQmax

0

dQoðQÞ
0
@

1
Ax

0
@

1
A

¼ exp

ð1
0

dQe�tQoðQÞ�
ðQmax

0

dQoðQÞ
0
@

1
Ax

0
@

1
A

¼ exp x

ð1
0

dQoðQÞ e�tQ�1
	 
0

@
1
A

(7.380)

as o(Q) ¼ 0 for Q > Qmax. The pdf is recovered

from this result by calculating its inverse Laplace

transform,

f x;DEð Þ ¼ 1

2pi

ðKþi1

K�i1
dt et DE x x; tð Þ

¼ 1

2pi

ðKþi1

K�i1
dt exp

� t DEþ x

ð1
0

dQoðQÞ e�tQ � 1
	 
0

@
1
A

:

(7.381)

To solve for this, the exponent is first evaluated,

t DEþ x

ð1
0

dQoðQÞ e�tQ � 1
	 


¼ t DEþ x

ð1
0

dQoðQÞe�tQ�x

ð1
0

dQoðQÞ

¼ t DE� DE
	 
� x

ðQmax

0

dQoðQÞ

� 1� e�tQ � tQ
	 


(7.382)

where DE is the mean energy loss over the distance

traversed, x. For the Bhabha cross section of a massive

spin-0 projectile, this exponent becomes,

t DE� DE
	 
� x

ðQmax

0

dQoðQÞ 1� e�tQ � tQ
	 


¼ t DE� DE
	 
 � xz

ðQmax

0

dQ

Q2
1� b2

Q

Qmax

� �

� 1� e�tQ � tQ
	 
 ¼ t DE� DE

	 


� xz
ðQmax

0

dQ
1� e�tQ

Q2
þ kb2

ðQmax

0

dQ
1� e�tQ

Q

þ t xz
ðQmax

0

dQ

Q
� tb2 xz: ð7:383Þ

Three separate integrals must now be solved. The

first integral is, following a change of variables,

ðQmax

0

dQ
1� e�tQ

Q2
¼ t

ðtQmax

0

du
1� e�u

u2
(7.384)

which is readily solved by parts,

fðuÞ ¼ � 1

u

df

du
¼ 1

u2

dg

du
¼ e�u gðuÞ ¼ 1� e�u

(7.385)

to give,

t
ðtQmax

0

du
1�e�u

u2
¼t � 1�e�u

u

� �����
tQmax

0

þ
ðtQmax

0

du
e�u

u

0
@

1
A:

(7.386)

From l’Hôpital’s rule,

lim

u ! 0

1� e�u

u
¼ 1 (7.387)

then,

ðQmax

0

dQ
1� e�tQ

Q2
¼ t� 1� e�tQmax

Qmax

þ t
ðtQmax

0

du
e�u

u
:

(7.388)

276 7 Charged Particle Interactions with Matter



The second integral of (7.383) can be found from

tables (Abramowitz and Stegun 1972),

ðQmax

0

dQ
1� e�tQ

Q
¼ �Ei �tQmaxð Þ þ ln tQmax þ gEM

(7.389)

where Ei(x) is the exponential integral,

EiðxÞ ¼ Ð1
�x

dt e
�t

t
.

The third integral is rewritten as,

ðQmax

0

dQ

Q
¼

ðtQmax

0

du

u
: (7.390)

Using these results, the following form of the expo-

nential term in the inverse Laplace transform of the

pdf is given,

t DE�DE
	 
�xz

ðQmax

0

dQ
1� e�tQ

Q2
þkb2

�
ðQmax

0

dQ
1� e�tQ

Q
þ txz

ðQmax

0

dQ

Q
� tb2 xz

¼ t DE�DE
	 
� txz 1þb2

	 
þk 1� e�zð Þ
þ kb2þ txz
	 
 �Ei �zð Þþ lnzþgEMð Þ

(7.391)

where z ¼ tQmax. Inserting this expression for the

exponent into the inverse Laplace transform for the

energy loss pdf yields the form attributable to Vavilov,

f x;DEð Þ ¼ 1

2p i Qmax

ek 1þb2gEMð Þ
ðKþi1

K�i1
dz

� exp
�
zlV þ k

	ðzþ b2Þ
� �Ei �zð Þ þ ln z


� e�z
	 
�

(7.392)

where the dimensionless Vavilov parameter is,

lV ¼ DE� DE
Qmax

� k 1þ b2 � gEM
	 


: (7.393)

The solutions of this expression of the Vavilov pdf

will be considered in a variety of ways. First, integrate

this expression over the imaginary axis (i.e., set K ¼ 0

and z ¼ iy),

f x;DEð Þ¼ 1

2pQmax

ek 1þb2gEMð Þ
ð1

�1
dy

� exp
�
iylVþkððiyþb2Þ

�ð�Ei �iyÞþ ln iyÞ� e�iyÞ�	
(7.394)

From complex variable theory (Churchill et al.

1974),

ln iy ¼ i
p
2
þ ln yj j y > 0

¼ �i
p
2
þ ln yj j y < 0

(7.395)

and

Ei �iyð Þ ¼ Ci yj jð Þ � iSiðyÞ þ i
p
2

y > 0

¼ Ci yj jð Þ � iSiðyÞ � i
p
2

y < 0

(7.396)

where Ci(x) and Si(x) are the cosine and sine integrals,

respectively,

CiðxÞ ¼ gEM þ ln xþ
ðx
0

dt
cos t� 1

t

SiðxÞ ¼
ðx
0

dt
sin t

t
:

By inserting these into (7.396) and defining the two

functions,

g1 yð Þ ¼ b2 ln yj j � Ci yð Þð Þ � cos y� ySi yð Þ
(7.397)

g2 yð Þ ¼ y ln yj j � Ci yð Þð Þ þ sin yþ b2Si yð Þ;
(7.398)
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a simpler integral form of the Vavilov pdf is obtained,

f x;DEð Þ ¼ k
p x z

� �
ek 1þb2gEMð Þ

ð1
0

dy ekg1ðyÞ

� cos lVyþ k g2ðyÞð Þ
(7.399)

This result can be solved numerically and through

the use of approximations for the cosine and sine

integrals. A variety of other approximations also

exist and these will be discussed shortly. Figure 7.30

shows the Vavilov pdf (calculated using an Edgeworth

expansion method) for k ¼ 0.5 and b ¼ 0.5 as a func-

tion of the Vavilov parameter lV.

7.4.4.3 Gaussian Limit to the Vavilov Probability

Distribution Function

It can now be shown that the Vavilov pdf approaches

the Gaussian limit for k ! 1. Begin with another

approach to solving the pdf given by the inverse

Laplace transform by expanding the exponential.

Because of the asymmetry of the Vavilov pdf, the

expansion is made to third order in t Q,

f x;DEð Þ ¼ 1

2pi

ðKþi1

K�i1
dt exp

� t DE� x

ð1
0

dQoðQÞ 1� e�tQ	 
0
@

1
A

¼ 1

2pi

ðKþi1

K�i1
dt exp

 
t DE� x

ð1
0

dQoðQÞ

� tQ� tQð Þ2
2

þ tQð Þ3
6

 !!

� 1

2pi

ðKþi1

K�i1
dt exp

�
t DE� DE
	 


þ t2
x

2
W� t3

x

6
j
�

(7.400)

where,

W ¼
ðQmax

0

dQoðQÞQ2 (7.401)

κ = 0.5, β = 0.5

lV

f(
l V

)
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Fig. 7.30 Vavilov energy

loss pdf for k ¼ 0.5, b ¼ 0.5

calculated using the

Edgeworth polynomial

expansion described in

Sect. 7.4.4.5
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and

j ¼
ðQmax

0

dQoðQÞQ3 (7.402)

Note that W corresponds to k2
2 in the derivation of

the Gaussian pdf from the pure differential form of the

continuity equation. As a Gaussian result for the pdf

will be obtained if the integral is evaluated only up

to W, the exp �t3x=6jð Þ term provides the asymmetry

of the pdf which, as it is proportional to e�x, must

decrease with increasing absorber thickness so that the

pdf approaches the Gaussian form. This can be shown

explicitly for the Bhabha cross section for a massive

spin-0 projectile,

W ¼ zQmax 1� b2

2

� �
(7.403)

and,

j ¼ zQ2
max

1

2
� b2

3

� �
(7.404)

The pdf is solved for by the substitution of vari-

ables. First, define,

u ¼ xj
2

� �1=3
t� W

j

� �
(7.405)

from which,

dt ¼ 2

xj

� �1=3
du (7.406)

For simplicity, define,

Z ¼ xj
2

� �1=3
(7.407)

which leads to a simplified expression of the Vavilov

pdf,

f x;DEð Þ ¼ eat�
a3

3

2piZ

ðKþi1

K�i1
du eut�

u3

3 (7.408)

where

a ¼ Z
W
j

¼ 1� b2

2

� �
2k

1� 2
3
b2

	 
2
 !1

3 (7.409)

and

t ¼ DE� DE
Z

þ a2: (7.410)

The integral of (7.408) is integrated over the imag-

inary axis,

1

2p i

ðKþi1

K�i1
dueut�

u3

3 ¼ 1

2p

ð1
�1

dye
y3

3
þiyt

¼ 1

p

ð1
0

dy cos ytþy3

3

� � (7.411)

which will be recognized as being the Airy function,

Ai(t). The pdf is now written as,

f x;DEð Þ ¼ eat�
a3

3

Z
AiðtÞ: (7.412)

Consider the function for large values of k.
Equation (7.409) shows that a! (2k)1/3 for k!1
and (7.410) shows that t!1 for a!1. Thus, for

k!1, one can use the limiting form of the Airy

function,

AiðtÞ ! e�
2
3
t3=2

2
ffiffiffi
p

p
t1=4

as t ! 1 (7.413)

so that the pdf will be,

f x;DEð Þ ¼ e at�a3

3
�2

3
t3=2

	 

2Z

ffiffiffi
p

p
1=4

as t ! 1 (7.414)

This result is further manipulated by noting that,

t
1
4 ! ffiffiffi

a
p

as k ! 1 (7.415)

and that

at� 2

3
t
3
2 ! a2

3
� z2

4a
as k ! 1 (7.416)
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where

z ¼ DE� DE
Z

� a (7.417)

to give,

f x;DEð Þ ¼ e�
z2

4a

2Z
ffiffiffiffiffi
pa

p : (7.418)

The final result for k ! 1 is,

f x;DEð Þ � 1ffiffiffiffiffiffiffiffiffiffiffi
2pW x

p e�
	
ðDE�DEÞ2

2 W x



(7.419)

Thus, the Vavilov expression reduces to the Gauss-

ian pdf for large k.

7.4.4.4 Landau Limit to the Vavilov Probability

Distribution Function

Having established that the Vavilov pdf approaches the

Gaussian pdf for large k, now look at the opposite limit

of the pdf for k ! 0. Recall the original Vavilov pdf,

f x;DEð Þ ¼ 1

2p i Qmax

ek 1þb2gEMð Þ

�
ðKþi1

K�i1
dz exp

�
zlV þ k

	ðzþ b2



� ð�Eið�zÞ þ ln zÞ � e�z

�
:

By changing variables, p ¼ kz, the pdf is,

f x;DEð Þ¼ 1

2p ixz
ek 1þb2gEMð Þ �

ðKþi1

K�i1
dp

� exp

"
p
lV
k
þk
� p

k
þb2

� ��
�Ei �p

k

� �

þ lnp� lnk
�
� e�

p
k

�#

¼ 1

2p ixz
ek 1þb2gEMð Þ

ðKþi1

K�i1
dp

� exp p
lV
k
� lnk

� �
þp �Ei �p

k

� �
þ lnp

� ��

þ kb2 �Ei �p

k

� �
þ lnp� lnk

� �
�ke�p=k

i
:

(7.420)

For k! 0, this reduces to the Landau pdf,

f x;DEð Þ ¼ 1

2p i x z

ðKþi1

K�i1
dp ep lLþln pð Þ (7.421)

where the Landau and Vavilov parameters are related

to each other by,

lL ¼ lV
k

� ln k

¼ DE� DEh i
x z

� 1þ b2
	 
þ gEM � ln k:

(7.422)

By changing variables,

p ¼ iy (7.423)

the Landau pdf can be written in a form readily ame-

nable to numerical integration,

f lLð Þ ¼ 1

p x z

ð1
0

dy e�
p
2ð Þy cos y ln yþ lLyð Þ (7.424)

Figure 7.31 shows the product xf(lL) as a function
of the Landau parameter lL. The maximum of

f(lL) occurs at lL,Max ¼ �0.22278 (Kölbig and

Schorr 1984) from which the most probable energy

loss can be calculated by noting that the Landau

parameter can be written as,

lL ¼ DE� DEð ÞMP

x z
þ lL;Max (7.425)

where (DE)MP is the most probable energy loss

which can be solved for, using (7.422) and (7.425),

ðDEÞMP¼x

"
dE

dx

� �
Col

þzðlL:Maxþ1þb2þlnk�gEMÞ
#
:

(7.426)

A closed analytic form of a pdf has been pre-

sented by Moyal (1955) as a representation of the

Landau pdf,
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f lð Þ ¼ 1

xz
ffiffiffiffiffiffi
2p

p e�
1
2
lþexp �lð Þð Þ (7.427)

where

l ¼ DE� DEð ÞMP

xz
: (7.428)

The Moyal result xz f lð Þ is also plotted in

Fig. 7.31. As can be seen, it is not an entirely accurate

reproduction of the Landau result due to both the

differing positions of the most probable energy loss

(the Moyal curve peaks at lL ¼ 0) and the different

magnitudes of the maximum values of the two pdfs.

Importantly, the Moyal approximation underestimates

the high-energy loss tail. Even so, the Moyal approxi-

mation clearly has calculational advantages over the

Landau integral result and is used as its approxima-

tion.21 Rotondi and Montagna (1990) have proposed

an improvement upon the Moyal approximation,

fk;b lð Þ ¼ a1

xz

� �
exp

��a2ðlþ a5l
2Þ

� a3 expð�a4ðlþ a6l
2ÞÞ� (7.429)

where the six parameters, ai, are functions of and b and

were determined by fitting (7.427) to the numerical

solution for the Vavilov pdf for k 
 3. They are

provided as the weighted sum of the products of two

Tchebyshev polynomials and the reader is referred to

that publication for further details.

7.4.4.5 Practical Methods of Calculating the

Vavilov pdf

Introduction

The form of the pdf to be used to describe the energy

loss is dictated by the value of kwhere, by convention,

the appropriate pdf to use for a given range of values

of k is,

k 
 0:01 Landau

0:01 
 k 
 10 Vavilov

10 
 k Gaussian

Direct analytical solutions of the Vavilov integral

are difficult and one typically resorts to approxi-

mations, numerical methods, or parameterizations to

solve them. This is especially true in Monte Carlo

Moyal

Landau

lL

xz
f(

l L
)

−5 −4 −3 −2 −1 0
0

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6 7 8 9 10

Fig. 7.31 Weighted Landau

and Moyal probability

distribution functions as

functions of the Landau

parameter

21See, for example, Sauli’s description of multiwire propor-

tional chambers (1977).
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applications where calculation speed is critical.

Three methods of calculating the Vavilov pdf are

summarized here; no derivations will be provided,

but the interested reader can refer to the original

publications.

Edgeworth Series

For values of k that are not too small, the Vavilov

distribution is Gaussian-like where the perturbation

from the Gaussian described in terms of an Edgeworth

series (Symon 1948; Rotondi and Montagna 1990;

Van Ginneken 2000). In the nomenclature of Rotondi

and Montagna, the Vavilov pdf is approximated by,

f x;DEð Þ ¼ e
�DE2

2s2ffiffiffiffiffiffi
2p

p
s

�
1þ 1

3!

m3
s3

H3

DE
s

� �
þ 1

4!

m4
s4

� 3
� �

� H4

DE
s

� �
þ 1

5!

m5
s5

� 10
m3
s3

� �
H5

DE
s

� �

þ 10

6!

m3
s3

� �2
H6

DE
s

� �
þ 35

7!

m3
s3

m4
s4

� 3
� �

� H7

DE
s

� �
þ 280

9!

m3
s3

� �3
H9

DE
s

� ��
(7.430)

where the Hi are the Hermite polynomials and the

mi and s are related to the moments of the Vavilov

distribution,

mn ¼ x

ðQmax

0

dQoðQÞQn n ¼ 2; 3 (7.431)

m4 ¼ 3m22 þ x

ðQmax

0

dQoðQÞQ4

0
@

1
A

2

(7.432)

m5 ¼ 10m2m3 þ x

ðQmax

0

dQQ5 oðQÞ (7.433)

s2 ¼ m2 (7.434)

This expansion is reported to be valid for

0.29 
 k and for lL 
 l 
 lH where the limits lL
and lH define the limits of 0 and 1 in the cumulative

distribution function and are determined from empir-

ical fits.

Fourier Series Solution

Schorr (1974, 1975) developed an algorithm for cal-

culating both the Landau and Vavilov pdfs using a

Fourier series methodology. The approximation to

the Vavilov pdf, written in the form,

f lVð Þ ¼ 1

2p i

ðKþi1

K�i1
dsfðsÞelVs (7.435)

with

fðsÞ ¼ ek 1þb2gGð ÞecðsÞ

and

cðsÞ ¼ s ln kþ sþ b2k
	 


�
ðQmax

0

ds
1� e�s=k

s
� gEM

2
4

3
5� ke�s=k

is

g lLð Þ ¼ o
p

1

2
þ
X1
k¼1

Ak cos kolVð Þ þ Bk sin kolVð Þ½ 

 !

(7.436)

where

o ¼ 2p
Tþ � T�

(7.437)

Ak ¼ Ref ikoð Þ (7.438)

Bk ¼ �Imf ikoð Þ (7.439)

Schorr provides the methodology for calculating T�
and T+ so as to minimize the difference g(lL) � f(lL).
As this method requires a point-by-point calculation of

the pdfs, it is not suitable as a sampling method for

Monte Carlo simulations.
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Distorted Log-Normal Distribution

Chibani (1998, 2002) has described two algorithms

for calculating the Vavilov pdf in the interval

k 2 [0.01,1.0]. The first algorithm is valid for

k 2 [0.01,0.3] and describes the Vavilov pdf as the

convolution of log-normal and Poisson distributions.

The second method, for k 2 [0.3,1.0], takes advantage

of the similarity of the shape of the log-normal distri-

bution to that of the Vavilov pdf. The reader is referred

to these two papers for further details.

7.4.4.6 Vavilov pdf for Electron Projectiles

Monte Carlo simulations of practical dosimetric

interest will concern those cases of electron and posi-

tron projectiles. In such cases, energy straggling is

accounted for by modifying the Landau or Vavilov

distributions. In particular, the Vavilov pdf is calcu-

lated using the Møller cross section for electron–

electron collisions. Chibani simplifies this calculation

by approximating the Møller cross section by a fourth-

order polynomial in order to allow the Vavilov pdf to

be calculated analytically (this is also done for posi-

tron projectiles by doing the same for the Bhabha

positron–electron collision cross section).

7.4.4.7 Atomic Electron Binding Effects

In the case of a high-Z thin absorber, energy losses

through resonant transfers to atomic electrons become

important. Such effects can be managed by convolving

the Landau distribution with a Gaussian function. In

this application, because it is easy to convolve two

Gaussian functions, the Landau pdf is represented by

a weighted sum of four Gaussian pdfs (Blunck and

Leisegang, 1951). Even though there are difficulties

with this approach that require addressing (Findlay

and Dusautoy 1980), they have relatively little imme-

diate application to nuclear medicine dosimetry.

7.5 Multiple Elastic Scattering

7.5.1 Introduction

In addition to being able to calculate for the transfer of

energy to the medium from a moving charged particle,

it is necessary to know both the number and phase

space of the particles. Transport is dominated by the

elastic Coulomb scatter in which, for electrons and

positrons, negligible amounts of energy are transferred

in these scatters and can be neglected. The three most

important results obtained from the derivation of the

differential cross sections for a single elastic Coulomb

scatter are that:

� The y�4 dependence showing that forward-directed

elastic scatter will dominate.

� The mean free pathlength between elastic scatters

is small due to the large total cross section.

� The differential cross section has a pbð Þ�2
depen-

dence.

The combination of the first two results leads to the

dominance of forward-directed multiple scatter. The

last result shows that, at energies typical of nuclear

medicine, electrons and positrons are more subject to

multiple scatter than are heavier a particles. Hence, the

interest in this section will be on e�/e+ multiple scatter.

By using the small-angle approximation, recalling

the y�4 dependence and noting that dO ffi 2p y dy
(which implicitly assumes azimuthal symmetry), one

can write the mean-square angle of a single elastic

Coulomb scatter (assuming that screening at small

scattering angles invokes a cut-off in angle),

y2 ¼
Ð
dOy2 dsRuth

dOÐ
dO dsRuth

dO

�

Ðymax

w0

dy
y

Ðymax

w0

dy
y3

¼ ln ymax=w0
	 


1
�
w20

� �
� 1

�
y2max

� � :

(7.440)

The minimum scattering angle is the screening

angle w0 of (7.6) for the Thomas–Fermi model. As

w0 � 1 and w0 � ymax (recall Fig. 7.3), the root-

mean square (RMS) scattering angle is approximately,

ffiffiffiffiffi
y2

q
¼ �w0 ln w0 (7.441)

Hence,
ffiffiffiffiffi
y2

p
will be a relatively small multiple of

w0 and the net deflection of the electron will be small
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(e.g., from Fig. 7.3 w0 � 25 mrad for a 100 keV elec-

tron in carbon which leads to
ffiffiffiffiffi
y2

p
¼ 3:7 w0 or about

93 mrad). Because the number of elastic Coulomb

scatters in a pathlength of practical interest will be

high, the central-limit theorem indicates that the prob-

ability distribution function describing the scattering

angle will be Gaussian with a small variance, y2. This
Gaussian approximation is not entirely accurate as it

neglects the small, but not negligible, probability of

large-angle Coulomb scatter that increases the “tail” of

the pdf. But the Gaussian assumption will provide the

basis upon which to explore the three main multiple

scattering theories in common use in modern-day cal-

culations of charged-particle transport.

7.5.2 Multiple Elastic Scattering Theory

7.5.2.1 Introduction

Since the 1940s, a number of theories describing the

multiple scatter of charged particles have been devel-

oped. Two theories (Goudsmit and Saunderson 1940,

Molière 1947, 1948) are predominant in the Monte

Carlo codes currently used to model charged-particle

transport in medical applications. Prior to deriving

these theories, the simpler Fermi–Eyges theory (Eyges

1948) is derived (which, while not used in transport

calculations for nuclear medicine applications, has

been widely employed in software developed for

external electron beam treatment planning software in

radiation oncology (Hogstrom et al. 1981; McParland

et al. 1988). Importantly, the Fermi–Eyges theory jus-

tifies the expectation of a Gaussian pdf for the spatial

deflection and angular distribution of multiply-scat-

tered charged particles which appears as the “zeroth-

order” case in the Goudsmit–Saunderson and Molière

multiple scatter theories.

7.5.2.2 Fermi–Eyges Theory

The genesis of this theory was the derivation by Fermi

of the diffusion equation for a calculation of the trans-

port of cosmic rays in the atmosphere (given in the

review by Rossi and Greisen (1941)). Because of the

high kinetic energies of the cosmic rays, ionizational

energy losses were neglected in Fermi’s derivation

and Eyges (1948) extended Fermi’s result by allowing

for the energy losses suffered particles through ioniza-

tion. The derivation below of the Fermi diffusion

equation will follow that of Jette (1988) which is itself

a slightly more general version of the original. Having

obtained the diffusion equation, Eyges’ approach of

allowing for an energy dependence will be used to

solve the diffusion equation using the methods devel-

oped earlier in this chapter.

Before deriving Fermi’s diffusion equation, some

preparatory work is required. Consider Fig. 7.32 in

which a beam of monoenergetic charged particles

with zero lateral width is incident along the þz-axis

to a semi-infinite scattering medium with the entrance

plane defined by the x – y plane. The particle is

scattered through the polar y and azimuthal f angles

as shown. Due to the central Coulomb potentials asso-

ciated with the scattering centers within the medium,

azimuthal symmetry exists and f will be uniformly

distributed between 0 and 2p. The angles yx and yy are
the projections of the polar scattering angle onto the

xz- and yz-planes, respectively, as shown, where,

yx ¼ tan�1 tan y cosfð Þ (7.442)

yy ¼ tan�1 tan y sinfð Þ (7.443)

and the mean-square values of these projected scatter-

ing angles are,

Initial
Trajectory

x

x

z

z

y
y

r

^

^

^

r

qx

qy

q

f

Fig. 7.32 Scattering of a particle with an initial trajectory along

the z-axis through (y,f). yx and yy are the projections of the polar
scattering angle onto the x – z and y – z planes, respectively
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y2x ¼
Ð
dOy2x y;fð Þ dsRuth

dOÐ
dO dsRuth

dO

�
Ð
dOy2 cos2f dsRuth

dOÐ
dO dsRuth

dO

¼ 1

2p

ð2p
0

df cos2 f

0
@

1
A y2

¼ y2

2

(7.444)

and, similarly,

y2y ¼
y2

2
: (7.445)

Hence, in the small-angle approximation, the

mean-square scatter angle is,

y2 ¼ y2x þ y2y: (7.446)

Recalling the earlier invocation of the central-limit

theorem, one conjectures that the scattering pdf of the

twoprojected scattering angles areGaussian. For example,

f yxð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2py2x

q exp � 1

2

y2x
y2x

 !
(7.447)

with zero mean and variance y2x. At this point, the

linear scattering power is defined as the derivative of

the mean-square scattering angle with respect to the

pathlength traveled,

= ¼ dy2s
ds

: (7.448)

Of course, this can only be an approximation in that

it assumes that the change in the mean-square scatter-

ing angle with distance is continuous whereas the

processes are stochastic. For calculational purposes,

this will be approximated by a continuous derivative

with the ratio of the mean-square scattering angle over

a pathlength Ds,

= ¼ y2

Ds
(7.449)

where,

Ds ¼ Dz
cos y

� Dz
(7.450)

for forward-directed scatter. The Gaussian pdf for yx
can now be written as,

f yxð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=Dz

p exp � y2x
=Dz

� �
: (7.451)

It is reasonable to presume, for future use, that the

pdf for a change in scattering angle from the mean,

Dyx ¼ yx � yx, over Dz is also Gaussian,

g Dyx;Dzð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=Dz

p exp � Dyxð Þ2
=Dz

 !
: (7.452)

In the derivation of the Gaussian pdf, use will be

needed of the first three moments of g Dyx;Dzð Þ,
ð1

�1
d Dyxð Þg Dyx;Dzð Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=Dz

p
ð1

�1
d Dyxð Þ exp � Dyxð Þ2

=Dz

 !

¼ 1

(7.453)

ð1
�1

d Dyxð Þ Dyx g Dyx;Dzð Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=Dz

p
ð1

�1
d Dyxð ÞDyx exp � Dyxð Þ2

=Dz

 !

¼ 0

(7.454)

ð1
�1

d Dyxð Þ Dyxð Þ2 g Dyx;Dzð Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=Dz

p
ð1

�1
d Dyxð Þ Dyxð Þ2 exp � Dyxð Þ2

=Dz

 !
¼=Dz

2
:

ð7:455Þ

The limits of integration of Dyx can be extended to

�1 as g Dyx;Dzð Þ is sharply peaked around Dyx ¼ 0.

The Fermi diffusion equation is next derived.

Assume that the initial condition for the particle is

dðxÞdðyÞdðzÞd yð Þ and define f x; yx; y; yy; z
	 


DxDyx
DyDyy as the probability at a depth z that the particle

will be between x and xþDx and between y and yþDy
and have projected scattering angles between yx and

yx þ Dyx and between yy and yy þ Dyy. In order
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to simplify the derivation, the calculation is initially

restricted to the two-dimensional case and then

extended to three dimensions. The intent is to find

the variation in f x; yx; zð Þ with increasing penetration

into the medium, z. To do so, consider the trajectory of

a particle in two-dimensions as shown in Fig. 7.33.

The particle’s end-point is at a depth zþ Dz with

projected lateral displacement x and projected polar

direction yx following an intermediate scatter occur-

ring at a depth zþ kDz, where 0 < k < 1. This posi-

tion is projected back to the particle’s original position

at a depth z. At the intermediate scattering point, the

particle was at a projected lateral displacement,

x� 1� kð Þ tan yx Dz � x� 1� kð Þyx Dz (7.456)

(using the small-angle approximation for yx) and was

scattered through an angle jx. If one further back

projects the trajectory to the depth z, the particle had

been scattered through an angle yx � jx and was at a

projected lateral displacement,

x� tan yx þ k tan yx � jxð Þ � tan yxð Þð ÞDz
� x� yx � kjxð ÞDz: (7.457)

For any value of k in the range (0,1), one obtains the

pdf f(x,yx;zþDz) by convolving over all jx,

f x; yx; zþ Dzð Þ ¼
ð1

�1
djx fðx� ðyx � kjxÞ

� Dz; yx � jx; zÞgðjx;DzÞ
(7.458)

where g jx;Dzð Þ is given by (7.452).

This integral is solved by first expanding

f x� yx � kjxð ÞDz; yx � jx; zð Þg jx;Dzð Þ to second

order in yx, jx and Dz,

f x� yx � kjxð ÞDz; yx � jx; zð Þg jx;Dzð Þ

ffi f x; yx; zð Þ � ]f x; yx; zð Þ
]x

yx � kjxð Þ

� Dz� ]f x; yx; zð Þ
]yx

jx þ
1

2

]2f x; yx; zð Þ
]y2x

j2
x:

(7.459)

Substituting this into the integrand of (7.458) gives,

f x;yx;zþDzð Þ

¼
ð1

�1
djx f x;yx;zð Þg jx;Dzð Þ

�
ð1

�1
djx

]f x;yx;zð Þ
qx

yx�kjxð ÞDz g jx;xð Þ

�
ð1

�1
djx

]f x;yx;zð Þ
]yx

jx g jx;xð Þ

þ1

2

ð1
�1

djx

]2f x;yx;zð Þ
]y2x

j2
x jx;xð Þ

¼ f x;yx;zð Þ
ð1

�1
djx g jx;Dzð Þ

�]f x;yx;zð Þ
]x

ð1
�1

djx yx�kjxð ÞDz g jx;xð Þ

�]f x;yx;zð Þ
]yx

ð1
�1

djxjx g jx;xð Þ

þ1

2

]2f x;yx;zð Þ
]y2x

ð1
�1

djxj
2
x g jx;xð Þ:

(7.460)

qx 
– jx

x
z + Δz

z

z + k Δz
x – (1–k) tanqx Δz

x – (k tan (qx 
– jx) + (1–k) tanqx Δz

jx

qx

Fig. 7.33 Trajectory of a charged particle twice scattered

between depths of z and z þ Dz
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This expression is markedly simplified by using the

moments of g(jx;Dz) calculated previously,

f x; yx; zþ Dzð Þ ¼ f x; yx; zð Þ � yx
]f x; yx; zð Þ

]x
Dz

þ =
4

]2f x; yx; zð Þ
]y2x

Dz:

(7.461)

Note that in this final expression for the pdf there is

no dependence upon k and, as a result, the selection of

the intermediate scatter position is purely arbitrary.

From this result, one obtains the differential change

in the pdf with penetration,

]f x; yx; zð Þ
]z

¼ lim

Dz ! 0

f x; yx; zþ Dzð Þ � f x; yx; zð Þ
Dz

(7.462)

and the Fermi diffusion equation in two-dimensions

follows,

]f x; yx; zð Þ
]z

¼ �yx
]f x; yx; zð Þ

]x
þ=

4

� ]2f x; yx; zð Þ
]y2x

: (7.463)

The extension of the Fermi diffusion equation to 3

dimensions is straight forward,

]f

]z
¼ �yx

]f

]x
� yy

]f

]y
þ =

4

]2f

]y2x
þ ]2f

]y2y

 !
(7.464)

where, for clarity, the functional dependencies of the

pdf have been omitted.

Note that this derivation of the Fermi diffusion

equation has ignored the fact that, as a particle pene-

trates within the medium, it loses energy. As the elas-

tic single scatter cross section has a pbð Þ�2

dependence, the scattering power will vary with the

projectile kinetic energy and, hence, become a func-

tion of the depth of penetration. For the two-dimen-

sional form of the Fermi diffusion equation,

]f x; yx; zð Þ
]z

¼ �yx
]f x; yx; zð Þ

]x
þ =ðzÞ

4

]2f x; yx; zð Þ
]y2x
(7.465)

where the explicit functional dependency of the scat-

tering power upon z is noted.22 This expression

neglects the fact that once the particle has reached a

depth z it will have actually traveled a distance greater

than z due to multiple scattering events.

The two-dimensional Fourier pair will be used to

solve for the pdf,

f x; yx; zð Þ ¼ 1

2p

ð1
�1

ð1
�1

dx dLo x;L; zð Þei xxþyxLð Þ

(7.466)

o x;L; zð Þ ¼ 1

2p

ð1
�1

ð1
�1

dx dyx f x; yx; zð Þ e�i xxþyxLð Þ:

(7.467)

Applying these to the two-dimensional Fermi dif-

fusion equation gives a differential equation in the

Fourier transform of the pdf,

]o
]z

¼ x
]o
]L

� L2=ðzÞ
4

o (7.468)

which can be simplified by defining the variables,

k ¼ zþ L
x

(7.469)

z0 ¼ z (7.470)

to yield,

]o
]z0

¼ � x2 k� zð Þ2=ðzÞ
4

o: (7.471)

The solution is,

o ¼ k kð Þ exp �x2
ðz0
l

dZ
k� Zð Þ2= Zð Þ

4

0
@

1
A: (7.472)

22In an inhomogeneous medium (such as the body), the scatter-

ing power would also be a function of x and y. That level of

complexity is not required for this discussion.
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The lower limit of the integral has been set to some

arbitrary valuer, l, and k(k) is specified from the

initial condition of the problem. Assuming a single

incident particle, this is, as before,

f x; yx; z ¼ 0ð Þ ¼ dðxÞd yxð Þ (7.473)

with the usual Fourier transform,

o x;L; z ¼ 0ð Þ ¼ 1

2p
: (7.474)

Writing out the solution for o x;L; zð Þ in the original
variables gives,

o x;L; zð Þ ¼ k zþ L
x

� �

� exp �x2
ðz
l

dZ
zþ L

x � Z
� �2

= Zð Þ
4

0
B@

1
CA:

(7.475)

From the initial conditions,

k
L
x

� �
exp �x2

ð0
l

dZ
L
x � Z
� �2

= Zð Þ
4

0
B@

1
CA ¼ 1

2p

(7.476)

which enables the Fourier transform of the pdf to be

written as,

o x;L; zð Þ ¼ 1

2p
exp �x2

ðz
l

dZ
zþ L

x � Z
� �2

= Zð Þ
4

0
B@

1
CA:

(7.477)

Prior to taking the inverse Fourier transform in

order to recover the pdf, this expression is simplified

by defining the functions,

A0ðzÞ ¼
ðz
0

dZ
= Zð Þ
4

(7.478)

A1ðzÞ ¼
ðz
0

dZ z� Zð Þ = Zð Þ
4

(7.479)

A2ðzÞ ¼
ðz
0

dZ z� Zð Þ2 = Zð Þ
4

(7.480)

so as to write a simpler form of the Fourier transform

of the pdf,

o x;L; zð Þ ¼ 1

2p
exp �A0L

2 þ 2A1Lxþ A2x
2

	 

(7.481)

where the z-dependencies of the Ai have been omitted

for clarity. Taking the inverse Fourier transform of the

result will result in the multiple scattering pdf,

f x; yx; zð Þ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0A2 � A2

1

p
� exp � y2xA2 � 2A1xyx þ x2A0

4A0 A0A2 � A2
1

	 

 !

(7.482)

which is the Fermi–Eyges result for two dimensions.

The three-dimensional result is given by the product of

the two-dimensional pdfs in (x,yx) and (y,yy).
Equation (7.482) provides a Gaussian pdf; as the

result of the small-angle approximation, in terms of

the functions A0(z), A1(z), and A2(z). The depth of

penetration, z, is now explicitly included in the pdf

through these functions. As the linear scattering power

will have an energy dependence (i.e., a less-energetic

particle will be more readily scattered than an ener-

getic one), a direct functional dependence upon parti-

cle energy is implicit.

7.5.2.3 Scattering Power

Introduction

The linear scattering power is the change in mean-

square scattering angle per unit distance traveled by

the particle. In analogy to the linear and mass stopping

powers, one removes the dependence of the scattering

power upon the physical density of the medium by

defining the mass scattering power, ==r, which is the

change in mean-square scattering angle per unit mass

thickness traveled,

=
r
¼ dy2

r ds
(7.483)
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Or,

=
r
¼ 2p

NA

A

ð1
w0

dy y2
ds
dO

(7.484)

where, since the differential cross is in units of square

centimeter�radian square per atom, the NA=A factor is

required for the mass collision stopping power to have

units of square centimeter�radian square per gram of

medium. w0 is the screening angle of (7.6).

Spin-0 Projectile Scattering

The mass scattering powers for the unscreened and

screened Rutherford cross sections for an electron

projectile (i.e., z ¼ 1), but where spin is neglected,

are derived. Beginning with the unscreened cross sec-

tion the corresponding mass scattering power is,

=
r
¼ 8p

NAZ
2

A

� �
a�hc
pb

� �2

ln
1

w0

Unscreened cross section:

(7.485)

By incorporating the definition of the screening

angle w0,

w0 � 1:130
�hc

prB

� �
Z1=3

� 4:22� 10�3

p

� �
Z1=3

(7.486)

where p is in units of MeV. One can rewrite the

electron mass scattering power in the form,

=
r
¼ 8p

NAZ
2

A

� �
a�hc
pb

� �2

ln 237 pZ�1=3
� �

: (7.487)

The screened cross section leads to an expression of

the mass scattering power of the form,

=
r
¼ 4p

NAZ
2

A

� �
a�hc
pb

� �2

� ln 1þ 1

w20

� �
� 1

2

1� w20
1þ w20

� �
� ln 2

� �
Screened Rutherford cross section:

(7.488)

This expression can be simplified for electrons typi-

cal of that encountered in nuclear medicine in low-Z

media (i.e., p � 1:6MeV) for which

1þ 1=w20
	 
 � 1=w20 and ð1� w20Þ=ð1þ w20Þ � 1 to give,

=
r
� 4p

NAZ
2

A

� �
a�hc
pb

� �2

� ln 5:6� 104 p2 Z�2=3
� �

� 1:193
h i (7.489)

where p is in units of MeV.

The mass scattering powers of electrons in carbon

evaluated from the screened and unscreened cross

sections above are shown in Fig. 7.34 as functions of

electron kinetic energy.

Mott Cross Section

To include the effect of the electron’s intrinsic spin,

the Mott elastic scatter cross section is used,

dsMott

dO
¼ Za�hc

2 pb

� �2
F y;Zð Þ
sin4 y

2

	 


where the multiplicative factor

F y;Zð Þ ¼ 1� b2sin2
y
2

� �

is a consequence of the electron’s intrinsic spin.

McKinley and Feshbach (1948) have expanded

Mott’s original result to include a corrective term to

F(y,Z) in order to correct for the Born approximation

used in the original derivation,

F y;Zð Þ ¼ 1� b2sin2
y
2

� �
þ pabZ 1� sin

y
2

� �
sin

y
2

(7.490)

This expression is valid for b � 1 and aZ < 0.2

(i.e., Z < 27) which are conditions suitable for most

instances of nuclear medicine dosimetry. McParland

(1989) derived an analytical expression for the elec-

tron mass scattering power using this expanded Mott
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cross section and excluding any small-angle approxi-

mations,

=
r
¼8p

NAZ
2

A

� �
r0

gb

� �2

I1þpabZI2�b bþpaZð ÞI3ð Þ
(7.491)

where

I1 ¼ ln
sin 1=2
	 


sin w0=2ð Þ
� �

þ 1

8

w20
sin2 w0=2ð Þ �

1

sin2 1=2ð Þ

� �

þ 1

2
w0 cot

w0
2
� cot

1

2

� �
(7.492)

I2 ¼ w0
w0=2
	 


sin w0=2ð Þ � 1þ 2
X1
k¼1

�1ð Þkc2k w0
2

� �2k !

� 1

2 sin w0=2ð Þ � 1þ 2
X1
k¼1

�1ð Þkc2k 1

2

� �2k
 !

(7.493)

I3 ¼ 1þ
X1
k¼1

�1ð Þkd2k 1

2

� �2k
 !

� w20 1þ
X1
k¼1

�1ð Þkd2k w0
2

� �2k !
:

(7.494)

The coefficients in these expressions are,

c2k ¼ 22k�1 � 1

2kþ 1ð Þ!
� �

B2k (7.495)

d2k ¼ 22k

2þ 2kð Þ 2kð Þ !
� �

B2k (7.496)

B2k is the 2kth Bernoulli number (B2 ¼ 1/6,

B4 ¼ �1/30, B6 ¼ 1/42, etc.) The coefficients c2k
and d2k rapidly diminish with k, as shown in Table 7.1,

and, for practical calculation purposes, the summa-

tions for integrals I2 and I3 can be truncated at k ¼ 4.

Contributions to the Scattering Power from Atomic

Electrons

In the previous derivation of electron mass scattering

powers for which a term of the form Z2 appears, the
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Fig. 7.34 Mass scattering

power for electrons in carbon

as a function of electron

kinetic energy calculated

using unscreened and

screened potentials and

neglecting spin

Table 7.1 Values of the coefficients c2k and d2k

k c2k d2k

1 2.78 � 10�2 8.30 � 10�2

2 �1.94 � 10�3 �3.71 � 10�3

3 1.46 � 10�4 2.65 � 10�4

4 �1.17 � 10�5 �2.12 � 10�5

5 9.70 � 10�7 1.78 � 10�6

6 �8.32 � 10�8 �1.55 � 10�7

7 7.31 � 10�9 1.37 � 10�8
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scattering has been calculated from an infinitely-

massive point scattering center with charge Ze. This is

a reasonable approximation, in most cases, from the

nucleus. However, for an atomic scattering center

made up from a nucleus with charge Ze and Z electrons,

an accounting of the contributions of the atomic elec-

trons to the mass scattering power is required. This

inclusion of the Møller scatter is most frequently per-

formed by assuming that it is coherent with the nuclear

Rutherford/Mott results derived previously. This

assumptions leads to the approximation in which the

Z2 term is replaced by Z(Z þ 1), resulting in an increase

in our previously-calculated mass scattering powers for

carbon and lead by 16.7 and 1.2%, respectively.

7.5.2.4 Specific Electron Multiple Scattering

Theories

Introduction

Although a considerable number of multiple scatter-

ing theories of varying complexity and utility have

been developed, in this subsection, the review of

such theories are limited to two – those of Goudsmit

and Saunderson (1940) and Molière (1947, 1948),

which are two of the more popular theories

employed in Monte Carlo simulations of charged

particle transport.

Goudsmit–Saunderson Theory

Goudsmit and Saunderson (1940) derived a multiple

scatter pdf using multiple independent Coulomb single

scatters and the addition theorem of spherical harmo-

nics. The scattering angle is assumed to be small so

that the electron’s pathlength is equal to the thickness

of the scatterer (in other words, the result is strictly

valid only for thin foils or short discrete steps in a

Monte Carlo simulation) and collisions resulting in

energy loss are neglected. The theory does have the

advantage in that any underlying single scattering

differential cross section can be used. The derivation

begins by defining the normalized single scatter angular

distribution,

f1 yð Þ ¼
ds
dO yð ÞÐ
dO ds

dO yð Þ : (7.497)

The subscript “1” refers to a single Coulomb scatter

and axial symmetry is assumed, which is valid for

spherically symmetric atomic scattering centers or

randomly-oriented molecules. In order to calculate

the distribution for n > 1 scatters the distribution is

first expanded as a weighted series of Legendre poly-

nomials,

f1 yð Þ ¼ 1

4p

X1
l¼0

2lþ 1ð ÞFl Pl cos yð Þ: (7.498)

The coefficients are given by,

Fl ¼
ð
dO f1 yð ÞPl cos yð Þ

¼ Pl cos yð Þ:
(7.499)

The single scatter angular distribution can now be

written in the form,

f1 yð Þ¼ 1

4p

X1
l¼0

2lþ1ð Þ Pl cosyð Þ
h i

Pl cosyð Þ: (7.500)

In order to evaluate the coefficients of the expan-

sion for n > 1 scatters, the addition property of spher-

ical harmonics when written in terms of associated

Legendre polynomials is used. Let the electron be

first scattered through an angle of deflection y1 with

a corresponding azimuthal angle f1. It then undergoes

a second scatter through the corresponding angles

(y2,f2). The total scattering angle is thus y1 þ y2 and
the addition property of spherical harmonics gives,

Pl cos y1 þ y2ð Þð Þ ¼ Pl cos y1ð ÞPl cos y2ð Þ

þ
Xl
m¼�l

Pml cos y1ð Þ

� Pml cos y2ð Þsin m f2 � f1ð Þð Þ:
(7.501)

Averaging both sides leads to,

Pl cos y1 þ y2ð Þð Þ ¼ Pl cos y1ð ÞPl cos y2ð Þ: (7.502)

The generalization of this result for n scatters is,

Pl cos nyð Þð Þ ¼ Pl cos y1ð Þ
h i

n: (7.503)
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Applying this to (7.500), one obtains the angular

distribution following n scatters,

fn yð Þ¼ 1

4p

X1
l¼0

2lþ1ð Þ Pl cosyð Þ
h i

nPl cosyð Þ: (7.504)

Consider the combination of a pathlength t and a

mean free path between elastic collisions l. The mean

number of collisions is given by t=lð Þ and the proba-

bility that an electron will undergo n collisions while

traversing t is Poisson distributed,

p n; tð Þ ¼
e�ðt=lÞ t

l

� �n
n!

: (7.505)

The probabilities of electron elastic scatter for

n ¼ 0, 1, and 2 scatters are provided in Fig. 7.35 as

functions of the ratio of the pathlength to the elastic

scatter mean free path. In order to calculate the angular

distribution of the electrons exiting the foil, one must

sum over the probabilities of all possible collisions,

fGS y; tð Þ¼
X1
n¼0

p n; tð Þfn yð Þ

¼ 1

4p

X1
n¼0

e� t=lð Þ t=l
	 
n
n!

�
X1
l¼0

ð2lþ1Þ Pl cosyð Þ
h in

Pl cosyð Þ

¼ 1

4p

X1
l¼0

2lþ1ð ÞPl cosyð Þe� t=lð Þ

�
X1
n¼0

t=l
	 
n
n!

Pl cosyð Þ
h in

¼ 1

4p

X1
l¼0

2lþ1ð Þe� t=lð Þ e� t=lð ÞPl cosyð ÞPl cosyð Þ

� 1

4p

X1
l¼0

2lþ1ð Þe�tGlPl cosyð Þ ð7:506Þ

where the series expansion of ex has been used and the

coefficient,

Gl ¼ 1� Pl cos yð Þ
l

(7.507)

has been defined. This is referred to as the l th-order

transport coefficient, as will be made evident shortly.

As P0 cos yð Þ ¼ 1 then e�tG0 ¼ 1 and the zeroth-

order term of the expansion fGS(y;t) is 1=4p. As

Pl(cosy) decreases with increasing l due to the growing
oscillatory nature of the Legendre polynomial,

the e�tGl term will tend to e� t=lÞð for increasing l.

fGS(y;t) is forward peaked for small foil thickness

t values but, as t!1 only the l ¼ 0 term contributes

to the pdf and fGS(y;t)!1=4p. Hence, as expected and
because energy loss is ignored, the angular distribution

becomes isotropic.

Now look at the first-order transport coefficient,

G1 ¼ 1

l
1� P1 cos yð Þ
� �

¼ 1

l

ð
dO f1 yð Þ 1� cos yð Þ:

(7.508)

Recalling the definition of the mean free path

between collisions given by (7.7), this result is rewrit-

ten as,

G1 ¼ rNA

A

ð
dO

ds
dO

yð Þ 1� cos yð Þ: (7.509)

Invoking the small-angle approximation,

1� cos y ¼ 2sin2 y=2ð Þ � y2=2 (which is justifiable

in this application as the differential cross section is

highly forward-peaked),

G1 ¼ rNA

2A

ð
dO

ds
dO

yð Þy2

¼ =
2

(7.510)
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Fig. 7.35 The probability of electron elastic scatter for n ¼ 0,1

and 2 scatters as a function of the ratio of the pathlength t to the

elastic scatter mean free path
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which, of course, is proportional to the linear scatter-

ing power.

It will be noted that the Goudsmit–Saunderson pdf

is exact in that the single scatter differential cross

section appears within the transport coefficient.

Hence, these coefficients need only be calculated.

Goudsmit and Saunderson provide examples of such

calculations for analytical forms of the single scatter

differential cross section and a series approximation of

the Legendre polynomials. The number of terms

required in the summation over l to achieve conver-

gence in the calculation of fGS(y;t) will increase as the
pathlength t decreases due to the e�tGl term. It is

possible to improve the convergence of the calculation

for small pathlengths by isolating the contributions

from unscattered electrons.

Molière Theory

The Goudsmit–Saunderson result provides the elec-

tron multiple scatter pdf as the weighted summation

of Legendre polynomials where the underlying single

scatter theory is incorporated through the mean free

pathlength between elastic collisions and the averaged

Legendre polynomial. The Molière multiple scattering

theory (Molière 1947, 1948) evolved from consider-

ation of consecutive scatters which, in practice, is the

solution of the transport equation. Like the previous

theory, the result of Molière’s theory is both indepen-

dent of an individual form of the single scatter cross

section and neglects energy loss. On the other hand,

the single scatter cross section is input to the Molière

theory through only a single parameter, the Molière

screening angle, wa0. The shape of the multiple scatter

pdf is dependent upon a single parameter, b, which is

primarily a function of the areal thickness of the

medium the particle is traversing and is largely depen-

dent upon the medium’s atomic number for most

media of dosimetric interest.

Molière’s result is derived here using Bethe’s

(1953) approach, which is mathematically more trans-

parent than the original, and incorporating further

improvements suggested by Andreo et al. (1993).23

Again, because of the y�4 dependence of the scattering

cross section and its consequently being forward

peaked, the derivation is simplified using the small-

angle approximation. Consider a monodirectional

beam of electrons incident to a medium of physical

density r, atomic number24 Z, and atomic mass A. The

number of scattering centers per unit volume is given

by rNA=A. w is the scattering angle after a single

scatter and y is the cumulative scattering angle after

multiple scatters an electron undergoes traversing a

finite thickness of medium. fM(y;t)ydy is the number

of scattered electrons in the angular interval dy fol-

lowing traveling a distance t of the medium. By equat-

ing the multiple scattering problem to the diffusion of

electrons in the scattering plane, the electron transport

equation is, for the scattering pdf,

]f y; sð Þ
]s

¼ r
NA

A

� � ð
dw f û0; s
� � ds wð Þ

dw

� f y; sð Þ
ð
dX w

ds wð Þ
dw

! (7.511)

where û0 ¼ û� X̂ is the direction vector of the elec-

tron prior to the last scatter at t and dX ¼ w dw df=2p
where f is the azimuthal angle of w in the prescatter-

ing plane of the electron. Defining the transforms,

fM y; tð Þ ¼
ð1
0

dZZ J0 Zyð Þg Z; tð Þ (7.512)

and

g Z; tð Þ ¼
ð1
0

dy y J0 Zyð Þf y; tð Þ (7.513)

and applying them to the transport equation gives,

]g Z; tð Þ
]t

¼ �g Z; tð Þ r
NA

A

� �

�
ð1
0

dw w 1� J0 Zwð Þð Þ ds
dw

: (7.514)

23Fernández-Varea et al. (1993) have provided an additional and

shorter derivation of the theory beginning with the Goudsmit–

Saunderson result.

24Unlike Molière, Bethe included the contributions of the

atomic electrons and assumed these to be coherent so that Z is

replaced by Z(Z þ 1). This is repeated here.
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The solution to this equation is,

g Z; tð Þ ¼ e O Z;tð Þ�O0ð Þ (7.515)

where

O Z; tð Þ ¼ r
NA

A

� �
t

ð1
0

dw w
ds
dw

J0 Zwð Þ: (7.516)

Note that, as J0(0) ¼ 1, the parameter

O0 ¼ O 0; tð Þ

¼ r
NA

A

� �
t

ð1
0

dw w
ds
dw

(7.517)

is equal to the total number of collisions occurring

along the pathlength t. One then obtains an expression

for the Molière multiple scattering pdf,

fM y; tð Þ ¼
ð1
0

dZZ J0 Zyð Þ

� exp �r
NA

A

� �
t

ð1
0

dw w
ds
dw

1� J0 Zwð Þð Þ
2
4

3
5:

(7.518)

Because of the explicit inclusion of the scattering

differential cross section in this expression, it is appar-

ent that, as with the Goudsmit–Saunderson theory, the

multiple scattering pdf will not be restricted to a par-

ticular single Coulomb scatter theory.

A simpler form of the Molière pdf can be obtained

by taking advantage of the fact that the elastic single

scatter differential cross section is proportional to y�4,

becoming complicated only (as shown in Fig. 7.2)

when the scattering angle is of the order of, or less

than, the screening angle. Using Bethe as a guide,

fM(y;t) is calculated using the unscreened Rutherford

cross section beginning with evaluating the ratio of the

actual to Rutherford cross section,

q wð Þ ¼ dsAct=dw
	 

dsRuth=dw
� � (7.519)

where the axial symmetry of the Coulomb interaction

is noted. The subscript Act identifies the actual cross

section. For the unscreened Rutherford cross section,

q wð Þ ¼ r
NA

A

� �
t

w4

2w2cðtÞ
� �

dsAct

dw
(7.520)

where the unit-probability angle wc is defined by,

w2cðtÞ ¼ r
NA

A

� �
t

a�hc
pb

� �2

Z Zþ 1ð Þ: (7.521)

TheMolière angle wc has the physical interpretation
of being the angle beyond which the probability of a

single elastic scatter occurring is equal to unity; it is

plotted as a function of electron kinetic energy in

1 mm carbon in Fig. 7.36.

q(w) has properties that will prove useful in the deri-
vation. Clearly, q(w) ! 0 as w ! 0 due to the w�4

dependence of the unscreened cross section. By exten-

sion, as the screened and unscreened cross sections

converge for large scattering angles, q(w) ! 1 as w !
1 (again, for calculational purposes, the maximum

scattering angle is set to infinity and advantage is taken

of the sharp forward-angle peak of the single scatter

cross section). As suggested by Figs. 7.2 and 7.3, the

most rapid change in q(w) occurs for w � 0. The next

step of the derivation is to return to (7.512) and, by

taking logarithms of (7.515) and using (7.516), obtain,

� ln g Z; tð Þ ¼ O0 � O Zð Þ

¼ r
NA

A

� �
t

ð1
0

dw w 1� J0 Zwð Þð Þ dsAct

dO

¼ 2w2cðtÞ
ð1
0

dw w
1� J0 Zwð Þð Þ

w3
q wð Þ

(7.522)
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Fig. 7.36 Molière angle wc for carbon (Z ¼ 6, A ¼ 12, r ¼
2 g/cm3, t ¼ 0.1 cm) as a function of electron kinetic energy

294 7 Charged Particle Interactions with Matter



As q(w) < 1 for w � w0 where w � wc, the integral
can be split by defining an intermediate angle w0 �
wS � wc, for which q(w) can be set equal to unity for

scattering angles greater than wS,

ð1
0

dww
1�J0 Zwð Þð Þ

w3
q wð Þ

¼
ðws
0

dww
1�J0 Zwð Þð Þ

w3
q wð Þþ

ð1
ws

dww
1�J0 Zwð Þð Þ

w3
q wð Þ

ffi
ðws
0

dww
1�J0 Zwð Þð Þ

w3
q wð Þþ

ð1
ws

dww
1�J0 Zwð Þð Þ

w3

� I1 Z;wsð Þþ I2 Z;wsð Þ: ð7:523Þ

The first integral is solved by the change of vari-

able x ¼ Zws and using the small-argument approxi-

mation of the Bessel function (as Zws is small),

J0ðxÞ � 1� x=2ð Þ2,

I1 Z; wsð Þ ¼ Z2

4

ðws
0

dw
q wð Þ
w

: (7.524)

The second integral is,

I2 Z; wsð Þ ¼
ð1
ws

dw
1� J0 Zwð Þð Þ

w3

¼
ð1
ws

dw
w3

�
ð1
ws

dw
J0 Zwð Þ
w3

¼ 1

2w2s
� I3 Z; wsð Þ:

(7.525)

The indefinite form of the integral I3(Z;ws) can be

expressed in terms of the Meijer G function, but here

Bethe’s approach of straightforward, but tedious,

sequential integrations by parts and ignoring terms of

order (Zws)
2 is followed. Beginning with the change of

variable, x ¼ Zws, the integral is rewritten as,

I3 Z; wSð Þ ¼ Z2

ð1
ZwS

dx
J0ðxÞ
x3

(7.526)

where the integral is,

ð1
Zws

dx
J0ðxÞ
x3

¼
ð1
Zws

dr s

¼ s rj 1
Zws

�
ð1
Zws

ds r

(7.527)

where

s � J0ðxÞ ds ¼ �dx J1ðxÞ

dr � dx

x3
r � � 1

2x2

to give

ð1
Zws

dx
J0ðxÞ
x3

¼ J0 Zwsð Þ
2 Zwsð Þ2 �

1

2

ð1
Zws

dx
J1ðxÞ
x2

¼ J0 Zwsð Þ
2 Zwsð Þ2 �

1

2
I4 Z; tð Þ:

(7.528)

This new integral is also solved by parts,

I4 Z; tð Þ ¼
ð1
Zws

dx
J1ðxÞ
x2

¼ s rj 1
Zws

�
ð1
Zws

ds r

(7.529)

where

s � J1ðxÞ ds ¼ dx J0ðxÞ � J1ðxÞ
x

� �

dr � dx

x2
r � � 1

x
:

Then,

I4 Z; tð Þ ¼ J1 Zwsð Þ
Zws

þ
ð1
Zws

dx
J0ðxÞ
x

� I4 Z; tð Þ

¼ 1

2

J1 Zwsð Þ
Zws

þ
ð1
Zyw

dx
J0ðxÞ
x

0
B@

1
CA:

(7.530)

7.5 Multiple Elastic Scattering 295



This result is simplified by using the small-

argument approximation, J1ðxÞ ffi x=2, and the solu-

tion to the definite integral
Ð1
t

dx
J0ðxÞ
x

¼ Ðt
0

dx
1�J0ðxÞ

x

�gEM � ln t
2
,

I4 Z; tð Þ ¼ 1

2

1

2
� gEM � ln

Zws
2

� �
þO Zwsð Þ2

� �
:

(7.531)

Terms of order Zwsð Þ2 are neglected. Working

backwards,

I3 Z; wSð Þ ¼ Z2

2

J0 Zwsð Þ
Zwsð Þ2 � Z2

4

1

2
� gEM � ln

Zws
2

� �
:

(7.532)

Using the small-argument form of J0 Zwsð Þ, one

then arrives at,

I2 Z; wSð Þ ¼ 1

2w2s
� I3 Z; wsð Þ

¼ Z2

4
1� gEM � ln

Zws
2

� � (7.533)

One can now return to the original integral to give,

ð1
0

dw w
1� J0 Zwð Þð Þ

w3
q wð Þ

¼ Z2

4

ðws
0

dw
q wð Þ
w

þ1� gEM � lnZ� ln ws þ ln 2

0
@

1
A:

(7.534)

Molière next defined a characteristic screening

angle,

� ln wa ¼ lim

ws ! 1
ðws
0

dw
q wð Þ
w

þ 1

2
� ln ws

0
@

1
A

allowing (7.534) to be written in the much simpler

form,

ð1
0

dw w
1� J0 Zwð Þð Þ

w3
q wð Þ

¼ Z2

4

1

2
� gEM � lnZwa þ ln 2

� �
(7.535)

Then, the exponent of (7.515) can be written as,

O0 � O Zð Þ ¼ Zwcð Þ2
2

1

2
� gEM � lnZwa þ ln 2

� �
:

(7.536)

In order to simplify the integral fM y; tð Þ ¼Ð1
0

dZZ J0 Zð Þe� O0�O Z;tð Þð Þ, Molière further defined the

quantity,

b ¼ ln
wc
wa

� �2

þ 1� 2gEM

� ln
wc
wa0

� �2
(7.537)

where the modified characteristic scattering angle is,

wa
0 ¼ wa e

gEM�1=2

� 1:08 wa
(7.538)

leading to a simpler expression,

b ¼ ln
w2c

1:167 w2a

� �
: (7.539)

Using the change of variable y ¼ Zwc, (7.536) is
recast as,25

O0 � O Z; tð Þ ¼ y2

4
b� 2 ln

y

2

� �
: (7.540)

Finally, by writing l ¼ y=wc, one at last obtains the
transformed form of Molière’s pdf,

fM yð Þy dy ¼ l dl
ð1
0

dy y J0 l yð Þ

� exp
y

2

� �2
2 ln

y

2

� �
� b

� �� �
:

(7.541)

It is necessary to modify the upper limit of

this integration as the exponent goes to infinity for

y!1, as shown in Fig. 7.37 for b ¼ 3. The exponent

25Molière achieved this result using an expansion of Hankel

functions.
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has a minimum at y ¼ 2eðb�1Þ=2, which is a conse-

quence of the specified inequality w0 � ws � wc. The
upper limit of the integral is set to this minimum and

the transformed Molière pdf is written as,

fM yð Þy dy ¼ l dl
ð2eðb�1Þ=2

0

dy y J0 l yð Þ

� exp
y

2

� �2
2 ln

y

2

� �
� b

� �� �
:

(7.542)

This truncation of the integration limit will have a

negligible effect as eb � wc=wað Þ2 which is of the order
of the total number of collisions in the pathlength

considered. As the mean free pathlength between elas-

tic collisions is small, this truncation of the integration

is allowed.

Molière solved for the angular pdf by first defining

a variable B through the transcendental equation,

B� lnB ¼ b: (7.543)

Approximations to B have since been given by

Scott (1963),

B ¼ 1:153þ 2:583 log10
wc
wa

� �2

(7.544)

and Tabata and Ito (1976),

B ¼ 2:6þ 2:3863 log10
wc
wa

� �2

� 3:234

log10
wc
wa

� �2
þ 0:994

(7.545)

(the value of B typically ranges from between 5

and 20). To complete the derivation, Molière defined

the reduced angle,

W ¼ l
B

¼ y

wc
ffiffiffiffi
B

p :
(7.546)

The integration variable of the multiple scatter pdf

is then changed to,

u ¼ y
ffiffiffiffi
B

p
(7.547)

and the pdf then expanded in a power series in B�1,

fM yð Þy dy ¼ W dW
X1
n¼0

f
ðnÞ
M Wð ÞB�n (7.548)

where the coefficients of the expansion are,

f
ðnÞ
M Wð Þ¼ 1

n!

ð2eðb�1Þ=2:

du uJ0ðuÞ u2

4
ln
u2

4

� �n

exp �u2

4

� �
:

(7.549)

The zeroth-order coefficient can be calculated from

the following property of integer-order Bessel func-

tions,

ð1
0

dt tnþ1 e�a2t2 Jn btð Þ ¼ bn

2a2ð Þnþ1
e�b2=4a2 ; Re a2 > 0

(7.550)

to give,

f
ð0Þ
M Wð Þ ¼

ð1
du u J0ðuÞ exp � u2

4

� �
¼ 2e�W2 (7.551)

where the upper limit of the integral has been allowed

to go to infinity due to the e�u2=4 term in the integrand.

Clearly, this first term corresponds to a Gaussian mul-

tiple scattering pdf. Whereas Molière provided an

analytical representation of fð1Þ Wð Þ which was propor-

tional to W�4 for large W, Bethe reported that he was

only able to find numerical solutions to fðnÞ Wð Þ for
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Fig. 7.37 Exponent in the transformed expression of the

Molière pdf for b ¼ 3
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n � 2. Values of fð0Þ Wð Þ, fð1Þ Wð Þ; and fð2Þ Wð Þ are plot-
ted as functions of W in Fig. 7.38. For, W< 2 fð0Þ Wð Þ
dominates and the multiple scattering pdf is Gaussian

for small scattering angles. The fð0Þ Wð Þ term decreases

exponentially such that at larger values of W, the

fð1Þ Wð Þ term dominates and, as it is proportional to

W�4 for large W, it goes over into the Rutherford single

scatter angular distribution.

One would expect from the expansion of (7.548)

that the accuracy of the pdf would increase with the

inclusion of an increasing number of terms. This is not

the case due mainly to the omission of electron intrin-

sic spin and relativity, the effects of which grow at

large single scattering angles. Andreo et al. (1993)

have exhaustively studied the limitations to the

Molière theory.

Now return to the transformed Molière result. In

the Molière theory, the scatter is described by the

characteristic screening angle and that the final

angular distribution is a function of the ratio of this

screening angle to the unit-probability scattering

angle. The single scatter differential cross section

enters the theory through the ratio of differential

cross sections, q(w). Molière provided a result for

the Thomas–Fermi atom and Fernández-Varea et al.

(1993) did so for the Yukawa-type screening.

Molière’s form is,

w2a ¼ 1:13þ 3:76 Z
a
b

� �2

: (7.552)

The second term in the series accounts for deviation

from the Born approximation. From the definition of b,

for an electron of speed bc in a medium with atomic

number Z and atomic mass number A and physical

density r,

eb ¼ w2c
w0a2

¼ 6680

b2
rt

Z1=3 Zþ 1ð Þ
A 1þ 3:34 Z a

b

� �2� � (7.553)

where rt is the pathlength given in units of cm2=g.

Bethe showed that the Z-dependence does not deviate

from unity by more than about �30% for Z ranging

from 1 (for deuterium) to 92 (uranium), an observation

that indicates that the number of collisions per

square centimeter/gram is reasonably constant for all

elements.
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Fig. 7.38 The coefficients
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the Molière expansion of the

multiple scattering probability

distribution function as

functions of the reduced

scattering angle W
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7.6 Bremsstrahlung

7.6.1 Introduction

Throughout this chapter, only the elastic scatter and

the collision energy losses of a charged particle

moving through a medium have been considered.

Attention is now turned to radiative energy losses

through which a charged particle is deflected by the

nuclear Coulomb field and emits a photon as a result

(bremsstrahlung).
In this section, discussions will be limited to those

of the radiative energy losses of electron and positron

projectiles with kinetic energies of the order of a few

MeV or less in low-Z media representative of tissue26

and omit a derivation of electron–electron brems-

strahlung as it is not a significant phenomenon at the

energies of interest here.27 Hence, only the brems-

strahlung resulting from electron-atom interactions

is considered (i.e., the atom is treated as a nuclear

Coulomb field screened by the atomic electrons).

Detailed elucidations of bremsstrahlung may be

found in Koch and Motz (1959), Heitler (1984), Pratt

et al. (1977), and Haug and Nakel (2004). Numerical

data are also available from ICRU Publication 37

(1984) and Berger and Seltzer (1983).

7.6.2 Classical Electron-Atom
Bremsstrahlung Theory

7.6.2.1 Introduction

While the exact understanding of electron-atom

bremsstrahlung requires a quantum-mechanical treat-

ment, classical theory proves useful despite some

fundamental differences. For example, classical the-

ory demonstrates that a charged particle will radiate

electromagnetic energy only when accelerated, but

also states that this emission will occur at any time

the particle is accelerated. On the other hand, the

quantum-mechanical result shows that there can

only be a finite probability that radiation occurs.

Classical bremsstrahlung theory also fails to repro-

duce the cutoff of radiation at high frequency

(corresponding to the full stopping of the moving

charged particle and the complete transfer of its

kinetic energy to radiation, neglecting nuclear recoil).

In other words, in the classical theory the Fourier

transforms of the time-dependent field strengths

extend to infinite frequency. Nevertheless, a review

of the classical bremsstrahlung theory is a useful

foundation to the full quantum-mechanical develop-

ment of the phenomenon.

7.6.2.2 Liénhard–Wiechert Retarded Potentials

In order to demonstrate that electromagnetic energy

is radiated by an electron only when accelerated,

one begins with the derivation of the Liénhard–

Wiechert retarded potentials. Consider an electron

moving in vacuo along the trajectory r(t) parametric

in time t as shown in Fig. 7.39. It is desired to

determine the electromagnetic field at point P

(with position vector x) associated with the electron

at time t. At this time t, the electron will be at point

A with position vector r(t). However, due to the

finite propagation time of the radiation, the field at

P at time t will be that due to the radiation emitted

at the earlier time t0 when the electron was at point

A0 with position vector r(t0). The time taken for the

radiation to travel from point A to point P is equal

to x� r t0ð Þj j=c and the retarded time is the differ-

ence between this time and that when the radiation

is observed at point P,

26This limitation is reasonable for nuclear medicine purposes as

the maximum electron energy resulting from the Compton scat-

ter of a 511 keV photon is 340 keV for a backscattered photon

and the maximum b� kinetic energies of isotopes typical of

clinical nuclear medicine interest are below a couple of MeV.
27There are two classical arguments that will allow electron-

electron bremsstrahlung to be neglected. On the simplest level,

in the dipole approximation, the energy radiated away by an

accelerated charged particle is proportional to the dipole

moment. As the dipole moment is also proportional to the

center-of-mass (which is stationary of particles of identical

mass), our first approximation is that electron-electron brems-
strahlung will be zero. One can also think of the accelerations of
an electron projectile and electron target resulting in electro-

magnetic radiations of equal magnitude but opposite phase

resulting in cancellation.
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t0 ¼ t� x� r t0ð Þj j
c

� t� R t0ð Þj j
c

¼ t� R t0ð Þ
c

(7.554)

where the vector R(t0) has been defined. The unit

vector directed along R(t0) is

n̂ t0ð Þ ¼ R t0ð Þ
R t0ð Þ : (7.555)

To enable the calculation of the electromagnetic

field at P, return to first principles, neglect retardation

and replace the single moving electron with a uni-

formly moving current density as shown in Fig. 7.40.

The resulting vector and scalar potentials at P will be,

A xð Þ ¼ m0
4p

ð
d3r0

J r0ð Þ
R

(7.556)

and

F rð Þ ¼ 1

4pe0

ð
d3r0

r r0ð Þ
R

(7.557)

where J(r0) and r(r0) are the current and charge densities,
respectively, and the integration is over a small volume

element as shown. If the current and charge are allowed to

vary with time and a finite propagation time is accounted

for, these potentials can be rewritten in the forms,

A x; tð Þ ¼ m0
4p

ð
d3r

J r; t� R
c

	 

R

(7.558)

F x; tð Þ ¼ 1

4pe0

ð
d3r

r r; t� R
c

	 

R

(7.559)

Having derived these potentials, return now to the

example of a moving electron for which the potentials

are evaluated following the approach of Feynman

et al. (1963). First, the charge distribution is replaced

with a cube of side dimension L moving towards the

point P (i.e., n̂ ¼ b) and it assumed that L � R. The

integral of (7.559) is replaced by the finite summation,ð
d3r0

r r0; t� R
c

	 

R

ffi rL2DL
XN
i¼1

1

ri
(7.560)

where the cube has been divided into N elements of

thickness DL and ri is the distance from the ith element

to R. This summation is,

rL2DL
XN
i¼1

1

ri
¼ rL2DL

XN
i¼1

1

reff

¼ rL3

reff

NDL
L

¼ rL3

reff

Leff

L

(7.561)

r(t′)

r(t)

r

R (t′) = x − r (t′)

A′

A
X

o
P

Electron trajectory

n̂

Fig. 7.39 Trajectory of a moving electron for calculation of the

Liénhard–Wiechert retarded potentials

R = x − r′

r′

d3r′

J

X

P
o

Fig. 7.40 Replacement of the single moving electron with an

electric current density
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where reff is the effective distance from the volume

elements to P and Leff is the length of the volume

traversed by the moving cube over a time Dt, or,

Leff ¼ L

1� b
: (7.562)

As rL3 is the total charge (taken to be equal to e for

an electron),

1

4p e0

ð
d3r0

r r0; t� R=c
	 


R

¼ e

4p e0

1

R t0ð Þ 1� b t0ð Þð Þ : (7.563)

Hence, the potentials can be written as,

F x; tð Þ ¼ e

4pe0

1

R 1� n̂ � b̂
� �

8<
:

9=
;

t0

(7.564)

and

A x; tð Þ ¼ e

4pe0c
b̂

R 1� n̂ � b̂
� �

8<
:

9=
;

t0

: (7.565)

Note that the x and t dependencies implicitly arise

through the definition of the retarded time and that the

use of brackets with the subscript t has been introduced

in order to signify that the quantities within the brackets

are to be evaluated at the retarded time, t0. b̂ is the

electron velocity normalized to the speed of light (as

b 
 1, the normalized velocity is written as a unit

vector for convenience) and the scalar product n̂ � b̂
is that component of the normalized electron velocity

directed towards the detection point, P. Equations

(7.564) and (7.565) are the Liénhard–Wiechert retarded

potentials which are used to evaluate the radiation field

at point P. However, before doing so, that derivation is

anticipated by highlighting two features of the results

provided of the vector and scalar potentials:

� As both potentials decrease as 1=R, the resulting

fields otherwise fall as 1=R2 leading to a net zero

electromagnetic energy flow flux for R!1. How-

ever, recalling that the retarded time has an explicit

R-dependence, this leads to a net 1=R dependence

upon differentiation. Hence, retardation is neces-

sary in order to allow for the radiation of electro-

magnetic energy at a distance.

� The 1� n̂ � b̂
� �

term in the denominators of the

expressions of the potentials predicts “geometric

beaming” as b ! 1 with the field reaching a maxi-

mum along the direction of travel at high electron

speeds.

7.6.2.3 Radiation Emission

Electromagnetic Fields at a Distance

The electric field strength is calculated from the poten-

tials through E ¼ �rF� ]A=]t (Jackson 1999). The

differential with respect to the time t is found by

differentiating the expression for R(t0),

R t0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� r t0ð Þð Þ � x� r t0ð Þð Þ

p
¼ c t� t0ð Þ (7.566)

to give,

]R t0ð Þ
]t

¼ c 1� ]t0

]t

� �
: (7.567)

Applying the chain rule,

]R t0ð Þ
]t

¼ ]R t0ð Þ
]t0

]t0

]t

¼ � ]r t0ð Þ
]t0

]t0

]t

¼ �c n̂ � b̂
n o

t0

]t0

]t
:

(7.568)

Equating these two results gives,

c 1� ]t0

]t

� �
¼ �c n̂ � b̂

n o
t0

]t0

]t

leading to,

]t0

]t
¼ 1

1� n̂ � b̂

� �
t0

(7.569)

which is then used to write the differential with respect

to t,

]

]t
¼ ]t0

]t

]

]t0

¼ 1

1� n̂ � b̂

� �
t0

]

]t0
:

(7.570)
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The gradient operator r is evaluated by first separ-

ating it into spatial and time components,

r ¼ rx þrt0 (7.571)

where the first component refers to differentiation with

respect to the observation point position vector (dis-

regarding any retardation effects) and the second term

accounts for retardation. This latter term is

rt0 ¼ rt0 ]
]t0 where,

rt0 ¼ � 1

c
rR t0ð Þ

¼ � 1

c
n̂þ ]R t0ð Þ

]t0
rt0

� �

¼ � 1

c
n̂� n̂ � b̂c

� �
rt0

� �
:

(7.572)

Solving for rt0 gives,

rt0 ¼ � 1

c

1

1� n̂ � b̂

� �
t0

(7.573)

which leads to the expression for the gradient operator,

r ¼ rx � 1

c

n̂

1� n̂ � b̂

� �
t0

]

]t0
: (7.574)

Having established these operators, one can now

evaluate the electric and magnetic fields,

E x; tð Þ ¼ �rF� ]A=]t

¼ � rx � 1

c

n̂

1� n̂ � b̂

� �
t0

]

]t0

 !
F x; tð Þ

� 1

1� n̂ � b̂

� �
t0

]A x; tð Þ
]t0

¼ �rxF x; tð Þ þ 1

c

n̂

1� n̂ � b̂

� �
t0

]F x; tð Þ
]t0

� 1

1� n̂ � b̂

� �
t0

]A x; tð Þ
]t0

¼ e

4pe0
�rx

1

R

1

1� n̂ � b̂
� �

8<
:

9=
;

t0

0
B@

þ 1

c

n̂

1� n̂ � b̂

� �
t0

]

]t0
1

R

1

1� n̂ � b̂
� �

8<
:

9=
;

t0

� 1

c

1

1� n̂ � b̂

� �
t0

]

]t0
1

R

b̂

1� n̂ � b̂
� �

8<
:

9=
;

t0

1
CA

¼ e

4pe0

1� b2
	 


n̂� b̂
� �

1� n̂ � b̂
� �3

R2

8><
>:

þ 1

c

n̂� n̂� b̂
� �

� _̂
b

� �
1� n̂ � b̂
� �3

R

9>=
>;

t0

ð7:575Þ

where, in order to simplify the expression, an over-

lying dot is used to indicate differentiation with

time. The magnetic field strength follows from

B ¼ r � A.
Consider the above expression for the electric field

strength. The first term on the right-hand side is pro-

portional to 1=R2 and the particle’s velocity and is the

Coulomb field for a uniformly moving electric charge.

As the resulting radiated power is proportional to Ej j2,
the power will drop off as 1=R and can be neglected as

the energy flow per unit area will simply go to zero at

infinity as a result. On the other hand, the second term

is proportional to 1=R and the particle’s acceleration.

Because of the latter feature, the energy flow per unit

area will thus remain finite as R ! 1. This second

term is the radiation field of an accelerating electric

charge (which only arises because of retardation).

Having recognized this, isolate the electric and mag-

netic radiation fields accordingly,

Erad x;tð Þ¼ e

4pe0c

n̂� n̂� b̂
� �

� _̂
b

� �
1� n̂� b̂
� �3

R

8><
>:

9>=
>;

t0

(7.576)

Brad x; tð Þ ¼ n̂� Erad x; tð Þ
c

(7.577)

Radiated Power: Larmor Formula

The radiated power is calculated using the Poynting

vector in the nonrelativistic case (i.e., b � 1) in which
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n̂� b̂Þ ! n̂ and

	
1� n̂ � b̂
3 ! 1. The radiative

electric field reduces to the simpler form,

Erad x; tð Þ ¼ e

4pe0c

n̂� n̂� _̂
b

� �
R

8<
:

9=
;

t0

;

b � 1:

(7.578)

The Poynting vector is,28

Prad ¼ Erad �H�
rad

¼ 1

m0
Erad � B�

rad

(7.579)

From (7.576) and (7.577),

Erad x; tð Þj j ¼ e

4pe0c

_b
R

sin y

( )
t0

(7.580)

and

Brad x; tð Þj j ¼ e

4pe0c2
_b
R

sin y

( )
t0

(7.581)

where y is the angle between the unit vectors n̂ and
_̂
b.

Inserting these results into the expression of the Poynt-

ing vector provides the magnitude of the radiated

power,

Prad ¼ e2

16p2e20m0c
3

_b
2

R2
sin2y

( )
t0

¼ a�h
4p

_b
2

R2
sin2y

( )
t0

(7.582)

where 1=e0m0 ¼ c2 has been used. This angular distri-

bution of (7.582) is clearly that of dipole radiation.

Energy is radiated with a maximum orthogonal to the

direction of travel and with none directed along the

acceleration vector. This pattern will, however, alter in

the laboratory frame-of-reference due to the Lorentz

transformation as the electron becomes relativistic. As

themagnitude of the Poynting vector is the electromag-

netic energy radiated per unit time and per unit area,

Pradj j ¼ d2E

R2dt dO
(7.583)

one can calculate the total instantaneous radiated

power from the accelerated charge,

dE

dt
¼
ð
dOR2 Pradj j

¼ a�h
2

_b
2

n o
t0

ðp
0

dy sin3y

¼ 2

3
a�h _b

2
n o

t0
:

(7.584)

This result is the Larmor formula for a nonelativis-

tic accelerated electron (with explicit recognition that

the acceleration is that of the electron at the time of

emission). Note that the radiated power is proportional

to the square of the particle’s acceleration at the time

of emission.

Classical Radiative Stopping Power

A classical expression of the radiative stopping power

(i.e., the energy loss due to bremsstrahlung per unit

length traveled) can now be derived. Assume that the

acceleration is due to a deflection of the electron at an

impact parameter b by a nucleus with charge Ze and

that the duration of this deflection, tDefl, is short. The
acceleration will be given by the ratio of the Coulomb

force experienced by the electron and its mass,

_b ¼ a�hc
me

� �
Zc

b2
: (7.585)

Inserting this expression for the normalized accel-

eration into the Larmor formula gives the radiated

power,

dE

dt
¼ 2

3
a�h _b

2
n o

t0

¼ 2

3
a�h

a�hc
me

� �2
Zcð Þ2
b4

¼ 2

3
a�hcð Þ3 Z2c

m2
eb

4
:

(7.586)

28As only the instantaneous power flow is being considered, the

1/2 multiplicative factor is excluded.
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As the duration of the interaction is approximately

tColl � b

bc
(7.587)

then the total radiated energy as a result of the deflec-

tion is,

DE � dE

dt
tColl

� 2

3
a�hcð Þ3 Z2

bm2
eb

3
:

(7.588)

This is the energy loss for a single interaction with a

nucleus. To calculate the radiative stopping power, it

is necessary to account for all of the nuclei that the

electron may interact with,

dE

r dx
¼ 2p

3
a�hcð Þ3 NAZ

2

A bm2
e

ðbmax

bmin

db

b2

¼ 4p
3

a�hcð Þ3 NAZ
2

A bm2
e

1

bmax

� 1

bmin

� �
:

(7.589)

Using the expressions for the minimum impact

parameter and the constant C of derived previously,

dE

r dx
¼ 2aC

3

Z2

A
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p (7.590)

This predicts that the mass radiative stopping

power increases to infinity with increasing electron

speed and increases with atomic number.

Angular Distribution of Radiation Emission

In evaluating the angular distribution and the fre-

quency spectrum of the radiation emission, the

approach described by Jackson (1999) will be approx-

imately followed, but with the use of SI units retained.

Recall that the derivations of the nonrelativistic Lar-

mor formula and subsequent radiative mass stopping

power were nonrelativistic and, hence, based upon the

assumption that b � 1. As a result, only the accelera-

tion _b appeared in the final expression of the radiated

power and the angular distribution was that of a dipole,

sin2y. As the electron’s speed increases, it can no

longer be ignored (in particular that of the effect of

“beaming” caused by the 1� n̂ � b̂
� �3

term in the

denominator). To evaluate the angular distribution,

recalculate the magnitude of the radial component of

the Poynting vector (i.e., along the direction of n̂)
without using the previous nonrelativistic approxima-

tion,

Prad � n̂ ¼ 1

m0
Erad � B�

rad

	 
 � n̂
¼ 1

m0
Erad � n̂� E�

rad

	 
	 
 � n̂

¼ e2

16p2e0c
1

R2

n̂� n̂� b̂
� �

� _̂
b

� �
1� n̂ � b̂
� �3

�������
�������
28><

>:
9>=
>;

t0

:

(7.591)

This scalar product is the detected power per unit

area at a distant point at time t of radiation that had

been emitted by the electron at the earlier time t0.
Assume that the acceleration of the electron at time

t0 resulting in the emission of radiation was due to an

interaction with a nucleus of atomic number Z over a

short finite time interval, tColl, and further approxi-

mate b̂ and
_̂
b as both being constant in magnitude and

direction. The energy radiated during a finite time

interval from t0 ¼ 0 to t0¼ tColl will be,

E ¼
ðtCollþ R tCollð Þ=cð Þ

R t¼0ð Þ=cð Þ

dtPrad � n̂

¼
ðtColl
0

dt0
dt

dt0
Prad � n̂

(7.592)

The quantity dt
dt0 Prad � n̂ð Þ is the radiated power

per unit area in terms of the electron’s time. This can

be used to give the power radiated per unit solid

angle as,

dE

dt0 dO
¼ R2 Prad � n̂ð Þ dt

dt0

¼ R2 Prad � n̂ð Þ 1� n̂ � b̂
n o

t0
:

(7.593)
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Substituting the expression for Prad � n̂,

dE

dt0dO
¼ e2

16p2e0c

n̂� n̂� b̂
� �

� _̂
b

� �
1� n̂� b̂
� �3

�������
�������
2

1� n̂� b̂
� �8><

>:
9>=
>;

t0

¼ e2

16p2e0c

n̂� n̂� b̂
� �

� _̂
b

� ���� ���2
1� n̂� b̂
� �5

8><
>:

9>=
>;

t0

:

(7.594)

This provides the angular distribution of the radia-

tion emission provided that n̂ and R are reasonably

constant (a requirement equivalent to the measure-

ment point being at a sufficiently large distance from

the electron). Considering the case of b̂ and
_̂
b being

collinear and defining y as the angle between the

direction of b̂ and
_̂
b and the direction of emission,

then (7.594) reduces to,

dE

dt0 dO
¼ a�hc

4p
_b2

sin2y

1� b cos yð Þ5 (7.595)

For b � 1, this result returns the sin2y dependence
of the nonrelativistic Larmor formula but, because of

the (1�bcosy)5 term, the angular distribution becomes

highly forward peaked at high electron speeds. The

angle at which the radiation is at a maximum, ymax is,

ymax ¼ cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 15b2

p
� 1

3b
(7.596)

This maximum emission angle is shown as a func-

tion of the electron b in Fig. 7.41. At low electron

energies, the maximum emission angle is near to 90�

(reflecting the dipole radiation pattern in the laboratory

reference frame) but the radiation becomes focused

into a cone of decreasing angle with increasing b.

Spectrum of Radiation Emission

Nonrelativistic Case

The frequency (energy) spectrum of the radiated

energy of classical bremsstrahlung is now calculated

in the case of a nonrelativistic incident electron. Here,

the shape of the energy spectrum is taken to reflect the

shape of the impulse of the electron deflection. If one

assumes that the impulse has a duration given by,

tColl ¼ b=bc, then the corresponding frequency spec-

trum can be approximated as being uniform up to an

angular frequency of,

o � 1

tColl
� bc

b
: (7.597)

From this,

dE

do
� DE tColl

� 2

3c
a�hcð Þ3 Z2

b2m2
eb

2
:

(7.598)

The energy radiated per unit frequency and unit

areal density is obtained in the usual manner,

d2E

rdxdo

� �
Rad

¼ 2

3c

NA

A

� �
ah�cð Þ3 Z2

m2
eb

2

ðbmax

bmin

db2pb
1

b2

������
������

¼4p
3c

NA

A

� �
ah�cð Þ3 Z2

m2
eb

2

ðbmax

bmin

db

b

������
������

¼2

3
C

Z2

A

� �
r0

b2c
ln
bmax

bmin

:

(7.599)

To avoid the divergence problem, the lower limit of

the impact parameterization is modeled by,

bmin ¼ �hc

meb

b

q m
ax

(o )
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Fig. 7.41 Angle of maximum bremsstrahlung for an electron

as a function of b
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and the upper limit can be taken to be the ratio of the

incident electron speed to the cutoff frequency (which

is necessary as the electron cannot emit infinite

energy). The ratio of impact parameters is,

bmax

bmin

¼ bc
o

meb
�hc

¼ b2me

�ho
:

For convenience, this will be written as,

bmax

bmin

¼ mev
2
0

�ho

where v0 is the incident electron speed and the electron

rest mass is now given in units of mass rather than

energy. This gives the expression for the radiated

energy spectrum per unit length traversed as,

d2E

r dx do

� �
Rad

¼ 2

3
C

Z2

A

� �
r0c

v20
ln
mev

2
0

�ho
: (7.600)

However, as the electron does lose kinetic energy

as a result of the radiative collision, it would be more

appropriate to replace the v0
2 term in the logarithm

with the square of the mean of the pre- and postdeflec-

tion speeds,

1

2

ffiffiffiffiffiffiffiffi
2T0

me

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 T0 � �hoð Þ

me

s !
;

where T0 is the incident electron kinetic energy and �ho
is the energy of the bremsstrahlung photon which will

be now denoted by the usual symbol, k. To change the

differential from frequency to photon energy, divide

through the above result with the reduced Planck’s

constant. Thus, one obtains a classical result for the

energy spectrum (the use of �h is only for convenience

here and does not imply a quantum-mechanical basis

to the result),

d2E

rdxdk

� �
Rad

¼ C

2

Z2

A

� �
r0c

�hv20

� ln

ffiffiffiffiffi
T0

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
T0 � k

p	 
2
2k

 !
k� T0

(7.601)

It will be seen later that this result is markedly

similar to the quantum-mechanical derivation of the

Bethe–Heitler theory. Figure (7.42) shows the brems-

strahlung spectrum for 100 keV electrons in lead cal-

culated from (7.601).

Relativistic Case: Weizsäcker–Williams (Virtual

Quanta) Method

This is a semiclassical approach to calculating elec-

tron-nucleus bremsstrahlung performed in the refer-

ence frame of the moving electron. The nuclear

electromagnetic field is thus experienced by the elec-

tron as a pulse, or virtual photon, which is Thomson

0 25 50 75 100
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d
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d

x
 d

k
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Fig. 7.42 Bremsstrahlung
spectrum calculated from

classical theory for 100 keV

electrons in lead
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scattered by the electron. This innovative approach is

originally attributable to the independent work of von

Weizsäcker and Williams, following Fermi.

In the reference frame of the electron, the nucleus

with charge Ze is the “projectile.” The route of the

Bohr soft collision stopping power calculation is fol-

lowed; recall that only the component of the nuclear

electric field at the position of the electron perpendic-

ular to the trajectory need be calculated. This is given

by (7.37) except that z is replaced by Z. Thus, in this

reference frame, it is the nucleus passing a stationary

electron at an impact parameter b, speed v, and rela-

tivistic factor g. The energy transported per unit area

and unit frequency is given by the Poynting vector,

Pj j ¼ dI

dA do

¼
ffiffiffiffiffi
e0
m0

r
E?ðtÞj j2

(7.602)

Parseval’s theorem is invoked,

ð1
�1

dt E?ðtÞj j2 ¼
ð1

�1
do E? oð Þj j2

¼ 2

ð1
0

do E? oð Þj j2
(7.603)

where a real electric field, E?(�w) ¼ E?
*(w), has

been allowed for. As a result,

dI

dA do
¼ 2

ffiffiffiffiffi
e0
m0

r
E? oð Þj j2: (7.604)

The Fourier transform of the electric field compo-

nent is given by (7.90),

dI

dA do
¼ a�hc2

Zo
pg v2

� �2

K2
1

ob
gv

� �
: (7.605)

This is the electromagnetic energy per unit area and

per unit frequency incident to the electron in its refer-

ence frame, which represents a virtual photon that can

be scattered by the electron to create a bremsstrahlung
photon. It will be assumed that this scatter is through

the classical Thomson elastic process. The energy

spectrum in the electron rest frame is,

dI

do
¼ sTho

dI

dA do
: (7.606)

As the impact parameter will vary from a minimum

value to infinity, note the result of (7.605) in low- and

large-argument cases of the modified Bessel function,

dI

dA do
¼ a�hc2

Z

p vb

� �2

for
ob
gv

� 1 (7.607)

dI

dA do
¼ a�hc2

2p
Z2o
gbv3

e�2obgv for
ob
gv

	 1: (7.608)

The exponential cut-off of (7.608) allows a specifi-

cation of a minimum impact parameter. On the basis

of the cut-off, the maximum frequency can be approxi-

mated by omax � gc=b. As the scatter (in the elec-

tron’s reference frame) is nonrelativistic, �ho � me,

then gc=b � me=�h leading to a minimum impact

parameter,

bmin ¼ g�hc
me

(7.609)

The power spectrum is then transformed to the

laboratory reference frame in which the nucleus is at

rest and the electron has a relativistic speed bc. The
spectrum is the ratio of the energy to frequency and

remains invariant as, for photons, the frequency and

energy remain equivalent to within a factor of �h. Using
the Doppler relativistic shift, the frequency in the

laboratory frame is o0 � go. Averaging over scatter

angle (allowing for the isotropy of Thomson scatter)

and approximating b � 1, the energy spectrum in the

laboratory reference frame is,

dI0

do0 ¼ sTho a�hc2
Zo0

pg2c2

� �2

K2
1

o0b
g2c

� �
(7.610)

Following the mechanics of the derivation of the

Bohr soft collision stopping power, the bremsstrah-

lung differential cross section in photon energy is,

ds
dk

¼ 2p
�hk

ð1
bmin

db b
dI0

do0

¼ 2asTho

p
Z2

k

ð1
xmin

dx xK2
1ðxÞ

(7.611)

where xmin ¼ o0bmin=g2c. This integral is solved for

using the properties of the derivatives of the modified

Bessel functions (as used in the Bohr soft collision
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stopping power derivation) and recalling the exponen-

tial cutoff of (7.608), the Weizsäcker–Williams

bremsstrahlung spectrum is thus of the form,

ds
dk

� 2asTho

p
Z2

k
ln

1:223gme

k

� �
� 1

2

� �
(7.612)

It is immediately evident that this cross section will

diverge as k ! 1. This corresponds to the impact

parameter b ! 0, but this divergence is not achieved

as the screening of the nucleus by atomic electrons,

thus reducing its effective charge seen by the electron,

has been ignored in this derivation.

7.6.3 Quantum Electron-Nuclear
Bremmstrahlung: Bethe–Heitler
Theory

7.6.3.1 Introduction

As the Bethe–Heitler theory of bremsstrahlung is

based upon the Born approximation, the extent of its

validity will be defined by limits of this approxima-

tion. Refinements and further extensions of the theory

are necessary in order to extend beyond these restric-

tions. The Bethe–Heitler theory was the first relativis-

tic quantum description of bremsstrahlung and, whilst

being cognizant of its limitations, it is presented here

because of its historical importance and the experience

gained in the use of the Born approximation through-

out this book. Advanced approaches to providing more

accurate calculations bremsstrahlung cross sections

can be found in Haug and Nakel (2004).

7.6.3.2 Derivation of the Triple Differential

Cross Section

Interaction

The interaction to be calculated for is shown by the

Feynman diagrams of Fig. 7.43.

An electron with momentum p and total energy E is

incident to an infinitely-massive point charge Ze,

which approximates the nucleus. In the first diagram,

the electron interacts with the static field to reach a

momentum of k þ p0 and then interacts with the radi-

ation field to emit a photon of energy k and momentum

k and exit the interaction with momentum p0 and total

energy E0. In the second diagram, the electron first

interacts with the radiation field to emit the photon of

energy k and momentum k and reduce its momentum to

p0– k0 before interacting with the static field and exit the
interaction with momentum p and total energy E. The

aim is to calculate the differential cross section in

photon energy k, solid angle Op0 of the scattered elec-

tron and solid angle Ok of the emitted photon. Heitler

(1984) and Bjorken and Drell (1964) derive this cross

section by separately accounting for the interactions

with the radiation field and with the Coulomb field of

the scattering center, the former using Fermi’s Golden

Rule No. 1 and the latter using S-matrix theory and the

Feynman propagator. Haug and Nakel (2004) instead

treat the interaction with the radiation field as the per-

turbation, to first order, and then correct the wavefunc-

tions of the incident and scattered electrons for the

effects of the Coulomb potential of the scattering cen-

ter. In order to maintain some consistency with the

previous derivations of the Klein–Nishina and elastic

Coulomb scatter cross sections, the derivation of the

Bethe–Heitler theory will follow the Bjorken and Drell

S-matrix approach using Feynman propagators. The

triple differential cross section is the ratio of the transi-

tion rate and the incident electron flux,

d3s ¼ lfi
f

: (7.613)

k, k

k, k

p-k-p¢

k+p¢-p

k+p¢

p-k

p, E

p, E

Ze

Ze

p¢, E′

p¢, E′

Fig. 7.43 Feynman diagrams for electron-nuclear brems-
strahlung
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The transition rate is,

lfi ¼ Sfij j2
T

rf (7.614)

where T is the time duration of the interaction. The

incident electron flux is,

f ¼ bc
L3

¼ pc

EL3

(7.615)

where L3 is the usual volume used for normalization

and rf is the phase space factor, which is next calcu-

lated for.

Phase–Space Factor

The geometry of the bremsstrahlung process is shown

in Fig. 7.44. The density of final states,

rf dT
0 ¼ L

2p�hc

� �6

d3p0 d3k (7.616)

where T0 is the scattered electron’s kinetic energy.

Expanding,

rf dT
0 ¼ L

2p�hc

� �6

p02 dp0 dOp0 k
2 dk dOk

¼ L

2p�hc

� �6

p0 E0 dT0 dOp0 k
2 dk dOk:

(7.617)

The density of final states is,

rf ¼
L

2p�hc

� �6

p0 E0 k2 dk dOkdOp0 : (7.618)

S-Matrix Calculation

For the graphs of Fig. 7.43, the S-matrix element is,

Sfi ¼ e2
ð
d4r d4r �cf r; p

0ð Þ��i 6A r; kð Þi SF r � rð Þ
� �ig0
	 


ACoul
0 rð Þ þ �ig0

	 

ACoul

0 rð Þi SF r � rð Þ
� i 6A r; kð Þ�ci r; pð Þ:

(7.619)

The constituents of the integrand require detailed

introduction. The two components within the curly

brackets correspond to the two Feynman diagrams of

Fig. 7.43. Because of the existence of two graphs and

two vertices in each, for clarity, a four-dimensional

description is used rather than that for which spatial

and temporal variables are explicit. The initial and

final electron wavefunctions are,

ci r; pð Þ ¼
ffiffiffiffiffiffiffiffi
me

EL3

r
u p; sð Þeip�r (7.620)

cf r; p
0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffi
me

E0 L3

r
u p0; s0ð Þeir�r0 (7.621)

where

r � p � r � p
�hc

� Et
�h

(7.622)

and

r � p0 � r � p0
�hc

� E0t
�h
: (7.623)

The four-vector potential of the photon with four-

vector momentum km and 4-component polarization

em is,

6A r; kð Þ ¼ 6effiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ke0L3

p e�ik�r þ e�ik�r	 

: (7.624)

The Coulomb interaction between the projectile

electron and the nucleus is,

ACoul
0 rð Þ ¼ � Ze

4pe0 rj j : (7.625)

k,kPhoton Scattered
Electron

Incident
Electron

p, E

p¢,E,¢

p¢,k plane

p,
k p

lan
e j

dΩk

dΩp′

qp

qp′

Fig. 7.44 Geometry of the bremsstrahlung process. The inter-

action occurs at the origin and angles are specified by the

direction of the emitted photon
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The Feynman relativistic propagator describes the

electron between the two vertices and is derived by

Bjorken and Drell (1964),

SF r � rð Þ ¼ lim

e ! 0þ
1

2pð Þ4

�
ð
d4p

e�ip� r�rð Þ

p2 �m2
e þ ie

� 6pþme1ð Þ (7.626)

where 1 is the 4 � 4 unity matrix and, following the

integrations, the S-matrix is,

Sfi ¼ � meZe
3

2e0L3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e0kEE0 L3

p d E0þk�E
�h

	 

qj j2 �u p0; s0ð Þ

� �i6 eð Þ i

6 p0 þ 6 k�me1
�ig0ð Þ

�

þ �ig0ð Þ i

6 p0� 6 k�me1
�i6eð Þ

�
u p; sð Þ

(7.627)

where q ¼ p0 þ k� p. This result can be simplified in

the soft photon limit (i.e., k!0). Consider the quan-

tities in the curly brackets. For example,

1

6 p0þ 6 k�me1
¼ 6 p0 þ 6 k�me1

6 p0 þ 6 kð Þ2 �m2
e1

ffi 6 p0 þ 6 k�me1

26 p06 k :

(7.628)

Applying this (and that for the other term in the

curly brackets), after considerable algebra,

�u p0; s0ð Þ �i6 eð Þ i

6p0þ 6k�me1
�ig0ð Þþ

�
�ig0ð Þ

� i

6p0� 6 k�me1
�i6 eð Þ

�
u p; sð Þ

ffi �i�u p0; s0ð Þg0 u p; sð Þ «̂ � p0
k � p0 þ

«̂ � p
k � p

� �
:

(7.629)

Thus, the squared magnitude of the S-matrix is,

Sfij j2¼ m2
eZ

2e6

8pL6kEE0e30

T

qj j4d
E0þk�E

h�

� �

� �u p0;s0ð Þg0 u p;sð Þj j2 «̂�p0
k�p0þ

«̂�p
k�p

� �2
(7.630)

Triple Differential Cross Section in the Soft

Photon Limit

Combining the above and performing the usual aver-

aging and summing over electron spins and photon

polarizations, the bremsstrahlung triple differential

cross section is,

d3s
dk dOk dOp0

¼ a
Zr0me

2p

� �2
p0

kpq4

� �
� F p; p0; k; yp; yp0 ;j
	 
 (7.631)

where

F p;p0;k;yp;yp0 ;j
	 
¼ 4E02� q2

� �
p2 sin2 yp

E� pcosyp
	 
2

þ 4E2� q2ð Þp02 sin2 yp0
E0 � p0 cosyp0
	 
2

� 4EE0 � q2þ 2k2
	 


� 2pp0 sinyp sinyp0 cosj
E� pcosyp
	 


E0 � p0 cosyp0
	 


þ
2k2 p2sin2ypþ p02sin2yp0
� �

E� pcosyp
	 


E0 � p0 cosyp0
	 
 :

(7.632)

In parallel to the soft photon limit, one applies

the nonrelativistic limit in order to simplify

F p; p0; k; yp; yp0 ;j
	 


by neglecting those terms with

k, p and p relative to me and approximating E � me

and E0 � me to give,

F p;p0;k;yp;yp0 ;j
	 

� 4 p2 sin2ypþ p02 sin2yp0 � 2pp0 sinyp sinyp0 cosj
� �

:

(7.633)

The final expression for the Bethe–Heitler brems-

strahlung triple differential cross section in this limit is,

d3s
dk dOk dOp0

¼ a
Zr0me

p

� �2
p0

kpq4

� �

�
�
p2sin2 yp þ p02sin2 yp0

�2pp0 sin yp sin yp0 cosj
�

ð7:634Þ:
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It will be noted that this result predicts a 1=k

dependence of the cross section – the cross section

diverges for low photon energies, a result termed the

“infrared catastrophe.” Bjorken and Drell note that an

experimental device detecting the inelastically-scat-

tered electrons for k ¼ 0 will also detect elastically

scattered electrons and that additional radiative cor-

rections to the elastic scattering cross section (so that

the contributions of bremsstrahlung and elastic scatter

are both considered to the same order of e) will exactly

cancel this 1=k factor. Heitler also notes this correc-

tion arising from consideration of higher orders of the

calculation.

Bethe–Heitler Bremsstrahlung Differential

Cross Section in Photon Energy

The differential cross section in photon energy alone is

obtained by integrating the triple differential cross

section over the two solid angles. Whilst a straightfor-

ward procedure, it is tedious and only the result is

presented here,

ds
dk

¼ a
Zr0ð Þ2
k

p0

p

� �
4

3
� 2EE0 p2 þ p02

p2p02

 !
þ km2

eE
0

p3

(

þ k0m2
eE

p03
� kk0m2

e

pp0
þ K

8EE0

3pp0

�
þ k2

E2E02 þ p2p02

p3p03

 !

þ k

2pp0
k
EE0 þ p2

p3
� k0

EE0 þ p02

p03
þ

 
2kEE0

p2p02

���

(7.635)

where

k ¼ 2 ln
Eþ p

me

� �
(7.636)

k0 ¼ 2 ln
E0 þ p0

me

� �
(7.637)

K ¼ 2 ln
EE0 þ pp0 �m2

e

mek

� �
: (7.638)

In the nonrelativistic limit, this becomes,

ds
dk

¼ a
Zr0ð Þ2
k

8

3
ln

ffiffiffi
T

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
T� k

p	 
2
ek

 !
: (7.639)

Screening Effects

The above Bethe–Heitler result for electron-nucleus

bremsstrahlung neglected the reduction in the nuclear

Coulomb potential experienced by the electron due to

the screening by atomic electrons. This can be

accounted for by changing the Coulomb potential

into a Yukawa type,

AYuk
0 rð Þ ¼ � Ze

4pe0 rj j
� �

e�lr (7.640)

and repeating the calculation. This introduces a (1�F

(q; Z)) multiplicative factor into the expressions for

the differential cross section, where F(q; Z) is the

atomic form factor.

Deviations from the Born Approximation

From Chap. 2, the Born approximation used by the

Bethe–Heitler calculation is valid only if the inequal-

ities aZ=bð Þ � 1 and aZ=b0ð Þ � 1 where b and b are

the electron speeds (normalized to the speed of light)

before and after the interaction, respectively, are met.

Hence, the result is valid only for low-Z media or

relativistic electrons. At low electron energies, it is

invalid to approximate the electron wavefunctions by

plane waves and Coulomb distortion must be

accounted for. An approximate solution to this

dilemma is to multiply the differential cross sections

by the Elwert factor,

FElw ¼ b
b0

� �
1� e�2p aZ=bð Þ

1� e�2p aZ=b0ð Þ (7.641)

7.6.3.3 Further Considerations

The derivations of the Bethe–Heitler bremsstrahlung

theory are limited by the restrictions just noted, which

are particular to the low electron energies of interest to

nuclear medicine. At these energies, the assumption of

a plane wave for the electron wavefunction is not

entirely valid as it neglects the distortion induced by

the nuclear Coulomb field. It has been estimated that,

in the electron kinetic energy range of 200 keV to
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1 MeV (of most interest to nuclear medicine), the

Bethe–Heitler calculation agrees with experiment to

within �20% (Morgan 1970).

7.6.4 Electron–Electron Bremsstrahlung

Earlier, in the discussion of classical bremsstrahlung,
arguments were provided to show that electron–elec-

tron bremsstrahlung could be neglected at low ener-

gies, certainly within the classical framework.

However, electron–electron bremsstrahlung is not an

entirely negligible process. There are two significant

differences between the electron-nucleus and elec-

tron–electron bremsstrahlung interactions. First, the

recoil of the target body cannot be neglected and,

second, exchange effects must be allowed for. Cross

sections for electron–electron bremsstrahlung are

derived in Haug and Nakel (2004); they show that

8 Feynman diagrams contribute to the calculation of

the S-matrix element, rather than 2 for electron-

nucleus bremsstrahlung. Hence, we will not pursue a

derivation of the cross section and the interested reader

is referred to that book.

It is convenient (ICRU 1984) to use dimension-

less radiative energy-loss cross sections for both

electron-nuclear and electron–electron bremsstrah-

lung for an incident electron with total energy, E,

frad;n ¼
1

ar20Z2

ðE�me

0

dk
k

E

dsn

dk
(7.642)

frad;e ¼
1

ar20

ðE�me

0

dk
k

E

dse

dk
(7.643)

The ratio, frad;e=frad;n, has a value of about 0.5 at

electron kinetic energies of 700 keV and vanishes at

low kinetic energies.

7.6.5 Positron-Nucleus Bremsstrahlung

Positrons are repelled by the nucleus and attracted to

the atomic electrons; hence, the positron bremsstrah-

lung cross section will differ from that of the electron,

primarily at low kinetic energies where it is signifi-

cantly less. ICRU Publication 37 summarizes calcula-

tions of the positron bremsstrahlung cross section and

notes that a universal curve can be derived of the ratio

of the dimensionless cross sections for positron to

electron radiative losses, fþ
rad;n=f

�
rad;n, as a function

of the variable ln T=Z2, where T is the electron/

positron kinetic energy and Z is the atomic number

of the medium, exists. Figure 7.45 presents the ratio of

the positron radiative cross section to that for the

electron as a function of kinetic energy for carbon.

Electron / Positron Kinetic Energy (MeV)

0
1 100.110−210−310−410−510−6

0.25

0.5

0.75

1

f 
− ra

d
,n

f 
+ ra

d
,n

Carbon

Fig. 7.45 The ratio of the

positron to electron-nuclear

bremsstrahlung cross section

in carbon as a function of

kinetic energy. Curve drawn

from a calculation using

tabulated data in ICRU

Publication 37 (1984)
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7.6.6 Mass Radiative Stopping Power
for Electrons

Having calculated differential cross sections for elec-

tron-nuclear bremsstrahlung, we next evaluate the

radiative stopping power. As with energy transfer as

a result of collisions with atomic electrons, we can

define the probability that an incident electron with

kinetic energy T will emit a photon with an energy

between k and k þ dk is,

FRad T; kð Þdk ¼ 4a r20
NAZ

2

A

� �
F T; k;Zð Þ dk

k
(7.644)

where F(E, k; Z) is a function accounting for the

screening of the nucleus by the atomic electrons.

The extent of screening is defined by the dimension-

less parameter,

z ¼ 100
me

Tþme

� � k
Tþme

� �
1� k

Tþme

� �
0
@

1
AZ�1=3: (7.645)

The degree of screening by the atomic electrons is an

inverse function of z. That is, z ¼ 0may be described as

“complete screening” and that of z 	 1 as “no screen-

ing.” Note that for a given photon energy k, z will

decrease (i.e., screening increases) as the incident elec-

tron energy increases (kmax ¼ T). For large T, the func-

tion F(T, k; Z) has the following forms for different

values of z. For total screening, z ¼ 0,

F T; k;Zð Þ ¼
 
1þ 1� k

Tþme

� �2

� 2

3
1� k

Tþme

� �!2

ln 183 Z�1=3

þ 1

9
1� k

me

� �
:

(7.646)

For no screening (large z),

F T; k; Zð Þ¼ 1þ 1� k

Tþme

� �2

�2

3
1� k

Tþme

� � !2

� ln
2 Tþmeð Þ

me

1� k

Tþme

� �
k

Tþme

� � �1

2

0
BB@

1
CCA:

(7.647)

The mass radiative stopping power for an electron

with kinetic energy T is,

dE

r dxRad
¼ � 1

r

ðTe

0

dk kFRad T; kð Þ (7.648)

where, again, a negative sign is used to indicate that

energy is lost by the particle. From the above expres-

sions, one can write the mass collision stopping power

as,

dE

r dxRad
¼ �4a r20

NAZ
2

A

� �
Tþmeð Þ

� ln
2 Tþmeð Þ

me

� 1

3

� �

for me � Tþme � me

a
Z�1=3

(7.649)

or as,

dE

r dxRad
¼ �4a r20

NAZ
2

A

� �
T ln 183Z�1=3

� �
þ 1

18

� �

for
me

a
Z�1=3 � Tþme: (7.650)

The mass radiative stopping powers calculated for

electrons in carbon and lead are shown as functions of

electron kinetic energy in Fig. 7.46. Comparing Fig-

ures 7.15 and 7.46, it can be seen that, for a given

electron energy, the mass radiative stopping power

of lead exceeds that of carbon (due to the Z2=A multi-

plicative factor), whereas the mass collision stopping

power of carbon exceeds that of lead (as the multipli-

cative factor in that case is only Z=A). For the electron

energies of interest to nuclear medicine in a low-Z

medium such as tissue, the mass radiative stopping

power is of the order of about 0.1% of the mass

collision stopping power. This indicates the challenge

of using bremsstrahlung to image the biodistribution

of a b-emitting therapeutic radiopharmaceutical, as

discussed later in this book. For electron energies

below about 1 MeV, the lead and carbon mass radia-

tive stopping powers slowly increase with energy, but

after this energy they increase with energy in almost

constant proportion.
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7.6.7 Radiation Length

A comparison of Figs. 7.15 and 7.46 demonstrates that

the energy loss of an electron slowing down in a

medium is predominantly through bremsstrahlung at

high electron kinetic energies, me

a Z�1=3 � Tþme.

Hence, (7.650) would provide a reasonable expression

for the total energy loss rate at these electron kinetic

energies. If this equation were rewritten as the ratio of

the incident electron energy to a length (given in

centimeter/gram), the result is,

dE

r dxRad
¼ �4a r20

NAZ
2

A

� �
T ln 183Z�1=3

� �
þ 1

18

� �

� � T

X0

����
����: (7:651Þ

This length, X0, is defined as the radiation length,

with its reciprocal given by,

1

X0

¼ 4a r20
NAZ

2

A

� �

� ln 183Z�1=3
� �

þ 1

18

� �
: (7.652)

It is a constant for a given material.

7.7 Collision and Radiative Stopping
Powers: A Summary

Figure 7.47 shows the collision and radiative mass

stopping powers for electrons in carbon and lead

along with their sum (total mass stopping power).

While the overall morphological features of the

two graphs are similar, there are distinctive differ-

ences. The most important is the difference between

the collision and radiative stopping powers. For

carbon, an element representative of soft tissue, elec-

tron energy losses through bremsstrahlung exceed

those through collision for kinetic energies above

about 100 MeV; the energy threshold is much lower

for lead at about 10 MeV. This is characterized by

the bremsstrahlung efficiency or radiation yield.29 In

theapproximation that the energy loss of the electron

in the medium is continuous as it slows down
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Fig. 7.46 Mass radiative

stopping powers for electrons
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29There is also a radiation yield calculation associated with

positrons, although this is not considered here. Customarily,

the in-flight e�e+ ! 2g is excluded from the calculation of the

positron radiation yield.
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(the CSDA), this is, for an electron with initial kinetic

energy,

YðTÞ ¼ 1

T

ðT
0

dT0 dE=dxð ÞRad
dE=dxð ÞCol þ dE=dxð ÞRad

: (7.653)

Recall the fundamental features of the collision and

radiative mass stopping powers: the former increases

with Z and increases logarithmically with electron

energy whereas the latter increases with Z2 and

increases linearly with energy. As a result, the radiation

yield Y(T) will increase with electron energy and the

atomic number of the medium (Fig. 7.48).

Throughout the above derivations, graphical exam-

ples of stopping powers have been provided for carbon

and lead elemental media in order to display the two

extremes of atomic number dependencies (carbon can

0.01
0.1

1

10

100

0.1 1 10
Electron Kinetic Energy (MeV)

100 1000

Radiative

Collision

Total

Carbon

d
E

rd
x

M
eV

 c
m

2

g

d
E

rd
x

M
eV

 c
m

2

g

0.01
0.1

1

10

100

0.1 1 10
Electron Kinetic Energy (MeV)

100 1000

Lead

Total

Collision

Radiative

a

b

( 
   

   
   

  )
( 

   
   

   
  )

Fig. 7.47 Mass collision,

radiative, and total stopping

powers for electrons in carbon

and lead

7.7 Collision and Radiative Stopping Powers: A Summary 315



also be representative of tissue when normalized to

physical density). To calculate stopping powers for

compound media (such as soft tissue), Bragg’s addi-

tivity rule is frequently applied. Bragg’s additivity rule

is an approximation in which the stopping power of a

compound is given by the mass-weighted sum of the

stopping powers of the atomic constituents,

dE

r dx
¼
X
i

wi

dE

r dx

����
i

(7.654)

where wi is the fraction by weight of the element.

7.8 Range of Charged Particles

7.8.1 Introduction

The range of a charged particle slowing down in a

medium is, at the simplest level, the depth of penetra-

tion until its kinetic energy reaches thermal levels.

However, we must recall that energy transfer to the

medium is a stochastic process and, hence, the range is

the expectation value of the pathlength that the particle

follows until it is thermalized. The projected range is

defined as the effects of multiple scattering must also

be considered, especially with electron and positron

projectiles. This quantity is the expectation value of

the greatest penetration of the particle in the medium.

A graphical comparison of the range and the projected

range is provided in Fig. 7.49.

7.8.2 Continuous Slowing-Down
Approximation (CSDA) Range

The CSDA range (Berger and Seltzer 1983; ICRU

1984) is similar to the concept of the pathlength

described above, but neglects the effects of multiple

scatter and assumes a straight-line trajectory for a

particle with an initial kinetic energy T,

<CSDA ¼
ðT
0

dE

dE=dxjTotal
(7.655)

where the total stopping power is the sum of

the collision and radiative stopping powers. As

dE=dxjTotal is the expectation value of the rate of

energy loss, <CSDA represents an expectation value

of the particle’s range. For the materials and energy

ranges of interest to nuclear medicine, the radiative

energy loss contribution can usually be ignored. As the

stopping power is relatively constant in the minimally-

ionizing region and has a b�2 dependence at lower

energies, a charged particle penetrating a medium will

lose energy at near a constant rate with depth until, as
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it slows down beyond the minimally-ionizing region,

it loses its energy at ever-an increasing rate until it has

thermalized. Figure 7.50 shows the curve of relative

energy deposition as a function of depth for a heavy

charged particle, such as an a particle, where multiple

scattering can be neglected and the particle travels

very nearly along a straight line. Only near the end

of its range does the relative energy loss increase from

its near continuous value; this rapid increase is known

as the “Bragg” peak.

Recall that, for a projectile of charge ze in a

medium with atomic number Z and atomic mass num-

ber A, the collision stopping power is proportional to

zZ=bAð Þ2. Hence, for a given projectile and kinetic

energy, the CSDA range, in gram per square centimeter,

will be proportional to A=Zð Þ2. Because of the charge
and mass dependencies of the stopping power, it is

possible to estimate the CSDA range in a medium of

a particle of rest mass m2 and charge z2e knowing

the CSDA range of a particle of rest mass m1 and

charge z1e,

<CSDA;2 ¼ m1

m2

z1

z2

� �2

<CSDA;1 (7.656)

The CSDA ranges of electrons and positrons will

differ due to the former’s use of the Møller cross

section and the latter’s use of the Bhabha cross section.

As the collision stopping powers differ, the electron

range in a medium is greater than that of a positron

at lower energies and approximately equalizes at

high energies Fig. 7.51 shows the CSDA range of

electrons and positrons in carbon and lead as a

function of kinetic energy in the range of interest to

nuclear medicine applications. As shown, due to the

A=Zð Þ2 dependence, the range (in gram per square

centimeter) is greater in lead than in carbon; the posi-

tron range is slightly less than that of the electron for

both media and equalizes, and slightly exceeds, at

higher kinetic energies.

As electrons and positrons are also subject to mul-

tiple scatter (which will be significant due to their

relatively low rest masses), the <CSDA will be an

approximation only of the actual range of these parti-

cles. As the spatial resolution of PET imaging will be

limited by the distance between the emission of the

positron and its annihilation, an evaluation of the

positron range is of particular practical importance in

nuclear medicine. It is most efficiently done within a

Monte Carlo calculation which incorporates the sto-

chastic nature of the electromagnetic interactions

between the positron and the medium. Examples can

be found in the papers by Levin and Hoffman (1997)

and Champion and Le Loirec (2007).

7.8.3 Projected Range

The projected range �t is the maximum perpendicular

penetration of the charged aprticle into the medium

and is defined as,

�t ¼
ð1
0

dt t
dN

dt
ðtÞ

����
���� (7.657)

Projected
Range

p

Fig. 7.49 A charged particle enters a medium from the left.

The range (the expectation value of the pathlength p between

the point where the particle enters the medium and where it is

thermalized) can be tortuous, depending upon multiple scatter-

ing of the particle. The projected range is the depth of maximum

penetration into the medium
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Fig. 7.50 Energy loss (deposition) as a function of depth for a
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where dN=dtðtÞ is the rate at which particles are

stopped per unit depth and which is normalized to,

ð1
0

dt
dN

dt
ðtÞ

����
���� ¼ 1: (7.658)

The absolute value sign is a formality as the rate is

negative due to the loss of particles as they stop.

7.8.4 Range Straggling

Both the CSDA and projected means of calculating the

range of a charged particle penetrating a medium are

expectation values of an assumed continuous energy

losses of the charged particles. However, as demon-

strated in Sect. 7.4, energy loss is stochastic and is

described by a probability distribution function. As the

range is inversely proportional to the stopping power

and is also affected by multiple scatter (predominantly

in the case of electrons and positrons), the range of a

charged particle is also a stochastic quantity. Range

straggling is a consequence of the energy loss pdf

only.

7.9 Positron–Electron Annihilation

7.9.1 Introduction

The interactions of positrons with atomic electrons

resulting in their annihilation and the production of

photons are now considered. In terms of internal radi-

ation dosimetry, the annihilation has a limited effect as

the result is high-energy (511 keV) g-ray pairs or

triplets. The process is, of course, fundamental to

PET imaging. Whereas a moving electron or a-particle
will slow down to thermal equilibrium, a positron will

eventually annihilate with an electron in the medium,

either whilst in-flight or following thermalization. One

can consider the annihilation process to be the oppo-

site of electron–positron pair production and, using the

hole theory, treat positron annihilation as the transition

of an ordinary electron from a positive energy state to

a negative energy state with the emission of quanta

with a combined energy �2me (the inequality

accounts for the contributions of any incoming kinetic

energy), as shown in Fig. 7.52.

The annihilation processes results in the production

of one or more g rays in order to conserve energy and

momentum; in fact up to three photons can be emitted.
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For example, a single g ray can result from the posi-

tron annihilation on a bound atomic electron such that

the recoil nucleus is available for momentum conser-

vation; g-ray pairs are created when the positron anni-

hilates with a free electron or is initially bound in the

singlet 1S0 state of positronium and g ray triplets can

be produced if the electron and positron are initially

bound in the triplet 3S1 state of positronium.

Figure 7.53 shows the Feynman diagrams for posi-

tron–electron pair annihilation. A comparison of these

graphs with those of incoherent scatter in Chap. 6

show that they are the same if turned on their sides,

allowing a similarity in the calculation of the cross

section.

7.9.2 Annihilation Probabilities and
Cross Sections

7.9.2.1 General Features

It is possible to generate estimations of the positron

lifetime following emission from b decay and its anni-

hilation in-flight within the medium. The probability

of positron annihilation per unit length should obvi-

ously be proportional to the electron density of the

medium,

dFann

dx
¼ s

NAZ

A

� �
r (7.659)

where the constant of proportionality, s, is the annihi-
lation cross section. The probability of annihilation per

unit time is,

dFann

dt
¼ s

NAZ

A

� �
r b c: (7.660)

By crudely approximating the cross section by

s � pr20, the probability of positron annihilation per

unit length can be estimated to be 0.15 and 0.67/cm in

carbon and lead, respectively. For relativistic positrons

(b � 1), the estimated probability of in-flight annihi-

lation per unit time is 4.5 � 109/s and 2 � 1010/s for

the same respective elements, corresponding to posi-

tron lifetimes of 220 and 50 ps.

These, of course, are relevant only for in-flight anni-

hilation. The positron, like any other charged particle,

transfers kinetic energy to the medium as it slows down

to eventually thermalize to annihilate or to form a bound

system with a free electron known as positronium. This

k1 k2

k1 k2

p−

p−

p− − k1

p− − k2

−p+

−p+

Fig. 7.53 Feynman diagrams for positron–electron annihilation
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Energy
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Radiation

Hole

−me

me

Fig. 7.52 Positron–electron annihilation described by hole the-

ory. A positive energy electron falls into a negative energy hole

with the result of radiation being emitted. This radiation will be

in the form of two or more photons
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state has a finite lifetime. Due to the intrinsic spin-1/2 of

the electron and positron, positronium can exist in either

a singlet (1S0) or triplet (
3S1) state. In order to maintain

parity conservation, singlet positronium (parapositro-

nium) will decay into two photons and triplet positro-

nium (orthopositronium) will decay into three photons.

7.9.2.2 Positron Annihilation on a Bound

Atomic Electron

Positron annihilation on a bound atomic electron can

result in the emission of a single electron as the recoil

nucleus is available to take up momentum and kinetic

energy. The nonrelativistic calculation of this positron

annihilation cross section is easily obtained from the

nonrelativistic photoelectric absorption cross section

for a K-shell electron,

sPE ¼ sTho 4
ffiffiffi
2

p� �
a4 Z5 me

k

� �7
2

for a photon of energy k absorbed by K-shell electron

in an atomic of atomic number Z. In the positron

annihilation case, we consider from Dirac hole theory

that the atomic electron following annihilation transits

to a state of negative energy and momentum –p, where

þp is the three-vector momentum of the incident

positron. Following annihilation, a single photon of

energy,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ p2
q

þme � EB (7.661)

where EB is the electron binding energy. The recoil

kinetic energy of the atom is neglected. The phase

space factor for the photoelectric absorption case,

L=2p�hcð Þ3mepe dO, is replaced by that for the positron
annihilation, L=2p�hcð Þ3k2 dO. The energy of the inci-

dent photon in the photoelectric absorption case is

replaced by the sum of the total energy of the incident

positron and the electron/positron rest mass

k ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

e

p þme � 2me, where the nonrelativis-

tic case has been assumed in the last step. Inserting this

into the me=kð Þ7=2 factor leads to me=kð Þ7=2 � 1=8
ffiffiffi
2

p
.

Combining this and the p=me multiplicative factor

arising from the change in phase space expressions

gives the total cross section (in the nonrelativistic

limit) for the annihilation of a positron with momentum

p in a medium of atomic number Z on a bound atomic

electron leading to a single emitted photon as,

s1g;K ¼ sTho

2
a4Z5 p

me

(7.662)

As with photoelectric absorption, this result dis-

plays a Z5 dependence indicating that it will only be

of importance with high-Z media and of limited con-

cern to nuclear medicine dosimetry.

The extreme relativistic form of (7.662) and the

more general form can be found in Heitler (1984).

7.9.2.3 Positron Annihilation on a Free Electron

The Feynman diagrams of Compton scatter and posi-

tron annihilation on a free electron are very similarly

in their architecture and, consequently, the calcula-

tional procedures of both map closely to each other.

Using 4-vectors, the S-matrix element for a positron

annihilating with a free electron is, from Bjorken and

Drell (1964),

Sfi ¼ � 2pð Þ4 mee
2

e0L6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e0k1k2EþE�

p d k1 þ k2 � pþ � p�
	 


� �v pþ; sþ
	 
� �i6e2ð Þ i

6p� � 6k1 �me1
�i6e1ð Þ

�

þ �i6e1ð Þ i

6p� � 6k2 �me1
�i6e2ð Þ

�
u p�; s�ð Þ:

(7.663)

This expression satisfies Bose–Einstein statistics by

being symmetric under the exchange of the two

photons. A long and tedious calculation is avoided in

presenting the total cross section for a positron of

kinetic energy T+ annihilating with an electron at rest

to produce two photons (refer to Bjorken and Drell

(1964) and Heitler (1984) for details),

s2g ¼ pr20
gþ 1

� �
g2 þ 4gþ 1

g2 � 1

� �

� ln gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p� �
� gþ 3ffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � 1
p � (7.664)

where g ¼ Tþ þmeð Þme. This result predicts a

diverging cross section at low energies (g ! 1)
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which is a consequence of the use of plane waves to

describe the electron and positron wavefunctions (the

calculation is performed in the center-of-mass system

and then Lorentz-transformed to the laboratory refer-

ence frame); Coulomb wavefunctions should be used

at such energies.

Figure 7.54 shows the positron annihilation cross

sections per atom for one- and two-photon processes

in carbon and lead as functions of the positron kinetic

energy. The two-photon annihilation process cross

section decreases exponentially with positron energy,

thus showing that in-flight annihilation is much less

probable than annihilation once the positron has slo-

wed down towards the end of its range. On the other

hand, the single-photon annihilation cross sections for

both carbon and lead show maxima at positron kinetic

energies of about 0.4 MeV. It is of particular interest to

compare the relative magnitudes of the cross sections.

The dual-photon annihilation cross sections of lead

and carbon differ only by the ratio of the number of

electrons available in each atom. On the other hand,

the Z5 dependence of the single-photon annihilation

cross section leads to the lead cross section being

about 5 � 105 times greater than that for carbon.

Hence, positron annihilation in low-Z media resulting

in a single photon final state is a negligible process,

which is not the case for high-Z media. As a means of

further comparison, Fig. 7.55 shows the ratio of the

single- to dual-photon cross sections for lead

expressed as a percentage and as a function of positron

kinetic energy. The largest value of the lead single-

photon annihilation cross section is about 17% of the

dual-photon cross section at a positron kinetic energy

of about 3 MeV.

The above results show that the probability of anni-

hilation in-flight for a fast positron is small with the

result that the positron slows down (thermalizes) and

is then annihilated nearly at rest. As the kinetic energy

of the positron will be non-zero, although small, and
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the atomic energy with which it annihilates has a

finite speed, the combined kinetic energies of the

two photons emitted will slightly exceed the value of

2me and will be emitted at an angle slightly different

than 180�.

7.9.3 Positronium

As positron annihilation occurs predominantly at low

positron energies, it is possible for the positron and an

electron to form positronium, an unstable bound state

similar to that of the hydrogen atom. Due to the

reduced mass, the positronium Bohr radius is 2r1.

The spins of the two leptons can couple to form a

singlet (1S0) state or a triplet (
3S1) state for antiparallel

and parallel spins, respectively. Positronium is unsta-

ble. From the conservation of angular momentum, the

singlet state of positronium produces two photons

whereas the triplet state produces three or more. The

density of electrons in (7.659), NAZ=Að Þr, is replaced
by the density of the electron, calculated from its

wavefunction,

c r ¼ 0ð Þj j2 ¼ 1

8pr31
: (7.665)

Equation (7.663) does not include the contribution

of the triplet decay. Hence, the probability per unit

time of 1S0 annihilation is, including a factor-of-four

to account for the combined spin directions of the

electron and positron,

dFann

dt
� 4pr20

1

8pr31

� �
c

� r20c

2r31

(7.666)

which is about 8 � 109/s. The probability per unit

time of the triplet state annihilation can be shown to

be about 1,110 times less. These estimates of positro-

nium lifetime are, of course, in vacuo. In a condensed

medium, the positron wavefunction can overlap those

of surrounding electrons sufficiently to increase the

annihilation rate.

The number of photons that the positronium can

decay to will depend upon the total angular momentum

of the bound system. This is a consequence of the

charge conjugation operator, C, which exchanges a

particle with its antiparticle. A system containing an

equal number of particles and antiparticles (which is,

by definition, electrically neutral) with total spin s and

orbital angular momentum number l is an eigenstate of

C with eigenvalue (�1)l+s. C has eigenvalues of þ1

and �1 for the singlet 1S0 and triplet 3S1 states of

positronium, respectively. As C exchanges the signs

of all electric charges, it will also change the direction

of the electric field E. For a single photon, this is

equivalent to C gj i ¼ gj i or, for an ensemble of n

photons, the eigenvalue of C is (�1)n. Hence, as the

eigenvalue of C is þ1 for the 1S0 state, the number of

photons resulting from the annihilation of the singlet

state must be even. The simplest case is n ¼ 2. Simi-

larly, as the eigenvalue of C is�1 for the 3S1 state, the

number of photons resulting from the annihilation of

the triplet state must be odd. As n ¼ 1 is not permissi-

ble by the conservations of momentum and energy,

then n ¼ 3.
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