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Abstract An unstable nucleus has excess energy and can make a transition to a more

stable state through a variety of means, each subject to quantum-mechanical and

energy restrictions. For diagnostic and therapeutic nuclear medicine, the transitions

of major interest are those in which an a particle, b particle (electron or positron), or

g ray are emitted. Subsidiary atomic radiations or processes (electron capture,

characteristic X-rays, internal conversion (IC) electrons, and Auger/Coster–Krönig

electrons) are consequences of nuclear transitions. This chapter looks at the three

nuclear decay schemes highlighted above. Quantum tunneling is derived and used to

explain the empirical characteristics of a decay. The Fermi theory of b decay will be

fundamental to understanding this type of transition and will be derived in order to

predict energy spectra and allowable/forbidden transitions. Within that development,

the weak interaction, which is fundamental to the existence of nuclear medicine,

is introduced. Electromagnetic transitions, resulting in the emission of g rays or IC

electrons, are introduced and the theory behind them developed.
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4.1 Introduction and History

The previous chapter described the characteristics that

make a given nucleus stable or unstable. Clearly, for

nuclear medicine purposes, one is interested in unsta-

ble or radioactive nuclei. The instability of a nucleus

can be manifest in a number of ways. For example, a

nucleus may be unstable to the emission of positrons

or electrons (b decay) due to its having excessive

numbers of protons or neutrons, respectively, for its

mass. This particular instability reflects an imbalance

between the Coulomb and symmetry terms of the

Weizsäcker formula for the binding energy. Should

the sum of the binding energies of two protons and

two neutrons in a nucleus be less than the binding

energy of the 4He nucleus (a particle), then that

nucleus is unstable to a decay, in which the a particle
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can “quantum tunnel” through the nuclear Coulomb

barrier and escape. Excited nuclei, which can be

thought of as having high angular momentum or with

nucleons excited to higher orbitals, can de-excite

through the emission of quanta (g decay) or by the

direct transfer of nuclear energy to an atomic electron,

a process known as internal conversion (IC). While

there are other exotic, but rarer, cases of decay such as

the spontaneous emission of a single proton or neutron

or, for particularly heavy nuclei, spontaneous fission,

the only radioactive decays of practical interest to

diagnostic and therapeutic nuclear medicine are those

of a, b and g decay, and IC.1

The study of radioactivity began with Becquerel’s

original serendipitous discovery in 1896 of the phenom-

enon, using photographic emulsion as the radiation

detector (Martins 1997). The stimulus for Becquerel’s

experimental work had been Röntgen’s observation of

the phosphorescence of some materials exposed to

X-rays and Becquerel sought to determine if phospho-

rescent substances emitted similar radiations. He

selected uranium as a suitable element for study due

to its atomic absorption and emission spectra and noted

that a uranium salt contained within an opaque covering

and accidentally placed upon a photographic emulsion

caused darkening of the emulsion due to radiations able

to penetrate the optical cover. Even around this time, it

had been noted that these radiations did not vary with

time (which we would now recognize as reflecting a

long half-life) and could ionize air. Shortly afterwards,

the Curies began investigating the radioactivity asso-

ciated with various minerals containing uranium and

thorium. In particular, they determined that pitchblende

was more radioactive than the chemical content of

uranium or thorium would have allowed. Hypothesiz-

ing that this was due to the presence of other, but

unknown, radioactive substances, the Curies chemically

isolated two radioactive elements from pitchblende

which they called polonium and radium. Although

present in pitchblende in just trace amounts, their

specific activities were some six orders-of-magnitude

greater than that of uranium.

At about the same time, Rutherford, whilst at

McGill University in Montréal, was also studying the

radiations emitted by uranium (Wilson 1983). He had

recognized that the photographic emulsion used by

Becquerel was an inefficient detector and noted, as

did the Curies, that the radiation-induced ionization

of air had a faster response than emulsion, could be

measured immediately and, moreover, could be easily

quantified. This change of detector type aided Ruther-

ford’s discovery of the emanation of two types of

radiation from samples of uranium compounds

(uranium metal, uranium nitrate, uranium oxide, and

uranium potassium sulfate) by measuring the changes

in the detected ionization caused by them following

their transmission through increasing thicknesses

of aluminium foil. The decrease in ionization with

increasing foil thickness was, at first, monotonic and

indicated simple absorption of the radiation. However,

the reduction in ionization with foil thickness eventu-

ally became limited until, when further foils were

added, the radiation intensity began to decrease more

rapidly again. Rutherford’s original transmission data

are shown in Fig. 4.1 in which the transmission of

the ionizing radiations from uranium oxide through

aluminium is plotted. The transmission of radiation

dropped rapidly with absorber thickness to about

20 mm of aluminium and then remained nearly con-

stant up to a thickness of 60 mm. This feature indicated

a readily absorbed radiation, termed a radiation by

Rutherford, and a more penetrating radiation, that he

termed b radiation.2 As will be seen in Chap. 7, the

shorter range of the a rays indicates that they are

strongly ionizing particles and are, in fact, absorbed

in only a few cm of air or a few mm of soft tissue.

The nature of the a radiation was next studied

through its magnetic deflection, which was first

achieved by Rutherford using a 0.6 T magnetic field.

This demonstrated that a radiation was massive, posi-

tively-charged particles. Further measurements of

electric charge and mass suggested that these were

doubly-ionized helium atoms (He++). This nature of

the a particle was finally confirmed by Rutherford and

Royds (Rutherford and Royds 1909) in an elegant and

simple experiment using an apparatus consisting of a

1There are other emissions often associated with radioactive

decay, such as characteristic X-rays and Auger electrons. These,

however, are due to relaxation processes following an excitation

of the atom and are more properly considered in Chap. 6.

2It is interesting to note that when he repeated the experiment

using thorium nitrate rather than uranium, Rutherford detected a

third, more penetrating type of radiation. Thus, it would seem

that this observation, now recognized to be of g radiation,

preceded the usually-credited discovery by Villard (Gerward

1999).
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volume of radon gas contained within a capillary tube

with thin walls and encapsulated within an evacuated

chamber. Radon is the radioactive daughter product of

the a decay of radium and the a particles emitted by it

came to rest within the thin wall. The He++ captured

electrons from within the wall to form neutral atoms of

helium gas which diffused through the wall into the

surrounding chamber. After a sufficient amount of

helium gas was formed, it was compressed and, via

an electric discharge, demonstrated the characteristic

emission spectrum that confirmed its nature.

Measurements by the Curies of the trajectories of

the b component through a magnetic field demon-

strated that it was made up of light, negatively-charged

particles and studies of the b particle trajectories in

combined magnetic and electric fields demonstrated

that it had a charge-to-mass ratio e=m equal to that of

the electron. The most elegant proof that the b particle

is indeed an electron was provided by the measure-

ments by Goldhaber and Scharff-Goldhaber (1948) of

slow b particles stopped within a lead target. A low

b particle energy was required to ensure that it did not

eject the K-shell electron and the Pauli exclusion prin-

ciple would, had b particles and electrons be the same,

forbid the capture of the b particle into the full L and K

shells. Had b particles and electrons been different,

the b particle would cascade through orbitals, emitting

X-rays, until it was eventually captured. The fact

that no characteristic X-rays were detected gave

unambiguous evidence of the identity of the b particle

as an electron. The nuclear, rather than atomic, origin

of the b particle is evident from its having a kinetic

energy of a couple of MeV or less and which, from the

uncertainty principle, DpDx � �hc=2 � 100MeV � fm
and the fact that the nuclear diameter is of the order of

a few fm. Nuclear b decay is the emission of a fast

electron (e�) or positron (e+) resulting in a daughter

nucleus with an atomic number of one greater or one

less than the parent, respectively.3 Associated with

these is the process of electron capture in which the

overlap of the wavefunctions of an atomic electron and

a nuclear proton result in the capture of the electron by

the proton leading to a daughter nucleus with an

atomic number of one less than the parent. As such,

these transitions occur between isobars and a chain

of b decays will follow the mass parabola. Electron

capture is a process related to b decay in which an

atomic electron is “captured” by a nuclear proton to

decrease the atomic number of the nucleus by one.

As noted earlier, the emission of g-rays in nuclear

decay was probably first detected from thorium by

Rutherford in about 1898 but has not been greatly

recognized historically as such. Villard is customarily
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Fig. 4.1 Plot of Rutherford’s

original measurements of the

ionization from uranium oxide

following absorption by

aluminium. Data points are the

original data; the line is

provided for guidance

3While the term “b decay” is also sometimes used to refer to the

capture of an atomic orbital electron by a proton-rich nucleus, it

does not include internal conversion, a radioactive process

described in the context of g decay.
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assigned recognition as the discoverer of g rays

through his measurements of the deflection by a mag-

netic field of the radiations emitted from radium and

using photographic plates as detectors (Gerward

1999). For example, in one experiment, a collimated

beam from a radium source was incident to two col-

linear photographic plates for which a magnetic field

was placed between the collimator and the first plate to

deflect the beam. The first plate demonstrated two

distinctive traces of a sharp line, denoting a beam

unaffected by the magnetic field, superimposed upon

a second, more diffuse, trace caused by the magnetic

deflect. On the second plate, which was further away,

there was only the sharp trace as the charged particles

creating the diffuse pattern in the first plate had been

completely deflected. The undeflected beam had tra-

versed 10 mm of glass without noticeable attenuation

and even inserting a 300 mm-thick lead foil had only a

slight affect upon this penetrating beam. Villard asso-

ciated this penetrating and electrically-neutral radia-

tion with Röntgen’s X-rays but he did not call them g
rays. This assignation does not seem to have happened

until about 1903 and was apparently due to Ruther-

ford. Experimental study of g rays in the early twenti-

eth century was not as intense as were those of a and b
particles and it was not until 1914 that Rutherford and

Andrade established the electromagnetic nature of g
rays. Following von Laue’s use in 1912 of a crystal as

a space diffraction grating for X-rays, Rutherford

and Andrade repeated the same approach to measure

the wavelength of g rays. Compton’s later work on the

elastic scatter of photons from electrons extended the

wave-point duality of light photons to g rays.

Radioactive decay is, obviously, the reason that the

discipline of nuclear medicine exists. Hence, we will

look at the theoretical principles behind the three

major radioactive modes of interest to nuclear medi-

cine: a decay, b decay (including electron capture) and

g emission (including IC).

4.2 a Decay

4.2.1 Introduction

a emission is a two-body process:

A
ZX ! A�4

Z�2Yþ 4
2He (4.1)

The final state is that of two heavy charged particles

in motion, which has significant dosimetric conse-

quences in that, first, both rapidly lose kinetic energy

to the medium in a small volume as they slow down

leading to a high absorbed dose. The second conse-

quence is that the daughter nucleus is frequently left in

an excited state resulting in the subsequent emission of

g rays or conversion electrons. a decay is intrinsically

linked to the high binding energy (28.3 MeV) of the

a particle. Hence, a nucleus will be unstable to a decay

if the sum of the binding energies of a pair or protons

and a pair of neutrons within it are less than the

a particle binding energy. As a result, the a emitting

parent nucleus is necessarily heavy as shown in

Fig. 4.2.4 Early understanding of a decay was con-

founded by the failure of classical theory to provide

an explanation of it even occurring – a failure shown

with considerable power by consideration of the mag-

nitude of the nuclear Coulomb potential, as shown in

Fig. 4.3. Within the nucleus, the a particle is subject

to the conflicting attractive strong nuclear force and

the repulsive Coulomb force from the nuclear protons.

Beyond the nuclear radius RN, where the strong

nuclear force is negligible, the a particle will be

subject solely to the nuclear Coulomb potential.

For a nucleus with atomic number Z, the Coulomb

potential is,

UðrÞ ¼ 2a�hc
ZY

r
r >RN (4.2)

where the factor of 2 is the atomic number of the a
particle. It should be noted that that the atomic number

is that of the nucleus following a emission.

The Coulomb potential experienced by an a parti-

cle at this nuclear radius for a nucleus with Z � 80 and

A � 200 is about 33 MeV and a classical dilemma

arises from the fact that experimental measurements of

the kinetic energies of the emitted a particles are

typically of the order of only a few MeV, as shown

4Note that Fig. 4.2 shows the kinetic energy of the emitted a
particle as a function of the parent nucleus’ mass; the probability

of the a particle occurring at all is not considered in that plot but

is the focus of a later subsection.
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in Fig. 4.2.5 Over the 2,076 a emissions represented

in this figure, the mean a particle kinetic energy is

6.1 MeV, with a minimum of 2.55 MeV for 202Pb and

a maximum of 11.66 MeV for 212Po.

4.2.2 Kinematics of a Emission

4.2.2.1 Kinetic Energy of the a Particle

The energy released in the a-emission of (4.1) is,

Qa ¼ mX � mY þmað Þ (4.3)

where the lower-case m’s are the nuclear masses and

where Qa must be positive (i.e., (4.1) is exoergic) in

order for the a decay to proceed. Both nuclei are

assumed to be in their ground states (the fine structure

in a particle energy spectra as a result of excited states

is discussed in the following subsection) so that the

Qa is distributed amongst the kinetic energies of the a
particle and the daughter nucleus. Because of the

much larger mass of the daughter nucleus and the

simultaneous conservation of linear momentum and
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Fig. 4.3 Potential energy of a heavy nucleus for an a particle

and a typical kinetic energy of an emitted a particle. Abscissa is
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5Gamow (1928) reported that Rutherford had used the Thomson

“plum pudding” model of the nucleus in an attempt to avoid this

dilemma: the a particle within the nucleus was electrically-

neutral as it carried two electrons. This allowed it to travel

through the barrier unheeded; once out of the nucleus, the a
particle somehow shed these two electrons. This hypothesis was

invalidated with the demise of the Thomson model.
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energy, virtually all of Qa is taken up by the kinetic

energy of the a particle. The conservation of energy is,

mX ¼ mY þma þ TY þ Ta: (4.4)

As the kinetic energy of the a particle is only a few

MeV, nonrelativistic kinematics are applicable and the

conservation of energy can be rewritten as,

p2Y
2mY

þ p2a
2ma

¼ Qa: (4.5)

Using the conservation of momentum, the recoil

kinetic energy of the daughter nucleus is then obtained,

TY ¼ Qa

1þ mY

ma

� � : (4.6)

As the atomic mass of the daughter nucleus is of the

order of 200 or more, it is evident that only about 2%

of the available energy will appear as the recoil kinetic

energy of the daughter nucleus. Hence, for practical

purposes, we can ignore the recoil kinetic energy

whilst calculating for the a-particle kinetic energy.6

Equation (4.6) can then be approximated by,

Ta � Qa: (4.7)

Assuming that the parent and daughter nuclei are

both in their ground states, then using results from

Chap. 3 and neglecting the atomic electron binding

energies, the a particle kinetic energy corresponding

to a parent nucleus of atomic number Z and atomic

mass A can be written as,

Ta A;Zð Þ � Qa

¼ MðA;ZÞ �MðA� 4;Z� 2Þ �Mð4; 2Þ:
(4.8)

where the atomic mass is given by M(A, Z) ¼
ZMH þ (A � Z)mn � B(A, Z). The a particle kinetic

energy can thus be given in terms of the nuclear

binding energies of the parent, daughter, and the a
particle,

Ta A;Zð Þ ¼ B 4; 2ð Þ þ B A� 4;Z� 2ð Þ � B A;Zð Þ
¼ B A� 4;Z� 2ð Þ � B A;Zð Þ þ 28:3MeV:

(4.9)

where the numerical value of the a particle binding

energy has been inserted. The binding energies of the

parent and daughter nuclei can be estimated using the

Weizsäcker semi-empirical formula,

BðA;ZÞ ¼ aVolA� aSurfA
2=3 � aCoul

Z2

A1=3

� aSym
A� 2Zð Þ2

A
� d A;Zð Þ:

Substituting this into (4.9) gives,

Ta A;Zð Þ¼�4aVol�aSurf A�4ð Þ2=3�A2=3
� �

�aCoul
Z�2ð Þ2�Z2

A�4ð Þ1=3�A1=3

 !

�aSym
A�4�2 Z�2ð Þð Þ2

A�4
� A�2Zð Þ2

A

 !

�d A�4;Z�2ð Þþd A;Zð Þþ28:3MeV

¼�4aVol�aSurf A�4ð Þ2=3�A2=3
� �

�aCoul
Z�2ð Þ2
A�4ð Þ1=3

� Z2

A1=3

 !

�aSym� A�2Zð Þ2
A�4

� A�2Zð Þ2
A

 !

�d A�4;Z�2ð Þþd A;Zð Þþ28:3MeV

(4.10)

As a decay occurs only for heavy nuclei for which

A � 1 and Z � 1, the expression can be simplified

by approximating the surface, Coulomb and symmetry

terms with,

A� 4ð Þ2=3 � A2=3
� �

� � 8

3
A�1=3

6While this is acceptable for analyzing the kinematics of a
decay, we cannot neglect the energy of the recoil nucleus in a

dosimetry evaluation. Although its kinetic energy is small, the

range of the recoil nucleus is also small, meaning that the recoil

energy is deposited within a very small volume leading to a high

absorbed dose. Hence, a-emitting radionuclides are important in

therapeutic nuclear medicine should the a particle-emitting

radiopharmaceutical be covalently-bound to the nuclear deox-

yribonucleic acid.
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Z� 2ð Þ2
A� 4ð Þ1=3

� Z2

A1=3

 !
� 4Z2A�1=3

1
Z
� 1

3A

1� 4
3A

 !

A� 2Zð Þ2
A� 4

� A� 2Zð Þ2
A

 !
� 4 1� 2Z

A

� �2

:

Recalling that the paired nucleon term is non-zero

only for odd–odd and even–even nuclei, it is retained

as an explicit item. These results give,

Ta A;Zð Þ ¼ �4aVol þ 8

3
aSurfA

�1=3

þ 4aCoulZ
2A�1=3

1
Z
� 1

3A

1� 4
3A

 !

� 4aSym 1� 2Z=A

� �2
� d A;Zð Þ

þ d A� 4;Z� 2ð Þ þ 28:3MeV:

(4.11)

The fact that this expression is an approximation

will not lead to an exact result of Ta but, even so, the

accuracy is more than sufficient to predict the a parti-

cle kinetic energies for dosimetry purposes. For exam-

ple, using (4.11) (and the values of aVol, aSurf, aCoul,

aSym, and d) to predict the kinetic energy of a particles

emitted by 210Po will yield a value of 4.26 MeV

whereas the experimentally-determined value is

about 4.52 MeV. This result can also be used to predict

the systematics of a particle kinetic energy of Fig. 4.2.

For example, for a given isotope, the a particle kinetic

energy decreases with increasing atomic mass7 which

can be predicted from,

DTa A;Aþ 1;Zð Þ ¼ Ta A;Zð Þ � Ta Aþ 1;Zð Þ
¼ 8

3
aSurf A1=3 � Aþ 1ð Þ1=3

� �

þ 4aCoulZ
2

 
A1=3

1
Z
� 1

3A

1� 4
3A

 !

� Aþ 1ð Þ1=3
1
Z
� 1

3 Aþ1ð Þ
1� 4

3 Aþ1ð Þ

 !!

� 8aSymZ
1

Aþ 1
� 1

A

� �

� dðA;ZÞ þ d Aþ 1;Zð Þ
þ dðA� 4;Z� 2Þ � d A� 3;Zð Þ

(4.12)

which is a negative quantity.

4.2.2.2 Energy Spectrum: Fine Structure

The discussion of the kinematics of a emission has,

so far, neglected any additional energy channels which

can alter Qa. Experimentally, however, it has been

observed that the a particles emitted from a single

nuclide can have multiple energies occurring with

different probabilities. An example is shown in

Fig. 4.4 for 215Po. The presence of multiple a particle

kinetic energies means, from the definition of Qa and

the approximation of Ta by Qa, that the nuclear masses

of the parent and/or daughter must be multivalued,

reflecting the excited states of the daughter 211Pb

nucleus. However, the relative intensity of each a
emission (i.e., the relative probability of an a particle

with that particular kinetic energy being emitted)

indicates a variable “transparency” of the Coulomb

barrier which impedes a emission.8 For this example

of 215Po, this transparency varies by over five orders-

of-magnitude.

4.2.3 Barrier Penetration

4.2.3.1 Introduction

The half-lives of a emissions vary from about 0.3 ms
for 212Po to 4.5 � 109 y for 238U, an astonishing

variation of some 23 orders-of-magnitude. This fact,

combined with simple consideration of the kinematics

of a emission, leads quickly to a conclusion that there

7This trend is broken for the conditions 209< A< 213 which is

related to the magic proton and neutron numbers of 82 and 126,

respectively.

8Note that, despite the different intensities among the a particles

emitted, the decay probability per unit time for each is the same.
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exists a barrier impeding the emission of the a particle.

As the kinetic energy of the a particle is a few MeV,

corresponding to a speed of the order of 107 m/s, and

the radius of a heavy nucleus is of the order of about

10 fm, the a particle should need only 10�21s to

traverse the nucleus. As the measured half-lives are

much larger than this, there clearly must be some

nature of a barrier to a emission, as was shown

Fig. 4.3. However, in classical mechanics, the barrier

would be completely impervious to the a particle.

Gamow (1928) and, independently, Condon and

Gurney (1928) showed that a emission could be

explained by the quantum-mechanical tunneling of

the a particle through this barrier. The solution to

this problem is determined by first studying the simple

case of a one-dimensional barrier.

4.2.3.2 One-Dimensional Rectangular Barrier

The simplest potential barrier to model is the one-

dimensional rectangular one of Fig. 4.5. As it is one-

dimensional, angular momentum is necessarily

excluded. The potential barrier is of height VB and

width b and the a particle is treated as a wave within

the nucleus (Zone A) and incident to the barrier from

the left. The time-independent one-dimensional

Schrödinger equation is,

d2C
dx2

þ 2ma

�hcð Þ2 Ta � VðxÞð ÞC ¼ 0 (4.13)

where

VðxÞ ¼ VB 0 < x < b

¼ 0 elsewhere:
(4.14)

Recall that the units of the a particle rest mass and

its three-vector momentum are that of energy and the

�hc factor is required in the denominator to make the
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has kinetic energy Ta
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equation dimensionally correct. Outside the barrier, in

Zones A and C, (4.13) is,

d2C
dx2

þ 2maTa

�hcð Þ2 C ¼ 0 (4.15)

This is rewritten using the reduced de Broglie

wavelength of the a particle,

�l ¼ �hcffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maTa

p (4.16)

d2C
dx2

þ 1

�l2
C ¼ 0: (4.17)

In Zone A, the solution to (4.17) is,

CAðxÞ ¼ wA1e
ix
�l þ wA2e

�ix
�l x < 0 (4.18)

and, similarly for Zone C,

CCðxÞ ¼ wC1e
ix
�l b < x (4.19)

where there is no reflected wave from Zone C, i.e.,

wC2 ¼ 0. Within the rectangular barrier (Zone B), the

Schrödinger equation is,

d2C
dx2

þ 2ma Ta � VBð Þ
�hcð Þ2 C ¼ 0 0 < x < b: (4.20)

Since Ta < VB,

d2C
dx2

� 2ma Ta � VBj j
�hcð Þ2 C ¼ 0 (4.21)

with the solution,

CBðxÞ ¼ wB1e
kax þ wB2e

�kax (4.22)

where,

ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma Ta � VBj jp

�hc
: (4.23)

The probability of the wave tunneling through the

barrier is defined as the transmission given by the ratio

of the squared amplitudes of the wavefunction inci-

dent to and exiting the barrier,

= ¼ wC1j j2
wA1j j2 : (4.24)

To solve for =, the amplitudes wA1 and wC1 are

calculated in terms of the amplitudes wB1 and wB2.

The remainder of the amplitudes are determined by the

boundary conditions which require that the functions

and their first-derivatives be continuous at the bound-

aries of the potential:

CAð0Þ ¼ CBð0Þ (4.25)

dCAð0Þ
dx

¼ dCBð0Þ
dx

(4.26)

CBðbÞ ¼ CCðbÞ (4.27)

dCBðbÞ
dx

¼ dCCðbÞ
dx

: (4.28)

Equations (4.25) and (4.26) give,

wA1 þ wA2 ¼ wB1 þ wB2 (4.29)

i

�l
wA1 � wA2ð Þ ¼ ka wB1 � wB2ð Þ: (4.30)

From which, wA1 and wA2 can be solved,

wA1 ¼ wB1 1� ika�lð Þ þ wB2 1þ ika�lð Þ
2

(4.31)

wA2 ¼ wB1 1þ ika�lð Þ þ wB2 1� ika�lð Þ
2

: (4.32)

Equations (4.27) and (4.28) give,

wB1e
kab þ wB2e

�kab ¼ wC1e
ib
�l (4.33)

and

ka wB1e
kab � wB2e

�kab
� � ¼ i

�l
wC1e

ib
�l: (4.34)

Solving for wB1 and wB2,
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wB1 ¼ wC1

2
e�kab 1�i=ka�lð Þ 1þ i

ka�l

� �
(4.35)

wB2 ¼ wC1

2
ekab 1þi=ka�lð Þ 1� i

ka�l

� �
: (4.36)

For convenience, the reciprocal of = is calculated,

1

= ¼ wA1

wC1

� �
wA1

wC1

� ��
: (4.37)

Substituting (4.35) and (4.36) into (4.31) gives,

wA1

wC1

¼
e�kab 1� i

ka�lð Þ 1þ i
ka�l

� �
1� ika�lð Þ þ e

kab 1þi=ka�l
� �

1� i
ka �l

� �
1þ ika�lð Þ

4

¼ eib=�l

4
e�kab 1þ i

ka�l

� �
1� ika�lð Þ þ ekab 1� i

ka�l

� �
1þ ika�lð Þ

¼ eib=�l
1� ka�lð Þ2

ka�l

 !
cosh kab� i

2
sinh kab

� �

¼ eib=�l

2

1� ka�lð Þ2
ka�l

 !
sinh kab 2 coth kabð Þ � ið Þ: ð4:38Þ

It follows that,

1

= ¼ wA1

wC1

� �
wA1

wC1

� ��

¼ 1

4

1� ka�lð Þ2
ka�l

 !2

1þ 4coth2kab
� �

sinh2 kab

¼ VB=2Ta
� �2
VB=Ta

� �
� 1

1þ 4coth2kab
� �

sinh2 kab

¼ VB=2Ta
� �2
VB=Ta

� �
� 1

1þ 4coth2 kab
� �

sinh2 kab

� 1:94 1þ 4coth2 kab
� �

sinh2 kab: ð4:39Þ

where a barrier height of 33 MeV and a kinetic energy

of 5 MeV have been assumed in order to obtain the

numerical result. Determining the product kab requires

an estimation of the width of the barrier, b. To obtain

this, replace the rectangular barrier with the Coulomb

barrier as shown in Fig. 4.6 (with the attractive nuclear

potential treated as a well potential) and use,

2Z
a�hc

RN þ b
¼ Ta: (4.40)

Solving for b,

b ¼ 2Z
a�hc
Ta

� �
� RN: (4.41)

Using the previous example of Z ¼ 80 and RN ¼ 7

fm, we calculate that for a 5MeV a particle b � 40 fm.

Hence, for VB ¼ 33 MeV, we have ka � 2.3 fm�1

leading to bka � 92. For this value, approximations

to the hyperbolic trigonometric functions can be used,

U(x) =

U(x)

b

1

2πε0 x

Ze2

Tα

0 x

RN

−EB

Fig. 4.6 Estimation of the barrier width for simple one-dimen-

sional rectangular barrier calculation
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1þ 4 coth2 kab
� � ¼ 1þ 2 cosh kab

sinh kab

� �2

¼ 1þ 2
ekab þ e�kab
� �
ekab � e�kabð Þ

� �2

� 5

and

sinh2 kab ¼ ekab � e�kab
� �2

4

� e2kab

4
:

As the magnitude of the exponent is 1
= � 2:4 e2kab,

the transmission is

= � 0:41 e�2kab: (4.42)

And, as the magnitude of the exponent is

e�2kab � 1:2� 10�80, the transmission is simply writ-

ten as,

= � e�2kab: (4.43)

4.2.3.3 Three-Dimensional Barrier

Gamow Factor

The simple barrier model of the previous section is

now extended to calculate the more realistic case of

the penetration through the 1=r Coulomb barrier which

is treated as a series of infinitesimal rectangular bar-

riers with decreasing heights, as shown in Fig. 4.7.

This now requires ka to have a spatial dependence,

kaðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma Ta � VBðxÞj jp

�hc
: (4.44)

Then, as = � e�
2x
�hc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma Ta�VðxÞj j

p
, the differential

transmission through a barrier of thickness dx is,

d= ¼ 4e�
2
�hcdx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m Ta�VðxÞj j

p
: (4.45)

Integrating this result gives,

= ¼ 8e�2G (4.46)

where G is defined as the Gamow factor,

G ¼ 1

�hc

ðbþRN

RN

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma Ta � VBðxÞj j

p
: (4.47)

Hence, in order to determine the transmission,

which by extension is the calculation of the decay

rate constant and decay half-life, requires an explicit

calculation of the Gamow factor. This is now per-

formed for the three-dimensional case.

Changing the spatial variable from the one-dimen-

sional x to the three-dimensional r, the Gamow factor is,

G ¼ 1

�hc

ðbþRN

RN

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma VBðrÞ � Taj j

p

¼
ffiffiffiffiffiffiffiffiffi
2ma

p
�hc

ðbþRN

RN

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z

a�hc
r

� �
� Ta

				
				

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maTa

p
�hc

ðbþRN

RN

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

r
� 1

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p

�l

ðbþRN

RN

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r
� 1

RN þ b

r
:

(4.48)

The integral is solved via the change of variable,

U(x) =

U(x)

1

2πε0 x

Ze2

Ta

0 x
bRN

−EB

dx

Fig. 4.7 Calculation of penetration through a one-dimensional

Coulomb barrier
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cos y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

RN þ b

r

which gives,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r
� 1

RN þ b

r
¼ sin yffiffi

r
p

¼ tan yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p

and

dr ¼ �2 RN þ bð Þ sin y cos y dy:

Substituting these into (4.48) gives,

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p

�l

ðbþRN

RN

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r
� 1

RN þ b

r

¼ 2
RN þ b

�l

ðarccos

ffiffiffiffiffiffiffi
RN

RNþb

q

0

dy sin2 y

¼ RN þ b

�l

 
arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN

RN þ b

r� �

� 1

2
sin 2 arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN

RN þ b

r� �� �!

¼ RN þ b

�l
arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN

RN þ b

r� �
�

ffiffiffiffiffiffiffiffiffi
RNb

p
RN þ b

� �
:

(4.49)

This expression is next simplified through the use

of the dimensionless quantity,

x ¼ Ta

VB

¼ RN

RN þ b

to give,

G ¼ RN

x�l
cos�1

ffiffiffi
x

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1� xð Þ

p� �
� RN

x�l
g xð Þ

(4.50)

By noting that RN 	 b, the arccos function is

expanded to first-order to give,

g xð Þ � p
2
� 2

ffiffiffi
x

p
(4.51)

allowing the Gamow factor to be written as,

G ¼ RN

x�l
p
2
� 2

ffiffiffi
x

p� �
¼ pRN

2x�l
� 2RNffiffiffi

x
p

�l

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p

�l
p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p
� 2

ffiffiffiffiffiffi
RN

p� �
:

(4.52)

Numerically, for the example of a heavy nucleus

with RN ¼ 7 fm and b � 40 fm and a 5 MeV a
particle, the reduced de Broglie wavelength is

�l ¼ �hc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maTa

p � 1fm and the Gamow factor is

G � 37.

Angular Momentum

Having now extended the calculation to a three-

dimensional barrier, we consider the effect induced

by angular momentum by using the three-dimensional

Schrödinger equation as shown in Chap. 3.9 Clearly,

as this will increase the Coulomb barrier through the

addition of a centrifugal term, l lþ 1ð Þ �hcð Þ2=2mar
2,

the angular momentum of the emitted a particle will

influence the transmission of the particle through the

barrier. This would arise in a step of the derivation of

(4.48) in which the Gamow factor would, as a result of

the centrifugal term, appear as,

G ¼
ffiffiffiffiffiffiffiffiffi
2ma

p
�hc

�
ðbþRN

RN

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z

a�hc
r

� �
þ l lþ 1ð Þ �hcð Þ2

2mar2
� Ta

					
					

vuut
(4.53)

9As the a particle has zero spin, the angular momentum carried

away is solely orbital in character.

102 4 Radioactive Decay: Microscopic Theory



Due to the a particle mass and the square of the

radius present in the denominator of the centrifugal

term, the effect of the centrifugal term to the barrier

transmission will be quite limited. For an example of

Z ¼ 80, r ¼ b ¼ 40 fm and the high angular momen-

tum case of l ¼ 4, we find that,

Coulomb term 2Z
a�hc
b

¼ 5:75MeV

Centrifugal term
l lþ 1ð Þ �hcð Þ2

2mab2
¼ 0:13MeV

Clearly for smaller l, the role of the centrifugal term

within the Gamow factor can be neglected. But where

the importance of the centrifugal barrier does arise is

through the fact that the l values available to the

emerging a particle are subject to the simultaneous

conservation of angular momentum and parity.

4.2.4 Estimation of a Decay Half-Life

Consider an a particle within a spherical well potential

well of radius RN and moving with speed v0. The rate at

which the a particle will hit the “wall” is of the order of

v0=RN times per second. The decay constant (the tran-

sition probability per unit time) for a emission is the

product of this “impact rate” and the transmission factor,

l ¼ v0

RN

=

¼ 8
v0

RN

e�2G
(4.54)

Taking logarithms of both sides, noting that

ln 8j j 	 2G and using our derived expression for the

Gamow factor, we have,

lnl ffi ln
v0

RN

� 2G

¼ ln
v0

RN

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p

�l
p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p
� 2

ffiffiffiffiffiffi
RN

p� �
¼ ln

v0

RN

� 1

�l
p RN þ bð Þ � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN RN þ bð Þ

p� �
(4.55)

Recalling the definition of the de Broglie wave-

length, we can write,

ln l ¼ ln
v0

RN

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maTa

p
�hc

2pZ
a�hc
Ta

� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN

2Za�hc
Ta

r� �

¼ ln
v0

RN

� 2pa
ffiffiffiffiffiffiffiffiffi
2ma

p� � Zffiffiffiffiffiffi
Ta

p þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amaRN

�hc

r ffiffiffi
Z

p

(4.56)

As shown in the following chapter, the half-life is

related to the decay constant via,

T1=2 ¼ ln 2

l
(4.57)

Hence, one can write the a emission half-life as,

T1=2 ¼ RN ln 2

v0
e

2pa
ffiffiffiffiffiffi
2ma

pð Þ Zffiffiffiffi
Ta

p
e�8

ffiffiffiffiffiffiffiffiffi
amaRN

�hc

p ffiffiffi
Z

p
(4.58)

Because of the T
�1=2
a dependence the most energetic a

particles will be associated with a decays with short

half-lives. This can be seen in Fig. 4.8 which shows

the very obvious tendency of the half-lives of a emit-

ting isotopes of polonium to decrease with increasing

a particle energy.

In 1911, Geiger and Nuttall reported an empirical

relationship between the range of an a particle in air

and the decay constant of the nuclide emitting the

a particle,

ln l ¼ k1 þ k2<a (4.59)

where <a is the range of the a particle in air. For a
particles with kinetic energies between 4 and 15 MeV

(a range which covers most a emissions), an empirical

relationship between a particle kinetic energy and its

range in air is (Tsoulfanidis 1995),

<air � 2:85þ 0:05Tað ÞT3=2
a (4.60)

where the range is in mm and the kinetic energy is in

MeV. As 0:05Ta > 2:85 for the kinetic energies of

interest, (4.59) can be rewritten in the form

ln l ¼ k1 þ k2T
3=2
a leading to the Geiger–Nuttall rule

relating a emission half-life to the a particle kinetic

energy,

T1=2 ¼ k1e
�k2T

3=2
a (4.61)
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(note that the constants k1 and k2 are not the same

throughout these equations). Although the empirical

Geiger–Nuttall rule has ln T1=2 / T
�3=2
a whereas the

result derived from Gamow theory has ln T1=2

/ T�1=2
a , both demonstrate an association between a

particles with high kinetic energies and short half-lives

of the a emitters that gave rise to them.

4.3 The Weak Interaction: b Decay
and Electron Capture

4.3.1 Introduction

b decay is both the most apparent manifestation of the

weak force and is greatly important in nuclear medi-

cine. Hence, it, and the weak force itself, are well-

deserving of the detail provided in this section.

Early experimental studies of b decay showed that

the detected final state contained only the electron

and the recoiling daughter nucleus. Such a two-body

decay would have required the electron to have a

single well-defined kinetic energy equal to the differ-

ence between the mass of the parent nucleus and the

sum of the masses of the daughter nucleus and electron

(excluding any excitation energy taken up by the

daughter). Using photographic emulsion as a detector,

Hahn and Meitner demonstrated around 1906 that

electron energy spectra associated with b decay from

isotopes of thorium and actinium showed discrete

peaks superimposed upon a weak, continuous back-

ground. While a well-defined electron energy was

expected from the presumed two-body decay, the

peaks observed were, in fact, the result of IC (a two-

body final state) and the weak background was due to

the electrons produced in b decay. Using a Geiger

counter as a more sensitive ionization detector, Chad-

wick demonstrated in 1914 that the electron energy

spectrum was continuous, contrary to the expectation

of a two-body decay. This contradiction between the

observed final state and the expected energy spectrum

was problematic as the missing energy implied a fail-

ure of the law of conservation of energy. Experimental

evidence demonstrated that the measured electron

kinetic energy spectrum ranged in value from 0 to a

value equal, to within experimental error, to the maxi-

mum dictated by a two-body final state. For example,

this could be found by comparing the masses of 3H and
3He in the b� decay of 3H for which the mass-energy

balance of M3H ¼ M3He þme þ Q is achieved exactly

by setting Q to the observed maximum electron energy

in the spectrum. Another means of demonstrating this

was shown by comparing the energies released in the

1
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Fig. 4.8 Plot of polonium a
emission half-life as a

function of a particle kinetic

energy. Points indicating

multiple a emissions of

differing kinetic energies but

same half-life reflect multiple

a emissions per given decay,

as discussed in the text. Plot

derived from data from the

National Nuclear Data Center

database (2008)
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decay of a nucleus through alternative routes (e.g., b
decay followed by a decay and vice versa) to a final

nucleus. As the initial and final nuclei in the decay

schemes are the same, the total energies released

though all of the routes must also be the same. It was

found that the sum of the a particle kinetic energies

and the upper limits of the b particle energy spectra

were equal in both decay branches.

Experimental data also implied the nonconserva-

tion of both angular momentum and the spin statistics

of a composite system. Again, consider the b decay of
3H in which there are only two observed products in

the final state, the 3He nucleus and the electron. Initi-

ally excluding the possibility of a non-zero orbital

angular momentum, the 3He angular momentum (due

to the single proton in the 1p1/2 level) and the electron

spin couple to form a system with a total angular

momentum of either 0 or 1. In either case, the total

angular momentum is an integer. Even if we were to

now allow the possibility of an orbital angular momen-

tum contribution to the final state, the total angular

momentum of the final state remains an integer. The

problem lies in that the angular momentum of 3H in

the initial state is 1/2. Thus, the 3H initial state is subject

to Fermi-Dirac statistics whereas the 3He-e composite

in the final state is subject to Bose–Einstein statistics.

These dilemmas were famously resolved by Pauli.

Unable to an invitation to a meeting at Tübingen, on 4

December 1930 he wrote a letter to those attending

describing his proposition:

“Dear Radioactive Ladies and Gentlemen,

As the bearer of these lines, to whom I graciously

ask you to listen, will explain to you in more detail,

how because of the “wrong” statistics of the N and Li6

nuclei and the continuous beta spectrum, I have hit

upon a desperate remedy to save the “exchange theo-

rem” of statistics and the law of conservation of energy.

Namely, the possibility that there could exist in the

nuclei electrically-neutral particles, that I wish to call

neutrons, which have spin 1/2 and obey the exclusion

principle and which further differ from light quanta in

that they do not travel with the velocity of light. The

mass of the neutrons should be of the same order of

magnitude as the electron mass and in any event not

larger than 0.01 proton masses. The continuous beta

spectrum would then become understandable by the

assumption that in beta decay a neutron is emitted in

addition to the electron such that the sum of the ener-

gies of the neutron and the electron is constant...

I agree that my remedy could seem incredible

because one should have seen these neutrons much

earlier if they really exist. But only the one who dare

can win and the difficult situation, due to the continu-

ous structure of the beta spectrum, is lighted by a

remark of my honored predecessor, Mr Debye, who

told me recently in Bruxelles: “Oh, It’s well better not

to think about this at all, like new taxes.” From now

on, every solution to the issue must be discussed.

Thus, dear radioactive people, look and judge.

Unfortunately, I cannot appear in Tubingen person-

ally since I am indispensable here in Zurich because of

a ball on the night of 6/7 December. With my best

regards to you, and also to Mr Back.

Your humble servant,

W. Pauli”

Following Chadwick’s discovery of what is now

known as the neutron (as a nucleon), Fermi later

coined the word neutrino (ne)
10 to describe Pauli’s

proposed particle which carried away the “missing”

kinetic energy.

While a succinct solution to the empirical problem,

it was immediately obvious from the lack of direct

evidence for its existence that the neutrino interacted

very weakly with matter. Despite this, further consid-

eration of the experimental data at these early times

led to the exposition of other properties of the neu-

trino:

� Mass: As the maximum of the electron/positron

energy spectrum was, to within experimental

error, equal to the maximum set by two-body

decay, the b decay kinematics demonstrated that

the neutrino mass was very small or zero.11

� Electric charge: The observed conservation of

electric charge in b decay demonstrated that the

neutrino had no electric charge.

� Spin: Conservation of angular momentum requires

the neutrino to be a fermion as indicated in our

earlier consideration of the decay of 3He.

It was not until the early 1950s that the existence of

the neutrino or, to be exact, the antineutrino was con-

firmed experimentally. Using the antineutrino flux

10The e subscript signifies that the neutrino produced by b decay

is associated with an electron/positron.
11Only in recent years has conclusive evidence for a non-zero

neutrino mass been obtained from measurements of neutrinos of

cosmic origin (see, e.g., Fukuda et al. 1998).
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produced by the b decay of fission products in a nuclear

reactor, Reines and Cowan (1953) (Reines 1997)

detected the positron and neutron resulting from the

“inverse b+ decay” reaction of12 �ne þ p ! nþ eþ.
The target consisted of CdCl2 dissolved in water and

sandwiched between two tanks containing liquid scin-

tillator each viewed by photomultiplier tubes, as shown

schematically in Fig. 4.9. An observed event was of an

antineutrino captured by a proton of the hydrogen atom

in a target water molecule to generate a positron and a

neutron. The positron had a small mean free pathlength

in water before it annihilated on a free electron (e�e+

! 2g) within about 1 ns of creation to produce two

511 keV g rays which were subsequently detected in

coincidence by the surrounding liquid scintillator. The

neutron product of the inverse b+decay thermalized

through elastic collisions with the protons in the water

molecules so as to be eventually captured by a cadmium

nucleus some 10 ms later. This “radiative capture”

by the cadmium resulted in an excited cadmium

nucleus which, during de-excitation, emitted g rays

also detected by the surrounding liquid scintillator.

The time signature of the two separate g ray detections

signaled an antineutrino detection.

The history of b decay, and the weak interaction it

demonstrates is concluded by considering briefly the

complexity of the lepton family beyond the electron

and neutrino that resulted from the discovery of the

muon in cosmic rays in 1937 by Neddermeyer and

Anderson (1937)13 and the determination that it was

not subject to the strong nuclear force and was, hence,

a lepton by Conversi et al. (1947). This was the first

indication of the existence of the Generations of mat-

ter shown in Fig. 3.1 in Chap. 3 and of lepton flavor.

Due to the leptonic similarities of the muon with an

electron, it was of interest to determine if it also had an

associate neutrino. That the muon neutrino existed was

demonstrated by Lederman, Schwartz and Steinberger

(Danby et al. 1962) in an experiment at Brookhaven

National Laboratory in which protons bombarded a

beryllium target to produce pions following which

each decayed in flight to a muon and a neutrino (e.g.,

pþ ! mþ þ nm; the m subscript indicates that the neu-

trino is associated with a muon and, in analogy to the

electron and positron, the positively-charged muon is

regarded as the antiparticle). The combined beam of

muons and neutrinos then passed through a 13.5-m

thick steel absorber so that only the neutrinos were

able to pass through to be detected by a spark chamber

on the exit side. Whereas the electron is a stable

particle,14 the muon is not. It decays, with a half-life

of 2.197 ms, via m� ! e� þ ne þ �ne. However, the

simpler decay process of m� ! e� þ g has not been

observed which empirically indicates the existence

of the lepton quantum number. The existence of a

charged lepton of the third flavor15 was shown by

Perl et al. (1975) through the topology of the trajec-

tories of the products resulting from collisions

between high-energy electron and positron beams

leading to e�eþ ! t�tþ ! e� þ e� þ 4 neutrinos.

The mean t-lepton life is 290.6 fs and the existence

of a neutrino associated with the t-lepton was finally

Liquid
Scintillator

Liquid
Scintillator

511 keVγ

511 keVγ e
n

Cd

p+
CdCl2

solution

γ

γ

γ

νe

Fig. 4.9 Schematic diagram of the experimental arrangement

used by Reines and Cowan to detect the existence of the

electron-antineutrino. A description of the detection process is

provided in the text

12As the total cross-section for this reaction had been estimated

from the measured half-life of free neutron decay to be about

6 � 10�44 cm�2, an intense antineutrino flux such as that from a

fission reactor was required in order for a detectable number of

events to be obtained.

13The muon was initially called the mu -mesotron and incor-

rectly thought to have been the intermediary of the strong force

postulated by Yukawa. That particle is the pion which is subject

to the strong nuclear force which the muon is not.
14The electron has a measured lifetime in excess of 4.6 � 1026

yrs (90% confidence level) (Particle Data Group 2004).
15This heavy lepton is referred to as the t-lepton referring it to

being the third lepton discovered.
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confirmed experimentally in 2000 (Kodama et al.

2001). The family of leptons is summarized in

Table 4.1.

Within a modern viewpoint, b decay and electron

capture can be considered at three different scales of

dimension. At the lowest spatial resolution, they can

be regarded as transitions between nuclear isobars

which change the atomic number of the parent nucleus

by unity:

Z;Að Þ ! Zþ 1;Að Þ þ e� þ �ne

Z;Að Þ ! Z� 1;Að Þ þ eþ þ ne

Z;Að Þ þ e� ! Z� 1;Að Þ þ ne

Going beyond the nuclear picture by increasing the

spatial resolution to nucleon dimensions, these pro-

cesses are seen as isospin-projection changing transi-

tions between nucleons:

n ! pþ e� þ �ne

p ! nþ eþ þ ne

pþ e� ! nþ ne

Finally, at the spatial resolution of sub-nucleon

dimensions, the transitions are now seen as a quark

flavor change with the emission of a W� intermediate

vector boson (so called as it has spin 1) which subse-

quently decays into a lepton pair,

d ! uþW� ! uþ e� þ �ne

u ! dþWþ ! dþ eþ þ ne

uþ e� ! dþWþ þ e� ! dþ ne

as shown in Fig. 4.10.

As described in the introduction, the small interac-

tion cross-section of the neutrino, the long physical

half-lives of nuclei subject to b decay compared to

g decay and the change in nuclear isospin (through

the isospin flips of n ! p and p ! n and the underly-

ing quark flavor changes) led to the postulate that b
decay was indeed a manifestation of a new force,

termed the weak force. The electron and neutrino are

leptons with the electron interacting through both

electromagnetic and weak forces and the electrically-

neutral neutrino interacting through the weak force

alone. Both particles have antiparticles, the positron

and antineutrino, the positron having been predicted by

Dirac and experimentally detected in cosmic rays by

Anderson (1933). Isospin and flavor, which are mani-

festations of the strong nuclear force, are not conserved

by this weak force.

b decay is the most commonly observed weak

interaction and is of significance to internal radiation

dosimetry for several reasons:

� The daughter nucleus resulting from b decay or

EC is often in an excited state which subsequently

de-excites by g ray emission or other radioactive

processes. The g ray emission can be directly useful

for nuclear medicine imaging (e.g., 99Mo under-

going b decay to 99mTc which makes an isomeric

transition (IT) to 99Tc through the emission of a

140.5 keV g ray). For heavy nuclei, these other

processes include fission and delayed nucleon

emission as shown in Fig. 4.11.

� While the electron resulting from b� decay does

not contribute to the nuclear medicine imaging

process,16 it does deposit energy in tissue while

decelerating, creating an absorbed dose.

� The positron created in b+ decay will also deposit

energy as it traverses tissue to annihilate with an

electron to produce two collinear 511 keV g rays

Table 4.1 Lepton flavors

Electron flavor

Lepton Mass (MeV)a

e 0.510999

ne <4.6 � 10�4 (68% c.l.)

Muon flavor

Lepton Lepton

m 105.658369

nm <0.19 (90% c.l.)

Tau-lepton flavor

Lepton Mass (MeV)a

t 1776.99

nt <18.2 (95% c.l.)
aMasses are averages taken from the Review of Particle Physics

(Particle Data Group 2004); neutrino masses are provided with

specified confidence levels

16Excluding imaging of the bremsstrahlung radiation produced

by the decelerating electron.
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which can be detected externally to form a tomo-

graphic image.

� Electron capture leaves an atomic electron vacancy

inducing fluorescence X-ray production (which can

also be detected to form an image) or Auger/Coster–

Kronig electron cascades.

4.3.2 Kinematics of b Decay and
Electron Capture

4.3.2.1 Neutron b Decay

The study here of b decay kinematics begins by con-

sidering free neutron decay, n ! pþ e� þ �ne. The

mass-energy balance of a free neutron undergoing b�

decay is,

mn ¼ mp þme þ Q� (4.62)

Where the “�” subscript on Q signifies this as the

energy released in b� decay. Throughout this discus-

sion, the masses of the (anti)neutrinos are neglected

and, upon substituting the appropriate rest masses, it

is found that free neutron decay is exoergic with

Q� ¼ 0.782 MeV. Thus, a free neutron is unstable to

b� decay to a proton with a half-life of 885.7 s and the

0.782 MeV of energy available will be distributed

amongst the kinetic energies of the three decay pro-

ducts. By contrast, the mass-energy balance for a

proposed b+ decay of a free proton is,

mp ¼ mn þme þ Qþ (4.63)

Again, substituting the rest-mass values will show

that this reaction is endoergic since Q+ ¼ �1.765 MeV

Q

(A, Z)

(A, Z + 1)

Barrier

β−

γ γ

Fig. 4.11 Representative decay scheme for b� decay with

transitions to the ground state and various excited states of the

daughter nucleus. The barrier signifies the minimum energy

required in order for processes such as delayed nucleon emission

and nuclear fission to occur
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Fig. 4.10 Quark-boson-

lepton diagrams for (a) b�

decay of a neutron; (b) b+

decay of a proton; and (c)
electron capture by a proton
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and, hence, p ! nþ eþ þ ne cannot occur for a free

proton. It can occur only if the proton is bound within

the nucleus such that the additional energy required for

the transition arises from the nuclear binding energy.

4.3.2.2 Nuclear b Decay

Introduction

Now consider nuclear b decay between isobars (Grotz

and Klapdor 1990). Such b decays can only occur if

there is an adjacent isobar with a smaller mass (i.e.,

greater binding energy). Figure 4.12 presents a sum-

mary of the kinematics of nuclear b decay and electron

capture. Recall from the discussion of the Segrè plot

that, with increasing atomic mass number A in stable

nuclei, the number of neutrons N increases relative to

the number of protons, Z. An unstable nucleus (i.e.,

one which is displaced from the locus of stable nuclei

in the Segrè plot) can be created either through the

bombardment of a stable nucleus with charged parti-

cles or neutrons or through the fission of a heavy

nucleus. Such an unstable nucleus will lie on either

side of the stable nuclei locus. The type of b decay

available to the displaced nucleus will be dictated by

the magnitudes of the Coulomb and symmetry terms

of the Weizsäcker formula and these will follow the

mass parabolae.

The Coulomb term reduces the net binding energy

with increasing Z whereas the symmetry term

increases the binding energy with increasing Z. As

seen, the result is a maximum in the binding energy

indicating the stable nucleus in the mass parabola

(which would lie along the isobar line of Fig. 4.13).

If the artificially produced nucleus were to be to the

left of the locus of stable nuclei (i.e., it has an excess of

neutrons or is “neutron-rich”), it has a deficit of elec-

tric charge for its mass. Hence, the Coulomb term is

reduced and the symmetry term increased. A maxi-

mum in the binding energy is then achieved by an

increase in the former and a decrease in the latter

which results from b� decay. Should the nucleus

instead be to the right of the locus of stable nuclei

(i.e., it has an excess of protons or is “proton-rich”),

the relative magnitudes of the Coulomb and symmetry

terms are reversed and a maximum in the binding

energy is achieved by decreasing the magnitude of

the Coulomb term and increasing that of the symmetry

term through b+ decay or electron capture.

m(A,Z)

m(A, Z+1)

β−

m(A,Z)

m(A, Z−1)

2me

Q+β+

ECQ EC
Q−

Fig. 4.12 Kinematics of b decay and electron capture
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Fig. 4.13 Segrè plot showing

the “neutron-rich” region,

where b� decay can occur,

and the “proton-rich” region,

where b+ decay or electron

capture can occur, are shown.

The isobar line of A ¼ 80 is

provided as an example to

show the directions of these

transitions towards the locus

of stable nuclei
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The mass difference required between parent and

daughter nuclei is next calculated in order to deter-

mine whether or not nuclear b decay or electron cap-

ture is energetically possible.

Nuclear b� Decay

Nuclear b� decay between the isobar pair A
ZX and

A
Zþ1Y is,

A
ZX ! A

Zþ1Yþ e� þ �ne (4.64)

and which has the nuclear mass-energy balance,17

m A;Zð Þ ¼ m A;Zþ 1ð Þ þme þ Q�: (4.65)

As the nuclear mass is m A;Zð Þ ¼ Zmpþ
A� Zð Þmn � B A;Zð Þ, (4.65) gives the Q� value for

nuclear b� decay as,

Q� ¼ mn �mp �me

� �
þ B A;Zþ 1ð Þ � B A;Zð Þð Þ (4.66)

where the first term in parentheses in (4.66) is the Q�
for free neutron decay and the second term is the

difference in nuclear binding energies. A simpler

expression for Q� can be extracted from (4.66)

by recalling that the nuclear binding energy can be

written in terms of atomic masses,

B A;Zð Þ ¼ ZMH þ A� Zð Þmn �M A;Zð Þ; or,

Q� ¼ M A;Zð Þ �M A;Zþ 1ð Þ: (4.67)

As Q� must be positive, nuclear b� decay is ener-

getically permissible should the parent’s atomic mass

exceeds that of the daughter. An example of b� decay

shown in Fig. 4.14 is that of the radionuclide 32P,

which is produced through neutron bombardment of

stable 31P, and undergoes b� decay to 32S with a half-

life of 14.263 days and a Q� of 1.71 MeV.

Nuclear b+ Decay

b+ decay is inherently nuclear as the b+ decay of a free
proton is energetically impossible. A nucleus in the

proton-rich region of Fig. 4.13 will have excessive

electric charge for its mass and will seek to reduce

this charge by either positron emission or electron

capture. The b+ decay between the isobar pair A
ZX

and Y
Zþ1Y is,

A
ZX ! A

Z�1Yþ eþ þ ne (4.68)

with a nuclear mass-energy balance,

m A;Zð Þ ¼ m A;Z� 1ð Þ þme þ Qþ: (4.69)

Substituting the expression for nuclear mass gives,

Qþ ¼ � mn �mp �me

� �� 2me

� B A;Z� 1ð Þ � B A;Zð Þð Þ (4.70)

which, in terms of parent and daughter nuclear masses,

is,

Qþ ¼ M A;Zð Þ �M A;Z� 1ð Þð Þ � 2me: (4.71)

Thus, in order for b+ decay to occur, the parent

atom must be heavier than the daughter nucleus by

an amount of at least double the electron/positron rest-

mass of 2me (1.022 MeV). An example is shown in

100%

log10 ft = 7.9

Q− = 1.71 MeV

1+

0+

β−

32
P

T1/2 = 14.263 days15

32
S16

Fig. 4.14 32P ! 32Sþ e� þ �ne. The log10 ft value is a measure

of the transition rate and is discussed in the text

17Note that any excitation energy conferred to the daughter

nucleus is ignored.
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Fig. 4.15 of 18F which undergoes b+-decay with a

109.77 min half-life to produce 18O.

Electron Capture

The process of electron capture can compete with b+

decay as the wavefunction of an orbital electron, espe-

cially that of the K-orbital, will have a finite extension

into the nuclear volume.18 As a consequence, it is pos-

sible for a nucleus to capture an orbital electron through

e� þ Z ! Z� 1ð Þ þ ne, a reaction which occurs pre-

ferentially for high-A nuclei which, with their large

nuclear radii, will have greater overlaps with the orbital

electrons’ wavefunctions. The EC process is,

A
ZXþ e� ! A

Z�1Yþ ne (4.72)

with the nuclear mass-energy balance,

m A;Zð Þ þme � BK ¼ m A;Z� 1ð Þ þ QEC: (4.73)

The capture of a K-shell electron with BK binding

energy has been assumed. Solving for QEC in terms of

nuclear binding energies,

QEC ¼ � mn �mp �me

� �� BK

þ B A;Z� 1ð Þ � B A;Zð Þð Þ (4.74)

and of atomic masses,

QEC ¼ M A;Zð Þ �M A;Z� 1ð Þð Þ � BK (4.75)

Hence, EC is energetically feasible if the parent’s

atomic mass exceeds the sum of that of the daughter

and the electron binding energy (which, in practice,

can be neglected). Comparing QEC and Q+,

Qþ ¼ QEC � 2me (4.76)

Because EC does not produce a positron and the

neutrino cannot be readily detected, experimental evi-

dence for EC is obtained indirectly via the emission of

a characteristic X-ray daughter nucleus (Alvarez

1937). EC creates a hole in the atomic energy orbital

which is subsequently filled by an electron from a

higher-order orbital to produce an X-ray with energy

equal to the difference between the binding energies of

the two orbitals. Although b+ decay of a proton-rich

nucleus yields the same daughter nucleus as that of

electron capture, the former cannot occur unless there

is a mass-energy differential of 1.022 MeV between

the parent and daughter atoms, whereas the threshold

for the latter simply requires that the parent atom be

heavier than the daughter (if the magnitude of the

orbital electron binding energy is neglected). Hence,

if the mass-energy difference between the parent and

daughter atoms for which EC occurs exceeds

1.022 MeV, b+ decay can become possible, in which

the total transition probability is the sum of the two

individual probabilities for each transition type.

Summary of b Decay and Electron Capture

Kinematics

The thresholds for b decay and electron capture in

terms of the parent (X) and daughter (Y) atomic

masses are,

MX > MY b�; EC

MX > MY þ 2me bþ

Table 4.2 presents Q values for a variety of b
decays of particular interest to diagnostic nuclear

medicine and PET imaging.

100%
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Fig. 4.15 18F ! 18Oþ eþ þ ne

18The probabilities of L and higher orbital wavefunctions

extending into the nucleus are much smaller and are not consid-

ered here.
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4.3.3 Fermi Theory of b Decay: Part I

4.3.3.1 Introduction

Having established the kinematic requirements to be

fulfilled in order for b decay and electron capture to

occur, we now progress to calculating the transition

probabilities and decay rates of these processes.

Although dating from the 1930s, Fermi’s theory

(1934a, b) remains an inspired and pragmatic approach

to understanding b decay and electron capture, evaluat-

ing their transition probabilities and calculating the

electron and positron energy spectra. The insight of

Fermi’s theory was its being an analogy to that describ-

ing the interaction between charges in quantum electro-

dynamics.19 Even though it has been supplanted by

the modern Glashow–Salam–Weinberg electroweak

theory, the Fermi theory provides the low-energy limit

of that theory which is appropriate and useful for our

study of b decay.

4.3.3.2 Nuclear b Decay

Introduction

In this subsection, the transition rates for b decay and

electron capture are derived from perturbation theory

using Fermi’s Golden Rule No 2,20

lfi ¼ 2p
�h

ð
d3rc�

f Uci

				
				
2

rf (4.77)

Matrix Element

The matrix element,
Ð
d3rc�

f Uci, is calculated by first

noting that the initial wavefunction is that of the parent

Table 4.2 Q values for various b decays of nuclear medicine interest

Parent Daughter Decay mode

(% of all decays)

Q (MeV) Applications

11C 11B b+ (99.7%) 0.961 PET imaging

EC (0.3%) 1.983
14C 14N b� 0.156 14C-labelled urea for Helicobacter pyloris diagnosis
15O 15N b+ (99.9%) 1.732 PET imaging

EC (0.1%) 2.754
18F 18O b+ (96.9%) 0.634 PET imaging

EC (3.1%) 1.656
51Cr 51V EC 0.752 Na2

51CrO4 used to label red blood cells (RBC) for

measurement of RBC volume or RBC

sequestration
59Fe 59Co b� 1.565 59Fe ferrous citrate used to assess gastrointestinal

iron absorption by oral administration or of iron

metabolism by intravenous injection
64Cu 64Ni b+ (18%) 0.653 PET imaging

64Ni EC (44.9%) 1.675
64Zn b� (37.1%) 0.578

67Ga 67Zn EC (100%) 1.000 67Ga citrate used for imaging tumors and

inflammation with g-ray scintigraphy
68Ga 68Zn b+ (89.1%) 1.899 PET Imaging

EC (10.9%) 2.921
90Y 90Zr b� (100%) 2.280 90Y-labelled ibritumomab tiuxetan for treatment of

non-Hodgkin’slymphoma

19Fermi’s paper on his b decay theory was, famously, rejected

by Nature in 1933 but was subsequently published in Italian in

Nuovo Cimento and in German in Zeitschrift für Physik. Fermi

never again published on this subject (Segrè 1970).

20For simplicity in this discussion, “electron” will refer to either

an electron or a positron and “neutrino” will refer to either a

neutrino or antineutrino. An exact assignment will be apparent

from the context of the discussion.
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nucleus’ wavefunction ci � cnuc;i, and the final wave-

function cf is the product of the three wavefunctions

corresponding to the daughter nucleus, electron and

neutrino, cf � cnuc;fcecne . The lepton wavefunctions

are represented by plane waves,

c�
ecne ¼

1

L3
ei

q�r
�hc (4.78)

where L3 is the volume containing the system and

q ¼ pne � pe. Because of the distortion induced by

the nuclear Coulomb field, a plane wave expansion

for the electron is not entirely valid, but its use will

corrected for later. Expanding the exponential,

ei
q�r
�hc ¼

ffiffiffiffiffiffi
4p

p X1
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
jl

qr

�hc

� �
Yl0 y; 0ð Þ (4.79)

where y is the angle between q and r. As the lepton

momenta are of the order of 1–2 MeV/c and the

nuclear dimension is of the order of 5 fm, then the

argument of the spherical Bessel function is
qr=�hc � 0:05 or less. In this case, the small-argument

form of the spherical Bessel function, jlðxÞ � xl



2lþ 1ð Þ!!, can be used where the double factorial is

defined by 2lþ 1ð Þ!! ¼ 1� 3� 5 . . . 2lþ 1ð Þ. Hence,
the low-argument approximation to the spherical Bes-

sel function diminishes rapidly with l for x 	 1 and

the expansion of (4.79) can be restricted to l ¼ 0 to

give c�
e cne � 1=L3. Hence, a simplified result for the

matrix element is obtained,

ð
d3rc�

f Uci �
1

L3

ð
d3rc�

nuc;fUcnuc;i: (4.80)

The perturbation potential inducing the b decay is

taken to be weak and to have an infinitely small

range21 allowing the perturbation to be approximated

by a scalar constant and removed from the integral,

ð
d3rc�

f Uci �
g

L3

ð
d3rc�

nuc;fcnuc;i

¼ g

L3
Mfi (4.81)

where Mfi is the nuclear matrix element. The b decay

transition rate from initial state i to final state f can

now be written as,

lfi ¼ 2p
�h

g2

L6
Mfij j2rf (4.82)

Phase Space Factor

From the previous derivation of b decay kinematics,

the total kinetic energy available to the electron and

neutrino is equal to the Q of the appropriate decay.

Neglecting a neutrino rest mass, the total energy made

available is the sum of the kinetic and rest-mass ener-

gies, E0 ¼ Q� þme, which is also equal to the elec-

tron and neutrino total energies,

E0 ¼ Ee þ Ene (4.83)

Equation (4.82) can be generalized into the differential

form,

dlfi Eeð Þ ¼ 2p
�h

g2

L6
Mfij j2 drf E0;Eeð Þ

dEe

dEe (4.84)

which is the differential probability that the elec-

tron will be emitted with a total energy between Ee and

Eeþ dEe. As the volume of a unit cell in phase space is

2p�hcð Þ3 and the electron-antineutrino final state will

have a 12-dimensional phase space (three-dimensions

each for the electron and antineutrino momenta and

position), the phase space differential volume element

in electron and neutrino momentum is,

d2rf ¼
L

2p�hc

� �3

4p p2e dpe � L

2p�hc

� �3

� 4pp2nedpned Q� Te � Tneð Þ

¼ 1

4p4
L

�hc

� �6

p2e dpe p
2
nedpned Q� Te � Tneð Þ

(4.85)

where the d-function specifies the required energy

conservation. It is convenient to solve for this expres-

sion by using the particles’ total energies as the vari-

ables instead. As the total energy is E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
,

21In the modern-day picture of the W intermediate vector boson-

mediated b decay, the range of the force is of the order of 10�3

fm. Hence, Fermi’s approximation of a zero-range force was

insightful.
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then dE=dp ¼ p=E and p2dp ¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

p
dE, then

(4.85) can be written in the form,

d2rf ¼
1

4p4
L

�hc

� �6

� Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
dEe E

2
nedEned E0 � Ee � Eneð Þ:

(4.86)

The arguments of the d functions of (4.85) and (4.86)
are equivalent. As the neutrino is not detected, this result

is subsequently integrated over the neutrino energy,

drf ¼
1

4p4
L

�hc

� �6

Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
Ee dEe

�
ð
dEne E

2
ned E0 � Ee � Eneð Þ

¼ 1

4p4
L

�hc

� �6

Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
E0 � Eeð Þ2dEe:

(4.87)

So far, this calculation has neglected the interaction

between the product electron and the daughter

nucleus. As noted earlier, this will distort the elec-

tron’s wavefunction, thus invalidating the original

assumption of describing its wavefunction as a plane.

For b� emission, the attractive Coulomb interaction

slows down the electron and increases the low-energy

portion of the spectrum. Thus, the electron is emitted

with a higher energy than that detected or, in other

words, the phase space is larger than 4pp2edpe. On
the other hand, for b+ emission, the Coulomb force

between the positron and the nucleus is repulsive, thus

suppressing the low-energy portion of the spectrum and

correspondingly decreasing the available phase space.

In order to account for these Coulomb effects, but still

retain the overall form of the result obtained from a

plane-wave approximation, a correction to the phase

space is inserted into the phase space factor. This cor-

rection term is the Fermi factor, F(ZY, Ee),

drf
dEe

¼ 1

4p4
L

�hc

� �6
Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
E0 � Eeð Þ2

� F ZY;Eeð Þ
(4.88)

where ZY is the atomic number of the recoil daughter

nucleus. The Fermi factor is the ratio of the electron/

positron wavefunctions at the centre of the nucleus

with the Coulomb interaction to that without,

F ZY;Eeð Þ ¼ ce;withð0Þ
		 		2
ce;withoutð0Þ
		 		2 : (4.89)

A suitable nonrelativistic approximation of the

Fermi factor is,

FðZY;EeÞ ¼ 2pZ
1� e�2pZ (4.90)

where

Z ¼ �aZY

E0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

p (4.91)

and where the � sign corresponds to electron/positron

emission. The nonrelativistic Fermi factor is plotted in

Fig. 4.16 as a function of the ratio Ee

E0
¼ Teþme

Qþme
for four

different b decays. By expanding the exponential term

in (4.90) to second order, the features of Fig. 4.16

become more apparent,

FðZY;EeÞ ¼ 1

1� pZ

¼ pe

pe � mpaZE0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ee

E0

� �2
� me

E0

� �2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ee

E0

� �2
� me

E0

� �2r
� paZ

(4.92)

This result shows that F ZY;Eeð Þ> 1 for electrons and

F ZY;Eeð Þ< 1 for positrons and that both factors

approach unity with increasing energy. However, the

nonrelativistic approximation fails for high-Z nuclei

and the Fermi factor must then be calculated from the

Dirac equation and an extended Coulomb potential.

Tabulated values for F ZY;Eeð Þ can be found in

Behrens and Jähnecke (1969).

Energy Spectra

The transition rate can now be written as,

dlfi Eeð Þ
dEe

dEe ¼ g2

2p3�h �hcð Þ6
 !

Mfij j2Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q

� E0 � Eeð Þ2 � F ZY;Eeð ÞdEe

(4.93)
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As a result of the zeroth-order truncation of the

lepton wavefunction expansions, the nuclear matrix

element Mfi will be independent of the electron and

neutrino momenta (those cases of when the expansion

of the wavefunctions going beyond first-order and the

nuclear matrix element no longer independent of the

electron and neutrino momenta are considered later).

The shape of the electron/positron energy spectrum is

thus defined by the combination of the phase space of

the emitted electron/positron and the Fermi factor.

Now consider the example of 64Cu, an interesting

radionuclide used in a number of nuclear medicine

applications and which undergoes all three types of b
decay: b� decay to 64Zn and both b+ decay and elec-

tron capture to 64Ni, as shown in Fig. 4.17.

The 64Cu electron and positron energy spectra are

shown in Fig. 4.18 and the differences in the shapes

of the spectra at low energies due to the differing

electron-nuclear and positron-nuclear Coulomb inter-

actions are readily apparent. The proportion of low-

energy electrons exceeds that of low-energy positrons

due to the nuclear Coulomb attraction and repulsion,

respectively.

Kurie Plot

Additional information about b decay can be had by

analyzing the algebraic rearrangement of (4.93),

g2

2p3�h �hcð Þ6
 !

Mfij j2 E0 � Eeð Þ2

¼
dlfi
dEe

� �
F ZY;Eeð ÞEe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

p
2
4

3
5: (4.94)

By taking the square-root of both sides, one can

form the linearized equation,

K Eeð Þ � C E0 � Eeð Þ (4.95)

where,

K Eeð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dlfi
dEe

� �
F ZY;Eeð ÞEe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

p
vuut

: (4.96)
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18F → 18O;

59Fe → 59Co;

64Cu → 64Zn;

64Cu → 64Ni;

E0 = 1.089 MeV

b –
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b +
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Fig. 4.16 Nuclear Coulomb correction factor used in the phase

space factor for Fermi b decay theory to correct for electron/

positron plane-wave assumption for two different types each of

b� and bþ decays as a function of the total electron/positron

energy (sum of kinetic and rest mass energies) normalized to

the maximum total energy available from the decay kinematics.

F(ZY, Ee) ¼ 1 is shown as a horizontal line
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The constant is,

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2

2p3�h �hcð Þ6
 !

Mfij j2
vuut : (4.97)

A plot of (4.96) vs. electron energy, known as the

Kurie plot, can yield considerable information

concerning a b decay, as shown schematically in

Fig. 4.19. Linear extrapolation to K Eeð Þ ¼ 0 yields

Ee ¼ E0 or the Q of the decay for a zero neutrino

mass. For a non-zero neutrino mass, the Kurie curve

would become nonlinear at high electron energies.

This is, in fact, one method used for determining the

neutrino mass. Another cause for deviation from line-

arity arises from C being a constant as a result of, for

example, the nuclear matrix element being dependent

upon the electron energy. Recall that the independence

of Mfi from Ee was due to the truncation of the electron

wavefunction at zeroth-order due to the assumption of

a point nucleus. When nuclear size is not neglected,

higher orders of the plane wave expansion are required

and the matrix element becomes dependent upon the

electron momentum/energy. Such nonlinearities occur

for forbidden transitions, so-called for their reduced

transition rates.

Decay Constant

In order to calculate the decay constant, l, it should be
recognized that it will be for all final states and is thus

obtained by integrating (4.93) over all possible b par-

ticle total energies,

l ¼
ðE0

me

dEe

dlfi Eeð Þ
dEe

¼ g2

2p3�h �hcð Þ6
 !

Mfij j2
ðE0

me

dEeEe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q

� E0 � Eeð Þ2F ZY;Eeð Þ

¼ g2

2p3�h �hcð Þ6
 !

Mfij j2
ðE0

me

dEeEe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q

� E0 � Eeð Þ2F ZY;Eeð Þ: (4.98)

Using the change of variable x ¼ Ee=me, the tran-

sition rate can be rewritten as,

l ¼ g2 m5
e

2p3�h �hcð Þ6
 !

Mfij j2

�
ðx0
1

dx x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
x0 � xð Þ2 F ZY; xð Þ

¼ g2 m5
e

2p3�h �hcð Þ6
 !

Mfij j2f ZY; x0ð Þ (4.99)
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Fig. 4.17 b� and EC decay

schema for 64Cu
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where

x0 ¼ E0

me

¼ 1þ Q

me

(4.100)

and where the Fermi integral is,

f ZY; x0ð Þ ¼
ðx0
1

dx x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
x0 � xð Þ2 F ZY; xð Þ:

(4.101)

While this integral itself does not have an analytical

solution, an approximation to it can be readily solved
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Fig. 4.18 Calculated electron

and positron energy spectra

for the b� and b+ decays of
64Cu. Curves are not

normalized

Zero neutrino mass

Non-zero neutrino mass

Electron Energy, Ee

E0 − mγ E0

K
(E

e)

Fig. 4.19 Plot of Kurie function vs. electron energy for zero

and non-zero neutrino masses
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should the daughter nucleus have a sufficiently small

ZY such that the Fermi factor is F ZY; xð Þ � 1,

f ZY;x0ð Þ�
ðx0
1

dxx
ffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p
x0�xð Þ2

� x20

ðx0
1

dxx
ffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p
þ
ðx0
1

dxx3
ffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p

�2x0

ðx0
1

dxx2
ffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p

� x20
3

x20�1
� �3

2þ 1

15
x20�1
� �3

2 3x20þ2
� �

�x20
4

ffiffiffiffiffiffiffiffiffiffiffiffi
x20�1

q
2 x20�1
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffi
x20�1

p
60

2x40�9x20�8
� �

: ð4:102Þ

From this result, it can be see that an approximate

proportionality arises for the transition rate,

l / E5
0

30
(4.103)

which predicts a strong dependence of the transition

rate upon the magnitude of the energy released by

the decay and that the transition rate will increase

markedly with released energy. Equation (4.103) is

Sargent’s rule (1933). This strong dependence of the

transition rate upon the decay kinematics must be

addressed if one wishes to compare different b-decays
with varying kinematics. This dependence upon Q can

be removed by defining the comparative half-life as

the product of the physical half-life and the integral of

(4.101),

ft � f ZY; x0ð ÞT1=2

¼ ln 2

g2 m5
e

2p3�h �hcð Þ6
� �

Mfij j2
/ 1

Mfij j2 :
(4.104)

As values of ft range considerably in magnitude, it

is conventional to work with the logarithm of the

comparative half-life, log10 ft (where t is in units of

seconds). This large variation of the comparative half-

life is indicative of the dependence upon the nuclear

wavefunctions, as shown by (4.104). The simplest b
decays (generally involving low-Z nuclei) involve the

greatest overlap of the initial- and final-state nuclear

wavefunctions and, from (4.102), the smallest compar-

ative half-life values. log10 ft values are provided in

the b decay schema and in Table 4.3.

4.3.3.3 Electron Capture

While the decay constant for EC will be calculated in

the same manner as that for b decay, two distinct

differences between EC and b decay should be noted

in the calculation of the matrix element and the phase

space factor. First, the neutrino is the only lepton

in the final state. Second, the electron is present in

the initial state but, because it is an orbital atomic

electron, it cannot be approximated by a plane-wave

wavefunction. The EC transition rate is,

lfi;EC � 2p
�h

1

L3

ð
d3rc�

nuc;f Ucnuc;ice

				
				
2

rf (4.105)

where the plane-wave approximation has been applied

to the neutrino only with, again, truncation to zeroth-

order. As before, the potential is set equal to a cou-

pling constant g within the nucleus and zero beyond,

giving,

lfi;EC � 2p
�h

g2

L3

ð
d3rc�

nuc;f cnuc;i ce

				
				
2

rf : (4.106)

As lower orbitals predominate in electron capture

due to their closer proximity to the nucleus and the

resultant greater degree of overlap between the nuclear

and electronic wavefunctions, we calculate lfi;EC;K for

a K-shell electron. The wavefunction for a 1s-orbital

electron in a hydrogen-like atom with atomic number,

ZX, is,

ce;KðrÞ ¼
ffiffiffiffiffiffiffiffiffi
Z3
X

p r31

s
e
� ZX r

r1ð Þ
(4.107)

where r1 is the Bohr radius and Zx is the atomic

number for the parent nucleus. As r is of the order of

5 fm, the ratio r=r1 � 10�4 allowing the exponential

term to be neglected and the electron wavefunction

treated as being spatially invariant within the nucleus,
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ce;K �
ffiffiffiffiffiffiffiffi
Z3
X

pr31

s
: (4.108)

This simplifies the expression of the EC transition

rate to,

lfi;EC;K � 2g2

�hr31

� �
Z3
X

1

L3
Mfij j2rf (4.109)

where the subscript K for the decay constant indicates

that the calculation is explicitly for the capture of a

K-orbital electron. The differential phase space term

for this 2-body decay is,

drf ¼
1

2p�hcð Þ3 4pL3
� �

p2nedpned Q� Tneð Þ

which, for the massless neutrino, reduces to,

drf
dEne

¼ L3

2p2 �hcð Þ3 E
2
ned E0 � Eneð Þ:

Integrating over the neutrino energy gives the com-

plete phase space factor (as this is a 2-body decay with

a negligible recoil kinetic energy, the neutrino will

take all of the available energy),

rf E0ð Þ ¼ L3

2p2 �hcð Þ3 E
2
0 (4.110)

which yields the electron capture transition rate,

lfi;EC;K ¼ g2

p2�h �hcð Þ3r31

 !
Z3
X Mfij j2E2

0:

As r1 ¼ �hc=ame,

lfi;EC;K ¼ g2m3
ea

3

p2�h �hcð Þ6
 !

Z3
X Mfij j2E2

0: (4.111)

By defining the dimensionless quantity

fEC;K ZX;E0ð Þ ¼ aZXð Þ3 E0

me

� �2

(4.112)

the electron capture decay constant can be written in

the form,

lfi;EC;K � g2m5
e

p2�h �hcð Þ6
 !

Mfij j2fEC;K ZX;E0ð Þ: (4.113)

Note that electron capture decay rate has a Z3-

dependence contained within the fEC;K ZX;E0ð Þ term.

4.3.4 Selection Rules for b Decay

4.3.4.1 Introduction

Having established the kinematic requirements for b
decay to occur and the probability with which it will

occur, it is now necessary to include the two so far

neglected two important and linked features: first, the

constituents of a b decay have angular momentum

and, second, the decaying nucleus has a finite size.

These have significant effects upon the probability of

a given b decay (Lipkin 1962).

Conservation of the total angular momentum in b
decay requires that the difference between the angular

momenta of the parent and daughter states equals the

total angular momentum carried away by the lepton

pair. This investigation of the deep role angular

momentum plays in b decay is begun by considering

the simplest case of b� decay, free neutron decay,

n ! pþ e� þ �ne, as shown in Fig. 4.20. As the neu-

tron is considered to be a point entity, no orbital

angular momentum is involved.

There are two possible final states resulting from

free neutron decay which correspond to the emitted

lepton pair having either antiparallel or parallel spins.

The transition leading to the final state in which the

lepton pair forms a spin singlet (i.e., coupled spin of 0)

is referred to as a Fermi transition, for a reason to be

shown later. As a consequence of the lepton spin

coupling, the spin state of the proton must be the

same as that of the neutron. The other final state, that

in which the lepton pair form a triplet (coupled spin

of 1) and the spin states of the neutron and proton are

consequently opposed, is the result of a Gamow–

Teller transition (Gamow and Teller 1936). In a
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Fermi transition for neutron decay, the operator trans-

forming the neutron spin state to that of a proton is the

unit operator. On the other hand, in the Gamow–Teller

transition the transformation of the neutron spin to the

proton spin is linked through the Pauli spin matrices.

Purely on the basis of this result, one would expect the

probability of a Gamow–Teller transition for neutron

decay to be three times greater than that of the Fermi

transition. This is not quite the case and the ratio of the

Gamow–Teller to Fermi transitions is actually equal to

3c2A, where cA ¼ 1:26, a consequence of the quark

structure of the nucleon.

4.3.4.2 Selection Rules in Nuclear b decay

Introduction

Next consider the role of angular momentum in

nuclear b decay. Throughout this study of nuclear b
decay so far, it has been noted several times that the

finite size of the nucleus has been ignored. This allows

the lepton wavefunction expansions to be truncated to

zeroth-order and, implicitly, for the lepton pair to be

taken to have been emitted from the nucleus with zero

angular momentum. As, classically, l ¼ r� p ¼ 0,

this latter condition is equivalent to saying that the

leptons are emitted radially (i.e., s wave) from the

nucleus as shown in Fig. 4.21. Thus, as in free neutron

decay, the change in nuclear angular momentum will

equal the coupling of the leptons into either a singlet or

triplet state.

When nuclear size is not neglected, there are two

significant consequences to the description of nuclear

b decay. First, non-zero orbital angular momentum is

now made available to the lepton pair and the change

in nuclear angular momentum can be greater than one.

Second, these non-zero orbital angular momentum

b decays contribute to the transition rate through

the higher-order terms of the lepton wavefunctions’

expansions. As these additional contributions are of

the order of qRNð Þl, the non-zero orbital angular

momentum transition will be highly suppressed rela-

tive to the s-wave transitions. Consequently, b decays

Triplet

Fermi Transition

Gamow-TellerTransition

Singlet

+1/2 +1/2 0

+1/2 +1/2 +1

n

n

pp ⎯ne

⎯ne

e–

e–

n p ⎯nee–

Fig. 4.20 b decay in the four-

point vertex approximation of

a free neutron and the

combinations of final spin

states for Fermi and Gamow–

Teller transitions

r

q I = r x p ≠ 0
q I = 0

pe

pe

pne

pne

Fig. 4.21 Effects of angular momentum in b decay. In the first

case, the nucleus is considered as a point and the matrix element

as being independent of electron and antineutrino momenta. The

orbital angular momentum of the exiting leptons is zero. In the

second case, the nucleus has a finite size and the lepton pair

leaves with a non-zero angular momentum
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associated with l ¼ 0 are referred to as being “allowed”

whereas those with l > 0 are labeled as being

“forbidden.”

Of the allowed transitions, the Fermi requirement

of a singlet lepton pair obviously dictates that there be

no change in the nuclear angular momentum between

parent and daughter nuclei, DJ ¼ 0. As the lepton pair

is in the triplet state following a Gamow–Teller decay,

the vector difference between the parent’s and daugh-

ter’s nuclear angular momenta must equal unity and

the change in nuclear angular momentum will be

DJ ¼ 0, 1 but with no 0 ! 0 transition. In either

allowed transition, there will be no change in nuclear

parity due to l ¼ 0.

Allowed Nuclear b decays

As b decay results in the change of isospin-projection,

isospin operators are required in describing these transi-

tions. Recalling the isospin ladder operators of Chap. 3,

t� ¼ t1�it2
2

, one can write operators for Fermi and

Gamow–Teller transitions for the nucleus as summa-

tions of the isospin ladder operators over all nucleons

(i.e., the operators act over the entire nuclear wave-

function),

T� ¼
XA
i¼1

t�ðiÞ Fermi transition (4.114)

Y� ¼
XA
i¼1

sðiÞt�ðiÞ

Gamow � Teller transition:

(4.115)

As the Gamow–Teller transition results in a change

in angular momentum, the Pauli spin matrix operator,

sðiÞ, must be included. Table 4.3 summarizes the

selection rules for Fermi and Gamow–Teller transi-

tions.

Fermi’s b decay theory, to which this discussion

shall return, predicted only DJ ¼ 0 transitions and the

characteristics of the first row of Table 4.3. However,

there was experimental evidence of the b� decay
6He ! 6Liþ e� þ �ne, in which the Jp of the parent

and daughter nuclei are 0+ and 1+ and the change in

nuclear isospin was DTj j ¼ 1. Such a transition would

be forbidden by the Fermi selection rules but obey the

Gamow–Teller selection rule. As there are b decays

that satisfy the Fermi selection rule (e.g., the
14O ! 14N� þ eþ þ ne for which the Jp of the parent

and daughter nuclei are both 0+), both transitions

existed in nature. Moreover, the summary of the tran-

sition rules of Table 4.3 shows that some b decays are

permitted by both Fermi and Gamow–Teller selection

rules, an obvious example being that of free neutron

decay. In other words, every Fermi transition contains

an admixture of a Gamow–Teller transition, except for

a 0 ! 0 transition.

From (4.114), one sees that the Fermi transition

occurs through the isospin ladder operator and,

hence, can only occur between isospin multiplets.

This sets a severe restriction upon this transition

type. As these transitions can only occur between

isobaric analogue states, it is necessary to reflect

upon the energy differences between the nuclear levels

of the parent and daughter nuclei. The energies of

matching levels will increase with atomic number

due to the Coulomb repulsion between protons.

Hence, Fermi transitions cannot occur in b� decays,

as shown by Fig. 4.22. But even within the permitted

b+ decays, Fermi transitions can occur only for nuclei

with more protons than neutrons since, in the case of

N > Z, the isospin of the daughter nucleus exceeds

N = Z

b+

b+

t3 = 0 t3 = +1t3 = −1

Fig. 4.22 Fermi transitions for b+ decay between isobaric

analogue states. Due to the Coulomb interaction between pro-

tons, corresponding energy levels in an isobar multiplet are

higher for an isobar with a greater number of protons

Table 4.3 Selection rules for Fermi and Gamow–Teller

allowed b decays

Transition Change in

Angular

momentum, DJ

Parity DP Isospin DT

Fermi 0 0 0

Gamow–

Teller

|DJ| ¼ 0,1 0 |DT| ¼ 0,1

No 0 ! 0 No 0 ! 0
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that of the parent. In practice, Fermi transitions are

relegated to b+ decays in light nuclei.

The b-decay transition matrix element can be split

up into Fermi and Gamow–Teller components,

Mfij j2 ¼ CFj j2 MFj j2 þ CGTj j2 MGTj j2 (4.116)

where one averages over the initial spin states and

sums over the final spin states,

MFj j2 ¼ 1

2Ji þ 1

X
i;f

cfh jT� cij ij j2 (4.117)

MGTj j2 ¼ 1

2Ji þ 1

X
i;f

cfh jY� cij ij j2: (4.118)

The reduced transition probabilities are defined as,

B�
F ¼ cfh jT� cij ij j2

2Ji þ 1
(4.119)

B�
GT ¼ c2A cfh jY� cij ij j2

2Ji þ 1
: (4.120)

The effects of the nuclear structure upon the

allowed transition are contained within B�
F and B�

GT.

The transition rate of (4.99) can thus be rewritten as,

l ¼ g2 m5
e

2p3�h �hcð Þ6
 !

BF þ BGTð Þf ZY; x0ð Þ (4.121)

Forbidden Nuclear b decays

Forbidden transitions are those with large log ft

values, involve parity change and an angular momen-

tum change of greater than one (Marshak 1942). The

total angular momentum taken by the lepton pair is

J ¼ L
 S, which, for a lepton pair, assumes values of

(l� 1), l, (lþ 1). A first-forbidden transition is one for

l ¼ 1, a second-forbidden transition is one for l ¼ 2,

etc. Parity can change in forbidden transitions as

DP ¼ PfPi ¼ �1ð Þl and l > 0. Table 4.4 presents

the categories of allowed and forbidden b-decay tran-

sitions and the corresponding observed ranges of

log10 ft values, and Table 4.5 gives transition data for

a variety of b decays.

4.3.5 Fermi Theory of b Decay: Part II

4.3.5.1 Four-Fermion Interaction Vertex

Modern weak interaction theory underlying b decay is

based upon the exchange of the massive intermediate

vector bosons, W� and Z0, between fermions. Fermi’s

theory did not include these exchanges but instead

described the weak interaction in analogy to the elec-

tromagnetic interaction (Fig. 4.23) but as occurring at

a vertex at which four fermions meet. Because the

intermediate vector bosons are massive (the W� has

a rest mass of over 80 GeV), the corresponding inter-

action distance is small (of the order of 10�3 fm) and,

hence, Fermi’s use of a point interaction is valid for

b decay. In fact, the Fermi theory represents the low-

energy limit of the modern Glashow–Weinberg–

Salam theory. Here, we look at Fermi’s relativistic

theory applied to the simple case of neutron decay

and the weak interaction.

To work through the Fermi theory, one can begin

by considering it, as did Fermi, as an analogue to

the electromagnetic interaction. Electrons produce an

electromagnetic four-current density of the form,

JEMm ðXÞ¼�ceðXÞgmceðXÞwhich couples to the electro-
magnetic field AmðXÞ to form the electromagnetic Ham-

iltonian density, HEMðXÞ¼�eceðXÞgmceðXÞAmðXÞ.
Before deriving the Fermi theory, recall that the matrix

Table 4.4 Categories of b decay transitions

Decay type DJ DP Typical range

of log10 ft

Superallowed

(Fermi and GT)

0 No 3

Allowed 0, 1; not

0 ! 0

No 4–6

First forbidden 0, 1, 2 Yes 5–10

Second forbidden 2, 3 No 11–16

Third forbidden 3, 4 Yes 17–22

Fourth forbidden 4, 5 No 22–24

122 4 Radioactive Decay: Microscopic Theory



element for b decay contains the wavefunctions of four

spin-½ particles corresponding to,

n ! pþ e� þ �ne

p ! nþ eþ þ ne

pþ e� ! nþ ne:

In each case, there are hadronic and leptonic com-

ponents22 and, hence, weak hadronic and weak lep-

tonic current densities must be constructed. The weak

hadronic current density applied to free neutron decay

is,

VCy
m ðXÞ ¼ cpðXÞgm cnðXÞ (4.122)

and a leptonic current density is,

lCm ðXÞ ¼ ceðXÞgm cneðXÞ: (4.123)

Recall that the Dirac 4 � 4 matrices are,

g0 ¼ 1 0

0 �1

� �

gi ¼ 0 si

�si 0

� �
i ¼ 1; 2; 3

and where the C superscript indicates that the electric

charge of the hadron is being changed. For a point-like

e− e−

Am Wm

d

n p

u

e−

e−

e−e−

ne

ne

Fig. 4.23 The electromagnetic and weak interactions shown as

the exchange of bosons; the Fermi four-fermion vertex approx-

imates the short distance flavor-changing exchange of the inter-

mediate vector W� boson as a single interaction point

Table 4.5 Transition data for b decays (in order of increasing log ft)

Parent Decay mode Daughter Jpi ! Jpf Transition Half-life log10 ft
6He b� 6Li 0þ ! 1þ GT 797 ms 2.77
3H b� 3He 1

2

þ ! 1
2

þ F/GT 12.33 years 3.05
14O b� 14Na

0þ ! 0þ F 71.36 s 3.495
18F 96.86% b+, 3.14% EC 18O 1þ ! 0þ GT 1.8295 h 3.57
11C 99.7% b+, 0.3% EC 11B 3

2

� ! 3
2

�
F/GT 20.39 min 3.592

15O 99.9% b+, 0.1% EC 15N 1
2

� ! 1
2

�
F/GT 2.037 min 3.6

13N 99.8% b+, 0.2% EC 13C 1
2

� ! 1
2

�
F/GT 9.965 min 3.654

64Cu 18% b+, 44.9% EC 64Ni 1þ ! 0þ GT 12.701 h 4.97
64Zn 5.2937.1% b�

14C b� 14N 0þ ! 1þ GT 5,730 years 9.04a

39Ar b� 39K 7
2

� ! 3
2

þ Forbidden 269 years 9.03
10Be b� 10B 0þ ! 3þ 1.6 � 106 years 12.08
40K b� 40Ca 4� ! 0þ 1.26 � 109 years 15.6
115In b� 115Sn 9

2

þ ! 1
2

þ 6 � 1014 years 23.0

aAlthough 14C�!b
�

14 N is an allowed transition, the high log10 ft value is due to a small matrix element

22A full examination of the weak interaction would consider the

pure leptonic currents of, say, m� ! e� þ ne þ �ne or the pure

hadronic currents of Kþ ! pþ þ pþ þ p�:
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interaction between these two currents, a Hermitian

Hamiltonian density can be constructed as,

HðXÞ¼g VCmðXÞlCym ðXÞþlCmðXÞVCy
m ðXÞ

� �
¼g cnðXÞgmcpðXÞcneðXÞgmceðXÞ
�

þceðXÞgmcneðXÞcpðXÞgmcnðXÞ
�

¼gV:

(4.124)

The V denotes this to be a vector interaction as
�cgm c transforms like a polar vector when undergoing

a Lorentz transformation. The first term of this Hamil-

tonian describes b+ decay and electron capture and

the second term describes b� decay. Importantly, the

vector Hamiltonian describes a Fermi transition. To

demonstrate this, consider the nonrelativistic case for

which the nucleon wavefunction is c ¼ f
0

� �
. Then,

the m ¼ 0 component of the nucleon current is,

cpg0cn ¼ cþ
p g0g0cn

¼ fþ
p 0

� � 1 0

0 1

� �
fn

0

� �
¼ fþ

p fn

(4.125)

and the m ¼ 1, 2, 3 space component is,

cpgmcn ¼ cþ
p g0gmcn

¼ fþ
p 0

� � 1 0

0 �1

� �
0 sm

�sm 0

� �
fn

0

� �

¼ fþ
p 0

� � 1 0

0 �1

� �
0

�smfn

� �

¼ fþ
p 0

� � 0

smfn

� �
¼ 0: ð4:126Þ

Hence, DJ ¼ 0. However, as Gamow–Teller transi-

tions exist in nature, it is clear that this vector–vector

(VV) coupling cannot be the only interaction involved

in weak decays. Gamow and Teller noted that other

Lorentz-invariant current densities beyond the VV

coupling of gmgm can be made. From these constructs,

there are five types of current density structure,

Scalar (S) cpcn

Pseudoscalar (P) cpg5cn

(Polar) vector (V) cpgmcn

(Axial) vector (A) cpg5gmcn

Tensor (T) cpgmg
ncn

As has been done for the VV current coupling,

Hamiltonians can be constructed from these struc-

tures. However, a real Hamiltonian must reduce to a

single component and, hence, can only be a scalar or

pseudoscalar quantity. The only resulting possible

couplings yielding such quantities are SS, VV, TT,

AA, PS and VA. A pseudoscalar weak Hamiltonian

was not considered acceptable as it violated parity

conservation (recall Table 3.2 in Chap. 3) and, as the

PS and VA couplings yielded such a parity-nonconser-

ving Hamiltonian, they were rejected until the 1950s.

It was not considered possible that parity would not be

conserved in weak interactions as it was in the strong

and electromagnetic interactions. Up until that time,

the weak interaction was assumed to be made up of SS

and TT components which permitted a Gamow–Teller

transition with a scalar Hamiltonian. But before this is

demonstrated to not be the case, the experimental

evidence of parity violation by the weak interaction

during the 1950s and which led to the appropriate

current coupling is reviewed.

4.3.5.2 Evidence for Parity Nonconservation

in Weak Interactions

The y-t Dilemma

y and t mesons were discovered in cosmic rays (they

are now known as K mesons, or kaons). Experiment

demonstrated that while they had the same mass, spin,

and half-life, they differed in their decay processes,

tþ ! pþ þ p0

yþ ! pþ þ p0 þ p0 or yþ ! pþ þ pþ þ p�:

These are weak decays (with mean lifetimes of the

order of 10�8 s) and it was within this difference

between decay products that a fundamental dilemma

arose. The pion has zero spin and a negative intrinsic

parity as shown experimentally by pion absorption in

deuterium. Hence the dipion final state of t meson

decay has a parity of þ1 whereas the tripion final
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state of y meson decay has a parity of �1. The only

evident difference between the y and t mesons was

their parity, and this indicated the nonconservation of

parity. This result was problematic as parity selection

rules had worked well in nuclear and atomic physics

(i.e., parity was conserved in strong and electromag-

netic interactions). Triggered by this dilemma, Lee

and Yang (1956) postulated the possibility that parity

was in fact not conserved in weak interactions. They

reviewed the results of all known experiments of the

weak interaction performed to that time to detect evi-

dence for parity nonconservation. Their review con-

cluded that all prior experiments had in fact measured

scalar quantities and, thus, unable to detect parity

violation.23 They recommended a number of tests to

determine if parity is conserved in weak interactions.

The critical one was performed by Wu et al. (1957)

and is discussed next.

Parity Nonconservation in b Decay

On the basis of Lee’s and Yang’s suggestions, Wu

et al. (1957) designed and performed a fundamental

experiment to prove the nonconservation of parity by

measuring a pseudoscalar quantity in the Gamow–

Teller b� decay of 60Co to 60Ni of Fig. 4.24. It will

be noted that photon emissions are associated with this

decay.24 The experiment was designed to measure the

expectation value of the scalar product of the nuclear

spin and the electron momentum, which is a pseudos-

calar variable.

The experiment is shown schematically in

Fig. 4.25. The apparatus was designed to measure the

mean value of the pseudoscalar quantity given by the

scalar product of the velocity of the electron emitted in

the b� decay of 60Co and the orientation of the nuclear

spin, v � J. Should parity be conserved, this mean

value would be zero, indicating that b decay is sym-

metric in space. In order to orient the spin of the 60Co

nucleus, a 60Co sample in the form of a 50 mm thick

layer coated on the top of a paramagnetic crystal

cerium magnesium nitrate was cooled to 0.003�K
using adiabatic demagnetization. The entire structure

was encased within a vacuum vessel and surrounded

4+

5+

β−

60Co

60Ni

2+

0+

1.17 Mev

1.33 Mev

γ

γ

Fig. 4.24 60Co b� decay to 60Ni

Vacuum vessel

(Approximate)
Polar Nal Detector

Lucite light guide

Anthracene
crystal

Equatorial Plane
Nal Detector

CeMg nitrate
housing

60Co

Solenoid Magnet

Fig. 4.25 Schematic diagram of experimental apparatus used

by Wu et al. (1957) to detect parity nonconservation in b decay

23However, Cox et al. (1928) had unknowingly provided evi-

dence for parity conservation in their measurements of the

longitudinal polarization of electrons from b decay. This result

was disbelieved at the time due to, for example, the failure of

attempts to reproduce the measurements but by using unpolar-

ized electrons arising from thermionic emission. 24The 1.17 and 1.33 MeV g rays are used in radiotherapy.
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by a solenoid coil that oriented the spin of the 60Co

nuclei.

An anthracene crystal set immediately above the

source detected the b particles and a lucite light guide

carried the scintillation light from the crystal resulting

from electrons bombarding the crystal to an external

photomultiplier tube. Two sodium iodide scintillators

external to the vacuum vessel were used to detect the

degree of 60Co polarization. Regardless of the orienta-

tion of the polarized 60Co spin being parallel or anti-

parallel to the magnetic field, the count-rate from the

equatorial sodium iodide (NaI) scintillator counter

exceeds that of the polar counter and, hence, provides

a measure of the polarization of the nucleus. The

measurement was of the change in b particle counting

rate during the time following when the nuclei were

oriented and then allowed to warm. As the sample

warmed, the polarization of the 60Co nuclei was lost,

as can be seen in the schematic results of Fig. 4.26.

This loss of photon anisotropy was a direct measure of

nuclear polarization. As also shown in the figure, the

detected b particle rate was greater in one orientation

of the 60Co nuclei than in the other: i.e., the emission

of b particles is more favored in the direction opposite

to that of the nuclear spin. Hence, v � J 6¼ 0 and the

nonconservation of parity in b decay was demon-

strated.

Neutrino Helicity

Here, what is properly regarded as one of the most

elegant and cleverest physics experiments ever per-

formed is described. This experiment demonstrated

that the orientation of the spin of a neutrino is antipar-

allel to the neutrino’s direction of motion. As the spin

is an axial vector and the momentum is a polar vector,

a non-zero longitudinal polarization of the neutrino is

indicative of parity violation. The helicity operator for

a fermion is defined as,

@ ¼ p � s
p � sj j ¼ 2p̂ � s (4.127)

where s is the spin operator and p is the momentum

operator. @ has the eigenvectors c�j i, which are states
in which the spin is parallel or antiparallel to the

particle’s direction of motion with eigenvalues �1,

@ c�j i ¼ � c�j i: (4.128)

Parity invariance would require that neutrinos with

positive or negative helicities be equally probable and

any type of measured neutrino helicity asymmetry

would thus reflect parity violation. The Goldhaber–

Grodzins–Sunyar experiment (Goldhaber et al. 1958)

demonstrated this helicity asymmetry for ne. Their
method was to begin with a nucleus with angular

momentum 0 which decays through allowed EC (i.e.,

l ¼ 0) to an excited state of a daughter nucleus with

angular momentum 1. As the decay is through electron

capture, only the daughter nucleus and neutrino are

present in the final state and, hence, the neutrino will

have a fixed energy due to the at-rest initial state and

the two-body final state. The combined angular

momenta of the daughter nucleus (angular momentum

of 1) and neutrino must equal that of the K-shell

electron prior to capture, so one need only measure

the polarization of the daughter nucleus in order to

determine that of the neutrino. The initial nucleus was

0
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Fig. 4.26 Schematic representation of the results of Wu et al.

(1957)
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the metastable isomer 152mEu, produced through neu-

tron bombardment of europium, which undergoes

b� decay and electron capture and Fig. 4.27 shows

that part of the decay chain from 152mEu to 152Sm.

The EC from the 0� state of 152Eu to the excited 1�

state of 152Sm (which is denoted as 152Sm*) requires

the following angular momentum balance. The initial

state angular momentum of ½ (that of the K-shell

electron) must equal the final state angular momentum

made up of the angular momentum of 1 from the
152Sm nucleus and the ½ – spin of the neutrino. This

is shown schematically in Fig. 4.28. As the final state

of EC is a two-body state with the initial state being at

rest, the conservation of momentum requires that the

momenta of the 152Sm* nucleus and of the neutrino

oppose each other. Further, as the conservation of

angular momentum requires that the angular momen-

tum of 152Sm* and the spin of the neutrino oppose each

other, the polarizations of the neutrino and the 152Sm*

nucleus must be the same. Hence, it is only needed to

measure the polarization of the 152Sm* nucleus in

order to determine the neutrino polarization. The mea-

surement of the 152Sm* polarization is enabled by the

fact that 152Sm* decays electromagnetically through

the emission of a g ray to the ground state of 152Sm,

which has zero angular momentum. As the photon is

spin-1, the photon spin must be parallel to the angular

momentum of 152Sm*, as shown in Fig. 4.29. Hence,

photons emitted in the same direction as the 152Sm*

nucleus will have the same polarization, to within a

factor of ½) as the neutrino. As a result, the measure-

ment of the neutrino polarization/helicity reduces to

measurements of the polarization of the photon and its

direction relative to that of the 152Sm* nucleus. How

this was achieved is shown schematically in Fig. 4.30.

The basic structure of the apparatus was of a source

of 152mEu placed within an iron analyzing magnet and

a detector consisting of a sodium iodide scintillator

coupled to a photomultiplier tube. Surrounding the

scintillator was the annular conical frustum made

of Sm2O3 and the scintillator was shielded from the

direct g rays from the 152mEu source by lead. The

g rays from the 152Sm* de-excitation that were trans-

mitted through the analyzing magnet were scattered by

the Sm2O3 annulus through nuclear resonant scattering

to be detected by the scintillator. Recall that the

837 kev
14 %

2+

1−

0−

0+

152Sm

152Eu

T1/2 = 9.3 hours

961 kev
10 % 0.02%

24%

Fig. 4.27 Partial decay schema of 152Eu to 152Sm

Before EC

+1

e− e−

ne
152Sm∗ 152Sm∗ ne

+½ +½

+1−½ −½After EC

Fig. 4.28 This shows schematically the possible arrangement

of the z-components of the spins/angular momenta (full arrows)
and the momenta (thin arrows) of the excited 1� state of the
152Sm* nucleus and neutrino following electron capture by the

0� state of 152mEu. Those on the left correspond to a right-

handed neutrino in which the neutrino spin orientation is paral-

lel to the neutrino’s direction of motion. Those on the right

correspond to a left-handed neutrino in which the neutrino

spin orientation is antiparallel to the neutrino’s direction of

motion
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experiment is to measure the polarization of the

photons and their direction relative to the recoil
152Sm nucleus. Depending upon the orientations of

the directions of the photon polarization and the spin

of the electrons in the magnetized iron, the g rays

resulting from the 152Sm* de-excitation interact with

the electrons in the magnetic material differently. If

the photon and electron spins are parallel, the incident

photon cannot affect the electron spin and does not

interact with the electron. If the electron spin is anti-

parallel to that of the g ray, then the photon induces a

spin-flip in the electron and is consequently absorbed.

Hence, those g rays with spins parallel to those of the

atomic electrons in the magnetic will penetrate the

magnet and exit to impinge on the Sm2O3 scatterer.

By selecting the direction of the field of the analyzing

magnet, it was then possible to select the polarization

of the transmitted g rays.

Next, in order to measure the direction of the g ray

relative to the 152Sm* nucleus recoiling from the emis-

sion of the neutrino as a result of the EC, advantage

was taken over the phenomenon of nuclear resonant

scattering. Consider the case in which a nucleus in an

excited state of energy Ei decays to a state of energy Ef

with the emission of a photon with an energy equal to

DE ¼ Ei � Ef in the reference frame of the nucleus.

Should another nucleus in the state of energy Ef and of

the same species be present in that same reference

frame, it can absorb this photon (to within a natural

transition width, equal to 23 meV for 153Sm*) to yield

an excited nucleus with a state of energy Ei . This is the

phenomenon of resonant absorption fundamental to

the Mössbauer effect. However, an absorbing nucleus

152Sm∗

152Sm

152Sm

+1

Before g  Emission

After g  Emission

+1

+1

g 

g 

Fig. 4.29 This shows schematically the possible arrangement

of the z-components of the spins/angular momenta (full arrows)
and the momenta (thin arrows) of the excited 1� state of the

152Sm* nucleus and neutrino following electron capture by the

0� state of 152mEu. The photon spin is always in the same

direction as the angular momentum of 152Sm*

Pb

Trajectory
of Photon

Shielding

Photomultiplier
Tube

Nal (TI)
Scintillator

Sm2o2 scatterer
(cross-section
of frustum of

conical annulus)

Analysing
magnet

152mEu source

Fig. 4.30 Schematic representation of the Goldhaber–Grod-

zins–Sunyar experiment to measure the neutrino helicity. See

text for description
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in the ground state will not be found in the same

reference frame as the emitting nucleus and, in the

laboratory reference frame, the emitted photon will

not have an energy equal toDE but, rather an energy

reduced by DEð Þ2=2mf, where mf is the rest mass of

the daughter nucleus (this result is derived in the

following section). This energy reduction is that due

to the recoil energy of the daughter nucleus which, in

the case of 152Sm, is equal to about 3.2 eV. This recoil

energy is more than enough to shift the photon energy

to ensure that resonant scattering cannot occur. How-

ever, if the 152Sm* nucleus is already in motion prior to

the g ray de-excitation, it can compensate for this

reduction in photon energy by transferring some of

the recoil energy resulting from the EC and neutrino

emission to the photon (i.e., a Doppler shift). Such a

transfer will be a maximum if the photon is emitted

in the direction of the 152Sm* motion, thus enabling a

reabsorption of the photon by 152Sm in the scatterer

and a reemission (nuclear resonant scatter). Thus,

those photons detected by the NaI scintillator were

generated by those directed in the direction of the
152Sm* motion, the polarization of which were given

by the orientation of the magnetic field in the analyzer.

The analyzing power, equal to the difference in photon

detection rate with the magnetic field directed upwards

and that with the field directed downwards normalized

to the average, was

P ¼ 2
Nþ � N�
Nþ þ N�

¼ 0:017� 0:003

This was a non-zero result; in fact, Goldhaber,

Grodzins and Sunyar determined, from the estimated

three mean free paths for photons through the mag-

netic material, that 68% of the photons were polarized

with negative helicity. Hence, it was demonstrated that

neutrinos had negative helicity (i.e., were left-handed).

This asymmetry, as noted at the beginning of this

discussion, demonstrated the lack of parity conserva-

tion in weak interactions.

4.3.5.3 V-A Interaction

The experimental results clearly demonstrated the

nonconservation of parity in b decay. The helicity

operator @ of (4.127) is not relativistically invariant

for massive fermions; for such fermions, it is always

possible to have a Lorentz boost from one reference

frame in which the helicity is positive/negative

to another reference frame in which the helicity is,

correspondingly, negative/positive. However, this dis-

cussion concerns a massless fermion, the neutrino.

For massless fermions, the operator g5 is equivalent

to the helicity operator @, as shall now be demon-

strated Recall that the Dirac spinor for a particle of

mass m is,

u p;sð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p ws
s�pffiffiffiffiffiffiffiffi
Eþm

p ws

� �
:

Thus, the Dirac spinor of a massless particle is,

u ¼ ffiffiffi
p

p w
s�p
p

� � w
 !

: (4.129)

Applying the helicity operator to this spinor,

@u ¼ �s � p
pj j

ffiffiffi
p

p w
s�p
p

� � w
 !

¼ ffiffiffi
p

p
s�p
pj j

� �
w

s�p
p

� �2
w

0
B@

1
CA

¼ ffiffiffi
p

p s�p
pj j

� �
w

w

 !
:

(4.130)

It is also noted that

g5u ¼ ffiffiffi
p

p 0 1

1 0

� � w
s�p
p

� � w
 !

¼ ffiffiffi
p

p s�p
p

� �
w

w

 !
:

(4.131)

The chirality operator 1� g5ð Þ=2 projects out the

left-handed components of any spinor for massless

particles with negative helicity, i.e., neutrinos. This

can be shown using the Pauli two-component spinors

w� which are described by,

s � p
p

w� ¼ �w� (4.132)
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where � describes the spin orientation of a spin-½

particle. Thus, from (4.129) the corresponding Dirac

spinors are,

u� ¼ ffiffiffi
p

p w�
�w

� �
(4.133)

from which is obtained,

1� g5
2

� �
u� ¼ �u� (4.134)

and

1� g5
2

� �
uþ ¼ 0: (4.135)

Returning to the hadronic and leptonic current den-

sities of b decay given by (4.122) and (4.123) and

using the chirality operator, one can now construct a

leptonic current density which produces left-handed

neutrinos,

lCm ðXÞ ¼ �ceðXÞgm 1� g5ð Þc�neðXÞ (4.136)

and a similar form of the hadronic current density,

VCy
m ðXÞ ¼ �cpðXÞgm 1� cAg5ð ÞcnðXÞ: (4.137)

Both weak currents contain the Fermi polar vector

component and an axial vector component which is the

V-A (pronounced V minus A) structure of the weak

interaction.

4.4 g Transitions and Internal
Conversion

4.4.1 Introduction

The daughter nucleus resulting from a or b decay will

be left in one of three states. It may be stable to

further radioactive decay: the maximum nuclear bind-

ing energy for the isobar series (i.e., the mass para-

bola’s minimum) will have been attained. The

nucleus may still yet undergo further a or b decay.

Finally, the nucleus may be such that while further a
or b decay is not energetically feasible, it is in an

excited state in which one or more nucleons are

placed in higher orbitals above the ground state. The

nucleus can de-excite through the release of electro-

magnetic energy as the nucleon cascades to the

ground state. There are two energy-transfer channels

available. In the first, energy is released in the form of

g rays with energies, in the reference frame of the

nucleus, equal to the energy differences between the

orbitals that the nucleon transits between. This g
transition is a nuclear process. On the other hand,

the second channel is an atomic process and is one

in which the excess nuclear energy is transferred

directly to an atomic electron (through the exchange

of a virtual photon) but without the emission of elec-

tromagnetic energy. Should this transferred energy

exceed the electron binding energy, the electron is

ejected from the atom, inducing a variety of atomic

relaxation processes as discussed in Chap. 6. This

second channel is known as IC.

While a full description of nuclear electromagnetic

processes is inherently quantum-mechanical, consid-

erable understanding can be achieved through the use

of classical and semiclassical theories. As a result,

these will be the foundation of the derivations of the

transition probabilities of g rays and the selection

rules that arise through the conservation of angular

momentum and parity. Links to quantum theory will

be forged where appropriate and necessary. This sec-

tion begins with a review of the kinematics of g decay

and, using classical multi-pole expansions of the elec-

tromagnetic field, derives transition selection rules

(similar to those of b decay) based upon the angular

momentum carried away by the emitted photon (equal

to the difference between those of the initial and final

nuclear states) and parity. These expansions also

allow a derivation of the transition rate (the reciprocal

of the mean lifetime) of a given nuclear state and

this is examined as a function of photon energy

and photon multi-pole type. Following this study of

g decay, IC is reviewed.

4.4.2 g Decay

4.4.2.1 Kinematics

Consider an excited nucleus with energy Ei making a

transition to a state with energy Ef through the
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emission of a g ray. While it is frequently stated that

the g ray is emitted with an energy equal to the energy

difference between the two states, k ¼ DE ¼ Ei�Ef,

this is only true in the reference frame of the nucleus.

In the laboratory reference frame, however, consider-

ation of the simultaneous conservations of energy and

linear momentum shows the nucleus takes some of this

energy difference as a recoil kinetic energy. The con-

servation of energy in the laboratory is,

mi ¼ mf þ kþ Tf : (4.138)

where mi;f are the rest masses of the nucleus before

and after the transition such that DE ¼ mi�mf and Tf

is the nuclear recoil kinetic energy. The conservation

of momentum is,

pf ¼ k: (4.139)

As the nucleus is sufficiently massive to assume

that its recoil is nonrelativistic, then,

DE ¼ kþ k2

2mf

: (4.140)

Solving the resulting quadratic equation

k2 þ 2mfk� 2mfDE ¼ 0 for the photon energy gives

the full result for the photon energy,

k ¼ mf

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

DE
mf

s
� 1

 !
: (4.141)

Expanding the square-root to second order,

k ¼ DE 1� DE
2mf

� �
(4.142)

Hence, the photon energy will be reduced by, to

second order, an amount of DE2=2mf due to the recoil

of the nucleus. But, as DE 	 mf, k ¼ DE can be

assumed in practice.

4.4.2.2 Multi-Pole Radiation

Introduction

The nucleus with excitation energy DE prior to g
decay can be thought of as distributions of electric

charge, current and (as the nucleons have intrinsic

spin) magnetization moving with periodic motion at

a frequency o ¼ DE=�h and confined to a region of the

order of nuclear dimensions. As there is a marked

range in measured g decay lifetimes, selection rules

based upon the conservations of angular momentum

and parity are suggested. Hence, nuclear radiation

emission can be investigated in terms of classical

theory of electric and magnetic multi-poles.

The multi-pole expansion in free space is initially

applied to nuclear g emission in order to first establish

these selection rules and then to calculate energy,

angular momentum and spatial distribution of multi-

pole radiation. This derivation shows, inter alia, that

0 ! 0 g transitions are impossible in g emission,

although they are permissible in IC. These results are

extended to the case of where the source is present and

used to estimate the rate at which g emission occurs as

a function of photon energy, atomic mass number, and

multi-pole order.

Multi-Pole Expansion in Free Space

Modelling the excited nucleus as a conglomeration of

periodically moving electric charges with frequency o
leads to induction and radiation zones based upon the

inequalities of r 	 c=o and r � c=o, respectively. One
can use analogous inequalities of r 	 �hc=k and

r � �hc=k where �hc=k � 200 fm and �hc=k � 20 fm

for 1 and 10 MeV photons, respectively. Within the

induction zone, the electric and magnetic fields are

calculated directly from Maxwell’s equations knowing

the positions and velocities of the moving charges.

Extending into the radiation zone, retardation (i.e.,

the time delay between when an electromagnetic

wave is “emitted” and when it is “detected” at a

distance) must be accounted for. The multi-pole

expansion in the radiation zone in vacuo and with no

source present in the region is evaluated first. In this

case, Maxwell’s equations are,

r � E ¼ 0 (4.143)

r �H ¼ 0 (4.144)

r� E ¼ �m0
]H

]t
(4.145)
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r�H ¼ e0
]E

]t
(4.146)

The fields harmonically vary as e�iot (where it is

understood that the real part of the complex quantity is

taken) so that the time derivatives are,

]E

]t
¼ �ioE (4.147)

]H

]t
¼ �ioH: (4.148)

The curls of the fields can be written as,

r� E ¼ ik
ffiffiffiffiffi
m0
e0

r
H (4.149)

r�H ¼ �ik
ffiffiffiffiffi
e0
m0

r
E: (4.150)

Note that the wave-number k ¼ o=c and the rela-

tionship c ¼ 1=
ffiffiffiffiffiffiffiffiffi
e0m0

p
have been used. In order to

develop the multi-pole expansion of the electromag-

netic field, the Helmholtz equation is derived for the

individual vector components of the fields by taking

the curl of (4.149) and substituting (4.150)

r� r� Eð Þ ¼ ik
ffiffiffiffiffi
m0
e0

r
r�H

¼ k2E: (4.151)

As the vector triple product is,

r� r� Eð Þ ¼ r � Eð Þr �r2E

¼ �r2E
(4.152)

then,

r2 þ k2
� �

E ¼ 0 (4.153)

and, similarly,

r2 þ k2
� �

H ¼ 0: (4.154)

As these are vector equations, it is the Cartesian

coordinates of the electric and magnetic fields that will

satisfy the Helmholtz equation,

r2 þ k2
� �

f ¼ 0 (4.155)

where f is a scalar function. The Helmholtz equation is

solved via a separation of variables and by writing

the scalar function as an expansion in spherical har-

monics,

f rð Þ ¼
X1
l¼1

Xl
m¼�l

flðrÞYlm y;fð Þ: (4.156)

The radial term is solved through a form of (2.104),

r2
d2

dr2
þ 2r

d

dr
þ r2k2 � l lþ 1ð Þ

� �
flðrÞ ¼ 0 (4.157)

which is rearranged and, following the substitution

ulðrÞ ¼
ffiffi
r

p
flðrÞ, arrives at Bessel’s equation for half-

integer order (lþ1/2),

d2

dr2
þ 1

r

d

dr
þ k2 � lþ 1=2ð Þ2

r2

 !
ulðrÞ ¼ 0: (4.158)

From (2.109) to (2.111), one can then write a gen-

eral solution to the Helmholtz equation of the form,

f r; kð Þ ¼ 1ffiffi
r

p
X1
l¼1

Xl
m¼�l

�
AlJlþ1=2 krð Þ

þBlNlþ1= 2 krð Þ
�
Ylm y;fð Þ

(4.159)

where the coefficients Al and Bl are defined by the

boundary conditions. This solution can be simplified

by using the Hankel functions which are defined by,

h
ð1Þ
l krð Þ ¼

ffiffiffiffiffiffiffi
p
2kr

r
Jlþ1=2 krð Þ þ iNlþ1=2 krð Þð Þ (4.160)
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h
ð2Þ
l krð Þ ¼

ffiffiffiffiffiffiffi
p
2kr

r
Jlþ1=2 krð Þ � iNlþ1=2 krð Þð Þ: (4.161)

The general solution to the Helmholtz equation is,

f r;kð Þ¼
X1
l¼1

Xl
m¼�l

Alh
ð1Þ
l krð ÞþBlh

ð2Þ
l krð Þ

� �
Ylm y;fð Þ:

(4.162)

Rather than calculate for the field vector Cartesian

components from the above, a simpler approach origi-

nally devised by Bowkamp and Casimir (1954) is

followed in which the scalar products r � E and

r �H are instead solved for and the electric and mag-

netic fields of the electric and magnetic multi-poles

subsequently extracted.25 To show the suitability of

these substitutions, consider the Laplacian acting upon

the scalar product r �H,

r2 r � Eð Þ ¼ r � r2Eþ 2r � E (4.163)

so that,

r2 þ k2
� �

r � Eð Þ ¼ r � r2Eþ 2r � Eþ k2 r � Eð Þ:
(4.164)

As the second term is equal to zero for the source-

less case and the sum of the first and third terms is

equal to zero, then r � E satisfies the Helmhotz equa-

tion as does r �H.

The multi-pole expansions of the electromagnetic

fields are determined by first calculating for the mag-

netic multi-pole field of order (l, m). The conditions,

r �HðMÞ
lm ¼ l lþ 1ð Þ

k

� Alh
ð1Þ
l krð Þ þ Blh

ð2Þ
l krð Þ

� �
Ylm y;fð Þ

(4.165)

r � EðMÞ
lm ¼ 0 (4.166)

are specified.

The rationale for the inclusion of the l lþ 1ð Þ=k
factor in (4.165) will soon be demonstrated.26 One

can then write a relationship between the scalar prod-

uct r �H and the electric field from (4.149),

ik
ffiffiffiffiffi
m0
e0

r
r �H ¼ r � r � Eð Þ

or

k
ffiffiffiffiffi
m0
e0

r
r �H ¼ L � E (4.167)

where the operator L ¼ �i r�rð Þ has been defined.

It will be noted that this operator is �h�1 times the

quantum-mechanical angular momentum operator

and its properties are briefly reviewed here. From

Chap. 2, one has, for the spherical harmonic,

� ]2

]y2
þ cot y

]

]y
þ 1

sin2 y

]2

]f2

� �
� Ylm y;fð Þ ¼ l lþ 1ð ÞYlm y;fð Þ ¼ L2 Ylm y;fð Þ:

(4.168)

It is apparent that the L operator acts only upon the

angular variables. Raising and lowering operators can

be created from the components of L,

L� ¼ Lx � iLy

¼ e�if � ]

]y
þ i cot y

]

]f

� �
(4.169)

Lz ¼ �i
]

]f
: (4.170)

Applying these to the spherical harmonics,

L�Ylm y;fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�mð Þ l�mþ 1ð Þ

p
Ylm�1 y;fð Þ

(4.171)

25Jackson (1999) provides a detailed derivation.

26As the electric field is transverse to the radius vector, the

magnetic multipole field is sometimes referred to, especially in

engineering textbooks, as a transverse electric (TE) field. Simi-

larly, the electric multi-pole field is also referred to as a trans-

verse magnetic (TM) field.
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LzYlm y;fð Þ ¼ mYlm y;fð Þ: (4.172)

L acts upon the spherical harmonic to transform the

m value leaving the l value unaffected. Consequently,
the electric field of the magnetic multi-pole must

satisfy,

L � EðMÞ
lm ¼ l lþ 1ð Þ

ffiffiffiffiffi
m0
e0

r

� Alh
ð1Þ
l krð Þ þ Blh

ð2Þ
l krð Þ

� �
Ylm y;fð Þ

(4.173)

which demonstrates the convenience of the

l lþ 1ð Þ=k factor introduced in (4.165). Recalling the

properties of the L operator, the electric field of the

magnetic multi-pole can be extracted from this result.

First, as the L operator acts only upon the angular

variables,

L L�EðMÞ
lm

� �
¼ l lþ1ð Þ

ffiffiffiffiffi
m0
e0

r

� Alh
ð1Þ
l krð ÞþBlh

ð2Þ
l krð Þ

� �
LYlm y;fð Þ:

(4.174)

As L L � EðMÞ
lm

� �
¼ L2E

ðMÞ
lm ¼ l lþ 1ð ÞEðMÞ

lm , this

result then gives the electric field of the magnetic

multi-pole as,

E
ðMÞ
lm ¼

ffiffiffiffiffi
m0
e0

r
Alh

ð1Þ
l krð Þ þ Blh

ð2Þ
l krð Þ

� �

� LYlm y;fð Þ ¼
ffiffiffiffiffi
m0
e0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
� Alh

ð1Þ
l krð Þ þ Blh

ð2Þ
l krð Þ

� �
Xlm r;fð Þ

(4.175)

where the normalized vector spherical harmonic is

defined as,

Xlm r;fð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp LYlm r;fð Þ: (4.176)

The normalized vector spherical harmonic has the

orthonormality,ð
dOX�

l0m0 y;fð Þ � Xlm y;fð Þ ¼ dll0dmm0 (4.177)

and

ð
dOX�

l0m0 y;fð Þ � r� Xlm y;fð Þð Þ ¼ 0: (4.178)

The magnetic field of the magnetic multi-pole is

then defined from (4.149),

H
ðMÞ
lm ¼ � i

k

ffiffiffiffiffi
e0
m0

r
r� E

ðMÞ
lm : (4.179)

Repeating the above derivation for the electric and

magnetic fields of the electric multi-pole gives,

H
ðEÞ
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
� Clh

ð1Þ
l krð Þ þ Dlh

ð2Þ
l krð Þ

� �
Xlm y;fð Þ

(4.180)

E
ðMÞ
lm ¼ i

k

ffiffiffiffiffi
m0
e0

r
r�H

ðEÞ
lm : (4.181)

These allow the electric and magnetic fields to be

written as the sums of the multi-pole fields,

E rð Þ ¼
X1
l¼1

Xl
m¼�l

"
i

k
a
ðEÞ
lm r� fl krð ÞXlm y;fð Þð Þ

þ a
ðMÞ
lm gl krð ÞXlm y;fð Þ

#
ð4:182Þ

H rð Þ ¼
X1
l¼1

Xl
m¼�l

"
a
ðEÞ
lm fl krð ÞXlm y;fð Þ

� i

k
a
ðMÞ
lm r� gl krð ÞXlm y;fð Þð Þ

#
(4.183)

where

fl krð Þ ¼ Alh
ð1Þ
l krð Þ þ Blh

ð2Þ
l krð Þ

� �
(4.184)
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and

gl krð Þ ¼ Clh
ð1Þ
l krð Þ þ Dlh

ð2Þ
l krð Þ

� �
: (4.185)

The coefficients a
ðEÞ
lm and a

ðMÞ
lm indicate the contri-

buting amounts of electric and magnetic multi-poles,

respectively, to the fields and are specified by the

boundary conditions and sources as determined

through,

a
ðEÞ
lm flðrÞ ¼ � kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l lþ 1ð Þp ffiffiffiffiffi
e0
m0

r

�
ð
dOY�

lm y;fð Þr � E rð Þ (4.186)

a
ðMÞ
lm glðrÞ ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l lþ 1ð Þp
�
ð
dOY�

lm y;fð Þr �H rð Þ: (4.187)

Equations (4.182) and (4.183) demonstrate the dual

transformation relationship between the fields of an

electric multi-pole and those of a magnetic multi-pole

through which one can transfer from one multi-pole to

another by interchanging the electric and magnetic

fields and changing the sign of the electric field.

Before concluding this introduction to multi-pole

radiation, consider one characteristic of the vector

spherical harmonic which will be of importance. This

is, that for l ¼ 0,

� i r�rð ÞY00 y;fð Þ ¼ 0 (4.188)

with the result that there is no multi-pole radiation for

l ¼ 0. In other words, there is no transition between

nuclear states both with l ¼ 0 that can result in g-ray
emission

Energy and Angular Momentum of Multi-Pole

Radiation

The energy and angular momentum of multi-pole

radiation are derived through calculating the electric

and magnetic fields of the electric and magnetic multi-

poles in the radiation zone. This result will then

be used to demonstrate that the radiation emitted by

a multi-pole of order (l, m) carries away m�h of the

z-component of angular momentum for each emitted

photon of energy �ho (in the reference frame of the

nucleus). Begin by calculating the multi-pole fields in

the radiation zone, within which the asymptotic forms

of the spherical Bessel functions are, from Chap. 2,

jl krð Þ ! sin kr� lp=2
� �

kr
kr ! 1 (4.189)

yl krð Þ ! � cos kr� lp=2
� �

kr
kr ! 1 (4.190)

and the Hankel functions become,

h
ð1Þ
l krð Þ � sin kr� lp =2

� �
kr

� i
cos kr� lp =2
� �

kr
� �ieikr

� �i lþ1ð Þ e
ikr

kr
kr � 1

(4.191)

h
ð2Þ
l krð Þ � sin kr� lp=2

� �
kr

þ i
cos kr� lp=2
� �

kr

� �il
e�ikr

kr
kr � 1:

(4.192)

These far-field approximations are then applied to

the previously-derived expressions for the electric and

magnetic fields of multi-pole radiation. From (4.175),

the electric field of the magnetic multi-pole in the

radiation zone is,

E
ðMÞ
lm ¼ �il

ffiffiffiffiffi
m0
e0

r

� B1e
�ikr þ iA1e

ikr
� �

kr
Xlm r;fð Þ

kr � 1

(4.193)

and, for an outgoing wave,

E
ðMÞ
lm ¼ �i lþ1ð Þ

ffiffiffiffiffi
m0
e0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p eikr

kr
Xlm y;fð Þ

kr � 1

(4.194)
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and the magnetic field of the magnetic multi-pole will

be given by,

H
ðMÞ
lm ¼

ffiffiffiffiffi
e0
m0

r
E
ðMÞ
lm � r̂: (4.195)

From (4.180), the magnetic field of the electric

multi-pole in the radiation zone is,

H
ðEÞ
lm ¼ �il

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p Dle
�ikr þ iC1e

ikr
� �

kr
� Xlm y;fð Þ kr � 1

(4.196)

and, for an outgoing wave,

H
ðEÞ
lm ¼ �i lþ1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l lþ 1ð Þ
p eikr

kr
Xlm y;fð Þ kr � 1

(4.197)

and the electric field of the electric multi-pole is,

E
ðEÞ
lm ¼ il

k2

ffiffiffiffiffi
m0
e0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
r

� eikr

r
Xlm y;fð Þ

� �
(4.198)

As these are in the far-field region, the curl is

calculated to powers no greater than 1=r and the iden-

tity r� L ¼ �irr2 �r 1þ r ]
]r

� �
used to give, for

the electric field of the electric multi-pole,

E
ðEÞ
lm ¼ �i lþ1ð Þ

ffiffiffiffiffi
m0
e0

r
eikr

kr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
r̂� Xlm y;fð Þ

� 1

k
rr2 �r� �

Ylm y;fÞ
�

ð4:199Þ
�

where r̂ is the unit radial vector. The second term can

be neglected,

E
ðEÞ
lm ¼ �i lþ1ð Þ

ffiffiffiffiffi
m0
e0

r
eikr

kr

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
r̂� Xlm y;fð Þ

� �
: (4.200)

Using (4.198),

E
ðEÞ
lm ¼

ffiffiffiffiffi
m0
e0

r
H

ðEÞ
lm � r̂: (4.201)

It is now demonstrated that the radiation emitted

by a multi-pole of order (l,m) carries away m�h of the

z-component of angular momentum for each photon of

energy �ho, doing so for a pure multi-pole field (in this

case, the electric). Following the example of Jackson

(1999), consider the electromagnetic field to be a

linear superposition of electric multi-poles of order

(l,m) but with the requirement that l be the same for

the multi-poles but each have a different value of m.

The magnetic field of a pure electric multi-pole (i.e.,

a
ðMÞ
lm ¼ 0Þ is, assuming a harmonic time dependence,

H rð Þ ¼
Xl
m¼�l

a
ðEÞ
lm h

ð1Þ
lm krð ÞXlm y;fð Þe�iot (4.202)

which, in the radiation zone is,

H rð Þ ¼
Xl
m¼�l

a
ðEÞ
lm h

ð1Þ
lm krð ÞXlm y;fð Þe�iot

� �i lþ1ð Þ e
ikr

kr
kr � 1

(4.203)

and the corresponding electric field is,

E rð Þ ¼ i

k

ffiffiffiffiffi
m0
e0

r
r�H rð Þ: (4.204)

The time-averaged energy density is,

u ¼ 1

4

h
e0E rð Þ � E� rð Þ þ m0H rð Þ �H� rð Þ

i
(4.205)

and the change in energy with radius is,

dE

dr
¼ m0

2k2
Xl
m¼�l

a
ðEÞ
lm

			 			2: (4.206)

In the case of the field being made up of electric and

magnetic multi-poles, this would be,
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dE

dr
¼ m0

2k2
Xl
m¼�l

a
ðEÞ
lm

			 			2 þ a
ðMÞ
lm

			 			2� �
: (4.207)

Next consider the angular momentum density which

one obtains from the electromagnetic field linear

momentum. This follows from the Lorentz equation

and Newton’s second law for a spatially-distributed

charge,

dP

dt
¼
ð
d3r reEþ J� Bð Þ (4.208)

where re and J are the electric charge and current

densities. Using Maxwell’s equations for the case of

the fields in free space and with a source present,

r � E ¼ re
e0

(4.209)

J ¼ r�H� e0
]E

]t
(4.210)

the integrand can be rewritten, using e0m0 ¼ 1=c2, as,

reEþ J� B

¼ e0 E r � Eð Þ þ B� ]E

]t
� c2B� r� Bð Þ

� �
:

(4.211)

With some additional manipulations, the momen-

tum of the electromagnetic field arises from the vol-

ume integral,

p ¼ e0

ð
d3r E� Bð Þ

¼ 1

c2

ð
d3r E�Hð Þ:

(4.212)

The angular momentum then follows as,

m ¼ 1

c2

ð
d3r r� E�Hð Þ (4.213)

from which one can obtain the time-averaged angular

momentum density,

m ¼ 1

2c2
Re
h
r� E�H�ð Þ

i
: (4.214)

Expanding the vector triple cross product,

r� E�H�ð Þ ¼ r �H�ð ÞE� r � Eð ÞH�, leads to,

m ¼ m0
2o

Re
h
H� L �Hð Þ

i
: (4.215)

The change in the z-component of the angular

momentum with radius is,

dmz

dr
¼ m0

2ok2
Xl
m¼�l

m a
ðEÞ
lm

			 			2: (4.216)

Comparing this result with the derivative of (4.207)

leads to,

dmz

dr
¼ m

o
dE

dr

¼ �hm

�ho
dE

dr
: (4.217)

This result is interpreted as representing that, for

multi-pole radiation of order (1, m), a photon emitted

with an energy �ho carries away m�h units of the

z-component of angular momentum.

Selection Rules for Multi-Pole Radiation

In a radiative transition, the state changes from ci to

cf and the overall angular momentum is conserved. If

the quantum carries away angular momentum l with

z-component m (all in units of �h), then the conserva-

tion of angular momentum stipulates that,

Ji ¼ l
 Jf (4.218)

where Ji and Jf are the total angular momenta of the

initial and final nuclear states leading to multi-pole

radiation of order (l,m) being emitted only if,

Ji � Jfj j � l � Ji þ Jfj j (4.219)

and

mz;i �mz;f ¼ m (4.220)
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As, from (4.188), there is no l ¼ 0 multi-pole radi-

ation, a radiative transition between nuclear states

with Ji ¼ Jf ¼ 0 will be forbidden. In addition to this

angular momentum selection rule, an additional selec-

tion rule arises as a result of the conservation of parity.

The parity of the final state is equal to the product of

the parity of the final nuclear state and that of the

multi-pole radiation. That is, the matrix element of

the transition will be non-zero when,

Pi ¼ Pf for even� parity radiation (4.221)

Pi ¼ �Pf for odd� parity radiation: (4.222)

The magnetic field can be used to specify the parity,

the rationale for which becomes apparent by noting

that the matrix element of the transition is proportional

to
Ð
d3rcf J � Að Þci (where the J is the current opera-

tor and is the electromagnetic vector potential). A has

the same parity as the electric field, E. As J is a polar

vector, it will have negative parity and the scalar

product J � A will thus have the opposite parity of

the electric field. Because the curl operation changes

parity, we then have the result that J � A has the same

parity asH. Consider, first, the electric multi-pole field

where the electric and magnetic fields of the multi-

pole are

H
ðEÞ
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
Clh

ð1Þ
l krð Þ þ Dlh

ð2Þ
l krð Þ

� �
Xlm y;fð Þ

and

E
ðEÞ
lm ¼ i

k

ffiffiffiffiffi
m0
e0

r
r�H

ðEÞ
lm :

As the spherical harmonic is Xlm y;fð Þ ¼
iffiffiffiffiffiffiffiffiffi

l lþ1ð Þ
p r�rð ÞYlm y;fð Þ and r�r is invariant

under inversion, the parity properties of H
ðEÞ
lm are

given by those of the spherical harmonic, Ylm r;fð Þ,
which has parity �1ð Þl and the parity of electric multi-

pole radiation will be given by �1ð Þlþ1
. Table 4.6

summarizes the selection rules for multi-pole electro-

magnetic radiation. Let us use a pragmatic example to

describe these selection rules. Consider an excited

nuclear state with Ji ¼ 1=2 which de-excites to a state

with Jf ¼ 3=2 through the emission of a g ray. From

(4.219), l ¼ 1, 2 so that the only allowed transitions

are dipole (l ¼ 1) and quadrupole (l ¼ 2). If the pari-

ties of the initial and final nuclear states are the same

(Pi ¼ Pf ), then only the magnetic dipole (M1) and

electric quadrupole (E2) transitions can occur. Should,

the parities of the initial and final nuclear states differ

(Pi ¼ �Pf ), then only electric dipole (E1) and mag-

netic quadrupole (M2) transitions are allowed.

Angular Distributions of Multi-Pole Radiation

From the above, it can be seen that the time-averaged

power radiated will be proportional to Xlm y;fð Þj j2.
Table 4.7 presents the angular distributions of some

dipole and quadrupole radiations and which are shown

in Fig. 4.31. The sum of the squared magnitudes of the

vector spherical harmonics for a set of multi-poles of

order l is,

Table 4.6 Selection rules for electromagnetic multipole radia-

tion

Rule Dipole Quadrupole Sextupole Octupole
E1 E2 E3 E4

E1 E2 E3 E4

DP 1 0 1 0

|DJ| 1 2 3 4

M1 M2 M3 M4

DP 0 1 0 1

|DJ| 1 2 3 4

Table 4.7 Angular distributions of dipole and quadrupole radiations

Type l m
0

�1 �2

Dipole 1 3

8p

� �
sin2y

3

16p

� �
1þ cos2yð Þ –

Quadrupole 2 15

8p

� �
sin2ycos2y

5

16p

� �
1� 3cos2yþ 4cos4yð Þ 5

16p

� �
1� cos4yð Þ
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Xl
m¼�l

Xlm y;fð Þj j2 ¼ 2lþ 1

4p
(4.223)

which demonstrates that the radiation is isotropic from

a radiating source consisting of this set of multi-poles

with multi-poles added incoherently.

Multi-Pole Expansion With Source Present

It is necessary to connect the multi-pole fields with the

sources that have generated them; i.e., the coefficients

a
ðEÞ
lm and a

ðMÞ
lm are related to the source that has produced

the multi-pole radiation. The source, which is the

nucleus, is considered to be a harmonically-varying

distribution of charge, current and magnetization,

r r; tð Þ ¼ r rð Þe�iot (4.224)

J r; tð Þ ¼ J rð Þe�iot (4.225)

M r; tð Þ ¼ M rð Þe�iot (4.226)

where it is understood that the real part of the complex

quantities are to be taken.27 Maxwell’s equations are

now,
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Fig. 4.31 Angular distributions of dipole and quadrupole radiations

27It is also possible to simply write, for example,

rðr; tÞ ¼ 1=2 r rð Þe�iot þ r� rð ÞeþiotÞ�
to achieve the same result.
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r � E ¼ r
e0

(4.227)

r � B ¼ 0 (4.228)

r� E ¼ ioB (4.229)

r� B ¼ m0 Jþr�Mð Þ � i
o
c2

E: (4.230)

Some simplification is possible by defining

H
0 ¼ B=m0 and E

0 ¼ Eþ i
oe0

J to yield the set of equa-

tions,

r � E0 ¼ 0 (4.231)

r �H0 ¼ 0 (4.232)

r� E ¼ i

oe0
r� Jþ om0H

0
(4.233)

r�H
0 ¼ r �M� ik

ffiffiffiffiffi
e0
m0

r
E

0
: (4.234)

From the two curl equations,

r2þk2
� �

E
0 ¼�ik

ffiffiffiffiffi
m0
e0

r
r� Mþr�J

k2

� �
(4.235)

r2 þ k2
� �

H
0 ¼ �r � Jþr�Mð Þ: (4.236)

As before, the scalars r � E0
and r �H0

are solved

for. Using (4.163), (4.235) and (4.236), and the rela-

tionship for an arbitrary vector field F,

r � r � Fð Þ ¼ r�rð Þ � F
¼ iL � F (4.237)

one obtains the inhomogeneous equations,

r2 þ k2
� �

r � E0 ¼ om0L � Mþr� J

k2

� �
(4.238)

r2 þ k2
� �

r �H0 ¼ �iL � Jþr�Mð Þ: (4.239)

These can be solved using Green’s functions (cf

Chap. 2). However, as the solution is involved, it will

not be repeated here for clarity; the interested reader is

referred to Chap. 9 of Jackson (1999) or Chap. XII of

Blatt and Weisskopf (1979). The result of the calcula-

tion is that exact results of the multipole coefficients

are given by the expressions,

a
ðEÞ
lm ¼ �i

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp ð

d3rYlm y;fð Þ

� cr rð Þ ]
]r

rjl krð Þð Þ þ ik r � J rð Þð Þjl krð Þ
�ikr � r�Mð Þjl krð Þ

8<
:

9=
;

(4.240)

a
ðMÞ
lm ¼ �i

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp

�
ð
d3rYlm y;fð Þ

r � r� J rð Þð Þjl krð Þþ
r �M rð Þ ]

]r
rjl krð Þð Þ

� k2 r �M rð Þð Þjl krð Þ

8>><
>>:

9>>=
>>;:

(4.241)

Significant simplifications of these exact results are

possible when it is recognized that the source dimen-

sions (i.e., nuclear size) are much smaller than the

photon wavelength. In this case, the small-argument

limit of the spherical Bessel function,

jlðxÞ � xl

2lþ 1ð Þ!! x 	 1 (4.242)

can be used. Keeping the smallest powers in kr in
the integrals, simplified expressions for the multi-pole

coefficients of the form are obtained,

a
ðEÞ
lm ffi �i

cklþ2

2lþ 1ð Þ!!

ffiffiffiffiffiffiffiffiffiffi
lþ 1

l

r
Qlm þ Q

0
lm

� �
(4.243)

a
ðMÞ
lm ffi i

cklþ2

2lþ 1ð Þ!!

ffiffiffiffiffiffiffiffiffiffi
lþ 1

l

r
Mlm þM

0
lm

� �
: (4.244)

Qlm and Mlm are the electric and magnetic multi-

pole moments, respectively, given by,

Qlm ¼
ð
d3r rl Y�

lm y;fð ÞreðrÞ (4.245)
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Mlm ¼
ð
d3r rl Y�

lm y;fð Þr � r� J rð Þð Þ
lþ 1

: (4.246)

The integrations are over the nuclear volume. In

addition to these radiation contributions, it is also

necessary to consider those linked to the nucleons’

intrinsic spins which, classically, produce a spatial

distribution of magnetization M changing with time.

The corresponding electric and magnetic multi-pole

moments are,

Q
0
lm ¼ �i

k
lþ 1

� �ð
d3r rl Y�

lm y;fð Þ

� r � r�Mð Þ
(4.247)

M
0
lm ¼ �i

ð
d3r rl Y�

lm y;fð Þr �M (4.248)

The multi-pole expansions of the electric and mag-

netic fields are,

E rð Þ ¼
X1
l¼1

Xl
m¼�l

a
ðEÞ
lm E

ðEÞ
lm rð Þ þ a

ðMÞ
lm E

ðMÞ
lm rð Þ

� �
(4.249)

H rð Þ ¼
X1
l¼1

Xl
m¼�l

a
ðEÞ
lm H

ðEÞ
lm rð Þ þ a

ðMÞ
lm H

ðMÞ
lm rð Þ

� �
(4.250)

Transition Rates for Multi-Pole Radiation

The above derivations of the multi-pole transitions can

be used to estimate the rate at which a nucleus can

decay through g emission and what nuclear character-

istics dictate this rate. The power radiated in multi-

pole radiation is,

PðEÞ l;mð Þ ¼ 1

2k2

ffiffiffiffiffi
m0
e0

r
a
ðEÞ
l;m

			 			2
Electric radiation

(4.251)

PðMÞ l;mð Þ ¼ 1

2k2

ffiffiffiffiffi
m0
e0

r
a
ðMÞ
l;m

			 			2
Magnetic radiation:

(4.252)

As the transition rate will be this radiated power

divided by the photon energy �ho, the transition rates

for El and Ml radiation are, respectively,

lðEÞ l;mð Þ ¼ 8p lþ 1ð Þ
�hl 2lþ 1ð Þ!!ð Þ2

o
c

� �2lþ1

Qlm þ Q
0
lm

		 		2
(4.253)

lðMÞ l;mð Þ ¼ 8p lþ 1ð Þ
�hl 2lþ 1ð Þ!!ð Þ2

o
c

� �2lþ1

Mlm þM
0
lm

		 		2
(4.254)

The moments are calculated as follows (see, e.g.,

Segrè (1977)). From (4.245) to (4.248), for a nucleus

of mass m with A nucleons and Z protons,

Qlm ¼ e
XZ
n¼1

ð
d3r rln Y

�
lm yn;fnð Þc�

f rð Þci rð Þ (4.255)

Mlm ¼ � l

lþ 1

� �
e�h

mnc

� �

�
XZ
n¼1

ð
d3r rln Y

�
lm yn;fnð Þr� c�

f rð ÞLnci rð Þ� �
(4.256)

Q
0
lm ¼ �i

o=c
� �
lþ 1

e�h

2mnc

� �XA
n¼1

ð
d3r rln Y

�
lm yn;fnð Þ

� r � c�
f rð Þ rn � sð Þnci rð Þ� �

(4.257)

M
0
lm ¼ � e�h

2mnc

� �

�
XA
n¼1

ð
d3r mn r

l
nY

�
lm yn;fnð Þr� c�

f rð Þsnci rð Þ� �
(4.258)

where mn is the magnetic moment of the nth nucleon

in units of e�h=2mnc. For the moments due to charge,

the summations are over the protons only; for those

due to spin, the summations are over all nucleons.

The transition probabilities are obtained by averaging

lðEÞ l; mð Þ and lðMÞ l; mð Þ over the initial mi states and

summed over the final mf states,
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lðEÞðlÞ ¼ 1

2Ji þ 1

X
mi

X
mf

lðEÞ l;mð Þ (4.259)

and

lðMÞðlÞ ¼ 1

2Ji þ 1

X
mi

X
mf

lðMÞ l;mð Þ: (4.260)

A transition rate calculation based upon the above

expressions for the multi-pole moments is clearly

quite involved and requires detailed knowledge of

the nucleus. However, calculations for simple scenar-

ios are possible, e.g., that of a single nucleon outside

closed shells making an electromagnetic transition.

Following the approach of Weisskopf (1951), a num-

ber of simplifications can be employed in order to

solve for the moments so as to obtain expressions for

electric and magnetic transition rates. The results are,

while not accurate, elucidating and useful. One begins

by invoking the independent-particle model of Chap. 3

in which there is a single nucleon outside a closed

shell. Consider the case of the single proton being in

an initial state with orbital angular momentum l
making a transition to a final state with zero orbital

angular momentum through the emission of electric

multi-pole radiation of order l. Further, assume that the

nucleon’s spin is parallel to the orbital angular

momentum (i.e., the transition is parity favored).

Then the nucleon wavefunctions in the initial and

final states are,

ci ¼ giðrÞYlm y;fð Þs (4.261)

cf ¼
gfðrÞffiffiffiffiffiffi
4p

p s: (4.262)

where s is a spin function. If these are substituted into

the expression for Qlm given by (4.255) (only the first

term in the summation contributes), then,

Qlm ¼ effiffiffiffiffiffi
4p

p
ð1
0

dr rlþ2giðrÞgfðrÞ: (4.263)

A rough order-of-magnitude estimate of this inte-

gral is obtained by assuming that radial components of

the nucleon wavefunctions are,

giðrÞ ¼ gfðrÞ ¼ C r < RN

¼ 0 r > RN

(4.264)

where RN is the nuclear radius. From the normaliza-

tion of the wavefunctions, C ¼
ffiffiffiffiffiffiffiffiffiffi
3


R3
N

q
and we obtain

an approximation to the electric multi-pole moment,

Qlm � 3effiffiffiffiffiffi
4p

p Rl
N

lþ 3
: (4.265)

The other moments are determined from ratios with

this expression. Note that, in (4.256), the divergence

operator can be approximated by 1=RN and that the

operator Ln will approximately cancel the (l þ 1)

factor in the denominator. These then provides the

approximate ratio,

Mlm

Qlm
� �hc

mnRn

: (4.266)

The magnetic multi-pole moment M
0
lm, which is

due to the nucleons’ spins, is roughly 2–3 times greater

than that due to the nucleon orbits, Mlm, as can be

surmised by comparing the ratio L=lþ 1 with mns.
Hence, it would not be unreasonable to approximate

the ratio,

Mlm þM
0
lm

		 		2
Qlmj j2 � 10

�hc

mnRn

: (4.267)

The spin electric multi-pole moment Q
0
lm can be

neglected in this approximation as can be shown by

replacing the divergence operator in (4.257) with l=RN

to find that,

Q
0
lm

Qlm
� �ho

mn

� 10�3 (4.268)

for photon energies typical in g transitions. Using

these approximations and (3.121), the transition prob-

abilities for the Weisskopf single-proton model are,

for photon energy k (replacing �ho) in MeV,

lðEÞðlÞ ¼ 4:4 lþ 1ð Þ
l 2lþ 1ð Þ!!ð Þ2 1:2ð Þ2l k

197

� �2lþ1

� A2l=3102ls�1 ð4:269Þ

lðMÞðlÞ¼ 1:9 lþ1ð Þ
l 2lþ1ð Þ!!ð Þ2 1:2ð Þ2l�2 k

197

� �2lþ1

�Að2l�2Þ=3102ls�1

¼ 0:3

A2=3
lðEÞðlÞ ð4:270Þ
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These transition probabilities are plotted in

Figs. 4.32 and 4.33.

The general characteristics of these transition prob-

abilities are as follows:

� The transition probabilities increase with g-ray
energy, with the rate of increase increasing with

multi-pole order.

� For a given g-ray energy, both transition probabil-

ities decrease by up to about six orders-of-magnitude

for each unit increase in l – hence, the dipole and

quadrupole transitions will dominate.

� With the exception of the magnetic dipole radia-

tion, the transition probability increases with

atomic mass number.

� The magnetic multi-pole transition probability is at

least an order-of-magnitude less than that of the

electric multi-pole (for a given multi-pole order

and photon energy) and decreases with increasing

atomic number.

It is important to recall the approximations used

to calculate the multi-pole moments, including the

assumption of a single transiting nucleon, in the deri-

vation of these multi-pole transition rates. Hence, one

should not expect these results to be accurate in pre-

dicting g-transition rates. In fact, Blatt and Weisskopf

suggest that the above expressions overestimate the

actual transition rates by factors of up to three orders-

of-magnitude. Even despite the size of this error, the

calculations are of some benefit, if not just for under-

standing the qualitative aspects of g-transition rates,

but when one recognizes that for g-ray energies of less
than about 1 MeV, there is a six orders-of-magnitude

decrease in the multi-pole transition rates per unit

increase in multi-pole order.

4.4.3 Internal Conversion

4.4.3.1 Introduction

In the discussion of g decay, the excited nucleus was

treated in isolation. One of the consequences of this
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Fig. 4.32 Logarithm of the electric multi-pole transition prob-

ability (in s�1) as a function of g-ray energy for multi-pole

orders of 1 through 5 and nuclei with atomic mass numbers of

20, 50, 130, and 220 calculated from the Weisskopf single-

proton model. Internal conversion contributions are excluded
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consideration was that it was impossible for an

excited nucleus to make a transition between states

each with zero angular momentum through the emis-

sion of electromagnetic radiation. In reality, how-

ever, the nucleus is not isolated but is contained

within the atom and interacts with the orbiting atomic

electrons. This interaction provides two additional

channels for the excited nucleus to lose energy: IC,

in which there is direct energy-transfer to an atomic

electron through a virtual photon (i.e., it is not an

internal photoelectric process in which a photon is

emitted from the nucleus and absorbed by the elec-

tron), and, should the energy of the transition exceed

twice the electron rest mass, internal pair production.

The latter process is infrequent and is not considered

here.

As noted earlier, if the energy of the transition

exceeds the atomic electron binding energy (which is

usually the case), the electron is ejected. The IC coef-

ficient is the ratio of the mean number of IC electrons

ejected to the mean number of g rays emitted,

a ICð Þ ¼ NICe

Ng
: (4.271)

The coefficient is decomposed into those contribu-

tions from electrons in different orbitals,

a ICð Þ ¼ a ICð Þ
K þ a ICð Þ

L þ a ICð Þ
M þ � � �: (4.272)

A full and proper evaluation of the transition prob-

abilities of the previous section would include a mul-

tiplicative factor of 1þ a ICð Þ to include the

contributions of IC.

The contributions of IC to internal radiation dosim-

etry are significant (Smith et al. 1965). The ejected IC

electrons travel short distances in tissue transferring

energy to tissue as they slow down and, hence, pro-

duce an absorbed dose. The immediate atomic conse-

quence of the ejection of the IC electron is that a

vacancy is produced amongst the atomic electron
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pole orders of 1 through 5 and nuclei with atomic mass numbers

of 20, 50, 130, and 220 calculated from the Weisskopf single-

proton model. Contributions from internal conversion are

excluded

144 4 Radioactive Decay: Microscopic Theory



orbitals. This vacancy is filled by the transition of an

electron from another orbital and the consequent emis-

sion of a characteristic (or fluorescent) X-ray or an

Auger electron cascade. These also contribute to the

absorbed dose to tissue and are the subjects of Chap. 6.

4.4.3.2 Calculation of the Internal Conversion

Coefficient

Introduction

A full calculation of the IC coefficient will be quite

involved, requiring detailed knowledge of the pre- and

posttransition nuclear wavefunctions. Here, a simpli-

fied calculation of the conversion coefficient will be

presented. However, it is one which is sufficient to

demonstrate the gross dependence of the coefficient

upon multi-pole order, excitation energy and atomic

number. Tables of IC coefficients have been provided,

for example, by Hager and Seltzer (1968) and current

values are provided by the National Nuclear Data

Center website http://www.nndc.bnl.gov/hsicc/; Wid-

man and Powsner (1970) have provided tables of these

coefficients for internal absorbed dose calculations.

A critical evaluation of published IC coefficients has

been provided recently by Kibédi et al. (2007).

The main contributor to the IC process is the static

Coulomb interaction between the protons and the

atomic electron. As IC will be more probable for

K-shell electrons due to the greater overlap of nuclear

and electronic wavefunctions, a calculation of a ICð Þ
K is

developed here using perturbation theory. The calcu-

lation is simplified by assuming that the ejected elec-

tron is nonrelativistic and, thus, can be modeled by a

plane wave. The initial wavefunction is the product of

the nuclear initial wavefunction and that of the K-shell

electron and the final wavefunction is the product of

the nuclear final wavefunction and the electron plane

wave. Hence,

ci ¼ cnuc;i

ffiffiffiffiffiffiffiffiffi
Z3

p r31

s
e�ðZR=r1Þ (4.273)

where r1 is the Bohr radius and,

cf ¼ cnuc;f

1

L3=2

� �
ei

pe�R
�hcð Þ (4.274)

where R is the position vector of the electron. The

Coulomb interaction potential between the protons

and the atomic electron is,

U ¼ a�hc
XZ
i¼1

1

R� rij j (4.275)

where ri is the position vector of the 1th proton.

Calculation of the Matrix Element

The matrix element is,

Mif ¼ a�hc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z3

pL3r31

s XZ
n¼1

ð
d3R

ð
d3rnc

�
nuc;f rnð Þ

� e�
pe�R
�hcð Þ 1

R� rnj j � e� ZR=r1ð Þcnuc;i rnð Þ
(4.276)

where the integration over R is over the electron

position. The double integral is solved by first

using the substitution of variable R0 ¼ R� rn and

noting that Zr � r1 which allows the approximation

e� ZR=r1ð Þ � 1,

010−4

10−3

10−2

10−1

1
I = 2

I =1

10

102

103

0.25
Internal Conversion Electron Energy (MeV)

a K

0.5 10.75

Fig. 4.34 K-orbital internal conversion coefficients for electric

multi-poles l ¼ 1,2 calculated from (4.289) (solid lines) and

from the tabulated values of Widman and Powsner (1970)

(dashed line) for Z ¼ 40 (zirconium)
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ð
d3R

ð
d3rnc

�
nuc;f rnð Þe� pe�R

�hcð Þ 1

R� rnj j
� e� ZR=a1ð Þcnuc;i rnð Þ

�
ð
d3rnc

�
nuc;f rnð Þe�pe�rn

�hc cnuc;i rnð Þ
ð
d3R0 e

�pe�R0
�hc

0

R0

¼ 4p
�hc

pe

� �2 ð
d3rnc

�
nuc;f rnð Þe�pe�rn

�hc cnuc;i rnð Þ
(4.277)

to give,

Mif ¼ 4pa�hc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z3

pL3r31

s
�hc

pe

� �2

�
XZ
n¼1

ð
d3rnc

�
nuc;f rnð Þe� pe�rn

�hcð Þcnuc;i rnð Þ:

(4.278)

The remaining integral is solved by, first expanding

the plane wave into spherical waves,

eib�r ¼ 4p
X1
l¼0

Xl
m¼�l

iljl brð ÞY�
lm yb;fbð ÞYlm yr;frð Þ:

(4.279)

As per=�hc
� �	 1, the small-argument approxima-

tion to the spherical Bessel function can be used,

e�
pe�rn
�hc ¼ 4p

X1
l¼0

Xl
m¼�l

�ið Þl
2lþ 1ð Þ!!

pe

�hc

� �l
rln

� Ylm ye;feð ÞY�
lm yn;fnð Þ (4.280)

where the e and n subscripts of the angular variables

refer to the electron and nucleon, respectively. Sub-

stituting (4.280) into (4.278) gives,

Mif¼16p2a�hc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z3

pL3r31

s XZ
n¼1

X1
l¼0

Xl
m¼�l

�ið Þl
2lþ 1ð Þ!!

pe

�hc

� �l�2

�
ð
d3rnc

�
nuc;f rnð Þrlncnuc;i rnð Þ

� Ylm ye;feð ÞY�
lm yn;fnð Þ: ð4:281Þ

Recalling the definition of the electric multi-pole

moment for electric charge given by (4.255), (4.281)

can be reduced to,

Mif ¼ 16p2
a�hc
e

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z3

pL3r31

s

�
X1
l¼0

Xl
m¼�l

�ið Þl
2lþ 1ð Þ!!

pe

�hc

� �l�2

Ylm ye;feð ÞQlm

(4.282)

with the squared amplitude,

Mifj j2 ¼ 256p3
a�hc
e

� �2
Z3

L3r31

X1
l¼0

Xl
m¼�l

X1
l0¼0

�
Xl0
m¼�l0

�ið Þlil0
2lþ 1ð Þ!!ð Þ 2lþ 1ð Þ!!ð Þ

� pe

�hc

� �lþl0�4

Ylm ye;feð ÞY�
l0m0 ye;feð ÞQlm Q�

l0m0 :

(4.283)

Calculation of the Phase Space Factor

This is a straightforward calculation as only a single

particle is ejected The number of states available in the

differential element of momentum dpe and differential

solid angle dOe is,

d2N ¼ L

2p �hc

� �3

p2e dpe dOe: (4.284)

As pedpe ¼ medTe (the electron is considered non-

relativistic), then,

drf ¼
d2N

dTe

¼ L

2p �hc

� �3

me pe dOe:

(4.285)

Internal Conversion Transition Rate

The IC transition rate for a K-orbital electron is,

l ICð Þ
K ¼ 2

2p
�h

Mifj j2rf (4.286)

where the additional factor of 2 is due to the two

electrons in the K orbit. Inserting (4.283) and (4.285)
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into (4.286), integrating drf over Oe and noting the

orthonormalization of the spherical harmonics,Ð
dOe Ylm ye;feð ÞY�

l0m0 ye;feð Þ ¼ dl l0dmm0 , an expres-

sion for the K-orbital transition rate is obtained,

l ICð Þ
K ¼ 128 pme a2Z3

�h e2 r31

�
X
lm

1

2lþ 1ð Þ!!ð Þ2
pe

�hc

� �2l�3

Qlmj j2: (4.287)

As only the static Coulomb interaction has been

considered and, from (4.268), one can neglect the

contribution Q
0
lm, comparing the K-orbital transition

rate directly with the electric multi-pole transition rate

of (4.253), a crude approximation to the IC coefficient

for K-orbital electrons is had,

aK � 16
Z3

r41

� �
l

lþ 1

� �
pe

�hc

� �2l�3 �hc

k

� �2lþ1

(4.288)

replacing �ho with k. It is reasonable to assume that

the nuclear excitation energy exceeds the binding

energy of the K-orbital electrons, in which case,

pe ¼
ffiffiffiffiffiffiffiffiffiffiffi
2mek

p
, and,

aK � �hc

mer1

� �4

Z3 l

lþ 1

� �
2me

k

� �lþ5=2

(4.289)

This result is a reasonable approximation when

the electron can be considered as nonrelativistic and

the transition energy greatly exceeds the atomic elec-

tron binding energy. The main considerations of this

formula are that IC increases strongly with atomic

number and multi-pole order, but decreases with

increasing transition energy. Hence, IC is important

for high-Z nuclei in low-energy transitions of high

multi-pole order. Figure 4.33 shows the IC coefficient

for K-orbital electrons for zirconium as a function of

IC electron kinetic energy as calculated from (4.289)

for the electric multi-poles l ¼ 1, 2. Full calculation of

the IC coefficients would consider the total contribu-

tions of all electromagnetic interactions and, hence,

would include the effects of the magnetic multi-pole

moments. While the K-orbital electrons will dominate

in IC, the L- and M-orbital electrons will make con-

tributions, albeit with lower probability.

0 ! 0 Transitions

As discussed earlier, electromagnetic transitions bet-

ween nuclear states with zero angular momentum are

not possible as there are no l ¼ 0 multi-poles in the

radiation field. However, closer examination of the

above derivation of the IC coefficient will demonstrate

that such a transition is feasible in which the K-orbital

electron takes away the energy. This statement, at first

sight, contradicts the above result of (4.286) in which the

multi-pole moment would go to zero for a 0 ! 0 transi-

tion. However, the above derivation excluded the con-

tribution to the matrix element when R > Rn, i.e., when

the electron is within the nucleus. Inclusion of this

contribution leads to the small probability of a 0 ! 0

transition. The fact that this is possible demonstrates that

IC cannot be interpreted as a photoelectric effect in

which the photon emitted from the nucleus is absorbed

by an atomic electron which is subsequently ejected.

4.4.4 Nuclear Isomerism

4.4.4.1 Introduction

The g-transition selection rules described earlier can

delay a g transition significantly such that the excited

nucleus can have a long half-life, up to years. Such

nuclei are described as being in an isobaric state or as

being metastable. Clearly, such isomeric transitions

(ITs) are associated with large changes in nuclear

angular momentum DJ and small transition energies.

But we have also seen that these conditions are prefer-

ential for IC. ITs are frequently associated with b
decay which leaves the nucleus with a high angular

momentum, as shown schematically in Fig. 4.35.

1

2

3
I

β
γ

1

2

3
II

β

Fig. 4.35 Schematic representation of nuclear isomerism. In

example I, level 1 decays predominantly through g emission to

level 2 which subsequently decays to level 3 through b decay.

In example II, levels 1 and 2 undergo b decay independently to

level 3
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In Example I, the probability of level 1 decaying to

level 2 through an IT exceeds the probability of it

decaying to level 3 through b decay; in Example II,

levels 1 and 2 transit to level 3 independently through

b decay. If, in Example I, the transition rate for the

g transition from level 1 to level 2 is much greater or

much less than that for the b-decay to level 3, then the

b spectrum of level 2 with a transition rate equal

to the IT of 1 ! 2 is demonstrated. In the case of

Example II, the levels 1 and 2 decay independently to

level 3.

It was Weizsäcker who proposed the theory of

nuclear isomers to explain the observation of long-

lived g-ray emitting isotopes. Equations (4.269) and

(4.270) show that g transitions with half-lives of a

second or more for photon energies of about 0.1–

0.5 MeV (typical for nuclear medicine) are between

nuclear states with DJ ¼ 3. A common example of an

IT used in diagnostic nuclear medicine is the de-exci-

tation of the 99mTc nucleus (the m superscript refers to

its metastable state) to the ground state 99Tc with a

6.01 h half-life (while 99mTc can undergo b� decay to
99Ru, the associated branching ratio is a negligible

3.7 � 10�5); this is shown in Fig. 4.36. 99Tc and
99mTc both result from the b� decay of 99Mo. The

spin/parity (Jp) of the 99Tc ground state is 9=2þ due

to an unpaired proton in the 1g9=2 shell. The excited
99mTc nucleus is formed in the Jp ¼ 1=2 level and can

de-excite directly to the 9/2þ ground state via the

emission of a 142.683 keV photon, with a branching

ratio of about 3 � 10�4. However, the difference in

the angular momenta of the two states is significant:

DJ ¼ 4 and the transition is M4 (as there is also a

change in parity) with a 6.01 h half-life. It can also de-

excite with the same half-life to the intermediate 7/2þ

excited state at the 140.511 keV level with DJ ¼ 3 via

an E3 transition (as there is no change in parity). This

is followed by the de-excitation from this 7/2þ state to

the 9/2þ ground state through a combination of M1

and E2 transitions (DJ ¼ 1) with the emission of a

140.511 keV g ray which is used for imaging.
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