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For Sharon

“Doubt thou the stars are fire,
Doubt that the sun doth move,

Doubt truth to be a liar,
But never doubt I love”

- Hamlet Act II, Scene II
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Preface

This book addresses the applications of radiation dosimetry theory to diagnostic and

therapeutic nuclear medicine, medical disciplines which have both contrasting and

parallel requirements.

To begin with, modern medical diagnostic imaging technologies have enabled the

visualization of both anatomical structure and function to unprecedented degrees of

resolution and complexity. However, with the major exceptions of magnetic reso-

nance, ultrasound, and optical imaging, these technologies require the patient to be

exposed to ionizing radiation. This presents the medical practitioner with the chal-

lenge of optimizing the diagnostic benefit obtained through the imaging procedure

against the theoretical risk posed to the patient as a result of this exposure. The

diagnostic benefit of the imaging procedure will be known from prior clinical

experience or else have been determined empirically in clinical studies which yield

measures of diagnostic efficacy such as sensitivity, specificity, and positive/negative

predictive values. Evaluation of the theoretical radiation risk, on the other hand, is

much more complex and is based upon the knowledge of the radiation fields and their

interactions with tissues in combination with an understanding of the biological

consequences of these interactions. The impact of the magnitudes of the risks

presented by medical imaging has been the subject of debate for decades as their

estimation requires extrapolation of radiation dose responses from epidemiological

data obtained at high levels of radiation dose to the lower radiation doses associated

with radiological or nuclear medicine procedures.1 Despite the resulting uncertainty

over the magnitudes of these extrapolated and theoretical risks, there is an expecta-

tion within modern society to minimize the radiation doses associated with diagnos-

tic medicine whenever practicable. This is not an entirely unfounded or unreasonable

expectation. For example, consider the hypothetical case of the informed patient

willing to consider trivial an excess cancer mortality risk of 0.5% as a consequence of

a particular imaging procedure if the immediate diagnostic benefit to him is over-

whelming. On the other hand, society may, indeed should, question the application of

1Although, it is now common to see radiation absorbed doses received in modern multislice

computed tomography comparable to those received by the survivors of the nuclear bombings at

Hiroshima and Nagasaki who still provide the bulk of the epidemiological data of the somatic effects

of exposure to ionizing radiation.
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an imaging procedure with the same level of risk to the screening of an asymptomatic

population of 100,000 individuals, which has the theoretical possibility of inducing

500 extra cancer deaths in that population, and expect that the mortality reduction

due to screening exceed the estimated number of extra resulting deaths. Thus, to

enable both the clinician deciding upon those imaging tests to be included within this

diagnostic process and society to judge the suitability of a broadly-based diagnostic

imaging program, means of accurately calculating the radiation doses resulting from

imaging procedures are necessary.

Radiological imaging studies involve external beams of radiation and the asso-

ciated dosimetry evaluations are relatively straightforward as the associated radiation

fields can be measured directly and the anatomy irradiated identified simply by the

physical alignment of the patient and the radiation beam. As a result, many modern

diagnostic radiological devices can provide real-time measures of patient dosimetry

through metrics such as the estimated entrance skin dose, dose-area product or

Computed Tomography Dose Index. In contrast, the estimation of the patient dosim-

etry resulting from nuclear medicine procedures is far more complex as the irradia-

tion is internal and is coupled with the combination of the biokinetics of the

radiopharmaceutical, the nuclear decay scheme of the radioisotope employed, and

the types of radiations emitted during the nuclear decay. The dependence of the

internal radiation dosimetry upon the biokinetics makes this dosimetry highly perso-

nalized and difficult to predict a priori.

The application of radiation dosimetry theory to therapeutic nuclear medicine is

markedly different to that applied to diagnosis. In the latter case, the ability to

calculate the internal radiation dosimetry is fundamental to the requirements of

optimization through estimating and then minimizing the risk presented to the

diagnostic nuclear medicine patient. The intent of radiation dosimetry calculation

in radionuclide therapy is to improve the chances of cure or palliation by maximizing

the therapeutic ratio through maximizing the radiation absorbed dose to the neoplasm

of concern and minimizing the absorbed dose to normal uninvolved tissues and the

risk of any treatment-related sequelae. In addition to intent, applications of radiobio-

logical theory differ between diagnostic and therapeutic nuclear medicine. In diag-

nosis (involving low administered activities of a radioisotope), one is concerned with

stochastic risks such as radiocarcinogenesis and genetic effects resulting from chro-

mosomal or chromatid aberrations. On the other hand, in therapy (which uses high

levels of radioisotope administered activities), one wishes to quantify and understand

determinisitic effects such as tumor control and normal tissue radiotoxicity minimi-

zation resulting from cell death. Yet, perhaps somewhat surprisingly, quantitative

dosimetry applied to nuclear medicine therapy is still relatively infrequent and tends

to be based upon empirical and clinical experience. However, the field appears to be

entering a renaissance where accurate dosimetry, approaching that required in

external beam radiotherapy, may become the norm. Therapeutic applications are,

by nature, patient-specific and bespoke calculations are required.

Beyond these two clinical applications of nuclear medicine dosimetry is the need

of accurate dosimetry in epidemiological studies of the consequences of radiation

exposure. As noted earlier, the bulk of society’s understanding of the effects of

ionizing radiation upon the human has evolved from the monitoring of the survivors

of the nuclear bombings of Hiroshima and Nagasaki. As time progresses and the

number of these survivors diminishes, one of the remaining dominant populations of
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humans providing epidemiological data on the effects of exposure to ionizing radia-

tion will be those patients having been exposed during the course of their diagnosis or

therapy. In recent years, the numbers of diagnostic nuclear medicine procedures and

the associated absorbed doses have grown immensely. As the epidemiological data

are provided in the form of the rate of excess cancer incidence or mortality per

absorbed dose, the accurate evaluation of nuclear medicine absorbed doses is essen-

tial to the accurate assessment of the risks associated with ionizing radiation.

There are a wide variety of textbooks, monographs, and software available for the

practicing nuclear medicine physicist or physician to use in order to estimate the

internal radiation dosimetry associated with a given radiopharmaceutical. In fact, one

can apply tabular data to estimate the internal radiation dosimetry while being

unaware of the assumptions and limitations inherent to the underlying physics and

risk estimates. This is quite undesirable. The intent of this book is not to supplant the

aforementioned literature; indeed, most (if not all) of this literature is cited here as

references. Nor is an intent of this book to provide copious amounts of numerical and

physical data: these are already available in the literature, with more recent collec-

tions accessible through a large number of Internet sites associated with various

national nuclear and physics data centers (and which are also referenced to in this

book).

Rather, this book provides the underlying theoretical bases for understanding the

many interlocking components of nuclear medicine dosimetry and it is to be consid-

ered as an adjunct to these references. To demonstrate this, consider the example of

the detailed description of the weak interaction provided in Chap. 4 which includes

the development of the Fermi theory to calculate b decay rates and electron and

positron energy spectra, allowed and forbidden transitions, the V–A interaction and

the nonconservation of parity by weak processes. One could argue that the practicing

nuclear medicine physicist does not “need” to know the physics of the weak

interaction to this level of detail in order to be able to evaluate internal radiation

dosimetry. The counterargument to this view, and that which is taken here, is that b
decay, the most commonly observed manifestation of the weak interaction, is

fundamental to diagnostic and therapeutic nuclear medicine and the nuclear medi-

cine physicist should have an understanding of the underlying physics of the weak

interaction affecting b decay and how this physics is manifested in the dosimetry of a

b-emitting radionuclide. Similarly, as the interactions between electromagnetic and

corpuscular radiations and matter are at the heart of radiation dosimetry, an under-

standing of quantum scattering theory is a necessary foundation of any advanced

understanding of radiation dosimetry theory. It is somewhat dissatisfying to find that

many dosimetry textbooks present, for examples, formulae for the Klein–Nishina

cross sections for photon–electron scattering or the Bethe–Heitler cross sections for

electron-nuclear bremsstrahlung but fail to describe the theoretical development or

the limitations inherent to the presented results. It is attempted to address these

limitations here by providing, wherever possible, full derivations of those interac-

tions that are at the heart of nuclear medicine dosimetry. However, at the same time,

this book attempts to remain as pragmatic wherever possible in describing these

derivations by avoiding unnecessary detailed discussions of derivational mechanics

(e.g., Dirac trace algebra) when these are both provided adequately elsewhere

and exposition would not add value to the dosimetric evaluations provided here.
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Necessarily, such results are provided without proof but with cited references for the

interested reader to pursue if desired.

As the previous paragraph would suggest, the intended audience of this book is the

practicing or research nuclear medicine physicist or graduate student with an interest

both in internal radiation dosimetry and, in general, the interactions of radiations with

matter at the energies typical of nuclear medicine. This latter audience would include

those desiring an in-depth understanding of the underlying physics used, for example,

in Monte Carlo simulations of radiation transport at photon and electron/positron

energies of about 2 MeV and below and of a particles with kinetic energies of about

10 MeV and below. Hence, the reader is presumed to have had considerable exposure

to advanced mathematics, including complex variable theory, and to have a signifi-

cant understanding of nonrelativistic and relativistic quantum theory in order to fully

appreciate the development of the radiation physics that is presented here.

It has been stated that nuclear medicine should be categorized as a “mature”

discipline in which all of the underlying scientific principles are known and under-

stood and that only the engineering evolution of the relevant technology is of interest.

This assumption is disputed here, at least with regards to the radiation dosimetry.

There remains much potential for the applications of fundamental science in this

field. As a result, this aspect of the discipline is to be considered far from mature and

much fruitful research awaits.

Finally, it is necessary to provide two points – one of clarification and one of

defense:

� This book considers only the radiation dosimetry of the patient having received

the radionuclide and not that of those individuals exposed to that patient.

� To the possible chagrin of many PET colleagues, this book consolidates PET and

single-photon imaging within the single term “diagnostic nuclear medicine” –

mea maxima culpa.

Brian J. McParland, BASc MSc PhD

Amersham, UK
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eR Relative dielectric constant
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ê Photon polarization unit-vector
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lEff Effective decay constant
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lL Landau parameter
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lULI Clearance constant for upper large intestine

contents

lPhys Physical decay constant

lRuth Mean free path between Rutherford scatters
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m� Muon
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mN Nuclear magneton, mN ¼ e�h=2mp

md Deuteron magnetic dipole moment
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section in solid angle
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Rayleigh scattering
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C Vector energy fluence

dC=dt Energy flux density
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bladder contents
~AULI Cumulated activity of upper large intestine

contents
~A

� �
RM;Norm

Normalized cumulated activity concentration

of red bone marrow

[ABL(t)] Activity concentration in whole blood at time t
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AmðXÞ, AmðXÞ Four-vector electromagnetic potential
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� 	

ALARA As low as reasonably achievable
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Impact parameter
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becquerel Unit of activity (transitions per second)

B Baryon number

Buildup factor

B(A,Z) Nuclear binding energy for atomic mass

number A and atomic number Z

B2k Bernoulli number of order 2k

B�F Reduced Fermi transition probability

B�GT Reduced Gamow–Teller transition probability

BD Absorbed dose buildup factor

Bf Number fluence buildup factor

BC Energy fluence buildup factor

BED Biologically equivalent dose

BEIR Biological Effects of Ionising Radiation Panel

B Magnetic field

Bq Becquerel

c Speed of light

cdf Cumulative density function

cGy centigray

cpm Counts per minute

Ce(b) Term describing effect of atomic electron shells

on collision stopping power

CiðxÞ Cosine integral,

CiðxÞ ¼ gEM þ ln xþ Ðx
0

dt cos t�1
t

CF Cellularity factor of bone marrow

CFSA Carrier-free specific activity

CPE Charged particle equilibrium

CRE Complete radiation equilibrium

CSDA Continuous slowing-down approximation

CT Computed tomography

CZT Cadmium zinc telluride

dpm Disintegrations per minute

d3r Differential volume element

d3r � r2 dr dj d(cosy)
D Absorbed dose

Diffusion coefficient

DrTðtÞ Absorbed dose at time t in target region, rT
DrT;NormðtÞ Absorbed dose at time t in target region, rT,

normalized to the administered activity

DQ Quasithreshold absorbed dose

DDREF Dose and dose-rate effectiveness factor

DSB Double strand break

DTPA Diathethylenetriaminepentaacetic acid

eV Electron volt

E Total energy (sum of kinetic and rest mass

energies)

Effective dose

EB Atomic electron binding energy
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EF,p Fermi energy for protons

EF,n Fermi energy for neutrons

EAR Excess absolute risk

ECMR Excess cancer mortality rate

ERR Excess relative risk

Erad Electric radiation field

dE=r dxð ÞCol Collision mass stopping power

dE=rdxð ÞCol;D Restricted collision mass stopping power for

electrons or positrons

dE=r dxð ÞCol;H Hard-collision mass stopping power

dE=rdxð ÞCol;H;D Restricted hard-collision mass stopping power

for electrons or positrons

dE=r dxð ÞCol;S Soft-collision mass stopping power

dE=r dxð ÞRad Radiative mass collision stopping power

D Electric flux density

E Electric field

E
ðEÞ
lm

Electric field of electric multipole of order l, m

E
ðMÞ
lm

Electric field of magnetic multipole of order

l, m
EiðxÞ

Exponential integral, EiðxÞ ¼ Ð1
�x

dt e
�t
t

e Fundamental unit of electric charge

fn q;Zð Þ Generalized oscillator strength (GOS)

fSelf-atten Self-attenuation correction factor

F Fano factor

FBP Filtered backprojection

F(L) Linear energy transfer (L) frequency

distribution

F(q) Scattering form factor for three-vector

momentum transfer, q

F(q,Z) Atomic form factor

F(ZY,Ee) Fermi b-decay nuclear Coulomb correction

factor for daughter nucleus ZY and b particle

energy, Ee

FSU Functional subunit

f(q) Scattering amplitude as a function of three-

vector momentum transfer, q

f(A,Z) Nuclear binding energy per nucleon

ft Comparative half-life of b decay

g Gram

Fraction of liberated charged particles’ initial

kinetic energies that is irradiated as

bremsstrahlung
Marinelli geometric factor

G Lea–Catcheside dose protraction factor

G r; r
0
 �

Green’s function

GCP Good clinical practice
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Gy Gray

h
1
2ð Þ

l ðxÞ ¼
ffiffiffiffi
p
2x

p
Jlþ1

2
ðxÞ � iNlþ1

2
ðxÞ

� 	
Hankel functions of first and second type of

order l

hcR1 Rydberg energy

H Total Hamiltonian

Magnitude of the magnetic field strength

Hi(x) ith Hermite polynomial

H0 Steady-state Hamiltonian

H50;rT Total equivalent dose received by target region

rT over 50 years postexposure

H(t) Heaviside function: H(t) ¼ 0 t < 0

¼1 t > 0

HT Equivalent dose to tissue or organ T

HEMðXÞ Electromagnetic Hamiltonian

H Magnetic field strength

Hrad Magnetic radiation field

H
ðEÞ
lm

Magnetic field of the electric multipole of order

l and m

H
ðMÞ
lm

Magnetic field of the magnetic multipole of

order l and m

I Moment of inertia

IAEA International Atomic Energy Agency

ICH International Conference on Harmonisation

ICR International Congress of Radiology

ICRP International Commission on Radiological

Protection

ICRU International Commission on Radiation Units

and Measurement

IMP Investigational Medicinal Product

IPEM Institute of Physics and Engineering in

Medicine

Ids Source-to-drain current in MOSFET
�I Mean ionization energy/mean excitation

potential

J Total angular momentum

Electric current density

Jl(x) Bessel function of the first kind of order l
jl(x) Spherical Bessel function of the first kind of

order l

JEMm ðXÞ Four-vector electromagnetic current

J pe;z

 �

Compton profile for electron moment pe and

atom with atomic number Z

k Photon energy

Boltzmann’s constant

kVp Kilovoltage potential

k Photon three-vector momentum

K Kerma

Kc Collision kerma
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Kc,air In-air collision kerma

KnðxÞ Modified Besself function of the second kind of

order n
l Quantum angular momentum number

lCm ðXÞ Weak leptonic current density

L Total lepton number

L1 Unrestricted linear energy transfer

L(b) Stopping number for charged particle with

speed normalized to c, b
LET Linear energy transfer

LNT Linear no-threshold (dose response model)

LoR Line of response

LQ Linear-quadratic (dose response model)

LT Linear threshold (dose response model)

L Total angular momentum

Le Electronic lepton number

Lm Muonic lepton number

Lt Tau lepton number

Lin(x) Polylogarithm of order n

me Rest mass of the electron

mm Rest mass of the muon

mn Rest mass of the neutron

mN Reset mass of a nucleon

mp Rest mass of the pion (p-meson)

mp Rest mass of the proton

mt Rest mass of the tau lepton

mGy Milligray

M Multiplication factor (ionization in gases)

M(A,Z) Atomic mass for atomic mass number A and

atomic number Z

Mfi Matrix element, Mfi ¼
Ð
d3rc�f Uc, for

transition from initial state I to final state f

MH Mass of the hydrogen atom

Mlm Magnetic multipole moment of order l,m

MIRD Medical internal radiation dose

MLEM Maximum-likelihood expectation

maximization

MOSFET Metal-oxide semiconductor field effect

transistor

MR(I) Magnetic resonance (imaging)

MWPC Multiwire proportional chamber

n Neutron

Principal quantum number

Index of refraction

N Number of neutrons in a nucleus, N ¼ A – Z

NA Avogadro’s number

Nl(x) Neumann function of order l
NaI(Tl) Sodium iodide (doped with thallium)
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NECR Noise-equivalent count rate

NTP Normal temperature and pressure

NURBS Nonuniform rational B-spline
dN
dt

� 
geom

Geometric mean count rate

OER Oxygen enhancement ratio

OLINDA/EXM Organ level internal dose assessment/

exponential modeling

OSEM Ordered subsets expectation maximization

p Proton

Magnitude of three-vector momentum vector, p

pT, j Spectral distribution of particle radiance for

particle species j

pdf Probability distribution function

pF,p Fermi momentum of protons

PF,n Fermi momentum of neutrons

p Three-vector momentum

Electric dipole moment

pT Vector particle radiance

p Four-vector momentum, p ¼ E; pð Þ
P Pressure

PE Pulmonary embolism

PET Positron emission tomography

PI Product insert

PMT Photomultiplier tube

P Poynting vector

Polarization (number of electric dipole

moments per unit volume)

Plm mð Þ Associated Legendre polynomial of the first

kind

Pl mð Þ Legendre polynomial

Prad Magnitude of the power radiated by an

accelerated charged particle

q Electric charge

Magnitude of three-vector momentum transfer

Q Electric charge

Energy released (>0; exoergic) or absorbed

(<0; endoergic) in a transition

Kinetic energy transfer

Nuclear electric quadrupole moment

QC Energy transfer demarcating the difference

between soft and hard charged-particle

collisions
Q=e

Reduced nuclear electric quadrupole moment

Qlm Electric quadrupole moment of order l, m

QE Quantum efficiency (of a photomultiplier tube)

RE Relative effectiveness

RR Relative risk

q Three-vector momentum transfer
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rS Source region

rT Target region

RBE Relative biological effectiveness

RIDIC Radiation Internal Dose Information Center

RM Red bone marrow

RNG Random number generator

RoI Region of interest

R10,50,90 Nuclear radius at which the nuclear electric

charge density has decreased to 10, 50, and

90%, respectively, of the value at the nuclear

center

RN Nuclear radius

RTF Atomic radius in Thomas–Fermi model

R1 Rydberg constant

r0 Classical electron radius, r0 ¼e2=4pe0mec
2

r1 Bohr radius, r1 ¼ �hc=ame

s Intrinsic spin

SCD Source-collimator distance

SEE rT  rSð Þ Specific effective energy from source region rS
to target region rT (ICRP nomenclature)

SF Scatter fraction (PET)

Surviving fraction

SNM Society of Nuclear Medicine

SPC Summary of Product Characteristics

SSB Single strand break (of DNA)

S q;Zð Þ Incoherent scattering function

S y; xð Þ
Sievert integral, S y; xð Þ ¼ Ðy

0

dy e�
x

cos y

S rT  rS; tð Þ S-factor for source region rS and target region rT
Sfi S-matrix element for initial state i to final state f

SiðxÞ
Sine integral, SiðxÞ ¼ Ðx

0

dt sin t
t

Sn Neutron separation energy

Sp Proton separation energy

SF X � Yð Þ Feynman propagator,

SF X � Yð Þ ¼ 1

2pð Þ4
Ð
d4p e�p� X�Yð Þ

6p�m
SI Système International

SPECT Single-photon emission computed tomography

t Isotopic spin (isospin) vector

t3 Component of isospin vector in isospin-space

T Kinetic energy of a particle

TV Urinary bladder voiding interval

TCPE Transient charged particle equilibrium

TD5/5, TD50/5 Tolerance doses for 5 and 50% complication

rates, respectively, in 5 years

TLD Thermoluminescent dosimetry (dosimeter)

TM Total trabecular marrow space
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T1
2

Half life

T1
2
;Biol Biological half-life

T1
2
;Eff Effective half-life

T1
2
;Phys Physical half-life

UrS Cumulated activity in source region rS (ICRP

nomenclature)

UV Ultraviolet

v Velocity

v Speed (magnitude of velocity vector)

vd Mean drift speed

V Electric potential

VoI Volume of interest

V
Cy
m ðXÞ Weak hadronic current density

wR Radiation weighting factor

wT Tissue weighting factor

W Mean energy to create an ion pair

W� Charged intermediate vector boson, W

WHO World Health Organization

WMA World Medical Association

x Three-vector position

X Four-vector position

X Exposure

Xlm r;fð Þ Vector spherical harmonic or order l,m

y Lineal energy

yl(x) Spherical Bessel function of the second kind of

order l (also known as a Neumann function)

Yl(x) Bessel function of the second kind of order l
Ylm y;fð Þ Spherical harmonic

z Specific energy (imparted)

Z Atomic number

Zeff Effective atomic number

Z0 Neutral intermediate vector boson
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The Role of Radiation Dosimetry in Nuclear
Medicine 1

Abstract This chapter summarizes the importance and relevance of ionising radia-

tion dosimetry to nuclear medicine.
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1.1 Introduction

Medical internal radiation dosimetry is the discipline

of determining the absorbed radiation doses received

by an individual as a consequence of the deliberate or

accidental intake of radioactive substances. As this

book’s topic is that of the physical theory of dosimetry

applied to diagnostic and therapeutic nuclear medi-

cine, it will be assumed implicitly that the intake is

deliberate and that the amount of radioactive sub-

stance administered is known.

Diagnostic nuclear medicine provides functional

and physiological information of the patient through

the in vivo imaging of photons emitted by a radionu-

clide or following the e�eþ ! 2g annihilation in the

case of a positron-emitting radionuclide. Within the

context of optimization, it is intended that the amount

of radioactive substance administered to the patient be

limited to that required for obtaining an image of the

necessary diagnostic quality whilst minimizing the

radiation dose burden borne by the patient (Early

1995). Although diagnostic nuclear medicine is fre-

quently discussed in terms of imaging, it is possible for

a clinical diagnosis to be achieved from measurements

not based upon imaging, such as the 14C-urea breath

test for Helicobacter pylori infection (Balon et al.

1998) or the Schilling test with 57,58Co-labeled cyano-

cobalamin (vitamin B12) for vitamin B12 absorption

impairment (Hamilton 2004). On the other hand, the

intents of therapeutic nuclear medicine are vastly dif-

ferent from those of diagnosis. Whereas, by definition,

the latter seeks to avoid all physiological effect, the

former deliberately achieves it in order to treat or

palliate neoplastic disease. Examples of therapeutic

nuclear medicine include oral administration of

Na131I for the treatment of thyroid cancer and 90Y-

labeled ibritumomab tiuxetan in the treatment of non-

Hodgkin’s lymphoma (Wiseman et al. 2000).

In both diagnostic and therapeutic nuclear medi-

cine, accurate knowledge of the internal radiation

dosimetry resulting from the administration of a radio-

nuclide is essential. For example, it is a fundamental

component of the required safety profile in the devel-

opment of a radiopharmaceutical. Occasionally, in the

practical setting of the clinic, it is necessary in the

retrospective estimation of patient radiation dose due

to, for example, a misadministration. While still not

B.J. McParland, Nuclear Medicine Radiation Dosimetry,
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yet frequently done in therapeutic nuclear medicine,

individual patient dosimetry is desirable for maximiz-

ing the therapeutic ratio (the ratio of the probability of

tumor control to that of normal tissue complications).

The intellectual challenge of radiation dosimetry

applied to nuclear medicine resides within its being,

at its highest and most obvious level, a bond between

physics, chemistry, and biology (Stelson et al. 1995;

Sgouros 2005; Stabin 2006). As one scrutinizes this

junction with greater resolution, it is seen that accurate

nuclear medicine radiation dosimetry is dependent

upon not only the detailed knowledge of radiation-

matter interactions (Simpkin 1999) but also of the

highly variable and far less-predictable biokinetics of

a radioactive substance in the human body and the

broadly-estimated intrinsic radiosensitivities of tissues

and organs. This combination of precise physics and

imprecise biological variability presents one of the

great challenges, and indeed interests, of radiation

dosimetry as applied to medicine.

1.2 Diagnostic Nuclear Medicine

Consider diagnostic nuclear medicine and the state-

ment that the focus of developments in modern-day

diagnostic nuclear medicine has been the improve-

ment of diagnostic efficacy. This has been attempted

through engineering in the development of new imag-

ing technologies, the improvement and evolution of

preexisting ones (such as the introduction over the

past decade of PET–CT, PET–MR, and SPECT–CT

hybrid devices), and through chemistry and biology

in the introduction of new radiopharmaceuticals with

improved specificities for pathologies of interest. But

what cannot be ignored is that, parallel to this drive to

yield greater diagnostic utility, there is a growing

awareness of the radiation absorbed doses and con-

sequent potential risk to the patient as a result of

exposure to ionizing radiation. This awareness has

become manifest in government legislation, guide-

lines and established frameworks of medical practice.

Examples include various European Union directives,

the United States Code of Federal Regulations and

guidance notes provided by the UK’s Administra-

tion of Radioactive Substances Advisory Committee

(ARSAC 2006). The process of maximizing diag-

nostic imaging efficacy, whilst minimizing radiation

absorbed dose and patient risk, has long been fol-

lowed in all aspects of diagnostic radiology and

nuclear medicine. In particular, the reduction of

patient radiation dose in diagnostic nuclear medicine

can be achieved through a variety of means, including

the following.

1.2.1 Radiation Detector Efficiency

In diagnostic nuclear medicine, the radiation detector

converts a physical process (e.g., scintillation photons

resulting from the photoelectric absorption of a g ray

in a crystal) to an analog electronic signal which is

ultimately processed to generate a digital image to be

analyzed. Detectors of high detective quantum effi-

ciency enable the acquisition of a given signal for a

reduced incident photon fluence and, thus, provide an

opportunity for a reduced amount of administered

activity to be used for a given signal level (Lewellen

2008).

1.2.2 Radionuclide

The selection of the radionuclide to label the chemical

moiety will profoundly alter not only the radiation

dose burden but also imaging efficacy. Perhaps the

most obvious example of this is the selection of either
123I or 131I for diagnostic imaging. A ligand capable of

iodination can be complexed with both isotopes. How-

ever, the combinations of the lower major photon

energy (159 keV) and reduced physical half-life

(13.2 h) of 123I compared to those of 131I (364 keV

and 8.02 days) and its associated low-energy particu-

late radiations make the former’s absorbed dose bur-

den lesser and imaging profile greater than those of the

latter. Hence, 123I is preferable for diagnostic applica-

tions whereas 131I is preferable in therapy. However,

both isotopes can be paired in therapy planning and

treatment. For example, a diagnostic amount of Na123I

can be administered in order to enable quantification

of uptake at active sites of disease so as to allow a

calculation of the amount of subsequently adminis-

tered Na131I required to achieve a given therapeutic

absorbed dose.
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1.2.3 Radiopharmaceutical Design

A radiopharmaceutical is designed so as to increase

the differential of the signal (i.e., the number of

detected photons) between the pathology of interest

relative to the unspecific signal of the surrounding

normal pathology (this differential can be an increase

in uptake by the pathology relative to background, as

in tumor imaging, or a decrease as in myocardial

perfusion imaging). Appropriate design leading to

increased specific binding will elevate the detected

target-to-background ratio and improve the diagnostic

efficacy which can enable the amount of administered

activity, and radiation dose burden, to be reduced.

1.2.4 Clinical Imaging Practice

Relatively simple modifications of imaging protocols

and clinical practice and the development of imaging

strategies have been demonstrated to markedly reduce

patient radiation exposure in diagnostic radiologi-

cal procedures such as fluoroscopy (McParland and

Lewall 1998) and multidetector CT (Smith et al.

2007). This result can also be true when applied to

diagnostic nuclear medicine. A potent example of this

can be seen by recognizing that the acquisition of a

nuclear medicine image is an integral process: signals

resulting from detected photons are accumulated over a

period of time to create an image. Whereas the infor-

mation1 contained within the image is a nonlinear

function of the number of detected photons used to

generate the image, the number of detected photons,

as is the radiation dose to the patient, is proportional to

the amount of administered activity. Eventually, after

some number of detected photons has been attained,

all of the information that is potentially available from

the image has been obtained and any further increase

in detected photons provides no further diagnostic

utility. This is shown conceptually in Fig. 1.1 which

was calculated using data presented by Everaert et al.

(2003) who determined the optimal dose of 18F-fluor-

odeoxyglucose for a fixed acquisition time in a PET

scanner using lutetium oxyorthosilicate scintillation

detectors. Whole-body 18FDG images were acquired

of 186 subjects and image quality was scored on a

5-point scale (poor, reasonable, good, very good, and

excellent) by two independent observers. The plotted

histogram is the image quality, defined as the

21.0

16.8100%

75%

50%

25%

0%

<
35

0

35
0-

42
0

42
0-

49
0

49
0-

56
0

56
0-

63
0

Administered 18F Activity for 70 kg Subject (MBq)

63
0-

70
0

70
0-

77
0

77
0-

84
0

84
0-

91
0

91
0-

98
0

12.6

8.4

4.2

0

Im
ag

e 
Q

u
al

it
y 

(%
)

E
ffective D

o
se (m

S
v)

Fig. 1.1 Nonlinear response

of image quality and linear

response of effective dose as

functions of administered 18F

activity. Figure is derived

using data published by

Everaert et al. (2003) and

ICRP (1998)

1What is meant by “information” in this statement is defined by

the context of how the image is assessed. This could be through

quantitative assessments such as sensitivity and specificity or

signal-to-noise ratio. It can also be determined through qualita-

tive and subjective measures as the degree of the image’s diag-

nostic quality as assessed by a reader.
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percentage of images scored good or better averaged

over the two observers, as a function of the 18F admi-

nistered activity per unit body weight (left-hand ordi-

nate). The line shown is a measure of risk, described by

the effective dose (a measure of radiation risk and

defined in Chap. 10), normalized to body weight

(right-hand ordinate), calculated using the proportion-

ality of 19 mSv/MBq (ICRP 1998). It is evident that the

image quality increases with the amount of adminis-

tered 18F activity until the ratio of administered activity

per body mass reaches 11–12 MBq/kg. At this level of

activity, the image quality saturates: at 100%, the

images are considered excellent and no further

improvement is possible through administering more
18F. On the other hand, the metric of risk, given by the

product of the administered activity normalized to

body weight and the proportionality above, increases

linearly with administered activity. For administered

activities per unit body weight in the range of 12–

14 MBq/kg, the risk continues to increase even though

image quality has reached a plateau. Thus, the risk-to-

benefit ratio begins to increase for 18F activities

exceeding about 12 MBq/kg and there would be no

justification in administering greater amounts of 18F.

There are practical limits to the minimization of

administered activity which are dictated by, for exam-

ple, patient tolerance to long acquisition times or a

busy hospital’s need for a high patient throughput rate.

It is unlikely that the above argument has been applied

explicitly within the clinic, but there are studies

described in the literature examining this reciprocal

role of acquisition time and administered activity for

PET (Halpern et al. 2004) and SPECT (Robinson et al.

2008). A means of examining empirically this effect is

described by Bailey and Kalemis (2005).

1.2.5 Dose Reference Levels

Dose reference levels are recommended levels of

patient radiation exposure, for both diagnostic radio-

logy and nuclear medicine, which provide clinical

guidance for the imaging practitioner. For example,

in the United Kingdom, the Administration of Radio-

active Substances Advisory Committee provides guid-

ance for the amount of administered activity of given

radionuclide for a given diagnostic nuclear medicine

study (ARSAC 2006).

Qualitatively, the ways in which these processes

can reduce the patient radiation absorbed dose are

clearly understood. However, this is perhaps not the

case in terms of a quantitative understanding in that,

ultimately, the mechanisms of reducing the absorbed

doses to the diagnostic nuclear medicine patient rely

upon the ability to accurately predict these absorbed

doses and to estimate their associated somatic risks.

To underline the requirement for accurate radiation

dosimetry in diagnostic nuclear medicine, compare it

with diagnostic radiology. The small levels of radia-

tion absorbed dose associated with all diagnostic imag-

ing procedures using ionizing radiation limit the risks

presented to the patient to stochastic effects, so-called
as the risk is probabilistic and assumed proportional to

absorbed dose. These effects include radiocarcinogen-

esis and hereditary damage. The UNSCEAR 2000

report on the sources and effects of ionizing radiation

included a survey of diagnostic radiological and

nuclear medicine procedures performed throughout

the world during the period of 1991–1996 (UNSCEAR

2000). Figure 1.2 presents the number of diagnostic

nuclear medicine procedures over that period as a

percentage of the combined number of diagnostic

nuclear medicine and radiology procedures (including

dental X-ray examinations). The corresponding per-

centage per caput effective dose is also shown. The

figure is derived from data published in the UNSCEAR

2000 report and categorizes these percentages over

four levels of health care defined by the ratio of physi-

cian number to population. A comparison of the ratios

is rather revealing. Averaged over the world, between

1991 and 1996 diagnostic nuclear medicine procedures

accounted for only about 1.3% of the total number of

diagnostic medical imaging procedures using ionizing

radiation. However, the percentage contribution that

diagnostic nuclear medicine made to the per caput
effective dose is nearly five times greater at about

6.1%. In other words, one can crudely (and provoca-

tively) state that, on average, diagnostic nuclear medi-

cine presents a five times greater risk per procedure

than diagnostic radiology.

Such a statement and any other interpretation of

this observation must, of course, be made whilst

being cognizant of a number of caveats:

� The risks of radiation carcinogenesis resulting from

diagnostic radiology and nuclear medicine proce-

dures are low (Wall et al. 2006).
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� Diagnostic radiology procedures are dominated

by the posterior–anterior and lateral chest X-ray

examination which has a markedly low effective

dose and which will elevate the nuclear medicine

percentage effective dose.

� The effective dose is not expected to be distributed

uniformly over the population as a whole as many

of these imaging examinations will be received by

patients nearing the ends of their lives and who will

have a negligible risk of radiation carcinogenesis

due to the extended latency period of radiation-

induced malignancies.

� The data were obtained in the early 1990s and, as

such, new imaging modalities with intrinsically

higher dose burdens, such as multidetector CT

and PET–CT and which would confuse any inter-

pretation, have become available since.

The position of the last point has been recently

accentuated by the survey presented by Fazel et al.

(2009) of diagnostic imaging procedures performed in

the United States of America during the 3-year period

between 2005 and 2007. Of 655,613 patients who

underwent at least one imaging procedure associated

with ionizing radiation, they determined thatmyocardial

perfusion imaging (using 99mTc or 201Tl) was the single

procedure providing the largest effective dose (22.1% of

the total) at 15.6mSv. As myocardial perfusion imaging

is associated with patients with a not unreasonable life

expectancy (Mettler et al. 2008), during which a radio-

genic malignancy can be expressed, this observation

emphasizes the need for accurate nuclear medicine

dosimetry with which risk can be quantified and from

which optimization can be obtained.

1.3 Therapeutic Nuclear Medicine

On the other hand, the dosimetry interests in thera-

peutic nuclear medicine are very different in that

biological effects are deliberately sought (Zanzonico

2000). These biological effects are deterministic,

made manifest through targeted cell-killing, and

exhibit an absorbed dose threshold below which no

effect is apparent and, above this threshold, a patho-

logical effect proportional to this dose. The levels of

activity administered in therapeutic nuclear medicine

are intended to be high enough to cause such effects.2

In addition, the isotopes selected to be used in therapy
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by the number of physicians

per 106 population: I >1,000,

II 300–1,000, III 100–300, and

IV <100. World data are all

HCLs combined. Figure is

derived from data provided in

UNSCEAR (2000)

2Both intracavitary and interstitial placement of radioactive

sources (e.g., remote-afterloading 137Cs applicators for the treat-

ment of gynecological cancers or the permanent insertion of
125I ‘seeds’ into the prostate gland) will be considered as sources

of external exposure as the radioactive sources are not integral

to the corpus nor are subject to distribution, metabolism or

excretion.
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emit charged particulate radiations (a and b particles)

which have limited range in tissue and, hence, deposit

all of their initial kinetic energy in tissue. This makes

the design of the targeting capability of the vector

carrying the source of radiation especially crucial.

The lower limits to the therapeutic levels of activity

are dictated by the need to exceed the threshold

required for a beneficial biological effect (either cura-

tive or palliative) and the upper limits are set by the

need to avoid radiotoxicity to uninvolved healthy tis-

sues or organs. Historically, the amount of adminis-

tered activity used for a therapeutic purpose was set by

clinical experience and protocol and was not patient-

specific, other than, perhaps, by scaling the activity

with body weight (Early and Landa 1995; Thierens

et al. 2005). In modern times, the use of imaging-based

predictive and patient-specific dosimetry has been

slowly growing in therapeutic nuclear medicine,

mainly within the research arena (Zanzonico 2002;

Flux et al. 2006) This can be achieved, as noted earlier,

by the pretherapy administration of a photon-emitting

diagnostic radiopharmaceutical expected to have the

same biodistribution of the particulate-emitting thera-

peutic radiopharmaceutical (e.g., by using a different

isotope of the intended therapeutic moiety) followed

by imaging in order to extract the exact in vivo biodis-

tribution a priori. Should the therapeutic radiopharma-

ceutical also emit photons in addition to particulate

radiation, a diagnostic activity level of the radio-

pharmaceutical itself can be administered and subse-

quently imaged using the photon component, under

the expectation that the radiation absorbed dose asso-

ciated with the therapeutic component is negligible in

this instance. Quantitative measurement of the in vivo

biodistribution can then be used to guide the amount of

administered therapeutic levels of activity. Although

such an approach may appear obvious, it should be

considered with some degree of caution as, for exam-

ple, in the use of 131I in the treatment of differentiated

thyroid cancer. The therapeutic absorbed dose is fre-

quently less than that predicted from the kinetics of

the pretherapy tracer amount of 131I due to leakage of

the iodine from damaged thyroid cells (Zanzonico

et al. 1995) or through thyroid stunning (Coakley

1998). In an even more sophisticated and indivi-

dualized approach, the measured biodistribution data

and a whole-body CT image set demonstrating the

patient’s anatomy are used as input to an individua-

lized patient-specific Monte Carlo calculation of the

organ absorbed doses per unit administered activity

of the therapeutic radiopharmaceutical. Knowing the

desired minimum and maximum absorbed doses to

the target and tissues, one can then use these values

of the absorbed dose per unit administered activity to

readily calculate the required activity to administer for

the patient in question. However, the role of radiobiol-

ogy in the responses of tumor and normal tissue to

internal irradiation cannot be neglected (Goldsmith

2004; Kassis and Adelstein 2005).
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Theoretical Tools 2

Abstract In this chapter, the tools to be used in the theoretical derivations provided

later in this book are summarized. These include relativistic kinematics, perturbation,

and quantum scattering theories and Dirac’s equation.
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2.1 Introduction

The absorbed doses received by the tissues and organs

of the nuclear medicine patient are the culmination of

a series of physical phenomena1 as shown diagram-

matically in Fig. 2.1. The three theoretical tools which

to be used in the description of such processes are

categorized as:

� Kinematics

� Theory of quantum transitions (perturbation and

scattering)

� Dirac relativistic theory

These phenomena are taken to be the simplified

culmination of four steps:

Step 1: This is the production of the radioactive

substance itself through, for example, the fission of

uranium within a reactor following the absorption of a

neutron (e.g., to produce 99Mo which subsequently

undergoes decays to produce the isomer 99mTc) or

the charged-particle bombardment of a nucleus to

produce a radioactive daughter (such as in the charge

exchange reaction of 18O(p,n)18F to form the18F used

in PET imaging). Clearly, a complete understanding

of radioisotope production requires knowledge of both

the kinematics of the nuclear reaction and the quan-

tum-mechanically derived probability of the reaction

occurring.

1Following the absorbed dose, biological effects occur which

lead to the risk associated with the magnitude and type of

radiation dose and the intrinsic radiosensitivity of the tissue

irradiated.
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Step 2: This series is the in vivo physical decay of

the radioactive nucleus. For diagnostic nuclear medi-

cine, the expectation is that the decay produces either a

single photon (as with 99mTc) or a positron, the anti-

particle of the electron, which travels a short distance

in tissue before annihilating with an atomic electron to

produce two (sometimes, one or three) photons. The

photons resulting from radioactive decay are detected

externally and then used to form the diagnostic nuclear

medicine image. On the other hand, therapeutic

nuclear medicine seeks to deliver a high radiation

dose to neoplasia and this is most easily achieved by

the decay producing a short-ranged charged particle

such as an a particle or an Auger/Coster–Krönig elec-

tron, either as a direct result of the decay or following

atomic relaxation processes induced by the decay.

Here, one needs to understand the requirements of an

unsteady balance between nuclear mass and charge or

the mechanisms through which internal degrees of

freedom, such as angular momentum in a spinning

nucleus, can couple to external emissions of energy,

such as photons, and the relativistic theory of Dirac in

explaining the production and existence of the posi-

tron. Again, the probability of a quantum event must

be evaluated.

Step 3: The third step is a consequence of the

interaction of a produced photon with matter and

can be divided into two categories in terms of whether

or not the photon transfers energy to the medium

within which it is traveling. In classical Thomson

scatter, for example, the photon does not transfer

energy to an atomic electron, but its direction of

travel is altered which, while not leading to energy

deposition in tissue, can be important to calculating

the transport of radiation in the body. A category

of interactions in which energy is transferred to the

medium can be further subdivided into subcategories

of whether or not the photon is conserved. The pro-

cess of Compton scatter, in which a fraction of the

incident photon’s energy is transferred to an electron

which recoils and the photon is scattered with a

reduced energy, retains the photon. On the other

hand, a photon can be absorbed by an atomic electron,

thus transferring its energy to the electron which is

then ejected if the photon energy exceeds the binding

energy. Should the photon have an energy exceeding

twice the electron rest-mass (plus a little more to

allow for nuclear recoil – refer to the Appendices),

it can interact with the nuclear electromagnetic field

to produce an electron–positron pair. In both of these

cases, the abilities to calculate the probabilities of

the interaction occurring, their physical observables

(differential cross sections) and the kinematics of the

process are necessary in order to solve the dosimetry

problem.

Step 4: The final step, is the transfer of the second-
ary charged particle’s kinetic energy to the medium

as it slows down to be eventually thermalized. This

transferred energy, per unit mass of medium, is the

absorbed dose that we seek to eventually calculate.

The probability and kinematics of energy transfer

as a function of charged particle can, depending upon

the particular scenario, be calculated classically or

through quantum theory.

(A) Kinematics
(B) Quantum transitions

(A) Kinematics
(B) Quantum transitions
(C) Dirac theory

(A) Kinematics
(B) Quantum transitions

Production of
radioisotope

(and manufacture of
radiopharmaceutical )

Physical decay
of radioactive nucleus

Transfer of energy from
moving charged particle

to medium

Photon emission

Photon interactions with
matter and production

of moving
charged particles

(B) Quantum transitions
(C) Dirac theory

Charged particle emission

Fig. 2.1 Schematic chain of the physical phenomena from the production of the radioisotope to culminate in the deposition of

energy in a medium (i.e., absorbed dose to tissue)
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2.2 Physical Units

The question of units is inevitably contentious as

consensus within the community appears to be per-

petually unattainable! However, over the past 30

years, the Système International d’Unités (SI) system2

has become dominant in the practice of medical radi-

ation dosimetry. Correspondingly, this book will use

the SI system in order to maintain as much consis-

tency as possible with the definitions of physical

constants provided in the literature.3 Unfortunately,

this exclusivity may have the potential to cause some

difficulty and confusion for the reader who is more

familiar with Gaussian/“natural” units favored by

some (e.g., �h ¼ c ¼ 1) which provide time and dis-

tance with units of length and momentum in units of

inverse length. Admittedly, the use of such units can

make the derivations of some equations somewhat

more transparent, but one should be reluctant to risk

the loss of cohesion by switching systems of units

within a text linking microscopic and macroscopic

dosimetry theory. However, having said that, in

order to ensure clarity of the expressions derived

here, the rest-mass and three-vector momentum of a

particle are implicitly assumed to be given in units of

energy. In other words, instead of writing the total

energy of a moving particle as E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2c4

p
we will write it as E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. For example, the

rest-mass of the electron will be given as me ¼ 511

keV. This reduces the plethora of powers of c which

often appear in expressions, but at the slight cost

of the frequent use of the conversion factor,

�hc ¼ 197:33MeV � fm.

Frequent use of the definitions of the fine structure

constant a ¼ e2=4pe0�hc and the classical radius of the
electron r0 ¼ e2=4pe0mec

2 will be made throughout

the text in order to simplify expressions and still retain

transparency. For example, as a result of these, the

magnitude of the electric field due to a point charge e

will be written in the succinct form as,

EðrÞ ¼ a�hc
r

: (2.1)

2.3 Mathematical Notations

2.3.1 Vector Notation

Three-component vectors are denoted in bold. If x is a

three-component vector, then the corresponding unit

vector is,

x̂ ¼ x

xj j : (2.2)

A four-component vector is denoted in bold italics,

e.g., X. The contravariant components are denoted by

superscripts whereas the covariant components are

denoted by subscripts. For example,

Xm � x0; x1; x2; x3
� � � x0; x

� �
: (2.3)

The covariant and contravariant components are

related through,

Xm ¼
X3
n¼ 0

gmnX
n (2.4)

where the metric tensor is,

gmn ¼ gmn ¼
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

0
BB@

1
CCA: (2.5)

Hence,

Xm ¼ x0;�x
� �

: (2.6)

The summation convention will be used in which,

when an identical superscript and subscript occur,

the components are summed over that superscript/

subscript. That is,

2See, e.g., http://www.bipm.org/en/si/si_brochure/.
3An inconsistency will be admitted with respect to interaction

coefficients such as attenuation coefficients and stopping powers

where this book will use cgs units (e.g., the photon mass attenu-

ation coefficient has units of square centimeter per gram). These

are simply more practical and virtually all numerical tabulations

of such quantities are provided in these units.
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pmX
m �

X3
m¼0

pmX
m: (2.7)

In the event that no ambiguity can arise, this sum-

mation will be simplified by omitting the indices so as

to write pmX
m � pX. Note also that,

pmX
m ¼ pmXm ¼ p0x0 � p � x: (2.8)

The four-vector momentum for a particle of rest-

mass m is,

pm ¼ E; pð Þ (2.9)

where E is the total energy (sum of kinetic energy and

rest-mass) and p is the three-vector momentum. From

the above,

p � p ¼ E2 � p � p
¼ m2

(2.10)

and, hence, is an invariant. The product of the four-

vector momenta of two distinguishable particles A and

B is,

pA � pB ¼ EAEB � pA � pB: (2.11)

2.3.2 Complex Conjugation

Let z ¼ x þ iy be a complex variable. Its complex

conjugate is denoted by,

z� ¼ x� iy: (2.12)

2.3.3 Hermitian Conjugation

LetM be a matrix with complex elements (M)ij ¼ mij.

The Hermitian conjugate of this matrix is denoted by

M{ where (M{)ij ¼ mji
*. That is, the Hermitian conju-

gate is the transpose of the original matrix and with the

elements replaced by their complex conjugates. If

M ¼ M{, the matrix is referred to as being Hermitian

or self-adjoint.

2.3.4 Adjoint Operator

The adjoint of the spinor c r; tð Þ is,

�c r; tð Þ ¼ cy r; tð Þg0 (2.13)

where g0 is a Dirac matrix, to be defined later in this

chapter.

2.4 Relativistic Kinematics of a
Two-Body Elastic Collision

2.4.1 Introduction

As summarized above, the absorbed dose to a medium

exposed to radiation is due to the transfer of the kinetic

energy of a charged particle to the medium as it slows

down. For the charged particles and kinetic energies

of interest to nuclear medicine, these energy transfers

are predominantly through interactions with atomic

electrons. The kinematics of the scattered projectile

and recoil target resulting from these interactions are

the subject of this subsection.

An elastic scatter between two bodies is that in

which the sum of the kinetic energies of the bodies

pre- and postcollision is the same. There are no inter-

nal degrees of freedom present (such as atomic or

nuclear excitation) that can channel away kinetic

energy and transfer it to potential energy. Figure 2.2

shows a two-body scatter in which a particle of rest-

mass m1, total energy E1, three-vector momentum

p1 and kinetic energy T1 is incident to a particle at

rest in the laboratory reference frame with a rest-mass

m2. The pre- and postcollision four-vector momenta of

the particles are,

p1 ¼ E1; p1ð Þ (2.14)

p2 ¼ m2; 0ð Þ (2.15)

p01 ¼ E0
1; p

0
1

� �
(2.16)

p02 ¼ E0
2; p

0
2

� �
: (2.17)
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2.4.2 Kinetic Energy of the Recoil Particle

2.4.2.1 Derivation

The conservation of four-vector momenta in the scat-

ter of Fig. 2.2 is,

p1 þ p2 ¼ p01 þ p02: (2.18)

By isolating and squaring the four-vector momen-

tum of the scattered particle and recalling its invari-

ance,

p0 21 ¼ p1 þ p2 � p02ð Þ2

m2
1 ¼ m2

1 þ 2m2
2 þ 2 p1 � p2ð

� p1 � p02 � p2 � p02Þ:
(2.19)

After further algebraic manipulation,

p1p
0
2 cosf ¼ E0

2 �m2

� �
E1 þm2ð Þ: (2.20)

Solving for the total energy of the recoil particle,

E0
2 ¼ m2

E1 þm2ð Þ2 þ p21 cos
2 f

E1 þm2ð Þ2 � p21 cos
2 f

(2.21)

and the corresponding kinetic energy T0
2 ¼ E0

2 �m2 is,

T0
2 ¼ 2m2

p21 cos
2 f

E1 þm2ð Þ2 � p21 cos
2 f

: (2.22)

2.4.2.2 Maximum Recoil Kinetic Energy

Equation (2.22) provides the kinetic energy of the

recoil particle as a function of the recoil particle’s

mass, the incident projectile’s total energy and

momentum and the recoil angle, f. In many instances,

we will be interested in only the maximum recoil

kinetic energy (i.e., the maximum energy transferred).

This will clearly occur for the condition of f ¼ 0,

T0
2;max ¼ 2m2

p21

E1 þm2ð Þ2 � p21

¼ 2m2

p21

m2
1 þm2

2 þ 2m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þm2

1

p :

(2.23)

Massive Projectile and Light Target

For the case of a heavy incident particle incident to a

light particle, m1 � m2, (e.g., a proton projectile and

an electron target), (2.23) reduces to the following

expression,

T0
2;max �

2p21
m2

1

m2

� �
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þm2

1

p
for m1 � m2:

(2.24)

Incident particle (E1, P1)

Recoil particle (E′2, P′2)

Scattered particle (E′1, P′1)

m1

m1

m2

θ

φ

Fig. 2.2 The kinematics of

two-body elastic scatter
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For the combination of a massive projectile and

light target, we are able to consider two further condi-

tions of the projectile momentum. For the case of the

projectile having a high incident three-vector momen-

tum such that p1 � m2
1

�
m2

� �
, this result reduces con-

siderably to,

T0
2;max � p1

� T1 for m1 �m2;p1 � m2
1
�
m2

� �
:

(2.25)

Thus, even though the projectile is much more

massive than the target, it is possible for all of the

projectile’s kinetic energy to be transferred to the

target should the incident projectile be relativistic.

On the other hand, considering the case of a low

incident three-vector momentum p1 � m2
1

�
m2

� �
, for

which the above result becomes,

T0
2;max � 2m2

p1

m1

� 	2

¼ 2m2g21b
2
1 for m1 � m2; p1 � m2

1
�
m2

� �
:

(2.26)

Projectile and Target of Equal Masses

The most frequent case in nuclear medicine dosimetry

is that of the incident and target particles having equal

masses, such as the combination of an electron or

positron projectile and an atomic electron target.

Although, in this case, the target will be moving and

be bound to the atom, we will neglect these conditions

as would be acceptable if the projectile is sufficiently

energetic that we can treat the atomic electron as being

at rest relative to the projectile. In such a case, the

recoil kinetic energy can be rewritten as,

T0
2;max ¼ 2m

p21

2m2 þ 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þm2

p (2.27)

where m1 ¼ m2 � m. Further manipulation leads to,

T0
2;max ¼

p21

mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þm2

p

¼ p21
mþ E1

¼ T1 T1 þ 2mð Þ
T1 þ 2m

� T1 for T1 � m1;m2; m1 ¼ m2:

(2.28)

Again, in the ultrarelativistic limit for the incident

kinetic energy greater than the rest masses of projec-

tile and target, the maximum recoil kinetic energy is

equal to that of the incident projectile. However, for

the case of an electron projectile and an electron

target, special considerations must be taken. In such

an extreme collision, the projectile electron is

completely stopped and the target electron carries off

the total kinetic energy. But a subtle facet to this

collision exists and requires one to be cognizant of

the indistinguishability between the projectile and

target electrons. This inability to differentiate between

the two electrons leads to the obvious question of

how an observer can tell the difference between

when the projectile electron transfers none or all of

its energy to the target electron. In both cases, one

observes a final state with one electron at rest and

another with kinetic energy equal to that incident.

This indistinguishability between the electrons leads

to the convention that the maximum kinetic energy of

the recoil electron in the relativistic region is set to

T1=2 and the assumption that the electron with the

highest kinetic energy in the final state is the projectile

electron.

2.4.3 Kinetic Energy of the Scattered
Projectile

There will also be interest in the kinetic energy of the

scattered projectile which, in terms of radiation trans-

port, provides us with the knowledge of how much

energy remains to be transferred to the medium at a

distance from the collision. The spatial resolution

explored by a scattering reaction will be inversely

proportional to the bombarding particle’s momentum,

as follows from the reduced de Broglie wavelength

�l ¼ �hc=p. For example, an electron with a kinetic

energy of 1 GeV has a de Broglie wavelength of

about 0.2 fm, which is of the order of 10% of the

nuclear dimension making such high-energy electrons

useful for probing the nucleus and elucidating under-

standing of its size and spatial structure, as will be

shown in Chap. 3.

To evaluate the scattered projectile’s kinetic

energy,
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p1p2 ¼ p01p
0
2

¼ p01 p1 þ p2 � p01
� �

¼ p01p1 þ p01p2 �m2
1:

(2.29)

Expanding,

E1m2 ¼ E0
1E1 � p01p1 cos yþ E0

1m2 �m2
1: (2.30)

Assume that the projectile is an electron with a de

Broglie wavelength smaller than nuclear dimensions

thus requiring the electron to be highly relativistic or,

E1m2 � E0
1E1 þ E0

1m2 � E0
1E1 cos y: (2.31)

Rearranging and solving for the scattered projec-

tile’s total energy,

E0
1 yð Þ ¼ E1

1þ E1

m2

� �
1� cos yð Þ

: (2.32)

Figure 2.3 shows the ratio of the kinetic energy of

the scattered projectile to that prior to the interaction

for an electron projectile (E1) incident to light (
1H) and

heavy (208Pb) nuclear targets (m2) as a function of

scattering angle for 1 and 10 GeV electrons, the com-

binations satisfying the above kinematic requirements.

For a head-on scatter of y ¼ 0, the scattered energy

equals that of that incident, a result independent of the

mass of the target should the projectile be relativistic.

No energy is transferred to the target as a result, which

is of little interest. However, the differences in the

angular variations of the scattered energy with scatter-

ing angle for a relativistic projectile as functions of

projectile energy and target mass are certainly of

interest and reflect the role of the target mass. For

the two cases of the two electron energies of 1 and

10 GeV incident to the 208Pb target, the target mass is

much greater than the total incident energy m2 � E1

(m2 � 208GeV) and the functional dependence upon

the scattering angle is suppressed due to the E1=m2

factor in the denominator. In other words, for the

heavy Pb target, relatively little kinetic energy is

taken up by the recoil nucleus, E0
e yð Þ=Ee � 1 over

all scattering angles, and there is little difference in

this feature between 1 and 10 GeV electrons. On the

other hand, there is a greater dependence of the

scattered projectile energy upon scattering angle

for the ultrarelativistic electron incident to the rela-

tively light target of a proton. This is indicative of

the greater propensity of the light target nucleus to

acquire a greater amount of the projectile’s kinetic

energy.

2.5 Time-Dependent Perturbation
Theory

2.5.1 Introduction

In this book, frequent examinations of conditions

under which a given quantum state makes a transition

to another distinguishable quantum state will be made.

The most pertinent examples will be the transition of a

radioactive nucleus from one state to another. In such

cases, the energy differential between the pre- and

posttransition states is manifest in the emission of an

energetic particulate radiation (a particles, electrons

or positrons), or electromagnetic radiation (photons),

which are the essence of nuclear medicine. Funda-

mental to the study of such transitions is the ability

to calculate the probability per unit time of these

transitions occurring. For the examples to be consid-

ered in this book, this probability (i.e., the transition

rate) is calculated using time-dependent perturbation

theory.

1.00 1 GeV e− on 208Pb

10 GeV e− on 208Pb

10 GeV e− on 1H

1 GeV e− on1H

q (°)

0.75

0.50

0.25

0.00
0 30 9060 120 150 180

E
¢ E

Fig. 2.3 Ratio of the kinetic energy of an elastically-scattered

electron to that incident for 1 and 10 GeV electrons incident to

hydrogen and lead targets
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2.5.2 Transition Rate

In this section, we will derive the transition rate which

is the probability per unit time for a given transition to

occur. Consider a basic system which is initially in

steady-state but then perturbed by a small time-depen-

dent potential. This perturbation induces the quantum

system to a new state and we wish to calculate the

probability with which this can occur. The calculation

begins with the definition of the total Hamiltonian of

the system as,

H ¼ H0 þ lU tð Þ (2.33)

where H0 is the steady-state Hamiltonian and U(t) is

the time-dependent perturbation noted above. For

calculational purposes, a dimensionless weighting

parameter l is explicitly applied to the perturbation

as it will be used later in a power-series expansion

in this derivation. We now consider Schrödinger’s

description of this quantum state. Schrödinger’s equa-

tion for the steady-state component (i.e., without the

perturbation) is,

i�h
@C0

@t
¼ H0C0 (2.34)

for which the solution can be written as,

C0 ¼
X
k

ak;ocke
�i

Ekt

�h (2.35)

where ak,0 are constants. As the eigenstates ck form

a complete set, the solution for the complete Hamil-

tonian (i.e., for the combined steady and perturbed

state) is,

C ¼
X
k

akðtÞcke
�i

Ekt

�h (2.36)

where,

ak t ¼ 0ð Þ � ak;0 (2.37)

The coefficients are such that akðtÞj j2 represents the
probability of finding the system in the kth-state at time

t. These coefficients can be found by substituting the

wavefunction into the Schrödinger equation to give,

i�h
X
k

dakðtÞ
dt

cke
�i

Ekt

�h � i
Ek

�h
akðtÞcke

�i
Ekt

�h

� 	" #

¼ H0 þ lUðtÞð Þ
X
k

akðtÞcke
�i

Ekt

�h

(2.38)

Isolating the term associated with the free Hamilto-

nian from that of the perturbation gives

X
k

akðtÞEkcke
�i

Ekt

�h ¼ H0

X
k

akðtÞcke
�i

Ekt

�h (2.39)

i�h
X
k

dakðtÞ
dt

cke
�i

Ekt

�h ¼ l
X
k

UðtÞakðtÞcke
�i

Ekt

�h :

(2.40)

Ignore the trivial result of (2.39) and instead exam-

ine the effect of the perturbation upon the system as

described by (2.40). For ease of presentation, the Dirac

notation is used so that by multiplying both sides of

(2.40) by the bra hcf j and by the ket cij i and integrat-

ing over space, gives,

i�h
X
k

ð
d3r

dakðtÞ
dt

hcf jckie�i
Ekt

�h

¼ l
X
k

ð
d3rhcf jUðtÞjckiakðtÞe�i

Ekt

�h (2.41)

Using the orthonormality of states, cn jcmh i ¼ dmn,

we have

i�h
daf

dt
e�i

Ef t

�h ¼ l
X
k

UfkðtÞakðtÞe�i
Ekt

�h : (2.42)

where the matrix element is simplified to,

UfkðtÞ �


cf jUðtÞjck

�
(2.43)

Rearranging this result,

daf

dt
¼ �i

l
�h

X
k

UfkðtÞakðtÞe�iofkt (2.44)
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where,

ofk � Ef � Ek

�h
: (2.45)

Essential to this derivation is the assumption that

the strength of the perturbation is weak so as to allow

the coefficients ak(t) to be expanded in a power-series

in l,

akðtÞ ¼
X1
m¼ 0

lmak;mðtÞ: (2.46)

Substituting this expansion into (2.44) gives,

X1
m¼0

lm
daf;mðtÞ

dt

¼ � i

�h

X1
m¼0

X
k

UfkðtÞlmþ1ak;mðtÞeiofkt:

(2.47)

Then, by equating coefficients of equal powers of l,

daf;0ðtÞ
dt

¼ 0 (2.48)

and

daf;mðtÞ
dt

¼ � i

�h

X
k

UfkðtÞeiofktak;m�1; m 	 1: (2.49)

In order to use these results to calculate the co-

efficients, assume that the perturbing potential is

“switched on” at time t ¼ 0 and remains constant

for t > 0,

UðtÞ ¼ U0HðtÞ (2.50)

where HðtÞ is the Heaviside function. Further assume

that the system is in a single and well-defined state cij i
before the potential is “switched” on,

ai;0
�� ��2 ¼ 1: (2.51)

The remaining coefficients at time t are then found

by integrating (2.49) where, as l has been previously

defined as small, the calculation need only be limited

to first order m ¼ 1,

af;1ðtÞ ¼ � i

�h

ðt

0

dt0Mfie
iofit

0

¼ �i
Mfi

�h

ðt

0

dt0eiofit
0

¼ Mfi

�h

1� eiofit

ofi

� 	
(2.52)

where,

Mfi ¼


cf jci

�
U0: (2.53)

The probability that a transition will be made from

state cij i to state jcfi at time t is the squared modulus

of (2.52),

PfiðtÞ ¼ af;1ðtÞ
�� ��2

¼ 2
Mfij j2
�h2

1� cosofi tð Þ
o2
fi

¼ 2
Mfij j2
�h2

B ofi tð Þ:

(2.54)

The function B(o,t), which is plotted in Fig. 2.4, is

sharply peaked at o ¼ 0 and the sharpness of this peak

increases with t. Thus the probability of a transition is

greater for a reduced energy difference between the

two states.

In many cases of interest, there will in fact be an

ensemble of neighboring states around cf

��� with ener-

gies around Ef. The transition probability is then deter-

mined by integrating over this ensemble of energies,

PfiðtÞ ¼ 2

�h2

ð1

�1
dEf0 Mf0ij j2B of0i; tð Þrf0 (2.55)

where the number density of states is,

rf0 ¼
dN

dEf0
Ef0ð Þ: (2.56)

This can be integrated simply if it is assumed that

the matrix element Mf 0i and the density of states are
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reasonably constant over the region where B(of’i,t) is

significant, thus allowing them to be extracted from

the integral,

PfiðtÞ ¼ 2

�h2
Mfij j2rf

ð1

�1
dEf0B of0i; tð Þ

¼ 2

�h
Mfij j2rf

ð1

�1
dof0

1� cosof0itð Þ
o2
f0i

:

(2.57)

The integral is solved by the substitution of the

variable, y ¼ of0 � oi to give

ð1

�1
dof0

1� cosof0itð Þ
o2
f0i

¼
ð1

�1
dy

1� cos ytð Þ
y2

: (2.58)

It is straightforward to solve this integral by parts to

yield,

ð1

�1
dy

1� cos ytð Þ
y2

¼ 2t

ð1

0

dy
sin yt

y
(2.59)

where this integral is the sine integral, SiðxÞ ¼Ðx
0

dy sin y
y
, with the property Si 1ð Þ ¼ p=2. Hence,

ð1

�1
dof0

1� cosof0itð Þ
o2
f0i

¼ p t: (2.60)

The probability of the transition is now,

PfiðtÞ ¼ 2p t
�h

Mfij j2rf : (2.61)

The transition rate is the probability of the transi-

tion occurring per unit time,

lfi ¼ dPfi

dt
(2.62)

or,

lfi ¼ 2p
�h

Mfij j2rf : (2.63)

This result is known as Fermi’s Golden Rule

Number 2.

Equation (2.63) describes a first-order process

and, under some conditions, can yield a zero result.

One must account for second-order processes as a

result. Consider, for example, the elastic scatter of a

photon by a free electron at rest (Compton scatter).

There are two scenarios is this interaction. In the first,

the primary photon is absorbed by the electron and a

1− cos wt
B(t,w) =

t = 4

t = 3

t = 2

–5 –4 –3 –2 –1 1
w

2

4

6

8

10

2 3 4 50

w2

Fig. 2.4 The function,

B o; tð Þ ¼ 1�cosot
o2
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secondary photon with a reduced energy (corres-

ponding to that scattered) is emitted, with the energy

difference appearing as the electron’s recoil kinetic

energy. In the second scenario, the secondary photon

is emitted by the electron and the primary photon

is subsequently absorbed. In order to manage such

a combination of processes, (2.63) is rearranged

to give,

lfi ¼ 2p
�h

X
n0

Mfn0 Mn0i

Ei � En0

�����
�����
2

rf (2.64)

where the intermediate state of n0 differs from the

initial and final states by one photon. Equation

(2.64), also known as Fermi’s Golden Rule Number 1,

allows for the two cases of the absorption of a photon

by an electron followed by the emission of a photon or

that of the emission of a photon followed by the

absorption of a photon.

2.6 Quantum Scattering Theory

2.6.1 Introduction

As shown in the diagram of Fig. 2.1, the absorbed dose

is the ultimate consequence of the interactions of par-

ticles and radiation fields with matter. Photons, in the

form of X or g rays, interact with atomic electrons and

nuclei and are absorbed, scattered or, if sufficiently

energetic, generate an electron–positron pair through

coupling with the nuclear electromagnetic field. On a

more fundamental level, the scattering of charged

particles sets additional charged particles moving

into the medium. In all of these cases, the outcome

of the interaction is that an electron or positron is set

into motion. As this charged particle moves through

the medium, it loses kinetic energy through interac-

tions with matter, the main ones of interest to us being

those collisions with atomic electrons individually,

with the ensemble of electrons or through violent

deflections from its trajectory by the nuclear Coulomb

field resulting in the emission of radiation. It is also

possible for the charged particle to interact with matter

but without the transfer of energy, e.g., elastic Cou-

lomb scattering. Many of the derivations to be faced

will be involve understanding the interactions of

photons, electrons, and positrons with the medium

that they travel through. This subsection develops

quantum-mechanical descriptions of how projectiles

(photons or particulate) interact with the medium

through which they travel.

A quantum-mechanical Hamiltonian can have both

discrete and continuous eigenvalues, unlike the classi-

cal Hamiltonian which has only continuous eigenva-

lues. The discrete eigenvalues correspond to bound

states of a system which are consequences of an attrac-

tive interaction potential confining the system of par-

ticles to within a finite volume, the Schrödinger

equation in this case being,

HCn ¼ En Cn (2.65)

with energy eigenvalues En and eigenfunctions Cn for

the Hermitian Hamiltonian. In such cases, the wave-

functions of the bound particles decrease rapidly with

growing inter-particle spacing. Continuous eigenva-

lues, on the other hand, correspond to unbound, or

scattering, states in which the wavefunctions can

extend asymptotically to infinity: an incident particle,

modeled by a plane wave, is incident to a potential

(e.g., the static Coulomb field of a nucleus) and is then

scattered by the potential so that the final state is the

combination of the incident and scattered wavefunc-

tions. Whereas the discrete eigenfunction problem

corresponds to a single and confined system, the con-

tinuous eigenfunction problem describes the interac-

tions between two subsystems (here, the projectile and

the target) which are not mutually bound states. The

kinematics of a collision4 between a projectile and a

target have been derived. These results provide only

the energy and momentum of the two particles in the

final state once a scattering or recoil angle has been

defined. They do not shed any light on the likelihood

of such a final state occurring. The scattering problem

is that of interacting systems representing asymptoti-

cally-free states which must exist not just during the

4Collision and scatter have been differentiated by some authors

so that the former correspond to multi-channel final states and

the latter was linked to a single channel final state. Such a

distinction is not made here.
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time interval about the collision but also for all time

(t ! 
1). As with our previous derivation of pertur-

bation theory, we will treat the Hamiltonian affecting

the scattered system as the sum of a free-state Hamil-

tonian and that of a perturbing potential.

Ultimately, in the solution of the scattering prob-

lem, one is required to derive an observable, a physical

quantity that can be measured in the laboratory,

describing the probability of a given final postscatter-

ing state. Here, the observable will be the total cross

section of the scatter which is the ratio of the relative

decrease, due to scatter, in the number of particles per

unit area incident to an ensemble of scattering centers

with an areal density of r scattering centers per unit

area normalized to the areal density.5 As the total cross

section is proportional to the relative decrease in flu-

ence due to scatter, it is a direct physical measure of

the scattering probability. There are further refine-

ments, such as differential cross sections in solid

angle and in energy, which provide more detailed

information of the scattering process.

This subsection provides a review of those aspects

of quantum scattering theory which we will require in

later solutions of dosimetry problems. This begins

with the derivation of the Born approximation, which

is, in fact, a different manifestation of the first-order

approximation used in the perturbation theory leading

to Fermi’s Golden Rules. The outcome of this deriva-

tion is the scattering amplitude which will be shown to

be directly linked to the differential cross section in

solid angle. As the scattering amplitude is proportional

to the Fourier transform of the interaction potential

between projectile and target, the Born approximation

provides an easy mechanism to solve the many scat-

tering problems we will encounter later. The phase-

shift analysis approach to the scattering problem is

then reviewed and, inter alia, the Schrödinger equation

is solved in spherical coordinates. This will be used in

Chap. 3 in solving the bound state problem of the

nuclear shell model. Finally, the phase-shift analysis

is extended to derive the optical theorem, which pro-

vides a simple relationship between the scattering

amplitude and the total cross section.

2.6.2 Scattering Amplitude

Consider the geometry of Fig. 2.5 in which a particle/

wavefunction is incident to a potential centered at the

origin U rð Þ. Assume that the potential is weak. As a

result of the interaction between the wavefunction and

this potential, it is deflected from its original trajectory

and one is interested in the probability of the particle

being scattered through the angle y into the differential
solid angle element dO at a distance r from the scatter-

ing center. In order to calculate this probability, first

consider the case of a free particle (i.e., one not subject

to a potential) with mass m and the nonrelativistic

Hamiltonian,

H0 ¼ p2

2m
(2.66)

The eigenvalue equation is, continuing our use of

the Dirac notation,

H0 c0j i ¼ E0 c0j i (2.67)

where c0j i is the energy eigenfunction of H0. The

wavefunction corresponding to the particle is the sca-

lar product,

c0 rð Þ ¼ r jc0h i (2.68)

The complete Hamiltonian for the particle when it

is in the presence of a potential U is H0 þ U and the

corresponding Schrödinger equation is,

H0 þ Uð Þ cj i ¼ E cj i (2.69)

where cj i is an energy eigenstate of the total Hamilto-

nian. The scattered wavefunction is given by the scalar

product,

c rð Þ ¼ r jch i: (2.70)

The solution to this Schrödinger equation is,

cj i ¼ c0j i þ 1

E� H0 þ ie
U cj i (2.71)

where e is a real, positive small number required to

eliminate the singularity that occurs when E ¼ H0.

This is an exact solution, known as the Lippman–

Schwinger equation, and which can be solved via

5The areal density of a scattering medium with physical density

r and thickness t is the product rt.
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perturbation theory. Using a power-series expansion in

U leads to,

cj i ¼ c0j i þ 1

E� H0 þ ie
U c0j i þ O U2

� �
: (2.72)

The first Born approximation for cj i is the trunca-
tion at the first order of U, which is possible following

our original assumption of a weak interaction poten-

tial. It is also possible to derive the Born approxima-

tion, and a solution for the scattered wavefunction in

coordinate space, by inserting the free Hamiltonian

into the Schrödinger equation and using the canonical

relationship p � �i�hcr, in which the momentum is

linked to the gradient. This change results in the

Helmholtz equation,

� �hcð Þ2
2m

r2 þ U

 !
c rð Þ ¼ Ec rð Þ

r2 þ 2mE

�hcð Þ2
 !

c rð Þ ¼ 2m

�hcð Þ2 Uc rð Þ

r2 þ k2
� �

c rð Þ ¼ Xc rð Þ

(2.73)

where the wave vector is,

k ¼
ffiffiffiffiffiffiffiffiffiffi
2mE

p

�hc
(2.74)

and,

X ¼ 2mU

�hcð Þ2 : (2.75)

The solution to the Helmholtz equation is,

c rð Þ ¼ c0 rð Þ þ
ð
d3r0G r; r0ð Þ rh jX cj i (2.76)

where the free particle wavefunction c0 rð Þ is the solu-
tion to the homogeneous equation (i.e., the Schrödinger

equation for the free particle),

r2 þ k2
� �

c0 rð Þ ¼ 0 (2.77)

and G r; r0ð Þ is the Green’s function defined from,

r2 þ k2
� �

G r; r0ð Þ ¼ d r� r0ð Þ (2.78)

and where d rð Þ is the Dirac delta function. These yield
an expression for the Green’s function of the form,

G r; r0ð Þ ¼ � e
ik r�r0j j

4p r� r0j j (2.79)

r sinq df

r 2 sinq dq df

r 2

r dq

y

z

r

x

U (r )

f

q

y0

dW =          =
dA

r 2
= sinq dq df

Fig. 2.5 Scattering

geometry: the wave function

is incident along the z-axis to a
potential, U rð Þ, centered at the
origin. The wave is scattered,

producing a spherical

outgoing wave, a fraction of

which traverses the

differential solid angle

element, dO
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and the expression for the scattered wavefunction is,

c
 rð Þ ¼ c0 rð Þ �
ð
d3r0

e
ik r�r0j j

4p r� r0j j r0h jX cj i (2.80)

where the 
 subscript has been added in order to

reflect the sign of the exponent in the Green’s function,

the physical interpretation of which will be discussed

shortly. From the definition of X, the matrix element

contained within the integrand is written as,

c
 rð Þ ¼ c0 rð Þ �
ð
d3r0

e
ik r�r0j j

4p r� r0j j r0h jX cj i

¼ c0 rð Þ � 2m

�hcð Þ2
ð
d3~r0

e
ik r�r0j j

4p r� r0j j
� r0h jU rð Þd r� r0ð Þ cj i

¼ c0 rð Þ � m

2p �hcð Þ2
ð ð

d3r00d3r0
e
ik r�r0j j

r� r0j j
� r0h jU rð Þd r� r0ð Þ r00j i r00h cj i

¼ c0 rð Þ � m

2p �hcð Þ2

�
ð
d3r0

e
ik r�r0j j

r� r0j j U r0ð Þc r0ð Þ: ð2:81Þ

To further the evaluation of the matrix element, the

assumption that the scattering potential is weak can be

modified by requiring it to be non-zero only in the

vicinity of the origin. Then consider this wavefunction

only at large distances from the scattering center (i.e.,

r � r0) in which case, the r-dependence of the denom-

inator and exponent can be approximated by,

r� r0j j ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0

r

� 	2

� 2
r0

r

� 	
cos y

s

� r 1� r0

r
cos y

� 	

� r� r̂ � r0

(2.82)

where r̂ is the unit vector in the direction of r. As

a result, the wavefunction expression becomes, for

large r,

c
 rð Þ¼c0 rð Þ� m

2p �hcð Þ2
ð
d3r0

e
ik r�r̂�r0ð Þ

r� r̂�r0 U r0ð Þc r0ð Þ

¼c0 rð Þ� m

2p �hcð Þ2
ð
d3r0

e
ikre�ikr̂�r0

r
U r0ð Þc r0ð Þ

¼c0 rð Þ� m

2p �hcð Þ2
e
ikr

r

ð
d3r0e�ik0�r0U r0ð Þc r0ð Þ:

where the wave vector k0 (for particles with the same

momentum as those incident but scattered along r̂) is

defined as,

k0 ¼ kj jr̂
¼ kr̂:

(2.84)

If the incident particle were to be treated as a plane

wave,

c0 rð Þ ¼ eik�r (2.85)

then the wavefunction can be rewritten as,

c
 rð Þ ¼ eik�r � m

2p �hcð Þ2
e
ikr

r

�
ð
d3r0e�ik0�r0U r0ð Þc r0ð Þ: (2.86)

The first term is simply the incident plane wave

and the second term corresponds to spherical waves

propagating away from the scattering center ðcþðrÞÞ
and towards the scattering center ðc�ðrÞÞ. Clearly,
the latter solution is nonphysical and will be ignored

leaving the physical solution for the wavefunction at

large r,

c rð Þ ¼ eik�r � m

2p �hcð Þ2
eikr

r

�
ð
d3r0e�ik0�r0U r0ð Þc r0ð Þ (2.87)

which is the summation of the incident wave and

spherical waves emitted from the scattering center,

as shown in Fig. 2.6. From the assumption that the

potential U rð Þ is negligible at large r, it is possible to
approximate the c r0ð Þ in the integrand by the incident

wavefunction c0 r0ð Þ,
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c rð Þ ¼ eik�r � m

2p �hcð Þ2
eikr

r

ð
d3r0e�ik0�r0U r0ð Þeik�r0

¼ eik�r � m

2p �hcð Þ2
eikr

r

ð
d3r0ei k�k0ð Þ�r0U r0ð Þ

(2.88)

which is the first Born approximation. By writing the

momentum transfer as,

q ¼ �hc k� k0ð Þ (2.89)

the wavefunction can be written in the simpler form,

c rð Þ ¼ eik�r � m

2p �hcð Þ2
eikr

r

ð
d3r0ei

q�r0
�hc U r0ð Þ

¼ eik�r þ f qð Þ e
ikr

r
:

(2.90)

The first term is, again, the incident plane wave and

the second term is the scattered spherical wave with a

magnitude specified by f qð Þ, which is known as the

scattering amplitude. The scattering amplitude is pro-

portional to the Fourier transform of the scattering

potential,

f qð Þ ¼ � m

2p �hcð Þ2
ð
d3r0ei

q�r0
�hc U r0ð Þ: (2.91)

Most of the scattering problems to be encountered

in this book reduce to the calculation of the scattering

amplitude as it will be shown to be related to the

physical observable of the differential cross section

in solid angle.

For example, the potentials that will be encountered

here are central or, in other words, azimuthally sym-

metric. In this case, the integral of (2.91) is,

ð
d3r0ei

q�r0
�hc U r0ð Þ¼2p

ð1

0

dr0 r02U r0ð Þ
ð1

�1

d cosyð Þeiqrcosy�hc

¼4p
�hc

q

ð1

0

dr0 r0 sin
qr0

�hc

� 	
U r0ð Þ ð2:92Þ

giving the scattering amplitude as,

f qð Þ ¼ � 2m

q�hc

ð1

0

dr0 r0 sin
qr0

�hc

� 	
U r0ð Þ: (2.93)

Note that the dimension of the scattering amplitude

is that of length.

2.6.3 Scattering Cross Sections

Next, consider the physical observables associated

with scattering, the differential and total cross sec-

tions. The cross section is a quantitative measure of

the complete likelihood of a given interaction occur-

ring between a bombarding beam and a target. An

initial intuitive description is given by Fig. 2.7 which

shows a flux j of particles per square centimeter per

second incident orthogonally to a medium of differen-

tial thickness dx containing N “target centers” per

cubic centimeter (with an areal density of N dx target

centers per square centimeter). Assume that only one

type of interaction can occur between a bombarding

particle and a target center. The interactions between

Scattered Flux

Transmitted Flux

Incident Flux

Fig. 2.6 Wave mechanical description of scattering

Target Centre,
Area = s Exit Flux, j −df

cm−2 s−1

Incident Flux,
ϕ cm−2 s−1

dx

N dx
Target Centres / cm2

Fig. 2.7 Definition of the reaction total cross section

2.6 Quantum Scattering Theory 23



the incident particles and the target centers will cause a

differential flux reduction, dj, proportional to the

incident flux and the areal density of target centers.

The relative flux reduction is,

dj
j

¼ �sNdx: (2.94)

The constant of proportionality, s, between the

relative flux reduction and the areal density of scatter-

ing centers has dimensions of area and is referred to as

the reaction total cross section per target center. As

each target center has a cross-sectional area s, the
fraction of the total area covered by the target centers

is sN dx and any of the bombarding particles that hit

these areas are removed from the beam. Integrating

over the target thickness L (and neglecting any other

changes over this thickness, such as energy loss) leads

to the exponential attenuation of the beam through the

medium,

j ¼ j0 e
�sNL (2.95)

where j0 is the incident flux.

Reaction cross sections in differential form will be

required in most of our calculations. For example,

consider a process in which an incident particle is

scattered by a target center into the direction (y,f).
The differential flux fraction scattered into the differ-

ential solid angle element dO centered on the direction

(y,f) is,

dj
j

¼ dsðy;fÞ
dO

Ndx dO: (2.96)

This differential cross section in solid angle is the

fractional loss of fluence per areal density per unit

solid angle. Similarly, the differential flux fraction

within the energy interval between E and E þ dE

following an interaction is,

dj
j

¼ dsðEÞ
dE

Ndx dE: (2.97)

The total cross section, s, is obtained by integrating
ds=dO over 4p steradians or by integrating ds=dE
over all energies.

The differential cross section with solid angle,

ds=dO, can be readily shown to be related to the

scattering amplitude of the Born approximation due

to its definition as the ratio of the number of particles

scattered per unit time into the differential solid angle

element dO to the number of incident particles per unit

time per unit area, or,

ds
dO

¼
r2 f qð Þj j2 eikr

r

��� ���2
eik�rj j2

¼ f qð Þj j2:
(2.98)

2.6.4 Phase-Shift Analysis

A description of scattering based upon phase shifts of

the wavefunctions induced as a result of the interaction

with the potential is now provided. Recall from above

that, in the Born approximation, the final state is the

sum of the incident and scattered wavefunctions. As

the spherical coordinate system is more natural for

describing the scattering problem, we shall recast this

description by expressing the incident plane wave in

terms of spherical waves and solve the Schrödinger

equation in a region near the scattering center where

the potential is non-zero by writing the Laplacian in

spherical coordinates

"
1

r2
]

]r
r2
]c
]r

� 	
þ 1

r2 siny
]

]y
siny

]c
]y

� 	
þ 1

r2 sin2 y

]2c

]f2

#

þ k2�XÞc¼ 0
�

(2.99)

where k and X are given above. The wavefunction is

solved by first separating it into radial and angular

terms,

Cðr; y;fÞ ¼ R rð ÞYðy;fÞ (2.100)

and then substituting the expression into the Schrödinger

equation,
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Yðy;fÞ
r2

d

dr
r2
dR

dr

� 	
þ RðrÞ
r2 sin y

@

@y

� sin y
@Y

@y

� 	
þ RðrÞ
r2 sin2 y

@2Y

@f2

þ k2 � XÞRðrÞYðy;fÞ ¼ 0
�

(2.101)

The radial and angular terms can be isolated by

multiplying through by the ratio r2=RðrÞY y;fð Þ,

1

RðrÞ
d

dr
r2
dR

dr

� 	
þ 1

Y y;fð Þ sin y
@

@y
sin y

@Y

@y

� 	

þ 1

Y y;fð Þ sin2 y
@2Y

@f2
þ r2 k2 � X

� � ¼ 0

(2.102)

or,

1

RðrÞ
d

dr
r2
dR

dr

� 	
þr2 k2�X

� �

¼� 1

Y y;fð Þsiny
@

@y
siny

@Y

@y

� 	
þ 1

Y y;fð Þsin2y
@2Y

@f2

� 	
:

(2.103)

The right- and left-hand sides must both equal the

same constant. As the radial equation will be linked to

the Bessel equation, this constant will be taken to be

l(l þ 1) where l is an integer equal to 0, 1, 2. . .,

1

RðrÞ
d

dr
r2
dR

dr

� 	
þ r2 k2�X

� �� l lþ 1ð Þ ¼ 0 (2.104)

1

sin y
@

@y
sin y

@Y

@y

� 	
þ 1

sin2y

@2Y

@f2

þl lþ 1ð ÞY y;fð Þ ¼ 0:

(2.105)

The radial equation is first solved for. Following

differentiation and rearrangement,

r2
d2R

dr2
þ 2r

dR

dr
þ k2 � X
� �

r2 � l lþ 1ð Þ �
R ¼ 0

r2
d2R

dr2
þ 2r

dR

dr
þ l2r2 � l lþ 1ð Þ �

R ¼ 0 (2.106)

where

l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � X

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E� Uð Þp

�hc
:

(2.107)

By defining r ¼ lr, (2.106) reduces to the Bessel

equation,

r2
d2R

dr2
þ 2r

dR

dr
þ r2 � l lþ 1ð Þ �

R ¼ 0: (2.108)

The solution for this equation for a given value of l
is the weighted sum of the spherical Bessel functions

of the first and second kind,

Rl rð Þ ¼ Aljl rð Þ þ Blyl rð Þ

or

RlðrÞ ¼ Aljl lrð Þ þ Blyl lrð Þ (2.109)

where jlðxÞ is the spherical Bessel function of the first

kind and ylðxÞ is the spherical Bessel function of the

second kind (also referred to as a Neumann function)

and which are related to the Bessel functions via,

jlðxÞ ¼
ffiffiffiffiffi
p
2x

r
Jlþ1

2
ðxÞ (2.110)

ylðxÞ ¼
ffiffiffiffiffi
p
2x

r
Ylþ1

2
ðxÞ: (2.111)

These functions are plotted in Fig. 2.8 for l ¼ 0,

1, and 2. From the asymptotic behavior of these spher-

ical Bessel functions, the radial function is,

RlðrÞ ¼ 1

lr

 
Al sin

�
lr� lp

2

�
� Bl cos

�
lr� lp

2

�!

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

l þ B2
l

p
lr

 
Alffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
l þ B2

l

p sin

�
lr� lp

2

	

� Blffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

l þ B2
l

p cos

�
lr� lp

2

	
ð2:112Þ
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The integration constants, Al and Bl, will be set by

the boundary conditions. From the trigonometric iden-

tity, sin(a � b) ¼ sina sinb � cosa cosb, (2.112) can
be written as,

RlðrÞ ¼ Cl

kr
sin lr� lp

2
þ dl

� 	
: (2.113)

The phase shift for the l th partial wave is,

dl ¼ �tan�1 Bl

Al
(2.114)

and

Cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

l þ B2
l

q
: (2.115)

For completeness, we solve for the angular compo-

nent of the wavefunction expression by differentiating

and expanding to give,

@2Y

@y2
þ cot y

@Y

@y
þ 1

sin2 y

@2Y

@f2

þ l lþ 1ð ÞY y;fð Þ ¼ 0

(2.116)

and, then, by using another separation of variables,

Y(y,f) ¼ Y(y)F(f),

F fð Þ d
2Y yð Þ
dy2

þ F fð Þ cot y dY yð Þ
dy

þ Y yð Þ
sin2 y

d2F fð Þ
df2

þ l lþ 1ð ÞY yð ÞF fð Þ ¼ 0

Finally, by multiplying through by sin2y and divid-

ing by Y(y)F(f), and isolating the angular terms,

sin2 y
1

Y yð Þ
d2Y yð Þ
dy2

þ cot y
Y yð Þ

dY yð Þ
dy

þ l lþ 1ð Þ
� 	

¼ � 1

F fð Þ
d2F fð Þ
df2

(2.117)

As both sides of the equation are each a function of

a single angular variable, they must both be equal to

the same constant. As the left-hand side of (2.117) can

be written as Legendre’s differential equation, this

constant can be specified to be m2,

1

F fð Þ
@2F fð Þ
@f2

¼ �m2 (2.118)

d2Y yð Þ
dy2

þ cot y
dY yð Þ
dy

þ l lþ 1ð Þ �m2 csc2y
� �

Y yð Þ ¼ 0:

(2.119)

Equation (2.118) has the general solution,

F fð Þ ¼ k1e
imfþk2 : (2.120)

As F(f) is required to be single valued, m must be

an integer or zero. By defining m ¼ cos y, (2.119) is
recast as,

1� m2
� � d2Y

dm2
� 2m

dY
dm

þ l lþ 1ð Þ � m2

1� m2

� 	
Y ¼ 0:

(2.121)
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Fig. 2.8 Spherical Bessel functions of the first and second kind

for l ¼ 0, 1, and 2
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This is the associated Legendre differential equation,

the solutions of which are the associated Legendre poly-

nomials of the first kind, Plm mð Þ, with the requirement

that mj j  l. A special case arises for m ¼ 0,

1� m2
� � d2Y

dm2
� 2m

dY
dm

þ l lþ 1ð ÞY ¼ 0 (2.122)

which is the Legendre differential equation with solu-

tions given by the Legendre polynomials, Pl mð Þ,

Pl mð Þ ¼ �1ð Þl
2ll!

dl

dml
1� m2
� �l� �

: (2.123)

The first three Legendre polynomials are,

P0 mð Þ ¼ 1

P1 mð Þ ¼ m

P2 mð Þ ¼ 3m2 � 1

2
:

(2.124)

The Legendre polynomials are orthogonal and have

the recurrence relation,

lþ 1ð ÞPlþ1 mð Þ ¼ 2lþ 1ð ÞmPl mð Þ
� lPl�1 mð Þ: (2.125)

The associated Legendre polynomials can be cal-

culated from the Legendre polynomials via,

Plm mð Þ ¼ 1� m2
� �jmj=2 d mj j

dm mj j Pl mð Þ: (2.126)

Combining this with the angular solutions gives the

spherical harmonic,

Ylm y;fð Þ ¼ klmPlm yð Þeimf (2.127)

where,

klm ¼ �1ð Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p
l�mð Þ!
lþmð Þ!

s
: (2.128)

The final form of the wavefunction with the radial

and angular terms combined is,

c r;y;fð Þ¼RlðrÞYlm y;fð Þ
¼ Aljl lrð ÞþBlyl lrð Þð ÞYlm y;fð Þ: (2.129)

2.6.5 Optical Theorem

An important relationship between the scattering

amplitude and the total reaction cross section is

derived by considering the simple case of azimuthal

symmetry (i.e., no f-dependence) so that the wave-

function at a distance can be expanded as a summation

of Legendre polynomials,

c rð Þ ¼ c r; yð Þ

¼
X1
l¼0

RlðrÞPl cos yð Þ: (2.130)

By inserting the asymptotic form of the radial func-

tion, we achieve,

c r; yð Þ ¼
X1
l¼0

Cl

kr
sin kr� lp

2
þ dl

� 	
Pl cos yð Þ

¼
X1
l¼0

Cl
ei kr�lp

2
þdlð Þ � e�i kr�lp

2
þdlð Þ

2ikr

" #
Pl cos yð Þ:

(2.131)

As the incident plane wave can be described by the

identity,

c0 rð Þ ¼ eik�r

¼ eikr cos y

¼
X1
l¼0

il 2lþ 1ð Þjl krð ÞPl cos yð Þ

¼
X1
l¼0

il 2lþ 1ð Þ sin kr� lp
2

� �
kr

Pl cos yð Þ

¼
X1
l¼0

il 2lþ 1ð Þ ei kr�lp
2ð Þ � e�i kr�lp

2ð Þ
2ikr

" #
Pl cos yð Þ:

(2.132)

Then the difference between (2.131) and (2.132)

must be the scattered wavefunction,

X1
l¼0

Cl
ei kr�lp

2
þdlð Þ�e�i kr�lp

2
þdlð Þ

2ikr

" #
Pl cosyð Þ

�
X1
l¼0

il 2lþ1ð Þ ei kr�lp
2ð Þ�e�i kr�lp

2ð Þ
2ikr

" #
Pl cosyð Þ¼ f yð Þe

ikr

r
:

(2.133)

2.6 Quantum Scattering Theory 27



By equating the coefficients of the exponentials,

Cl ¼ 2lþ 1ð Þileidl

¼ 2lþ 1ð Þei dlþlp
2ð Þ:

(2.134)

The scattering amplitude is then given by the

summation,

f yð Þ ¼ 1

k

X1
l¼0

2lþ 1ð Þeidl sin dlPl cos yð Þ: (2.135)

In order to obtain an expression for the total cross

section, one first recalls that the differential cross

section in solid angle is the squared-magnitude of the

scattering amplitude,

ds
dO

¼ f yð Þj j2

¼ 1

k2

X1
l¼0

X1
l0¼0

2lþ 1ð Þeidl sin dlPl cos yð Þ

� 2l0 þ 1ð Þeidl0 sin dl0Pl0 cos yð Þ

(2.136)

The total cross section is obtained by integrating

over 4p steradians,

s ¼
ð2p

0

df
ð1

�1

d cos yð Þ ds
dO

¼ 2p
k2

X1
l¼0

X1
l0¼0

2lþ 1ð Þ 2l0 þ 1ð Þei dl�dl0ð Þ sin dl sin dl0

�
ð1

�1

d cos yð ÞPl cos yð Þ Pl0 cos yð Þ

¼ 4p
k2

X1
l¼0

2lþ 1ð Þsin2 dl

(2.137)

where the orthonormality of the Legendre polynomials

has been used. However, note that the imaginary part

of the scattering amplitude for y ¼ 0 is,

Im fð0Þ ¼ 1

k
Im

X1
l¼0

2lþ 1ð Þeidl sin dlPlð1Þ
 !

¼ 1

k

X1
l¼0

2lþ 1ð Þsin2 dl:

(2.138)

Substituting this into the expression for the total

cross section gives,

s ¼ 4p
k
Im fð0Þ (2.139)

which is known as the optical theorem. The total cross

section is a measure of the reduction in flux which

results from the destructive interference between the

incident and scattered wavefunctions for y ¼ 0.

2.7 Dirac’s Equation

2.7.1 Introduction

Dirac’s equation will be the foundation of subsequent

discussions regarding the interactions of electrons

with the electromagnet field and of the phenomena of

the creation and annihilation of positrons. This section

is intended to be only an overview of the derivation

and characteristics of the Dirac equation to be called

upon later.

This discussion begins by considering Schrödin-

ger’s equation which is nonrelativistic and, as a

descriptor for free particles, was derived from the

quantum-mechanical interpretation of energy and

momentum as operators,

E ! i�h
@

@t
(2.140)

p ! �i�hcr: (2.141)

Note that the constants of �h and �hc have been used

in order to maintain our convention that the units of

both energy and momentum are those of energy. Sub-

stituting these operator expressions into the nonrela-

tivistic relationship between energy and momentum,

E ¼ pj j2
2m

gives the Schrödinger equation,

i�h
@c x; tð Þ

@t
¼ � �hcð Þ2

2m
r2c x; tð Þ: (2.142)
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Early attempts at forming a relativistically invariant

analog to this Schrödinger equation began with the

relativistic relationship between energy and momentum,

E2 ¼ p2 þm2: (2.143)

If the operator forms of energy and momentum

are substituted into this relationship, then the Klein–

Gordon equation is obtained,

D2 þm2
� �

c ¼ 0: (2.144)

where the operator D2 � �h2@2=@t2 � �hcð Þ2r2 has been

defined. This attempt at forming a relativistic result

confronted immediate problems. First, the energy-

momentum relationship of (2.143) allowed negative-

energy solutions, E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. Although this was

a difficulty later confronted and surmounted by Dirac in

his interpretation of antiparticles, this conundrum was

at first assumed to be fatal to this attempt. Second, the

Klein–Gordon equation is second-order in that the time

derivative leads to a probability density for the wave-

function that was not positive-definite. As a result, the

solution represented by the Klein–Gordon equation was

rejected, although it was “rehabilitated” in later times as

a descriptor of spinless particles (scalar or pseudoscalar

wavefunctions) such as the pion.

However, the above result has shown that, in order

to derive the required relativistic form of a solution,

the use of a first-order time derivative was required.

2.7.2 Derivation of Dirac’s Equation

Recognizing the requirement for a first-order time

derivative, Dirac began with a linear ansatz of the

form,

Ec ¼ apþ bmð Þc: (2.145)

The operators a and b are required in order to be

consistent with the relativistic relationship between

energy and momentum given by (2.143),

E2 ¼ apð Þ2 þ bmð Þ2 þ bmapþ apbmð Þ: (2.146)

Equating terms to those of (2.143), one finds the

requirements, following Dirac’s proposal that (2.146)

be regarded as amatrix equation with the four matrices

ai and b obeying the algebra, of,

a2
i ¼ b2 ¼ 1 (2.147)

aiaj þ ajai ¼ 2dij1 (2.148)

aibþ bai ¼ 0: (2.149)

In order to construct these four matrices, a number

of conditions must be met. First, they must be Her-

mitian in order for the Hamiltonian to be so. Second,

the eigenvalues of the a and b matrices are 
1.

Finally, from their anti-commutation property, the

traces of the matrices must be zero. These last two

conditions allow the dimensions of the matrices to be

specified. As the trace of a matrix is also the sum of

its eigenvalues, the number of positive and negative

eigenvalues must be equal, requiring that the dimen-

sions of the a and b matrices be even. A dimension

of 2 is insufficient and the smallest even-numbered

dimension for which these matrices can be realized

is 4. Hence,

ai ¼ 0 si

si 0

� 	
i ¼ 1; 2; 3 (2.150)

b ¼ 1 0

0 �1

� 	
(2.151)

where si are the 2� 2 Pauli matrices and 1 is the

2� 2 identity matrix. In order to write the Dirac result

in a covariant form, we introduce the notation of,

g0 ¼ b (2.152)

gi � bai ¼ 0 si

�si 0

� 	
i ¼ 1; 2; 3: (2.153)

An additional matrix is defined as,

g5 ¼ ig0g1g2g3 ¼ 0 1

1 0

� 	
: (2.154)

One can then write the Dirac equation as,

g0E� g � p�m1
� �

c ¼ 0 (2.155)
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where pm ¼ E; pð Þ and the covariant is,

pm � gmnp
n

¼ E;�pð Þ: (2.156)

Equation (2.155) can be rewritten in the form,

gmpm �m1
� �

c ¼ 0: (2.157)

One now has the cðXÞ as a wavefunction with

space–time and spinor degrees of freedom,

cðXÞ ¼
c1ðXÞ
c2ðXÞ
c3ðXÞ
c4ðXÞ

0
BB@

1
CCA: (2.158)

There are two solutions to the Dirac equation,

cþ x; tð Þ ¼ ue�ipmX
m

¼ ue�i Et
�h�p�x

�hcð Þ (2.159)

where u is defined as a Dirac spinor and �h and �hc
have been inserted in order to make the exponent

dimensionally correct. This solution corresponds to a

positive energy. The negative-energy solution is,

c� x; tð Þ ¼ veipmX
m

¼ veþi Et
�h�p�x

�hcð Þ:
(2.160)

c� x; tð Þ is the wavefunction of a positron or, in the

Feynman picture, an electron moving backward in

time with momentum �p. The Dirac spinors are,

u p; sð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p ws
s�pffiffiffiffiffiffiffiffi
Eþm

p ws

� 	
(2.161)

v p; sð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p s�pffiffiffiffiffiffiffiffi
Eþm

p «̂w�s
«̂ws

� 	
(2.162)

where

«̂ ¼ 0 �1

1 0

� 	
(2.163)

and where ws is the (nonrelativistic) Pauli two-compo-

nent spinor for a spin-½ particle. Note that another

variable, s, has been introduced and which describes

the spin orientation of the particle. Equation (2.161)

describes the particle (electron) states and (2.162)

describes the antiparticle (positron) states.
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Nuclear Properties, Structure, and Stability 3

Abstract Nuclear medicine exists because of the instability of some atomic nuclei

which result in the emission of photons or particulate radiations. Later chapters

consider the microscopic theories of these radioactive decays and how, in practice,

they can be quantified. This chapter reviews the fundamental properties of atomic

nuclei, through phenomenology and consideration of the Fermi nuclear gas, the

nuclear liquid drop and the nuclear shell models, and how changes in these properties

result in the radioactive instability necessary for nuclear medicine.
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3.1 Introduction

The subject of this book is the radiation absorbed dose

resulting from medical applications of radionuclides

placed within the body. This absorbed dose is the

consequence of an unstable, or radioactive, atomic

nucleus which is one in a physical state from which

it is possible to transit, or decay, to another state with

lower energy. If further transitions are not possible,

this latter state is referred to as being stable. These

changes in nuclear state and energy are accompanied

by the emission of radiation or particles which, along

with the recoil kinetic energy of the daughter nucleus,

carry away the energy difference between the initial

and final nuclear states. External detection of long-

range radiation (X and g-rays) which exits the body

is used to generate the diagnostic image. On the other

hand, particulate radiations (e.g., a particles, electrons,

and positrons) are contained within the body and
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deposit energy as they slow down and stop. This

exchange of particle kinetic energy to the medium is

among the subjects of Chap. 7.

As this book provides the theoretical basis of eval-

uating the absorbed dose in nuclear medicine, then it is

clearly evident that an understanding of the properties

of radioactive nuclei is integral to achieving this basis.

At the most fundamental level, this understanding

leads to knowledge of those combinations of nuclear

characteristics which lead to a given nucleus being

radioactive. These properties are, in particular, the

nuclear mass, size, and electric charge (i.e., the rela-

tive proportion of protons and neutrons) and its intrin-

sic energy (e.g., the rotational energy associated

with a high-spin state). In addition to appreciating

the requirements leading to a radioactive nucleus, the

accurate evaluation of the radiation dosimetry result-

ing from its decay products requires understanding of

how, during the process of radioactive decay, the

nucleus emits radiations and particles of specific ener-

gies or energy spectra. The discussion of this will be

covered both in this chapter and that following.

The selection of a radionuclide for a given nuclear

medicine application is dependent upon a large number

of characteristics. The three most important would be:

� It must have chemical properties that allow it to be

labeled to a suitable vector that can transport it to

the biological target of interest or that allows metab-

olism to draw it to the target. These are require-

ments common to both diagnostic or therapeutic

uses of the radionuclide.1

� The radioactive properties of the nucleus are criti-

cal to the indicated application. Should it be thera-

peutic, one would preferentially select those

radionuclides that emit short-range charged partic-

ulate radiations, such as electrons or a particles,

which deposit their energies within very small

volumes in order to deliver a high therapeutic radi-

ation dose to the cellular target and minimize the

absorbed dose to surrounding normal tissue. Asso-

ciated emissions of X or g-rays would allow confir-

mation of the anatomical localization through

imaging of the therapeutic isotope. On the other

hand, a diagnostic indication requires a nucleus

with a decay process that emits either X or g-rays,
which are detected externally, or positrons which

annihilate with electrons present in tissue at a short

range from the decay site to produce annihilation

g-rays which are subsequently detected. Even

though these radiations are detected outside the

body, the decay processes will still result in the

generation of short-range moving charged particles

that deposit energy within the body. Nuclear decay

culminating in the emission of a photon frequently

includes the ejection of low-energy atomic elec-

trons2 that deposit energy within the volume imme-

diately surrounding the nucleus. The photon itself

can be either absorbed by an atomic electron sub-

sequently ejected or elastically scattered by an

atomic electron in tissue through Compton scatter

thus setting the electron into motion (with both

processes to be discussed in Chap. 6). Hence, pho-

ton emission is associated with the generation of

short-range charged particles which transfer their

kinetic energy to the surrounding tissue as they

slow down. Also, positrons transfer energy to

tissue as they slow down following emission and

approach annihilation with an electron.

� As radioactive decay is a stochastic process, the

probability of a decay occurring per unit time

(inversely proportional to its half-life) is of extreme

importance to the clinical application. In general, a

short half-life, such as the 6.02 h of 99mTc, is

frequently of great benefit to diagnostic nuclear

medicine as it will tend to limit the absorbed

dose. On the other hand, the longer 67 h half-life

of 111In is of benefit to the use of autologous 111In-

labeled leukocytes in the imaging of unknown sites

of sepsis in which it may take several hours for the

labeled leukocyte to reach the region of interest.

The role of the decay lifetime in therapeutic appli-

cations is still somewhat contentious. Short half-

lives imply high dose rates and conversely for long

half-lives. As the absorbed dose rate affects the

biological response of a tissue to irradiation, care-

ful consideration to the appropriate half-life to use

in nuclear medicine therapy should be applied.
1The vector must have high specificity for its intended target

and, either directly or through metabolism, results in a clearance

of the radioactive isotope from nontarget tissues in order to

increase the target-to-background ratio of the image and to

reduce that absorbed dose to uninvolved tissues.

2Such as Auger/Coster–Kronig and conversion electrons and

which are discussed in Chap. 6.
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In general, a proper appreciation of the suitability of

a radioactive nucleus for a given nuclear medicine

application requires an understanding of the underly-

ing nuclear structure, of what makes a nucleus unstable

and of what radiations and particulates are emitted. The

foundation for this appreciation is developed in this

chapter and further expanded upon in Chaps. 4 and 5.

3.2 Characteristics of Atomic Nuclei:
Part I

3.2.1 Introduction

It is probable that the Greek philosopher Democtritus

of Abdera (460–370 BC) and the Roman poet Titus

Lucretius Carus (ca 99 BC to ca 55 BC) were the first in

the West to propose atomic theories of matter that

could be considered distant foundations for modern

theory. However, the concept of the atom as a funda-

mental constituent of matter lay dormant for nearly two

millennia until when Dalton resurrected the concept in

1808. On the basis of gravimetric measurements of

substances involved in chemical reactions, Dalton pro-

posed that the quantitative descriptions of chemical

composition could be interpreted in terms of integral

numbers of atoms, thus anticipating the concept of the

isotope. It was not until the late nineteenth century

when the first of the atomic constituents was discov-

ered through Thomson’s analysis of cathode rays

which demonstrated the existence of negatively-

charged electrons. The existence of the atomic nucleus

itself became evident following Rutherford’s interpre-

tation of the results of the a particle scattering experi-

ments by Geiger and Marsden. The constituents of the

nucleus were identified through Rutherford’s demon-

stration of the existence of the proton via a particle-

induced fragmentation of the nitrogen nucleus in 1919

and Chadwick’s detection of the neutron in 1932. The

underlying quark structures of the proton and neutron

themselves were not fully elucidated until the 1950s

and 1960s through the theoretical work of Gell-Mann,

Feynman, and others and the confirmatory experimen-

tal work of Hofstadter. It shall be important to note that

it was through the Coulomb scattering of projectiles

that the substructures of both the nucleus and the pro-

ton and neutron were revealed.

While the combination of Thomson’s and

Rutherford’s discovery clearly indicated that the atom

was composed of a massive positively-charged nucleus

and an ensemble of electrons of equal but negative

charge, the size, and makeup of the nucleus itself

remained unclear. Up until the 1920s, Thomson’s

plum pudding model which envisaged the nucleus as

being made up of a conglomeration of positive charge

(protons), within which electrons were embedded,

held sway. The magnitude of the net positive electric

charge of this amalgam would, as required, exactly

balance the negative charge of atomic electrons. How-

ever, Rutherford’s observation that the atomic mass

(expressed as an integer) was almost double the nuclear

electric charge (i.e., the atomic number) began to bring

the plum pudding model into doubt. This approximate

ratio of 2 between nuclear integral mass and electric

charge suggested the existence of a nuclear constituent

with a mass very nearly equal to that of the proton but

with no charge. It was Ehrenfest’s and Oppenheimer’s

(1931) study of the diatomic homonuclear 14N2 mole-

cule which heralded the end of the proton–electron

plum pudding nuclear model. Had that model been

valid, the nitrogen nucleus would be made up of 14

protons and 7 electrons. Although the net nuclear elec-

tric charge exactly balances that of the ensemble of

atomic electrons, this combination of nuclear protons

and electrons requires the nitrogen nucleus to have

half-integral spin. However, Raman spectroscopy data

showed that the nitrogen nucleus had indeed an integral

spin which was a result that could be readily explained

by the combination of seven protons and the seven

hypothesized particles similar to protons in mass

and intrinsic spin but with no electric charge. The

existence of the neutron was confirmed experimentally

by Chadwick.

As protons are positively charged and neutrons

have no charge, it is immediately evident that an

attractive nuclear force is required to compensate for

the repulsive Coulomb force between the protons.

Our first examination of nuclear properties will cul-

minate in the density of the nucleus and the demon-

stration of it being very nearly constant. This simple

result leads to the conclusion that this attractive

strong nuclear force is saturable and has finite range.

This culmination will, inter alia, result in the deriva-

tions of nuclear mass and size. Our examination of

the latter will expend considerable effort on under-

standing elastic Coulomb scattering and how it can
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be used to derive not only nuclear size, but nuclear

structure.

3.2.2 Fundamental Particles
and Interactions

Before progressing into a review of the details of

nuclear structure relevant to internal radiation dosim-

etry, the fundamentals of matter and how its different

components interact are considered. The fundamental

components of matter are the fermions3 which are

divided amongst the three generations shown in the

mass spectrum of Fig. 3.1. Within each generation of

fundamental fermions are two flavors of quarks to

give a total of six flavors. The quarks have the highest

masses within each generation: up and down in gener-

ation 1; charm and strange in generation 2; and

top and bottom in generation 3. The quarks have

electric charge and interact with the electromagnetic

force (mediated through photons), the color (or

strong force mediated through gluons) and the weak

force (mediated through intermediate vector bosons).4

Quarks have an additional quantum characteristic, that

of color. As only the quarks within each generation

are subject to the color (or strong) force, those parti-

cles composed of quarks (e.g., mesons, protons, and

neutrons) are referred to as hadrons (derived from the

Greek, hadros, or “thick”). Baryons (from, barys, or
“heavy”) are those hadrons composed of three quarks

and, hence, are fermions. Obvious examples of bar-

yons are the proton and neutron. Mesons (from,mesos,
or “middle”),5 on the other hand, are quark pairs and

are bosons.6 All mesons are unstable.

The next massive particle in each generation is a

lepton (from the Greek, leptos, or “thin”) so named as

they are charged point-like fermions subject to only

the electromagnetic and weak forces: the electron in

generation 1; the muon (m) in generation 2; and the tau
lepton (t) in generation 3. As an aside, there is an

intriguing empirical, and unexplained, relationship

between the leptonic masses given by Koide’s formula

(Koide 1983; Rivero and Gjsponer 2005),

me þmm þmtffiffiffiffiffiffi
me

p þ ffiffiffiffiffiffi
mm

p þ ffiffiffiffiffiffi
mt

p� �2 ¼ 2

3
: (3.1)

Of the three electrically-charged leptons, only the

electron is stable. Finally, each generation contains

another lepton, the neutrino (n), which has no electric

charge and is associated with the more massive lepton

within each of the generations. Generation 1 repre-

sents “permanent” matter in so far as there is no

evidence for the decays of the proton (the proton

being composed of 2 u quarks and 1 d quark) and the

electron. As a result, the fermions of generation 1 (and

their intermediary force-exchange particles) and the

particles that they compose (protons, neutrons and,

eventually, nuclei) will be the focus of this book.

The constituents of generations 2 and 3 have ephem-

eral lifetimes and will be of no consequence to practi-

cal nuclear medicine, with the possible exception of

the muon which, as a product of cosmic ray inter-

actions with the atmosphere, can contribute to the
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Fig. 3.1 Mass spectra of the elementary fermions. The heavy-
dashed lines for the neutrinos indicate the upper mass limits and

the light-dashed lines connect corresponding fermions of differ-

ent generations (for the quarks, this connection is that of electric

charge)

3Fermions are particles with half-integral spin and subject to

Fermi–Dirac statistics.
4Throughout this book, gravity is ignored and reference will be

made to the remaining three forces only.
5The descriptive mesos was selected as a result of Yukawa’s

prediction of the mass of the boson exchanged between protons

and neutrons to be 130 MeV, intermediate between those of the

electron and the neutron and proton.
6Bosons are those particles with zero or integral spin and subject

to Bose–Einstein statistics.
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background signal of radiation detectors. For each

fundamental fermion (quark, electron, muon, t lep-

ton, and neutrino), there exists an antiparticle, the

existence of which is predicted by relativistic field

theory (as demonstrated by solutions to the Dirac

equation). The particle and its antiparticle have the

same mass, lifetime, intrinsic spin, parity, and isospin

but differ in the signs of both electric charge and

additive quantum numbers. In this book, particles

and antiparticles will in general be differentiated by

a horizontal line (e.g., u and �u for the up and anti-up

quarks) with the exception to allow for the common

practice of referring to the antielectron as the positron

which is denoted by e+.

It is recognized empirically that, throughout nature,

there are four fundamental interactions or “forces” as

summarized in Table 3.1. Obviously, gravity will not

be considered here and all subsequent discussions will

be limited to the strong, electromagnetic and weak

interactions. The distinction between the “strong

color” and “strong nuclear” forces will be expanded

upon later. Quarks are unique in that they interact with

other particles through the electromagnetic, weak and

strong (color) forces. Consequently, those systems

made up of quark multiples, the baryons and mesons,

will interact via the electromagnetic, weak and strong

(nuclear) forces. Charged leptons interact via the elec-

tromagnetic and weak forces only whereas the

uncharged leptons (neutrinos) interact via the weak

force alone. To understand these three interactions,

focus on the exchange processes of interest provided

in Fig. 3.2.

Propagator theory (refer to, e.g., Bjorken and

Drell (1964)) describes the probability amplitude of

an interaction in terms of the two vertices describing

the emission and absorption of the intermediary

boson between two interacting fermions and of the

field propagator proportional to (q – M)�2, where q

is the four-vector momentum transfer and M is the

mass of the interaction boson. In particular, the range

of the interaction will be indicated by the Fourier

transform of the propagator from momentum space

into coordinate space. For example, as the photon is

massless, the electromagnetic potential has infinite

range and thus varies as r�1. On the other hand, the

masses of the intermediate vector W� and Z0 bosons

are 80.4 and 91.2 GeV, respectively, which results in

the weak interaction being very short-ranged (of the

order of 10�3 fm). As the gluon, like the photon, is

massless one would expect, from the above argu-

ment, that the strong (color) interaction between

quarks will also be of infinite range. But, on the

contrary, such an infinite-range interaction is not

observed as a consequence of the quarks having an

additional quantum number, referred to as color,

Table 3.1 Characteristics of the fundamental interactions

Interaction Interaction boson Range

Strong Color Gluon Quark confinement

Nuclear Pion �hc=mp
� 1:4 fm

Weak W�; Z0 �hc=mW
� 2� 10�3 fm

Electromagnetic Photon Infinite

Gravity Graviton Infinite

e± e±

γ

υe υe

q

g

d du u

q′

a

c d e

b

W– W+ z0

Fig. 3.2 Fermion field

quantum vertices: (a)

electromagnetic interaction

with an electron/positron and

interacting photon boson; (b)

color (strong) interaction with

a quark and gluon interaction

boson; (c) weak interaction

exchanging quark flavor from

down to up through an

interacting W� boson; (d)

weak interaction exchanging

quark flavor from up to down
through an interacting W+

boson; and (e) weak

interaction for neutrino

scattering through an

interacting Zo boson
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which has the three degrees of freedom of red, green,

and blue.7 Free quarks have not been detected and

groupings of quarks are currently known only to be in

three-quark (baryons) and two-quark (mesons) states.

The three quarks in a baryon can have any combina-

tion of flavor (up, down, strange, charm, top, or

bottom) but the combination must be that of colors

of red, green, and blue so that, to the outside world,

the baryon appears “colorless” or “white” and there

is no evidence of the strong (color) interaction.

Mesons contain quark–antiquark pairs which, again,

can be in any combination of flavor but the colors of

the quark–antiquark cancel (e.g., red/antired) so that

meson also appears colorless to the outside world.

Quantum chromodynamics (QCD) describes the

color interactions between quarks. In QCD the

gluon, unlike the photon which does not have an

electric charge, carries color and, hence, can interact

with another gluon. This gluon–gluon interaction due

to their carrying color has two important conse-

quences – confinement and asymptotic freedom

(Close 1979). Confinement refers to the fact just

described that quarks exist only in bound colorless

(color singlet) systems. To demonstrate that this

should be so, consider, for example, a quark–anti-

quark pair (meson). Attempting to remove a single

quark from this pair will require an increasing

amount of potential energy. The gluon–gluon inter-

action leads to the gluons becoming the source of

new gluons to eventually form a new color singlet

pair. Asymptotic freedom refers to the coupling

between quarks decreasing with decreasing separa-

tion and asymptotically reaching zero for zero sepa-

ration. The strong (color) interaction describes

processes within the proton and neutron and leads

to the description of the interactions between hadro-

nic multiple-quark states (baryons and mesons) via

the strong (nuclear) interaction. This strong (nuclear)

interaction does not directly involve gluons and is

sometimes referred to as the residual strong interac-

tion.8 It exists between color-neutral systems and is

analogous to the Coulomb-based van der Waals

interaction between electrically-neutral atoms caused

by momentary polarization of electrically-neutral

systems. Yukawa modeled the interaction between

nucleons (a generic term describing both protons

and neutrons) as the exchange of an intermediate

boson (Segrè 1977). It was possible to predict at

least the order-of-magnitude of the boson mass

from the Heisenberg uncertainty principle by know-

ing that the strong (nuclear) interaction had a range

of about 1.5 fm. As a result, the mass of the boson

was of the order of 130 MeV which, because it was

intermediate between those of the electron and

nucleon, resulted in the boson being referred to as a

meson. In particular, Yukawa’s boson interacting

between the nucleons was the p meson or, as more

commonly known, the pion. The pion comes in three

charge states of the p�, each with a mass of

139.6 MeV, and the p0, with a mass of 135 MeV.

The weak interaction vertices are those of (c), (d),

and (e) in Fig. 3.2. The neutral current of (e) is not

relevant to dosimetry and will not be considered

further. However, the flavor-changing interactions of

(c) and (d) form the basis of the beta decay described

in Chap. 4. As noted earlier, the weak interaction has

a range of the order of 10�3 fm, or about 0.02% of the

diameter of a nucleus, as described in the modern

Glashow–Salam–Weinberg electroweak model with

the exchange of the W� and Z0 intermediate vector

bosons. In addition to the limited interaction distance,

a rationale for the use of weak in describing these

interactions is obtained by comparing the lifetimes of

particles decaying through electromagnetic, strong

and weak interactions. For example, the p0 has a

lifetime of 8.4 � 10�17s, predominantly through the

p0 ! 2g electromagnetic decay. The charged pions7Experimental evidence for the existence of a quantum number

of color is provided by the existence of the D33 resonance which

has a mass of about 1,232 Mev, an intrinsic spin of 3/2, isospin

of 3/2, and an electric charge of +2e (Close 1979). This combi-

nation of spin, isospin and electric charge indicates that the D33

is made up of three up quarks which have coupled to provide

spin 3/2 and isospin of 3/2. In the absence of an additional

quantum number, the Pauli exclusion principle would not

allow for the existence of such a particle. Hence, for this princi-

ple for fermions to remain valid, an additional quantum number

distinguishing the three quarks is required. This additional quan-

tum number is color.

8Historically, the term “strong interaction” referred to the resid-

ual strong force between hadrons as mediated by mesons. With

the development of QCD in describing color interactions

between hadrons, “strong interactions” became synonymous

with these color interactions, thus requiring a differentiation

between “strong nuclear” and “strong color” interactions.

Throughout the remainder of this book, unless otherwise

noted, we will use “strong interaction” to mean “strong nuclear

interaction” exclusively.
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decay through the weak interaction, e.g., p+ ! m++nm,
with a lifetime of 26 ns, some 30 million times longer.

3.2.3 Quantum Numbers

3.2.3.1 Introduction

Quantum states and the interactions between them are

conveniently described by quantum numbers. In most

cases, the quantum number of a system following a

process will not change, i.e., the quantum number is

conserved. When a quantum number is not conserved,

for example, the lack of parity conservation in weak

interactions, a profound indication of underlying phy-

sics is provided.

3.2.3.2 Electric Charge

With the exception of the quarks, electric charge Q is

quantized in integer units of the fundamental charge,

e. It is an additive quantum number and is conserved in

strong, weak and electromagnetic interactions. Two

examples demonstrating this are those of the single

charge exchange reaction between a proton and nega-

tive pion and of free neutron decay,

Q :
p�

�1

þ p

þ1

! n

0

þ p0

0
Strong interaction (3.2)

Q :
n

0

! p

þ1

þ e�

�1

þ �ne
0

Weak interaction (3.3)

Quarks have electric charges of either þ 2=3e or

� 1=3e.

3.2.3.3 Baryon Number

Baryons are quark triplets and the baryon number is

an additive quantum number conserved in strong,

weak and electromagnetic interactions. Identifying

the baryon number as �1, the quark is assigned a

baryon number of 1=3 and the antiquark has a baryon

number of � 1=3. Hence, the proton and neutron each

have a baryon number of 1 whereas all mesons, being

quark–antiquark doublets, have a baryon number of

zero. If the baryon number were not conserved, then

proton decay would be observable:

B :
p

þ1

! eþ

0

þ p0

0
Not observed (3.4)

The minimum proton lifetime determined experi-

mentally is in excess of 1033 years, indicating the

strength of baryon number conservation. As expected,

antibaryons, such as the antiproton, have the negative

of the baryon number of the baryon.

3.2.3.4 Lepton Number

The lepton number is an additive quantum number

with leptons assigned a lepton number of 1, antilep-

tons assigned a lepton number of �1 and particles

which are not leptons assigned a lepton number of 0.

For our previous example of free neutron decay,

L :
n

0

! p

0

þ e�

þ1

þ �ne
�1

(3.5)

Lepton number can be further subdivided accord-

ing to the generations of Fig. 3.1 to provide an elec-

tronic lepton number for the leptons of generation 1, a

muonic lepton number for the leptons of generation

2 and a t-lepton number for the leptons of generation

3. Evidence for this subdivision comes from the pionic

and muonic decays,

L

Le

Lm

p�

0

0

0

! m�

þ1

0

þ1

þ �nm
�1

0

�1

(3.6)

L

Le

Lm

m�

þ1

0

þ1

! e�

þ1

þ1

0

þ �ne
�1

�1

0

þ nm
þ1

0

þ1

(3.7)

3.2.3.5 Spin

Spin is a quantum mechanical analog to angular

momentum and is quantized as integral or half-integral
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multiples of �h. Particles with integral spin are subject

to Bose–Einstein statistics and consequently referred

to as bosons. Those particles with half-integral spin

are subject to Fermi–Dirac statistics and referred to as

fermions. As with angular momentum, for spin s there

are (2s + 1) different states of the projection s3 as

shown in Fig. 3.3.

3.2.3.6 Parity

Parity is a quantum mechanical concept and describes

the effect upon a wavefunction caused by a reversal of

spatial coordinates from r to �r. Let P be the parity

operator that, acting upon a wavefunction, performs

the result,

PC rð Þ ¼ lC �rð Þ: (3.8)

The eigenvalue of the operator, l (also referred to

as the eigenparity), is determined by successive appli-

cations of the parity operator,

P PC rð Þð Þ ¼ l2 C rð Þ: (3.9)

Hence, the value of the eigenvalue is l = �1. A

quantum system with l = +1 is referred to as having

positive parity whereas that with l = �1 is said to

have negative parity. As parity is a multiplicative

quantum number, the parity of a system C(C1,

C2 . . . CN) made up of N subsystems is the product

of the parities of the N subsystems,

PC ¼
YN
i¼1

Pci
: (3.10)

The parity of a state with an orbital angular

momentum quantum number, l, is (�1)l.

Particles and nuclear states can be identified by Jp

where J is the angular momentum and p ¼ �1is the

parity. Table 3.2 summarizes the behaviors of meson

(integral spin) wavefunctions for different combina-

tions of J and P.

3.2.3.7 Isotopic Spin

Shortly after the discovery of the neutron and its

observed similarity of its rest-masses with that of the

proton (939.565 and 938.272 MeV, respectively),

Heisenberg proposed in 1932 the concept that they be

treated as two different quantum states of the same

particle known as the nucleon (Blatt and Weisskopf

1979). The proton and neutron thus reflect a dichoto-

mous quantum degree of freedom of the nucleon

through the quantum number isotopic spin (or, more

commonly, isospin). In order to develop this concept,

an isospin space with the isospin vector t associated

with the nucleon is introduced. Mathematically, t is

analogous to the nucleon’s spin vector s in that there

are two possible components of t in the direction of the

third axis in isospin space. That is, the variable t3 has

two values of �1/2 corresponding to the charge state

of the nucleon. For the proton, t3 ¼ +1/2, and for the

neutron, t3 ¼ �1/2. In units of the fundamental elec-

tric charge, e, the charge of the nucleon is related to t3
and the baryon number by,

S3 = + 1

2

S3 = +1

S3 = −1

S = 1 

S3 = 0
S3 = − 1

2

S = 1

2

Fig. 3.3 Spin projections for spin-1/2 and spin 1 (in units of �h)

Table 3.2 Meson wavefunction parity characteristics

JP Characteristic Physical examples

0� Pseudoscalar Pressure

0+ Scalar Mass, time

1� Vector or polar vector Position r,

Momentum p

1+ Pseudovector or axial vector Spin,

Angular momentum

L = r � p
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Q ¼ t3 þ B

2
(3.11)

For a composite particle made up of Nu up and Nd

down quarks, the third component of the isospin

vector is,

t3 ¼ Nu � Nd

2
: (3.12)

For pions, which contain antiquarks, (3.12) is

modified,

t3 ¼ Nu � N�u � Nd � N�dð Þ
2

: (3.13)

For example, the p+ contains an up quark and an

anti-down quark and, hence, has t3 ¼ +1. Isospin is an

additive quantum number and, as the strong nuclear

force is charge independent, then t and t3 are con-

served in strong interactions. However, they are not

conserved in the weak interaction. For example, the

beta decay of a neutron n ! pþ e� þ �ne, involves the
change of a down quark to an up quark (a quark

isospin flip) and, hence, t and t3 are not conserved. In

an electromagnetic interaction, there is no isospin flip

but because of the different electrical charges of the

quarks, they can be distinguished. Thus, t is not con-

served, but t3 is.

Consider a two-nucleon system. The total isospin of

this system is made up of the two isospins of the

nucleons as it is for ordinary spin,

T ¼ tð1Þ � tð2Þ (3.14)

and the eigenvalues for T2 are T(T+1) where

t 1ð Þ � t 2ð Þ � T � t 1ð Þ þ t 2ð Þ. The two-nucleon sys-

tem can be an isospin triplet (i.e., T ¼ 1 with t3 ¼ �1,

0, 1) or an isospin singlet (i.e., T ¼ 0 with t3 ¼ 0). The

only stable bound two-nucleon system is the deuteron

(proton–neutron) which is isospin singlet. As with spin,

a nucleon isospin operator is defined through the iden-

tity,

t ¼ 1

2
t (3.15)

where the three components of t are analogous to the

Pauli spin matrices (Pauli 1973),

t1 ¼
0 1

1 0

� �
t2 ¼

0 �i

i 0

� �

t3 ¼
1 0

0 �1

� � (3.16)

One defines an isospin space, in which the proton and

neutron are doublets of states described by the eigen-

value of the Hermitian operator, t3,

t3 pj i ¼ pj i (3.17)

t3 nj i ¼ � nj i (3.18)

where the above kets are,

pj i ¼ 1

0

� �
nj i ¼ 0

1

� �
: (3.19)

Ladder operators are defined as those operators

which convert one nucleon state to another and are

made up from weighted combinations of the isospin

operators,

t� ¼ 1

2
t1 � it2ð Þ (3.20)

These operators lead to descriptions of the transfor-

mations,

tþ nj i ¼ pj i (3.21)

tþ pj i ¼ 0 (3.22)

t� pj i ¼ nj i (3.23)

t� nj i ¼ 0: (3.24)

The ladder operators perform isospin flips on the

nucleon: t+ annihilates a proton and transforms a

neutron to a proton and t� transforms a proton to a

neutron and annihilates a neutron. Hence, these opera-

tors will prove useful in the description of beta decay

in Chap. 4 (Grotz and Klapdor 1990).

The analogue of (3.12) for a nucleus consisting of A

nucleons (Z protons and N ¼ A – Z neutrons) is,

T3 ¼ Z� N

2

¼ A

2
� N:

(3.25)
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3.2.4 Nuclear Constituents: Nucleons

The atom is known to be composed of a positively-

charged nucleus surrounded by electrons. Even though

the diameter of the atom is of the order of 10�8 cm and

that of the nucleus is only of the order of 10�12 cm,

more than 99.9% of the atomic mass is concentrated in

the nucleus. The nucleus itself is made up of posi-

tively-charged protons and electrically-neutral neu-

trons. Like all hadrons, the neutron and proton have

an internal quark substructure. The proton consists of

two up quarks, each with an electric charge of þ 2=3e
and isospin projection t3 ¼ þ1/2, and one down quark

with an electric charge of � 1=3e and isospin projec-

tion t3 ¼ �1/2, resulting in the proton’s electric

charge of þ1e and isospin projection t3 ¼ þ1/2. On

the other hand, the neutron is composed of one up

quark and two down quarks leading to a net electric

charge of zero and an isospin projection of t3 ¼ �1/2.

Despite their difference in electric charge, the neutron

and proton are very nearly equal in mass (the neutron

being only 0.1% more massive than the proton) and

have the same intrinsic spin, �h=2. A consequence of

this latter feature is that both particles are fermions

subject to Fermi–Dirac statistics and the Pauli exclu-

sion principle. The slight mass difference between

the proton and the neutron allows the instability of

the free neutron which undergoes beta-decay to yield

a proton.9

3.2.5 Categorizations of Nuclei

The total number of nucleons contained in a nucleus is

characterized by the atomic mass number, A, and the

total number of protons which is described by the

atomic number, Z. Nuclei with differing combinations

of A and Z are categorized as follows.

3.2.5.1 Isotopes

Isotopes10 are those nuclei with the same atomic num-

ber, Z, but different atomic mass number, A. In other

words, isotopes are of the same element but with

different masses (i.e., same number of protons, but

differing numbers of neutrons). One example is the

three isotopes of hydrogen: 1H, 2H, and 3H, each with

one proton but containing zero, one, and two neutrons,

respectively. Although isotopes have the same atomic

number and, hence, the same number of orbital elec-

trons, they can have slightly different physical or

chemical properties due to their differing masses. For

example, the boiling points of ordinary water (1H2O)

and heavy water (2H2O) are 373.2 and 374.6 K.

Another difference is manifested by the dependence

of molecular vibrational modes upon mass. As a result,

the same molecules but with differing isotopes can

exhibit differing optical absorption properties.

3.2.5.2 Isobars

Isobars are those nuclei with the same atomic mass

number, A (i.e., the same number of nucleons), but

differing atomic numbers, Z. An example of a pair of

isobars is 3H and 3He, with one proton and two neu-

trons and two protons and one neutron, respectively.

Isobaric nuclei play a prominent role in b� decay and

electron capture.

3.2.5.3 Isotones

Isotones are those nuclei with the same number of

neutrons, N ¼ A – Z, but with different numbers of

protons, Z. An example of an isotone pair is 2H and
3He, each with one neutron but with one and two

protons, respectively.

9The converse is not possible for a free proton. However, it is

possible for a nuclear proton to be transformed to a neutron, as in

b+ decay, where the energy required is gained from the Fermi

momentum of the proton.

10The name comes from the Greek iso = same; topos = place

as the variants would all be at the same position in the periodic

table of elements. Anecdotally, the term was suggested by

Margaret Todd, a Scottish physician, to Frederick Soddy who

had discovered atoms with identical chemical properties but

with different atomic masses.
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3.2.5.4 Isomers

Isomers are excited states of a nucleus with the same

A and Z. These are studied in Chap. 4.

3.2.6 Nuclear Mass

3.2.6.1 Atomic Mass Unit

Each elemental species has been found experimentally

to have a mass very nearly equal to an integer multiple

of the proton mass (i.e., the mass of the ionized hydro-

gen atom), where this integer is equal to the total

number of nucleons or the atomic mass number,

A ¼ Zþ N (3.26)

where Z is the number of protons and N is the number

of neutrons. The fact that the mass of an elemental

species is only approximately equal to an integer

multiple of the proton mass reflects the underlying

presence of isotopes, as discussed below.

The fundamental unit of mass (known as the atomic

mass unit, or amu) is defined as 1=12th the mass of

the 12C atom (by convention, the atomic mass is used,

rather than the nuclear mass, in the tabulation of

masses). The mass defect is the difference between

the measured atomic mass of an atom (of atomic

number Z and atomic mass number A) and that mass

if the atom were considered as an ensemble of Z

hydrogen atoms and N neutrons,

Mass Defect ¼ M A;Zð Þ � ZMH þ Nmnð Þ (3.27)

where MH is the mass of the hydrogen atom and mn is

the neutron mass.11 The term mass defect is used as

this difference between the mass of the ensemble and

the sum of the constituent masses is negative due to

binding energy. For example, the atomic mass of 12C

is 11,178 MeV whereas the combined mass of 6

hydrogen atoms and 6 neutrons is (neglecting the

negligible hydrogen electron binding energy) is

11,270 MeV giving a mass defect of 92 MeV.

The concept of atomic or nuclear masses being

integral multiples of a fundamental mass was first

proposed by Prout in the early nineteenth century in

a hypothesis that elements were made up of combina-

tions of hydrogen atoms. However, refined measure-

ments by others, such as Berzelius, demonstrated that

the atomic weights of elements were not always an

integer multiple of that of hydrogen. For example, the

atomic masses of naturally-occurring magnesium and

copper are 24.3 and 63.5, respectively. These devia-

tions from Prout’s hypothesis were the first evidence

of the existence of isotopes which was demonstrated

by Thomson in 1912 through his discovery of two

isotopes of neon, using the principle of electromag-

netic mass separation. These isotopes have atomic

masses of 20 and 22 and a corresponding 9:1 abun-

dance ratio; neglecting the small contribution of 21Ne,

the relative atomic mass of naturally-occurring neon is

0:9� 20þ 0:1� 22 ¼ 20:3.

3.2.6.2 Determination of Nuclear Mass

The mass of a nucleus or any charged particle can be

determined using the method of electromagnetic mass

separation, the principle of which is based upon the

fact that a charged particle with a nonzero initial speed

in a magnetic field orthogonal to the particle’s velocity

vector will orbit with a radius proportional to the

magnitude of its linear momentum. Hence, a measure-

ment of this radius will yield the momentum and, if the

particle speed is known, the particle’s mass can be

obtained. Particles with a range of speeds can be

“filtered” through an orthogonal combination of static

electric and magnetic fields so that only those particles

with a known speed are introduced into this orthogonal

static magnetic field. The basic principle behind this

method is developed here.

The velocity of a charged particle can be deter-

mined by passing the particle through a crossed set of

magneto- and electrostatic fields, or a Wein filter,

which selects only those particles with a velocity

equal to the ratio of the magnitudes of the electric to

magnetic field strengths. This can be shown by first

calculating the Lorentz force upon a charged particle of

11The rest-masses of the neutron, proton, and electron are (to

three decimal places) 939.565, 938.272, and 0.511 MeV, respec-

tively. For simplicity in some of the following discussions, both

nucleon rest-masses will be approximated by the value of

940 MeV.

3.2 Characteristics of Atomic Nuclei: Part I 41



mass m, electric charge q and velocity v in a magnetic

field, B,

FB ¼ qv� B (3.28)

with the direction of the force being perpendicular to

both the directions of the velocity and that of the mag-

netic field. In the absence of any other force, the particle

will thus orbit with a radius derived by equating the

magnitudes of the centripetal and Lorentz forces,

m vj j2
r

¼ q vj j Bj j (3.29)

to yield,

r ¼ m vj j
q Bj j

¼ pj j
q Bj j :

(3.30)

The orbital frequency of the particle is known as the

cyclotron frequency,

oc ¼ vj j
r

¼ q
Bj j
m

:

(3.31)

A static field E is next applied in the direction

opposing the Lorentz force, FB. The particle will

then experience an additional force,

FE ¼ qE (3.32)

and the resulting trajectory of the particle will now

depend upon its initial velocity and the relative mag-

nitudes of the crossed electro- and magnetostatic

fields. For example, consider the initial velocity of

the particle to be in the x direction with magnitude

v0, E directed along the y-axis and B directed along the

z direction. The equation of motion of the particle is,

m
dv

dt
¼ qEþ qv� B

¼ qvyBx̂þ q E� vxBð Þŷ
(3.33)

the vector components of the acceleration are,

dvx

dt
¼ q

m
vyB

¼ ocvy

(3.34)

dvy

dt
¼ q

m
E� vxBð Þ

¼ q

m
E� ocvx

(3.35)

dvz

dt
¼ 0 (3.36)

where the definition of the cyclotron frequency has

been used. These coupled differential equations are

solved by first differentiating dvy=dt and inserting

(3.34) into the result,

d2vy

dt2
¼ �oc

dvx

dt

¼ �o2
cvy:

(3.37)

As the initial condition is vy(t ¼ 0) ¼ 0, the solu-

tion to (3.37) is,

vyðtÞ ¼ k sinoct: (3.38)

Differentiating (3.38) and inserting the result into

(3.35) yields an expression for vx,

vx ¼ 1

oc

q

m
Eþ k cosoct: (3.39)

The integration constant, k, is determined from the

initial condition of the velocity, vx(t ¼ 0) ¼ v0,

k ¼ v0 � 1

oc

q

m
E

¼ v0 � E

B
:

(3.40)

Thus, expressions for the two components of the

particle velocity are obtained as functions of time,

vxðtÞ ¼ E

B
þ v0 � E

B

� �
cosoct (3.41)

and

vyðtÞ ¼ v0 � E

B

� �
sinoct: (3.42)

Parametric equations of the spatial position of the

particle are then derived by integrating (3.41) and

(3.42),
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xðtÞ ¼ E

B

� �
tþ v0 � E

B

� �
oc

sinoct (3.43)

yðtÞ ¼ � v0 � E
B

� �
oc

1� cosoctð Þ (3.44)

for the initial condition y(t ¼ 0) ¼ 0. If the particle is

initially at rest (v0 ¼ 0), then the resulting trajectory is

a cycloid,

xðtÞ ¼ E

B

� �
t� sinoct

oc

� �
(3.45)

yðtÞ ¼ E

B

� �
1� cosoctð Þ

oc

: (3.46)

For a nonzero initial velocity, (3.43) and (3.44)

describe a trochoid trajectory. Examples of trochoid

trajectories for v0 ¼ �0:5 E
B
, v0 ¼ � 2 E

B
and v0 ¼ E

B

are shown in Fig. 3.4. Nodes in the trajectories (y ¼ 0)

occur for values of x separated by 2p
oc

E
B
. Most impor-

tantly, a straight line trajectory (y(t) ¼ 0) is obtained

when the ratio of the electrostatic and magnetostatic

fields is matched to the particle speed,

v0 ¼ E

B
: (3.47)

If a beam of charged particles with a spectrum of

velocities enters the crossed static fields, the resulting

trajectories will be a combination of trochoids. In the

Wein filter, the addition of an arrangement of slits along

the x-axis of Fig. 3.4 will select only those particles

moving in a straight line, i.e., those with v0 ¼ E=B. If

these iso-velocity particles are then passed into a region

containing a static magnetic field, B1, orthogonal to the

exit velocity, they will then curve with the radius,

r ¼ p=B1. Hence, a measurement of this orbital radius,

r, with a spatially-sensitive detector yields the magni-

tude of the particle momentum, p, as shown in Fig. 3.5.

This momentum, when combined with the known

velocity from the Wein filter, yields the particle’s rest

mass. For the nonrelativistic case, this is,

m ¼ p

v

¼ r
B1B

E
:

(3.48)

3.2.7 Nuclear Size

3.2.7.1 Introduction

Defining what is exactly meant by the term nuclear

size is difficult. If the nucleus were assumed to be a

V0= +2.0
E
B

V0= E
B

V0= −2.0
E
B

V0= −0.5
E
B

V0= +0.5
E
B

2p
wc

E
B

y

x

E

B

Fig. 3.4 Trajectories of a

charged particle in crossed

electro-and magnetostatic

fields with five different

magnitudes of initial velocity

(the particle enters the fields

with an initial velocity v0 in

the + x-direction)
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simple sphere with a well-defined radius (and one

which will be made frequent use of) then the nuclear

size is simply defined by the radius. But it should be

recognized that this is obviously a simplistic and

unphysical picture and not at all representative of

reality. The occasion of when a nucleus is spherical

(but not necessarily with a sharply-defined radius) is

representative of special properties of stability; nuclei

can be nonspherical (oblate or prolate). In this subsec-

tion, spherical models of the nucleus and how their

size, in particular the root-mean square (RMS) radius,

can be determined are reviewed. Discussion of non-

spherical nuclei is deferred to the discussion of electric

quadrupole moments following derivations of nuclear

models.

The theoretical bases for three means of determining

nuclear dimensions are reviewed here. The first is a

simple means of determining the sizes of mirror nuclei

(a subset of isobars consisting of pairs of nuclei for

which the numbers of neutrons and protons are inter-

changed, e.g., 3H and 3He) by comparing the difference

in nuclear binding energies and assuming that this dif-

ference is due solely to the Coulomb interaction

between protons. The second method of deducing

nuclear size is by measuring the energies of the X-rays

that are emitted when a negatively-charged muon is

captured by an atom and cascades through Bohr atomic

orbitals before it eventually decays. The third method of

determining the size and, importantly, the spatial distri-

bution of nuclear matter is through scattering probes

from nuclei. As an understanding of the underlying

theory of Coulomb scatter of charged particles will be

of significant importance later, considerable detail will

be paid to this third method of determining nuclear size.

3.2.7.2 Nuclear Size Derived from Nuclear

Binding Energies

The very existence of nuclei is clear evidence that the

strong nuclear force binding the nucleons counterba-

lances the Coulomb repulsion between protons. As the

nuclear attractive force is evidently the same between

the three categories of nucleon pairs (proton–proton,

proton–neutron, and neutron–neutron), any differ-

ences between the measured binding energies of mir-

ror nuclei should be due solely to the difference due to

the Coulomb energy.12 For example, the measured

binding energy of 3He is 8.482 MeV whereas that of
3H is 7.718 MeV, the 3He necessarily having a higher

binding energy in order to compensate for the Cou-

lomb repulsion between the protons. This 0.764 MeV

difference in binding energy thus reflects the differ-

ence between the Coulomb potentials of the two

nuclei. The Coulomb potential of a spherical nucleus

of radius RN and electric charge Ze uniformly

distributed within it is,13

ECoul ¼ 3

5
a�hcð Þ Z

2

RN

: (3.49)

Assuming that the nuclear volume scales linearly

with the number of nucleons, A, the nuclear radius will

be proportional to A1=3. Thus, RN should be the same

for 3H and 3He and can be calculated from the differ-

ence in Coulomb potentials,

DECoul ¼ 3

5
a�hcð Þ 1

RN

� �
4� 1ð Þ

¼ 0:764MeV (3.50)

Ion Source

Detector

r1 ri =

r2

r3

Velocity Filter
Analyser

(static magnetic field, B1)

Pi

Bi

Fig. 3.5 Principle of electromagnetic mass separation

12There would also be a small effect due to the difference

between proton and neutron masses, but we will neglect this.
13Consider a spherical nucleus of charge Ze and radius R. The

charge density is a constant, re ¼ 3Ze=4pR3 and the total work

required to assemble the nucleus from differential shells con-

taining charge dq ¼ 4pr2re dr from infinity to the position of the

nucleus is a�hc
e2

ÐZe
0

dq q
r
which, noting that qðrÞ ¼ 4p=3re r

3, gives

the Coulomb repulsion energy as 3=5

� �
a�hc Z2

R
.
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which yields the nuclear radius of RN ¼ 3.4 fm for 3H

and 3H nuclei (Sect. 3.2.7.2).

Muons are produced in accelerators through the

decay of the charged pions,14 p� ! m� þ �nm and

pþ ! mþ þ nm, and slow down in matter through

energy exchange with atomic electrons (through pro-

cesses described in Chap. 7). In particular, the m�,
once having been thermalized, can be captured by an

atomic nucleus in a time span of the order of 0.1 ps. As
this amount of time is greater than the muon’s mean

life of 2.2 ms (through the weak decay m� ! e�þ
�ne þ nm), a muonic atom can be formed as, once cap-

tured, the m� will cascade to the 1s muonic orbital.15

Assume, for the time being, that the nucleus is a point-

like electric charge, the muonic atom is hydrogen-like

but with a Bohr orbital radius of,

rm ¼ n2

Z

r0

a2
me

mm

� �
(3.51)

where r0 is the classical electron radius and n is the

principal quantum number. Because of its mass, the

muon 1s orbital radius will be much smaller than that

of the atomic electrons so that its interactions with

the atomic electrons can be ignored. As the energy of

the muon orbital will be mm=me times that of the

corresponding electron orbital, the energies of the

X-rays emitted by the muon as it cascades through

orbitals will be 207 times greater than those of electrons.

The above description is based upon the assump-

tion that the nucleus is a point-like electric charge.

Experimental differences between the muon orbital

energies calculated for a point-like nucleus and those

measured are a consequence of the finite size of the

nucleus, an effect which will be clearly more notice-

able for heavy nuclei due to the Z�1 dependence of

(3.51). For example, consider a lead muonic atom for

which, from (3.51), the 1s orbital radius for the muon

is 3.1 fm whereas (as shown later) the lead nuclear

half-density radius is about 6.5 fm. Hence, the muon

wavefunction will overlap the nuclear wavefunction

and the point-like nucleus assumption is no longer

valid. As the muon in a 1s orbital spends much of

its time within the nucleus, the effective Coulomb

potential felt by the muon is less than that due to the

total nuclear charge of Ze. Hence, the X-ray energies

between transitions in a muonic atom will be less than

those calculated for a point-like nucleus. Calculating

an effective potential due to a reduced effective Ze and

fitting to the measured muonic X-ray energy provides

a measure of the RMS radius of the electric charge

distribution of the nucleus.

This approach of measuring the difference between

the X-ray energy calculated for a point nucleus and

that measured can also be applied to atomic electron

transitions to measure the relative nuclear radii for a

set of isotopes (i.e., a fixed Ze).

3.2.7.3 Nuclear Size Derived from Charged

Particle Scattering

Introduction

The dimensions of a nucleus and the spatial distribu-

tion of its charged constituents (protons) can be deter-

mined by scattering charged particle probes off of

nuclei and detecting the scattered particle. Measure-

ments of the scattered particle’s kinematics and the

probability with which the particle is scattered at

a given angle can then be used to derive the nuclear

size and distribution.16 The “type” of nuclear size

measured will obviously depend upon the nature of

the interaction between the nucleus and the probe. For

example, electrons interact with a nucleus only

through the electrostatic potential (neglecting the

weak force and magnetic interactions) and will probe

the charge distribution of the nucleus which is propor-

tional to the spatial distribution of protons.17 Because

of the difficulty in measuring the spatial distribution

of mass (i.e., the nucleon density) within the

nucleus, it is frequently assumed that the nuclear

mass and electric charge densities are proportional,

14The pion can be produced by, for example, proton bombard-

ment of targets such as beryllium, carbon, and copper.
15The formation of muonic atoms was predicted by Fermi and

Teller (1947).

16While neutron scattering can also be used to infer the nucleon

spatial distribution, we will restrict ourselves to the problem of

elastic Coulomb scatter from nuclei, which will be more rele-

vant to nuclear medicine.
17This statement implicitly assumes that the de Broglie wave-

length of the incident electron is of the order of nucleon dimen-

sions. At higher electron momenta, this wavelength becomes of

the order of subnucleon dimensions allowing mapping of the

electrical distributions of quarks within the nucleons.
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rm rð Þ ¼ A=Zð Þre rð Þ. However, it cannot be forgotten

that the proton has a finite size with a charge RMS

radius of 0.87 fm so that the nuclear charge density,

re(r), will be given by the convolution of the point

proton density within the nucleus and the electric

charge density of an individual proton. We will return

to this later in our discussion of nuclear RMS radii. On

the other hand, a neutron probe interacts with the

nucleus via the “strong” nuclear force and so will

measure the mass distribution (i.e., both protons and

neutrons). Charged hadrons, such as protons or a par-

ticles (4He nuclei), interact with the nucleus via both

electromagnetic and nuclear forces, although the for-

mer dominates unless the charged particle is suffi-

ciently energetic to overcome the repulsive Coulomb

barrier of the nucleus. Hence, analysis of the scattering

data of such probes requires the separation between

nuclear and electromagnetic interactions. In the

subsequent discussion, only the Coulomb interaction

between the probe and the nucleus is considered

(Goldberger and Watson 1964; Belkić 2004).

Kinematics

The spatial resolution explored by a scattering reaction

is inversely proportional to the bombarding particle’s

momentum, as follows from the reduced de Broglie

wavelength l�¼ �hc=p. For example, an electron with a

kinetic energy of 1 GeV has a momentum of

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tþmeð Þ2 �m2

e

q
� 1 GeV/c and an associated

de Broglie wavelength of the order of 0.2 fm. More-

over, as noted earlier, the electron has the advantage of

not being subject to the strong nuclear force. The

kinematics of an electron scattered from light and

massive nuclei were previously derived in Chap. 2.

Elastic Coulomb Scatter

Spin-0 Projectiles

The first empirical assessment of nuclear size was

performed by Rutherford in his analysis of the mea-

surements by Marsden and Geiger of the scattering of

a particles (4He nuclei produced by radioactive

decays) from thin (�0.3 mm) gold foils. In this section,

perturbation theory is used to derive the differential

cross-section of elastic Coulomb scatter of a probe of

mass m and charge +ze from an infinitely-massive

scattering center of charge +Ze (e.g., a nucleus much

more massive than the projectile).18 There are two

assumptions used in this derivation. The first is that

we can neglect the spin of the projectile and the angu-

lar momentum of the nucleus providing the scattering

Coulomb field. This reflects an a particle projectile

incident to a spin-0 nucleus. Despite this simplifica-

tion, the results are valid for electron projectiles with

low b and/or low scattering angle (equivalent to low

momentum transfer). The second assumption is that

the scatterer is a point electric charge of sufficiently

large mass that we can ignore its recoil. In this scatter,

the projectile is scattered from an initial momentum

p and kinetic energy T through an angle y to the

momentum p0 and, as the collision is deemed to be

elastic, the postscatter kinetic energy of the projectile,

T0, is obviously unchanged from the initial value.

Although the magnitudes of the pre- and postscatter

momenta are the same, there will be a three-vector

momentum transfer due to the directional change

resulting from the scatter,

q ¼ p� p
0		 		

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ p

02 � 2pp
0
cos y

p
¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� cos yð Þ

p

¼ 2p sin
y
2
:

(3.52)

Recall from Chap. 2 that the differential cross-

section in solid angle is equal to the squared modulus

of the scattering amplitude,

dsRuth

dO
¼ f qð Þj j2: (3.53)

18A collision with a nucleus is strictly elastic if no energy is

transferred to any internal energy absorption channels. Even

ignoring these energy absorption channels, the simultaneous

conservation of energy and momentum requires that the projec-

tile lose a small amount of energy which is transferred to the

recoil kinetic energy of the atom. This energy transfer will be of

the order of the product of the incident kinetic energy and the

ratio of the projectile to target atom rest masses. Clearly, for

electron and positron projectiles, the target recoil kinetic energy

can be neglected (the ratio of projectile to target electron mass

being no smaller than 5 � 10�4). This may not be the case if the

projectile was an energetic alpha particle and the target atom

had a comparable atomic mass which would be typical of ele-

ments of biological interest (e.g., carbon and oxygen).
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In the Born approximation, the scattering amplitude

is proportional to the Fourier transform of the potential

between the scattering center and the projectile,

f qð Þ ¼ � m

2p �hcð Þ2
ð
d3r ei

q�r
�hcð ÞU rð Þ: (3.54)

The Ruth subscript applied to the differential cross-

section denotes that it is of elastic Coulomb scatter

from an infinitely-massive point-charge scattering

center (i.e., Rutherford scatter). For the Coulomb

potential between point charges ze and Ze,

UðrÞ ¼ a�hc
zZ

r
(3.55)

the scattering amplitude is,

f qð Þ ¼ � a
2p�hc

� �
mzZ

ð
d3r

ei
q�r
�hc

rj j : (3.56)

The integral in (3.56) is frequently referred to as

the Bethe integral and can be readily solved by rewrit-

ing it as,

ð
d3r

ei
q�r
�hc

rj j ¼
ð
d3r

e�kr

rj j e
i
q�r
�hc as k ! 0: (3.57)

Solving,

ð
d3r

e�kr

rj j e
i
q�r
�hc ¼ 2p

ð1

0

dr r e�kr
ð1

�1

d cos yð Þei qr cos y�hc

¼ 4p
�hc

q

� � ð1

0

dr e�kr sin
qr

�hc

¼ 4p

k2 þ q=�hc
� �2 :

(3.58)

Thus, the solution to the Bethe integral is,

ð
d3r

ei
q�r
�hc

rj j ¼ 4p
�hc

q

� �2

(3.59)

and the scattering amplitude for the Coulomb potential

of a point-like source is,

fðqÞ ¼ �2 a�hcð Þ mzZ

q2
: (3.60)

Note that the directional dependence of the momen-

tum transfer has been removed. The differential cross-

section, following the substitution of the expression

linking scattering angle and momentum transfer, is the

familiar Rutherford form,

dsRuth

dO
¼

zZ a�hc
pb

� �2
4sin4 y

2

(3.61)

which, for small scattering angles, further reduces to

the form,

dsRuth

dO
¼ 4

zZ a�hc

pb y2

� �2

Small - angle approximationð Þ:

(3.62)

It will be noted that the Rutherford cross-section

diverges as the scattering angle y! 0 and a correction

for this is discussed later in the context of screening by

the atomic electrons. Importantly, it can also be seen

that the cross-section is independent of the signs of

the electric charges of the probe and the target

nucleus and, hence, the attractive or repulsive nature

of the Coulomb potential is irrelevant. The Rutherford

differential cross-section in solid angle is plotted in

Fig. 3.6 for the example of a 7 MeV a particle incident

to a gold nucleus, a combination typical of the experi-

ments performed by Geiger and Marsden.
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Fig. 3.6 Rutherford differential cross-section in solid angle for

7 MeV a particles incident on a gold target as a function of

scattering angle; units are in barns per steradian where 1

b ¼ 10�24 cm2
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The elastic Coulomb differential cross-section in

momentum transfer is given by the transformation,

dsRuth

dq
¼ dsRuth

dO
dq

dO

				
				
�1

¼ 2p
dsRuth

dO
dq

d cos yð Þ
				

				
�1

:

(3.63)

From the momentum transfer,

dq

d cos yð Þ
				

				 ¼ p

2 sin y
2

� � (3.64)

and the differential cross-section in momentum

transfer is,

dsRuth

dq
¼ 8p

q3
zZ a�hc

b

� �2

(3.65)

This calculation has modeled the nucleus by a

point-like electric charge. If the dimensional scale of

the scattering should now be reduced (e.g., by increas-

ing the momentum of the projectile and reducing its de

Broglie wavelength) so that the nucleus is to be “seen”

by the projectile as a spatial distribution of electric

charge and the probe is subject to only the electromag-

netic force, then the electric potential felt by the probe

will no longer be that of a�hcð ÞZ=r as it approaches the
nucleus. Thus, when the scattering cross-section devi-

ates from that derived for a point-like scattering cen-

ter, a measure of the nuclear radius can be estimated,

as will be demonstrated shortly. Similarly, if the probe

is subject to both the electromagnetic and strong

nuclear forces, as is the a particle, then the deviation

from the pure Rutherford result is indicative of the

distance from the center of the nucleus at which the

probe begins to experience the strong nuclear force.

Spin-1/2 Projectiles

A high-energy electron probe is the most practical

means of achieving a reduced de Broglie wavelength

comparable to nuclear dimensions. Moreover, unlike

an a particle, the electron is not subject to the strong

interaction and only a pure electromagnetic interaction

is measured. However, the above derivation of elastic

Coulomb scatter neglected the role of the projectile’s

spin. While this is acceptable for the scattering of a
particles, the electron has intrinsic spin-1/2 and there

are conditions for under which this spin must be

accounted for.19 The differential cross-sections of an

electron scattered from a static Coulomb field of elec-

tric charge + Ze (referred to as Mott scatter (Mott

1929)) are next derived. To invoke spin-1/2, the

Dirac theory is employed to guide the development

along the lines of propagator formalism as described

by, for example, Bjorken and Drell (1964) and Dyson

(2007). The differential cross-section obtained here

for the electron (to the lowest order of the fine-struc-

ture constant, a) is equal to that of the positron, which

can be deduced by charge conjugation invariance or

else shown explicitly (Bjorken and Drell 1964).

Hence, we need not repeat an explicit calculation for

the positron cross-section. The transition matrix ele-

ment for the elastic Coulomb scatter of an electron

describes the interaction of the electron with the elec-

tromagnetic field,

Sfi ¼ �ie

ð
d3r dt �cf r; tð Þ6A r; tð Þci r; tð Þ: (3.66)

The Feynman “dagger” notation is,

6A ¼ g0A0 � g � A (3.67)

where (go, g) are the 4 � 4 Dirac matrices described

in Chap. 2 and A0 and A are the scalar and vector

electromagnetic potentials, respectively. The Cou-

lomb gauge in which g � A¼ 0 is used,

g0A0 ¼ � Za�hcð Þ
e

g0

rj j : (3.68)

Plane-wave approximations are used for the inci-

dent and scattered electron,

ci r; tð Þ ¼
ffiffiffiffiffiffiffiffi
me

EL3

r
u p; sð Þe i

p�r
�hc�Et

�hð Þ (3.69)

cf r; tð Þ ¼
ffiffiffiffiffiffiffiffiffi
me

E0L3

r
u p0; s0ð Þ e i

p0�r
�hc �E0 t

�h

� �
(3.70)

19As the electron and positron are the particles of greatest

interest to nuclear medicine dosimetery, derivations of their

Coulomb scatter cross sections will be necessary for later

descriptions of radiation transport in tissue.
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where s and s0 are the pre- and postscattering electron

spin orientations and E and E0 are the corresponding

total energies. The me=E factor is required in the

normalization in order to compensate for the Lorentz

contraction of the volume element along the projec-

tile’s motion and to ensure that the spinor probability

density remains invariant. The bar over cf(r,t) denotes

it as an adjoint spinor and L3 is the usual volume of

normalization. The transition matrix is then,

Sfi ¼ iZða�hcÞ me

L3
ffiffiffiffiffiffiffiffi
E0E

p uðp0; sÞg0uðp; sÞ

�
ð
d3r

ei
q�r
�hc

rj j
ð1

0

dt e�i
ðE�E0 Þt

�h : (3.71)

The space integral is the Bethe integral solved

previously and, recalling the definition of the d-func-

tion, dðkÞ ¼ 1
2p

Ð1
�1

do eiko, the time integral is,

ð1

0

dt e�i
E�E0ð Þt

�h ¼ 2p d
E0 � E

�h

� �
: (3.72)

Substituting these two results into the expression

for the S-matrix element gives,

Sfi ¼ i 8p2Zða�hcÞ me

L3
ffiffiffiffiffiffiffiffi
E0E

p

� �hc

q

� �3

u p0; sð Þg0u ðp; sÞd E0 � E

�h

� �
: (3.73)

Having obtained this S-matrix element, the transi-

tion probability per incident electron is,

pfi ¼ Sfij j2rf (3.74)

where the phase–space factor rf is the density of final

states per unit energy level dT0,

rf dT
0 ¼ L

2p�hc

� �3

d3p0: (3.75)

Expanding the differential, the phase–space factor is,

rf ¼
1

4p2
L

�hc

� �3

p02
dp0

dT0 d cos yð Þ

¼ 1

4p2b0
L

�hc

� �3

p02d cos yð Þ:
(3.76)

As

d cos yð Þj j ¼ q

p2
dq

the phase–space factor is

rf ¼
1

4p2b
L

�hc

� �3

q dq (3.77)

where b ¼ b0 and p ¼ p0 due to the elasticity of the

scatter and the negligible recoil of the scatterer. The

squared magnitude of the S-matrix element to be used

in (3.74) is,

Sfij j2 ¼ 64p4Z2 a�hcð Þ2 m2
e�h

2

L3E0E
�hc

q

� �4

� �u p0; sð Þg0u p; sð Þ		 		2 d
E0 � E

�h

� �				
				
2

:

(3.78)

A derivation of the square of the d-function has

been provided by Bjorken and Drell (1964) and by

Pauli (1973). In the nomenclature used here, this is,

d
E0 � E

�h

� �				
				
2

¼ T

2p
d

E0 � E

�h

� �
: (3.79)

Hence,

Sfij j2 ¼ 32p3Z2 a�hcð Þ2 Tm2
e

L3E0E
�hc

q

� �4

� �u p0; sð Þg0u p; sð Þ		 		2d E0 � E

�h

� �
:

(3.80)

where T is the time duration of the scattering process.

The transition rate corresponding to the transition

probability per incident electron is,

lfi ¼ pfi

T
(3.81)

Combining (3.74), (3.77), and (3.80), the transition

rate is obtained,

lfi ¼ 8pZ2 a�hcð Þ2 m2
e �hcð Þ

bq3L3E0E

� �u p0; sð Þg0u p; sð Þ		 		2dqd E0 � E

�h

� �
:

(3.82)
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Attention is now focused in evaluating

�u p0; sð Þg0u p; sð Þ		 		2. Before doing so, it should be re-

cognized that there is no knowledge of the spin

orientation of the incident electron nor is it of interest

following the scatter. In other words, one averages over

the initial spin states and sums over the final spin states, a

process denoted by an overline, �u p0; sð Þg0u p; sð Þj j2, or,

lfi ¼ 8pZ2 a�hcð Þ2 m2
e �hcð Þ

bq3L3E0E

� �u p0; sð Þg0u p; sð Þj j2dq d E0 � E

�h

� � (3.83)

where,

�u p0;sð Þg0u p;sð Þj j2¼1

2

X
�s;s0

�u p0;sð Þg0u p;sð Þ		 		2: (3.84)

This spin sum is next expanded by first reducing it

to traces and then using the trace properties of the

Dirac matrices. The trace algebra of Dirac matrices

are not reviewed here. Instead, the result is presented

without proof,X
�s;s0

�u p0; s0ð Þg0 u p; sð Þ

¼ Tr
6p0 þme

2me

� �
g0

6p0 þme

2me

� �
g0
�
:

� (3.85)

This trace is,

Tr
6p0 þme

2me

� �
g0

6p0 þme

2me

� �
g0

� �

¼ 1

m2
e

2EE0 � p � p0 þm2
e

� �

¼ 2EE0

m2
e

1� b2sin2
y
2

� �
(3.86)

leading to,

�u p0; sð Þg0u p; sð Þj j2 ¼ EE0

m2
e

1� b2sin2
y
2

� �
(3.87)

Applying this result to the calculation of the transi-

tion rate gives,

lfi ¼ 8p
q3

Z2 a�hcð Þ2 �hcð Þ
bL3

� 1� b2sin2
y
2

� �
dq d

E0 � E

�h

� � (3.88)

and the differential cross-section in momentum

transfer is,

ds
dq

¼ L3

bc
lfi
dq

¼ 8p
q3

Za�hc
b

� �2
1� b2sin2

y
2

� �
(3.89)

Comparing this to the unscreened elastic Coulomb

scatter result for a spin-0 projectile, accounting for the

electron’s spin-1/2 has introduced a multiplicative

ð1� b2sin2y=2Þ term. Extending this calculation to

the Mott differential cross-section in solid angle

using (3.63) and (3.64),

dsMott

dO
¼ dsRuth

dO
1� b2sin2

y
2

� �
: (3.90)

The electron’s intrinsic spin thus reduces the

(Rutherford) spin-0 cross-section by the factor

ð1� b2sin2yÞ which is shown as a function of electron
kinetic energy for scattering angles of 15, 45, and 90	

in Fig. 3.7. As expected, this effect becomes significant

for energetic electrons and large scattering angles. The

electron kinetic energies of most interest to nuclear

medicine are typically below about 200 keV and, as

the differential cross-section is highly-forward scat-

tered, the effect of the electron spin can often be

neglected in practical internal radiation dosimetric

and transport calculations. However, electron scatter-

ing as a means of elucidating nuclear structure requires

high-energy electrons and the ð1� b2sin2y=2Þ factor
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Fig. 3.7 The Mott 1� b2sin2y=2
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modifying factor of the

elastic Coulomb scatter differential cross-section for an electron

as a function of electron kinetic energy up to 500 keV
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cannot be ignored. At relativistic energies (b! 1), and

the cross-section in the relativistic limit becomes,

ds
dO

! dsRuth

dO
cos2

y
2

(3.91)

3.2.7.4 Nuclear Scattering Form Factors

It has been assumed in the previous derivations of the

elastic Coulomb scatter differential cross-sections that

the scattering center was a point electric charge of

infinite mass. While the latter assumption is valid for

low-energy a particles elastically scattered from heavy

nuclei and for electrons/positrons elastically scattered

from all nuclei, the former assumption can no longer

hold at ultrarelativistic electron probe energies, where

the reduced de Broglie wavelength becomes compara-

ble to nuclear dimensions. Here, the nucleus will not

appear as a point electric charge but rather as a distri-

bution of electric charge (i.e., the spatial distribution

of protons). Hence, measuring the elastic Coulomb

scatter of high-energy electrons from nuclei provides

information of this spatial distribution. In this subsec-

tion, the nuclear form factor which contains this spa-

tial distribution is derived.

The differential cross-section of a charged particle

from a spatially-distributed electric charge is calcu-

lated, as before, from the Born approximation’s scat-

tering amplitude. As this is proportional to the Fourier

transform of the scattering potential, the electron-

nucleus Coulomb potential is derived first. The spatial

distribution of the protons within the nucleus is

assumed to be continuous and the nuclear electric

charge distribution is re(r) with the normalization,20

ð
d3rre rð Þ ¼ 1: (3.92)

The resulting electron-nuclear Coloumb potential is,

U rð Þ ¼ �Z a�hcð Þ
ð
d3r0

rer
0

r� r0j j (3.93)

where the integration is over the nuclear volume.

Neglecting spin, the scattering amplitude is,

f qð Þ ¼ � me

2p �hcð Þ2
ð
d3rei

q�r
�hcð ÞU rð Þ

¼ Zmea
2p �hcð Þ

ð
d3r ei

q�r
�hcð Þ
ð
d3r

0 re r0ð Þ
r� r0j j :

(3.94)

Using the substitution R ¼ r � r0,

f qð Þ ¼ Zmea
2p �hcð Þ

ð
d3R ei

q� Rþrð Þ
�hcð Þ

ð
d3r

re rð Þ
Rj j

¼ Zmea
2p �hcð Þ

ð
d3R

ei
q�R
�hcð Þ
Rj j

ð
d3r ei

q�r
�hcð Þre rð Þ:

(3.95)

By comparing this scattering amplitude with that

derived for a point scattering center, it can be deduced

that the differential cross-section for elastic Coulomb

scatter from a distributed charge scattering center is

related to that for a point charge scattering center,

dsDist

dO
¼ dsPoint

dO
FðqÞj j2 (3.96)

where the form factor is the Fourier transform of the

electric charge distribution

FðqÞ ¼
ð
d3r ei

q�r
�hcð Þre rð Þ: (3.97)

The form factor reduces the elastic scattering dif-

ferential cross-section for high momentum transfer:

|F(q)|2 ! 0 as q ! 1 and |F(q)|2 ! 1 as q ! 0.

Measuring the deviation of the measured differential

cross-section, dsDist=dO, from that expected for a point

scattering center, dsPoint=dO, provides the |F(q)|2

which can be used to derive the nuclear charge distri-

bution.21 For a spherically-symmetric charge distribu-

tion, the nuclear form factor is,

FðqÞ ¼
ð
d3r ei

q�r
�hcð ÞreðrÞ

¼ 2p
ð
dr r2 reðrÞ

ð1

�1

d cos yð Þ ei qr cos y
�hcð Þ

¼ 4p
�hc

q

� �ð
dr r sin

qr

�hc

� �
reðrÞ:

(3.98)

20Some authors use a normalisation in which the volume inte-

gral of the charge density is equal to Ze, which would require the

removal of Z from (3.93).

21As the derivation of the Mott cross section neglected both the

recoil and the angular momentum of the target nucleus, this

formula is applicable strictly to only J = 0 nuclei with sufficient

mass that the recoil kinetic energy can be neglected.
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Form factors for representative models of the spa-

tial distribution of nuclear electric charge are now

derived. Consider the simplest model of the point-

like scattering center with an electric charge distribu-

tion is kd(r). The normalization constant is determined

from (3.92),

4p k
ð1

0

dr r2 dðrÞ ¼ 1 (3.99)

giving reðrÞ ¼ dðrÞ=4p. The form factor is F(q) ¼ 1 as

expected.

Another model of the electric charge spatial distri-

bution is that in which the charge density decreases

exponentially with radial distance from the nuclear

center. This is of the form ke� r=RNð Þ where RN is the

distance from the center of the nucleus that the charge

density is e�1 ffi 0.37 that of the density at the center

and k is the normalization constant found from,

4pR3
N k

ð1

0

dx e�x ¼ 1 (3.100)

where the substitution of variable x ¼ r=RN has been

used. The integral is solved through two applications

of integration by parts to lead to k ¼ 1=8pR3
N which

gives the normalized exponential charge distribution,

reðrÞ ¼
e� r=RNð Þ

8pR3
N

: (3.101)

The nuclear size for this model is described by the

RMS charge radius which, for this distribution, is,

ffiffiffiffi
r2

p
¼

ð
d3r r2 reðrÞ

� �1=2

¼ 1

2R3
N

ð1

0

dr r4 e� r=RNð Þ

0
@

1
A
1=2

¼
ffiffiffiffiffi
12

p
RN

� 3:464RN:

(3.102)

The corresponding form factor is,

FðqÞ ¼ �hc

2qR3
N

ð1

0

dr r sin
qr

�hc

� �
e� r=RNð Þ (3.103)

To solve for this, consider the integral, which is of

the form,

ð1

0

dr r sin arð Þ e�br ¼ Im

ð1

0

dr r e� b�iað Þr

¼ Im

ð1

0

dr r e�cr

(3.104)

where c ¼ b–ia. Using the substitution of variable

x ¼ cr, the integral is rewritten as,

ð1

0

dr r e�cr ¼ 1

c2

ð1

0

dx x e�x

¼ 1

c2

(3.105)

where the integral has been solved by integration by

parts. This result leads to,

ð1

0

dr r sin arð Þe�br ¼ Im
1

b� iað Þ2

¼ Im
ei2 tan

�1 a= bð Þ

a2 þ b2

¼ sin 2 tan�1a= b

a2 þ b2

¼ 2ab

a2 þ b2ð Þ2 :

(3.106)

Then,

ð1

0

dr r sin
qr

�hc

� �
e� r=RNð Þ ¼ 2R2

N

qRN=�hc
� �

1þ qRN=�hc

� �2� �2

ð3:107Þ

and giving the form factor for a charge distribution

decreasing exponentially with radius,

FðqÞ ¼ 1

1þ qRN=�hc

� �2� �2
: (3.108)

Another simple model of the nucleus is that of a

homogeneous, well-defined sphere. In this case, the

nuclear charge distribution is constant up a fixed
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radius RN and zero beyond. This normalized distribu-

tion is,

reðrÞ ¼
3

4pR3
N

r � RN

¼ 0 r > RN:

(3.109)

The RMS charge radius for this distribution is

given by,

ffiffiffiffi
r2

p
¼ 3

R3
N

ðRN

0

dr r4

0
@

1
A
1=2

¼
ffiffiffi
3

5

r
RN:

(3.110)

The form factor for a homogeneous spherical

nucleus is,

FðqÞ ¼ 3
�hc

qR3
N

ðRN

0

dr r sin
qr

�hc

¼ 3
�hc

qRN

� �2 �hc

qRN

� �
sin

qRN

�hc

� �
� cos

qRN

�hc

� �� �

¼ 3
j1 qRN=�hc
� �
qRN=�hc

� �
(3.111)

where j1(x) is the spherical Bessel function of the first

kind shown in Fig. 3.8. As expected, the sharp cut off

of the hard-edge charge distribution will be associated

with an oscillatory form factor; in other words, the

differential cross-section can be thought of as a dif-

fraction pattern for the incident electron wavefunction.

It is noted that the zero of the form factor

q0RN=�hc � 4:493

can lead to an estimate of the nuclear radius. Hence, by

measuring the momentum transfer q0 at which the

form factor goes to zero provides the nuclear radius

for the homogeneous spherical model,

RN ffi 4:493
�hc

q0
homogeneous sphere model:

(3.112)

Experimentally, it is found that the experimental

form factor does not go to zero as predicted by the

hard-edge nucleus model. This is indicative of the

nuclear edge being more diffuse than assumed by

this model.

Instead of the unphysical sharp edge of the previous

nuclear model, one can introduce a less-sharp

truncated charge distribution, the simplest of which

is Gaussian. The derivations of the normalization,

mean-square radius, and form factor for a Gaussian

charge distribution are lengthy and are thus relegated

to Appendix A. The normalized Gaussian charge dis-

tribution is,

reðrÞ ¼
e� r=RNð Þ2

p3= 2R3
N

(3.113)

for a nuclear radius RN, defined here as the radius at

which the charge distribution density is e�1that of the

central value. The RMS radius of the nuclear charge

distribution is,

ffiffiffiffi
r2

p
¼

ffiffiffi
3

2

r
RN (3.114)

and the form factor is Gaussian in the momentum

transfer,

FðqÞ ¼ e� qRN= 2�hcð Þ2 : (3.115)

A nuclear charge spatial distribution model which

has proven to provide good fits to experimental scatter-

ing data for nuclei with atomic mass numbers between

40 and 238 is the two-parameter Woods–Saxon
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Fig. 3.8 Spherical Bessel function of the first kind
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distribution22 which represents the nucleus as a sphere

with a diffuse surface (or skin),

reðrÞ ¼
r0

1þ e
r�R50

að Þ (3.116)

and is shown in Fig. 3.9. R50 is the radius at which the

nuclear electric charge density has fallen to half of its

central value and r0 is determined from the normali-

zation requirement. R10 and R90 are the radii at which

the density has fallen to 10 and 90% of its central

value, respectively: the “thickness” between R90 and

R10 is frequently referred to as the “skin” of the

nucleus. The parameter a describes the diffuseness of

the edge. The normalization and mean-square radius

of the Woods–Saxon distribution are derived in

Appendix B. The normalized Woods–Saxon charge

distribution is,

reðrÞ ¼ � 1

8p a3Li3 �e�R50=aÞe r�R50
að Þ� (3.117)

where Lin(x) is the polylogarithm of order n and is

defined in Appendix B. The mean-square radius for the

Woods–Saxon distribution is,

ffiffiffiffi
r2

p
¼ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Li5 �e� �R50=að Þð Þ
Li3 �e� �R50=að Þð Þ

s
: (3.118)

The form factor for the Woods–Saxon charge dis-

tribution does not have a closed analytical form and

must be solved for either by numerical integration or

by, for example, approximating the Woods–Saxon

charge distribution as a summation of Gaussians

(each reflecting a proton position) and solving the

form factor for each term of the summation (Sick

1974). The resulting form factor is similar to that

derived for the homogeneous sphere as it is also oscil-

latory. However, because of the lack of the sharp-cut

off at RN, the minima are finite and do not go to zero.

Empirically, from electron scattering measurements,

the nuclear “skin” thickness is quite constant over a

large number of atomic mass numbers at about 2.3 fm.

From experiment, it has been known that the nuclear

volume increases linearly with A, and, hence, the

Woods–Saxon nuclear charge radius can be parame-

terized by,

R50 ¼ bA
1= 3

; (3.119)

where b ¼ 1.2 fm. The other Woods–Saxon constant

is a ¼ 0.545 fm. Similarly, the RMS radius of the

Fermi distribution as a function of A is,

ffiffiffiffi
r2

p
¼ rRMSA

1= 3

(3.120)

where rRMS ¼ 0.94 fm. By crudely modeling the

nucleus as a homogenous sphere of radius RN, then

this radius can be described in terms of the RMS radius

and which provides a linear relationship between the

nuclear radius and the cube-root of the atomic mass

number,

RN ¼ rnA
1
3 rn ¼ 1:2 fm: (3.121)

Examples of calculated nuclear charge distributions

for 32S, 40Ca, 56Fe, 127I, and 208Pb are shown in

Fig. 3.10. Recall that the parameter t describes the

distance over which the nuclear density decreases

from 90 to 10% of its maximum, or t ¼ a ln81 � 4.4

a ¼ 3.4 fm.

Figure 3.11 provides a pictorial summary of the

nuclear charge distributions and the resulting form

factors reviewed in this section (excluding the

Woods–Saxon). The point-charge form factor is that

of an electron projectile (i.e., it does not demonstrate

an internal structure) whereas the exponential form
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ρe(r) = 
1+e−

a

ρ0

(r−R50)

r e
(r

)
r 0 R50

t

R90

R10

Fig. 3.9 Woods–Saxon distribution of the nuclear electric

charge

22Also known as the Fermi–Dirac distribution in statistical

mechanics and solid-state physics.
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factor well represents that measured for a proton target

(hydrogen nucleus). Very light nuclei tend to demon-

strate a Gaussian form factor with most others display-

ing a Woods–Saxon type. In principle, the nuclear

electric charge distribution can be obtained through

the inverse-Fourier transform of a complete set of

form factor data,

reðrÞ ¼
1

2pð Þ3
ð1

0

d3q e�i
q�r
�hcð ÞFðqÞ (3.122)

However, this is not practical as the differential

cross-section measurement can only be obtained over

a limited range of the momentum transfer (or, equiva-

lently, the elastic scattering angle) as the Mott-mod-

ified Rutherford scattering cross-sections drops

rapidly with increasing q. Figure 3.12 shows the ratio

of the elastic Coulomb scattering cross-section to that

of the pure Rutherford type for 150 MeV electrons for

when the Mott factor is applicable (i.e., the projectile

is spin-1/2) and when the target has a Gaussian charge

distribution with an RMS charge radius of 3 fm. For

clarity, the variable is the cosine of the scattering

angle. The Mott factor decreases the cross-section

rather slowly for small scattering angles to eventually

reduce it to 10% of the Rutherford value for a scatter-

ing angle of about 145	. On the other hand, when the

Mott factor and the nuclear form factor are combined

(as would be the case for an electron projectile inci-

dent to a nucleus), the differential cross-section drops

off far more rapidly and is only about 1% that of the

pure Rutherford cross-section at a 90	 scattering angle.

This demonstrates the difficulty of obtaining a direct

calculation of the nuclear charge distribution from the

inverse-Fourier transform of the measured form factor.

In practice, the nuclear charge density is obtained by

initially assuming a parametric model of the density

and, through optimizing the parameters of the form

factor, obtaining agreement with the measured data.

In addition to estimating the nuclear RMS charge

radius from the minimum of the form factor, it is

possible to calculate this value from a limited set of

form factor data, in particular that for when the

momentum transfer is low and the scattering angle

approaches zero (i.e., the scattering cross-section is

maximal). Begin with the definition of the form factor,

FðqÞ ¼
ð
d3r ei

q�r
�hcð Þre rð Þ

and expand the exponential in the form factor to sec-

ond order,

FðqÞ �
ð
d3r 1þ i

q � r
�hc

� 1

2

q � rð Þ2
�hcð Þ2

 !
reðrÞ

¼
ð
d3rreðrÞ þ

i

�hc

ð
d3r q � rð ÞreðrÞ

� 1

2 �hcð Þ2
ð
d3r q � rð Þ2reðrÞ

¼ 1þ i 2p
q

�hc

� � ð1

0

dr r2reðrÞ
ð1

�1

d cos yð Þ cos y

� p
q

�hc

� �2 ð1

0

dr r4reðrÞ
ð1

�1

d cos yð Þ cos2 y

¼ 1� 2p
3

q

�hc

� �2 ð1

0

dr r4reðrÞ

¼ 1� 1

6

q

�hc

� �2 ð
d3r r2 reðrÞ

¼ 1� 1

6

q

�hc

� �2
r2:

(3.123)

Thus the mean-square radius of the nucleus can be

approximated by the form factor at a given value of

momentum transfer in inelastic Coulomb scatter,

r2 ¼ 6
�hc

q

� �2

1� FðqÞð Þ: (3.124)
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Fig. 3.10 Nuclear charge distributions calculated for the

Wood–Saxon distribution. The units of the charge density

is Z fm�3
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Equivalently, from the definition of the form factor

as the Fourier transform of the nuclear electric charge

distribution,

FðqÞ ¼
ð
d3r ei

q�r
�hcð ÞreðrÞ

and

d2FðqÞ
dq2

¼� 1

�hcð Þ2
ð
d3r r2 cos2 yei

q�r
�hcð Þ reðrÞ: (3.125)

As cosy ¼ 1 is equivalent to q ¼ 0, there is a direct

relationship between the mean-square radius of the

nuclear electric charge distribution and the second-

derivative of the nuclear form factor at small scatter-

ing angles,

ffiffiffiffi
r2

p
¼ �hc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d2FðqÞ

dq2

				
q¼0

s
: (3.126)

It is important to recall that the above derivations

were based upon the Born approximation and, hence,

are subject to the limitations of that theory. While use

of the Born approximation is acceptable for calcula-

tions of light nuclei, its validity diminishes with

increasing Z. Dimensions of heavy nuclei are more

accurately determined using phase-shift analysis.

3.2.8 Nuclear Density

Methods of determining nuclear size and mass from

which the nuclear density can be derived have been

reviewed. Accurate measurements of nuclear mass are

essential for determining nuclear binding energies, the

importance of which is shown later. For a nucleus

composed of A nucleons, the nuclear radius is

RN ¼ 1.2 A fm. Assuming a spherical nucleus, the

volume is,

4p
3
R3
N ¼ 4p

3
1:2ð Þ3A fm3

� 6:2A fm3
(3.127)

or about 0.16 nucleons fm�3, which implies an aver-

age internucleon separation of about 2 fm. This con-

stancy of density is indicative of a short-range,

saturable nuclear force and can be used to model of

the nucleus as an incompressible nuclear fluid.

3.3 Nucleon Dynamics: The Fermi Gas
Model

Some of the simplest aspects of the phenomenology of

the nucleus have now been examined: its constituents,

electric charge, mass, size, and density. With this

information, it is now possible to expand the under-

standing of nuclear structure, in particular those char-

acteristics that lead to nuclear stability. As an unstable

nucleus is, by definition, radioactive, an appreciation

of nuclear stability is a foundation to the development

of internal radiation dosimetry. In the first nuclear

model to be considered, we evaluate the dynamics of

the nucleons as a result of their confinement within the

nuclear volume 4p
3
r3nA with uniform density 3

4pr3n
.

Should the number of nucleons be sufficiently large,

statistical mechanics can be used by treating the

nucleons as weakly-interacting fermions (subject, of

course, to the Pauli exclusion principle) interacting via

an attractive potential. In its ground state, the nucleus

is a zero-temperature Fermi gas and an appropriate

nucleon kinetic energy distribution for medium to

heavy nuclei obtained. Consider the nucleus as an

ensemble of A nucleons confined within a volume L3

with the phase space divided into unit cells each of
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Fig. 3.12 The ratio of the elastic Coulomb scatter differential

cross-section to that for the Rutherford cross-section for the

Mott factor only and the Mott and form factors combined

applied as a function of the cosine of the scattering angle for

150 MeV electrons and a Gaussian form factor with an RMS

nuclear charge radius of 3 fm
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volume 2p �hcð Þ3. Each unit cell will contain four

nucleons due to the spin-isospin degeneracy from the

combinations of nucleon spin-1/2 and the isospin-1/2.

Because of isospin, the neutrons and protons are dis-

tinguishable and will thus occupy separate energy

wells. In the ground state (i.e., zero temperature), all

available states up to the Fermi momenta, pF,p and pF,n
for protons and neutrons, respectively, will be filled.

The number of protons in this Fermi nuclear gas can

then be related to the Fermi momentum through,

Z ¼ 2
L

2p �hc

� �3 ð
d3p

¼ 8p
L

2p �hc

� �3 ðpF;p

0

dp p2

¼ 1

3p2
L pF;p

�hc

� �3

(3.128)

where the multiplicative factor of 2 reflects the spin

degeneracy among the protons. Similarly, the number

of neutrons is related to the neutron Fermi momen-

tum by,

N ¼ 1

3p2
L pF;n

�hc

� �3

: (3.129)

As the volume of a spherical nucleus containing A

nucleons is,

L3 ¼ 4p
3
r3nA (3.130)

the proton and neutron Fermi momenta are,

pF;p ¼ 9p
4

� �1
3 Z

A

� �1
3 �hc

rn

� �
(3.131)

pF;n ¼ 9p
4

� �1
3 N

A

� �1
3 �hc

rn

� �
(3.132)

For rn ¼ 1.2 fm and a nucleus with equal numbers

of neutrons and protons, N ¼ Z ¼ A=2, the Fermi

momentum is 250 MeV/c. The corresponding Fermi

energy,23 EF ¼ pF
2/m � 33 MeV where m is the

nucleon mass (mp � mn � 940 MeV), represents

the energy of the highest occupied nucleon level.

The resulting energy levels are shown in Fig. 3.13

for which the nucleons are bound within the nucleus

by an energy B (later shown to be about 8 MeV for

most nuclei) and the depth of the potential well, U,

which is the sum of the Fermi and binding energies

and is about 41 MeV. The proton and neutron potential

wells as the protons are subject to Coulomb repulsion

which neutrons are not. As a consequence, the neutron

Fermi energy, EF,n, is equal to EF and the proton Fermi

energy, EF,p, is less than that of the neutron by the net

Coulomb repulsion energy,

p n

Coulomb barrier

B

EF,p

EF,n

EC

U

Fermi level

Fig. 3.13 Proton and neutron

potential wells in the Fermi

gas model. B is the mean

binding energy of a nucleon

(�8 MeV), U is the depth of

the potential well (�41 MeV),

EF,n is the neutron Fermi

energy (�33 MeV) and EF,p is

the proton Fermi energy,

shifted up relative to that of

the neutron by EC due to the

Coulomb repulsion between

the protons

23The nomenclature used in this book takes a slight diversion

here (in order to maintain consistency with that used elsewhere)

as the energy level, denoted by E, is equal to the kinetic energy

only which would normally be denoted by T. Here, E does not

denote the total energy (i.e., the sum of kinetic and rest mass

energies).
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EF;p ¼ EF;n � EC: (3.133)

Hence, the depth of the proton potential well is less

than that of the neutrons. Despite this difference in the

depths of the neutron and proton potential wells, the

Fermi energy levels for both protons and neutrons

must remain the same. Were this not so, the nucleus

could not remain stable and would decay to a more

energetically favorable state by converting all or the

neutrons into protons or vice versa via beta decay.

The combination of a deeper neutron potential well

and the requirement for the proton and neutron energy

levels to be equal leads to the state of there being more

occupied neutron levels than proton levels, a feature

reflected by the fact that N > Z for stable medium to

heavy nuclei.

The mean energy of the occupied proton states is,

EP ¼ 2
L

2p �hc

� �3 ðpF;p

0

dp 4p p2
� � p2

2m

¼ 3

5
ZEF;p

(3.134)

where EF;p ¼ p2F;p=mp. Similarly for the lower occu-

pied neutron states,

En ¼ 3

5
NEF;n: (3.135)

The sum of the proton and neutron mean kinetic

energies is,

ETot ¼ Ep þ En

¼ 3

10m
Zp2F;p þ Np2F;n

� �

¼ 3

10m

9p
4

� �2=3 �hc

rn

� �2
Z5=3 þ N5=3

A2=3

� �
:

(3.136)

The differences in the total mean nucleon kinetic

energies between nuclei with equal numbers of protons

and neutrons and heavy nuclei with more neutrons than

protons are exemplified by the values of 20.03 MeV for
12C (Z ¼ N ¼ 6) and the slightly higher value of

20.5 MeV for 208Pb (Z ¼ 82; N ¼ 126). That �ETot

should be lower for nuclei with equal numbers of pro-

tons and neutrons, provided that Coulomb effects are

neglected, can be demonstrated by manipulating

(3.136) through first writing Z ¼ A
2

� �� N�Zð Þ
2

� �
and

N ¼ A
2

� �þ N�Zð Þ
2

� �
so that the term dependent upon

atomic number and atomic mass number is,

Z5=3 þ N5=3

A
2
3

� �
¼

A
2
� N�Z

2

� �5=3 þ A
2
þ N�Z

2

� �5=3
A

2
3

¼ A

2
1� N� Z

A

� �5=3

þ 1þ N� Z

A

� �5=3
 !

:

(3.137)

As (N � Z)2 � A, binomial expansions of the two

terms to second order can be used,

1� N� Z

A

� �5=3

ffi 1� 5

3

N� Z

A

� �
þ 5

9

N� Z

A

� �2

ð3:138Þ

The � on the first-order term of the expansion

explains why a second-order expansion was required.

This expansion gives,

Z5=3 þ N5=3

A2=3

� �
¼ A 1þ 5

9

N� Z

A

� �2
 !

: (3.139)

Placing this in the expression for the total Fermi gas

energy and rearranging to normalize per nucleon

results in,

ETot

A
¼ 3

10m

9p
4

� �2=3 �hc

rn

� �2

1þ 5

9

N� Z

A

� �2
 !

¼ EVol

A
þ ESym

A
:

(3.140)

The volume and symmetry energy terms have been

identified,

EVol

A
¼ 3

10m

9p
4

� �2=3 �hc

rn

� �2

¼ 31:8MeV (3.141)

ESym

A
¼ 1

6m

9p
4

� �2=3 �hc

rn

� �2
N� Z

A

� �2

¼ 17:7
N� Z

A

� �2

MeV: (3.142)

The volume energy term per nucleon is a constant

referred to as the “condensation energy” term as it
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represents the energy released when a grouping of

nucleons combine to form a nucleus. As it must be

proportional to the number of nucleons, the EVol=A

term is constant. The symmetry energy term provides

the
N�Zð Þ
A

� �
2

factor indicating that the nucleons’

energy will be minimized for fixed A when the num-

bers of neutrons and protons are equal (reflecting the

observed tendency for zero nuclear isospin in stable

nuclei). However, the magnitude of the symmetry

term is lower than that determined from measurement,

a result reflecting the neglect of proton–neutron inter-

actions when the numbers of neutrons and protons

differ. This difference, as we shall see, increases

with nuclear mass as more neutrons are required to

compensate for the Coulomb repulsion between the

protons in order to bind the nucleus.

3.4 Phenomenology of Nuclear Stability

3.4.1 Introduction

Before progressing into further development of

nuclear theory, the empirically-determined character-

istics of nuclear stability are reviewed.

3.4.2 Average Binding Energy
per Nucleon

The mass of an atom of atomic mass number, A, and

atomic number, Z, can be written as,

MðA;ZÞ ¼ ZMH þ ðA� ZÞmn � BðA;ZÞ (3.143)

where MH and mn are the masses of the hydrogen atom

and the neutron, respectively, and B(A,Z) is the

nuclear binding energy. Rearranging this equation

gives the nuclear binding energy in terms of measur-

able quantities,

B A;Zð Þ ¼ ZMH þ A� Zð Þmn �M A;Zð Þ: (3.144)

The nuclear binding energy per nucleon is,

fðAÞ ¼ BðA;ZÞ
A

¼ Z

A

� �
MH �mnð Þ þmn �M A;Zð Þ

A
:

(3.145)

This result is plotted in Fig. 3.14 for nuclei as a

function of A. For nuclei with atomic mass numbers

exceeding 10, the binding energy per nucleon is very

nearly constant at between 7.5 and 8.8 MeV per

nucleon. The lowest binding energy is that of the

deuteron (f(A) ¼ 1.11 MeV) which reflects the rela-

tively large separation between the neutron and proton

such that the attractive nuclear potential just over-

comes the kinetic energies of the nucleons. It is

striking that the 4He nucleus has such a large binding

energy (f(A) ¼ 7.08 MeV) which is a consequence of

the pairing off of the two neutrons and two protons

with opposing spins leading to the results that the 4He

nucleus is spin-0 and isopsin-0.

The nucleus with the highest f(A) value is 62Ni with

f(A) ¼ 8.79 MeV per nucleon.

This near constancy of f(A) for A > 10 reflects

the presence of a short-range and saturable attractive

internucleon force. Otherwise, should the inter-

nucleon force have infinite range, the binding energy

would be proportional to A(A�1) � A2 for heavy

nuclei and leading to f(A) increasing with A. In prac-

tical terms, using the analogy of a liquid drop, a

constant binding energy per nucleon is similar to the

independence of the latent heat from the size of the

drop. Features of this figure which are indicative of

underlying nuclear structure include:

� Peaks in f(A) for certain nuclei, typically with

atomic mass numbers of integral multiples of 4

(e.g., 4He, 12C, 16O, 20Ne, and 24Mg), demonstrat-

ing nuclei with particularly stable numbers of

nucleons.
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stable nuclei
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� The slow decrease in f(A) with A for large A which

is a consequence of the growing repulsive Coulomb

force between protons (roughly proportional to Z2).

� The rapid increase in f(A) with A for small A

reflecting an effect analogous to the surface tension

of a liquid drop: there is a greater proportion of

nucleons at the nuclear surface for small A, thus

resulting in a smaller binding energy per nucleon.

As the number of nucleons increases, the propor-

tion of nucleons at the nuclear surface decreases

and the net binding energy per nucleon increases.

� Nuclei with even numbers of both protons and

neutrons consistently have higher f(A) values than

neighboring nuclei with odd numbers of nucleons.

3.4.3 Nucleon Separation Energy

The nucleon separation energy is that required to sep-

arate one or a group of nucleons from the nucleus in its

ground state and to move them to infinity, whilst

leaving the residual nucleus in its ground state. Unlike

beta decay, in which a neutron can be transformed to a

proton and vice versa, this process conserves the total

individual numbers of neutrons and protons. Consider

the general case of the decay of a nucleus with atomic

number Z and neutron number N to two daughter

nuclei with (Zf,1, Nf,1) and (Zf,2, Nf,2) where Z ¼ Zf,1

+ Zf,2 and N¼ Nf,1 + Nf,2. An example of such a decay

is a decay: (Zf,1, Nf,1) ¼ (2,2) and (Zf,2, Nf,2) ¼ (Z�2,

N�2).

The condition of one of the produced nuclei to be a

single neutron is allowed:

(Zf,1, Nf,1) ¼ (0, 1) and (Zf,2, Nf,2) ¼ (Z, N�1).

The Q of this decay is the energy released by it,

Q ¼ M Z;Nð Þ �mn �M Z;N� 1ð Þ (3.146)

where M(Z, N) is the rest-mass energy of a nucleus

with Z protons and N neutrons. As the decay can only

occur if Q is positive (exoergic), the separation energy

for a single neutron is,

Sn ¼ �Qn

¼ M Z;N� 1ð Þ þmn �M Z;Nð Þ
¼ B A;Zð Þ � B A� 1;Zð Þ
¼ A fðAÞ � A� 1ð Þf A� 1ð Þ
¼ f A� 1ð Þ þ A fðAÞ � f A� 1ð Þð Þ:

(3.147)

Consider heavy nuclei (A > 62) for which, in

general, the change in binding energy per nucleon is

negative (i.e., Df(A)  f(A � 1) � f(A) > 0). Then,

the neutron separation energy is,

Sn ¼ fðAÞ � A� 1ð ÞDfðAÞ: (3.148)

As only a single neutron is being removed, DA ¼
�1 and, taking advantage of the small change in

binding energy with A,

dfðAÞ
dA

� DfðAÞ
DA

¼ �DfðAÞ< 0:

(3.149)

Hence, the expression for the neutron separation

energy is,

Sn ¼ fðAÞ þ A� 1ð Þ dfðAÞ
dA

: (3.150)

As, in general, dfðAÞ=dA is negative for nuclei

heavier than 62Ni, the neutron separation energy will

be less than the nuclear binding energy for such nuclei.

In particular, should A� 1ð Þ dfðAÞ=dA
			 			 > fðAÞ, then

Sn will be negative or, correspondingly, Q is positive

and it is energetically possible for the nucleus to decay

through the spontaneous emission of a single neutron.

In the case of a proton being removed from the

nucleus, the Q is,

Q ¼ M Z;Nð Þ �mp �M Z� 1;Nð Þ: (3.151)

But, the separation energy is slightly more compli-

cated as we now must account for the Coulomb repul-

sion between the released proton and the daughter

nucleus,

Sp ¼ �Q� Z� 1ð Þ a�hc
RN

: (3.152)

Repeating the above derivation,

Sp � Sn � Z� 1ð Þ a�hc
RN

(3.153)

A negative value of the separation energies means

that the nucleus can spontaneously decay through the

emission of a single neutron or proton and the bound-

ary between negative and positive values of the sepa-

ration energies is known as the “drip line.” The
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significance of this line for single nucleon emission

lies when beta decay is considered. A nucleus just

inside the neutron drip line (Sn being slightly positive)

can undergo b� decay, (Z, N) !(Z + 1, N � 1). As

this is a weak interaction, the decay rate is small (as

shown in Chap. 4) so that the half life of the decay is

relatively long (of the order of 10�3 s or above).

Should the nucleus be just outside the neutron drip

line (Sn being slightly negative) it can under spontane-

ous neutron emission, (Z, N)!(Z, N � 1) with, as the

decay is due to the strong nuclear interaction, a short

transition rate (of the order of 10�20s).

Of particular importance to the understanding of

nuclear stability is the recognition that a high positive

nucleon separation energy is indicative of a particu-

larly stable nucleus. As an example, Fig. 3.15 shows

the neutron separation energy Sn vs. the number of

neutrons for the isotopes of Pb. It is evident that the

neutron separation energy is higher for an even num-

ber of neutrons. As the atomic number of Pb is even,

these peaks denoting particularly stable Pb nuclei sug-

gest that the combination of an even number of pro-

tons and an even number of neutrons leads to a nucleus

with increased stability.

3.4.4 Characteristics of Stable Nuclei

Figure 3.16 is a graph of the number of protons, Z, vs.

the number of neutrons, N, for stable nuclei and is

known as the Segrè plot. Also shown on the plot is the

N ¼ Z line and a variety of isobar lines; the latter will

be of interest in later discussion of mass parabolas.

Recall the symmetry energy term from the Fermi gas

model which predicts a minimum in the nucleons’

kinetic energy if the numbers of neutrons and protons

in the nucleus are equal. This tendency to the mini-

mum is reflected in the locus of stable nuclei settling to

the N ¼ Z line for light nuclei. However, the locus

curves upwards (i.e., N > Z) for increasing Z due to

the greater number of neutrons required to provide the

attractive strong nuclear force to counter the repulsive

Coulomb force between protons. Nuclei created

through fission or nuclear reactions can appear on

1

2

3

4

5

6

7

8

9

10

116 118 120 122 124 126 128 130 132
Number of Neutrons, (A-Z)

Pb
(Z = 82)

S
n

(M
eV

)

Fig. 3.15 Neutron separation energy vs. number of neutrons

for Pb isotopes

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90

N
u

m
b

er
 o

f 
N

eu
tr

o
n

s,
 (

N
 =

 A
 -

 Z
)

Number of Protons, Z

N = Z

Stable

Nucle
i

Isobar line
(A = 80)

Isobar line
(A = 60)

Isobar line
(A = 40)

Isobar line
(A = 100)

Fig. 3.16 The Segrè plot: the
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either side of the locus and will be unstable as there are

decay routes through which they can maximize their

binding energy. As to be discussed in Chap. 4, such

nuclei can reach stability through decay processes

which alter the number of protons and neutrons. It is

these nuclei that are outside this locus and which

undergo a decay, b decay, or electron capture to

reach the locus of stability which are used in nuclear

medicine. As b decay and electron capture occur

between isobars, these transitions occur along the

diagonal isobar lines in the figure. By partitioning

Fig. 3.16 into those nuclei with odd and even A, as

shown in Fig. 3.17, further information regarding

nuclear stability characteristics can be obtained.

A number of striking features are obvious when the

Segrè plot partitioned into plots for even-A and odd-A

nuclei:

� There are more even-A stable nuclei than odd-A

stable nuclei (which was suggested in the earlier

examination of the neutron separation energy for

lead isotopes).

� With only four exceptions (2H, 6Li, 10B, and 14N),24

there are no even-A odd-Z (i.e., odd-N odd-Z)

stable nuclei.

� Odd-Z nuclei have only one or two stable isotopes

(i.e., there are only one or two stable nuclei in any

group of odd-A odd-Z isobars).

� There are no stable odd-A isotopes of argon,

cerium, and samarium.

� There are no stable isotopes of technetium and

praseodymium.

Table 3.3 summarizes the statistics of stable nuclei

shown in Fig. 3.17.

It is also evident from Table 3.3 that the stability of

an odd-A nucleus is essentially independent of whether

or not the combination of nucleons is odd-Z/even-N or

even-Z/odd-N. That is, the unpaired nucleon in a stable

nucleus can be a proton or a neutron. On the other

hand, even-A stable nuclei have an overwhelming

preference for the even-N/even-Z combination (as

noted earlier, there are only four stable odd-N odd-Z

nuclei). This indicates the presence of a nucleon pair-

ing energy.

3.5 Liquid-Drop Model and the Semi-
Empirical Nuclear Mass Formula

3.5.1 Introduction

The nuclear mass formula includes a binding energy

term, B(A, Z), which is maximized for stable nuclei.

Any expression for this binding energy must be able to
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Fig. 3.17 Number of protons vs. the number of neutrons for

stable nuclei partitioned into (a) odd and (b) even values of A

Table 3.3 Statistics of stable nuclei

Number of stable nuclei

Odd Z Even Z

Odd N 4 53

Even A Odd A

Even N 50 156

Odd A Even A

24Some authors have included the 9� excited state of 180Ta as

stable odd-Z even-A nucleus; however it is unstable with a half

life of 1.8 � 1013 years.
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reproduce the five main nuclear phenomena demon-

strated so far:

� The increase in binding energy with nuclear size

and nucleon number

� The decrease in net binding energy due to an

increase in the number of nucleons at the nuclear

surface

� The decrease in net binding energy with nucleon

number due to the Coulomb repulsion between

protons

� The decrease in net binding energy reflecting the

tendency of the locus of neutron number vs. proton

number for stable nuclei to deviate from the N ¼ Z

line with increasing A

� A term to account for the observed rarity of odd–

odd nuclei and the preference in nature for even–

even nuclei

These requirements are consistent with the model

of a nucleus as a liquid drop.

3.5.2 Nuclear Binding Energy

Weizsäcker proposed a parameterization of B(A, Z)

with terms which accounted for each of the five fea-

tures above and each weighted by a factor determined

by fitting the expression to experimental data. A cur-

rent expression for this parameterization is of

the form,

BðA;ZÞ ¼ aVolA� aSurfA
2=3 � aCoul

Z2

A1=3

� aSym
A� 2Zð Þ2

A
� d (3.154)

where the terms correspond to volume (i.e., constancy

of f(A) with A), surface, Coulomb, symmetry, and

paired nucleon effects, respectively. The volume

term is the previously-derived “condensation” energy

and represents the nearest-neighbor interaction

between nucleons. The remaining terms can be

thought of as “correction” terms which account for

the differences between the observed binding energy

and the simple condensation energy. The surface term

describes the reduction in the binding energy due to

the fact that the nucleons at the surface interact only

with those in the interior. The Coulomb term describes

the reduction in binding energy due to the Coulomb

repulsion between protons and the symmetry term

represents the minimum in nucleon kinetic energy

for equal numbers of protons and neutrons as has

been derived in the Fermi gas model. Finally, the

paired nucleon term is an empirical reflection of the

observed prevalence of stable even–even nuclei shown

in Table 3.3. The description of the nuclear mass by

the sum of Weizsäcker’s formula for the binding

energy and the rest masses of the neutrons and protons

is also referred to as the semi-empirical formula for

nuclear mass as, although some are determined by

empirical fits to measured nuclear mass data, the co-

efficients of (3.154) have a theoretical basis. Even so,

it is important to bear in mind that the formula is only

an approximation capable of predicting the general

trends in variations in nuclear binding energy.

Each of the terms in the formula is discussed below.

3.5.3 Binding Energy Terms

3.5.3.1 Volume Term

As noted earlier, the total binding energy per nucleon

is very nearly constant (or slowly decreasing) for A >

10 which implies a saturable and short-range force as

the total number of pairs of nucleons available from a

nucleus of atomic mass number A is equal to

A A� 1ð Þ=2 which would imply a force proportional

to A2. As the volume term is proportional to A, the

attractive strong nuclear force must have a short range

thus restricting the nucleons to interact with only their

nearest partners. Empirically, the coefficient for this

term is aVol ¼ 15.56 MeV.

As the volume term exaggerates the net binding

energy, the remaining four terms describe the diminu-

tion of the attractive effect of the volume term.

3.5.3.2 Surface Term

The average binding energy per nucleon grows rapidly

with nucleon number for small A reflecting an incom-

plete binding of nucleons at the nuclear surface for

light nuclei. This incomplete binding is analogous to

the surface tension of a liquid drop and hence
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proportional to the surface area of the nucleus, 4p RN
2

where RN is the nuclear radius. As RN is proportional

to A1/3, the binding energy surface term is thus pro-

portional to A2/3. The coefficient for the surface

energy term aSurf ¼ 17.23 MeV

3.5.3.3 Coulomb Term

The repulsive Coulomb potential between the protons

reduces the net binding energy. This Coulomb poten-

tial was derived earlier for a spherical nucleus with a

uniformly-distributed electric charge,

ECoul ¼ 3

5
a�hcð Þ Z2

rNA1=3
: (3.155)

The specification of a uniform distribution of

charge would thus lead to the coefficient of the Cou-

lomb term in the Weizsäcker formula to be,

3

5

a�hc
rN

� 0:72MeV:

However, the actual factor is aCoul ¼ 0.697 MeV,

the difference being due to the invalidity of the

assumption of a uniform distribution of charge within

the nucleus which led to the 3/5 multiplicative factor.

The fact that the magnitude of the Coulomb term

coefficient is an order-of-magnitude less than the

others reflects the relative strength of the strong

nuclear force compared to the electromagnetic force.

3.5.3.4 Symmetry Term

A result of the derivation of the Fermi gas model was

that the total nucleon kinetic energy is minimized for

equal numbers of protons and neutrons. This gives the

symmetry energy as being proportional to (N � Z)2

¼ (A � 2Z).2 This term appears in the Weizsäcker

formula with the coefficient, aSym ¼ 23.29 MeV.

3.5.3.5 Paired Nucleons Term

This term in the Weizsäcker semi-empirical formula

arises from the observations summarized in Table 3.3.

Even-N/even-Z nuclei are the most prevalent making

up about 59% of all stable nuclei and even-N/odd-Z

and odd-N/even-Z nuclei are the next prevalent

making up about 39% of all stable nuclei. The odd-N/

odd-Z combination is rare for stable nuclei, equivalent

to less than 2% of all stable nuclei. Thus, even-N/even-

Z nuclei will have the greatest binding energy, fol-

lowed by even-N/odd-Z and odd-N/even-Z nuclei and

the odd-N/odd-Z nuclei will have the lowest binding

energy. To replicate this observation, a representation

of the paired nucleon term in the Weizsäcker semi-

empirical formula is,

d ¼ 0 even-N=odd-Z and odd-N=even-Z (3.156)

d ¼ þ 12ffiffiffiffi
A

p MeV odd-N=odd-Z (3.157)

d ¼ � 12ffiffiffiffi
A

p MeV even-N=even-Z: (3.158)

This term cannot be reproduced from the liquid-

drop model but can be suggested from the shell model

to be discussed.

3.5.4 Contributions of Binding Energy
Terms

Figure 3.18 presents the effects of the contributions of

the different terms to the binding energy in the semi-

empirical mass equation. This plot shows the volume

binding energy per nucleon (which is a constant) and

the subsequent curves resulting from the subsequent

corrections of the surface, Coulomb and symmetry

energy terms which diminish the net binding energy.

It is clear that the effect of the surface term is more

significant for light nuclei where the fraction of

nucleons at the surface of the nucleus is greatest, the

Coulomb term is greater for heavy nuclei with larger

numbers of protons and the symmetry term becomes

significant for heavy nuclei where the A=Z ratio is at

its greatest.

The final curve of Fig. 3.18 provides general repre-

sentation of the binding energy per nucleon of the

Weizsäcker formula. Comparing this result to the

measured binding energies per nucleon of Fig. 3.14,

one can see that the Weizsäcker result can replicate the

3.5 Liquid-Drop Model and the Semi-Empirical Nuclear Mass Formula 65



measured binding energy to within about 2 MeV, but

that there are particularly large disagreements between

these values for certain nuclei. In these cases, the

Weizsäcker formula can underestimate significantly

the binding energy for these nuclei by values of up to

10 MeV or so. Such discrepancies reflect a quantum

mechanical behavior of nucleons which differs from

the semiclassical approaches considered so far and

which becomes most evident for these certain nuclei,

which are referred to as “magic” nuclei. These excep-

tional nuclei are discussed later.

3.5.5 Mass Parabolae

By combining the expression for the atomic mass and

the Weizsäcker semi-empirical formula for the nuclear

binding energy, the mass of an atom of atomic mass

number A and atomic number Z can be written with the

atomic number and atomic mass number as variables,

MðA;ZÞ ¼ ZMH þ ðA� ZÞmn

�
"
aVolA� aSurfA

2=3 � aCoul
Z2

A1=3

�aSym
A� 2Zð Þ2

A
� d

#

(3.159)

It is now shown that, for isobars, the nuclear bind-

ing energy can be maximized or, equivalently, the

atomic mass minimized, through nuclear decay pro-

cesses (including beta decay and electron capture) that

conserve the total number of neutrons and protons

between parent and daughter nuclei. Consider first

the cases of odd-A isobars for which the nucleon

pairing term d is equal to zero. The atomic mass

expression of can be written as a quadratic function

in Z,

MðA;ZÞ ¼ k2ðAÞZ2 þ k1Zþ k0ðAÞ (3.160)

with the coefficients,

k2ðAÞ ¼ aCoul

A1=3
þ 4aAsym

A


 �
(3.161)

k1 ¼ MH �mn � 4aAsyn
� 

(3.162)

k0ðAÞ ¼ A mn � aVol þ aSurf

A1=3

h i
(3.163)

where A is a constant for isobars. Equation (3.160)

describes the atomic mass as a parabola for constant A

in the variable of the atomic number, Z. As the

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200

 

Volume Energy:
15.56A MeV

Surface Energy:
17.23A2/3 MeV Coulomb Energy:

0.697 Z2/A1/3 MeV

Symmetry Energy:
23.29 (A-2Z)2/A MeV

Mass Number, A

B
in

d
in

g
 E

n
er

g
y 

p
er

 N
u

cl
eo

n
 (

M
eV

)

Fig. 3.18 The surface,

Coulomb, and asymmetry

terms successively subtracted

from the volume term to yield

the final Weizsäcker semi-

empirical approximation to

the binding energy per

nucleon as a function of the

atomic mass number, A
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coefficient k2(A) is always positive, the parabola is

inverted with a minimum for the atomic number,

Zmin ¼ � k1

2k2ðAÞ
� �

¼ A

2

� �
4aSym þ mn �MHð Þ
4aSym þ aCoulA2=3

� �
:

(3.164)

This result gives the atomic number of the stable

isobar. Substituting the numerical values of the con-

stants yields the approximation,

Zmin � A

2

� �
94

93þ 0:7A2=3

� �
: (3.165)

Hence, for light nuclei where A is small,

Zmin � A=2, indicating the tendency for equal num-

bers of neutrons and protons when the Coulomb repul-

sion between nucleons can be neglected. Such

parabolas lie along the isobar lines in the Segrè plot.

Being isobars, the volume and surface terms in the

Weizsäcker formula remain constant and only the

Coulomb and symmetry terms, being functions of

atomic number, vary. An example of the parabolic

feature is shown by the measured nuclear masses in

Fig. 3.19 for those isobars with A ¼ 99. As this value

of A is odd, the paired nucleon term d is zero and the

only terms of the Weizsäcker formula that will change

with Z for constant odd A are the sum of the Coulomb

and symmetry terms,

aCoul
Z2

A1=3
þ aSym

A� 2Zð Þ2
A

: (3.166)

For A ¼ 99, the isobar with the smallest mass (i.e.,

the greatest binding energy) is 99Ru and the differ-

ences between the other isobar masses and that of 99Ru

is plotted against atomic number, Z. Isobars on either

side of 99Ru (i.e., nuclei with an atomic number

greater or less than that of 99Ru) are unstable and the

binding energies of those to the left of 99Ru can be

increased (and, hence, their masses decreased) by the

b� decay of a neutron to a proton.25 For A ¼ 99 and Z

increasing from 37 to 43, the sum of the Coulomb and

symmetry terms in the Weizsäcker formula decreases

which, as these are subtracted from the constant vol-

ume and surface terms, result in a corresponding

increase in binding energy. For Z greater than 43, the

sum of the Coulomb and symmetry terms increase

leading to a decrease in binding energy. Hence, isobars
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Fig. 3.19 Mass parabola for
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25While the excited states of 99Sr, 99Y, and 99Zr can decay via

single neutron emission and excited states of 99Ag can decay via

proton emission, the probabilities of such exotic decays are

extremely small and are neglected here.
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to the right of 99Ru (i.e., with an atomic number

greater than that of 99Ru) will increase their binding

energies by decreasing their net electric charge

through the conversion of a proton to a neutron

through either b+ decay (which emits a positron) or

by the capture of an atomic orbital electron.

Next consider the case of those mass parabolas for

even-A nuclei. In such cases, the isobars are other odd-

Z/odd-N or even-Z/even-N and the nucleon pairing

term is not zero and will differ between the two com-

binations of isobars with the result of two mass para-

bolas in Z. Figure 3.20 presents the mass parabolae for

A ¼ 100. Because of the pairing term, the even–even

parabola contains more nuclei of lower mass than the

odd–odd parabola and nuclei in the odd–odd parabola

can always decay to those in the even–even parabola.

As before, nuclei to the left of the even–even para-

bola’s minimum undergo b� decay (increase Z) in

order to achieve stability (minimum mass) and those

to the right undergo b+decay or electron capture to do

the same. However, the even–even parabola for these

isobars contains two stable nuclei: 100Mo and 100Ru.

While one could expect 100Ru to go through sequential

b� decays through 100Tc to 100Ru, 100Tc is slightly

more massive by about 170 keV than 100Mo. Because,

as shown in the following chapter, b� decay cannot

occur unless the product nucleus is lighter than the

original radioactive nucleus, 100Mo cannot undergo

b� decay to 100Tc, meaning that the 100Mo nucleus is

stable. However, 100Tc itself is an unstable nucleus as

it is energetically preferable for it to undergo b� decay

to 100Ru. 100Tc is not produced via radioactive decay,

but is created by reactions such as the radiative (n, g)
neutron capture on 99Tc or the (p, n) charge exchange

reaction on 100Mo.

3.5.6 Prediction of Stable Isobars

Although it is only capable of providing only an

approximation to the general tendencies of nuclear

binding energy with nuclear mass, the Weizsäcker

parameterization of nuclear mass does allow a pre-

diction of what will be the most stable isobar for a

given atomic number, Z. This can be shown by

finding its minimum through differentiating the

Weizsäcker formula with respect to Z and setting

the result to zero to yield the locus of Z for minimal

isobar mass,

MH �mnð Þ þ 2aCoul
Z

A1=3
þ aSym

A
8Z� 4Að Þ ¼ 0:

(3.167)
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Rearranging and using the substitution y ¼ A�1/3

yields the cubic equation,

y3 þ aCoul

4aSym

� �
yþ MH �mn � 4aSym

8ZaSym

� �
¼ 0

(3.168)

which is of the form,

y3 þ ayþ b ¼ 0 (3.169)

where the two coefficients are,

a ¼ aCoul

4aSym
(3.170)

and

b ¼ MH �mn � 4aSym

8ZaSym
: (3.171)

As all of the coefficients are real and the discrimi-

nant is positive, there can only be one real root and two

conjugate imaginary roots, the latter two being ignored

as they are obviously nonphysical. From the real

root of the cubic equation, the number of neutrons

N ¼ (A – Z) as a function of Z for isobars with mini-

mum mass (i.e., the greatest binding energy), is,

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

4
þ a3

27

q
3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

4
þ a3

27

q
3

r � Z:

(3.172)

The calculated neutron number for the most stable

isobar as a function of proton number is shown in

Fig. 3.21 along with the empirical locus of all stable

nuclei. The calculated N(Z) line reproduces quite well

the locus stability of the Segrè plot.

The expressions of nuclear mass/binding energy

derived from the Weizsäcker formula provide only

approximate tendencies of, for example, the relation-

ship between the numbers of neutrons and protons in

stable nuclei. As can be seen in Fig. 3.21, whilst able

to reproduce the overall functional dependence of

neutron number with increasing atomic number, the

Weizsäcker-derived result does not predict the unusual

cases of relatively large number of stable isotopes (i.e.,

nuclei with constant Z but variable N) that occur for

Z ¼ 20, 50, and 82. The liquid drop model of the

nucleus has been shown to be capable of reproducing

quantitatively many physical features of the nucleus

and, through the contributions of the Coulomb and

surface terms, to also allow predictions of the instabil-

ity of isobaric nuclei. While the model can predict

such general and macroscopic trends, it is unable to

predict a variety of detailed features of nuclei. These

features are addressed by the independent particle/

nuclear shell models.

3.6 Nuclear Shell Model

3.6.1 Introduction

Whereas the Fermi gas and liquid drop models can

predict the general features of nuclei, they cannot

reproduce the properties of nuclei which exhibit char-

acteristics of extraordinary stability and prevalence in

nature. Such nuclei being referred to as being “magic,”

with the Weizsäcker semi-empirical formula under-

estimating their binding energy by as much as

10 MeV. In order to correct for these differences

between theory and measurement, the quantum

mechanical properties of intrinsic spin and orbital

angular momentum of the nucleons within the nucleus

must be invoked.
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3.6.2 Magic Nuclei

For nuclei with numbers of neutrons or protons equal

to 2, 8, 20, 28, 50, 82, and 126, the Weizsäcker repre-

sentation underestimates the nuclear binding energy

by about 10 MeV, indicating high degrees of stability

not predicted by either the Fermi gas and liquid drop

models. Such neutron and proton numbers yielding

these properties are labeled as being “magic” and

nuclei with proton and neutron numbers that are both

“magic,” e.g., 16O and 208Pb, are exceptionally stable

and are referred to as being “doubly magic.” Examples

of magic numbers include:

� The naturally-occurring radioactive series begin-

ning with 238U, 235U, and 232Th and ending with

the stable isotopes 206Pb, 207Pb, and 208Pb, respec-

tively, all of which have Z ¼ 82.

� The element with the greatest number of stable

isotopes (10) being Sn (Z ¼ 50).

� The greatest number of stable isotones occurring

for N ¼ 82.

� 136Xe (with N ¼ 82) having a low cross-section for

neutron absorption whereas 135Xe (with N ¼ 81)

has a high cross-section for neutron absorption so

as to achieve the magic number of N ¼ 82.

Additional evidence for these magic numbers can

be seen in Fig. 3.22 which is a plot of the relative

abundance of elements in the solar system. Relative

peaks appear for Z ¼ 8, 28, 50, and 82. Moreover, it

can be seen that (excluding the obvious case of 1H)

even-Z nuclei tend to be more abundant than odd-Z

nuclei, a feature already noted.

3.6.3 Calculation of Nucleon Orbitals

One can compare the stability of magic nuclei with the

noble gas atoms with closed electron shells. This ana-

logy leads to the nuclear shell model and its refine-

ments which have been successful in reproducing

nuclear properties such as the magic numbers, the

nuclear magnetic dipole moment and the modeling of

excited nuclear states. But, a priori, it is difficult to

compare nuclear and atomic electron shells for two

reasons. The most obvious is that the atomic electrons

are subject to a central Coulomb force whereas

nucleons are not subject to such a central force. In

addition, as the nuclear density is so great, one strug-

gles with the idea of a nucleon having a well-defined

orbit at all as the mean free path between nucleon–

nucleon scatters would be much less than the nuclear

dimensions. The Pauli exclusion principle presents a

solution to these dilemmas as it can be argued that,

despite the overall noncentral nuclear force and the
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high nuclear density, an available quantum state fol-

lowing a nucleon–nucleon interaction may not be

present thus extending the intranuclear mean free

path with the result that a nucleon would behave as if

it were subject to a constant static potential. A simple

nonrelativistic calculation for the nucleon wavefunc-

tion is now performed under the assumption that the

nucleon is subject to such a potential.

Although the measured nuclear form factor would

suggest that the nuclear potential varies smoothly with

distance from the nuclear center (as with the Woods–

Saxon potential), for the simplicity of calculation we

will evaluate the nucleon wave function for a spheri-

cally-symmetric rectangular potential well,

UðrÞ ¼ �U0 r < RN

¼ 0 r � RN:
(3.173)

There is indeed some justification for invoking such

an extreme model of the nuclear potential on the basis

of the arguments that the net force on a nucleon at the

center of the nucleus is zero (leading to a constant

potential) and that the nuclear density is relatively

constant. From Chap. 2, the wavefunction for a

central potential is of the general form c r; y;fð Þ ¼
A1j1 lrð Þ þ B1y1 lrð Þð ÞYm

l y;fð Þ where jl(x) is the

spherical Bessel function of the first kind, yl(x) is the

spherical Bessel function of the second kind (also

called a Neumann function) and l was derived in

Chap. 2. The Al and Bl are integration constants for

the radial component of the wavefunction which, as it

must remain finite, require that as yl(x)!�1 as x!
0 then Bl ¼ 0. The resulting nuclear wavefunction is,

clm r; y;fð Þ ¼ Aljl lrð ÞYlm y;fð Þ (3.174)

where the spherical harmonics are,

Ylm y;fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p
l�mð Þ !
lþmð Þ !

s
Plm cos yð Þeimf:

(3.175)

The Plm cos yð Þ are the associated Legendre poly-

nomials, l is the quantized orbital angular momentum

number, l ¼ 0, 1, 2 . . . and m ¼ �l,�(l � 1) . . . 0 . . .
(l � 1), l. Combining these results and allowing for

the boundary condition, the nuclear wavefunction is,

c r;y;fð Þ¼Al

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1

4p
l�mð Þ!
lþmð Þ!

s
jl lrð ÞPlm cosyð Þ eimf:

(3.176)

From the definition of the radial coefficient l,

�hcð Þ2
2m

l2 ¼ E� UðrÞ (3.177)

it can be seen that �hcð Þ2l2=2m is the energy of the

system for a constant potential. Consider the nuclear

wavefunction for l ¼ 0 and which has zeroes for kr ¼
p, 2p, 3p . . . . The boundary condition that c(RN, y,
f) ¼ 0 (i.e., the nucleon wavefunction is zero at the

nuclear surface) leads to the first zero of l0RN ¼ p, or,

E� U0 ¼ 1

2m

p�hc
RN

� �2

: (3.178)

The zeroes for the first six spherical Bessel func-

tions are shown in Fig. 3.23. First consider the zeroth-

order Bessel function with the corresponding radial

coefficient, l0. For l0RN ¼ p, the radial function has

no nodes within the nucleus and for l0RN ¼ 2p, the
radial function has one node, etc. The radial quantum

number n is defined as the number of radial function

nodes plus one. The usual spectroscopic notation of s,

p, d, f, g . . . is used for the orbital angular momentum

number l ¼ 0, 1, 2, 3, 4 . . ., respectively. For any

given Bessel function (3.177), shows that the energy

of the quantum state is proportional to l2, where lRN

is a zero of the radial function necessary for the

boundary condition. Table 3.4 shows the first 8 quan-

tum states thus calculated.

The occupancy of each state, 2(2l þ 1), will be

determined by the Pauli exclusion principle. Four

quantum numbers describe each nucleon: the radial

quantum number n, the orbital angular quantum num-

ber l, the magnetic quantum number m and the intrin-

sic spin of the nucleon ms (as the proton and neutron

ensembles are being considered separately, isospin

can be ignored). For a given (n, l) state there are

(2l þ 1) values of m and, as the nucleon is spin-1/2,

the occupancy is 2(2l þ 1). Hence, for example, only

two neutrons can fill the 1s state (n ¼ 1, l ¼ 0, ms ¼
�1/2). Figure 3.24 provides the results of the nucleon

wavefunction calculation and shows the quantum
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levels available to the nucleons. These states are

labeled by the principal quantum number n and the

orbital angular momentum quantum number l. The
occupancy, or the number of available states at each

level, is also shown for each level.26 This simple

model can reproduce the observed magic numbers of

2, 8, and 20, reflecting the complete fillings of the 1s,

1p, and 2s levels, but it both fails to reproduce higher

values of magic numbers and predicts a nonexistent

magic number of 18. These errors can be corrected for

by invoking the coupling between the intrinsic spin of

the nucleon and its orbital angular momentum.

It was recognized by Mayer (1949, 1950) and by

Haxel et al. (1949) that the coupling of the orbital

angular momentum l of a nucleon with its intrinsic

angular momentum, or spin s, can reproduce the
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aFig. 3.23 Spherical Bessel

functions of the first kind.

Zeroes of the functions are

identified. (a) shows the

functions of orders 0, 1 and 2;

(b) shows the functions of

orders 3, 4 and 5

26Strictly speaking, the calculated levels are for the neutron as

the Coulomb potential was not accounted for. In practice, this

would mean that the proton levels would be slightly higher due

to the Coulomb repulsion, but the relative spacing would be the

same.
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observed magic numbers. This spin-orbit coupling is a

potential proportional to l � s which each nucleon

experiences in addition to the constant radial potential

to provide a net potential of the form, U(r) – f(r)(l � s),

and which removes the degeneracy in states by gener-

ating an energy splitting between the (l þ 1/2) and

(l – 1/2) states. For example, the 1p state splits into

the 1p3/2 and 1p1/2 levels, where the subscripts indicate

(l � 1/2). If the (l þ 1/2) state is assumed to have a

lower energy level than the (l – 1/2) state (which is

opposite to the case of atomic electrons), the nuclear

magic numbers are reproduced, as shown in Fig. 3.25.

The energy differences between the (l + 1/2) and (l –

1/2) states will increasewith l such that the splitting can

overlap another higher-energy state. This can be seen

by comparing the 1d and 2s states in which the 2s state

is at a higher level than the 1d state if spin-orbit cou-

pling is neglected. The inclusion of spin-orbit coupling

and the splitting between the 1d3/2 and 1d5/2 levels

leaves the 1d3/2 level higher than the 2s1/2 level, thus

removing the anomalous magic number of 18. Hence,

nuclear stability is dependent upon not only the mass

and charge of the nucleus (i.e., the mass parabolas)

but also the angular momenta of the nucleons.

The result of Fig. 3.25 can also be used to predict

the net angular momentum of a given nucleus. The

Pauli exclusion principle requires that the levels of the

ground state be sequentially filled by nucleons begin-

ning with the 1s1/2 level. As will be shown, even-Z/

even-N nuclei have zero angular momentum (i.e., zero

magnetic moments) indicating that when a level is

completely filled or if there is an even number of

nucleons in a level, the nucleons “pair off” such that

the sum of their angular momenta is zero. This sug-

gests that the nuclear angular momentum of an odd-Z/

even-N or even-Z/odd-N nucleus will be that of the

single unpaired nucleon. For example, the angular

momentum of 3He would be expected to be that of

the unpaired neutron in the 1s1/2 level and, indeed, the

measured value is 1/2. Similarly, the angular momen-

tum of 17O is set by that of the unpaired neutron in the

1g

Occupancy
2(2 / + 1) 

Cumulative
Occupancy

34

Observed

1s

2p

1f

1d

1p

2s

2

6

10

2

14

6

18

2

8

18

20

40

58

Magic NumberMagic

2

8

20

28

50

Fig. 3.24 Quantum states for a central attractive nuclear poten-

tial. The first column provides the occupancy or the number of

states available to the nucleon and the second column provides

the cumulative occupancy or the total number of nucleons. The

third column provides the experimentally observed magic num-

bers. Conventional spectroscopic notation is used where each

state is identified by the radial quantum number and the orbital

angular quantum number of 0, 1, 2 . . . labeled by s, p, d . . .

Table 3.4 Shell model quantum states

lRN Energy

(lRN)
2

n l Quantum

state

2 (2l+ 1) S 2l(l+ 1)

p 9.87 1 0 1s 2 2

4.49 20.16 1 1 1p 6 8

5.76 33.18 1 2 1d 10 18

2p 39.48 2 0 2s 2 20

6.99 48.86 1 3 1f 14 34

7.73 59.75 2 1 2p 6 40

8.18 66.91 1 4 1g 18 58

9.10 83.81 2 2 2d 10 68
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1d5/2 state. However, this independent particle model

of nuclear angular momentum for odd–even nuclei

does not hold universally. For example, whereas the

model predicts that the angular momentum of the 23Na

nucleus is 5=2 due to the unpaired proton in the 1d5/2
state, experiment shows it to be in fact equal to 3=2.

In general, failure of the model to reproduce measured

nuclear angular momenta occurs at values of very high

angular momentum. For example, the model predicts an

angular momentum of 11=2 for 131Xe due to an unpaired

neutron in the 1h11/2 level whereas measurement assigns

a value of 3=2. This discrepancy could be explained if it

is assumed that the nucleon–nucleon pairing energy

increases with angular momentum so as to allow the

unpaired neutron in the 11=2 level to split up a neutron

pair in the 2d3/2 level so as to couple with one of these

and leave the remaining 2d3/2 neutron unpaired.

The quantum levels of the unpaired nucleons of the

four stable odd-Z/odd-N nuclei are shown in Table 3.5

along with the measured nuclear angular momentum.

While the angular momentum of such nuclei cannot be

predicted by the shell model, it can be seen that the

total angular momentum of the nucleus is equal to or

less than the sum of the unpaired nucleons’ angular

momenta. The deuteron is a particularly special case

as it provides insight into the various nuclear forces

and is discussed later.

By using this shell model, a number of predictions

of nuclear phenomenology may be made:

� The pairing of nucleons in even-Z/even-N nuclei

lead to the ground states of these nuclei having zero

net angular momentum and positive parity (i.e.,

0+), which is corroborated by the strong nucleon

pairing term.

� The spin and parity of an odd-A nucleus in its

ground state will be that of the unpaired nucleon

(recall that a vacancy or hole can be treated as a

particle in terms of angular momentum: a single

hole in a subshell will have the same angular

momentum and parity as would a nucleon in that

subshell).27

� The spin and parity of odd-Z/odd-N nuclei can be

predicted by coupling the spins and parities of the

two unpaired nucleons and noting the Brennan and

Bernstein rules which are

Angular momenta of the two nucleons are j1 ¼ l1
� 1/2 and j2 ¼ l2 1/2: the net angular momentum

is J ¼ |j1 � j2|. For example, 38Cl, which undergoes

b� decay to 38Ar, has an unpaired proton in the 1d3/2
orbit and an unpaired neutron in the 1f7/2 orbit with

corresponding l1 and l2 values of 2 and 3 respectively.

The net angular momentum is 3=2� 7=2j j ¼ 2 with

negative parity.

Angular momenta of the two nucleons are j1 ¼ l1
� 1/2 and j2 ¼ l2 � 1/2: The net angular momentum

is J ¼ |j1 + j2|. For example, 26Al, which undergoes b+

decay to 26Mg, has an unpaired proton and an unpaired

neutron in the 1d5/2 shell. The orbital angular momentum

is l ¼ 2, so j1 ¼ 2 + 1/2 ¼ 5/2 and j2 ¼ 2 + 1/2 ¼ 5/2

and the net angular momentum is 5=2þ 5=2j j ¼ 5 with

positive parity.

3.7 Characteristics of Atomic Nuclei:
Part II

3.7.1 Nuclear Moments

Having now gained an understanding of the binding

between nucleons and their motion within the nucleus,

we now look at the resulting magnetic and electric

properties of nuclei.

3.7.2 Nuclear Magnetic Dipole Moments

3.7.2.1 Introduction

“Magic” nuclei exhibit both stability and prevalence in

nature and, in the shell model, reflect nuclei with full

Table 3.5 Angular momenta of ground states of odd-Z/odd-N

nuclei

Nucleus Quantum level of unpaired

nucleon

Measured angular

momentum

Proton Neutron
2H 1p1/2 1p1/2 1
6Li 1p3/2 1p3/2 1
10B 1p3/2 1p3/2 3
14N 1p1/2 1p1/2 1

27Consider a full shell from which a nucleon is removed; the

resulting angular momentum is that of the unpaired nucleon

remaining in the shell, which is also that of the remnant hole.
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nuclear shells. When a shell is filled, the nucleons

within that shell pair off to yield zero angular momen-

tum. On the other hand, nuclei with an unpaired

nucleon have a nonzero angular momentum and, as a

result, will have a magnetic dipole moment.

3.7.2.2 Spin-Orbit Angular Momenta Coupling

Consider a nucleon with orbital angular momentum L

which has an absolute magnitude of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp

�h. As

shown in Fig. 3.26, the orbital angular momentum can

be considered as a vector that precesses about a spe-

cified axis (e.g., the direction of an external magnetic

field) and that the projections of this vector onto the

axis are quantized in integral multiples of �h, called the

magnetic quantum number, ml which has (2l þ 1)

values in the range from –l to þl, including zero. But

the nucleon also has an intrinsic angular momentum

(spin), s, which can also precess (although it will have

only two projections, �1/2). The orbital angular

momentum and the intrinsic spin can thus couple to

yield a total angular momentum, J, as shown in

Fig. 3.27.

3.7.2.3 Magnetic Dipole Moment

Classically, the magnetic dipole moment can be

defined from consideration of a square current loop

of length L carrying a current I in a magnetic field B,

as shown in Fig. 3.28. The forces on the two arms of

the loop which are orthogonal to the direction of the

magnetic field as given by F ¼ IL l̂� B, where l̂ is the

unit-vector along which the arm is directed. This loop

will then experience a net torque of magnitude,

G ¼ IL2B sin y (3.179)
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Fig. 3.26 Precession of the orbital angular momentum vector
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Fig. 3.27 Coupling of orbital angular momentum and intrinsic

spin: l ¼ 1 and m ¼ 1/2

y

L

y

x

z

x

I

B BF = ILB

F = −ILB 

L

2

L
2

z

Fig. 3.28 A square current

loop in a magnetic field will

experience two off-set and

opposing forces that create a

torque about the y-axis

3.7 Characteristics of Atomic Nuclei: Part II 75



where y is the angle between the direction of the

magnetic field and the normal unit-vector, n̂, to the

loop. The magnetic dipole moment of the loop is,

m ¼ IL2n̂

¼ IAn̂
(3.180)

where A ¼ L2 is the area of the loop. In vector form,

the torque is written as,

G ¼ m� B: (3.181)

The current in the wire loop can be replaced by an

electron of mass me in a circular orbit of radius r

orbiting with an angular frequency of o radians s�1.

In this case, the magnetic dipole moment is,

m ¼ eo
2p

� �
pr2n̂

¼ eor2

2
�me

me

n̂

¼ e

2me

� �
L

(3.182)

where the angular momentum of the orbiting electron

is L ¼ meo r2n̂. The gyromagnetic ratio is defined as

the ratio of the magnitude of the magnetic dipole

moment to that of the angular momentum,

g ¼ jmj
Lj j ¼

e

2me

: (3.183)

Note that a positive magnetic dipole moment is in

the same direction as that of the angular momentum.

This model can now be extended to understanding

the nuclear magnetic dipole moment. Consider the

magnetic dipole moment associated with charged

sphere of radius R, mass M, and electric charge Q

rotating at an angular frequency o as shown in

Fig. 3.29. The sphere’s electrical charge and mass

can be written in terms of the volume integrals

Q ¼ Ð redV and M ¼ Ð rdV, respectively, where

re and r are the charge and mass densities. The mag-

nitude of the magnetic dipole moment of a differential

volume dV of the sphere at a perpendicular distance r?
from the axis of rotation is,

dm ¼ redV
2rdV

� �
rdVð Þor2?: (3.184)

As the electric charge and density are both assumed

to be uniformly distributed throughout the sphere,

then re=re ¼ Q=M and the differential magnetic

moment is,

dm ¼ oQ
2M

� �
rr2?dV (3.185)

and the total magnetic moment is then found by inte-

grating over the volume of the sphere,

m ¼ Q

2M

� �
o
ð
dVrr2?: (3.186)

It will be recognized that the integral is the moment-

of-inertia,28 I (equal to 2=5MR2 for a sphere of

uniform mass density). Thus,

m ¼ Q

2M

� �
oI &

¼ Q

2M

� �
L

(3.187)

where L ¼ oI is the angular momentum of the sphere

and g is the gyromagnetic ratio which, for a sphere

with uniform mass and charge densities, is g ¼ Q
2M

� �
.

Now consider the case of a nonuniform charge

density (e.g., a model of nucleon with a quark

dV
R

ω
n
∧

rr

Fig. 3.29 Rotating charged sphere

28Consider a particle of mass m in an orbit of radius r with a

constant angular velocity o. The tangential velocity is equal to

or and the kinetic (rotational) energy is mo2r2

2
. This energy can

also be written as Io2

2
where I is defined as the moment-of-

inertia, mr2, for the orbiting particle.
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substructure). The differential magnetic moment can

be written as dm ¼ o
2
rer

2
?dV. As L ¼ oI, this can be

integrated to yield the total magnetic dipole moment,

m ¼ L

2I

ð
dVrer

2
?: (3.188)

This can be used to demonstrate that a sphere con-

taining two equal amounts of electric charge, but of

opposite sign, can have a nonzero magnetic dipole

moment even though the net electric charge is zero.

Consider the case of a sphere of radius R made up

from a sphere of radius r1 surrounded by a shell as

shown in Fig. 3.30, such that the volumes of the core

sphere and the shell are the same, or,

4p
3
r31 ¼

4p
3

R3 � r31
� �

yielding,

r1 ¼ R

21=3
� 0:629R: (3.189)

Further, assume that the core sphere is of a positive

charge and that the surrounding shell is of an equal

charge, but of negative sign. From the isovolume spec-

ification, the magnitudes of the charge densities in both

components equal |re|. As expected from the isovo-

lume requirement, the net electric charge for the entire

sphere is,

ð
dVre ¼ 4pre

ðr1
0

drr2 �
ðR

r1

drr2

0
@

1
A

¼ 4pre
2r31 � R3

3

� �
¼ 0:

(3.190)

As the integral in the expression for the magnetic

dipole moment is,

ð
dVrer

2
? ¼ 4pre

ðr1
0

drr4 �
ðR

r1

drr4

0
@

1
Að

p
2

0

dysin3y

¼ 4pre
2r51 � R5

5

� �
2

3

� �

¼ 8p
15

� �
2�

2
3 � 1

� �
reR

5

then the ratio of the magnetic dipole moment to the

angular momentum is,

m
L
¼ 1

2I
2�2=3 � 1Þ 2Q

5

� �
R2

�
(3.191)

where the definition of the charge density, re ¼ 3Q=

4pr31 ¼ 3Q=2pR3, has been used. Since I ¼ 2=5MR2

for a sphere of uniform mass density, this is now,

m
L
¼ 5

6MR2

� �
2�

2
3 � 1

� � 6Q

5

� �
R2

¼ 2�
2
3 � 1

� � Q

M

� �

� �0:370
Q

2M

� �
¼ gg

(3.192)

Hence, the ratio of the magnetic dipole moment to

the angular momentum of a rotating sphere with a

nonuniform distribution of electric charge is equal to

the ratio if the electric charge were uniformly

distributed, Q=2M, but scaled by a numerical g-factor

(here, g ¼ �0.37). Equation (3.192) demonstrates that

a rotating sphere with electrically-charged substruc-

tures but zero net electric charge can have a nonzero

magnetic dipole moment. This will have particular

relevance in the subsequent discussion of the magnetic

dipole moments of the proton and neutron.

3.7.2.4 Nucleon Magnetic Dipole Moments

Returning to the classical picture of an orbiting elec-

tron with a magnetic dipole moment magnitude,

me ¼ e
2me

� �
L, in the quantum mechanical counterpart,

r1

R

+

−

ω

Fig. 3.30 A core sphere of radius r1 with a positive charge

surrounded by a shell with the same volume and the same

magnitude of charge, but with negative sign
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the angular momentum L is replaced by the projection

ml�h. By regrouping, we have,

me ¼
e�h

2me

� �
ml

¼ mlmB

(3.193)

where mB ¼ e�h=2me is defined as the Bohr magneton,

equal to 5:788� 10�11 MeVT�1and, similarly, the

nuclear magneton is defined as mN ¼ e�h=2mp, and is

equal to 3:152 � 10�14 MeV/T.

As noted earlier, a magnetic dipole moment will

arise from a rotating structure with zero net charge, but

with an internal charge structure. Thus, it will be

useful to separate the magnetic moment of a nucleon

due to its orbital angular momentum,

ml ¼ glmlmN (3.194)

from that due to its intrinsic spin,

ms ¼ gsmsmN (3.195)

where ms ¼ �1/2 and the g’s are dimensionless

numerical values. The gl values for the nucleons are,

Proton : gl;p ¼ 1

Neutron : gl;n ¼ 0
(3.196)

where the zero value for the neutron reflects its lack of

electric charge. If the proton and neutron were point

particles we would expect that gs,p ¼ 2 and gs,n ¼ 0.

Experimentally, however,

Proton : gs;p ¼ þ5:58569

Neutron : gs;n ¼ �3:82609
(3.197)

where the negative sign for the neutron indicates that

the direction of its magnetic dipole moment opposes

that of the spin. The difference between these expected

values and those measured are evidence of the

nucleons’ quark substructure, where each quark car-

ries an electric charge and intrinsic spin of its own.

3.7.2.5 Nuclear Magnetic Dipole Moments

Recall the coupling of the orbital and intrinsic spin

angular momenta and let a reference axis be defined

by an external magnetic field as shown in Fig. 3.31.

These vector additions of the angular momentum and

intrinsic spin would also represent those of the nucleon

magnetic dipole moments if the nucleon orbital and

spin g-factors were to be equal. However, they do not.

The magnetic dipole moment associated with the intrin-

sic spin will have a component along the direction of

the total angular momentum, J, and another component

orthogonal to J. Due to precession, the average value of

this orthogonal component will be zero. Similarly, the

magnetic dipole moment associated with the orbital

angular momentum will have a component along the

direction of the total angular momentum and a zero

time-averaged orthogonal component.

The sum of the magnetic dipole moments due to

the intrinsic spin and the orbital angular momentum

is
gs sj j cos ysjþgl Lj j cos yij

�h where the angles are defined in

Fig. 3.32. Hence, the observed nuclear magnetic

moment will be the component of this sum along the

magnetic field B direction, or

m ¼ gs sj j cos ysj þ gl Lj j cos yij
�h

� �
cos yjB (3.198)

J

B

L

S

Fig. 3.31 Precessions of the intrinsic spin, orbital angular

momentum, and total angular momentum vectors relative to an

applied magnetic field

J

L

S

 
 

θsj

θlj

Fig. 3.32 Intrinsic spin and orbital angular momentum vector

components along the direction of the total angular momentum J
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where yjB is the angle between the total angular

momentum vector and the magnetic field direction, or,

m ¼ gs j jþ 1ð Þ þ s sþ 1ð Þ � l lþ 1ð Þ½ � þ gl j jþ 1ð Þ þ l lþ 1ð Þ � s sþ 1ð Þ½ �
2 jþ 1ð Þ : ð3:199Þ

For a nucleon, s ¼ 1/2 and j ¼ l � 1/2. For the two

cases of j,

mlþ1
2
¼ 1

2
gs þ l gl (3.200)

ml�1
2
¼ j

jþ 1
� 1

2
gs þ lþ 1ð Þgl


 �
: (3.201)

The corresponding values for the proton and

neutron are,

Proton : mlþ1
2
¼ jþ 2:2928 (3.202)

ml�1
2
¼ j� 2:2928

j

jþ 1
(3.203)

Neutron : mlþ1
2
¼ �1:9130 (3.204)

ml�1
2
¼ 1:9130

j

jþ 1
(3.205)

In the nuclear shell model, where the nuclear mag-

netic dipole moment would be defined by the unpaired

nucleon for odd-A nuclei, these Schmidt lines given

by the above equations define the magnetic dipole

moment of the entire nucleus and are shown as a func-

tion of the nuclear angular momentum in Fig. 3.33 (the

nuclear angular momentum is assumed to be continu-

ous in order to show the theoretical trend).

Figure 3.34 presents these theoretical Schmidt lines

along with the measured magnetic dipole moments for

odd-A nuclei. It is apparent that, in reality, the Schmidt

lines only set limits to the nuclear magnetic dipole

moment for stable nuclei: only 3He, 13C, and 15N have

moments exceeding those predicted by the Schmidt

lines. Excluding these two exceptions, and the trivial

case of the proton, the measured magnetic dipole

moments are all less than those predicted from the

shell model. The measured moments form two groups

with moments with values of about 50–60% of that

predicted, demonstrating that more than one nucleon

contributes to the nuclear wavefunction of an odd-A

nucleus. Hence, while the paired nucleons are indeed

compensating each others’ angular momentum, they do

not compensate each others’ magnetic dipole moment.

3.7.3 Nuclear Electric Quadrupole
Moments

3.7.3.1 Introduction

The nuclear magnetic dipole moment confirms that the

nuclear properties of an odd-A nucleus are dominated

by the unpaired nucleon, thus substantiating the funda-

mentals of the shell model. When a shell is filled, the

nucleus becomes spherically symmetric. Because the

nucleus is a spatial distribution of electric charge, it

can be described as a superposition of electric multi-

poles with the weights of these multipoles being the

static electric moments which provide a measure of

the spatial distribution of protons. Hence, analysis of

these moments, in particular the quadrupole moment,

can determine the sphericity of a given nucleus.

3.7.3.2 Multipole Expansion of the Electric

Potential

Consider a nonspherical charged body, such as that in

Fig. 3.35, but which is symmetric about the z-axis and
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Fig. 3.33 Continuous Schmidt lines of nuclear magnetic dipole

moment vs. nuclear angular momentum for nuclei with an odd

number of nucleons
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has total electric charge, q. The electric potential result-

ing from this body will satisfy Laplace’s equation,

r2V ¼ 0 (3.206)

which, in spherical coordinates, is,

1

r2
]

]r
r2
]V

]r

� �
þ 1

r2 siny
]

]y
siny

]V

]y

� �


þ 1

r2sin2y

]2V

]f2

�
¼ 0:

(3.207)
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Fig. 3.34 Measured

magnetic dipole moment vs.

nuclear angular momentum

for odd-A nuclei. Lines are the
Schmidt lines. (a) shows

nuclei with an odd number of

protons and (b) shows nuclei

with an odd number of

neutrons
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Due to symmetry about the z-axis, ]2V=]f2 ¼ 0.

Thus, separating V(r, y) into radial and angular com-

ponents F(r)G(y), we have, firstly, the angular compo-

nent given by Legendre polynomials,

G yð Þ ¼ Pl cos yð Þ (3.208)

(for convenience, normalization is ignored as this will

be performed later) and, secondly, the radial differen-

tial equation,

r2
d2F

dr2
þ 2r

dF

dr
� l lþ 1ð ÞF ¼ 0 (3.209)

which evolves from Chap. 2 and where l is equal to

zero or a positive integer. If we write the radial com-

ponent F(r) as the series,

FðrÞ ¼
X1
n¼1

kn

rn
(3.210)

where n is a positive integer so as to ensure that the

potential goes to zero as r!1, so that the radial

differential equation becomes,

X1
n¼1

n2
kn

rn
þ
X1
n¼1

n
kn

rn
� 2

X1
n¼1

n
kn

rn

�l lþ 1ð Þ
X1
n¼1

kn

rn
¼ 0

(3.211)

It can be seen that n(n � 1) ¼ l(l þ 1) from which

n ¼ l þ 1. The radial function can then be rewritten as,

FðrÞ ¼ 1

r

X1
l¼0

kl

rl
: (3.212)

Combining the radial and angular components, the

solution for the potential is,

Vðr; yÞ ¼ 1

r

X1
l¼0

kl
Pl cos yð Þ

rl
: (3.213)

The coefficients of (3.213) are determined by

taking advantage of the fact that the Legendre poly-

nomials are equal to unity for y ¼ 0,

Vðr; 0Þ ¼ 1

r

X1
l¼0

kl
1

rl
: (3.214)

Next, consider the differential volume dv at (G, a)
containing an electric charge re(G, a) dv, as shown in

Fig. 3.36. The differential electric potential at (r, 0)

due to this element is,

dVðr; 0Þ ¼ re G; að Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ G2 � 2rG cos a

p dv

¼ 1

r

re G; að Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ G

r

� �2 � 2 G
r

� �
cos a

q dv
(3.215)

z

x

y

φ

r

V(r, q)

θ

Fig. 3.35 Electric potential of a charged object. Note that, due

to symmetry about the z-axis, the electric potential V has no F-
dependence

z

x

y

r

V(r,q=0)

dv

Γ

α

Fig. 3.36 Calculation of the multipole expansion coefficients

3.7 Characteristics of Atomic Nuclei: Part II 81



As the generating function for the Legendre poly-

nomial is,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2xzþ z2

p ¼
X1
l¼0

PlðxÞzl;

� 1< x< 1; zj j< 1

(3.216)

part of the equation can be rewritten as,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ G

r

� �2 � 2 G
r

� �
cos a

q ¼
X1
l¼0

Pl cos að Þ G
r

� �l

:

(3.217)

Substituting this result into (3.216),

dVðr; 0Þ ¼ 1

r
re G; að Þ

X1
l¼0

Pl cos að Þ G
r

� �l

dv (3.218)

and integrating over the volume yields the total elec-

tric potential at (r, 0),

Vðr; 0Þ ¼ 1

r

X1
l¼0

ð
Vol

dv
re G; að ÞPl cos að ÞGl

rl
: (3.219)

The coefficients can then be extracted by equating

(3.214) and (3.219),

kl ¼
ð
Vol

dvre G; að ÞPl cos að ÞGl: (3.220)

The first three coefficients are,

k0 ¼
ð
Vol

dvre G; að Þ ¼ q (3.221)

which is the total electric charge;

k1 ¼
ð
Vol

dvre G; að ÞG cos a

¼
ð
Vol

dvre G; að Þz
(3.222)

which is electric dipole moment; and

k2 ¼
ð
Vol

dvre G; að ÞP2 cos að ÞG2

¼
ð
Vol

dvre G; að Þ 3

2
cos2a� 1

2

� �
G2

¼ 1

2

ð
Vol

dvre G; að Þ 3G2cos2a� G2
� �

¼ 1

2

ð
Vol

dvre G; að Þ 3z2 � G2
� �

:

(3.223)

This latter coefficient is proportional to the quadru-

pole moment,

Q ¼
ð
Vol

dvre G; að Þ 3z2 � G2
� �

(3.224)

or,

k2 ¼ 1

2
Q (3.225)

As the nucleus has a definite parity, the odd electric

moments (l ¼ 1, 3, 5. . .) are zero. For example, con-

sider the electric dipole moment

ð
Vol

dvre G; að ÞP1 cos að ÞG

where dv ¼ G 2 dG sina da df and the integration is

over the nuclear volume. As the charge density is

proportional to the squared-modulus of the nuclear

wavefunction re / cj j2, it remains unaltered by a

change in parity (x,y,z) ! (�x, �y, �z). On the

other hand, the first-order Legendre polynomial

P1(cos a) ¼ cos a is an odd function and its sign is

changed by a parity change. Integrating over the

nuclear volume, P1(cos a) averages to zero.

3.7.3.3 Electric Quadrupole Moment

It can be shown that the electric quadrupole moment is

a measure of the nuclear shape. Consider a charged

sphere of radius R for which the electric charge is

uniformly distributed as shown in Fig. 3.37. From

(3.224), the electric quadrupole moment is,

Q ¼ re

ð
Vol

dv 3z2 � r2
� �

(3.226)
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which is the integral of the volume elements described

by annuli of radius r? and thickness dr? at a height z.

Thus,

Q ¼ 2pre

ð
Vol

dr?dz 3z2 � z2 � r2?
� �

r?

¼ 4pre

ðR

0

dr?
ðr?;maxðzÞ

0

dz 2z2r? � r3?
� � (3.227)

where

r?;maxðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � z2

p
: (3.228)

Integrating,

Q ¼ 4pre

ðR

0

dz z2r2?;max �
1

4
r4?;max

� �

¼ 4pre

ðR

0

dz z2 R2 � z2
� �� 1

4
R2 � z2
� �2� �

¼ 4pre
3

2
R2

ðR

0

dz z2 � 5

4

ðR

0

dz z4 � 1

4
R4

ðR

0

dz

0
@

1
A

¼ 4pre
1

2
R5 � 1

4
R5 � 1

4
R5

� �
¼ 0

Thus a spherical, uniform charge distribution has a

zero electric quadrupole moment. Next, consider the

charged prolate spheroid of Fig. 3.38, which is gener-

ated by the rotation about the z-axis of an ellipse with

major and minor axes 2a and 2b, respectively,

y

b

� �2
þ z

a

� �2
¼ 1: (3.229)

The electric quadrupole moment is given by,

Q ¼ 4pre

ða

0

dr?
ðr?;maxðzÞ

0

dz 2z2r? � r3?
� �

(3.230)

and r?;maxðzÞ is determined from (3.229),

r?;maxðzÞ ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z

a

� �2r

¼ b

a

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � z2

p
:

(3.231)

z

x

y

R

r

dr

z

Fig. 3.37 Charged sphere
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Fig. 3.38 Charged prolate spheroid
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Integrating (3.230),

Q¼ 4pre

ða

0

dz z2r2?;max�
1

4
r4?;max

� �

¼ 4pre

ða

0

dz
b

a

� �2

z2 a2� z2
� ��1

4

b

a

� �4

a2� z2
� �2 !

¼ 8p
15

reab
2 aþbð Þ a�bð Þ

¼ 8p
15

reab
2 a2�b2
� �

(3.232)

As the volume of the spheroid is ð4p=3Þab2 and the
total charge in the spheroid is q, this expression for the

quadrupole moment reduces to,

Q ¼ 2

5
q a2 � b2
� �

: (3.233)

If the spheroid were to represent a nucleus with a

total charge Ze, then the ratio Q=e is,

Q

e
¼ 2

5
Z a2 � b2
� �

: (3.234)

This result shows that the nuclear quadrupole

moment Q is,

� Positive, if the nucleus is a prolate spheroid (a > b).

� Zero, if the nucleus is a sphere (a ¼ b).

� Negative, if the nucleus is a oblate spheroid (a < b).

These conclusions are summarized in Fig. 3.39.

The electric quadrupole moment Q has units of the

charge-area product and nuclear quadrupole moments

are usually tabulated in terms of Q=e which has units

of area.29

Figure 3.40 shows measured electric quadrupole

moments vs. atomic mass number; those nuclei with

magic numbers are highlighted. The electric quadru-

pole moment changes sign at the magic numbers,

indicating the sphericity of such nuclei. Between the

magic numbers, values of the electric quadrupole

moments values can be high, especially for the lantha-

nides and actinides (values of A between 150 and

200), these nuclei are prolate spheroids (i.e., Q > 0)

with high quadrupole moment values due to their lying

between the major shells. The nuclei with the highest

positive and negative values for the quadrupole

moment are 176Lu and 127I with 8 b and �0.79 b,

respectively. Nuclei which have one nucleon outside

a filled subshell have negative electric quadrupole

moments whereas those which have a hole (i.e.,

require another nucleon to fill a shell) have positive

Prolate
Q > 0

Spherical
Q = 0

Oblate
Q < 0

Fig. 3.39 Spheroids

29In the literature, this ratio is often simply (and confusingly)

written as Q.
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quadrupole moments. An example is of the sulfur

isotopes, 33S and 35S with values of Q=e equal to

�6.4 and +4.5 mb, respectively. The negative value

for 33S is a result of the 1d3=2 shell which contains a

single neutron whereas the positive value for 35S is the

result of the these nuclei are prolate spheroids (i.e.,

Q > 0) with high quadrupole moment values due to

their lying between the major shells. The nuclei with

the highest positive and negative values for the quad-

rupole moment are 176Lu and 127I with 8 b and

�0.79 b, respectively. Nuclei which have one nucleon

outside a filled subshell have negative electric quadru-

pole moments whereas those which have a hole (i.e.,

require another nucleon to fill a shell) have positive

quadrupole moments. An example is of the sulfur

isotopes, 33S and 35S with values of Q=e equal to

�6.4 and +4.5 mb, respectively. The negative value

for 33S is a result of the single neutron whereas the

positive value for 35S is the result of the 1d3=2 shell,

which can take four neutrons (i.e., 2 3=2ð Þ þ 1 ¼ 4),

having only three neutrons.

A more succinct representation is the reduced elec-

tric quadrupole moment in which the quadrupole

moment is normalized to the atomic number and the

square of the nuclear radius, Q=eZR2
N which is,

Q

eZR2
N

¼ 2

5

a2 � b2

R2
N

� �
(3.235)
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In this form, the influences of the atomic number

and size are removed and the effects of nonsphericity

are isolated. The reduced electric quadrupole moment

is shown in Fig. 3.41 as a function of A for odd-A

nuclei.

It is clear that the electric quadrupole moment for

stable changes sign at the magic numbers of 8, 20, 28,

50, and 83. As there are no stable nuclei heavier than
209Bi with a quadrupole moment, a sign change for the

magic number of 126 does not appear.

The semimajor and semiminor axes of an ellipsoid

nucleus can be determined from the measured quadru-

pole moment by first rearranging (3.234),

a2 � b2 ¼ 5

2Z

� �
Q

e
(3.236)

and then by recognizing that the mean radius of a

spheroid is �R ¼
ffiffiffiffiffiffiffiffiffi
a2þb2

2

q
leading to,

a2 þ b2 ¼ 2r2nA
2
3: (3.237)

Solving these two equation for semimajor and

semiminor axes, a and b,

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5

4Z

� �
Q

e
þ r2nA

2
3

s
(3.238)

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2nA

2
3 � 5

4Z

� �
Q

e

s
: (3.239)

For example, consider the nucleus 176Lu where

Q=e ¼ 8� 10�24 cm2 for which,

a ¼ 7:70 fm

b ¼ 5:58 fm

and, for 127I, which has Q=e ¼ �0:79� 10�24 cm2,

a ¼ 5:88 fm

b ¼ 6:18 fm

3.8 Isomers

Isomers have been defined previously as excited

nuclear states with the same atomic mass number

and atomic number. An isomer decays to the nuclear

ground state via the emission of electromagnetic radi-

ation or through internal conversion (IC).30 While

“prompt” g-ray emissions are associated with nuclear

state mean lives of the order of 10�16 s, the probability

of a g ray/IC transition occurring per unit time in an

isomeric transition is highly suppressed if the angular

momentum differential between the initial and final
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30Internal conversion is a radiation-less transition for an excited

nucleus to a lower-energy state via the transfer of energy

directly to an atomic electron which is ejected.
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states is high or if the energy difference between is

low. This will be demonstrated explicitly in Chap. 4.

In such a case, the mean life of the state can range from

100 ms to days or even years. Such relatively long-

lived states are referred to as metastable or isomeric

states, the most common example in nuclear medicine

being that of 99mTc.

For nuclei with A < 40, there are no adjacent states

with high angular momentum differentials that can

lead to the existence of an isomeric state. As a result,

there are no isomers of light nuclei. This feature

changes, however, with increasing A. In particular,

groupings (or “islands”) of isomers occur at values of

A just under the magic numbers of 50, 82, or 126

where there are neighboring levels with high angular

momentum differentials. For example, just below the

A ¼ 50 level, the 1g9/2 state is adjacent to the 2p1/2
state (Dj ¼ 4) and just at the A ¼ 82 and A ¼ 126

levels, there are adjacent orbits with Dj ¼ 5 and

Dj ¼ 6, respectively. Such excited states often result

following b decay, by inelastic nuclear collisions or

the absorption of g-rays.
The most important isomer for diagnostic nuclear

medicine is 99mTc (Seaborg and Segrè 1939).

The electromagnetic transitions associated with

isomers are discussed in detail in Chap. 4.

3.9 The Deuteron

The chapter is concluded by briefly considering the

simplest stable nucleus containing two or more

nucleons. In order to explain nuclear binding and

“magic” nuclei, we have had to describe the forces

acting upon nucleons contained within the nucleus as

being a combination of an attractive term and a term

proportional to the spin-orbit coupling of the nucleons.

The deuteron is the only bound state of a nucleon pair:

the bound states of a diproton and dineutron do not

exist. Referring back to the curve of binding energies,

we see that the binding energy of the deuteron is quite

low. The magnitude of this binding energy was first

determined from the 2H(g, n)p photodisintegration

reaction performed by Chadwick and Goldhaber

(1934) in which the target was heavy hydrogen gas

in a cloud chamber. The binding energy is equal to

2.225 MeV. Now consider the other properties of the

deuteron. First, it has an angular momentum of 1,

which is consistent with the assumption that the deu-

teron is in an S state (i.e., zero angular momentum)

and that the intrinsic spins of the neutron and proton

couple in parallel to form the triplet state, 3S1. But

there are two other empirical observations that ques-

tion this assumption. First, the deuteron has a

nonzero, but small, electric quadrupole moment of

Q=e ¼ 0:286 fm2. The spherically-symmetric s-state

would require that this electric quadrupole moment

be equal to zero. Second, there is a difference between

the sum of the proton and neutron magnetic dipole

moments and that of the deuteron: the latter is less

than the former, mp þ mn ¼ md þ 0:022mn.
These experimental results can be explained by the

hypothesis that the deuteron ground state wavefunc-

tion is an admixture of states with zero and finite

angular momenta (Messiah 1958). In order for two

spin-1/2 particles to couple to yield a total angular

momentum of 1, they must be in the states of
3S1;

1P1;
3P1 or

3D1. In order to keep consistent parity,

the simplest case is an admixture of the two triplet

states, 3S1 and
3D1, which both have even parity. This

admixture of states with different orbital angular

momenta but the same total angular momentum indi-

cates the existence of noncentral forces within the

nucleus. The derivations of the degree of mixing

of the two states are not reproduced here (see, e.g.,

Preston and Bhaduri (1975)), but the deuteron mag-

netic dipole moment suggests that the deuteron has a

D-state admixture of about 4%. Conflicting experi-

mental data from, for example, nucleon–nucleon scat-

tering and the deuteron form factor imply that this

D-state admixture is slightly higher at about 7%.

As the deuteron’s total angular momentum is equal

to 1 and it has a small electric quadrupole moment, it

clearly spends most of its time in the S-state allowing

one to temporarily ignore the 3D1 state of the admix-

ture and consider the spherically symmetric 3S1 state.

In such a state, the forces upon the nucleon must be

central and the simplest case would be a potential

dependent only upon the inter-nucleon distance, r.
From Chap. 2, the radially-dependent Schrödinger

equation is in the form,

1

r2
d

dr
r2
dc
dr

� �
þ 2m

�hcð Þ2 E� UðrÞð Þc ¼ 0 (3.240)
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where m is the reduced mass of the system,

m ¼ mN=2 (3.241)

where mN is the nucleon mass. This equation is solved

by using the substitution of variable, cðrÞ ¼ uðrÞ
r

to

give,

d2u

dr2
þ mN

�hcð Þ2 E� UðrÞð Þu ¼ 0: (3.242)

Using (3.173) to describe the nuclear potential

and recognizing that E ¼ �EB, where EB is the deu-

teron binding energy, (3.242) is,

d2u

dr2
þ mN

�hcð Þ2 U0 � EBð Þu ¼ 0 r < b (3.243)

d2u

dr2
�mNEB

�hcð Þ2 u ¼ 0 r � b: (3.244)

This potential is shown in Fig. 3.42. The solutions

to these equations, subject to the obvious boundary

condition of uðrÞ ! 0 as r ! 0, are,

uðrÞ ¼ A sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mN U0 � EBð Þp

�hc
r

 !
r < b (3.245)

uðrÞ ¼ Be
�

ffiffiffiffiffiffiffiffi
mNEB

p
�hc

� �
r

r � b: (3.246)

The shape of the deuteron wavefunction is shown in

Fig. 3.43. As this function, its derivative and those of

its logarithm must be continuous, we have,

d lnuðrÞð Þ
dr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mN U0 �EBð Þp

�hc

� cot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mN U0 �EBð Þp

�hc
r

 !
r< b

(3.247)

d ln uðrÞð Þ
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
mNEB

p
�hc

r � b (3.248)

By equating these two results at r ¼ RD,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mN U0 � EBð Þp

�hc
cot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mN U0 � EBð Þp

�hc
b

 !

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
mNEB

p
�hc

(3.249)

and recalling that deuteron binding energy is small

U0 � EB one obtains, first,

cot

ffiffiffiffiffiffiffiffiffiffiffiffi
mNU0

p
�hc

b

� �
¼ �

ffiffiffiffiffiffi
EB

U0

r
(3.250)

r

EB

U0

r = b

Fig. 3.42 Nuclear rectangular potential of depth U0, which is

the total energy of the system, and EB, which is the binding

energy, for the deuteron

u
(r

)

r
r = b r = RD

Fig. 3.43 Deuteron wavefunction
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and, then

ffiffiffiffiffiffiffiffiffiffiffiffi
mNU0

p
�hc

b � p
2

(3.251)

which leads to,

U0b
2 �

p�hc
2

� �2

mN

� 102MeV fm2:

(3.252)

It is known from our previous studies that the range

of the nuclear force is small, between about 1.5 and

2 fm. If one were to use an intermediate value of

b � 1:7 fm, then U0 � 35 MeV, a value which is

consistent both with the U0 � EB requirement and

the Fermi gas model.

From (3.246) it can be seen that the deuteron wave

function extends beyond the range of the nuclear

force. If the deuteron radius were to be defined as

that where the amplitude of the wavefunction is

e�1 � 0:37 that of its maximum, then,

RD ¼ �hcffiffiffiffiffiffiffiffiffiffiffiffi
mNEB

p

� 4:3 fm

(3.253)

Thus, the radius of the deuteron, which is the only

stable nucleon pair, is about double the range of the

nuclear force, b. This clearly indicates the reason

for the low binding energy of the deuteron: about

40% of the time, the proton and neutron are separated

beyond the range of the nuclear force.

In order to explain the small nonzero electric quad-

rupole moment, it is necessary to allow for the deu-

teron wavefunction to be an admixture of the

spherically-symmetric s-wavefunction just calculated

for (assuming a central potential) and a small 3D1

component. This requires that, in the 3D1 state, the

nuclear force is no longer purely central but depends

upon the separation between the neutron and proton

and the orientation of their spins with respect to the

line joining the two spins. This is a tensor force of the

form, UTðrÞS12, where,

S12 ¼ 3 s1 � rð Þ s2 � rð Þ
r2

� s1 � s2 (3.254)

where s1 and s2 are the neutron and proton Pauli spin

operators and r is the separation vector between the

neutron and proton.
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Radioactive Decay: Microscopic Theory 4

Abstract An unstable nucleus has excess energy and can make a transition to a more

stable state through a variety of means, each subject to quantum-mechanical and

energy restrictions. For diagnostic and therapeutic nuclear medicine, the transitions

of major interest are those in which an a particle, b particle (electron or positron), or

g ray are emitted. Subsidiary atomic radiations or processes (electron capture,

characteristic X-rays, internal conversion (IC) electrons, and Auger/Coster–Krönig

electrons) are consequences of nuclear transitions. This chapter looks at the three

nuclear decay schemes highlighted above. Quantum tunneling is derived and used to

explain the empirical characteristics of a decay. The Fermi theory of b decay will be

fundamental to understanding this type of transition and will be derived in order to

predict energy spectra and allowable/forbidden transitions. Within that development,

the weak interaction, which is fundamental to the existence of nuclear medicine,

is introduced. Electromagnetic transitions, resulting in the emission of g rays or IC

electrons, are introduced and the theory behind them developed.
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4.1 Introduction and History

The previous chapter described the characteristics that

make a given nucleus stable or unstable. Clearly, for

nuclear medicine purposes, one is interested in unsta-

ble or radioactive nuclei. The instability of a nucleus

can be manifest in a number of ways. For example, a

nucleus may be unstable to the emission of positrons

or electrons (b decay) due to its having excessive

numbers of protons or neutrons, respectively, for its

mass. This particular instability reflects an imbalance

between the Coulomb and symmetry terms of the

Weizsäcker formula for the binding energy. Should

the sum of the binding energies of two protons and

two neutrons in a nucleus be less than the binding

energy of the 4He nucleus (a particle), then that

nucleus is unstable to a decay, in which the a particle

B.J. McParland, Nuclear Medicine Radiation Dosimetry,
DOI 10.1007/978-1-84882-126-2_4, # Springer-Verlag London Limited 2010
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can “quantum tunnel” through the nuclear Coulomb

barrier and escape. Excited nuclei, which can be

thought of as having high angular momentum or with

nucleons excited to higher orbitals, can de-excite

through the emission of quanta (g decay) or by the

direct transfer of nuclear energy to an atomic electron,

a process known as internal conversion (IC). While

there are other exotic, but rarer, cases of decay such as

the spontaneous emission of a single proton or neutron

or, for particularly heavy nuclei, spontaneous fission,

the only radioactive decays of practical interest to

diagnostic and therapeutic nuclear medicine are those

of a, b and g decay, and IC.1

The study of radioactivity began with Becquerel’s

original serendipitous discovery in 1896 of the phenom-

enon, using photographic emulsion as the radiation

detector (Martins 1997). The stimulus for Becquerel’s

experimental work had been Röntgen’s observation of

the phosphorescence of some materials exposed to

X-rays and Becquerel sought to determine if phospho-

rescent substances emitted similar radiations. He

selected uranium as a suitable element for study due

to its atomic absorption and emission spectra and noted

that a uranium salt contained within an opaque covering

and accidentally placed upon a photographic emulsion

caused darkening of the emulsion due to radiations able

to penetrate the optical cover. Even around this time, it

had been noted that these radiations did not vary with

time (which we would now recognize as reflecting a

long half-life) and could ionize air. Shortly afterwards,

the Curies began investigating the radioactivity asso-

ciated with various minerals containing uranium and

thorium. In particular, they determined that pitchblende

was more radioactive than the chemical content of

uranium or thorium would have allowed. Hypothesiz-

ing that this was due to the presence of other, but

unknown, radioactive substances, the Curies chemically

isolated two radioactive elements from pitchblende

which they called polonium and radium. Although

present in pitchblende in just trace amounts, their

specific activities were some six orders-of-magnitude

greater than that of uranium.

At about the same time, Rutherford, whilst at

McGill University in Montréal, was also studying the

radiations emitted by uranium (Wilson 1983). He had

recognized that the photographic emulsion used by

Becquerel was an inefficient detector and noted, as

did the Curies, that the radiation-induced ionization

of air had a faster response than emulsion, could be

measured immediately and, moreover, could be easily

quantified. This change of detector type aided Ruther-

ford’s discovery of the emanation of two types of

radiation from samples of uranium compounds

(uranium metal, uranium nitrate, uranium oxide, and

uranium potassium sulfate) by measuring the changes

in the detected ionization caused by them following

their transmission through increasing thicknesses

of aluminium foil. The decrease in ionization with

increasing foil thickness was, at first, monotonic and

indicated simple absorption of the radiation. However,

the reduction in ionization with foil thickness eventu-

ally became limited until, when further foils were

added, the radiation intensity began to decrease more

rapidly again. Rutherford’s original transmission data

are shown in Fig. 4.1 in which the transmission of

the ionizing radiations from uranium oxide through

aluminium is plotted. The transmission of radiation

dropped rapidly with absorber thickness to about

20 mm of aluminium and then remained nearly con-

stant up to a thickness of 60 mm. This feature indicated

a readily absorbed radiation, termed a radiation by

Rutherford, and a more penetrating radiation, that he

termed b radiation.2 As will be seen in Chap. 7, the

shorter range of the a rays indicates that they are

strongly ionizing particles and are, in fact, absorbed

in only a few cm of air or a few mm of soft tissue.

The nature of the a radiation was next studied

through its magnetic deflection, which was first

achieved by Rutherford using a 0.6 T magnetic field.

This demonstrated that a radiation was massive, posi-

tively-charged particles. Further measurements of

electric charge and mass suggested that these were

doubly-ionized helium atoms (He++). This nature of

the a particle was finally confirmed by Rutherford and

Royds (Rutherford and Royds 1909) in an elegant and

simple experiment using an apparatus consisting of a

1There are other emissions often associated with radioactive

decay, such as characteristic X-rays and Auger electrons. These,

however, are due to relaxation processes following an excitation

of the atom and are more properly considered in Chap. 6.

2It is interesting to note that when he repeated the experiment

using thorium nitrate rather than uranium, Rutherford detected a

third, more penetrating type of radiation. Thus, it would seem

that this observation, now recognized to be of g radiation,

preceded the usually-credited discovery by Villard (Gerward

1999).

92 4 Radioactive Decay: Microscopic Theory



volume of radon gas contained within a capillary tube

with thin walls and encapsulated within an evacuated

chamber. Radon is the radioactive daughter product of

the a decay of radium and the a particles emitted by it

came to rest within the thin wall. The He++ captured

electrons from within the wall to form neutral atoms of

helium gas which diffused through the wall into the

surrounding chamber. After a sufficient amount of

helium gas was formed, it was compressed and, via

an electric discharge, demonstrated the characteristic

emission spectrum that confirmed its nature.

Measurements by the Curies of the trajectories of

the b component through a magnetic field demon-

strated that it was made up of light, negatively-charged

particles and studies of the b particle trajectories in

combined magnetic and electric fields demonstrated

that it had a charge-to-mass ratio e=m equal to that of

the electron. The most elegant proof that the b particle

is indeed an electron was provided by the measure-

ments by Goldhaber and Scharff-Goldhaber (1948) of

slow b particles stopped within a lead target. A low

b particle energy was required to ensure that it did not

eject the K-shell electron and the Pauli exclusion prin-

ciple would, had b particles and electrons be the same,

forbid the capture of the b particle into the full L and K

shells. Had b particles and electrons been different,

the b particle would cascade through orbitals, emitting

X-rays, until it was eventually captured. The fact

that no characteristic X-rays were detected gave

unambiguous evidence of the identity of the b particle

as an electron. The nuclear, rather than atomic, origin

of the b particle is evident from its having a kinetic

energy of a couple of MeV or less and which, from the

uncertainty principle, DpDx � �hc=2 � 100MeV � fm
and the fact that the nuclear diameter is of the order of

a few fm. Nuclear b decay is the emission of a fast

electron (e�) or positron (e+) resulting in a daughter

nucleus with an atomic number of one greater or one

less than the parent, respectively.3 Associated with

these is the process of electron capture in which the

overlap of the wavefunctions of an atomic electron and

a nuclear proton result in the capture of the electron by

the proton leading to a daughter nucleus with an

atomic number of one less than the parent. As such,

these transitions occur between isobars and a chain

of b decays will follow the mass parabola. Electron

capture is a process related to b decay in which an

atomic electron is “captured” by a nuclear proton to

decrease the atomic number of the nucleus by one.

As noted earlier, the emission of g-rays in nuclear

decay was probably first detected from thorium by

Rutherford in about 1898 but has not been greatly

recognized historically as such. Villard is customarily
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original measurements of the
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aluminium. Data points are the
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3While the term “b decay” is also sometimes used to refer to the

capture of an atomic orbital electron by a proton-rich nucleus, it

does not include internal conversion, a radioactive process

described in the context of g decay.
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assigned recognition as the discoverer of g rays

through his measurements of the deflection by a mag-

netic field of the radiations emitted from radium and

using photographic plates as detectors (Gerward

1999). For example, in one experiment, a collimated

beam from a radium source was incident to two col-

linear photographic plates for which a magnetic field

was placed between the collimator and the first plate to

deflect the beam. The first plate demonstrated two

distinctive traces of a sharp line, denoting a beam

unaffected by the magnetic field, superimposed upon

a second, more diffuse, trace caused by the magnetic

deflect. On the second plate, which was further away,

there was only the sharp trace as the charged particles

creating the diffuse pattern in the first plate had been

completely deflected. The undeflected beam had tra-

versed 10 mm of glass without noticeable attenuation

and even inserting a 300 mm-thick lead foil had only a

slight affect upon this penetrating beam. Villard asso-

ciated this penetrating and electrically-neutral radia-

tion with Röntgen’s X-rays but he did not call them g
rays. This assignation does not seem to have happened

until about 1903 and was apparently due to Ruther-

ford. Experimental study of g rays in the early twenti-

eth century was not as intense as were those of a and b
particles and it was not until 1914 that Rutherford and

Andrade established the electromagnetic nature of g
rays. Following von Laue’s use in 1912 of a crystal as

a space diffraction grating for X-rays, Rutherford

and Andrade repeated the same approach to measure

the wavelength of g rays. Compton’s later work on the

elastic scatter of photons from electrons extended the

wave-point duality of light photons to g rays.

Radioactive decay is, obviously, the reason that the

discipline of nuclear medicine exists. Hence, we will

look at the theoretical principles behind the three

major radioactive modes of interest to nuclear medi-

cine: a decay, b decay (including electron capture) and

g emission (including IC).

4.2 a Decay

4.2.1 Introduction

a emission is a two-body process:

A
ZX ! A�4

Z�2Yþ 4
2He (4.1)

The final state is that of two heavy charged particles

in motion, which has significant dosimetric conse-

quences in that, first, both rapidly lose kinetic energy

to the medium in a small volume as they slow down

leading to a high absorbed dose. The second conse-

quence is that the daughter nucleus is frequently left in

an excited state resulting in the subsequent emission of

g rays or conversion electrons. a decay is intrinsically

linked to the high binding energy (28.3 MeV) of the

a particle. Hence, a nucleus will be unstable to a decay

if the sum of the binding energies of a pair or protons

and a pair of neutrons within it are less than the

a particle binding energy. As a result, the a emitting

parent nucleus is necessarily heavy as shown in

Fig. 4.2.4 Early understanding of a decay was con-

founded by the failure of classical theory to provide

an explanation of it even occurring – a failure shown

with considerable power by consideration of the mag-

nitude of the nuclear Coulomb potential, as shown in

Fig. 4.3. Within the nucleus, the a particle is subject

to the conflicting attractive strong nuclear force and

the repulsive Coulomb force from the nuclear protons.

Beyond the nuclear radius RN, where the strong

nuclear force is negligible, the a particle will be

subject solely to the nuclear Coulomb potential.

For a nucleus with atomic number Z, the Coulomb

potential is,

UðrÞ ¼ 2a�hc
ZY

r
r >RN (4.2)

where the factor of 2 is the atomic number of the a
particle. It should be noted that that the atomic number

is that of the nucleus following a emission.

The Coulomb potential experienced by an a parti-

cle at this nuclear radius for a nucleus with Z � 80 and

A � 200 is about 33 MeV and a classical dilemma

arises from the fact that experimental measurements of

the kinetic energies of the emitted a particles are

typically of the order of only a few MeV, as shown

4Note that Fig. 4.2 shows the kinetic energy of the emitted a
particle as a function of the parent nucleus’ mass; the probability

of the a particle occurring at all is not considered in that plot but

is the focus of a later subsection.
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in Fig. 4.2.5 Over the 2,076 a emissions represented

in this figure, the mean a particle kinetic energy is

6.1 MeV, with a minimum of 2.55 MeV for 202Pb and

a maximum of 11.66 MeV for 212Po.

4.2.2 Kinematics of a Emission

4.2.2.1 Kinetic Energy of the a Particle

The energy released in the a-emission of (4.1) is,

Qa ¼ mX � mY þmað Þ (4.3)

where the lower-case m’s are the nuclear masses and

where Qa must be positive (i.e., (4.1) is exoergic) in

order for the a decay to proceed. Both nuclei are

assumed to be in their ground states (the fine structure

in a particle energy spectra as a result of excited states

is discussed in the following subsection) so that the

Qa is distributed amongst the kinetic energies of the a
particle and the daughter nucleus. Because of the

much larger mass of the daughter nucleus and the

simultaneous conservation of linear momentum and
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217AcFig. 4.2 Plot of a particle

kinetic energy as a function

of atomic mass number for

elements between Z ¼ 52

(tellurium) and Z ¼ 110

(darmstadtium). Lines join

isotopes. Plot is derived from

data from a National Nuclear

Data Center (2008) database
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Fig. 4.3 Potential energy of a heavy nucleus for an a particle

and a typical kinetic energy of an emitted a particle. Abscissa is

given as x rather than r as this is a one-dimensional potential

5Gamow (1928) reported that Rutherford had used the Thomson

“plum pudding” model of the nucleus in an attempt to avoid this

dilemma: the a particle within the nucleus was electrically-

neutral as it carried two electrons. This allowed it to travel

through the barrier unheeded; once out of the nucleus, the a
particle somehow shed these two electrons. This hypothesis was

invalidated with the demise of the Thomson model.
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energy, virtually all of Qa is taken up by the kinetic

energy of the a particle. The conservation of energy is,

mX ¼ mY þma þ TY þ Ta: (4.4)

As the kinetic energy of the a particle is only a few

MeV, nonrelativistic kinematics are applicable and the

conservation of energy can be rewritten as,

p2Y
2mY

þ p2a
2ma

¼ Qa: (4.5)

Using the conservation of momentum, the recoil

kinetic energy of the daughter nucleus is then obtained,

TY ¼ Qa

1þ mY

ma

� � : (4.6)

As the atomic mass of the daughter nucleus is of the

order of 200 or more, it is evident that only about 2%

of the available energy will appear as the recoil kinetic

energy of the daughter nucleus. Hence, for practical

purposes, we can ignore the recoil kinetic energy

whilst calculating for the a-particle kinetic energy.6

Equation (4.6) can then be approximated by,

Ta � Qa: (4.7)

Assuming that the parent and daughter nuclei are

both in their ground states, then using results from

Chap. 3 and neglecting the atomic electron binding

energies, the a particle kinetic energy corresponding

to a parent nucleus of atomic number Z and atomic

mass A can be written as,

Ta A;Zð Þ � Qa

¼ MðA;ZÞ �MðA� 4;Z� 2Þ �Mð4; 2Þ:
(4.8)

where the atomic mass is given by M(A, Z) ¼
ZMH þ (A � Z)mn � B(A, Z). The a particle kinetic

energy can thus be given in terms of the nuclear

binding energies of the parent, daughter, and the a
particle,

Ta A;Zð Þ ¼ B 4; 2ð Þ þ B A� 4;Z� 2ð Þ � B A;Zð Þ
¼ B A� 4;Z� 2ð Þ � B A;Zð Þ þ 28:3MeV:

(4.9)

where the numerical value of the a particle binding

energy has been inserted. The binding energies of the

parent and daughter nuclei can be estimated using the

Weizsäcker semi-empirical formula,

BðA;ZÞ ¼ aVolA� aSurfA
2=3 � aCoul

Z2

A1=3

� aSym
A� 2Zð Þ2

A
� d A;Zð Þ:

Substituting this into (4.9) gives,

Ta A;Zð Þ¼�4aVol�aSurf A�4ð Þ2=3�A2=3
� �

�aCoul
Z�2ð Þ2�Z2

A�4ð Þ1=3�A1=3

 !

�aSym
A�4�2 Z�2ð Þð Þ2

A�4
� A�2Zð Þ2

A

 !

�d A�4;Z�2ð Þþd A;Zð Þþ28:3MeV

¼�4aVol�aSurf A�4ð Þ2=3�A2=3
� �

�aCoul
Z�2ð Þ2
A�4ð Þ1=3

� Z2

A1=3

 !

�aSym� A�2Zð Þ2
A�4

� A�2Zð Þ2
A

 !

�d A�4;Z�2ð Þþd A;Zð Þþ28:3MeV

(4.10)

As a decay occurs only for heavy nuclei for which

A � 1 and Z � 1, the expression can be simplified

by approximating the surface, Coulomb and symmetry

terms with,

A� 4ð Þ2=3 � A2=3
� �

� � 8

3
A�1=3

6While this is acceptable for analyzing the kinematics of a
decay, we cannot neglect the energy of the recoil nucleus in a

dosimetry evaluation. Although its kinetic energy is small, the

range of the recoil nucleus is also small, meaning that the recoil

energy is deposited within a very small volume leading to a high

absorbed dose. Hence, a-emitting radionuclides are important in

therapeutic nuclear medicine should the a particle-emitting

radiopharmaceutical be covalently-bound to the nuclear deox-

yribonucleic acid.
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Z� 2ð Þ2
A� 4ð Þ1=3

� Z2

A1=3

 !
� 4Z2A�1=3

1
Z
� 1

3A

1� 4
3A

 !

A� 2Zð Þ2
A� 4

� A� 2Zð Þ2
A

 !
� 4 1� 2Z

A

� �2

:

Recalling that the paired nucleon term is non-zero

only for odd–odd and even–even nuclei, it is retained

as an explicit item. These results give,

Ta A;Zð Þ ¼ �4aVol þ 8

3
aSurfA

�1=3

þ 4aCoulZ
2A�1=3

1
Z
� 1

3A

1� 4
3A

 !

� 4aSym 1� 2Z=A

� �2
� d A;Zð Þ

þ d A� 4;Z� 2ð Þ þ 28:3MeV:

(4.11)

The fact that this expression is an approximation

will not lead to an exact result of Ta but, even so, the

accuracy is more than sufficient to predict the a parti-

cle kinetic energies for dosimetry purposes. For exam-

ple, using (4.11) (and the values of aVol, aSurf, aCoul,

aSym, and d) to predict the kinetic energy of a particles

emitted by 210Po will yield a value of 4.26 MeV

whereas the experimentally-determined value is

about 4.52 MeV. This result can also be used to predict

the systematics of a particle kinetic energy of Fig. 4.2.

For example, for a given isotope, the a particle kinetic

energy decreases with increasing atomic mass7 which

can be predicted from,

DTa A;Aþ 1;Zð Þ ¼ Ta A;Zð Þ � Ta Aþ 1;Zð Þ
¼ 8

3
aSurf A1=3 � Aþ 1ð Þ1=3

� �

þ 4aCoulZ
2

 
A1=3

1
Z
� 1

3A

1� 4
3A

 !

� Aþ 1ð Þ1=3
1
Z
� 1

3 Aþ1ð Þ
1� 4

3 Aþ1ð Þ

 !!

� 8aSymZ
1

Aþ 1
� 1

A

� �

� dðA;ZÞ þ d Aþ 1;Zð Þ
þ dðA� 4;Z� 2Þ � d A� 3;Zð Þ

(4.12)

which is a negative quantity.

4.2.2.2 Energy Spectrum: Fine Structure

The discussion of the kinematics of a emission has,

so far, neglected any additional energy channels which

can alter Qa. Experimentally, however, it has been

observed that the a particles emitted from a single

nuclide can have multiple energies occurring with

different probabilities. An example is shown in

Fig. 4.4 for 215Po. The presence of multiple a particle

kinetic energies means, from the definition of Qa and

the approximation of Ta by Qa, that the nuclear masses

of the parent and/or daughter must be multivalued,

reflecting the excited states of the daughter 211Pb

nucleus. However, the relative intensity of each a
emission (i.e., the relative probability of an a particle

with that particular kinetic energy being emitted)

indicates a variable “transparency” of the Coulomb

barrier which impedes a emission.8 For this example

of 215Po, this transparency varies by over five orders-

of-magnitude.

4.2.3 Barrier Penetration

4.2.3.1 Introduction

The half-lives of a emissions vary from about 0.3 ms
for 212Po to 4.5 � 109 y for 238U, an astonishing

variation of some 23 orders-of-magnitude. This fact,

combined with simple consideration of the kinematics

of a emission, leads quickly to a conclusion that there

7This trend is broken for the conditions 209< A< 213 which is

related to the magic proton and neutron numbers of 82 and 126,

respectively.

8Note that, despite the different intensities among the a particles

emitted, the decay probability per unit time for each is the same.
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exists a barrier impeding the emission of the a particle.

As the kinetic energy of the a particle is a few MeV,

corresponding to a speed of the order of 107 m/s, and

the radius of a heavy nucleus is of the order of about

10 fm, the a particle should need only 10�21s to

traverse the nucleus. As the measured half-lives are

much larger than this, there clearly must be some

nature of a barrier to a emission, as was shown

Fig. 4.3. However, in classical mechanics, the barrier

would be completely impervious to the a particle.

Gamow (1928) and, independently, Condon and

Gurney (1928) showed that a emission could be

explained by the quantum-mechanical tunneling of

the a particle through this barrier. The solution to

this problem is determined by first studying the simple

case of a one-dimensional barrier.

4.2.3.2 One-Dimensional Rectangular Barrier

The simplest potential barrier to model is the one-

dimensional rectangular one of Fig. 4.5. As it is one-

dimensional, angular momentum is necessarily

excluded. The potential barrier is of height VB and

width b and the a particle is treated as a wave within

the nucleus (Zone A) and incident to the barrier from

the left. The time-independent one-dimensional

Schrödinger equation is,

d2C
dx2

þ 2ma

�hcð Þ2 Ta � VðxÞð ÞC ¼ 0 (4.13)

where

VðxÞ ¼ VB 0 < x < b

¼ 0 elsewhere:
(4.14)

Recall that the units of the a particle rest mass and

its three-vector momentum are that of energy and the

�hc factor is required in the denominator to make the
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Fig. 4.4 a particle kinetic

energy spectrum for 215Po.
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Fig. 4.5 One-dimensional potential barrier of height VB and

width b. Region A corresponds to the interior of the nucleus, B

to the barrier and C to the exterior of the nucleus. The a particle

has kinetic energy Ta
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equation dimensionally correct. Outside the barrier, in

Zones A and C, (4.13) is,

d2C
dx2

þ 2maTa

�hcð Þ2 C ¼ 0 (4.15)

This is rewritten using the reduced de Broglie

wavelength of the a particle,

�l ¼ �hcffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maTa

p (4.16)

d2C
dx2

þ 1

�l2
C ¼ 0: (4.17)

In Zone A, the solution to (4.17) is,

CAðxÞ ¼ wA1e
ix
�l þ wA2e

�ix
�l x < 0 (4.18)

and, similarly for Zone C,

CCðxÞ ¼ wC1e
ix
�l b < x (4.19)

where there is no reflected wave from Zone C, i.e.,

wC2 ¼ 0. Within the rectangular barrier (Zone B), the

Schrödinger equation is,

d2C
dx2

þ 2ma Ta � VBð Þ
�hcð Þ2 C ¼ 0 0 < x < b: (4.20)

Since Ta < VB,

d2C
dx2

� 2ma Ta � VBj j
�hcð Þ2 C ¼ 0 (4.21)

with the solution,

CBðxÞ ¼ wB1e
kax þ wB2e

�kax (4.22)

where,

ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma Ta � VBj jp

�hc
: (4.23)

The probability of the wave tunneling through the

barrier is defined as the transmission given by the ratio

of the squared amplitudes of the wavefunction inci-

dent to and exiting the barrier,

= ¼ wC1j j2
wA1j j2 : (4.24)

To solve for =, the amplitudes wA1 and wC1 are

calculated in terms of the amplitudes wB1 and wB2.

The remainder of the amplitudes are determined by the

boundary conditions which require that the functions

and their first-derivatives be continuous at the bound-

aries of the potential:

CAð0Þ ¼ CBð0Þ (4.25)

dCAð0Þ
dx

¼ dCBð0Þ
dx

(4.26)

CBðbÞ ¼ CCðbÞ (4.27)

dCBðbÞ
dx

¼ dCCðbÞ
dx

: (4.28)

Equations (4.25) and (4.26) give,

wA1 þ wA2 ¼ wB1 þ wB2 (4.29)

i

�l
wA1 � wA2ð Þ ¼ ka wB1 � wB2ð Þ: (4.30)

From which, wA1 and wA2 can be solved,

wA1 ¼ wB1 1� ika�lð Þ þ wB2 1þ ika�lð Þ
2

(4.31)

wA2 ¼ wB1 1þ ika�lð Þ þ wB2 1� ika�lð Þ
2

: (4.32)

Equations (4.27) and (4.28) give,

wB1e
kab þ wB2e

�kab ¼ wC1e
ib
�l (4.33)

and

ka wB1e
kab � wB2e

�kab
� � ¼ i

�l
wC1e

ib
�l: (4.34)

Solving for wB1 and wB2,
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wB1 ¼ wC1

2
e�kab 1�i=ka�lð Þ 1þ i

ka�l

� �
(4.35)

wB2 ¼ wC1

2
ekab 1þi=ka�lð Þ 1� i

ka�l

� �
: (4.36)

For convenience, the reciprocal of = is calculated,

1

= ¼ wA1

wC1

� �
wA1

wC1

� ��
: (4.37)

Substituting (4.35) and (4.36) into (4.31) gives,

wA1

wC1

¼
e�kab 1� i

ka�lð Þ 1þ i
ka�l

� �
1� ika�lð Þ þ e

kab 1þi=ka�l
� �

1� i
ka �l

� �
1þ ika�lð Þ

4

¼ eib=�l

4
e�kab 1þ i

ka�l

� �
1� ika�lð Þ þ ekab 1� i

ka�l

� �
1þ ika�lð Þ

¼ eib=�l
1� ka�lð Þ2

ka�l

 !
cosh kab� i

2
sinh kab

� �

¼ eib=�l

2

1� ka�lð Þ2
ka�l

 !
sinh kab 2 coth kabð Þ � ið Þ: ð4:38Þ

It follows that,

1

= ¼ wA1

wC1

� �
wA1

wC1

� ��

¼ 1

4

1� ka�lð Þ2
ka�l

 !2

1þ 4coth2kab
� �

sinh2 kab

¼ VB=2Ta
� �2
VB=Ta

� �
� 1

1þ 4coth2kab
� �

sinh2 kab

¼ VB=2Ta
� �2
VB=Ta

� �
� 1

1þ 4coth2 kab
� �

sinh2 kab

� 1:94 1þ 4coth2 kab
� �

sinh2 kab: ð4:39Þ

where a barrier height of 33 MeV and a kinetic energy

of 5 MeV have been assumed in order to obtain the

numerical result. Determining the product kab requires

an estimation of the width of the barrier, b. To obtain

this, replace the rectangular barrier with the Coulomb

barrier as shown in Fig. 4.6 (with the attractive nuclear

potential treated as a well potential) and use,

2Z
a�hc

RN þ b
¼ Ta: (4.40)

Solving for b,

b ¼ 2Z
a�hc
Ta

� �
� RN: (4.41)

Using the previous example of Z ¼ 80 and RN ¼ 7

fm, we calculate that for a 5MeV a particle b � 40 fm.

Hence, for VB ¼ 33 MeV, we have ka � 2.3 fm�1

leading to bka � 92. For this value, approximations

to the hyperbolic trigonometric functions can be used,

U(x) =

U(x)

b

1

2πε0 x

Ze2

Tα

0 x

RN

−EB

Fig. 4.6 Estimation of the barrier width for simple one-dimen-

sional rectangular barrier calculation
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1þ 4 coth2 kab
� � ¼ 1þ 2 cosh kab

sinh kab

� �2

¼ 1þ 2
ekab þ e�kab
� �
ekab � e�kabð Þ

� �2

� 5

and

sinh2 kab ¼ ekab � e�kab
� �2

4

� e2kab

4
:

As the magnitude of the exponent is 1
= � 2:4 e2kab,

the transmission is

= � 0:41 e�2kab: (4.42)

And, as the magnitude of the exponent is

e�2kab � 1:2� 10�80, the transmission is simply writ-

ten as,

= � e�2kab: (4.43)

4.2.3.3 Three-Dimensional Barrier

Gamow Factor

The simple barrier model of the previous section is

now extended to calculate the more realistic case of

the penetration through the 1=r Coulomb barrier which

is treated as a series of infinitesimal rectangular bar-

riers with decreasing heights, as shown in Fig. 4.7.

This now requires ka to have a spatial dependence,

kaðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma Ta � VBðxÞj jp

�hc
: (4.44)

Then, as = � e�
2x
�hc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma Ta�VðxÞj j

p
, the differential

transmission through a barrier of thickness dx is,

d= ¼ 4e�
2
�hcdx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m Ta�VðxÞj j

p
: (4.45)

Integrating this result gives,

= ¼ 8e�2G (4.46)

where G is defined as the Gamow factor,

G ¼ 1

�hc

ðbþRN

RN

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma Ta � VBðxÞj j

p
: (4.47)

Hence, in order to determine the transmission,

which by extension is the calculation of the decay

rate constant and decay half-life, requires an explicit

calculation of the Gamow factor. This is now per-

formed for the three-dimensional case.

Changing the spatial variable from the one-dimen-

sional x to the three-dimensional r, the Gamow factor is,

G ¼ 1

�hc

ðbþRN

RN

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma VBðrÞ � Taj j

p

¼
ffiffiffiffiffiffiffiffiffi
2ma

p
�hc

ðbþRN

RN

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z

a�hc
r

� �
� Ta

				
				

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maTa

p
�hc

ðbþRN

RN

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

r
� 1

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p

�l

ðbþRN

RN

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r
� 1

RN þ b

r
:

(4.48)

The integral is solved via the change of variable,

U(x) =

U(x)

1

2πε0 x

Ze2

Ta

0 x
bRN

−EB

dx

Fig. 4.7 Calculation of penetration through a one-dimensional

Coulomb barrier
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cos y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

RN þ b

r

which gives,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r
� 1

RN þ b

r
¼ sin yffiffi

r
p

¼ tan yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p

and

dr ¼ �2 RN þ bð Þ sin y cos y dy:

Substituting these into (4.48) gives,

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p

�l

ðbþRN

RN

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r
� 1

RN þ b

r

¼ 2
RN þ b

�l

ðarccos

ffiffiffiffiffiffiffi
RN

RNþb

q

0

dy sin2 y

¼ RN þ b

�l

 
arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN

RN þ b

r� �

� 1

2
sin 2 arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN

RN þ b

r� �� �!

¼ RN þ b

�l
arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN

RN þ b

r� �
�

ffiffiffiffiffiffiffiffiffi
RNb

p
RN þ b

� �
:

(4.49)

This expression is next simplified through the use

of the dimensionless quantity,

x ¼ Ta

VB

¼ RN

RN þ b

to give,

G ¼ RN

x�l
cos�1

ffiffiffi
x

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1� xð Þ

p� �

� RN

x�l
g xð Þ

(4.50)

By noting that RN 	 b, the arccos function is

expanded to first-order to give,

g xð Þ � p
2
� 2

ffiffiffi
x

p
(4.51)

allowing the Gamow factor to be written as,

G ¼ RN

x�l
p
2
� 2

ffiffiffi
x

p� �

¼ pRN

2x�l
� 2RNffiffiffi

x
p

�l

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p

�l
p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p
� 2

ffiffiffiffiffiffi
RN

p� �
:

(4.52)

Numerically, for the example of a heavy nucleus

with RN ¼ 7 fm and b � 40 fm and a 5 MeV a
particle, the reduced de Broglie wavelength is

�l ¼ �hc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maTa

p � 1fm and the Gamow factor is

G � 37.

Angular Momentum

Having now extended the calculation to a three-

dimensional barrier, we consider the effect induced

by angular momentum by using the three-dimensional

Schrödinger equation as shown in Chap. 3.9 Clearly,

as this will increase the Coulomb barrier through the

addition of a centrifugal term, l lþ 1ð Þ �hcð Þ2=2mar
2,

the angular momentum of the emitted a particle will

influence the transmission of the particle through the

barrier. This would arise in a step of the derivation of

(4.48) in which the Gamow factor would, as a result of

the centrifugal term, appear as,

G ¼
ffiffiffiffiffiffiffiffiffi
2ma

p
�hc

�
ðbþRN

RN

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z

a�hc
r

� �
þ l lþ 1ð Þ �hcð Þ2

2mar2
� Ta

					
					

vuut

(4.53)

9As the a particle has zero spin, the angular momentum carried

away is solely orbital in character.
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Due to the a particle mass and the square of the

radius present in the denominator of the centrifugal

term, the effect of the centrifugal term to the barrier

transmission will be quite limited. For an example of

Z ¼ 80, r ¼ b ¼ 40 fm and the high angular momen-

tum case of l ¼ 4, we find that,

Coulomb term 2Z
a�hc
b

¼ 5:75MeV

Centrifugal term
l lþ 1ð Þ �hcð Þ2

2mab2
¼ 0:13MeV

Clearly for smaller l, the role of the centrifugal term

within the Gamow factor can be neglected. But where

the importance of the centrifugal barrier does arise is

through the fact that the l values available to the

emerging a particle are subject to the simultaneous

conservation of angular momentum and parity.

4.2.4 Estimation of a Decay Half-Life

Consider an a particle within a spherical well potential

well of radius RN and moving with speed v0. The rate at

which the a particle will hit the “wall” is of the order of

v0=RN times per second. The decay constant (the tran-

sition probability per unit time) for a emission is the

product of this “impact rate” and the transmission factor,

l ¼ v0

RN

=

¼ 8
v0

RN

e�2G
(4.54)

Taking logarithms of both sides, noting that

ln 8j j 	 2G and using our derived expression for the

Gamow factor, we have,

lnl ffi ln
v0

RN

� 2G

¼ ln
v0

RN

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p

�l
p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN þ b

p
� 2

ffiffiffiffiffiffi
RN

p� �

¼ ln
v0

RN

� 1

�l
p RN þ bð Þ � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN RN þ bð Þ

p� �

(4.55)

Recalling the definition of the de Broglie wave-

length, we can write,

ln l ¼ ln
v0

RN

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maTa

p
�hc

2pZ
a�hc
Ta

� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RN

2Za�hc
Ta

r� �

¼ ln
v0

RN

� 2pa
ffiffiffiffiffiffiffiffiffi
2ma

p� � Zffiffiffiffiffiffi
Ta

p þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amaRN

�hc

r ffiffiffi
Z

p

(4.56)

As shown in the following chapter, the half-life is

related to the decay constant via,

T1=2 ¼ ln 2

l
(4.57)

Hence, one can write the a emission half-life as,

T1=2 ¼ RN ln 2

v0
e

2pa
ffiffiffiffiffiffi
2ma

pð Þ Zffiffiffiffi
Ta

p
e�8

ffiffiffiffiffiffiffiffiffi
amaRN

�hc

p ffiffiffi
Z

p
(4.58)

Because of the T
�1=2
a dependence the most energetic a

particles will be associated with a decays with short

half-lives. This can be seen in Fig. 4.8 which shows

the very obvious tendency of the half-lives of a emit-

ting isotopes of polonium to decrease with increasing

a particle energy.

In 1911, Geiger and Nuttall reported an empirical

relationship between the range of an a particle in air

and the decay constant of the nuclide emitting the

a particle,

ln l ¼ k1 þ k2<a (4.59)

where <a is the range of the a particle in air. For a
particles with kinetic energies between 4 and 15 MeV

(a range which covers most a emissions), an empirical

relationship between a particle kinetic energy and its

range in air is (Tsoulfanidis 1995),

<air � 2:85þ 0:05Tað ÞT3=2
a (4.60)

where the range is in mm and the kinetic energy is in

MeV. As 0:05Ta > 2:85 for the kinetic energies of

interest, (4.59) can be rewritten in the form

ln l ¼ k1 þ k2T
3=2
a leading to the Geiger–Nuttall rule

relating a emission half-life to the a particle kinetic

energy,

T1=2 ¼ k1e
�k2T

3=2
a (4.61)
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(note that the constants k1 and k2 are not the same

throughout these equations). Although the empirical

Geiger–Nuttall rule has ln T1=2 / T
�3=2
a whereas the

result derived from Gamow theory has ln T1=2

/ T�1=2
a , both demonstrate an association between a

particles with high kinetic energies and short half-lives

of the a emitters that gave rise to them.

4.3 The Weak Interaction: b Decay
and Electron Capture

4.3.1 Introduction

b decay is both the most apparent manifestation of the

weak force and is greatly important in nuclear medi-

cine. Hence, it, and the weak force itself, are well-

deserving of the detail provided in this section.

Early experimental studies of b decay showed that

the detected final state contained only the electron

and the recoiling daughter nucleus. Such a two-body

decay would have required the electron to have a

single well-defined kinetic energy equal to the differ-

ence between the mass of the parent nucleus and the

sum of the masses of the daughter nucleus and electron

(excluding any excitation energy taken up by the

daughter). Using photographic emulsion as a detector,

Hahn and Meitner demonstrated around 1906 that

electron energy spectra associated with b decay from

isotopes of thorium and actinium showed discrete

peaks superimposed upon a weak, continuous back-

ground. While a well-defined electron energy was

expected from the presumed two-body decay, the

peaks observed were, in fact, the result of IC (a two-

body final state) and the weak background was due to

the electrons produced in b decay. Using a Geiger

counter as a more sensitive ionization detector, Chad-

wick demonstrated in 1914 that the electron energy

spectrum was continuous, contrary to the expectation

of a two-body decay. This contradiction between the

observed final state and the expected energy spectrum

was problematic as the missing energy implied a fail-

ure of the law of conservation of energy. Experimental

evidence demonstrated that the measured electron

kinetic energy spectrum ranged in value from 0 to a

value equal, to within experimental error, to the maxi-

mum dictated by a two-body final state. For example,

this could be found by comparing the masses of 3H and
3He in the b� decay of 3H for which the mass-energy

balance of M3H ¼ M3He þme þ Q is achieved exactly

by setting Q to the observed maximum electron energy

in the spectrum. Another means of demonstrating this

was shown by comparing the energies released in the

1
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decay of a nucleus through alternative routes (e.g., b
decay followed by a decay and vice versa) to a final

nucleus. As the initial and final nuclei in the decay

schemes are the same, the total energies released

though all of the routes must also be the same. It was

found that the sum of the a particle kinetic energies

and the upper limits of the b particle energy spectra

were equal in both decay branches.

Experimental data also implied the nonconserva-

tion of both angular momentum and the spin statistics

of a composite system. Again, consider the b decay of
3H in which there are only two observed products in

the final state, the 3He nucleus and the electron. Initi-

ally excluding the possibility of a non-zero orbital

angular momentum, the 3He angular momentum (due

to the single proton in the 1p1/2 level) and the electron

spin couple to form a system with a total angular

momentum of either 0 or 1. In either case, the total

angular momentum is an integer. Even if we were to

now allow the possibility of an orbital angular momen-

tum contribution to the final state, the total angular

momentum of the final state remains an integer. The

problem lies in that the angular momentum of 3H in

the initial state is 1/2. Thus, the 3H initial state is subject

to Fermi-Dirac statistics whereas the 3He-e composite

in the final state is subject to Bose–Einstein statistics.

These dilemmas were famously resolved by Pauli.

Unable to an invitation to a meeting at Tübingen, on 4

December 1930 he wrote a letter to those attending

describing his proposition:

“Dear Radioactive Ladies and Gentlemen,

As the bearer of these lines, to whom I graciously

ask you to listen, will explain to you in more detail,

how because of the “wrong” statistics of the N and Li6

nuclei and the continuous beta spectrum, I have hit

upon a desperate remedy to save the “exchange theo-

rem” of statistics and the law of conservation of energy.

Namely, the possibility that there could exist in the

nuclei electrically-neutral particles, that I wish to call

neutrons, which have spin 1/2 and obey the exclusion

principle and which further differ from light quanta in

that they do not travel with the velocity of light. The

mass of the neutrons should be of the same order of

magnitude as the electron mass and in any event not

larger than 0.01 proton masses. The continuous beta

spectrum would then become understandable by the

assumption that in beta decay a neutron is emitted in

addition to the electron such that the sum of the ener-

gies of the neutron and the electron is constant...

I agree that my remedy could seem incredible

because one should have seen these neutrons much

earlier if they really exist. But only the one who dare

can win and the difficult situation, due to the continu-

ous structure of the beta spectrum, is lighted by a

remark of my honored predecessor, Mr Debye, who

told me recently in Bruxelles: “Oh, It’s well better not

to think about this at all, like new taxes.” From now

on, every solution to the issue must be discussed.

Thus, dear radioactive people, look and judge.

Unfortunately, I cannot appear in Tubingen person-

ally since I am indispensable here in Zurich because of

a ball on the night of 6/7 December. With my best

regards to you, and also to Mr Back.

Your humble servant,

W. Pauli”

Following Chadwick’s discovery of what is now

known as the neutron (as a nucleon), Fermi later

coined the word neutrino (ne)
10 to describe Pauli’s

proposed particle which carried away the “missing”

kinetic energy.

While a succinct solution to the empirical problem,

it was immediately obvious from the lack of direct

evidence for its existence that the neutrino interacted

very weakly with matter. Despite this, further consid-

eration of the experimental data at these early times

led to the exposition of other properties of the neu-

trino:

� Mass: As the maximum of the electron/positron

energy spectrum was, to within experimental

error, equal to the maximum set by two-body

decay, the b decay kinematics demonstrated that

the neutrino mass was very small or zero.11

� Electric charge: The observed conservation of

electric charge in b decay demonstrated that the

neutrino had no electric charge.

� Spin: Conservation of angular momentum requires

the neutrino to be a fermion as indicated in our

earlier consideration of the decay of 3He.

It was not until the early 1950s that the existence of

the neutrino or, to be exact, the antineutrino was con-

firmed experimentally. Using the antineutrino flux

10The e subscript signifies that the neutrino produced by b decay

is associated with an electron/positron.
11Only in recent years has conclusive evidence for a non-zero

neutrino mass been obtained from measurements of neutrinos of

cosmic origin (see, e.g., Fukuda et al. 1998).
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produced by the b decay of fission products in a nuclear

reactor, Reines and Cowan (1953) (Reines 1997)

detected the positron and neutron resulting from the

“inverse b+ decay” reaction of12 �ne þ p ! nþ eþ.
The target consisted of CdCl2 dissolved in water and

sandwiched between two tanks containing liquid scin-

tillator each viewed by photomultiplier tubes, as shown

schematically in Fig. 4.9. An observed event was of an

antineutrino captured by a proton of the hydrogen atom

in a target water molecule to generate a positron and a

neutron. The positron had a small mean free pathlength

in water before it annihilated on a free electron (e�e+

! 2g) within about 1 ns of creation to produce two

511 keV g rays which were subsequently detected in

coincidence by the surrounding liquid scintillator. The

neutron product of the inverse b+decay thermalized

through elastic collisions with the protons in the water

molecules so as to be eventually captured by a cadmium

nucleus some 10 ms later. This “radiative capture”

by the cadmium resulted in an excited cadmium

nucleus which, during de-excitation, emitted g rays

also detected by the surrounding liquid scintillator.

The time signature of the two separate g ray detections

signaled an antineutrino detection.

The history of b decay, and the weak interaction it

demonstrates is concluded by considering briefly the

complexity of the lepton family beyond the electron

and neutrino that resulted from the discovery of the

muon in cosmic rays in 1937 by Neddermeyer and

Anderson (1937)13 and the determination that it was

not subject to the strong nuclear force and was, hence,

a lepton by Conversi et al. (1947). This was the first

indication of the existence of the Generations of mat-

ter shown in Fig. 3.1 in Chap. 3 and of lepton flavor.

Due to the leptonic similarities of the muon with an

electron, it was of interest to determine if it also had an

associate neutrino. That the muon neutrino existed was

demonstrated by Lederman, Schwartz and Steinberger

(Danby et al. 1962) in an experiment at Brookhaven

National Laboratory in which protons bombarded a

beryllium target to produce pions following which

each decayed in flight to a muon and a neutrino (e.g.,

pþ ! mþ þ nm; the m subscript indicates that the neu-

trino is associated with a muon and, in analogy to the

electron and positron, the positively-charged muon is

regarded as the antiparticle). The combined beam of

muons and neutrinos then passed through a 13.5-m

thick steel absorber so that only the neutrinos were

able to pass through to be detected by a spark chamber

on the exit side. Whereas the electron is a stable

particle,14 the muon is not. It decays, with a half-life

of 2.197 ms, via m� ! e� þ ne þ �ne. However, the

simpler decay process of m� ! e� þ g has not been

observed which empirically indicates the existence

of the lepton quantum number. The existence of a

charged lepton of the third flavor15 was shown by

Perl et al. (1975) through the topology of the trajec-

tories of the products resulting from collisions

between high-energy electron and positron beams

leading to e�eþ ! t�tþ ! e� þ e� þ 4 neutrinos.

The mean t-lepton life is 290.6 fs and the existence

of a neutrino associated with the t-lepton was finally
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Scintillator

511 keVγ

511 keVγ e
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CdCl2

solution

γ

γ
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νe

Fig. 4.9 Schematic diagram of the experimental arrangement

used by Reines and Cowan to detect the existence of the

electron-antineutrino. A description of the detection process is

provided in the text

12As the total cross-section for this reaction had been estimated

from the measured half-life of free neutron decay to be about

6 � 10�44 cm�2, an intense antineutrino flux such as that from a

fission reactor was required in order for a detectable number of

events to be obtained.

13The muon was initially called the mu -mesotron and incor-

rectly thought to have been the intermediary of the strong force

postulated by Yukawa. That particle is the pion which is subject

to the strong nuclear force which the muon is not.
14The electron has a measured lifetime in excess of 4.6 � 1026

yrs (90% confidence level) (Particle Data Group 2004).
15This heavy lepton is referred to as the t-lepton referring it to

being the third lepton discovered.
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confirmed experimentally in 2000 (Kodama et al.

2001). The family of leptons is summarized in

Table 4.1.

Within a modern viewpoint, b decay and electron

capture can be considered at three different scales of

dimension. At the lowest spatial resolution, they can

be regarded as transitions between nuclear isobars

which change the atomic number of the parent nucleus

by unity:

Z;Að Þ ! Zþ 1;Að Þ þ e� þ �ne

Z;Að Þ ! Z� 1;Að Þ þ eþ þ ne

Z;Að Þ þ e� ! Z� 1;Að Þ þ ne

Going beyond the nuclear picture by increasing the

spatial resolution to nucleon dimensions, these pro-

cesses are seen as isospin-projection changing transi-

tions between nucleons:

n ! pþ e� þ �ne

p ! nþ eþ þ ne

pþ e� ! nþ ne

Finally, at the spatial resolution of sub-nucleon

dimensions, the transitions are now seen as a quark

flavor change with the emission of a W� intermediate

vector boson (so called as it has spin 1) which subse-

quently decays into a lepton pair,

d ! uþW� ! uþ e� þ �ne

u ! dþWþ ! dþ eþ þ ne

uþ e� ! dþWþ þ e� ! dþ ne

as shown in Fig. 4.10.

As described in the introduction, the small interac-

tion cross-section of the neutrino, the long physical

half-lives of nuclei subject to b decay compared to

g decay and the change in nuclear isospin (through

the isospin flips of n ! p and p ! n and the underly-

ing quark flavor changes) led to the postulate that b
decay was indeed a manifestation of a new force,

termed the weak force. The electron and neutrino are

leptons with the electron interacting through both

electromagnetic and weak forces and the electrically-

neutral neutrino interacting through the weak force

alone. Both particles have antiparticles, the positron

and antineutrino, the positron having been predicted by

Dirac and experimentally detected in cosmic rays by

Anderson (1933). Isospin and flavor, which are mani-

festations of the strong nuclear force, are not conserved

by this weak force.

b decay is the most commonly observed weak

interaction and is of significance to internal radiation

dosimetry for several reasons:

� The daughter nucleus resulting from b decay or

EC is often in an excited state which subsequently

de-excites by g ray emission or other radioactive

processes. The g ray emission can be directly useful

for nuclear medicine imaging (e.g., 99Mo under-

going b decay to 99mTc which makes an isomeric

transition (IT) to 99Tc through the emission of a

140.5 keV g ray). For heavy nuclei, these other

processes include fission and delayed nucleon

emission as shown in Fig. 4.11.

� While the electron resulting from b� decay does

not contribute to the nuclear medicine imaging

process,16 it does deposit energy in tissue while

decelerating, creating an absorbed dose.

� The positron created in b+ decay will also deposit

energy as it traverses tissue to annihilate with an

electron to produce two collinear 511 keV g rays

Table 4.1 Lepton flavors

Electron flavor

Lepton Mass (MeV)a

e 0.510999

ne <4.6 � 10�4 (68% c.l.)

Muon flavor

Lepton Lepton

m 105.658369

nm <0.19 (90% c.l.)

Tau-lepton flavor

Lepton Mass (MeV)a

t 1776.99

nt <18.2 (95% c.l.)
aMasses are averages taken from the Review of Particle Physics

(Particle Data Group 2004); neutrino masses are provided with

specified confidence levels

16Excluding imaging of the bremsstrahlung radiation produced

by the decelerating electron.

4.3 The Weak Interaction: b Decay and Electron Capture 107



which can be detected externally to form a tomo-

graphic image.

� Electron capture leaves an atomic electron vacancy

inducing fluorescence X-ray production (which can

also be detected to form an image) or Auger/Coster–

Kronig electron cascades.

4.3.2 Kinematics of b Decay and
Electron Capture

4.3.2.1 Neutron b Decay

The study here of b decay kinematics begins by con-

sidering free neutron decay, n ! pþ e� þ �ne. The

mass-energy balance of a free neutron undergoing b�

decay is,

mn ¼ mp þme þ Q� (4.62)

Where the “�” subscript on Q signifies this as the

energy released in b� decay. Throughout this discus-

sion, the masses of the (anti)neutrinos are neglected

and, upon substituting the appropriate rest masses, it

is found that free neutron decay is exoergic with

Q� ¼ 0.782 MeV. Thus, a free neutron is unstable to

b� decay to a proton with a half-life of 885.7 s and the

0.782 MeV of energy available will be distributed

amongst the kinetic energies of the three decay pro-

ducts. By contrast, the mass-energy balance for a

proposed b+ decay of a free proton is,

mp ¼ mn þme þ Qþ (4.63)

Again, substituting the rest-mass values will show

that this reaction is endoergic since Q+ ¼ �1.765 MeV

Q

(A, Z)

(A, Z + 1)

Barrier

β−

γ γ

Fig. 4.11 Representative decay scheme for b� decay with

transitions to the ground state and various excited states of the

daughter nucleus. The barrier signifies the minimum energy

required in order for processes such as delayed nucleon emission

and nuclear fission to occur
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lepton diagrams for (a) b�

decay of a neutron; (b) b+

decay of a proton; and (c)

electron capture by a proton
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and, hence, p ! nþ eþ þ ne cannot occur for a free

proton. It can occur only if the proton is bound within

the nucleus such that the additional energy required for

the transition arises from the nuclear binding energy.

4.3.2.2 Nuclear b Decay

Introduction

Now consider nuclear b decay between isobars (Grotz

and Klapdor 1990). Such b decays can only occur if

there is an adjacent isobar with a smaller mass (i.e.,

greater binding energy). Figure 4.12 presents a sum-

mary of the kinematics of nuclear b decay and electron

capture. Recall from the discussion of the Segrè plot

that, with increasing atomic mass number A in stable

nuclei, the number of neutrons N increases relative to

the number of protons, Z. An unstable nucleus (i.e.,

one which is displaced from the locus of stable nuclei

in the Segrè plot) can be created either through the

bombardment of a stable nucleus with charged parti-

cles or neutrons or through the fission of a heavy

nucleus. Such an unstable nucleus will lie on either

side of the stable nuclei locus. The type of b decay

available to the displaced nucleus will be dictated by

the magnitudes of the Coulomb and symmetry terms

of the Weizsäcker formula and these will follow the

mass parabolae.

The Coulomb term reduces the net binding energy

with increasing Z whereas the symmetry term

increases the binding energy with increasing Z. As

seen, the result is a maximum in the binding energy

indicating the stable nucleus in the mass parabola

(which would lie along the isobar line of Fig. 4.13).

If the artificially produced nucleus were to be to the

left of the locus of stable nuclei (i.e., it has an excess of

neutrons or is “neutron-rich”), it has a deficit of elec-

tric charge for its mass. Hence, the Coulomb term is

reduced and the symmetry term increased. A maxi-

mum in the binding energy is then achieved by an

increase in the former and a decrease in the latter

which results from b� decay. Should the nucleus

instead be to the right of the locus of stable nuclei

(i.e., it has an excess of protons or is “proton-rich”),

the relative magnitudes of the Coulomb and symmetry

terms are reversed and a maximum in the binding

energy is achieved by decreasing the magnitude of

the Coulomb term and increasing that of the symmetry

term through b+ decay or electron capture.

m(A,Z)

m(A, Z+1)
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Fig. 4.12 Kinematics of b decay and electron capture
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The mass difference required between parent and

daughter nuclei is next calculated in order to deter-

mine whether or not nuclear b decay or electron cap-

ture is energetically possible.

Nuclear b� Decay

Nuclear b� decay between the isobar pair A
ZX and

A
Zþ1Y is,

A
ZX ! A

Zþ1Yþ e� þ �ne (4.64)

and which has the nuclear mass-energy balance,17

m A;Zð Þ ¼ m A;Zþ 1ð Þ þme þ Q�: (4.65)

As the nuclear mass is m A;Zð Þ ¼ Zmpþ
A� Zð Þmn � B A;Zð Þ, (4.65) gives the Q� value for

nuclear b� decay as,

Q� ¼ mn �mp �me

� �
þ B A;Zþ 1ð Þ � B A;Zð Þð Þ (4.66)

where the first term in parentheses in (4.66) is the Q�
for free neutron decay and the second term is the

difference in nuclear binding energies. A simpler

expression for Q� can be extracted from (4.66)

by recalling that the nuclear binding energy can be

written in terms of atomic masses,

B A;Zð Þ ¼ ZMH þ A� Zð Þmn �M A;Zð Þ; or,

Q� ¼ M A;Zð Þ �M A;Zþ 1ð Þ: (4.67)

As Q� must be positive, nuclear b� decay is ener-

getically permissible should the parent’s atomic mass

exceeds that of the daughter. An example of b� decay

shown in Fig. 4.14 is that of the radionuclide 32P,

which is produced through neutron bombardment of

stable 31P, and undergoes b� decay to 32S with a half-

life of 14.263 days and a Q� of 1.71 MeV.

Nuclear b+ Decay

b+ decay is inherently nuclear as the b+ decay of a free
proton is energetically impossible. A nucleus in the

proton-rich region of Fig. 4.13 will have excessive

electric charge for its mass and will seek to reduce

this charge by either positron emission or electron

capture. The b+ decay between the isobar pair A
ZX

and Y
Zþ1Y is,

A
ZX ! A

Z�1Yþ eþ þ ne (4.68)

with a nuclear mass-energy balance,

m A;Zð Þ ¼ m A;Z� 1ð Þ þme þ Qþ: (4.69)

Substituting the expression for nuclear mass gives,

Qþ ¼ � mn �mp �me

� �� 2me

� B A;Z� 1ð Þ � B A;Zð Þð Þ (4.70)

which, in terms of parent and daughter nuclear masses,

is,

Qþ ¼ M A;Zð Þ �M A;Z� 1ð Þð Þ � 2me: (4.71)

Thus, in order for b+ decay to occur, the parent

atom must be heavier than the daughter nucleus by

an amount of at least double the electron/positron rest-

mass of 2me (1.022 MeV). An example is shown in

100%

log10 ft = 7.9

Q− = 1.71 MeV

1+

0+

β−

32
P

T1/2 = 14.263 days15

32
S16

Fig. 4.14 32P ! 32Sþ e� þ �ne. The log10 ft value is a measure

of the transition rate and is discussed in the text

17Note that any excitation energy conferred to the daughter

nucleus is ignored.
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Fig. 4.15 of 18F which undergoes b+-decay with a

109.77 min half-life to produce 18O.

Electron Capture

The process of electron capture can compete with b+

decay as the wavefunction of an orbital electron, espe-

cially that of the K-orbital, will have a finite extension

into the nuclear volume.18 As a consequence, it is pos-

sible for a nucleus to capture an orbital electron through

e� þ Z ! Z� 1ð Þ þ ne, a reaction which occurs pre-

ferentially for high-A nuclei which, with their large

nuclear radii, will have greater overlaps with the orbital

electrons’ wavefunctions. The EC process is,

A
ZXþ e� ! A

Z�1Yþ ne (4.72)

with the nuclear mass-energy balance,

m A;Zð Þ þme � BK ¼ m A;Z� 1ð Þ þ QEC: (4.73)

The capture of a K-shell electron with BK binding

energy has been assumed. Solving for QEC in terms of

nuclear binding energies,

QEC ¼ � mn �mp �me

� �� BK

þ B A;Z� 1ð Þ � B A;Zð Þð Þ (4.74)

and of atomic masses,

QEC ¼ M A;Zð Þ �M A;Z� 1ð Þð Þ � BK (4.75)

Hence, EC is energetically feasible if the parent’s

atomic mass exceeds the sum of that of the daughter

and the electron binding energy (which, in practice,

can be neglected). Comparing QEC and Q+,

Qþ ¼ QEC � 2me (4.76)

Because EC does not produce a positron and the

neutrino cannot be readily detected, experimental evi-

dence for EC is obtained indirectly via the emission of

a characteristic X-ray daughter nucleus (Alvarez

1937). EC creates a hole in the atomic energy orbital

which is subsequently filled by an electron from a

higher-order orbital to produce an X-ray with energy

equal to the difference between the binding energies of

the two orbitals. Although b+ decay of a proton-rich

nucleus yields the same daughter nucleus as that of

electron capture, the former cannot occur unless there

is a mass-energy differential of 1.022 MeV between

the parent and daughter atoms, whereas the threshold

for the latter simply requires that the parent atom be

heavier than the daughter (if the magnitude of the

orbital electron binding energy is neglected). Hence,

if the mass-energy difference between the parent and

daughter atoms for which EC occurs exceeds

1.022 MeV, b+ decay can become possible, in which

the total transition probability is the sum of the two

individual probabilities for each transition type.

Summary of b Decay and Electron Capture

Kinematics

The thresholds for b decay and electron capture in

terms of the parent (X) and daughter (Y) atomic

masses are,

MX > MY b�; EC

MX > MY þ 2me bþ

Table 4.2 presents Q values for a variety of b
decays of particular interest to diagnostic nuclear

medicine and PET imaging.

100%

log10 ft = 3.57

β +

1+

0+

O
18
8

F
18

9T1/2 = 109.77 minutes

2me = 1.022 MeV

Q+ = 0.634 MeV Q
G

S
-G

S
 =

 1
.6

56
 M

eV

Fig. 4.15 18F ! 18Oþ eþ þ ne

18The probabilities of L and higher orbital wavefunctions

extending into the nucleus are much smaller and are not consid-

ered here.
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4.3.3 Fermi Theory of b Decay: Part I

4.3.3.1 Introduction

Having established the kinematic requirements to be

fulfilled in order for b decay and electron capture to

occur, we now progress to calculating the transition

probabilities and decay rates of these processes.

Although dating from the 1930s, Fermi’s theory

(1934a, b) remains an inspired and pragmatic approach

to understanding b decay and electron capture, evaluat-

ing their transition probabilities and calculating the

electron and positron energy spectra. The insight of

Fermi’s theory was its being an analogy to that describ-

ing the interaction between charges in quantum electro-

dynamics.19 Even though it has been supplanted by

the modern Glashow–Salam–Weinberg electroweak

theory, the Fermi theory provides the low-energy limit

of that theory which is appropriate and useful for our

study of b decay.

4.3.3.2 Nuclear b Decay

Introduction

In this subsection, the transition rates for b decay and

electron capture are derived from perturbation theory

using Fermi’s Golden Rule No 2,20

lfi ¼ 2p
�h

ð
d3rc�

f Uci

				
				
2

rf (4.77)

Matrix Element

The matrix element,
Ð
d3rc�

f Uci, is calculated by first

noting that the initial wavefunction is that of the parent

Table 4.2 Q values for various b decays of nuclear medicine interest

Parent Daughter Decay mode

(% of all decays)

Q (MeV) Applications

11C 11B b+ (99.7%) 0.961 PET imaging

EC (0.3%) 1.983
14C 14N b� 0.156 14C-labelled urea for Helicobacter pyloris diagnosis
15O 15N b+ (99.9%) 1.732 PET imaging

EC (0.1%) 2.754
18F 18O b+ (96.9%) 0.634 PET imaging

EC (3.1%) 1.656
51Cr 51V EC 0.752 Na2

51CrO4 used to label red blood cells (RBC) for

measurement of RBC volume or RBC

sequestration
59Fe 59Co b� 1.565 59Fe ferrous citrate used to assess gastrointestinal

iron absorption by oral administration or of iron

metabolism by intravenous injection
64Cu 64Ni b+ (18%) 0.653 PET imaging

64Ni EC (44.9%) 1.675
64Zn b� (37.1%) 0.578

67Ga 67Zn EC (100%) 1.000 67Ga citrate used for imaging tumors and

inflammation with g-ray scintigraphy
68Ga 68Zn b+ (89.1%) 1.899 PET Imaging

EC (10.9%) 2.921
90Y 90Zr b� (100%) 2.280 90Y-labelled ibritumomab tiuxetan for treatment of

non-Hodgkin’slymphoma

19Fermi’s paper on his b decay theory was, famously, rejected

by Nature in 1933 but was subsequently published in Italian in

Nuovo Cimento and in German in Zeitschrift für Physik. Fermi

never again published on this subject (Segrè 1970).

20For simplicity in this discussion, “electron” will refer to either

an electron or a positron and “neutrino” will refer to either a

neutrino or antineutrino. An exact assignment will be apparent

from the context of the discussion.
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nucleus’ wavefunction ci � cnuc;i, and the final wave-

function cf is the product of the three wavefunctions

corresponding to the daughter nucleus, electron and

neutrino, cf � cnuc;fcecne . The lepton wavefunctions

are represented by plane waves,

c�
ecne ¼

1

L3
ei

q�r
�hc (4.78)

where L3 is the volume containing the system and

q ¼ pne � pe. Because of the distortion induced by

the nuclear Coulomb field, a plane wave expansion

for the electron is not entirely valid, but its use will

corrected for later. Expanding the exponential,

ei
q�r
�hc ¼

ffiffiffiffiffiffi
4p

p X1
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
jl

qr

�hc

� �
Yl0 y; 0ð Þ (4.79)

where y is the angle between q and r. As the lepton

momenta are of the order of 1–2 MeV/c and the

nuclear dimension is of the order of 5 fm, then the

argument of the spherical Bessel function is
qr=�hc � 0:05 or less. In this case, the small-argument

form of the spherical Bessel function, jlðxÞ � xl



2lþ 1ð Þ!!, can be used where the double factorial is

defined by 2lþ 1ð Þ!! ¼ 1� 3� 5 . . . 2lþ 1ð Þ. Hence,
the low-argument approximation to the spherical Bes-

sel function diminishes rapidly with l for x 	 1 and

the expansion of (4.79) can be restricted to l ¼ 0 to

give c�
e cne � 1=L3. Hence, a simplified result for the

matrix element is obtained,

ð
d3rc�

f Uci �
1

L3

ð
d3rc�

nuc;fUcnuc;i: (4.80)

The perturbation potential inducing the b decay is

taken to be weak and to have an infinitely small

range21 allowing the perturbation to be approximated

by a scalar constant and removed from the integral,

ð
d3rc�

f Uci �
g

L3

ð
d3rc�

nuc;fcnuc;i

¼ g

L3
Mfi (4.81)

where Mfi is the nuclear matrix element. The b decay

transition rate from initial state i to final state f can

now be written as,

lfi ¼ 2p
�h

g2

L6
Mfij j2rf (4.82)

Phase Space Factor

From the previous derivation of b decay kinematics,

the total kinetic energy available to the electron and

neutrino is equal to the Q of the appropriate decay.

Neglecting a neutrino rest mass, the total energy made

available is the sum of the kinetic and rest-mass ener-

gies, E0 ¼ Q� þme, which is also equal to the elec-

tron and neutrino total energies,

E0 ¼ Ee þ Ene (4.83)

Equation (4.82) can be generalized into the differential

form,

dlfi Eeð Þ ¼ 2p
�h

g2

L6
Mfij j2 drf E0;Eeð Þ

dEe

dEe (4.84)

which is the differential probability that the elec-

tron will be emitted with a total energy between Ee and

Eeþ dEe. As the volume of a unit cell in phase space is

2p�hcð Þ3 and the electron-antineutrino final state will

have a 12-dimensional phase space (three-dimensions

each for the electron and antineutrino momenta and

position), the phase space differential volume element

in electron and neutrino momentum is,

d2rf ¼
L

2p�hc

� �3

4p p2e dpe � L

2p�hc

� �3

� 4pp2nedpned Q� Te � Tneð Þ

¼ 1

4p4
L

�hc

� �6

p2e dpe p
2
nedpned Q� Te � Tneð Þ

(4.85)

where the d-function specifies the required energy

conservation. It is convenient to solve for this expres-

sion by using the particles’ total energies as the vari-

ables instead. As the total energy is E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
,

21In the modern-day picture of the W intermediate vector boson-

mediated b decay, the range of the force is of the order of 10�3

fm. Hence, Fermi’s approximation of a zero-range force was

insightful.
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then dE=dp ¼ p=E and p2dp ¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

p
dE, then

(4.85) can be written in the form,

d2rf ¼
1

4p4
L

�hc

� �6

� Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
dEe E

2
nedEned E0 � Ee � Eneð Þ:

(4.86)

The arguments of the d functions of (4.85) and (4.86)
are equivalent. As the neutrino is not detected, this result

is subsequently integrated over the neutrino energy,

drf ¼
1

4p4
L

�hc

� �6

Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
Ee dEe

�
ð
dEne E

2
ned E0 � Ee � Eneð Þ

¼ 1

4p4
L

�hc

� �6

Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
E0 � Eeð Þ2dEe:

(4.87)

So far, this calculation has neglected the interaction

between the product electron and the daughter

nucleus. As noted earlier, this will distort the elec-

tron’s wavefunction, thus invalidating the original

assumption of describing its wavefunction as a plane.

For b� emission, the attractive Coulomb interaction

slows down the electron and increases the low-energy

portion of the spectrum. Thus, the electron is emitted

with a higher energy than that detected or, in other

words, the phase space is larger than 4pp2edpe. On
the other hand, for b+ emission, the Coulomb force

between the positron and the nucleus is repulsive, thus

suppressing the low-energy portion of the spectrum and

correspondingly decreasing the available phase space.

In order to account for these Coulomb effects, but still

retain the overall form of the result obtained from a

plane-wave approximation, a correction to the phase

space is inserted into the phase space factor. This cor-

rection term is the Fermi factor, F(ZY, Ee),

drf
dEe

¼ 1

4p4
L

�hc

� �6
Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
E0 � Eeð Þ2

� F ZY;Eeð Þ
(4.88)

where ZY is the atomic number of the recoil daughter

nucleus. The Fermi factor is the ratio of the electron/

positron wavefunctions at the centre of the nucleus

with the Coulomb interaction to that without,

F ZY;Eeð Þ ¼ ce;withð0Þ
		 		2
ce;withoutð0Þ
		 		2 : (4.89)

A suitable nonrelativistic approximation of the

Fermi factor is,

FðZY;EeÞ ¼ 2pZ
1� e�2pZ (4.90)

where

Z ¼ �aZY

E0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

p (4.91)

and where the � sign corresponds to electron/positron

emission. The nonrelativistic Fermi factor is plotted in

Fig. 4.16 as a function of the ratio Ee

E0
¼ Teþme

Qþme
for four

different b decays. By expanding the exponential term

in (4.90) to second order, the features of Fig. 4.16

become more apparent,

FðZY;EeÞ ¼ 1

1� pZ

¼ pe

pe � mpaZE0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ee

E0

� �2
� me

E0

� �2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ee

E0

� �2
� me

E0

� �2r
� paZ

(4.92)

This result shows that F ZY;Eeð Þ> 1 for electrons and

F ZY;Eeð Þ< 1 for positrons and that both factors

approach unity with increasing energy. However, the

nonrelativistic approximation fails for high-Z nuclei

and the Fermi factor must then be calculated from the

Dirac equation and an extended Coulomb potential.

Tabulated values for F ZY;Eeð Þ can be found in

Behrens and Jähnecke (1969).

Energy Spectra

The transition rate can now be written as,

dlfi Eeð Þ
dEe

dEe ¼ g2

2p3�h �hcð Þ6
 !

Mfij j2Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q

� E0 � Eeð Þ2 � F ZY;Eeð ÞdEe

(4.93)
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As a result of the zeroth-order truncation of the

lepton wavefunction expansions, the nuclear matrix

element Mfi will be independent of the electron and

neutrino momenta (those cases of when the expansion

of the wavefunctions going beyond first-order and the

nuclear matrix element no longer independent of the

electron and neutrino momenta are considered later).

The shape of the electron/positron energy spectrum is

thus defined by the combination of the phase space of

the emitted electron/positron and the Fermi factor.

Now consider the example of 64Cu, an interesting

radionuclide used in a number of nuclear medicine

applications and which undergoes all three types of b
decay: b� decay to 64Zn and both b+ decay and elec-

tron capture to 64Ni, as shown in Fig. 4.17.

The 64Cu electron and positron energy spectra are

shown in Fig. 4.18 and the differences in the shapes

of the spectra at low energies due to the differing

electron-nuclear and positron-nuclear Coulomb inter-

actions are readily apparent. The proportion of low-

energy electrons exceeds that of low-energy positrons

due to the nuclear Coulomb attraction and repulsion,

respectively.

Kurie Plot

Additional information about b decay can be had by

analyzing the algebraic rearrangement of (4.93),

g2

2p3�h �hcð Þ6
 !

Mfij j2 E0 � Eeð Þ2

¼
dlfi
dEe

� �
F ZY;Eeð ÞEe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

p
2
4

3
5: (4.94)

By taking the square-root of both sides, one can

form the linearized equation,

K Eeð Þ � C E0 � Eeð Þ (4.95)

where,

K Eeð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dlfi
dEe

� �
F ZY;Eeð ÞEe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

p
vuut

: (4.96)
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59Fe → 59Co;

64Cu → 64Zn;
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Fig. 4.16 Nuclear Coulomb correction factor used in the phase

space factor for Fermi b decay theory to correct for electron/

positron plane-wave assumption for two different types each of

b� and bþ decays as a function of the total electron/positron

energy (sum of kinetic and rest mass energies) normalized to

the maximum total energy available from the decay kinematics.

F(ZY, Ee) ¼ 1 is shown as a horizontal line
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The constant is,

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2

2p3�h �hcð Þ6
 !

Mfij j2
vuut : (4.97)

A plot of (4.96) vs. electron energy, known as the

Kurie plot, can yield considerable information

concerning a b decay, as shown schematically in

Fig. 4.19. Linear extrapolation to K Eeð Þ ¼ 0 yields

Ee ¼ E0 or the Q of the decay for a zero neutrino

mass. For a non-zero neutrino mass, the Kurie curve

would become nonlinear at high electron energies.

This is, in fact, one method used for determining the

neutrino mass. Another cause for deviation from line-

arity arises from C being a constant as a result of, for

example, the nuclear matrix element being dependent

upon the electron energy. Recall that the independence

of Mfi from Ee was due to the truncation of the electron

wavefunction at zeroth-order due to the assumption of

a point nucleus. When nuclear size is not neglected,

higher orders of the plane wave expansion are required

and the matrix element becomes dependent upon the

electron momentum/energy. Such nonlinearities occur

for forbidden transitions, so-called for their reduced

transition rates.

Decay Constant

In order to calculate the decay constant, l, it should be
recognized that it will be for all final states and is thus

obtained by integrating (4.93) over all possible b par-

ticle total energies,

l ¼
ðE0

me

dEe

dlfi Eeð Þ
dEe

¼ g2

2p3�h �hcð Þ6
 !

Mfij j2
ðE0

me

dEeEe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q

� E0 � Eeð Þ2F ZY;Eeð Þ

¼ g2

2p3�h �hcð Þ6
 !

Mfij j2
ðE0

me

dEeEe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q

� E0 � Eeð Þ2F ZY;Eeð Þ: (4.98)

Using the change of variable x ¼ Ee=me, the tran-

sition rate can be rewritten as,

l ¼ g2 m5
e

2p3�h �hcð Þ6
 !

Mfij j2

�
ðx0
1

dx x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
x0 � xð Þ2 F ZY; xð Þ

¼ g2 m5
e

2p3�h �hcð Þ6
 !

Mfij j2f ZY; x0ð Þ (4.99)
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Fig. 4.17 b� and EC decay

schema for 64Cu
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where

x0 ¼ E0

me

¼ 1þ Q

me

(4.100)

and where the Fermi integral is,

f ZY; x0ð Þ ¼
ðx0
1

dx x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
x0 � xð Þ2 F ZY; xð Þ:

(4.101)

While this integral itself does not have an analytical

solution, an approximation to it can be readily solved
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Fig. 4.18 Calculated electron

and positron energy spectra

for the b� and b+ decays of
64Cu. Curves are not

normalized
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Fig. 4.19 Plot of Kurie function vs. electron energy for zero

and non-zero neutrino masses
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should the daughter nucleus have a sufficiently small

ZY such that the Fermi factor is F ZY; xð Þ � 1,

f ZY;x0ð Þ�
ðx0
1

dxx
ffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p
x0�xð Þ2

� x20

ðx0
1

dxx
ffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p
þ
ðx0
1

dxx3
ffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p

�2x0

ðx0
1

dxx2
ffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p

� x20
3

x20�1
� �3

2þ 1

15
x20�1
� �3

2 3x20þ2
� �

�x20
4

ffiffiffiffiffiffiffiffiffiffiffiffi
x20�1

q
2 x20�1
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffi
x20�1

p
60

2x40�9x20�8
� �

: ð4:102Þ

From this result, it can be see that an approximate

proportionality arises for the transition rate,

l / E5
0

30
(4.103)

which predicts a strong dependence of the transition

rate upon the magnitude of the energy released by

the decay and that the transition rate will increase

markedly with released energy. Equation (4.103) is

Sargent’s rule (1933). This strong dependence of the

transition rate upon the decay kinematics must be

addressed if one wishes to compare different b-decays
with varying kinematics. This dependence upon Q can

be removed by defining the comparative half-life as

the product of the physical half-life and the integral of

(4.101),

ft � f ZY; x0ð ÞT1=2

¼ ln 2

g2 m5
e

2p3�h �hcð Þ6
� �

Mfij j2
/ 1

Mfij j2 :
(4.104)

As values of ft range considerably in magnitude, it

is conventional to work with the logarithm of the

comparative half-life, log10 ft (where t is in units of

seconds). This large variation of the comparative half-

life is indicative of the dependence upon the nuclear

wavefunctions, as shown by (4.104). The simplest b
decays (generally involving low-Z nuclei) involve the

greatest overlap of the initial- and final-state nuclear

wavefunctions and, from (4.102), the smallest compar-

ative half-life values. log10 ft values are provided in

the b decay schema and in Table 4.3.

4.3.3.3 Electron Capture

While the decay constant for EC will be calculated in

the same manner as that for b decay, two distinct

differences between EC and b decay should be noted

in the calculation of the matrix element and the phase

space factor. First, the neutrino is the only lepton

in the final state. Second, the electron is present in

the initial state but, because it is an orbital atomic

electron, it cannot be approximated by a plane-wave

wavefunction. The EC transition rate is,

lfi;EC � 2p
�h

1

L3

ð
d3rc�

nuc;f Ucnuc;ice

				
				
2

rf (4.105)

where the plane-wave approximation has been applied

to the neutrino only with, again, truncation to zeroth-

order. As before, the potential is set equal to a cou-

pling constant g within the nucleus and zero beyond,

giving,

lfi;EC � 2p
�h

g2

L3

ð
d3rc�

nuc;f cnuc;i ce

				
				
2

rf : (4.106)

As lower orbitals predominate in electron capture

due to their closer proximity to the nucleus and the

resultant greater degree of overlap between the nuclear

and electronic wavefunctions, we calculate lfi;EC;K for

a K-shell electron. The wavefunction for a 1s-orbital

electron in a hydrogen-like atom with atomic number,

ZX, is,

ce;KðrÞ ¼
ffiffiffiffiffiffiffiffiffi
Z3
X

p r31

s
e
� ZX r

r1ð Þ
(4.107)

where r1 is the Bohr radius and Zx is the atomic

number for the parent nucleus. As r is of the order of

5 fm, the ratio r=r1 � 10�4 allowing the exponential

term to be neglected and the electron wavefunction

treated as being spatially invariant within the nucleus,
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ce;K �
ffiffiffiffiffiffiffiffi
Z3
X

pr31

s
: (4.108)

This simplifies the expression of the EC transition

rate to,

lfi;EC;K � 2g2

�hr31

� �
Z3
X

1

L3
Mfij j2rf (4.109)

where the subscript K for the decay constant indicates

that the calculation is explicitly for the capture of a

K-orbital electron. The differential phase space term

for this 2-body decay is,

drf ¼
1

2p�hcð Þ3 4pL3
� �

p2nedpned Q� Tneð Þ

which, for the massless neutrino, reduces to,

drf
dEne

¼ L3

2p2 �hcð Þ3 E
2
ned E0 � Eneð Þ:

Integrating over the neutrino energy gives the com-

plete phase space factor (as this is a 2-body decay with

a negligible recoil kinetic energy, the neutrino will

take all of the available energy),

rf E0ð Þ ¼ L3

2p2 �hcð Þ3 E
2
0 (4.110)

which yields the electron capture transition rate,

lfi;EC;K ¼ g2

p2�h �hcð Þ3r31

 !
Z3
X Mfij j2E2

0:

As r1 ¼ �hc=ame,

lfi;EC;K ¼ g2m3
ea

3

p2�h �hcð Þ6
 !

Z3
X Mfij j2E2

0: (4.111)

By defining the dimensionless quantity

fEC;K ZX;E0ð Þ ¼ aZXð Þ3 E0

me

� �2

(4.112)

the electron capture decay constant can be written in

the form,

lfi;EC;K � g2m5
e

p2�h �hcð Þ6
 !

Mfij j2fEC;K ZX;E0ð Þ: (4.113)

Note that electron capture decay rate has a Z3-

dependence contained within the fEC;K ZX;E0ð Þ term.

4.3.4 Selection Rules for b Decay

4.3.4.1 Introduction

Having established the kinematic requirements for b
decay to occur and the probability with which it will

occur, it is now necessary to include the two so far

neglected two important and linked features: first, the

constituents of a b decay have angular momentum

and, second, the decaying nucleus has a finite size.

These have significant effects upon the probability of

a given b decay (Lipkin 1962).

Conservation of the total angular momentum in b
decay requires that the difference between the angular

momenta of the parent and daughter states equals the

total angular momentum carried away by the lepton

pair. This investigation of the deep role angular

momentum plays in b decay is begun by considering

the simplest case of b� decay, free neutron decay,

n ! pþ e� þ �ne, as shown in Fig. 4.20. As the neu-

tron is considered to be a point entity, no orbital

angular momentum is involved.

There are two possible final states resulting from

free neutron decay which correspond to the emitted

lepton pair having either antiparallel or parallel spins.

The transition leading to the final state in which the

lepton pair forms a spin singlet (i.e., coupled spin of 0)

is referred to as a Fermi transition, for a reason to be

shown later. As a consequence of the lepton spin

coupling, the spin state of the proton must be the

same as that of the neutron. The other final state, that

in which the lepton pair form a triplet (coupled spin

of 1) and the spin states of the neutron and proton are

consequently opposed, is the result of a Gamow–

Teller transition (Gamow and Teller 1936). In a
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Fermi transition for neutron decay, the operator trans-

forming the neutron spin state to that of a proton is the

unit operator. On the other hand, in the Gamow–Teller

transition the transformation of the neutron spin to the

proton spin is linked through the Pauli spin matrices.

Purely on the basis of this result, one would expect the

probability of a Gamow–Teller transition for neutron

decay to be three times greater than that of the Fermi

transition. This is not quite the case and the ratio of the

Gamow–Teller to Fermi transitions is actually equal to

3c2A, where cA ¼ 1:26, a consequence of the quark

structure of the nucleon.

4.3.4.2 Selection Rules in Nuclear b decay

Introduction

Next consider the role of angular momentum in

nuclear b decay. Throughout this study of nuclear b
decay so far, it has been noted several times that the

finite size of the nucleus has been ignored. This allows

the lepton wavefunction expansions to be truncated to

zeroth-order and, implicitly, for the lepton pair to be

taken to have been emitted from the nucleus with zero

angular momentum. As, classically, l ¼ r� p ¼ 0,

this latter condition is equivalent to saying that the

leptons are emitted radially (i.e., s wave) from the

nucleus as shown in Fig. 4.21. Thus, as in free neutron

decay, the change in nuclear angular momentum will

equal the coupling of the leptons into either a singlet or

triplet state.

When nuclear size is not neglected, there are two

significant consequences to the description of nuclear

b decay. First, non-zero orbital angular momentum is

now made available to the lepton pair and the change

in nuclear angular momentum can be greater than one.

Second, these non-zero orbital angular momentum

b decays contribute to the transition rate through

the higher-order terms of the lepton wavefunctions’

expansions. As these additional contributions are of

the order of qRNð Þl, the non-zero orbital angular

momentum transition will be highly suppressed rela-

tive to the s-wave transitions. Consequently, b decays

Triplet

Fermi Transition

Gamow-TellerTransition

Singlet

+1/2 +1/2 0

+1/2 +1/2 +1

n

n

pp ⎯ne

⎯ne

e–

e–

n p ⎯nee–

Fig. 4.20 b decay in the four-

point vertex approximation of

a free neutron and the

combinations of final spin

states for Fermi and Gamow–

Teller transitions

r

q I = r x p ≠ 0
q I = 0

pe

pe

pne

pne

Fig. 4.21 Effects of angular momentum in b decay. In the first

case, the nucleus is considered as a point and the matrix element

as being independent of electron and antineutrino momenta. The

orbital angular momentum of the exiting leptons is zero. In the

second case, the nucleus has a finite size and the lepton pair

leaves with a non-zero angular momentum
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associated with l ¼ 0 are referred to as being “allowed”

whereas those with l > 0 are labeled as being

“forbidden.”

Of the allowed transitions, the Fermi requirement

of a singlet lepton pair obviously dictates that there be

no change in the nuclear angular momentum between

parent and daughter nuclei, DJ ¼ 0. As the lepton pair

is in the triplet state following a Gamow–Teller decay,

the vector difference between the parent’s and daugh-

ter’s nuclear angular momenta must equal unity and

the change in nuclear angular momentum will be

DJ ¼ 0, 1 but with no 0 ! 0 transition. In either

allowed transition, there will be no change in nuclear

parity due to l ¼ 0.

Allowed Nuclear b decays

As b decay results in the change of isospin-projection,

isospin operators are required in describing these transi-

tions. Recalling the isospin ladder operators of Chap. 3,

t� ¼ t1�it2
2

, one can write operators for Fermi and

Gamow–Teller transitions for the nucleus as summa-

tions of the isospin ladder operators over all nucleons

(i.e., the operators act over the entire nuclear wave-

function),

T� ¼
XA
i¼1

t�ðiÞ Fermi transition (4.114)

Y� ¼
XA
i¼1

sðiÞt�ðiÞ

Gamow � Teller transition:

(4.115)

As the Gamow–Teller transition results in a change

in angular momentum, the Pauli spin matrix operator,

sðiÞ, must be included. Table 4.3 summarizes the

selection rules for Fermi and Gamow–Teller transi-

tions.

Fermi’s b decay theory, to which this discussion

shall return, predicted only DJ ¼ 0 transitions and the

characteristics of the first row of Table 4.3. However,

there was experimental evidence of the b� decay
6He ! 6Liþ e� þ �ne, in which the Jp of the parent

and daughter nuclei are 0+ and 1+ and the change in

nuclear isospin was DTj j ¼ 1. Such a transition would

be forbidden by the Fermi selection rules but obey the

Gamow–Teller selection rule. As there are b decays

that satisfy the Fermi selection rule (e.g., the
14O ! 14N� þ eþ þ ne for which the Jp of the parent

and daughter nuclei are both 0+), both transitions

existed in nature. Moreover, the summary of the tran-

sition rules of Table 4.3 shows that some b decays are

permitted by both Fermi and Gamow–Teller selection

rules, an obvious example being that of free neutron

decay. In other words, every Fermi transition contains

an admixture of a Gamow–Teller transition, except for

a 0 ! 0 transition.

From (4.114), one sees that the Fermi transition

occurs through the isospin ladder operator and,

hence, can only occur between isospin multiplets.

This sets a severe restriction upon this transition

type. As these transitions can only occur between

isobaric analogue states, it is necessary to reflect

upon the energy differences between the nuclear levels

of the parent and daughter nuclei. The energies of

matching levels will increase with atomic number

due to the Coulomb repulsion between protons.

Hence, Fermi transitions cannot occur in b� decays,

as shown by Fig. 4.22. But even within the permitted

b+ decays, Fermi transitions can occur only for nuclei

with more protons than neutrons since, in the case of

N > Z, the isospin of the daughter nucleus exceeds

N = Z

b+

b+

t3 = 0 t3 = +1t3 = −1

Fig. 4.22 Fermi transitions for b+ decay between isobaric

analogue states. Due to the Coulomb interaction between pro-

tons, corresponding energy levels in an isobar multiplet are

higher for an isobar with a greater number of protons

Table 4.3 Selection rules for Fermi and Gamow–Teller

allowed b decays

Transition Change in

Angular

momentum, DJ

Parity DP Isospin DT

Fermi 0 0 0

Gamow–

Teller

|DJ| ¼ 0,1 0 |DT| ¼ 0,1

No 0 ! 0 No 0 ! 0
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that of the parent. In practice, Fermi transitions are

relegated to b+ decays in light nuclei.

The b-decay transition matrix element can be split

up into Fermi and Gamow–Teller components,

Mfij j2 ¼ CFj j2 MFj j2 þ CGTj j2 MGTj j2 (4.116)

where one averages over the initial spin states and

sums over the final spin states,

MFj j2 ¼ 1

2Ji þ 1

X
i;f

cfh jT� cij ij j2 (4.117)

MGTj j2 ¼ 1

2Ji þ 1

X
i;f

cfh jY� cij ij j2: (4.118)

The reduced transition probabilities are defined as,

B�
F ¼ cfh jT� cij ij j2

2Ji þ 1
(4.119)

B�
GT ¼ c2A cfh jY� cij ij j2

2Ji þ 1
: (4.120)

The effects of the nuclear structure upon the

allowed transition are contained within B�
F and B�

GT.

The transition rate of (4.99) can thus be rewritten as,

l ¼ g2 m5
e

2p3�h �hcð Þ6
 !

BF þ BGTð Þf ZY; x0ð Þ (4.121)

Forbidden Nuclear b decays

Forbidden transitions are those with large log ft

values, involve parity change and an angular momen-

tum change of greater than one (Marshak 1942). The

total angular momentum taken by the lepton pair is

J ¼ L S, which, for a lepton pair, assumes values of

(l� 1), l, (lþ 1). A first-forbidden transition is one for

l ¼ 1, a second-forbidden transition is one for l ¼ 2,

etc. Parity can change in forbidden transitions as

DP ¼ PfPi ¼ �1ð Þl and l > 0. Table 4.4 presents

the categories of allowed and forbidden b-decay tran-

sitions and the corresponding observed ranges of

log10 ft values, and Table 4.5 gives transition data for

a variety of b decays.

4.3.5 Fermi Theory of b Decay: Part II

4.3.5.1 Four-Fermion Interaction Vertex

Modern weak interaction theory underlying b decay is

based upon the exchange of the massive intermediate

vector bosons, W� and Z0, between fermions. Fermi’s

theory did not include these exchanges but instead

described the weak interaction in analogy to the elec-

tromagnetic interaction (Fig. 4.23) but as occurring at

a vertex at which four fermions meet. Because the

intermediate vector bosons are massive (the W� has

a rest mass of over 80 GeV), the corresponding inter-

action distance is small (of the order of 10�3 fm) and,

hence, Fermi’s use of a point interaction is valid for

b decay. In fact, the Fermi theory represents the low-

energy limit of the modern Glashow–Weinberg–

Salam theory. Here, we look at Fermi’s relativistic

theory applied to the simple case of neutron decay

and the weak interaction.

To work through the Fermi theory, one can begin

by considering it, as did Fermi, as an analogue to

the electromagnetic interaction. Electrons produce an

electromagnetic four-current density of the form,

JEMm ðXÞ¼�ceðXÞgmceðXÞwhich couples to the electro-
magnetic field AmðXÞ to form the electromagnetic Ham-

iltonian density, HEMðXÞ¼�eceðXÞgmceðXÞAmðXÞ.
Before deriving the Fermi theory, recall that the matrix

Table 4.4 Categories of b decay transitions

Decay type DJ DP Typical range

of log10 ft

Superallowed

(Fermi and GT)

0 No 3

Allowed 0, 1; not

0 ! 0

No 4–6

First forbidden 0, 1, 2 Yes 5–10

Second forbidden 2, 3 No 11–16

Third forbidden 3, 4 Yes 17–22

Fourth forbidden 4, 5 No 22–24
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element for b decay contains the wavefunctions of four

spin-½ particles corresponding to,

n ! pþ e� þ �ne

p ! nþ eþ þ ne

pþ e� ! nþ ne:

In each case, there are hadronic and leptonic com-

ponents22 and, hence, weak hadronic and weak lep-

tonic current densities must be constructed. The weak

hadronic current density applied to free neutron decay

is,

VCy
m ðXÞ ¼ cpðXÞgm cnðXÞ (4.122)

and a leptonic current density is,

lCm ðXÞ ¼ ceðXÞgm cneðXÞ: (4.123)

Recall that the Dirac 4 � 4 matrices are,

g0 ¼ 1 0

0 �1

� �

gi ¼ 0 si

�si 0

� �
i ¼ 1; 2; 3

and where the C superscript indicates that the electric

charge of the hadron is being changed. For a point-like

e− e−

Am Wm

d

n p

u

e−

e−

e−e−

ne

ne

Fig. 4.23 The electromagnetic and weak interactions shown as

the exchange of bosons; the Fermi four-fermion vertex approx-

imates the short distance flavor-changing exchange of the inter-

mediate vector W� boson as a single interaction point

Table 4.5 Transition data for b decays (in order of increasing log ft)

Parent Decay mode Daughter Jpi ! Jpf Transition Half-life log10 ft
6He b� 6Li 0þ ! 1þ GT 797 ms 2.77
3H b� 3He 1

2

þ ! 1
2

þ F/GT 12.33 years 3.05
14O b� 14Na

0þ ! 0þ F 71.36 s 3.495
18F 96.86% b+, 3.14% EC 18O 1þ ! 0þ GT 1.8295 h 3.57
11C 99.7% b+, 0.3% EC 11B 3

2

� ! 3
2

�
F/GT 20.39 min 3.592

15O 99.9% b+, 0.1% EC 15N 1
2

� ! 1
2

�
F/GT 2.037 min 3.6

13N 99.8% b+, 0.2% EC 13C 1
2

� ! 1
2

�
F/GT 9.965 min 3.654

64Cu 18% b+, 44.9% EC 64Ni 1þ ! 0þ GT 12.701 h 4.97
64Zn 5.2937.1% b�

14C b� 14N 0þ ! 1þ GT 5,730 years 9.04a

39Ar b� 39K 7
2

� ! 3
2

þ Forbidden 269 years 9.03
10Be b� 10B 0þ ! 3þ 1.6 � 106 years 12.08
40K b� 40Ca 4� ! 0þ 1.26 � 109 years 15.6
115In b� 115Sn 9

2

þ ! 1
2

þ 6 � 1014 years 23.0

aAlthough 14C�!b
�

14 N is an allowed transition, the high log10 ft value is due to a small matrix element

22A full examination of the weak interaction would consider the

pure leptonic currents of, say, m� ! e� þ ne þ �ne or the pure

hadronic currents of Kþ ! pþ þ pþ þ p�:
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interaction between these two currents, a Hermitian

Hamiltonian density can be constructed as,

HðXÞ¼g VCmðXÞlCym ðXÞþlCmðXÞVCy
m ðXÞ

� �

¼g cnðXÞgmcpðXÞcneðXÞgmceðXÞ
�

þceðXÞgmcneðXÞcpðXÞgmcnðXÞ
�

¼gV:

(4.124)

The V denotes this to be a vector interaction as
�cgm c transforms like a polar vector when undergoing

a Lorentz transformation. The first term of this Hamil-

tonian describes b+ decay and electron capture and

the second term describes b� decay. Importantly, the

vector Hamiltonian describes a Fermi transition. To

demonstrate this, consider the nonrelativistic case for

which the nucleon wavefunction is c ¼ f
0

� �
. Then,

the m ¼ 0 component of the nucleon current is,

cpg0cn ¼ cþ
p g0g0cn

¼ fþ
p 0

� � 1 0

0 1

� �
fn

0

� �

¼ fþ
p fn

(4.125)

and the m ¼ 1, 2, 3 space component is,

cpgmcn ¼ cþ
p g0gmcn

¼ fþ
p 0

� � 1 0

0 �1

� �
0 sm

�sm 0

� �
fn

0

� �

¼ fþ
p 0

� � 1 0

0 �1

� �
0

�smfn

� �

¼ fþ
p 0

� � 0

smfn

� �

¼ 0: ð4:126Þ

Hence, DJ ¼ 0. However, as Gamow–Teller transi-

tions exist in nature, it is clear that this vector–vector

(VV) coupling cannot be the only interaction involved

in weak decays. Gamow and Teller noted that other

Lorentz-invariant current densities beyond the VV

coupling of gmgm can be made. From these constructs,

there are five types of current density structure,

Scalar (S) cpcn

Pseudoscalar (P) cpg5cn

(Polar) vector (V) cpgmcn

(Axial) vector (A) cpg5gmcn

Tensor (T) cpgmg
ncn

As has been done for the VV current coupling,

Hamiltonians can be constructed from these struc-

tures. However, a real Hamiltonian must reduce to a

single component and, hence, can only be a scalar or

pseudoscalar quantity. The only resulting possible

couplings yielding such quantities are SS, VV, TT,

AA, PS and VA. A pseudoscalar weak Hamiltonian

was not considered acceptable as it violated parity

conservation (recall Table 3.2 in Chap. 3) and, as the

PS and VA couplings yielded such a parity-nonconser-

ving Hamiltonian, they were rejected until the 1950s.

It was not considered possible that parity would not be

conserved in weak interactions as it was in the strong

and electromagnetic interactions. Up until that time,

the weak interaction was assumed to be made up of SS

and TT components which permitted a Gamow–Teller

transition with a scalar Hamiltonian. But before this is

demonstrated to not be the case, the experimental

evidence of parity violation by the weak interaction

during the 1950s and which led to the appropriate

current coupling is reviewed.

4.3.5.2 Evidence for Parity Nonconservation

in Weak Interactions

The y-t Dilemma

y and t mesons were discovered in cosmic rays (they

are now known as K mesons, or kaons). Experiment

demonstrated that while they had the same mass, spin,

and half-life, they differed in their decay processes,

tþ ! pþ þ p0

yþ ! pþ þ p0 þ p0 or yþ ! pþ þ pþ þ p�:

These are weak decays (with mean lifetimes of the

order of 10�8 s) and it was within this difference

between decay products that a fundamental dilemma

arose. The pion has zero spin and a negative intrinsic

parity as shown experimentally by pion absorption in

deuterium. Hence the dipion final state of t meson

decay has a parity of þ1 whereas the tripion final
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state of y meson decay has a parity of �1. The only

evident difference between the y and t mesons was

their parity, and this indicated the nonconservation of

parity. This result was problematic as parity selection

rules had worked well in nuclear and atomic physics

(i.e., parity was conserved in strong and electromag-

netic interactions). Triggered by this dilemma, Lee

and Yang (1956) postulated the possibility that parity

was in fact not conserved in weak interactions. They

reviewed the results of all known experiments of the

weak interaction performed to that time to detect evi-

dence for parity nonconservation. Their review con-

cluded that all prior experiments had in fact measured

scalar quantities and, thus, unable to detect parity

violation.23 They recommended a number of tests to

determine if parity is conserved in weak interactions.

The critical one was performed by Wu et al. (1957)

and is discussed next.

Parity Nonconservation in b Decay

On the basis of Lee’s and Yang’s suggestions, Wu

et al. (1957) designed and performed a fundamental

experiment to prove the nonconservation of parity by

measuring a pseudoscalar quantity in the Gamow–

Teller b� decay of 60Co to 60Ni of Fig. 4.24. It will

be noted that photon emissions are associated with this

decay.24 The experiment was designed to measure the

expectation value of the scalar product of the nuclear

spin and the electron momentum, which is a pseudos-

calar variable.

The experiment is shown schematically in

Fig. 4.25. The apparatus was designed to measure the

mean value of the pseudoscalar quantity given by the

scalar product of the velocity of the electron emitted in

the b� decay of 60Co and the orientation of the nuclear

spin, v � J. Should parity be conserved, this mean

value would be zero, indicating that b decay is sym-

metric in space. In order to orient the spin of the 60Co

nucleus, a 60Co sample in the form of a 50 mm thick

layer coated on the top of a paramagnetic crystal

cerium magnesium nitrate was cooled to 0.003�K
using adiabatic demagnetization. The entire structure

was encased within a vacuum vessel and surrounded

4+

5+

β−

60Co

60Ni

2+

0+

1.17 Mev

1.33 Mev

γ

γ

Fig. 4.24 60Co b� decay to 60Ni

Vacuum vessel

(Approximate)
Polar Nal Detector

Lucite light guide

Anthracene
crystal

Equatorial Plane
Nal Detector

CeMg nitrate
housing

60Co

Solenoid Magnet

Fig. 4.25 Schematic diagram of experimental apparatus used

by Wu et al. (1957) to detect parity nonconservation in b decay

23However, Cox et al. (1928) had unknowingly provided evi-

dence for parity conservation in their measurements of the

longitudinal polarization of electrons from b decay. This result

was disbelieved at the time due to, for example, the failure of

attempts to reproduce the measurements but by using unpolar-

ized electrons arising from thermionic emission. 24The 1.17 and 1.33 MeV g rays are used in radiotherapy.
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by a solenoid coil that oriented the spin of the 60Co

nuclei.

An anthracene crystal set immediately above the

source detected the b particles and a lucite light guide

carried the scintillation light from the crystal resulting

from electrons bombarding the crystal to an external

photomultiplier tube. Two sodium iodide scintillators

external to the vacuum vessel were used to detect the

degree of 60Co polarization. Regardless of the orienta-

tion of the polarized 60Co spin being parallel or anti-

parallel to the magnetic field, the count-rate from the

equatorial sodium iodide (NaI) scintillator counter

exceeds that of the polar counter and, hence, provides

a measure of the polarization of the nucleus. The

measurement was of the change in b particle counting

rate during the time following when the nuclei were

oriented and then allowed to warm. As the sample

warmed, the polarization of the 60Co nuclei was lost,

as can be seen in the schematic results of Fig. 4.26.

This loss of photon anisotropy was a direct measure of

nuclear polarization. As also shown in the figure, the

detected b particle rate was greater in one orientation

of the 60Co nuclei than in the other: i.e., the emission

of b particles is more favored in the direction opposite

to that of the nuclear spin. Hence, v � J 6¼ 0 and the

nonconservation of parity in b decay was demon-

strated.

Neutrino Helicity

Here, what is properly regarded as one of the most

elegant and cleverest physics experiments ever per-

formed is described. This experiment demonstrated

that the orientation of the spin of a neutrino is antipar-

allel to the neutrino’s direction of motion. As the spin

is an axial vector and the momentum is a polar vector,

a non-zero longitudinal polarization of the neutrino is

indicative of parity violation. The helicity operator for

a fermion is defined as,

@ ¼ p � s
p � sj j ¼ 2p̂ � s (4.127)

where s is the spin operator and p is the momentum

operator. @ has the eigenvectors c�j i, which are states
in which the spin is parallel or antiparallel to the

particle’s direction of motion with eigenvalues �1,

@ c�j i ¼ � c�j i: (4.128)

Parity invariance would require that neutrinos with

positive or negative helicities be equally probable and

any type of measured neutrino helicity asymmetry

would thus reflect parity violation. The Goldhaber–

Grodzins–Sunyar experiment (Goldhaber et al. 1958)

demonstrated this helicity asymmetry for ne. Their
method was to begin with a nucleus with angular

momentum 0 which decays through allowed EC (i.e.,

l ¼ 0) to an excited state of a daughter nucleus with

angular momentum 1. As the decay is through electron

capture, only the daughter nucleus and neutrino are

present in the final state and, hence, the neutrino will

have a fixed energy due to the at-rest initial state and

the two-body final state. The combined angular

momenta of the daughter nucleus (angular momentum

of 1) and neutrino must equal that of the K-shell

electron prior to capture, so one need only measure

the polarization of the daughter nucleus in order to

determine that of the neutrino. The initial nucleus was
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Fig. 4.26 Schematic representation of the results of Wu et al.

(1957)
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the metastable isomer 152mEu, produced through neu-

tron bombardment of europium, which undergoes

b� decay and electron capture and Fig. 4.27 shows

that part of the decay chain from 152mEu to 152Sm.

The EC from the 0� state of 152Eu to the excited 1�

state of 152Sm (which is denoted as 152Sm*) requires

the following angular momentum balance. The initial

state angular momentum of ½ (that of the K-shell

electron) must equal the final state angular momentum

made up of the angular momentum of 1 from the
152Sm nucleus and the ½ – spin of the neutrino. This

is shown schematically in Fig. 4.28. As the final state

of EC is a two-body state with the initial state being at

rest, the conservation of momentum requires that the

momenta of the 152Sm* nucleus and of the neutrino

oppose each other. Further, as the conservation of

angular momentum requires that the angular momen-

tum of 152Sm* and the spin of the neutrino oppose each

other, the polarizations of the neutrino and the 152Sm*

nucleus must be the same. Hence, it is only needed to

measure the polarization of the 152Sm* nucleus in

order to determine the neutrino polarization. The mea-

surement of the 152Sm* polarization is enabled by the

fact that 152Sm* decays electromagnetically through

the emission of a g ray to the ground state of 152Sm,

which has zero angular momentum. As the photon is

spin-1, the photon spin must be parallel to the angular

momentum of 152Sm*, as shown in Fig. 4.29. Hence,

photons emitted in the same direction as the 152Sm*

nucleus will have the same polarization, to within a

factor of ½) as the neutrino. As a result, the measure-

ment of the neutrino polarization/helicity reduces to

measurements of the polarization of the photon and its

direction relative to that of the 152Sm* nucleus. How

this was achieved is shown schematically in Fig. 4.30.

The basic structure of the apparatus was of a source

of 152mEu placed within an iron analyzing magnet and

a detector consisting of a sodium iodide scintillator

coupled to a photomultiplier tube. Surrounding the

scintillator was the annular conical frustum made

of Sm2O3 and the scintillator was shielded from the

direct g rays from the 152mEu source by lead. The

g rays from the 152Sm* de-excitation that were trans-

mitted through the analyzing magnet were scattered by

the Sm2O3 annulus through nuclear resonant scattering

to be detected by the scintillator. Recall that the

837 kev
14 %

2+

1−

0−

0+

152Sm

152Eu

T1/2 = 9.3 hours

961 kev
10 % 0.02%

24%

Fig. 4.27 Partial decay schema of 152Eu to 152Sm
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e− e−
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152Sm∗ 152Sm∗ ne
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+1−½ −½After EC

Fig. 4.28 This shows schematically the possible arrangement

of the z-components of the spins/angular momenta (full arrows)
and the momenta (thin arrows) of the excited 1� state of the
152Sm* nucleus and neutrino following electron capture by the

0� state of 152mEu. Those on the left correspond to a right-

handed neutrino in which the neutrino spin orientation is paral-

lel to the neutrino’s direction of motion. Those on the right

correspond to a left-handed neutrino in which the neutrino

spin orientation is antiparallel to the neutrino’s direction of

motion
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experiment is to measure the polarization of the

photons and their direction relative to the recoil
152Sm nucleus. Depending upon the orientations of

the directions of the photon polarization and the spin

of the electrons in the magnetized iron, the g rays

resulting from the 152Sm* de-excitation interact with

the electrons in the magnetic material differently. If

the photon and electron spins are parallel, the incident

photon cannot affect the electron spin and does not

interact with the electron. If the electron spin is anti-

parallel to that of the g ray, then the photon induces a

spin-flip in the electron and is consequently absorbed.

Hence, those g rays with spins parallel to those of the

atomic electrons in the magnetic will penetrate the

magnet and exit to impinge on the Sm2O3 scatterer.

By selecting the direction of the field of the analyzing

magnet, it was then possible to select the polarization

of the transmitted g rays.

Next, in order to measure the direction of the g ray

relative to the 152Sm* nucleus recoiling from the emis-

sion of the neutrino as a result of the EC, advantage

was taken over the phenomenon of nuclear resonant

scattering. Consider the case in which a nucleus in an

excited state of energy Ei decays to a state of energy Ef

with the emission of a photon with an energy equal to

DE ¼ Ei � Ef in the reference frame of the nucleus.

Should another nucleus in the state of energy Ef and of

the same species be present in that same reference

frame, it can absorb this photon (to within a natural

transition width, equal to 23 meV for 153Sm*) to yield

an excited nucleus with a state of energy Ei . This is the

phenomenon of resonant absorption fundamental to

the Mössbauer effect. However, an absorbing nucleus

152Sm∗

152Sm

152Sm

+1

Before g  Emission

After g  Emission

+1

+1

g 

g 

Fig. 4.29 This shows schematically the possible arrangement

of the z-components of the spins/angular momenta (full arrows)
and the momenta (thin arrows) of the excited 1� state of the

152Sm* nucleus and neutrino following electron capture by the

0� state of 152mEu. The photon spin is always in the same

direction as the angular momentum of 152Sm*

Pb

Trajectory
of Photon

Shielding

Photomultiplier
Tube

Nal (TI)
Scintillator

Sm2o2 scatterer
(cross-section
of frustum of

conical annulus)

Analysing
magnet

152mEu source

Fig. 4.30 Schematic representation of the Goldhaber–Grod-

zins–Sunyar experiment to measure the neutrino helicity. See

text for description
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in the ground state will not be found in the same

reference frame as the emitting nucleus and, in the

laboratory reference frame, the emitted photon will

not have an energy equal toDE but, rather an energy

reduced by DEð Þ2=2mf, where mf is the rest mass of

the daughter nucleus (this result is derived in the

following section). This energy reduction is that due

to the recoil energy of the daughter nucleus which, in

the case of 152Sm, is equal to about 3.2 eV. This recoil

energy is more than enough to shift the photon energy

to ensure that resonant scattering cannot occur. How-

ever, if the 152Sm* nucleus is already in motion prior to

the g ray de-excitation, it can compensate for this

reduction in photon energy by transferring some of

the recoil energy resulting from the EC and neutrino

emission to the photon (i.e., a Doppler shift). Such a

transfer will be a maximum if the photon is emitted

in the direction of the 152Sm* motion, thus enabling a

reabsorption of the photon by 152Sm in the scatterer

and a reemission (nuclear resonant scatter). Thus,

those photons detected by the NaI scintillator were

generated by those directed in the direction of the
152Sm* motion, the polarization of which were given

by the orientation of the magnetic field in the analyzer.

The analyzing power, equal to the difference in photon

detection rate with the magnetic field directed upwards

and that with the field directed downwards normalized

to the average, was

P ¼ 2
Nþ � N�
Nþ þ N�

¼ 0:017� 0:003

This was a non-zero result; in fact, Goldhaber,

Grodzins and Sunyar determined, from the estimated

three mean free paths for photons through the mag-

netic material, that 68% of the photons were polarized

with negative helicity. Hence, it was demonstrated that

neutrinos had negative helicity (i.e., were left-handed).

This asymmetry, as noted at the beginning of this

discussion, demonstrated the lack of parity conserva-

tion in weak interactions.

4.3.5.3 V-A Interaction

The experimental results clearly demonstrated the

nonconservation of parity in b decay. The helicity

operator @ of (4.127) is not relativistically invariant

for massive fermions; for such fermions, it is always

possible to have a Lorentz boost from one reference

frame in which the helicity is positive/negative

to another reference frame in which the helicity is,

correspondingly, negative/positive. However, this dis-

cussion concerns a massless fermion, the neutrino.

For massless fermions, the operator g5 is equivalent

to the helicity operator @, as shall now be demon-

strated Recall that the Dirac spinor for a particle of

mass m is,

u p;sð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p ws
s�pffiffiffiffiffiffiffiffi
Eþm

p ws

� �
:

Thus, the Dirac spinor of a massless particle is,

u ¼ ffiffiffi
p

p w
s�p
p

� � w
 !

: (4.129)

Applying the helicity operator to this spinor,

@u ¼ �s � p
pj j

ffiffiffi
p

p w
s�p
p

� � w
 !

¼ ffiffiffi
p

p
s�p
pj j

� �
w

s�p
p

� �2
w

0
B@

1
CA

¼ ffiffiffi
p

p s�p
pj j

� �
w

w

 !
:

(4.130)

It is also noted that

g5u ¼ ffiffiffi
p

p 0 1

1 0

� � w
s�p
p

� � w
 !

¼ ffiffiffi
p

p s�p
p

� �
w

w

 !
:

(4.131)

The chirality operator 1� g5ð Þ=2 projects out the

left-handed components of any spinor for massless

particles with negative helicity, i.e., neutrinos. This

can be shown using the Pauli two-component spinors

w� which are described by,

s � p
p

w� ¼ �w� (4.132)
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where � describes the spin orientation of a spin-½

particle. Thus, from (4.129) the corresponding Dirac

spinors are,

u� ¼ ffiffiffi
p

p w�
�w

� �
(4.133)

from which is obtained,

1� g5
2

� �
u� ¼ �u� (4.134)

and

1� g5
2

� �
uþ ¼ 0: (4.135)

Returning to the hadronic and leptonic current den-

sities of b decay given by (4.122) and (4.123) and

using the chirality operator, one can now construct a

leptonic current density which produces left-handed

neutrinos,

lCm ðXÞ ¼ �ceðXÞgm 1� g5ð Þc�neðXÞ (4.136)

and a similar form of the hadronic current density,

VCy
m ðXÞ ¼ �cpðXÞgm 1� cAg5ð ÞcnðXÞ: (4.137)

Both weak currents contain the Fermi polar vector

component and an axial vector component which is the

V-A (pronounced V minus A) structure of the weak

interaction.

4.4 g Transitions and Internal
Conversion

4.4.1 Introduction

The daughter nucleus resulting from a or b decay will

be left in one of three states. It may be stable to

further radioactive decay: the maximum nuclear bind-

ing energy for the isobar series (i.e., the mass para-

bola’s minimum) will have been attained. The

nucleus may still yet undergo further a or b decay.

Finally, the nucleus may be such that while further a
or b decay is not energetically feasible, it is in an

excited state in which one or more nucleons are

placed in higher orbitals above the ground state. The

nucleus can de-excite through the release of electro-

magnetic energy as the nucleon cascades to the

ground state. There are two energy-transfer channels

available. In the first, energy is released in the form of

g rays with energies, in the reference frame of the

nucleus, equal to the energy differences between the

orbitals that the nucleon transits between. This g
transition is a nuclear process. On the other hand,

the second channel is an atomic process and is one

in which the excess nuclear energy is transferred

directly to an atomic electron (through the exchange

of a virtual photon) but without the emission of elec-

tromagnetic energy. Should this transferred energy

exceed the electron binding energy, the electron is

ejected from the atom, inducing a variety of atomic

relaxation processes as discussed in Chap. 6. This

second channel is known as IC.

While a full description of nuclear electromagnetic

processes is inherently quantum-mechanical, consid-

erable understanding can be achieved through the use

of classical and semiclassical theories. As a result,

these will be the foundation of the derivations of the

transition probabilities of g rays and the selection

rules that arise through the conservation of angular

momentum and parity. Links to quantum theory will

be forged where appropriate and necessary. This sec-

tion begins with a review of the kinematics of g decay

and, using classical multi-pole expansions of the elec-

tromagnetic field, derives transition selection rules

(similar to those of b decay) based upon the angular

momentum carried away by the emitted photon (equal

to the difference between those of the initial and final

nuclear states) and parity. These expansions also

allow a derivation of the transition rate (the reciprocal

of the mean lifetime) of a given nuclear state and

this is examined as a function of photon energy

and photon multi-pole type. Following this study of

g decay, IC is reviewed.

4.4.2 g Decay

4.4.2.1 Kinematics

Consider an excited nucleus with energy Ei making a

transition to a state with energy Ef through the
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emission of a g ray. While it is frequently stated that

the g ray is emitted with an energy equal to the energy

difference between the two states, k ¼ DE ¼ Ei�Ef,

this is only true in the reference frame of the nucleus.

In the laboratory reference frame, however, consider-

ation of the simultaneous conservations of energy and

linear momentum shows the nucleus takes some of this

energy difference as a recoil kinetic energy. The con-

servation of energy in the laboratory is,

mi ¼ mf þ kþ Tf : (4.138)

where mi;f are the rest masses of the nucleus before

and after the transition such that DE ¼ mi�mf and Tf

is the nuclear recoil kinetic energy. The conservation

of momentum is,

pf ¼ k: (4.139)

As the nucleus is sufficiently massive to assume

that its recoil is nonrelativistic, then,

DE ¼ kþ k2

2mf

: (4.140)

Solving the resulting quadratic equation

k2 þ 2mfk� 2mfDE ¼ 0 for the photon energy gives

the full result for the photon energy,

k ¼ mf

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

DE
mf

s
� 1

 !
: (4.141)

Expanding the square-root to second order,

k ¼ DE 1� DE
2mf

� �
(4.142)

Hence, the photon energy will be reduced by, to

second order, an amount of DE2=2mf due to the recoil

of the nucleus. But, as DE 	 mf, k ¼ DE can be

assumed in practice.

4.4.2.2 Multi-Pole Radiation

Introduction

The nucleus with excitation energy DE prior to g
decay can be thought of as distributions of electric

charge, current and (as the nucleons have intrinsic

spin) magnetization moving with periodic motion at

a frequency o ¼ DE=�h and confined to a region of the

order of nuclear dimensions. As there is a marked

range in measured g decay lifetimes, selection rules

based upon the conservations of angular momentum

and parity are suggested. Hence, nuclear radiation

emission can be investigated in terms of classical

theory of electric and magnetic multi-poles.

The multi-pole expansion in free space is initially

applied to nuclear g emission in order to first establish

these selection rules and then to calculate energy,

angular momentum and spatial distribution of multi-

pole radiation. This derivation shows, inter alia, that

0 ! 0 g transitions are impossible in g emission,

although they are permissible in IC. These results are

extended to the case of where the source is present and

used to estimate the rate at which g emission occurs as

a function of photon energy, atomic mass number, and

multi-pole order.

Multi-Pole Expansion in Free Space

Modelling the excited nucleus as a conglomeration of

periodically moving electric charges with frequency o
leads to induction and radiation zones based upon the

inequalities of r 	 c=o and r � c=o, respectively. One
can use analogous inequalities of r 	 �hc=k and

r � �hc=k where �hc=k � 200 fm and �hc=k � 20 fm

for 1 and 10 MeV photons, respectively. Within the

induction zone, the electric and magnetic fields are

calculated directly from Maxwell’s equations knowing

the positions and velocities of the moving charges.

Extending into the radiation zone, retardation (i.e.,

the time delay between when an electromagnetic

wave is “emitted” and when it is “detected” at a

distance) must be accounted for. The multi-pole

expansion in the radiation zone in vacuo and with no

source present in the region is evaluated first. In this

case, Maxwell’s equations are,

r � E ¼ 0 (4.143)

r �H ¼ 0 (4.144)

r� E ¼ �m0
]H

]t
(4.145)
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r�H ¼ e0
]E

]t
(4.146)

The fields harmonically vary as e�iot (where it is

understood that the real part of the complex quantity is

taken) so that the time derivatives are,

]E

]t
¼ �ioE (4.147)

]H

]t
¼ �ioH: (4.148)

The curls of the fields can be written as,

r� E ¼ ik
ffiffiffiffiffi
m0
e0

r
H (4.149)

r�H ¼ �ik
ffiffiffiffiffi
e0
m0

r
E: (4.150)

Note that the wave-number k ¼ o=c and the rela-

tionship c ¼ 1=
ffiffiffiffiffiffiffiffiffi
e0m0

p
have been used. In order to

develop the multi-pole expansion of the electromag-

netic field, the Helmholtz equation is derived for the

individual vector components of the fields by taking

the curl of (4.149) and substituting (4.150)

r� r� Eð Þ ¼ ik
ffiffiffiffiffi
m0
e0

r
r�H

¼ k2E: (4.151)

As the vector triple product is,

r� r� Eð Þ ¼ r � Eð Þr �r2E

¼ �r2E
(4.152)

then,

r2 þ k2
� �

E ¼ 0 (4.153)

and, similarly,

r2 þ k2
� �

H ¼ 0: (4.154)

As these are vector equations, it is the Cartesian

coordinates of the electric and magnetic fields that will

satisfy the Helmholtz equation,

r2 þ k2
� �

f ¼ 0 (4.155)

where f is a scalar function. The Helmholtz equation is

solved via a separation of variables and by writing

the scalar function as an expansion in spherical har-

monics,

f rð Þ ¼
X1
l¼1

Xl
m¼�l

flðrÞYlm y;fð Þ: (4.156)

The radial term is solved through a form of (2.104),

r2
d2

dr2
þ 2r

d

dr
þ r2k2 � l lþ 1ð Þ

� �
flðrÞ ¼ 0 (4.157)

which is rearranged and, following the substitution

ulðrÞ ¼
ffiffi
r

p
flðrÞ, arrives at Bessel’s equation for half-

integer order (lþ1/2),

d2

dr2
þ 1

r

d

dr
þ k2 � lþ 1=2ð Þ2

r2

 !
ulðrÞ ¼ 0: (4.158)

From (2.109) to (2.111), one can then write a gen-

eral solution to the Helmholtz equation of the form,

f r; kð Þ ¼ 1ffiffi
r

p
X1
l¼1

Xl
m¼�l

�
AlJlþ1=2 krð Þ

þBlNlþ1= 2 krð Þ
�
Ylm y;fð Þ

(4.159)

where the coefficients Al and Bl are defined by the

boundary conditions. This solution can be simplified

by using the Hankel functions which are defined by,

h
ð1Þ
l krð Þ ¼

ffiffiffiffiffiffiffi
p
2kr

r
Jlþ1=2 krð Þ þ iNlþ1=2 krð Þð Þ (4.160)
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h
ð2Þ
l krð Þ ¼

ffiffiffiffiffiffiffi
p
2kr

r
Jlþ1=2 krð Þ � iNlþ1=2 krð Þð Þ: (4.161)

The general solution to the Helmholtz equation is,

f r;kð Þ¼
X1
l¼1

Xl
m¼�l

Alh
ð1Þ
l krð ÞþBlh

ð2Þ
l krð Þ

� �
Ylm y;fð Þ:

(4.162)

Rather than calculate for the field vector Cartesian

components from the above, a simpler approach origi-

nally devised by Bowkamp and Casimir (1954) is

followed in which the scalar products r � E and

r �H are instead solved for and the electric and mag-

netic fields of the electric and magnetic multi-poles

subsequently extracted.25 To show the suitability of

these substitutions, consider the Laplacian acting upon

the scalar product r �H,

r2 r � Eð Þ ¼ r � r2Eþ 2r � E (4.163)

so that,

r2 þ k2
� �

r � Eð Þ ¼ r � r2Eþ 2r � Eþ k2 r � Eð Þ:
(4.164)

As the second term is equal to zero for the source-

less case and the sum of the first and third terms is

equal to zero, then r � E satisfies the Helmhotz equa-

tion as does r �H.

The multi-pole expansions of the electromagnetic

fields are determined by first calculating for the mag-

netic multi-pole field of order (l, m). The conditions,

r �HðMÞ
lm ¼ l lþ 1ð Þ

k

� Alh
ð1Þ
l krð Þ þ Blh

ð2Þ
l krð Þ

� �
Ylm y;fð Þ

(4.165)

r � EðMÞ
lm ¼ 0 (4.166)

are specified.

The rationale for the inclusion of the l lþ 1ð Þ=k
factor in (4.165) will soon be demonstrated.26 One

can then write a relationship between the scalar prod-

uct r �H and the electric field from (4.149),

ik
ffiffiffiffiffi
m0
e0

r
r �H ¼ r � r � Eð Þ

or

k
ffiffiffiffiffi
m0
e0

r
r �H ¼ L � E (4.167)

where the operator L ¼ �i r�rð Þ has been defined.

It will be noted that this operator is �h�1 times the

quantum-mechanical angular momentum operator

and its properties are briefly reviewed here. From

Chap. 2, one has, for the spherical harmonic,

� ]2

]y2
þ cot y

]

]y
þ 1

sin2 y

]2

]f2

� �

� Ylm y;fð Þ ¼ l lþ 1ð ÞYlm y;fð Þ ¼ L2 Ylm y;fð Þ:
(4.168)

It is apparent that the L operator acts only upon the

angular variables. Raising and lowering operators can

be created from the components of L,

L� ¼ Lx � iLy

¼ e�if � ]

]y
þ i cot y

]

]f

� �
(4.169)

Lz ¼ �i
]

]f
: (4.170)

Applying these to the spherical harmonics,

L�Ylm y;fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�mð Þ l�mþ 1ð Þ

p
Ylm�1 y;fð Þ

(4.171)

25Jackson (1999) provides a detailed derivation.

26As the electric field is transverse to the radius vector, the

magnetic multipole field is sometimes referred to, especially in

engineering textbooks, as a transverse electric (TE) field. Simi-

larly, the electric multi-pole field is also referred to as a trans-

verse magnetic (TM) field.
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LzYlm y;fð Þ ¼ mYlm y;fð Þ: (4.172)

L acts upon the spherical harmonic to transform the

m value leaving the l value unaffected. Consequently,
the electric field of the magnetic multi-pole must

satisfy,

L � EðMÞ
lm ¼ l lþ 1ð Þ

ffiffiffiffiffi
m0
e0

r

� Alh
ð1Þ
l krð Þ þ Blh

ð2Þ
l krð Þ

� �
Ylm y;fð Þ

(4.173)

which demonstrates the convenience of the

l lþ 1ð Þ=k factor introduced in (4.165). Recalling the

properties of the L operator, the electric field of the

magnetic multi-pole can be extracted from this result.

First, as the L operator acts only upon the angular

variables,

L L�EðMÞ
lm

� �
¼ l lþ1ð Þ

ffiffiffiffiffi
m0
e0

r

� Alh
ð1Þ
l krð ÞþBlh

ð2Þ
l krð Þ

� �
LYlm y;fð Þ:

(4.174)

As L L � EðMÞ
lm

� �
¼ L2E

ðMÞ
lm ¼ l lþ 1ð ÞEðMÞ

lm , this

result then gives the electric field of the magnetic

multi-pole as,

E
ðMÞ
lm ¼

ffiffiffiffiffi
m0
e0

r
Alh

ð1Þ
l krð Þ þ Blh

ð2Þ
l krð Þ

� �

� LYlm y;fð Þ ¼
ffiffiffiffiffi
m0
e0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p

� Alh
ð1Þ
l krð Þ þ Blh

ð2Þ
l krð Þ

� �
Xlm r;fð Þ

(4.175)

where the normalized vector spherical harmonic is

defined as,

Xlm r;fð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp LYlm r;fð Þ: (4.176)

The normalized vector spherical harmonic has the

orthonormality,

ð
dOX�

l0m0 y;fð Þ � Xlm y;fð Þ ¼ dll0dmm0 (4.177)

and

ð
dOX�

l0m0 y;fð Þ � r� Xlm y;fð Þð Þ ¼ 0: (4.178)

The magnetic field of the magnetic multi-pole is

then defined from (4.149),

H
ðMÞ
lm ¼ � i

k

ffiffiffiffiffi
e0
m0

r
r� E

ðMÞ
lm : (4.179)

Repeating the above derivation for the electric and

magnetic fields of the electric multi-pole gives,

H
ðEÞ
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
� Clh

ð1Þ
l krð Þ þ Dlh

ð2Þ
l krð Þ

� �
Xlm y;fð Þ

(4.180)

E
ðMÞ
lm ¼ i

k

ffiffiffiffiffi
m0
e0

r
r�H

ðEÞ
lm : (4.181)

These allow the electric and magnetic fields to be

written as the sums of the multi-pole fields,

E rð Þ ¼
X1
l¼1

Xl
m¼�l

"
i

k
a
ðEÞ
lm r� fl krð ÞXlm y;fð Þð Þ

þ a
ðMÞ
lm gl krð ÞXlm y;fð Þ

#
ð4:182Þ

H rð Þ ¼
X1
l¼1

Xl
m¼�l

"
a
ðEÞ
lm fl krð ÞXlm y;fð Þ

� i

k
a
ðMÞ
lm r� gl krð ÞXlm y;fð Þð Þ

#
(4.183)

where

fl krð Þ ¼ Alh
ð1Þ
l krð Þ þ Blh

ð2Þ
l krð Þ

� �
(4.184)
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and

gl krð Þ ¼ Clh
ð1Þ
l krð Þ þ Dlh

ð2Þ
l krð Þ

� �
: (4.185)

The coefficients a
ðEÞ
lm and a

ðMÞ
lm indicate the contri-

buting amounts of electric and magnetic multi-poles,

respectively, to the fields and are specified by the

boundary conditions and sources as determined

through,

a
ðEÞ
lm flðrÞ ¼ � kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l lþ 1ð Þp
ffiffiffiffiffi
e0
m0

r

�
ð
dOY�

lm y;fð Þr � E rð Þ (4.186)

a
ðMÞ
lm glðrÞ ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l lþ 1ð Þp

�
ð
dOY�

lm y;fð Þr �H rð Þ: (4.187)

Equations (4.182) and (4.183) demonstrate the dual

transformation relationship between the fields of an

electric multi-pole and those of a magnetic multi-pole

through which one can transfer from one multi-pole to

another by interchanging the electric and magnetic

fields and changing the sign of the electric field.

Before concluding this introduction to multi-pole

radiation, consider one characteristic of the vector

spherical harmonic which will be of importance. This

is, that for l ¼ 0,

� i r�rð ÞY00 y;fð Þ ¼ 0 (4.188)

with the result that there is no multi-pole radiation for

l ¼ 0. In other words, there is no transition between

nuclear states both with l ¼ 0 that can result in g-ray
emission

Energy and Angular Momentum of Multi-Pole

Radiation

The energy and angular momentum of multi-pole

radiation are derived through calculating the electric

and magnetic fields of the electric and magnetic multi-

poles in the radiation zone. This result will then

be used to demonstrate that the radiation emitted by

a multi-pole of order (l, m) carries away m�h of the

z-component of angular momentum for each emitted

photon of energy �ho (in the reference frame of the

nucleus). Begin by calculating the multi-pole fields in

the radiation zone, within which the asymptotic forms

of the spherical Bessel functions are, from Chap. 2,

jl krð Þ ! sin kr� lp=2
� �

kr
kr ! 1 (4.189)

yl krð Þ ! � cos kr� lp=2
� �

kr
kr ! 1 (4.190)

and the Hankel functions become,

h
ð1Þ
l krð Þ � sin kr� lp =2

� �
kr

� i
cos kr� lp =2
� �

kr
� �ieikr

� �i lþ1ð Þ e
ikr

kr
kr � 1

(4.191)

h
ð2Þ
l krð Þ � sin kr� lp=2

� �
kr

þ i
cos kr� lp=2
� �

kr

� �il
e�ikr

kr
kr � 1:

(4.192)

These far-field approximations are then applied to

the previously-derived expressions for the electric and

magnetic fields of multi-pole radiation. From (4.175),

the electric field of the magnetic multi-pole in the

radiation zone is,

E
ðMÞ
lm ¼ �il

ffiffiffiffiffi
m0
e0

r

� B1e
�ikr þ iA1e

ikr
� �

kr
Xlm r;fð Þ

kr � 1

(4.193)

and, for an outgoing wave,

E
ðMÞ
lm ¼ �i lþ1ð Þ

ffiffiffiffiffi
m0
e0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p eikr

kr
Xlm y;fð Þ

kr � 1

(4.194)
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and the magnetic field of the magnetic multi-pole will

be given by,

H
ðMÞ
lm ¼

ffiffiffiffiffi
e0
m0

r
E
ðMÞ
lm � r̂: (4.195)

From (4.180), the magnetic field of the electric

multi-pole in the radiation zone is,

H
ðEÞ
lm ¼ �il

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p Dle
�ikr þ iC1e

ikr
� �

kr
� Xlm y;fð Þ kr � 1

(4.196)

and, for an outgoing wave,

H
ðEÞ
lm ¼ �i lþ1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l lþ 1ð Þ
p eikr

kr
Xlm y;fð Þ kr � 1

(4.197)

and the electric field of the electric multi-pole is,

E
ðEÞ
lm ¼ il

k2

ffiffiffiffiffi
m0
e0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
r

� eikr

r
Xlm y;fð Þ

� �
(4.198)

As these are in the far-field region, the curl is

calculated to powers no greater than 1=r and the iden-

tity r� L ¼ �irr2 �r 1þ r ]
]r

� �
used to give, for

the electric field of the electric multi-pole,

E
ðEÞ
lm ¼ �i lþ1ð Þ

ffiffiffiffiffi
m0
e0

r
eikr

kr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
r̂� Xlm y;fð Þ

� 1

k
rr2 �r� �

Ylm y;fÞ
�

ð4:199Þ
�

where r̂ is the unit radial vector. The second term can

be neglected,

E
ðEÞ
lm ¼ �i lþ1ð Þ

ffiffiffiffiffi
m0
e0

r
eikr

kr

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
r̂� Xlm y;fð Þ

� �
: (4.200)

Using (4.198),

E
ðEÞ
lm ¼

ffiffiffiffiffi
m0
e0

r
H

ðEÞ
lm � r̂: (4.201)

It is now demonstrated that the radiation emitted

by a multi-pole of order (l,m) carries away m�h of the

z-component of angular momentum for each photon of

energy �ho, doing so for a pure multi-pole field (in this

case, the electric). Following the example of Jackson

(1999), consider the electromagnetic field to be a

linear superposition of electric multi-poles of order

(l,m) but with the requirement that l be the same for

the multi-poles but each have a different value of m.

The magnetic field of a pure electric multi-pole (i.e.,

a
ðMÞ
lm ¼ 0Þ is, assuming a harmonic time dependence,

H rð Þ ¼
Xl
m¼�l

a
ðEÞ
lm h

ð1Þ
lm krð ÞXlm y;fð Þe�iot (4.202)

which, in the radiation zone is,

H rð Þ ¼
Xl
m¼�l

a
ðEÞ
lm h

ð1Þ
lm krð ÞXlm y;fð Þe�iot

� �i lþ1ð Þ e
ikr

kr
kr � 1

(4.203)

and the corresponding electric field is,

E rð Þ ¼ i

k

ffiffiffiffiffi
m0
e0

r
r�H rð Þ: (4.204)

The time-averaged energy density is,

u ¼ 1

4

h
e0E rð Þ � E� rð Þ þ m0H rð Þ �H� rð Þ

i
(4.205)

and the change in energy with radius is,

dE

dr
¼ m0

2k2
Xl
m¼�l

a
ðEÞ
lm

			 			2: (4.206)

In the case of the field being made up of electric and

magnetic multi-poles, this would be,
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dE

dr
¼ m0

2k2
Xl
m¼�l

a
ðEÞ
lm

			 			2 þ a
ðMÞ
lm

			 			2
� �

: (4.207)

Next consider the angular momentum density which

one obtains from the electromagnetic field linear

momentum. This follows from the Lorentz equation

and Newton’s second law for a spatially-distributed

charge,

dP

dt
¼
ð
d3r reEþ J� Bð Þ (4.208)

where re and J are the electric charge and current

densities. Using Maxwell’s equations for the case of

the fields in free space and with a source present,

r � E ¼ re
e0

(4.209)

J ¼ r�H� e0
]E

]t
(4.210)

the integrand can be rewritten, using e0m0 ¼ 1=c2, as,

reEþ J� B

¼ e0 E r � Eð Þ þ B� ]E

]t
� c2B� r� Bð Þ

� �
:

(4.211)

With some additional manipulations, the momen-

tum of the electromagnetic field arises from the vol-

ume integral,

p ¼ e0

ð
d3r E� Bð Þ

¼ 1

c2

ð
d3r E�Hð Þ:

(4.212)

The angular momentum then follows as,

m ¼ 1

c2

ð
d3r r� E�Hð Þ (4.213)

from which one can obtain the time-averaged angular

momentum density,

m ¼ 1

2c2
Re
h
r� E�H�ð Þ

i
: (4.214)

Expanding the vector triple cross product,

r� E�H�ð Þ ¼ r �H�ð ÞE� r � Eð ÞH�, leads to,

m ¼ m0
2o

Re
h
H� L �Hð Þ

i
: (4.215)

The change in the z-component of the angular

momentum with radius is,

dmz

dr
¼ m0

2ok2
Xl
m¼�l

m a
ðEÞ
lm

			 			2: (4.216)

Comparing this result with the derivative of (4.207)

leads to,

dmz

dr
¼ m

o
dE

dr

¼ �hm

�ho
dE

dr
: (4.217)

This result is interpreted as representing that, for

multi-pole radiation of order (1, m), a photon emitted

with an energy �ho carries away m�h units of the

z-component of angular momentum.

Selection Rules for Multi-Pole Radiation

In a radiative transition, the state changes from ci to

cf and the overall angular momentum is conserved. If

the quantum carries away angular momentum l with

z-component m (all in units of �h), then the conserva-

tion of angular momentum stipulates that,

Ji ¼ l Jf (4.218)

where Ji and Jf are the total angular momenta of the

initial and final nuclear states leading to multi-pole

radiation of order (l,m) being emitted only if,

Ji � Jfj j � l � Ji þ Jfj j (4.219)

and

mz;i �mz;f ¼ m (4.220)
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As, from (4.188), there is no l ¼ 0 multi-pole radi-

ation, a radiative transition between nuclear states

with Ji ¼ Jf ¼ 0 will be forbidden. In addition to this

angular momentum selection rule, an additional selec-

tion rule arises as a result of the conservation of parity.

The parity of the final state is equal to the product of

the parity of the final nuclear state and that of the

multi-pole radiation. That is, the matrix element of

the transition will be non-zero when,

Pi ¼ Pf for even� parity radiation (4.221)

Pi ¼ �Pf for odd� parity radiation: (4.222)

The magnetic field can be used to specify the parity,

the rationale for which becomes apparent by noting

that the matrix element of the transition is proportional

to
Ð
d3rcf J � Að Þci (where the J is the current opera-

tor and is the electromagnetic vector potential). A has

the same parity as the electric field, E. As J is a polar

vector, it will have negative parity and the scalar

product J � A will thus have the opposite parity of

the electric field. Because the curl operation changes

parity, we then have the result that J � A has the same

parity asH. Consider, first, the electric multi-pole field

where the electric and magnetic fields of the multi-

pole are

H
ðEÞ
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
Clh

ð1Þ
l krð Þ þ Dlh

ð2Þ
l krð Þ

� �
Xlm y;fð Þ

and

E
ðEÞ
lm ¼ i

k

ffiffiffiffiffi
m0
e0

r
r�H

ðEÞ
lm :

As the spherical harmonic is Xlm y;fð Þ ¼
iffiffiffiffiffiffiffiffiffi

l lþ1ð Þ
p r�rð ÞYlm y;fð Þ and r�r is invariant

under inversion, the parity properties of H
ðEÞ
lm are

given by those of the spherical harmonic, Ylm r;fð Þ,
which has parity �1ð Þl and the parity of electric multi-

pole radiation will be given by �1ð Þlþ1
. Table 4.6

summarizes the selection rules for multi-pole electro-

magnetic radiation. Let us use a pragmatic example to

describe these selection rules. Consider an excited

nuclear state with Ji ¼ 1=2 which de-excites to a state

with Jf ¼ 3=2 through the emission of a g ray. From

(4.219), l ¼ 1, 2 so that the only allowed transitions

are dipole (l ¼ 1) and quadrupole (l ¼ 2). If the pari-

ties of the initial and final nuclear states are the same

(Pi ¼ Pf ), then only the magnetic dipole (M1) and

electric quadrupole (E2) transitions can occur. Should,

the parities of the initial and final nuclear states differ

(Pi ¼ �Pf ), then only electric dipole (E1) and mag-

netic quadrupole (M2) transitions are allowed.

Angular Distributions of Multi-Pole Radiation

From the above, it can be seen that the time-averaged

power radiated will be proportional to Xlm y;fð Þj j2.
Table 4.7 presents the angular distributions of some

dipole and quadrupole radiations and which are shown

in Fig. 4.31. The sum of the squared magnitudes of the

vector spherical harmonics for a set of multi-poles of

order l is,

Table 4.6 Selection rules for electromagnetic multipole radia-

tion

Rule Dipole Quadrupole Sextupole Octupole
E1 E2 E3 E4

E1 E2 E3 E4

DP 1 0 1 0

|DJ| 1 2 3 4

M1 M2 M3 M4

DP 0 1 0 1

|DJ| 1 2 3 4

Table 4.7 Angular distributions of dipole and quadrupole radiations

Type l m
0

�1 �2

Dipole 1 3

8p

� �
sin2y

3

16p

� �
1þ cos2yð Þ –

Quadrupole 2 15

8p

� �
sin2ycos2y

5

16p

� �
1� 3cos2yþ 4cos4yð Þ 5

16p

� �
1� cos4yð Þ
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Xl
m¼�l

Xlm y;fð Þj j2 ¼ 2lþ 1

4p
(4.223)

which demonstrates that the radiation is isotropic from

a radiating source consisting of this set of multi-poles

with multi-poles added incoherently.

Multi-Pole Expansion With Source Present

It is necessary to connect the multi-pole fields with the

sources that have generated them; i.e., the coefficients

a
ðEÞ
lm and a

ðMÞ
lm are related to the source that has produced

the multi-pole radiation. The source, which is the

nucleus, is considered to be a harmonically-varying

distribution of charge, current and magnetization,

r r; tð Þ ¼ r rð Þe�iot (4.224)

J r; tð Þ ¼ J rð Þe�iot (4.225)

M r; tð Þ ¼ M rð Þe�iot (4.226)

where it is understood that the real part of the complex

quantities are to be taken.27 Maxwell’s equations are

now,
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Fig. 4.31 Angular distributions of dipole and quadrupole radiations

27It is also possible to simply write, for example,

rðr; tÞ ¼ 1=2 r rð Þe�iot þ r� rð ÞeþiotÞ�
to achieve the same result.
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r � E ¼ r
e0

(4.227)

r � B ¼ 0 (4.228)

r� E ¼ ioB (4.229)

r� B ¼ m0 Jþr�Mð Þ � i
o
c2

E: (4.230)

Some simplification is possible by defining

H
0 ¼ B=m0 and E

0 ¼ Eþ i
oe0

J to yield the set of equa-

tions,

r � E0 ¼ 0 (4.231)

r �H0 ¼ 0 (4.232)

r� E ¼ i

oe0
r� Jþ om0H

0
(4.233)

r�H
0 ¼ r �M� ik

ffiffiffiffiffi
e0
m0

r
E

0
: (4.234)

From the two curl equations,

r2þk2
� �

E
0 ¼�ik

ffiffiffiffiffi
m0
e0

r
r� Mþr�J

k2

� �
(4.235)

r2 þ k2
� �

H
0 ¼ �r � Jþr�Mð Þ: (4.236)

As before, the scalars r � E0
and r �H0

are solved

for. Using (4.163), (4.235) and (4.236), and the rela-

tionship for an arbitrary vector field F,

r � r � Fð Þ ¼ r�rð Þ � F
¼ iL � F (4.237)

one obtains the inhomogeneous equations,

r2 þ k2
� �

r � E0 ¼ om0L � Mþr� J

k2

� �
(4.238)

r2 þ k2
� �

r �H0 ¼ �iL � Jþr�Mð Þ: (4.239)

These can be solved using Green’s functions (cf

Chap. 2). However, as the solution is involved, it will

not be repeated here for clarity; the interested reader is

referred to Chap. 9 of Jackson (1999) or Chap. XII of

Blatt and Weisskopf (1979). The result of the calcula-

tion is that exact results of the multipole coefficients

are given by the expressions,

a
ðEÞ
lm ¼ �i

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp

ð
d3rYlm y;fð Þ

� cr rð Þ ]
]r

rjl krð Þð Þ þ ik r � J rð Þð Þjl krð Þ
�ikr � r�Mð Þjl krð Þ

8<
:

9=
;

(4.240)

a
ðMÞ
lm ¼ �i

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp

�
ð
d3rYlm y;fð Þ

r � r� J rð Þð Þjl krð Þþ
r �M rð Þ ]

]r
rjl krð Þð Þ

� k2 r �M rð Þð Þjl krð Þ

8>><
>>:

9>>=
>>;
:

(4.241)

Significant simplifications of these exact results are

possible when it is recognized that the source dimen-

sions (i.e., nuclear size) are much smaller than the

photon wavelength. In this case, the small-argument

limit of the spherical Bessel function,

jlðxÞ � xl

2lþ 1ð Þ!! x 	 1 (4.242)

can be used. Keeping the smallest powers in kr in
the integrals, simplified expressions for the multi-pole

coefficients of the form are obtained,

a
ðEÞ
lm ffi �i

cklþ2

2lþ 1ð Þ!!

ffiffiffiffiffiffiffiffiffiffi
lþ 1

l

r
Qlm þ Q

0
lm

� �
(4.243)

a
ðMÞ
lm ffi i

cklþ2

2lþ 1ð Þ!!

ffiffiffiffiffiffiffiffiffiffi
lþ 1

l

r
Mlm þM

0
lm

� �
: (4.244)

Qlm and Mlm are the electric and magnetic multi-

pole moments, respectively, given by,

Qlm ¼
ð
d3r rl Y�

lm y;fð ÞreðrÞ (4.245)
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Mlm ¼
ð
d3r rl Y�

lm y;fð Þr � r� J rð Þð Þ
lþ 1

: (4.246)

The integrations are over the nuclear volume. In

addition to these radiation contributions, it is also

necessary to consider those linked to the nucleons’

intrinsic spins which, classically, produce a spatial

distribution of magnetization M changing with time.

The corresponding electric and magnetic multi-pole

moments are,

Q
0
lm ¼ �i

k
lþ 1

� �ð
d3r rl Y�

lm y;fð Þ

� r � r�Mð Þ
(4.247)

M
0
lm ¼ �i

ð
d3r rl Y�

lm y;fð Þr �M (4.248)

The multi-pole expansions of the electric and mag-

netic fields are,

E rð Þ ¼
X1
l¼1

Xl
m¼�l

a
ðEÞ
lm E

ðEÞ
lm rð Þ þ a

ðMÞ
lm E

ðMÞ
lm rð Þ

� �

(4.249)

H rð Þ ¼
X1
l¼1

Xl
m¼�l

a
ðEÞ
lm H

ðEÞ
lm rð Þ þ a

ðMÞ
lm H

ðMÞ
lm rð Þ

� �

(4.250)

Transition Rates for Multi-Pole Radiation

The above derivations of the multi-pole transitions can

be used to estimate the rate at which a nucleus can

decay through g emission and what nuclear character-

istics dictate this rate. The power radiated in multi-

pole radiation is,

PðEÞ l;mð Þ ¼ 1

2k2

ffiffiffiffiffi
m0
e0

r
a
ðEÞ
l;m

			 			2

Electric radiation

(4.251)

PðMÞ l;mð Þ ¼ 1

2k2

ffiffiffiffiffi
m0
e0

r
a
ðMÞ
l;m

			 			2

Magnetic radiation:

(4.252)

As the transition rate will be this radiated power

divided by the photon energy �ho, the transition rates

for El and Ml radiation are, respectively,

lðEÞ l;mð Þ ¼ 8p lþ 1ð Þ
�hl 2lþ 1ð Þ!!ð Þ2

o
c

� �2lþ1

Qlm þ Q
0
lm

		 		2
(4.253)

lðMÞ l;mð Þ ¼ 8p lþ 1ð Þ
�hl 2lþ 1ð Þ!!ð Þ2

o
c

� �2lþ1

Mlm þM
0
lm

		 		2
(4.254)

The moments are calculated as follows (see, e.g.,

Segrè (1977)). From (4.245) to (4.248), for a nucleus

of mass m with A nucleons and Z protons,

Qlm ¼ e
XZ
n¼1

ð
d3r rln Y

�
lm yn;fnð Þc�

f rð Þci rð Þ (4.255)

Mlm ¼ � l

lþ 1

� �
e�h

mnc

� �

�
XZ
n¼1

ð
d3r rln Y

�
lm yn;fnð Þr� c�

f rð ÞLnci rð Þ� �

(4.256)

Q
0
lm ¼ �i

o=c
� �
lþ 1

e�h

2mnc

� �XA
n¼1

ð
d3r rln Y

�
lm yn;fnð Þ

� r � c�
f rð Þ rn � sð Þnci rð Þ� �

(4.257)

M
0
lm ¼ � e�h

2mnc

� �

�
XA
n¼1

ð
d3r mn r

l
nY

�
lm yn;fnð Þr� c�

f rð Þsnci rð Þ� �

(4.258)

where mn is the magnetic moment of the nth nucleon

in units of e�h=2mnc. For the moments due to charge,

the summations are over the protons only; for those

due to spin, the summations are over all nucleons.

The transition probabilities are obtained by averaging

lðEÞ l; mð Þ and lðMÞ l; mð Þ over the initial mi states and

summed over the final mf states,
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lðEÞðlÞ ¼ 1

2Ji þ 1

X
mi

X
mf

lðEÞ l;mð Þ (4.259)

and

lðMÞðlÞ ¼ 1

2Ji þ 1

X
mi

X
mf

lðMÞ l;mð Þ: (4.260)

A transition rate calculation based upon the above

expressions for the multi-pole moments is clearly

quite involved and requires detailed knowledge of

the nucleus. However, calculations for simple scenar-

ios are possible, e.g., that of a single nucleon outside

closed shells making an electromagnetic transition.

Following the approach of Weisskopf (1951), a num-

ber of simplifications can be employed in order to

solve for the moments so as to obtain expressions for

electric and magnetic transition rates. The results are,

while not accurate, elucidating and useful. One begins

by invoking the independent-particle model of Chap. 3

in which there is a single nucleon outside a closed

shell. Consider the case of the single proton being in

an initial state with orbital angular momentum l
making a transition to a final state with zero orbital

angular momentum through the emission of electric

multi-pole radiation of order l. Further, assume that the

nucleon’s spin is parallel to the orbital angular

momentum (i.e., the transition is parity favored).

Then the nucleon wavefunctions in the initial and

final states are,

ci ¼ giðrÞYlm y;fð Þs (4.261)

cf ¼
gfðrÞffiffiffiffiffiffi
4p

p s: (4.262)

where s is a spin function. If these are substituted into

the expression for Qlm given by (4.255) (only the first

term in the summation contributes), then,

Qlm ¼ effiffiffiffiffiffi
4p

p
ð1

0

dr rlþ2giðrÞgfðrÞ: (4.263)

A rough order-of-magnitude estimate of this inte-

gral is obtained by assuming that radial components of

the nucleon wavefunctions are,

giðrÞ ¼ gfðrÞ ¼ C r < RN

¼ 0 r > RN

(4.264)

where RN is the nuclear radius. From the normaliza-

tion of the wavefunctions, C ¼
ffiffiffiffiffiffiffiffiffiffi
3


R3
N

q
and we obtain

an approximation to the electric multi-pole moment,

Qlm � 3effiffiffiffiffiffi
4p

p Rl
N

lþ 3
: (4.265)

The other moments are determined from ratios with

this expression. Note that, in (4.256), the divergence

operator can be approximated by 1=RN and that the

operator Ln will approximately cancel the (l þ 1)

factor in the denominator. These then provides the

approximate ratio,

Mlm

Qlm
� �hc

mnRn

: (4.266)

The magnetic multi-pole moment M
0
lm, which is

due to the nucleons’ spins, is roughly 2–3 times greater

than that due to the nucleon orbits, Mlm, as can be

surmised by comparing the ratio L=lþ 1 with mns.
Hence, it would not be unreasonable to approximate

the ratio,

Mlm þM
0
lm

		 		2
Qlmj j2 � 10

�hc

mnRn

: (4.267)

The spin electric multi-pole moment Q
0
lm can be

neglected in this approximation as can be shown by

replacing the divergence operator in (4.257) with l=RN

to find that,

Q
0
lm

Qlm
� �ho

mn

� 10�3 (4.268)

for photon energies typical in g transitions. Using

these approximations and (3.121), the transition prob-

abilities for the Weisskopf single-proton model are,

for photon energy k (replacing �ho) in MeV,

lðEÞðlÞ ¼ 4:4 lþ 1ð Þ
l 2lþ 1ð Þ!!ð Þ2 1:2ð Þ2l k

197

� �2lþ1

� A2l=3102ls�1 ð4:269Þ

lðMÞðlÞ¼ 1:9 lþ1ð Þ
l 2lþ1ð Þ!!ð Þ2 1:2ð Þ2l�2 k

197

� �2lþ1

�Að2l�2Þ=3102ls�1

¼ 0:3

A2=3
lðEÞðlÞ ð4:270Þ
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These transition probabilities are plotted in

Figs. 4.32 and 4.33.

The general characteristics of these transition prob-

abilities are as follows:

� The transition probabilities increase with g-ray
energy, with the rate of increase increasing with

multi-pole order.

� For a given g-ray energy, both transition probabil-

ities decrease by up to about six orders-of-magnitude

for each unit increase in l – hence, the dipole and

quadrupole transitions will dominate.

� With the exception of the magnetic dipole radia-

tion, the transition probability increases with

atomic mass number.

� The magnetic multi-pole transition probability is at

least an order-of-magnitude less than that of the

electric multi-pole (for a given multi-pole order

and photon energy) and decreases with increasing

atomic number.

It is important to recall the approximations used

to calculate the multi-pole moments, including the

assumption of a single transiting nucleon, in the deri-

vation of these multi-pole transition rates. Hence, one

should not expect these results to be accurate in pre-

dicting g-transition rates. In fact, Blatt and Weisskopf

suggest that the above expressions overestimate the

actual transition rates by factors of up to three orders-

of-magnitude. Even despite the size of this error, the

calculations are of some benefit, if not just for under-

standing the qualitative aspects of g-transition rates,

but when one recognizes that for g-ray energies of less
than about 1 MeV, there is a six orders-of-magnitude

decrease in the multi-pole transition rates per unit

increase in multi-pole order.

4.4.3 Internal Conversion

4.4.3.1 Introduction

In the discussion of g decay, the excited nucleus was

treated in isolation. One of the consequences of this

Gamma-ray Energy, k (MeV)

lo
g

10
 l

(E
)  (

/)

0.01
−30

−25

−20

−15

−10

−5

0

5

10

15

20

0.1 1 10

A = 220

A = 20

A = 20

A = 220

A = 220

A = 20

A = 220

A = 20

A = 20

A = 50

A = 50

A= 50

A= 50

A = 50

A = 130

A = 130

A= 130

A= 130

A = 130

A = 220

I = 1

I = 2

I = 3

I = 4

I = 5

Fig. 4.32 Logarithm of the electric multi-pole transition prob-

ability (in s�1) as a function of g-ray energy for multi-pole

orders of 1 through 5 and nuclei with atomic mass numbers of

20, 50, 130, and 220 calculated from the Weisskopf single-

proton model. Internal conversion contributions are excluded
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consideration was that it was impossible for an

excited nucleus to make a transition between states

each with zero angular momentum through the emis-

sion of electromagnetic radiation. In reality, how-

ever, the nucleus is not isolated but is contained

within the atom and interacts with the orbiting atomic

electrons. This interaction provides two additional

channels for the excited nucleus to lose energy: IC,

in which there is direct energy-transfer to an atomic

electron through a virtual photon (i.e., it is not an

internal photoelectric process in which a photon is

emitted from the nucleus and absorbed by the elec-

tron), and, should the energy of the transition exceed

twice the electron rest mass, internal pair production.

The latter process is infrequent and is not considered

here.

As noted earlier, if the energy of the transition

exceeds the atomic electron binding energy (which is

usually the case), the electron is ejected. The IC coef-

ficient is the ratio of the mean number of IC electrons

ejected to the mean number of g rays emitted,

a ICð Þ ¼ NICe

Ng
: (4.271)

The coefficient is decomposed into those contribu-

tions from electrons in different orbitals,

a ICð Þ ¼ a ICð Þ
K þ a ICð Þ

L þ a ICð Þ
M þ � � �: (4.272)

A full and proper evaluation of the transition prob-

abilities of the previous section would include a mul-

tiplicative factor of 1þ a ICð Þ to include the

contributions of IC.

The contributions of IC to internal radiation dosim-

etry are significant (Smith et al. 1965). The ejected IC

electrons travel short distances in tissue transferring

energy to tissue as they slow down and, hence, pro-

duce an absorbed dose. The immediate atomic conse-

quence of the ejection of the IC electron is that a

vacancy is produced amongst the atomic electron
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orbitals. This vacancy is filled by the transition of an

electron from another orbital and the consequent emis-

sion of a characteristic (or fluorescent) X-ray or an

Auger electron cascade. These also contribute to the

absorbed dose to tissue and are the subjects of Chap. 6.

4.4.3.2 Calculation of the Internal Conversion

Coefficient

Introduction

A full calculation of the IC coefficient will be quite

involved, requiring detailed knowledge of the pre- and

posttransition nuclear wavefunctions. Here, a simpli-

fied calculation of the conversion coefficient will be

presented. However, it is one which is sufficient to

demonstrate the gross dependence of the coefficient

upon multi-pole order, excitation energy and atomic

number. Tables of IC coefficients have been provided,

for example, by Hager and Seltzer (1968) and current

values are provided by the National Nuclear Data

Center website http://www.nndc.bnl.gov/hsicc/; Wid-

man and Powsner (1970) have provided tables of these

coefficients for internal absorbed dose calculations.

A critical evaluation of published IC coefficients has

been provided recently by Kibédi et al. (2007).

The main contributor to the IC process is the static

Coulomb interaction between the protons and the

atomic electron. As IC will be more probable for

K-shell electrons due to the greater overlap of nuclear

and electronic wavefunctions, a calculation of a ICð Þ
K is

developed here using perturbation theory. The calcu-

lation is simplified by assuming that the ejected elec-

tron is nonrelativistic and, thus, can be modeled by a

plane wave. The initial wavefunction is the product of

the nuclear initial wavefunction and that of the K-shell

electron and the final wavefunction is the product of

the nuclear final wavefunction and the electron plane

wave. Hence,

ci ¼ cnuc;i

ffiffiffiffiffiffiffiffiffi
Z3

p r31

s
e�ðZR=r1Þ (4.273)

where r1 is the Bohr radius and,

cf ¼ cnuc;f

1

L3=2

� �
ei

pe�R
�hcð Þ (4.274)

where R is the position vector of the electron. The

Coulomb interaction potential between the protons

and the atomic electron is,

U ¼ a�hc
XZ
i¼1

1

R� rij j (4.275)

where ri is the position vector of the 1th proton.

Calculation of the Matrix Element

The matrix element is,

Mif ¼ a�hc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z3

pL3r31

s XZ
n¼1

ð
d3R

ð
d3rnc

�
nuc;f rnð Þ

� e�
pe�R
�hcð Þ 1

R� rnj j � e� ZR=r1ð Þcnuc;i rnð Þ
(4.276)

where the integration over R is over the electron

position. The double integral is solved by first

using the substitution of variable R0 ¼ R� rn and

noting that Zr � r1 which allows the approximation

e� ZR=r1ð Þ � 1,
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1
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Fig. 4.34 K-orbital internal conversion coefficients for electric

multi-poles l ¼ 1,2 calculated from (4.289) (solid lines) and

from the tabulated values of Widman and Powsner (1970)

(dashed line) for Z ¼ 40 (zirconium)
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ð
d3R

ð
d3rnc

�
nuc;f rnð Þe� pe�R

�hcð Þ 1

R� rnj j
� e� ZR=a1ð Þcnuc;i rnð Þ

�
ð
d3rnc

�
nuc;f rnð Þe�pe�rn

�hc cnuc;i rnð Þ
ð
d3R0 e

�pe�R0
�hc

0

R0

¼ 4p
�hc

pe

� �2 ð
d3rnc

�
nuc;f rnð Þe�pe�rn

�hc cnuc;i rnð Þ
(4.277)

to give,

Mif ¼ 4pa�hc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z3

pL3r31

s
�hc

pe

� �2

�
XZ
n¼1

ð
d3rnc

�
nuc;f rnð Þe� pe�rn

�hcð Þcnuc;i rnð Þ:

(4.278)

The remaining integral is solved by, first expanding

the plane wave into spherical waves,

eib�r ¼ 4p
X1
l¼0

Xl
m¼�l

iljl brð ÞY�
lm yb;fbð ÞYlm yr;frð Þ:

(4.279)

As per=�hc
� �	 1, the small-argument approxima-

tion to the spherical Bessel function can be used,

e�
pe�rn
�hc ¼ 4p

X1
l¼0

Xl
m¼�l

�ið Þl
2lþ 1ð Þ!!

pe

�hc

� �l
rln

� Ylm ye;feð ÞY�
lm yn;fnð Þ (4.280)

where the e and n subscripts of the angular variables

refer to the electron and nucleon, respectively. Sub-

stituting (4.280) into (4.278) gives,

Mif¼16p2a�hc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z3

pL3r31

s XZ
n¼1

X1
l¼0

Xl
m¼�l

�ið Þl
2lþ 1ð Þ!!

pe

�hc

� �l�2

�
ð
d3rnc

�
nuc;f rnð Þrlncnuc;i rnð Þ

� Ylm ye;feð ÞY�
lm yn;fnð Þ: ð4:281Þ

Recalling the definition of the electric multi-pole

moment for electric charge given by (4.255), (4.281)

can be reduced to,

Mif ¼ 16p2
a�hc
e

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z3

pL3r31

s

�
X1
l¼0

Xl
m¼�l

�ið Þl
2lþ 1ð Þ!!

pe

�hc

� �l�2

Ylm ye;feð ÞQlm

(4.282)

with the squared amplitude,

Mifj j2 ¼ 256p3
a�hc
e

� �2
Z3

L3r31

X1
l¼0

Xl
m¼�l

X1
l0¼0

�
Xl0
m¼�l0

�ið Þlil0
2lþ 1ð Þ!!ð Þ 2lþ 1ð Þ!!ð Þ

� pe

�hc

� �lþl0�4

Ylm ye;feð ÞY�
l0m0 ye;feð ÞQlm Q�

l0m0 :

(4.283)

Calculation of the Phase Space Factor

This is a straightforward calculation as only a single

particle is ejected The number of states available in the

differential element of momentum dpe and differential

solid angle dOe is,

d2N ¼ L

2p �hc

� �3

p2e dpe dOe: (4.284)

As pedpe ¼ medTe (the electron is considered non-

relativistic), then,

drf ¼
d2N

dTe

¼ L

2p �hc

� �3

me pe dOe:

(4.285)

Internal Conversion Transition Rate

The IC transition rate for a K-orbital electron is,

l ICð Þ
K ¼ 2

2p
�h

Mifj j2rf (4.286)

where the additional factor of 2 is due to the two

electrons in the K orbit. Inserting (4.283) and (4.285)
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into (4.286), integrating drf over Oe and noting the

orthonormalization of the spherical harmonics,Ð
dOe Ylm ye;feð ÞY�

l0m0 ye;feð Þ ¼ dl l0dmm0 , an expres-

sion for the K-orbital transition rate is obtained,

l ICð Þ
K ¼ 128 pme a2Z3

�h e2 r31

�
X
lm

1

2lþ 1ð Þ!!ð Þ2
pe

�hc

� �2l�3

Qlmj j2: (4.287)

As only the static Coulomb interaction has been

considered and, from (4.268), one can neglect the

contribution Q
0
lm, comparing the K-orbital transition

rate directly with the electric multi-pole transition rate

of (4.253), a crude approximation to the IC coefficient

for K-orbital electrons is had,

aK � 16
Z3

r41

� �
l

lþ 1

� �
pe

�hc

� �2l�3 �hc

k

� �2lþ1

(4.288)

replacing �ho with k. It is reasonable to assume that

the nuclear excitation energy exceeds the binding

energy of the K-orbital electrons, in which case,

pe ¼
ffiffiffiffiffiffiffiffiffiffiffi
2mek

p
, and,

aK � �hc

mer1

� �4

Z3 l

lþ 1

� �
2me

k

� �lþ5=2

(4.289)

This result is a reasonable approximation when

the electron can be considered as nonrelativistic and

the transition energy greatly exceeds the atomic elec-

tron binding energy. The main considerations of this

formula are that IC increases strongly with atomic

number and multi-pole order, but decreases with

increasing transition energy. Hence, IC is important

for high-Z nuclei in low-energy transitions of high

multi-pole order. Figure 4.33 shows the IC coefficient

for K-orbital electrons for zirconium as a function of

IC electron kinetic energy as calculated from (4.289)

for the electric multi-poles l ¼ 1, 2. Full calculation of

the IC coefficients would consider the total contribu-

tions of all electromagnetic interactions and, hence,

would include the effects of the magnetic multi-pole

moments. While the K-orbital electrons will dominate

in IC, the L- and M-orbital electrons will make con-

tributions, albeit with lower probability.

0 ! 0 Transitions

As discussed earlier, electromagnetic transitions bet-

ween nuclear states with zero angular momentum are

not possible as there are no l ¼ 0 multi-poles in the

radiation field. However, closer examination of the

above derivation of the IC coefficient will demonstrate

that such a transition is feasible in which the K-orbital

electron takes away the energy. This statement, at first

sight, contradicts the above result of (4.286) in which the

multi-pole moment would go to zero for a 0 ! 0 transi-

tion. However, the above derivation excluded the con-

tribution to the matrix element when R > Rn, i.e., when

the electron is within the nucleus. Inclusion of this

contribution leads to the small probability of a 0 ! 0

transition. The fact that this is possible demonstrates that

IC cannot be interpreted as a photoelectric effect in

which the photon emitted from the nucleus is absorbed

by an atomic electron which is subsequently ejected.

4.4.4 Nuclear Isomerism

4.4.4.1 Introduction

The g-transition selection rules described earlier can

delay a g transition significantly such that the excited

nucleus can have a long half-life, up to years. Such

nuclei are described as being in an isobaric state or as

being metastable. Clearly, such isomeric transitions

(ITs) are associated with large changes in nuclear

angular momentum DJ and small transition energies.

But we have also seen that these conditions are prefer-

ential for IC. ITs are frequently associated with b
decay which leaves the nucleus with a high angular

momentum, as shown schematically in Fig. 4.35.

1

2

3
I

β
γ

1

2

3
II

β

Fig. 4.35 Schematic representation of nuclear isomerism. In

example I, level 1 decays predominantly through g emission to

level 2 which subsequently decays to level 3 through b decay.

In example II, levels 1 and 2 undergo b decay independently to

level 3
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In Example I, the probability of level 1 decaying to

level 2 through an IT exceeds the probability of it

decaying to level 3 through b decay; in Example II,

levels 1 and 2 transit to level 3 independently through

b decay. If, in Example I, the transition rate for the

g transition from level 1 to level 2 is much greater or

much less than that for the b-decay to level 3, then the

b spectrum of level 2 with a transition rate equal

to the IT of 1 ! 2 is demonstrated. In the case of

Example II, the levels 1 and 2 decay independently to

level 3.

It was Weizsäcker who proposed the theory of

nuclear isomers to explain the observation of long-

lived g-ray emitting isotopes. Equations (4.269) and

(4.270) show that g transitions with half-lives of a

second or more for photon energies of about 0.1–

0.5 MeV (typical for nuclear medicine) are between

nuclear states with DJ ¼ 3. A common example of an

IT used in diagnostic nuclear medicine is the de-exci-

tation of the 99mTc nucleus (the m superscript refers to

its metastable state) to the ground state 99Tc with a

6.01 h half-life (while 99mTc can undergo b� decay to
99Ru, the associated branching ratio is a negligible

3.7 � 10�5); this is shown in Fig. 4.36. 99Tc and
99mTc both result from the b� decay of 99Mo. The

spin/parity (Jp) of the 99Tc ground state is 9=2þ due

to an unpaired proton in the 1g9=2 shell. The excited
99mTc nucleus is formed in the Jp ¼ 1=2 level and can

de-excite directly to the 9/2þ ground state via the

emission of a 142.683 keV photon, with a branching

ratio of about 3 � 10�4. However, the difference in

the angular momenta of the two states is significant:

DJ ¼ 4 and the transition is M4 (as there is also a

change in parity) with a 6.01 h half-life. It can also de-

excite with the same half-life to the intermediate 7/2þ

excited state at the 140.511 keV level with DJ ¼ 3 via

an E3 transition (as there is no change in parity). This

is followed by the de-excitation from this 7/2þ state to

the 9/2þ ground state through a combination of M1

and E2 transitions (DJ ¼ 1) with the emission of a

140.511 keV g ray which is used for imaging.
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Radioactive Decay: Macroscopic Theory 5

Abstract This chapter presents the macroscopic theory of radioactivity in which

ensembles of radioactive nuclei are considered rather than single nuclei. It begins

with a review of the fundamentals of radioactivity and radioactive decay chains. The

determination of the activity biodistribution requires measurements of the activity

through either in vivo imaging or through in vitro assays of activity content in blood,

plasma, and excreta. The theory behind such measurements is presented along two

paths. The first is the derivation of corrections factors required in practical cases:

background correction, decay compensation, and reference standard normalization.

The second is through decision theory in which, on the basis of measurements, one

decides whether or not activity is present and then quantifies the result if the decision

is positive. Electronic radiation detectors (well counters, gamma cameras, and PET

scanners) are all subject to dead time and this concept and the compensatory factors

for it are derived. Paralyzable and nonparalyzable detectors are both considered.
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5.1 Introduction

The previous chapter was concerned with the micro-

scopic theories describing a decay, b decay, g emis-

sion, electron capture, and internal conversion. The

theories are referred to as being microscopic as they

are applicable to single nuclei or atoms. In nuclear

medicine dosimetry, one must contend with macro-

scopic ensembles of radioactive nuclei,1 hence a

“macroscopic” theoretical viewpoint is required. In

most clinical cases, the number of nuclei is so large

that radioactive decay can be considered to be a

continuous (or non-stochastic) phenomenon. This is

traceable to the original work on radioactivity by

1For example, a typical clinically administered activity of

740 MBq of 99mTc consists of 2 � 1013 99mTc nuclei.

B.J. McParland, Nuclear Medicine Radiation Dosimetry,
DOI 10.1007/978-1-84882-126-2_5, # Springer-Verlag London Limited 2010
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Rutherford and Soddy (1902). However, as radioac-

tive transitions are inherently random and described

by a probability per unit time of a transition occurring,

l, a stochastic approach is required when dealing with
either small numbers of radioactive nuclei, small num-

bers of detected radiations or small time intervals.

Applicable to such approaches are various probability

distribution functions (pdfs): in the discrete case, the

binomial and Poisson pdfs, and in the continuous case,

the normal and lognormal pdfs. As the derivations and

descriptions of these are provided amply elsewhere

(see, e.g., James (2006)), these will not be repeated

here but will be called upon where necessary through-

out this book. The stochastic approach is applicable to

“counting statistics” and the practical means of detect-

ing and measuring activity.

5.2 Physical Decay Constant
and Activity

Consider a species of atomic nucleus in a particular

state for which it is energetically favorable to make a

transition to another nuclear state or nucleus. The

probability of such a transition (or “decay”) occurring

during the differential time interval dt is proportional

to the time interval, ldt, where l is the “physical

decay constant” with units of reciprocal time and

given by perturbation theory in the form of Fermi’s

Golden rule No. 2,

lfi ¼ 2p
�h

ð
d3rc�

f Uci

����
����
2

rf

where, recall, U is the perturbative potential causing

the transition, the ci and the cf are the wavefunctions

of the initial and final states and the phase-space term,

rf, is the density of states available to the transition.

The decay constant is singular to the nuclear species

and to the decay mode (although it is possible to

observe very small changes in the decay due to the

surrounding chemical environment if any of the wave-

functions include that of an orbital electron). The

proportion of radioactive decays in an ensemble of N

identical radioactive nuclei making this transition is

equal to the probability of the transition occurring,

dN

N
¼ �ldt (5.1)

where a negative sign is inserted to indicate that is the

decay results in a net decrease of the number of nuclei.

The number of remaining radioactive nuclei at time t is

determined by integrating (5.1) with the initial condi-

tion of N0 being the number of nuclei at time t ¼ 0, to

yield,

NðtÞ ¼ N0e
�lt: (5.2)

Equation (5.1) can also be rearranged to give the

transition rate of the ensemble,

dN

dt
¼ �lN (5.3)

where it can be seen that the transition rate is propor-

tional to the number of radioactive nuclei. The abso-

lute value of this rate is the “activity,” A(t), or the

number of decays per unit time,

AðtÞ ¼ lNðtÞ (5.4)

and substituting (5.2) into (5.4) yields,

AðtÞ ¼ A0e
�lt (5.5)

where A0 � lN0 is the activity at time t ¼ 0. The

exponential nature of the radioactive decay is shown

in Fig. 5.1. The unit for activity is the number of

A(t) = A0 e−λt

A0 

½A0

e−1A0 

0

Time, t

A
ct

iv
it

y,
 A

T½ t  =

= A0 t
A0 

Area under curve =
λ

λ
1

Fig. 5.1 Exponential decay
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transitions (decays) per unit time or the Becquerel

(Bq), where2 Bq ¼ 1 transition (disintegration) per

second.

Equations (5.2) and (5.5) show that both the num-

ber of remaining radioactive nuclei and the rate at

which they decay decrease exponentially with time.

5.3 Physical Half-Life, Effective
Half-Life, and Mean Lifetime

5.3.1 Physical Half-Life

The time at which the number of remaining radioac-

tive nuclei is reduced to 1/2 of the original number is

the half-life, T1=2,

T1=2 ¼ ln 2

l
� 0:693

l
(5.6)

Because the activity is proportional to the number of

radioactive nuclei, the activity at time T1/2 is 1/2 the

activity at time t ¼ 0, as shown in Fig. 5.1.

5.3.2 Effective Half-Life

In nuclear medicine dosimetry, one is interested in the

temporal variation of activity associated with a radio-

pharmaceutical incorporated within an organ or tissue.

This will be a combination of the physical decay (as

given by (5.5)) and the washout or clearance by

biological processes. A common time-activity behav-

ior is a rapid uptake of activity followed by washout,

with the latter usually well-described by a multiple

exponential function in time. The activity in the

organ during washout is,

AðtÞ ¼ e�lPhyst
XN
i¼1

kie
�lBiol;i t (5.7)

where lPhys is the physical decay constant and the

lBiol,i are the biological rate constants. Hence,

AðtÞ ¼
XN
i¼1

kie
�leff;i t (5.8)

where the effective decay constants leff,i are,

leff;i ¼ lPhys þ lBiol;i: (5.9)

As an example, consider the simplest case of a

monoexponential washout where the physical and

biological half-lives are,

T1=2;Phys ¼ ln 2

lPhys

T1=2;Biol ¼ ln 2

lBiol

The effective half-life is thus,

T1=2;Eff ¼ ln 2

leff
¼ ln 2

lPhys þ lBiol

¼ T1=2;PhysT1=2;Biol

T1=2;Phys þ T1=2;Biol
: (5.10)

5.3.3 Mean Lifetime

As noted before, the mean lifetime, t, is the reciprocal
of the decay constant, l,

t ¼ 1

l
(5.11)

which is related to the half-life by,

t ¼ 1

l
¼ T1=2

ln 2
� 1:443 T1=2 (5.12)

2The curie (Ci) is still in common use as a unit of activity. It was

originally defined as the number of disintegrations per second of

a 1 gram sample of radium measured at 3.7 � 1010 disintegra-

tions per second, although later measurements demonstrated

that this was 3.61 � 1010 disintegrations per second. Jennings

(2007) noted that, in 1930, the unit of the Rutherford (rd) was

defined as the amount of any radioactive isotope that disinte-

grated at the rate of 106 disintegrations per second. Currently,

this would give 1 rd ¼ 1 MBq.
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At time t, both the number of remaining nuclei and

the activity are e�1 � 0.368 of their values at time

t ¼ 0, as shown in Fig. 5.1. An alternative interpreta-

tion of the mean lifetime is shown in Fig. 5.2 where,

again, activity is plotted against time. The area under

the exponential curve is simply equal to the original

number of nuclei (as all of the nuclei will have disin-

tegrated as time t ! 1),

A0

ð1

0

e�lt ¼ A0

l
¼ N0 (5.13)

If one were to imagine a scenario in which the

transition rate was constant at A0 for some finite length

of time and were to then go to zero, as shown in

Fig. 5.2, the length of time that yields the same area

under the curve as the physical exponential decrease is

the mean lifetime, t. In addition, the initial slope of the
exponential decay curve of the activity is,

dAðtÞ
dt t ¼ 0

���� ¼ �lA0 ¼ �l2N0

and the time required for a linear decrease in activity

to zero at this slope is taken from the linear equation

set to zero,

A0 � lA0t ¼ lN0 � l2N0t ¼ 0

\t ¼ lN0

l2N0

¼ 1

l
¼ t: (5.14)

The time taken for all of the nuclei to decay if the

rate of decay stays constant at its initial value is t.

5.4 Variability of the Physical
Decay Constant

From Fermi’s Golden Rule No. 2, the radioactive

decay constant is lfi ¼ 2p
�h

Ð
d3rc�

f Uci

�� ��2rf . Any varia-
tion in it due to the external environment can enter

only through the initial and final wavefunctions or

through the potential. This is possible as the EC and

IC processes result from the interaction of the nuclear

and atomic electrons. Segrè (1947) suggested that,

since the molecular environment surrounding the

atom will alter the orbital electron wavefunction, it

was possible for the electron density at the nucleus to

be varied. Hence, the physical decay constant could be

very slightly modified by the chemical state in which

the radioactive atom was in. Early measurements

of the 99mTc half-life revealed very small differences

(of the order of 10�3 to 10�4) in the decay constant

between the compounds KTcO4 and Tc2S7 (Bainbridge

et al. 1953) and between technetium metal at tempera-

tures of 293 and 4.2�K (Byers and Stump 1958). This

was due to changes in the internal conversion coeffi-

cients for L- and M-shell electrons between the 1=2�

and 7=2þ nuclear states induced by the surrounding

electronic environment (Tuli et al. 2001). More recent

high precision measurements of the EC decay constant

of 7Be determined T1/2 values of 53.69, 53.42, and

54.23 d for 7Be in Be2+(OH2)4, Be(OH)2, and BeO,

respectively (Huh 1999).

5.5 Specific Activity

The specific activity is that per unit mass of a radioac-

tive substance. If this is a pure sample of only the

radioactive isotope (i.e., stable isotopes or any other

substances are not present), the sample is referred to

as being carrier free and the specific activity is the

carrier-free specific activity (CFSA). On the other

hand, the sample could also contain other nonradioac-

tive substances, which are carriers, in addition to the

radioactive isotope. The value of the specific activity

for this case is less than that of the CFSA.

Initial slope = −λA0 = −λ2N0

Area = A0 τ = N0

A
ct

iv
it

y,
 A

R0

Time, t
λ

 1τ =

Area under curve =
λ
A0 = A0 τ = N0

0

Fig. 5.2 Definition of mean lifetime
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The CFSA is the activity per unit mass of the

radioisotope in isolation and may be derived as fol-

lows. As the activity A is proportional to the number

of nuclei, the activity per atom in an ensemble of N

radioactive atoms is,

A

N
¼ l (5.15)

and the mass of these N atoms is,

M ¼ N

NA

� AtomicMass: (5.16)

Substituting the expression for N from (5.15) into

(5.16) and solving for the activity per unit mass, or

CFSA, A=M, yields

CFSA ¼ lNA

AtomicMass
(5.17)

For example, 99mTc has an atomic mass of 98.91

g/mole and a half-life of 6.015 h, (physical decay

constant of 3.2 � 10�5 s�1). The CFSA for 99mTc is

1.95 � 1017 Bq/g.

5.6 Radioactive Parents and Progeny

5.6.1 General Case

As seen in Chap. 4, it is common for the product of a

radioactive decay (referred to as the “daughter”) to be

itself radioactive and for a given radioactive nucleus to

have more than one possible transition mode, with the

probability of a given transition occurring described as

the branching ratio. This section considers the relation-

ships between radioactive parent and daughter nuclei.

Figure 5.3 presents a model of a simple decay

chain: the sequential decays of radioactive isotope X

to radioactive daughter Y to radioactive granddaughter

Z. The decay constants for X, Y, and Z are lX, lY, and
lZ, respectively, and the rates of decay of each nuclear
species are described by the set of coupled first-order

differential equations,

dNX

dt
¼ �lXNXðtÞ (5.18)

dNY

dt
¼ lXNXðtÞ � lYNYðtÞ (5.19)

dNZ

dt
¼ lYNYðtÞ � lZNZðtÞ (5.20)

These equations may be solved most simply by sub-

stitution with the initial conditions of there being

no nuclei of Y or Z present at time t ¼ 0 and that

NX(t ¼ 0) � NX,0. The solution for NX(t) has already

been derived,

NXðtÞ ¼ NX;0e
�lXt: (5.21)

NY(t) can be solved by writing it in the form,

NYðtÞ ¼ k e�lXt � e�lYt
� �

(5.22)

which satisfies the initial condition, NY(t ¼ 0) ¼ 0.

The first derivative is,

dNY

dt
¼ kð�lXe�lXt þ lYe�lYtÞ: (5.23)

Solving for k,

k ¼ NX;0
lX

lX � lY

� �

and the solution for NY(t) is,

NYðtÞ ¼ NX;0
lX

lY � lX

� �
e�lXt � e�lYt
� �

: (5.24)

X
λX λY λZ

Y Z

Fig. 5.3 Sequential

radioactive decay without

branching
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In a similar fashion,

NZðtÞ ¼ NX;0
lXlY

lY � lXð Þ lZ � lXð Þ lZ � lYð Þ
� �

�
�

lZ � lYð Þe�lXt � lZ � lXð Þe�lYt

þ lY � lXð Þe�lZt
�
: ð5:25Þ

Whereas these solutions are for the number of

nuclei of the three species, what are usually of practi-

cal interest are the activities of the species. As activity

is proportional to the number of nuclei with the con-

stant of proportionality being the decay constant for

that nuclear species, the activities are

AXðtÞ ¼ AX;0e
�lXt (5.26)

AYðtÞ ¼ AX;0
lY

lY � lX

� �
e�lXt � e�lYt
� �

¼ AXðtÞ lY
lY � lX

� �
1� e�ðlY�lXÞt
� � (5.27)

AZðtÞ ¼ AX;0
lYlZ

lY � lXð Þ lZ � lXð Þ lZ � lYð Þ
� �

�
�

lZ � lYð Þe�lXt � lZ � lXð Þe�lYt

þ lY � lXð Þe�lZt
�
: ð5:28Þ

It has been previously shown that the integral of

(5.26) is equal to the original number of X nuclei,

NX,0. Similarly, it can be shown that the integrals of

(5.27) and (5.28) (i.e., the areas under the activity-time

curves of the progeny Y and Z, respectively) are also

equal to NX,0, due to the decay of one X nucleus

producing one Y nucleus which, following its own

decay, produces one Z nucleus.

Equations (5.26)–(5.28) describe the time depen-

dencies of the activities of the three nuclear species,

and it is of special interest to consider in isolation

the relationship between the radioactive parent, X,

and the radioactive daughter, Y and, in particular, how

this relationship varies with their relative half-lives

of each.

5.6.2 Parent Half-Life Much Greater than
that of Daughter

Here, TX;1=2 � TY;1=2 or, equivalently, lX 	 lY.
Hence, lY=ðlY � lXÞ � 1 and 1� e�ðlY�lXÞt �
1� e�lYt, which simplify the expression for the Y

activity to,

AYðtÞ � AXðtÞ 1� e�lYt
� �

lX 	 lY: (5.29)

This shows that the activity of the daughter, Y,

grows asymptotically with a time constant lY equal

to that of the parent, X, and subsequently decays with

that of the parent at the same decay constant lX. This
equality between parent and daughter activities is

referred to as secular equilibrium. Figure 5.4 shows

the decay of a fictitious parent radionuclide, with a

half-life of 103 h, and the growth and subsequent

decay of its daughter, with a half-life of 2 h. The

daughter activity increases asymptotically to approach

that of the parent and, by about 15 h, the activities of

both species are, for practical purposes, the same.

5.6.3 Parent Half-Life Greater than
that of Daughter

Here, TX;1=2 > TY;1=2 or, equivalently,lX < lY.Hence,
lY=ðlY � lXÞ � 1 and 1� e�ðlY�lXÞt� �

approaches

unity with increasing time. The activity of the daughter,

Parent, T
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Daughter, T
1/2 = 2 h
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Fig. 5.4 Secular equilibrium for a fictitious parent isotope with

a half-life of 103 h and a daughter with a half-life of 2 h
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AY(t), will increase to a value greater than that of the

parent (the ratio being equal to lY=ðlY � lX) and then
subsequently decay at the same rate as that of the

parent. This is referred to as transient equilibrium.

Figure 5.5 shows an example of the activity-time

curves for a fictitious parent with an 8-h half-life with

a radioactive daughter with a 4-h half-life. The ratio of

the daughter-to-parent activities approaches lY=lY�
lX ¼ 2 with increasing time. The time at which the

activity of the daughter reaches its maximum, TMax,

can be calculated by differentiating the expression for

AY(t), setting the result equal to zero and solving for

t to give,

TMax ¼
ln lY

lX

� �
lY � lX

(5.30)

and the maximum activity of the daughter Y is,

AY;Max ¼ AX;0
lX
lY

� �� lX
lY�lX

�
(5.31)

5.6.4 Daughter Half-Life Greater than
that of Parent

Here, TX;1=2 < TY;1=2 or, equivalently, lX > lY. Rewrit-
ing (5.27) by changing signs, the expression for AY(t) is,

AYðtÞ ¼ AXðtÞ lY
lX � lY

� �
eðlX�lYÞt � 1
� �

¼ AX;0
lY

lX � lY

� �
e�lYt � e�lXt
� �

: ð5:32Þ

An example is shown in Fig. 5.6 for the fictitious

case of a parent with a 6-h half-life and a daughter with

a 10-h half-life. Equilibrium cannot be achieved for

lX > lY.

5.6.5 Decay Branching

Another transition series is shown in Fig. 5.7 in which

a parent nucleus decays to a product nucleus directly

and through an intermediate daughter state. Here, X

decays with a decay constant lX into Y and Z, with

corresponding branching ratios, w and (1 � w). Y

itself decays to Z with a decay constant lY and Z

decays with a decay constant lZ. The rates of decay

of each nuclear species are described by the set of

coupled first-order differential equations,

dNX

dt
¼ �lXNXðtÞ (5.33)

dNY

dt
¼ wlXNXðtÞ � lYNYðtÞ (5.34)

Parent, TX,1/2 = 8 h

Daughter, TY,1/2 = 4h

λX = 0.0866 h−1

λY = 0.1732 h−1

TMax =

λX

λY

λX

λY−λX

λY

λX

λY − λX

In

1.00

0.75

0.50

0.25

0.00
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Time, t(h)

AY,Max = AX,0

Fig. 5.5 Transient

equilibrium for a fictitious

parent with a half-life of 8 h

and a daughter with a half-life

of 4 h
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dNZ

dt
¼ 1� wð ÞlXNXðtÞ þ lYNYðtÞ � lZNZðtÞ:

(5.35)

Again using the method of substitution, the derived

solutions (for the initial conditions of NX(t ¼ 0) ¼
NX,0 and NY(t ¼ 0) ¼ NZ(t ¼ 0) ¼ 0) are,

NXðtÞ ¼ NX;0e
�lXt (5.36)

NYðtÞ ¼ wNX;0
lX

lY � lX

� �
e�lXt � e�lYt
� �

(5.37)

NZðtÞ ¼ NX;0

�
lX

lZ � lX

� �
1þ w

lX
lY � lX

� �
e�lXt

� w
lX

lZ � lY

� �
lY

lY � lX

� �
e�lYt

� lX
lZ � lX

� �
1� w

lZ
lZ � lY

� �
e�lXt

�

(5.38)

and the corresponding activities are,

AXðtÞ ¼ AX;0e
�lXt (5.39)

AYðtÞ ¼ wAX;0
lY

lY � lX

� �
e�lXt � e�lYt
� �

(5.40)

AZðtÞ ¼ AX;0
lZ

lZ � lX

� �
1þ w

lX
lY � lX

� �
e�lXt

�

� w
lY

lZ � lY

� �
lZ

lY � lX

� �
e�lYt

� lZ
lZ � lX

� �
1� w

lZ
lZ � lY

� �
e�lXt

�
:

(5.41)

While the time at which the activity of the daughter

Y is at a maximum is that given by (5.30), the value

of this maximum activity is given by (5.31) but

now weighted by the branching ratio for the X – Y

transition,

AY;Max ¼ wAX;0
lX
lY

� � lX
lY�lX

� �
(5.42)

A practical example of a multiple transition is that of
99mTc and the relevant decay chain is shown in Fig. 5.8

(refer also to the discussion of nuclear isomerism

given in Chap. 4). 99Mo undergoes a series of forbid-

den b decays to excited states of 99Tc with a half-life

of 65.9 h.

(1-W),λX

W,λX
λY

Y

X Z
λZ

Fig. 5.7 Decay chain with branching to two daughters
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Daughter, T1/2 = 10 h

Fig. 5.6 Activity decay for a

fictitious parent with a 6-h

half-life and a daughter with a

10-h half-life. Equilibrium

cannot be achieved
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Figure 5.9 shows the relative number of 99Mo,
99Tc, and 99mTc nuclei as a function of time. The

number of 99Mo parent nuclei decays exponentially

and the number of 99mTc daughter nuclei initially

increases to a maximum and then decays exponen-

tially with the same decay constant as 99Mo once

transient equilibrium is attained. However, as 99Tc is

the product of both the b� decay of 99Mo and the

isomeric transition of 99mTc, the number of 99Tc nuclei

grows asymptotically to the original number of 99Mo

nuclei. Figure 5.9 also shows the relative activities of
99Mo and 99mTc as functions of time (due its small

decay constant, the 99Tc activity is negligible and is

not shown). From (5.40), the ratio of the 99mTc to
99Mo activities approaches the asymptotic value of,

w
lY

lY � lX

� �
¼ 0:876

0:115 h�1

0:115 h�1 � 0:010 h�1

� �

¼ 0:959

Because not all of the 99Mo decays result in the

production of 99mTc, the 99mTc activity can never

equal that of 99Mo. The maximum activity of 99mTc

99Mo, T½ = 65.9 hours

99Tc, T½ = 214,000 years

99mTc, T½ = 6.01 hours
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Fig. 5.9 The number of nuclei and activities in the 99Mo decay chain to 99mTc and 99Tc. (a) shows the relative number of nuclei

whereas (b) shows the activity

(1−W) = 0.124
λ99Mo = 0.010h−1

λ99Tc = 3.70 x 10−10 h−1

λ99mTc 
= 0.115 h−1

λ99Mo = 0.010 h−1
w = 0.876

99Tc 

99mTc

99Mo 

Fig. 5.8 Decay chain from 99Mo to 99Tc directly and via the
99mTc isomer
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is 69% of the initial 99Mo activity and this maximum

is reached at 22.9 h.

5.7 Applications

5.7.1 Introduction

Evaluating the radiation absorbed dose received by the

nuclear medicine patient begins with measuring the

temporal variation of the radioactive isotope in vivo

(almost exclusively through imaging) and measuring

in vitro the amounts of activity excreted. In this sec-

tion, the applications of radioactive decay measure-

ment theory to such measurements are considered.

5.7.2 Measurement of Radioactivity

5.7.2.1 Correction for Radioactive Decay

During Measurement

At an elementary level, the activity of a radioactive

sample is given by the ratio of the number of detected

emitted radiations,3 N, over a period of time, Dt.
However, the ratio, N=Dt will underestimate the actual

activity should the rate of decay over the time period

be significantly long compared to the lifetime of the

radioactive nuclei. This can be demonstrated using

Fig. 5.10, where the number of radioactive decays,

N, between time T and T þ Dt is measured. The

activity could be calculated as N=Dt at the start of

the measurement, T. However, the sample will have

decayed during the time of measurement and this must

be accounted for. The area under the curve between T

and T þ Dt is equal to the number of radioactive

decays that occur during Dt,

N ¼ A0

ðTþDt

T

dt e�lt

¼ A0

l

� �
e�lT 1� e�lDt� �

: ð5:43Þ

and the “measured” activity given by the ratio,

N=Dt, is,

AMeas ¼ N

Dt
¼ A0e

�lT 1� e�lDt

lDt

� �
(5.44)

N=Dt is an underestimate of the actual activity at the

time of the beginning of the measurement, A0e
�lT, as

can be seen by rearranging (5.44) and expanding the

exponential to second-order,

N
Dt

� �
A0e�lT ¼ 1� e�lDt

lDt

� �
ffi lDt� 1

2! lDtð Þ2
lDt

¼ 1� lDt
2

¼ 1� ln 2

2

Dt
T1=2

(5.45)

For example, the measured activity underestimates

the actual activity at the time of the beginning of

the measurement by about 10% for a measurement

duration of 1.7 h for 99mTc (T1/2 ¼ 6.02 h) and 0.5 h

for 18F (T1/2 ¼ 109.8 min). Hence, the measured

activity must be corrected for this decay if the mea-

surement duration is significant compared to the

mean life time. The actual activity at the time of the

A
ct

iv
it

y,
 A

A(T) = A0e−λT

A0

T + Δt 
Time, t

0
T

Area under curve =
Total # of decays between
T and (T + Δt)

Fig. 5.10 Correction for radioactive decay during time of mea-

surement

3Accounting for the inefficiencies of the detector. In the case of

a well-detector commonly used for nuclear medicine assays,

inefficiencies arise due to absorption within the sample, “dead

time” (discussed later), differences in sample volume from that

of the calibration sample, etc.
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beginning of the measurement, AActual(T), is given

by correcting the activity measured for the time Dt
beginning at time T,

AActualðTÞ ¼ lDt
1� e�lDt

� �
AMeas: (5.46)

5.7.2.2 Background Correction

Most cases of in vivo radioactive sample measurement

are done in a well-counter. The measured “count rate”

(i.e., the rate of event4 detection) is used to estimate

the activity in the sample. The first consideration is

that the measurement will have contributions from

both the activity in the sample and from background

sources. The latter include background radiation due

to surrounding natural sources, such as cosmic rays or

ambient radon, and electronic noise of the detector and

must be subtracted from the measured signal in order

to isolate those counts5 due to the sample activity

alone. This is done by measuring the count rate with

the sample present, the count rate being due to both the

sample and the background noise and the count rate

due to the background alone.

The background contribution to the measurement is

assumed to be random and statistically independent of

that due to the activity contained within the sample

being measured. The measured count rate is the ratio

of counts measured over a time interval,

_NSþB ¼ NSþB

TSþB

(5.47)

where the S þ B subscript notes that the measured

counts are due to both the sample and background.

The background count rate is that measured by the

apparatus without the sample present,

_NB ¼ NB

TB

: (5.48)

The count rate due to the sample only is given by

background subtraction,

_NS ¼ _NSþB � _NB ¼ NSþB

TSþB

� NB

TB

: (5.49)

From the propagation of errors, the uncertainty in

the background-corrected sample count rate is, assum-

ing Poisson statistics and assuming that the measure-

ment times are known exactly,

s _NS
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

_NSþB

@ _NS

@ _NSþB

� �2

þ s2
_NB

@ _NS

@ _NB

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

_NSþB
þ s2

_NB

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NSþB

T2
SþB

þ NB

T2
B

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_NSþB

TSþB

þ
_NB

TB

s
:

(5.50)

A practical problem to solve in the laboratory is the

decision of the time allocated to the sample measure-

ment and that to measuring the background. The time

allocations can be optimized by calculating the time

allocated to measuring the background counts, TB, as a

proportion of the total measurement time, (TS þ B þ
TB), using the above results. Obviously, if the sample

count rate is much greater than that of the background,

then the background measurement time, TB, would be

reduced as a fraction of the total measurement time.

Conversely, if the sample and background count rates

are comparable, then TS þ B and TB should also be

comparable (and both being longer in absolute terms

in order to detect the count rate differential). Rewrite

the background measurement time as,

TB ¼ T� TSþB (5.51)

where T is the fixed total measurement time (sum of

the sample plus background and background). Then,

the standard deviation of the background-corrected

count rate is,

s _NS
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_NSþB

TSþB

þ
_NB

T� TSþBð Þ

s
(5.52)

4In the context of this discussion, an “event” is the decay of a

radioactive nucleus.
5A “count” is a detected event.
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and then differentiating with respect to TS + B and

setting the result to zero finds the minimum of s _NS
,

ds _NS

dTSþB

¼ d

dTSþB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_NSþB

TSþB

þ
_NB

T� TSþBð Þ

s

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_NSþB

TSþB
þ _NB

TB

q _NB

T2
B

�
_NSþB

T2
SþB

� �
¼ 0

yielding the optimum ratio of the background mea-

surement time to that of the sample,

TB

TSþB

¼
ffiffiffiffiffiffiffiffiffiffiffi
_NB

_NSþB

s
: (5.53)

5.7.2.3 Reference Standard

In practice, the physical quantity of activity is not

directly measurable but is linked to an observable

(e.g., the electronic display of the number of counts

in a given time interval). This linkage is through a

calibration factor which is obtained from the measure-

ment of a reference standard of known activity. The

ratio of the absolute activity of the sample to that of

the reference standard is given by the ratio,

< ¼
_NS

_NR

(5.54)

where _NS is the sample count rate and _NR is that of the

reference standard. An application of this is when the

reference source has a known activity and the back-

ground-corrected count rate of the sample is scaled by

< to yield the activity of the sample. The uncertainty

in < is,

s< ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

_NS

@<
@ _NS

� �2

þ s2
_NR

@<
@ _NR

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_NS

_N2
R

1

TS

�
_N2
S

_N3
R

1

TR

:

s
ð5:55Þ

Again, the optimum proportions of measurement

time allocated to the sample and reference standard

counting can be determined by setting TR ¼ (T � TS),

where T is the total measurement time, differentiating

(5.55) with respect to TS and setting the result to zero.

This yields,

TR

TS

¼
ffiffiffiffiffiffi
_NS

_NR

s
: (5.56)

This result differs from that of (5.53) in that it is

reciprocal: i.e., a small reference standard count rate

requires a greater reference standard measurement

time.

5.7.2.4 Decision Theory

Introduction

Measurements over time of activity in the blood,

plasma, and excreta are essential to the derivation of

the biodistribution of the radionuclide and are neces-

sary to the evaluation of the internal radiation dosime-

try. Practical problems are associated with these

measurements. Ideally, a diagnostic radiopharmaceu-

tical should be rapidly excreted in order to reduce both

the confounding background signal and the absorbed

dose to the patient. Urinary excretion is the preferred

route due to its rapidity and measuring the activity in

the urinary bladder contents (through in vivo imaging)

and the voided urine (through in vivo assays) is of

prime importance in evaluating the biodistribution.

The potentially high amount of activity present in the

in vivo sample can impact the measurement device’s

performance through its “dead time” response as

reviewed later in this chapter. At the opposite extreme,

the amount of activity in a blood and plasma samples

is relatively small – the amount of activity per ml of

blood/plasma will be 0.02% or less of that adminis-

tered.6 In this section, we focus on the detection and

quantification of small amounts of activity.

6Consider, for example, a typical activity of 370 MBq of 18F

administered intravenously. The concentration of 18F activity in

whole blood will be less than about 70 kBq/mL, further reduced

by clearance, any specific binding and physical decay.
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Qualitative Detection and Quantitative

Determination

In his seminal paper, Currie (1968) applied statistical

decision theory directly to qualitative detection and

quantitative determination. This theory has its basis in

the statistical detection of a signal in background noise.

He proposed that a complete description of the lower

limits for a measurement process requires three quanti-

ties (reworded in the context of detecting radioactivity):

� Decision level: at which a decision is made as to

whether radioactivity is present or not.

� Detection level: at which a measurement may be

considered reliable so to lead to detection.

� Determination level: at which a measurement is

decided upon to be sufficiently precise so as to

yield an acceptable quantitative result.

The three analytical regions proposed by Currie

on the basis of these limits are shown in Fig. 5.11.

Region I, labeled as that of unreliable detection, is

where one applies decision theory to decide whether

a measured count (or count rate) is indicative of radio-

activity or is background noise. For a measured count

within Region II (i.e., exceeding an a priori detection

level, LD), a decision is made that radioactivity is

present, but with an established Type II error (dis-

cussed below). Finally, in Region III (exceeding a

specified quantification level, LQ), the measured net

count rate is considered sufficient to not only allow

a statistically-justified decision that radioactivity is

present but to also be quantifiable.

While Currie’s theory has been revisited and

refined since, especially in relation to the transition

from a Poisson pdf to a Gaussian pdf at small levels of

activity (the interested reader is recommended to refer

to, in particular, Zorn et al. (1997); Currie (2004);

De Geer (2004); Weise et al. (2006); and Alvarez

(2007)7), the discussion here will be limited to the

original formulation of the theory which provides the

basis for specifying these detection limits. The discus-

sion is begun by defining the following quantities:

Signal and background

Measured number of counts NS þ B

“True” mean number of counts mS þ B

Variance s2
SþB

Background

Measured number of counts NB

“True” mean number of counts mB
Variance s2

B

Background-subtracted signal

Derived number of counts NS ¼ NSþB � NB

“True” mean number of counts mS ¼ mSþB � mS
Variance s2

S ¼ s2
SþB þ s2

B

REGION I
Unreliable Detection

REGION II
Detection : Qualitative Analysis

REGION III
Determination : Quantitative Analysis

Background-Corrected Counts

Kασ0 KβσD

KQσQ

0 LC LD LQ

Fig. 5.11 Currie’s (1968)

definitions of the three

principal analytical regions.

Quantities are defined in the

text

7With the following associated correspondence by Bramlitt and

Shonka (2008) and Alvarez (2008).
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It is recognized that both sets of measured counts

are Poisson distributed but it is assumed that the

counts are sufficiently large that the difference

between the two Poisson distributions can be appro-

ximated by the difference between two Gaussian

distributions (hence, the variance of the background-

subtracted signal being given by the quadrature sum of

the variances of the total signal and the background

signal). Figure 5.12 presents the problem in the form

of hypothesis testing (for clarity, the figure shows

continuous pdfs, consistent with the approximation

of the Poisson distribution by a Gaussian). The null

hypothesis H0 is that the mean of the background-

subtracted signal is zero (indicating the absence of

activity) and the counterhypothesis H1 is that the

mean is nonzero, i.e., the sample is radioactive. It is

important to note that in this detection problem one

must, first, a priori estimate a minimum background-

corrected count mS that is sufficiently large to signify

the detection of activity in the sample and, second, to

then make an a posteriori decision after recording a

number of counts from the apparatus and subtracting

the background of whether or not activity is present in

the sample. This a posteriori decision is made once one

defines an acceptable probability of a Type I error (i.e.,

rejecting the null hypothesis when it is valid or, in

other words, deciding that the number of recorded

counts is indicative of activity in the sample when

there is in fact none present). The probability of the

Type I error is given by the area a shown in Fig. 5.12

for a critical level, LC,

1ffiffiffiffiffiffi
2p

p
s0

ð1

LC

dx e� x2=2s2
0

� �
¼ a (5.57)

where x is the number of counts and s0 is the standard

deviation of the background-subtracted pdf when no

sample is present.8 When the number of background-

subtracted counts exceeds LC it is decided that radio-

activity has been detected. The critical level is defined

by,

LC ¼ ka s0 (5.58)

where ka is the abscissa for which the area under the

normal curve9 is equal to 1 � a, and which is some-

times referred to as the coverage parameter (Hurtgen

et al. 2000); for example, ka ¼ 1.645 for a ¼ 0.05.

H0:mS = 0 H1 : mS = LD

LD = LC + kβσD

LC LD

mS = mS + B−mB

Lc = kαs0

α
β

0 Number of counts, X

Fig. 5.12 Decision

thresholds for the detection of

activity. Gaussian pdfs are
assumed as approximations to

the expected Poisson pdfs

8It is assumed that the background counts are due to background

radiation only and that any random, non-Poisson contributions

due to, for example, electrical interference are not present.
9The normal curve is the Gaussian distribution for zero mean

and unity standard deviation; it is also sometimes referred to as

the standardized normal distribution.
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Having established the critical level, the a priori

detection limit, LD, is defined by LC, the standard

deviation sD of the background-corrected count pdf

when its “true” mean is mS ¼ LD and an acceptable

probability of a Type II error, b, (i.e., accepting the

null hypothesis when it is invalid or, in other words,

deciding that there is no radioactivity present when in

fact there is). From Fig. 5.12,

1ffiffiffiffiffiffi
2p

p
sD

ðLC

�1
dx e�

�
ðx�LDÞ2=2s2

D

�
¼ b: (5.59)

From (5.58) and (5.59), the detection limit can be

written as,

LD ¼ LC þ kb sD (5.60)

where kb is the abscissa for which the area under the

normal curve is equal to 1� b, as shown in Fig. 5.12.

To derive expressions for LC and LD, assume that the

mean number of background counts, �NB, is obtained

from n independent measurements without the sample

present. With the sample in place, the variance of the

number of counts is,

s2 ¼ s2
SþB þ s2

�B ¼ s2
SþB þ s2

B þ s2
�B

¼ mS þ mB þ mB
n
: (5.61)

From these,

LC ¼ ka s0 ¼ ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mB þ s2

�B

q
(5.62)

and

LD ¼ LC þ kb sD ¼ LC þ kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LD þ s2

0

q
: (5.63)

An expression for the detection limit can be then be

derived from these results,

LD ¼ LC þ k2b

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4LC

k2b
þ 4s2

0

k2b

s !

¼ LC þ k2b

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4LC

k2b
þ 4L2

C

k2ak
2
b

s !
: (5.64)

If, as is usually done, the acceptable levels of the

Type I and II errors are equated, ka ¼ kb � k, then this

expression for the detection limit simplifies to,

LD ¼ 2LC þ k2: (5.65)

As the above derivations are only for the detection

of radiation (Region II of Fig. 5.11), Currie extended

them to define a determination limit, LQ, satisfactory

for quantitative analysis. He defined this as,

LQ ¼ kQsQ (5.66)

where LQ is the true value of the background-sub-

tracted counts, mS, corresponding to a standard devia-

tion, sQ. The factor kQ is the relative standard

deviation for which Currie suggests a value of 10

(corresponding to a 10% relative standard deviation).

In this case,

LQ ¼ kQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LQ þ s2

0

q
(5.67)

from which one can solve for the determination limit,

LQ ¼ k2Q

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s2

0

k2Q

s !
: (5.68)

Currie recognized that difficulties arose from this

analysis when the number of counts was small with the

validity of the Gaussian approximation to the Poisson

distribution becoming questionable. This problem was

addressed in the later papers previously cited.

As a brief numerical example of Currie’s for-

mulae, consider the measurement of a 99mTc sample

using a well-counter with an efficiency of e ¼ 70%;

it is specified that ka ¼ kb ¼ 1.645 for a ¼ b ¼ 0.05

and that kQ ¼ 10. The background count rate is

100 cpm and the counting duration T is 2 min

(hence, corrections for physical decay during the mea-

surement time can be neglected). The minimum

detectable activity is given by AD ¼ LD=eT (and,

similarly, for AC and AQ) and the limiting mean of

the background is mB ¼ 100� 2 ¼ 200 counts. Then,

from (5.62), LC ¼ ffiffiffi
2

p
ka

ffiffiffiffiffiffi
mB

p ¼ 33 counts, and (5.63),

LD ¼ 2� 32:9ð Þ þ 2:71 ¼ 69 counts; from (5.68),

LQ ¼ 50 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mB=12:5

p� � ¼ 256 counts. These

results lead to the corresponding activities,

5.7 Applications 165



AC ¼ 24 dpm10

AD ¼ 49 dpm

AC ¼ 183 dpm

Suppose that a measurement of a sample plus the

background resulted in a total of 250 counts; as the

background is 200 counts, the net background-

corrected signal would be 250 � 200 ¼ 50 counts

with an estimated standard deviation of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
250þ 50

p ¼
17:3 counts. As LC ¼ 33 counts, the decision would be

that activity has been detected in the sample.

5.7.2.5 Detector Dead Time

A radiation detector converts a physical phenomenon

associated with a radiation event (e.g., ionization) into

a signal that can be recorded or interpreted. After such

an event, some categories of electronic radiation

detectors are temporarily incapable of detecting any

events: the period of time during which the detector is

insensitive to radiation events is known as the dead

time (Driver 2002). As further events occurring during

the dead time are not detected, this is an inefficiency

that increases with event rate. If, during the dead time,

an additional event occurs which extends the dead time

further, the detector response is referred to as being

paralyzable. If the dead time is not extended, the

response is termed nonparalyzable. These two modes

of event detection failure are shown in Fig. 5.13.

Paralyzable Response

In this type of response, the total dead time is of

variable length, depending upon the number of events

which occur during the dead time following the origi-

nal event. Let _m be the mean actual event rate and td be
the detector dead time. As the probability that x events

will occur during td is given by the Poisson

distribution e� _mtd _mtdð Þx=x!, the probability that no

events occurring during the dead time is e� _mtd
. This

probability is also equal to the ratio of the measured

event rate, _N, to the actual event rate, _m, or,

_N ¼ _me� _mtd : (5.69)

While _m cannot be calculated in an analytical solu-

tion of this result, if the dead time loss is small due

to a small _m and/or small td, the exponential can be

expanded to give the approximation, _N ffi _m 1� _mtdð Þ.
Solving for the true event rate,

Missed
events

Missed
events

1

td

2 3

Events

Non-paralysable
detector

Paralysable
detector

td

Fig. 5.13 Event detection

failures due to dead times of

nonparalyzable and

paralyzable detectors

10dpm ¼ disintegrations per minute.
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_m ffi 1

2td
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4t2d
�

_N

td

s
: (5.70)

Figure 5.14 shows the measured count rate _N for a

paralyzable detector as a function of the actual count

rate _m for dead times of 1, 10, and 50 ms. It is evident
that in the limit of zero dead time, _N ¼ _m, as expected.
With increasing tD, _N � _m only at small _m and, in fact,

for a sufficiently large dead time (the 50 ms value in

this example), the observed detector response can cor-

respond to two values of the actual count rate: a true

response for a low count rate (to the left of the maxi-

mum) and a false response for a high count rate (to the

right of the maximum).

Nonparalyzable Response

For this mode, the total dead time following an event is

fixed at td, so a probabilistic calculation is not neces-

sary. For each detected event, the number of events

which fail to be detected is _mtd, so the measured event

rate will be,

_N ¼ _m
1þ _mtd

� �
(5.71)

and solving for _m,

_m ¼
_N

1� _Ntd
(5.72)

For small dead time losses, this result can be

approximated by _N ffi _m 1� _mtdð Þ. Hence, the

responses of paralyzable and nonparalyzable detectors

are the same for small dead time losses. Figure 5.15

shows the measured count rate _Nfor a nonparalyzable

detector as a function of the actual count rate _m for

dead times of 1, 10, and 50 ms.
In order to correct for dead time losses using the

above expressions, td, must be known. It can be deter-

mined from knowledge and analysis of the detector

and its associated electronics or estimated by empiri-

cal measurement. The simplest method is the “2-

source method” in which count rates are measured

for two individual sources with different activities

separately and then in combination. Let _N1, _N2 and
_N12 be the measured count rates for source 1, source 2,

and source 1 and 2 in combination, respectively, and
_NBkgd is the measured background count rate. Let _m1,
_m2, _m12, and _mBkgd be the corresponding mean actual

count rates. Clearly,

_m1 þ _m2 � 2 _mBkgd ¼ _m12 � _mBkgd

from which,

_m1 þ _m2 ¼ _m12 þ _mBkgd: (5.73)

For the nonparalyzable model, (5.73) can be rewrit-

ten in terms of the measured count rates,

_N1

1� _N1td
þ

_N2

1� _N2td
¼

_N12

1� _N12td
þ

_NBkgd

1� _NBkgdtd
:

(5.74)
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Fig. 5.14 Measured count rate for a paralyzable detector as a

function of count rate for different dead times. (kcps =

thousands of counts per second)
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Fig. 5.15 Detector response for a nonparalyzable detector as a

function of actual count rate for different dead times
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Solving for td,

td ¼
b 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ag

b2

qh i
2a

(5.75)

where

a ¼ _N1
_N2

_N12 þ _NBkgd

� �� _N12
_NBkgd

_N1 þ _N2

� �

b ¼ 2 _N12
_NBkgd � _N1

_N2


 �

g ¼ _N1 þ _N2

� �� _N12 þ _NB

� �
:

There is no such solution for the paralyzable model

using two sources, but a second method in which a

radioactive source is counted as it decays (with decay

constant l) can evaluate the dead time for the paralyz-

able model. Neglecting any background contribution,

the actual mean count rate is,

_m ¼ _m0e
�lt: (5.76)

Then the measured count rate for the paralyzable

model is,

_N ¼ _m0e
�lte� _m0tde

�lt

and taking logarithms,

ln _N ¼ ln _m0 � lt� _m0tde
�lt: (5.77)

Plotting ln _N
� �þ lt on the ordinate and e�lt on the

abscissa yields a straight line with the slope equal to

� _m0td and an intercept of ln _m0. A numerical exam-

ple is shown in Fig. 5.16 in which a 99mTc source, with

an initial mean actual count rate of 105 cps, decays

over a period of two half-lives whilst being counted by

a detector with a 5 ms dead time. The plot of

ln _N
� �þ lt vs. e�lt is a straight line, from which the

values of _m0 and td are extracted.

5.7.3 Verification of Statistical
Distribution of Measured Data

A valuable quality control measurement of a counter is

to compare the measured data distribution to an

expected statistical distribution (Poisson or Gaussian,

depending upon the mean number of counts). A com-

parative parameter is the w2. For example, consider an

example of source with an activity which is measured

M times in succession. It is assumed that the duration

of the M measurements is sufficiently short in relation

to the mean lifetime of the radionuclide. Each mea-

surement consists of acquiring counts from the source

over equal time intervals; hence, _Ni is the count rate

over the ith time interval. The w2 parameter is,

w2 � 1

_N

XM
i¼1

_Ni � _N
� �2

(5.78)
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Fig. 5.16 Example of

determining the dead time of a

paralyzable detector with a

5 ms dead time using a 99mTc

source with an initial actual

count rate of 100 kcps
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where �_N is the expected mean count rate. The w2 is

also related to the variance of the count rates,

w2 ¼ M� 1ð Þs2_N
_N

: (5.79)

If the count rates are (or are nearly) Poisson

distributed, then s2_N ffi �_N, and (Walpole and Myers

1997),

w2 � M� 1ð Þ (5.80)

Thus, deviations of the measured w2 value from

(M � 1) would be indicative of errors in the equip-

ment acquisition (Hamilton 2004).

Figure 5.17 shows the reduced w2 (i.e., the w2 nor-
malized to the number of degrees-of-freedom, M � 1)

as a function of the number of measurements, M. The

p-values shown are the probabilities that a random

sample of M measurements would yield a reduced

w2 value greater than the corresponding value of the

curve. An example of how this figure could be used in

a calculation is to consider M ¼ 10 measurements of

count rates, from which a w2 is calculated. A w2 value
of less than 3.33 (i.e., w2= M� 1ð Þ0:37) or a w2 value of
greater than 16.92 (i.e., w2= M� 1ð Þ 1:88) have a 5%

probability or less of having occurred randomly if the

underlying distribution were Poisson: i.e., they imply

greater variation than that due to a Poisson distribution

and would suggest further investigation of the equip-

ment and/or sample.
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Photon Interactions with Matter 6

Abstract The radiation-matter interactions of interest to nuclear medicine are those

of photons (X or g rays) and of charged particles (a particles and electrons). This

chapter reviews the photon–matter interaction classes of interest to nuclear medicine

dosimetry and classifies them in terms of whether or not the incident photon is

preserved through the process. In practice, this will be those major interactions that

occur at photon energies below 1MeV. The cross sections for Thomson and Rayleigh

scatter, which are classical in nature, are derived; insignificant energy transfer results

from such scatters although they do lead to attenuation of a photon beam. Compton

scatter is reviewed extensively, including through the derivation of the Klein–

Nishina cross sections using the Feynman propagator method. Photoelectric absorp-

tion is next examined and the cross sections for photon absorption on the K-shell

electrons derived. The excited atom must relax through either radiative or nonradia-

tive means and these are reviewed and characteristic X-rays and Auger/Coster–

Kronig electrons introduced. Finally, the interaction coefficients used in dosimetry

to describe photon–matter interactions are introduced.
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6.1 Introduction

A photon travelling through a medium will interact

with the atoms and nuclei in that medium through

various mechanisms and usually transfer energy in

the process. The types and likelihoods of these inter-

actions are functions of photon energy, photon polari-

zation, and the atomic and nuclear physical properties

of the medium. In the medical context, knowledge of

the physics of photon–matter interactions is essential

to understanding, for example, the modeling of image

production and the associated radiation dosimetry

(Hubbell 1999; Zaidi 2000). This chapter looks at

those categories of photon–matter interactions rele-

vant to nuclear medicine and which all occur at photon
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energies below the threshold energy for g! e�e+ pair
production in the nuclear Coulomb field. There are

four such interactions, all of which are exclusively

photon–electron processes, and which will be categor-

ized in terms of photon number conservation.

Should the photon be conserved during the interac-

tion, it will be scattered from its original trajectory

with or without energy loss. Here, the relevant pro-

cesses are Thomson, Rayleigh, and Compton scatter.

In both Thomson and Rayleigh scatter, the photon is

elastically scattered from a single or an ensemble of

atomic electrons, respectively, with negligible energy

transfer to the electrons.1 The incident and scattered

photons are treated classically as electromagnetic

waves and, as there is no energy transfer, the phases

of the outgoing and incoming waves are the same

leading these to modes of scatter being referred to as

coherent. This coherence allows interference effects

to arise between the scattered waves produced in

Rayleigh. While no energy is transferred to the

medium and the photon is not absorbed, these elastic

processes are still relevant to photon transport calcu-

lations as the total photon number in the incident

beam will be reduced by these scattering processes

due to the photon removal. The assumption of com-

plete elasticity is entirely reasonable due to the scat-

tering atom being part of a lattice which distributes

the recoil over a massive entity leading to a negli-

gible recoil kinetic energy. Compton scatter, on the

other hand, is a quantum mechanical interaction in

which the quantum is scattered from a single electron

(assumed to be free) which subsequently recoils and

the photon exits the interaction with reduced energy.

Thus, unlike coherent scatter, Compton scatter results

in both the attenuation of the incident photon beam

and the transfer of energy to the medium through the

recoiling electron. As a result of the pre- and post-

scatter photon energies differing, it is also referred to

as incoherent scatter. Special considerations are

required if the electron is not free but is bound within

an atom.

Some photon–matter interactions can result in the

absorption of the photon. As it is a boson, the photon

can interact directly with an atomic electron or the

Coulomb field of the nucleus2, being absorbed in

both processes. The latter interaction results in the

production of an electron–positron pair is known as

pair production and has a photon energy threshold, as

shown in Appendix of about 1.022 MeV. As this is

above virtually all of the photon energies of interest to

nuclear medicine, g! e�e+ will not be a significant

contributor to internal radiation dosimetry and, hence,

will not be considered here. Photoelectric absorption

(also known as the photoelectric effect) is the absorp-

tion of a photon by an atomic electron. This interac-

tion, on the other hand, is highly relevant at the photon

energies typical of nuclear medicine.

Compton scatter or photoelectric absorption trans-

fers all or part of the photon energy to the electron.

Should this energy transfer exceed the electron’s bind-

ing energy, it is ejected leaving a vacancy in the

atomic electron orbitals. This vacancy is filled through

a variety of radiative and nonradiative relaxation pro-

cesses resulting in the production of X-rays or ejected

low-energy Auger/Coster–Kronig electrons.

In this chapter, the kinematics and cross sections

for these four types of photon–matter interactions and

the descriptors of the energy transferred and absorbed

are derived. In addition, the relaxation mechanisms

of an excited atom and the characteristic X-rays

and low-energy Auger and Coster–Kronig electrons

resulting are reviewed. Reviews of photon–matter

interactions and the subsequent atomic relaxation pro-

cesses can be found in the articles by Bergstrom and

Pratt (1997), Harding (1997), Hubbell et al. (1994,

2006a, b), and Roy et al. (1999). Numerical values of

photon–matter interaction cross sections and coeffi-

cients are not tabulated here but the reader can easily

access these at the databases provided by Berger et al.

(2005) and by Hubbell and Seltzer (1996). The classic

texts by Attix (1986) and by Johns and Cunningham

(1983) also provide tabulated photon–matter inter-

action data.

Throughout this chapter, examples of calculations

will be provided for photon interactions with carbon

and lead, representing low- and high-Zmaterials, respec-

tively. The former is a simple model for biological

1Nuclear Thomson scatter is the analog to Thomson scatter but

with the nucleus as a point charged target. As the cross section is

inversely proportional to the square of the mass of the scattering

centre, nuclear Thomson scatter is negligible.

2The incident photon can also interact with the Coulomb field of

an atomic electron to create an electron-positron pair and con-

ferring energy to the recoil electron; such a process is known as

triplet production and has an energy threshold slightly greater

than 2.044 MeV.
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materials (water and other compounds can be calculated

for using Bragg’s additivity rule).

6.2 Photon-Conserving Interactions

6.2.1 Thomson Scatter

Thomson scatter is the elastic interaction between a

photon, considered classically as an electromagnetic

wave, and a “free” electron3 in which the electron is

set into oscillatory motion and no energy is transferred.

The oscillating electron radiates electromagnetic energy

with the same frequency as that of the incident wave

and with the angular distribution of an electric dipole.

Consider an electron at the origin, as shown in

Fig. 6.1, with a polarized electromagnetic wave inci-

dent along the y-axis with its polarization such that the

electric field is parallel to the z-axis,

Ei ¼ E0e
�iotẑ: (6.1)

The electron is set into oscillation by the electric

field with an equation of motion about the origin,

me

d2r0

dt2
¼ �eEi (6.2)

with the solution,

r0ðtÞ ¼ e

meo2
e�iotE0ẑ: (6.3)

The scattered photon is described by the electro-

magnetic energy radiated by the oscillating electron

(the Poynting vector), the calculation of which

requires that the corresponding magnetic and electric

fields be known. To obtain these, the retarded vector

potential is first derived and then used to calculate the

magnetic and electric field strengths from Maxwell’s

equations. The derivation of the retarded vector poten-

tial follows from the current density of the oscillating

electron which, assuming that the oscillation ampli-

tude is small and centered at the origin, is,

J ¼ �e
dr0

dt
dðr0Þ

¼ i
e2E0

meo
e�iotd r0ð Þẑ

(6.4)

where d(r) is the Dirac delta function. The retarded

vector potential at the point r is,

AS r; tð Þ ¼ m0
4p

ð
d3r0

J r; t� r�r0j j
c

� �
r� r0j j

¼ i
m0
4p

e2E0

meo
e�io t�r

cð Þ
r

ẑ

(6.5)

where the S subscript denotes correspondence to the

scattered photon and m0 is the permeability of free

space. Equation (6.5) is simplified using the definition

of the classical radius of the electron, ro, and

c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
e0 m0

p
, where e0 is the permittivity of free

space,

AS r; tð Þ ¼ i

�
r0

r

�
E0

o

� �
e�io t�r

cð Þẑ: (6.6)

In spherical coordinates, the components of the

retarded vector potential are,

AS;r ¼ ASj j cosj AS;j ¼ � ASj j sinj
AS;f ¼ 0:

(6.7)
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Fig. 6.1 Thomson scatter: a photon, represented by a plane

wave polarized with the electric field vector parallel to the

z-axis and travelling along the y-axis is incident to a stationary

electron at the origin. The scattered wave is described by the

electric field components ES,r and ES,j and a magnetic field

component HS,f

3In reality, the electron is not “free” as its recoil is ignored. The

electron is loosely bound to the atom which, in turn, may be

bound to within a crystal lattice, for example. As a result, the

recoil is shared with the atom and can be considered negligible.
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There is no f-dependence as a result of the sym-

metry about the dipole (z) axis. As,

r� AS ¼ m0HS (6.8)

then,

m0 HS;r ¼ 0 m0 HS;j ¼ 0

m0HS;f ¼ 1

r

]

]r
rAS;j
� �� ]AS;r

]j

	 

:

(6.9)

Substituting the non-zero component into (6.8) and

solving for HS,f,

HS;f r; tð Þ ¼ 1

m0c

� �

� r0

r

� �
E0 sinj e�io t�r

cð Þ 1� i
c

or

� �
:

(6.10)

The electric field of the irradiated wave is calcu-

lated from,

e0
dES

dt
¼ r�HS (6.11)

where the two non-zero components are,

dES;r

dt
¼ 1

e0rsinj
]

]j
sinjHS;f
� �

¼�2c
r0

r

� �
E0cosje

�io t�r
cð Þ 1� i

c

or

� �
ð6:12Þ

and

dES;j

dt
¼ � 1

e0r
]

]r
rHS;f
� �

¼ �c
r0

r

� �
E0 sinj e�io t�r

cð Þ 1

r
þ i

o
c
þ c

or2

� �� �
:

(6.13)

Integrating these yields the electric field com-

ponents of the scattered wave,

ES;r r; tð Þ ¼ �2c
r0

r

� �
E0 cosj e�io t�r

cð Þ

� c

o2r2
þ i

1

or

� �
ð6:14Þ

ES;j r; tð Þ ¼ � ic

o

� ��
r0

r

�
E0 sinj e�io t�r

cð Þ

� 1

r
þ i

o
c
þ c

or2

� �� �
: ð6:15Þ

The Poynting vector is the average intensity, or the

average rate of energy flow per unit area, of the scat-

tered radiation,

P ¼ 1

2
E�H�: (6.16)

The two components of this vector are,

PS;rðrÞ ¼ 1

2
ES;j r; tð ÞH�

S;f r; tð Þ (6.17)

PS;jðrÞ ¼ 1

2
ES;r r; tð ÞH�

S;f r; tð Þ (6.18)

Substituting the previously-derived expressions

gives,

PS;rðrÞ ¼ 1

2m0

r0

r

� �2
E2
0 sin

2 j
1

c
þ 2c

o2r2
þ i

c2

o3r3

	 


(6.19)

Pr;jðrÞ ¼ � i

m0

r0

r

� �2
E2
0 cosj sinj

1

or
þ c2

o3r3

	 

:

(6.20)

Those terms in the square brackets which are

inversely dependent upon r represent near-field com-

ponents of the dipole radiation and diminish rapidly

with distance. Hence, Pr,j(r) can be ignored for large r

and the radial component of the Poynting vector PS,r(r)

simplified to,

PS;rðrÞ � 1

2cm0

r0

r

� �2
E2
0 sin

2 j

¼ e0c
2

r0

r

� �2
E2
0 sin

2 j:
(6.21)

As r � r0 for atomic dimensions, the intensity of

the scattered wave will be much less than of that

incident.

The above derivation for a polarized incident

wave can be extended to the case of an unpolarized

electromagnetic wave, as shown in Fig. 6.2. The
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electric field of the incident wave is first decomposed

into two orthogonal components, one parallel to the z-

axis and parallel to the x-axis, as shown. The scattering

problem for the former component has already been

solved to yield the radial component of the Poynting

vector. The calculation is repeated for the electric field

polarized parallel to the x-axis but scattered in the

yz-plane. Themagnitude of the scatteredwave’s retarded

vector potential is the same as that of the polarized

case, but in the x-direction. As the electron oscillation

is also now along the x-axis, there is no j-dependence
due to symmetry about the dipole axis. In spherical

coordinates, the components of this retarded vector

potential are,

AS;r ¼ ASj j cosf AS;j ¼ 0

AS;f ¼ ASj j sinf: (6.22)

Due to the above described j-symmetry, there is

only one component of the magnetic field strength

which, from m0HS ¼ r� AS, is,

HS;j r; tð Þ ¼ 1

m0c

� �

� r0

r

� �
E0 sinfe

�io t�r
cð Þ 1� i

c

or sinj

� �
:

(6.23)

The electric field components of the scattered wave

are calculated by integrating e0 dES

dt
¼ r�HS,

ES;r r; tð Þ ¼ � c

sinj
r0

r

� �
E0 cosf e�io t�r

cð Þ

� c

o2r2 sinj
þ i

1

or

� �
(6.24)

ES;f r; tð Þ ¼ ic

o

� ��
r0

r

�
E0 sinj e�io t�r

cð Þ

� 1

r sinj
þ i

o
c
þ c

or2 sinj

� �� �
:

(6.25)

The Poynting vector of the scattered wave thus has

two components,

PS;r ¼ � 1

2
ES;fH

�
S;j PS;f ¼ � 1

2
ES;rH

�
S;j:

If terms of r�n with n � 3 are ignored, only the

radial component need be considered,

PS;rðrÞ ¼ e0c
2

r0

r

� �2
E2
0: (6.26)

If the incident wave is completely unpolarized,

then,

E2
0;x ¼ E2

0;z ¼
E2
0

2
(6.27)

and the intensity of the scattered wave will be the sum

of the radial components of the Poynting vector due to

both electric fields,

PS;r;unpolðrÞ ¼ e0c
2

r0

r

� �2
E2
0

1þ sin2 j
2

� �
: (6.28)

As the Poynting vector of the incident wave is

P0;r;unpolðrÞ ¼ e0c
2

E2
0 (6.29)

the ratio of the intensities is,

PS;r;unpol

P0;r;unpol
¼ r0

r

� �2 1þ sin2 j
2

¼
�
r0

r

�2
1þ cos2 y

2

� � (6.30)

z

x

E0

E0,Z

E0,x

ES,x

ES,yz

y

j

q

Fig. 6.2 Thomson scatter for an unpolarized electromagnetic

wave
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where the complement of the angle j, the angle y, has
been substituted for convenience as y is also the scat-

tering angle (i.e., the angle between the direction of

the incident photon and that of the scattered photon, as

shown in Fig. 6.1). This is the ratio of the incident

photon energy that is scattered into the differential

solid angle given by dO ¼ 1=r2, allowing (6.30) to

be written as,

r2 dsTho ¼ r20
1þ cos2 y

2

� �
(6.31)

to yield the differential cross section in scattering

angle for Thomson scatter,

dsTho

dO
¼ r20

2
1þ cos2 y
� �

: (6.32)

This differential cross section is independent of the

incident photon energy and exhibits a symmetry about

the 90� scattering angle, as shown in Fig. 6.3. A

measure of the total probability that a Thomson scatter

will occur is given by integrating the differential cross

section over the complete solid angle of 4p steradians,

sTho ¼ r20
2

ð2p

0

ð1

�1

df d cos yð Þ 1þ cos2 y
� �

¼ 8p
3
r20

¼ 665mb:

(6.33)

The Thomson total cross section is a universal

constant independent of the incident photon energy

for the elastic scattering of a photon by an electron.

6.2.2 Rayleigh (Coherent) Scatter

While the Thomson formulae describe the elastic scat-

ter of a photon by a single electron, of more practical

interest is the likelihood that the photon will be inci-

dent to a spatially-distributed ensemble of electrons

such as, for example, the atomic electrons orbiting the

nucleus. As a result, now allow for the possibility of

the scattered waves interacting leading to constructive

and destructive interference. This scattering process is

referred to as Rayleigh scatter.

Consider a plane wave incident to a pair of elec-

trons, as shown in Fig. 6.4. The electrons oscillate as a

result of the interaction with the wave and emit a pair

of electromagnetic waves at an angle y from the direc-

tion of the initial electromagnetic wave. The path-

length difference between the two waves is equal to

q 	 r=�hc, where the momentum transfer is

q ¼ k� k0ð Þ and r is the radial vector between the

two scattering centers. The phase difference between

the two scattered waves is ei q	r=�hcð Þ. As the scatter is

elastic, the momentum transfer is,

q ¼ 2k sin
y
2

(6.34)

Extending the picture from a pair of electrons to an

electron number distribution of density re(r), the

amplitude of the scattered wave normalized to that

incident is given by integrating the phase differences

over the electron spatial distribution, or,

F q;Zð Þ ¼
ð
d3r ei

q	r
�hc re rð Þ (6.35)
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Fig. 6.3 Angular dependence of the Thomson scatter differen-

tial cross section
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∧

Fig. 6.4 Rayleigh scattering
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which will be immediately recognized as the Fourier

transform of the electron spatial distribution to

momentum space. This expression is referred to as

the atomic form factor. The Z of the argument refers

to the number of electrons in the ensemble. As the

intensity of the scattered wave is given by the square

of the amplitude, the differential cross section in pho-

ton scattering angle for the coherent scatter from this

ensemble of electrons is the coherent superposition of

the amplitudes of these scattered waves, or,

dsRay

dO
y;Zð Þ ¼ dsTho

dO
yð Þ F q;Zð Þj j2 (6.36)

where the Ray subscript refers to Rayleigh scattering.

The atomic form factor can also be written as the

matrix elements summed over all of the electrons,

F q;Zð Þ ¼
XZ
n¼1

D
cgs

���eiq	rn�hc

���cgs

E
(6.37)

where cgs is the atomic ground-state wavefunction

and rn is the vector from the origin (i.e., the center of

the nucleus) to the nth electron. Only the ground-state

wavefunction is used as this is an elastic scatter with-

out excitation or ionization of the atom. If one writes

the electron density as,

re rð Þ ¼
D
cgs

���XZ
n¼1

d r� rnð Þ
���cgs

E
(6.38)

then the matrix element leads immediately to the Four-

ier transform.

As the coherent scattering of electromagnetic

waves will be a diffraction phenomenon, consider a

central electron distribution (i.e., one which is only a

function of radial distance). The corresponding atomic

form factor is the same representation as that derived

for the nuclear form factor in Chap. 3 except that re(r)
represents the charge density of the atomic electrons

rather than that of the protons. Rewriting that result

slightly,

F q;Zð Þ ¼ 4p
ð
dr r2

sin qr
�hc

� �
qr
�hc

� � reðrÞ

and noting that

lim

x ! 0

sin x

x
¼ 1

the atomic form factor for the magnitude of the

momentum transfer q ¼ 0 (which corresponds to

y ¼ 0) is,

F 0;Zð Þ ¼ 4p
ð1

0

dr r2reðrÞ ¼ Z: (6.39)

This can also be seen from Fig. 6.4 in which the

phase differences go to zero for a zero scattering angle

such that there is constructive interference between the

waves so that F(0, Z) ¼ Z.

General features of the atomic form factor as a

function of momentum transfer can be observed by

calculating that for atomic hydrogen. The atomic

wavefunction of the hydrogen atom in its ground

state is,

cgs ¼
1ffiffiffiffiffiffiffiffi
pr31

p e�
r

r1 (6.40)

where r1 is the Bohr radius. The corresponding elec-

tron density will equal its squared modulus,

reðrÞ ¼ cgs

�� ��2
¼ 1

pr31
e�2 r

r1 :
(6.41)

The atomic form factor for hydrogen is the Fourier

transform of this result,

F q;Z ¼ 1ð Þ ¼ 1

1þ r1q
2�hc

� �2� �2 (6.42)

and is plotted in Fig. 6.5 as a function of q.

As Fðq;ZÞ ! Z as the scattering angle y ! 0, then,

dsRay

dO
0;Zð Þ ¼ Z2 dsTho

dO
ð0Þ (6.43)

Thus the forward-angle coherent scatter from an

atom of atomic number Z is Z2 times that for a single

electron. Figure 6.6 shows the coherent differential

cross section for carbon (Z ¼ 6) as a function of

photon scattering angle for incident photon energies

of 10, 20, and 30 keV. For y ¼ 0, the coherent differ-

ential cross section is equal to 2.86 b/sr, which is

Z2 ¼ 36 times greater than the Thomson value of

79.5 mb/sr. As the Thomson differential cross section
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is independent of photon energy and the atomic form

factor has no kinematic dependencies at a 0� scattering
angle, the 0� coherent scatter cross section will have

no energy dependence. Figure 6.6 also shows that, for

a fixed non-zero scattering angle, the Rayleigh differ-

ential cross section will decrease with increasing pho-

ton energy or, equivalently, decreasing photon

wavelength. This is due to the phase differences

between the scattered waves increasing with decreas-

ing wavelength so that the interference becomes more

destructive overall and suppressing the differential

cross section. The decrease in the Rayleigh differen-

tial cross section with increasing photon energy for

a fixed scattering angle can also be interpreted as

being due to the corresponding decrease in photon

wavelength leading to an increase in the phase differ-

ences between the scattered waves.

While the total coherent cross section can be

obtained by integrating the differential cross section

with solid angle over 4p steradians, it is more conve-

niently performed by integrating over momentum

transfer rather than solid angle,

sRay ¼
ð2k

0

dq
dq
dO

� � dsRay

dO

¼
ð2k

0

dq
dsTho

dO
F q;Zð Þj j2

dq
dO

� �

¼ r20
2

ð2k

0

dq 1þ cos2yðqÞ� � F q;Zð Þj j2
dq
dO

� �

(6.44)

The upper limit of the integral follows for y ¼ p
and the derivative is calculated,

dq

dO
¼ 1

2p
dq

d cos yð Þ
¼ k2

2pq

(6.45)

which leads to,

sRay ¼ pr20
k2

ð2k

0

dq 1þ cos2yðqÞ� �
q F q;Zð Þj j2 (6.46)

This integral can be simplified by noting that

F q;Zð Þj j2 is appreciable only for low q or low scatter-

ing angles. In this case, 1þ cos2yð Þ � 2,

sRay ¼ 2pr20
k2

ð2kg

0

dq 	 q F q;Zð Þj j2 (6.47)

Hence, a representation of the atomic form factor is

required to calculate the Rayleigh total cross section

and this requires detailed knowledge of the ground-

state atomic wavefunction.4 As a result, it is typically

0
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Fig. 6.6 Rayleigh (coherent) scatter differential cross section

as a function of photon scattering angle for photon energies of

10, 20, and 30 keV. Ordinate units are in barns (1 b ¼ 10�24 cm2)

per steradian
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Fig. 6.5 Atomic form factor for hydrogen as a function of

momentum transfer

4This evaluation is summarized by Hubbell et al. (1975).
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calculated using numerical integration. An example of

the total coherent cross section for carbon is shown in

Fig. 6.7 as a function of photon energy ranging from

1 keV to 1 MeV. At high photon energies, the total

cross section varies approximately as 1/k2.

6.2.3 Compton (Incoherent) Scatter

6.2.3.1 Introduction

Thomson and Rayleigh scatter are classical electrody-

namic processes in which no energy is transferred to

the medium. Compton scatter, on the other hand, is a

quantum electrodynamic interaction and results in the

direct transfer of energy from the photon to a recoil

electron. Experimental suggestions of an inelasticity

in the scattering of electromagnetic radiation5 could

not be explained using classical electrodynamic theory

but is possible through quantum electrodynamics

(QED) in which the photon is considered as a quan-

tum. This was demonstrated independently by Comp-

ton (1923a, b, 1925) and Debye (1923) who both

derived a relationship between the scattered photon

wavelength (inversely proportional to its energy) and

the scattering angle from a free electron at rest which

subsequently recoils with a fraction of the projectile

photon’s energy. These results, however, are purely of

the kinematics of the photon–electron interaction and

do not shed light on the probability of the scattering

occurring. Initial derivations of the Compton scatter

differential cross section were made by Dirac (1926)

and Gordon (1927). However, these results were only

in agreement with experimental data for the combina-

tion of small angle scattering and light elements. It

was the collaboration between Klein and Nishina

(1929) who, using Dirac’s electron theory (Chap. 2),

provided the complete analytical expressions for the

Compton scatter cross section. The Feynman diagrams

for Compton scatter are shown in Fig. 6.8.

These diagrams show that Compton scatter is a

second-order process with an intermediate state differ-

ing from the initial and final states by one quantum.

Compton scatter proceeds through either the absorp-

tion of the incident photon by an electron at one vertex

(the upper diagram with no photon present in the

intermediate state) and the emission of the final photon

at the second or through the emission of the final

photon by the electron at one vertex (the lower dia-

gram with two photons present in the intermediate

state) followed by the absorption of the incident pho-

ton at the second vertex. Before Fig. 6.8 is used to

derive the Klein–Nishina cross section, the kinematics

of Compton scatter must first be derived.

6.2.3.2 Compton Kinematics

Figure 6.9 shows the kinematics of a photon of energy

k and momentum k incident to a free electron of mass

1
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Fig. 6.7 Total Rayleigh (coherent) cross section for carbon

k
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pi y

y

x

xpi pi − k′ = pf − k

pi + k = pf + k′
pf

pf

k′

Fig. 6.8 Feynman diagrams for Compton (incoherent) scatter

5The scatter was considered inelastic in that the pre- and

postscatter photon energies differed.
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me at rest. The photon is scattered through an angle yg
with a reduced energy k0 and momentum k0 and the

electron recoils at an angle ye with a total energy E0
e

and momentum p0e. The conservations of momentum

and energy are,

k ¼ k0 þ p0e (6.48)

kþme ¼ k0 þ E0
e: (6.49)

The squared momentum transfer to the electron is,

p0e
�� ��2 ¼ k� k0ð Þ2 (6.50)

and the square of the total energy of the recoil

electron is,

E02
e ¼ p0e

�� ��2 þm2
e

¼ k2 þ k02 � 2kk0 cos yg þm2
e :

(6.51)

The scattered electron energy is also obtained from

the conservation of energy,

E02
e ¼ k� k0 þmeð Þ2: (6.52)

Equating these two expressions gives, with some

further algebraic manipulation, the scattered photon

energy,

k0 ¼ k

1þ a 1� cos yg
� � (6.53)

where the ratio of the incident photon energy to the

electron rest mass is conventionally6 described by

a ¼ k/me. Figure 6.10 presents the scattered photon

energy k as a function of the incident photon energy k

for a variety of scattering angles. For yg ¼ 0, the

Thomson scatter condition of k ¼ k0 is met. However,

for non-zero photon scattering angles, the scattered

photon energy is less than that incident with the

amount of decrease growing with photon energies.

For practical considerations, at incident photon ener-

gies below about 200 keV, the scattered photon energy

is very nearly equal to that incident. This limited

difference has practical implications when energy

discrimination is used to exclude scattered photons in

emission image acquisition. Above this energy, a

greater fraction of the photon energy is transferred to

the recoil electron and k0 < k. With increasing inci-

dent photon energy, the amount of energy carried

away by the scattered photon approaches a constant

value which is a function only of scattering angle. This

asymptotic feature can be more clearly understood by

rewriting (6.53),

k0 ¼ me

k

me þ k 1� cos yg
� � (6.54)
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Fig. 6.9 Compton scatter kinematics 0.001
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Fig. 6.10 Compton (incoherent) scatter: scattered photon

energy as a function of incident photon energy for different

scattering angles

6A nomenclature which, unfortunately, can be confused with the

fine-structure constant. However, which of the two quantities is

being referred to should be clear due to the context of the

discussion.
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which, for high photon energies (k � me), simplifies

to,

k0 � me

1� cos yg

� �
for k � me: (6.55)

This gives the maximum scattered photon energies

for scattering angles of 45, 90, and 180� of,

k0(yg ¼ 45�) � 1.74 MeV

k0(yg ¼ 90�) � me ¼ 0.511 MeV

k0(yg ¼ 180�) � 0.5 me ¼ 0.256 MeV.

The vertical differences in Fig. 6.10 between the

diagonal line (k ¼ k0) and the curves are equal to the

energies transferred to the electron. The maximum

energy transfer will obviously occur for a backscat-

tered photon (yg ¼ 180�) and approaches a value of

k�me=2 for very large incident photon energies.

While most of the photon energy is transferred, not

all of it is given up to the electron.

It is of interest to look at Compton scatter in terms

of the wavelengths of the incident and scattered

photons. The expression for the scattered photon en-

ergy can be rearranged to give,

1

k0
� 1

k
¼ 1

me

1� cos yg
� �

(6.56)

which can be then used to yield the increase in photon

wavelength resulting from the incoherent scatter,

Dl ¼ l0 � l ¼ h

mec
1� cos yg
� �

¼ lC 1� cos yg
� �

¼ 2lC sin2 yg

(6.57)

where lC is the Compton wavelength of the electron

with a value equal to 2.46 pm. Note that the change in

photon wavelength is independent of the incident pho-

ton wavelength and is determined only by the photon

scattering angle. Hence, by measuring the scattered

photon wavelength at a given scattering angle, the

incident photon energy can be determined by,

k ¼ hc

l0 � lC 1� cos yg
� � : (6.58)

Having looked at the scattered photon energy, the

recoil electron’s kinetic energy, which is of consequence

to the radiation dosimetry, is considered next. The recoil

kinetic energy of the electron is equal to the difference

between the incident and scattered photon energies,

T0
e ¼ k� k0 ¼ k

a 1� cos yg
� �

1þ a 1� cos yg
� � (6.59)

and the maximum recoil kinetic energy will occur for a

backscattered photon, yg ¼ p,

T0
e;max ¼ k

2a
1þ 2a

: (6.60)

The photon scattering and electron recoil angles are

related by,

cot ye ¼ 1þ að Þ tan yg
2
: (6.61)

This angular relationship is plotted in Fig. 6.11 for

various values of a (the recoil angle is obviously less

than 90�). For low photon energies (i.e., a 
 1),

cot ye � tan
yg
2

a 
 1: (6.62)

Manipulation of this result gives the electron recoil

angle for low photon energies,

ye ¼ p� yg
2

a 
 1 (6.63)

which is the linear relationship between the scattered

and recoil angles for a ¼ 0 seen in the figure. Equa-

tion (6.61) gives the scattered and recoil angle rela-

tionship at high photon energies,

cot ye � a tan
yg
2

Large a: (6.64)
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Hence, if a forward scatter occurs at high photon

energies, the recoil angle of the angle approaches 90�.
At low incident photon energies, the electron recoil

angle smoothly decreases from 90� to 0� as the photon
scattering angle increases from 0� to 180�. But, for
high photon energies, the electron recoil angle stays

relatively low and constant over a wide range of pho-

ton scattering angles only to rapidly grow to 90� as the
photon scattering angle approaches 0�.

6.2.3.3 Klein–Nishina Cross Section

The derivation of the Klein–Nishina differential cross

section for Compton scatter is complicated and tedi-

ous. Such derivations, with varying degrees of detail

and complexity, can be found in a variety of quantum

electrodynamic texts such as those by Heitler (1984),

Bjorken and Drell (1964), Gribov and Nyiri (2001),

Gould (2006), and Dyson (2007). Although the deri-

vations of the Klein–Nishina cross section in these

texts have provided the genesis of the derivation

provide here, the propagator theory as described by

Bjorken and Drell is the foundation of this derivation

(but with the omission of certain details such as trace

algebra).

The incident photon is described as a four-vector

potential of a photon with momentum Km and polari-

zation em,

Am X;Kð Þ ¼ emffiffiffiffiffiffiffiffiffiffi
2kL3

p eiK	x þ e�iK	x� �
: (6.65)

Similarly, that for the scattered photon is,

Am X0;K0ð Þ ¼ e0mffiffiffiffiffiffiffiffiffiffi
2kL3

p eiK
0	x0 þ e�iK0	x0

� �
: (6.66)

L3 is the usual volume of normalization and the

Feynman dagger notation from Chap. 3 has been

used. The initial and final electron Dirac wavefunc-

tions are,

ciðXÞ ¼
ffiffiffiffiffiffiffiffiffiffi
me

EiL3

r
u pi; sið Þe�p	Y (6.67)

cfðXÞ ¼
ffiffiffiffiffiffiffiffiffiffi
me

EfL3

r
u pf ; sfð Þe�p	X: (6.68)

For clarity,

p 	 X � Et

�h
� p 	 X

�hc
: (6.69)

The S-matrix for the two Feynman diagrams

describing Compton scatter shown in Fig. 6.8 is,

Sfi ¼ e2
ð
d4X d4Y �cfðXÞ

n
�igmAm X;Kð ÞiSF

� X � Yð Þ �ið ÞgmAm Y;K0ð Þ þ �ið ÞgmAm X;K0ð Þ
� iSF X � Yð Þ �igmAm Y;Kð Þ� �o

�ciðYÞ:
(6.70)

SF X � Yð Þ is the Feynman propagator,

SF X � Yð Þ ¼ 1

2pð Þ4
ð
d4p

e�p	 X�Yð Þ

6p�m
: (6.71)

The result of the integration is,

Sfi ¼ e2

L6

me 2pð Þ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EiEfk k0

p d4 pe;f þ K0 � pe;i � K
� �

� �u pf ; sfð Þ
(

�i 6e0ð Þ i

6pi þ K �me

�i6eð Þ

þ �i6eð Þ i

6pi � K0 �me

�i 6e0ð Þ
)
u pi; sið Þ:

(6.72)

The Klein–Nishina scatter differential cross section

follows by first forming a rate by squaring this result

and dividing by 2pð Þ4d4ð0Þ and then dividing by the

incident electron flux and electron number density,

j v j=L3 and L�3, respectively. This is then integrated

over the phase–space of the final state of the recoil

electron and scattered photon, L6=ð2p� �6Þd3pe;f dk0.
This lengthy procedure yields,

dsKN¼ e4m2
e

16p2kEi vj j
ð
d3pe;f dk

0

� �u pf ;sfð Þ 6e0 6e
6piþK�me

þ 6e 6e0
6pi�K0�me

� 
u pi;sið Þ

����
����
2

�d4 pe;fþK0�pe;i�K
� �

Ef K
0 :

(6.73)
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Calculating for the laboratory reference frame

(where the electron is initially at rest, pi ¼ 0), this

reduces to,

dsKN

dO
¼ a2

 
k0

k

!2������u pf ; sfð Þ

� 6e0 6e
6pi þ K �me

þ 6e 6e0
6pi � K0 �me

� 
u pi; sið Þ

�����
2

:

(6.74)

Further simplification is achieved through the use

of a gauge in which the incident and scattered photons

are transversely polarized in the laboratory reference

frame. By averaging over the initial electron spins si
and summing over the final electron spins sf, and doing

the same for the photon polarizations, the result is (after

considerable and tedious trace algebra) the Klein–

Nishina differential cross section in solid angle is,

dsKN

dO
¼ r20

2

k0

k

� �2
k0

k
þ k

k0
� sin2yg

� �
: (6.75)

This result can be seen to reduce to the Thomson

classical differential cross section in the low-energy

limit, k0 � k,

dsKN

dO
� r20

2
2� sin2yg
� �

� r20
2

1þ cos2yg
� �

k0 � k:

(6.76)

The Klein–Nishina differential cross section per

electron is plotted in Fig. 6.12 as a function of photon

scattering angle for various values of a ¼ k=me. Note

that, unlike the Thomson cross section, which has no

energy dependence and is symmetric about yg ¼ 90�,
the Klein–Nishina cross section becomes more for-

ward directed with increasing photon energy.

The Klein–Nishina total cross section represents

the probability that a photon will undergo a Compton

scatter with a single free electron and, as usual, is

calculated by integrating the differential cross section

over 4p steradians. Avoiding, again, a tedious calcula-

tion, the result is provided without proof,

sKN ¼ 3

4
sTho

"
1þ a
a2

2 1þ að Þ
1þ 2að Þ �

ln 1þ 2að Þ
a

� �

þ ln 1þ 2að Þ
2a

� 1þ 3a

1þ 2að Þ2
#
:

(6.77)

where sTho is the total Thomson cross section. sKN is

plotted in Fig. 6.13 as a function of photon energy. At

low photon energies (a 
 1), sKN � sTho and sKN

decreases with photon energy, eventually exhibiting a

1/k dependence. As the total Klein–Nishina cross sec-

tion is per electron and was calculated for a free elec-

tron target, it is independent of the atomic number,

Z, of the medium in which the scattering occurs. How-

ever, Compton scatter will obviously have, in practice,

a dependence upon Z and this is evaluated later.
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Of particular interest to dosimetry is the overall

fraction of the photon energy kg that is transferred to

the recoil electron’s kinetic energy, T0
e. This is deter-

mined by first weighting the Klein–Nishina differen-

tial cross section by this fraction,

dsKN;Tr

dO
yg
� � ¼ dsKN

dO
yg
� �

1� k0 yg
� �
k

� �
: (6.78)

Integrating this differential cross section over a

solid angle of 4p steradians yields the energy-transfer

cross section,

sKN;Tr ¼ 3

4
sTho

"
2 1þ að Þ2
a2 1þ 2að Þ �

1þ 3a

1þ 2að Þ2

þ 1þ að Þ 1þ 2a� 2a2ð Þ
a2 1þ 2að Þ2 � 4a2

3 1þ 2að Þ3

� 1þ a
a3

� 1

2a
þ 1

2a3

� �
ln 1þ 2að Þ

#

(6.79)

sKN,Tr is plotted in Fig. 6.13 as a function of incident

photon energy. sKN,Tr increases with photon energy

up to a broad maximum at about 500 keV, reflecting

the increase in the recoil kinetic energy with photon

energy which is eventually overwhelmed by the drop

off in the Klein–Nishina total cross section with

photon energy. The scatter cross section is that for

the energy carried by the scattered photon and is

simply the difference between the total and energy-

transfer cross sections,

sKN;S ¼ sKN � sKN;Tr (6.80)

and which is also plotted in Fig. 6.13. For low incident

photon energies, sKN,S � sKN, reflecting the fact that

there is little energy transferred to the recoil electron at

these energies. With increasing photon energy, sKN,S

decreases as the fraction of energy taken up by the

recoil electron increases. The ratio of the Klein–

Nishina transfer to total cross sections is equal to the

mean fraction of photon energy transferred to the

electron,

sKN;Tr

sKN

¼
�T0
e

k
(6.81)

and is shown in Fig. 6.14 as a function of photon

energy. This mean fraction increases relatively slowly

with photon energy (recall from Fig. 6.10 that the

fraction of incident photon energy transferred to the

electron only becomes significant for high photon

energies and non-zero photon scattering angles) and

is only equal to about 50% of the incident photon

energy at about 1.5 MeV. Also plotted in Fig. 6.14 is

the maximum electron energy as a fraction of the

Incident Photon Energy, k (MeV)

s K
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Fig. 6.13 Klein–Nishina

total, energy-transfer and

scatter cross sections
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incident photon energy for a backscattered photon

(yg ¼ p),

T0
e;max ¼ k

2a
1þ 2a

: (6.82)

The Klein–Nishina differential cross section in

electron energy will also be of some interest when

we derive a variety of dosimetric quantities and can

be calculated from,

dsKN

dT0
e

¼ dsKN

dO
dT0

e

dO

	 
�1

¼ 3

8

s0

ak

� �

� 2� 2T0
e

a k�T0
e

� �þ T02
e

a2 k�T0
e

� �2þ T02
e

k k�T0
e

� �
" #

:

(6.83)

This expression also represents the energy distribu-

tion of the scattered electrons and is plotted in

Fig. 6.15 as a function of the recoil electron kinetic
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energy for various values of k. The curves exhibit

similar features as the variation of dsKN=dT0
e with Te

is relatively small (this is known as the Compton

continuum) until just before the value of Te,max

where the cross section peaks (the Compton peak).

6.2.3.4 Effects of Atomic Binding on Compton

Scatter

Recall that the Compton kinematics and Klein–

Nishina cross sections were derived under the assump-

tion of the target electron being both free and initially

at rest. While such an assumption may yield accurate

predictions of incoherent scatter for photons with ener-

gies greater than about 1 MeV and for low-atomic

number scatters, electrons are in reality both bound to

the atom and have momentum distributions prior to

interacting with the photon. Kinematic and electron

binding considerations must then be accounted for

(Bergstrom and Pratt 1997; Cooper 1997). The elec-

tron momentum will either add to or subtract from the

scattered photon momentum with the result that, for a

monoenergetic incident photon beam and a fixed scat-

tering angle, polyenergetic scattered photons will be

detected rather than monoenergetic photons as calcu-

lated from the Compton kinematics. Such Doppler

broadening of scattered photons was first demonstrated

experimentally by Dumond (1929) and Fig. 6.16 pro-

vides a schematic representation of the effects of an

initial electron momentum distribution in which the

double differential cross section in photon scatter

solid angle and scattered photon energy d2s=dOdk0 is

shown as a function of k0. For a free electron initially

at rest, this double differential cross section would be

a delta-function at the scattered photon energy k for

the electron at rest. This spectrum is broadened as the

target atomic electron has a momentum spectrum.

The degree of broadening will be an inverse function

of the degree of binding. For a tightly bound electron

(i.e., constrained to a small spatial distribution), the

d2s=dOdk0 spectrum will be broad. This narrows with

decreasing binding (approaching the state of a free

electron). Binding also leads to a shift in the peak of

the spectrum away from the free electron value, a

difference known as the Compton defect. Binding of

the target electron also dictates photon kinematic lim-

its for this Compton scatter. The incident photon

energy must be sufficient to excite the electron to a

higher orbital or to the continuum. This specifies the

lower limit of the required photon energy and, con-

versely, the upper limit of the observed scattered pho-

ton energy to kMax ¼ k�EB, where EB is the electron

binding energy.

As with the atomic form factor which extends the

calculation of elastic scatter from a single electron to

that from multiple atomic electrons, an incoherent

scattering factor for Compton scatter from atomic

electrons can also be defined (Hubbell et al. 1975;

Hubbell 1997). This, unlike Compton scatter from a

free electron, is inherently an inelastic process as

atomic excitation and ionization energy channels are

now present and not all of the energy lost by the

photon will appear in the kinetic energy of the recoil

electron. An appropriate form factor is,

Fe q;Zð Þ ¼
D
ce

���XZ
j¼1

ei
q	rj
�hc cgs

E��� (6.84)

where ce is the wavefunction of the atom (which we

now allow to be excited or ionized) and e is its energy.
It will be assumed that the scatter necessarily results in

the transfer of sufficient energy to lead to the elec-

tron’s ejection, so those final atomic states which are

merely excited (corresponding to Raman scattering)

are ignored. The incoherent scattering function is the

sum of the squared moduli of the above form factor for

non-zero e, or,

S q;Zð Þ ¼
X
e>0

Fe q;Zð Þj j2: (6.85)

Scattered Photon Energy, k′

k′Max = k − EB
k′ = k

1 + a (1− cosqg )

d
2 s

d
W

 d
k′

Fig. 6.16 Schematic of the double differential Klein–Nishina

cross section in solid angle and scattered photon energy as a

function of scattered photon energy for a photon incident to an

atomic electron

186 6 Photon Interactions with Matter



This summation is over all possible excitation ener-

gies. By using the closure property,

X
e

cej i ceh j ¼ 1 (6.86)

and including the e ¼ 0 state in the summation and

then explicitly subtracting that term,

Sðq;ZÞ ¼
XZ
m¼1

XZ
n¼1

D
cgs

���e�i
q	 rm�rnð Þ

�hc cgs

E
� F q;Zð Þj j2

���
(6.87)

where the summations are over the number of elec-

trons and (6.37) has been used. The differential cross

section for incoherent scatter from an atom with Z

electrons is the Klein–Nishina differential cross sec-

tion for a single electron scaled by the incoherent

scattering function,

dsInc

dO
¼ dsKN

dO
S q;Zð Þ (6.88)

Further understanding of the incoherent scattering

function can be obtained using the nonrelativistic

impulse approximation in which the bound, nonsta-

tionary electron is treated as a free electron but with

the same momentum distribution as that calculated

from the wavefunction of a bound atomic electron.

The kinematics are shown in Fig. 6.17.

In the impulse approximation, the electron feels the

same binding potential before and after the scatter.

Another way of interpreting this is that the photon

interacts with a single atomic electron with the remain-

der acting as spectators. As a result, only the change in

kinetic energy need be considered. The conservation of

momentum is,

pe þ k ¼ p0e þ k0 (6.89)

from which the momentum transfer, q, is,

q ¼ p0e � pe

¼ k� k0:
(6.90)

Assuming nonrelativistic kinematics, the conserva-

tion of energy is,

p2e
2me

þ k ¼ p02e
2me

þ k02 � EB (6.91)

where EB is the electron binding energy. This leads to

the change in photon energy,

k� k0 ¼ 1

2me

p02e � p2e
� �� EB: (6.92)

From (6.90),

qj j2 ¼ p02e � p2e � 2pe 	 q: (6.93)

Using this result in (6.92), the change in photon

energy following an inelastic scatter from an electron

initially in motion and bound to an atom is found,

k� k0 ¼ q2

2me

þ pe 	 q
me

� EB: (6.94)

The first term is that of a nonrelativistic electron

initially at rest and unbound; the second and third

terms account for changes due to electron motion

and binding, respectively. The term due to electron

motion can either increase or decrease the scattered

photon energy depending upon the sign of the scalar

product, pe 	 q, or the direction between the initial

electron momentum and the net momentum transfer.

If the z-axis is defined to be that of the direction of the

scattered photon, then,

pe;z ¼ pe 	 q
q

(6.95)

Incident photon: k, k

Scattered photon: k′, k’

Recoil electron: p′e, E′e

Electron: pe, Ee

qe

qγ

Fig. 6.17 Kinematics of the impulse approximation in which a

photon is incident to a moving electron
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is the projection of the electron’s initial momentum

vector onto the scattering vector. The Compton profile

is the integral,

J pe;z
� � ¼

ð
dpe;xdpe;y c pð Þj j2 (6.96)

where c pð Þ is the wavefunction of the bound electron

in momentum space and c pð Þj j 2 is the electron’s

momentum distribution. The contributions from dif-

ferent orbitals to the Compton profile are calculated

separately and then summed over the orbitals,

J pe;z
� � ¼X

i

Ji pe;z
� �

ZiH k� k0 � EB;i

� �
(6.97)

where Ji(pe,z) is the Compton profile for the ith orbital,

Zi is the number of electrons in that orbital, EB,I is the

corresponding binding energy and H(x) is the Heavi-

side function. The inclusion of the Heaviside function

is necessary to account for electron binding, i.e., inco-

herent scatter cannot occur unless k � k0 > EB. The

individual Compton profiles for a given orbit have the

normalization,

ð1

�1
dpe;zJi pe;z

� � ¼ 1 (6.98)

and the incoherent scattering factor is the integral of

the Compton profile,

S q;Zð Þ ¼
ðpe;z;Max

�1
dpe;zJ pe;z

� �
: (6.99)

The limiting values of the incoherent scattering

factor are next considered. As q! 0, F(q,Z)!Z andPZ
m¼1

PZ
n¼1 cgs

� ��ei~q	~rm�~rnð Þ
�hc cgs

�� �!Z2, then S(q,Z)! 0.

On the other hand, for large q, the rapid oscillatory

behavior of ei
q	 rm�rnð Þ

�hc will average to zero except when

the indices are equal, in which case S(q,Z)!Z as

q!1.

Values of incoherent scattering factors and incoher-

ent scatter cross sections are provided by Hubbel et al.

(1975). Figure 6.18 shows total cross sections per

atom for carbon (Z ¼ 6) for incoherent scatter and

the Klein–Nishina total cross section for a single free

electron scaled by the atomic number of carbon,

ZsKN. The two calculations agree for photon energies

greater than about 0.05 MeV; below this energy, the

Klein–Nishina free electron approximation markedly

overestimates the cross section. Note that the free

electron cross section approaches the Thomson free

electron value of ZsTho ¼ 3990 mb.
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Fig. 6.18 Total incoherent

cross section for carbon as a

function of photon energy.

The free electron curve is the

Klein–Nishina total cross

section scaled by the atomic

number of carbon
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6.3 Photon Nonconserving Interaction

6.3.1 Photoelectric Absorption

6.3.1.1 Introduction

As the photon is a boson and the electron is a fermion,

it is possible for a photon to be absorbed by an atomic

electron and the electron gain a kinetic energy equal to

the difference between the incident photon energy and

the sum of the electron binding energy and the atomic

recoil kinetic energy.

The photon is also not conserved in the pair produc-

tion g ! eþe� process in the nuclear Coulomb field

and in the triplet production g ! eþ þ 2e� process in

the atomic electron Coulomb field. However, as shown

in the Appendix, the minimum photon energy required

for the pair production interaction is equal to just above

2me, or about 1.022 MeV. This photon energy is above

that of practical nuclear medicine interest and, as a

result, pair and triplet production are not considered

here.

6.3.1.2 Kinematics

In the photoelectric process (Fig. 6.19), the incident

photon is absorbed by a bound atomic electron fol-

lowed by its ejection, with an exchange of photon

energy to the emitted electron’s kinetic energy

(minus the atomic binding energy and the kinetic

energy carried away by the recoil nucleus). The total

energy of the ejected electron is,

E0
e ¼ k� EB � T0

Rec þme: (6.100)

Hence, the kinematic specification for the mini-

mum photon energy required for photoelectric absorp-

tion to occur is,

k > EB þ T0
Rec (6.101)

It should be recognized that photoelectric absorp-

tion is necessarily a 3-body reaction (incident photon,

atomic electron, and atom) as a free electron cannot

absorb a photon due to the requirement of simulta-

neous conservations of linear momentum and energy.

In such a case, the conservations of linear momentum

and energy are k ¼ p0e and k þ me ¼ E0
e. Substituting

these two expressions into the relativistic invariant,

E2 ¼ p2 þ m2, yields k2 þ me
2 þ 2kme ¼ k2 þ me

2

which leads immediately to the contradictory conclu-

sion, 2 kme ¼ 0: i.e., linear momentum is not con-

served. Hence, a third body (the nucleus) is required

to conserve linear momentum. However, while the

recoil nucleus absorbs the momentum, it gains negligi-

ble kinetic energy as result of its mass. Hence, in

practical terms, the kinematic requirement for photo-

electric absorption to occur is that the photon energy

exceed the atomic binding energy,

k > EB: (6.102)

6.3.1.3 Cross Section

From this kinematic threshold, the photoelectric

absorption cross section for a given orbital will be

zero if the incident photon energy does not exceed

the binding energy. In order to provide an understand-

ing of the nature of the photoelectric absorption cross

section, it is advantageous to consider photon energies

far from these thresholds. As the nucleus is necessary

for the simultaneous conservation of momentum and

energy, the photoelectric absorption cross section

should increase with increasing electron proximity to

the nucleus which will correspond to increased binding

energy. Superimposed upon this energy dependence is

an expectation that the absorption probability will

decrease with increasing photon energy. An intuitive

argument for the decrease in the photoelectric absorp-

tion cross section with energy is based upon a model

of a bound electron absorbing a photon being subject

to an oscillating force proportional to meo
2, where

o ¼ k=�h. Equating this force to the Coulomb force

Incident photon: k, k

Vacancy

Ejected electron,
E′e = k − EB − T′Rec + me

Fig. 6.19 Photoelectric absorption
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between the electron and the nucleus, Za�hc=r2, yields
the reciprocal relationship r/ k�1. As the corresponding

volume is r3, this implies that the photoelectric absorp-

tion cross section should vary approximately as k�3.

Here, a derivation of the photoelectric absorption

cross section for K-shell absorption, which is the ele-

vation of one of the 1s-electrons into the continuum in

an atom of atomic number, Z, as shown in Fig. 6.20, is

provided. The 1s-electron is bound with a binding

energy EB given by (neglecting relativistic and spin-

orbit coupling effects),

EB ¼ aZð Þ2
2

me: (6.103)

The electron absorbs the photon and, if the photon

energy satisfies the threshold requirement, is elevated

into the continuum with a total energy Ee and momen-

tum pe. The cross section can be calculated, as usual,

from,

lfi ¼ 2p
�h

Mfij j2rf

Two assumptions will be used in order to simplify

the cross section calculation. The first is that the photon

energy is much greater than the binding energy of the

electron. This permits the ejected electron to be treated

as a plane wave unperturbed by the atomic potential.

The second assumption is that the photon energy is

small compared with the electron rest mass so that

relativistic effects can be ignored. When combined,

these two assumptions set boundaries on the photon

energy,

EB ¼ aZð Þ2
2

me 
 k 
 me: (6.104)

Phase–Space Calculation

The phase–space factor is,

rfdEe ¼ L

2p�h

� �3

d3pe

¼ L

2p�h

� �3

p2edpedO

(6.105)

where dO is the differential solid angle element that

the electron is ejected into. The differential electron

momentum dpe is determined from,

dpe ¼ dpe

dEe

dEe

¼ d

dEe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
dEe

¼ Ee

pe
dEe

(6.106)

leading to,

rfdEe ¼ L

2p�h

� �3

mepedEedO (6.107)

k, k

0
Continuum

U(r)

3d5/23d3/2

2p3/22p1/2

3p3/23p1/23s

2s

1s

r

−EB

E′e, p′e
Fig. 6.20 Photoelectric

absorption by a K-shell

electron
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where, due to the nonrelativistic assumption of electron

energy, the approximation Ee � me has been used.

Matrix Element Calculation

To solve for the transition matrix element, the three

components of the integrand will be considered sepa-

rately, beginning with the initial and final wavefunc-

tions. For a 1s-orbital electron in a hydrogen-like atom

with atomic number, Z, the initial state wavefunction

can be approximated by,

ciðrÞ ¼
ffiffiffiffiffiffiffiffi
Z3

pr31

s
e�

Zr
r1ð Þ: (6.108)

The final state wavefunction is that of the free

electron which is taken to be a plane wave, as it has

been assumed that it is sufficiently energetic to be

unperturbed by the atomic potential,

cf ¼
1

L3=2
ei

pe	re
�hc : (6.109)

The perturbing potential, U, is determined from the

Hamiltonian of an electron/photon system,

H ¼ He þ Hrad

¼ pj j2
2me

þ Hrad:
(6.110)

In the presence of an electromagnetic field, the

momentum becomes p�eA where A is the vector

potential and the Hamiltonian becomes,

H ¼ pj j2
2me

þ Hrad þ e

me

A 	 pþ e2

2me

Aj j2 (6.111)

where the last two terms make up the interaction

Hamiltonian. Neglecting the second-order term in A,

the perturbative potential (interaction Hamiltonian)

reduces to,

U ¼ e

me

A 	 pe: (6.112)

Writing the vector potential as a plane wave,

A ¼ A0e
i k	r

�hc�kt
�hð Þ«̂: (6.113)

where «̂ is the polarization of the electric field, thus

yielding,

U ¼ e

me

A0e
�iotei

k	r
�hc «̂ 	 pe: (6.114)

The matrix element for photoelectric absorption on

a K-shell electron is,

Mfi ¼ 1

L3=2

e

me

� � ffiffiffiffiffiffiffiffi
Z3

pr31

s
A0e

�iot «̂ 	 p̂eð Þ

�
ð
d3rei

q	r
�hc e�

Z
r1ð Þr (6.115)

where «̂ 	 pe is the projection of the electron momen-

tum onto the direction of the incident electric field

polarization. The integral of (6.115) has been seen

before in many guises,

ð
d3rei

q	r
�hc e�

Z
r1ð Þr ¼

8p Z
r1

� �

Z
r1

� �2
þ q

�hc

� �2� �2
: (6.116)

The matrix element thus reduces to,

Mfi ¼ 8

ffiffiffiffiffi
p
L3

r
e

me

� �
Z

r1

� �5
2

� A0e
�iot n̂ 	~peð Þ

Z
r1

� �2
þ q

�hc

� �2� �2
(6.117)

The denominator can be simplified beginning with

the nonrelativistic form, k � p2e=2me, which gives

k=pe � pe=2me ¼ be=2 where be is the electron speed

normalized to that of light. Then, the denominator can

be rewritten as,

Z

r1

� �2

þ q

�hc

� �2
¼ Z

r1

� �2

þ k2 þ p2e � 2kpe cos y

�hcð Þ2

¼ Z

r1

� �2

þ pe

�hc

� �2

� k

pe

� �2

þ 1� 2
k

pe

� �
cos y

" #

¼ Z

r1

� �2

þ pe

�hc

� �2 b2e
4
þ1�be cos y

	 

:

(6.118)
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Following from the assumption of a nonrelativistic

electron, the b2e term can be neglected, which leads to,

Z

r1

� �2

þ q

�hc

� �2
¼ Z

a0

� �2

þ 2
mek

�hcð Þ2

� 1� be cos yð Þ: (6.119)

It is trivial to show that, in the energies of interest,

Z

r1

� �2

< 2
mek

�hc
(6.120)

resulting in,

Z

r1

� �2

þ q

�hc

� �2
¼ 2

mekg

�hcð Þ2 1� be cos yð Þ: (6.121)

The final expression for the matrix element is,

Mfi ¼ 8

ffiffiffiffiffi
p
L3

r
e

me

� �
Z

r1

� �5
2

� A0e
�iot «̂ 	 peð Þ

2
mekg

�hcð Þ2 1� be cos yð Þ
� �2 :

(6.122)

f is the angle between the plane carrying the photon

and electron momenta and that plane formed by the

photon momentum and the direction of polarization.

Then the projected component of pe is,

«̂ 	 pe ¼ pe sin y cosf (6.123)

giving the matrix element as,

Mfi ¼ 2

ffiffiffiffiffi
p
L3

r
e

me

� �
Z

r1

� �5
2 pe �hcð Þ4
mekð Þ2 A0e

�iot

� sin y cosf

1� be cos yð Þð Þ2
(6.124)

Transition Probability and Cross Section

The transition probability per unit time is,

lfi ¼ 1

�h4
e

me

� �2
Z

r1

� �5
p3e

m3
ek

4

� �

� A2
0

sin2y cos2 f

1� be cos yð Þ4 dO:
(6.125)

The quantity A0
2 is determined from the magnitude

of the time-averaged Poynting vector which represents

the energy flow rate per unit area,

P ¼ 2e0o2cA2
0: (6.126)

Thus, the transition probability per unit time

becomes,

lfi ¼ 1

�h4
e

me

� �2
Z

r1

� �5
p3e

m3
ek

4

� �
P

2e0o2c

� �

� sin2y cos2 f

1� be cos yð Þ4 dO:
(6.127)

The differential cross section in solid angle is then

calculated by noting that the cross section is the tran-

sition rate per unit flux (the number of incident parti-

cles per unit area per unit time),

s ¼ lfi
n
L3

� �
vj j (6.128)

where n/ L3 is the number of particles per unit volume

and vj j is the speed. Thus, the differential cross section
for the photoelectric effect on a K-shell electron is,

dsPE

dO
¼ r20 4

ffiffiffi
2

p� �
a4Z5

�
me

k

�7
2 sin2y cos2 f

1� be cos yð Þ4
(6.129)

As this differential cross section is maximized for

the combination of y ¼ 90� and y ¼ 0�, which is also

the direction of the photon polarization, the electron

will tend to be ejected in this direction (although for

relativistic electrons, be! 0, and the electrons will be

ejected in a more forward direction). The total cross

section is determined by integrating dsPE=dO over

a solid angle of 4p steradians, which is simplified by

using 1� be cos yð Þ4 � 1. A factor of 2 is inserted so

as to account for the two electrons in the K-shell in

order to yield the total photoelectric cross section per

atom,

sPE ¼ 2r20 4
ffiffiffi
2

p� �
a4Z5 me

k

� �7
2

ðp

0

dysin3 y
ð2p

0

dfcos2 f

¼ sTho 4
ffiffiffi
2

p� �
a4Z5 me

k

� �7
2

:

(6.130)
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This result yields a k�ð7=2Þ energy dependence for

the probability of a photoelectric absorption, which is

closely approximated by the k�3 dependence given in

the earlier intuitive argument. This k�ð7=2Þ dependence
is valid so long as the assumptions of a photon energy

being greater than the electron binding energy and

a nonrelativistic electron are met. Equation (6.130)

also predicts a marked dependence of the photoelec-

tric absorption total cross section upon the atomic

number, /Z5. While this derivation highlights the

strong atomic number and photon energy dependencies

of the photoelectric effect, experimental data have

shown that there are some modifications:

	 The total cross section per atom varies appro-

ximately with Z4.8 for low-atomic number materi-

als, decreasing to a Z4 dependence for high-Z

values.

	 The k�ð7=2Þ dependence predicted becomes less

rapid at higher photon energies.

Figure 6.21 shows the total cross sections per atom

for photoelectric absorption for carbon (Z ¼ 6) and
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Fig. 6.21 Photoelectric total

cross sections as functions of

photon energy for carbon and

lead. Note difference in

ordinate scales, reflecting the

�Z5 dependence
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lead (Z ¼ 82) as a function of incident photon energy.

The k�ð7=2Þ dependence appears in both curves, but is

perhaps more clearly evident for carbon due to the lack

of discontinuities. These discontinuities correspond

to the various binding energies of the K, L, and M

orbitals and are more apparent when superimposed

upon the k�ð7=2Þ dependence of lead and show the

energy thresholds for electron ejection. For example,

an incident photon with an energy of just under 88 keV

has insufficient energy to eject a K-shell electron (i.e.,

has a cross section of 532 b). However, a photon with

an energy just above the K-shell binding energy of

88 keV has sufficient energy to eject the bound elec-

tron and thus providing the sudden increase by a factor

of 5 in the photoelectric absorption probability (i.e., a

cross section of 2,520 b).

As with Compton scatter, one is also interested in

knowing the fraction of the incident energy which is

transferred to the medium through the kinetic energies

of the photoelectron and the recoil nucleus following a

photoelectric absorption. This is described by the pho-

toelectric energy-transfer cross sectionwhich is the total

photoelectric cross section weighted by the fraction of

energy received by the recoil atom and ejected elec-

trons. It excludes the energy resulting from the relaxa-

tion processes which yield characteristic, or fluorescent,

X-rays. Atomic relaxation processes (both radiative and

nonradiative) are to be discussed: these resolve vacan-

cies created in atomic electron orbitals following the

ejection of an electron. It will suffice to present here the

fluorescence yield, oi, where the subscript i refers to

the orbital filled by an electron making a transition from

a higher orbital with the emission of an X-ray in the

process. For example, consider a vacancy created in the

K orbital. As there are many orbitals that can feed this

vacancy, it is useful to define a mean X-ray energy

resulting from an electron transiting to this orbital, �kK.
If PK is the fraction of all vacancies created in the

K-orbital, then the mean energy carried away from the

atom per photoelectric absorption by K-orbital charac-

teristic X-rays is given by the product, PKoK
�kK. As

the probability that energy will be carried away by

L- or M-orbital characteristic X-rays is negligible for

k > (EB)K, then, for k > (EB)K the mean fraction of

energy transferred to the photoelectron is,

�fK ¼ 1� PKoK
�kK

k
: (6.131)

For a photon energy between the K- and L-orbital

edges (i.e., (EB)K > k > (EB)L), K-orbital photoelec-

tron absorption cannot occur and the mean fraction of

energy transferred to the photoelectron is now,

�fL ¼ 1� PLoL
�kL

k
(6.132)

which is essentially negligible except for high-Z

materials.

The energy-transfer cross sections per atom are,

then,

sPE;Tr ¼ sPE 1� PKoK
�kK

k

� �
; k > EBð ÞK (6.133)

sPE;Tr ¼ sPE 1� PLoL
�kL

k

� �
; EBð ÞK > k > EBð ÞL

(6.134)

6.4 Atomic Relaxation

6.4.1 Introduction

An atomic electron vacancy is created through photo-

electric absorption, electron capture, internal conver-

sion and, as to be described in the following chapter,

can result from an ionizing collision by a moving

charged particle. The creation of an orbital electron

vacancy produces an excess of energy above the

atom’s ground state and a number of subsequent pro-

cesses can occur in order to remove this energy. These

relaxation processes will be categorized in terms of

whether or not electromagnetic radiation is emitted by

the atom as it de-excites.

6.4.2 Radiative Transitions

In the simple picture of Fig. 6.22, an electron vacancy

in the K-orbit is filled by an L-orbital electron. The

emitted photon has a definite energy given by the

difference between the two electron binding energies

(neglecting, as usual, the recoil of the atom). This

radiative transition creates a new vacancy in the L
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orbit which can be filled by an electron from a higher

orbit with a subsequent emission of a second photon,

etc. Following the discussion of nuclear radiative tran-

sitions of Chap. 4, quantum selection rules are also

applicable to atomic radiative transitions.

By systematically measuring the K X-ray energy as

a function of atomic number, Z, Moseley determined

in 1913 that it scaled with Z2. Historically, this empir-

ical relationship was given in terms of the frequency of

the X-ray,7 or,

ffiffiffi
n

p ¼ AðZ� sÞ (6.135)

where A and s are constants. An interpretation of

Moseley’s law can be had using Bohr’s model of the

atom, in which the electrons are grouped into orbitals

(and suborbitals) of decreasing binding energy identi-

fied as K, L, M orbitals, etc, with corresponding prin-

cipal quantum numbers of n ¼ 1, 2, 3. Ignoring

relativistic and spin effects, the binding energy of

electrons in a hydrogen-like atom for principal quan-

tum number n is,

En ¼ �hcR1
Z2
eff

n2
(6.136)

where the Rydberg energy is hcR1 ¼ 13.61 eV and

an infinitely-massive atom is assumed. Zeff is an effec-

tive atomic number modified so as to account for the

screening of the nucleus by the other orbital electrons

and which can be approximated by reducing the

atomic number by a constant,

Zeff ¼ Z� s1 (6.137)

The energy of the characteristic X-ray formed

by the filling of a K-orbital vacancy (n ¼ 1) by an

L-orbital electron (n ¼ 2) is,

k ¼ E2 � E1

¼ 3hcR1
4

Z� s1ð Þ2
(6.138)

which replicates Moseley’s empirical law. However,

this expression does not account for electron degener-

acy due to the electrons’ orbital angular momenta and

spins. Momentarily neglecting screening, the com-

plete energy for a state of principal quantum number

n, orbital angular momentum number l (where l ¼ 0,

1, 2 . . . n � 1) and total angular momentum, j ¼ l 
1/2, is given by,

Enlj ¼ hcR1

"
Z2

n2
� a2

Z4

n3
3

4n
� 1

lþ 1
2

 !

� a2
Z4

n3
l 	 s

l lþ 1ð Þ lþ 1
2

� �
 !#

ð6:139Þ

where s is the intrinsic spin ( 1/2) of the electron.

The first term, or Balmer term, is dominant and

describes the binding as a function of principal quan-

tum number only. The second term is the correction

term accounting for orbital angular momentum and

the third term accounts for the coupling between the

orbital angular momentum and the intrinsic spin of

the electron. From Chap. 3, this spin-orbit coupling

term can be written as,

l 	 s ¼ 1

2
j jþ 1ð Þ � l lþ 1ð Þ � s sþ 1ð Þ½ �: (6.140)

Vacancy

Filled
Vacancy

K

L

Electron

Fluorescent
x ray

k = EB,K − EB,L

K

L

Fig. 6.22 The emission of

a fluorescent (characteristic)

X-ray due to the filling of a

K-orbital electron vacancy via

the cascade of an L-orbital

electron. The energy of the

emitted X-ray is equal to the

difference between the two

atomic binding energies

(neglecting recoil) and, hence,

is characteristic of the atom

7Recall the Einstein relationship k ¼ hn.
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Noting that j ¼ l  1/2 and allowing for the

screening of the nucleus by other electrons so as to

reduce the effective atomic number, (6.139) becomes,

Enlj¼l1
2
¼ hcR1

� Z� s1ð Þ2
n2

� a2
Z� s2ð Þ4

n4
3

4
� n

jþ 1
2

 !" #

(6.141)

The screening constants for the Balmer and the spin-

relativity terms, s1 and s2, respectively, are not equal.

s1 increases with atomic number and orbit reflecting

increasing screeningwith more atomic electrons present

or for the given orbit being at a greater distance from the

nucleus. On the other hand, s2 is almost independent of

atomic number but increases with orbit. This difference

is due to s1 being due to the total screening effects of

electrons internal and external to the orbit whereass2 is

due to those electrons between the orbit and the nucleus.

The quantum numbers for the K, L, and M orbitals are

given in Table 6.1.

As with nuclear radiative transitions, selection rules

restrict the transitions between orbitals. The most

likely processes are the allowed electric dipole transi-

tions with l ¼ 1 and j ¼ 0, 1. Any changes in the

principal quantum number are allowed. Electric quad-

rupole (Dl ¼ 2) and magnetic dipole transitions are

second-order processes and are “forbidden” as they

occur much less frequently than the dipole transition.

Electron dipole transitions for the orbitals described in

Table 6.1 are shown in Fig. 6.23.

In addition to the selection rules, which are based

upon changes in orbital angular momentum and total

angular momentum, the probability of characteristic

X-ray production is also dictated by the competition

between different mechanisms of dissipating the bind-

ing energy following the creation of an atomic elec-

tron vacancy. These other transitions do not involve

K

L

M

Kα1

Kβ1

Lβ4 Lβ1LηLβ3

Kα2

Lα2

n = 3; I = 2; j = 5/2
n = 3; I = 2; j = 3/2
n = 3; I = 1; j = 3/2
n = 3; I = 1; j = 1/2
n = 3; I = 0; j = 1/2

n = 2; I = 1; j = 3/2
n = 2; I = 1; j = 1/2
n = 2; I = 0; j = 1/2

n = 1; I = 0; j = 1/2

Lα1L1

(doublet)

Fig. 6.23 Allowed electric dipole transitions (Dl ¼ 1; Dj ¼ 0, 1) between the K, L, and M orbitals. Note that the vertical scale

is not proportional to energy. Multiplets are groups of lines with either the same initial (n, l) or final (n, l) values

Table 6.1 Atomic electron orbits and quantum numbers
Quantum numbers Orbital/suborbital X-ray notation

n l j (= l  1/2)

1 0 1/2 1s K

2 0 1/2 2s1/2 LI

2 1 1/2 2p1/2 LII

2 3/2 2p3/2 LIII

3 0 1/2 3s1/2 MI

3 1 1/2 3p1/2 MII

3 3/2 3p3/2 MIII

3 2 3/2 3d3/2 MIV

3 5/2 3d5/2 MV
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the emission of radiation and are the subjects of the

following subsection. Recall that the fluorescence

yield represents the probability that the filling of the

orbital vacancy is accompanied by the emission of

radiation and is defined for the ith suborbital of the

Xth orbit as,

oX;i ¼ fX;iðZÞ
nX;iðZÞ (6.142)

where fX;iðZÞ is the total number of characteristic

photons emitted as a result of the filling of nX;iðZÞ
vacancies in the ith suborbital of the Xth orbit. A

further definition is the mean fluorescence yield for

the ith orbital which is the weighted sum over the

suborbitals,

�oX ¼
Xk
i¼1

ZX;ioX;i (6.143)

where ZX,i is the relative number of vacancies in the

ith suborbital of the Xth orbital,

ZX;i ¼
nX;iPk

i¼1

nX;i

(6.144)

and the summations are over all k suborbitals of the

Xth orbital.

It is possible to calculate a result which demon-

strates how the fluorescence yield varies with atomic

number by treating the radiating atom as a damped

harmonic oscillator. The K-shell fluorescence yield

can be described by the ratio,

oK ¼ Nrad

Nnon�rad þ Nrad

(6.145)

in terms of the probabilities of possible radiative and

nonradiative transitions, where the nonradiative tran-

sitions, as to be shown, decrease relatively slowly with

Z. The relaxation time for the harmonic oscillator is,

Trelax ¼ E

d�E=dt

� � (6.146)

where E is the energy of the oscillator and d�E=dt is
the mean rate at which energy is dissipated. For an

accelerating charge emitting radiation d�E=dt / a2max

where the maximum acceleration is amax � ov0,
where v0 is the maximum velocity and, fromMoseley’s

law, o / Z2. As a result, the relaxation time is pro-

portional to Z�4. As the transition probability is propor-

tional to the reciprocal of the relaxation time, this leads

to the approximation of the fluorescence yield as,

oK � Z4

aþ Z4
(6.147)

where a is a constant. This result predicts that the

fluorescence yield will increase with atomic number

to approach unity if Z4 � a. Hubbell et al. (1994)

have summarized various parameterizations of the

K-orbital fluorescence yield. For example, one param-

eterization follows directly,

oK

1� oK

� �1
4

¼ xðZÞ (6.148)

where x is a polynomial in the atomic number Z,

xðZÞ ¼
X3
n¼0

cnZ
n (6.149)

with coefficient values,

c0 ¼ 0.0370  0.0052

c1 ¼ 0.03112  0.00044

c2 ¼ (5.44  0.11) � 10�5

c3 ¼ �(1.25  0.07) � 10�6

Equation (6.148) can be rewritten in a more conve-

nient form,

oK ¼ x4ðZÞ
1þ x4ðZÞ (6.150)

This form can also represent the L-orbital mean

fluorescence yield with corresponding parameter

values provided by Hubbell et al.,

c0 ¼ 0:177650

c1 ¼ 0:00298932

c2 ¼ 8:91297� 10�5

c3 ¼ �2; 67184� 10�7

The K- and L-orbital fluorescence yields given by

these parameterizations are plotted in Fig. 6.24. It can
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be seen that the K-orbital fluorescence yield increases

rapidly for Z > 10, reaching 90% for barium

(Z ¼ 56). On the other hand, the L-orbital fluores-

cence yield is much smaller and is negligible for

Z < 30 (zinc), only reaching a value of 34% for mer-

cury (Z ¼ 80). The mean fluorescence yield for the

M-orbital is essentially negligible. Where M-orbital

transitions are not negligible, Hubbell et al. recom-

mend a parameterization of the form,

�oM ¼ 1:29� 10�9 Z� 13ð Þ4 (6.151)

For the example of lead (Z ¼ 82), �oM ¼ 2:7%.

Thus, an L- or M-orbital vacancy would be most likely

filled through a nonradiative transition. This has

important dosimetry implications as these nonradia-

tive transitions release low-energy atomic electrons

with very limited ranges which subsequently deposit

a large localized absorbed dose.

6.4.3 Nonradiative Transitions

In addition to the radiative processes through which

the excess energy of the excited atom is manifested as

an X-ray, this energy can also be directed to eject one

or more atomic electrons from the outer orbits. This is

known, generally, as the Auger effect and the ejected

electron(s) are referred to as Auger electron(s). There

are further subclassifications of these transitions as

shown in Fig. 6.25. Strictly speaking, the Auger effect

is that of a vacancy in a lower major shell being filled

by an electron from that higher major shell with an

electron ejected from that higher major shell. The

Coster–Kronig transition is that in which a vacancy

is filled by an electron from the same major shell but

with an electron ejected from a higher major shell.

Finally, the super Coster–Kronig transition is that in

which the vacancy and the transiting and ejected elec-

trons are all in the same major shell. Unless when

differentiation is necessary, all three transition types

will be referred to generically as Auger transitions.

The consequence of an Auger transition is two or

more atomic orbital vacancies as can be shown by

considering a vacancy present in the K-orbital which

is filled by an electron from the pth suborbital of the

Xth orbital8 followed by the ejection of an Auger

electron from the qth suborbital of the Yth orbital.9

Assume that the K-orbital vacancy is filled by an

electron from the L-orbital; an energy excess of

K

L

M

Auger
Transition

Coster-Kronig
Transition

Super
Coster-Kronig

Transition

Fig. 6.25 Types of nonradiative atomic transitions resulting in

atomic electron emission
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Fig. 6.24 Fluorescence yields for K and L orbitals as functions

of atomic number calculated from the parameterizations of

Hubbell et al. (1994)

8In analogy to electron conversion, this electron could come

from the 2s1/2 orbital because, while forbidden for a radiative

transition, it is allowed for a nonradiative transition. This would

be a Coster–Kronig type of transition.
9A large number of Auger-type transitions are possible: if the

Xth and Yth orbital are both the L-orbital, then a possible nine

transitions exist, three of which are indistinguishable.
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EBð ÞK
�� ��� EBð ÞL

�� �� is available. If the Auger electron

is from the M-orbital, it will have a kinetic energy

equal to,

Te;M ¼ EBð ÞK
�� ��� EBð ÞL

�� ��� EBð ÞM
�� �� (6.152)

Now consider the case of two electrons from the

N-orbital filling the vacancies in the L- andM-orbitals,

following which two more Auger electrons are ejected

with kinetic energies equal to (assuming that they are

emitted from the N-orbital),

Te;N1
¼ EBð ÞL
�� ��� 2 EBð ÞN

�� �� (6.153)

Te;N2 ¼ EBð ÞM
�� ��� 2 EBð ÞN

�� �� (6.154)

Thus, four electron vacancies now exist as do three

Auger electrons with a total kinetic energy equal to

Ebð ÞK
�� ��� 4 Ebð ÞN

�� ��. In other words, the combined

kinetic energies of the Auger electrons is equal to the

difference between the binding energy of the K-orbital

and the sum of the binding energies of the remaining

vacancies. As with internal conversion, one could

erroneously consider the Auger process as a result of

the energy transfer to the Auger electron directly via a

photon with no intermediate states. However, the exis-

tence of Auger transitions, such as a 2s1/2! 1s1/2 tran-

sition, which are forbidden for radiative transitions,

demonstrates that the interaction cannot involve an

intermediate real photon.

Figure 6.24 showed that the fluorescence yield

increases with atomic number. This is due both to

the previously-provided argument that the probabil-

ity of X-ray emission will increase with Z4 and to the

probability of an Auger transition will decrease with

atomic number due to greater binding. The Auger

yield is,

aX;i ¼ fX;iðZÞ
nX;iðZÞ (6.155)

where fX;iðZÞ is the total number of Auger electrons

emitted as a result of the filling of nX;iðZÞ vacancies in
the ith suborbital of the Xth orbit and the mean Auger

yield is,

�aX ¼
Xk
i¼1

ZX;ioX;i (6.156)

Auger transitions are of particular interest to inter-

nal radiation dosimetry as many radionuclides used in

radiopharmaceuticals emit Auger electrons (in addi-

tion to internal conversion electrons). The total Auger

electron yield per decay for common isotopes used in

diagnostic nuclear medicine are summarized in

Table 6.2. The kinetic energies of the Auger electrons

are small and, thus, they have limited range and con-

sequently deposit their energy within small, localized

volumes in tissue. This has two consequences: the

dose distribution becomes nonuniform and the loca-

lized energy deposition can have significant biological

effects, especially if the Auger electron-emitting

radionuclide is incorporated within the radiosensitive

nucleus of the cell (Boswell and Brechbiel 2005).

As shown in Fig. 6.25, the Coster–Kronig and super

Coster–Kronig transitions take place between suborbi-

tals and cause a redistribution of electrons in a given

orbital by transferring energy to a suborbital of a lower

energy. This releases energy which causes the ejection

of an electron from a higher-order orbital with a bind-

ing energy less than that made available. Because the

Coster–Kronig transitions alter the vacancy distribu-

tion, the mean fluorescence yield must be altered as a

result. Rewriting this as,

�o0
X ¼

Xk
i¼1

Z0
X;ioX;i (6.157)

where the primes indicate quantities modified as a

result of a Coster–Kronig transition. Recall that ZX;i

is the relative number of vacancies in the ith suborbital

of the Xth orbital; as the Coster–Kronig transition will

create more orbital vacancies,

Xk
i¼1

Z0
X;i > 1 (6.158)

Table 6.2 Total yield of Auger-type electrons per decay for

commonly-used isotopes in nuclear medicine (data from Howell

(1992))

Isotope Total yield of Auger electrons per decay
99mTc 4.0
67Ga 4.7
111In 14.7
123I 14.9
201Tl 36.9
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If rX;ij is defined as the probability of a Coster–

Kronig transition of a vacancy from the ith suborbital

to the jth suborbital (all in the Xth orbital), then the

modified relative numbers of vacancies are,

Z0
X;1 ¼ ZX;1

Z0
X;2 ¼ ZX;2 þ rX;12ZX;1

Z0
X;3 ¼ ZX;3 þ rX;23ZX;2 þ rX;13 þ rX;12rX;23

� �
ZX;1:

(6.159)

The product of a cascade of Auger transitions is that

of a remnant highly-charged ion. In nuclear medicine,

the Auger electron-emitting radionuclide is typically

incorporated within a molecular carrier and the trans-

fer of neighboring electrons may lead to partial neu-

tralization of the ion. This may lead to a Coulomb

fragmentation of the moiety due to the proximity of

multiple positive charges.

6.5 Photon Interaction Coefficients

6.5.1 Introduction

The significant mechanisms through which a photon

can interact with matter at the photon energies relevant

to nuclear medicine – coherent (Thomson and

Rayleigh) scatter, incoherent (Compton) scatter, and

photoelectric absorption – have been discussed. Here,

the probabilities of these interactions occurring are

summarized in terms of the total cross section (i.e.,

the total probability of the interaction) and the energy-

transfer cross section (i.e., the probability of transfer-

ring energy to the medium):

Thomson scatter: sTho ¼ 8p
3
r20 (per electron)

Rayleigh scatter: sRay ¼ 2pr2
0

k2

Ð2kg
0

dq 	 q F q;Zð Þj j2 (per

atom)

Compton scatter:

sKN ¼ 3

4
sTho

"
1þ a
a2

2 1þ að Þ
1þ 2að Þ �

ln 1þ 2að Þ
a

� �

þ ln 1þ 2að Þ
2a

� 1þ 3a

1þ 2að Þ2
#

per electronð Þ

sKN;Tr ¼ 3

4
sTho

2 1þ að Þ2
a2 1þ 2að Þ �

1þ 3a

1þ 2að Þ2
"

þ 1þ að Þ 1þ 2a� 2a2ð Þ
a2 1þ 2að Þ2 � 4a2

3 1þ 2að Þ3

� 1þ a
a3

� 1

2a
þ 1

2a3

� �
ln 1þ 2að Þ




per electronð Þ

Incoherent scatter (Compton scatter from bound

atomic electrons):

sInc ¼
ð
dO

dsKN

dO
S q;Zð Þ per atomð Þ

Photoelectric absorption:

sPE ¼ sTho 4
ffiffiffi
2

p� �
a4Z5 me

k

� �7
2

per atomð Þ

sPE;Tr ¼sPE;T 1�PKoK
�kK

k

� �
k> Ebð ÞK per atomð Þ

sPE;Tr ¼ sPE;T 1� PLoL
�kg;L

kg

� �

� Ebð ÞK > kg > Ebð ÞL per atomð Þ

Photon interaction coefficients are non-stochastic

quantities describing the macroscopic behavior of the

interactions of photons with matter. Formal definitions

can be found in ICRU Report 33 (1980); note that

there is a deviation from the general use of SI units

to the centimeter–gram–second system in this discus-

sion of interaction coefficients.

6.5.2 Mass Attenuation Coefficient

The mass attenuation coefficient is a measure of the

reduction of the number of photons in a beam as it

traverses a medium which is due to the combined

effects of photons being scattered out of the beam

(i.e., through the photon-number conserving processes

of coherent and incoherent scatter) and by the removal

of photons through photoelectric absorption and pair

production. Recall from Chap. 2 that the differential

reduction in the flux j of particles per cm2 per s passing
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through a scattering/absorbing medium of differential

thickness dx containing N scattering or absorption

centers per cubic centimeter is dj ¼ �sjN dx,

where the constant of proportionality s is the total

cross section (in units of unit area per scattering/

absorption center). Integrating this over a thickness L

of the medium leads to the exponential decrease as a

function of thickness,

j ¼ j0e
�sNL

¼ j0e
�mL:

(6.160)

where j0 is the incident flux. The product of the total

cross section and the interaction center density, sN,
has units of inverse length and is defined as the linear

attenuation coefficient, m, and represents the mean

number of interactions (scatters or absorptions) per

unit length of medium traversed by the photon. For

example, consider the combination of a photon and

medium for which m ¼ 0.1/cm which means that the

photon has a 10% probability per cm of interacting

with a center in the medium. Initially, let the medium

have a density of 1 g/cm3 and be 1 cm thick; the ratio

of the flux of photons exiting the 1 cm thick medium to

that incident will be,

j
j0

¼ e�0:1 cm�1�1 cm ¼ e�0:1 ¼ 0:904

Now, imagine that the medium is compressed from

a thickness from 1 to 0.5 cm resulting in a density

increase from 1 to 2 g/cm3. The exiting flux of photons

will be unaffected with the net transmission being

j=j0 ¼ 0:904, but the attenuation coefficient m will

now have doubled to 0.2/cm. To remove this depen-

dence upon the medium’s density, we normalise the

linear attenuation coefficient to the density of the

medium, m/r, to yield the mass attenuation coefficient.

For both densities in the above example,

m
r
¼ 0:1=cm

1 g=cm
¼ 0:1 cm2/g

m
r
¼ 0:2=cm

2 g=cm
¼ 0:1 cm2/g

The total mass attenuation coefficient is the sum of

the contributions due to coherent (Rayleigh) scatter,

incoherent (Compton) scatter, and photoelectric absorp-

tion; in commonly-used nomenclature in radiation

dosimetry literature these correspond to the terms in the

following equation,

m
r
¼ sCoh

r
þ sInc

r
þ t
r

(6.161)

In order to match the units of each of these terms,

we will address each contribution individually.

Coherent scatter: To convert the coherent scatter

cross section per atom to that per gram, one must

multiply sCoh by NAZ=A atoms per g, where NA is

Avogadro’s number,

sCoh

r
¼ sCoh

NA

A
(6.162)

The contribution of coherent scatter to the total

mass attenuation coefficient is appropriate only where

the photon beam geometry is such that the scattering of

a photon out of the beam results in it not being detected.

Incoherent scatter: At the low photon energies

where the Z-scaled Klein–Nishina cross section over-

estimates the incoherent scatter cross section from the

atom, coherent scatter, and photoelectric absorption

dominate over the Compton processes. As a result, it

is often practical and easier to use the Klein–Nishina

cross sections by the atomic number of the medium. In

order to convert this to per gram, we must multiply

sKN by NAZ=A electrons per gram,

sInc

r
¼ sKN

NAZ

A
(6.163)

Recall from Chap. 3 that NAZ=A � 1=2 for the

low-Z materials which are of primary dosimetric inter-

est. As a result, the multiplicative factor NAZ=A is

very nearly constant for such materials.

Photoelectric absorption: The total cross section of

photoelectric absorption per atom is given per atom.

The mass attenuation coefficient due to photoelectric

absorption is,

t
r
¼ sPE

N

A
(6.164)

In radiation dosimetry, one does not always deal with

a medium that is of a single element. For compounds,
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the Bragg additivity rule is used to calculate the attenu-

ation coefficient,

m
r
¼
XN
i

fi
m
r

� �
i

(6.165)

where m=rð Þi is the mass attenuation coefficient of

the ith element of the compound and fi is the

corresponding weight fraction. The summation is

over the N elements making up the compound.10

Now that the probabilities of the different photon–

matter interactions have been normalized, they can be

compared directly. Figure 6.26 shows the relative con-

tributions of coherent scatter, incoherent scatter, pho-

toelectric absorption, and pair production to the mass

attenuation coefficient as a function of photon energy

for carbon and lead. For carbon (Z ¼ 6), photoelectric

absorption dominates up to about 20 keV, upon where

incoherent scatter becomes the dominant process. The

mass attenuation coefficient for coherent scatter

exceeds that for incoherent scatter up to about

10 keV in this low-Z material. The overall total mass

attenuation coefficient for carbon decreases rapidly

with photon energy (due to photoelectric absorption)

up to about 0.1 MeV, where the decrease is very

limited. The total mass attenuation coefficient for

lead (Z ¼ 82) is higher than that for carbon due,

primarily, to the photoelectric effect and its �Z5

dependence. Photoelectric absorption dominates over

all other process up to about 600 keV; coherent scatter

dominates over incoherent scatter up to about

150 keV. It will be noted that the mass attenuation

coefficient due to incoherent scatter for carbon is about

20–30% greater than that for lead. The reason for this

follows by recalling that the incoherent scatter cross

section is per electron and must be multiplied by the

number of electrons per gram of material in order to

yield its contribution to the mass attenuation coeffi-

cient. However, as shown in Chap. 3, the ratio of the

number of protons to the number of neutrons in stable

nuclei, Z=A� Z, decreases with increasing atomic

mass. Hence, the number of protons (and, hence, the

number of electrons) per gram of lead is less than that

of carbon, resulting in a lower mass attenuation coef-

ficient due to incoherent scatter.

For completeness, the relative contributions of the

various photon–matter interaction types to the attenu-

ation coefficient are plotted in Fig. 6.27.

For both elements, photoelectric absorption is the

most dominant process at low energies, but is super-

seded by incoherent scatter at photon energies of about

0.025 MeV for carbon and about 0.55 MeV for lead.

For carbon, the relative contribution of coherent scat-

ter to the attenuation coefficient increases smoothly to

a maximum of about 15% at 0.02 MeV. On the other

hand, that for lead exhibits a more complex depen-

dence due to the increase in photoelectric absorption

cross section when the photon energy reaches the

energy threshold of a given atomic electron orbital.

Even so, its maximum contribution to the attenuation

coefficient is similar to that for carbon at about 14% at

the K-absorption edge of 0.088 MeV. What is of

particular interest is the difference between the ranges

of photon energies over which incoherent scatter is

dominant for carbon and lead. For carbon, incoherent

scatter is the most significant contributor to the total

attenuation coefficient between photon energies of

about 0.025 MeV and beyond (up to about 28 MeV,

not shown here, where pair production begins to dom-

inate); on the other hand, incoherent scatter is domi-

nant for lead only over the limited photon range of

0.55 MeV and above (to about 5 MeV where pair

production again dominates).

6.5.3 Mass Energy-Transfer Coefficients

The attenuation coefficients just discussed provide

information only on the probability of a coherent or

incoherent scatter or a photoelectric absorption occur-

ring. In dosimetry, one is interested in the amount of

energy transferred from the photon to the medium.

The mass energy-transfer coefficient is a measure of

the amount of energy transferred to a medium by a

beam of photons traversing the medium. As Thomson

and Rayleigh scatter do not transfer energy to the

medium, they are excluded from this discussion. The

mass energy-transfer coefficient is,

mtr
r

¼ ttr
r
þ str

r
: (6.166)

10The Bragg additivity rule assumes that atoms in a compound

act independently of each other. This, in general, is a sufficiently

reasonable assumption in most dosimetry applications.
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Again, following the derivations of the previous

section, the mass energy-transfer coefficient is, for

when the photon energy is above the K-absorption

edge,

mtr
r

¼ t
r

1� PKoK
�kK

k

� �
þ s

r

�Te

k

� �
; k > Ebð ÞK:

(6.167)

For lower photon energies between the L- and

K-absorption edges,

mtr
r

¼ t
r

1� PLoL
�kL

k

� �
þ s

r

�Te

k

� �
;

� EBð ÞK > k > EBð ÞL: (6.168)
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coefficients for carbon and
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photon–matter interactions at

photon energies of interest to

nuclear medicine
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where energy emitted as fluorescence has been

accounted for.

6.5.4 Mass Energy-Absorption
Coefficients

The absorbed dose as a result of the exposure to

ionizing radiation is the amount of energy absorbed

by the medium per unit mass (see Chap. 8). Photons

transfer energy to electrons or positrons (through

Compton scatter, photoelectric absorption, and pair

production) which subsequently deposit energy in the

medium as they slow down (Chap. 7). Not all of the

energy transferred to the electron or positron will be

deposited in the medium: because they carry electric

charge and are in motion, they will radiate electromag-

netic energy (bremsstrahlung) as they decelerate and
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are scattered (Haug and Nakel 2004). Thus only a

fraction of the energy transferred from the photon to

the electron is deposited locally in the medium.

The mass energy-absorption coefficient is related to

the mass energy-transfer coefficient by,

men
r

¼ mtr
r
ð1� gÞ (6.169)

where g is the mean fraction of electron or positron

energy that is lost through radiative processes

described above and where it is assumed that the

medium in which the original photon–matter interac-

tion occurred is sufficiently large that all of the second-

ary electrons and positrons stop completely within it.

Although g is discussed in Chap. 7, note that it is a

function of both photon energy k and atomic number of

the medium through which the charged particle is

moving through. For low-Z and low k, g is very small

and there is little difference between the mass energy-

transfer and energy–absorption coefficients. g increases
m r
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Fig. 6.28 Mass attenuation

and mass energy-absorption

coefficients for carbon and

lead. Curves were calculated

using tabulated data from

Hubbell and Seltzer (1996),

available at http://physics.nist.

gov/PhysRefData/

XrayMassCoef/cover.html
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with photon energy and atomic number. Figure 6.28

shows the mass attenuation coefficients and mass

energy-absorption coefficients for carbon and lead.

6.5.5 Effective Atomic Number

It is frequently convenient to characterize a compound

material by its effective atomic number, Zeff. One

example of the usefulness of a Zeff is in matching the

material used in the wall of an ionization chamber with

the contained gas (such as air which is 78% N2, 21%

O2, and 1% Ar) so that the wall and gas have the same

photon absorption properties. However, as pointed out

originally in the middle of the twentieth century by

Hine (1952), it is not possible to assign a single

numerical value for Zeff as the various Z-dependent

photon–matter processes have differing energy depen-

dencies. Hence, each interaction type must be consid-

ered independently.

The effective atomic number is applicable primar-

ily to the photon energy regime below about 100 keV

where the probability of photoelectric absorption

exceeds that of Compton scatter. The probability of

photoelectric absorption per electron varies as Zm

where m is between 3 and 3.8 (for low- and high-Z

materials); the coefficient m also has an energy depen-

dence. There is no applicability of Zeff to Compton

scatter, which is independent of Z and only dependent

upon the electron density. The effective atomic num-

ber for a compound consisting of N elements can thus

be defined as,

Zeff ¼
XN
i¼1

fiZ
m
i

 !1=m
(6.170)

where fi is the fractional number of electrons per gram

for the ith element of the compound.
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Charged Particle Interactions with Matter 7

Abstract In nuclear medicine, moving charged particles are released in tissue

through either the radioactive decay processes of Chap. 4 or as a result of the

photon–matter interactions of Chap. 6. Being charged, these particles interact signi-

ficantly with the medium, transferring their kinetic energy resulting in an absorbed

dose to the medium as they slow down to thermal energies. Hence, the study of

charged particle interactions with matter is the fundamental core of ionizing radiation

dosimetry. In this chapter, the two mechanisms of energy loss are presented. Colli-

sion energy losses between the particle and atomic electrons are derived through the

Bohr classical and the Bethe quantum-mechanical means; hard collisions losses are

derived independently from various quantum-mechanical results. Radiative energy

losses resulting from bremsstrahlung are initially derived from classical theory

which then progresses to the Bethe–Heitler quantum-mechanical theory. The polari-

zation effects of a charged particle upon the medium will limit the collision energy

losses and are derived. As energy loss is inherently stochastic, energy straggling

models are also presented. In particular, the Vavilov theory of energy straggling is

derived as are the Gaussian and Landau results which are treated limiting conditions

to that theory. Multiple scatter strongly affects electrons and positrons and the

Fermi–Eyges theory is derived as a means of justifying the Gaussian model. The

Goudsmit–Saunderson and Moliére theories of multiple scattering are derived.

Finally, the mechanisms through which a positron can annihilate on an electron are

derived.
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7.1 Introduction

It has been shown inChaps. 4 and 6 thatmoving charged

particles are products of radioactive decay and photon

scattering. 4He nuclei are emitted in a decay, moving

electrons or positrons are created in b-decay and atomic

electrons are ejected into the medium through internal

conversion or atomic relaxation processes. Compton

scatter sets electrons into motion and atomic electrons

are ejected following photoelectron absorption. These

moving charged particles slow down by transferring

energy to the medium and, as this is the cause of the

absorbed dose to tissue, charged particle–matter inter-

actions with matter will be extensively reviewed.

Charged particles interact with the atoms in the

medium they are traversing through the Coulomb

component of the Lorentz force, q(E þ v � B), by

either transferring energy to (predominantly) the

atomic electrons or else by being scattered by the

nuclear and atomic electron Coulomb fields. These

processes have markedly different consequences.

In the former, a significant fraction of kinetic energy

can be transferred to the atomic electron with, should

the incident particle have a mass m much greater than

that of the electron, negligible effect upon the projec-

tile’s trajectory. If the projectile is an electron or

positron, the large mass differential between it and

the nucleus can result in a significant deflection from

its trajectory by the nuclear Coulomb field resulting in

the emission of electromagnetic energy known as

bremsstrahlung (braking radiation).

There are two fundamental differences between

how photons and charged particles interact with matter

that should be kept in mind. Being a boson, the photon

interacts with matter through either direct absorption

by a charged particle or through second-order effects

such as Compton scatter. On the other hand, a charged

particle will interact with other charged particles at

extended distances through its surrounding Coulomb

field (or, in another picture, the exchange of photons)

resulting in the gradual transfer of energy to the

medium and the eventual stopping of the particle.

Thus, the cross section of the electromagnetic interac-

tion between a charged particle and matter will be

much greater than that for photons. This difference is

made clearly evident by comparing the 10 cm mean

free path of a 1 MeV photon in water with the few

millimeter range of a 1 MeV electron in water.1 The

second fundamental difference between how photons

and charged particles interact with matter is that, as a

photon loses energy, its wavelength will increase and

its frequency decrease but its speed remains constant.2

Because a charged particle has mass, its speed is dimi-

nished through each instance of energy exchange to the

medium until it reaches energies below the minimum

ionization level and thus attains thermal equilibrium

with the medium (although if the charged particle is

a positron, it can annihilate with an electron either in-

flight or once having been thermalized). Thus, unlike a

photon, a charged particle will have a finite range.

1The photon mean free path is the reciprocal of the linear

attenuation coefficient. The exact range of an electron in a

medium is more difficult to define as, due to multiple scatter,

its path will be tortuous.
2Assuming a constancy of photon speed ignores the frequency

dependence of the medium’s index of refraction. Such an effect,

however, is negligible for photons with sufficient energy to

ionize.
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Should the charged particle be hadronic, additional

energy loss channels become available as a result of

the strong nuclear interaction between the projectile

and the atomic nucleus. These include absorption,

nuclear excitation, and even fragmentation of either

the projectile or target nucleus. As previously dis-

cussed, the only hadron used in nuclear medicine is

the a particle in therapy. a particles emitted in radio-

active decay have kinetic energies of only a few MeV

with the result that the a particle’s penetration into

tissue is small and its kinetic energy will be transferred

to a very small volume leading to a high absorbed

dose. The low kinetic energy will also mean that it is

highly unlikely for the a particle to penetrate the

nuclear Coulomb barrier in order to reach the �1 fm

separation from the nucleus in order to interact via the

strong nuclear force and open up any nuclear energy

loss channels.3 Because there is no interest in nuclear

interactions in clinical nuclear medicine, these will be

neglected.

The mechanisms through which a moving charged

particle loses energy in a medium through collisions

can be broadly characterized in terms of the impact

parameter, b, which is the perpendicular distance

between the projectile’s trajectory and a scattering cen-

ter, such as an atom, as shown in Fig. 7.1 (in Bethe’s

theory, this categorization is in terms of the momentum

transfer q which is approximately related to the impact

parameter via b � �hc=q). For large impact parameters

(i.e., b much greater than the atomic radius), the inci-

dent particle will interact with the atom as whole. The

atom can be temporarily polarized (i.e., the electron

cloud displaced from its equilibrium position) or atomic

electrons excited into empty quantum states or, infre-

quently, into the continuum. As only small amounts of

energy are transferred to the atom in such an encounter,

it is described as a soft collision.

If b is comparable to atomic dimensions, the parti-

cle will interact with a single atomic electron rather

than the entire ensemble. This knock on or hard colli-

sion can result in the transfer of substantial energy to

the atomic electron which can be ejected, leading to

the atom’s ionization and subsequent relaxation pro-

cesses. The ejected electron, also referred to as a d ray,
is capable of carrying energy a considerable distance

away from the event site, a feature of considerable

practical importance in dosimetry calculations. As

the energy transfer in this collision type is high, the

interaction can be well-approximated using the

assumption that the atomic electron is unbound.

Because it is more likely that a given charged particle

will be at an extended distance from a given atom

rather than in close proximity to it, the probability of

a soft collision occurring is high and that of a hard

collision will be much lower. However, the net energy

transfers due to soft and hard collisions are roughly

equal in that the cumulative energy transferred

through high-probability low energy transfers is

approximately equal to that for low-probability high-

energy transfers.

If the impact parameter b is much smaller than

atomic dimensions, the particle interacts with the

nucleus rather than the atomic electrons. A light inci-

dent particle, such as an electron or positron, can be

deflected violently from its trajectory by the nuclear

Coulomb field. An accelerated electric charge will

emit electromagnetic radiation. This radiation is

known as bremsstrahlung with the kinetic energy lost

by the projectile carried away by the photon (assuming

negligible nuclear recoil). The bremsstrahlung energy

spectrum is continuous and decreases with increasing

photon energy, thus reflecting the higher probability of

small deflections and a greater production yield of low

energy (or “soft”) photons. The maximum bremsstrah-

lung photon energy in the spectrum equals the kinetic

energy of the incident charged particle and is the result

of the stopping of the particle and the complete con-

version of its kinetic energy to radiation (assuming,

again, zero nuclear recoil).

An obvious metric of interest in describing the

energy loss of a moving charged particle is the rate,

ze

Atom

b

q

Fig. 7.1 Definition of the impact parameter b during an inter-

action between a passing charged particle and an atom

3Although it is possible for an a particle to penetrate the

Coulomb barrier through quantum tunneling, but the likelihood

of this occurring at kinetic energies of a few MeV typical of

therapeutic nuclear medicine is extremely small.
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averaged over many particles, at which energy is trans-

ferred to the medium per unit path length. This ratio is

known as the linear stopping power.4 So as to remove

the influence of the medium’s physical density, it is

useful to define the mass stopping power as the linear

stopping power normalized to the physical density of

the medium. Stopping powers due to soft and hard

collisions with atomic electrons are summed to yield

the collision stopping power.5 The radiative stopping

power is a measure of the rate of energy loss due to

bremsstrahlung alone and the total collision stopping

power is given by the sum of the collision and radiative

stopping powers. As alluded to above, a refinement to

the collision stopping power of significant practical

interest to radiation dosimetry considers only that

energy deposited locally (i.e., neglecting the energy

carried away by a d ray). The restricted stopping

power, or linear energy transfer, is that fraction of the

collision stopping power in which the kinetic energy of

the d ray is less than a specified cut-off value D.
Because a charged particle loses energy as it pene-

trates a medium, it slows down and (excluding positron

annihilation in-flight or the nuclear absorption of hadro-

nic projectiles) is eventually stopped. The range of the

charged particle can be calculated as the integral of

the reciprocal of the linear stopping power between

the limits of zero and its initial kinetic energy. This is

known as the continuous slowing-down approximation

(CSDA) range. There are other refinements of the parti-

cle range which reflect the stochastic nature of a large

number of interactions and multiple scattering events

and these will be discussed. Both the stopping power

and CSDA range are mean quantities resulting from

large numbers of individual interactions which involve

the transfer of small amounts of energy and small angle.

As with the discussion of photon interactions with

matter in the previous chapter, the quantitative examples

of charged particle interactions provided will be those of

carbon (Z ¼ 6) and lead (Z ¼ 82) media. Extension of

these elemental results to compound media such as soft

tissue and bone is provided through Bragg’s additivity

rule. As the charged particles of interest to nuclear medi-

cine are electrons, positrons, anda particles, thesewill be
emphasized in these discussions.6

7.2 Coulomb Scattering With no Energy
Transfer to the Medium

7.2.1 Introduction

Interactions between a charged particle and matter are

frequently categorized in terms of elasticity. Whether

or not a given collision can be defined as being elastic

or inelastic depends upon the number of degrees-

of-freedom available to the system. For example, the

Coulomb scatter of an electron by a free electron (Møller

scatter) is elastic as the kinetic energy lost by the projectile

electron is made manifest as the target electron’s postcol-

lision kinetic energy. Similarly, a charged particle, having

been scattered froman infinitely-massive scattering center

is considered to have been elastically scattered as it retains

its kinetic energy. In both of these cases, the pre- and

postcollision (or sum of postcollision) kinetic energies

are equal. Despite both being elastic,Møller scatter results

in the transfer of energy to the mediumwhereas Coulomb

scatter from an infinitely-massive scattering center does

not. On the other hand, if the target electron in Møller

scatter is an atomic electron bound to a nucleus, additional

energy channels of ionization or excitation will arise and

not all of the lost incident energywill appear in the exiting

electron’s kinetic energy7 and, as such, the scatter from an

atomic electron is referred to as inelastic scatter. While

inelastic scatter will always result in the transfer of energy

to the medium, only some elastic scatters can (e.g., the

projectile and target masses are comparable). Hence, for

dosimetry purposes, it is more reasonable to characterize

charged particle scattering processes in terms of whether

or not they result in the transfer of energy to the medium

rather than elasticity.

4It has been argued that this nomenclature incorrect as the ratio

has the units of force (i.e., 1 N ¼ 1 J/m) rather than power (i.e.,

1 W ¼ 1 J/s). While this proposal is dimensionally correct, it

does not seem realistic to accept it given the decades-long use of

the term stopping power in the context of a charged particle

slowing down.
5Also called the electronic stopping power.

6Protons will also figure in these derivations due to their histori-

cal significance.
7While, strictly speaking, such an interaction would be consid-

ered inelastic, a hard collision can be modeled as being elastic if

the projectile’s incident kinetic energy sufficiently exceeds the

electron binding energy such that the latter can be ignored.
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7.2.2 Elastic Coulomb Scatter

7.2.2.1 Spin-0 Projectiles

Unscreened Potential (Rutherford Scatter)

This was previously studied to yield the differential

cross sections of theCoulomb scatter of a spin-0 charged

projectile from an infinitely-massive charged scattering

center given by (3.61), (3.62), and (3.65).

Screened Potential

The elastic Coulomb scatter differential cross sections

in solid angle of (3.61) and (3.62) for an unscreened

Coulomb potential diverge as y! 0. This problem can

be managed by recalling that small scattering angles

are associated with large impact parameters through

the relationship b / cot y=2. At large impact para-

meters, the projectile will find the nuclear Coulomb

potential screened by the atomic electrons: the screen-

ing parameter k used in the derivation of the scattering

amplitude and appearing in the integral of (3.58) is non-

zero. Repeating the derivation of (3.61) with k 6¼ 0

results in,

dsRuth

dO
¼ 1

4

zZ a�hc
pb

� �2

�hck
2p

� �2

þ sin2
y
2

" #2

¼ 1

4

zZ a�hc
pb

� �2

�lk
2

� �2

þ sin2
y
2

" #2 Screened potential

(7.1)

where �l ¼ �hc=p is the reduced de Broglie wavelength

of the projectile. Equation (7.1) can, for later conve-

nience in the discussion of multiple elastic Coulomb

scatter, be rewritten in the form using the half-angle

identity, sin y=2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos yð Þ=2p

,

dsRuth

dO
¼

zZ a�hc
pb

� �2

w2o
2
þ 1� cos y

� �2 (7.2)

where the effect of screening is described by the

dimensionless parameter, w0 ¼ �lk, the nature of

which can be identified by rewriting the differential

cross section in the small-angle approximation,

dsRuth

dO
¼4

zZah�c
pb

� �2
w20þy2
	 
2

ðSmall - angle approximation; screened potential


:

(7.3)

w0 can be interpreted as a screening angle and repre-

sents a minimum scattering angle so that the differen-

tial cross section remains finite as the scattering angle

y ! 0,

dsRuth

dO
! 4

zZ a�hc
pb

� �2
w40

as y ! 0 (7.4)

as shown schematically in Fig. 7.2.

An expression for the screening angle w0 can be

derived using the statistical Thomas–Fermi model of

the atom by first equating k to the reciprocal of that

model’s atomic radius which is,

RTF ¼ 1

2

3p
4

� �2=3
r1
Z1=3

� 0:885
r1
Z1=3

:

(7.5)
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Scattering Angle
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W

Fig. 7.2 Representative plot of screened and unscreened elastic

Coulomb scatter differential cross section for spin-0 charged

particles
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From the definition of w0,

w0 ¼ �lk

¼ �l
RTF

� 1:130
�l
a1

� �
Z1=3

(7.6)

This expression for the screening angle w0 is plot-
ted in Fig. 7.3 for electrons in carbon as a function of

electron kinetic energy. The range of electron kinetic

energies shown in this graph is typical of that fol-

lowing Compton scatter, photoelectric absorption, or

b-decay in nuclear medicine applications. It can be

seen that for electrons with a kinetic energy of

50 keV or higher, the screening angle is less than

about 30 mrad.

Mean Free Path Between Elastic Scatters

Using the above results, it is possible to evaluate the

mean free path between each elastic scatter. This

quantity, which is also referred to as the macroscopic

cross section, is of particular importance in that it is

equal to the reciprocal of the probability of an elastic

scatter occurring per unit pathlength, or,

lRuth ¼ A

rNAsRuth

� �
(7.7)

where NA is Avogadro’s number, A is the atomic

number of the medium and r is its physical density.

The total Rutherford cross section is found by integrat-

ing the Rutherford cross section over a solid angle of

4p steradians,

sRuth ¼
ð
dO

dsRuth

dO

¼ 2p
zZ a�hc
pb

� �2 ð1

�1

d cos yð Þ
w2
0

2
þ 1� cos y

h i2
(7.8)

to give,

sRuth ¼ zZ a�hc
pb

� �2
16p

w20 w20 þ 4
	 
 : (7.9)

Figure 7.4 shows the elastic scatter mean free path

as a function of electron kinetic energy in a medium

representative of carbon (i.e., Z ¼ 6, A ¼ 12 and

r ¼ 2 g/cm3).

The combination of this small mean free path

length and the y�4 dependence of the Rutherford

cross section leads to the dominance of forward-

directed multiple elastic scattering of charged particles

traversing a medium.

Elastic Scatter from an Atom

Instead of modeling the atom as a nucleus of infinite

mass with the surrounding atomic electrons treated as

a continuous screening function in radial distance

through the use of a Yukawa-type potential, it is pos-

sible to explicitly calculate for the discrete contribu-

tions of the atomic electrons. Spin is still neglected.

The combined interaction potential is the sum of the

Coulomb potentials due to the nucleus and the indi-

vidual atomic electrons,

U ¼ z a�hc
Z

R
�
XZ
j¼1

1

R� rj
�� ��

" #
(7.10)

where R is the position vector of the projectile and rj is

that of the jth electron. The origin of the system is fixed

at the center of the atomic nucleus and the overall

system vector is r ¼ (R,r1,r2 . . . rZ). The pre- and
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postscattering states of the projectile-atom system are,

in bra-ket notation,

rh jp; 0i ¼ 1ffiffiffiffiffi
L3

p ei
p�R
�hc 0j i

¼ 1ffiffiffiffiffi
L3

p ei
p�R
�hc c0 r1; r2; . . . rZð Þ

(7.11)

and

rh jp0; 0i ¼ 1ffiffiffiffiffi
L3

p ei
p0�R
�hc c0 r1; r2; . . . rZð Þ (7.12)

where c0 r1; r2; . . . rZð Þ is the ground state atomic

wavefunction and L3 is the usual volume containing

the system and which is to be used for normalization.

As the scatter is elastic, the atomic ground state wave-

function appears in both initial and final system states.

The differential cross section is obtained in the usual

way from the transition rate given by Fermi’s Golden

Rule No. 2,

lfi ¼ 2p
�h

p0; 0h jU p; 0j ij j2rf
where the phase space factor rf is the density of final

states per energy interval dT,

rf dT
0 ¼ L

2p�hc

� �3
d3p0: (7.13)

By expanding the vector differential d3p0,

rf dT
0 ¼ L

2p�hc

� �3
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p02 dp0 d cos yð Þ:
(7.14)

The phase–space factor is,
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1
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p02
dp0
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d cos yð Þ

¼ 1

4p2 b0
L

�hc

� �3

p02d cos yð Þ
(7.15)

where
	
dp0=dT0
 ¼ 1=b0 has been used. From

Chap. 3, d cos yð Þj j ¼ q=p2 dq, where q is the momen-

tum transfer and the phase–space factor then becomes,

rf ¼
1

4p2 b0
L

�hc

� �3
p0

p

� �2

q dq

¼ 1

4p2 b
L

�hc

� �3

q dq

(7.16)

where b ¼ b0 and p ¼ p0 due to the elasticity of

the scatter and the negligible recoil of the scattering

center.
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The matrix element for both Coulomb interactions

is next calculated for by separating the interactions

into the projectile electron and projectile-nucleus

components. The matrix element due to the Coulomb

interaction between the projectile and the atomic elec-

trons is found by expanding it in position space,8

p0;0h jU p;0j i¼
ð
d3rd3r0 p0;0h jri rh jU r0j i r0h jp;0i

¼
ð
d3rd3r0 p0;0h jriU rð Þ r0h jp;0i

¼ 1

L3

ð
d3Rei

q�R
�h

YZ
j¼1ð

d3rjc
�
0ðr1;r2 ...rZÞU rð Þ

�c0 r1;r2 ...rZð Þ

¼�za�hc
L3

YZ
j¼1ð

d3rjc
�
0

	
r1;r2 ...rZ



c0

	
r1;r2 ...rZ




�
ð
d3R

ei
q�R
�hc

R�rj
�� ��

¼�za�hc
L3

YZ
j¼1ð

d3rjc
�
0

	
r1;r2 ...rZ



c0

	
r1;r2 ...rZ




�
ð
d3R

0 ei
q� R

0 þrjð Þ
�hc

R
0�� ��

¼� za�hc
L3

YZ
j¼1ð

d3rjc
�
0

	
r1;r2 ...rZ



c0

	
r1;r2 ...rZ




�ei
q�rj
�h

ð
d3R

0 ei
q�R0
�hc

R
0�� �� ð7:17Þ

The solution to the integral was given by (3.59) and

the matrix element is,

p0; 0h jU p; 0j i ¼ �4p
z a�hc
L3

�hc

q

� �2YZ
j¼1ð

d3rj c
�
0 r1; r2 . . . rZð Þ

� ei
q�rj
�hc c0 r1; r2 . . . rZð Þ

¼ �4p
z a�hc
L3

�hc

q

� �2

0
XZ
j¼1

ei
q�rj
�hc

�����
�����0

* +

¼ �4p
z a�hc
L3

�hc

q

� �2

F0 q;Zð Þ ð7:18Þ

where F0 q;Zð Þ is the elastic scattering form factor,

which was seen before in the derivation of the photon

coherent scatter cross section (and in a different guise

in elastic scatter from the nucleus). Assuming a con-

tinuous electron spatial distribution rather than the

discrete set of above, the form factor is the Fourier

transform of the electron density. Here, the normaliza-

tion of,

F 0;Zð Þ ¼
ð
d3r reðrÞ

¼ Z

(7.19)

will be imposed. As an example, following from the

Yukawa approximation of the screened nuclear Cou-

lomb potential, the atomic electron density can be

modeled by,

reðrÞ ¼ Y e�kr (7.20)

where the normalization constant Y is found via,

ð
d3r reðrÞ ¼ Y

ð
d3r e�kr

¼ 2pY
ð1

0

dr r2 e�kr

¼ 4p
Y
k3

:

(7.21)

From these, Y ¼ k3Z=4p and the electron density

is now written in the form,

reðrÞ ¼
k3Z
4p

e�kr: (7.22)8This implicitly neglects any electrostatic correlations between

the atomic electrons.
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The expression for the elastic scattering form factor

is,

F q;Zð Þ ¼ k3Z
4p

ð
d3r e� krþi

q�r
�hcð Þ

¼ k3Z
2

ð
dr r2 e�kr

ð
d cos yð Þe�i

qr cos y
�hc

¼ k3Z
2

�hc

q

ð
dr r e�kr sin

qr

�hc

¼ Z
k4

k2 þ q
�hc

	 
2� �2 :

(7.23)

Using the momentum transfer expression of (3.52),

the elastic form factor can be written in terms of the

scattering angle as,

F0 y;Zð Þ ¼ Z
k4

k2 þ 4p2

�hcð Þ2 sin
2 y
2

� �2

¼ Z

1þ 2p
�hck sin y

2

	 
2� �2

¼ Z

1þ 2
w0
sin y

2

� �2� �2
:

(7.24)

Writing the form factor in this manner demon-

strates that F y ¼ 0;Zð Þ ¼ Z at its maximum and

decreases to Z= 1þ 4=w20
	 
2

for y ¼ p (or to zero for

the unscreened potential which corresponds to

w0 ¼ 0). Now return to the evaluation the component

of the matrix element due to the projectile-nuclear

Coulomb potential,

p0; 0h jU p; 0j i ¼
ð
d3r d3r0 p0; 0h jri rh jU r0j i r0h jp; 0i

¼ zZ a�hc
L3

ð
d3R

0 ei
	
q�R0
�hc



R0

YZ
j¼1ð

d3rj c
�
0 r1; r2 . . . rZð Þc0 r1; r2 . . . rZð Þ

¼ zZ a�hc
L3

ð
d3R

0 ei
q�R0
�hc

	 

R0

¼ 4p
zZ a�hc
L3

�hc

q

� �2

ð7:25Þ

The complete matrix element is the sum of the

projectile electron and projectile-nucleus components,

hp0; 0jUjp; 0i ¼ 4p
z a�hc
L3

�hc

q

� �2

Z� F0 q;Zð Þð Þ:
(7.26)

The transition rate is,

lfi ¼ 2p
�h

p0; 0h jU p; 0j ij j2rf

¼ 8p c
b

z a�hcð Þ2
q3L3

Z� F0 q;Zð Þj j2 dq:
(7.27)

The differential cross section in momentum trans-

fer and scattered kinetic energy is obtained from the

transition rate in the usual way by normalizing it to the

incident particle flux,

ds ¼ L3

b c
lfi (7.28)

leading to,

ds
dq

¼ 8p
q3

z a�hc
b

� �2

Z� F0 q;Zð Þj j2 (7.29)

A comparison of this result with the differential

cross section inmomentum transfer obtained previously

for a single scattering center demonstrates that the Z2

term for the unscreened potential has been replaced by

Z� F0 q;Zð Þj j2. That is, the contributions of the atomic

electrons, through interference as described by the elas-

tic scattering form factor, lead to a reduction of the

cross section and, in particular, the elastic scatter cross

section is subject to the destructive interference

between the nuclear and electronic amplitudes.

It has been seen that for zero momentum transfer

(i.e., zero scattering angle), the elastic form factor is

equal to Z. In the general case of small momentum

transfer, the elastic form factor can be expanded to

second order,

F q;Zð Þ ¼
�
0

����
XZ
j¼1

ei
q�rj
�hc

����0


�
�
0

����
XZ
j¼1

1þ i
q � rj
�hc

� �
� 1

2

q � rj
�hc

� �2� �����0

:

(7.30)
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As the momentum transfer is small, then cos y � 1

so q � rj � qrj. In addition, the matrix element of the

first term of the expansion is equal to zero due to

symmetry. Hence, for small q,

F q;Zð Þ � Z� 1

2

q

�hc

� �2XZ
j¼1

�
0
��r2j ��0�

� Z� 1

2

q

�hc

� �2
r2

(7.31)

and the differential cross section in momentum trans-

fer is,

ds
dq

¼ 8p
q3

z a�hc
b

� �2

Z� F0 q;Zð Þj j2

� 2p
z a�hc
b

� �2
q

�hcð Þ4 r2
� �2

small momentum transferð Þ:

(7.32)

The differential cross section with solid angle can

next be derived in the usual way and by replacing

F0 q;Zð Þ with the F0 y;Zð Þ of,

ds
dO

¼ 8p
q3

z a�hcð Þ2
b

Z� F0 y;Zð Þj j2 p2

2p q

� �

¼ 4p2

q4
za�hcð Þ2
b

Z� F0 y;Zð Þj j2
(7.33)

As q4 ¼ 16p4 sin4 y=2 the differential cross section

can be written in the form,

ds
dO

¼ 1

4

z a�hc
pb

� �2
Z� F0 y;Zð Þj j2

sin4 y=2
(7.34)

which is the analog to the point scattering center

result.

Comparison of Atomic Scattering Results

In later consideration of charged particle transport, in

particular multiple scattering, the elastic Coulomb

scatter process will be significant. Hence, a review of

the elastic Coulomb scatter differential cross sections

calculated so far for an atomic target is now provided.

Figure 7.5 shows the differential cross section in solid

angle as a function of scattering angle for a 100-keV

electron in carbon (the electron spin is, of course,

neglected here but its effects will be considered

explicitly in the next subsection). The two calculations

are for the screened potential and the elastic form

factor with the parameter k defined as the reciprocal

of the Thomas–Fermi atomic radius. For scattering

angles exceeding about 3�, the two methods yield the

same differential cross section, but diverge at smaller

angles, both approaching approach a finite value at

y ¼ 0 due to screening. The differential cross section
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calculated by explicitly including the contributions of

the individual atomic electrons only becomes signifi-

cantly greater than that assuming a continuous screen-

ing of the potential for scattering angles of less than 3�.
However, it is clear that elastic Coulomb scatter is

highly forward directed with a very high differential

cross section (exceeding 108 b for scattering angles of

less than 1�). This feature is highly significant in

describing the transport of charged particles in a

medium. Charged particles will, as a result, undergo

multiple scatters and result in a probability distribution

describing both their spatial distribution and their

angular direction. This will be discussed in detail later.

7.2.2.2 Spin-1/2 Projectiles

The Mott differential cross sections (Mott 1929, 1932)

derived in Sect. 3.2.7 describes the interactions of a

spin-1/2 projectile, such as an electron or positron,

with a Coulomb field. The relevant expressions are

given by (3.89) and (3.90).

7.3 Coulomb Scattering With Energy
Transfer to the Medium

7.3.1 Introduction

While the results of the previous section are important

input to charged particle transport calculations (through,

e.g., evaluation of multiple scatter or range straggling),

they do not lead to energy transfer. On the other hand,

for example, following Møller scatter with an atomic

electron, the atom is left in an excited or even ionized

state. Energy is thus transferred to the medium. This

section focuses on the inelastic collisions between a

projectile and an atom (i.e., impact parameters compa-

rable to or greater than atomic dimensions).

7.3.2 Rutherford Collision Formula

The initial derivation is of the classical formula

describing the energy transfer to an electron via a

Coulomb interaction with a moving heavy charged

particle using the following assumptions:

� The energy loss is local (i.e., emission of electro-

magnetic energy is neglected).

� The particle is not deflected from its straight-line

trajectory (i.e., the impulse approximation is used

and multiple scatter is neglected).

� The ion is not “dressed” (i.e., it is completely

stripped of electrons).9

� The speed of the particle is much higher than the

orbital speed of any atomic electron (allowing the

electron to be treated as being at rest) but is suffi-

ciently low that nonrelativistic kinematics can be

assumed.

Consider the passage of a particle with charge ze,

speed v, and a mass m 	 me in a medium with physi-

cal density r, atomic number Z, and atomic mass

number A. It interacts with an electron through the

Coulomb potential at an impact parameter b, as shown

in Fig. 7.1. The force felt by the target electron is

decomposed into two orthogonal components, one

parallel, and the other perpendicular, to the particle’s

trajectory,

F ¼ �e Ejj þ E?
	 


(7.35)

where Ejj and E? are the two orthogonal electric field

components at the position of the electron,10

Ejj ¼ � z a�hcð Þ
e

� �
gvt

b2 þ gvtð Þ2
h i3

2

v̂jj (7.36)

E? ¼ z a�hcð Þ
e

� �
gb

b2 þ gvtð Þ2
h i3

2

v̂? (7.37)

9The presence of electrons in an ion projectile will have two

effects upon the rate of energy loss. The first is that the effective

charge will be reduced to the screening by these electrons. The

second is that the excitation or ionization of the projectile itself

will provide an additional energy loss channel.
10These transformed values of the electric field result from the

Lorentz transformation corresponding to the boost along an axis

with a speed bc for the particle in one reference frame to that

containing the electron at rest. These are provided here without

derivation, but one may refer to, for example, that provided by

Jackson (1999).
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v̂jj and v̂? are the unit-vectors in the directions parallel

and perpendicular to the projectile’s trajectory. The

magnitudes of these two electric field components are

plotted in Fig. 7.6 as a function of time (weighted by

gv=b, which is a constant in this impulse approxima-

tion since the projectile speed is considered to be

unaffected). The momentum transferred to the elec-

tron is given by the integral over all time of the force

that the electron is subject to,

qjj ¼ �e

ð1

�1
dt Ejj (7.38)

q? ¼ �e

ð1

�1
dt E?: (7.39)

It is clear from both the figure and the gvt multipli-

cative term in the expression for Ejj that the net
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momentum component parallel to the particle trajec-

tory is equal to zero and that the net non-zero momen-

tum transfer will be that perpendicular to the particle’s

trajectory,

q ¼ q?

¼ �e

ð1

�1
dt E?

¼ � z a�hcð Þgb
ð1

�1

dt

b2 þ gvtð Þ2
h i3

2

¼ � z a�hcð Þ g
b2

ð1

�1

dt

1þ gvt
b

	 
2h i3
2

¼ � z a�hcð Þ 1

bv

ð1

�1

dx

1þ x2½ 
32

¼ � 2z a�hcð Þ
bv

(7.40)

where the substitution of variables x ¼ gvt=b has been
used to solve the integral. As the recoil electron is

treated as being nonrelativistic, the energy transferred

to it is,

Q ¼ q2

2me

¼ 2z a�hcð Þ2
2mev2b2

¼ 2me

zr0

bb

� �2

:

(7.41)

It can be immediately seen that the energy transfer

decreases with 1/b2 (i.e., slower particles lose energy

more rapidly) and with 1/b2 (i.e., energy loss decreases

with increasing distance from the atom) and increases

with z2. This result can be used to demonstrate that

collision energy losses will be dominated by the inter-

actions of the projectile with atomic electrons rather

than with the nucleus (whereas it is the converse with

elastic scatter which is dominated by the interaction

with the nucleus). The energy transfer to a nucleus of

charge Ze and mass AmN, where mN is the nucleon

mass, will scale from that to an electron by the ratio,

z2Z2

AmN

me

z2
� Z

2

me

mN

� Z

3760

As an example, the energy transferred to the

nucleus of a carbon atom will be less than 0.2% of

that transferred to an atomic electron. Nonradiative

energy transfer is the result of an electromagnetic

interaction with the nucleus will thus be neglected.

It is now necessary to move beyond consideration

of the energy transfer to a single electron to the more

realistic case of multiple energy transfers to an ensem-

ble of electrons. Assume that the particle is moving

through a sea of electrons and then isolate those elec-

trons contained within a cylinder with its axis coinci-

dent with the particle’s trajectory, as shown in Fig. 7.7.

Because of the correspondence between the energy

transfer and the impact parameter, the probability of

an energy transfer between Q and Q þ dQ to an elec-

tron occurring in a given differential pathlength dx of

the traveling particle is equal to the probability of a

collision with an impact parameter between b and

b þ db. This latter probability is equal to the number

of electrons contained within the differential volume

formed by the cylindrical shell of thickness db and

length dx,

PrðbÞ db dx ¼ rNA

Z

A

� �
2p b db dx (7.42)

where rNAðZ=AÞ is the electron number density of

the medium. The product b db is obtained by differ-

entiating (7.41),

b dbj j ¼ me

zr0

b

� �2
dQ

Q2
(7.43)

From these two expressions, the probability of an

energy transfer between Q and Q þ dQ to an electron

dx
db

b

x

Fig. 7.7 Geometry for calculation of the Rutherford collision

formula
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occurring in a given differential pathlength dx of the

traveling particle is,

PrðbÞ ¼ 2pme NA r20
	 
 Z

A

� �
z

b

� �2
dQ

Q2
r dx (7.44)

This expression is simplified by defining a constant

which will appear frequently in this chapter,

C ¼ 2pmeNAr
2
0

¼ 0:154MeV atom cm2=mole
(7.45)

to give,

PrðbÞ ¼ C
Z

A

� �
z

b

� �2
dQ

Q2
r dx (7.46)

This is Rutherford’s formula for energy loss and

demonstrates the major features of collision energy

loss through electromagnetic interactions with atomic

electrons:

� The probability of a collision with energy transfer

Q is proportional to Q�2, demonstrating that soft

collisions (small Q) are more likely than hard colli-

sions.

� The probability is proportional to b�2 or, crudely,

is greater for short collision times (i.e., the proba-

bility of an energy transfer decreases if the elec-

trons are allowed to react adiabatically).

� The probability is proportional to the electron den-

sity of the medium.

� The probability is independent of projectile mass

� The probability increases with the square of the

incident particle charge, z2.

7.3.3 Soft Collision Stopping Power

7.3.3.1 Introduction

The soft collision stopping power is the energy loss

due to soft collisions per unit distance traveled by a

projectile in a medium. In this subsection, the two

most prominent theories as developed by Bohr and

Bethe are derived. In Bohr’s model, energy is trans-

ferred to the atomic electrons which are treated as

charged harmonic oscillators. The energy loss is cal-

culated using classical electrodynamics for a heavy

projectile interacting with a single electron of a single

atom. On the other hand, the Bethe theory is the

quantum-mechanical description of the inelastic pro-

jectile-atom collision.

7.3.3.2 Bohr Theory

Introduction

The main assumptions of the Bohr theory of soft

collisions are that, firstly, the nucleus has infinite

mass and, secondly, the projectile transfers energy to

harmonically-bound atomic electrons. The Bohr mass

soft collision stopping power is derived in three steps:

� Deriving the role that the impact parameter plays in

separating the regions of soft- and hard collisions.

� Deriving the energy transfer to a harmonically-

bound electron using the assumption that only the

projectile’s electric field acts upon the electron and

that the field is spatially uniform at the position of

the electron.

� Using these results to derive the energy transferred

per unit pathlength traveled.

The Bohr theory uses classical mechanics to calculate

the energy transfer due to soft collisions with the

atomic electron orbital frequencies dictating the

energy transfer to the atomic electrons in the adiabatic

limit.

Impact Parameter

The impact parameter, b, is fundamental to the Bohr

theory. For b greater than some maximum value, bmax,

the projectile will be unable to transfer sufficient

energy to the atom in order to excite or ionize it. On

the other hand, for b less than some minimum value,

bmin, the particle will interact with an individual elec-

tron (i.e., undergo a hard collision). As a result, bmin

and bmax set the boundaries for a soft collision during

which the projectile interacts with the entire ensemble

of atomic electrons.

One method of estimating bmin is to use the impulse

approximation implicit to the Rutherford formula in

which the target electron is assumed to be stationary
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or, in effect, does not recoil a significant distance

compared to the impact parameter. One calculates the

recoil distance and, by fixing it to be much smaller than

the impact parameter, obtain bmin. As the time domain

over which an electron with speed v ¼ bc experiences
the electrostatic force of the projectile is of the order of

b=gv, the recoil distance of the electron will be of the

order of qb=megv, where q is the momentum transfer.

The impulse approximation requires this to be much

less than the impact parameter,

q

me

b

gv
� b

to give

q

megv
� 1: (7.47)

Inserting the expression for the momentum transfer

gives,

2z a�hc
bmegv2

� 1: (7.48)

Rearrangement gives the inequality in terms of the

ratio of the electrostatic potential and kinetic energies,

1

g

z a�hc
b

� �

1

2
mev

2

� �� 1 (7.49)

or,

1

g
2z

b2

� �
r0

b
� 1 (7.50)

from which an expression for bmin can be defined,

bmin ¼ 2
z

gb2

� �
r0 (7.51)

As expected, bmin decreases with increasing projec-

tile speed (or, equivalently, decreasing de Broglie

wavelength).

Another approach to calculating bmin recognizes

that only hard collisions will occur at impact para-

meters below this value. From Chap. 2, the maxi-

mum energy transferred to an electron as a result

of a head-on collision with a massive projectile is

2meg
2b2. Using (7.41),

2meg2b
2 ¼ 2me

zr0

bbmin

� �2

and solving for bmin gives,

bmin ¼ z

gb2

� �
r0 (7.52)

Two classical mechanical proposals for bmin have

been derived, each differing by a factor of 2. As both

show that bmin is associated with increasing particle

momentum (and, hence, reduced de Broglie wave-

length), the quantum-mechanical nature of the inter-

action cannot be ignored. Moreover, the impulse

approximation assumes that the momentum transfer

to the electron is negligible and that the projectile

trajectory is unaffected. A negligible momentum

transfer is clearly unrealistic and, from the Heisenberg

uncertainty principle, the uncertainty of the impact

parameter will be of the order of �hc=megb. One can

thus specify a quantum-mechanical minimum of the

impact parameter based upon the magnitude of this

uncertainty,

bQMmin ¼
�hc

megb
(7.53)

Now review the three values of bmin that have been

derived recognizing that, for any given situation, one

must select the largest of the three values for bmin.

Hence, that expression derived from two-body elastic

scattering is excluded. This leaves the two expressions

derived from the impulse approximation and from the

uncertainty principle. The ratio of these two expres-

sions can be used as the metric for determining which

of the two to use,

bQmin

bmin

¼ �hc

megb

� �
gb2

2zr0

� �

¼ b
2az

:

(7.54)

The appropriate minimum impact parameter

expression is,

bmin ¼ 2z

gb2
r0 if b < 2 az (7.55)
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bmin ¼ �hc

megb
if b > 2a z (7.56)

As an example, for the case of a proton projectile,

the classically-derived impact parameter is used for

b < 2=137 ¼ 0:0118, equivalent to a kinetic energy

of less than 100 keV.

An expression for the maximum impact parameter

bmax which specifies the impact parameter beyond

which the projectile cannot ionize or excite the atom

is now derived. A simple approach would note that the

energy transferred must exceed some (as yet-to-be

specified) mean ionization energy, �I, in order for an

electron to be elevated into the continuum. Equating

this to the energy transfer gives,

�I ¼ 2me

zr0

bbmax

� �2

(7.57)

and solving for bmax,

bmax ¼ zr0

b

ffiffiffiffiffiffiffiffi
2me

�I

r
(7.58)

A related approach to defining bmax was originally

proposed by Bohr and sets the upper limit to the

impact parameter such that the atomic electrons

respond adiabatically. The duration of the interaction

is of the order of b=gbc and, should it be sufficiently

long, the natural motion of the electron can be ignored.

The natural frequency of motion of a bound electron

can be written as,

o0 ¼ EB

�h
(7.59)

where EB is an effective binding energy. An expres-

sion for bmax can be obtained by relating the duration

of the interaction to the reciprocal of this frequency,

bmax

gbc
� 1

o0

(7.60)

to give,

bmax ¼ g b c
o0

¼ g b
�hc

EB

:

(7.61)

There are fundamental differences between these

two expressions of bmax. Equation (7.58) predicts that

the maximum impact parameter will be dependent

upon the charge of the projectile and will decrease

with increasing projectile speed. On the other hand,

the result of (7.61) has no projectile charge depen-

dence and predicts an increase in bmax with projectile

speed.

Energy Transfer to a Harmonically-Bound Electron

The next steps of Bohr result of the soft collision

energy loss are:

� Solve for the equation of motion for a harmoni-

cally-bound electron perturbed by the projectile’s

electric field.

� Use this result to relate the energy loss of the

projectile to the electric field.

� Calculate the rate of energy loss with pathlength.

Equation of Motion of Target Electron

Consider a single atomic electron target harmonically

bound to the atom with an oscillator natural frequency,

o0. As the charged particle passes by, the electron is

subject to a spatially- and time-dependent electric

field, E(x,t) and the resulting equation of motion is,

me

d2x

dt2
¼ �eE x; tð Þ �meo2

0x�meG
dx

dt
: (7.62)

The second and third terms on the right-hand side

are the restorative and damping forces upon the elec-

tron, respectively, where the latter is assumed small

(i.e., o0 	 G) in order to simplify later derivations.

As, by definition, soft collisions occur at large impact

parameters, the spatial variation of the electric field at

the position of the electron is neglected allowing the

removal of the x dependence of the electric field. The

electric field can thus be treated as being spatially

uniform at the position of the electron making it possi-

ble to replace E(x,t) with E(t). This equation of motion

is solved using the method of Fourier transform pairs,

E o0ð Þ ¼ 1ffiffiffiffiffiffi
2p

p
ð1

�1
dt eio

0t EðtÞ (7.63)
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and

EðtÞ ¼ 1ffiffiffiffiffiffi
2p

p
ð1

�1
do0 e�io0t E o0ð Þ: (7.64)

The differential equation of motion is first rear-

ranged,

d2x

dt2
þ G

dx

dt
þ o2

0x ¼ � e

me

� �
E (7.65)

where functional dependencies are omitted for clarity.

Writing both sides of the equation of motion in terms

of the inverse- transforms and differentiating with

respect to time gives,

ð1

�1
do0 �o02 � io0Gþ o2

0

	 

e�io0t x o0ð Þ

¼ � e

me

� � ð1

�1
do0 e�io0t E o0ð Þ: (7.66)

Multiplying both sides by e�iot and integrating over

time,

ð1

�1
dt

ð1

�1
do0 ei o�o0ð Þt �o02 � io0Gþ o2

0

	 

x o0ð Þ

¼ � e

me

� � ð1

�1
dt

ð1

�1
do0 ei o�o0ð Þt E o0ð Þ

results in the integral equation,

ð1

�1
do0 d o� o0ð Þ �o02 � io0Gþ o2

0

	 

x o0ð Þ

¼ � e

me

� � ð1

�1
do0 d o� o0ð ÞE o0ð Þ (7.67)

where the definition of the d-function has been

used. The integration over o0 is trivial and the

resulting frequency-space solution to the equation

of motion is,

x oð Þ ¼ � e

me

� �
E oð Þ

o2
0 � o2

	 
� iGo

 !
: (7.68)

Energy Transfer as a Function of the Electric Field

The projectile energy loss is equal to the energy trans-

ferred to the electron,

Q ¼ �e

ð1

�1
dt
dxðtÞ
dt

EðtÞ: (7.69)

Writing the integrand in terms of the inverse Four-

ier transforms,

Q ¼ �e

ð1

�1
dt

1ffiffiffiffiffiffi
2p

p d

dt

ð1

�1
do e�iotx oð Þ

0
@

1
A

� 1ffiffiffiffiffiffi
2p

p
ð1

�1
do0 e�io0t E o0ð Þ

0
@

1
A

¼ i
e

2p

� � ð1

�1
do0

ð1

�1
do

ð1

�1
dt e�i oþo0ð Þt

0
@

1
A

� ox oð ÞE o0ð Þ

¼ ie

ð1

�1
do0

ð1

�1
dod oþ o0ð Þox oð ÞE o0ð Þ

¼ ie

ð1

�1
doo x oð ÞE �oð Þ: ð7:70Þ

The electric field is a real quantity (i.e.,

E �oð Þ ¼ E� oð Þ), so,

Q ¼ ie

ð1

�1
doo x oð ÞE� oð Þ

¼ 2e Re i

ð1

0

doo x oð ÞE� oð Þ
0
@

1
A:

(7.71)
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The energy transfer as a function of the electric

field can now be obtained by substituting the expres-

sion for x(o) into the integrand,

Q¼ �2e2

me

� �
Re i

ð1

0

do
o E oð Þj j2

o2
0�o2

	 
�iGo

0
@

1
A

¼ �2e2

me

� �
Re i

ð1

0

do
o E oð Þj j2 o2

0�o2
	 
þiGo
	 


o2
0�o2

	 
2þG2o2

0
@

1
A

¼ �2e2

me

� �
Re

ð1

0

do
o E oð Þj j2 �Goþi o2

0�o2
	 
	 


o2
0�o2

	 
2þG2o2

0
@

1
A

¼ 2e2

me

� � ð1

0

do
Go2 E oð Þj j2

o2
0�o2

	 
2þG2o2

0
@

1
A: ð7:72Þ

Solving this integral is simplified as the damping of

the electron motion is small (i.e., G � o). As a result
of this, E(o0) � E(o) and E oð Þj j2 is extracted from

the integrand to give,

Q ¼ 2e2

me

� �
E o0ð Þj j2

ð1

0

do
Go2

o2
0 � o2

	 
2 þ G2o2
:

(7.73)

To complete the derivation, the integral is solved

using the substitution of variable, u ¼ o=G

ð1

0

do
Go2

o2
0 � o2

	 
2 þ G2o2

¼
ð1

0

du
u2

k2 � u2ð Þ2 þ u2
(7.74)

where k ¼ o0=G. The integrand is rearranged,

ð1

0

du
u2

k2 � u2ð Þ2 þ u2
¼
ð1

0

du

u�kð Þ uþkð Þ
u

� �2
þ 1

¼
ð1

�k

dx

x xþ2kð Þ
xþk

� �2
þ 1

(7.75)

where the substitution x ¼ u – k has been used. The

small damping force requirement is equivalent to

x � k which enables the approximation,

ð1

�k

dx

xðxþ2kÞ
xþk

� �2
þ 1

�
ð1

�k

dx
1
k2

	 
ðx2 þ 2kxÞ2 þ 1

�
ð1

�k

dx

1þ 4x2

(7.76)

and to set the lower integration limit to �1. Hence,

ð1

0

do
Go2

o2
0 � o2

	 
2 þ G2o2
�
ð1

�1

dx

1þ 4x2
: (7.77)

Residue theory is used to solve this integral, which

is of the form
Ð1

�1
dz

1
4ð Þþz2

where z ¼ x þ iy. The inte-

grand has poles at z ¼ � i/2 and is holomorphic

everywhere else. Consider the semicircular contour

of radius R in the upper half-plane as shown in

Fig. 7.8. For R > 1/2, the singularity of the integrand

lies within the interior of the contour bounded by the

segment of –R  x  Rwith y ¼ 0 and the upper half

CR of the circle |z| ¼ R. Integrating counter-clockwise

over this contour,

ðR

�R

dx
1
4

	 
þ x2
þ
ð
CR

dz
1
4

	 
þ z2
¼
ð1

�1

dz
1
4

	 
þ z2

¼ 2p i B

(7.78)

iy

CR

R

2
+

i

−R X

Fig. 7.8 Integration contour in the complex plane z ¼ x þ iy

for calculating the integral of (7.77)
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where B is the residue of the integrand at the point

z ¼ � i/2,

B ¼ lim

z ! i
2

z� i

2

� �
1

1
4

	 
þ z2

 !
¼ �i: (7.79)

Hence,

ð1

�1

dx
1
4

	 
þ x2
¼ 2p�

ð
CR

dz
1
4

	 
þ z2

¼ 2p

(7.80)

which is valid for all R > 1/2 as the integral along the

contour on the right-hand side is equal to zero as can

be shown by considering the point z on the contour CR

for which,

ð
CR

dz

1=4þ z2
 pR

1=4þ R2
(7.81)

where pR is the length of the contour. Thus, as
pR

1=4þR2 ! 0 as R ! 1, then
Ð
CR

dz
1=4þz2

! 0 as R ! 1
and the energy transfer to the electron is,

Q ¼ p
e2

me

� �
E o0ð Þj j2: (7.82)

Calculation of the Electric Field

An expression for the squared modulus of the electric

field at the position of the atomic electrons is found by

first calculating the Fourier transforms of the two

electric field components for impact parameter b, par-

allel and orthogonal to the particle trajectory, by

rewriting (7.36) and (7.37),

E?ðtÞ ¼ z a�hc
eb2

� �
g

1þ gvt
b

	 
2h i3
2

v̂? (7.83)

EjjðtÞ ¼ � z a�hc
eb3

� �
gvt

1þ gvt
b

	 
2h i3
2

v̂jj: (7.84)

The Fourier transform of the perpendicular compo-

nent of the electric field is,

E? oð Þ ¼ 1ffiffiffiffiffiffi
2p

p
ð1

�1
dt eiot E?ðtÞ

¼ gffiffiffiffiffiffi
2p

p z a�hc
eb2

� � ð1

�1
dt

eiot

1þ gvt
b

	 
2h i3
2

v̂?:

(7.85)

The integral is solved by using the substitution of

variable, x ¼ gvt=b,

E? oð Þ ¼ z a�hcffiffiffiffiffiffi
2p

p
ebv

ð1

�1
dx

ei
ob
gvð Þx

1þ x2½ 
32
v̂?

¼
ffiffiffi
2

p

r
z a�hc
ebv

ð1

0

dx
cos ob

gv x
� �

1þ x2½ 
32
v̂?

(7.86)

with the last step following from cos ob
gv x
� �

and

sin ob
gv x
� �

being even and odd functions, respectively.

The integral is a form of the modified Bessel function

of the second kind (Abramowitz and Stegun 1972),

KnðyÞ ¼
2nG nþ 1

2

	 

ffiffiffi
p

p
yn

ð1

0

dx
cos xyð Þ
1þ x2½ 
nþ1

2

(7.87)

where n is 0 or an integer. Use of Kn(y) for n ¼ 0, 1

will be required,

K0ðyÞ ¼
ð1

0

dx
cos xyð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p (7.88)

K1ðyÞ ¼ 1

y

ð1

0

dx
cos xyð Þ
1þ x2½ 
32

: (7.89)

The expression of the electric field orthogonal to

the projectile trajectory is now,

E? oð Þ ¼
ffiffiffi
2

p

r
z a�hc
ebv

ð1

0

dx
cos ob

gv x
� �

1þ x2½ 
32
v̂?

¼
ffiffiffi
2

p

r
z a�hc
ebv

ob
gv

� �
K1

ob
gv

� �
v̂?

¼ e

2pð Þ3=2e0
zo
gv2

� �
K1

ob
gv

� �
v̂?

(7.90)
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and the Fourier transform of the electric field compo-

nent parallel to the particle’s trajectory is,

Ejj oð Þ ¼� gvffiffiffiffiffiffi
2p

p zah�c
eb3

ð1

�1
dt

teiot

1þ gvt
b

	 
2h i3
2

v̂jj: (7.91)

Using, again, the substitution of variable,

x ¼ gvt=b,

Ejj oð Þ ¼ � z a�hcffiffiffiffiffiffi
2p

p
ebgv

ð1

�1
dx

xei
ob
gvð Þx

1þ x2½ 
32
v̂jj: (7.92)

This integral is solved by parts (for clarity,

y ¼ ob=gv),

ð1

�1
dx

xeixy

1þ x2½ 
32
¼
ð1

�1
dr s

¼ s rj 1
�1 �

ð1

�1
ds r

(7.93)

where

s � eixy ds ¼ dx i y eixy

dr � dx
x

1þ x2½ 
32
r ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

to give,

ð1

�1
dx

xei
ob
gvð Þx

1þ x2½ 
32
¼ 2i

ob
gv

� � ð1

0

dx
cos ob

gv x
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

¼ 2i
o b

gv

� �
K0

o b

gv

� �
:

(7.94)

The Fourier transform of the electric field compo-

nent parallel to the particle’s trajectory is now had,

Ejj oð Þ ¼ � i

2pð Þ3=2e0
zeo

gvð Þ2 K0

ob
gv

� �
v̂jj: (7.95)

The squared modulus of the electric field in fre-

quency space is,

E o0ð Þj j2 ¼ E? o0ð Þj j2 þ Ejj o0ð Þ�� ��2

¼ 1

2pð Þ3e20
zeo0

v

� �2
K2

1

o0b

gv

� �
þ
K2

0
o0b
gv

� �
g2

2
4

3
5:

(7.96)

The frequency o0 is written in terms of the maxi-

mum impact parameter, bmax, beyond which no energy

is transferred to the atom, as determined from the

adiabatic response result, o0 ¼ gv=bmax. Hence, the

electric field can be written as a function of the impact

parameter,

EðbÞj j2 ¼ 1

2pð Þ3e20
zeg
bmax

� �2

K2
1

b

bmax

� �
þ
K2

0
b

bmax

� �
g2

2
4

3
5:

(7.97)

The energy transfer to a harmonically-bound elec-

tron is,

Q ¼ p
e2

me

� �
EðbÞj j2

¼ 2me

r0

bmax

� �2
z

b

� �2

K2
1

b

bmax

� �
þ
K2

0
b

bmax

� �
g2

2
4

3
5:

(7.98)

Consider the dependence of the energy transfer as a

function of impact parameter. For small impact para-

meters, the low-argument limits of the modified Bessel

functions are required,

yK0ðyÞ ! 0 as y ! 0 (7.99)

yK1ðyÞ ! 1 as y ! 0: (7.100)

In this case,

Q ! 2me

zr0

b b

� �2

as b ! 0: (7.101)

Note that this is the same result of the energy

transfer calculated from the impulse approximation.

Invoking a minimum impact parameter, an expression

for the maximum energy transfer in a soft collision

corresponding to the minimum impact parameter can

be written,

Qmax ¼ 2me

zr0

bbmin

� �2

: (7.102)

For example, the magnitude of the energy transfer

from a soft collision from an a particle with a kinetic

energy of 5 MeV is Qmax � 200 eV. For large

impact parameters, we can use the large-argument
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approximations of the modified Bessel functions

K0;1ðyÞ �
ffiffiffiffi
p
2y

q
e�y for y 	 1 to give,

Q � pme

r0

bmax

� �2
z

b

� �
1þ 1

g2

� �

� bmax

b

� �
e�2b=bmax (7.103)

The exponential term in this expression introduces

the desired rapid cut-off for very large impact para-

meters at which the energy transfer becomes ineffi-

cient beyond the adiabatically-limited impact

parameter, bmax.

Bohr Soft Collision Mass Stopping Power

Using the Bohr soft energy transfer expression, the

soft collision stopping power, which is the energy

loss per unit pathlength due solely to soft collisions,

is calculated. In a medium of electron density re, the
number of electrons in a differential cylinder section

of length dx with impact parameters between b and

b þ db is 2p re b dx db and the double-differential

energy loss of a particle traversing this section is,

d2E ¼ �2pre b Q db dx

¼ �4pre me

r0

bmax

� �2
z

b

� �2

� K2
1

b

bmax

� �
þ
K2

0
b

bmax

� �
g2

2
4

3
5b db dx

¼ �4pre me

zr0

b

� �2

y K2
1ðyÞ þ

K2
0ðyÞ
g2

� �
dy dx

(7.104)

where the substitution of variable, y ¼ b/bmax, has

been used. Integrating over y, the linear soft collision

stopping power11 is

dE

dx

� �
Col;S

¼ �4p re me

zr0

b

� �2

�
ð1

bmin
bmax
ð Þ

dy y K2
1ðyÞ þ

K2
0ðyÞ
g2

� �

¼ �4p re me

zr0

b

� �2

�
ð1

bmin
bmax
ð Þ

dy y K2
1ðyÞ þ K2

0ðyÞ � b2K2
0ðyÞ

� �
:

(7.105)

The mass soft collision stopping power will be the

linear collision stopping power normalized to the

physical density of the medium the charged particle

is moving through,

dE

r dx

� �
Col

¼ �4pNA

Z

A

� �
me

zr0

b

� �2

ð1
bmin
bmax
ð Þ

dy y K2
1ðyÞ þ K2

0ðyÞ � b2K2
0ðyÞ

� �

¼ �2C
Z

A

� �
z

b

� �2

ð1
bmin
bmax
ð Þ

dy y K2
1ðyÞ þ K2

0ðyÞ � b2K2
0ðyÞ

� �
:

(7.106)

The integral is solved by simplifying the integrand

using the properties of the derivatives ofK0(y) andK1(y),

dK0ðyÞ
dx

¼ �K1ðyÞ (7.107)

and
dK1ðyÞ
dy

¼ �K0ðyÞ � K1ðyÞ
y

: (7.108)

Then,

d

dy
½yK0ðyÞK1ðyÞ
 ¼K0ðyÞK1ðyÞ

þy
dK0ðyÞ
dy

K1ðyÞþyK0ðyÞdK1ðyÞ
dy

¼�y K2
0ðyÞþK2

1ðyÞ
	 


(7.109)

11Although the stopping power is also written as S and the mass

collision stopping power as S=p, it will be written here as a

differential.
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and

d

dy
y2 K2

1ðyÞ � K2
0ðyÞ

	 
� � ¼ �2yK2
0ðyÞ: (7.110)

Incorporating these results into the integral of

(7.106) gives,

ð1
bmin
bmaxð Þ

dy y K2
1ðyÞ þ K2

0ðyÞ � b2K2
0ðyÞ

� �

¼
ð1

bmin
bmax
ð Þ

dy y K2
1ðyÞ þ K2

0ðyÞ
	 
� b2yK2

0ðyÞ
� �

¼
ð1

	
bmin
bmax


dy
"
� d

dy

�
yK0ðyÞK1ðyÞ

�þ b2

2

� d

dy

�
y2ðK2

1ðyÞ � K2
0ðyÞÞ

�#

(7.111)

from which the Bohr mass soft collision stopping

power is obtained,

dE

r dx

� �
Col;S

¼�2C
Z

A

� �
z

b

� �2
bmin

bmax
K0

bmin

bmax

� �
K1

bmin

bmax

� ��

� b2

2

b2min

b2max

K2
1

bmin

bmax

� �
� K2

0

bmin

bmax

� �� ��

(7.112)

The variable of interest is the ratio of the minimum

to maximum impact parameters,

bmin

bmax

� �
¼ bmin

gv
o0

� � ¼ bmino0

gv
: (7.113)

A form of the minimum impact parameter has not

been explicitly provided as this will be dependent

upon the projectile speed and electric charge. The

magnitude of this ratio of impact parameters can be

estimated by recognizing that the resonant frequency

of a harmonically-bound electron is approximated by

o0 ¼ EB=�h which leads to,

bmin

bmax

� �
¼ bminEB

�hc gb

¼ 2zr0EB

�hc g2b3
b < 2aZ (7.114)

¼ EB

me gbð Þ2 b > 2aZ: (7.115)

As the binding energy can be written in approxi-

mate form, EB ¼ ��hcR1Z, then bmin=bmax � 1and it

is then possible to use the properties of the modified

Bessel functions of the second kind for small argu-

ments,

K0ðyÞ � � ln
y

2
� gEM

� ln
2e�gEM

y

� �
for 0 < y � 1

(7.116)

where gEM � 0.5772 . . . is the Euler–Mascheroni

constant, and

K1ðyÞ � 1

y
for 0< y �

ffiffiffi
2

p
: (7.117)

Using these expressions and recalling that

bmin=bmax � 1,

dE

rdx

� �
Col;S

��2C
Z

A

� �
z

b

� �2

ln 2e�gEM
bmax

bmin

� �
�b2

2

� �

��2C
Z

A

� �
z

b

� �2

ln 1:123
bmax

bmin

� �
�b2

2

� �
:

(7.118)

Briefly return to the ratio of impact parameters,

bmax

bmin

� �
¼ gbc=o0

	 

2zr0
�
gb2

� �

¼ g2b3c
2zr0o0

(7.119)

where a single harmonic oscillator with a resonance

frequency, o0, which corresponds to a single atomic

electron has been calculated for. For atoms other than
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hydrogen, this should be replaced by the geometric

average resonance frequency for the Z atomic elec-

trons,

ln �o ¼ 1

Z

X
j

fj lnoj (7.120)

where the Z electrons have been partitioned into

groups each having the same resonance frequency,

oj. Detailed discussion of the oscillator strengths is

deferred until the derivation of the Bethe theory, but it

will be noted here that the oscillator strengths must

satisfy the requirement,

XZ
j¼1

oj

dfj

do
¼ Z: (7.121)

The final expression for the classical Bohr mass soft

collision stopping power is now,

dE

r dx

� �
Col;S

¼ �2C
Z

A

� �
z

b

� �2

ln
1:123 g2b3c

zr0�o

� �
� b2

2

� �

(7.122)

7.3.3.3 Bethe Theory

Introduction

During the 1920s, various attempts were made to

provide a quantum-mechanical description of the

energy loss in inelastic charged-particle collisions

with atoms. Bethe was the first to develop a successful

quantum-mechanical theory12 and which is based

upon the first Born approximation.

This derivation of the Bethe soft collision stopping

power will, for calculational ease, be limited to the

nonrelativistic case.

Collision Kinematics

It is necessary to first define the kinematics of the

collision between the projectile and an atomic elec-

tron. A projectile with momentum p and kinetic

energy T collides with an atomic electron and scatters

through the angle y with momentum p and kinetic

energy T0. The momentum transfer is given through

the derivation of (3.52) for elastic scatter but now

allowing for energy loss, p 6¼ p0,

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ p02 � 2pp0 cos y

p
(7.123)

for the interaction kinematics of Fig. 7.9 for a small

scattering angle. In this derivation, the target atomic

electron is treated as being unbound and initially at

rest, which is a reasonable assumption for high projec-

tile incident kinetic energies. However, if the projec-

tile speed is comparable to the orbital speeds of the

atomic electrons, this assumption becomes untenable

and corrections must be made as will be discussed

later in this chapter. Following the collision, the

kinetic energy of the recoil electron is,

Q ¼ T� T0 (7.124)

which is related to its three-vector momentum through

the relativistic relationship,

Qþmeð Þ2 ¼ q2 þme
2: (7.125)

Upon rearrangement,

Q 1þ Q

2me

� �
¼ q2

2me

(7.126)

which, for the condition of Q � 2me, reduces to the

familiar nonrelativistic form,

Q ¼ q2

2me

: (7.127)

p

p′
q⊥ = pq q

q⎢⎢ = 
En

v

q

Fig. 7.9 Momentum transfer in the small-angle approximation

12Reviews of the derivation of the Bethe theory can be found in

Fano (1964), Inokuti (1971) and Ahlen (1980).
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Following the collision, the atom will be excited

from its ground state 0 with energy eigenvalue E0,

which will be taken as being equal to zero, to a final

state n with the energy eigenvalue, En. The energy

transfer Q need not equal En as the recoil electron

cannot be considered in isolation as a consequence

of it being part of an ensemble of atomic electrons as

energy transferred to it can be shared amongst

others.

It is straightforward to calculate the compo-

nent of the momentum transfer q that is parallel

to the incident momentum p from the excitation

energy,

En � p2

2m
� p� qj j2

2m

� 2p � q� q2

2m

� q � p
m

(7.128)

where m is the projectile mass and, having assumed

soft collisions, terms of the order of q2 are neglected.

This leads to,

qjj ¼
En

v
� En

b
(7.129)

where both q and En are in units of energy. As this is a

soft collision and q is small, the small-angle approxi-

mation can be used and the component of q perpen-

dicular to p is,

q? ¼ py: (7.130)

In this small-angle approximation, the squared

magnitude of the momentum transfer can be written

as,

q2 ¼ q2jj þ q2? ¼ En

b

� �2

þ pyð Þ2 (7.131)

and the energy transfer to the electron is,

Q ¼ q2

2me

¼ E2
n

2meb
2
þ pyð Þ2

2me

: (7.132)

Bethe Soft Collision Cross Section

The calculation of the Bethe mass soft collision stop-

ping power follows that of the elastic atomic Cou-

lomb scattering cross section, but using both of

Fermi’s Golden Rules as there is no direct coupling

between the initial and final atomic states. Consider

the projectile to have an electric charge ze and the

atom to have atomic number Z and to be in its ground

state, 0j i. The projectile is treated as a plane wave and
the atom is excited to the state nj i as a result of the

collision. Hence, the pre- and postcollision system

states are,

rh jp; 0i ¼ 1ffiffiffiffiffi
L3

p ei
p�R
�hc 0j i

¼ 1ffiffiffiffiffi
L3

p ei
p�R
�hc c0 r1; r2; . . . rZð Þ (7.133)

and

rh jp0; ni ¼ 1ffiffiffiffiffi
L3

p ei
p0�R
�hc nj i

¼ 1ffiffiffiffiffi
L3

p ei
p0�R
�hc cn r1; r2; . . . rZð Þ: (7.133)

The system position vector, with the origin specified

at the center of the atom, is given by r ¼ (R, r1 . . . rZ)
where R is the position vector of the projectile and the

rj is the position vector of the jth electron. The overall

interaction between the projectile and the atomic elec-

trons is handled in the Coulomb gauge in which there

are two types of electromagnetic interactions. The first

is the static unretarded potential between the projectile

and electrons with a direct coupling between the initial

and final states allowing the transition rate to be given

by Fermi’s Golden Rule No. 2. This is also referred to

as the longitudinal excitation as it is directed parallel to

the momentum transfer. The second type of interaction

is through the emission and absorption of virtual

photons between the projectile and atomic electrons

which become significant at relativistic speeds.

Because this is the result of the interaction between

the particle currents with the quantized transverse vec-

tor potential, this is often referred to as transverse

excitation. As there is no direct coupling between the

initial 0j i and final nj i states, the transition rate through
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an intermediate state ij i will be given by Fermi’s

Golden Rule No. 1. Combining these two categories,

the transition rate is,

lfi ¼
2p
�h

p0; n
� ��U p; 0j i þ

X
j

p0; nh jU k ; jj i k; jh jU p; 0j i
E0 � Ej

������
������
2

rf

(7.135)

where E0 and Ej are the energy eigenvalues for states

0j i and jj i, respectively, and the summation is over all

available intermediate states.

While the projectile will interact with both the

ensemble of atomic electrons and the nucleus, it can

be proven that the projectile-nucleus interaction does

not lead to atomic excitation. The Coulomb potential

between the projectile and the nucleus (both taken to

be point-like charges) is UðRÞ ¼ �zZ a�hc=R and the

matrix element of the corresponding perturbation in

position space is,

p0;n
� ��U p;0j i

¼
ð
d3rd3r0 p0;n

� ��ri rh jU r0
�� � r0
� ��p;0i

¼ 1

L3

ð
d3R ei

q�R
�hc

YZ
j¼1

d3rjc
�
nðr1; . . . rZÞUðRÞc0ðr1; . . . rZÞ

¼ �zZ
a�hc
L3

ð
d3R

ei
q�R
�hc

R

YZ
j¼1

d3rjc
�
n r1; . . . rZð Þc0 r1; . . . rZð Þ

¼ 0

(7.136)

due to the orthonormality of the two states.

The Coulomb potential between the projectile and

the Z atomic electrons is given by,

U rð Þ ¼ � z a�hcð Þ
XZ
j¼1

1

R� rj
�� ��: (7.137)

The exchange process of transverse photons

between the projectile and an electron has two inter-

mediate states (assume that the electron can be treated

as at rest). In the first, the projectile emits a photon of

momentum q ¼ p � p0 which is absorbed by the elec-
tron to give it a momentum q. In the second, the

electron emits a photon with momentum �q, to give

it a momentum q. The photon is absorbed by the

projectile to give it a momentum p0 ¼ p � q. From

the derivation of the Klein–Nishina cross section

in Chap. 6, the photon emission by the projectile

is proportional to the matrix element of

z a�hc=eð Þ a � «̂mð Þe�i
q�r
�hc where a is the Dirac velocity

operator of the projectile and «̂m is the photon’s unit

polarization vector and where m ¼ 1,2 (see Sect. 24 of

Heitler (1984) for a more detailed description). The

absorption of this photon by the jth atomic electron is

proportional to a matrix element of z a�hc
e

aj � êm
	 


ei
q�rj
�hc .

For clarity, the Bethe collision stopping power due to

the static Coulomb potential (longitudinal excitation)

only will be derived and the final form, which includes

the relativistic term, provided. Full derivations of the

latter can be found in the review articles by Fano

(1964) and Ahlen (1980).

The transition rate from the ground state 0j i, with
an energy eigenvalue considered here to be zero, to the

state nj i, with energy eigenvalue En, through longitu-

dinal excitation is given conveniently by Fermi’s

Golden Rule No. 2,

lfi;long ¼ 2p
�h

p0; nh jU p; 0j ij j2 rf :

The phase–space term is common to both longitu-

dinal and transverse excitations and is of the usual

form rf dT
0 ¼ L=2p�hcÞ3 d3p0

�
. This derivation of

the phase–space term will parallel that of the elastic

Coulomb scatter calculation except that the energy

transfer rather than the momentum transfer will be

used as the kinematic variable. The density of final

sates is, as calculated before,

rf ¼
1

4p2b0
L

�hc

� �3

p02 dp0 d cos yð Þ: (7.138)

From the inelastic momentum transfer,

d cos yð Þ ¼ q=pp0Þð and the momentum transfer is

q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q Qþ 2með Þp

from which one obtains

q dq ¼ me 1þ Q=meÞdQð . This gives the density of

final states as,

rf ¼
me

4p2b0
L

�hc

� �3
p0

p

� �
1þ Q

me

� �
dQ0: (7.139)
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For soft collisions, the energy transfer is much less

than the projectile’s kinetic energy (i.e., Q � T) and

we can approximate p0=p � b0=b � 1 to give,

rf �
me

4p2b
L

�hc

� �3

1þ Q

me

� �
dQ: (7.140)

The matrix element due to the unretarded Coulomb

interactions between the projectile and the atomic

electrons is calculated in the same fashion as in our

calculation of the elastic scatter cross section,

hp0; njU p; 0j i ¼
ð
d3r d3r0 p0; nh jri rh jU r0j i r0h jp; 0i:

(7.141)

The method of solving this matrix element is iden-

tical to that used in previous derivations in Chaps. 3

and 6,

p0; nh jU p; 0j i ¼ �4p
z a�hc
L3

�hc

q

� �2
*
n

�����
XZ
j¼1

ei
q�rj
�hc

�����0
+

¼ �4p
z a�hc
L3

�hc

q

� �2

Fn q;Zð Þ:
(7.142)

where Fn(q, Z) is the inelastic scattering form factor.

The transition rate can be considered independent of

azimuthal angle if the target atom is in the s-state (i.e.,

spherically symmetric) or if the target atoms in the

medium are randomly oriented (as is the case in medi-

cal irradiation). This permits one to replace the vector

momentum transfer q in the argument of the inelastic

form factor with its scalar value, q, to give Fn(q, Z).

The squared amplitude of the matrix element is, in

terms of the energy transfer,

p0; nh jU p; 0j ij j2 ¼ 16p2
z a�hcð Þ2
L6

�hc

q

� �4

Fn q;Zð Þj j2

¼ 4p2
z a�hcð Þ2
L6

�hcð Þ4

m2
eQ

2 1þ Q
2me

� �2
� Fn q;Zð Þj j2:

(7.143)

The inelastic Coulomb scatter transition rate for

longitudinal excitation is,

lfi;long ¼ 2p
�h

p0; nh jU p; 0j ij j2rf

¼ 2p
z a�hcð Þ2 c
bL3 me

Fn q;Zð Þj j2

Q2 1þ Q
2me

� �2 1þ Q

me

� �
dQ

(7.144)

The differential cross section is the transition rate

normalized to the incident particle flux, v=V, or,

dslong ¼ L3

bc
lfi;long

¼ 2p
z2mer

2
0

b2
Fn q;Zð Þj j2

Q2 1þ Q
2me

� �2 1þ Q

me

� �
dQ:

(7.145)

The inelastic form factor Fn(q, Z) is related to the

generalized (dipole) oscillator strength, GOS (which

has already been seen in the derivation of the Bohr

energy loss), which is a generalization of the optical

oscillator strength (see, e.g., Fernández-Varea 1998)

given, in the nomenclature used here, by,

fn q;Zð Þ ¼ En

Q
Fn q;Zð Þj j2: (7.146)

Analytical representations for the GOS are avail-

able for atomic hydrogen and the free electron gas for

which the initial and final states are analytically cal-

culable. In the more practical cases of heavier atoms

and molecules, these wavefunctions are calculated

numerically. This discussion will be limited to the

simple details of the GOS required for obtaining an

expression for the stopping power. The inelastic form

factor can be related to the GOS per unit energy

transfer,

dfn q;Zð Þ
dEn

¼ 1

Q
Fn q;Zð Þj j2: (7.147)

The energy-weighted sum of the oscillator

strengths equals the total number of electrons in the

atom which, in integral form, is,

ð
dEn

dfn q;Zð Þ
dEn

¼ Z: (7.148)
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The GOS can also be used to describe the mean

ionization energy of the atomic system as the first

energy moment of the oscillator strength distribution,

ln�I ¼
Ð
dE df

dE
ln EÐ

dE df
dE

¼ 1

Z

ð
dE

dfn

dE
ln E:

(7.149)

The GOS per unit energy transfer has a useful

interpretation at low momentum transfers. Writing

the GOS per unit excitation energy in bra-ket form,

dfn q;Zð Þ
dEn

¼ 1

Q
Fn q;Zð Þj j2

¼ 1

Q

*
n

����
XZ
j¼1

ei
q rj
�hc

����0
+�����
�����
2

¼ 2me

q2

*
n

����
XZ
j¼1

ei
q rj
�hc

����0
+�����
�����
2

(7.150)

where, for low q, the nonrelativistic relationship

between momentum and energy transfer has been used.

Expanding the exponential to first order for small q,

dfn q;Zð Þ
dEn

� 2me

q2

�����Zhnj0i þ
i

�hc

�
n

����
XZ
j¼1

q rj

����0
�����

2

� � 2me

�hcð Þ2
*
n

����
XZ
j¼1

rj

����0
+�����
�����
2

small q

(7.151)

where the orthogonality relationship hnj0i ¼ 0 has

been used. dfn q;Zð Þ=dEn ! dfnðZÞ=dEn for small q,

where dfnðZÞ=dEn is the optical oscillator strength per

unit excitation energy and which is proportional to the

square of the dipole-matrix element.

Having introduced the GOS and its properties at

low q, the expression of the differential cross section

for longitudinal excitation is then simplified,

dslong ¼ 2p
z2mer

2
0

b2
Fn q;Zð Þj j2

Q2 1þ Q
2me

� �2 1þ Q

me

� �
dQ

¼ 2p
z2mer

2
0

b2
1þ Q

me

� �

Q2 1þ Q
2me

� �2 dfn q;Zð Þ
dEn

dQ

¼ C

NA

z

b

� �2 1þ Q
me

� �

Q2 1þ Q
2me

� �2 dfn q;Zð Þ
dEn

dQ

(7.152)

For Q � me, the cross section simplifies to,

dslong ¼ C

NA

z

b

� �2
dQ

Q

dfn q;Zð Þ
dEn

: (7.153)

For calculational convenience, the kinetic variable

is temporarily changed from the energy transfer to the

momentum transfer,

dslong ¼ 2C

NA

z

b

� �2
dq

q

dfn q;Zð Þ
dEn

: (7.154)

Integrating over the momentum transfer yields the

total cross section,

slong ¼ 2C

NA

z

b

� �2 ðqmax

qmin

dq
1

q

dfn q;Zð Þ
dEn

: (7.155)

As q is small for soft collisions, dfn q;Zð Þ=dEn is

replaced with the optical oscillator strength per unit

excitation energy, dfnðZÞ=dEn. Then it is removed

from the integrand to obtain the total cross section,

sn;long ¼ 2C

NA

z

b

� �2
dfnðZÞ
dEn

ðqmax

qmin

dq

q

¼ 2C

NA

z

b

� �2
dfnðZÞ
dEn

ln
qmax

qmin

� �
:

(7.156)

This result highlights the fundamental difference

between the Bohr and Bethe theories. Bohr’s theory

uses the impact parameter to distinguish between soft

and hard collisions. This is clearly not possible in

quantum theory in which the localization of a wave

packet of a particle with well-defined momentum is

limited by the uncertainty principle. Hence, one would

expect the classical theory to break down for small

impact parameters. In the Bethe theory, momentum

(or energy) transfer is used to separate the soft and

hard collision regimes. For later convenience when

expressions for soft and hard collision stopping

powers are merged to determine the complete collision

stopping power, instead of using the momentum trans-

fer, the use the energy transfer will be returned to as a

means of defining soft and hard collisions. The colli-

sion is said to be “soft” if Q < QC and to be “hard” if

Q > QC. The exact specification of the transition

energy transfer QC is insignificant as this quantity
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will cancel out when the expressions for the soft and

hard collision stopping powers are summed. Even so,

limits should be applied to QC in order to ensure that

the necessary approximations used in the derivations

remain valid. QC must exceed atomic binding energies

but it must also not be sufficiently great that the pro-

jectile’s de Broglie wavelength becomes comparable

to nuclear dimensions. A value of between 10 and

100 keV for QC would allow both conditions to be

simultaneously met (Uehling 1954).

The limits of the momentum transfers which define

a soft collision are now calculated. The lower limit,

qmin, is given by qjj ¼ En=v. Clearly, qmax will be set

by the energy transfer separation between soft and

hard collisions,

qmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meQC

p
(7.157)

Applying these limits to the momentum transfer,

sn;long ¼ 2C

NA

z

b

� �2
dfn

dEn

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2me QC

p
En

v

� �

¼ C

NA

z

b

� �2
dfn

dEn

ln
2me QC

E2
n

b2
� � (7.158)

Bethe Soft Collision Stopping Power

The mean energy transfer per unit fluence is,

DE long ¼
ð
dEn sn;long

¼ C

NA

z

b

� �2 ð
dEn

dfn

dEn

ln
2me QC

E2
n

b2
� �

:

(7.159)

The logarithm is split,

ln
2me QC

E2
n

b2
� �

¼ �2 ln En þ ln 2meQCb
2

	 

(7.160)

where it is implicitly required for En, me, and QC to

have the same units of energy. This enables the inte-

gral of (7.159) to be written as,

ð
dEn

dfn

dEn

ln
2meQc

E2
n

b2
� �

¼�2

ð
dEn

dfn

dEn

ln En

þ ln 2meQcb
2

	 
ð
dEn

dfn

dEn

¼�2Zln�IþZln 2meQcb
2

	 


¼Zln
2meQc

�I
2

b2
� �

:

(7.161)

Then, the mean energy loss per interaction as,

DElong ¼ C
Z

NA

� �
z

b

� �2

ln
2me QC

�I
2

b2
� �

(7.162)

and the mass soft collision stopping power due to

longitudinal excitations only is,

dE

r dx

� �
Col;S;long

¼ C
Z

A

� �
z

b

� �2

ln
2me QC

�I
2

b2
� �

(7.163)

This is the quantum-mechanical result of the energy

transfer between a charged projectile and an atom due

to an unretarded Coulomb potential and which is the

nonrelativistic result of the Bethe theory. As shown by

Fano (1964) and Ahlen (1980), the full form of the

Bethe mass soft collision stopping power, accounting

for both longitudinal and transverse excitations, is

slightly modified from this result,

dE

rdx

� �
Col;S

¼ C
Z

A

� �
z

b

� �2

ln
2me QC

�I
2

g2b2
� �

� b2
� �

¼ C
Z

A

� �
z

b

� �2
"
ln

2me QC

�I
2

b2
� �

þ ln
1

1� b2

� �
� b2

#

(7.164)

where the ln 1=1� b2
	 


and b2 terms arise from

retarded transverse photon interactions. It can be seen

that, since these two terms go to zero as b! 0, this

relativistic form reduces to the nonrelativistic result.

7.3.3.4 Comparison of Bohr and Bethe Soft

Collision Theories

The Bohr classical and Bethe quantum-mechanical

results are compared by considering the mass soft
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collision stopping powers for protons in carbon as given

in Fig. 7.10. For the Bethe result, the mean ionization

potential has been set to 6hcR, where the Rydberg

energy is hcR1 ¼ 13.61 eV, and stopping powers cal-

culated for the extrema for QC equal to 10 and 100 keV.

For the Bohr result, the mean oscillator frequency has

been set to �o ¼ 6 hcR1=�h ¼ 1:24� 1017 s�1. It should

be recalled that the derivations of the Bohr and Bethe

soft collision theories have been with single ground

state atoms or electrons or, in other words, the medium

throughwhich the projectile travels has been treated as a

cold and dilute monatomic gas rather than as a

condensed medium. The results of Fig. 7.10 are those

for “carbon” in so far as we have calculated for a

homogeneous medium in which Z ¼ 6 and A ¼ 12.

The Bohr result is explicitly truncated for kinetic ener-

gies less than 0.1 MeV: the calculated soft collision

stopping power changes sign, corresponding to the

unphysical condition of the gain of energy by the parti-

cle, due to the condition of 1:123 g2b3c= zr0�oð Þ  b2=2
at low energies.

Although the two theories do not agree quantita-

tively (except at low projectile kinetic energies), they

exhibit similar behaviors by demonstrating a decreas-

ing stopping power with increasing projectile energy

proportional to b�2. In both cases the mass collision

stopping powers reach broad minima at proton kinetic

energies of about 3 GeV and then exhibit a slow

increase. Themagnitude of the Bohrmass soft collision

stopping power is greater than that obtained from

the Bethe theory by roughly a factor of 5. The Bethe

result shows a slight dependence upon the selection

of QC with that calculated for QC ¼ 100 keV being

about a factor of 2 greater than that calculated for

QC ¼ 10 keV.

7.3.4 Hard Collision Stopping Power

7.3.4.1 Introduction

In a hard collision, the projectile interacts with a single

atomic electron at a speed much greater than the

orbital speed thus allowing the target electron to be

assumed to be at rest. In this case, the collision can be

treated as being elastic.

7.3.4.2 Differential Cross Sections in Energy

Transfer

Massive Projectile Electron Scatter (m 	 me)

Spin-0

Consider a massive spin-zero projectile (e.g., an a
particle) of charge ze with kinetic energy T. The

differential cross section for the energy transfer
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Fig. 7.10 Mass soft collision

stopping powers calculated

from the Bohr and Bethe

theories for protons ranging in

kinetic energy from 100 keV

to 1 TeV in carbon. The Bethe

results are shown for two

values of QC which separates

the energy transfers of soft and

hard collisions
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between Q and Q þ dQ to an electron at rest is

(Bhabha 1938),

ds
dQ

¼ 2p r20me

z

b

� �2
1

Q2
1� b2

Q

Qmax

� �
Spin-0

(7.165)

where Qmax is the maximum energy transfer to the

electron

Spin-1/2

Consider the case of a massive spin-1/2 projectile

(e.g., a proton) of mass m and charge ze with kinetic

energy T. The differential cross section for the energy

transfer between Q and Q þ dQ to the electron at rest

is (Bhabha 1938; Massey and Corben 1939),

ds
dQ

¼ 2p r20 me

z

b

� �2
1

Q2

� 1� b2
Q

Qmax

þ 1

2

Q

Tþm

� �2
" #

Spin-1=2:

(7.166)

Spin-1

Finally, for completeness, consider the case of a

massive spin-1 particle with mass m, charge ze, and

kinetic energy T. The differential cross section for the

energy transfer between Q and Q þ dQ to an electron

at rest is (Massey and Corben 1939; Oppenheimer

et al., 1940) is,

ds
dQ

¼ 2p r20me

z

b

� �2
1

Q2

"
1� b2

Q

Qmax

� �
1þ 1

3

Q

Q0

� �

þ 1

3

Q

Tþm

� �2

1þ 1

2

Q

Q0

� �#
Spin-1

(7.167)

where the energy Q0 is defined as Q0 ¼ m2=me:

It will be noted that, for low projectile energies

and low-recoil kinetic energies, the above differential

cross sections for spin-0, spin-1/2, and spin-1 massive

projectiles reduce to the classical Rutherford result.

Hence, spin contributions to the differential cross

section become significant only at high projectile

energies.

Electron–Electron (Møller) Scatter

Now consider the case of the projectile being an elec-

tron with kinetic energy, T. The Feynman diagrams of

electron–electron (Møller) scatter are shown in

Fig. 7.11. Two graphs necessarily arise as a result of

the inability to distinguish between the two exiting

electrons of which was the projectile or the target.

From Chap. 2, the maximum energy transferred to

the target electron is equal to the kinetic energy of

the incident. Because of the indistinguishability

between the projectile and target electrons, the exiting

electron with the highest energy is assumed to be the

primary. As the electron is a fermion, the wavefunc-

tion of an electron pair system must be antisymmetric

in the interchange of the two electrons. Should the

electron spins be parallel (i.e., the system is in the

triplet state), the system will be symmetric under

the exchange of spins thus requiring the spatial wave-

functions to be antisymmetric under the exchange of

the electron’s relative coordinates. Hence, the triplet

state scattering amplitude is,

ft yð Þ ¼ f yð Þ � f p� yð Þ (7.168)

p1

p1− p1¢

p1 − p2¢

p2

p1

p2

p1¢

p2¢

p2¢

p2¢

Fig. 7.11 Feynman diagrams for electron–electron Coulomb

scatter. Top: direct interaction; bottom: exchange interaction
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where f(y) is the scattering amplitude of elastic Cou-

lomb scatter. The transformation from y to p� y is the
equivalent of the interchange of the two electrons. For

antiparallel spins (i.e., the singlet state), the system is

antisymmetric under the interchange of spins and, as a

result, the spatial wavefunctions must be symmetric,

fs yð Þ ¼ f yð Þ þ f p� yð Þ: (7.169)

In dosimetry calculations, the projectile and target

electrons are considered to be unpolarized and e�e�

scatter has a random distribution of spins. Hence,

singlet and triplet states will have a ratio of relative

probabilities of 1:3 and the differential cross section is,

ds
dO

¼ 1

4
fs yð Þj j2 þ 3

4
ft yð Þj j2

¼ 1

4
f yð Þ þ f p� yð Þj j2 þ 3

4
f yð Þ � f p� yð Þj j2

¼ f yð Þj j2 þ f p� yð Þj j2 � f yð Þj j f p� yð Þj j

¼ me a�hc
2p2

� �2
1

sin4 y
2

þ 1

cos4 y
2

� 1

sin2 y
2
cos2 y

2

 !

¼ a�hc
4T

� �2
1

sin4 y
2

þ 1

cos4 y
2

� 1

sin2 y
2
cos2 y

2

 !
:

(7.170)

The first term is that of the elastic Coulomb scatter

cross section, whereas the second reflects the impossi-

bility of distinguishing between the incident and scat-

tered electrons. The third “cross” term is the exchange

term. The full relativistic Møller differential cross

section in energy transfer is, for an incident electron

of kinetic energy T transferring an energy between

Q and Q þ dQ to another electron (Møller 1932;

Rohrlich and Carlson 1954),

ds
dQ

¼ p
T

a�hc
T

� �2
"

T

Q

� �2

þ Q

T� Q

� �
þ g� 1

g

� �2

� 2g� 1

g2

� �
T

Q

� �
Q

T� Q

� �#
(7.171)

This describes the probability that, following Møller

scatter, one electron has a kinetic energy of Q and the

other has T�Q. Thus, all possible outcomes of the

scatter are obtained for Q ranging in value from 0 to

T/2. The nonrelativistic form of the differential cross

section is had by setting g ¼ 1,

ds
dQ

¼p
T

ah�c
T

� �2
T

Q

� �2

þ Q

T�Q

� �
� T

Q

� �
Q

T�Q

� �" #

(7.172)

Electron–Positron (Bhabha) Scatter

Now consider the case of a positron projectile with

kinetic energy, T. The Feynman diagrams for posi-

tron–electron (Bhabha) scatter are given in Fig. 7.12.

While the first graph is similar to that of Møller

scatter, the fact that it is possible for the electron

and positron to annihilate requires the provision of

an additional graph accounting for the production of a

virtual photon from which the exiting electron–posi-

tron pair is created. The differential cross section that

an incident positron with kinetic energy T will suffer

a kinetic energy loss between and Q and Q þ dQ

which is transferred to the target electron is (Bhabha

1936),

p1

p1

p
1 + q

1

p1 − p1¢

p1¢

p1¢

−q1¢

−q1¢

−q1

q1

Fig. 7.12 Feynman diagrams for positron–electron Coulomb

scatter. Top: direct interaction; bottom: annihilation intermediate-

state interaction
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ds
dQ

¼ 2p r20me

b2T2

"
T

Q

� �2

� g2�1

g2

� �
T

Q

� �
þ1

2

g�1

g

� �2

� g�1

gþ1

� �(
gþ2

g

� �
T

Q

� �
�2

g2�1

g2

� �

þ g�1

g

� �2
Q

T

� �)
þ g�1

gþ1

� �2

�
(
1

2
þ1

g
þ 3

2g2
� g�1

g

� �2
Q

T

� �
1� Q

T

� �� �)#
:

(7.173)

7.3.4.3 Hard Collision Stopping Powers

Massive Projectiles (m 	 me)

As the differential cross sections in energy transfer for

massive spin-1/2 and spin-1 projectiles reduce to that

for a massive spin-0 projectile at low kinetic energies,

the spin-0 case is considered first. The general expres-

sion for the mass hard collision stopping power is,

dE

rdx

� �
col;H

¼ NA

Z

A

� � ðQmax

QC

dQQ
ds
dQ

(7.174)

where the integral limits are QC, which separates soft

and hard collisions, and the maximum energy trans-

ferred to the target electron, Qmax, which is set by the

relevant kinematics as shown in Chap. 2. The mass

hard collision stopping power for a massive spin-0 par-

ticle is,

dE

rdx

� �
col;H

¼ NA

Z

A

� � ðQmax

QC

dQQ
ds
dQ

¼ C
Z

A

� �
z

b
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Q
1� b2

Q
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� �
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A

� �
z

b

� �2

ln
Qmax

QC

� ��

�b2
Qmax � QC

Qmax

� ��
: (7.175)

In a hard collision, the energy transfer is assumed to

be sufficiently high (Qmax 	 QC) to allow this to be

simplified to the form,

dE

rdx

� �
Col;H

¼ C
Z

A

� �
z

b

� �2

ln
Qmax

QC

� �
� b2

� �

Spin-0.

(7.176)

Now consider the mass hard collision stopping

power for a massive spin-1/2 projectile ,

dE

rdx

� �
col;H

¼ C
Z

A

� �
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� �2 ðQmax
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� dQ
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� �2

#
Spin-1=2:

(7.177)

where Qmax > QC. Note that, for a massive spin-1/2

projectile with a rest mass much greater than the

maximum energy transfer, the last squared-term in

the square brackets can be neglected and this result

reduces to the simpler spin-0 expression.

Electron and Positron Projectiles

The restricted mass hard collision stopping power for

an electron projectile is,

dE

r dx

� �
Col;H;D

¼ NA

Z

A

� � ðD

QC

dQQ
ds
dQ

(7.178)

where the Møller differential cross section is to be

used in the integral. Unlike the derivations of the

massive particle hard collision stopping powers, an
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upper limit of integration DQmax ¼ T=2 has been spe-

cified so as to ignore those energy transfers greater

than D. Although the restricted mass collision stopping

power can be defined for any projectile, the discussion

here will be limited to the electron projectile for dosi-

metric interest.

The mass collision stopping power for the Møller

cross section is,

dE

rdx

� �
Col;H;D

¼C
Z
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� �
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b2T2
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�
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:

(7.179)

This expression can be simplified by defining the

normalized kinematic variables,

d � D
T

(7.180)

tC � QC

T
(7.181)

to obtain,

dE

rdx

� �
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¼C
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1

b2

"
ln
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(7.182)

As the selection of QC is somewhat arbitrary, its

value should ensure that tC � 1 which allows the tC
2

term to be neglected and to reduce this expression for

the electron restricted mass hard collision stopping

power to,

dE

r dx

� �
Col;H;D

¼ C
Z
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� �
1

b2

"
ln
d 1� dð Þ
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The unrestricted mass hard collision stopping

power is simply that for the parameter d ¼ 1/2, and,

dE

r dx

� �
Col;H;D¼T=2

¼ C
Z

A

� �
1

b2

� ln
1

4tC
þ 1þ

�
1

8

g� 1

g

� �2

� 2g� 1
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� �
ln 2

�

� Electron unrestrictedð Þ:
(7.184)

which corresponds to the result originally given by

Rohrlich and Carlson (1954).

The unrestricted mass hard collision stopping

power for a positron projectile is calculated as for an

electron project but with the Bhabha differential cross

section.

7.3.5 Combined Mass Hard and Soft
Collision Stopping Powers

7.3.5.1 Introduction

Having now derived the soft and hard collision stop-

ping powers, these can be combined to form the com-

plete collision stopping power. The Bethe quantum-

mechanical result will be used for the soft collision

stopping power expression.

7.3.5.2 Massive Projectiles (m >> me)

The Bethe mass collision stopping power, for when

spin is neglected, is given by the sum of the Bethe
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mass soft collision and the mass hard collision stop-

ping power of a massive spin-0 projectile,

dE

rdx

� �
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From Chap. 2, the maximum energy transfer to an

electron for the case of a heavy projectile is

Qmax ¼ 2meg2b
2. Inserting this gives the complete

mass collision stopping power for a massive spin-

0 projectile,

dE

r dx

� �
Col

¼ 2C
Z
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� �
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For a massive spin-1/2 projectile (proton),
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As m 	 me, it is clear that the mass collision

stopping power for a massive spin-1/2 projectile

reduces to that for a spin-0 projectile at low kinetic

energies (i.e., g2b2! 0). Figure 7.13 shows the mass

collision stopping power calculated for a proton in

carbon and lead. Here, the mean ionization potentials

for carbon and lead are taken to be equal to 78 and

823 eV, respectively. Both curves of dE=r dxð ÞCol
exhibit the same characteristic behavior of a decrease
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Fig. 7.13 Mass collision

stopping powers for protons

in carbon and lead
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with increasing kinetic energy, due to the b�2 factor,

to a broad minimum of about 1–2 MeV cm2/g which

occurs at a particle kinetic energy equal to about three

times its rest mass. This is referred to as the mini-

mally-ionizing region. With increasing kinetic energy,

the mass collision stopping power increases logarith-

mically due to the ln(g2b2) � b2 term. This increase is

monotonic as the medium is still considered to be a

dilute monatomic gas, but could be quenched in

condensed media due to polarization of the medium.

It should be noted that, for a given projectile kinetic

energy, the mass collision stopping power for carbon

(Z ¼ 6) is greater than that for lead (Z ¼ 82). This is a

result of the energy loss being dominated by interac-

tions with atomic electrons over those with the nucleus

and the electron density being proportional to the ratio

Z/A. As a result, the ratio of the carbon to lead mass

collision stopping powers is (excluding the effect of

the mean ionization potential which is limited due to

its placement within the logarithm),

Z

A

� �
C

Z

A

� �
Pb

¼
6

12

� �

82

208

� � ¼ 1:268

In other words, the mass collision stopping power

for carbon is greater than that for lead due to the

greater number of electrons per unit mass.

7.3.5.3 Electron and Positron Projectiles

To obtain the unrestricted mass collision stopping

power of an electron projectile, the Bethe mass soft

collision stopping power and the Møller mass hard

collision stopping power are summed,
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where T is the electron kinetic energy and

f� gð Þ¼1�b2þ1

8

g�1

g

� �2

� 2g�1

g2

� �
ln2: (7.189)

By using the relativistic relationship,

meg2b
2 ¼ me g2 � 1

	 

¼ T gþ 1ð Þ

the electron mass hard collision stopping power is

simplified to,
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The electron restricted mass collision stopping

power (i.e., that which excludes energy transfers to

the medium greater than D) is,
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(7.191)
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where,

f� g;Dð Þ ¼ D
T� D

� �
� b2 þ 2g� 1

g

� �

� ln
T� D
T

� �

þ g� 1

g

� �2 D2

2T2
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Similarly, to obtain the positron complete collision

stopping power, the Bethe mass soft and the Bhabha

mass hard collision stopping powers are summed,

dE

rdx

� �
Col
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� �
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where

fþ gð Þ ¼ 2 ln 2� b2

12

� 23þ 14

gþ 1ð Þ þ
10

gþ 1ð Þ2 þ
4

gþ 1ð Þ3
" #

(7.194)

A comparison of the (unrestricted) electron and

positron mass collision stopping powers shows that

the difference between the electron and positron

mass collisions stopping powers resides within the

difference between f� gð Þ and fþ gð Þ. These two terms

are plotted in Fig. 7.14 as functions of the kinetic

energy of the incident electron/positron (only the unre-

stricted version of D ¼ T=2 is used for the electron

term). At low energies, fþ gð Þ exceeds f� gð Þ by about a
factor of 3 and decreases with positron kinetic energy

to equal f� gð Þ at about 0.32MeV. Note that both f� gð Þ
and fþ gð Þ become negative with increasing kinetic

energy. However, when the electron and positron

unrestricted mass collision stopping powers for carbon

and lead are compared, as shown in Fig. 7.15, it is sees

that there is little difference between the two stopping

powers which reflects the dominance of the logarith-

mic term in the collision stopping power expression

over the magnitudes of f� gð Þ and fþ gð Þ. The mass

collision stopping power curves exhibit the same char-

acteristics as those derived earlier for the proton.

A clear comparison of the curves shows that while

the mass collision stopping power of protons, elec-

trons, and positrons are roughly equal in the mini-

mally-ionizing region, the kinetic energy at which

this region occurs is equal to roughly equal to 3

times the particle rest mass (3 GeV for protons and
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Fig. 7.14 The functions

f –(g) and f +(g) of the mass

collision stopping powers

of electrons and positrons,
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of the kinetic energy of the

electron or positron
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1.5 MeV for electrons and positrons) or for a particle

speed of the order of b � 0.8.

7.3.6 Mean Excitation Energy

Except for the atomic number and atomic mass num-

ber, the only other explicit property of the medium

which appears in the expression for the mass collision

stopping power is the mean excitation energy (or ioni-

zation potential) �I, which is contained within the loga-

rithmic term. The logarithm of the mean ionization

potential can be obtained by ab initio calculations for a

gas of free atoms or using measured optical oscillator

distribution data (Nobel et al. 2005). In a closely

related fashion, it is also possible to calculate it from

measured dielectric properties of the medium and, as

explicitly shown later, to extract it from measured

stopping power data. The placement of �I within the
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Fig. 7.15 Mass collision

stopping powers of electrons

and positrons in carbon and

lead. Note that no density

effect corrections have been

applied
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logarithm ensures that variations in the calculated

collision stopping power are relatively insensitive to

the uncertainty in the value of �I. Hence, for practical

dosimetry evaluations, a theoretical discussion of�I can

be provided in reduced detail. Expansive discussions

of the mean ionization potential can be found in those

reviews by Uehling (1954) and Fano (1964) and in

ICRU Reports 37 (1984) and 49 (1993).

Recall that, as a consequence of the derivation of

the Bethe mass soft collision stopping power, the

mean excitation energy was shown to be described

by the first energy moment of the optical oscillator

distribution,

ln�I ¼ 1

Z

ð
dEn

dfnðZÞ
dEn

ln En

with the normalization,

ð
dEn

dfnðZÞ
dEn

¼ Z:

While it is possible to calculate ln�I for a gas of free

atoms using calculated oscillator strength distribu-

tions, another approach is to use the moments of this

distribution as defined by (Dalgarno 1960),

MðmÞ ¼
ð
dEn

dfnðZÞ
dEn

Em
n (7.195)

where, from the normalization requirement, the zeroth

moment is,

Mð0Þ ¼ Z:

The logarithm of the mean ionization potential can

be written by using dEm
n =dm ¼ Em

n ln En,

ln�I ¼
dMðmÞ
dm

���
m¼0

Mð0Þ : (7.196)

ICRU Report 37 (1993) notes that the moments for

m equal to �1, 1, and 2 can be determined theoreti-

cally and that for m equal to �2 can be extracted from

measured data. An analytical fit to these four moments

and can be made, from which the ratio in (7.196) can

be determined.

Another method was proposed by Lindhard and

Scharff (1953) using a free electron gas model,

ln�I ¼ 1

Z

ð
d3r reðrÞ ln

ffiffiffi
2

p
�hopðrÞ

� �
(7.197)

where op is the electron plasma frequency for the

electron density re(r)
13 and ln �I and �hopðrÞ must

have the same units of energy.

The approaches above are limited to gaseous media

within which the positions of the electrons considered

uncorrelated. For condensed media, ln �I can be calcu-

lated from an expression originally derived by Fano

(1956),

ln�I ¼ 2

po2
p

ð1

0

do Im � 1

eR oð Þ
� �

o ln �ho (7.198)

where eR(o) is the complex relative dielectric permit-

tivity and the imaginary component describes the

absorption of electromagnetic energy.

Parametric expressions of�I are useful for dosimetry

calculations. Because�I is found within the logarithmic

term of the collision stopping power, any effects upon

the stopping power due to uncertainties in �I will be

correspondingly limited. Some authors have approxi-

mated the mean excitation potential as a linear func-

tion of the medium’s atomic number,

�I ¼ Z hcR1 (7.199)

where hcR is the Rydberg energy, 13.6 eV. A number

of semi-empirical representations of �I as a function of

the medium’s atomic number have been provided in

the literature. One particularly useful one is presented

by Segrè (1977),

�I ¼ 9:1 1þ 1:9

Z2=3

� �
eV for Z � 4 (7.200)

13The plasma frequency describes the oscillatory motion of free

electrons in a plasma displaced from a uniform background of

ions. The equation of motion for an electron in the simplest

case is given by med
2x=dt2 ¼ �eE� ree

2=e0Þxð where we have

taken the restoring electric field to be equal to � P=e0 where

P is the polarization. Solving this equation yields the plasma

frequency, op ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ree2=e0me

p
.
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Segrè’s parameterization of �I, normalized to the

atomic number of the medium, is shown in Fig. 7.16.

Also shown are values from ICRU Report 37 for

condensed media. While �I=Z rapidly decreases with

atomic number to an approximately constant value of

about 10 eV, it can be seen that there are irregularities

attributable to atomic shell structure.

7.3.7 Stopping Number

7.3.7.1 Introduction

The mass collision stopping powers derived to this

point are what can be crudely considered to be

“zeroth”-order results is that they were obtained on

the basis of three simplifying assumptions:

� The projectile speed is much higher than the atomic

electron orbital speed allowing the collision kine-

matics to be derived with the electron assumed to

be at rest.

� For a single atom, the atomic electron “cloud” is

not displaced by the electric field of the moving

charged particle.

� The medium is treated as a cold dilute gas which is

not polarized by the projectile’s electric field.

In order to extend the expressions of the mass

collision stopping powers to enable calculations for

more realistic cases, “higher order” correction terms

are applied in order to compensate for these simplify-

ing assumptions. A transparent way of doing so is by

writing the mass collision stopping power as a series in

order to isolate these individual corrections,

dE

r dx

� �
Col

¼ 2C
Z

A

� �
z

b

� �2

L bð Þ (7.201)

where L(b) is defined as the stopping number given in

terms of a summation weighted by powers of the

projectile electric charge (normalized to the unit

charge, e),

L bð Þ ¼
X2
j¼0

zj Lj bð Þ: (7.202)

For convenience, the zeroth-order term of this

expansion is written as a series itself,

L0 bð Þ ¼
X2
k¼0

L0k bð Þ (7.203)

to give,

L bð Þ ¼
X2
k¼0

L0k bð Þ þ
X2
j¼1

zj Lj bð Þ: (7.204)

Note that the stopping number and its terms are

explicit functions of the projectile speed through

momentum or kinetic energy. From the expression of

the mass collision stopping power for a spin-less mas-

sive projectile, the zeroth-order term in the L0(b) sum-

mation is,

L00 bð Þ ¼ ln
2meg2b

2

�I

� �
� b2 (7.205)

The L01 bð Þ term accounts for the reduction in stop-

ping power as a result of the projectile slowing down

to speeds comparable to those of the target atomic

electrons,

L01 bð Þ ¼ �Ce bð Þ
Z

(7.206)

and is known as the shell correction term. As it is to be

independent of the atomic number of the medium, it
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Fig. 7.16 Mean ionization potential normalized to atomic

number as a function of atomic number. The curve is the param-

eterization of Segrè and the data points with connecting lines are

from tabulated data provided by ICRU Report 37 (1984)
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contains that quantity in the denominator in order to

cancel the corresponding factor in the leading multi-

plicative term of (7.201). In a dense medium, the

projectile polarizes the atoms and reduces the penetra-

tion of the electric field into the medium thus dimin-

ishing the stopping power. The L02 bð Þ term accounts

for this reduction in stopping power,

L02 bð Þ ¼ d=2: (7.207)

This can be an important effect for fast electrons in

soft tissue. The first-order term of the stopping number,

zL1 bð Þ is actually proportional to the cube of the pro-

jectile’s atomic number due to the z2 in the leading

multiplicative term. Hence, this term accounts for the

minute difference in stopping powers between a particle

and its antiparticle as a result of the differential dis-

placement of the atomic electron cloud by each: a

positively-charged projectile will attract the atomic

electrons to bring them closer to its trajectory to yield

a slightly greater stopping power than its negatively-

charged antiparticle which repels the electrons. Finally,

the second-order term, z2L2 bð Þ, arises from the recon-

ciliation by Bloch of the Bohr and Bethe theories.

The L01 bð Þ, zL1 bð Þ; and z2L2 bð Þ terms are now

discussed; the polarization effect accounted for by

L02 bð Þ is discussed separately.

7.3.7.2 Atomic Electron Shell Correction

Up to this point, in the calculation of the collision

stopping power the orbital speeds of the atomic elec-

trons have been assumed to be much less than the

projectile speed or, equivalently, the electrons are

considered to be initially at rest. Clearly, this simpli-

fied the kinematics of the hard stopping power calcu-

lation. However, for low-energy projectiles with a

speed comparable to the orbital speeds, this simplifi-

cation no longer holds. Moreover, if the slow projec-

tile is an ion (e.g., an a particle), it can capture these

electrons, reducing its effective charge and even fur-

ther diminishing the stopping power.

The first electrons to be affected are those in the

K-shell which are the most tightly bound and have the

greatest speeds, followed by the L-shell electrons, etc.

Thus, as the particle speed decreases, the contributions

to the stopping power decrease sequentially. The term

accounting for this effect is L01 bð Þ given by where the
Ce bð Þ term is averaged over the contributions of all

atomic electrons. Should the density effect described

by L02 bð Þ be negligible, L01 bð Þ can be taken from the

definition of the stopping number,

L01 bð Þ¼ 1

2C

A

Z

� �
b
z

� �2
dE

rdx

� �
Col

�L00 bð Þ

¼ 1

2C

A

Z

� �
b
z

� �2
dE

rdx

� �
Col

� ln
2meg2b

2

�I

� �
þb2:

(7.208)

Thus,

Ce bð Þ ¼ �ZL01 bð Þ

¼ 1

2C
A

b
z

� �2
dE

r dx

� �
Col

þ Z ln
2me g2 b

2

�I

� �
� b2

� � (7.209)

Details of how Ce bð Þ can be derived are provided by
Ziegler (1999) and ICRU Report 37 (1984). A semi-

empirical parameterization of Ce bð Þ, useful for calcula-
tional purposes, was provided by Barkas (1962),

Ce ¼ �I2
0:42237

gbð Þ2 þ 0:0304

gbð Þ4 � 0:00038

gbð Þ6
 !

� 10�6

(

þ�I
3:858

gbð Þ2 �
0:1668

gbð Þ4 þ 0:00158

gbð Þ6
 !

� 10�9

)

(7.210)

where �I is in units of electron volt. The validity of this

expression for Ce is limited to gb > 0.13. Figure 7.17
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Fig. 7.17 Shell correction terms for carbon and lead as a

function of gb
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shows the shell correction term Ce bð Þ=Z for carbon

and lead as functions of proton kinetic energy. The

Ce bð Þ=Z values decrease with increasing kinetic

energy (i.e., increasing particle speed beyond the

atomic electron speeds) with Ce bð Þ=Z greater for

lead than for carbon due to the higher atomic electron

speeds.

7.3.7.3 Barkas Correction Term

As noted earlier, the first-order term of the stopping

number is proportional to z3 due to the z2 weighting

applied to the series. As a result, it will be sensitive to

the sign of that charge. The fact that this should be so

(even though the Bethe result predicts no such depen-

dence due to the z2 term) was first apparent in mea-

surements by Barkas et al. (1956) of the kaon decay to

three pions which showed that the range of the product

pþ was slightly less (of the order of 0.4%) than that of

the p� for the same initial speed. This indicated that

the stopping power for the positively-charged particle

was greater than its negatively-charged antiparticle, an

effect due to the respective repulsion and attraction of

the atomic electrons with a corresponding decrease

and increase in energy transfer. Additional measure-

ments (Barkas et al. 1963) of the K� þ p ! S� þ p�

reaction repeated this observation. Precise work by

Andersen et al. (1969) showed that the a particle

stopping power was greater than the factor-of-four

multiple over those of protons and deuterons as pre-

dicted by the z2-dependence. Ashley et al. (1972,

1973) provided a thorough theoretical evaluation of

the Barkas effect and Lindhard (1976) gave an explicit

representation of this effect. The zL1 bð Þ term in the

stopping number expansion reduces the stopping

power for a negatively-charged projectile relative to

its positively-charged antiparticle. From the work by

Ashley et al., the Barkas correction term can be written

in the form,

zL1 bð Þ ¼ a
b

� �3

zZ F
a
b
b
ffiffiffi
Z

p� �
(7.211)

where F(x) is a numerically-evaluated function and b

is related to the minimum impact parameter. Values

for this correction term are provided in ICRU Report

49 (1993). For high atomic media, Bichsel (1990)

extracted the Barkas correction term from measured

stopping power data and found that it could be accu-

rately described by a power-law dependence upon the

particle speed,

L1 bð Þ ¼ k1 b
�k2 (7.212)

where, for the example of a gold absorber,

k1 ¼ 0:002833

k2 ¼ 1:2

Figure 7.18 shows L1 bð Þ for protons and antipro-

tons in gold as a function of proton kinetic energy.

Clearly, the Barkas term becomes significant at low

projectile speeds only. The only particle–antiparticle

pair of interest to nuclearmedicine is that of the electron

and positron. As the target particle is also an electron,

the Barkas effect would be swamped by the differences

between the Møller and Bhabha cross sections.

7.3.7.4 Bloch Correction Term

In the early 1930s, Bloch reconciled the Bohr classical

and Bethe quantum-mechanical calculations of the

soft collision stopping power by demonstrating that

the Bohr result was valid quantum-mechanically if the

Bohr energy loss were to be interpreted as a mean

value over all possible atomic electron transitions

(Ahlen 1980). Bloch then looked at close collisions

without the assumption that the target electron being

considered as a plane wave in the center-of-mass ref-

erence frame and allowed them to be perturbed by the

projectile’s Coulomb field. This Bloch refinement pro-

duced a correction term that was overall proportional

to z4 or, in terms of the stopping number expansion,

z2L2 bð Þ ¼ cð1Þ � Rec 1þ ia
z

b

� �
(7.213)

where cðzÞ is the logarithmic derivative of the gamma

function,14

c ðzÞ ¼ d lnGðzÞ
dz

¼ 1

GðzÞ
dGðzÞ
dz

: (7.214)

14This is also referred to as the digamma function.
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It is possible to rewrite the Bloch correction term as

a series by using the identity,

cð1Þ ¼ gEM

and the series expansion,

Rec 1þ iyð Þ ¼ �0:5772 � � � þ y2
X1
n¼1

1

n n2 þ y2ð Þ;

to give,

z2L2 bð Þ ¼ � a
z

b

� �2X1
n¼1

1

n n2 þ a z
b

� �2� �: (7.215)

Now consider the asymptotic behaviors of the

Bloch correction term due to the projectile charge

and speed. To do so, use the asymptotic formula,

Rec 1þ iyð Þ ¼ ln yþ 1

12y2
þ 1

120y4
þ 1

252y6
þ � � �

for y ! 1:

Thus, for a slow heavy charged particle (i.e.,

az=b 	 1), the Bloch correction term is,

z2L2 bð Þ � �gEM � ln a
z

b

� �
(7.216)

In this limit, the Bloch correction leads to the Bohr

classical form of the collision stopping power. On the

other hand, one does not achieve the Bethe result in

the relativistic case of az=b ! 0 due to an error in the

original derivation and which is discussed by Ahlen

(1980). This has a negligible calculational conse-

quence, however, as the Bloch term becomes insignif-

icant in such a case.

7.3.7.5 Complete Stopping Number (excluding

density effect)

If the zeroth-, first-, and second-order terms of the

stopping number of the past three sections are

summed, one obtains the complete stopping power,

excluding the L02(b) term,

L bð Þ ¼ ln
2me

�I
g2b2

� �
� b2 � Ce bð Þ

Z
� d
2

þ a
b

� �3

zZ F
a
b
b
ffiffiffi
Z

p� �
� a

z

b

� �2

�
X1
n¼1

1

n n2 þ a z
b

� �2� �:
(7.217)
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7.3.7.6 Effect of Medium Polarization Upon the

Stopping Power

Introduction

So far, the projectile’s electric field has been implicitly

assumed to be in vacuo and, using this approximation,

the medium has been assumed to be a cold and dilute

monatomic gas. Such simplifications ignore any

response of a realistic medium to this moving electric

field. Should the particle be traveling in a dense dielec-

tric medium (such as tissue), atoms will be polarized,

creating an array of electric dipoles which generate a

secondary electric field limiting the particle’s electric

field at a distance and reducing the stopping power.

This effect is expected to be significant at high particle

speeds, as shown by Fig. 7.2, where, as b! 1, the

electric field parallel to the trajectory flattens and the

orthogonal component extends such that the dielectric

response of the medium limits the relativistic rise in

stopping power. Because the magnitude of this dielec-

tric response will be directly related to the number of

secondary electric dipoles, it will clearly depend upon

the medium’s physical density.15 This reduction in

stopping power is referred to as the polarization or

density effect and is characterized by a correction

term, d, which is treated as a higher order correction

term to the zeroth-order term of the Born series

description of the stopping power.

The density effect leads to a reduction in the stopping

power of fast electrons in tissue and its consequences

are to be investigated in detail. The semiclassical work

of Fermi (1940) will guide this derivation.

Electronic Polarization

In order to characterize the properties of a dielectric

medium in a time-varying electric field, begin with

those of an individual atom. The simplest model of

the medium is that of an isotropic monatomic gas with

interatomic distances sufficiently large that an atom

can be treated in isolation. The atom is taken to be a

negatively-charged and mobile spherical electron

cloud of charge �Ze and mass Zme which, in its

unperturbed state, is centered on a fixed nucleus of

charge Ze. The electric field of the passing charged

particle will perturb the position of this electron cloud

and polarize the atom, as shown in Fig. 7.19. At high

particle speeds, the shortness of the time duration of

the electric field “pulse” experienced by the atom, as

shown in Fig. 7.2, will be dominated by high-fre-

quency components and, in frequency space, one can

consider the atom as being exposed to a high-fre-

quency electric field. The displacement, D, will be

limited due to the short duration of the pulse and one

can effectively ignore the spatial variation of the field

over the atom as a result. The electron cloud will

experience a restorative force due to the mutual attrac-

tion between it and the nucleus and thus go into oscil-

latory motion. The attractive force can be calculated

by modeling the electron cloud as a uniformly charged

sphere of radius RA with an electric charge density,

3=4pð ÞZe=R3
A. The radial electric field due to this

charge at a distance D from the center of the atom is

found by applying Gauss’ law to the sphere of radiusD,

e0 4pD2
	 


E ¼ 4p
3
D3 3

4p
Ze

R3
A

� �

from which one obtains an expression for the electric

field in terms of the displacement of the atomic elec-

tron cloud,

E ¼ Ze

4pe0

D
R3
A

(7.218)

E (w)

Electron “cloud”
Centre-of-mass

Nucleus

D(w)

RA

+

Fig. 7.19 Electronic polarization due to an external electric

field

15Because the interatomic spacings in a gas are greater than

those in a solid or liquid, the wider dispersion of atoms in the

gaseous phase will limit the dielectric response such that the

mass collision stopping power for a given medium will be

greater for the condensed phases than for the vapor phase and,

hence, this interest in this phenomenon in tissue.
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The restoring force is F ¼ ZeE, or

F ¼ Zeð Þ2
4p e0R3

A

D ¼ ZD: (7.219)

This gives,

ZeE ¼ Zeð Þ2
4p e0

D
R3
A

from which the magnitude of the product of the charge

and its displacement, electric dipole moment, is

obtained,

p ¼ ZeD ¼ 4p e0 R3
A E (7.220)

or, in terms of vector quantities,

p ¼ 4p e0 R3
A E � ae E (7.221)

where ae is defined as the electronic polarizability. It

will be noted that the magnitude of the ratio,

ae=e0 ¼ 4pR3
A, is the atomic volume.

The resulting equation of motion of the displaced

electron cloud is,

Zme

d2DðtÞ
dt2

¼ ZeEðtÞ � ZDðtÞ

� GZme

dDðtÞ
dt

(7.222)

where a damping force GZme dDðtÞ=dt with a positive
damping constant G has been allowed for. This differ-

ential equation is readily solvable, as demonstrated

earlier in the derivation of the Bohr soft collision

stopping power through the Fourier transform. The

result in frequency space is,

D oð Þ ¼
e
me

� �
E oð Þ

o2
0 � o2

	 
þ iGo
(7.223)

with a resonant frequency given by,

o0 ¼ c

ffiffiffiffiffiffiffiffiffiffi
Z

r0

R3
A

r
: (7.224)

As the atomic radius RA of the order of 10�10 m, the

resonant frequency will consequently be of the order of

1016–1017/s with a corresponding wavelength in the

ultraviolet range of the electromagnetic spectrum.

The electric dipole moment in frequency-space is,

p oð Þ ¼ Z eD oð Þ

¼ Z

e2

me

� �
E oð Þ

o2
0 � o2

	 
þ iGo
:

(7.225)

Next, the scale is expanded from that of the indi-

vidual atom to the macroscopic medium which is

taken to be linear and isotropic.16 The polarization is

the number of electric dipoles per unit volume, or,

P oð Þ ¼ re

e2

me

� �
E oð Þ

o2
0 � o2

	 
þ iGo
: (7.226)

The electric-flux density vector is related to the

electric field and the polarization in frequency space

by,

D oð Þ ¼ e0E oð Þ þ P oð Þ
� e0E oð Þ þ we oð Þe0E oð Þ
¼ e0 1þ we oð Þð ÞE oð Þ
¼ e0 eR oð ÞE oð Þ

(7.227)

where we(o) is the electric susceptibility and

eR oð Þ ¼ 1þ we oð Þ is the relative dielectric constant.

This result is algebraically manipulated to relate the

polarization to the electric field by,

P oð Þ ¼ e0 eR oð Þ � 1ð ÞE oð Þ: (7.228)

By equating these two expressions for the polariza-

tion, the relative dielectric constant can be written as,

eR oð Þ ¼ 1þ
re
e0

e2

me

� �
o2
0 � o2

	 
þ iGo

¼ 1þ o2
P

o2
0 � o2

	 
þ iGo
:

(7.229)

16Should this not be the case, the electric susceptibility and

dielectric permittivity scalars would be replaced by tensors.
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Separate eR(o) into real and imaginary components

in order to form the set of dielectric dispersion for-

mulae,

eR oð Þ ¼ 1þo2
P

o2
0�o2

o2
0�o2

	 
2þG2o2

 ! !

� io2
P

Go

o2
0�o2

	 
2þG2o2

 !

� eR0 oð Þ� ieR00 oð Þ

(7.230)

As the imaginary component of the relative dielec-

tric permittivity is proportional to G, it is also propor-

tional to the power loss within the dielectric.

Electromagnetic Fields in a Dielectric Medium

The next step to calculating the response of a dielectric

medium to a moving charged particle requires the

calculation of the electromagnetic fields of the projec-

tile within the medium. To do this, Maxwell’s equa-

tions are solved in Fourier space,

r � D ¼ r (7.231)

r � B ¼ 0 (7.232)

r� E ¼ � ]B

]t
(7.233)

r�H ¼ Jþ ]D

]t
(7.234)

where

D ¼ eR e0 E (7.235)

and where it is assumed that the magnetic polarizabil-

ity of the medium is negligible,

B ¼ m0 H: (7.236)

The electric field and the magnetic flux density are

also defined through scalar and vector potentials,

E ¼ �rF� ]A

]t
(7.237)

B ¼ r� A: (7.238)

It is possible to determine these potentials using the

four-dimensional Fourier transform,

F k;oð Þ ¼ 1

4p2

ð1

�1
d3x

ð1

�1
dt F x; tð Þe�i k�x�otð Þ

(7.239)

where k is the wavenumber and o is the frequency.

The coordinate system of Fig. 7.20 where the unit

vector v̂jj lies along the particle’s trajectory is used.

The Fourier transforms of the divergence of D and the

curl of B are,

ik � E k;oð Þ ¼ r k;oð Þ
eR oð Þe0 (7.240)

�i k�H k;oð Þ ¼ J k;oð Þ þ ioeR oð Þe0E k;oð Þ:
(7.241)

The Fourier transforms of the fields as defined by

the potentials are,

E k;oð Þ ¼ �ikF k;oð Þ þ ioA k;oð Þ (7.242)

Particle
Trajectory

Ÿ
V

Ÿ
V

Ÿ
V

x

^

çç

Fig. 7.20 Coordinate system used in the calculation of the

electromagnetic fields of a moving charged particle in a dielec-

tric medium
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H k;oð Þ ¼ � i

m0
k� A k;oð Þ: (7.243)

Expressions for E k;oð Þ andH k;oð Þ are derived by
first determining the scalar and vector potentials. Sub-

stituting (7.242) into (7.240),

� ik � ikF k;oð Þ � ioA k;oð Þð Þ ¼ r k;oð Þ
eR oð Þe0

which leads to,

k2F k;oð Þ � o k � A k;oð Þ ¼ r k;oð Þ
eR oð Þe0 : (7.244)

As both the scalar and vector potentials appear in

this equation, we can decouple them by applying the

Lorentz gauge condition. This sets the divergence of

the vector potential to being proportional to the time

derivative of the scalar potential,

r � A x; tð Þ ¼ �m0eRe0
]F x; tð Þ

]t

¼ � eR
c2

]F x; tð Þ
]t

(7.245)

where 1=
ffiffiffiffiffiffiffiffiffi
m0e0

p ¼ c has been used. By transforming

this Lorentz gauge condition into wavenumber- and

frequency-space,

k � A k;oð Þ ¼ oeR oð Þ
c2

F k;oð Þ: (7.246)

Applying this to (7.244) results in the wave equa-

tion for the scalar potential,

k2 � o2 eR oð Þ
c2

� �
F k;oð Þ ¼ r k;oð Þ

eR oð Þe0 : (7.247)

The corresponding wave equation in the vector

potential is next derived by substituting the Fourier

transforms of the electromagnetic fields into the Fourier

transform ofr� B,

1

m0
k� k� A k;oð Þð Þ ¼ J k;oð Þ þ ioeR oð Þe0

� ikF k;oð Þ � ioA k;oð Þð Þ:

Expanding the vector triple cross-product gives,

1

m0
k k � A k;oð Þð Þ � k2A k;oð Þ	 


¼ J k;oð Þ � oeR oð Þe0kF k;oð Þ
þ o2eR oð Þe0A k;oð Þ:

Applying the Lorentz gauge condition to this result

gives,

k2 � o2 eR oð Þ
c2

� �
A k;oð Þ ¼ m0J k;oð Þ: (7.248)

These wave equations provide the first steps in deter-

mining the potentials F k;oð Þ and A k;oð Þ. These are

obtained by first calculating the Fourier transforms of

the charge and current densities, r k;oð Þ and J k;oð Þ.
The net charge distribution is that of the projectile,

r x; tð Þ ¼ ze d x� bct v̂jj
	 


(7.249)

with the Fourier transform,

r k;oð Þ ¼ 1

4p2

ð1

�1
d3x

ð1

�1
dtr x; tð Þe�i k�x�otð Þ

¼ ze

4p2

ð1

�1
d3x

ð1

�1
dt e�i b c k�v̂jj�oð Þt

¼ ze

2p
d o� bckjj
	 


:

(7.250)

The current density is,

J x; tð Þ ¼ bc r x; tð Þv̂jj
and its Fourier transform is,

J k;oð Þ ¼ bc r k;oð Þv̂jj
¼ ze bc

2p
d o� bckjj
	 


v̂jj:
(7.251)

Having obtained these, it is possible to write the

Fourier transforms of the scalar and vector potentials as,

Fðk;oÞ ¼ r k;oð Þ
eR oð Þe0 k2 � o2 eR oð Þ

c2

� �

¼ ze

2p eR oð Þe0 k2 � o2 eR oð Þ
c2

� �

� d o� bckjj
	 


(7.252)
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and

A k;oð Þ ¼ m0J k;oð Þ
k2 � o2 eR oð Þ

c2

� �

¼ ze m0bc

2p k2 � o2 eR oð Þ
c2

� � d o� bckjj
	 


v̂jj

(7.253)

and the fields in wavenumber- and frequency-space,

E k;oð Þ¼ i o
zem0bc

2p k2�o2 eR oð Þ
c2

� �d o�bckjj
	 


v̂jj

0
@

�k
ze

2peR oð Þe0 k2�o2 eR oð Þ
c2

� �d o�bckjj
	 
1A

¼ i
zed o�bckjj
	 


2pe0eR oð Þ k2�o2 eR oð Þ
c2

� �

� oeR oð Þb
c
v̂jj �k

� �

(7.254)

and

H k;oð Þ ¼ i
ze bc

2p k2 � o2 eR oð Þ
c2

� � d o� bckjj
	 


k� v̂jj:

(7.255)

Energy Loss in a Dielectric Medium

Now that the electromagnetic fields E k;oð Þ and

H k;oð Þ arising from a moving charged particle in a

dielectric medium have been evaluated, the energy

loss to a single electron at the position associated

with the impact parameter, b, is calculated at the

vectorial position,

x ¼ b v̂?: (7.256)

This energy loss is equal to the electromagnetic

energy flow which is described by the magnitude of

the Poynting vector. In order to calculate this vector,

begin by taking the inverse Fourier transform of the

previously-derived electric field into the spatial

domain,

E bv̂?;oð Þ ¼ 1

2pð Þ3=2
ð1

�1
d3kE k;oð Þeibk�v̂?

¼ i
ze

2pð Þ5=2e0eR oð Þ

�
ð1

�1
d3k

oeR oð Þ b
c
v̂jj � k

� �

k2 � o2 eR oð Þ
c2

� �

� eibk�v̂?d o� b ckjjÞ
	

E bv̂?;oð Þ ¼ i
ze

2pð Þ5=2e0eR oð Þ

ð1

�1
d3k

�
�kxv̂x þ oeR oð Þ b

c
� kjj

� �
v̂jj � k?v̂?

� �

k2x þ k2jj þ þk2? � o2 eR oð Þ
c2

� �

� eibk?d o� bckjj
	 


(7.257)

In order to evaluate the integral, first use the substi-

tution of variable x ¼ bckjj to take it to the form,

E bv̂?;oð Þ¼ i
ze

2pð Þ5=2e0eR oð Þbc

ð1

�1
dkx

ð1

�1
dx
ð1

�1
dk?

�
�kxv̂xþ oeR oð Þb

c
� x

bc

� �
v̂jj�k?v̂?

k2xþ x
bc

� �2
þþk2?�o2eR oð Þ

c2

� �

�eibk?d o�xð Þ
(7.258)

The integration over x is trivial due to the d-func-
tion and results in,

E bv̂?;oð Þ ¼ i
ze

2pð Þ5=2e0eR oð Þbc

ð1

�1
dkx

ð1

�1
dk?

�
�kxv̂x þ o

bc eR oð Þb2 � 1
	 


v̂jj � k?v̂?

k2x þ k2? þ l oð Þ2
� � eibk?

ð7:259Þ
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where the quantity,

l 2 oð Þ ¼ o
bc

� �2

1� b2eR oð Þ	 

(7.260)

has been defined. In a convenient approach to solving

this integral, it is split it up into the integral expression

for the Fourier transform of the electric field of three

integrals along each orthogonal direction and each are

solved separately,

E bv̂?;oð Þ ¼ i
ze

2pð Þ5=2e0eR oð Þbc
� Ixv̂x þ Ijjv̂jj þ I?v̂?
	 


: (7.261)

The integrals are,

Ix ¼ �
ð1

�1
dk?eibk?

ð1

�1
dkx

kx

k2x þ k2? þ l oð Þ2
� �

¼ 0

(7.262)

and

Ijj ¼
o
bc

eR oð Þb2 � 1
	 
 ð1

�1
dk? eibk?

�
ð1

�1

dkx

k2x þ k2? þ l oð Þ2
� �

¼ po
bc

eR oð Þb2 � 1
	 
 ð1

�1
dk?

eibk?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ l oð Þ2

q

¼ 2po
bc

eR oð Þb2 � 1
	 
 ð1

�1
dk?

cos bk?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ l oð Þ2

q

¼ 2po
bc

eR oð Þb2 � 1
	 
 ð1

0

dk?
l oð Þ

cos l oð Þb k?
l oð Þ
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k?

l oð Þ
� �2r

¼ 2po
bc

eR oð Þb2 � 1
	 


K0 l oð Þbð Þ
(7.263)

and

I? ¼ �
ð1

�1
dk? k? eibk?

ð1

�1

dkx

k2x þ k2? þ l oð Þ2
� �

¼ �p
ð1

�1
dk?

k? eibk?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ l oð Þ2

q

¼ �ip
d

db

ð1

�1
dk?

eibk?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ l oð Þ2

q

¼ �i 2p
d

db

ð1

�1
dk?

cos bk?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ l oð Þ2

q

¼ �i 2p
d

db
K0 l oð Þbð Þ

¼ i 2p l oð ÞK1 l oð Þbð Þ:
(7.264)

The electric field at the position of the electron bv̂?
is, then,

E bv̂?;oð Þ¼ ze

2pð Þ3=2e0eR oð Þbc

�
�
l oð ÞK1 l oð Þbð Þv̂?� i

o
bc

� 1� eR oð Þb2	 

K0 l oð Þbð Þv̂jj

�
:

(7.265)

One can see from the definition of l2 that, for a real
relative dielectric constant,

l2 > 0 for b<
1ffiffiffiffiffiffiffiffiffiffiffiffi
eR oð Þp (7.266)

l2 < 0 for b>
1ffiffiffiffiffiffiffiffiffiffiffiffi
eR oð Þp : (7.267)

In other words, l can only be real if the particle

speed is less than the phase velocity of the medium. It

should be noted that, if polarization is neglected, i.e.,

256 7 Charged Particle Interactions with Matter



eR oð Þ ¼ 1, then l2 oð Þ ¼ o=gbcð Þ2 and the expression
for the electric field reduces to,

E bv̂?;oð Þ ¼ ze

2pð Þ3=2e0bc

 
o
gbc

K1

o
gbc

b

� �
v̂?

� i
o

g2bc
K0

o
gbc

b

� �
v̂jj

!

¼ ze

2pð Þ3=2e0
o

g bcð Þ2

� K1

o
gbc

b

� �
v̂? � i

1

g
K0

o
gbc

b

� �
v̂jj

� �

for eR oð Þ ¼ 1 ð7:268Þ

which is the result which was derived previously for a

heavy charged particle interacting with an harmoni-

cally-bound electron.

In a fashion similar to the above calculation for

the electric field, one can next calculate the mag-

netic field strength at the position of the target

electron,

H bv̂;oð Þ ¼� i
zebc

2pð Þ5=2
ð1

�1
d3k

k� v̂jj

k2� o2eR oð Þ
c2

� �

� eibk�v̂?d o�bckjj
	 


¼� i
zebc

2pð Þ5=2
ð1

�1
dkx

ð1

�1
dkjj

ð1

�1
dk?

� kxv̂? � k?v̂x

k2xþ k2jj þ k2? � o2eR oð Þ
c2

� �

� eibk?d o�bckjj
	 


¼� i
ze

2pð Þ5=2
ð1

�1
dk? eibk?

ð1

�1
dkx

� kxv̂? � k?v̂x
k2xþ k2? þl2 oð Þ	 


¼� i
ze

2pð Þ5=2
Ixv̂xþ I?v̂?ð Þ: ð7:269Þ

where

Ix ¼�
ð1

�1
dk? k? eibk?

�
ð1

�1

dkx

k2x þ k2? þ l2 oð Þ	 


¼ i 2pl oð ÞK1 l oð Þbð Þ (7.270)

and

I? ¼
ð1

�1
dk? eibk?

ð1

�1
dkx

kx

k2x þ k2? þ l2 oð Þ	 


¼ 0

(7.271)

to give,

H bv̂;oð Þ ¼ ze

2pð Þ3=2
l oð ÞK1 l oð Þbð Þv̂x: (7.272)

Now that the electric and magnetic fields have

been derived in Fourier space at the position of the

electron at b v̂?, the energy loss due to collisions at

an impact parameter of b � bmin can be readily cal-

culated from the energy flow through a cylinder of

radius bmin centered on the particle’s trajectory

through the inverse Fourier transform. The energy

flow through this cylinder is equal to the power loss

of the particle,

dE

dx

� �
b�bmin

¼ 1

bc
dE

dt
: (7.273)

The power flow is given by the outgoing compo-

nent of the Poynting vector, P ¼ E � H,

P ¼ Ejjv̂jj þ E?v̂?
	 
� Hxv̂x

¼ E?Hxv̂jj � EjjHxv̂?:
(7.274)

The outgoing component of the vector is �EjjHx

and,
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dE

dx

� �
b>bmin

¼ � 2p bmin

bc

ð1

�1
dxEjjHx

¼ �2p bmin

ð1

�1
dt EjjHx

¼ �2p bmin

 
1

2p

ð1

�1
dt

ð1

�1
do

ð1

�1
do0

� Ejj oð ÞHx oð Þe�i oþo0ð Þt
!

¼ �2p bmin

ð1

�1
doEjj oð ÞH�

x oð Þ

¼ �4p bmin Re

ð1

0

doEjj oð ÞH�
x oð Þ

0
@

1
A

¼ zeð Þ2 bmin

2p2e0 bcð Þ2 Re
 ð1

0

do iol� oð Þð Þ

� 1

eR oð Þ � b2
� �

K0 l oð Þbminð Þ

� K1 l� oð ÞbminÞ
!

(7.275)

 

Although the i can be removed from the integrand

through the use of Re iz ¼ �Im z, it is retained in

anticipation of a future complex integration. In order

to have the result of a non-zero stopping power, this

integral must have a real component which requires

that either l or eR oð Þ be complex. Even if the relative

dielectric permittivity were to be real, it is possible for

the stopping power to be non-zero when l is complex

which is a result of the particle speed exceeding the

phase velocity of the medium. This energy loss is

manifested as the Čerenkov radiation discussed

below. On the other hand, if the particle speed were

to be less than the phase velocity, l would be complex

only if eR oð Þ was. Because of the b2eR(o) term in the

expression for l2, this effect becomes significant at

high projectile speeds. One can simplify the expres-

sion for the stopping power in a dielectric medium by

taking advantage of this and limiting the derivation to

the extreme relativistic case of b � 1 for which,

l2 � o
c

� �2
1� eR oð Þð Þ for b � 1: (7.276)

From the earlier discussion of electronic polariza-

tion, the integral will be significant for o in the ultra-

violet region (1016–1017/s). As bmin is of the order of

the atomic radius, RA, the argument of the modified

Bessel function will thus be of the order of,

l bj j< o0 RA

c

� �
� 0:003:

As a result, one can use the small-argument limits,

K0ðyÞ � ln
1:123

y
andK1ðyÞ � 1

y
:

Substituting these limits into the stopping power

expression gives,

dE

dx
¼ zeð Þ2

2p2 e0 bcð Þ2 Re
 ð1

0

do ioð Þ 1

eR oð Þ � b2
� �

� ln
1:123

l oð Þbmin

!

¼ zeð Þ2
2p2e0 bcð Þ2 Re

 ð1

0

do ioð Þ 1

eR oð Þ � b2
� �

� ln
1:123

obmin

bc

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2eR oð Þ

q
!

¼ zeð Þ2
2p2 e0 bcð Þ2 Re

 ð1

0

do ioð Þ 1

eR oð Þ � b2
� �

� ln
1:123 bc
obmin

� �
� 1

2
ln 1� b2eR oð Þ	 
� �!

(7.277)

(Note that, in the limit of eR oð Þ ! 1,

� 1
2
ln 1� b2eR oð Þ	 
! ln g). In making the extreme

relativistic case even more explicit, set b ¼ 1,

dE

dx
¼ zeð Þ2

2p2 e0 c2
Re

 ð1

0

do ioð Þ 1

eR oð Þ � 1

� �

� ln
1:123 c

obmin

� �
� 1

2
ln 1� eR oð Þð Þ

� �!

(7.278)
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For a small damping constant G, the imaginary part

of the relative dielectric permittivity can be neglected

and the expression for the stopping power becomes,

dE

dx
¼ zeð Þ2
2p2 e0 c2

Re

 ð1

0

do ioð Þ
� o2

P

o2
0
�o2ð ÞþiGo

1þ o2
P

o2
0
�o2ð ÞþiGo

0
B@

1
CA

� ln
1:123c

obmin

� �
�1

2
ln � o2

P

o2
0�o2

	 
þ iGo

 ! !!

¼� zeð Þ2
2p2e0 c2

Re

 
i

ð1

0

doo
o2
P

o2
0�o2þo2

P

	 
þ iGo

 !

� ln
1:123c

obmin

� �
þ1

2
ln

o2�o2
0

	 
þ iGo

o2
P

� �� �!

(7.279)

The integral of (7.279),

i

ð1

0

doo
o2
P

o2
0 � o2 þ o2

P

	 
þ iGo

 !

� ln
1:123 c

obmin

� �
þ 1

2
ln

o2 � o2
0

	 
þ iGo

o2
P

� �� �

¼ i

ð1

0

doo
o2
P

o2
0 � o2 þ o2

P

	 
þ iGo

 !

� ln
1:123 c

oPbmin

� �
þ 1

2
ln

o2 � o2
0

	 
þ iGo
o2

� �� �

(7.280)

is determined using the Cauchy–Goursat theorem by

changing the integration over positive real o (i.e.,

0  o  1) to that over positive imaginary o
minus the integration over the quarter-circle to infinity,

as shown in Fig. 7.21, with the intent of isolating the

integration IX. It can be seen from the integrand that

poles occur for,

o2
0 � o2 þ o2

P

	 
þ iGo ¼ 0

and

o2 � o2
0

	 
þ iGo
o2

¼ 0:

In both cases, o would be imaginary and the poles

of the integrand exist in the lower half-plane. As there

are no poles within the quarter-circle of the contour,

the total integral is equal to zero, or,

Re IX þ IY þ ISCð Þ ¼ 0

The integral down the imaginary axis is evaluated

first using o ¼ iO,

IY ¼ �i

ð1

0

dOO
o2
P

o2
0 þ O2 þ o2

P

	 
� iGO

 !

� ln
1:123 c

oPbmin

� �
þ 1

2
ln

� O2 þ o2
0 þ GO

	 

iOð Þ

 ! !

(7.281)

It is clear that, as this integral is pure imaginary

(i.e., Re IY ¼ 0), its contribution to the stopping

power will be zero. As a result,

Re IX ¼ �Re ISC: (7.282)

In order to calculate the integral over the quarter-

circle, ISC, write o in terms of complex polar coordi-

nates, or,

o ¼ reiy (7.283)

Iy

iy

IX X

ISC

Fig. 7.21 Integration contour in the complex plane z ¼ x þ iy

used to evaluate the integral of (7.280)
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where r is a constant. Thus,

Re IX ¼�Re ISC

¼�Re

ðp=2

0

dy r2ei2y
o2
P

o2
0� r2ei2yþo2

P

	 
þ iGreiy

 !

�
 
ln

1:123c

oPbmin

� �

þ1

2
ln

r2ei2y�o2
0

	 
þ iGreiy

r2
e�i2y

� �!
:

(7.284)

Maintaining the assumption that the damping G is

small and constant,

�Re

ðp=2

0

dy r2ei2y
o2
P

o2
0� r2ei2yþo2

P

	 
þ iGreiy

 !

� ln
1:123c

oPbmin

� �
þ

�
1

2
ln

r2ei2y�o2
0

	 
þ iGreiy

r2
e�i2y

� ��

¼ReI1þReI2

where, by rearranging the variables within the inte-

grand,

I1 ¼ o2
P ln

1:123 c

oPbmin

� � ðp=2

0

dy
ei2y

o2
0
þo2

P

r2

� �
� ei2y þ i G

r

	 

eiy

� � po2
P

2
ln
1:123

boP

:

(7.285)

The facts that the ratio G= oj j is negligible and that

o2 	 o2
0 þ o2

P

�� �� have been used. The second integral

is,

I2 ¼ 1

2

ðp=2

0

dy r2ei2y
o2
P

o2
0 � r2ei2y þ o2

P

	 
þ iGreiy

 !

�
 
ln

r2ei2y � o2
0

	 
þ iGreiy

r2
e�i2y

� �!

¼ 1

2

ðp=2
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Thus,

Re

 
i

ð1

0

doo
o2
P
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0 � o2 þ o2

P

	 
þ iGo

 !

� ln
1:123 c

oP bmin

� �
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2
ln
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0

	 
þ iGo
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� �� �!

� po2
P

2
ln
1:123
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(7.286)

One now writes the linear stopping power in a

dielectric medium in the extreme relativistic limit as,

dE

dx

� �
b>bmin

¼ zeð Þ2o2
P

4pe0c2
ln

1:123 c

bmin oP

: (7.287)

One can recast this as the mass collision stopping

power

dE

r dx

� �
Col

¼ 2C
Z

A

� �
z2 ln

1:123 c

bmin oP

(7.288)

where the identifier of b > bmin has been removed and

the identifier “Col” added to indicate that this is a

stopping power due to collisions (i.e., nonradiative

interactions). A significant difference between this
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expression, which accounts for the medium’s dielec-

tric response to the charged particle, and the relativis-

tic forms of those that do not is that the former is no

longer a function of the medium’s atomic structure,

which appears in the form of �I or �o within the loga-

rithmic term, but rather of the medium’s electron

density which appears through the electron plasma

frequency. That is, in the extreme relativistic regime,

the mass collision stopping powers of two media are

equal provided that the electron densities and the Z/A

ratios are the same.

In the absence of any polarization effect, the

corresponding relativistic mass collision stopping

power is, where for clarity the Bohr result is used,

dE

r dx

� �
b>bmin

¼ 2C
Z

A

� �
z2 ln

1:123 g c
bmin �o

: (7.289)

An analytical form of the density correction term

given by the difference between these two mass colli-

sion stopping powers is,

d ¼ 2C
Z

A

� �
z2 ln

goP

�o
(7.290)

Sternheimer–Peierls Parameterization of the

Density/Polarization Effect

While the above provides a theoretical expression for

the polarization/density effect, for practical purposes,

a parameterization of the effect is frequently required

in dosimetry calculations. A frequently-used parame-

terization which can accelerate the calculation of d is

that of Sternheimer and Peierls (1971) who presented

an expression for d applicable to both condensed

media and gases

d ¼ ð2 ln 10ÞxþF x � x1 (7.291)

d¼ð2ln10ÞxþFþ a x1�xð Þn x0xx1 (7.292)

d¼ 0 x < x0 (7.293)

where the kinematic variable is, for a particle of mass

m and momentum p,

x ¼ log10
p

m

� �
(7.294)

and where x0 and x1 are defined below. This repro-

duces the logarithmic increase in the density effect

with p=m � E=m � g at high energies. The remaining

quantities are,

F ¼ �2 ln
�I

�hoP

� �
� 1 (7.295)

a ¼ �F� 2 ln 10ð Þx0
x1 � x0ð Þn (7.296)

The values of x0 and x1 also depend upon the values

of the mean ionization potential,�I, and the phase of the

medium. For liquid and solid media, these are:

x0 ¼ 0:2 if �I< 100eVand�F  3:681

¼�0:326F�1:0 if �I< 100eV and�F> 3:681

¼ 0:2 if �I � 100eVand�F  5:215

¼�0:326F�1:5 if �I � 100eV and�F> 5:215

(7.297)

x1 ¼ 2:0 if �I < 100 eV

¼ 3:0 if �I � 100 eV
(7.298)

In all cases, n ¼ 3. The relative magnitude of d and
its growth with particle speed are shown in Fig. 7.22

which plots fitted values for d for carbon and lead as a

function of p/m; for example, the value of d for carbon
reaches 2 for p/m ¼ 9.8, corresponding to a kinetic

energy of about 5 MeV for electrons. In the context of

examples of radionuclides used in nuclear medicine,

the maximum b-particle energy of 131I is 606 keV, for

which the value of d in carbon is equal to 0.124. The

maximum recoil electron energy for the 140.5 keV

g ray from 99mTc is 49.6 keV, for which d is essentially
negligible.
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Čerenkov Radiation

Čerenkov (1934) reported his observations of the

eponymous radiation following the irradiation of vari-

ous liquids to g rays. Tamm and Frank (1937) pub-

lished their interpretation of this observation shortly

afterwards. As will be demonstrated, the magnitude of

the energy loss associated with Čerenkov radiation is

negligible for dosimetry considerations and, as a

result, its interest to medical physics applications

will be limited. However, as it is straightforward to

extend the above derivation of the density effect to

explain this phenomenon, Čerenkov radiation is

derived here.

Equation (7.287) gives the energy loss per unit

distance traveled to regions within the medium with

impact parameters greater than a value, bmin. It was

assumed that bmin is of the order of atomic dimensions

and that |lbmin| � 1, so that the small-argument limits

of the modified Bessel functions could be used. Con-

sequently, the final result represents the rate of local

energy deposition with distance. On the other hand, by

permitting |lbmin| � 1, one obtains the rate of energy

deposited at great distances per distance traveled from

the projectile’s trajectory. Recalling the large-argu-

ment expression for the modified Bessel function,

dE

dx

� �
b>bmin

¼ zeð Þ2
4pe0 bcð Þ2

�Re

 ð1

0

do io

ffiffiffiffiffiffiffiffiffiffiffiffi
l� oð Þ
l oð Þ

s !
1

eR oð Þ�b2
� �

� e� l oð Þþl� oð Þð Þbmin

!
: (7.299)

Consider,

l oð Þ ¼ o
bc

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2eR oð Þ

q
: (7.300)

In general, Re l(o) > 0 and the exponential term

in the integrand will, as a consequence, rapidly atten-

uate the energy loss with distance from the trajectory

as expected. However, l(o) will be purely imaginary

if the damping constant G is negligible, which allows

eR(o) to be purely real resulting in beR
2(o) > 1. For

purely imaginary l(o),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� oð Þ
l oð Þ ¼ i

s

1

d
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Fig. 7.22 Polarization/

density correction terms for

carbon and lead as functions

of the ratio of the particle

momentum normalized to

particle mass
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and

e� l oð Þþl� oð Þð Þbmin ¼ 1:

Thus, for the conditions of purely real eR(o) and
b2eR(o) > 1, the stopping power expression simpli-

fies to,

dE

dx

� �
¼ z2�h

ð1

o1

doo 1� 1

b2eR oð Þ

� �
(7.301)

where the lower frequency limit is specified by the

requirement of

eR o > o1ð Þ > 1

b2
(7.302)

and there is no longer a dependence of the energy

transfer upon bmin. This result describes the rate per

distance traveled by the projectile at which energy is

radiated. The projectile’s speed must exceed the phase

velocity of the medium for the given frequency, o, for
Čerenkov radiation to occur.

In Fig. 7.23 the real component of eR(o) is plotted as
a function of o for negligible G (i.e., negligible energy

absorption). There is a discontinuity at o ¼ o0 and the

“Čerenkov band” is shown for which eR oð Þ> 1=b2 and
which identifies the lower frequency integration limit.

Before investigating the spectrum of Čerenkov

radiation, the frequently-used geometrical description

of a charged particle moving through a dielectric

medium at a speed bc exceeding the phase velocity

is investigated. The index of refraction of the medium

is n oð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
eR oð Þp

; however, for conciseness, the fre-

quency dependence is ignored. The electric field will

thus propagate with speed c/n and, for the condition of

bc> c=n, Huygens’ constructions are used for the

electromagnetic waves emitted by the particle as

shown in Fig. 7.24. Let the particle be at point A at

time t ¼ 0. In the time that it takes the particle to

travel the distance AB, which is equal to,

T ¼ AB

bc
(7.303)

(for temporary convenience units where c 6¼ 1 are

used) a wavefront emitted at t ¼ 0 (i.e., at point A)

will have reached point C, where

AC ¼ T
c

n
: (7.304)

Thus,

y ¼ cos�1 AC

AB

¼ cos�1 1

bn
:

(7.305)

Note that Fig. 7.24 shows a single plane and that,

due to axial symmetry about AB, the Čerenkov wave-

fronts form a cone. As Čerenkov radiation can only

occur if the particle speed b> 1=n, this effect will be

limited to high energies in most media of dosimetric

interest (e.g., as n ¼ 1.5 for Perspex, the threshold

value for b is 0.67). The threshold energy for which

Čerenkov Band

w

e R
 (

w
)

ω1 ω0

1
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Fig. 7.23 The relative dielectric permittivity (assumed to be

purely real) of a medium as a function of frequency. The Čer-

enkov band, within which Cerenkov radiation can occur, is

shown

q

A B

C

Fig. 7.24 Huygens’ reconstruction of the coherent wavefront

of Čerenkov radiation
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Čerenkov radiation will occur follows as bThr ¼ 1=n

where

bThr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

TThr þm

� �2
s

(7.306)

where TThr is the threshold kinetic energy of the

charged particle and m is its mass.

Figure 7.25 shows the variation of the threshold

energy as a function of refractive index for electrons

and for those electrons set in motion by backscattered

photons following incoherent scatter. It can be seen that,

within the energy range of 0.1–0.3 MeV, Čerenkov

radiation presents a means of detecting g rays in low-Z

media where the probability of a photoelectric absorp-

tion is much less than that of incoherent scatter.

The differential spectrum in frequency of Čerenkov

radiation is provided by the integrand of (7.301).

The number of photons emitted per centimeter of

projectile path length with a frequency between o
and o þ do is,

dN ¼ a
c

1� 1

bnð Þ2
 !

do: (7.307)

As do ¼ �2p c dl=l2, we can rewrite this more

conveniently in terms of the photon wavelength,

dN

dl
¼ � 2pa

l2
b2n2 � 1
	 


: (7.308)

This spectrum is plotted as a function of photon

wavelength for Perspex (n ¼ 1.5) for values of b of

0.67 (threshold), 0.75 and 1 in Fig. 7.26. For protons,
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this threshold value corresponds to a kinetic energy of

about 375 MeV. The l�2 dependence shows that the

Čerenkov spectrum is dominated by short wavelength

photons. Integrating the Čerenkov spectrum yields the

number of Čerenkov photons emitted per centimeter

between the spectrum limits of lmin and lmax,

N ¼ 2pa 1� 1

bnð Þ2
 !

1

lmin

� 1

lmax

� �
: (7.309)

Using cos y ¼ 1=bn, one can also write the spec-

trum as,

dN

dl
¼ 2pa sin2y

1

lmax

� 1

lmin

� �
: (7.310)

Within the spectrum limits of 300 and 600 nm, a

total of 764 sin2y Čerenkov photons are emitted per

centimeter of particle path length, which clearly

demonstrates the low level of light output. As for

minimally-ionizing particles in a low-Z medium this

corresponds to a conversion efficiency of about 0.2%,

the contribution of Čerenkov radiation to the overall

energy loss of a charged particle traversing a medium

is small and can be neglected for dosimetry purposes.

7.3.7.7 Empirical Determination of Mean

Excitation Energy and Shell Correction

Factor

It has been noted earlier that, instead of calculating �I

and Ce bð Þ=Z for a given medium, it is possible to

empirically evaluate their combined effect upon the

collision stopping power from detailed experimental

measurements of the energy loss of a charged particle

(typically a proton) traversing a thin foil of the

medium in question (Ammi et al. 2005). At suffi-

ciently low projectile energies, the diminishment of

the stopping power due to polarization of the medium

(described by L02 bð Þ) is negligible and the Barkas

L2 bð Þ term may also be neglected. Radiative energy

transfer is also negligible and the energy loss will be

due solely to collisions between the projectile and the

atomic electrons. Under these conditions, the mass

collision stopping power reduces to,

dE

r dx

� �
Col

¼ 2C
Z

A

� �
z

b

� �2

L0 bð Þ: (7.311)

Consider a proton (z ¼ 1) with speed bc traversing
a thin foil of medium with an areal thickness rDx
sufficiently small that the proton’s measured energy

loss is,17

DE ¼ rDxð Þ dE

r dx

� �
Col

¼ 2C
Z

A

� �
1

b2
L0 bð Þ:

(7.312)

Inverting this to obtain the zeroth-order stopping

power number,

L0 bð Þ ¼ � A

Z

� �
b2

2C

� �
1

rDx
DEmeas (7.313)

where DEmeas is the measured energy loss of the pro-

ton. For the measurement conditions specified,

L0 bð Þ ¼ L00 bð Þ þ L01 bð Þ

¼ ln
2me

I
*

g2b2
 !

� b2 � Ce bð Þ
Z

¼ � ln�Iþ Ce bð Þ
Z

� �
þ ln 2meg2b

2
	 
� b2

(7.314)

where �I and me implicitly have the same units of

energy. Equating these two expressions for L0 bð Þ
and solving for ln�Iþ Ce bð Þ=Zð Þ gives,

ln�Iþ Ce bð Þ
Z

� �
¼ A

Z

� �
b2

2C

� �
1

rDx
DEmeas

þ ln 2meg2b
2

	 
� b2: (7.315)

It is clear that the mean excitation potential and the

shell correction effect are not separated (although at

sufficiently high projectile energies, we can neglect

the latter). However, since both quantities appear in

this combination in the collision stopping power

expression, this is not problematic for calculating the

collision stopping power.

17ICRU Report 49 (1993) provides a comprehensive historical

summary of the various experimental techniques used to mea-

sure the stopping power.
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7.3.8 Mean Energy Required to Create
an Ion Pair

The immediate consequence of ionization in a liquid

or gaseous medium is the creation of an electron-ion

pair. In some solids, ionization can elevate electrons

into the conduction band, thus forming an electron-

hole pair (following the convention used by ICRU

Report No 31 (1979), the term “ion pair” will be

used to describe both electron-ion and electron-hole

pairs). Of fundamental interest to experimental radia-

tion dosimetry is the mean energy expended to create

an ion pair, W, by electrons. Knowledge of W coupled

with the collision stopping power is required in order

to estimate the number of ion pairs produced per unit

pathlength. Measurement of this number (in, e.g., an

ionization chamber) can be used to infer the stopping

power or, equivalently, the energy absorption in the

medium.

It was seen in the derivation of the collision stop-

ping power that the electromagnetic interaction

between an incident charged particle and an atom

can lead to both atomic excitation and the elevation

of an atomic electron into the continuum. Hence, the

competing effects of nonionization energy channels

leads to the fact that the value of W will exceed the

first ionization potential of the atom. Consider a

charged particle with kinetic energy T that has been

completely stopped in a gaseous medium. The equa-

tion of energy balance is,

T ¼ NIon
�EIon þ �eð Þ þ NExc

�EExc (7.316)

where NIon is the total number of electrons generated

through ionization and NExc is the total number of

excited atomic states. �EIon is the mean energy required

to produce an ion, �e is the mean energy of the second-

ary electrons (d rays) which are not energetic enough

to cause further ionizations and �EExc is the mean

energy of the discrete excited atomic states. By defini-

tion, the mean energy expended to produce an ion pair

is given by,

W ¼ T

NIon

¼ �EIon þ �eð Þ þ NExc

NIon

� �
�EExc

(7.317)

and the ratio of W to the ionization energy I is,

W

I
¼

�EIon

I
þ �e

I
þ NExc

NIon

� �
�EExc

I
: (7.318)

It is possible to describe qualitatively the magni-

tude of the three terms on the right-hand side of

(7.318) from first principles. First, one would expect,

�EIon

I
> 1 (7.319)

due to the fact that excitation and other nonionization

channels exist, especially for molecules where there

are rotational and vibrational modes available. Simi-

larly, one would also expect that,

�EExc

I
> 1 (7.320)

although this ratio is not that much different from unity

as the energy levels of most discrete excited states are

relatively near I. The ratio �e=I will be small with values

typically about 0.3 for noble gases and smaller for

molecular gases. Finally, the ratio of the number of

discrete excited states to the number of ionizations,

NExc=NIon is estimated in ICRU Report Number 31

(1979) to be about 0.3 for closed-shell atoms and close

to 1 for closed-shell molecules. Overall, the magnitude

of W=I is greater than unity with values ranging from

about 1.7 for noble gases to up to 3.2 for alkaline earths.

The total number of electrons produced is also

expected to be a function of the particle’s kinetic

energy. Consider a medium in which the atoms have

a single ionization energy, I, through which a single

electron with kinetic energy T slows down and stops.

The number of electrons produced as a result is

(Fowler 1923),

NeðTÞ ¼ sIonðTÞ
sInelðTÞ þ

1

sInelðTÞ
X
n

snðTÞN T� DEnð Þ

þ 1

sInelðTÞ
ð1

2
TþIð Þ

I

d DEnð Þ dsIon T;DEnð Þ
d DEð Þn

� NIon T� DEnð Þ þ NIon DEn � Ið Þð Þ
(7.321)

where sInelðTÞ is the total inelastic cross section,

sIonðTÞ is the total ionization cross section and
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snðTÞ is the total cross section for excitation to the nth
atomic state. Obviously, the total inelastic cross sec-

tion is the sum of the ionization and excitation cross

sections,

sInelðTÞ ¼ sIonðTÞ þ snðTÞ: (7.322)

The first term on the right-hand side of (7.321)

describes the number of secondary electrons produced

as a consequence of the first inelastic collision. If this

collision leads to the excitation of the atom to an

energy level DEn, the incident electron is scattered

with a kinetic energy T� DEn and the mean of the

total number of ion pairs produced by the scattered

electron is given by ðsNðTÞ=sInelðTÞÞN T� DEnð Þ.
The sum of this contribution over all excited states is

the second term on the right-hand side of the equation.

Finally, one must account for the fact that the first

inelastic collision is itself ionizing and results in an

electron-ion pair: the scattered electron with kinetic

energy T� DEn and an ejected electron (d ray) with

kinetic energy DEn � I. This event contributes both to

the first and third terms on the right-hand side.

Obviously, knowledge of the energy dependence of

the inelastic, ionization, and excitation cross sections

is required in order to evaluate (7.322). Another

approach to calculating for Ne(T) was proposed by

Spencer and Fano (1954) and uses the concept of the

degradation spectrum. Imagine a monoenergetic beam

of electrons with kinetic energy T incident to a gas.

Within this medium, these electrons will, through

deceleration and the production of secondary elec-

trons, yield a net flux of electrons with an energy

spectrum. The pathlength of all electrons with kinetic

energies between T0 and T0 þ dT0 is y T;T0ð ÞdT0, which
is also a descriptor of the electron spectrum. This

spectrum will not be derived here; one can note that

in the extreme case of the CSDA for T 	 1 in which

the projectile loses only a small amount of energy, the

number of produced electrons is,

NeðTÞ ¼ rMolec

ðT

I

dT0 sIon T0ð Þy T;T0ð Þ (7.323)

where rMolec is the number of molecules per unit

volume in the medium (i.e., the molecular number

density). A scaling property of y T;T0ð ÞdT0 was found

by Douthat (1975) who showed that the quantity

rMolec T0=Tð Þ ln T=Ið ÞsIon T0ð Þy T;T0ð Þ plotted as a func-
tion of the variable,

x ¼ ln T0
I

	 

ln T

I

	 
 ;

was virtually independent of the projectile electron’s

kinetic energy, Fano and Spencer (1975) subsequently

defined the quantity

z xð Þ ¼ rMolec sSt T
0ð Þ ln T0

I

	 

x

 !
T0

T

� �
y T0;Tð Þ

(7.324)

where sSt xð Þ is the stopping cross section. Using this,

the expression for NeðTÞ can now be rewritten as,

NeðTÞ ¼ T

ð1

0

dx z xð ÞsIon xð Þ
sSt xð Þ (7.325)

which leads to an expression of the mean energy

required to produce an ion pair,

WðTÞ ¼ 1

Ð1
0

dx z xð Þ sIon xð Þ
sSt xð Þ

: (7.326)

It should be noted that DT0 sIon xð Þ
sSt xð Þ is the number of

ion pairs produced directly by the projectile electron

within the energy interval T0 � DT0 to T0.
W has a limited sensitivity to the charge, mass and

kinetic energy of the projectile, although the depen-

dence upon projectile kinetic energy increases when

the projectile speed becomes comparable to those of

the valence electrons. This general insensitivity to

projectile kinetic energy at high energies is a conse-

quence of the fact that the ratio of the ionization cross

section to the sum of excitation cross sections has a

limited energy dependence. For dry air as a medium,

WDryAir ¼ 33:85 � 0:15 eV

Thus a 5 MeV a particle completely stopped in dry

air will create about 1.25 � 105 electron-ion pairs.
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Values of W for solids will be much less than for

gases as a result of the difference between the �1 eV

gap between the valence and electron bands of a solid

and the �10 eV ionization energy of gases. For exam-

ple, W for electrons in solid silicon is

WSi ¼ 3:68� 0:02 eV

7.3.9 Restricted Mass Collision Stopping
Power for Electrons

Here, the discussion of the restricted mass collision

stopping power for electrons is returned to,

dE

rdx

� �
Col;D

¼ �C
Z

A

� �
1

b

� �2

� ln
2D T� Dð Þ

�I
2

gþ 1ð Þ
� �

þ f� g;Dð Þ
� �

where,

f� g;Dð Þ ¼ D
T� D

� �
� b2 þ 2g� 1

g

� �
ln

T� D
T

� �

þ g� 1

g

� �2 D2

2T2

and where D is the kinetic energy of the knock-on

electron, D<T=2. The restricted collision stopping

power focuses our attention on the local energy depo-

sition along the electron’s track. A given value for D
will denote the extent of the region around the projec-

tile electron’s trajectory that we are interested in

knowing the energy transferred to or absorbed within

the medium. In particular, if one is interested in the

energy deposited in a small volume that the electron is

passing through, then the use of the unrestricted colli-

sion stopping power will overestimate the deposited

energy (unless the condition of charged particle equi-

librium exists, in which the energy removed from the

volume by the d rays is compensated for by energy

brought into the volume by d rays generated from

outside the volume). This will have important conse-

quences in microdosimetry which we will be consid-

ering in following chapters. Tables of restricted and

unrestricted collision stopping powers for electrons

can be found in ICRU Report 37 (1984).

Figure 7.27 shows dE=rdxð ÞCol;D calculated as a

function of D=T  1=2 for 50, 100, 200, and

500 keV electrons in carbon (excluding shell and

polarization correction effects in order to show the

effect of secondary electron energy restriction more

clearly). The unrestricted mass collision stopping

power is that for D ¼ T=2.18 One sees that the

restricted collision stopping power is always less

than the unrestricted and that this difference decreases

with increasing T, as to be expected. The increase in

dE=rdxð ÞCol;D with increasing D=T is the result of

including more collisions which result in the transfer

of energy to the medium. On the other hand, the

decreasing difference between the unrestricted and

restricted collision stopping powers with increasing

T as shown in the figure is due to the approaching

region of minimal ionization.

7.3.10 Summary of the Mass Collision
Stopping Power

As the Barkas polarization term is negligible for prac-

tical dosimetry purposes, it is neglected in this sum-

mary of the collision stopping power. Including the

shell-, density-, and Bloch correction factors, the mean
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Fig. 7.27 Restricted mass collision stopping power for elec-

trons in carbon as a function of the secondary electron kinetic

energy normalized to the incident kinetic energy

18A closely related quantity is the linear energy transfer, or LET,

which is simply the restricted linear collision stopping power.
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collision stopping power for a massive spin-0 projec-

tile with charge ze is,

dE

rdx

� �
Col

¼� 2C
Z

A

� �
z

b

� �2
"
ln

2me

�I
gb2

� �
� b2

� Ce

Z
� d
2
� gEM � ln a

z

b

� �#
:

(7.327)

The mean collision stopping power for electrons

and positrons is,

dE

rdx

� �
Col�

¼ � C
Z

A

� �
1

b

� �2
"
ln

T2 gþ 1ð Þ
2�I

2

� �

þ f� gð Þ � Ce

Z
� d
2
� gEM � ln a

z

b

� �#

(7.328)

The functional dependencies of the mass collision

stopping power are:

� At low projectile energies, the mass collision stop-

ping power decreases with increasing kinetic

energy as b�2 until reaching the minimally-ioniz-

ing region which corresponds to b � 0.8. At very

low energies where the projectile speed is compa-

rable to those of the atomic electrons, dE=rdxð ÞCol
decreases with decreasing projectile energy due to

the shell correction factor.

� This general b�2 dependence competes with the

relativistic increase in the collision stopping

power leading to a minimum of about

1.5 Mev � cm2/g at a kinetic energy equal to

about 3 times the projectile mass.

� The relativistic increase in dE=rdxð ÞCol due to the

ln g2b2
	 


and ln gþ 1ð Þ terms are quenched by the

density correction d=2 term leading to what is also

known as the “Fermi Plateau.”

Neglecting the small effect of the Barkas correction,

further generalizations can be made:

Projectile rest mass, m: There is no dependence of

the mass collision stopping power upon the particle’s

mass. Thus, for example, the mass collision stopping

powers of a proton and a single-ionized helium ion

(i.e., equal charges) at the same speed are the same.

Projectile charge, z: The mass collision stopping

power increases with the square of the particle charge.

Extending the previous example to a proton and an a
particle at the same speed, the dE=rdxð ÞCol for the a
particle will be four times greater than that of the

proton.

Medium atomic number Z and atomic mass number
A: For low atomic media Z=A � 1=2 decreasing with

increasing Z (e.g., Z/A ¼ 0.5 and approaches 0.4 for

carbon and lead, respectively). As a result the mass

collision stopping power at a given kinetic energy is

greater for a low-Z medium than for one with high-Z.

There is an additional dependence upon the atomic

number contained within the � � ln�I term. The

mean ionization potential �I increases with Z thus fur-

ther contributing to the decrease in dE=rdxð Þcol with Z.
Finally, it is of interest to consider the energy loss

resulting from the Coulomb interaction between the

heavy charged particle and the nucleus rather than an

atomic electron. There will be an immediate increase

of a factor of Z2. However, there is a reciprocal depen-

dence upon the target mass, thus the net change in the

collision stopping power will be by a factor of Z2me=M

where M is the nuclear mass. As Z2me=M ¼ 1.6

� 103 for carbon and 1.7 � 102 for lead, it can be

seen that the contribution of the nucleus to the collision

stopping power can be neglected.

7.4 Stochastic Collision Energy Loss:
Energy Straggling

7.4.1 Introduction

It has been assumed in the prior derivations that

energy loss is a continuous function or, for a particle

traversing a distance t through a medium,

DE ¼
ðt

0

dx
dE

dx

� �
Col

ðxÞ (7.329)

However, the energy is lost by the particle through

discrete interactions with atomic electrons and, as a

result, the energy loss process is not continuous but

stochastic. In the simplest approximation, for a beam

of monoenergetic particles incident to the medium,

(7.329) provides the mean energy lost by the ensemble

of particles and the actual energy loss will described

by a probability distribution function with the exiting
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particle beam having an energy spectrum reflecting

this pdf. This phenomenon is commonly referred to

as energy straggling and the energy loss pdfs describ-

ing this phenomenon are the subject of this section.

Practical applications of these pdfs in nuclear med-

icine dosimetry reside primarily in Monte Carlo codes

used to simulate radiation transport and calculate

energy deposition in a medium. Such Monte Carlo

codes have been categorized in terms of how they

calculate for the energy straggling of moving charged

particles in a medium (Chibani 2002). Some codes,

such as MCNP (Briesmeister 2000) and ETRAN

(Seltzer 1991), use a pdf to sample the energy loss

corresponding to a given pathlength. Other codes sim-

ulate the inelastic collision between the projectile and

the secondary electron as a distinct event should the

energy transfer Q exceed the energy level Qc (i.e., the

collision is consider hard). A mean energy loss due to

soft collisions is calculated through the use of the

restricted collision stopping power. An example of

such a code widely used in medical physics is EGSnrc

(Kawrakow and Rogers 2003).19 The GEANT code

can be considered to straddle both categories as pdfs

are sampled to evaluate hard-energy losses, but the

user can also treat hard collisions as independent

events (GEANT Team 2001).20

The pdfs describing these energy losses are derived

in this section.

7.4.2 One-Dimensional Continuity
Equation

Figure 7.28 shows a slab of material with physical

density r to which is incident a monoenergetic beam

of charged particles with kinetic energy T0. The model

is one-dimensional and multiple scatter is neglected,

i.e., the particles travel in straight lines. Let N(x,DE)
be the number of particles that have penetrated a depth

x with a net energy loss DE. Now consider the number

of particles which, traversing an additional distance

Dx, will also have a net energy loss DE (the thickness

Dx is sufficiently small that a particle can only lose

energy within it as the result of a single collision). This

number will be the original number of particles with

energy loss DE at x and which did not lose energy

crossing Dx minus the number of particles with energy

loss DE at x which suffered any additional energy loss

as a result of traversing Dx, and plus the number of

particles with energy loss DE0 < DE at x and which

undergo an additional energy loss DE � DE0 (where
DE0 �DEQmax) traversing Dx so that they have a

net energy loss DE at a depth xþDx.
Define Pr(Dx,DE ! DE0) to be the probability that

a particle with an energy loss DE in penetrating to x

will experience an additional energy loss DE0 � DE
through crossing x to have a total energy loss DE0 at a
depth of x þ Dx. Hence, the number of particles with

energy loss DE at the depth x þ Dx is,

N xþDx;DEð Þ ¼N x;DEð Þ

�
ð1

DE

d DE0ð ÞPrðDx;DE! DE0ÞN x;DEð Þ

þ
ðDE

0

d DE0ð ÞPrðDx;DE0 !DEÞN x;DE0ð Þ:

(7.330)

The first integral describes the reduction in particle

number with energy loss DE at the depth x þ Dx due

to particles with energy loss DE at x experiencing an

energy loss while passing through Dx. The second

integral yields the increase in the number of particles

x

T0

Δx

Medium

Fig. 7.28 Geometry for derivation of one-dimensional conti-

nuity equation. A monoenergetic beam of charged particles with

kinetic energy T0 is incident from the left to a medium with

physical density r

19Both classes represent conceptual difficulties: a Class I code

does not link the sampling of the energy loss pdf with secondary

recoil electrons and the Class II code neglects any energy

straggling associated with soft collisions.
20Further discussion of the practical matters of the Monte Carlo

simulation of the transport of charged particles can be found in

the articles by Salvat et al. (1999) and Chibani (2002).
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with energy lossDE at the depth x þ Dx due to particles
with energy lossDE0 < DE undergoing that energy loss

within the thickness Dx to bring the net energy loss at

x þ Dx to DE. The differential change with distance in
particle number with energy loss DE at depth x is,

]N x;DEð Þ
]x

� lim

Dx!0

N xþDx;DEð Þ�N x;DEð Þ
Dx

¼ lim

Dx!0

"
�
ð1

DE

d DE0ð Þ

�Pr Dx;DE!DE0ð Þ
Dx

N x;DEð Þ

þ
ðDE

0

d DE0ð ÞPr Dx;DE
0 !DEð Þ

Dx
N x;DE0ð Þ

#

¼�
ð1

DE

d DE0ð Þo DE0 �DEð ÞN x;DEð Þ

þ
ðDE

0

d DE0ð Þo DE0 �DEð ÞN x;DE0ð Þ

(7.331)

where o(dE) is the probability per unit pathlength of

the particle losing energy dE. One can use the change

of variables to rewrite this integrodifferential equa-

tion, noting that o(dE) ¼ 0 for dE > Qmax, to obtain

]N x;DEð Þ
]x

¼ �
ðQmax

0

dQoðQÞN x;DEð Þ

þ
ðmin Qmax;DEð Þ

0

dQoðQÞN x;DE� Qð Þ:

(7.332)

As the probability distribution function describing

the collision energy loss is,

f x;DEð Þ ¼ N x;DEð Þ
ÐT0

0

d DE0ð ÞN x;DE0ð Þ
(7.333)

it is possible to write the continuity equation for the

pdf in the integrodifferential form,

]f x;DEð Þ
]x

¼ �f x;DEð Þ
ðQmax

0

dQoðQÞ

þ
ðmin Qmax;DEð Þ

0

dQoðQÞf x;DE� Qð Þ:

(7.334)

7.4.3 Gaussian Probability Distribution
Function for DE

The first solution to the integrodifferential continuity

equation is provided by following an approach first

described by Rossi (1952) and expanded upon by Kase

and Nelson (1978) (Segrè (1977) provides a simpler

and perhaps more intuitive method based on the cen-

tral-limit theorem and which is traceable to early work

by Bohr). A complete derivation of the Gaussian pdf

as a solution to the continuity equation is provided

here. By the use of a number of simplifying assump-

tions, the integrodifferential continuity equation is

converted into a differential equation which can be

solved via Fourier transform pairs. The assumptions

for this solution method are:

� The mean energy lost by the particle penetrating to

depth x is small, DE <<T0:

� The collision stopping power can be approximated

as a constant over the distance traveled x so that the

mean energy loss at the depth of penetration x is

given by

DE ¼ x
dE

dx

� �
Col

(7.335)

� The probability distribution function f x;DEð Þ var-
ies slightly with energy loss enabling f x;DE� Qð Þ
to be expanded into a second-order Taylor’s series

f x;DE�Qð Þ ffi f x;DEð Þ � ]f x;DEð Þ
] DEð Þ Q

þ 1

2

]2f x;DEð Þ
] DEð Þ2 Q2:

(7.336)
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By noting that oðQÞ ¼ 0 for Q>Qmax, the conti-

nuity equation can be rewritten using the Taylor series

expansion to form a differential equation in f x;DEð Þ,

]f x;DEð Þ
]x

¼ �
ð1

0

dQoðQÞf x;DEð Þ

þ
ð1

0

dQoðQÞf x;DE� Qð Þ

¼
ð1

0

dQoðQÞ f x;DE� Qð Þ � f x;DEð Þð Þ

¼
ð1

0

dQoðQÞ
 
� ]f x;DEð Þ

] DEð Þ Q

þ 1

2

]2f x;DEð Þ
] DEð Þ2 Q2

!

¼ � ]f x;DEð Þ
] DEð Þ

ð1

0

dQoðQÞQ

þ 1

2

]2f x;DEð Þ
] DEð Þ2

ð1

0

dQoðQÞQ2

¼ �k1
]f x;DEð Þ
] DEð Þ þ k22

2

]2f x;DEð Þ
] DEð Þ2

(7.337)

where,

k1 ¼
ð1

0

dQoðQÞQ

¼ DE
x

(7.338)

and

k22 ¼
ð1

0

dQoðQÞQ2: (7.339)

As the expression for k1 contains the factor Q

whereas that for k22 contains Q
2, the role of soft colli-

sions will be less significant in the evaluation of k22
than for k1, so one consequently calculates k1 using the

total collision stopping power and uses only the hard

collision stopping power in the determination of k22. In

other words, the width of the pdf is a function of the

hard collision energy transfer alone. This observation

becomes important when considering asymmetric pdfs

for DE.
In order to solve this differential equation, one

again uses the Fourier transform method,

x x; tð Þ ¼ 1ffiffiffiffiffiffi
2p

p
ð1

�1
d DEð Þe�itDE f x;DEð Þ (7.340)

f x;DEð Þ ¼ 1ffiffiffiffiffiffi
2p

p
ð1

�1
dt eit DE x x; tð Þ: (7.341)

The Fourier transform of (7.337) is,

]x x; tð Þ
]x

¼ � ik1tþ k22t
2

2

� �
x x; tð Þ (7.342)

which is straightforward to solve,

x x; tð Þ ¼ x 0; tð Þe� ik1tþ
k2
2
t2

2

� �
x
: (7.343)

The initial condition is determined by noting that

f 0;DEð Þ ¼ d DEð Þ: (7.344)

The Fourier transform of this initial condition is,

x 0; tð Þ ¼ 1ffiffiffiffiffiffi
2p

p (7.345)

Inserting this and the definition of k1 into (7.343)

gives the Fourier transform of the probability distribu-

tion function,

x x; tð Þ ¼ 1ffiffiffiffiffiffi
2p

p e
� itDEþk2

2
t2

2

� �
x
: (7.346)

The pdf is recovered through the inverse Fourier

transform,

f x;DEð Þ ¼ 1ffiffiffiffiffiffi
2p

p
ð1

�1
dt eit DE x x; tð Þ

¼ 1

2p

ð1

�1
dt e�it DE�DEð Þ�k2

2
t2

2
x:

(7.347)
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This integral is solved by first algebraically rearran-

ging the exponent,

it DE� DE
	 
þ k22t

2

2
x ¼ k2t

ffiffiffi
x

2

r
þ i

DE� DE

k2
ffiffiffiffiffi
2x

p
� �2

þ DE� DE
	 
2

2k22x

(7.348)

which allows the pdf to be rewritten as,

f x;DEð Þ ¼ 1

2p
e
�

DE�DEð Þ2
2k2

2
x

ð1

�1
dt e

� k2t
ffiffi
x
2

p
þiDE�DE

k2

ffiffiffi
2x

p
� �2

:

(7.349)

Changing variables,

z ¼ k2t

ffiffiffi
x

2

r
þ i

DE� DE

k2
ffiffiffiffiffi
2x

p (7.350)

dt ¼
ffiffiffi
2

x

r
dz

k2
(7.351)

the integral can be simplified to,

ð1

�1
dt e

� k2t
ffiffi
x
2

p
þiDE�DE

k2

ffiffiffi
2x

p
� �2

¼ 1

k2

ffiffiffi
2

x

r ð1þiy0

�1þiy0

dz e�z2

(7.352)

where

y0 ¼ DE� DE

k2
ffiffiffiffiffi
2x

p (7.353)

The integral is solved by writing it in the complex

form
ÐKþiy0
�Kþiy0

dz e�z2 where K is a real constant to be

later allowed to go to 1. As e�z2 is holomorphic on

and within the contour and there are no singularities

within the contour, the Cauchy–Goursat theorem

states that,

ð
C

dz e�z2 ¼ 0: (7.354)

The closed contour in the complex plane is shown

in Fig. 7.29 and is made up of four individual contours,

C ¼ C1 [ C2 [ C3 [ C4: (7.355)

Thus,

ð
C1

dz e�z2 þ
ð
C2

dz e�z2 þ
ð
C3

dz e�z2

þ
ð
C4

dz e�z2 ¼ 0:

(7.356)

This then leads to,

ðKþiy0

�Kþiy0

dz e�z2 ¼ �
ð
C2

dz e�z2 ¼
ð
C1

dz e�z2

þ
ð
C3

dz e�z2 þ
ð
C4

dz e�z2 :

(7.357)

This type of integral is solved in the Appendices,

ð1þiy0

�1þiy0

dz e�z2 ¼ ffiffiffi
p

p
(7.358)

leading to,

ð1

�1
dt e

� k2t
ffiffi
x
2

p
þiDE�DE

k2

ffiffiffi
2x

p
� �2

¼ 1

k2

ffiffiffiffiffiffi
2p
x

r
: (7.359)
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ΔE – ΔE

Fig. 7.29 Rectangular contour in the complex z ¼ x þ iy

plane for solving the integral of (7.352)
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The above result provides the Gaussian probability

distribution function for energy loss DE at a depth x,

f x;DEð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p k22x

p e
�

DE�DEð Þ2
2k2

2
x : (7.360)

In order to verify that this result is a pdf, it is

necessary to require the normalization,

ð1

0

d DEð Þ f x;DEð Þ ¼ 1

or, since the maximum energy loss cannot exceed

the incident kinetic energy,

ðT0

0

d DEð Þ f x;DEð Þ ¼ 1:

Inserting the expression for the pdf into this

integral,

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p k22x

p e
�

DE�DEð Þ2
2k2

2
x ¼ 1ffiffiffi

p
p

ðy2
y1

dy e�y2 (7.361)

where the change of variables,

y ¼ DE� DEffiffiffiffiffiffiffiffiffiffi
2k22x

p (7.362)

has been used. The limits of integration are,

y1 ¼ DE� T0ffiffiffiffiffiffiffiffiffiffi
2k22x

p (7.363)

and

y2 ¼ DEffiffiffiffiffiffiffiffiffiffi
2k22x

p : (7.364)

If T0 � DE 	
ffiffiffiffiffiffiffiffiffiffi
2k22x

p
and DE 	

ffiffiffiffiffiffiffiffiffiffi
2k22x

p
, then the

result of (7.361) can be written as,

1ffiffiffi
p

p
ð1

�1
dy e�y2 ¼ 1

thus demonstrating that f x;DEð Þ is the pdf sought and
is a Gaussian distribution with mean and most proba-

ble energy loss,

DE ¼ x
dE

dx

� �
Col

(7.365)

and variance,

s2 ¼ k22x: (7.366)

The width of this Gaussian (2s) must be greater

than the maximum energy transferred in a single colli-

sion (i.e., 2k2
ffiffiffi
x

p 	 Qmax, which follows from the cen-

tral-limit theorem) but smaller than the incident kinetic

energy (2k2
ffiffiffi
x

p � T0Þ and the mean energy loss, or

2k2
ffiffiffi
x

p � DE. As an example, calculate the variance

for the limiting case for a massive spin-0 projectile,

ds
dQ

¼ 2pr20me

z

b

� �2
1

Q2
1� b2

Q

Qmax

� �
Q  Qmax

¼ 0 Q>Qmax

and the probability of energy loss per unit distance

traveled is,

oðQÞ ¼ NAr
Z

A

� �
ds
dQ

¼ Cr
Z

A

� �
z

b

� �2
1

Q2
1� b2

Q

Qmax

� �

� z
Q2

1� b2
Q

Qmax

� �
(7.367)

where C is the constant pervading this chapter and the

factor,

z � Cr
Z

A

� �
z

b

� �2

(7.368)

has been defined. This constant has units of MeV per

centimeter. Hence, the variance of the energy loss pdf

is,

s2 ¼ x

ð1

0

dQoðQÞQ2

¼ xz
ðQmax

0

dQ 1� b2
Q

Qmax

� �

¼ xzQmax 1� b2

2

� �
(7.369)
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The energy inequalities resulting from above are,

Qmax

2
� k2

ffiffiffi
x

p � T0

2
(7.370)

and

k2
ffiffiffi
x

p �
�E

2
: (7.371)

These can be grouped into the requirement that the

ratio

k ¼ xz
Qmax

(7.372)

must be large in order for the probability distribution

function for energy loss to be approximated by a

Gaussian.

7.4.4 Asymmetric Probability
Distribution Functions for DE

7.4.4.1 Introduction

Having demonstrated that a symmetric Gaussian pdf

for the energy loss is the consequence of a large value

of k which corresponds to a thick pathlength x and,

from the definition of z, to nonrelativistic particles

(b � 1). For small k, which corresponds to a thin

absorber and/or increasingly relativistic charged parti-

cles, the mean energy loss will also decrease. However,

because the probability of a hard collision remains

constant, its relative contribution to the statistical dis-

tribution of energy losses will increase as k decreases,

leading to increasing asymmetry in the pdf for DE. In
this case, the integrodifferential form of the continuity

equation cannot be reduced to a simple differential

equation and must, instead, be solved directly.

7.4.4.2 Vavilov Probability Distribution Function

Historically, it was Landau (1944) who first derived a

solution to the general integrodifferential continuity

equation leading to an asymmetric pdf through the use

of Laplace transforms. Landau’s result, however, was

derived for the Rutherford differential cross section

(which is equivalent to neglecting the b2Q=Qmax term

in the Bhabha cross section) and was dependent upon

a variety of approximations. A more general and exact

solution to the one-dimensional continuity equation

was provided by Vavilov (1957) which reaches the

Gaussian pdf as a limit for k!1 and the Landau

result for k! 0. Hence, the Landau probability distri-

bution function for energy loss will be treated as a

special limiting case of the Vavilov. This derivation

follows Vavilov’s approach and solves the integrodif-

ferential continuity equation for f(x,DE) by using

Laplace transform pairs,

x x; tð Þ ¼
ð1

0

d DEð Þ e�tDE f x;DEð Þ (7.373)

f x;DEð Þ ¼ 1

2pi

ðKþi1

K�i1
dt et DEx x; tð Þ (7.374)

O tð Þ ¼
ð1

0

dQ e�tQ oðQÞ (7.375)

oðQÞ ¼ 1

2pi

ðKþi1

K�i1
dt etQ O tð Þ (7.376)

where K is an arbitrary real constant. For a thin

absorber, the energy loss will be small and it is rea-

sonable to assume that the pdf will vary slowly with

energy over this range thus allowing us to make the

approximation f(x,DE) � f(x,DE � Q). Applying the

convolution theorem, then,

]x x; tð Þ
]x

¼ O tð Þx x; tð Þ � x x; tð Þ

�
ðQmax

0

dQoðQÞ (7.377)

which has the solution,

x x; tð Þ ¼ x 0; tð Þ exp O tð Þ �
ðQmax

0

dQoðQÞ
0
@

1
Ax

0
@

1
A:

(7.378)

From the obvious result,

x 0; tð Þ ¼
ð1

0

d DEð Þe�tDE d DEð Þ

¼ 1

(7.379)
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the Laplace transform of the pdf is obtained,

x x;tð Þ¼ exp O tð Þ�
ðQmax

0

dQoðQÞ
0
@

1
Ax

0
@

1
A

¼ exp

ð1

0

dQe�tQoðQÞ�
ðQmax

0

dQoðQÞ
0
@

1
Ax

0
@

1
A

¼ exp x

ð1

0

dQoðQÞ e�tQ�1
	 
0

@
1
A

(7.380)

as o(Q) ¼ 0 for Q > Qmax. The pdf is recovered

from this result by calculating its inverse Laplace

transform,

f x;DEð Þ ¼ 1

2pi

ðKþi1

K�i1
dt et DE x x; tð Þ

¼ 1

2pi

ðKþi1

K�i1
dt exp

� t DEþ x

ð1

0

dQoðQÞ e�tQ � 1
	 
0

@
1
A

:

(7.381)

To solve for this, the exponent is first evaluated,

t DEþ x

ð1

0

dQoðQÞ e�tQ � 1
	 


¼ t DEþ x

ð1

0

dQoðQÞe�tQ�x

ð1

0

dQoðQÞ

¼ t DE� DE
	 
� x

ðQmax

0

dQoðQÞ

� 1� e�tQ � tQ
	 


(7.382)

where DE is the mean energy loss over the distance

traversed, x. For the Bhabha cross section of a massive

spin-0 projectile, this exponent becomes,

t DE� DE
	 
� x

ðQmax

0

dQoðQÞ 1� e�tQ � tQ
	 


¼ t DE� DE
	 
 � xz

ðQmax

0

dQ

Q2
1� b2

Q

Qmax

� �

� 1� e�tQ � tQ
	 
 ¼ t DE� DE

	 


� xz
ðQmax

0

dQ
1� e�tQ

Q2
þ kb2

ðQmax

0

dQ
1� e�tQ

Q

þ t xz
ðQmax

0

dQ

Q
� tb2 xz: ð7:383Þ

Three separate integrals must now be solved. The

first integral is, following a change of variables,

ðQmax

0

dQ
1� e�tQ

Q2
¼ t

ðtQmax

0

du
1� e�u

u2
(7.384)

which is readily solved by parts,

fðuÞ ¼ � 1

u

df

du
¼ 1

u2

dg

du
¼ e�u gðuÞ ¼ 1� e�u

(7.385)

to give,

t
ðtQmax

0

du
1�e�u

u2
¼t � 1�e�u

u

� �����
tQmax

0

þ
ðtQmax

0

du
e�u

u

0
@

1
A:

(7.386)

From l’Hôpital’s rule,

lim

u ! 0

1� e�u

u
¼ 1 (7.387)

then,

ðQmax

0

dQ
1� e�tQ

Q2
¼ t� 1� e�tQmax

Qmax

þ t
ðtQmax

0

du
e�u

u
:

(7.388)
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The second integral of (7.383) can be found from

tables (Abramowitz and Stegun 1972),

ðQmax

0

dQ
1� e�tQ

Q
¼ �Ei �tQmaxð Þ þ ln tQmax þ gEM

(7.389)

where Ei(x) is the exponential integral,

EiðxÞ ¼ Ð1
�x

dt e
�t

t
.

The third integral is rewritten as,

ðQmax

0

dQ

Q
¼

ðtQmax

0

du

u
: (7.390)

Using these results, the following form of the expo-

nential term in the inverse Laplace transform of the

pdf is given,

t DE�DE
	 
�xz

ðQmax

0

dQ
1� e�tQ

Q2
þkb2

�
ðQmax

0

dQ
1� e�tQ

Q
þ txz

ðQmax

0

dQ

Q
� tb2 xz

¼ t DE�DE
	 
� txz 1þb2

	 
þk 1� e�zð Þ
þ kb2þ txz
	 
 �Ei �zð Þþ lnzþgEMð Þ

(7.391)

where z ¼ tQmax. Inserting this expression for the

exponent into the inverse Laplace transform for the

energy loss pdf yields the form attributable to Vavilov,

f x;DEð Þ ¼ 1

2p i Qmax

ek 1þb2gEMð Þ
ðKþi1

K�i1
dz

� exp
�
zlV þ k

	ðzþ b2Þ
� �Ei �zð Þ þ ln z


� e�z
	 
�

(7.392)

where the dimensionless Vavilov parameter is,

lV ¼ DE� DE
Qmax

� k 1þ b2 � gEM
	 


: (7.393)

The solutions of this expression of the Vavilov pdf

will be considered in a variety of ways. First, integrate

this expression over the imaginary axis (i.e., set K ¼ 0

and z ¼ iy),

f x;DEð Þ¼ 1

2pQmax

ek 1þb2gEMð Þ
ð1

�1
dy

� exp
�
iylVþkððiyþb2Þ

�ð�Ei �iyÞþ ln iyÞ� e�iyÞ�	
(7.394)

From complex variable theory (Churchill et al.

1974),

ln iy ¼ i
p
2
þ ln yj j y > 0

¼ �i
p
2
þ ln yj j y < 0

(7.395)

and

Ei �iyð Þ ¼ Ci yj jð Þ � iSiðyÞ þ i
p
2

y > 0

¼ Ci yj jð Þ � iSiðyÞ � i
p
2

y < 0

(7.396)

where Ci(x) and Si(x) are the cosine and sine integrals,

respectively,

CiðxÞ ¼ gEM þ ln xþ
ðx

0

dt
cos t� 1

t

SiðxÞ ¼
ðx

0

dt
sin t

t
:

By inserting these into (7.396) and defining the two

functions,

g1 yð Þ ¼ b2 ln yj j � Ci yð Þð Þ � cos y� ySi yð Þ
(7.397)

g2 yð Þ ¼ y ln yj j � Ci yð Þð Þ þ sin yþ b2Si yð Þ;
(7.398)
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a simpler integral form of the Vavilov pdf is obtained,

f x;DEð Þ ¼ k
p x z

� �
ek 1þb2gEMð Þ

ð1

0

dy ekg1ðyÞ

� cos lVyþ k g2ðyÞð Þ
(7.399)

This result can be solved numerically and through

the use of approximations for the cosine and sine

integrals. A variety of other approximations also

exist and these will be discussed shortly. Figure 7.30

shows the Vavilov pdf (calculated using an Edgeworth

expansion method) for k ¼ 0.5 and b ¼ 0.5 as a func-

tion of the Vavilov parameter lV.

7.4.4.3 Gaussian Limit to the Vavilov Probability

Distribution Function

It can now be shown that the Vavilov pdf approaches

the Gaussian limit for k ! 1. Begin with another

approach to solving the pdf given by the inverse

Laplace transform by expanding the exponential.

Because of the asymmetry of the Vavilov pdf, the

expansion is made to third order in t Q,

f x;DEð Þ ¼ 1

2pi

ðKþi1

K�i1
dt exp

� t DE� x

ð1

0

dQoðQÞ 1� e�tQ	 
0
@

1
A

¼ 1

2pi

ðKþi1

K�i1
dt exp

 
t DE� x

ð1

0

dQoðQÞ

� tQ� tQð Þ2
2

þ tQð Þ3
6

 !!

� 1

2pi

ðKþi1

K�i1
dt exp

�
t DE� DE
	 


þ t2
x

2
W� t3

x

6
j
�

(7.400)

where,

W ¼
ðQmax

0

dQoðQÞQ2 (7.401)

κ = 0.5, β = 0.5

lV

f(
l V

)
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Fig. 7.30 Vavilov energy

loss pdf for k ¼ 0.5, b ¼ 0.5

calculated using the

Edgeworth polynomial

expansion described in

Sect. 7.4.4.5
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and

j ¼
ðQmax

0

dQoðQÞQ3 (7.402)

Note that W corresponds to k2
2 in the derivation of

the Gaussian pdf from the pure differential form of the

continuity equation. As a Gaussian result for the pdf

will be obtained if the integral is evaluated only up

to W, the exp �t3x=6jð Þ term provides the asymmetry

of the pdf which, as it is proportional to e�x, must

decrease with increasing absorber thickness so that the

pdf approaches the Gaussian form. This can be shown

explicitly for the Bhabha cross section for a massive

spin-0 projectile,

W ¼ zQmax 1� b2

2

� �
(7.403)

and,

j ¼ zQ2
max

1

2
� b2

3

� �
(7.404)

The pdf is solved for by the substitution of vari-

ables. First, define,

u ¼ xj
2

� �1=3
t� W

j

� �
(7.405)

from which,

dt ¼ 2

xj

� �1=3
du (7.406)

For simplicity, define,

Z ¼ xj
2

� �1=3
(7.407)

which leads to a simplified expression of the Vavilov

pdf,

f x;DEð Þ ¼ eat�
a3

3

2piZ

ðKþi1

K�i1
du eut�

u3

3 (7.408)

where

a ¼ Z
W
j

¼ 1� b2

2

� �
2k

1� 2
3
b2

	 
2
 !1

3 (7.409)

and

t ¼ DE� DE
Z

þ a2: (7.410)

The integral of (7.408) is integrated over the imag-

inary axis,

1

2p i

ðKþi1

K�i1
dueut�

u3

3 ¼ 1

2p

ð1

�1
dye

y3

3
þiyt

¼ 1

p

ð1

0

dy cos ytþy3

3

� � (7.411)

which will be recognized as being the Airy function,

Ai(t). The pdf is now written as,

f x;DEð Þ ¼ eat�
a3

3

Z
AiðtÞ: (7.412)

Consider the function for large values of k.
Equation (7.409) shows that a! (2k)1/3 for k!1
and (7.410) shows that t!1 for a!1. Thus, for

k!1, one can use the limiting form of the Airy

function,

AiðtÞ ! e�
2
3
t3=2

2
ffiffiffi
p

p
t1=4

as t ! 1 (7.413)

so that the pdf will be,

f x;DEð Þ ¼ e at�a3

3
�2

3
t3=2

	 

2Z

ffiffiffi
p

p
1=4

as t ! 1 (7.414)

This result is further manipulated by noting that,

t
1
4 ! ffiffiffi

a
p

as k ! 1 (7.415)

and that

at� 2

3
t
3
2 ! a2

3
� z2

4a
as k ! 1 (7.416)
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where

z ¼ DE� DE
Z

� a (7.417)

to give,

f x;DEð Þ ¼ e�
z2

4a

2Z
ffiffiffiffiffi
pa

p : (7.418)

The final result for k ! 1 is,

f x;DEð Þ � 1ffiffiffiffiffiffiffiffiffiffiffi
2pW x

p e�
	
ðDE�DEÞ2

2 W x



(7.419)

Thus, the Vavilov expression reduces to the Gauss-

ian pdf for large k.

7.4.4.4 Landau Limit to the Vavilov Probability

Distribution Function

Having established that the Vavilov pdf approaches the

Gaussian pdf for large k, now look at the opposite limit

of the pdf for k ! 0. Recall the original Vavilov pdf,

f x;DEð Þ ¼ 1

2p i Qmax

ek 1þb2gEMð Þ

�
ðKþi1

K�i1
dz exp

�
zlV þ k

	ðzþ b2



� ð�Eið�zÞ þ ln zÞ � e�z

�
:

By changing variables, p ¼ kz, the pdf is,

f x;DEð Þ¼ 1

2p ixz
ek 1þb2gEMð Þ �

ðKþi1

K�i1
dp

� exp

"
p
lV
k
þk
� p

k
þb2

� ��
�Ei �p

k

� �

þ lnp� lnk
�
� e�

p
k

�#

¼ 1

2p ixz
ek 1þb2gEMð Þ

ðKþi1

K�i1
dp

� exp p
lV
k
� lnk

� �
þp �Ei �p

k

� �
þ lnp

� ��

þ kb2 �Ei �p

k

� �
þ lnp� lnk

� �
�ke�p=k

i
:

(7.420)

For k! 0, this reduces to the Landau pdf,

f x;DEð Þ ¼ 1

2p i x z

ðKþi1

K�i1
dp ep lLþln pð Þ (7.421)

where the Landau and Vavilov parameters are related

to each other by,

lL ¼ lV
k

� ln k

¼ DE� DEh i
x z

� 1þ b2
	 
þ gEM � ln k:

(7.422)

By changing variables,

p ¼ iy (7.423)

the Landau pdf can be written in a form readily ame-

nable to numerical integration,

f lLð Þ ¼ 1

p x z

ð1

0

dy e�
p
2ð Þy cos y ln yþ lLyð Þ (7.424)

Figure 7.31 shows the product xf(lL) as a function
of the Landau parameter lL. The maximum of

f(lL) occurs at lL,Max ¼ �0.22278 (Kölbig and

Schorr 1984) from which the most probable energy

loss can be calculated by noting that the Landau

parameter can be written as,

lL ¼ DE� DEð ÞMP

x z
þ lL;Max (7.425)

where (DE)MP is the most probable energy loss

which can be solved for, using (7.422) and (7.425),

ðDEÞMP¼x

"
dE

dx

� �
Col

þzðlL:Maxþ1þb2þlnk�gEMÞ
#
:

(7.426)

A closed analytic form of a pdf has been pre-

sented by Moyal (1955) as a representation of the

Landau pdf,
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f lð Þ ¼ 1

xz
ffiffiffiffiffiffi
2p

p e�
1
2
lþexp �lð Þð Þ (7.427)

where

l ¼ DE� DEð ÞMP

xz
: (7.428)

The Moyal result xz f lð Þ is also plotted in

Fig. 7.31. As can be seen, it is not an entirely accurate

reproduction of the Landau result due to both the

differing positions of the most probable energy loss

(the Moyal curve peaks at lL ¼ 0) and the different

magnitudes of the maximum values of the two pdfs.

Importantly, the Moyal approximation underestimates

the high-energy loss tail. Even so, the Moyal approxi-

mation clearly has calculational advantages over the

Landau integral result and is used as its approxima-

tion.21 Rotondi and Montagna (1990) have proposed

an improvement upon the Moyal approximation,

fk;b lð Þ ¼ a1

xz

� �
exp

��a2ðlþ a5l
2Þ

� a3 expð�a4ðlþ a6l
2ÞÞ�

(7.429)

where the six parameters, ai, are functions of and b and

were determined by fitting (7.427) to the numerical

solution for the Vavilov pdf for k  3. They are

provided as the weighted sum of the products of two

Tchebyshev polynomials and the reader is referred to

that publication for further details.

7.4.4.5 Practical Methods of Calculating the

Vavilov pdf

Introduction

The form of the pdf to be used to describe the energy

loss is dictated by the value of kwhere, by convention,

the appropriate pdf to use for a given range of values

of k is,

k  0:01 Landau

0:01  k  10 Vavilov

10  k Gaussian

Direct analytical solutions of the Vavilov integral

are difficult and one typically resorts to approxi-

mations, numerical methods, or parameterizations to

solve them. This is especially true in Monte Carlo

Moyal

Landau

lL

xz
f(

l L
)

−5 −4 −3 −2 −1 0
0

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6 7 8 9 10

Fig. 7.31 Weighted Landau

and Moyal probability

distribution functions as

functions of the Landau

parameter

21See, for example, Sauli’s description of multiwire propor-

tional chambers (1977).
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applications where calculation speed is critical.

Three methods of calculating the Vavilov pdf are

summarized here; no derivations will be provided,

but the interested reader can refer to the original

publications.

Edgeworth Series

For values of k that are not too small, the Vavilov

distribution is Gaussian-like where the perturbation

from the Gaussian described in terms of an Edgeworth

series (Symon 1948; Rotondi and Montagna 1990;

Van Ginneken 2000). In the nomenclature of Rotondi

and Montagna, the Vavilov pdf is approximated by,

f x;DEð Þ ¼ e
�DE2

2s2ffiffiffiffiffiffi
2p

p
s

�
1þ 1

3!

m3
s3

H3

DE
s

� �
þ 1

4!

m4
s4

� 3
� �

� H4

DE
s

� �
þ 1

5!

m5
s5

� 10
m3
s3

� �
H5

DE
s

� �

þ 10

6!

m3
s3

� �2
H6

DE
s

� �
þ 35

7!

m3
s3

m4
s4

� 3
� �

� H7

DE
s

� �
þ 280

9!

m3
s3

� �3
H9

DE
s

� ��

(7.430)

where the Hi are the Hermite polynomials and the

mi and s are related to the moments of the Vavilov

distribution,

mn ¼ x

ðQmax

0

dQoðQÞQn n ¼ 2; 3 (7.431)

m4 ¼ 3m22 þ x

ðQmax

0

dQoðQÞQ4

0
@

1
A

2

(7.432)

m5 ¼ 10m2m3 þ x

ðQmax

0

dQQ5 oðQÞ (7.433)

s2 ¼ m2 (7.434)

This expansion is reported to be valid for

0.29  k and for lL  l  lH where the limits lL
and lH define the limits of 0 and 1 in the cumulative

distribution function and are determined from empir-

ical fits.

Fourier Series Solution

Schorr (1974, 1975) developed an algorithm for cal-

culating both the Landau and Vavilov pdfs using a

Fourier series methodology. The approximation to

the Vavilov pdf, written in the form,

f lVð Þ ¼ 1

2p i

ðKþi1

K�i1
dsfðsÞelVs (7.435)

with

fðsÞ ¼ ek 1þb2gGð ÞecðsÞ

and

cðsÞ ¼ s ln kþ sþ b2k
	 


�
ðQmax

0

ds
1� e�s=k

s
� gEM

2
4

3
5� ke�s=k

is

g lLð Þ ¼ o
p

1

2
þ
X1
k¼1

Ak cos kolVð Þ þ Bk sin kolVð Þ½ 

 !

(7.436)

where

o ¼ 2p
Tþ � T�

(7.437)

Ak ¼ Ref ikoð Þ (7.438)

Bk ¼ �Imf ikoð Þ (7.439)

Schorr provides the methodology for calculating T�
and T+ so as to minimize the difference g(lL) � f(lL).
As this method requires a point-by-point calculation of

the pdfs, it is not suitable as a sampling method for

Monte Carlo simulations.
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Distorted Log-Normal Distribution

Chibani (1998, 2002) has described two algorithms

for calculating the Vavilov pdf in the interval

k 2 [0.01,1.0]. The first algorithm is valid for

k 2 [0.01,0.3] and describes the Vavilov pdf as the

convolution of log-normal and Poisson distributions.

The second method, for k 2 [0.3,1.0], takes advantage

of the similarity of the shape of the log-normal distri-

bution to that of the Vavilov pdf. The reader is referred

to these two papers for further details.

7.4.4.6 Vavilov pdf for Electron Projectiles

Monte Carlo simulations of practical dosimetric

interest will concern those cases of electron and posi-

tron projectiles. In such cases, energy straggling is

accounted for by modifying the Landau or Vavilov

distributions. In particular, the Vavilov pdf is calcu-

lated using the Møller cross section for electron–

electron collisions. Chibani simplifies this calculation

by approximating the Møller cross section by a fourth-

order polynomial in order to allow the Vavilov pdf to

be calculated analytically (this is also done for posi-

tron projectiles by doing the same for the Bhabha

positron–electron collision cross section).

7.4.4.7 Atomic Electron Binding Effects

In the case of a high-Z thin absorber, energy losses

through resonant transfers to atomic electrons become

important. Such effects can be managed by convolving

the Landau distribution with a Gaussian function. In

this application, because it is easy to convolve two

Gaussian functions, the Landau pdf is represented by

a weighted sum of four Gaussian pdfs (Blunck and

Leisegang, 1951). Even though there are difficulties

with this approach that require addressing (Findlay

and Dusautoy 1980), they have relatively little imme-

diate application to nuclear medicine dosimetry.

7.5 Multiple Elastic Scattering

7.5.1 Introduction

In addition to being able to calculate for the transfer of

energy to the medium from a moving charged particle,

it is necessary to know both the number and phase

space of the particles. Transport is dominated by the

elastic Coulomb scatter in which, for electrons and

positrons, negligible amounts of energy are transferred

in these scatters and can be neglected. The three most

important results obtained from the derivation of the

differential cross sections for a single elastic Coulomb

scatter are that:

� The y�4 dependence showing that forward-directed

elastic scatter will dominate.

� The mean free pathlength between elastic scatters

is small due to the large total cross section.

� The differential cross section has a pbð Þ�2
depen-

dence.

The combination of the first two results leads to the

dominance of forward-directed multiple scatter. The

last result shows that, at energies typical of nuclear

medicine, electrons and positrons are more subject to

multiple scatter than are heavier a particles. Hence, the

interest in this section will be on e�/e+ multiple scatter.

By using the small-angle approximation, recalling

the y�4 dependence and noting that dO ffi 2p y dy
(which implicitly assumes azimuthal symmetry), one

can write the mean-square angle of a single elastic

Coulomb scatter (assuming that screening at small

scattering angles invokes a cut-off in angle),

y2 ¼
Ð
dOy2 dsRuth

dOÐ
dO dsRuth

dO

�

Ðymax

w0

dy
y

Ðymax

w0

dy
y3

¼ ln ymax=w0
	 


1
�
w20

� �
� 1

�
y2max

� � :

(7.440)

The minimum scattering angle is the screening

angle w0 of (7.6) for the Thomas–Fermi model. As

w0 � 1 and w0 � ymax (recall Fig. 7.3), the root-

mean square (RMS) scattering angle is approximately,

ffiffiffiffiffi
y2

q
¼ �w0 ln w0 (7.441)

Hence,
ffiffiffiffiffi
y2

p
will be a relatively small multiple of

w0 and the net deflection of the electron will be small
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(e.g., from Fig. 7.3 w0 � 25 mrad for a 100 keV elec-

tron in carbon which leads to
ffiffiffiffiffi
y2

p
¼ 3:7 w0 or about

93 mrad). Because the number of elastic Coulomb

scatters in a pathlength of practical interest will be

high, the central-limit theorem indicates that the prob-

ability distribution function describing the scattering

angle will be Gaussian with a small variance, y2. This
Gaussian approximation is not entirely accurate as it

neglects the small, but not negligible, probability of

large-angle Coulomb scatter that increases the “tail” of

the pdf. But the Gaussian assumption will provide the

basis upon which to explore the three main multiple

scattering theories in common use in modern-day cal-

culations of charged-particle transport.

7.5.2 Multiple Elastic Scattering Theory

7.5.2.1 Introduction

Since the 1940s, a number of theories describing the

multiple scatter of charged particles have been devel-

oped. Two theories (Goudsmit and Saunderson 1940,

Molière 1947, 1948) are predominant in the Monte

Carlo codes currently used to model charged-particle

transport in medical applications. Prior to deriving

these theories, the simpler Fermi–Eyges theory (Eyges

1948) is derived (which, while not used in transport

calculations for nuclear medicine applications, has

been widely employed in software developed for

external electron beam treatment planning software in

radiation oncology (Hogstrom et al. 1981; McParland

et al. 1988). Importantly, the Fermi–Eyges theory jus-

tifies the expectation of a Gaussian pdf for the spatial

deflection and angular distribution of multiply-scat-

tered charged particles which appears as the “zeroth-

order” case in the Goudsmit–Saunderson and Molière

multiple scatter theories.

7.5.2.2 Fermi–Eyges Theory

The genesis of this theory was the derivation by Fermi

of the diffusion equation for a calculation of the trans-

port of cosmic rays in the atmosphere (given in the

review by Rossi and Greisen (1941)). Because of the

high kinetic energies of the cosmic rays, ionizational

energy losses were neglected in Fermi’s derivation

and Eyges (1948) extended Fermi’s result by allowing

for the energy losses suffered particles through ioniza-

tion. The derivation below of the Fermi diffusion

equation will follow that of Jette (1988) which is itself

a slightly more general version of the original. Having

obtained the diffusion equation, Eyges’ approach of

allowing for an energy dependence will be used to

solve the diffusion equation using the methods devel-

oped earlier in this chapter.

Before deriving Fermi’s diffusion equation, some

preparatory work is required. Consider Fig. 7.32 in

which a beam of monoenergetic charged particles

with zero lateral width is incident along the þz-axis

to a semi-infinite scattering medium with the entrance

plane defined by the x – y plane. The particle is

scattered through the polar y and azimuthal f angles

as shown. Due to the central Coulomb potentials asso-

ciated with the scattering centers within the medium,

azimuthal symmetry exists and f will be uniformly

distributed between 0 and 2p. The angles yx and yy are
the projections of the polar scattering angle onto the

xz- and yz-planes, respectively, as shown, where,

yx ¼ tan�1 tan y cosfð Þ (7.442)

yy ¼ tan�1 tan y sinfð Þ (7.443)

and the mean-square values of these projected scatter-

ing angles are,

Initial
Trajectory

x

x

z

z

y
y

r

^

^

^

r

qx

qy

q

f

Fig. 7.32 Scattering of a particle with an initial trajectory along

the z-axis through (y,f). yx and yy are the projections of the polar
scattering angle onto the x – z and y – z planes, respectively
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y2x ¼
Ð
dOy2x y;fð Þ dsRuth

dOÐ
dO dsRuth

dO

�
Ð
dOy2 cos2f dsRuth

dOÐ
dO dsRuth

dO

¼ 1

2p

ð2p

0

df cos2 f

0
@

1
A y2

¼ y2

2

(7.444)

and, similarly,

y2y ¼
y2

2
: (7.445)

Hence, in the small-angle approximation, the

mean-square scatter angle is,

y2 ¼ y2x þ y2y: (7.446)

Recalling the earlier invocation of the central-limit

theorem, one conjectures that the scattering pdf of the

twoprojected scattering angles areGaussian. For example,

f yxð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2py2x

q exp � 1

2

y2x
y2x

 !
(7.447)

with zero mean and variance y2x. At this point, the

linear scattering power is defined as the derivative of

the mean-square scattering angle with respect to the

pathlength traveled,

= ¼ dy2s
ds

: (7.448)

Of course, this can only be an approximation in that

it assumes that the change in the mean-square scatter-

ing angle with distance is continuous whereas the

processes are stochastic. For calculational purposes,

this will be approximated by a continuous derivative

with the ratio of the mean-square scattering angle over

a pathlength Ds,

= ¼ y2

Ds
(7.449)

where,

Ds ¼ Dz
cos y

� Dz
(7.450)

for forward-directed scatter. The Gaussian pdf for yx
can now be written as,

f yxð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=Dz

p exp � y2x
=Dz

� �
: (7.451)

It is reasonable to presume, for future use, that the

pdf for a change in scattering angle from the mean,

Dyx ¼ yx � yx, over Dz is also Gaussian,

g Dyx;Dzð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=Dz

p exp � Dyxð Þ2
=Dz

 !
: (7.452)

In the derivation of the Gaussian pdf, use will be

needed of the first three moments of g Dyx;Dzð Þ,
ð1

�1
d Dyxð Þg Dyx;Dzð Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=Dz

p
ð1

�1
d Dyxð Þ exp � Dyxð Þ2

=Dz

 !

¼ 1

(7.453)

ð1

�1
d Dyxð Þ Dyx g Dyx;Dzð Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=Dz

p
ð1

�1
d Dyxð ÞDyx exp � Dyxð Þ2

=Dz

 !

¼ 0

(7.454)

ð1

�1
d Dyxð Þ Dyxð Þ2 g Dyx;Dzð Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=Dz

p
ð1

�1
d Dyxð Þ Dyxð Þ2 exp � Dyxð Þ2

=Dz

 !
¼=Dz

2
:

ð7:455Þ

The limits of integration of Dyx can be extended to

�1 as g Dyx;Dzð Þ is sharply peaked around Dyx ¼ 0.

The Fermi diffusion equation is next derived.

Assume that the initial condition for the particle is

dðxÞdðyÞdðzÞd yð Þ and define f x; yx; y; yy; z
	 


DxDyx
DyDyy as the probability at a depth z that the particle

will be between x and xþDx and between y and yþDy
and have projected scattering angles between yx and

yx þ Dyx and between yy and yy þ Dyy. In order
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to simplify the derivation, the calculation is initially

restricted to the two-dimensional case and then

extended to three dimensions. The intent is to find

the variation in f x; yx; zð Þ with increasing penetration

into the medium, z. To do so, consider the trajectory of

a particle in two-dimensions as shown in Fig. 7.33.

The particle’s end-point is at a depth zþ Dz with

projected lateral displacement x and projected polar

direction yx following an intermediate scatter occur-

ring at a depth zþ kDz, where 0 < k < 1. This posi-

tion is projected back to the particle’s original position

at a depth z. At the intermediate scattering point, the

particle was at a projected lateral displacement,

x� 1� kð Þ tan yx Dz � x� 1� kð Þyx Dz (7.456)

(using the small-angle approximation for yx) and was

scattered through an angle jx. If one further back

projects the trajectory to the depth z, the particle had

been scattered through an angle yx � jx and was at a

projected lateral displacement,

x� tan yx þ k tan yx � jxð Þ � tan yxð Þð ÞDz
� x� yx � kjxð ÞDz: (7.457)

For any value of k in the range (0,1), one obtains the

pdf f(x,yx;zþDz) by convolving over all jx,

f x; yx; zþ Dzð Þ ¼
ð1

�1
djx fðx� ðyx � kjxÞ

� Dz; yx � jx; zÞgðjx;DzÞ
(7.458)

where g jx;Dzð Þ is given by (7.452).

This integral is solved by first expanding

f x� yx � kjxð ÞDz; yx � jx; zð Þg jx;Dzð Þ to second

order in yx, jx and Dz,

f x� yx � kjxð ÞDz; yx � jx; zð Þg jx;Dzð Þ

ffi f x; yx; zð Þ � ]f x; yx; zð Þ
]x

yx � kjxð Þ

� Dz� ]f x; yx; zð Þ
]yx

jx þ
1

2

]2f x; yx; zð Þ
]y2x

j2
x:

(7.459)

Substituting this into the integrand of (7.458) gives,

f x;yx;zþDzð Þ

¼
ð1

�1
djx f x;yx;zð Þg jx;Dzð Þ

�
ð1

�1
djx

]f x;yx;zð Þ
qx

yx�kjxð ÞDz g jx;xð Þ

�
ð1

�1
djx

]f x;yx;zð Þ
]yx

jx g jx;xð Þ

þ1

2

ð1

�1
djx

]2f x;yx;zð Þ
]y2x

j2
x jx;xð Þ

¼ f x;yx;zð Þ
ð1

�1
djx g jx;Dzð Þ

�]f x;yx;zð Þ
]x

ð1

�1
djx yx�kjxð ÞDz g jx;xð Þ

�]f x;yx;zð Þ
]yx

ð1

�1
djxjx g jx;xð Þ

þ1

2

]2f x;yx;zð Þ
]y2x

ð1

�1
djxj

2
x g jx;xð Þ:

(7.460)

qx 
– jx

x
z + Δz

z

z + k Δz
x – (1–k) tanqx Δz

x – (k tan (qx 
– jx) + (1–k) tanqx Δz

jx

qx

Fig. 7.33 Trajectory of a charged particle twice scattered

between depths of z and z þ Dz
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This expression is markedly simplified by using the

moments of g(jx;Dz) calculated previously,

f x; yx; zþ Dzð Þ ¼ f x; yx; zð Þ � yx
]f x; yx; zð Þ

]x
Dz

þ =
4

]2f x; yx; zð Þ
]y2x

Dz:

(7.461)

Note that in this final expression for the pdf there is

no dependence upon k and, as a result, the selection of

the intermediate scatter position is purely arbitrary.

From this result, one obtains the differential change

in the pdf with penetration,

]f x; yx; zð Þ
]z

¼ lim

Dz ! 0

f x; yx; zþ Dzð Þ � f x; yx; zð Þ
Dz

(7.462)

and the Fermi diffusion equation in two-dimensions

follows,

]f x; yx; zð Þ
]z

¼ �yx
]f x; yx; zð Þ

]x
þ=

4

� ]2f x; yx; zð Þ
]y2x

: (7.463)

The extension of the Fermi diffusion equation to 3

dimensions is straight forward,

]f

]z
¼ �yx

]f

]x
� yy

]f

]y
þ =

4

]2f

]y2x
þ ]2f

]y2y

 !
(7.464)

where, for clarity, the functional dependencies of the

pdf have been omitted.

Note that this derivation of the Fermi diffusion

equation has ignored the fact that, as a particle pene-

trates within the medium, it loses energy. As the elas-

tic single scatter cross section has a pbð Þ�2

dependence, the scattering power will vary with the

projectile kinetic energy and, hence, become a func-

tion of the depth of penetration. For the two-dimen-

sional form of the Fermi diffusion equation,

]f x; yx; zð Þ
]z

¼ �yx
]f x; yx; zð Þ

]x
þ =ðzÞ

4

]2f x; yx; zð Þ
]y2x
(7.465)

where the explicit functional dependency of the scat-

tering power upon z is noted.22 This expression

neglects the fact that once the particle has reached a

depth z it will have actually traveled a distance greater

than z due to multiple scattering events.

The two-dimensional Fourier pair will be used to

solve for the pdf,

f x; yx; zð Þ ¼ 1

2p

ð1

�1

ð1

�1
dx dLo x;L; zð Þei xxþyxLð Þ

(7.466)

o x;L; zð Þ ¼ 1

2p

ð1

�1

ð1

�1
dx dyx f x; yx; zð Þ e�i xxþyxLð Þ:

(7.467)

Applying these to the two-dimensional Fermi dif-

fusion equation gives a differential equation in the

Fourier transform of the pdf,

]o
]z

¼ x
]o
]L

� L2=ðzÞ
4

o (7.468)

which can be simplified by defining the variables,

k ¼ zþ L
x

(7.469)

z0 ¼ z (7.470)

to yield,

]o
]z0

¼ � x2 k� zð Þ2=ðzÞ
4

o: (7.471)

The solution is,

o ¼ k kð Þ exp �x2
ðz0

l

dZ
k� Zð Þ2= Zð Þ

4

0
@

1
A: (7.472)

22In an inhomogeneous medium (such as the body), the scatter-

ing power would also be a function of x and y. That level of

complexity is not required for this discussion.
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The lower limit of the integral has been set to some

arbitrary valuer, l, and k(k) is specified from the

initial condition of the problem. Assuming a single

incident particle, this is, as before,

f x; yx; z ¼ 0ð Þ ¼ dðxÞd yxð Þ (7.473)

with the usual Fourier transform,

o x;L; z ¼ 0ð Þ ¼ 1

2p
: (7.474)

Writing out the solution for o x;L; zð Þ in the original
variables gives,

o x;L; zð Þ ¼ k zþ L
x

� �

� exp �x2
ðz

l

dZ
zþ L

x � Z
� �2

= Zð Þ
4

0
B@

1
CA:

(7.475)

From the initial conditions,

k
L
x

� �
exp �x2

ð0

l

dZ
L
x � Z
� �2

= Zð Þ
4

0
B@

1
CA ¼ 1

2p

(7.476)

which enables the Fourier transform of the pdf to be

written as,

o x;L; zð Þ ¼ 1

2p
exp �x2

ðz

l

dZ
zþ L

x � Z
� �2

= Zð Þ
4

0
B@

1
CA:

(7.477)

Prior to taking the inverse Fourier transform in

order to recover the pdf, this expression is simplified

by defining the functions,

A0ðzÞ ¼
ðz

0

dZ
= Zð Þ
4

(7.478)

A1ðzÞ ¼
ðz

0

dZ z� Zð Þ = Zð Þ
4

(7.479)

A2ðzÞ ¼
ðz

0

dZ z� Zð Þ2 = Zð Þ
4

(7.480)

so as to write a simpler form of the Fourier transform

of the pdf,

o x;L; zð Þ ¼ 1

2p
exp �A0L

2 þ 2A1Lxþ A2x
2

	 

(7.481)

where the z-dependencies of the Ai have been omitted

for clarity. Taking the inverse Fourier transform of the

result will result in the multiple scattering pdf,

f x; yx; zð Þ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0A2 � A2

1

p

� exp � y2xA2 � 2A1xyx þ x2A0

4A0 A0A2 � A2
1

	 

 !

(7.482)

which is the Fermi–Eyges result for two dimensions.

The three-dimensional result is given by the product of

the two-dimensional pdfs in (x,yx) and (y,yy).
Equation (7.482) provides a Gaussian pdf; as the

result of the small-angle approximation, in terms of

the functions A0(z), A1(z), and A2(z). The depth of

penetration, z, is now explicitly included in the pdf

through these functions. As the linear scattering power

will have an energy dependence (i.e., a less-energetic

particle will be more readily scattered than an ener-

getic one), a direct functional dependence upon parti-

cle energy is implicit.

7.5.2.3 Scattering Power

Introduction

The linear scattering power is the change in mean-

square scattering angle per unit distance traveled by

the particle. In analogy to the linear and mass stopping

powers, one removes the dependence of the scattering

power upon the physical density of the medium by

defining the mass scattering power, ==r, which is the

change in mean-square scattering angle per unit mass

thickness traveled,

=
r
¼ dy2

r ds
(7.483)
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Or,

=
r
¼ 2p

NA

A

ð1

w0

dy y2
ds
dO

(7.484)

where, since the differential cross is in units of square

centimeter�radian square per atom, the NA=A factor is

required for the mass collision stopping power to have

units of square centimeter�radian square per gram of

medium. w0 is the screening angle of (7.6).

Spin-0 Projectile Scattering

The mass scattering powers for the unscreened and

screened Rutherford cross sections for an electron

projectile (i.e., z ¼ 1), but where spin is neglected,

are derived. Beginning with the unscreened cross sec-

tion the corresponding mass scattering power is,

=
r
¼ 8p

NAZ
2

A

� �
a�hc
pb

� �2

ln
1

w0

Unscreened cross section:

(7.485)

By incorporating the definition of the screening

angle w0,

w0 � 1:130
�hc

prB

� �
Z1=3

� 4:22� 10�3

p

� �
Z1=3

(7.486)

where p is in units of MeV. One can rewrite the

electron mass scattering power in the form,

=
r
¼ 8p

NAZ
2

A

� �
a�hc
pb

� �2

ln 237 pZ�1=3
� �

: (7.487)

The screened cross section leads to an expression of

the mass scattering power of the form,

=
r
¼ 4p

NAZ
2

A

� �
a�hc
pb

� �2

� ln 1þ 1

w20

� �
� 1

2

1� w20
1þ w20

� �
� ln 2

� �

Screened Rutherford cross section:

(7.488)

This expression can be simplified for electrons typi-

cal of that encountered in nuclear medicine in low-Z

media (i.e., p � 1:6MeV) for which

1þ 1=w20
	 
 � 1=w20 and ð1� w20Þ=ð1þ w20Þ � 1 to give,

=
r
� 4p

NAZ
2

A

� �
a�hc
pb

� �2

� ln 5:6� 104 p2 Z�2=3
� �

� 1:193
h i (7.489)

where p is in units of MeV.

The mass scattering powers of electrons in carbon

evaluated from the screened and unscreened cross

sections above are shown in Fig. 7.34 as functions of

electron kinetic energy.

Mott Cross Section

To include the effect of the electron’s intrinsic spin,

the Mott elastic scatter cross section is used,

dsMott

dO
¼ Za�hc

2 pb

� �2
F y;Zð Þ
sin4 y

2

	 


where the multiplicative factor

F y;Zð Þ ¼ 1� b2sin2
y
2

� �

is a consequence of the electron’s intrinsic spin.

McKinley and Feshbach (1948) have expanded

Mott’s original result to include a corrective term to

F(y,Z) in order to correct for the Born approximation

used in the original derivation,

F y;Zð Þ ¼ 1� b2sin2
y
2

� �
þ pabZ 1� sin

y
2

� �
sin

y
2

(7.490)

This expression is valid for b � 1 and aZ < 0.2

(i.e., Z < 27) which are conditions suitable for most

instances of nuclear medicine dosimetry. McParland

(1989) derived an analytical expression for the elec-

tron mass scattering power using this expanded Mott
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cross section and excluding any small-angle approxi-

mations,

=
r
¼8p

NAZ
2

A

� �
r0

gb

� �2

I1þpabZI2�b bþpaZð ÞI3ð Þ
(7.491)

where

I1 ¼ ln
sin 1=2
	 


sin w0=2ð Þ
� �

þ 1

8

w20
sin2 w0=2ð Þ �

1

sin2 1=2ð Þ

� �

þ 1

2
w0 cot

w0
2
� cot

1

2

� �
(7.492)

I2 ¼ w0
w0=2
	 


sin w0=2ð Þ � 1þ 2
X1
k¼1

�1ð Þkc2k w0
2

� �2k !

� 1

2 sin w0=2ð Þ � 1þ 2
X1
k¼1

�1ð Þkc2k 1

2

� �2k
 !

(7.493)

I3 ¼ 1þ
X1
k¼1

�1ð Þkd2k 1

2

� �2k
 !

� w20 1þ
X1
k¼1

�1ð Þkd2k w0
2

� �2k !
:

(7.494)

The coefficients in these expressions are,

c2k ¼ 22k�1 � 1

2kþ 1ð Þ!
� �

B2k (7.495)

d2k ¼ 22k

2þ 2kð Þ 2kð Þ !
� �

B2k (7.496)

B2k is the 2kth Bernoulli number (B2 ¼ 1/6,

B4 ¼ �1/30, B6 ¼ 1/42, etc.) The coefficients c2k
and d2k rapidly diminish with k, as shown in Table 7.1,

and, for practical calculation purposes, the summa-

tions for integrals I2 and I3 can be truncated at k ¼ 4.

Contributions to the Scattering Power from Atomic

Electrons

In the previous derivation of electron mass scattering

powers for which a term of the form Z2 appears, the
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Fig. 7.34 Mass scattering

power for electrons in carbon

as a function of electron

kinetic energy calculated

using unscreened and

screened potentials and

neglecting spin

Table 7.1 Values of the coefficients c2k and d2k

k c2k d2k

1 2.78 � 10�2 8.30 � 10�2

2 �1.94 � 10�3 �3.71 � 10�3

3 1.46 � 10�4 2.65 � 10�4

4 �1.17 � 10�5 �2.12 � 10�5

5 9.70 � 10�7 1.78 � 10�6

6 �8.32 � 10�8 �1.55 � 10�7

7 7.31 � 10�9 1.37 � 10�8
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scattering has been calculated from an infinitely-

massive point scattering center with charge Ze. This is

a reasonable approximation, in most cases, from the

nucleus. However, for an atomic scattering center

made up from a nucleus with charge Ze and Z electrons,

an accounting of the contributions of the atomic elec-

trons to the mass scattering power is required. This

inclusion of the Møller scatter is most frequently per-

formed by assuming that it is coherent with the nuclear

Rutherford/Mott results derived previously. This

assumptions leads to the approximation in which the

Z2 term is replaced by Z(Z þ 1), resulting in an increase

in our previously-calculated mass scattering powers for

carbon and lead by 16.7 and 1.2%, respectively.

7.5.2.4 Specific Electron Multiple Scattering

Theories

Introduction

Although a considerable number of multiple scatter-

ing theories of varying complexity and utility have

been developed, in this subsection, the review of

such theories are limited to two – those of Goudsmit

and Saunderson (1940) and Molière (1947, 1948),

which are two of the more popular theories

employed in Monte Carlo simulations of charged

particle transport.

Goudsmit–Saunderson Theory

Goudsmit and Saunderson (1940) derived a multiple

scatter pdf using multiple independent Coulomb single

scatters and the addition theorem of spherical harmo-

nics. The scattering angle is assumed to be small so

that the electron’s pathlength is equal to the thickness

of the scatterer (in other words, the result is strictly

valid only for thin foils or short discrete steps in a

Monte Carlo simulation) and collisions resulting in

energy loss are neglected. The theory does have the

advantage in that any underlying single scattering

differential cross section can be used. The derivation

begins by defining the normalized single scatter angular

distribution,

f1 yð Þ ¼
ds
dO yð ÞÐ
dO ds

dO yð Þ : (7.497)

The subscript “1” refers to a single Coulomb scatter

and axial symmetry is assumed, which is valid for

spherically symmetric atomic scattering centers or

randomly-oriented molecules. In order to calculate

the distribution for n > 1 scatters the distribution is

first expanded as a weighted series of Legendre poly-

nomials,

f1 yð Þ ¼ 1

4p

X1
l¼0

2lþ 1ð ÞFl Pl cos yð Þ: (7.498)

The coefficients are given by,

Fl ¼
ð
dO f1 yð ÞPl cos yð Þ

¼ Pl cos yð Þ:
(7.499)

The single scatter angular distribution can now be

written in the form,

f1 yð Þ¼ 1

4p

X1
l¼0

2lþ1ð Þ Pl cosyð Þ
h i

Pl cosyð Þ: (7.500)

In order to evaluate the coefficients of the expan-

sion for n > 1 scatters, the addition property of spher-

ical harmonics when written in terms of associated

Legendre polynomials is used. Let the electron be

first scattered through an angle of deflection y1 with

a corresponding azimuthal angle f1. It then undergoes

a second scatter through the corresponding angles

(y2,f2). The total scattering angle is thus y1 þ y2 and
the addition property of spherical harmonics gives,

Pl cos y1 þ y2ð Þð Þ ¼ Pl cos y1ð ÞPl cos y2ð Þ

þ
Xl
m¼�l

Pml cos y1ð Þ

� Pml cos y2ð Þsin m f2 � f1ð Þð Þ:
(7.501)

Averaging both sides leads to,

Pl cos y1 þ y2ð Þð Þ ¼ Pl cos y1ð ÞPl cos y2ð Þ: (7.502)

The generalization of this result for n scatters is,

Pl cos nyð Þð Þ ¼ Pl cos y1ð Þ
h i

n: (7.503)
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Applying this to (7.500), one obtains the angular

distribution following n scatters,

fn yð Þ¼ 1

4p

X1
l¼0

2lþ1ð Þ Pl cosyð Þ
h i

nPl cosyð Þ: (7.504)

Consider the combination of a pathlength t and a

mean free path between elastic collisions l. The mean

number of collisions is given by t=lð Þ and the proba-

bility that an electron will undergo n collisions while

traversing t is Poisson distributed,

p n; tð Þ ¼
e�ðt=lÞ t

l

� �n
n!

: (7.505)

The probabilities of electron elastic scatter for

n ¼ 0, 1, and 2 scatters are provided in Fig. 7.35 as

functions of the ratio of the pathlength to the elastic

scatter mean free path. In order to calculate the angular

distribution of the electrons exiting the foil, one must

sum over the probabilities of all possible collisions,

fGS y; tð Þ¼
X1
n¼0

p n; tð Þfn yð Þ

¼ 1

4p

X1
n¼0

e� t=lð Þ t=l
	 
n
n!

�
X1
l¼0

ð2lþ1Þ Pl cosyð Þ
h in

Pl cosyð Þ

¼ 1

4p

X1
l¼0

2lþ1ð ÞPl cosyð Þe� t=lð Þ

�
X1
n¼0

t=l
	 
n
n!

Pl cosyð Þ
h in

¼ 1

4p

X1
l¼0

2lþ1ð Þe� t=lð Þ e� t=lð ÞPl cosyð ÞPl cosyð Þ

� 1

4p

X1
l¼0

2lþ1ð Þe�tGlPl cosyð Þ ð7:506Þ

where the series expansion of ex has been used and the

coefficient,

Gl ¼ 1� Pl cos yð Þ
l

(7.507)

has been defined. This is referred to as the l th-order

transport coefficient, as will be made evident shortly.

As P0 cos yð Þ ¼ 1 then e�tG0 ¼ 1 and the zeroth-

order term of the expansion fGS(y;t) is 1=4p. As

Pl(cosy) decreases with increasing l due to the growing
oscillatory nature of the Legendre polynomial,

the e�tGl term will tend to e� t=lÞð for increasing l.

fGS(y;t) is forward peaked for small foil thickness

t values but, as t!1 only the l ¼ 0 term contributes

to the pdf and fGS(y;t)!1=4p. Hence, as expected and
because energy loss is ignored, the angular distribution

becomes isotropic.

Now look at the first-order transport coefficient,

G1 ¼ 1

l
1� P1 cos yð Þ
� �

¼ 1

l

ð
dO f1 yð Þ 1� cos yð Þ:

(7.508)

Recalling the definition of the mean free path

between collisions given by (7.7), this result is rewrit-

ten as,

G1 ¼ rNA

A

ð
dO

ds
dO

yð Þ 1� cos yð Þ: (7.509)

Invoking the small-angle approximation,

1� cos y ¼ 2sin2 y=2ð Þ � y2=2 (which is justifiable

in this application as the differential cross section is

highly forward-peaked),

G1 ¼ rNA

2A

ð
dO

ds
dO

yð Þy2

¼ =
2

(7.510)
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Fig. 7.35 The probability of electron elastic scatter for n ¼ 0,1

and 2 scatters as a function of the ratio of the pathlength t to the

elastic scatter mean free path
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which, of course, is proportional to the linear scatter-

ing power.

It will be noted that the Goudsmit–Saunderson pdf

is exact in that the single scatter differential cross

section appears within the transport coefficient.

Hence, these coefficients need only be calculated.

Goudsmit and Saunderson provide examples of such

calculations for analytical forms of the single scatter

differential cross section and a series approximation of

the Legendre polynomials. The number of terms

required in the summation over l to achieve conver-

gence in the calculation of fGS(y;t) will increase as the
pathlength t decreases due to the e�tGl term. It is

possible to improve the convergence of the calculation

for small pathlengths by isolating the contributions

from unscattered electrons.

Molière Theory

The Goudsmit–Saunderson result provides the elec-

tron multiple scatter pdf as the weighted summation

of Legendre polynomials where the underlying single

scatter theory is incorporated through the mean free

pathlength between elastic collisions and the averaged

Legendre polynomial. The Molière multiple scattering

theory (Molière 1947, 1948) evolved from consider-

ation of consecutive scatters which, in practice, is the

solution of the transport equation. Like the previous

theory, the result of Molière’s theory is both indepen-

dent of an individual form of the single scatter cross

section and neglects energy loss. On the other hand,

the single scatter cross section is input to the Molière

theory through only a single parameter, the Molière

screening angle, wa0. The shape of the multiple scatter

pdf is dependent upon a single parameter, b, which is

primarily a function of the areal thickness of the

medium the particle is traversing and is largely depen-

dent upon the medium’s atomic number for most

media of dosimetric interest.

Molière’s result is derived here using Bethe’s

(1953) approach, which is mathematically more trans-

parent than the original, and incorporating further

improvements suggested by Andreo et al. (1993).23

Again, because of the y�4 dependence of the scattering

cross section and its consequently being forward

peaked, the derivation is simplified using the small-

angle approximation. Consider a monodirectional

beam of electrons incident to a medium of physical

density r, atomic number24 Z, and atomic mass A. The

number of scattering centers per unit volume is given

by rNA=A. w is the scattering angle after a single

scatter and y is the cumulative scattering angle after

multiple scatters an electron undergoes traversing a

finite thickness of medium. fM(y;t)ydy is the number

of scattered electrons in the angular interval dy fol-

lowing traveling a distance t of the medium. By equat-

ing the multiple scattering problem to the diffusion of

electrons in the scattering plane, the electron transport

equation is, for the scattering pdf,

]f y; sð Þ
]s

¼ r
NA

A

� � ð
dw f û0; s
� � ds wð Þ

dw

� f y; sð Þ
ð
dX w

ds wð Þ
dw

! (7.511)

where û0 ¼ û� X̂ is the direction vector of the elec-

tron prior to the last scatter at t and dX ¼ w dw df=2p
where f is the azimuthal angle of w in the prescatter-

ing plane of the electron. Defining the transforms,

fM y; tð Þ ¼
ð1

0

dZZ J0 Zyð Þg Z; tð Þ (7.512)

and

g Z; tð Þ ¼
ð1

0

dy y J0 Zyð Þf y; tð Þ (7.513)

and applying them to the transport equation gives,

]g Z; tð Þ
]t

¼ �g Z; tð Þ r
NA

A

� �

�
ð1

0

dw w 1� J0 Zwð Þð Þ ds
dw

: (7.514)

23Fernández-Varea et al. (1993) have provided an additional and

shorter derivation of the theory beginning with the Goudsmit–

Saunderson result.

24Unlike Molière, Bethe included the contributions of the

atomic electrons and assumed these to be coherent so that Z is

replaced by Z(Z þ 1). This is repeated here.
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The solution to this equation is,

g Z; tð Þ ¼ e O Z;tð Þ�O0ð Þ (7.515)

where

O Z; tð Þ ¼ r
NA

A

� �
t

ð1

0

dw w
ds
dw

J0 Zwð Þ: (7.516)

Note that, as J0(0) ¼ 1, the parameter

O0 ¼ O 0; tð Þ

¼ r
NA

A

� �
t

ð1

0

dw w
ds
dw

(7.517)

is equal to the total number of collisions occurring

along the pathlength t. One then obtains an expression

for the Molière multiple scattering pdf,

fM y; tð Þ ¼
ð1

0

dZZ J0 Zyð Þ

� exp �r
NA

A

� �
t

ð1

0

dw w
ds
dw

1� J0 Zwð Þð Þ
2
4

3
5:

(7.518)

Because of the explicit inclusion of the scattering

differential cross section in this expression, it is appar-

ent that, as with the Goudsmit–Saunderson theory, the

multiple scattering pdf will not be restricted to a par-

ticular single Coulomb scatter theory.

A simpler form of the Molière pdf can be obtained

by taking advantage of the fact that the elastic single

scatter differential cross section is proportional to y�4,

becoming complicated only (as shown in Fig. 7.2)

when the scattering angle is of the order of, or less

than, the screening angle. Using Bethe as a guide,

fM(y;t) is calculated using the unscreened Rutherford

cross section beginning with evaluating the ratio of the

actual to Rutherford cross section,

q wð Þ ¼ dsAct=dw
	 

dsRuth=dw
� � (7.519)

where the axial symmetry of the Coulomb interaction

is noted. The subscript Act identifies the actual cross

section. For the unscreened Rutherford cross section,

q wð Þ ¼ r
NA

A

� �
t

w4

2w2cðtÞ
� �

dsAct

dw
(7.520)

where the unit-probability angle wc is defined by,

w2cðtÞ ¼ r
NA

A

� �
t

a�hc
pb

� �2

Z Zþ 1ð Þ: (7.521)

TheMolière angle wc has the physical interpretation
of being the angle beyond which the probability of a

single elastic scatter occurring is equal to unity; it is

plotted as a function of electron kinetic energy in

1 mm carbon in Fig. 7.36.

q(w) has properties that will prove useful in the deri-
vation. Clearly, q(w) ! 0 as w ! 0 due to the w�4

dependence of the unscreened cross section. By exten-

sion, as the screened and unscreened cross sections

converge for large scattering angles, q(w) ! 1 as w !
1 (again, for calculational purposes, the maximum

scattering angle is set to infinity and advantage is taken

of the sharp forward-angle peak of the single scatter

cross section). As suggested by Figs. 7.2 and 7.3, the

most rapid change in q(w) occurs for w � 0. The next

step of the derivation is to return to (7.512) and, by

taking logarithms of (7.515) and using (7.516), obtain,

� ln g Z; tð Þ ¼ O0 � O Zð Þ

¼ r
NA

A

� �
t

ð1

0

dw w 1� J0 Zwð Þð Þ dsAct

dO

¼ 2w2cðtÞ
ð1

0

dw w
1� J0 Zwð Þð Þ

w3
q wð Þ

(7.522)
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Fig. 7.36 Molière angle wc for carbon (Z ¼ 6, A ¼ 12, r ¼
2 g/cm3, t ¼ 0.1 cm) as a function of electron kinetic energy
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As q(w) < 1 for w � w0 where w � wc, the integral
can be split by defining an intermediate angle w0 �
wS � wc, for which q(w) can be set equal to unity for

scattering angles greater than wS,

ð1

0

dww
1�J0 Zwð Þð Þ

w3
q wð Þ

¼
ðws
0

dww
1�J0 Zwð Þð Þ

w3
q wð Þþ

ð1

ws

dww
1�J0 Zwð Þð Þ

w3
q wð Þ

ffi
ðws
0

dww
1�J0 Zwð Þð Þ

w3
q wð Þþ

ð1

ws

dww
1�J0 Zwð Þð Þ

w3

� I1 Z;wsð Þþ I2 Z;wsð Þ: ð7:523Þ

The first integral is solved by the change of vari-

able x ¼ Zws and using the small-argument approxi-

mation of the Bessel function (as Zws is small),

J0ðxÞ � 1� x=2ð Þ2,

I1 Z; wsð Þ ¼ Z2

4

ðws
0

dw
q wð Þ
w

: (7.524)

The second integral is,

I2 Z; wsð Þ ¼
ð1

ws

dw
1� J0 Zwð Þð Þ

w3

¼
ð1

ws

dw
w3

�
ð1

ws

dw
J0 Zwð Þ
w3

¼ 1

2w2s
� I3 Z; wsð Þ:

(7.525)

The indefinite form of the integral I3(Z;ws) can be

expressed in terms of the Meijer G function, but here

Bethe’s approach of straightforward, but tedious,

sequential integrations by parts and ignoring terms of

order (Zws)
2 is followed. Beginning with the change of

variable, x ¼ Zws, the integral is rewritten as,

I3 Z; wSð Þ ¼ Z2

ð1

ZwS

dx
J0ðxÞ
x3

(7.526)

where the integral is,

ð1

Zws

dx
J0ðxÞ
x3

¼
ð1

Zws

dr s

¼ s rj 1
Zws

�
ð1

Zws

ds r

(7.527)

where

s � J0ðxÞ ds ¼ �dx J1ðxÞ

dr � dx

x3
r � � 1

2x2

to give

ð1

Zws

dx
J0ðxÞ
x3

¼ J0 Zwsð Þ
2 Zwsð Þ2 �

1

2

ð1

Zws

dx
J1ðxÞ
x2

¼ J0 Zwsð Þ
2 Zwsð Þ2 �

1

2
I4 Z; tð Þ:

(7.528)

This new integral is also solved by parts,

I4 Z; tð Þ ¼
ð1

Zws

dx
J1ðxÞ
x2

¼ s rj 1
Zws

�
ð1

Zws

ds r

(7.529)

where

s � J1ðxÞ ds ¼ dx J0ðxÞ � J1ðxÞ
x

� �

dr � dx

x2
r � � 1

x
:

Then,

I4 Z; tð Þ ¼ J1 Zwsð Þ
Zws

þ
ð1

Zws

dx
J0ðxÞ
x

� I4 Z; tð Þ

¼ 1

2

J1 Zwsð Þ
Zws

þ
ð1

Zyw

dx
J0ðxÞ
x

0
B@

1
CA:

(7.530)
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This result is simplified by using the small-

argument approximation, J1ðxÞ ffi x=2, and the solu-

tion to the definite integral
Ð1
t

dx
J0ðxÞ
x

¼ Ðt
0

dx
1�J0ðxÞ

x

�gEM � ln t
2
,

I4 Z; tð Þ ¼ 1

2

1

2
� gEM � ln

Zws
2

� �
þO Zwsð Þ2

� �
:

(7.531)

Terms of order Zwsð Þ2 are neglected. Working

backwards,

I3 Z; wSð Þ ¼ Z2

2

J0 Zwsð Þ
Zwsð Þ2 � Z2

4

1

2
� gEM � ln

Zws
2

� �
:

(7.532)

Using the small-argument form of J0 Zwsð Þ, one

then arrives at,

I2 Z; wSð Þ ¼ 1

2w2s
� I3 Z; wsð Þ

¼ Z2

4
1� gEM � ln

Zws
2

� � (7.533)

One can now return to the original integral to give,

ð1

0

dw w
1� J0 Zwð Þð Þ

w3
q wð Þ

¼ Z2

4

ðws
0

dw
q wð Þ
w

þ1� gEM � lnZ� ln ws þ ln 2

0
@

1
A:

(7.534)

Molière next defined a characteristic screening

angle,

� ln wa ¼ lim

ws ! 1
ðws
0

dw
q wð Þ
w

þ 1

2
� ln ws

0
@

1
A

allowing (7.534) to be written in the much simpler

form,

ð1

0

dw w
1� J0 Zwð Þð Þ

w3
q wð Þ

¼ Z2

4

1

2
� gEM � lnZwa þ ln 2

� �
(7.535)

Then, the exponent of (7.515) can be written as,

O0 � O Zð Þ ¼ Zwcð Þ2
2

1

2
� gEM � lnZwa þ ln 2

� �
:

(7.536)

In order to simplify the integral fM y; tð Þ ¼Ð1
0

dZZ J0 Zð Þe� O0�O Z;tð Þð Þ, Molière further defined the

quantity,

b ¼ ln
wc
wa

� �2

þ 1� 2gEM

� ln
wc
wa0

� �2
(7.537)

where the modified characteristic scattering angle is,

wa
0 ¼ wa e

gEM�1=2

� 1:08 wa
(7.538)

leading to a simpler expression,

b ¼ ln
w2c

1:167 w2a

� �
: (7.539)

Using the change of variable y ¼ Zwc, (7.536) is
recast as,25

O0 � O Z; tð Þ ¼ y2

4
b� 2 ln

y

2

� �
: (7.540)

Finally, by writing l ¼ y=wc, one at last obtains the
transformed form of Molière’s pdf,

fM yð Þy dy ¼ l dl
ð1

0

dy y J0 l yð Þ

� exp
y

2

� �2
2 ln

y

2

� �
� b

� �� �
:

(7.541)

It is necessary to modify the upper limit of

this integration as the exponent goes to infinity for

y!1, as shown in Fig. 7.37 for b ¼ 3. The exponent

25Molière achieved this result using an expansion of Hankel

functions.
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has a minimum at y ¼ 2eðb�1Þ=2, which is a conse-

quence of the specified inequality w0 � ws � wc. The
upper limit of the integral is set to this minimum and

the transformed Molière pdf is written as,

fM yð Þy dy ¼ l dl
ð2eðb�1Þ=2

0

dy y J0 l yð Þ

� exp
y

2

� �2
2 ln

y

2

� �
� b

� �� �
:

(7.542)

This truncation of the integration limit will have a

negligible effect as eb � wc=wað Þ2 which is of the order
of the total number of collisions in the pathlength

considered. As the mean free pathlength between elas-

tic collisions is small, this truncation of the integration

is allowed.

Molière solved for the angular pdf by first defining

a variable B through the transcendental equation,

B� lnB ¼ b: (7.543)

Approximations to B have since been given by

Scott (1963),

B ¼ 1:153þ 2:583 log10
wc
wa

� �2

(7.544)

and Tabata and Ito (1976),

B ¼ 2:6þ 2:3863 log10
wc
wa

� �2

� 3:234

log10
wc
wa

� �2
þ 0:994

(7.545)

(the value of B typically ranges from between 5

and 20). To complete the derivation, Molière defined

the reduced angle,

W ¼ l
B

¼ y

wc
ffiffiffiffi
B

p :
(7.546)

The integration variable of the multiple scatter pdf

is then changed to,

u ¼ y
ffiffiffiffi
B

p
(7.547)

and the pdf then expanded in a power series in B�1,

fM yð Þy dy ¼ W dW
X1
n¼0

f
ðnÞ
M Wð ÞB�n (7.548)

where the coefficients of the expansion are,

f
ðnÞ
M Wð Þ¼ 1

n!

ð2eðb�1Þ=2:

du uJ0ðuÞ u2

4
ln
u2

4

� �n

exp �u2

4

� �
:

(7.549)

The zeroth-order coefficient can be calculated from

the following property of integer-order Bessel func-

tions,

ð1

0

dt tnþ1 e�a2t2 Jn btð Þ ¼ bn

2a2ð Þnþ1
e�b2=4a2 ; Re a2 > 0

(7.550)

to give,

f
ð0Þ
M Wð Þ ¼

ð1
du u J0ðuÞ exp � u2

4

� �
¼ 2e�W2 (7.551)

where the upper limit of the integral has been allowed

to go to infinity due to the e�u2=4 term in the integrand.

Clearly, this first term corresponds to a Gaussian mul-

tiple scattering pdf. Whereas Molière provided an

analytical representation of fð1Þ Wð Þ which was propor-

tional to W�4 for large W, Bethe reported that he was

only able to find numerical solutions to fðnÞ Wð Þ for
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Fig. 7.37 Exponent in the transformed expression of the

Molière pdf for b ¼ 3
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n � 2. Values of fð0Þ Wð Þ, fð1Þ Wð Þ; and fð2Þ Wð Þ are plot-
ted as functions of W in Fig. 7.38. For, W< 2 fð0Þ Wð Þ
dominates and the multiple scattering pdf is Gaussian

for small scattering angles. The fð0Þ Wð Þ term decreases

exponentially such that at larger values of W, the

fð1Þ Wð Þ term dominates and, as it is proportional to

W�4 for large W, it goes over into the Rutherford single

scatter angular distribution.

One would expect from the expansion of (7.548)

that the accuracy of the pdf would increase with the

inclusion of an increasing number of terms. This is not

the case due mainly to the omission of electron intrin-

sic spin and relativity, the effects of which grow at

large single scattering angles. Andreo et al. (1993)

have exhaustively studied the limitations to the

Molière theory.

Now return to the transformed Molière result. In

the Molière theory, the scatter is described by the

characteristic screening angle and that the final

angular distribution is a function of the ratio of this

screening angle to the unit-probability scattering

angle. The single scatter differential cross section

enters the theory through the ratio of differential

cross sections, q(w). Molière provided a result for

the Thomas–Fermi atom and Fernández-Varea et al.

(1993) did so for the Yukawa-type screening.

Molière’s form is,

w2a ¼ 1:13þ 3:76 Z
a
b

� �2

: (7.552)

The second term in the series accounts for deviation

from the Born approximation. From the definition of b,

for an electron of speed bc in a medium with atomic

number Z and atomic mass number A and physical

density r,

eb ¼ w2c
w0a2

¼ 6680

b2
rt

Z1=3 Zþ 1ð Þ
A 1þ 3:34 Z a

b

� �2� � (7.553)

where rt is the pathlength given in units of cm2=g.

Bethe showed that the Z-dependence does not deviate

from unity by more than about �30% for Z ranging

from 1 (for deuterium) to 92 (uranium), an observation

that indicates that the number of collisions per

square centimeter/gram is reasonably constant for all

elements.
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Fig. 7.38 The coefficients

f(0)(W), f(1)(W), and f(2)( W) of
the Molière expansion of the

multiple scattering probability

distribution function as

functions of the reduced

scattering angle W
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7.6 Bremsstrahlung

7.6.1 Introduction

Throughout this chapter, only the elastic scatter and

the collision energy losses of a charged particle

moving through a medium have been considered.

Attention is now turned to radiative energy losses

through which a charged particle is deflected by the

nuclear Coulomb field and emits a photon as a result

(bremsstrahlung).
In this section, discussions will be limited to those

of the radiative energy losses of electron and positron

projectiles with kinetic energies of the order of a few

MeV or less in low-Z media representative of tissue26

and omit a derivation of electron–electron brems-

strahlung as it is not a significant phenomenon at the

energies of interest here.27 Hence, only the brems-

strahlung resulting from electron-atom interactions

is considered (i.e., the atom is treated as a nuclear

Coulomb field screened by the atomic electrons).

Detailed elucidations of bremsstrahlung may be

found in Koch and Motz (1959), Heitler (1984), Pratt

et al. (1977), and Haug and Nakel (2004). Numerical

data are also available from ICRU Publication 37

(1984) and Berger and Seltzer (1983).

7.6.2 Classical Electron-Atom
Bremsstrahlung Theory

7.6.2.1 Introduction

While the exact understanding of electron-atom

bremsstrahlung requires a quantum-mechanical treat-

ment, classical theory proves useful despite some

fundamental differences. For example, classical the-

ory demonstrates that a charged particle will radiate

electromagnetic energy only when accelerated, but

also states that this emission will occur at any time

the particle is accelerated. On the other hand, the

quantum-mechanical result shows that there can

only be a finite probability that radiation occurs.

Classical bremsstrahlung theory also fails to repro-

duce the cutoff of radiation at high frequency

(corresponding to the full stopping of the moving

charged particle and the complete transfer of its

kinetic energy to radiation, neglecting nuclear recoil).

In other words, in the classical theory the Fourier

transforms of the time-dependent field strengths

extend to infinite frequency. Nevertheless, a review

of the classical bremsstrahlung theory is a useful

foundation to the full quantum-mechanical develop-

ment of the phenomenon.

7.6.2.2 Liénhard–Wiechert Retarded Potentials

In order to demonstrate that electromagnetic energy

is radiated by an electron only when accelerated,

one begins with the derivation of the Liénhard–

Wiechert retarded potentials. Consider an electron

moving in vacuo along the trajectory r(t) parametric

in time t as shown in Fig. 7.39. It is desired to

determine the electromagnetic field at point P

(with position vector x) associated with the electron

at time t. At this time t, the electron will be at point

A with position vector r(t). However, due to the

finite propagation time of the radiation, the field at

P at time t will be that due to the radiation emitted

at the earlier time t0 when the electron was at point

A0 with position vector r(t0). The time taken for the

radiation to travel from point A to point P is equal

to x� r t0ð Þj j=c and the retarded time is the differ-

ence between this time and that when the radiation

is observed at point P,

26This limitation is reasonable for nuclear medicine purposes as

the maximum electron energy resulting from the Compton scat-

ter of a 511 keV photon is 340 keV for a backscattered photon

and the maximum b� kinetic energies of isotopes typical of

clinical nuclear medicine interest are below a couple of MeV.
27There are two classical arguments that will allow electron-

electron bremsstrahlung to be neglected. On the simplest level,

in the dipole approximation, the energy radiated away by an

accelerated charged particle is proportional to the dipole

moment. As the dipole moment is also proportional to the

center-of-mass (which is stationary of particles of identical

mass), our first approximation is that electron-electron brems-
strahlung will be zero. One can also think of the accelerations of
an electron projectile and electron target resulting in electro-

magnetic radiations of equal magnitude but opposite phase

resulting in cancellation.
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t0 ¼ t� x� r t0ð Þj j
c

� t� R t0ð Þj j
c

¼ t� R t0ð Þ
c

(7.554)

where the vector R(t0) has been defined. The unit

vector directed along R(t0) is

n̂ t0ð Þ ¼ R t0ð Þ
R t0ð Þ : (7.555)

To enable the calculation of the electromagnetic

field at P, return to first principles, neglect retardation

and replace the single moving electron with a uni-

formly moving current density as shown in Fig. 7.40.

The resulting vector and scalar potentials at P will be,

A xð Þ ¼ m0
4p

ð
d3r0

J r0ð Þ
R

(7.556)

and

F rð Þ ¼ 1

4pe0

ð
d3r0

r r0ð Þ
R

(7.557)

where J(r0) and r(r0) are the current and charge densities,
respectively, and the integration is over a small volume

element as shown. If the current and charge are allowed to

vary with time and a finite propagation time is accounted

for, these potentials can be rewritten in the forms,

A x; tð Þ ¼ m0
4p

ð
d3r

J r; t� R
c

	 

R

(7.558)

F x; tð Þ ¼ 1

4pe0

ð
d3r

r r; t� R
c

	 

R

(7.559)

Having derived these potentials, return now to the

example of a moving electron for which the potentials

are evaluated following the approach of Feynman

et al. (1963). First, the charge distribution is replaced

with a cube of side dimension L moving towards the

point P (i.e., n̂ ¼ b) and it assumed that L � R. The

integral of (7.559) is replaced by the finite summation,ð
d3r0

r r0; t� R
c

	 

R

ffi rL2DL
XN
i¼1

1

ri
(7.560)

where the cube has been divided into N elements of

thickness DL and ri is the distance from the ith element

to R. This summation is,

rL2DL
XN
i¼1

1

ri
¼ rL2DL

XN
i¼1

1

reff

¼ rL3

reff

NDL
L

¼ rL3

reff

Leff

L

(7.561)

r(t′)

r(t)

r

R (t′) = x − r (t′)

A′

A
X

o
P

Electron trajectory

n̂

Fig. 7.39 Trajectory of a moving electron for calculation of the

Liénhard–Wiechert retarded potentials

R = x − r′

r′

d3r′

J

X

P
o

Fig. 7.40 Replacement of the single moving electron with an

electric current density

300 7 Charged Particle Interactions with Matter



where reff is the effective distance from the volume

elements to P and Leff is the length of the volume

traversed by the moving cube over a time Dt, or,

Leff ¼ L

1� b
: (7.562)

As rL3 is the total charge (taken to be equal to e for

an electron),

1

4p e0

ð
d3r0

r r0; t� R=c
	 


R

¼ e

4p e0

1

R t0ð Þ 1� b t0ð Þð Þ : (7.563)

Hence, the potentials can be written as,

F x; tð Þ ¼ e

4pe0

1

R 1� n̂ � b̂
� �

8<
:

9=
;

t0

(7.564)

and

A x; tð Þ ¼ e

4pe0c
b̂

R 1� n̂ � b̂
� �

8<
:

9=
;

t0

: (7.565)

Note that the x and t dependencies implicitly arise

through the definition of the retarded time and that the

use of brackets with the subscript t has been introduced

in order to signify that the quantities within the brackets

are to be evaluated at the retarded time, t0. b̂ is the

electron velocity normalized to the speed of light (as

b  1, the normalized velocity is written as a unit

vector for convenience) and the scalar product n̂ � b̂
is that component of the normalized electron velocity

directed towards the detection point, P. Equations

(7.564) and (7.565) are the Liénhard–Wiechert retarded

potentials which are used to evaluate the radiation field

at point P. However, before doing so, that derivation is

anticipated by highlighting two features of the results

provided of the vector and scalar potentials:

� As both potentials decrease as 1=R, the resulting

fields otherwise fall as 1=R2 leading to a net zero

electromagnetic energy flow flux for R!1. How-

ever, recalling that the retarded time has an explicit

R-dependence, this leads to a net 1=R dependence

upon differentiation. Hence, retardation is neces-

sary in order to allow for the radiation of electro-

magnetic energy at a distance.

� The 1� n̂ � b̂
� �

term in the denominators of the

expressions of the potentials predicts “geometric

beaming” as b ! 1 with the field reaching a maxi-

mum along the direction of travel at high electron

speeds.

7.6.2.3 Radiation Emission

Electromagnetic Fields at a Distance

The electric field strength is calculated from the poten-

tials through E ¼ �rF� ]A=]t (Jackson 1999). The

differential with respect to the time t is found by

differentiating the expression for R(t0),

R t0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� r t0ð Þð Þ � x� r t0ð Þð Þ

p
¼ c t� t0ð Þ (7.566)

to give,

]R t0ð Þ
]t

¼ c 1� ]t0

]t

� �
: (7.567)

Applying the chain rule,

]R t0ð Þ
]t

¼ ]R t0ð Þ
]t0

]t0

]t

¼ � ]r t0ð Þ
]t0

]t0

]t

¼ �c n̂ � b̂
n o

t0

]t0

]t
:

(7.568)

Equating these two results gives,

c 1� ]t0

]t

� �
¼ �c n̂ � b̂

n o
t0

]t0

]t

leading to,

]t0

]t
¼ 1

1� n̂ � b̂

� �
t0

(7.569)

which is then used to write the differential with respect

to t,

]

]t
¼ ]t0

]t

]

]t0

¼ 1

1� n̂ � b̂

� �
t0

]

]t0
:

(7.570)
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The gradient operator r is evaluated by first separ-

ating it into spatial and time components,

r ¼ rx þrt0 (7.571)

where the first component refers to differentiation with

respect to the observation point position vector (dis-

regarding any retardation effects) and the second term

accounts for retardation. This latter term is

rt0 ¼ rt0 ]
]t0 where,

rt0 ¼ � 1

c
rR t0ð Þ

¼ � 1

c
n̂þ ]R t0ð Þ

]t0
rt0

� �

¼ � 1

c
n̂� n̂ � b̂c

� �
rt0

� �
:

(7.572)

Solving for rt0 gives,

rt0 ¼ � 1

c

1

1� n̂ � b̂

� �
t0

(7.573)

which leads to the expression for the gradient operator,

r ¼ rx � 1

c

n̂

1� n̂ � b̂

� �
t0

]

]t0
: (7.574)

Having established these operators, one can now

evaluate the electric and magnetic fields,

E x; tð Þ ¼ �rF� ]A=]t

¼ � rx � 1

c

n̂

1� n̂ � b̂

� �
t0

]

]t0

 !
F x; tð Þ

� 1

1� n̂ � b̂

� �
t0

]A x; tð Þ
]t0

¼ �rxF x; tð Þ þ 1

c

n̂

1� n̂ � b̂

� �
t0

]F x; tð Þ
]t0

� 1

1� n̂ � b̂

� �
t0

]A x; tð Þ
]t0

¼ e

4pe0
�rx

1

R

1

1� n̂ � b̂
� �

8<
:

9=
;

t0

0
B@

þ 1

c

n̂

1� n̂ � b̂

� �
t0

]

]t0
1

R

1

1� n̂ � b̂
� �

8<
:

9=
;

t0

� 1

c

1

1� n̂ � b̂

� �
t0

]

]t0
1

R

b̂

1� n̂ � b̂
� �

8<
:

9=
;

t0

1
CA

¼ e

4pe0

1� b2
	 


n̂� b̂
� �

1� n̂ � b̂
� �3

R2

8><
>:

þ 1

c

n̂� n̂� b̂
� �

� _̂
b

� �

1� n̂ � b̂
� �3

R

9>=
>;

t0

ð7:575Þ

where, in order to simplify the expression, an over-

lying dot is used to indicate differentiation with

time. The magnetic field strength follows from

B ¼ r � A.

Consider the above expression for the electric field

strength. The first term on the right-hand side is pro-

portional to 1=R2 and the particle’s velocity and is the

Coulomb field for a uniformly moving electric charge.

As the resulting radiated power is proportional to Ej j2,
the power will drop off as 1=R and can be neglected as

the energy flow per unit area will simply go to zero at

infinity as a result. On the other hand, the second term

is proportional to 1=R and the particle’s acceleration.

Because of the latter feature, the energy flow per unit

area will thus remain finite as R ! 1. This second

term is the radiation field of an accelerating electric

charge (which only arises because of retardation).

Having recognized this, isolate the electric and mag-

netic radiation fields accordingly,

Erad x;tð Þ¼ e

4pe0c

n̂� n̂� b̂
� �

� _̂
b

� �

1� n̂� b̂
� �3

R

8><
>:

9>=
>;

t0

(7.576)

Brad x; tð Þ ¼ n̂� Erad x; tð Þ
c

(7.577)

Radiated Power: Larmor Formula

The radiated power is calculated using the Poynting

vector in the nonrelativistic case (i.e., b � 1) in which
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n̂� b̂Þ ! n̂ and

	
1� n̂ � b̂
3 ! 1. The radiative

electric field reduces to the simpler form,

Erad x; tð Þ ¼ e

4pe0c

n̂� n̂� _̂
b

� �
R

8<
:

9=
;

t0

;

b � 1:

(7.578)

The Poynting vector is,28

Prad ¼ Erad �H�
rad

¼ 1

m0
Erad � B�

rad

(7.579)

From (7.576) and (7.577),

Erad x; tð Þj j ¼ e

4pe0c

_b
R

sin y

( )
t0

(7.580)

and

Brad x; tð Þj j ¼ e

4pe0c2
_b
R

sin y

( )
t0

(7.581)

where y is the angle between the unit vectors n̂ and
_̂
b.

Inserting these results into the expression of the Poynt-

ing vector provides the magnitude of the radiated

power,

Prad ¼ e2

16p2e20m0c
3

_b
2

R2
sin2y

( )
t0

¼ a�h
4p

_b
2

R2
sin2y

( )
t0

(7.582)

where 1=e0m0 ¼ c2 has been used. This angular distri-

bution of (7.582) is clearly that of dipole radiation.

Energy is radiated with a maximum orthogonal to the

direction of travel and with none directed along the

acceleration vector. This pattern will, however, alter in

the laboratory frame-of-reference due to the Lorentz

transformation as the electron becomes relativistic. As

themagnitude of the Poynting vector is the electromag-

netic energy radiated per unit time and per unit area,

Pradj j ¼ d2E

R2dt dO
(7.583)

one can calculate the total instantaneous radiated

power from the accelerated charge,

dE

dt
¼
ð
dOR2 Pradj j

¼ a�h
2

_b
2

n o
t0

ðp

0

dy sin3y

¼ 2

3
a�h _b

2
n o

t0
:

(7.584)

This result is the Larmor formula for a nonelativis-

tic accelerated electron (with explicit recognition that

the acceleration is that of the electron at the time of

emission). Note that the radiated power is proportional

to the square of the particle’s acceleration at the time

of emission.

Classical Radiative Stopping Power

A classical expression of the radiative stopping power

(i.e., the energy loss due to bremsstrahlung per unit

length traveled) can now be derived. Assume that the

acceleration is due to a deflection of the electron at an

impact parameter b by a nucleus with charge Ze and

that the duration of this deflection, tDefl, is short. The
acceleration will be given by the ratio of the Coulomb

force experienced by the electron and its mass,

_b ¼ a�hc
me

� �
Zc

b2
: (7.585)

Inserting this expression for the normalized accel-

eration into the Larmor formula gives the radiated

power,

dE

dt
¼ 2

3
a�h _b

2
n o

t0

¼ 2

3
a�h

a�hc
me

� �2
Zcð Þ2
b4

¼ 2

3
a�hcð Þ3 Z2c

m2
eb

4
:

(7.586)

28As only the instantaneous power flow is being considered, the

1/2 multiplicative factor is excluded.
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As the duration of the interaction is approximately

tColl � b

bc
(7.587)

then the total radiated energy as a result of the deflec-

tion is,

DE � dE

dt
tColl

� 2

3
a�hcð Þ3 Z2

bm2
eb

3
:

(7.588)

This is the energy loss for a single interaction with a

nucleus. To calculate the radiative stopping power, it

is necessary to account for all of the nuclei that the

electron may interact with,

dE

r dx
¼ 2p

3
a�hcð Þ3 NAZ

2

A bm2
e

ðbmax

bmin

db

b2

¼ 4p
3

a�hcð Þ3 NAZ
2

A bm2
e

1

bmax

� 1

bmin

� �
:

(7.589)

Using the expressions for the minimum impact

parameter and the constant C of derived previously,

dE

r dx
¼ 2aC

3

Z2

A
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p (7.590)

This predicts that the mass radiative stopping

power increases to infinity with increasing electron

speed and increases with atomic number.

Angular Distribution of Radiation Emission

In evaluating the angular distribution and the fre-

quency spectrum of the radiation emission, the

approach described by Jackson (1999) will be approx-

imately followed, but with the use of SI units retained.

Recall that the derivations of the nonrelativistic Lar-

mor formula and subsequent radiative mass stopping

power were nonrelativistic and, hence, based upon the

assumption that b � 1. As a result, only the accelera-

tion _b appeared in the final expression of the radiated

power and the angular distribution was that of a dipole,

sin2y. As the electron’s speed increases, it can no

longer be ignored (in particular that of the effect of

“beaming” caused by the 1� n̂ � b̂
� �3

term in the

denominator). To evaluate the angular distribution,

recalculate the magnitude of the radial component of

the Poynting vector (i.e., along the direction of n̂)

without using the previous nonrelativistic approxima-

tion,

Prad � n̂ ¼ 1

m0
Erad � B�

rad

	 
 � n̂
¼ 1

m0
Erad � n̂� E�

rad

	 
	 
 � n̂

¼ e2

16p2e0c
1

R2

n̂� n̂� b̂
� �

� _̂
b

� �

1� n̂ � b̂
� �3

�������

�������

28><
>:

9>=
>;

t0

:

(7.591)

This scalar product is the detected power per unit

area at a distant point at time t of radiation that had

been emitted by the electron at the earlier time t0.
Assume that the acceleration of the electron at time

t0 resulting in the emission of radiation was due to an

interaction with a nucleus of atomic number Z over a

short finite time interval, tColl, and further approxi-

mate b̂ and
_̂
b as both being constant in magnitude and

direction. The energy radiated during a finite time

interval from t0 ¼ 0 to t0¼ tColl will be,

E ¼
ðtCollþ R tCollð Þ=cð Þ

R t¼0ð Þ=cð Þ

dtPrad � n̂

¼
ðtColl
0

dt0
dt

dt0
Prad � n̂

(7.592)

The quantity dt
dt0 Prad � n̂ð Þ is the radiated power

per unit area in terms of the electron’s time. This can

be used to give the power radiated per unit solid

angle as,

dE

dt0 dO
¼ R2 Prad � n̂ð Þ dt

dt0

¼ R2 Prad � n̂ð Þ 1� n̂ � b̂
n o

t0
:

(7.593)
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Substituting the expression for Prad � n̂,

dE

dt0dO
¼ e2

16p2e0c

n̂� n̂� b̂
� �

� _̂
b

� �

1� n̂� b̂
� �3

�������

�������

2

1� n̂� b̂
� �

8><
>:

9>=
>;

t0

¼ e2

16p2e0c

n̂� n̂� b̂
� �

� _̂
b

� ���� ���2

1� n̂� b̂
� �5

8><
>:

9>=
>;

t0

:

(7.594)

This provides the angular distribution of the radia-

tion emission provided that n̂ and R are reasonably

constant (a requirement equivalent to the measure-

ment point being at a sufficiently large distance from

the electron). Considering the case of b̂ and
_̂
b being

collinear and defining y as the angle between the

direction of b̂ and
_̂
b and the direction of emission,

then (7.594) reduces to,

dE

dt0 dO
¼ a�hc

4p
_b2

sin2y

1� b cos yð Þ5 (7.595)

For b � 1, this result returns the sin2y dependence
of the nonrelativistic Larmor formula but, because of

the (1�bcosy)5 term, the angular distribution becomes

highly forward peaked at high electron speeds. The

angle at which the radiation is at a maximum, ymax is,

ymax ¼ cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 15b2

p
� 1

3b
(7.596)

This maximum emission angle is shown as a func-

tion of the electron b in Fig. 7.41. At low electron

energies, the maximum emission angle is near to 90�

(reflecting the dipole radiation pattern in the laboratory

reference frame) but the radiation becomes focused

into a cone of decreasing angle with increasing b.

Spectrum of Radiation Emission

Nonrelativistic Case

The frequency (energy) spectrum of the radiated

energy of classical bremsstrahlung is now calculated

in the case of a nonrelativistic incident electron. Here,

the shape of the energy spectrum is taken to reflect the

shape of the impulse of the electron deflection. If one

assumes that the impulse has a duration given by,

tColl ¼ b=bc, then the corresponding frequency spec-

trum can be approximated as being uniform up to an

angular frequency of,

o � 1

tColl
� bc

b
: (7.597)

From this,

dE

do
� DE tColl

� 2

3c
a�hcð Þ3 Z2

b2m2
eb

2
:

(7.598)

The energy radiated per unit frequency and unit

areal density is obtained in the usual manner,

d2E

rdxdo

� �
Rad

¼ 2

3c

NA

A

� �
ah�cð Þ3 Z2

m2
eb

2

ðbmax

bmin

db2pb
1

b2

������
������

¼4p
3c

NA

A

� �
ah�cð Þ3 Z2

m2
eb

2

ðbmax

bmin

db

b

������
������

¼2

3
C

Z2

A

� �
r0

b2c
ln
bmax

bmin

:

(7.599)

To avoid the divergence problem, the lower limit of

the impact parameterization is modeled by,

bmin ¼ �hc

meb

b

q m
ax

(o )

0 0.25 0.50 0.75 1.00
0

15

30

45

60

75

90

Fig. 7.41 Angle of maximum bremsstrahlung for an electron

as a function of b
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and the upper limit can be taken to be the ratio of the

incident electron speed to the cutoff frequency (which

is necessary as the electron cannot emit infinite

energy). The ratio of impact parameters is,

bmax

bmin

¼ bc
o

meb
�hc

¼ b2me

�ho
:

For convenience, this will be written as,

bmax

bmin

¼ mev
2
0

�ho

where v0 is the incident electron speed and the electron

rest mass is now given in units of mass rather than

energy. This gives the expression for the radiated

energy spectrum per unit length traversed as,

d2E

r dx do

� �
Rad

¼ 2

3
C

Z2

A

� �
r0c

v20
ln
mev

2
0

�ho
: (7.600)

However, as the electron does lose kinetic energy

as a result of the radiative collision, it would be more

appropriate to replace the v0
2 term in the logarithm

with the square of the mean of the pre- and postdeflec-

tion speeds,

1

2

ffiffiffiffiffiffiffiffi
2T0

me

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 T0 � �hoð Þ

me

s !
;

where T0 is the incident electron kinetic energy and �ho
is the energy of the bremsstrahlung photon which will

be now denoted by the usual symbol, k. To change the

differential from frequency to photon energy, divide

through the above result with the reduced Planck’s

constant. Thus, one obtains a classical result for the

energy spectrum (the use of �h is only for convenience

here and does not imply a quantum-mechanical basis

to the result),

d2E

rdxdk

� �
Rad

¼ C

2

Z2

A

� �
r0c

�hv20

� ln

ffiffiffiffiffi
T0

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
T0 � k

p	 
2
2k

 !
k� T0

(7.601)

It will be seen later that this result is markedly

similar to the quantum-mechanical derivation of the

Bethe–Heitler theory. Figure (7.42) shows the brems-

strahlung spectrum for 100 keV electrons in lead cal-

culated from (7.601).

Relativistic Case: Weizsäcker–Williams (Virtual

Quanta) Method

This is a semiclassical approach to calculating elec-

tron-nucleus bremsstrahlung performed in the refer-

ence frame of the moving electron. The nuclear

electromagnetic field is thus experienced by the elec-

tron as a pulse, or virtual photon, which is Thomson

0 25 50 75 100
0.01

0.1

1.0
100 keV electrons in Pb

k (keV)

d
E

r 
d

x
 d

k
( 

   
   

  )
M
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 c

m
2

g
 M

eV

Fig. 7.42 Bremsstrahlung
spectrum calculated from

classical theory for 100 keV

electrons in lead
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scattered by the electron. This innovative approach is

originally attributable to the independent work of von

Weizsäcker and Williams, following Fermi.

In the reference frame of the electron, the nucleus

with charge Ze is the “projectile.” The route of the

Bohr soft collision stopping power calculation is fol-

lowed; recall that only the component of the nuclear

electric field at the position of the electron perpendic-

ular to the trajectory need be calculated. This is given

by (7.37) except that z is replaced by Z. Thus, in this

reference frame, it is the nucleus passing a stationary

electron at an impact parameter b, speed v, and rela-

tivistic factor g. The energy transported per unit area

and unit frequency is given by the Poynting vector,

Pj j ¼ dI

dA do

¼
ffiffiffiffiffi
e0
m0

r
E?ðtÞj j2

(7.602)

Parseval’s theorem is invoked,

ð1

�1
dt E?ðtÞj j2 ¼

ð1

�1
do E? oð Þj j2

¼ 2

ð1

0

do E? oð Þj j2
(7.603)

where a real electric field, E?(�w) ¼ E?
*(w), has

been allowed for. As a result,

dI

dA do
¼ 2

ffiffiffiffiffi
e0
m0

r
E? oð Þj j2: (7.604)

The Fourier transform of the electric field compo-

nent is given by (7.90),

dI

dA do
¼ a�hc2

Zo
pg v2

� �2

K2
1

ob
gv

� �
: (7.605)

This is the electromagnetic energy per unit area and

per unit frequency incident to the electron in its refer-

ence frame, which represents a virtual photon that can

be scattered by the electron to create a bremsstrahlung
photon. It will be assumed that this scatter is through

the classical Thomson elastic process. The energy

spectrum in the electron rest frame is,

dI

do
¼ sTho

dI

dA do
: (7.606)

As the impact parameter will vary from a minimum

value to infinity, note the result of (7.605) in low- and

large-argument cases of the modified Bessel function,

dI

dA do
¼ a�hc2

Z

p vb

� �2

for
ob
gv

� 1 (7.607)

dI

dA do
¼ a�hc2

2p
Z2o
gbv3

e�2obgv for
ob
gv

	 1: (7.608)

The exponential cut-off of (7.608) allows a specifi-

cation of a minimum impact parameter. On the basis

of the cut-off, the maximum frequency can be approxi-

mated by omax � gc=b. As the scatter (in the elec-

tron’s reference frame) is nonrelativistic, �ho � me,

then gc=b � me=�h leading to a minimum impact

parameter,

bmin ¼ g�hc
me

(7.609)

The power spectrum is then transformed to the

laboratory reference frame in which the nucleus is at

rest and the electron has a relativistic speed bc. The
spectrum is the ratio of the energy to frequency and

remains invariant as, for photons, the frequency and

energy remain equivalent to within a factor of �h. Using
the Doppler relativistic shift, the frequency in the

laboratory frame is o0 � go. Averaging over scatter

angle (allowing for the isotropy of Thomson scatter)

and approximating b � 1, the energy spectrum in the

laboratory reference frame is,

dI0

do0 ¼ sTho a�hc2
Zo0

pg2c2

� �2

K2
1

o0b
g2c

� �
(7.610)

Following the mechanics of the derivation of the

Bohr soft collision stopping power, the bremsstrah-

lung differential cross section in photon energy is,

ds
dk

¼ 2p
�hk

ð1

bmin

db b
dI0

do0

¼ 2asTho

p
Z2

k

ð1

xmin

dx xK2
1ðxÞ

(7.611)

where xmin ¼ o0bmin=g2c. This integral is solved for

using the properties of the derivatives of the modified

Bessel functions (as used in the Bohr soft collision
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stopping power derivation) and recalling the exponen-

tial cutoff of (7.608), the Weizsäcker–Williams

bremsstrahlung spectrum is thus of the form,

ds
dk

� 2asTho

p
Z2

k
ln

1:223gme

k

� �
� 1

2

� �
(7.612)

It is immediately evident that this cross section will

diverge as k ! 1. This corresponds to the impact

parameter b ! 0, but this divergence is not achieved

as the screening of the nucleus by atomic electrons,

thus reducing its effective charge seen by the electron,

has been ignored in this derivation.

7.6.3 Quantum Electron-Nuclear
Bremmstrahlung: Bethe–Heitler
Theory

7.6.3.1 Introduction

As the Bethe–Heitler theory of bremsstrahlung is

based upon the Born approximation, the extent of its

validity will be defined by limits of this approxima-

tion. Refinements and further extensions of the theory

are necessary in order to extend beyond these restric-

tions. The Bethe–Heitler theory was the first relativis-

tic quantum description of bremsstrahlung and, whilst

being cognizant of its limitations, it is presented here

because of its historical importance and the experience

gained in the use of the Born approximation through-

out this book. Advanced approaches to providing more

accurate calculations bremsstrahlung cross sections

can be found in Haug and Nakel (2004).

7.6.3.2 Derivation of the Triple Differential

Cross Section

Interaction

The interaction to be calculated for is shown by the

Feynman diagrams of Fig. 7.43.

An electron with momentum p and total energy E is

incident to an infinitely-massive point charge Ze,

which approximates the nucleus. In the first diagram,

the electron interacts with the static field to reach a

momentum of k þ p0 and then interacts with the radi-

ation field to emit a photon of energy k and momentum

k and exit the interaction with momentum p0 and total

energy E0. In the second diagram, the electron first

interacts with the radiation field to emit the photon of

energy k and momentum k and reduce its momentum to

p0– k0 before interacting with the static field and exit the
interaction with momentum p and total energy E. The

aim is to calculate the differential cross section in

photon energy k, solid angle Op0 of the scattered elec-

tron and solid angle Ok of the emitted photon. Heitler

(1984) and Bjorken and Drell (1964) derive this cross

section by separately accounting for the interactions

with the radiation field and with the Coulomb field of

the scattering center, the former using Fermi’s Golden

Rule No. 1 and the latter using S-matrix theory and the

Feynman propagator. Haug and Nakel (2004) instead

treat the interaction with the radiation field as the per-

turbation, to first order, and then correct the wavefunc-

tions of the incident and scattered electrons for the

effects of the Coulomb potential of the scattering cen-

ter. In order to maintain some consistency with the

previous derivations of the Klein–Nishina and elastic

Coulomb scatter cross sections, the derivation of the

Bethe–Heitler theory will follow the Bjorken and Drell

S-matrix approach using Feynman propagators. The

triple differential cross section is the ratio of the transi-

tion rate and the incident electron flux,

d3s ¼ lfi
f

: (7.613)

k, k

k, k

p-k-p¢

k+p¢-p

k+p¢

p-k

p, E

p, E

Ze

Ze

p¢, E′

p¢, E′

Fig. 7.43 Feynman diagrams for electron-nuclear brems-
strahlung
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The transition rate is,

lfi ¼ Sfij j2
T

rf (7.614)

where T is the time duration of the interaction. The

incident electron flux is,

f ¼ bc
L3

¼ pc

EL3

(7.615)

where L3 is the usual volume used for normalization

and rf is the phase space factor, which is next calcu-

lated for.

Phase–Space Factor

The geometry of the bremsstrahlung process is shown

in Fig. 7.44. The density of final states,

rf dT
0 ¼ L

2p�hc

� �6

d3p0 d3k (7.616)

where T0 is the scattered electron’s kinetic energy.

Expanding,

rf dT
0 ¼ L

2p�hc

� �6

p02 dp0 dOp0 k
2 dk dOk

¼ L

2p�hc

� �6

p0 E0 dT0 dOp0 k
2 dk dOk:

(7.617)

The density of final states is,

rf ¼
L

2p�hc

� �6

p0 E0 k2 dk dOkdOp0 : (7.618)

S-Matrix Calculation

For the graphs of Fig. 7.43, the S-matrix element is,

Sfi ¼ e2
ð
d4r d4r �cf r; p

0ð Þ��i 6A r; kð Þi SF r � rð Þ
� �ig0
	 


ACoul
0 rð Þ þ �ig0

	 

ACoul

0 rð Þi SF r � rð Þ
� i 6A r; kð Þ�ci r; pð Þ:

(7.619)

The constituents of the integrand require detailed

introduction. The two components within the curly

brackets correspond to the two Feynman diagrams of

Fig. 7.43. Because of the existence of two graphs and

two vertices in each, for clarity, a four-dimensional

description is used rather than that for which spatial

and temporal variables are explicit. The initial and

final electron wavefunctions are,

ci r; pð Þ ¼
ffiffiffiffiffiffiffiffi
me

EL3

r
u p; sð Þeip�r (7.620)

cf r; p
0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffi
me

E0 L3

r
u p0; s0ð Þeir�r0 (7.621)

where

r � p � r � p
�hc

� Et
�h

(7.622)

and

r � p0 � r � p0
�hc

� E0t
�h
: (7.623)

The four-vector potential of the photon with four-

vector momentum km and 4-component polarization

em is,

6A r; kð Þ ¼ 6effiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ke0L3

p e�ik�r þ e�ik�r	 

: (7.624)

The Coulomb interaction between the projectile

electron and the nucleus is,

ACoul
0 rð Þ ¼ � Ze

4pe0 rj j : (7.625)

k,kPhoton Scattered
Electron

Incident
Electron

p, E

p¢,E,¢

p¢,k plane

p,
k p

lan
e j

dΩk

dΩp′

qp

qp′

Fig. 7.44 Geometry of the bremsstrahlung process. The inter-

action occurs at the origin and angles are specified by the

direction of the emitted photon
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The Feynman relativistic propagator describes the

electron between the two vertices and is derived by

Bjorken and Drell (1964),

SF r � rð Þ ¼ lim

e ! 0þ
1

2pð Þ4

�
ð
d4p

e�ip� r�rð Þ

p2 �m2
e þ ie

� 6pþme1ð Þ (7.626)

where 1 is the 4 � 4 unity matrix and, following the

integrations, the S-matrix is,

Sfi ¼ � meZe
3

2e0L3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e0kEE0 L3

p d E0þk�E
�h

	 

qj j2 �u p0; s0ð Þ

� �i6 eð Þ i

6 p0 þ 6 k�me1
�ig0ð Þ

�

þ �ig0ð Þ i

6 p0� 6 k�me1
�i6eð Þ

�
u p; sð Þ

(7.627)

where q ¼ p0 þ k� p. This result can be simplified in

the soft photon limit (i.e., k!0). Consider the quan-

tities in the curly brackets. For example,

1

6 p0þ 6 k�me1
¼ 6 p0 þ 6 k�me1

6 p0 þ 6 kð Þ2 �m2
e1

ffi 6 p0 þ 6 k�me1

26 p06 k :

(7.628)

Applying this (and that for the other term in the

curly brackets), after considerable algebra,

�u p0; s0ð Þ �i6 eð Þ i

6p0þ 6k�me1
�ig0ð Þþ

�
�ig0ð Þ

� i

6p0� 6 k�me1
�i6 eð Þ

�
u p; sð Þ

ffi �i�u p0; s0ð Þg0 u p; sð Þ «̂ � p0
k � p0 þ

«̂ � p
k � p

� �
:

(7.629)

Thus, the squared magnitude of the S-matrix is,

Sfij j2¼ m2
eZ

2e6

8pL6kEE0e30

T

qj j4d
E0þk�E

h�

� �

� �u p0;s0ð Þg0 u p;sð Þj j2 «̂�p0
k�p0þ

«̂�p
k�p

� �2
(7.630)

Triple Differential Cross Section in the Soft

Photon Limit

Combining the above and performing the usual aver-

aging and summing over electron spins and photon

polarizations, the bremsstrahlung triple differential

cross section is,

d3s
dk dOk dOp0

¼ a
Zr0me

2p

� �2
p0

kpq4

� �

� F p; p0; k; yp; yp0 ;j
	 
 (7.631)

where

F p;p0;k;yp;yp0 ;j
	 
¼ 4E02� q2

� �
p2 sin2 yp

E� pcosyp
	 
2

þ 4E2� q2ð Þp02 sin2 yp0
E0 � p0 cosyp0
	 
2

� 4EE0 � q2þ 2k2
	 


� 2pp0 sinyp sinyp0 cosj
E� pcosyp
	 


E0 � p0 cosyp0
	 


þ
2k2 p2sin2ypþ p02sin2yp0
� �

E� pcosyp
	 


E0 � p0 cosyp0
	 
 :

(7.632)

In parallel to the soft photon limit, one applies

the nonrelativistic limit in order to simplify

F p; p0; k; yp; yp0 ;j
	 


by neglecting those terms with

k, p and p relative to me and approximating E � me

and E0 � me to give,

F p;p0;k;yp;yp0 ;j
	 

� 4 p2 sin2ypþ p02 sin2yp0 � 2pp0 sinyp sinyp0 cosj
� �

:

(7.633)

The final expression for the Bethe–Heitler brems-

strahlung triple differential cross section in this limit is,

d3s
dk dOk dOp0

¼ a
Zr0me

p

� �2
p0

kpq4

� �

�
�
p2sin2 yp þ p02sin2 yp0

�2pp0 sin yp sin yp0 cosj
�

ð7:634Þ:
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It will be noted that this result predicts a 1=k

dependence of the cross section – the cross section

diverges for low photon energies, a result termed the

“infrared catastrophe.” Bjorken and Drell note that an

experimental device detecting the inelastically-scat-

tered electrons for k ¼ 0 will also detect elastically

scattered electrons and that additional radiative cor-

rections to the elastic scattering cross section (so that

the contributions of bremsstrahlung and elastic scatter

are both considered to the same order of e) will exactly

cancel this 1=k factor. Heitler also notes this correc-

tion arising from consideration of higher orders of the

calculation.

Bethe–Heitler Bremsstrahlung Differential

Cross Section in Photon Energy

The differential cross section in photon energy alone is

obtained by integrating the triple differential cross

section over the two solid angles. Whilst a straightfor-

ward procedure, it is tedious and only the result is

presented here,

ds
dk

¼ a
Zr0ð Þ2
k

p0

p

� �
4

3
� 2EE0 p2 þ p02

p2p02

 !
þ km2

eE
0

p3

(

þ k0m2
eE

p03
� kk0m2

e

pp0
þ K

8EE0

3pp0

�
þ k2

E2E02 þ p2p02

p3p03

 !

þ k

2pp0
k
EE0 þ p2

p3
� k0

EE0 þ p02

p03
þ

 
2kEE0

p2p02

���

(7.635)

where

k ¼ 2 ln
Eþ p

me

� �
(7.636)

k0 ¼ 2 ln
E0 þ p0

me

� �
(7.637)

K ¼ 2 ln
EE0 þ pp0 �m2

e

mek

� �
: (7.638)

In the nonrelativistic limit, this becomes,

ds
dk

¼ a
Zr0ð Þ2
k

8

3
ln

ffiffiffi
T

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
T� k

p	 
2
ek

 !
: (7.639)

Screening Effects

The above Bethe–Heitler result for electron-nucleus

bremsstrahlung neglected the reduction in the nuclear

Coulomb potential experienced by the electron due to

the screening by atomic electrons. This can be

accounted for by changing the Coulomb potential

into a Yukawa type,

AYuk
0 rð Þ ¼ � Ze

4pe0 rj j
� �

e�lr (7.640)

and repeating the calculation. This introduces a (1�F

(q; Z)) multiplicative factor into the expressions for

the differential cross section, where F(q; Z) is the

atomic form factor.

Deviations from the Born Approximation

From Chap. 2, the Born approximation used by the

Bethe–Heitler calculation is valid only if the inequal-

ities aZ=bð Þ � 1 and aZ=b0ð Þ � 1 where b and b are

the electron speeds (normalized to the speed of light)

before and after the interaction, respectively, are met.

Hence, the result is valid only for low-Z media or

relativistic electrons. At low electron energies, it is

invalid to approximate the electron wavefunctions by

plane waves and Coulomb distortion must be

accounted for. An approximate solution to this

dilemma is to multiply the differential cross sections

by the Elwert factor,

FElw ¼ b
b0

� �
1� e�2p aZ=bð Þ

1� e�2p aZ=b0ð Þ (7.641)

7.6.3.3 Further Considerations

The derivations of the Bethe–Heitler bremsstrahlung

theory are limited by the restrictions just noted, which

are particular to the low electron energies of interest to

nuclear medicine. At these energies, the assumption of

a plane wave for the electron wavefunction is not

entirely valid as it neglects the distortion induced by

the nuclear Coulomb field. It has been estimated that,

in the electron kinetic energy range of 200 keV to
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1 MeV (of most interest to nuclear medicine), the

Bethe–Heitler calculation agrees with experiment to

within �20% (Morgan 1970).

7.6.4 Electron–Electron Bremsstrahlung

Earlier, in the discussion of classical bremsstrahlung,
arguments were provided to show that electron–elec-

tron bremsstrahlung could be neglected at low ener-

gies, certainly within the classical framework.

However, electron–electron bremsstrahlung is not an

entirely negligible process. There are two significant

differences between the electron-nucleus and elec-

tron–electron bremsstrahlung interactions. First, the

recoil of the target body cannot be neglected and,

second, exchange effects must be allowed for. Cross

sections for electron–electron bremsstrahlung are

derived in Haug and Nakel (2004); they show that

8 Feynman diagrams contribute to the calculation of

the S-matrix element, rather than 2 for electron-

nucleus bremsstrahlung. Hence, we will not pursue a

derivation of the cross section and the interested reader

is referred to that book.

It is convenient (ICRU 1984) to use dimension-

less radiative energy-loss cross sections for both

electron-nuclear and electron–electron bremsstrah-

lung for an incident electron with total energy, E,

frad;n ¼
1

ar20Z2

ðE�me

0

dk
k

E

dsn

dk
(7.642)

frad;e ¼
1

ar20

ðE�me

0

dk
k

E

dse

dk
(7.643)

The ratio, frad;e=frad;n, has a value of about 0.5 at

electron kinetic energies of 700 keV and vanishes at

low kinetic energies.

7.6.5 Positron-Nucleus Bremsstrahlung

Positrons are repelled by the nucleus and attracted to

the atomic electrons; hence, the positron bremsstrah-

lung cross section will differ from that of the electron,

primarily at low kinetic energies where it is signifi-

cantly less. ICRU Publication 37 summarizes calcula-

tions of the positron bremsstrahlung cross section and

notes that a universal curve can be derived of the ratio

of the dimensionless cross sections for positron to

electron radiative losses, fþ
rad;n=f

�
rad;n, as a function

of the variable ln T=Z2, where T is the electron/

positron kinetic energy and Z is the atomic number

of the medium, exists. Figure 7.45 presents the ratio of

the positron radiative cross section to that for the

electron as a function of kinetic energy for carbon.

Electron / Positron Kinetic Energy (MeV)

0
1 100.110−210−310−410−510−6

0.25

0.5

0.75

1

f 
− ra

d
,n

f 
+ ra

d
,n

Carbon

Fig. 7.45 The ratio of the

positron to electron-nuclear

bremsstrahlung cross section

in carbon as a function of

kinetic energy. Curve drawn

from a calculation using

tabulated data in ICRU

Publication 37 (1984)
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7.6.6 Mass Radiative Stopping Power
for Electrons

Having calculated differential cross sections for elec-

tron-nuclear bremsstrahlung, we next evaluate the

radiative stopping power. As with energy transfer as

a result of collisions with atomic electrons, we can

define the probability that an incident electron with

kinetic energy T will emit a photon with an energy

between k and k þ dk is,

FRad T; kð Þdk ¼ 4a r20
NAZ

2

A

� �
F T; k;Zð Þ dk

k
(7.644)

where F(E, k; Z) is a function accounting for the

screening of the nucleus by the atomic electrons.

The extent of screening is defined by the dimension-

less parameter,

z ¼ 100
me

Tþme

� � k
Tþme

� �

1� k
Tþme

� �
0
@

1
AZ�1=3: (7.645)

The degree of screening by the atomic electrons is an

inverse function of z. That is, z ¼ 0may be described as

“complete screening” and that of z 	 1 as “no screen-

ing.” Note that for a given photon energy k, z will

decrease (i.e., screening increases) as the incident elec-

tron energy increases (kmax ¼ T). For large T, the func-

tion F(T, k; Z) has the following forms for different

values of z. For total screening, z ¼ 0,

F T; k;Zð Þ ¼
 
1þ 1� k

Tþme

� �2

� 2

3
1� k

Tþme

� �!2

ln 183 Z�1=3

þ 1

9
1� k

me

� �
:

(7.646)

For no screening (large z),

F T; k; Zð Þ¼ 1þ 1� k

Tþme

� �2

�2

3
1� k

Tþme

� � !2

� ln
2 Tþmeð Þ

me

1� k

Tþme

� �

k

Tþme

� � �1

2

0
BB@

1
CCA:

(7.647)

The mass radiative stopping power for an electron

with kinetic energy T is,

dE

r dxRad
¼ � 1

r

ðTe

0

dk kFRad T; kð Þ (7.648)

where, again, a negative sign is used to indicate that

energy is lost by the particle. From the above expres-

sions, one can write the mass collision stopping power

as,

dE

r dxRad
¼ �4a r20

NAZ
2

A

� �
Tþmeð Þ

� ln
2 Tþmeð Þ

me

� 1

3

� �

for me � Tþme � me

a
Z�1=3

(7.649)

or as,

dE

r dxRad
¼ �4a r20

NAZ
2

A

� �
T ln 183Z�1=3

� �
þ 1

18

� �

for
me

a
Z�1=3 � Tþme: (7.650)

The mass radiative stopping powers calculated for

electrons in carbon and lead are shown as functions of

electron kinetic energy in Fig. 7.46. Comparing Fig-

ures 7.15 and 7.46, it can be seen that, for a given

electron energy, the mass radiative stopping power

of lead exceeds that of carbon (due to the Z2=A multi-

plicative factor), whereas the mass collision stopping

power of carbon exceeds that of lead (as the multipli-

cative factor in that case is only Z=A). For the electron

energies of interest to nuclear medicine in a low-Z

medium such as tissue, the mass radiative stopping

power is of the order of about 0.1% of the mass

collision stopping power. This indicates the challenge

of using bremsstrahlung to image the biodistribution

of a b-emitting therapeutic radiopharmaceutical, as

discussed later in this book. For electron energies

below about 1 MeV, the lead and carbon mass radia-

tive stopping powers slowly increase with energy, but

after this energy they increase with energy in almost

constant proportion.
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7.6.7 Radiation Length

A comparison of Figs. 7.15 and 7.46 demonstrates that

the energy loss of an electron slowing down in a

medium is predominantly through bremsstrahlung at

high electron kinetic energies, me

a Z�1=3 � Tþme.

Hence, (7.650) would provide a reasonable expression

for the total energy loss rate at these electron kinetic

energies. If this equation were rewritten as the ratio of

the incident electron energy to a length (given in

centimeter/gram), the result is,

dE

r dxRad
¼ �4a r20

NAZ
2

A

� �
T ln 183Z�1=3

� �
þ 1

18

� �

� � T

X0

����
����: (7:651Þ

This length, X0, is defined as the radiation length,

with its reciprocal given by,

1

X0

¼ 4a r20
NAZ

2

A

� �

� ln 183Z�1=3
� �

þ 1

18

� �
: (7.652)

It is a constant for a given material.

7.7 Collision and Radiative Stopping
Powers: A Summary

Figure 7.47 shows the collision and radiative mass

stopping powers for electrons in carbon and lead

along with their sum (total mass stopping power).

While the overall morphological features of the

two graphs are similar, there are distinctive differ-

ences. The most important is the difference between

the collision and radiative stopping powers. For

carbon, an element representative of soft tissue, elec-

tron energy losses through bremsstrahlung exceed

those through collision for kinetic energies above

about 100 MeV; the energy threshold is much lower

for lead at about 10 MeV. This is characterized by

the bremsstrahlung efficiency or radiation yield.29 In

theapproximation that the energy loss of the electron

in the medium is continuous as it slows down
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Fig. 7.46 Mass radiative

stopping powers for electrons

in carbon and lead

29There is also a radiation yield calculation associated with

positrons, although this is not considered here. Customarily,

the in-flight e�e+ ! 2g is excluded from the calculation of the

positron radiation yield.
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(the CSDA), this is, for an electron with initial kinetic

energy,

YðTÞ ¼ 1

T

ðT

0

dT0 dE=dxð ÞRad
dE=dxð ÞCol þ dE=dxð ÞRad

: (7.653)

Recall the fundamental features of the collision and

radiative mass stopping powers: the former increases

with Z and increases logarithmically with electron

energy whereas the latter increases with Z2 and

increases linearly with energy. As a result, the radiation

yield Y(T) will increase with electron energy and the

atomic number of the medium (Fig. 7.48).

Throughout the above derivations, graphical exam-

ples of stopping powers have been provided for carbon

and lead elemental media in order to display the two

extremes of atomic number dependencies (carbon can
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also be representative of tissue when normalized to

physical density). To calculate stopping powers for

compound media (such as soft tissue), Bragg’s addi-

tivity rule is frequently applied. Bragg’s additivity rule

is an approximation in which the stopping power of a

compound is given by the mass-weighted sum of the

stopping powers of the atomic constituents,

dE

r dx
¼
X
i

wi

dE

r dx

����
i

(7.654)

where wi is the fraction by weight of the element.

7.8 Range of Charged Particles

7.8.1 Introduction

The range of a charged particle slowing down in a

medium is, at the simplest level, the depth of penetra-

tion until its kinetic energy reaches thermal levels.

However, we must recall that energy transfer to the

medium is a stochastic process and, hence, the range is

the expectation value of the pathlength that the particle

follows until it is thermalized. The projected range is

defined as the effects of multiple scattering must also

be considered, especially with electron and positron

projectiles. This quantity is the expectation value of

the greatest penetration of the particle in the medium.

A graphical comparison of the range and the projected

range is provided in Fig. 7.49.

7.8.2 Continuous Slowing-Down
Approximation (CSDA) Range

The CSDA range (Berger and Seltzer 1983; ICRU

1984) is similar to the concept of the pathlength

described above, but neglects the effects of multiple

scatter and assumes a straight-line trajectory for a

particle with an initial kinetic energy T,

<CSDA ¼
ðT

0

dE

dE=dxjTotal
(7.655)

where the total stopping power is the sum of

the collision and radiative stopping powers. As

dE=dxjTotal is the expectation value of the rate of

energy loss, <CSDA represents an expectation value

of the particle’s range. For the materials and energy

ranges of interest to nuclear medicine, the radiative

energy loss contribution can usually be ignored. As the

stopping power is relatively constant in the minimally-

ionizing region and has a b�2 dependence at lower

energies, a charged particle penetrating a medium will

lose energy at near a constant rate with depth until, as
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it slows down beyond the minimally-ionizing region,

it loses its energy at ever-an increasing rate until it has

thermalized. Figure 7.50 shows the curve of relative

energy deposition as a function of depth for a heavy

charged particle, such as an a particle, where multiple

scattering can be neglected and the particle travels

very nearly along a straight line. Only near the end

of its range does the relative energy loss increase from

its near continuous value; this rapid increase is known

as the “Bragg” peak.

Recall that, for a projectile of charge ze in a

medium with atomic number Z and atomic mass num-

ber A, the collision stopping power is proportional to

zZ=bAð Þ2. Hence, for a given projectile and kinetic

energy, the CSDA range, in gram per square centimeter,

will be proportional to A=Zð Þ2. Because of the charge
and mass dependencies of the stopping power, it is

possible to estimate the CSDA range in a medium of

a particle of rest mass m2 and charge z2e knowing

the CSDA range of a particle of rest mass m1 and

charge z1e,

<CSDA;2 ¼ m1

m2

z1

z2

� �2

<CSDA;1 (7.656)

The CSDA ranges of electrons and positrons will

differ due to the former’s use of the Møller cross

section and the latter’s use of the Bhabha cross section.

As the collision stopping powers differ, the electron

range in a medium is greater than that of a positron

at lower energies and approximately equalizes at

high energies Fig. 7.51 shows the CSDA range of

electrons and positrons in carbon and lead as a

function of kinetic energy in the range of interest to

nuclear medicine applications. As shown, due to the

A=Zð Þ2 dependence, the range (in gram per square

centimeter) is greater in lead than in carbon; the posi-

tron range is slightly less than that of the electron for

both media and equalizes, and slightly exceeds, at

higher kinetic energies.

As electrons and positrons are also subject to mul-

tiple scatter (which will be significant due to their

relatively low rest masses), the <CSDA will be an

approximation only of the actual range of these parti-

cles. As the spatial resolution of PET imaging will be

limited by the distance between the emission of the

positron and its annihilation, an evaluation of the

positron range is of particular practical importance in

nuclear medicine. It is most efficiently done within a

Monte Carlo calculation which incorporates the sto-

chastic nature of the electromagnetic interactions

between the positron and the medium. Examples can

be found in the papers by Levin and Hoffman (1997)

and Champion and Le Loirec (2007).

7.8.3 Projected Range

The projected range �t is the maximum perpendicular

penetration of the charged aprticle into the medium

and is defined as,

�t ¼
ð1

0

dt t
dN

dt
ðtÞ

����
���� (7.657)

Projected
Range

p

Fig. 7.49 A charged particle enters a medium from the left.

The range (the expectation value of the pathlength p between

the point where the particle enters the medium and where it is

thermalized) can be tortuous, depending upon multiple scatter-

ing of the particle. The projected range is the depth of maximum

penetration into the medium
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where dN=dtðtÞ is the rate at which particles are

stopped per unit depth and which is normalized to,

ð1

0

dt
dN

dt
ðtÞ

����
���� ¼ 1: (7.658)

The absolute value sign is a formality as the rate is

negative due to the loss of particles as they stop.

7.8.4 Range Straggling

Both the CSDA and projected means of calculating the

range of a charged particle penetrating a medium are

expectation values of an assumed continuous energy

losses of the charged particles. However, as demon-

strated in Sect. 7.4, energy loss is stochastic and is

described by a probability distribution function. As the

range is inversely proportional to the stopping power

and is also affected by multiple scatter (predominantly

in the case of electrons and positrons), the range of a

charged particle is also a stochastic quantity. Range

straggling is a consequence of the energy loss pdf

only.

7.9 Positron–Electron Annihilation

7.9.1 Introduction

The interactions of positrons with atomic electrons

resulting in their annihilation and the production of

photons are now considered. In terms of internal radi-

ation dosimetry, the annihilation has a limited effect as

the result is high-energy (511 keV) g-ray pairs or

triplets. The process is, of course, fundamental to

PET imaging. Whereas a moving electron or a-particle
will slow down to thermal equilibrium, a positron will

eventually annihilate with an electron in the medium,

either whilst in-flight or following thermalization. One

can consider the annihilation process to be the oppo-

site of electron–positron pair production and, using the

hole theory, treat positron annihilation as the transition

of an ordinary electron from a positive energy state to

a negative energy state with the emission of quanta

with a combined energy �2me (the inequality

accounts for the contributions of any incoming kinetic

energy), as shown in Fig. 7.52.

The annihilation processes results in the production

of one or more g rays in order to conserve energy and

momentum; in fact up to three photons can be emitted.
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For example, a single g ray can result from the posi-

tron annihilation on a bound atomic electron such that

the recoil nucleus is available for momentum conser-

vation; g-ray pairs are created when the positron anni-

hilates with a free electron or is initially bound in the

singlet 1S0 state of positronium and g ray triplets can

be produced if the electron and positron are initially

bound in the triplet 3S1 state of positronium.

Figure 7.53 shows the Feynman diagrams for posi-

tron–electron pair annihilation. A comparison of these

graphs with those of incoherent scatter in Chap. 6

show that they are the same if turned on their sides,

allowing a similarity in the calculation of the cross

section.

7.9.2 Annihilation Probabilities and
Cross Sections

7.9.2.1 General Features

It is possible to generate estimations of the positron

lifetime following emission from b decay and its anni-

hilation in-flight within the medium. The probability

of positron annihilation per unit length should obvi-

ously be proportional to the electron density of the

medium,

dFann

dx
¼ s

NAZ

A

� �
r (7.659)

where the constant of proportionality, s, is the annihi-
lation cross section. The probability of annihilation per

unit time is,

dFann

dt
¼ s

NAZ

A

� �
r b c: (7.660)

By crudely approximating the cross section by

s � pr20, the probability of positron annihilation per

unit length can be estimated to be 0.15 and 0.67/cm in

carbon and lead, respectively. For relativistic positrons

(b � 1), the estimated probability of in-flight annihi-

lation per unit time is 4.5 � 109/s and 2 � 1010/s for

the same respective elements, corresponding to posi-

tron lifetimes of 220 and 50 ps.

These, of course, are relevant only for in-flight anni-

hilation. The positron, like any other charged particle,

transfers kinetic energy to the medium as it slows down

to eventually thermalize to annihilate or to form a bound

system with a free electron known as positronium. This

k1 k2

k1 k2

p−

p−

p− − k1

p− − k2

−p+

−p+

Fig. 7.53 Feynman diagrams for positron–electron annihilation
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−me
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Fig. 7.52 Positron–electron annihilation described by hole the-

ory. A positive energy electron falls into a negative energy hole

with the result of radiation being emitted. This radiation will be

in the form of two or more photons

7.9 Positron–Electron Annihilation 319



state has a finite lifetime. Due to the intrinsic spin-1/2 of

the electron and positron, positronium can exist in either

a singlet (1S0) or triplet (
3S1) state. In order to maintain

parity conservation, singlet positronium (parapositro-

nium) will decay into two photons and triplet positro-

nium (orthopositronium) will decay into three photons.

7.9.2.2 Positron Annihilation on a Bound

Atomic Electron

Positron annihilation on a bound atomic electron can

result in the emission of a single electron as the recoil

nucleus is available to take up momentum and kinetic

energy. The nonrelativistic calculation of this positron

annihilation cross section is easily obtained from the

nonrelativistic photoelectric absorption cross section

for a K-shell electron,

sPE ¼ sTho 4
ffiffiffi
2

p� �
a4 Z5 me

k

� �7
2

for a photon of energy k absorbed by K-shell electron

in an atomic of atomic number Z. In the positron

annihilation case, we consider from Dirac hole theory

that the atomic electron following annihilation transits

to a state of negative energy and momentum –p, where

þp is the three-vector momentum of the incident

positron. Following annihilation, a single photon of

energy,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ p2
q

þme � EB (7.661)

where EB is the electron binding energy. The recoil

kinetic energy of the atom is neglected. The phase

space factor for the photoelectric absorption case,

L=2p�hcð Þ3mepe dO, is replaced by that for the positron
annihilation, L=2p�hcð Þ3k2 dO. The energy of the inci-

dent photon in the photoelectric absorption case is

replaced by the sum of the total energy of the incident

positron and the electron/positron rest mass

k ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

e

p þme � 2me, where the nonrelativis-

tic case has been assumed in the last step. Inserting this

into the me=kð Þ7=2 factor leads to me=kð Þ7=2 � 1=8
ffiffiffi
2

p
.

Combining this and the p=me multiplicative factor

arising from the change in phase space expressions

gives the total cross section (in the nonrelativistic

limit) for the annihilation of a positron with momentum

p in a medium of atomic number Z on a bound atomic

electron leading to a single emitted photon as,

s1g;K ¼ sTho

2
a4Z5 p

me

(7.662)

As with photoelectric absorption, this result dis-

plays a Z5 dependence indicating that it will only be

of importance with high-Z media and of limited con-

cern to nuclear medicine dosimetry.

The extreme relativistic form of (7.662) and the

more general form can be found in Heitler (1984).

7.9.2.3 Positron Annihilation on a Free Electron

The Feynman diagrams of Compton scatter and posi-

tron annihilation on a free electron are very similarly

in their architecture and, consequently, the calcula-

tional procedures of both map closely to each other.

Using 4-vectors, the S-matrix element for a positron

annihilating with a free electron is, from Bjorken and

Drell (1964),

Sfi ¼ � 2pð Þ4 mee
2

e0L6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e0k1k2EþE�

p d k1 þ k2 � pþ � p�
	 


� �v pþ; sþ
	 
� �i6e2ð Þ i

6p� � 6k1 �me1
�i6e1ð Þ

�

þ �i6e1ð Þ i

6p� � 6k2 �me1
�i6e2ð Þ

�
u p�; s�ð Þ:

(7.663)

This expression satisfies Bose–Einstein statistics by

being symmetric under the exchange of the two

photons. A long and tedious calculation is avoided in

presenting the total cross section for a positron of

kinetic energy T+ annihilating with an electron at rest

to produce two photons (refer to Bjorken and Drell

(1964) and Heitler (1984) for details),

s2g ¼ pr20
gþ 1

� �
g2 þ 4gþ 1

g2 � 1

� �

� ln gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p� �
� gþ 3ffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � 1
p

� (7.664)

where g ¼ Tþ þmeð Þme. This result predicts a

diverging cross section at low energies (g ! 1)
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which is a consequence of the use of plane waves to

describe the electron and positron wavefunctions (the

calculation is performed in the center-of-mass system

and then Lorentz-transformed to the laboratory refer-

ence frame); Coulomb wavefunctions should be used

at such energies.

Figure 7.54 shows the positron annihilation cross

sections per atom for one- and two-photon processes

in carbon and lead as functions of the positron kinetic

energy. The two-photon annihilation process cross

section decreases exponentially with positron energy,

thus showing that in-flight annihilation is much less

probable than annihilation once the positron has slo-

wed down towards the end of its range. On the other

hand, the single-photon annihilation cross sections for

both carbon and lead show maxima at positron kinetic

energies of about 0.4 MeV. It is of particular interest to

compare the relative magnitudes of the cross sections.

The dual-photon annihilation cross sections of lead

and carbon differ only by the ratio of the number of

electrons available in each atom. On the other hand,

the Z5 dependence of the single-photon annihilation

cross section leads to the lead cross section being

about 5 � 105 times greater than that for carbon.

Hence, positron annihilation in low-Z media resulting

in a single photon final state is a negligible process,

which is not the case for high-Z media. As a means of

further comparison, Fig. 7.55 shows the ratio of the

single- to dual-photon cross sections for lead

expressed as a percentage and as a function of positron

kinetic energy. The largest value of the lead single-

photon annihilation cross section is about 17% of the

dual-photon cross section at a positron kinetic energy

of about 3 MeV.

The above results show that the probability of anni-

hilation in-flight for a fast positron is small with the

result that the positron slows down (thermalizes) and

is then annihilated nearly at rest. As the kinetic energy

of the positron will be non-zero, although small, and
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the atomic energy with which it annihilates has a

finite speed, the combined kinetic energies of the

two photons emitted will slightly exceed the value of

2me and will be emitted at an angle slightly different

than 180�.

7.9.3 Positronium

As positron annihilation occurs predominantly at low

positron energies, it is possible for the positron and an

electron to form positronium, an unstable bound state

similar to that of the hydrogen atom. Due to the

reduced mass, the positronium Bohr radius is 2r1.

The spins of the two leptons can couple to form a

singlet (1S0) state or a triplet (
3S1) state for antiparallel

and parallel spins, respectively. Positronium is unsta-

ble. From the conservation of angular momentum, the

singlet state of positronium produces two photons

whereas the triplet state produces three or more. The

density of electrons in (7.659), NAZ=Að Þr, is replaced
by the density of the electron, calculated from its

wavefunction,

c r ¼ 0ð Þj j2 ¼ 1

8pr31
: (7.665)

Equation (7.663) does not include the contribution

of the triplet decay. Hence, the probability per unit

time of 1S0 annihilation is, including a factor-of-four

to account for the combined spin directions of the

electron and positron,

dFann

dt
� 4pr20

1

8pr31

� �
c

� r20c

2r31

(7.666)

which is about 8 � 109/s. The probability per unit

time of the triplet state annihilation can be shown to

be about 1,110 times less. These estimates of positro-

nium lifetime are, of course, in vacuo. In a condensed

medium, the positron wavefunction can overlap those

of surrounding electrons sufficiently to increase the

annihilation rate.

The number of photons that the positronium can

decay to will depend upon the total angular momentum

of the bound system. This is a consequence of the

charge conjugation operator, C, which exchanges a

particle with its antiparticle. A system containing an

equal number of particles and antiparticles (which is,

by definition, electrically neutral) with total spin s and

orbital angular momentum number l is an eigenstate of

C with eigenvalue (�1)l+s. C has eigenvalues of þ1

and �1 for the singlet 1S0 and triplet 3S1 states of

positronium, respectively. As C exchanges the signs

of all electric charges, it will also change the direction

of the electric field E. For a single photon, this is

equivalent to C gj i ¼ gj i or, for an ensemble of n

photons, the eigenvalue of C is (�1)n. Hence, as the

eigenvalue of C is þ1 for the 1S0 state, the number of

photons resulting from the annihilation of the singlet

state must be even. The simplest case is n ¼ 2. Simi-

larly, as the eigenvalue of C is�1 for the 3S1 state, the

number of photons resulting from the annihilation of

the triplet state must be odd. As n ¼ 1 is not permissi-

ble by the conservations of momentum and energy,

then n ¼ 3.

References

Abramowitz M, Stegun IA (eds) (1972) Handbook of mathe-

matical functions. Dover, New York

Ahlen SP (1980) Theoretical and experimental aspects of the

energy loss of relativistic heavily ionizing particles. Rev

Mod Phys 52:121–173 (erratum Rev Mod Phys 1980;

52:653)

Ammi H, Zemih R, Mammeri S, Allab M (2005) Mean excita-

tion energies extracted from stopping power measurements

of protons in polymers by using the modified Bethe-Bloch

formula. Nucl Instr Meth B 230:68–72

Andreo P, Medin J, Bielajew AF (1993) Constraints of the

multiple-scattering theory of Molière in Monte Carlo simu-

lations of the transport of charged particles. Med Phys

20:1315–1325

Ashley JC, Ritchie RH, Brandt W (1972) Z1
3 effect in the

stopping power of matter for charged particles. Phys Rev B

5:2393–2397

Ashley JC, Ritchie RH, Brandt W (1973) Z1
3-dependent

stopping power and range contributions. Phys Rev B

8:2402–2408

Andersen HH, Simonsen H, Sørensen H (1969) An experimental

investigation of charge-dependent deviations from the Bethe

stopping power formula. Nucl Phys A 125:171–175

Barkas WH (1962) Technical Report UCRL-10292, University

of California Lawrence Radiation Laboratory, August 1962.

Barkas WH, Birnbaum W, Smith FM (1956) Mass ratio method

applied to the measurement of K-meson masses and the

energy balance in pion decay. Phys Rev 101:778–795

Barkas WH, Dyer JN, Heckman HH (1963) Resolution of the

S�-mass anomaly. Phys Rev Lett 11:26–28 (erratum Phys

Rev Lett 1963; 11:138)

322 7 Charged Particle Interactions with Matter



Berger MJ, Seltzer SM (1983) Stopping powers and ranges of

electrons and positrons. NBSIR 82-2550-A, National Bureau

of Standards, Washington, DC

Bethe HA (1953) Molière’s theory of multiple scattering. Phys

Rev 89:1256–1266

Bhabha HJ (1936) The scattering of positrons by electrons with

exchange on Dirac’s theory of the positron. Proc Royal Soc

A 154:195–206

Bhabha HJ (1938) On the penetrating component of cosmic

radiation. Proc Roy Soc A164:257–294

Bichsel H (1990) Barkas effect and effective charge in the

theory of stopping power. Phys Rev A 41:3642–3647

Bjorken JD, Drell SD (1964) Relativistic quantum mechanics.

McGraw-Hill, New York

Blunck O, Leisegang S (1951) Zum Energieverlust energierei-

cher Elektronen in dunnen Schichten. Z Phys 130:641–649

Briesmeister JF (2000) MCNP – A general Monte Carlo N-

particle transport code, Version 4C. Report LA-13709-M,

Los Alamos National Laboratory, Los Alamos

Champion C, Le Loirec C (2007) Positron follow-up in

liquid water: II. Spatial and energetic study for the most

important radioisotopes used in PET. Phys Med Biol

52:6605–6625
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Radiation Fields and Radiometrics 8

Abstract This chapter summarizes the descriptors of radiation fields and the defini-

tions of the dosimetric and radiometric quantities to be used in later discussions of

ionizing radiation dosimetry.
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8.1 Introduction

The emphasis to this point has been upon the micro-

scopic theories describing individual particles, nuclei

and their interactions. This chapter begins focuses

upon macroscopic theory in which moving ensem-

bles of photons and charged particles are consi-

dered as radiation fields varying continuously in

space and time and interacting continuously with

matter. Clearly, this description is of the average

(non-stochastic) behavior of radiation and the quan-

tities used to describe it will be the expectation values

defined in differential form. There are also non-

stochastic attributes of radiation that arise at small

spatial dimensions (e.g., that of the cell) and these are

described by microdosimetry theory.

Before embarking on this discussion, the defini-

tions of indirectly- and directly-ionizing radiation

recommended by the International Commission on

Radiation Units and Measurements (ICRU 1971) are

summarized:

Indirectly-ionizing radiation: These are uncharged

particles (photons or neutrons) which transfer their

energy through intermediate charged particles (e.g.,

electrons) in a relatively few large interactions,

reflected by the long mean-free path.

Directly-ionizing radiation: These are charged

particles which transfer their energy directly to mat-

ter through multiple small-energy transfer Coulomb

interactions.

However, ionization is not the only process result-

ing from the interaction between radiation and matter

in which energy is transferred. Excitation is a pro-

cess which can have significant biological, physical

or chemical effects. The demarcation between exci-

tation and ionization is set by an energy threshold

which will vary between media and will become

important to consider when dealing with low-energy

radiations or, indeed, when comparing positron and

electron interactions with matter.

With the exception of linear energy transfer (LET),

the Système International (SI) units will be used in

describing dosimetric and radiometric quantities.

B.J. McParland, Nuclear Medicine Radiation Dosimetry,
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Further reviews of radiation fields and their metrics

in non-stochastic and stochastic applications are

provided by Alm Carlsson (1985) and Kellerer (1985).

8.2 Radiation Fields

8.2.1 Phase Space

A radiation field is defined by a six-dimensional phase

space (position and momentum). The differential ele-

ment of this phase space is given by d3r d3p where the

momentum vector is given by,

p ¼ pj jV̂ (8.1)

where V̂ is the unit vector in the direction of motion

of the field. The differential d3p ¼ p2 dp d2V̂ can be

rewritten using the relativistic relationship between

momentum, kinetic energy T and rest mass m,

p2 ¼ Tþmð Þ2 �m2
� �

,

d3p ¼ m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ 4x3 þ 5x2 þ 2x

p
dT d2V̂ (8.2)

where x ¼ T=mð Þ and d2V̂ ¼ d cos yð Þdj.

8.2.2 Particle Number, Radiant Energy,
and Particle Radiance

The number of particles present, emitted, transferred

or received in the radiation field at a point r is N. In

nuclear medicine, the radiation field at a point internal

to the body is typically a mixed field consisting of a

combination of photons, electrons and/or positrons.

The particle number will generally exhibit a kinetic

energy spectrum,

NT T; rð Þ ¼ dN T; rð Þ
dT

(8.3)

so that NT(T;r) dT represents the number of parti-

cles with kinetic energies between T and T þ dT at

the point r.

The radiant energy is the energy of particles (exclu-

ding rest masses) emitted, transferred, or received at a

point r,

< rð Þ ¼
ð
dTTNT T; rð Þ: (8.4)

In order to describe completely a polyenergetic

mixed radiation field at point r and time t, it is neces-

sary to specify the number N and species j of parti-

cles,1 their kinetic energies T and their direction of

motion V̂. The expectation value of the number of

particles N of species j with a kinetic energy in the

interval dT about T and a direction of motion in the

interval dV̂ about V̂ passing through an area element

dA⊥ at the point r orthogonal to the direction of

motion about V̂ during the time interval dt around

t is given by the quantity pT, j (r) dt dT d V̂ dA⊥

where pT, j is the spectral distribution of the particle

radiance, p, with respect to kinetic energy. In other

words, for species j,

pT;j rð Þ � dpj rð Þ
dT

�
d4Nj t;T; V̂; r

� �
dt dT dÔ dA?

:

(8.5)

The particle radiance is simply this spectrum

integrated over the particle kinetic energies,

pj rð Þ ¼
ð
dT pT;j rð Þ

¼
d3Nj t; V̂; r

� �
dt dÔ dA?

(8.6)

These are non-stochastic quantities and successive

integrations over time, kinetic energy and direction of

motion are used to define the most common metrics

describing the radiation field.

For the remainder of the discussion concerning the

radiance, a single particle species is assumed. For

fields consisting of multiple species, calculations are

simply summed over the fractional contributions of

each species, j.

1“Particles” includes photons in this discussion.
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8.2.3 Scalar Radiometric Quantities

8.2.3.1 Particle Flux Density (Particle

Fluence Rate)

The particle flux density is mean the number of parti-

cles moving through a unit area perpendicular to the

direction of motion at a point r per unit time and is

given by the integrals of the particle radiance spectral

function over kinetic energy and direction,

dF
dt

rð Þ ¼
ð
dT

ð
dV̂ pT rð Þ

¼ d2N t; rð Þ
dt dA

:

(8.7)

The particle radiance can also be written in terms

of the quotient of the particle flux density to the differ-

ential solid angle,

p rð Þ ¼ d2F
dt dO

: (8.8)

The SI unit for the particle flux density is m�2 s�1.

8.2.3.2 Particle Fluence

The particle fluence is a non-stochastic quantity and is

the mean number of particles moving through a unit

area perpendicular to the direction of motion at a point

r and is given by the time integral of the particle flux

density,

F rð Þ ¼
ð
dt

ð
dT

ð
dV̂ pT rð Þ ¼ dN rð Þ

dA
(8.9)

which is the number of particles traversing a sphere

with cross-sectional area dA centered at r. The SI unit

for particle fluence is m�2.

8.2.3.3 Energy Flux Density (Energy

Fluence Rate)

In addition to characterizing the transport of individual

particles, it is necessary to consider the transport of

energy by the radiation field. The energy flux density

is obtained by weighting the particle radiance spectral

distribution by the energy,

dC
dt

rð Þ ¼
ð
dT

ð
dV̂TpT rð Þ

¼
ð
dTT

d3Nj t;T; rð Þ
dt dT dA

:

(8.10)

From (8.4), the energy flux density can also be

written in terms of the radiant energy,

dC
dt

rð Þ ¼ d< rð Þ
dt dA

: (8.11)

The SI unit for the energy flux density is W m�2.

8.2.3.4 Energy Fluence

Integrating the energy fluence rate over time yields

the energy fluence,

C rð Þ ¼
ð
dt

ð
dT

ð
dV̂T

d4Nj t;T; V̂; r
� �

dt dT dÔ dA?

¼
ð
dTT

d2Nj T; rð Þ
dT dA

(8.12)

or, in terms of the radiant energy,

C rð Þ ¼ d< rð Þ
dA

: (8.13)

The SI unit for the energy fluence is J m�2.

8.2.4 Vector Radiometric Quantities

8.2.4.1 Vector Radiance

The basic quantity for describing the vector attributes

of the radiation field is the vector spectral distribution

of particle radiance which is the scalar spectral distri-

bution particle radiance multiplied by the unit vector

in the direction of motion,

pT rð Þ ¼ pT rð ÞV̂: (8.14)
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8.2.4.2 Vector Particle Flux Density (Vector

Particle Fluence Rate)

As in the scalar case, integrating (8.14) over kinetic

energy and direction of motion yields the vector parti-

cle flux density,

_F rð Þ ¼
ð
dT

ð
dV̂ pT rð Þ

¼
ð
dV̂V̂

d3N t; V̂; r
� �

dt dÔ dA?
:

(8.15)

8.2.4.3 Vector Particle Fluence

Integrating (8.15) over time yields the vector particle

fluence,

F rð Þ ¼
ð
dV̂V̂

d2N V̂; r
� �

dÔ dA?
: (8.16)

The vector particle fluence is the sum of vectors

whereas, from (8.9), the scalar particle fluence is the

scalar sum of vector lengths. Thus,

Fj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F �F

p

� F
(8.17)

Equation 8.17 will become an equality for mono-

directional radiation only and, indeed, Fj j ¼ 0 for an

isotropic radiation field.

8.2.4.4 Vector Energy Flux Density (Vector

Energy Fluence Rate)

Again, by analogy, this is given by,

_C ¼
ð
dTT V̂

d3Nj t;T; rð Þ
dt dT dA

: (8.18)

8.2.4.5 Vector Energy Fluence

Integrating (8.18) over time gives the vector energy

fluence,

C ¼
ð
dTT V̂

d2Nj t;T; rð Þ
dT dA

: (8.19)

8.3 Energy Exchange

8.3.1 Introduction

In Chaps. 6 and 7, themicroscopic theories of the energy

transfer and absorption interactions between a medium

and individual photons and charged particles were

derived. These were described by non-stochastic inter-

action coefficients. For photons, these are the attenua-

tion, energy transfer and energy absorption coefficients.

For charged particles, these were the collision and radi-

ative stopping powers.Most dosimetry calculations deal

with macroscopic ensembles of photons and charged

particles where these non-stochastic coefficients are

applicable. It is frequently necessary to calculate energy

transfer and absorption at spatial dimensions (such as

the cellular nucleus) that are comparable to the dimen-

sional scales of individual interaction sites. As a result,

stochastic descriptors are required where, as the spatial

dimensions under consideration increase, the values of

the stochastic quantities approach their associated non-

stochastic means. In this section, macroscopic stochas-

tic and non-stochastic descriptors of energy exchange

from radiation to a medium are described. By definition,

a stochastic radiometric is defined for finite domains

only, is discontinuous in both space and time and is

defined through a probability distribution function. A

non-stochastic radiometric is a continuous and differen-

tiable function in both space and time and is considered

as the mean of the associated stochastic radiometric.

8.3.2 Stochastic Quantities

8.3.2.1 Energy Deposit

The energy deposit is the fundamental stochastic quan-

tity and is defined as the energy deposited at a point as

the result of the ith single interaction and is given by the

difference between the energy of the incoming ionizing

particle (neglecting any rest mass) and the sum of the

energies of the outgoing ionizing particles (again neg-

lecting any rest mass) plus any changes in rest mass of

all particles and atoms involved in the interaction,

ei ¼ Tin � Tout þ QDm (8.20)
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where QDm is negative if there is an increase in rest

mass and positive if there is a decrease. The three

conditions of QDm < 0, QDm ¼ 0 and QDm > 0 are

considered next.

QDm < 0

A negative QDm means that part of the incoming

kinetic (radiant) energy is expended to increase the

rest masses of nuclei and particles. An example is

electron–positron pair production through a photon

interaction with the nuclear electromagnetic field.

The energy deposit for a photon with energy k and

electron and positron kinetic energies of T� and T+,

respectively, is,

ei ¼ Tin � Tout þ QDm

¼ k� T� � Tþ � 2me

¼ TRec

(8.21)

where TRec is the recoil kinetic energy of the nucleus

and where T� þ Tþ ¼ k� 2me � TRec has been used.

As Tout is the total kinetic energy of the outgoing

ionizing particles, a subtle consideration of the elec-

tron and positron products must be considered. The

positron is always capable of ionization but if the

electron is produced with T� below the ionization

potential of the atom, it can no longer ionize and will

thus be part of ei.

QDm ¼ 0

A zero QDm arises when matter is neither created nor

annihilated. Consider an incoming charged particle

with kinetic energy Tin which knocks out an atomic

electron (d ray) with kinetic energy Td. The excited

atom then de-excites by the emission of a characteris-

tic x ray of energy kk and an Auger electron with

kinetic energy TA. The original charged particle exits

the interaction with kinetic energy Tin � T, where T

is the kinetic energy lost by the incident particle

through the interaction Then,

ei ¼ Tin � Tout

¼ Tin � kk þ Td þ TA þ Tin � Tð Þ
¼ T� Td � TA � kk:

(8.22)

The energy deposit is less than the energy lost by

the incident charged particle.

QDm > 0

A positive QDm is the result of rest mass being con-

verted into, for example, kinetic energy of ionizing

particles. An obvious example is positron annihilation.

As QDm is positive, the definition of the energy deposit

is rewritten as,

ei ¼ QDm � Tout � Tinð Þ (8.23)

where the quantity in parentheses is that amount of the

released rest-mass energy which appears as kinetic or

radiant energy of the exiting ionizing particles. For

example, consider the annihilation e�eþ ! 2g on an

atomic electron. An excited atom remains which, in

this example, de-excites through the emission of a

characteristic x ray with energy kk and an Auger

electron with kinetic energy TA. The energy deposit is

ei ¼ 2me � Tout � Tinð Þ
¼ 2me � k1 þ k2 þ kk þ TA � Tinð Þ (8.24)

where k1 and k2 are the radiant energies of the two

annihilation photons. These are,

k1 þ k2 ¼ 2me � EB � Tin (8.25)

where EB is the atomic electron binding energy. Sub-

stituting this into the expression for the energy deposit

gives,

ei ¼ EB � TA � kk: (8.26)

This is the same energy deposit result for a zero

QDm (8.22) by identifying EB as T � Td. Importantly,

Tin does not appear in the result of (8.26) so, hence, the

energy deposit is the same whether the positron anni-

hilation occurs after the positron has thermalized

(Tin � 0) or occurs in flight (Tin > 0).

Another example of a QDm > 0 process is b decay.

In fact, it is possible for the energy deposit to be

negative in b� decay as the resulting increase in the

atomic number leads to an increase in the binding

energy of the atomic electrons.
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8.3.2.2 Energy Imparted

The energy imparted to a volume within the medium is

the summation of the individual energy deposits

within that volume occurring within a specified time

interval,

e ¼
X
i

ei: (8.27)

With the exception of that incident, the ionizing

particles interacting within the volume have been pro-

duced either by interactions due to the incident particle

or through those emitted by radioactive decay should

the volume contain radioactive nuclei. A pragmatic

consideration within nuclear medicine dosimetry is

that of K ionizing particles entering a volume contain-

ing radioactive nuclei of which N decay during the time

interval of interest (Alm Carlsson 1979). The energy

imparted to the matter within this volume is given by,

e ¼
XKþN

j¼1

Xnj
i¼1

eij (8.28)

where nj is the number of correlated interactions

within the volume due to the jth incoming particle or

the jth decaying nucleus. Inserting (8.20)

e ¼
XKþN

j¼1

Xnj
i¼1

T� Tout;k þ QDm
� �

ij

¼
XK
j¼1

Tin;j �
XL
m¼1

Tout;m þ
XM
n¼1

QDm;n:

(8.29)

The first summation gives the sum of the kinetic

(radiant) energies of the incident particles that interact

within the volume; the second is the sum of kinetic

(radiant) energies of ionizing particles created within

the volume and have exited without interactions and

the last is the release of rest mass energies.

8.3.2.3 Energy Transferred

The energy transferred in a volume is defined as

(ICRU 1980; Attix 1983),

etr ¼ < unch
in � < unch

out þ QDm (8.30)

where < unch
in is the radiant energy of uncharged parti-

cles entering the volume and < unch
out is the radiant

energy of uncharged particles leaving the volume

except that which is due to bremsstrahlung production

or in-flight positron annihilation by charged particles

in the volume. Hence, the energy transferred is simply

the kinetic energy received by charged particles in the

volume2

8.3.2.4 Specific Energy

The specific energy (imparted) is the quotient of the

energy imparted to the medium of mass m,

z ¼ e
m
: (8.31)

z may be due to one or more energy deposition events.

The distribution function F1(z) is the conditional prob-

ability that a specific energy� z is deposited if a single

event has occurred; the generalization F(z) is the condi-

tional probability that a specific energy � z has been

deposited.

8.3.2.5 Lineal Energy

The lineal energy is the quotient of the energy

imparted e to a volume by a single energy deposition

to the mean chord length �l in that volume,

y ¼ e
�l
: (8.32)

The mean chord length is the mean value of the

lengths of randomly-oriented chords. For example, the

mean chord length of a convex body of volume V and

surface area is �l ¼ 4V=A.

As y is a stochastic quantity, it is described by a

probability distribution function. F(y) is the distribu-

tion function and is equal to the probability that the

lineal energy is less than or equal to y. The probability

density function, f(y), is equal to the derivative of F(y)

with respect to y, fðyÞ ¼ dFðyÞ=dy.

2Kinetic energy transferred from one charged particle to another

is excluded from the calculation of etr.
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The lineal energy transfer should not be confused

with the LET. The latter is a non-stochastic quantity

equal to the mean energy loss per unit pathlength

travelled by a charged particle and subject to an energy

transfer cut-off.

8.3.3 Non-Stochastic Quantities

The expectation values of the stochastic quantities just

introduced are non-stochastic metrics. These quanti-

ties are defined here.

8.3.3.1 Kerma

Kerma is the acronym for “kinetic energy released per

unit mass” and is applicable only to indirectly-ionizing

radiations (photons or neutrons) and is the quotient of

the sum of the kinetic energies, dEtr, of all charged

particles released by uncharged ionizing particles in a

volume of medium of mass dm,

K ¼ dEtr

dm
: (8.33)

The kerma includes both the energies of Auger

electrons and that radiated by the secondary charged

particles as bremsstrahlung. Kerma is related to the

energy fluence by,

K ¼ C
mtr
r

� �
(8.34)

where mtr=rð Þ is the mass energy-transfer coefficient.

For a polyenergetic photon beam, the kerma can be

written as,

K ¼
ð
dk

dF
dk

k
mtr
r
ðkÞ (8.35)

The SI unit for kerma is J kg�1 or gray (Gy) where

1 Gy ¼ 1 J kg�1.

8.3.3.2 Air Kerma-Rate Constant

The air kerma-rate constant for a given radioactive

photon-emitting isotope is the ratio of l2 _Kd to the

activity A of the isotope,

Gd ¼ l2 _Kd

A
(8.36)

where _Kd is the in-air kerma rate due to photons with an

energy greater than d at a point a distance l from the

radioactive source. The SI unit for the air kerma-rate

constant is m2 J kg�1. Gd will be specific to the radio-

nuclide and accounts for the contributions due to

characteristic x rays and internal bremsstrahlung. It
supplants the specific g-ray constant and exposure-rate

constant previously defined by the ICRU. Knowing the

photon energies emitted by the radionuclide, it is possi-

ble to calculate the air kerma-rate constant from first

principles using (8.35) and (8.36).

8.3.3.3 Absorbed Dose

The noun “dose” is multi-varied in medicine. Unlike

the pharmacological dose of a therapeutic drug, the

absorbed dose in radiation physics is the consequence

of the interaction between ionizing radiation and the

medium. The absorbed dose to a volume of medium of

mass dm is the quotient of the mean energy imparted

by ionizing radiation, d�e, to that volume of the

medium of mass dm,

D ¼ d�e
dm

: (8.37)

An alternative definition of the absorbed dose arises

from the mean specific energy,

�z ¼
ð1

0

dz z fðzÞ (8.38)

which is a non-stochastic quantity leading to,

D ¼ lim

m ! o
�z: (8.39)

The SI unit for absorbed dose is Gy.

8.3.3.4 Exposure

Exposure is both an historical and a practical quantity

used in radiation field measurements. It is the quotient

of the absolute value of the total electric charge of the
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ions of one sign produced in air by photons, dQ, when

all of the resulting electrons and positrons released in a

differential mass of air dm are stopped in air,

X ¼ dQ

dm
: (8.40)

This definition of exposure excludes any ionization

resulting from the absorption of bremsstrahlung emit-

ted by the released electrons, but this is only signifi-

cant at photon energies much higher than those

considered in nuclear medicine and, hence, can be

neglected in our discussion.

Exposure can also be defined by,

X ¼ C
men
r

� �
e

W
: (8.41)

The SI unit for exposure is C kg�1; the special unit

for exposure is the röntgen (R), where 1R ¼ 2.58 �
10�4 C kg�1.
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Radiation Dosimetry: Theory, Detection,
and Measurement 9

Abstract This chapter provides the bridge from the microscopic theories of radia-

tion-matter interactions to the macroscopic theory of ionising radiation dosimetry

and creates the foundation for presentation of nuclear medicine radiation dosimetry.

As such, the chapter is divided into two sections. The first provides the theoretical

basis of radiation dosimetry. Radiation equilibria and the important role they play in

dosimetry evaluations are, in particular, emphasised. The means of calculating the

radiation flux, essential to any dosimetry calculation, are reviewed through analytical

means, Monte Carlo simulation and, in particular, the semi-empirical build-up factor

method. The reciprocity theorem, which plays an implicit role in some nuclear

medicine dosimetry calculations, is presented and studied as is the fundamental

Bragg–Gray cavity theory. The theory section concludes with an overview of

microdosimetry. The second section presents the underlying theories of operation

of radiation detectors used in nuclear medicine. These include gaseous detectors

based upon the collection of ions generated within an irradiated gas volume (ionisa-

tion chambers, proportional counters, and Geiger–Müller counters), scintillation and

photoconversion devices, semiconductor detectors, and thermoluminescence.
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9.1 Introduction

Chapters 6 and 7 presented the microscopic theories of

photon and charged particle interactions with matter

which lead to the absorption of energy in the medium.

These theories are categorized as being microscopic in

that they describe the interactions of a single quantum

or charged particle with an individual atom, electron,

or nucleus. In practice, radiation dosimetry must

extend these descriptions of the interaction of radia-

tions with matter and the absorbed dose to the macro-

scopic level. Here, the adjective macroscopic is used

as the theory becomes that of one of ensembles of

particles or photons that are sufficiently large that

they can be described as radiation fields which are

both continuous and differentiable with respect to

B.J. McParland, Nuclear Medicine Radiation Dosimetry,
DOI 10.1007/978-1-84882-126-2_9, # Springer-Verlag London Limited 2010

333



position and time. Intermediate to these two theories is

a mesoscopic theory, referred to as microdosimetry,

which is probabilistic. Microdosimetry1 is the study of

the deposition of energy by ionizing particles at

dimensions of between about 1 nm (the diameter of

the DNA molecule) to about 20–30 mm (the size of the

largest mammalian cells).

The discipline of radiation dosimetry can be traced

back to the discoveries and classifications of various

types of ionizing radiations by Röntgen, Becquerel,

the Curies, Rutherford and Villard. Following these

discoveries, there was an appreciated need to quantify

radiation. Becquerel’s serendipitous discovery of

radioactivity through the opacification of a photo-

graphic emulsion by the radiations emitted by uranium

led obviously to the consideration of the degree of

photographic film darkening as a means of quantifying

exposure to radiation. Similarly, the Curies’ observa-

tion that radiation could ionize air and that the result-

ing electric charges collected led to the suggestion by

Villard (1908) of ionization as a means of quantifying

the radiation causing the ionization. Ionization as a

phenomenon for quantifying a radiation field has sub-

sequently dominated the discipline to this day, but it

was certainly not the only metric employed. Optical

means, other than photographic emulsion, of quantify-

ing radiation were also employed, including irradia-

tion-induced color changes in platino-barium-cyanide

capsules (Jennings 2007). A biological response to

photon irradiation, the skin erythema dose, was briefly

considered as a means of quantifying radiation dose

(Failla 1921).

Although ionization became the dominant means of

quantifying radiation (and not dose as we currently

interpret the quantity), there were considerable differ-

ences between the different definitions of units used to

describe ionization. For example, Villard defined his

ionization unit as the quantity of X-rays which

liberated 1 electrostatic unit (equal to 0.334 nC) of

“electricity” per 1 cm3 of air at normal temperature

and pressure (NTP). This definition was highly predic-

tive of the röntgen. Villard’s unit was eventually to

become the “Germany röntgen”, R, whereas the

corresponding “French röntgen” was defined as the

ionization in air at a point 2 cm from a 1 g source of

radium. The lack of coordination between the uses of

units in quantifying radiation was extremely trouble-

some in radiation therapy and was first addressed by

the International Congress of Radiology (ICR). The

ICR formed in 1925 an “International X-ray Units

Committee,” which was to be the predecessor of the

ICRU (International Commission on Radiation Units

and Measurement). In 1928, the ICR formed an “Inter-

national X-ray and Radium Committee,” which was to

then evolve to become the ICRP (International Com-

mission onRadiological Protection). Between the 1928

meeting of the ICR in Stockholm and its 1937 meeting

in Chicago, a final definition of the röntgen as a unit of

exposure as a means to quantify X- and g-irradiation
was at last proposed, refined, and agreed upon.

Extending upon the use of ionization as a means of

quantifying radiation, interest next focused upon

energy transfer, deposition, and absorption. Following

the Second World War, the term dose was proposed as

the amount of energy absorbed by an irradiated

medium. At the 1950 ICR meeting in London, the

absorbed dose was defined to describe the amount of

energy absorbed per unit mass of an irradiated medium

at a point in that medium. The centimeter-gram-second

(CGS) unit of erg per gram was applied and, at the

following ICRmeeting in 1953 in Copenhagen, the rad

was defined as the unit of absorbed dose The rad was an

acronym for radiation absorbed dose where 1 rad

¼ 100 erg/g. Beginning in the 1970s, the Système

International (SI) units were adopted by the radiation

dosimetry and metrology communities and led to the

SI definitions in ICRU Report 33 (1980) of absorbed

dose and kerma as the gray where 1 Gy ¼ 1 J/kg.

However, the practice of using the unit rad , however,

has been difficult to kill off and one often finds that

prescribed doses in radiation oncology departments are

persistently (yet conveniently and transparently) given

in units of centigrays where 1 cGy ¼ 1 rad.

9.2 Radiation Dosimetry: Theory

9.2.1 Primary and Scattered Radiation
Fields

It is frequently necessary in dosimetry to separate

ionizing radiation within a medium into two categories.

1Microdosimetry is a radiological dosimetry discipline and

should not be confused with the pharmacological concept of

microdosing.
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In one, the radiation has interacted with the medium it is

traveling through and, in the other category, it has not.

The latter component is referred to as “primary” radia-

tion and the former is referred to as “scattered” radia-

tion. The differentiation between these radiation

components is explained in Fig. 9.1. This shows an

isotropic source of photons at S and a radiation detector

at P, a distance r away. Should both the source and the

detector be in vacuo the radiation detected at P will be

that which had traveled along the line SP. Because of the

isotropicity of the source, the intensity of this radiation

will vary as r�2. However, once S and P are placed

within a scattering and absorbing medium, the detector

at P will detect not only those primary photons which

have traveled along SP without interaction, but also

those which left S in directions other than SP and

which were subsequently scattered through one or

more interactions in order to eventually reach the detec-

tor at P. In addition to having reached the detector at the

point P from directions different than SP, this scattered

radiation will differ from the primary radiation in its

having a reduced energy spectrum due to energy losses

incurred as a result of scattering. The primary fluence

at P will have decreased due to attenuation along the

line SP whereas the scattered fluence at P will have

increased.

It is possible to isolate experimentally the primary

and scattered components of the total radiation

reaching the point P if the source of radiation S is

external to the medium containing P. This is done by

measuring the radiation fluence (or some other met-

ric such as absorbed dose or kerma) at the point P for

a variety of field sizes and to then extrapolate the

results as a function of field size to zero width which

will leave only the primary component (Clarkson

1941; Cunningham 1972). Analytical means of cal-

culating the primary and secondary components

through, for example, the Boltzmann equation and

other direct approaches, are also possible (Berger

and Spencer 1959; Wong et al. 1981), but these are

in practice limited to low orders of scatter due to the

growing complexity of the calculation with increas-

ing contributions of scatter. The technique of Monte

Carlo simulation is the most practical means of cal-

culating these components for medical applications

(e.g., McParland 1981; Ljungberg et al. 1998; Zaidi

and Andreo 2003).

Knowledge of the scatter contribution to the radi-

ation fluence at P is of significant importance in both

imaging and dosimetry calculations. Increased scat-

ter radiation will reduce the spatial resolution of

both emission and transmission imaging, thus requir-

ing the use of devices such as the gamma-camera

collimator or Bucky filter in radiographic imaging to

remove the contribution of scattered photons to the

image. Scatter can also increase the absorbed dose at

P due to its contribution to the net radiation fluence

at P. This is an effect quantified by the buildup

factor.

9.2.2 Kerma and Absorbed Dose

9.2.2.1 Introduction

The irradiation of a medium by photons results in the

liberation of charged particles. At the photon ener-

gies of interest to diagnostic and therapeutic nuclear

medicine (which are largely below the electron–

positron production threshold), these charged

particles are exclusively electrons. This transfer of

energy from the photons to the electrons is described

by the kerma. These electrons subsequently slow

down in the medium by transferring kinetic energy

to atomic electrons. The absorption of the electron

energies by the medium is described by the absorbed

Radiation
Source

1st-order
Scatter

Interaction
Site

P

Primary 2nd-order
Scatter

Interaction
Site

Interaction
Site

r

S

Fig. 9.1 Definition of primary, first-order and second-order

scatter components for radiation traveling from the source S to

a detector at P a distance r away
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dose.2 A calculation of this absorbed dose can be

performed through analytical, numerical or Monte

Carlo means, depending upon the complexity of the

medium (in terms of geometry and composition) and

the required degree of precision. Such calculations

require knowledge of the particle fluences and ener-

gies and the coefficients which describe the interac-

tion between the particles and the medium. Direct

measurement of the absorbed dose is performed

through calorimetry in which the temperature rise

due to the absorbed energy is measured and the

absorbed dose calculated directly, accounting for

any available chemical energy loss. This is a chal-

lenging experimental measurement to perform and

calorimetry is largely relegated to national physical

standards laboratories. In clinical practice, absorbed

dose is not measured directly but instead inferred

from a variety of physical phenomena, such as

ionization.

9.2.2.2 Radiation-Field Based Definitions

The acronym of kerma was defined as the “kinetic

energy released per unit mass” by indirectly-ionizing

radiation (photons and neutrons). For photon radia-

tion, kerma is the sum of the kinetic energies of all

of the charged particles released by photons in photon-

matter interactions in a volume of medium per unit

mass of that medium. It also includes the energies of

any Auger electrons3 released following atomic relax-

ation. This definition of kerma can be refined by

applying radiation field descriptors to the geometry

of a volume V of a medium of density r and surface

area A which is exposed to a photon radiation field.

The direction vector is defined as being positive if

exiting from the volume. The net transport of radiant

energy (8.4) through a differential surface area ele-

ment dA into the volume (i.e., in the direction �dA) is
equal to the scalar product�C � dA, where C is the

vectorial energy fluence of the radiation. The mean

energy imparted to the volume will be the sum of the

surface integral of this scalar product and the mean of

the sum of any rest-mass energies released,

�e ¼ �s
ð ð
A

dA �Cþ
X
i

Qi: (9.1)

The surface integral of C in (9.1) is equal to the

volume integral of the divergence of C through

Gauss’ (or divergence) theorem,

s

ð ð
A

dA �C ¼s
ððð
V

dV r �C: (9.2)

Applying this theorem to (9.1) and separating the

vectorial energy fluence into photon Cg and charged

particleCc components, the mean energy imparted is,

�e ¼ �s
ððð
V

dV r �Cþ
X
i

Qi

¼s
ððð
V

dV �r �Cþ
d
P
i

Qi

� �

dV

0
BBB@

1
CCCA

¼s
ððð
V

dV �r � ðCg þCcÞ þ
d
P
i

Qi

� �

dV

0
BBB@

1
CCCA
(9.3)

By incorporating this result into the definition of

the absorbed dose in a homogeneous medium provided

in (8.39),

D ¼ 1

r

lim

V! 0

�e
V

� �

¼ �r � Cg þCc

� �
r

þ 1

r

d
P
i

Qi

� �

dV

¼ �r �Cg

r
�r �Cc

r
þ 1

r

d
P
i

Qi

� �

dV

¼ K�r �Cc

r
þ 1

r

d
P
i

Qi

� �

dV

(9.4)2Rossi and Zaider (1991) have pointedly compared the term

“absorbed dose” of radiation physics with the term “dose” in

posology, noting that the former describes the actual interaction

between tissue and the administered entity (radiation) whereas

the latter is simply an administered entity.
3Note that, for convenience, Auger, Coster–Krönig and super

Coster–Krönig electrons will generally be grouped together and

referred to as Auger electrons.
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where the kerma has been identified as the divergence

of the photon vector energy fluence normalized to the

physical density of the medium,

K ¼ �r �Cg

r
: (9.5)

Equation (9.4) describes the absorbed dose as the

kerma minus the divergence of the charged particle

vector energy fluence (normalized to the physical den-

sity) plus the rest-mass energies released per unit mass

of the medium. Excluding this latter contribution, the

magnitude of the energy deposited is less than the

amount released. There are some conditions, however,

where it is reasonable to consider the two quantities as

being equal, as to be shown in the next subsection.

9.2.2.3 Kerma, Absorbed Dose, and Charged

Particle Equilibrium

Equation (9.4) shows that, in the absence of any rest-

mass energy release, the magnitude of the kerma is

reduced from that of the absorbed dose if the diver-

gence of the charged particle fluence is nonzero.

Such a condition reflects a state of charged particle

nonequilibrium. Should a state of charged particle

equilibrium (CPE) exist, then the divergence of the

charged-particle vectorial energy fluence is equal to

zero, r �Cc=r ¼ 0. Hence, under CPE the absorbed

dose and kerma are related by,

D¼Kþ1

r

d
P
i

Qi

� �

dV
under CPE conditionsð Þ: (9.6)

Consequently, if CPE exists and if there are no rest-

mass energies released in the photon-medium interac-

tions, the values of absorbed dose and kerma will be

equal.

9.2.2.4 Kerma Per Unit Photon Fluence

The ratio of the kerma of a photon beam to the fluence

of photons producing this kerma is important to the

understanding of the energy dependence of photon

ionization in a medium. Beginning by assuming a

monoenergetic photon beam with energy k, the

kerma is the product of the photon energy fluence

and the mass energy-transfer coefficient,

K ¼ C
mtr
r
ðkÞ

¼ Fk
mtr
r
ðkÞ:

(9.7)

Recall that the mass energy-transfer coefficient is

calculated using the total cross sections of those pho-

ton-matter interactions through which the photon

transfers energy to the medium. In the photon energy

regime used in nuclear medicine, these processes are

photoelectric absorption and incoherent (Compton)

scatter. The ratio of kerma per unit photon fluence

for monoenergetic photons is then given by,

K

F
¼ k

mtr
r
ðkÞ: (9.8)

For the general case of polyenergetic photons with

an energy spectrum with a maximum energy kmax, this

ratio of kerma to photon fluence requires integration

over the photon spectrum,

K

F
¼

Ðkmax

kion

dk
dFðkÞ
dk

k
mtr
r ðkÞ

Ðkmax

kion

dk
dFðkÞ
dk

(9.9)

where kion is the energy below which the photon is

incapable of causing ionization in the medium. In most

practical radiation dosimetry calculations, this lower

limit of integration can generally be set equal to zero.

Equations (9.8) and (9.9) are calculable quantities. To

account for radiative losses, one can rewrite (9.8) and

(9.9) in terms of the energy-absorption coefficient for

a monoenergetic photon beam,

K

F
¼ k

men
r ðkÞ

1� gðkÞ (9.10)

and for a polyenergetic photon beam,

K

F
¼

Ðkmax

kion

dk
dFðkÞ
dk

k
men
r ðkÞ

1�gðkÞ

Ðkmax

kion

dk
dFðkÞ
dk

(9.11)

where g(k) is the fraction of energy lost through radia-

tive processes for the photon energy k. As demonstrated
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for low-Z media (such as soft tissue) and photon ener-

gies of interest to nuclear medicine (typically<1MeV),

the magnitude of this quantity is negligible. Figure 9.2

shows the ratio of kerma to photon fluence, K=F, calcu-
lated for air as a function of photon energy.

The photon energy dependence of K=F in air shown

in Fig. 9.2 can be readily explained. From (9.8), this

energy dependence is given by the product kmTrðkÞ=r.
At low photon energies, photoelectric absorption dom-

inates the photon-matter interaction processes. As this

interaction has a k�7=2 energy dependence, K=F in

air will decrease with photon energy approximately

as k�5=2. For low-Z media and at photon energies in

the region of 100 keV, the contribution of incoherent

scatter to the total interaction coefficient exceeds that

of photoelectric absorption. As the Klein–Nishina

transfer coefficient has a limited energy dependence

between 100 keV and 1 MeV, the change in mTrðkÞ=r
with photon energy is small. Hence, the ratio K=F will

then begin to increase roughly linearly with photon

energy, k.

Figure 9.2 also represents a calibration curve for

converting a measurement of the collected ionization

in an ionization chamber exposed to photon radiation

to photon fluence. For example, consider an ionization

chamber with infinitely-thin walls exposed to mono-

energetic photons for which radiative losses through

interactions with the gas within the chamber are

negligible. These photon-gas interactions generate a

measurable ionization current dQ=dt. An electric

field across the gas volume will make these charged

ionization products drift to corresponding electrodes.

If it is assumed that these products are collected

with 100% efficiency, the kerma rate in the gas is

dK=dt ¼ dQ=dtðW=eÞ, where W is the mean energy

expended in the chamber’s gas to create an electron-

ion pair. The photon fluence rate (flux) is dF=dt ¼
dQ=dtððW=eÞ=ðK=FÞÞ where K=F is evaluated at

the photon energy of interest. Hence, the known W=e

ratio for the gas and the energy-dependent calibration

factor of K=F enables the photon flux to be calculated

from the measured current. This is the principle behind

the dose calibrator where dF=dt is proportional to

the activity of the source being measured. The selec-

tion of the radionuclide being calibrated on the dose

calibrator’s control panel selects the appropriate value

of the K=F ratio so as to scale the measured dQ=dt

current to the appropriate activity of the source being

calibrated.

9.2.3 Radiation Equilibria

9.2.3.1 Introduction

Many problems in radiation dosimetry can be solved

only when a state of radiation equilibrium exists in the
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Fig. 9.2 Ratio of kerma to

photon fluence for air
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region of interest. For example, formal relationships

between absorbed dose and collision kerma can only

be established if charged particle exists or else exists

transiently. Importantly, for applications in internal

radiation dosimetry, when a state of radiation equilib-

rium exists in a medium containing a radionuclide, the

absorbed dose is simply the expectation value of the

energy released in radioactive decay per unit mass.

The state of radiation equilibrium can be described,

in general terms, as that occurring when a quantity of

radiation (energy or particle number) entering a vol-

ume of interest is exactly balanced by that quantity

exiting the volume. In practice, such a state of perfect

equilibrium is infrequently achieved and only an

approximate (or transient) state of equilibrium will

actually be present. Even so, this condition of approx-

imate radiation equilibria frequently allows many

dosimetric problems to be solved. For example, con-

sider the case of a homogeneous sphere containing a

uniform distribution of a b-emitting isotope. The

sphere’s radius is assumed to exceed the maximum

range of these b particles. It is intuitive that radiation

equilibrium will exist within a spherical volume with a

radius equal to the difference between the radius of the

sphere and the maximum b-particle range. Should this
difference be very small, the absorbed dose to the total

spherical volume can be well-approximated by the

energy deposited in the total sphere divided by its

mass. This implicit assumption of approximate radia-

tion equilibrium is the basis of the Marinelli–Quimby–

Hine internal dosimetry method.

9.2.3.2 Complete Radiation Equilibrium

Complete radiation equilibrium (CRE) can be for-

mally defined by first considering the spherical vol-

ume V1 containing a medium which is homogeneous

in both density and atomic composition and which is

uniformly radioactive (Fig. 9.3). Consider the point of

interest, P, within V1 and a second volume, V2, which

is centered on P. The minimum separation between the

boundaries of the two volumes is S. This separation

must be greater than the maximum distance of pene-

tration, RMax, of the radiation emitted by the radioac-

tive nuclei within the volume. Thus, RMax will define

the radius of a sphere S centered on the tangential

point T of V2. There will be reciprocity (in the non-

stochastic limit) of radiations crossing the tangential

plane passing through T and bisecting the sphere S.

This will indeed be the case for any tangential plane

that is oriented around V2. In other words, the radiant

energies of charged and uncharged radiations entering

V2 equal those that exit V2. This condition defines the

state of CRE.

The balance of ingoing and outgoing radiant ener-

gies between the two volumes gives the mean energy

imparted as the sum of the mean rest-mass energies

released,

e ¼
XM
n¼1

Qn under CRE conditionsð Þ: (9.12)

The absorbed dose to volume V2 is,

D ¼ de
dm

¼ dQDm

dm
:

(9.13)

Thus, under CRE, the absorbed dose to a subvo-

lume of a homogeneous radioactive medium is given

by the mean energy released per unit mass of that

volume. It is also possible to obtain the result of

(9.13) from (9.4) by noting that, from the definition

of CRE, r �Cg ¼ r �Ce ¼ 0.

RMax

T

S

S

V2

V1

+P

Fig. 9.3 Spherical geometry used to define radiation equilib-

rium (after Attix (1986))
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9.2.3.3 Charged-Particle Equilibrium

If CRE exists, then the more specific state of CPE, by

definition, must also exist. The equilibrium is of the

charged particles alone.4 Practical dosimetric interest

in CPE is primarily in those conditions in which an

approximate CPE exists. For example, consider a pho-

ton beam incident to a medium. The photons have a

mean-free path in that medium given by the reciprocal

of the linear attenuation coefficient, 1=m. Should this

mean-free path exceed the maximum range RMax of

the secondary electrons produced by photon-matter

interactions within the medium (i.e., the product

mRMax � 1), then an approximate CPE can be estab-

lished within the medium at those depths greater than

RMax if the attenuation of the photon beam can be

considered negligible. This condition links with the

demonstration of (9.6) that, under CPE conditions

and assuming that no changes in rest mass occur, the

values of the absorbed dose and the kerma are equal.

Reconsider the geometry of Fig. 9.3 and assume

that the radionuclide contained in the volume emits

only a or b� particles (i.e., the emitted radiation has a

finite range within the volume) and that bremsstrah-

lung losses are negligible. From the argument pre-

sented above, CPE will be established at the point P

provided that the medium is homogeneous and the

radionuclide is uniformly distributed. If the require-

ment that the radionuclide emits only charged particles

is relaxed and it is now allowed to emit photons, there

is now a case of more practical interest to diagnostic

nuclear medicine. Let the emitted photon mean-free

path in the medium be such that 1=m� RMax, where

RMax is the maximum range of the charged particle

emitted in the radioactive decay. The outer volume V1

is then reduced such that the minimum separation of

the two spheres, s, just exceeds RMax. Under such a

condition, it can be assumed that there are negligible

photon-matter interactions as the photons escape from

V2. Hence, while CPE will exist under this condition,

CRE cannot as the outgoing photon radiant energy for

V1 will exceed that of any incoming photons. However,

if V1 is allowed to expand in size to allow s� 1=m,
then an approximate CRE will be established.

9.2.3.4 Absorbed Fraction

In internal radiation dosimetry, the absorbed fraction

f(rT  rS) is the fraction of energy emitted by a

radionuclide in a source region rS that is absorbed by

a designated target region, rT. This discussion of the

absorbed fraction is limited to that fraction absorbed

by the source region itself, i.e., the “self-dosing” con-

tribution, f(rS  rS). The f(rS  rS) is an implicit

measure of radiation equilibrium to the entire source

region. Should f(rS rS) ¼ 1 in a volume containing

a b-emitting radionuclide, then CPE exists. From

the above discussions, f(rS  rS) will never equal

1.0 exactly if the b-emitting radionuclide is uniformly

distributed throughout the region and the region is

placed in vacuo (i.e., backscattering of the b particles

into the volume is not possible). Those radioactive

nuclei at the periphery of the region can emit b parti-

cles which exit the region but are not compensated by

b particles entering the region. However, a unity value

of the f(rS rS) is obtainable in the case of the region

containing the radionuclide central to the entire source

region and the shortest distance from the radioactive

region to the borders is less than the maximum range

of the b particle, RMax.

The above is of importance in radionuclide therapy

in which a tumor is assumed to be spherical and

to have taken up a specified amount of activity. To

estimate the amount of absorbed dose received by the

tumor, an estimated of the absorbed fraction is

required. Values of these have been provided in the

literature over the years (e.g., Brownell et al. 1968;

Ellett and Humes 1971; Siegel and Stabin 1994; Stabin

and Konijnenberg 2000). While it may be reasonable

to assume that, under some conditions, f(rS rS) ¼ 1

for all b-emitting radionuclides, the validity of the

assumption is dependent upon the combination of

RMax and the diameter of the spherical volume. Two

examples of this are given in Fig. 9.4 in which

the absorbed fractions of energies of b particles in

unit-physical density spheres containing uniformly-

distributed 131I or 90Y are shown as functions of the

diameter of the sphere. The curves are derived from

tabular data provided by Siegel and Stabin (1994)

which, in turn, were derived from dose point kernel

(DPK) calculations performed by Berger (1970).

The mean b-particle kinetic energies of 131I and 90Y

are 183 and 937 keV, respectively. As can be seen,

the f(rS rS) for
131I approaches unity for spherical

4While CPE can exist in a volume containing a uniformly

distributed b-emitting radionuclide, it cannot exist when the

volume is irradiated by an external beam of charged particles.
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diameters exceeding about 8 cm whereas that for 90Y

is still only equal to 0.97 for a 12.4 cm diameter

sphere. This reflects the lower b-particle range relative
to the sphere diameter for 131I.

9.2.3.5 Collision Kerma and Charged Particle

Equilibrium

The role of CPE in the definition of kerma is now

considered. In this subsection, the approach taken by

Alm Carlsson (1981, 1985) is followed.

Photon interactions with atoms in a medium are

considered to be a source of electrons. As these elec-

trons can cause further ionizations in the medium as

they slow down and liberate further electrons (d rays),

classification of moving electrons on the basis of how

they are produced is useful. Primary electrons are

defined as those emitted in radioactive decay or else

produced through photon interactions (e.g., Compton

scatter). Secondary electrons are those produced by

subsequent electron interactions in the medium, i.e.,

d rays.5 The expectation value of the imparted energy

resulting from the interactions of a primary electron

with kinetic energy T and its secondary electrons

which are completely stopped in the medium is,

eT;c ¼ T�
X
n

kn þ
X
n

Qn (9.14)

where
P
n

kn is the mean of the sum of the energies of

photons created by the charged particle interactions

(characteristic X-rays and bremsstrahlung) and
P
n

Qn

is the mean of the sum of any rest-mass energies

released. Consider a homogeneous medium within

which primary electrons are liberated to form a

uniform fluence. CPE is established by definition and

the absorbed dose due to these electrons is,

D ¼ nc eT;c (9.15)

where nc is the number of charged particles released

by radioactive decay per unit mass and the double

overbar indicates that the mean imparted energy

from the charged particle has been averaged over the

energy spectrum of the emitted primary charged par-

ticles. Substituting (9.14) into (9.15) results in,

D ¼ nc eT;c

¼ nc�T� nc
X
n

kn �
X
n

Qn

 !

¼ K� nc
X
n

kn �
X
n

Qn

 ! (9.16)

where the kerma has been identified as K ¼ nc�T. Even

if CPE should not exist, the right-hand side of this

result remains and is referred to as the collision

kerma, Kc.

From (9.7), the kerma for a polyenergetic photon

beam is,

K ¼
ð1

kIon

dk
dC
dk

mtr
r
ðkÞ: (9.17)

By analogy, the collision kerma can be defined in a

similar fashion using the mass energy-absorption

coefficient,

Kc ¼
ð1

kIon

dk
dC
dk

men
r
ðkÞ: (9.18)

1

0.75

131I

90Y
0.5

0.25

0
0 2 4 6

Diameter of Sphere (cm)

A
b

so
rb

ed
 F

ra
ct

io
n

8 10 12 14

Fig. 9.4 Absorbed fraction for the b particles emitted by 131I

and 90Y uniformly distributed within unit-density spheres as

functions of the sphere diameter. Curves are derived from the

data of Siegel and Stabin (1994)

5This classification is also applicable to neutron interactions

with tissue where the primary charged particle would be a

proton resulting from neutron-proton collisions and the second-

ary charged particles would be protons and electrons.
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One can now write an expression for the mass–

energy absorption coefficient as,

men
r
¼ eT;c

T

mtr
r

¼ 1�
P
n

kn �
P
n

Qn

T

0
B@

1
CA mtr

r
:

(9.19)

The ICRU’s (1980) relationship between the

energy-transfer and energy-absorption coefficients,

men
r
¼ 1� gð Þ mtr

r
(9.20)

where g is the fraction of the liberated charged parti-

cles’ initial kinetic energies that is irradiated as brems-

strahlung. Neglecting rest-mass energy releases,

combining (9.19) and (9.20) results in an expression

for g,

g ¼
P
n

kn

Tc

: (9.21)

9.2.3.6 Collision Kerma and Transient Charged

Particle Equilibrium

Recall that it was stated that a state of an approximate

CPE exists for secondary electrons set in motion by

photon interactions if mRMax � 1, where m is the

photon’s linear attenuation coefficient and RMax is

the maximum electron range. For high-energy

photons, mRMax is small (�0.1) and the magnitudes

of the absorbed dose and the corresponding kerma and

collision kerma at a point in a medium irradiated by

high-energy photons will differ. To demonstrate the

relationship between absorbed dose, kerma, and colli-

sion kerma under such conditions, consider a semi-

infinite homogeneous medium irradiated by a planar

photon beam sufficiently broad that lateral electronic

equilibrium exists at the central axis of the beam. This

lateral electronic equilibrium is defined as the state in

which there is an exact balance between ingoing and

outgoing laterally-scattered electrons in volumes

along this central axis. Such a geometry is shown in

Fig. 9.5. The absorbed dose at the point P, which is at a

depth z, is due to primary electrons liberated by pho-

ton-matter interactions and to secondary electrons set

in motion within a distance RMax of P. An electron

released from an arbitrary point I at a depth z0 within
this interval due to a photon interaction will impart an

energy de(Dz) in a layer with thickness d(Dz), where
Dz ¼ z � z0, at a distance Dz from z0. The average

energy imparted at P by a single electron is the integral

of the distribution deðDzÞ=dðDzÞ over distance,

eT;c ¼
ðRMax

�RMax

d Dzð Þ de Dzð Þ
d Dzð Þ : (9.22)

If there are nc(z
0) electrons liberated per unit mass

of medium at the depth z0, then (9.22) can be rewritten
to yield the absorbed dose at a depth z,

DðzÞ ¼
ðzþRMax

z�RMax

dz0 nc z0ð Þ de Dzð Þ
d Dzð Þ : (9.23)

Assuming that the photons are attenuated purely

exponentially as they penetrate into the medium,

then, nc(z) ¼ nc(z
0) e�mDz and the expression for the

absorbed dose of (9.23) becomes,

DðzÞ ¼ ncðzÞ
ðRMax

�RMax

d Dzð Þ de Dzð Þ
d Dzð Þ e

mDz: (9.24)

This assumption, of course, neglects the fact that

the photon energy spectrum will change with depth

Photon 
Beam

Z

P

RMax RMax

Z′ ΔZ
I

Fig. 9.5 Geometry describing the definition of transient

charged particle equilibrium. A photon beam is incident from

the left to a semi-infinite medium; it is sufficiently broad that

lateral electronic equilibrium exists along the central axis. The

absorbed dose at the point P at a depth z is due to electrons

liberated at depths between z � RMax and z þ RMax , such as

point I at a depth z0, where RMax is the maximum range of these

electrons.
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due to the increase in lower-energy Compton-scattered

photons, the resulting depth-dependence of the linear

attenuation coefficient and ignores buildup of second-

ary photons along the central axis due to Compton

scatter. The validity of this result thus requires a bal-

ance between the need for sufficient lateral extent of

the beam to ensure lateral electronic equilibrium along

the central axis and a minimum lateral extent so as to

ensure that the buildup effects of scattered photons can

be ignored. The collision kerma is,

KcðzÞ ¼ ncðzÞeT;c: (9.25)

From these two results, one can now write the

absorbed dose of (9.24) as,

DðzÞ ¼ KcðzÞ
eT;c

ðRMax

�RMax

d Dzð Þ de Dzð Þ
d Dzð Þ e

mDz: (9.26)

If the inequality mRMax � 1 is met, then the expo-

nential can be expanded to first order, emDz � 1þmDz,
and (9.26) simplifies to,

DðzÞ ¼ KcðzÞ 1þ m

ÐRMax

�RMax

d Dzð Þ de Dzð Þ
d Dzð ÞDz

eT;c

0
BBB@

1
CCCA

0
BBB@

1
CCCA

¼ KcðzÞ 1þ mmð Þ mRMax � 1; z � RMax

(9.27)

where m is the first moment of the frequency function,

deðDzÞ=dðDzÞ, normalized to eT;c. For high-energy

photons, the liberated electrons will be forward-directed

(recall the directional dependence of the Klein–Nishina

cross section) with the result that deðDzÞ=dðDzÞ is large
for positive Dz. This results in the magnitude of the

absorbed dose at a point being greater than that of the

collision kerma, D(z) > Kc(z). On the other hand,

for low-energy photons, deðDzÞ=dðDzÞ is small which

results in D(z) � Kc(z). Recall that the elastic Coulomb

scatter cross section increases with square of the

medium’s atomic number. As a consequence, the ratio

deðDzÞ=dðDzÞwill tend to bemore symmetric in high-Z

media (as a result of the greater isotropicity of scatter)

than in low-Z media for the same photon beam. Thus,

the degree of CPE which is achieved will depend

upon the combination of the photon mean-free path

1=m, the maximum range of electrons RMax, the isotropy

of the production of secondary electrons and the scatter-

ing properties of the medium. To summarize these

effects, Fig. 9.6 shows the relationships between

kerma, collision kerma, and absorbed dose for high-

and low-energy photons. The quantities are along the

central axis of a photon beam which is incident in

vacuo from the left to the vacuum-medium interface

and are plotted as a function of depth in the medium.

The interface is at depth z ¼ 0. The observed decreases

in kerma and collision kerma are a result of the expo-

nential attenuation of the photon fluence. For high-

energy photons (Fig. 9.6a), there is a clear demarcation

between kerma, collision kerma, and absorbed dose.

The ratio of the collision kerma to the kerma is a con-

stant equal to the ratio of the mass–energy transfer

to mass–energy absorption coefficients which, from

(9.20), is equal to,

mtr =r
� �
ðmen=rÞ

¼ 1

1� g
: (9.28)

In Fig. 9.6a, it has been implicitly assumed that

there is a fraction of the incident photon energy

which eventually appears as bremsstrahlung irradiated

by primary and secondary electrons Should that frac-

tion be negligible (i.e., g � 0), then the mass–energy

absorption and transfer coefficients would be equal

and the kerma and collision kerma curves of

Fig. 9.6a would be coincident.

The depth-dependence of the absorbed dose for

high-energy photons is a result of energy transfer and

absorption from the primary and secondary electrons.

As, at high energies the primary photons are forward-

directed, the absorbed dose will be zero at the interface

between the vacuum and the medium and will increase

up to a maximum at a depth equal to RMax. The point at

which the absorbed dose and collision kerma are

numerically equal occurs at a slightly lower depth.

The absorbed dose curve then decreases exponentially

for depths z � RMax with D(z) ¼ Kc(z � m) or

DðzÞ=KcðzÞ ¼ 1þ mm. One should recognize that,

even without the above derivations that culminated

in (9.27), D(z) must be greater than Kc(z) at depths

z� RMax simply from the conservation of energy. The

areas under the D(z) and Kc(z) curves in Fig. 9.6a must,
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as a result, be equal and as Kc(z) > D(z) near the inter-

face, then D(z) > Kc(z) at greater depths. In the transi-

tion region shown,CPE does not exist. Beyond the depth

of maximum absorbed dose, a state of transient charged

particle equilibrium (TCPE) exists.6 This state is defined

as the condition in which the ratio of the absorbed dose

to the collision kerma is equal to a constant (assuming

that the decrease in both with depth is exponential and

the photon energy spectrum is unchanged).

Figure 9.6b shows the kerma, collision kerma, and

absorbed dose curves for the case of low-energy

photons incident to the medium. Under such condi-

tions, the electron ranges are much smaller and brems-
strahlung losses negligible. Thus, the mass–energy

absorption and transfer coefficients are equal and the

values of the kerma, collision kerma, and absorbed

dose are all equal at any given depth. This is the

condition in which all of the energy transferred from

the photon interactions with the medium and the

energy absorbed from the primary and secondary elec-

trons occur locally.
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Fig. 9.6 Depth dependencies

of kerma, collision kerma, and

absorbed dose for photons

incident to a medium for (a)

high-energy photons and (b)

low-energy photons. Refer to

the text for detailed

descriptions

6Also referred to as “quasi-equilibrium.”
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9.2.3.7 In-Air Collision Kerma and Exposure

As described in the introduction to this chapter, the

radiometric unit of exposure was defined in 1937 in

terms of the amount of ionization in air generated by

photons. Recall from Chap. 8,

X ¼ C
men
r

� �
air

e

W
:

The unit of exposure is defined for air only whereas,

the metric of the collision kerma Kc has broader appli-

cations in that it can be defined for any medium.

Should that medium be air, the in-air collision kerma

and exposure are related by,

X ¼ Kc;air
e

W
(9.29)

where the in-air collision kerma has been assigned the

symbol, Kc,air.

9.2.3.8 Air Kerma-Rate Constant

The air kerma-rate constant, Gd, is defined (ICRU

1980) for a given photon-emitting radionuclide. It is

used to calculate the air kerma rate at a distance r from

a point photon-emitting source of activity A,

dKd

dt
¼ Gd

A

r2
(9.30)

where dKd=dt is the air kerma rate due to photons with

energies exceeding d. From the definitions of kerma

and the flux of a point source of an isotope emitting a

single photon per decay, we can also write this air

kerma rate as,

dKd

dt
¼ k

mtr
r
ðkÞ

� �
air

A

4pr2
ðk � dÞ: (9.31)

where attenuation of the photons in air has been

neglected. For multiple photon emissions per nuclear

decay, this result can be generalized,

dKd

dt
¼ A

4pr2
XN
i¼1

Yiki
mtr
r

kið Þ
� �

air

k � dð Þ (9.32)

where Yi is the number of photons of energy ki emitted

per decay. The air kerma-rate constant can then be

defined from (9.30) as,

Gd ¼ r2

A

dKd

dt
(9.33)

to yield the final expression,

Gd ¼ 1

4p

XN
i¼1

Yiki
mtr
r

kið Þ
� �

air

k � dð Þ: (9.34)

Values of Gd for radionuclides in common use

in diagnostic nuclear medicine are provided in

Table 9.1

Attix (1986) has suggested that a superior defini-

tion could have been had if the in-air collision kerma,

Kc,air, had been used in the definition instead. This

suggestion amounts to replacing the mass energy-

transfer coefficient for air with the mass energy-

absorption coefficient for air in the above derivation.

Thus, bremsstrahlung would escape and the result

would be reflective of that which would be obtained

by measurement.

9.2.3.9 Fano’s Theorem

In the examples of CRE and CPE considered in dis-

cussions so far, the medium has been homogeneous.

Should this homogeneous medium be uniformly irra-

diated by photons, the liberated electron fluence will

also be uniform. Fano’s theorem (Fano 1954) states

that this electron fluence will remain uniform even if

the requirement for medium homogeneity is relaxed.

The theorem states:

If an infinite medium of given atomic composition is
exposed to a uniform photon fluence, the resulting

electron field will also be uniform and independent

Table 9.1 Photon Air Kerma-rate constants for radionuclides

in common use in diagnostic nuclear medicine (d ¼ 20 keV)

Isotope Gd (Gy cm2/Bq s)
11C, 13N, 15O, 18F 3.89 � 10�13
99mTc 3.97 � 10�14
111In 2.07 � 10�13
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of the medium’s density and any spatial variations of

density within the medium.7

The proof of the theorem is as follows. Begin, as

Fano did, by considering an infinite homogeneous

medium irradiated by a uniform photon fluence

which subsequently sets electrons in the medium into

motion. Define Fe;h T; V̂
� �

as the electron number

fluence with kinetic energy T moving in the direction

of the unit vector V̂. The h subscript indicates that this

is the electron number fluence in the homogeneous

medium. The source term Se T; V̂
� �

represents the

number of primary electrons of kinetic energy T cre-

ated by photon interactions in the medium per unit

mass and which move in the direction of the unit

vector V̂. As the photon irradiation is defined to be

uniform, the source term Se T; V̂
� �

must also be

uniform throughout the medium as a result. The prob-

ability per unit areal density (i.e., mass per unit area)

that an electron of energy T moving in direction V̂

will be scattered so as to have a postscatter kinetic

energy between T0 and T0 þ dT0 and moving in the

direction between V̂0 and V̂0 þ d V̂
0
is given by

Pr T! T0; V̂! V̂0
� �

dT0 d V̂0. From these defini-

tions, the primary electron transport equation is,

under the assumption of CPE,

Se T; V̂
� �

�Fe;h T; V̂
� �ðT

0

dT0
ð
dO0 Pr T! T0; V̂! V̂0

� �

þ
ð1

T

dT0
ð
dO0 Pr T! T0; V̂! V̂0

� �
Fe;h T0; V̂0

� �

¼ 0 ð9:35Þ

If the condition of CPE were not to be imposed a

priori, then the right-hand side of (9.35) will be non-

zero. Further, if the density of the medium is allowed

to vary, a spatial dependence is assigned to the density,

r(r). As a result, the electron number fluence will also

have a spatial dependence, Fe;i r;T; V̂
� �

, where the

i subscript indicates that this is the electron fluence in

what is now the inhomogeneous medium. The result-

ing transport equation allowing for a spatially-variant

density and without a state CPE being assumed a

priori is,

r rð ÞSe T;V̂
� �

�r rð ÞFe;i r;T;V̂
� �ðT

0

dT0
ð
dO0 Pr T!T0;V̂!V̂0

� �

þr rð Þ
ð1

T

dT0
ð
dO0 Pr T!T0;V̂!V̂0

� �
Fe;i r;T0;V̂0
� �

¼V̂0 �rFe;i r;T0;V̂0
� �

ð9:36Þ

Fano’s theorem states that the electron number flu-

ences in the homogeneous and inhomogeneous media

will be the same, i.e., Fe;h T; V̂
� �

¼ Fe;i r;T; V̂
� �

.

This conclusion can be reached by replacing the electron

fluence in the inhomogeneous medium, Fe;i r;T; V̂
� �

,

in (9.37) with that in the homogeneous medium,

Fe;h T; V̂
� �

. As Fe;h T; V̂
� �

has no spatial dependence

due to the homogeneity of the medium and the unifor-

mity of the incident photon fluence, then its gradient

rFe; h T; V̂
� �

¼ 0. Hence, the right-hand side of (9.36)

will equal zero. The physical density term then divides

out across both sides of (9.36), thus leading to the

homogeneous medium result of (9.35). Hence, CPE

will be established in an inhomogeneous medium

under the condition of uniform photon irradiation.

9.2.3.10 Absorbed Doses at Interfaces Between

Different Media

Clinical radiation dosimetry calculations are rarely

associated with the simple homogeneous media stud-

ied in the examples so far. In order to provide accurate

results, radiation dosimetry calculations must account

for the radiological heterogeneity of the human body.

For example, the physical densities of skeletal muscle

and bone are 1.04 and 1.65 g/cm3, respectively, and

the corresponding effective atomic numbers are 7.64

and 12.31 (Johns and Cunningham 1983). Clearly, a

simplifying assumption of the body as being homoge-

neous neglects the spatial dependencies of the photon

7Attix (1986) and others have highlighted that Fano’s derivation

of this theorem neglects the polarization effect upon charged-

particle energy loss discussed in Chap. 7.
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coefficients of attenuation, energy transfer, and energy

absorption coefficients and the electron/positron stop-

ping and scattering powers throughout the body. It is

evident that the radiation fluences calculated for a given

geometry and an assumed homogeneous medium will

markedly differ from those that exist in the actual het-

erogeneous case. For photon irradiation, the absorbed

dose at a point in a medium in which CPE exists is

readily calculated from D ¼ cmen=r. However, at an
interface between two radiologically dissimilar media,

CPE does not exist and the absorbed dose cannot be

calculated in this fashion. In many practical cases, this

does not necessarily constitute a problem. For example,

consider a 1-cm thick slab of bone embeddedwithin two

1-cm slabs ofmuscle, as shown in Fig. 9.7. One hundred

and forty kiloelectron volt photons (i.e., 99mTc g rays)

are incident from the left and photon scatter is neglected.

As these photons travel through muscle, they are atte-

nuated with a linear attenuation coefficient of 0.15/cm,

whereas in bone they are attenuated with a linear atten-

uation coefficient of 0.26/cm. Moreover, the absorbed

dose will be higher in bone than in muscle due to the

respective mass energy absorption coefficients of 0.102

and 0.027cm2/g, reflecting the greater amount of photo-

electric absorption in bone due to its higher effective

atomic number. As the maximum ranges of Compton

electrons produced by 140 keV photons in muscle and

bone are about 0.04 and 0.09mm, respectively, all of the

energy liberated through these Compton electrons is

absorbed at the site of energy transfer.

The dashed lines indicate the approximately

factor of 3 change in absorbed dose that occur at the

bone–muscle interfaces. As suggested by Fig. 9.7,

with the change in physical density and atomic num-

ber, CPE cannot be expected to exist at the interface

between two radiologically-dissimilar media. Indeed,

there will be a rapidly-changing gradient in absorbed

dose at the interfaces.

The general problem of how the fluence is altered at

the interface between low- and high-Z media is impor-

tant in practical dosimetry, as we will see when we

consider the absorbed dose to red bone marrow. The

influence of an interface between low- and high-Z

media upon the electron fluences created by a photon

beam is shown conceptually in Fig. 9.8. In Fig. 9.8a,

a photon beam is incident from the high-Z medium to
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Fig. 9.7 Absorbed doses in 1-cm-thick slabs of muscle and

bone irradiated by 99mTc (140 keV) photons incident from the

left. Photon scatter is neglected (after Johns and Cunningham

(1983))
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Fig. 9.8 Electron fluences in the vicinity of the interface

between high- and low-Z media as a function of distance from

the interface. The solid lines are the total fluences. In (a),

photons are incident to the interface from the high-Z medium;

in (b), photons are incident to the interface from the low-Z

medium (after Dutreix and Bernard 1966)
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the low-Z medium (e.g., photons traversing from bone

to soft tissue). The photons will liberate electrons in

both media and the differing properties and the direc-

tion of photon irradiation create a nonequilibrium state

(although at distances of the order of RMax beyond

the interface, TCPE exists). From the study of the

Z-dependence of elastic Coulomb scatter in Chap. 6,

it is reasonable to neglect any electrons that are back-

scattered from the low-Z medium across the interface

into the high-Z medium. Hence, the fluence of elec-

trons arising in the high-Z medium will decrease as the

interface is approached. Once the interface is crossed,

this fluence in fact diminishes to zero beyond about

RMax (in the low-Z medium) of the forward-directed

electrons produced in the high-Z medium. As photons

cross the interface, electrons are set in motion due to

interactions in the low-Z medium to reach a maximum

once CPE is achieved. The combined electron fluences

in the vicinity of the interface are shown by the

solid line with a minimum on the low-Z side of the

interface.

In Fig. 9.8b, the photons are now incident from the

low-Z side of the interface. The fluence of electrons set

in motion in the low-Z medium is constant up to the

medium and then diminishes to zero inside the high-Z

medium. The fluence of electrons set in motion by

photon interactions in the high-Z medium penetrate

into the low-Z medium due to backscatter. The com-

bined fluences show a maximum in the high-Z

medium at a distance from the interface which is less

than the equilibrium depth (i.e., the maximum range

of the electrons in the high-Z medium). These figures

were derived from data obtained by Dutreix and

Bernard (1966) for a carbon–copper interface irra-

diated by 60Co g rays (with a mean energy of

1.25 MeV).

9.2.4 Methods of Calculating the
Radiation Flux

9.2.4.1 Introduction

The absorbed dose at a point due to photons or

electrons/positrons is proportional to the relevant

particle fluence at that point; thus, the calculation

of the fluence (or the fluence rate, flux, for a radio-

active source) is fundamental to the evaluation of the

absorbed dose. In this subsection, analytical and

Monte Carlo (stochastic) means of calculating the

particle fluence are reviewed. In most cases, the

source of radiation is a radionuclide so a time rate

must be considered; hence the object of the calcula-

tion is the flux. Fluence is obtained by integrating the

flux over time. Numerical solutions based upon the

solution of the Boltzmann transport equation are not

considered here. While these numerical solutions

have historically been performed, the Boltzmann

equation method is impractical in contemporary

nuclear medicine dosimetry calculations, having

been surpassed by modern, faster and more precise

Monte Carlo methods.8

9.2.4.2 Analytical Solutions for Geometric

Radiation Sources

Introduction

Analytical calculations of the fluxes due to a radioac-

tive point source, linear source, and planar disc source

begin this discussion. The intent of this discussion of

analytical methods is to present the general features of

the dependence of the flux upon source geometry.

Although these results are readily obtainable through

Monte Carlo simulation, the analytical derivation pro-

vides the background to understanding these depen-

dencies. In addition, as the initial calculations will be

for the sources in vacuo, the results are geometric and

are applicable to both photons and charged particles.

The interposition of absorbers between the sources and

the flux calculation points of interest is then allowed.

As a result, these extended calculations will be limited

to photons. These calculations demonstrate the bal-

ance between the contributions of photon attenuation

and scattered radiation to the flux at the calculation

point.

In addition to the pedagogical attributes of these

analytical calculations, they can also provide some

practical results. It is frequently necessary in the

nuclear medicine department to know at what distance

an extended radioactive source can be approximated

8Although a Boltzmann-type radiation transport equation was

used in the analysis of charged-particle energy straggling and

the proof of Fano’s theorem.
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by a point source, for which the photon flux can be

readily calculated. Another application is in nuclear

medicine radiation protection, an example being the

calculation of the absorbed dose received by others

from a radioactive patient.

Point Source

The simplest geometric source to calculate for is that

of a point radioactive source. As shall be demon-

strated, it is also an approximation of an extended

source if the point at which we wish to calculate

the flux is at a sufficient distance from the source.

Figure 9.9 shows the geometry of a source of activity

A sited at the origin and the flux (fluence rate) at the

point P a distance r from the source is, in vacuo,

dF
dt
¼ A

r2
ð
dO

¼ A

4pr2
:

(9.37)

As this example is in vacuo, scatter and energy

transfer cannot occur. Thus, the result is applicable

to both photons and charged particles. Now consider

the changes in flux at point P that will occur if

the source and detection point were no longer in

vacuo. As the mean-free paths between interactions

for electrons/positrons are significantly smaller than

those for photons, this discussion will be limited to

a photon-emitting source. Should there be a thin

absorber of thickness t placed between the source

and point P, then the attenuated photon flux at P is,

dF
dt
¼ A

4pr2
e�mt: (9.38)

This result is a simplification based upon the sig-

nificant assumption that the absorber is sufficiently

thin and far enough from P such that negligible scat-

tered radiation from the absorber reaches P. If this

were not the case (due to a thicker absorber), then

(9.38) must be modified to account for scatter contri-

butions by multiplying it by the buildup factor, B,

dF
dt
¼ A

4pr2
Be�mt: (9.39)

As the contributions of scattered radiation will lead

to an increase in the flux at the point P, then B � 1.

The above result is immediately applicable to

extended sources which are considered as integrals

of differential elements modeled as points.

Linear Source

A continuous linear source of activity is modeled by a

linear array of point sources. Consider an infinitely-

thin linear source of length L and activity A uniformly

distributed along it (with an activity per unit length

GA 	 A=L) and evaluate the flux at three points P1, P2,
and P3 as shown in Fig. 9.10. Again, as the calculation

of the flux is initially in vacuo, the results are equally

valid for photons and charged particles.

The differential flux at point P1 due to the activity

contained within the differential element dl is,

d2F
dt

����
P1

¼ GA

4pr2
dl: (9.40)

From the geometry shown,

l ¼ r tan y (9.41)

r ¼ h

cos y
(9.42)

r

z

y

x

P

rdq

dA = r2 sinq  dq df

r sinq df

q

f

Y0

Fig. 9.9 Geometry for calculating the photon flux at the point P

from a point source at the origin
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dl
dy
¼ h

cos2 y
: (9.43)

Substituting these geometrical relationships into

(9.40) results in,

d2F
dt

����
P1

¼ GA

4ph
dy: (9.44)

The total radiation flux at P1 is obtained by inte-

grating over the azimuthal angle,

d2F
dt

����
P1

¼ GA

4ph

ðy2j j

� y1j j

dy

¼ GA

4ph
y1j j þ y2j jð Þ

(9.45)

where the angles are y1 ¼ tan�1l=h and y2 ¼ tan�1 L�l
h
.

This result can be shown to reduce to the point-source

expression when P1 is at a great distance from the

linear source where h � l and h � L � l allow the

arctangents to be expanded to first order,

y1j j þ y2j j � l

h
þ L� l

h

¼ L

h
:

(9.46)

Under such conditions, the flux at P1 is,

dF
dt

����
P1

¼ A

4ph2
h� Lð Þ (9.47)

which is equivalent to the point source result given by

(9.37). Figure 9.11 shows the ratio of the fluxes calcu-

lated for the line source at P1 at midline to the source

and the point source as a function of the ratio of h=L,

both with the same total activity. The linear source can

be approximated by a point source to within 0.5% if

the ratio h=L > 4.

The differential photon flux at point P2 (which is at

the same perpendicular distance from the source as P1
but at an axial distance beyond the end of the source) is

also given by (9.44) and the integrated photon flux is,

d2F
dt

����
P2

¼ GA

4ph
y2j j � y1j jð Þ: (9.48)
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Fig. 9.10 Calculation of photon flux at three points from a

linear source of activity
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Fig. 9.11 The ratio of the flux at a midline point for a linear

source of length L at a distance h from the midline of the linear

source to that of a point source at the same distance h as a

function of the distance to the linear source length. Both sources

are of the same total activity
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Similarly, the photon flux at the axial point P3 is,

dF
dt

����
P3

¼ GA

4p
1

l
� 1

Lþ l

� �

¼ GA

4p
L

l Lþ lð Þ
(9.49)

which, for L � l, simplifies to,

dF
dt

����
P3

¼ GA

4p l
L� lð Þ

¼ A

4pLl
:

(9.50)

These flux calculations were for in vacuo. Con-

sider, now, the case of an absorber of thickness t inter-

posed between the linear source and the calculation

point P1 (clearly, t 
 h). Initially, ignore scatter and

assume the source to be of photons only. Then, photon

attenuation leads to a modification of (9.38),

d2F
dt

����
P1

¼ GA

4ph
e�

mt
cos y dy: (9.51)

The final form of an expression for the complete

photon flux at P1 accounting for this attenuation is

obtained by integrating over the angle y,

dF
dt

����
P1

¼ GA

4ph

ðy2j j

� y1j j

dy e�
mt

cos y

¼ GA

4ph

ðy2j j

0

dy e�
mt

cos y þ
ðy1j j

0

dy e�
mt

cos y

0
B@

1
CA

¼ GA

4ph
S y2j j; mtð Þ þ S y1j j; mtð Þð Þ

(9.52)

where S y; xð Þ ¼ Ðy
0

dy e�
x

cos y is the Sievert integral

(Sievert 1930). As there is no analytical solution to this

integral, it must be solved either numerically (Worthley

and Nicholls 1972) or through Monte Carlo means

(Williamson et al. 1983). Tabulated values of the Sievert

integral and its relationships to other integrals are

provided by Stegun (1972).

If it is next assumed that the source is one of

photons and that it and the point of interest, P1, are

both embedded in a homogeneous medium with linear

attenuation coefficient, m, the fluence rate at P1 is, from
(9.51),

d2F
dt

����
P1

¼ GA

4ph
S y2j j; mhð Þ þ S y1j j; mhð Þð Þ: (9.53)

This is an incomplete solution, however. While it

does account for photon attenuation by the medium, it

does not include the effects of photon scatter that

occurs between the source and the point P1. As before,

this is achieved by the use of the buildup factor

through which the contribution of scatter will increase

the flux at P1. The buildup factor can be approximated

by,

B yð Þ � 1þ aðkÞ mh
cos y

(9.54)

where a(k) is a coefficient dependent upon the photon

energy, k. Including this buildup factor into the inte-

gral of (9.52) results in the expression for the photon

flux at P1 as,

d2F
dt

����
P1

¼ GA

4ph

 
Sðjy2j; mhÞ þ Sðjy1j; mhÞ

þ aðkÞmh
ðjy2j

jy1j

dy
e�

mh
cos y

cos y

! (9.55)

where the last integral is to be solved numerically.

Disc Source

Extending the complexity of the radiation source geom-

etry being calculated for, now consider the flux at an off-

axis point P due to activity uniformly distributed across

a disc of radius R, as shown in Fig. 9.12. P is at a height

h above the disc and is displaced by a distance d from the

disc’s center. Again, the calculation is performed initi-

ally in vacuo and thus remains valid for both photons

and charged particles.

The disc source has a total activity A with a

uniform areal activity density given by SA ¼ A=pR2.

The differential element of area d2w at a distance r

from the center of the source is d2w ¼ r dr dy and the
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differential flux at P from this element is, from the

point-source calculation, equal to,

d3F
dt
¼ SA

4pr2
d2w: (9.56)

From the geometry of Fig. 9.12,

r2 ¼ h2 þ b2 (9.57)

where

b2 ¼ d2 þ r2 � 2rd cos y: (9.58)

The differential flux at P is thus equal to,

d3F
dt
¼ SA

4p
r

h2 þ d2 þ r2 � 2rd cos y
dr dy: (9.59)

The total photon flux at P is found by integrating

(9.59) over the source area,

dF
dt
¼SA

4p

ðR

0

drr

ð2p

0

dy
h2þd2þ r2�2rdcosy

¼SA

4p

ðR

0

dr
r

h2þd2þ r2

ð2p

0

dy

1þ � 2rd
h2þd2þr2

� �
cosy

:

(9.60)

The angular integral is of the form,

ð2p

0

dy
1þ a cos y

¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p for a2 < 1: (9.61)

Employing this identity, the flux is written as a

single integral,

dF
dt
¼ SA

2

ðR

0

dr
r

h2 þ d2 þ r2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4r2d2

h2þd2þr2
q : (9.62)

Using the change of variable within the integral,

x ¼ r2, the flux is,

dF
dt
¼SA

4

ðR2

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ2 h2�d2ð Þxþ h2þd2ð Þ2

q

¼SA

4
ln

R2þh2�d2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þh2�d2ð Þ2þ4d2h2

q
2h2

������
������:

(9.63)

In the event that the point P is axial to the disc (i.e.,

directly over the center of the circular planar source or

d ¼ 0), this expression reduces to,

dF
dt
¼ SA

4
ln 1þ R

h

� �2
 !

: (9.64)

If the point at which the flux is calculated for is

sufficiently removed from the source such that R � h,

then this result reduces to, using ln 1þ xð Þ � x for

small x,

dF
dt
� SA

4

R2

h2

� A

4ph2
:

(9.65)

Again, the point-source result is returned. Figure 9.13

presents the ratio of the flux calculated for the disc

source to that of the point source for points along the

axis as a function of h=2R for the same total activity.

Approximating the disc source as a point will introduce

an error in the flux calculation of less than 0.5%

for h=2R > 5.
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Fig. 9.12 Disc source of activity
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If an absorber of thickness t is now placed between

the disc source (considered to be a source of photons)

and the point of calculation, the differential flux is

modified

d3F
dt
¼ SA

4pr2
e�mt sec wd2w: (9.66)

The attenuated photon flux for the axial point for

which d ¼ 0 is nowcalculated. In this case,r2 ¼ h2 þ r2

and cos w ¼ h=r and,

dF
dt
¼ SA

2

ðR

0

dr
r

h2 þ r2
e�mt

ffiffiffiffiffiffiffiffiffi
h2þr2p

=h

with absorber; d ¼ 0ð Þ
(9.67)

Although the integral appears complicated, it is

straight-forward to solve by rewriting in terms of r
and substituting y ¼ mt=hÞrð ,

dF
dt
¼SA

2

ðmt
h

ffiffiffiffiffiffiffiffiffiffi
h2þR2
p

mt

dy
e�y

y

¼SA

2

ð1

mt

dy
e�y

y
�

ð1
mt
h

ffiffiffiffiffiffiffiffiffiffi
h2þR2
p

dy
e�y

y

0
BB@

1
CCA

¼SA

2

�
Ei mtð Þ�Ei

�
mt
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þR2

p ��

with absorber; d¼0ð Þ

(9.68)

where Ei(x) is the exponential integral. For a disc of

infinite radius, the second exponential integral clearly

goes to zero and one is left with the simple result,

dF
dt
¼ SA

2
Ei mtð Þ �

with absorber of thickness t;

infinite planar source; d ¼ 0
� :

(9.69)

As an endnote, the flux from a spherical source of

activity can be calculated for by modeling the sphere

as a series of discs with differential thicknesses and

integrating over their individual contributions. How-

ever, the inclusion of self-absorption within the three-

dimensional source magnifies the complexity of the

problem. As a consequence, the flux calculation for

radionuclides distributed over a three-dimensional

geometry is best handled by Monte Carlo simulations.

9.2.4.3 An Overview of Monte Carlo Methods

Introduction

The Monte Carlo simulation method of calculating for

radiation transport has a long history, having been

originally developed during the 1940s in nuclear

weapons design (Metropolis and Ulam 1949). As a

full investigation of Monte Carlo methods applied to

medical radiation problems is far beyond the intention

and scope of this book, this subsection provides an

overview only of the principles of the Monte Carlo

method and how the method can be applied to radia-

tion transport and dosimetry calculations. Comprehen-

sive and contemporary reviews of the applications of

the Monte Carlo method to diagnostic and therapeutic

nuclear medicine can be found in the compilations

edited by Ljungberg et al. (1998) and Zaidi and

Sgouros (2003).

Recall from Chaps. 6 and 7 that the interactions

between photons and charged particles with matter are

stochastic and that total cross sections describe the

probabilities of scatter, energy transfer, irradiation,

etc. Thus, chance is key to the descriptions of such

interactions. For example, a photon interaction with

matter can lead to coherent scatter, photoelectric

absorption, Compton scatter, or electron–positron pair

production with the likelihoods of these interactions
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Fig. 9.13 The ratio of the flux at a midline point for a disc

source of radius R at a distance h along the central axis of the

source to that of a point source at the same distance h as a

function of the distance to the linear source length. Both sources

are of the same total activity
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being dictated by the relative magnitudes of the total

cross sections. For example, consider a photon-matter

interaction at an energy below the pair production

threshold. The probability of the interaction being that

of incoherent (Compton) scatter is,

Probability of incoherent scatter

¼ sInc

sCoh þ sPE þ sInc

(9.70)

where the denominator is the total cross section for a

photon interaction.

This gaming aspect led to this method of modeling

radiation transport and its interactions with matter as

being described as “Monte Carlo” by von Neumann

and Ulam during their work in the Manhattan Engi-

neering District project which developed the first

nuclear fission weapons. The underlying principle of

the Monte Carlo technique is that of random sampling

which can be demonstrated in a simple example. The

Monte Carlo method can be used to provide an esti-

mate of the value of p as shown in Fig. 9.14. A circle

of radius r is centered within a square with side length

2r. The ratio of the area of the circle to that of the

enclosing square is equal to p=4. If one were to ran-

domly drop, say, a coin within the square and count the

fraction of drops that resulted in the coin falling within

the circle, this fraction will approach the ratio of p=4

as the number of drops approaches infinity assuming,

of course, that the drops are truly random.

Random Number Generator

From the above discussion, Monte Carlo simulations

will require random input in the form of random

numbers. These could be derived from a physical

phenomenon, e.g., electronic noise or the time inter-

vals between radioactive decays. However, these are

not reproducible phenomena and reproducibility is

required, for example, in debugging code. Hence,

one looks to a mathematical algorithm to provide a

random sequence of numbers. The sequence must be

reproducible and defined by an initial selection of a

“seed” number to start the algorithm. As a result,

these random number generators (RNGs) are referred

to as being pseudorandom in that they produce ran-

dom numbers in a reproducible sequence. Three prac-

tical additional requirements of an RNG are that the

generation of random numbers should be fast (as large

numbers of simulations are required to be calculated

in order to generate a statistically-valid result), the

sequences generated are uncorrelated with each

other and that the period of the sequence (i.e., the

number of numbers until the sequence is repeated)

be long.
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Fig. 9.14 An example of the

principle of Monte Carlo

method as means of

estimating the value of p. A
circle of radius r is centered

within a square of side

dimension 2r. As the area of

the circle is pr2 and the area of
the square is 4r2, the ratio of

areas equals p=4. If one were
to randomly drop a coin within

the square and tally the

number of times it fell within

the circle, the ratio of this

number to the total number of

coin drops will approach p=4
with an increasing number of

drops (or “samples”) as shown

in the graph
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Perhaps the most effective RNG is the linear con-

gruence (or residue) method in which the (i þ 1)th

random number in a sequence is produced is,

xiþ1 ¼ lxi þ Zð Þ mod Pð Þ (9.71)

where the result is divided by P�1 to give xi+12[0,1].
For example, the IBM RANDU subroutine in FOR-

TRAN uses values for the parameters, l ¼ 216 þ 3,

Z ¼ 0 and P ¼ 231. Morin et al. (1979) reported that

the cycle of the random sequence produced by this

algorithm exceeded 107.

Analog Sampling

The analog approach used in Monte Carlo simulations

of radiation transport models directly the transport and

interactions of the radiation. A random physical pro-

cess is described by probability and cumulative den-

sity functions and, by drawing random samples of

these functions, one can form a statistical approxima-

tion to the process (Emshoff and Sisson 1970; Raeside

1976). For example, the probability distribution func-

tion (pdf) for the random variable X is,

fðxÞ ¼ Pr X ¼ xð Þ (9.72)

and the cumulative density function (cdf) is,

FðxÞ ¼
ðx

�1
dt fðtÞ

¼ Pr x 
 Xð Þ:
(9.73)

By this definition, the cdf is such that FðxÞ 2 0; 1½ �.
Thus, the integral of (9.73) can be equated to a ran-

domly-generated number, x, uniformly distributed

within the interval 0; 1½ �. Then, the sampled value of

the random variable, x, associated with x is given by

the inverse of the cumulative density function,

x ¼ F�1 xð Þ: (9.74)

By repeatedly applying (9.74) to a large group

of randomly selected xs, a statistical approximation

of X is obtained. For example, the distance a photon

moving in a medium will travel before interacting with

the medium can be simulated using this method. The

cumulative probability that the photon will traverse a

distance x in the medium before interacting is given

by,

FðxÞ ¼ 1� e�mx (9.75)

where m is the linear attenuation coefficient in water

appropriate for the photon’s energy (recall that the

linear attenuation coefficient represents the mean

number of photon interactions per unit distance

traveled and, hence, is the reciprocal of the photon’s

mean-free pathlength). This cumulative probability of

(9.75) can be set equal to a random number x where

the uniformly-distributed x2[0,1] and the equation

inverted to obtain a sample of the distance traveled

to the next interaction site,

x ¼ � 1

m
ln 1� xð Þ

	 � 1

m
ln x

(9.76)

where the argument of the logarithm, 1�x , has been

replaced by the equally random x.
Another example of Monte Carlo analog sampling

is the modeling of a Compton scatter. From the Comp-

ton relation, the postscatter photon energy for a photon

with an initial energy k is,

k0 ¼ k

1þ a 1� cos yð Þ (9.77)

where a ¼ k=me and y is the photon scattering angle.

In the Monte Carlo simulation, k0 is first determined

and the scattering angle deduced from (9.77). This is

performed by noting that the probability of the photon

being scattered from initial energy k to k0 is,

Pr k0  kð Þ ¼
ðk

k0

dk
ds kð Þ=dk
s kð Þ (9.78)

where dsðkÞ=dk is the Klein–Nishina differential cross

section and s(k) is the Klein–Nishina total cross sec-

tion. This integral can be set equal to a uniformly-

distributed random number x2[0,1] and inverted to
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yield the scattered photon energy. This inversion was

obtained by Carlson (1953),

k0 ¼ k

1þ sxþ 2 k
me
� s

� �
x3

(9.79)

where

s ¼ k=me

� �
1þ 0:5625 k

me

� � (9.80)

Having determined the scattered photon energy k0,
the scattering angle y is determined from (9.77) and

the random azimuthal angle f is given by 2px, where
again x is a random number uniformly distributed on

the unit interval (Cashwell and Everett 1959). The

postscatter trajectory of the photon is then described

by the direction cosines,

u0 ¼ sin y wu cosf� v sinfð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2
p þ u cos y (9.81)

v0 ¼ sin y wv cosf� v sinfð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2
p þ v cos y (9.82)

w0 ¼ � sin y cosfffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2
p þ wcos y: (9.83)

It may not be possible, in some instances, to easily

obtain the inverse of the cdf . The rejection method

presents another approach, although it is more compu-

tationally intensive. It begins by normalizing the pdf to

its maximum value,

~fðxÞ ¼ fðxÞ
fmaxðxÞ : (9.84)

Two random numbers uniformly distributed

between 0 and 1 are then selected, x1 and x2. The
random variable x is then calculated from,

x ¼ xmin þ x1 xmax � xminð Þ (9.85)

where xmin and xmax are the minimum and maximum

possible values for x, respectively. ~fðxÞ for this value
of x is then compared with x2. If ~fðxÞ 
 x2, the sam-

pled value of x is accepted. Otherwise, a new set of

random numbers are sampled and the process repeated

until the condition ~fðxÞ 
 x2 has been met.

Variance Reduction

While intuitive, the analog sampling method may not

always be efficient and can often result in very long

computation times in order to yield a result with sta-

tistical relevance. Various methods exist to bias the

sampling of the Monte Carlo simulation (also known

as nonanalog sampling) in order to improve the effi-

ciency of the calculation. The result itself will be

biased and a postsimulation correction must be

applied. A simple example is the use of inherent geo-

metrical symmetry to reduce the number of regions

being calculated for (e.g., Boston et al. 2001).

One means of increasing the efficiency of simulat-

ing photon interactions is through interaction forcing

(Bielajew and Rogers 1989). Recall from the deriva-

tion of (9.76) that the interaction distance for a photon

is given by x ¼ �lnð1� xÞ=m. A photon has a maxi-

mum range of infinity whereas the number of mean-

free paths (per micrometer) of the photons within a

typical geometry of interest will be finite. Hence, a

Monte Carlo analog simulation of photon transport

within a finite geometry will, in most samples, result

in large numbers of photons escaping the geometry

without interaction. This is clearly an inefficient out-

come as the escaping electrons fail to provide infor-

mation on interactions within the geometry. One

avoids this inefficiency by forcing the photons to

interact within the geometry by defining a finite dis-

tance xmax, which could be the maximum spatial

dimension of the geometry being simulated, and

which limits the maximum distance traveled by a

photon. This enforcement can then be used to reduce

the distance between interactions,

x ¼ � ln 1� x 1� e�mxmaxð Þð Þ
m

: (9.86)

The resultant bias must be compensated for through

a reduction in the “weight” of the photon’s interaction

with the medium (i.e., the magnitude of its contribu-

tion) by scaling it by the factor 1� e�mxmax . A reduc-

tion in the value of xmax maps a reduction in the

physical contribution of the photon interaction.
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Monte Carlo Codes: Examples

A variety of Monte Carlo codes are available for the

nuclear medicine physicist to easily and efficiently

simulate radiation transport and dosimetry without

being required to write their own code. The growth

in “off-the-shelf” Monte Carlo power and the ease of

its use in medical physics applications have grown

remarkably over the past few decades.9 This subsec-

tion summarizes three of the Monte Carlo codes within

the public domain that are most frequently used in

medical radiation dosimetry calculations. The web-

sites of the institutions that provide and support these

codes are given.

MCNP

The MCNP (Monte Carlo N-particle) code was devel-

oped at Los Alamos and its genesis is directly trace-

able to Ulam, Metropolis, and von Neumann. The

code is general purpose and can be found at http://

mcnp-green.lanl.gov/. It is used for calculating the

transport and energy transfer of photons, neutrons,

and electrons. For photons, it allows for incoherent

and coherent scatter, photoelectric absorption and

subsequent characteristic X-ray emission, electron–

positron pair product with annihilation and brems-
strahlung. The CSDA is used to model electron

transport.

GEANT4

The GEANT4 (geometry and tracking) code is the

successor to the GEANT software tool kits developed

for high-energy physics applications at CERN. Its

development and support are provided by an interna-

tional collaboration and a description of the code can

be found at http://www.geant4.org/geant4/. As Monte

Carlo methods are inherently parallel in nature, inves-

tigations of distributed processors running GEANT4

through CERN’s Large Hadron Collider computing

grid as a means of speeding up dosimetry calculations

have been performed (Chauvie et al. 2007).

EGS

The EGS (electron gamma shower) code was origi-

nally developed at the Stanford Linear Accelerator

Center but it is no longer supported by SLAC. The

code was developed for simulating the coupled trans-

port of photons and electrons for energies between

1 keV and 10 GeV. Current maintenance and develop-

ment of the code provided by the National Research

Council of Canada, where the code is known as

EGSnrc and which can be downloaded from http://

www.irs.inms.nrc.ca/EGSnrc/EGSnrc.html) and the

KEK laboratory in Japan and which can be found at

http://rcwww.kek.jp/research/egs/kek/.

9.2.5 Buildup Factor

9.2.5.1 Introduction

Recall that in the previous analytical derivations of the

photon fluxes at a point in space arising from radioac-

tive geometrical sources, the problem was first consid-

ered in vacuo where the solution was obtained solely

on geometrical grounds. Then, the influence upon the

photon flux due to the interposition of an absorbing

material between the radioactive source and the point

of calculation was derived. There were two effects

upon the detected flux as a result. First, the absorber

attenuates the primary photon flux received at the

point. Second, it behaves as a scattering medium

which serves to increase the net photon flux. The first

effect is described using the linear attenuation coeffi-

cient. The second effect is clearly more complicated

and the use of the buildup factor as a means of describ-

ing the increase in radiation flux as a result of scatter

has already been alluded to. In this subsection, the

buildup factor is formally introduced as are the meth-

ods of calculating for and measuring it.

Consider a point P behind a slab of material of

thickness t which is irradiated by a photon beam, as

shown in Fig. 9.15. The two cases of “narrow” and

9For example, the author recalls writing his own Monte Carlo

code in FORTRAN in 1980 to simulate photon transport in a

cubic water phantom exposed to 60Co g rays. Even though the

output of the code was simply the kerma due to primary and

scattered photons, a simulation of 107 photons (without electron

transport) on a time-shared Data General ECLIPSE S200 mini-

computer took the best part of a week. In 2001, the author was

using the MCNP code to simulate the total photon and electron

transport and complete energy deposition for a 125I brachyther-

apy source to even greater statistical precision on a desktop PC

in the space of an afternoon.
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“broad” beam geometries are considered, where the

narrow-beam geometry is such that there is negligible

scattered radiation reaching P, as shown. This increase

in the number of photons reaching P due to scatter can

be quantified by the buildup factor, B, where B � 1.

As the width of the beam approaches zero, as does the

contribution of scatter, then B! 1. Being interested in

energy deposition, we can define the buildup factor in

terms of the photon energy fluence. As the buildup

factor can be related to other radiation quantities, we

denote this definition by adding an appropriate sub-

script, BC . For the narrow-beam geometry, the trans-

mitted energy fluence incident to P is C0e
�mt, where

C0 is the fluence incident to the slab and m is the

narrow-beam attenuation coefficient. For any geome-

try, then, the energy fluence incident to P is,

Ct ¼ BCC0e
�mt (9.87)

The energy fluence buildup factor BC ! 1 as the

thickness of the slab t ! 0, leading to Ct ! C0 as

expected. Further definitions of the buildup factor

relative to specific applications are provided in terms

of number fluence, energy fluence, and absorbed

dose. For polyenergetic photon beams, these buildup

factors are (integrations are over the relevant photon

spectrum),

Bf ¼
Ð
dkfðkÞÐ
dkf0ðkÞ

(9.88)

BC ¼
Ð
dkCðkÞÐ
dkC0ðkÞ (9.89)

BD ¼
Ð
dk

men
r ðkÞCðkÞÐ

dk
men
r ðkÞC0ðkÞ : (9.90)

Again, the 0 subscript indicates the uncollided

photon flux.

The buildup factor plays two important roles in

nuclear medicine dosimetry. The first is in the mea-

surement of the absolute in vivo activity through

gamma camera scintigraphy (Wu and Siegel 1984;

Siegel et al. 1985; Siegel 1985). The second role is

in the use of DPKs in the calculation of the internal

radiation dosimetry due to a distributed photon-

emitting radionuclide.

9.2.5.2 Methods of Determining the Buildup

Factor

Measurement

This is the most direct method in nuclear medicine of

determining B for a fixed radionuclide and geometry,

including collimator type. Consider Fig. 9.16. Rearran-

ging (9.87) and replacing the energy fluence with the

number of counts (photons which are photoelectrically

absorbed in the gamma camera’s scintillation crystal),

the measured buildup factor for a given depth d in

tissue and source-collimator distance (SCD) is,

B d; SCDð Þ ¼
_C d; SCDð Þ
_CAir SCDð Þ e

md (9.91)

t

Narrow-beam Geometry Broad-beam Geometry

t

PP

Fig. 9.15 Definitions of narrow- and broad-beam geometries

for a photon beam incident to an absorbing and scattering

medium. In the narrow-beam geometry, scatter reaching the

point P is negligible and thus attenuation need only be consid-

ered. In the broad-beam geometry, photons can be scattered to

reach P, thus increasing the net fluence at it

d

SourceSource

Source-Collimator Distance
(SCD)

C(d; SCD)Cair(SCD) ˙˙

Fig. 9.16 Method for measuring the buildup factor to use in

quantitative activity determination in gamma-camera scintigraphy
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These quantities are shown in Fig. 9.16. _CAir SCDð Þ
is the measured count rate for a source placed in air

(i.e., negligible scatter and attenuation present) at a

given SCD and _C d; SCDð Þis that measured with the

source at a depth d in a phantom radiologically repre-

sentative of tissue (e.g., water) at the same SCD. m is

the linear attenuation coefficient appropriate for the

energy of photons emitted by the source under the

broad-geometry measurement conditions. The emd

factor corrects for attenuation so that, as required,

the derived buildup factor accounts for scattered radi-

ation only.10 Figure 9.17 shows an example of the

buildup factor for 99mTc photons as a function of

depth in a phantom which is radiologically equivalent

to tissue.

Analytical

The buildup factor is clearly applicable also to radia-

tion shielding design and many analytical methods of

determining it have been derived in this field. Histori-

cally, the Boltzmann radiation transport equation has

provided a means of calculating the buildup factor

(Harima 1993). In terms of the photon energy fluence,

the Boltzmann equation is,

V̂�rC r;k;V̂
� �

þm r;kð ÞC r;k;V̂
� �

¼
ð1

0

dk0
ð
dV̂0

k

k0

� �
mSec r;k0!k;V̂0!V

� �

�C r;k0;V̂0
� �

þS r;k;Vð Þ

(9.92)

The terms in this equation are the total photon inter-

action coefficient, m r; kð Þ, mSec r;k0 ! k;V̂0 !V
� �

dk0 dÔ0 is the probable number of secondary photons

at r with an energy between k and k þ dk and moving

in a direction between V̂ and V̂ þ dV̂ produced per

unit length by an initial photon of energy k0 moving in

the direction V̂0 and S r;k;Vð Þ is the production rate of
photons at r of energy k moving in the direction V.

Numerical solutions for the photon fluence at the

point r (and integrated over photon energy and direc-

tion) are then used to provide a calculated buildup

factor.

Monte Carlo

Calculation of the buildup factor is well-suited for the

Monte Carlo simulation method described previously.

9.2.5.3 Analytical Representations of the

Buildup Factor

Introduction

Tabulated values of buildup factors determined from

measurement or previously calculated from numerical

or Monte Carlo calculations exist and are readily

available (see, e.g., the review article by Harima

1993). However, for practical dosimetry calculations,

especially for repetitive computations, an analytical

representation of the buildup factor is most useful.

These analytical forms are fits to either these tabulated

data or to bespoke measurements. Some analytical

expressions for the buildup factor as functions of pho-

ton energy k and the thickness of the absorber in terms

of the numbers of mean-free paths mr are summarized

below.
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Fig. 9.17 Buildup factor for 99mTc photons in a tissue-equiva-

lent phantom as a function of depth. Curve was derived from the

coefficients of a fit presented by Siegel et al. (1985) to measured

data obtained for a low-energy parallel hole collimator and a

15% energy-acceptance window

10One will note the similarity between the ratio of (9.91) and the

tissue-air ratio of radiotherapy.
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Taylor Formula

This general expansion of the buildup factor can be

given as the weighted sum of N exponential terms for a

photon of energy k,

B k; mrð Þ ¼
XN
i¼1

Aie
�aiðkÞmr (9.93)

This expression is frequently limited the number of

terms N to 2 to give the form (Harima 1993),

B k; mrð Þ ¼ Ae�a1ðkÞmr þ 1� Að Þe�a2ðkÞmr (9.94)

Geometric Progression Formula

This analytical expression of the buildup factor was

derived by Harima and Nishiwaki (1972),

B k; mrð Þ ¼ 1þ bðkÞ � 1ð Þ Kmr � 1ð Þ
K� 1ð Þ K 6¼ 1 (9.95)

B k; mrð Þ ¼ 1þ bðkÞ � 1ð Þmr K ¼ 1 (9.96)

where

K ¼ cðkÞ mrð ÞaðkÞ

þ dðkÞ
tanh mr

XðkÞ � 2
� �

� tanh �2ð Þ
1� tanh �2ð Þ

(9.97)

where a(k), b(k), c(k), d(k), and X(k) are parameters to

be fit (Yoshida 2006).

Meisberger Formula

Meisberger et al. (1968) presented a polynomial form

of the buildup factor for use in brachytherapy,

B k; mrð Þ ¼ emr
X3
n¼0

knðkÞ mrð Þn (9.98)

The calculation was, due to its required purpose,

limited to a water medium as an approximation of soft

tissue.

Leichner Formula

In his DPK calculations for internally-distributed

b- and g-emitting radionuclides, Leichner (1994) pro-

posed an analytical form of BD k; mrð Þsimilar to that

of Meisberger,

BD k; mrð Þ ¼ 1þ e�k0ðkÞmr
X3
n¼1

knðkÞ mrð Þn (9.99)

The photon energy-dependent coefficients were

also determined by fitting to Berger’s data.

Kwok Formula

In their DPK calculations for internally-distributed

b- and g-emitting radionuclides, Kwok et al. (1985)

proposed a nonlinear analytical fit to BD k; mrð Þ of

the form,

BD k; mrð Þ ¼ exp
k1ðkÞ � mrð Þk2ðkÞ

mrþ k3ðkÞ

 !
(9.100)

where the ki(k) are photon energy-dependent para-

meters. The values of these parameters for photon

energies ranging between 15 and 400 keV are

provided in their paper.

9.2.5.4 Effective Attenuation Coefficient

An alternative approach to accounting for the com-

bined effects of attenuation and scatter due to an

absorber is the effective attenuation coefficient which

follows from the definition of the backscatter factor for

an absorber of thickness t and a primary photon beam

with linear attenuation coefficient m,

Ct

C0

¼ Be�mt

	 e�meff t
(9.101)

Solving for meff,

meff 	 m� ln B

t
(9.102)
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9.2.6 Reciprocity Theorem

9.2.6.1 Introduction: Point Source and Target

The reciprocity theorem, which has been long known

in radiation physics (e.g., King (1912)), summarizes

the results following the exchange of the positions of a

radiation detector and a radiation source within a

medium or media. These are demonstrated in Fig. 9.18.

In Fig. 9.18a, the radiation source and detector are

both contained within a homogeneous (uniform isotro-

pic) medium of infinite extent. Reversing the positions

of the source and detector does not alter the primary

and scattered fluences at the radiation detector and the

response remains unaffected. The response is recipro-

cal. In Fig. 9.18b, the homogeneity requirement is

relaxed and there are now two media within this infi-

nite volume. Thus, when the positions of the source

and detector are reversed, the medium in which they

reside is also reversed. Clearly, the primary radiation

reaching the detector from the source is unaffected by

an exchange of positions. Should the two media have

different radiological properties, then the media will

have an effect upon scattering and the scattered com-

ponent of the radiation reaching the detector will differ

depending upon thewhether or not it is inmedium 1 or 2.

The degree of the effect of radiologically-dissimilar

media upon the reciprocity theorem is dependent upon

the magnitudes of the scattered component relative to

the primary component. The reciprocity theorem may

approximately hold in Fig. 9.18b if both media have

low atomic numbers, the radiation is photons and

Compton scatter dominates.

The main usefulness of the reciprocity theorem in

nuclear medicine dosimetry calculations has been

described by Cristy (1983) in the context of Monte

Carlo calculations of the absorbed doses received by

target small organs due to radioactivity contained

within large source organs. This description was

given in terms of the specific absorbed fraction,

F(rT rS), which is the absorbed fraction f(rT rS)

normalized to the mass of the target region,

F rT  rSð Þ ¼ f rT  rSð Þ
mT

(9.103)

F(rT rS) has units of inverse mass. If the target region

is small (e.g., the ovaries), theMonteCarlo-derived value

Scatter

PrimaryRadiation
Source

S D
Radiation
Detector

SD

Scatter

PrimaryRadiation
Detector

Radiation
Source

Scatter

PrimaryRadiation
Source

S D
Radiation
Detector

Medium 1 Medium 2

SD

Scatter
Medium 1 Medium 2

PrimaryRadiation
Detector

Radiation
Source

a

b

Fig. 9.18 The reciprocity theorem. In (a), both radiation

source and detector are within the same homogeneous medium

of infinite dimensions. As a result, exchanging their positions

does not affect the radiation fluence detected. In (b), the

source and detector are in different media. Exchanging their

positions does not affect the primary radiation detected but

can change the amount of scattered detected depending upon

the differences between the radiological properties of the two

media
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ofF(rT rS)may be statisticallyweak due to the limited

number of interactions in the target region. FromPoisson

statistics, the relative standard deviation of the estimated

absorbed dose to the organ is inversely proportional to

the square-root of the number of energy deposition

events which will be small due to the small organ size,

thus leading to a high relative standard deviation. But the

converse Monte Carlo-derived value of F(rS rT) may

be more statistically reliable should the source region be

a volume of larger size. A value of the specific absorbed

fraction with greater statistical reliability can be calcu-

lated by a weighted sum of F(rT rS) and F(rS rT),

with each weight proportional to 1=s2, where s2 is the

variance of the estimate.

9.2.6.2 Distributed Source and Target Regions

In his review of distributed radionuclide sources,

Loevinger (1969) described those conditions under

which the reciprocity theorem holds exactly or

approximately:

� Uniform isotropic model : the source activity is

uniformly distributed throughout an infinite homo-

geneous medium with a constant physical density.

Scatter is allowed.

� Uniform scatterless model : the source activity is

uniform in regions throughout a medium in which

radiation is absorbed without scatter or photon

buildup (physical density may vary but elemental

composition remains constant).

� Uniform homogeneous model of finite size : the

source activity is uniformly distributed within a

homogeneous medium of finite size and constant

physical density surrounded by a vacuum. Scatter is

permitted.

The reciprocity theorem is not expected to vigor-

ously hold for the third model, but is used in absorbed

dose calculations. Loevinger stated that in the uniform

isotropic and uniform scatterless models, the specific

absorbed fraction is independent of what region is

defined as a target and what region is designated as

the source, or,

F rT  rSð Þ ¼ F rS  rTð Þ ¼ F rT $ rSð Þ (9.104)

where the$ symbol signifies that either region can be

the source or target.

Mayneord (1945) considered source and target

regions of extended dimensions within a medium, as

shown in Fig. 9.19.

The source region has a volume VS, physical

density rS, and attenuation coefficient mS and the

corresponding quantities for the target region are VT,

rT, and mT. Both of these regions are embedded within

a third medium which is homogeneous with infinite

extent and physical density rM and attenuation coeffi-

cient mM. The source region contains a uniform distri-

bution of a photon-emitting radionuclide of activity AS

and this radionuclide emits a single photon of energy k

per disintegration. CPE is assumed to exist. A differ-

ential volume dVS in the source thus contains the

differential activity,

dAS ¼ AS=VSÞdVS:ð (9.105)

Scatter is neglected. The differential photon energy

flux at the differential volume dVT resulting from this

differential amount of activity is,

d2C dVT  dVSð Þ
¼ k

dAS

4p rS þ rM þ rTð Þ2 e
� mSrSþmMrMþmTrTð Þ

(9.106)

and the corresponding differential collision kerma

rate,

d2Kc dVT  dVSð Þ
dt

¼ men
r

� �
T

d2C dVT  dVSð Þ
(9.107)

where ðmen=rÞT is the mass energy-absorption coeffi-

cient for the target medium.

rM, mM

(rS, mS)
(rT, mT)

rM

rT

dVT

VT

rS

VS

dVS

Fig. 9.19 The reciprocity theorem for distributed source and

target
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As CPE exists and the secondary electron range can

be neglected, this differential collision kerma rate at

dVT will be equal to the differential absorbed dose rate

at dVT,

d2D dVT  dVSð Þ
dt

¼ k
men
r

� �
T

dAS

4p rS þ rM þ rTð Þ2 e
� mSrSþmMrMþmTrTð Þ:

(9.108)

The absorbed dose rate at dVT due to all of the

activity in the source region VS is given by the integral

of this result over the source region volume,

dD dVT VSð Þ
dt

¼ k

4p
men
r

� �
T

AS

VS

ð
VS

dVS

rSþ rMþ rTð Þ2 e
� mSrSþmMrMþmTrTð Þ:

(9.109)

Finally, the absorbed dose rate to the entire target

volume is given by averaging this absorbed dose rate

over the entire target volume,

dD VT VSð Þ
dt

¼ k

4p
men
r

� �
T

AS

VSVT

�
ð
VS;

ð
VT

dVSdVT

rSþ rMþ rTð Þ2 e
� mSrSþmMrMþmTrTð Þ

(9.110)

If the source and target regions are interchanged, the

target region is allowed to have the same activity as

the original source region (i.e., AT ¼ AS 	 A) and the

mass energy-absorption coefficients of both regions

are equal, ðmen=rÞT ¼ ðmen=rÞS 	 ðmen=rÞ, then the

absorbed dose to the original source region (but now

without any contained activity) is,

dD

dt
VT!VSð Þ

¼ k

4p
men
r

� �
A

VSVT

ð
VS;

ð
VT

dVSdVT

rSþrMþrTð Þ2e
� mSrSþmMrMþmTrTð Þ:

(9.111)

Thus, under these conditions, which consider pri-

mary radiation only, the reciprocity theorem states that

the absorbed dose rates in source and target regions are

identical when they are interchanged.

9.2.6.3 Reciprocity Theorem Applied

to Heterogeneous Media

The latter discussion of the reciprocity theorem was

the closest in representing the conditions of soft tissue.

But that calculation was of primary radiation only. The

differing elemental compositions and physical densi-

ties and the vacuum-tissue interface used in Monte

Carlo simulations affect scattered radiation and ensure

that the reciprocity theorem will not generally be met

exactly. Cristy (1983) stated that while under such

conditions the reciprocity theorem does not hold,

approximate reciprocity between the specific absorbed

fractions can often hold in heterogeneous tissue and

that such a feature could be referred to as a reciprocity

principle.

The main applications of the reciprocity theorem of

interest to the topic of this book are those in nuclear

medicine radiation dosimetry. One of the first investi-

gations of the reciprocity theorem/principle in hetero-

geneous media was by Ellett et al. (1965) who claimed

that the reciprocity principle held to within about 3%

in the homogeneous case of a 2.2 kg source region at

the center of a 70 kg target for 40 and 662 keV

photons. It was later reported by Snyder that, for soft

tissue, the reciprocity principle was valid to within

about a factor of 2. Such a significant difference in

calculations based upon the assumptions of a reciproc-

ity principle required further investigation. Cristy

(1983) compared the specific absorbed fractions cal-

culated using Monte Carlo simulations for a variety of

organ pairs in his anthropomorphic pediatric phan-

toms. He concluded that the reciprocity principle was

largely valid (to within 10%) for most soft-tissue

organ pairs but that it was invalid at photon energies

between 10 and 200 keV if one of the organ pairs was

the skeleton.

9.2.7 Dose Point Kernels

The DPK concept as a means of calculating absorbed

dose is applicable to both photons and electrons. In

this calculation method, a source distributed through-

out a volume is considered to be a spatial distribution

of isotropic point sources. The DPK describes the

radial distribution of absorbed dose or dose rate from

a single point source and, through the superposition
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principle, these are combined to yield the total

absorbed dose at a point. For example, for a b-emitting

radionuclide, the absorbed dose rate at a distance r

from a source of activity A is (Bardiès et al. 2003;

Roeske et al. 2008),

dDðrÞ
dt
¼ kADFðrÞ (9.112)

where

D ¼ nT: (9.113)

n is the number of b particles emitted per decay and �T
is the mean energy of the b particles; hence, D is the

mean energy released per radioactive transition. F(r)
is the point kernel and k is a conversion factor (equal

to 1.6 � 10�8 g � cGy/MeV so as to give the absorbed

dose rate in units of cGy/s if the units of activity, mean

energy, and point kernel are Bq, MeV, and per gram,

respectively). It will be noted that the point kernel,

F(r), is the specific absorbed fraction where the source
region is a point at r ¼ 0 and the target region is a

point at r, or F(r 0) in the medical internal radiation

dose (MIRD) representation. In a more general form,

the absorbed dose rate at a point a distance r away

from a point source emitting monoenergetic electrons

with energy T0 is,

dDðrÞ
dt
¼ kADF r;T0ð Þ: (9.114)

Here, D ¼ nT0. Thus, in a medium of physical

density r, 4prr2F r;T0ð Þdr represents the fraction of

energy emitted by the source which is absorbed in a

spherical shell at radius r and thickness dr. Should the

volume containing the source be larger than the elec-

tron range, all of the energy will be absorbed in the

volume, and the normalization requirement is,

4pr
ð1

0

dr r2 F r;T0ð Þ ¼ 1: (9.115)

The DPK for a photon emitter can be similarly deter-

mined. Berger (1968) presented the DPK for a mono-

energetic photon source emitting photons with energy

k in a homogeneous medium of physical density r,

dDðrÞ
dt
¼ k

4pr2
k
men
r

e�mrBD k; mrð Þ (9.116)

where the buildup factor, BD k; mrð Þ, is used. From

(9.114) and (9.116), replace the absorbed dose rate

with the symbol @ to denote the DPK and use a

subscript b or g to denote if it is for electrons or

photons when needed.

For a nonuniform distribution of activity through

the volume described per unit volume by Z(r), the
absorbed dose rate at a point is given by the convolu-

tion of the DPK and the activity distribution,

dD rð Þ
dt
¼
ð
d3r0 @ r0 � rj jð ÞZ rð Þ (9.117)

where integration is over the source distribution. The

solution of this convolution can often be difficult and

is typically solved numerically or through other

means, including the Fast Fourier Transform (Kwok

et al. 1985; Akabani et al. 1997).

In practice, DPKs are typically determined through

Monte Carlo simulation of point sources in a medium

(e.g., Simpkin and Mackie 1990).

9.2.8 Cavity Theory

9.2.8.1 Introduction

The measurement of the absorbed dose to a medium

requires, in most practical cases, the insertion of a

probe or detector into the medium. This problem was

first considered by Bragg (1910) and, later, by Gray

(1929, 1936). Gray discussed the probe as being a gas-

filled cavity, the ionization products generated within

the gas as a result of irradiation being collected elec-

trically and then used to estimate the absorbed dose to

the medium at the point at which the probe is sited.

This is a highly practical problem, although it should

be noted that the detection medium in cavity theory

need not be a gas as the dosimeter can be a semicon-

ductor or a lithium fluoride crystal used in thermolu-

minscent dosimetry. In radiation dosimetry, a “cavity”

is considered to be a “small” volume of a medium

surrounded by a wall (which may or may not be of

the same composition as the chamber medium)

embedded within a larger volume of yet another

medium. This is the typical configuration of an ioniza-

tion chamber in which the cavity contains air (or

another gas with radiological properties, other than
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physical density, equivalent to soft tissue), the walls

are made of a material such as graphite or tissue-

equivalent material and the cavity placed within

water or another tissue-equivalent medium exposed

to radiation. Generally, the chamber volume is suffi-

ciently small so that there are negligible photon–air

interactions within it and the chamber walls are suffi-

ciently thick that most of the ionizations occurring

within the air cavity are due to electrons produced by

photon interactions in the wall.

This subsection presents the fundamentals of

Bragg–Gray cavity theory to calculate the absorbed

dose to a cavity of one type of material embedded in a

medium of another. Detailed derivations, specific to

clinical radiotherapy and including the refinements to

the theory presented by the Spencer-Attix and Burlin

theories, can be found in the texts by Johns and

Cunningham (1983) and Attix (1986).

9.2.8.2 Bragg–Gray Theory

Introduction

This is the original and simplest theory of deriving the

absorbed dose to the medium within the cavity and

relating it to the absorbed dose that would be at that

point in the surrounding medium in the absence of the

cavity.

Bragg–Gray Relation and Conditions

Recall the earlier discussion of the variation of elec-

tron fluence in the vicinity of an interface between two

media exposed to photons and consider Fig. 9.20. A

monoenergetic fluence of electrons is moving from

left to right in the figure.

In Fig. 9.20a, the electron fluence crosses the inter-

face between two different media, labeled as (1) and

(2). The absorbed doses on either side of the media are

the products of the fluence and the mass-collision

stopping power appropriate for the medium and the

electron energy,

D1 ¼ Fe

dE

r dx

� �
Col;1

(9.118)

and

D2 ¼ Fe

dE

r dx

� �
Col;2

: (9.119)

If both media have low atomic numbers, then back-

scatter can be neglected (recall the graph of electron

fluences in the vicinity of the interface between two

radiologically-dissimilar media of Fig. 9.8) and the

electron fluence across the interface treated as being

continuous. The ratio of the absorbed doses is then

equal to the ratio of the mass-collision stopping

powers,

D1

D2

¼ dE

r dx

� �
Col

����
1

2

(9.120)

1 2

b

a

1 1

φe

φe

2

Fig. 9.20 In (a), an electron fluence crosses the interface

between two different media (1) and (2); in (b) an electron

fluence crosses through a thin layer of medium (2) embedded

within medium (1)

9.2 Radiation Dosimetry: Theory 365



where an expression for the ratio of the mass-collision

stopping powers has been defined,

dE

r dx

� �
Col

����
1

2

	
dE=r dx
� �

Col;1

dE=r dx
� �

Col;2

(9.121)

Now consider Fig. 9.20b in which a “thin” layer of

medium (2) is now embedded within the medium (1).

This layer is assumed to be sufficiently thin, relative to

the electron range, that it does not perturb the electron

fluence crossing it. This assumption of the lack of

electron fluence perturbation is known as the first

Bragg–Gray condition. The second Bragg–Gray con-

dition is that the absorbed dose in medium (2) is due to

only those electrons traversing it (i.e., if the electrons

are primary products of photon interactions, the

photons themselves do not interact with in the cavity).

Having established these two conditions, we can now

calculate the relationship between the absorbed doses

in media (1) and (2). Allowing for generality, assume

that the incident electron fluence exhibits an energy

spectrum, dFe=dE, rather than being monoenergetic.

This, of course, will be very much the case in practice.

The energy spectrum-averaged mass-collision stop-

ping powers in the two media are,

dE

r dx

� �
Col;1

¼

Ð1
0

dT dFe

dT
dE
r dx ðTÞ
� �

Col;1

Fe

(9.122)

and

dE

r dx

� �
Col;2

¼

Ð1
0

dT dFe

dT
dE
r dx ðTÞ
� �

Col;2

Fe

: (9.123)

The ratio of absorbed doses to the two media is

equal to the ratio of mass-collision stopping powers of

the two media,

D1

D2

¼ dE

r dx

� �
Col

����
1

2

¼

Ð1
0

dT dFe

dT
dE
r dx ðTÞ
� �

Col;1

Ð1
0

dT dFe

dT
dE
r dx ðTÞ
� �

Col;2

: (9.124)

This ratio of the absorbed doses to the surrounding

medium to that in the cavity medium is known as the

Bragg–Gray relation. Note that neither homogeneous

irradiation of the cavity or the existence of CPE

have been stipulated in this derivation. The only

requirement is that the electron fluence Fe remains

unperturbed in both media. Figure 9.21 presents an

example of where the Bragg–Gray cavity theory can

be applicable.

9.2.9 A Brief Overview of Microdosimetry

9.2.9.1 Introduction

Microdosimetry is a subspecialty of ionizing radiation

dosimetry and is concerned with energy deposition in

microscopic volumes. The dimensions of these

volumes of interest range from those of mammalian

cells (�20 mm) to that of the 2 nm diameter of the

DNA double helix. At these dimensions, the inherently

stochastic nature of energy deposition by ionizing

radiation is dominant. Accurate accounting of the

probability distributions of energy deposit is important

as most fundamental biological responses to ionizing

radiation are functions of the microscopic patterns of

energy deposition (Rossi and Zaider 1991).

Electrons

Photons

Fig. 9.21 An application of Bragg–Gray cavity theory: a cavity

within a medium is crossed by the tracks of electrons set in

motion by photon irradiation of the medium. The absorbed

doses to the medium and to the medium contained within the

cavity are related through the Bragg–Gray relation of (9.124),

subject to the two Bragg–Gray conditions. These are that the

cavity is sufficiently that it does not perturb the electron fluence

and that there are no photon interactions within the cavity
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Most aspects of nuclear medicine dosimetry calcu-

lations are concerned with the transfer by, and deposi-

tion of energy from, ensembles of particles sufficiently

large that they can be treated as being continuous and

differentiable radiation fields. The volumes of interest

in these cases are also large relative to those spatial

dimensions associated with individual energy deposi-

tion/transfer processes. Hence, absorbed doses to indi-

vidual organs and tissues of macroscopic dimensions

are obtained from the summation of all energy depos-

its in a volume normalized to the mass of that volume.

This calculation uses the mean (non-stochastic) values

of radiometric and dosimetric quantities (e.g., stop-

ping powers, photon interaction coefficients, particle

fluences, etc.). However, the use of mean radiological

quantities becomes invalid when the spatial dimen-

sions of the volume of interest interacting with radia-

tion become comparable to the separations between

the individual ionization events. For example, con-

sider an absorbed dose of 10 mGy due to electrons

delivered to bulk soft tissue (which is assumed to be

water equivalent). As the mass of a 10 mm-diameter

spherical cell is of the order of 0.5 ng, this absorbed

dose corresponds to a mean energy deposition of about

5 nJ per cell. Assuming that the electrons are mini-

mally-ionizing (a linear stopping power of about

2 MeV/cm), the mean number of electrons traversing

a cell is about 15, with a standard deviation of about 4.

Figure 9.22 shows an example of individual energy

deposition events in water for 10 keV and 1 MeV

electrons. The 10 keV electron track could be typical

of a high-energy Auger electron; the 1 MeV electron

would be minimally ionizing. Note the subcellular

spatial scale of these events as shown in the figure.

The randomness of the energy depositions is readily

apparent as is the inability to use the assumption of a

continuous energy loss at such spatial dimensions in

order to accurately describe the dosimetry.

In nuclear medicine, the applications of microdosi-

metry will arise primarily in the calculations of

absorbed doses received by individual cells or their

organelles as a result of the intracellular incorporation

of radionuclides that emit a or b particles or Auger

electrons. The DNA contained within the cell nucleus

is the primary radiosensitive structure of the cell and

the delivery of short-range and densely-ionizing

charged particles to within the nucleus typically result

in cell death. While this is desirable in radionuclide

therapy, it has been of theoretical consideration with

diagnostic radionuclides that emit Auger electrons

(such as 99mTc and 111In) and which are incorporated

within the cell or nucleus. Here, the risk of interest is

10 keV electron

1 MeV electron

100 nm

δ ray

δ ray

Fig. 9.22 Energy deposits in

tissue along tracks of electrons

with two different kinetic

energies at subcellular

dimensions. The dots
represent individual ionization

events
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not that of cell death but that of radiation-induced

mutation that can lead to carcinogenesis.

The above discussion implicitly highlights the need

in ionizing radiation dosimetry to not only quantify the

magnitude of the radiation yielding the absorbed dose

but also its “quality.” In microdosimetry, the quality of

the radiation is characterized by the amount and spa-

tial distribution of the energy deposition.

9.2.9.2 Linear Energy Transfer and Lineal Energy

Introduction

The simplest metric of the spatial distribution of

energy deposition is that of the linear energy transfer

(LET) which is the energy deposited at the point of

interest per unit length of the charged particle track.

This will be recognized as being the linear collision

stopping power derived in Chap. 7. However, for the

current application to small spatial dimensions, the

quantity is typically expressed in units of keV/mm –

a more natural unit to use to describe the rate of energy

loss in microscopic dimensions. As with the collision

stopping power, the LET can be considered in an

unrestricted form, L1, which includes all energy

transfers to electrons and a restricted form, LD,

which excludes those energy losses resulting in d
rays with kinetic energies exceeding an energy thresh-

old D and carrying energy away from the interaction

site. LD is, hence, descriptive of local energy deposi-

tion. However, the LD is a quantity defined by the cut-

off in electron energy rather than by spatial dimension.

The LET, as demonstrated in Chap. 7, is a non-sto-

chastic quantity and is represented by the mean of the

linear collision stopping power. This presents a defi-

ciency in the use of LET in microdosimetry. More-

over, as to be shown in Chap. 10, biological responses

to radiation are not linear with local energy deposition.

This indicates that assessments of the biological

responses to ionizing radiation require an understand-

ing both of the statistical distribution of the energy

deposition about its mean value.

LET Probability Distribution Functions

When a medium is irradiated by ionizing radiation,

a flux of charged particles with a kinetic energy

spectrum is generated within that medium. As L1 is

a function of a charged particles’ kinetic energy, L1
must also exhibit some nature of a spectrum which can

be described by two distributions. The mean values of

the non-stochastic L1 for these distributions are

attempts to compress the considerable amount of

information contained within the L1 spectrum to a

single interpretable quantity. Neither of these simpli-

fications are particularly satisfactory in practice.

The first descriptor is that of LET frequency distri-

bution, for which the distribution function is given by

the fraction of particle fluence that is associated with

an LET with a value less than or equal to a specified

value, L,

FðLÞ ¼ FL

F
: (9.125)

F is the total particle fluence and FL is the fluence of

particles with values of LET less than or equal to a

specified value, L. If the charged particles are elec-

trons, there arises some ambiguity about the role that d
rays play. The pdf of LET in fluence is,

fðLÞ ¼ dFðLÞ
dL

: (9.126)

From these expressions, the mean LET is given by,

LF ¼
ð
dLL fðLÞ

¼
ð
dL 1� FðLÞð Þ

(9.127)

where integration by parts has been used and the F

subscript indicates that this is the mean defined from

the frequency distribution.

A second means of specifying the LET probability

distribution is through the absorbed dose from parti-

cles of a specified LET. The distribution function of

absorbed doses from particles with an LET less than or

equal to a specified value L is,

DðLÞ ¼ DL

D
(9.128)

where D is the total absorbed dose and DL is the

absorbed dose due to particles with an LET less than

or equal to L. The corresponding density function is,

dðLÞ ¼ dDðLÞ
dL

(9.129)
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and the absorbed dose-averaged LET is,

LD ¼
ð
dLL dðLÞ

¼
ð
dL 1� DðLÞð Þ:

(9.130)

From the above, the dose and frequency distribu-

tions can be shown to be related by,

dðLÞ ¼ fðLÞ L
LF

(9.131)

Validity Conditions of LET

As ICRU Report 36 (1983) has noted, much experi-

mental work comparing biological radiation effects

has been based upon the use of the unrestricted

LET, L1. This is of concerns as the use of the unre-

stricted LET in describing microscopic energy depo-

sition is severely hampered by three major inherent

limitations:

� Energy straggling: As the unrestricted LET L1 is

the mean of the collision linear stopping power, it

cannot quantify the variations in energy loss due to

the stochastic energy straggling described in

Sect. 7.4. As noted in that section, when charged-

particle energy losses along smaller pathlengths are

to be calculated for, the stochastic nature of these

losses cannot be excluded, thus requiring the use

Vavilov or Landau probability distribution func-

tions of energy loss derived in Chap. 7.

� d rays: As shown in Chap. 7, it is possible for the

same value of L1 to be had for particles of differing

charges and speeds. As an example, a 10 keV Auger

electron and a 550MeV a particle will both have the

same value of L1 of 23 KeV/mm in liquid water.

Despite this equality in L1, (2.24) and (2.27) dem-

onstrate that the maximum d-ray kinetic energies

from these electron and a particle are 10 keV and

321 keV, respectively, with corresponding ranges of

2.5 mm and about 950 mm. Hence, the L1 presents a

poor predictor of the lateral width of the ionization

track which is defined by these d rays.

� Track length: The length of the track relative to

the dimension of the target of interest is not

accounted for in L1. The charged particle can not

only traverse the target volume, but can start or stop

in it. If the volume is sufficiently large, then L1
can also vary as the charged particle traverses the

volume.

The above brief discussion of the variation in track

length indicates that the diameter of the site within

which the charged particle traverses will also a vari-

able in addition to the charged particle’s kinetic

energy to assessing energy deposition in that volume.

A quantitative assessment of the suitability of the use

of L1 in microdosimetry was performed by Kellerer

and Chmelevsky (1975). They provided a graphical

representation of the influences of energy straggling,

d-ray production and track length upon the use of L1
as a descriptor of energy deposition for spherical sites

of diameter d ranging from 0.1 to 10 mm. Figure 9.23

shows such graphical representations for a particles

10

1

S
it

e 
D

ia
m

et
er

 (
mm

) I II III IV

0.1
0.4 4

a Particle Kinetic Energy (keV)
40 400

R S S,d

10

1

S
it

e 
D

ia
m

et
er

 (
mm

)

I II III IV

0.1
1 10

Electron Kinetic Energy (keV)
100 1000

R R,S S S,d

Fig. 9.23 Regions of charged-particle kinetic energy and site

diameter in which the influences of particle range (R), energy

straggling (S) and (d) rays are strong for a particles and elec-

trons upon dosimetry calculations based upon L1 (after Kellerer

and Chmelevsky 1975)
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and electrons, the charged particles which are of

most interest in nuclear medicine. In each graph of

particle kinetic energy vs. site diameter, four regions

are identified.

First consider the plot for a particles (Fig. 9.23a):

� As noted above, the value of L1 can change along

the trajectory passing through the site and the par-

ticle may even start and stop within that site. In

Region I (corresponding to low a-particle kinetic

energies and large site diameters), this charged-

particle range effect leads to an error of more than

15% in the energy deposited in the site if calculated

from L1 alone.

� The energy loss variations due to energy straggling

can exceed those energy losses due to the distribu-

tion of track lengths across the site. Regions III and

IV indicate those combinations of energy and site

diameter for which the variance due to energy-loss

straggling exceeds that of path-length variability.

� d rays carry away energy and Region IV corre-

sponds to the condition of that of over 10% of the

energy being carried away from an ionization event

within the site to be deposited at points beyond the

site.

The remaining Region II contains the intermediate

range of combinations of site diameter and a particle

kinetic energy in which L1 is the dominant compo-

nent in estimating the energy deposited within the site.

In summary, for low a particle energies and large site

dimensions (Region I), the limited particle range rela-

tive to the site dimension results in a reduction in the

energy deposited from that estimated from L1. With

increasing kinetic energy, energy loss straggling

reduces the energy deposition from that expected

from L1 in Regions III and IV. In Region IV, d-ray
energy transport reduces the energy deposition even

further from that expected from L1. It is in Region II

where energy deposition is dominated by L1 and the

unrestricted LET can be a reasonable metric of energy

deposition at the macroscopic scale for a particles.

The above descriptions of regions are also applica-

ble to the graph for electrons. However, due to the low

mass of the electron, the effects of energy straggling

and particle range are greater than are those upon a
particles. Regions I, III and IV, and the factors influ-

encing them remain, although they are broader over

both kinetic energy and site diameter. But the interme-

diate Region II is much more restricted for electrons

than for a particles and is subject to the effects of both

energy straggling and particle range. Hence, for elec-

trons, there is no combination of site diameter below

10 mm and electron energy for which L1 dominates

the description of energy deposition. Hence, the unre-

stricted LET is invalid for microdosimetric characteri-

zation of energy deposition in this combination of

ranges of electron kinetic energy and site diameter.

Lineal Energy

As the LET is restricted in its accuracy in describing

energy deposition by electrons in small-diameter sites,

we can employ the lineal energy y, defined in (8.32) as

the energy imparted in a single event within a volume

normalized to the mean chord length resulting from

the random interception of that sight by a straight line,

y ¼ e=�l, which is the stochastic analog to the LET. For
example, �l ¼ 4r=3 for a sphere of radius r.

Figure 9.24 shows the probability distribution of

the lineal energy received from single energy deposi-

tion events in a 1 mm diameter soft-tissue sphere

exposed to 140kVp X-rays.

9.2.9.3 Specific Energy

The specific energy was defined by (8.31) and is appli-

cable to any number of events that occur within the

volume of interest. Assuming that the volume of
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Fig. 9.24 Lineal energy transfer distribution for single events

in a 1 mm diameter soft-tissue sphere exposed to 140 kVp X-

rays. The ordinate is the weighted density of lineal energy

(redrawn from Kellerer 1985)
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interest is spherical with radius r and physical density

r, the specific energy can be related to the lineal

energy by,

z ¼ 4y

4pr2r
(9.132)

9.3 Radiation Dosimetry: Detection
and Measurement

9.3.1 Introduction

Although the subject matter of this book is concerned

with the theoretical principles behind nuclear medi-

cine dosimetry, these principles cannot be discussed in

the absence of an understanding of how the necessary

physical and biological data required for such dosime-

try calculations are obtained and of the associated

precisions of these measured data.

In this section, the various radiation detectors used

in measuring the absorbed doses of, and detecting the

radiation emanating from, the nuclear medicine

patient are presented along with their theories of oper-

ation. These fall into four main detector categories:

Gaseous ionization detectors: These are the ioniza-

tion chamber, the proportional counter and the Geiger–

Müller (GM) counter. The ionization chamber is

ubiquitous in the radiopharmacy in the form of the

dose calibrator and the proportional counter and GM

counter are used for radioactive contamination moni-

toring in the nuclear medicine department. Histori-

cally, multiwire proportional chambers (MWPCs)

have been used as position-sensitive detectors in

PET. The theory of gas ionization and ionization prod-

uct transport in gas is reviewed, along with each the

theories of operation of these three subcategories of

detectors.

Scintillation detectors: Scintillators dominate the

means of nuclear medicine imaging. They are almost

exclusively thallium-activated sodium iodide in con-

ventional gamma cameras and the lanthanide com-

pounds used in PET scanners. The theory of

scintillation and the properties, advantages, and dis-

advantages of scintillator types in nuclear medicine

applications are reviewed.

Semiconductor detectors: As discussed in the Intro-

duction to this chapter, the use of these in nuclear

medicine is growing, primarily through the develop-

ment of zinc telluride (CZT) imaging platforms. How-

ever, of more immediate relevance to in vivo nuclear

medicine radiation dosimetry are the use of MOSFET

dosimeters, which were developed for in vivo dosi-

metry and have been used in nuclear medicine appli-

cations. An overview of the theory of operation of

these devices is provided.

Thermoluminescent dosimeters: These are ubiqui-

tous in personnel radiation exposure monitoring. They

are also used in phantom measurements of radiation

absorbed dose. An overview of the theory of ther-

moluminscence is provided.

Additional information regarding radiation detec-

tors, including those applications specific to nuclear

medicine, may be found in Tsoulfanidis (1983); Knoll

(2000); Green (2000); Bailey et al. (2003); Hamilton

(2004); and Wernick and Aarsvold (2004).

9.3.2 Gaseous Radiation Detectors

9.3.2.1 Introduction

Gaseous radiation detectors operate on the principle of

collecting the electric charge produced by ionizations

caused by radiation interactions in a gaseous medium

through the application of an electric field across that

medium. The fact that X-rays could ionize air was first

noted by Thomson (1896a, b) shortly after their dis-

covery by Röntgen in 1895. Air ionization detectors

were subsequently used by Rutherford to discover a
and b particles and by the Curies in their radioactivity

work.

Figure 9.25 identifies the major regions of gaseous

detector operations in terms of the logarithm of the

output signal as a function of the electric field applied

across the gas. The regions of detector operation are

divided in terms of the multiplication factor, M, which

is the ratio of the net collected charge to that produced

in the initial ionization event.

Following an ionization in the gas, the released

charges drift along the electric field lines, producing

a current proportional to the rate of energy transfer in

the gas (i.e., kerma rate). The drift speed of an ion or

electron is set by the combination of the acceleration
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by the electric field, the random thermal motions the

entity is subjected to and the mean-free path between

collisions with neutral gas molecules whilst drifting

towards the appropriate electrode. As a result, the drift

speed is a characteristic of the particle or electron and

is directly proportional to the applied electric field.

At low electric field values, the density of ioniza-

tion products in the vicinity of the ionization site

immediately following ionization is high as the pro-

ducts have not yet drifted sufficiently far away from

each other. As a result, the recombination rate of the

products is also high and the net collected charge will

be less than that liberated (M < 1). With increasing

electric field strength, the rate of recombination

decreases and the collected charge increases to reach

an ionization saturation plateau. At saturation, all of

the liberated charge is collected (M ¼ 1). This is the

least sensitive operating region of a gaseous detector,

which makes it useful in high fluence rate applications.

With increasing electric field strengths across the

gas volume, the speeds of the electrons liberated by the

initial ionizations become sufficiently high that colli-

sions between these electrons and neutral gas mole-

cules cause further ionizations and release additional

electrons. These electrons, in turn, reach high drift

speeds to ionize neutral gas molecules through further

collisions leading to a Townsend avalanche of an

exponentially-growing number of ionizations within

the gas volume. The result is a collected electric

charge much greater than that released in the original

ionization and the multiplication factor is, hence,

greater than unity. This M > 1 region can be subdi-

vided in terms of detector operation. At the lower end

of the field strength range, these avalanches are inde-

pendent of each other. Consequently, the amplified

signal is proportional to the magnitude of the original

ionization; hence, this is known as the proportional

region. A detector operated in the proportional region

is far more sensitive than in the ionization saturation

region. However, great care must be taken of the

design of the chamber in order to yield the necessary

high and stable electric fields and attention must paid

to the nature of the fill gases in order that the multi-

plication factor M be independent of the size of the

initial ionization event. The gas mixture is particularly

important in that electron collision-induced excita-

tions of gas molecules can result in the emission of

ultraviolet (UV) photons which can ionize at a dis-

tance and lead to uncontrolled avalanches and a pro-

longed discharge. An additional gas is added to the fill

gas to absorb these photons and to quench the dis-

charge. Values of M in the proportional region are

typically of the order of about 103–105. At greater

electric field values, space-charge effects reduce the

response proportionality. This is the limited propor-

tionality region noted in Fig. 9.25.

At greater electric field strengths and, by allowing

the emission of the UV from the excited gas mole-

cules following collisions to create further avalanches,

a significantly larger charge can be collected from a

single ionization event. As the avalanches are no

longer independent, the output signal is not propor-

tional to the original amount of ionization caused in

the gas. In this GM region, the magnitude of the

output signal is the same regardless of the magnitude

of the original ionization. This represents the most

sensitive mode of operation for gaseous radiation

detectors.
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Fig. 9.25 The regions of operation of gaseous radiation detec-

tors as a function of the electric field strength applied across the

gas cavity, divided into three main regions defined by M, which

is the “multiplication factor,” equal to the ratio of the collected

charge to that liberated by the initial ionization. Further subdivi-

sions are discussed in the text. At electric field values exceeding

those of the Geiger–Müller (GM) region, the detector enters a

continuous discharge state
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9.3.2.2 The Theory of Ionization in Gases

Magnitude of Initial Ionization Produced

and the Fano Factor

As shown in Chap. 7, ionizing radiation interactions

with gas molecules create ion-electron pairs which

carry recoil kinetic energy, with the number of elec-

tron-ion pairs produced per unit energy (i.e., the recip-

rocal of W=e) being relatively constant with gas and

radiation type. For a gas at standard conditions for

temperature and pressure, charged particles with

kinetic energies of a few MeV and below are therma-

lized in a period of time of about 10 ns or less. In the

absence of an electric field, these liberated charges

lose this recoil energy through multiple collisions

with neutral gas molecules to eventually thermalize

to a mean kinetic energy, ð3=2ÞkT, where k is Boltz-

mann’s constant and T is the gas temperature. For

example, at a gas temperature of 293K, the mean

kinetic energy is �e ffi 0:03 eV. This will take about of

the order of 1 ms for the liberated electrons. It will be

recalled from the discussions in Chap. 7 that other

nonionization energy channels exist so that the energy

lost by a photon or charged particle traversing a gas

will actually be greater than the ionization energy. The

value for W=e of dry air is 33.85 eV per ion pair.

Hence, a 100 keV electron stopped completely in a

volume of air will produce about 3,000 ion-electron

pairs in initial ionization events.

In the absence of an electric field, a group of ion-

electron pairs produced by an ionization will simply

diffuse randomly throughout the gas following a

Gaussian distribution,

dN

N0

¼ e�x
2=4Dtffiffiffiffiffiffiffiffiffiffi
4pDt
p dx (9.133)

where dN=N0 is the fraction of produced charges in

spatial element dx at time t and D is the diffusion

coefficient. For the example of argon gas (used in

a dose calibrator), this diffusion coefficient is

D ¼ 0:04 cm2=s. Figure 9.26 shows the spatial distri-

butions of charges in argon gas at different times

postionization. These plots show that, shortly after

ionization, the relative density of the ionization pro-

ducts around the position of the ionization event is

high. As a result, there is a significant consequent

probability of recombination of the ionization pro-

ducts, thus limiting the amount of collected charge.

The amount of ionization resulting from the interac-

tion is itself probabilistic in that the ratio W=e only

defines the mean number of ion-electron pairs

produced per energy lost. It would be expected that

the number of ionization products produced per indi-

vidual ionization event would follow Poisson statistics

where the variance is equal to the mean number of ion-

electron pairs created per event, N. However, it has

been found empirically for gaseous detectors that the

measured standard deviation of the number of elec-

tron-ion pairs produced is markedly less, by as much

as a factor of 4, than that expected from the simple

assumption of Poisson statistics. This empirical obser-

vation suggests that the processes producing an ion-

electron pair are not statistically independent as

assumed and that the Poisson model is not an appro-

priate one to use. This departure of the observed sta-

tistical variability from that expected on the basis of

Poisson statistics is empirically quantified by the

empirical Fano factor which is defined as the ratio of

the measured signal variance to that expected from

Poisson statistics,

F 	 s2
Meas

N
: (9.134)

The magnitude of the Fano factor F is less than

unity. If all of the energy of the stopped radiation in

the medium yielded ion-electron pairs, then the

number of these pairs would be consistent across

these interactions and would have no variance. Conse-

quently, the Fano factor would be equal to zero.
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Fig. 9.26 Diffusion profiles at different times t for argon gas

without the presence of an electric field calculated from (9.133)
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But if only a small amount of energy lost by the

stopped radiation was converted into producing ion-

electron pairs, then Poisson statistics would be valid

and the Fano factor would be equal to unity.

Ion and Electron Motions in a Gas With an Electric

Field Applied

Now allow an electric field to be applied across a gas

cavity exposed to ionizing radiation. Following an

ionization in the gas, the different charged entities

will drift away from the event site and across the

cavity following the electric field lines: positively-

charged ions to the cathode and electrons to the

anode. A charged particle of charge e and mass m

subject to an electric field E in vacuo will simply

undergo constant acceleration equal to eE/m. In a

gas, however, the net motion of the charged particle

is a combination of that induced by the electrostatic

force placed upon it, the random thermal motions it is

subject to and the random collisions between it and the

neutral gas atoms. These contributions to the net

motion of a charged particle in a gas with an electric

field applied are derived.

Consider the initial ionization events; as in the

discussion of microdosimetry, it is possible to

define a small volume of gas within which a num-

ber of ionizations occur. Immediately following the

ionizations, the electrons and positively-charged

ions are in close proximity with each other. The

probability of recombination between these ioniza-

tion products will increase with the densities of

both species immediately following ionization. As

high densities of the formed ion-electron pairs are

associated with high ionizing radiation fluences, the

recombination probability will increase with radia-

tion fluence and, hence, absorbed dose. The rate of

recombination, < is proportional to the product of

the concentrations of the positively- and negatively-

charged moieties,

< ¼ a nþ½ � n�½ � (9.135)

where [n�] are the concentrations of the positively-

and negatively-charged species and the constant of

proportionality, a, is known as the recombination

coefficient. Recombination can also occur between

negatively- and positively-charged ions in which an

electron is transferred between the two to yield two

electrically-neutral entities; it is found that the recom-

bination coefficient is several orders of magnitude

greater between positively- and negatively-charged

ions than between positively-charged ions and elec-

trons. If, as expected at the time of initial ionization

that, [n+] ¼ [n�] ¼ [n], then, solving (9.135), yields

the concentration as a function of time is,

nðtÞ½ � ¼ n0½ �
1þ a n0½ �t (9.136)

where [n0] is the concentration of charged products at

the time of initial ionization, t ¼ 0.

While the charged products will carry some recoil

energy from the energy transferred from the ionizing

particle, they rapidly lose this energy to reach ther-

mal speeds. Hence, in addition to the drift caused by

the electric field, these ionization products will be

subject to random thermal motion. The thermal

speed of a particle of mass m at temperature T is

given by,

vTh ¼
ffiffiffiffiffiffiffiffi
3kT

m

r
(9.137)

where k is Boltzmann’s constant. For example, the

thermal speed of a N2 gas molecule is of the order of

500 m/s at STP whereas that of an electron would be of

the order of 1.2 � 105 m/s.11 In terms of velocity, the

thermal velocity is randomly directed whereas the drift

velocity has a specific direction along the electric field

lines. In addition to the random thermal motion super-

imposed upon the drift velocity, random interruptions

to the drift will occur due to collisions with surround-

ing neutral gas molecules. It is possible to derive an

expression for the net drift speed of a gas ion in a gas

medium by first considering the random thermal

motion only and defining l as the mean-free path

between collisions. The mean time between collisions,

t, will be given by t � l=vTh. The mean-free path

between collisions is proportional to the reciprocal of

11The thermal speeds of light gas species, such as helium, are

about an order-of-magnitude greater than that of molecular

nitrogen and comparable to the Earth’s orbital escape speed.

This is one reason why helium is not found in the Earth’s

atmosphere.
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the interaction cross section, which at the low energies

considered here, can be approximated by the geomet-

rical cross section of the ion, s � pr2B, where rB is the

ionic radius. Hence, the mean-free path for a typical

gas molecule is of the order of 0.1–0.3 mm. As the

magnitude of the acceleration of the charged moiety

(of mass m and assumed here to be singly-charged) by

an applied electric field strength is eE/m, the mean

drift speed is,

vd � t
eE

m

� l
vTh

eE

m
:

(9.138)

Recall from Chap. 7 that the mean-free path

between collisions is given by l ¼ A=NArs. Combin-

ing this expression with (9.137) and (9.138), an

expression for the mean drift speed of the gas ion

can be written as,

vd � eEA

NArpr2B
ffiffiffiffiffiffiffiffiffiffiffiffi
3kTm
p : (9.139)

Equation (9.139) shows that the drift speed will

vary as m�1=2. As the mass of a gas molecule is

some 3 � 104 times greater than that of an electron

and the interaction cross section smaller, the drift

speed of an electron will be several hundred times to

a thousand times greater than that of a gas molecule.

This relationship between the drift velocity and the

electric field can be simplified dramatically. The elec-

tric field per unit density, E=r, with respect to STP is

referred to as the reduced electric field,

E

r
¼ E

P0

P
(9.140)

where P0 ¼ 1 atm at STP and P is the gas pressure.

This enables (9.139) to be rewritten as,

vd � eEA

NArpr2B
ffiffiffiffiffiffiffiffiffiffiffiffi
3kTm
p

� eAP0

NApr2B
ffiffiffiffiffiffiffiffiffiffiffiffi
3kTm
p

 !
E

P

� m
E

P

(9.141)

where the constant of proportionality, m, is known as

the mobility of the drifting charged entity It can be

seen from (9.141) that the mobility can be readily

determined experimentally by measuring the drift

velocity in a gas of pressure P with an electric field

strength, E, applied across it. From our past immediate

discussion, the mobility for a single electron will be

much greater than those of an ionized gas molecule

(by a factor of about 103) due to the differences both in

mass and in interaction cross section. Experimentally,

the mobility for an ion is found to be relatively con-

stant over a range of gas types with, for example,

values of 1.1 and 1.7 cm2 Atm/V s for gaseous argon

and CO2, respectively. An argon ion drifting in argon

gas at 1 atm pressure in a 100 V/cm electric field

will attain a drift speed of the order of 2 mm/ms. The
corresponding transit time over the dimensions typical

of a gaseous detector is of the order of 1 ms. On the

other hand, the corresponding electron drift speed

would be of the order of 2 mm/ms and the transit

time of an electron is much shorter at the order of

1 ms. This difference in drift speeds between the elec-

tron and positively-charged ion will dictate the time-

dependence of the output pulse from the detector.

It is important to note that, from (9.137), the ther-

mal speeds of a N2 molecule and an electron are

500 mm/ms and 120 mm/ms, respectively. Hence, the
electric-field induced drift speed is a small, but direc-

tionally constant, perturbation over the random ther-

mal motions.

In addition to the effects described above upon

charged particle motion, collisions with neutral gas

molecules can lead to charge transfer if, in a mixture

of gases, a gas molecule is present with an ionization

energy lower than that of a positive ion. In a collision

between the two, the latter can transfer its positive

charge to the neutral molecule in a charge transfer

collision by incorporating an electron from the neutral

molecule. This is a process used in the internal

quenching of proportional chambers. Negatively-

charged ions can also be produced should a free elec-

tron be captured by a neutral gas atom. Oxygen, in

particular, is electronegative, whereas other gas mole-

cules in common use in gaseous detectors, such as the

noble gases, hydrogen, or nitrogen, have low electron

attachment coefficients. As a result, except for certain

applications and in the ionization saturation region,

electronegative gases are not used in gaseous radiation

detectors.
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9.3.2.3 M 
 1 Regions: Ionization Chamber

As shown in Fig. 9.25, at low electric field strengths,

the gaseous detector operates in what is known as the

ionization region of operation. In this region, the resul-

tant electron-ion pairs from an ionization drift along

the electric field lines to the electrode of the appropri-

ate polarity in the manner described in the previous

subsection. The collected charge will be that liberated

by the initial ionizations less the net charge of those

products that recombine. As noted in the previous

subsection, the degree of recombination is high for

the low electric field strengths which are insufficient

to separate the ionization products quickly enough to

reduce the densities of these products and the

subsequent recombination rate. Figure 9.25 demon-

strates that, in this region, M < 1 due to recombina-

tion but that the collected charge increases with the

electric field. Eventually, the collected charge satu-

rates with electric field which reflects the status of all

of the liberated electric charge being collected (i.e.,

M ¼ 1). A detector operating in this region is referred

to as being an ionization chamber or a unity-gain

detector.

A simple parallel-plate detector operating in this

region is shown in Fig. 9.27 in which two planar

electrodes are enclosed within a gaseous medium

with a constant bias voltage, VB, applied across

them. For parallel-plate electrodes, the magnitude of

the electric field will be constant with a magnitude

given by E ¼ VB=d, where d is the separation between

the electrodes. The gas volume, within which the

electrodes are placed, is exposed to constant ionizing

radiation. This liberates electrons and positive ions at a

constant rate. Assume that the rate of recombination of

these ionization products is negligible and that the

efficiency of collecting the ion-electron pairs by the

electrodes is 100%. As a result, once equilibrium is

reached, the ionization current flowing in the circuit is

equal to the ionization rate produced within the gas

chamber. For an incident photon beam, this saturated

ionization current is proportional to the kerma rate

which is related to the incident photon flux through

the K=F ratio of (9.11).

At low bias voltages, the drift speed is small so that

the distances traveled by the ion-electron pairs are

correspondingly small and the densities of the ion-

electron pairs near the ionization centers are high,

thus allowing recombination. The net ionization cur-

rent, IC, is thus low. As VB increases, the drift speed

increases in linear proportion thus leading to a reduc-

tion in the densities in the electron-ion pair in the

vicinity of the ionization event and a decrease in the

rate of recombination. The result is that the ionization

current increases. Eventually, at a sufficiently high VB,

all of the ion-electron pairs produced by the original

ionization event are collected and IC saturates and is

independent of the bias voltage. It is in this saturation

region that ionization chambers are operated. With

increasing ionization rate and a fixed bias voltage,

the ionization current will increase in proportion to

the radiation rate when the chamber is operated in

-+

|c

Bias  Voltage, VB

Increasing
Irradiation

Rate

Ionising
Radiation

To
amplifierIo

ni
sa

tio
n 

C
ur

re
nt

, |
c

VB

Fig. 9.27 Voltage-current

characteristic curves for a

simple parallel-plate

ionization chamber as

functions of irradiation rate
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saturation mode. As, in this mode, all charges can be

collected, the importance of the type of fill gas used in

an ionization chamber is usually not significant. For

example, air is frequently used as a fill gas. As the

output of the ionization chamber is simply the total

ionization released in the gas volume, its magnitude is

low. The ionization chamber is thus invariably oper-

ated in direct current (DC) mode rather than pulse

mode and the current integrated over time to yield a

net collected charge. The magnitudes of the charges

involved are small and a simple numerical example is

telling. Consider an ionization chamber with an air

medium and a volume of 50 mL. At STP, the mass

of air contained within this volume is equal to

6.03 � 10�2 g and an in-air collision kerma rate of

0.1 mGy/h will result in an ionization current of only

0.05pA. Because of the low output of the ionization

chamber, the ionization chamber is most often oper-

ated in DC mode where the ionization current is

integrated over a set period of time to yield a net

electrical charge as the output.

9.3.2.4 M > 1 Regions: Proportional Chamber

and Geiger–Müller Counter

Introduction

In this subsection, the proportional and GM regions

are grouped together as both can be defined by gas

multiplication at high electric field strengths. As noted

above, an ionization chamber has a low sensitivity due

to its unity-gain characteristics. To increase the signal-

to-noise ratio of a gaseous radiation detector, one takes

advantage of the phenomenon of gas multiplication.

Gas multiplication is a phenomenon which occurs in

gases for electric field strengths extending beyond the

ionization chamber plateau so as to exceed a few

kilovolts per centimeter. The drifting electrons will

gain sufficient kinetic energy in order to cause a vari-

ety of inelastic phenomena during their collisions with

the uncharged gas molecules. The natures of these

interactions between the electrons and the gas mole-

cules are dependent upon the nature of the gas. For

example, if the gas is made up of weakly-bound poly-

atomic molecules, such as a hydrocarbon, a number of

inelastic energy transfer channels are presented

through vibrational and rotational degrees of freedom.

But, for all gas types, should the energy transfer from

the electron to the molecule exceed the ionization

potential of the gas molecule, the energy-transfer

channel opens through which an additional ion-elec-

tron pair can be created with the primary electron

continuing on to cause further ionizations. The sec-

ondary electron produced in the electron-gas molecule

collision is then accelerated by the electric field and

undergoes further collisions with gas molecules caus-

ing ionizations and leading to a chain reaction, or gas

multiplication process, (Townsend avalanche). This

avalanche eventually terminates when all of the elec-

trons liberated by the initial ionization and by

subsequent electron-gas molecule collisions are col-

lected at the anode. While the net collected charge is

proportional to the original charge released by the

ionization, it will have been amplified through these

subsequent Townsend avalanches.

A gaseous radiation detector operated in the pro-

portional region is termed a “proportional chamber” or

“proportional counter,” as it is operated in the count-

ing pulse mode (the amplitude of each signal is quan-

tified). At the high electric fields and specific gas

mixtures that lead to the loss of proportionality but

high radiation detection sensitivity, the detectors are

referred to as “GM counters.”

Electric Field Requirements for Gas Multiplication

The creation of the required high electric fields (of

the order of 10 kV/cm) to create Townsend ava-

lanches must be considered in the design of a pro-

portional chamber. The example of the simplistic

parallel-plate geometry in the previous subsection is

impractical for producing gas multiplication. In order

to create the necessary electric field strength of

10 kV/cm to yield gas multiplication across a 1 cm

gap a 10 kV bias voltage must be applied. The

electrical design of the chamber would be compli-

cated by the magnitude of this voltage in order to

yield a safe practical instrument. However, by alter-

ing the chamber geometry, high electric field

strengths can be obtained for small bias voltages. A

simple, yet common, example is that of the cylindri-

cal geometry consisting of two coaxial cylinders, as

shown in Fig. 9.28. In proportional chamber design,

the inner cylinder is the anode wire of the chamber.

The inner and outer cylinders have radii ra and rb,

respectively, and a bias voltage VB is placed across
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them. Because of symmetry, the electric field is radi-

ally directed and, from Gauss’ law, will be,

EðrÞ ¼ rl
2pe0r

(9.142)

where rl is the surface charge per unit length (related

to the capacitance per unit length). This expression for

the electric field yields the potential difference

between the two cylinders by,

VB ¼
ðrb
ra

dr EðrÞ

¼ rl
2pe0

ðrb
ra

dr

r

¼ rl
2pe0

ln
rb

ra

(9.143)

from which the surface charge per unit length is

obtained,

rl ¼
2pe0VB

ln rb=ra
: (9.144)

The ratio rl=VB is, in fact, the capacitance per unit

length of the proportional chamber. Substituting this

into (9.142) gives the radial electric field within the

chamber,

EðrÞ ¼ VB

r ln rb=ra
(9.145)

It will be noted that, unlike the parallel-plate geom-

etry, the electric field is no longer constant with dis-

tance between the anode and cathode and varies as 1=r.

Thus the field increases dramatically with proximity to

the central cylinder. For a practical geometry of a bias

voltage of 1 kV, the anode (inner cylinder) being a

wire of diameter of 0.15 mm and the cathode (outer

cylinder) diameter of 2 cm, the electric field strength at

the surface of the anode wire is 136 kV/cm. To achieve

such an electric field strength for a parallel-plate

geometry with the electrodes separated by 2 cm

would require a bias voltage of 27.2 kV. The use of a

cylindrical geometry and a thin anode wire can signif-

icantly increase the electric field in its vicinity for a

low bias voltage.

In the cylindrical proportional design, Townsend

avalanches will occur only very close to the anode

wire. For example, the electric field threshold value

for gas multiplication to occur is of the order of

106 V/m. For the above combination of anode wire

and chamber diameters, this threshold value is reached

at a radius of 0.204 mm (Fig. 9.29). Thus, in this

example, gas multiplication occurs within about

0.005% of the total chamber volume.

Ionization and Space-Charge Effects

Figure 9.30 shows the spatial features of the com-

bined drift, diffusion and multiplication processes in

the vicinity of the central anode wire of a propor-

tional chamber. After the initial ionization, the ions

and electrons drift under the electric field towards the

−

+
VB

ra

rb

Fig. 9.28 Geometry for calculating the radial electric field of a

proportional chamber composed of two coaxial cylinders. The

inner cylinder represents the anode wire for a cylindrical pro-

portional chamber
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Fig. 9.29 Electric field in the cylindrical geometry of Fig. 9.28

as a function of radius. rTh is the threshold radius at which the

electric field below which the electric field is greater than the

threshold value for gas multiplication Hence, the Townsend

avalanches occur within the small cylindrical volume defined

by ra and rTh
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cathode and anode, respectively. Due to their lower

mobility, the ions move with a lower drift speed. As

the electrons approach the anode, they experience

increased acceleration due to the electric field

which increases as 1=r . These electrons reach speeds

that create further ionizations through collisions with

neutral gas molecules. As shown in Fig. 9.29, it is at

points in very close proximity to the anode wire (not

more than a few mean-free paths) that avalanches

occur. Superimposed upon this drift behavior is the

thermal diffusion which broadens out the distribu-

tions of electrons and ions. Because of their higher

mobilities, all of the electrons quickly reach the

anode and are collected leaving only the positively-

charged ion cloud to drift slowly towards the

cathode.

Once the electrons have been collected, the posi-

tively-charged ion cloud, which will be proximal to

the anode (as this is where most of the gas multipli-

cation has occurred) will reduce and distort the elec-

tric field in the vicinity of the anode. This has the

potential to space-charge quench the net magnitude

of electric field to a point below which gas multipli-

cation cannot occur. This self-induced effect is

dependent upon the chamber design (through the

electric field) and the associated degree of gas

multiplication.

Gas Multiplication

In the proportional region of Fig. 9.25, the electric

charge collected at the electrodes in the proportional

chamber is given by,

QColl ¼ Mn0e (9.146)

where n0 is the original number of ion-electron pairs

produced in the initial ionization event and M is the

gas multiplication factor. This multiplication factor

can be calculated through the application of a number

of approximations. The first Townsend coefficient, a,
is defined as the mean of the number of secondary

electrons produced by a single free electron per centi-

meter pathlength. An expression for this coefficient

can be had by first assuming that the probability of

an electron interacting with a gas molecule is defined

by Poisson statistics. That is, the probability that an

electron would travel a distance x without a collision is

given by e�x=l, where l is the mean-free path between

collisions. The energy gained by the electron traveling

the distance x in an electric field E is given by the

product, exE. In order for an ionization to occur as a

result of a collision with a neutral gas molecule, this

energy must exceed a mean ionization energy given by

eVion (which is equal to 15.7 eV for argon). Hence, the

+ + + +

e−

Ions
Ions

dcba

Ions

Electrons

Anode

Fig. 9.30 Development of an avalanche around the anode wire

of a cylindrical proportional chamber: (a) Initial ionization

leading to ions drifting to the cathode and electrons drifting to

the central anode; (b) as the electric field increases as r�1 in

proximity to the anode, the electrons are accelerated and create

further ion-electron pairs through collisions; (c) in addition to

the electric-field induced diffusion, thermal diffusion is present

and which broadens out the electron and ion clouds; and, (d) all

of the electrons are collected by the anode and the slower ions

continue to drift towards the cathode
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probability that an ionization will occur is now given

by e�Vion=El. As a is defined as the number of ioniza-

tions per electron per unit distance traveled, then the

first Townsend coefficient is,

a ¼ e�Vion=El

l
: (9.147)

Because l will be inversely proportional to the gas

pressure (at a constant gas temperature), the first

Townsend coefficient can be written in the form,

a
P
¼ Ae�

BP
E (9.148)

where A and B are constants. For argon, A ¼ 1:064�
104/cm � atm and B ¼ 1:37� 105 V/cm � atm; these

values are valid for reduced electric fields of
E=P ¼ 7:6� 104 to 4:6� 105 V=cm � atm.

Having defined the rate of ionization per unit

pathlength, the logarithm of the gas multiplication

factor is,

lnM ¼
ðrTh
ra

dr aðrÞ (9.149)

where rTh is the radial distance from the anode

beyond which the electric field strength is so weak

that gas multiplication cannot occur (Fig. 9.29). This

defines the critical radius below which the electric

field is sufficiently strong to accelerate electrons to

produce secondary ionizations. As a is the mean-free

path of an electron between ionizations, the mean

energy gained by an electron in an electric field E

between collisions is E=a. Assuming that a is linearly

proportional to the energy of the electrons, a ¼ kNe,
where N is the number of gas molecules per unit

volume and k is a constant of proportionality, then

an expression of a is,

aðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kNCVB

2pe0

1

r

r
(9.150)

where C is the capacitance per unit length of the

cylindrical proportional chamber (¼rl=VB). Substi-

tuting this into the integral of (9.149) gives,

lnM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kNCVB

2pe0

r ðrTh
ra

drffiffi
r
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kNCVB

2pe0

r ffiffiffiffiffiffi
rTh
p � ffiffiffiffi

ra
pð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kNCVBra

2pe0

r ffiffiffiffiffiffi
rTh

ra

r
� 1

� �
:

(9.151)

From this result, the gas multiplication factor can

be written in the form,

M ¼ k1ek2VB (9.152)

if VB � VTh, where VTh is the threshold voltage at

which gas multiplication occurs. Thus, gas multiplica-

tion beyond the threshold voltage increases exponen-

tially with bias voltage once that voltage exceeds

the threshold voltage. This demonstrates the need for

an extremely stable voltage supply for a proportional

counter, a requirement which has contributed to the

limited use of the proportional chamber in nuclear

medicine applications. Another, but semiempirical,

expression for the logarithm of the multiplication fac-

tor is presented by Knoll (2000) and is attributable to

Diethorn,

lnM ¼ VB

ln rb=ra

ln 2

DV
ln

VB

KPra ln rb=ra

 !
: (9.153)

For the typical P-10 fill gasmixture of 90%argon and

10% methane used in proportional chambers, K ¼ 4.8

� 104 and DV ¼ 23.6 eV. As an example, Fig. 9.31

shows the multiplication factor calculated for the P-10

fill gas mixture at 1 atm pressure for a cylindrical ioni-

zation chamber as a function of bias voltage.

Fill Gas Requirements for the Proportional Region

The nature of the fill gas is important when the gaseous

detector is operated in the M > 1 region, particularly

so for the proportional region. In this region, it is

essential to keep the output signal exactly proportional

to the original ionization signal. As the basis of gas

multiplication is the drifting of free electrons and the

secondary ionizations they induce in collisions with
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neutral gas molecules, the fill gas must obviously have

a low electron attachment coefficient. This contraindi-

cates the use of electronegative gases such as oxygen

and air. Common fill gases for a proportional chamber

are thus the noble gases, most notably argon. For gas

multiplication factors exceeding about 100, the user

must also contend with nonionizing energy transfer

channels present in a gas molecule. Following an

electron collision with a monatomic gas, the atom is

left in an excited state and does not contribute to the

avalanche. This is immediately followed by de-excita-

tion, a process including the possible emission of a UV

photon which can cause an ionization within the gas.

Even should this UV photon not be absorbed within

the fill gas and instead impinge on the metal surface of

the cathode, it can eject an electron from the surface

which will then migrate towards the anode and thus

extend the duration of the avalanches. In addition to

these UV-induced creations of free electrons, when a

cation is neutralized at the cathode by extracting an

electron, there may be sufficient energy remaining in

order to extract an additional electron from the cath-

ode wall which again leads to further avalanches. It is

necessary to quench these subsequent avalanches in

order to attain stable operation of the proportional

counter and to ensure proportionality of the output

signal to the original ionization event. A means of

internal quenching is to add a polyatomic gas, usually

a hydrocarbon such as methane or ethane, with vibra-

tional modes capable of absorbing the UV photons (a

proportion of this absorbed energy may be reirradiated

as infrared photons, but these are nonionizing). The

quench gases can also contribute an electron to the

cations, thus neutralizing them. The now positively-

charged hydrocarbon ions drift to the cathode, but, due

to their lower excitation energies, are less likely to

extract an electron from the cathode. The most com-

mon proportional chamber gas fill is the P-10 mixture

in which the hydrocarbon gas added is CH4 at a 10%

by volume to Ar.

Geiger–Müller Region

Recall that a proportional chamber is designed, in

terms of electrical properties and fill gas composition,

to ensure that the collected charge at the output of the

chamber is proportional to the size of the initiating

ionizing event. Polyatomic gas additives, such as the

hydrocarbons, are used to quench the additional non-

proportional ionization events due to ultraviolet emis-

sion from the primary fill gas molecules. In a GM

counter, nonproportional ionization events are, on the

contrary, sought in order to further increase the gas

multiplication factor from typical values of about 104

for a proportional chamber to about 107. While this
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Fig. 9.31 Gas multiplication

factor as a function of bias

voltage for a cylindrical

proportional chamber with a

cathode diameter of 2 cm and

an anode wire diameter of

0.015 cm and a fill gas mixture

of 90% argon and 10%

methane at 1 atm pressure

calculated from the Diethorn

empirical formula of (9.153)
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comes at a loss of proportionality between the input

and output signals, it results in a highly sensitive

radiation detector.

Following an initial ionization in the GM region,

the electron migrates towards the anode wire under a

very high electric field. Within a few mean-free paths

of the anode, as in the proportional chamber, it under-

goes collisions with neutral gas molecules and creates

further ionizations. UV photons emitted from the de-

excitation of postcollision states that do not result in

ionization can travel elsewhere within the GM cavity

(e.g., against the metal wall of the cathode, as shown

in Fig. 9.32) and produce an ionization in almost

synchrony with the first and inducing a Geiger dis-

charge. There results a rapid chain reaction in the GM

counter due both to the high electric field and the high

electron speeds resulting and the ultraviolet photons.

As a result of the lack of statistical independence

between the individual avalanches, the output signal

of a Geiger discharge is not proportional to the size of

the initiating ionization. Indeed the signal is the same

regardless of the magnitude of the initial ionization.

After the electrons have been collected at the anode,

the slow-moving ions are still drifting to the cathode

and the magnitude of the net positive electrical charge

of them creates a positive space-charge between the

anode and cathode, thus reducing the effective electric

field in the counter. This can quench any further gas

multiplication. However, the arrival of these positive

ions at the cathode can potentially liberate more elec-

trons from the cathode and extend the Geiger dis-

charge. This is avoided by the appropriate selection

of fill gases and the selection of the time constant of

the external detection electronics.

Fill Gasses in the Geiger–Müller Region

The fill gas of a GM counter is primarily the same as

that of a proportional chamber, i.e., usually a noble gas

and no trace amounts of electronegative gases such as

oxygen. UV-photon absorbing gases are, of course, not

used. A degree of quenching is still sought as even

following the neutralization of the cation at the cath-

ode by the extraction of an electron, the energy differ-

ence between the ionization energy of the gas atom/

molecule and the work function energy may exceed

the work function energy, enabling the extraction of

another electron from the cathode and which will

migrate to the anode wire, causing a further Geiger

discharge. Hence, the Geiger discharge could remain

continuous.

As in the proportional mode, the internal quenching

method uses a quenching gas added to the fill gas at a

concentration of no more than a few percent. The

quenching gas must have a lower ionizing potential

than the primary fill gas and will frequently be organic,

thus having a complex molecular structure. Following

the initial ionization, the positive ions (predominantly

those of the primary fill gas) drift towards the cathode

and collide with other gas molecules, including those

of the quenching gas. Because of the difference in

ionization potentials between the primary and quench-

ing gases, a collision between these will result in the

transfer of an electron from the quench gas molecule,

thus neutralizing the primary gas ion. The now-ionized

quench gas molecule drifts to the anode where it is

neutralized by extracting an electron from the cathode

material. The excess energy is now provided a channel

additional to the extraction of a second electron due to

the complex form of the quench gas molecule which

can absorb this energy and dissociate. This reduces

Cathode

Initial
Ionisation

UV Photon

UV Photon

Avalanche

Anode

Fig. 9.32 Principle of operation of a GM counter. As in a

proportional chamber, an initial ionization produces a Town-

send avalanche (subject to a higher electric field than a propor-

tional chamber). Ultraviolet photons can be released in

collisions between the electrons and gas molecules; unlike a

proportional chamber, there is no fill gas constituent to absorb

these UV photons. These photons impinge upon the metal cath-

ode and remove an electron which then forms yet another

avalanche; they can also ionize a neutral gas molecule leading

to another avalanche
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significantly the likelihood of a second electron

extraction. However, the dissociation of these quench-

ing molecules means that the GM tube will have a

finite lifetime, typically of the order of 109 pulses.

Beyond this lifetime, repeat pulsing can no longer be

quenched. In order to prolong the lifetime of the tube

(indeed, make it indefinite) a halogen, such as chlorine

or bromine, can be used as the quench gas. Like the

hydrocarbon molecule, the halogen molecule can dis-

sociate at the anode and thus prevent an additional

extraction of an electron. But the dissociated halogen

atoms can spontaneously recombine later.

A second (external) means of quenching the Geiger

discharge is through the use of a relatively high RC-

time constant at the input of the detector electronics

(about 1 ms). This limits the time during which detec-

tion can occur.

9.3.2.5 Applications of Gaseous Radiation

Detectors in Nuclear Medicine

Ionization Chambers

Ionization chambers are the least sensitive of the gas-

eous radiation detectors in that the collected charge is

exactly equal to that liberated within the gas volume,

excluding any recombination effects. The most com-

mon application of the ionization chamber in nuclear

medicine is the reentrant ionization chamber, more

commonly known as the “dose calibrator,” used in

the radiopharmacy to measure the amount of activity

in a radiopharmaceutical prior to administration. A

conceptual diagram of the dose calibrator is provided

in Fig. 9.33. The sample to be assayed is placed within

the chamber at a predefined position. The physical

design is such that there is nearly a 4p collection

geometry. Surrounding the sample holder is a collec-

tion volume containing argon (Z ¼ 18) at high pres-

sure (up to a few atmospheres). The high atomic

number of argon and the high pressure increase the

likelihood of photon interactions within the gas vol-

ume. A bias voltage of a few hundred volts is typically

used. The charge collected within the volume is a

function of the photon fluence incident to the gas

volume which, in turn, is proportional to the activity

of the radionuclide.

Because of the need to hold the argon at high

pressure, the entrant walls of the chamber must be

relatively thick, thus reducing the sensitivity of the

device to the detection of low-energy photons. A typi-

cal photon energy range a commercial device is capa-

ble of measuring is from about 40 keV to about

2 MeV. These thick entrant walls restrict the dose

calibrator to measuring photons above a certain

energy; the energies of bs emitted by pure b-emitting

radionuclides would be insufficient to cross the walls.

In such cases (e.g., 90Y), the bremsstrahlung generated

as the b particles decelerate in the surrounding media

is instead measured and used to infer the amount of
90Y activity (Zimmerman et al. 2004). This is only

practical for large activities for therapeutic uses: as gas

multiplication is not used, the sensitivity of the dose

calibrator will be limited; a typical range of activities

that can be assayed by a commercial dose calibrator

would be about 0.2 MBq to 70 GBq for 99mTc. Hence,

a dose calibrator would be insufficient for, for exam-

ple, measuring the small amounts of activity excreted

by the nuclear medicine patient in the urine. In such a

case, the more sensitive scintillator-based well counter

is used.

The response of the reentrant ionization chamber

is sensitive to a variety of physical and geometric

factors. Recall that an ionization chamber measures

+ −
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Fig. 9.33 Schematic diagram of the reentrant ionization cham-

ber or “dose calibrator”: a cylindrical ionization chamber used

in the radiopharmacy to measure the activity of a radioactive

sample placed within the chamber which is surrounded by argon

gas at high pressure up to 20 atm. The design approximates a 4p
detection geometry

9.3 Radiation Dosimetry: Detection and Measurement 383



the collected electric charge as a result of the kerma

within its gas volume. Hence, the major sensitivity to

photon energy is that of the kerma-to-fluence ratio,

K=F, (Fig. 9.2) for argon. Indeed, if only photons

were incident to the gas volume (and only photons),

the K=F curve would by-and-large be the calibration

curve of the dose calibrator. However, the walls across

which the photons must traverse will preferentially

attenuate low-energy photons, thus reducing the detec-

tor response for low-energy photons. Similarly, the

nature of the container holding the radionuclide (e.g.,

syringe or glass ampoule) in terms of physical size and

elemental composition will also affect the energy

response of the calibrator. As a consequence, the

energy response will be more complicated than that

predicted simply by the K=F ratio for the fill gas.

Monte Carlo estimates of the energy dependence

have also been derived (Seneviratne et al. 2007).

Indeed, if a calibration of a pure b-emitting radionu-

clide is to be based upon the bremsstrahlung, the radio-
logical dependencies upon the media surrounding the

sample integrated over the b-particle energy spectrum

and the energy spectrum of the bremsstrahlung
photons makes a calculable energy response highly

impractical. The dose calibrator response is also sensi-

tive to the geometric placement (axial and radial) of the

sample within the chamber. In practice, these sensitiv-

ities to container volume, composition and placement

and to photon energy are determined empirically and

an appropriate calibration factor determined.

Another application of the ionization chamber in

nuclear medicine is as a radiation survey instrument.

The closed chamber contains a large volume of air,

typically several hundred cc, in order to increase the

device’s sensitivity. For photon detection, the walls of

the chamber are optimized to enable the detection of

low-energy photons but also to maintain CPE. Shields

over thin portions of the wall can be removed in order

for the chamber to detect b particles. These devices are

used in rate mode (i.e., the ionization current is

measured rather than integrated to yield a net collected

charge).

Proportional Chambers

Because of the need for a highly stable bias voltage

source in order to maintain a constant gas multiplica-

tion factor, among other reasons, the proportional

chamber has had limited applications in clinical

nuclear medicine. It has had, however, a long history

of use in experimental microdosimetry, allowing mea-

surements of, for example, lineal energy spectra

(Fig. 9.24) for various radiations. Figure 9.34 shows

the conceptual design of what is known as the Rossi

counter.

The Rossi proportional counter is a spherical device

of about 15mmdiameter (Rossi 1968; Attix 1986). The

walls are made of a plastic which is radiologically

equivalent to tissue in terms of physical and electron

density and effective atomic number. A tissue-equiva-

lent gas flows through the chamber, the pressure of

which is low (of the order of 10�2 atm and below) so

that the energy deposited within the gas is similar to

that deposited in very small volumes, such as that of the

cell. The proportional counter is designed as a sphere

so that there is no specificity in terms of sensitivity

to radiation direction. To enable a uniform electric

field within the spherical gas volume and a constant

multiplication factor M along the length of the anode

wire, the anode is surrounded by a helical grid which

is biased to about 0.2VB. Electrons liberated by inter-

actions with the wall drift to this grid by its inhomoge-

neous electric field; they pass through the grid and

generate Townsend avalanches uniformly across the

anode wire. As the Rossi proportional counter is

operated in pulse mode, pulse-height analysis is used.

Note the a-particle calibration source in Fig. 9.34;

these a particles are directed along a known chord

length, la, through the chamber volume. The mean

absorbed dose to the gas due to a single a particle is,

Da ¼
dE=r dx
� �

Coll;gas

mgas

rgas la (9.154)

where ðdE=r dxÞColl;gas is the mass-collision stopping

power for the a particle in the gas medium, mgas is the

mass of gas in the volume and rgas is the physical

density of the gas. A plot of the pulse-height spectrum

could look like that of Fig. 9.35.

The total absorbed dose to the gas volume is

obtained by integrating over the spectrum; as this is a

discrete spectrum, then this absorbed dose is,

Dgas ¼ Da

Ha

XHmax

H¼0
H
dN

dH
: (9.155)
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An historical application of proportional chambers

has been those with multiple anode wires to allow

spatial localization. These MWPCs were originally

developed by Charpak et al. (1968), for which

Charpak was awarded the1992 Nobel Prize in Physics.

The original applications were for the detection of

charged particles in high-energy physics experiments.

The basic concept of the MWPC is shown in Fig. 9.36.

The position of the ionization along the plane of

Fig. 9.36a is determined by which anode wire

− +

1 cm

α-emitting
calibration

source

Tissue-equivalent
plastic wall

Tissue-equivalent
gas flow

VB

Fig. 9.34 Rossi proportional

counter used to measure

microdosimetric spectra.

Refer to text for details

Calibration
α

Hmax

Pulse Height, H
H

p
N

p

Hα

Fig. 9.35 The differential distribution of counts, dN=dh,
measured in a Rossi proportional counter. The signal at Ha is

that due to the calibration source; the peak is associated with the

mean absorbed dose to the tissue-equivalent gas due to the a
particle given by (9.154). The area of the spectrum is equal to

that of absorbed dose for an assumed constant W=e value for all
events occurring within the gas medium

Cathode plane
(wire or foil)

Cathode plane
(wire or foil)

a

b

/

L
QBQA

+VB+VB

Electric field lines
Anode wires

(transverse to 
figure plane)

Fig. 9.36 Concept of MWPC operation. (a) A grid of anode

wires is centered within a gas volume between a cathode plane;

electric field lines for a single anode wire is shown. Identifica-

tion of the ionization position along the position of the anode

wire is (b) determined by measuring the differential between the

collected charges from both ends of a resistive anode wire after

amplification (after Attix 1986)
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provides the greatest collected charged. This deter-

mines the ionization position to within a wire spacing;

hence, spatial resolution is driven by the wire density.

Spatial localization along the length of the wire is

possible by measuring the charge collected at

either end of the resistive anode wire, as shown in

Fig. 9.36b. The wire must have a constant resistance

per unit length. As a result of this resistance, the

charges collected at either end are related to the

distance between where the ionization was collected

and the wire end. Hence, the ratio QB= QA þ QBð Þ is
proportional to the length l along the anode that the

ionization was collected.

The ability of the MWPC to encode spatial infor-

mation led in the 1980s to its being investigated as a

means of a detector in PET. Clearly, the sensitivity of

an MWPC to detect ionizations caused by photon

interactions within the gas volume is expected to be

very low. Photon-detection sensitivity could be

improved by using a high-Z fill gas and/or by increas-

ing the gas pressure. One approach used (Marsden

et al. 1986) to increase the efficiency of the MWPC

in detecting the 511-keV g rays resulting from electron–

positron was to include a high-Z “converter,” such as

lead. Photon interactions with the lead resulted in

electrons which were scattered along channels to be

incident to the MWPC. This produced a spatially-

linked electron from the incident photon, which was

subsequently detected by the MWPC. Of course, in

modern-day clinical PET technology, scintillation

detectors are used exclusively.

Another application of the MWPC in nuclear med-

icine as a means of providing quantitative autoradi-

ography in preclinical biodistribution studies (e.g.,

Petegnief et al. 1998)

Geiger–Müller Counters

The GM counter is used exclusively as a radiation

survey instrument due to its high sensitivity. Such a

survey meter provides a pulse count output which can

be calibrated in terms of photon exposure, although it

is quite possible to have errors of factors of 2 or more

occurring due to the lack of proportionality between

the original ionization and the final output signal. This

is not of concern as it is an evaluated and consistent

response.

9.3.3 Scintillation Detectors

9.3.3.1 Introduction

The scintillation detector is ubiquitous in nuclear med-

icine. It is present in the gamma camera, PET scanner,

nonimaging thyroid probe and well-counter. The scin-

tillator works on the principle of converting energy

deposited in it through an ionization event into a pulse

of low-energy photons (visible light) which is then

detected and converted into an analog electrical signal.

The amplitude of this signal is proportional to the

amount of scintillation light and, by extension, the

amount of energy deposited within the scintillating

material.

There are six main requirements for a good

scintillator:

� High scintillation efficiency in converting the

energy deposited within it into visible light so as

to yield high detection sensitivity.

� The scintillating material should be transparent to

its emission photon wavelength to ensure good

light collection.

� A rapid decay time of the scintillation so as to

permit fast detection rates or, equivalently, opera-

tion in high radiation fluxes.

� A linear response between total light emitted and

energy deposited.

� The output light spectrum must match the sensitiv-

ity of the photo-conversion device.

� The index of refraction must be suitable for allow-

ing high photon collection.

There are two categories of scintillators: inorganic

and organic. Inorganic scintillators dominate nuclear

medicine applications due to their high photon detec-

tion efficiencies, linearity and high light output. The

ubiquitous example is the alkali halide sodium iodide

activated with thallium (NaI(Tl)), which is still present

in nuclear medicine some six decades after its devel-

opment by Hofstadter (1948). Organic scintillators

have few applications in nuclear medicine, even

though their temporal response tends to be superior to

that of inorganic scintillators. These limitations are

consequences of their low densities and low atomic

numbers. However, these attributes which lend to tis-

sue radiological equivalence, make organic scintilla-

tors ideal for dosimeters in radiotherapy. Liquid
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organic scintillators, on the other hand, do play a role in

nuclear medicine in providing a nearly 100% efficient

means of measuring the activity of a b-emitting sample

which can be dissolved into the scintillating medium.

The scintillation process is made up of three com-

ponents. The first is prompt fluorescence in which

visible light is immediately emitted following an ioni-

zation within the scintillating material. Phosphores-

cence is the emission of light at a longer wavelength

than that of prompt fluorescence with a slower decay

time. Delayed fluorescence is the emission of light of

the samewavelength as prompt fluorescence but after a

time delay following the original excitation. The ideal

scintillator will maximize the amount of energy

released in prompt fluorescence and minimize that

released in phosphorescence and delayed fluorescence.

This subsection on scintillation detectors begins

with a review of the scintillation theories of inorganic

and organic scintillators, with an overview of the attri-

butes of inorganic scintillators used in gamma cameras

and PET scanners. Liquid scintillation, using organic

scintillators, is also briefly summarized. The transport

of the scintillation light to a light detector is next

considered. The means of converting scintillation

light to an analog electrical signal in modern devices

is dominated by the photomultiplier tube (PMT) and

the operation of the PMT and the position-sensitive

PMT (PSPMT) are derived.

9.3.3.2 Scintillation Theory

Inorganic Scintillators

The scintillation process for inorganic scintillators is

dictated by the solid-state energy bands of the

scintillating crystal, as shown in Fig. 9.37.

Small amounts of an impurity, called an activator,

are added to the crystal during its formation in order to

provide intermediate states within the gap between the

valence and conduction bands of the crystal. As

shown in Fig. 9.37, an ionization event elevates an

electron from the valence band to the conduction

band, leaving a remnant hole. The electron and a

hole can migrate in their respective bands; the hole

ionizes an activator site (i.e., an electron transits from

the activator ground state to fill the hole in the valence

band, leaving a hole in the ground state) and the

electron in the conduction band can move into an

excited state of the activator. If this resultant state

provides an allowed transition, the recombination of

the electron and hole occurs quickly between the

excited and ground states of the activator and releases

a quantum equal to the energy difference between the

states. As this energy difference is less than that of

the valence and conduction bands of the crystal, the

released photon can be in the visible part of the

spectrum, depending upon the activator chosen.

Most importantly, the light is emitted at a frequency

which is not absorbed by the bulk of the scintillator.

The half-life of this decay of prompt fluorescence can

be of the order of 0.1 ms. For example, sodium iodide

on its own can scintillate at low temperatures only.

However, about a 1 mM fraction of Tl added to high-

purity NaI enables room-temperature scintillation.

This is a result of the thallium ions randomly repla-

cing the Na+ ions in the cubic crystal lattice due to

their similarity in size and charge (Esser 1998). These

thallium ions interact strongly with the surrounding I�

in the crystal lattice, inducing a shift in the energy

levels of the crystal lattice.

A competing process is one in which the electron

is captured in an excited state of the activator for

which the transition to the ground state is forbidden.

Visible
Scintillation

Light

Conduction Band

Excited States
of Activator

Ground State
of Activator

Valence Band

Fig. 9.37 Energy bands of an

inorganic crystalline

scintillator material

containing an activator
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Thermal energy can elevate the electron into another

activator excited state for which the transition to the

ground state is allowed and, hence, light is emitted

with a longer time delay (phosphorescence). Radia-

tionless transitions between activator excited and

ground states are also possible; these are referred to

as quenching and represent an inefficiency by failing

to convert the deposited energy into measurable light.

Table 9.2 presents a summary of the physical

characteristics of inorganic scintillators used in

nuclear medicine. As a medium for detecting photons,

a scintillator should have a high density and effective

atomic number (a combined measure of which is the

attenuation length for the photon energy of interest).

NaI(Tl) has a very high light output (exceeded only

by YSO in medical applications) and has a close to

linear response to electrons with kinetic energies

exceeding 20 keV. It has, however, an extended light

decay constant which can limit its application in high-

count rate studies: the prompt fluorescence of NaI(Tl)

has a decay time of about 0.23 ms, which limits its

application to particularly high counting rate environ-

ments. It has, in addition, it has a 150 ms phosphores-

cence component contributing about 10% of the total

light yield.

Efficient photon detection using scintillators

requires that the scintillator have a high density and

atomic number and a thickness exceeding the attenua-

tion length of the photon energy of interest. For imag-

ing most single-photon emitting radionculides, NaI

(Tl) is adequate. The thickness of a NaI(Tl) crystal in

a typical gamma camera is typically 9.5 mm (3=800);
greater thicknesses are required if the gamma camera

is used to detect the 511-kev g rays resulting from

electron–positron annihilations. In general, NaI(Tl) is

not a suitable scintillator for such applications. The

detection of the high-energy photons resulting from

positron–electron annihilation requires a scintillator of

high density and high atomic number in order to max-

imize the number of photon interactions in the scintil-

lation medium. It is evident from Table 9.2 that, with

the exception of YSO, the lanthanide oxyorthosilicates

doped with caerium present advantages over NaI(Tl)

in terms of g ray absorption. In fact, the most common

scintillators currently in use in PET are BGO and LSO.

They also present the advantage of short light emission

decay constants. On the other hand, they possess dis-

advantages in that their light outputs are considerably

less than that of NaI(Tl). In terms of light output, the

exception is YSO, but this advantage is coupled with

the severe disadvantages of it having a physical den-

sity comparable to, and an atomic number less than,

NaI(Tl). Other materials that have been considered for

medical imaging applications are the caerium-doped

lutetium garnet (Lu3Al5O12:Ce) and lutetium perov-

skite (LuAlO3:Ce) (Korzhik and Lecoq 2001). The

latter is superior to LSO both in terms of physical

density (8.34 g/cm3) and decay constant (0.017 ms),
but suffers from the disadvantage of having a light

yield of about only 42% of that of LSO. Lead tungstate

(PWO) is used as a scintillator in high-energy physics

applications. It has advantages in terms of g ray

absorption with an attenuation length of 2 cm for

511-keV g rays compared to 3.6 cm for LSO and

3 cm for BGO and a very short decay constant of

0.01 ms, making it ideal for high count-rate applica-

tions. Unfortunately, its light output is some two

orders-of-magnitude less than LSO. This might be

improved through appropriate doping and investiga-

tions are looking at this possibility.

Table 9.2 Physical properties of inorganic scintillator materials in common use in nuclear medicine (data are derived from Bailey

et al. (2003); Particle Data Group (2004); and Lewellen (2008))

Material Physical density

(g/cm3)

Effective atomic

number

Scintillation

efficiency

(relative to

NaI(Tl)) (%)

Intrinsic DE=E (%) Decay

constant (ms)

NaI(Tl) 3.67 50.6 100 6.6 0.23

Bi4Ge3O12 (BGO) 7.13 74.2 15 10.2 0.30

Lu2SiO5:Ce (LSO) 7.4 65.5 75 9.1 0.04

Y2SiO5:Ce (YSO) 4.53 34.2 118 7.5 0.07

Gd2SiO5:Ce (GSO) 6.71 58.6 25 4.6 0.06
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Some scintillators in Table 9.2 have additional dis-

advantages. Themost well known is that sodium iodide

is hygroscopic and must be sealed to protect it from

humidity. Lutetium-based scintillators are restricted

from use in low-energy g-ray detection due to the

naturally-occurring isotope 176Lu, which has a 2.6%

abundance. 176Lu has a half-life of 3.6 � 1010 years

and decays through b�-decay and subsequent emission

of photons and Auger electrons; in particular, it emits

K-shell X-rays with energies of 88, 201, 307, and

401 keV with intensities of 14.5, 78, 94, and 0.4%,

respectively. The activity concentration of 176Lu in

LSO is about 280 Bq/cm3, resulting in a count rate of

about 12 cps/g of LSO in a �10% energy window set

over the 511 140 keV photopeak (Bailey et al. 2003).

Organic Scintillators

Organic scintillators operate on a different principle

than inorganics as the fluorescence is due to transitions

between molecular energy levels in a single molecule

and are not a result of an added activator. Moreover,

organic scintillators do not require a regular crystal

lattice structure as do the inorganics. Most organic

scintillator molecules exhibit a p molecular bond,

which is a covalent bond with a molecular energy

structure shown in Fig. 9.38.

The energy spacing between the S0 and S1 levels is

of the order of 3 eV and those between the vibrational

modes is about 0.15 eV. When a charged particle

deposits energy in the scintillator, the molecule is

excited from the ground state into the higher singlet

states which promptly decay to the S1 state without the

emission of photons. The transitions from this S1 state

to the S0 state (and the associated vibrational states)

are prompt with lifetimes of the order of 1 ns. A

transition from the singlet S1 state to the triplet T1

state can occur with a phosphorescence emission

occurring up to 1 ms after the initial excitation.

The organic scintillant is added at small concentra-

tions to a bulk solvent. Upon exposure to ionizing

radiation, energy absorbed by the solvent molecules

is eventually transferred to a scintillant molecule with

the result of light emission.

The almost exclusive application of organic scintil-

lators to nuclear medicine is that of liquid scintillation

counting. Here, the scintillator is a liquid in which the

radioactive sample to be assayed is dissolved. This is

especially useful for measuring the activity of low-

energy b-emitting radionuclides such as 3H and 14C.

Detection efficiencies approach 100%.

Vibrational
modes

Vibrational
modes

Fluorescence PhosphorescenceExcitation

Singlet

S3

S2
T3

T2

T1

S1

S0

Triplet

Fig. 9.38 Molecular energy

levels for an organic

scintillator molecule with the

p molecular structure (after

Birks 1964)
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9.3.3.3 Light Collection

The fluorescence emitted by the scintillator must be

transferred efficiently from the scintillator to the

device converting the light to an analog electric signal.

Scintillation light is emitted isotropically and may be

lost either through self-absorption (which is highly

limited in most scintillating media) or at interfaces

with media with differing refractive index. As sodium

iodide crystals are hygroscopic, they must be hermeti-

cally sealed to prevent contact with air. This requires

the use of a quartz window to allow scintillation light

to be detected by PMTs external to the crystal.

9.3.3.4 Light Conversion and Electron

Multiplications

In nearly all applications in nuclear medicine, the light

generated in the scintillator is converted to an analog

signal using a PMT, a schematic diagram of which is

shown in Fig. 9.39.

The PMT contains two major elements. The first is

a semitransparent photosensitive layer, known as the

photocathode, which absorbs the incident light

photons and emits electrons through the photoelectric

effect. The second is the dynode chain used to multi-

ply the small number of electrons ejected from the

photocathode by factors ranging from 105 to 107 in

order to generate a measurable electrical signal.

Photocathode

The process of light conversion begins at the photo-

cathode. There are three steps in this process:

� Absorption of the photon through the photoelectric

effect and the ejection of an atomic electron into

the photoemissive medium

� Migration of the photoelectron through the medium

to the photocathode’s back surface

� The overcoming of the work function between

the photocathode surface and the vacuum by the

photoelectron and its entrance into the dynode

chain

The photocathode is typically either of the two

bialkalis, Na2KSb or K2CsSb, doped with oxygen

and caesium. The photocathode dictates the spectral

response, quantum efficiency (QE) and overall sensi-

tivity of the PMT. It also sets the level of “dark

current,” which is the signal received in the absence

of any incident photons, due to thermionic electron

emission. The spectral response of the photocathode

is matched to the spectral output of the scintillator

which is in the blue part of the visible spectrum (a

Photocathode
(Na2KSb or K2CsSb)

Voltage Divider

Incident
Visible
Light

Focussing
Electrodes

Anode

Dynodes

+HT
Fig. 9.39 Principle of

operation of an 8-dynode

photomultiplier tube (PMT).

Visible light emitted by a

scintillator is incident to a

semitransparent

photocathode; photoelectric

absorption in the

photocathode releases low-

energy electrons which

migrate through the

photocathode. At the exit face

into the vacuum, they are

accelerated through a serial

chain of dynodes, The dashed
lines indicate the trajectories
of electrons within the dynode

chain. The signal at the anode

is a negatively-going pulse as

shown. This example shows a

linear focusing dynode

geometry. Refer to the text for

details
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wavelength of about 400 nm, corresponding to a pho-

ton energy of about 3 eV). At long photon wave-

lengths, the photon is insufficiently energetic to

escape from the photocathode surface. The cut-off at

short wavelengths is largely dictated by the transpar-

ent window the scintillation light passes through to

impinge on the photocathode. For borosilicate glass,

the most commonly-used window material, this cut-

off is about 300 nm.12 In those cases where the scintil-

lator emits light in the ultraviolet, the entrance window

is made from materials such as synthetic silica and

MgF2 in order to extend the transmission into the

shorter wavelengths.

Care must be taken in the selection of the thickness

of the photocathode: if it is too thin, photons are

transmitted without absorption and if too thick, more

photons are absorbed but too few electrons are ejected

from its back surface.

The QE of the photocathode is the ratio,

QE ¼ Number of photoelectrons emitted

Number of photons incident
(9.156)

The QE is a function of at least four factors includ-

ing the reflections of the incident light from the

entrance window glass and from the photocathode,

the photocathode material itself (which includes the

likelihood for a photoelectric absorption to occur and

the work function the photoelectron must overcome in

order to escape) and the thickness of the photocathode

and the resulting likelihood for the photoelectron to

migrate to its rear face. As suggested in the previous

discussion of the creation, migration, and emission of

a photoelectron, the QE will also be a function of the

incident light’s wavelength. In practice, the QE can be

as high as about 25%.

Dynode Chain

The number of electrons emitted by the photocathode

is small and insufficient to generate an efficiently

detectable electrical signal on their own. Hence, a

chain of dynodes is used to amplify this signal. As

shown in Fig. 9.39, each dynode is held at a progres-

sively higher potential than the one prior; the voltage

difference between each successive dynode is the

same. The photoelectrons ejected from the photo-

cathode are focused by the focusing electrodes and

have a kinetic energy of about 1 eV only. These are

attracted to, and bombard, the first dynode. By the

appropriate choice of dynode material, a small band-

gap between the valence and conduction bands can

be selected. For example, if the bandgap were 2 eV,

then for each electron incident to the dynode, 50

electrons are produced per 100 V potential applied

to the dynode. The most commonly used material for

dynodes is an alloy of antimony, potassium, and

caesium (SbKCs).

The gain, or multiplication factor, per dynode is

defined as the ratio,

d ¼ Number of electrons ejected

Number of electrons incident
(9.157)

The overall gain for an N-stage dynode chain is

D ¼
YN
j¼1

dj (9.158)

where dj is the multiplication factor for the jth dynode;

should all of the dynodes have the same multiplication

factor d, then the overall gain is simply dN. For an
8-stage dynode chain shown in Fig. 9.39 where the

multiplication factor per dynode is of the order of 5

(a low typical value), then the overall gain of the

dynode chain is 58 or about 4 � 105.

The electron transit time is defined as the time

between the arrival of a light photon at the photocath-

ode (experimentally, this can be provided using a

pulsed laser diode) and the peak of the output signal

(Fig. 9.40).

Position-Sensitive Photomultiplier Tubes

PSPMTs are used in some PET scanners. A typical

design of a PSPMT uses multiple linear dynode chains

as shown in Fig. 9.41.

The multianode can be in either a matrix (2D)

format or a linear (1D) format.

12Potassium-free borosilicate glass is used in low-count applica-

tions where it is necessary to remove background from the decay

of primordial 40K.
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9.3.3.5 Scintillation Spectroscopy

Scintillation spectroscopy is highly important in diag-

nostic nuclear medicine. For imaging, one wants to

detect only those photons which have not been scat-

tered within tissue and which are completely stopped

in the scintillator. Such photons will have traveled

directly from the point of emission (i.e., the in vivo

site of the radionuclide) to the detector. Photons which

have been scattered are to be excluded from imaging

as the positional information they provide is not indic-

ative of the spatial distribution of the radionuclide

desired. This selection is achieved by measuring the

energies of the photons incident to the scintillator

and “counting” only those which satisfy the above

condition.

As an example, consider the cases of a NaI(Tl)

scintillator exposed to the 140 keV g rays from a
99mTc source. The only energy-transfer processes

that need be considered are photoelectric absorption

and Compton scatter. Figure 9.42 shows the example

in question in which four interactions are considered.

The first (Interaction (a)) is the simplest: the photon is

photoelectrically absorbed without prior interaction.

The photoelectron is ejected with a kinetic energy

equal to the incident photon energy (140 keV) minus

the binding energy (which can be neglected). Any

Auger electrons or characteristic X-rays resulting

from the atomic relaxation following the photoelectric

absorption are themselves absorbed within the crystal.

The electron is stopped within the crystal and the

resultant scintillations of such processes form a singu-

lar signal. This is known as the photopeak. In Interac-

tion (b), the photon undergoes a Compton scatter

within the crystal and escapes the crystal; the Comp-

ton-recoil electron is stopped within the crystal and the

signal is proportional to the electron energy. The

energy spectrum of these recoil Compton electrons

are that of Fig. 6.15 up to a maximum electron energy

corresponding to a backscattered photon (Fig. 6.10).

For a 140 keV incident photon, this maximum recoil

electron kinetic energy is equal to 49.6 keV. In Inter-

action (c), the incident 140 keV photon undergoes

multiple Compton scatterings within the crystals

until it is eventually photoelectrically absorbed. The

net signal is the sum of the energy deposits of the

Light
Pulse Rise

Time

Electron
Transit
Time

90%

10%

Fall
Time

Time

Fig. 9.40 Output waveform from a PMT showing the defini-

tions of rise and fall times and the electron transit time

Focussing
Mesh

Photocathode

Multichannel
Dynode Chains

Multianode

Fig. 9.41 Schematic structure of, and electron trajectories in,

a PSPMT

99mTc
140 keV 

γ
 rays

(a)

(b)
(c)

(d)

Fig. 9.42 Four different photon interactions in a NaI(Tl) crys-

tal exposed to 140 keV g rays from a 99mTc source. Refer to the

text for details
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stopped Compton electrons and photoelectron and is

proportional to the incident photon energy of 140 keV.

Interaction (d) is the photoelectric absorption of the

photon near the periphery of the crystal followed by

the atomic relaxation in which the KaX-ray is emitted.

However, unlike Interaction (a), because the interac-

tion site is near the edge of the detector, the Ka X-ray

escapes from the crystal and the resulting energy sig-

nal is less than that expected for complete absorption,

being equal to the difference between the 140 keV

g-ray energy and the 28 keV energy of the Ka X-ray.

Should this process have happened at depth in the

crystal and the Ka X-ray be stopped and absorbed

within the crystal, the net signal would be proportional

to 140 keV (minus the binding energy). The energy

spectrum resulting from these interactions is shown

conceptually in Fig. 9.43.

9.3.4 MOSFET

Solid-state detectors can present a considerable advan-

tage over gaseous detectors due to their greater densi-

ties, of the order of three-orders-of-magnitude, which

leads to greater detection efficiency. For example, a

scintillator well-counter is used to measure low levels

of activity which are below the detection limit of the

reentrant ionization chamber. However, scintillators

have relatively poor energy resolution, e.g., the full-

width half-maximum (FWHM) of the 140 keV

photopeak in NaI(Tl) is about 10%. This poor energy

resolution is a consequence of it being a function of the

number of information carriers which, in this case, are

the photoelectrons. The output analog signal from the

PMT is the result of the long serial chain beginning

with the initial ionization and scintillation, the collec-

tion of the scintillation light, the conversion of this

light to photoelectrons by the photocathode and their

subsequent amplification through the dynode chain. As

about 1 keV of energy must be absorbed in the scintil-

lator in order to yield a single photoelectron, the total

number of photoelectrons generated by a single ioniza-

tion event is only a few thousand at best. Hence, the

combined inefficiencies of the collection of the scintil-

lation light and the conversion of this light by the

photocathode leads to the reduced energy resolution.

An improvement in energy resolution is achievable

if the information carriers were collected directly in a

solid. This also takes advantage of the fact that solids

have a lower W=e value than gases. Semiconductors

present a means of generating a high number of

PbKα
xray

(80keV) Compton
Continuum

Kαescape
xray

(112keV)

140 keV
Photopeak

0 20 40 60 80 100
Photon Energy, E (keV)

d
N d
E

120 140 160

Fig. 9.43 Measured energy

spectrum from a NaI(Tl)

crystal exposed to the 140 keV

photons from 99mTc. The

photopeak corresponding to

the absorption of the photons

within the NaI(Tl) crystal

dominates. The escape peak at

112 keV is also apparent

(equal to the difference

between the energies of the

incident photon and the Ka X-

ray of iodine). The slight peak

at around 80 keV is due to

photon absorption in the lead

shielding around the NaI(Tl)

scintillator with the

subsequent characteristic X-

ray emission of atomic

relaxation
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secondary information carriers per unit absorbed

energy, thus improving energy resolution. Indeed,

since about the 1960s, semiconductor detectors have

been used in high-precision spectroscopy measure-

ments. However, such detectors are operated cryogen-

ically in order to reduce thermal noise, which is an

impractical condition for clinical nuclear medicine.

Certain room-temperature semiconductor devices

have, though, proven useful in either in vivo measure-

ment of radiation or emission imaging. In this subsec-

tion, one such device used in in vivo nuclear medicine

dosimetry, the metal-oxide semiconductor field-effect

transistor (MOSFET) is considered. Semiconductor

detectors, such as CZT are used small field-of-view

gamma cameras. Because of the small fields-of-view,

such devices are currently limited to specific emission

applications, such as scintimammography and cardiac

imaging.

Figure 9.44 shows the basic operation of a p-chan-

nel MOSFET.13 The device is constructed on an n-

type silicon substrate; two of the three terminals (the

source and drain) are placed over p-type silicon. The

third terminal, the gate, is placed over an insulating

SiO2 layer which separates it from the n-type sub-

strate. If a negative bias voltage, VG, is placed at the

gate as shown, minority p-type carriers are attracted to

this region from both source and drain.

For a gate voltage above a threshold value, a source-

to-drain current, Ids, flows if a voltage is applied across

the source and drain. During exposure to ionizing radi-

ation, electron-hole pairs are generated in the silicon

dioxide insulating layer. The junction potential leads to

a net drift of electrons towards the gate and the holes

towards the junction where they are trapped. These

trapped positive charges lead to a shift in the threshold

voltage for conduction; a greater negative gate poten-

tial is required to overcome the potential due to these

trapped charges in order to allow conduction

(Fig. 9.45). Hence, this shift in gate voltage is a mea-

sure of the amount of ionization within the SiO2.

MOSFETs offer the advantages of a small radio-

sensitive area (dimensions of the order of 25 mm and

less), which allow absorbed dose measurements at

high spatial resolutions, stability, an absorbed dose

reading which can be permanently stored and indepen-

dence of the absorbed dose rate.

The in vivo applications of MOSFETs in nuclear

medicine are discussed later.

9.3.5 Thermoluminescent Dosimetry

9.3.5.1 Introduction

Thermoluminescent dosimetry provides a useful means

of obtaining a record of integrated exposure to ionizing
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Fig. 9.44 Simplified structure of a p-channel MOSFET
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Fig. 9.45 Change in the MOSFET threshold voltage for con-

duction as a result of ionization within the SiO2 insulated region

13A p-type semiconductor is doped with a material to provide an

excess of holes; an n-type semiconductor is doped with a mate-

rial to provide an excess of electrons.
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radiation. Medical applications of radiation detection

using thermoluminescence have centered primarily on

radiation protection (personnel exposure monitoring)

and in situ measurements of patient absorbed doses in

radiotherapy and radiographic imaging. In this subsec-

tion, the principles of thermoluminescent dosimetry are

summarized; a detailed exposition of the thermolumi-

nescence can be found in McKeever (1985).

9.3.5.2 Theory of Thermoluminescence

The principle of thermoluminescence differs markedly

from that of the prompt fluorescence associated with

scintillators. Scintillator detectors are doped so as to

emit light upon exposure to ionizing radiation through

prompt fluorescence. On the other hand, thermolu-

minscent dosimeters (TLDs), while also based upon

inorganic crystals (including alkali-halides), use mate-

rials with high concentrations of “trapping” centers

within the bandgap between the valence and conduc-

tion bands. Ionization produces the electron-hole pair,

elevating the electron into the conduction band and

leaving the hole in the valence band. This pair then

migrates and both are captured in trapping centers, as

shown in Fig. 9.46. Should the energy difference

between the trapping center and the conduction band

be sufficiently large that thermal excitation (at room

temperature) is insufficient to elevate the electron back

into the conduction band (or the hole into the valence

band), the electron-hole pair is effectively trapped.

Hence, exposure of such a crystal to ionizing radiation

leads to a continuous increase in the population of

trapped electrons and holes. The numbers of these

trapped entities is proportional to the kerma within

the crystal.

Following irradiation, these electrons can remain

trapped indefinitely, depending upon temperature. A

simple, two-level model of thermoluminescence was

investigated by a number of authors in the 1940s (see

McKeever (1985) for a review) and is shown in

Fig. 9.47.

In addition to the energy levels defined in the leg-

end to Fig. 9.47, the following quantities are defined:

Conduction Band

Conduction Band

Electron Trap

Valence Band

(b)  PROMPT RECOMBINATION

(a)  IONISATION

(c) INDIRECT RECOMBINATION

Valence Band

Conduction Band

Valence Band

Conduction Band

Valence Band

Hole Trap

Thermoluminescent
Light

Thermoluminescent
Light

Fig. 9.46 Thermoluminescent dosimetry: an initial ionization

in the crystal creates an electron-hole pair which can either

be trapped in crystalline defects (a) or promptly recombine

and releasing radiation with an energy equal to the difference

between the conduction and valence bands (b). Following the

application of heat the trapped electron or hole is released into

the conduction or valence band (respectively) to recombine with

the corresponding entity; the released photon has a longer wave-

length in the optical range which is detected (c)
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f Electron-hole production rate (volume per unit time) and

corresponding to transition (a) in Fig. 9.47

nc(t) Number of electrons per unit volume in the conduction

band

nv(t) Number of holes per unit volume in the valence band

N Number of available electron traps per unit volume with

energy E below the conduction band (T in Fig. 9.47)

n(t) Number of trapped electrons per unit volume

nh(t) Number of holes per unit volume in recombination

centers (R in Fig. 9.47)

Nh number of available hole centers

A transition coefficient (volume per unit time) for electrons

being trapped from the conduction band

(corresponding to transition (b) in Fig. 9.47)

Ah Transition coefficient (volume per unit time) for holes in

the valence band becoming trapped in the hole centers

(corresponding to transition (e) in Fig. 9.47)

Ar Recombination transition coefficient for electrons in the

conduction band with trapped holes (corresponding to

transition (d) in Fig. 9.47) and which result in the

emission of visible light

The condition of charge neutrality leads to,

nc þ n ¼ nv þ nh (9.159)

The rate equations of the electron and hole concen-

trations are,

dncðtÞ
dt
¼ f � Arncnh � Anc N� nð Þ (9.160)

dnðtÞ
dt
¼ Anc N� nð Þ (9.161)

dnvðtÞ
dt
¼ f � Ahnv Nh � nhð Þ (9.162)

dnhðtÞ
dt
¼ Ahnv Nh � nhð Þ � ncnhAr (9.163)

Equation (9.160) gives the net production rate of

electrons in the conduction band which is due to the

initial ionization less the rates of recombination and

trapping; this last rate is that of (9.161). Equation

(9.162) describes the net production rate of holes in

the valence band which is the initial ionization rate

less the rate of trapping. Equation (9.163) provides the

net production rate holes in recombination centers

which is the difference between the rates of trapping

and recombination.

A simplifying assumption to aid in solving the

coupled first-order linear differential equations is that

the irradiation has ceased before the electrons and

holes have recombined is used – this is also the practi-

cal case in dosimetry measurements. In this case,

transitions (a) and (e) in Fig. 9.47 can be neglected.

In this case, the rate equations for the concentrations of

electrons in the conduction band, electrons trapped

and holes in recombination centers are,

dncðtÞ
dt
¼ np� Arncnh � Anc N� nð Þ (9.164)

dnðtÞ
dt
¼ Anc N� nð Þ � np (9.165)

dnhðtÞ
dt
¼ �ncnhAr (9.166)

where p is the probability per unit time that an electron

is released from a trap. From thermodynamics, this

probability can be expressed in the form of the Arrhe-

nius equation,

p ¼ e�E=kT

s
(9.167)

where E is the energy difference between the trap and

the conduction band (as shown in Fig. 9.47), k is

Boltzmann’s constant, T is the temperature and s is

E
T

R
(a)

(b) (c)

(e)

(d)

Ee

Ev

De

EF

Dh

Fig. 9.47 Simple two-level for the thermoluminscence pro-

cess. The transitions are: (a) initial ionization, (b) trapping of

electron, (c) thermal release of electron, (d) radiative recombi-

nation of electron and hole with release of visible light and (e)
trapping of hole. EF us the equilibrium Fermi energy level, De

and Dh are demarcation levels between electron and hole traps

and Ee and Ev indicate the energy levels of the conduction and

valence bands, respectively (after McKeever 1985)
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commonly assumed to be a constant. Hence, the prob-

ability that an electron will be released, p, increases

with T.

The intensity of the emitted thermoluminescence

will be proportional to � dnhðtÞ=dt, which is given by
the negative of (9.166). Figure 9.48 shows the change

in the concentration of holes in recombination centers

as a function of time, along with the intensity of

emitted thermoluminescence, for a linear increase in

temperature of the crystal with time.

The above model is quite simple, but it does pro-

vide a basic insight into the thermoluminescence pro-

cess. However, the measured light intensity (“glow

curve”) as a function of temperature during the heating

of a postirradiated crystal is not given by a single peak;

indeed, multiple peaks are ordinarily observed and this

reflects the existence of multiple trapping centers with

different energies. Figure 9.49 shows an example of

the postirradiation glow curve from a commonly used

thermoluminescent material, lithium fluoride, as a

function of temperature.

In practice, a TLD crystal is annealed at high tem-

perature prior to exposure in order to vacate all of the

traps. After exposure to radiation, the crystal is often

annealed at a lower temperature (e.g., 150C) to vacate

the unstable, lower-energy sites. During reading, the

crystal is heated and the thermoluminescence detected

by a PMT. The charge from the tube is integrated (for

LiF, this is typically between crystal temperatures

between about 220 and 275C so as to measure the

main peak of the glow curve). Hence, the recorded

output of a TLD reader is frequently given in charge

collected from the PMT.

9.3.5.3 Thermoluminescent Dosimetry Materials

and Considerations

Here, a brief summary of common TLD crystals used

for medical and radiological protection purposes and

how they are used is provided.

The ideal requirements for a TLD material is that it

have a density and effective atomic number as close as

possible to that of tissue and have good light output

and linearity with absorbed dose. Lithium fluoride is

one of the most popular materials used in thermolumi-

nescent dosimetry as it has an atomic number and

density comparable to that of tissue. It does not require

an activator to create traps or recombination centers as

these are produced by naturally-occurring crystalline

defects. LiF crystals are also useful for dosimetry

measurements in mixed photon–neutron fields. Crys-

tals with the lithium enriched in 6Li, which has a high

thermal neutron cross section via 6Li(n,a)3H, yield a

signal proportional to both the neutron and photon
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Fig. 9.48 The emission of thermoluminescence with tempera-

ture increasing linearly with time (after McKeever 1985)
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Fig. 9.49 Thermoluminescence output from LiF as a function

of temperature
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fluences. Crystals with the lithium enriched in 7Li

have a much lower neutron sensitivity but a compara-

ble photon sensitivity. Hence, a differential measure-

ment using LiF crystals enriched in 6Li and 7Li can

separate the photon and neutron contributions. Other

popular thermoluminscent materials are CaSo4:Mn

(manganese being the activator to create the traps

and recombination sites) and CaF2:Mn.
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Biological Effects of Ionizing Radiation 10

Abstract In this chapter, the biological effects of ionizing radiation are presented,

beginning with the radiobiology of the mammalian cell. This includes the chromo-

some and chromatid aberrations resulting from radiation-induced damage of DNA

(primarily double-strand breaks, DSBs), the mechanisms, and categories of cell death

and of germ-cell mutation. The models of various cell survival curves are described,

culminating with the linear-quadratic (LQ) model. The effects of ambient oxygen

and LET upon producing cell lethality are considered. Due to its clinical applica-

tions, including therapeutic nuclear medicine, the LQ model is studied in detail. The

LQ model is derived from a model of DSB production and repair kinetics and the

Lea–Catcheside dose-protraction factor and the biological equivalent dose are

derived from this result. Human somatic effects of radiation, including epidemiolog-

ical studies of irradiated populations which provide our estimates of radiation risk,

are reviewed. The chapter concludes with consideration of the radiation protection of

the nuclear medicine patient, which includes the derivation of the effective dose, and

a brief introduction to radiobiology considerations in therapeutic nuclear medicine.
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10.1 Introduction

Up to this point, only the physical effects resulting

from exposure to ionizing radiation have been consid-

ered. The intents of these discussions were the ability

to, first, calculate the radiation fluence in a medium

and, second, calculate the resulting energy transfer and

absorbed dose to that medium. The concept of a

medium in the context of medical radiation dosimetry

is more complex than has been considered as the

medium is now a living organ or tissue which responds

biologically to the energy deposited by radiation.

The division of nuclear medicine into diagnostic

and therapeutic applications is a result of different

considerations of the biological effects of ionizing

radiation (BEIR). Diagnostic nuclear medicine

seeks to avoid all biological effects by limiting the

absorbed dose to a minimally-acceptable level, but

whilst still maintaining the diagnostic efficacy of the

study. As a result, the biological responses to these

low absorbed doses are probabilistic and limited to

oncogenesis and hereditary effects. Therapeutic

nuclear medicine seeks neoplastic cell death subject

to the optimization of minimizing the radiotoxicity

that uninvolved healthy tissues can be subjected to.

Despite the differing biological endpoints of interest

to diagnostic and therapeutic nuclear medicine, a

common understanding of cellular response to ioniz-

ing radiation is required for both. The challenges of

such understanding are profound. In diagnostic

nuclear medicine, one focuses on radiation-induced

mutagenesis where ionizing radiation can, in the first

case of a somatic cell, result in the production of a

malignant cell. This transformation is the result of

four or more genetic modifications:

� Overexpression of viral genes or proto-oncogenes

� Loss of apoptosis genes

� Mutations of tumor-suppressing genes (e.g., p53)

� Mutations of those genes necessary for DNA repair

In addition to these effects upon somatic cells are

those inflicted upon germ cells. These effects will be, at

low absorbed doses, the induction of mutations that can

be expressed as inherited genetic effects manifested in

the progeny. Despite popular folklore, the characteris-

tics of these mutations are no different than those that

occur naturally. Ionizing radiation can only increase the

frequency of presentation of these otherwise naturally

and spontaneously occurring mutations. At higher

absorbed doses, the radiation-induced deaths of sper-

matogonia can lead to either temporary or permanent

sterility in the male depending upon the magnitude of

the absorbed dose conferred; in the female, temporary

sterility is unachievable and death of the oocytes results

in permanent sterility.

In therapeutic nuclear medicine, one seeks the opti-

mization of the probabilities of tumor control and

normal tissue complication (radiotoxicity). Tumor

control is optimized through the selection of the appro-

priate vector to transport the radionuclide to the target

cells (specificity), the physical half-life of the radio-

isotope so as to impede the ability for tumor cells to

repair radiation damage and the appropriate isotope in

terms of its radiation decay scheme. The large mean-

free path of photons precludes photon emitters as

radiotherapeutics and so interest is in those isotopes

that emit charged particulate radiations: a or b parti-

cles or the very short-range Auger/Coster–Kronig

electrons emitted following electron capture or inter-

nal conversion decays.

Consider the radiobiology of diagnostic nuclear

medicine. One seeks the minimization, or perhaps

even mitigation, of biological effects resulting from

the exposure to low absorbed doses of radiation. The

fundamental radiobiology of the mammalian cell is a

foundation for estimating or modeling the subsequent

risks presented to the patient. While knowledge of the

response of the individual cell to radiation is required

in order to mathematically model these risks, it is not

sufficient. Epidemiological data derived from the con-

sequences of populations exposed to ionizing radiation

(deliberate or otherwise) are essential to deriving these

risk estimates. In most cases, the absorbed doses

received by such cohorts are much higher than those

received by the medical imaging patient. Hence, it is

necessary to extrapolate the observed risk, such as

increased cancer incidence or mortality, at these

higher absorbed doses to the lower doses more reflec-

tive of the diagnostic case. The extrapolation models

used will rely greatly upon concepts derived from

cellular radiobiology.
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On the other hand, therapeutic nuclear medicine

considerations have been historically much less reli-

ant upon mathematical modeling and are often based

purely upon clinical experience of radiotoxicity lim-

itations. Administered activities of therapeutic radio-

nuclides are still, generally, crudely applied in terms

of a single value (MBq) or otherwise normalized to

patient body surface area (MBq/m2) or body weight

(MBq/kg). Such approaches – which would not even

be contemplated in the modern-day prescription of

external beam radiotherapy absorbed doses – are

being supplanted by more patient-specific prescrip-

tions. Pretherapy imaging of the therapeutic moiety

(at either a diagnostic level of activity if it should

emit photons or of its replacement with a photon-

emitting isotope, e.g., the replacement of 131I with
123I) allows an estimation of the uptake of the thera-

peutic agent in the region of interest. This can then be

used to derive the amount of therapeutic activity

required to obtain the absorbed dose and biological

effect desired.

10.2 Radiobiology of the Mammalian
Cell

10.2.1 Introduction

All biological processes in a unicellular organism such

as a bacterium occur within that single cell. In multi-

cellular organisms (metazoa), specific cell groups

“specialize” in conducting distinct functions. As a

result, the differential magnitudes of such specializa-

tions can frequently make it difficult to define a typical

cell representative of all of those in the body. How-

ever, there is a significant degree of common internal

structure (organelles) among cells that allow a general

specification to be made.

Metazoans are defined as multicellular eukaryotic

organisms. This chapter is concerned exclusively with

mammalian cells. The first obvious reason for this dis-

tinction is that we are ultimately interested in the res-

ponse of human tissues to ionizing radiation. The second,

and subtle, reason is that nonmammalian cells exhibit

markedly different responses to ionizing radiation

than do mammalian cells due to the much higher deox-

yribonucleic acid (DNA) content of the latter.

10.2.2 Structure of the Mammalian Cell

10.2.2.1 Cellular Structure

Despite their differentiation in terms of function, all

mammalian cells have certain common attributes.

With the exception of the erythrocyte, all contain

subcellular structures known as organelles and are

eukaryotic, i.e., have a nucleus containing DNA. The

exceptional erythrocyte (red blood cell) contains a

nucleus at its early stage of development, but extrudes

it (along with other organelles) during maturation in

order to increase the amount of hemoglobin content it

may carry.

The intracellular matrix, or cytoplasm, contains the

nucleus and other organelles. These organelles are:

Mitochondria: Ellipsoid-shaped structures respon-

sible for energy production within the cell

Golgi apparatus: Responsible for the storage and

transportation of secretory products to the external

environment

Endoplasmic reticulum: A network of tubules and

cisternae responsible for the folding and transportation

of proteins to the cell membrane

Ribosomes: Spherical structures which are the site

of protein synthesis and are either free in the cyto-

plasm or connected to the endoplasmic reticulum

Lysosomes: Contain enzymes responsible for the

digestion of vacuoles formed by the phagocytosis of

solid material (e.g., foreign bacteria) and for the erad-

ication of worn-out organelles

Centrioles: Paired cylindrical structures involved in

cell division (cytokinesis). During this stage, they

move to opposite ends of the nucleus and form the

ends of the mitotic spindle (bundles of microtubules of

protein filaments)

10.2.2.2 Types of Mammalian Cells

Despite the commonality of a nucleus and organelles,

mammalian cells differ markedly in terms of mor-

phology, function and cell kinetic properties, and

radiosensitivity. The four primary categories of tissues

formed by mammalian cells are:

Connective: Fibrous tissue which holds organs in

place and forms ligaments and tendons. It is subdi-

vided further into categories of loose, dense, elastic,

adipose, and reticular connective tissues.
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Epithelial: Tissue consisting of cells lining cavities

and lumen and organ surfaces. This tissue forms the

skin and lines, for example, the gastrointestinal (GI)

tract and glandular ducts.

Nervous: Tissue made up of neurons, which trans-

mit electrical impulses, and the supportive neuroglia

which are made up of microglia and macroglia cells.

Muscular: Contractile tissue made up of three cate-

gories – skeletal or voluntary muscle anchored by

tendons to bone and which is under voluntary control;

smooth or involuntary muscle found within the viscera

such as the esophagus and the GI tract and the urinary

bladder; and cardiac muscle which is similar to skele-

tal muscle although it is involuntary and is found in the

heart alone.

10.2.2.3 DNA

DNA is a long polymer made up from repeating

nitrogenous bases (adenine, guanine, thymine, and

cytosine) and exists as an intertwined double helix

with the bases binding the helices. The strand itself

consists of alternating phosphate and sugar (deoxyri-

bose) groups and has a diameter of the order of 2.5 nm.

The nucleotides bind pair-wise specifically: adenine

(purine) with thymine (pyrimidine) and cytosine

(pyrimidine) with guanine (purine), as shown schema-

tically in Fig. 10.1. The groupings of bases are thus

complementary: adenine will bind with thymine and

cytosine always binds with guanine.

10.2.2.4 Chromatin, Chromosomes,

and Chromatids

As the length of the DNA contained within the eukary-

otic cell is several thousand times the dimension of the

cell, it must be compressed through sequential folding

in order to fit within the nucleus and yet still be

accessible. This folding of DNA forms the organized

packed structure chromatin, which is a thread-like

entity within the nucleus made up from DNA and

protein. This is further integrated into the chromo-

some. The name chromosome is derived from the

Greek chroma and soma, or “colored body,” reflecting
the chromosome’s ability to take histologic stain. Dur-

ing mitosis, it condenses to form sister chromatids,

along with the centromere, a site which does not take

histologic stain. Its role in cell division, or mitosis, is

to be explained below.

10.2.2.5 Proliferation and Cell Cycle

A cell divides into two daughter cells following a

cycle defined by sequential mitotic divisions. This

cycle is partitioned into two phases of the short meta-

phase during which the cell undergoes mitosis and a

longer interphase. Much activity goes on within the

cell during the interphase so it is subdivided into three

intermitotic phases: the two gap phases, G1 and G2,

which follow and precede the mitotic phase, respec-

tively, during which there is apparent cellular inactiv-

ity and the S DNA synthesis phase.

During the G1 phase, the cell produces enzymes

required for the S phase. The length of this is highly

variable. Synthesis of DNA and replication of the

chromosomes occurs during the S phase. In the G2

phase, each chromosome is made up of two sister

chromatids (Fig. 10.2).

During the mitotic (M) phase, the cell divides. This

phase is made up of the prophase, prometaphase,

metaphase, anaphase, and telophase (Hall and Giaccia

T A

T

T

A

A

C G

CG

C G

Fig. 10.1 Schematic representation of the binding between

thymine (T)-adenine (A) bases and cytosine (C)-guanine (G)
bases
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2006). The subnuclear actions that occur during these

mitotic phases are:

Prophase: During this phase, chromatin condenses

to form the visible chromosome and ends with the

maximal condensation and the disappearance of the

nuclear membrane.

Prometaphase: The nuclear membrane and nucleoli

having disappeared, the centrioles move to opposite

sides of the nucleus and spindle fibers form between

them.

Metaphase: Following the disappearance of the

nuclear membrane, the cytoplasm and nuclear plasma

intermix. The spindle fibers from the centrioles attach

to the centromeres, the latter dividing to signal the end

of metaphase.

Anaphase: The chromosomes are pulled to the

opposing poles of the nucleus.

Telophase: The daughter chromosomes uncoil, the

spindle fibers break off and nuclear membranes are

formed around each ensemble of chromosomes and

nucleoli regenerate. The chromosomes disperse into

chromatin and the nucleus resumes its indistinct inter-

phase appearance.

While the interphase of the cell cycle is that part

when mitosis is not occurring, it accounts for other

significant cell processes. The intermitotic phase

which is experimentally most easily recognized is the

S phase which, in most cases, is the only time during

the cell cycle that DNA is synthesized.1 On the other

hand, RNA and protein synthesis can occur at any time

throughout the interphase. Movement through the cell

cycle is governed by proteins known as cyclins with

“check points” at the G1–S and G2–M junctions. Tran-

sition through these junctions is enabled by cyclin-

dependent kinases (Fig. 10.3).

10.2.3 Radiation-Induced Damage
to the Cell

10.2.3.1 Introduction

Any discussion of cellular damage caused by ionizing

radiation must begin with an understanding of what

are the radiation-sensitive sites within the cell.

Although mainly circumstantial, there is overwhelm-

ing evidence that the target is chromosomal DNA.

That it is the cell nucleus that is sensitive to radiation

and the cytoplasm insensitive has been demonstrated

by two different categories of experiment. The first
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Fig. 10.3 The cell cycle where M is when mitosis occurs and

the intermitotic phases (interphase) is made up of two gap

phases, G1 and G2, and the S DNA synthesis phase. Some cells

can enter a “resting” phase, G0, following the M–G1 junction

before entering the G1 phase. The length of the G1 phase can be

highly variable

Centromere

Chromatid

Fig. 10.2 Condensed chromosome morphology during (left)
interphase and (right) the S phase of the cell cycle during

which it has duplicated

1This statement is not strictly true as mitochondrial DNA syn-

thesis can occur outside the S phase as can unscheduled nuclear

DNA synthesis following radiation-induced damage.
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uses the physical directing of ionizing radiation to the

nucleus. This can be achieved by, for example, plac-

ing a needle tip, coated with an a-emitting isotope of

polonium, adjacent to the nucleus (Munro 1961).

Recall that such a particles have low energy and

short ranges. Hence, with the appropriate selection

of a-particle energy and design of the applicator, it is

possible to ensure that the nucleus is the only organ-

elle receiving an absorbed dose. Such experiments

have demonstrated that the mean lethal absorbed

dose to the nucleus is 1.5 Gy whereas an absorbed

dose as high as 250 Gy delivered to the cytoplasm can

have no effect upon cell proliferation. A similar, but

more sophisticated, approach of subcellular irradia-

tion is through a “microbeam” of charged ions bom-

barding subcellular targets in vitro (Folkard et al.

2007). The secondary type of experiment compares

the effects upon the cell of tritiated water with those

of tritiated thymidine (deoxythimidine). As thymi-

dine is integral to DNA synthesis, labeling with triti-

ated thymidine will localize the short-range b
particles emitted during the b decay of 3H to 3He

directly to the DNA in the nucleus whereas the distri-

bution of tritiated water within the cell is uniform

and nonspecific throughout the cell. It is found that

the radiation sensitivity of the cell to tritiated thymi-

dine is several orders of magnitude greater than to

tritiated water, implicitly suggesting that radiation

damage to the nucleus is the center of cellular radia-

tion damage.

Now that the nucleus has been established to be the

most radiosensitive organelle, it is interesting to see if

it is possible to delve deeper in terms of spatial resolu-

tion and identify a subnuclear structure that causes this

radiosensitivity. This can be inferred by the spatial

dimensions of the energy depositions of low-LET

radiations, such as soft X-rays (energies below

1 keV). Recall from Chap. 7 that the energy deposition

of the charged particles resulting from photon–matter

interactions is stochastic, especially at small spatial

dimensions, and is distributed nonuniformly along

the trajectory of the particle. In the nomenclature

promoted by Hall and Giaccia (2006), the energy

deposition distributions are categorized here as either

a “spur,” which has a maximum energy deposition of

100 eV, is about 4 nm in diameter and typically con-

tains three ion pairs, or a “blob” which has an energy

deposition of between 100 and 500 eV, is about 7 nm

in diameter and typically contains up to 12 ion pairs.

For low-LET radiation, virtually all of the energy

deposition is in the form of “spurs” and, as the spatial

dimension of the spur is comparable to the 2 nm width

of the DNA double helix, this provides further circum-

stantial evidence that nuclear DNA is the radiosensi-

tive target.

10.2.3.2 Mechanisms of Radiation-Induced

Damage

Indirect Effect

Photons and moving charged particles traversing a

medium ionize atoms, leaving free electrons and

ions in their wake. As the composition of the cell is

about 70% water, the effects of the ionization of water

by radiation (water radiolysis) will be of dominant

interest,

H2O ���!Radiation
H2O

þ� þ e�

where the superscriptsþ indicate a positive ion and �
an unpaired electron. Another channel is the simple

excitation of the water molecule,

H2O ���!Radiation
H2O

�:

H2O
þ� is an ion radical2 with a lifetime of the order of

0.1 ns and is highly reactive. The liberated electron

can be subsequently hydrated, i.e., trapped by sur-

rounding water molecules that it has polarized so as

to form an aqueous electron,

e� þ H2O ! e�ð Þaq:

As the electron is ejected in the ionization event

with considerable energy so as to be displaced consid-

erably from the point of ionization, the production of

the H2O
þ� will not be in equilibrium and the free

radical unable to recombine with the ejected electron.

2An atom or molecule is a free radical if it has an unpaired

electron, even though it can also be electrically neutral. Free

radicals are chemically reactive. An ion radical is both an ion

and a free radical and, hence, is highly reactive.
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The free radical can then either decompose to yield a

free proton and a free neutral hydroxyl radical.

H2O
þ� ! Hþ þ OH�

Or interact with a water molecule to again form a

free neutral hydroxyl radical,

H2O
þ þ H2O ! H3O

þ þ OH�:

The aqueous electron can also interact with a water

molecule to form,

e�ð Þaq þ H2O ! OH� þ Hþ

and it can interact with H+ from other ionizations to

form the hydrogen radical,

e�ð Þaq þ Hþ ! H�:

While the above chain of reactions is, in fact, far

more involved, the three most important reactive

chemical species created and their relative yields per

initial ionization are:

e�ð Þaq : 45%

OH� : 45%

H� : 10%:

Following their production, the reactive species

(which have longer lifetimes of the order of 10 ms
compared to the 0.1 ns lifetimes of ions) diffuse and,

if the ionization is sufficiently close to the DNA dou-

ble helix, can migrate to the helix and damage it. The

OH� is a particularly potent species in causing DNA

damage as it can extract an electron from the DNA and

leave behind a highly reactive site. This category of

DNA damage by radiolytic products is known as the

indirect effect.

It is also possible for these reactive radiolytic spe-

cies to interact with each other, especially in the vol-

ume around the initial ionization event and prior to any

diffusion, and neutralize. Two examples are:

OH� þ H� ! H2O

and

H� þ H� ! H2:

As a result, it is possible to modify the indirect

effect, i.e., to sensitize or protect the cell from radia-

tion effects by affecting these reactive species. Con-

sider the dynamic equilibrium of an organic molecule

ionized to form two free radicals,

RH ���!Radiation
R� þ H�:

Because of the proximity of R� and H� following the
ionization event, there is a high probability that they

will recombine immediately and, hence, cannot proceed

to cause an indirect effect upon the DNA target. This

interaction between R� and H� changes dramatically in

the presence of oxygen. As oxygen is a free radical

scavenger, it is possible in an oxygenated environment

for the radicals to interact with the oxygen,

R� þ H� þ 2O2 ! RO�
2 þ HO�

2:

Oxygen can thus “fix” the result of two free radicals

which are then subsequently free to damage the DNA.

Hence, hypoxia, which commonly occurs in tumors

receiving insufficient vascularization, leads to radio-

resistance.

Direct Effect

Whereas the indirect effect of ionizing radiation upon

DNA is through the intermediaries of radicals as a

result of water radiolysis, it is also possible for DNA

damage to be produced through the direct ionization of

the DNA molecule by radiation.

Relative Contributions

The relative contributions of indirect and direct effects

upon DNA damage are of practical importance in

consideration of the above discussion regarding the

use of radiation protectors or sensitizers to modify

the indirect effect. It is believed that about two-thirds

of the radiation-induced damage to the DNA is due to

the indirect effect (Nais 1998).
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10.2.3.3 Radiation-Induced DNA Lesions

Introduction

There are three categories of ionizing radiation-

induced chemical changes to DNA that result in dam-

age to the structure of the DNA.

Base Alterations

These are effects inflicted upon the purine and pyrimi-

dine bases by ionizing radiation. Many of these insults

are benign with no apparent effect postirradiation.

Others result in miscoding during DNA replication

leading to a mutation.

Single-Strand Breaks

A single-strand break (SSB) is the removal of one of a

pair of bases through damage. Repair is possible dur-

ing the DNA synthesis phase of the cell cycle as the

remaining undamaged base will provide a comple-

mentary template for a base on opposing strands to

form. Hence, cell lethality is not necessarily a conse-

quence of the damage. Mutation, however, is possible

if misrepair occurs or if repair is incomplete. SSBs

on both strands can also be repairable if they are

sufficiently separated, as shown in Fig. 10.4, as they

may be considered independent breaks as such.

Double-Strand Breaks

A double-strand break (DSB) is one in which both

DNA strands are broken at the same point or very

close together, as shown in Fig. 10.4. DSBs are likely

to be accompanied by extensive base damage and

following such breaks, the chromatin splits into two

segments. The production, repair, and misrepair of

DSBs are of great importance to understanding radia-

tion-induced cell lethality. The damaged chromosome

may restitute (i.e., the damaged ends may reconnect)

resulting in the repair of the physical integrity of the

DNA chain but not reproducing the original nucleotide

sequence. Binary misrepair of DSBs in two adjacent

chromosomes can result in the illegitimate interaction

of the two damaged chromosomes culminating in cell

death. Of particular importance to the repair of cells

damaged by low-LET radiation or low absorbed dose

rates is that a DSB can result from two independent

chromosomal lesions that occurred at different times

but in close physical proximity. If the temporal sepa-

ration between these two ionizations is sufficiently

great, the cell is provided with the opportunity to

repair the first lesion before the second, and potentially

combinatorial fatal, lesion occurs.
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Fig. 10.4 SSB and DSB. An

SSB or a pair of widely

separated SSBs can be

repaired using the undamaged

remaining base as a template.

A DSB leads the chromatin to

separate into two
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Summary

The probabilities of base alterations and SSBs occur-

ring per unit dose are, as expected, greater than that of

DSBs. Table 10.1 summarizes the incidences of dam-

age per unit absorbed dose (for low-LET radiation)

and the lethal consequences as the probability of cell

death per lesion induction.

10.2.3.4 Chromosome and Chromatid

Aberrations

Lethal

Three types of lethal chromosomal aberrations that

can be induced by radiation through the interactions

of a minimum of two strand breaks are considered.

Further information on chromosomal aberrations can

be found in Savage (1983) and in Hall and Giaccia

(2006).

Dicentric

This type of aberration is the result of the replication

of two chromosomes which were damaged in inter-

phase with single breaks and which subsequently

interacted, as shown in Fig. 10.5. Following replica-

tion during the S phase, the result is a chromosome

with two centromeres and two fragments without cen-

tromeres. The latter discontinue at the subsequent

mitosis as a centromere is required to move to a pole

during anaphase in the M-phase of the cell cycle.

Centric Ring

A centric “ring” chromosome aberration can be the

result of a DSB of a single chromosome which can

recombine to form the cyclic structure shown in

Fig. 10.6. The result following the S phase is a pair

of overlapping ring chromosomes and a pair of acen-

tric chromosome fragments which, as noted before,

will be lost at mitosis.

Anaphase Bridge or Interarm Aberration

Whereas dicentric and ring aberrations are associated

with changes to the chromosome (and are the result of

presynthesis irradiation), the anaphase bridge is a

chromatid aberration, as shown in Fig. 10.7, and is a

result of postsynthesis irradiation during the G2 phase.

As separation of the replicated cells is impossible, this

nature of aberration is fatal.

Table 10.1 Types of ionizing radiation-induced DNA lesions

(low-LET radiation)

Lesion type Incidence per unit

absorbed dose (Gy�1)

Relative

lethality (%)

Alteration of nucleotides 103 1

SSB 103 1

DSB 40 95

G1

Post-S Phase

Acentric chromosome fragments

Dicentric chromosome

Union of chromosome segemts

DSB in each chromosome

Original pair of
different chromosome

Fig. 10.5 Production of a

dicentric chromosome

aberration. Prior to

replication, two chromosomes

are “broken” by irradiation

and then intercombine.

Following replication, a

dicentric chromosome (with

two centromeres) is created in

addition to two acentric

chromosome fragments
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Nonlethal

Symmetric Translocation

This is a not necessarily lethal chromosomal aberra-

tion resulting from the exchange of chromosome frag-

ments formed during irradiation during the G1 phase,

as shown in Fig. 10.8. Such translocations can, how-

ever, activate an oncogene leading to a malignancy.

10.2.4 Radiation-Induced Cell Death

10.2.4.1 Introduction

The death of an irradiated cell is only one consequence

of its exposure to ionizing radiation. In fact, the term

“cell death” requires clarification and expansion. The

most common mode of radiation-induced mammalian

G1

Post-S Phase

Acentric chromosome fragments

Ring chromosome

Union of chromosome segemts

DSB in each chromosome

Original chromosomeFig. 10.6 Formation of a ring

chromosome aberration. A

DSB in a single chromosome

is followed by a reconnection

to form a ring chromosome

and an acentric segment.

Following replication, a pair

of overlapping ring

chromosomes is produced and

a pair of acentric fragments

which are lost at the

subsequent mitosis

Post-S Phase

G2

Fig. 10.7 Formation of an anaphase bridge. A chromosome in

the G2 phase is irradiated and a break occurs in both chromatids

which recombine at the ends, forming an acentric chromatid

fragment. Following anaphase, the centromeres will be attracted

to each pole, thus stretching the chromatid between poles. The

acentric chromatid segment will be lost

G
1

Fig. 10.8 Symmetric translocation. Following irradiation of two

chromosomes in the G1 phase, breaks are produced. The chromo-

some segments are exchanged between the chromosomes
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cell death is that in which the cell fails to undergo

further mitosis and replicate, although it may remain

metabolically active. Death can also occur during

interphase due to apoptosis, frequently referred to as

“programmed cell death” or “cell suicide.” Radiation-

induced cell death can be a consequence of the pecu-

liar “bystander effect.” In this effect, an unirradiated

cell in proximity to an irradiated cell dies, presumably

through the effects of some toxic agent released by the

irradiated cell.

10.2.4.2 Mitotic Death

This is the most frequent means of radiation-induced

cell death and is the result the of lethal chromosome

asymmetric-type exchange aberrations previously dis-

cussed. Cell death results when the irradiated cell

attempts mitosis; this can occur not only at the first

attempt at mitosis postirradiation, but also during

attempts at subsequent cell divisions. Mitotic death

has been quantitatively demonstrated by Cornforth

and Bedford (1987). They demonstrated that the loga-

rithm of the surviving fraction (SF) of a population of

irradiated cells was exactly equal to the mean number

of lethal chromosomal aberrations per cell.

While mitotic processes can be halted as conse-

quences of irradiation, it is usually possible for cell

metabolism to continue. As a result, this procession of

metabolism in the undivided cell leads to an exponen-

tial growth in cell size which eventually reaches a

plateau. Even though such a “giant cell” will grow, it

is considered to be “dead” as it has lost its proliferative

capacity.

10.2.4.3 Interphase Death and Apoptosis

Cell death can also occur from irradiation during

interphase, although this requires much higher

absorbed doses than those which induced mitotic

death. The mean absorbed dose required for mitotic

death is of the order of 1–2 Gy in a single exposure.

Should a population of cells be irradiated to an

absorbed dose of up to 103 Gy in a single exposure,

cellular metabolism and function ceases and necrotic

death occurs. Such an extreme ionizing radiation

insult is largely irrelevant to our considerations

of diagnostic and therapeutic nuclear medicine.

However, interphase death can occur at lower

absorbed doses. Apoptosis is a naturally-occurring

means of cell death in both tumor and normal tissue.

It is also present in the developing embryo where

obsolete tissues no longer required in its development

are eradicated. It can be triggered by ionizing radia-

tion in specific cell types, in particular, lymphatic and

hematopoietic cells, through initiation by the p53

tumor-suppressor gene. Following the induction of

radiation-induced DNA damage, the amount of p53

accumulates and leads to a delay in the progress to

mitosis so as to allow time for the cell to repair this

damage. If repair is not possible or is unsuccessful,

the p53 gene can then initiate apoptosis in order to

remove the nonfunctional cell from its environment.

However, should the p53 gene be inactivated through

a mutation, apoptosis cannot occur and cell immor-

tality becomes possible.

A cell entering apoptosis begins this process by

isolating itself from its neighboring cells. Chromatin

condenses, the cellular nucleus fragments and the

cytoplasm dehydrates with the result that the cellular

volume shrinks. Phagocytosis follows to eradicate the

fragmented apoptotic bodies.

10.2.4.4 Bystander Effect

This is an intriguing phenomenon in which a biolo-

gical response is detected in cells that have not been

irradiated but which are in close physical proximity

to one that has (Sgouros et al. 2007). While evidence

for the effect was first seen in the 1940s and 1950s

(Hall 2003; Mothersill and Seymour 2001), current

interest in was ignited by the work of Nagasawa and

Little (1992) showing an elevated frequency of chro-

mosomal damage relative to that expected for

absorbed doses as low as 310 mGy following

3.3 MeV a-particle irradiation from a 238Pu source.

Thirty percent of the cells studied demonstrated an

increase in sister chromatid exchanges, even though

only 1% of the cells had actually been traversed by an

a particle (see, also, Kahim et al. 1992). Since then,

the bystander effect has been demonstrated for

X-rays and protons. As unirradiated cells have been

killed following the transfer of a medium which

contained irradiated cells, it is presumed that the
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bystander effect is due to cytotoxins released by the

irradiated cells.

10.2.4.5 Categories of Radiation-Induced

Cell Damage

Introduction

The consequences following the irradiation of a cell

are manifold and require specific definitions. This is

necessary in order to differentiate between the results

of the effects of ionizing radiation upon cells and the

spectrum of normal cell variants. For example, mitotic

cell death has already been described as the irradiated

cell’s loss of reproductive capacity caused by radiation

damage. Yet, neurons do not undergo mitosis follow-

ing full fetal development. Hence, the first effect of

irradiation is the lack of the presentation of any dam-

age whatsoever. While radiation-induced damage to

the DNA may have occurred, it is possible that, even

without repair, the DNA damage has had no impact

upon the cell’s ability to reproduce or upon the cell’s

functional ability.

When damage does occur and which can cause or

lead to cell death, further differentiation of the damage

is required. Clearly, the definition of lethal damage is

immediately obvious. Nonlethal damage results in the

retention of reproductive capacity, albeit perhaps with

a reduced growth rate. The two categories of sublethal

damage and potentially lethal damage are of great

practical interest to radiobiology and are looked at in

detail here.

Sublethal Damage

This is the category defined as the result of two

independent radiation lesions. The first insult can

undergo repair, but if a second radiation-induced

insult is received prior to the first damage having

been completely repaired, cell death results. For

example, consider a DSB created in a single chromo-

some following irradiation. It is possible for the cell

to be able to repair this damage by recombining the

chromosomal fragments; the result is not necessarily

lethal to the cell. However, if, before this DSB

is repaired, another DSB is created in an adjacent

chromosome, an illegitimate and likely lethal binary

misrepair can result such as, for example, a dicentric.

Thus, the first damage to have been incurred is

referred to as being sublethal. The presence of suble-

thal damage can be demonstrated experimentally by

irradiating cells in a split-dose regimen, as shown

conceptually in Fig. 10.9. At low time separations

between absorbed dose administrations, the probabil-

ity of survival is reduced and, as the time separation

between exposures increases, the SF increases to

finally reach a plateau reflecting the complete repair

of sublethal damage.

Potentially Lethal Damage

This category of radiation-induced damage is some-

what more complicated than sublethal damage to

define. Potentially lethal damage is that which would

result in cell death was it not for some postirradiation

modification of the cellular environment. In particular,

if the cell cycle should be delayed prior to mitosis due

to, for example, suboptimal growth conditions, the cell

is provided with the opportunity to repair DNA dam-

age. This mode of repair can be important for tumor

cells which are quiescent due to a reduced nutritional

support from neovasculature leading to an inherent

radiation resistance.
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Time Between Administrations of Absorbed Doses D1 and D2

Fig. 10.9 The natural logarithm of the SF of cells irradiated to

a constant absorbed dose separated into two separate adminis-

trations as a function of the time difference between the admin-

istrations of the two absorbed doses
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10.2.5 Germ-Cell Damage

10.2.5.1 Introduction

Radiation-caused damage to a germ cell can be man-

ifested in two ways. The first is through mutations

which can be conferred to the irradiated individual’s

progeny following fertilization via an inherited genetic

defect. These mutation-regulated defects caused by

ionizing radiation are no different than those that

appear naturally: only the frequency of mutations

increases with exposure to ionizing radiation. As a

result, it is only possible to detect radiation-induced

hereditary effects by comparing the incidences of

these effects in the progeny of an irradiated population

against those in the progeny of a matched unirradiated

population. Because of the low gonadal absorbed

doses associated with medical imaging procedures,

including diagnostic nuclear medicine, such hereditary

effects have not been detected.

The second means of expressing radiation damage

to the germ cell is that which leads to germ-cell lethal-

ity resulting in either permanent or temporary sterility.

Temporary sterility in the male is a theoretically pos-

sible sequela of therapeutic nuclear medicine due to

the high activity of radionuclide administered and

should there be a sufficiently high testicular uptake

of the radionuclide.

In this subsection, the latter effect only is consid-

ered. Hereditary effects attributable to ionizing radia-

tion are discussed later in this chapter.

10.2.5.2 Oogenesis

In the adult human female, there are approximately

105 oocytes. These cells are nonproliferative and,

consequently, permanent sterility through radiation-

induced ovarian failure can be achieved through the

deaths of all oocytes. The magnitude of the absorbed

dose required to induce this is highly dependent upon

age because, as the female ages, the number of oocytes

decreases due to inherent degeneration and, to a lesser

degree, ovulation. As a result, the absorbed dose

required to cause permanent sterility will be lower

in older women than in younger. For example, a typi-

cal sterilization absorbed dose to the ovaries in a

prepubertal female is about 12 Gy whereas that in a

premenopausal female is only about 2 Gy. It should also

be noted that hormonal effects typical of the natural

menopause accompany radiation-induced sterility.

10.2.5.3 Spermatogenesis

The adult human male gonadal kinetics is markedly

different from those of the female, a result of which is

the substantially different radiation response between

male and female germ cells. Unlike oogenesis, pro-

duction of sperm cells is a continuous process and

spermatazoa are the end-product of several stages in

which the spermatogonia (stem cells) lead through

sequential differentiation to spermatocytes, sperma-

tids and, finally, spermatozoa. This production pro-

cess takes about 10 weeks in the human. As with all

rapidly dividing cells, spermatogonia are more sensi-

tive to radiation than the further-developed germ

cells. This results in the effect of irradiation upon

male reproductive capacity not necessarily being

immediately evident. Following exposure to irradia-

tion, the male may be only temporarily infertile as the

mature sperm cells can remain unaffected. As these

are depleted, azoospermia results and temporary ste-

rility exists until the spermatogonia are able to repop-

ulate. Azoospermia can occur for absorbed doses in

excess of about 0.5 Gy and its duration is dependent

upon the magnitude of the absorbed dose, ranging

from about 1 year for absorbed doses of less than

1 Gy to about 3 years for absorbed doses exceeding

2 Gy. Permanent male sterility results for absorbed

doses exceeding about 5 Gy given in a single

exposure.

10.2.6 In Vitro Cell Survival Curves

10.2.6.1 Introduction

At the level of absorbed doses typical of medical

imaging exposures where mitotic death is dominant,

cell death is manifested by the lack of reproductive

ability. Hence, the deaths of individual cells or colo-

nies of cells due to ionizing radiation can be readily

assessed through in vitro assays. The measurement of

10.2 Radiobiology of the Mammalian Cell 413



the fraction of cells that survive following in vitro

exposure to ionizing radiation is fundamental to

understanding cellular radiobiology and the environ-

ment that can affect the radiosensitivity of the cell.

In vitro measurement of a cell’s response to radia-

tion requires the excision of the tumor or tissue of

interest, the fragmentation of the sample into individ-

ual cells which are then seeded into a culture dish with

an appropriate growth medium and then incubated.

Established cell lines can be formed in such a way

and it is possible to extricate a number of cells using

trypsin to cause the cells to detach from the dish. The

cell number density (number of cells per unit volume

of medium) can then be measured using, for example,

a hemocytometer. As a result, a given number of cells

can then be seeded in a growth medium, incubated and

then viewed, following staining, after a period of about

10 days. Each individual cell has the potential to be

clonogenic, i.e., to grow to form a colony which, when

stained, is readily visible to the naked eye. The effi-

ciency with which seeded cells eventually form colo-

nies is defined as the plating efficiency,

eP ¼ Number of colonies

Number of seeded cells
: (10.1)

eP is measured using an unirradiated culture and it

is assumed that the plating efficiency is constant across

the seeded cultures and is independent of radiation

absorbed dose. In a radiobiology experiment, a num-

ber of cell cultures are formed and exposed to ionizing

radiation. As each colony is the product of a single

cell, the SF, accounting for the plating efficiency,

represents the fraction of original cells that remain

viable following irradiation,

SF ¼ Number of colonies

Number of seeded cells � eP
: (10.2)

The practical evaluations of (10.1) and (10.2) are

shown in Fig. 10.10.

It is important to recognize that the SF is not only a

function of the singular absorbed dose, but also of a

wide variety of radiation and environmental factors

which we shall explore shortly. Hence, the bridging

from in vitro experimentation to the prediction of

in vivo response must account for such factors which

can evolve in the in vivo environment. In the following

subsections, a variety of mathematical models of the

probability of cell lethality following irradiation are

developed.

10.2.6.2 Single-Target Model

The first model of cell killing by ionizing radiation is

the simplest in which a single deactivation (or hit) of

some target within the cell is sufficient to result in cell

death. To derive such a model, recall the Poisson

discrete probability distribution function,

p x; mð Þ ¼ mxe�m

x !
(10.3)

which gives the probability of x events occurring

during a measurement interval for which the mean

number of occurrences is m. The probability of no

events occurring (i.e., x ¼ 0) during that interval is

equal to e�m. Hence, as the probability of no target

deactivation must be equivalent to the probability of

survival in this model, one can write the SF of cells

following exposure to an absorbed dose D as,

SFðDÞ ¼ e�ðD=D0Þ (10.4)

where 1=D0 is a constant of proportionality. It follows

that D0 is the absorbed dose at which the SF is equal to

e�1 � 0.37. An example of a cell survival curve cal-

culated for the single-target model with D0 ¼ 0.25 Gy

is shown in Fig. 10.11. On the semilogarithmic plot

a b

Fig. 10.10 Definitions of plating efficiency and survival frac-

tion determined in vitro. (a) Control Petri dish not exposed to

radiation; 25 single cells were seeded into it and 22 colonies

have been produced resulting in a plating efficiency of 22/

25 ¼ 88%. (b) Petri dish in which 25 cells were also seeded

followed by irradiation to yield 13 colonies; the resulting sur-

vival fraction is 13/(25 � 0.88) ¼ 0.591
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(10.4), is a straight line reflecting a continuous killing

of cells with absorbed dose. As to be shown, such a

response reflects the lack of any cellular repair of

radiation-induced damage. Such a survival curve is

representative of the dose response to high-LET radia-

tions (e.g., a particles) or high absorbed dose rates.

10.2.6.3 Multiple-Target Models

There is no immediate reason to assume that, under all

conditions, a radiation-induced hit is sufficient to

result in cell death. Table 10.1 would suggest that

multiple lesions are required for cell death. Thus,

consider the potential of cell death to be due to the

inactivation of more than a single target. Equation

(10.4) gives the probability that a single target is not

hit; hence, the probability that the target is hit is equal

to 1� e�D=D0 . Assuming that N targets are required to

be deactivated in order to cause cell death and that

these inactivations are statistically independent, then

the probability that cell death results from the N

targets being hit is simply 1� e�D=D0
� �N

. The pro-

bability of N targets not being deactivated is equal to

the SF,

SFðDÞ ¼ 1� 1� e�D=D0

� �N
(10.5)

It is clear that (10.5) reduces to the single-hit form

of (10.4) for N ¼ 1, as required. Figure 10.11 displays

a plot of a hypothetical multiple-hit survival curve

following (10.5) for an example of four inactivation

targets (N ¼ 4) and D0 ¼ 4 Gy. The curve has a

shoulder at low absorbed doses and an initial slope of

zero but which becomes exponential with increasing

absorbed dose. At such high absorbed doses, the SF

can be written as (using a binomial expansion),

SFðDÞ � Ne�D=D0 (10.6)

As a result, the extrapolation of the curve at high

absorbed doses back to D ¼ 0 will give the number of

assumed targets, N, required for cell inactivation. This

is shown in Fig. 10.11. A measure of the width of the

shoulder is provided by the so-called quasithreshold

absorbed dose, DQ, which is defined as the absorbed

dose at which the extrapolation of (10.6) is equal to 1,

DQ ¼ D0 lnN (10.7)

This cannot be considered to be a real threshold

absorbed dose as radiation damage will still occur at

absorbed doses below DQ. However, DQ does provide

a measure of the survival curve’s shoulder at low

absorbed doses that is observed in the experimental

measurements of many types of mammalian cells.
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Fig. 10.11 Examples of cell

survival curves calculated for

the single-target model and a

multiple-target model
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10.2.6.4 Modified Multiple-Target Model

Measured mammalian cell survival curves indicate

that there is in fact a nonzero slope at absorbed doses

approaching zero. Contrary to this observation is that

the slope of (10.5), expanding the exponentials to first

order, is

dSF

dD
¼ � N

D0

D

D0

� �N�1

1� D

D0

� �
(10.8)

which is equal to zero for D ¼ 0. An improved fit to

measured cell survival curves is obtained by incorpor-

ating the single-hit model,

SFðDÞ ¼ e�D=D0 1� 1� e�D=D1

� �N� �
: (10.9)

At low absorbed doses, the slope of this modified

multiple-target is, again using the first-order expan-

sions of the exponentials,

dSF

dD
¼ � 1

D0

(10.10)

An example of a cell survival curve of this form is

shown in Fig. 10.12 in comparison with the multiple-

target model survival curve.

It will be noted that all three dose–response models

presented so far asymptotically approach an exponen-

tial function of dose with a negative slope in agree-

ment with radiobiological data.

10.2.6.5 Linear-Quadratic Model

Another approach to modeling the cellular response

to irradiation is to recall from the discussion of chro-

mosomal aberrations that radiation-induced muta-

tions or cell lethality can result from a DSB

produced by a single “hit,” where a single ionization

event leads to a lesion, or by two independent “hits,”

where two separate ionization events at different

times but occurring in close physical proximity to

each other interact to form a DSB. This latter means

of lesion induction requires a second-order dose-

dependent component to the probability of cell sur-

vival, or,

SFðDÞ ¼ e� aDþbD2ð Þ (10.11)

where a and b are constants. This is the linear-

quadratic (LQ) model (Fowler and Stern 1960). An

example of a hypothetical LQ cell survival model is

shown in Fig. 10.13, along with the multiple-target

example survival curve.
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Fig. 10.12 Examples of

multiple target and modified

multiple-target survival

curves. Note that the modified

multiple-hit survival curve has

a nonzero slope at D ¼ 0
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A significant problem that occurs with (10.11) at

high absorbed doses is that the LQ model never

approaches the pure e�D dependence which is

observed experimentally. This failure will tend to

restrict the utility of the model to low absorbed doses

where it does present an advantage over other models

in that it requires only two parameters to enable a fit to

measured radiobiological data. The ratio of the a and b
parameters is equal to the absorbed dose at which the

contributions of the linear and quadratic components

are equal,

DEq ¼ a
b
: (10.12)

The coefficients of the LQ model can be determined

from measured cell survival curves through (10.11),

� ln SF

D
¼ aþ bD: (10.13)

A plot of D vs. ln SF=D will thus yield the coeffi-

cients of the LQ model where a is the intercept and b
is the slope.

As the quadratic component represents cell lethal-

ity due to two DSB-inducing ionizations separated in

time, one must allow for the possibility of the repair of

the first sublethal DSB during the time before the

second DSB occurs. This process will increase the

SF over time. Should this second DSB occur before

the repair of the first, the result is cell death. The

inclusion of this sublethal damage repair is enabled

by writing the LQ model of the survival fraction of

(10.11) as,

SFðDÞ ¼ e� aDþbGD2ð Þ: (10.14)

G is the Lea–Catcheside factor where G � 1 and

accounts for the reduction in cell lethality due to the

repair of sublethal damage. This factor will obvi-

ously be a function of the difference in times between

when the first radiation insult occurs and that of the

second.

The LQ model has been extensively used in

applications of clinical radiobiology to external

beam radiotherapy, brachytherapy, and radionuclide

therapy.

10.2.7 Radiation Sensitivity of
Mammalian Cells

10.2.7.1 Introduction

The response of a given cell to radiation is a function

of many biological, physical, and environmental vari-

ables such as cell cycle, the rate at which the radiation
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Fig. 10.13 Hypothetical cell

survival curves for the

multiple-target and linear-

quadratic models. Note that
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semilogarithmic plot never

approaches a straight line (i.e.,

it is not pure exponential), in

contradiction to measured cell
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absorbed dose is delivered and the ambient oxygen

concentration. The last two factors are of particular

importance in radionuclide therapy.

10.2.7.2 Cell Cycle and Age

The cell cycle, as defined by the period of time

between subsequent mitoses, was introduced in

Sect. 10.2.2.5. The sensitivity of the cell to radiation

varies throughout the course of the cycle. The length

of the G1 phase, which precedes the DNA synthesis S

phase, is indicative of the variation of the radiosensi-

tivity of the cell throughout its cycle. Figure 10.14

shows two conceptual mammalian cell proliferative

capacities and how they vary with the time of the

cell cycle at which they receive the same absorbed

dose. The cells are the most radiosensitive during the

mitosis phase. For cells with long G1 phases, the cell is

relatively radioresistant during much of the course of

G1 but this sensitivity decreases as the G1 phase enters

the synthesis S phase; the radioresistance again

increases to a maximum during the S phase and then

decreases through the G2 and M phases. On the other

hand, for cells with short G1 durations, radioresistance

increases through the M and G1 phases to reach a

single maximum during the S phase to again decrease

during the G2 and M phases.

This variability of radiosensitivity throughout the

cell cycle enables the process of synchronization. Pro-

liferative cells in situ or in culture will exist in differ-

ent stages of the cell cycle without any synchronicity

between them. Following irradiation, those cells

which are in the radiosensitive phases will be prefer-

entially killed whereas those in the radioresistant S

phase will survive. Hence the culture of cells will,

following irradiation, tend to be at the same phase of

the cell cycle.

10.2.7.3 Relative Biological Effectiveness

The relative biological effectiveness (RBE) is a mea-

sure of the difference between the incidence or magni-

tude of biological effects incurred by exposure to a

given radiation type or set of irradiation conditions

relative to a low-LET reference radiation (commonly,

the secondary electrons associated with 250 kVp

X-rays) for a given biological endpoint, which is typi-

cally the survival fraction. This definition is shown in

Fig. 10.15. An important point to note is that the RBE

is a function of the endpoint selected, as can be seen by

comparing the RBE values defined by 0.1 and 10%

cell survivals.

10.2.7.4 Linear Energy Transfer

As described in Chap. 7, the linear energy transfer

(LET) is a measure at which energy is deposited in a

medium per unit length of travel by a charged particle.

Increasing values of LET correspond to increasing

ionization densities. The result is that, increasing

LET (e.g., increasing from those of Compton electrons

and photoelectrons through Auger/Coster–Kronig

electrons to a particles), the probability of killing the

irradiated cell will grow. That is, in terms of the cell

survival curve, increasing LET will result in a reduc-

tion in the curve’s shoulder and an increase in its

slope, as shown in Fig. 10.16. These are the results
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Fig. 10.14 Conceptual plots of mammalian cell survival, for

two categories of (a) long and (b) short G1 phases, for the same

absorbed dose as a function of the phase of the cell cycle during

which it was irradiated

418 10 Biological Effects of Ionizing Radiation



of a high incidence of cell killing and a reduced

opportunity provided for sublethal damage repair.

10.2.7.5 Absorbed Dose Rate

Of importance to radionuclide therapy is the variation

in biological response with absorbed dose rate. For a

given fixed absorbed dose, the functional survival

will decrease with an increase in the rate at which

the dose is delivered. This is shown conceptually in

Fig. 10.17. As a result of sublethal damage repair, the

cell has a greater opportunity to restitute a DSB at

low absorbed dose rates and the cell survival curve

subsequently demonstrates a shoulder at low absorbed

doses and a reduced slope. As the absorbed dose rate

increases thus increasing the rate at which DSBs

are produced, the ability of the cell to “keep up”
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Fig. 10.15 Definition of the

relative biological efficiency

(RBE) as the relative

reduction in absorbed dose

from a specified low-LET

reference radiation type for a
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conditions to yield a given

endpoint (here, cell SF). Note
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dependent upon the endpoint
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and repair DSBs as they are produced is dimin-

ished. The SF decreases as a result and the shoulder

of the cell survival curve shortens and the slope

increases.

Similar to the concept of varying the rate of a

continuous exposure of ionizing radiation s the appli-

cation of radiation administered in separated integral

exposures, known as fractions. This permits irradiated

normal tissue to repair between fractions. Figure 10.18

shows hypothetical dose–response curves for fractio-

nated therapy with a time interval between each frac-

tion sufficient to allow the repair of sublethal damage.

The dashed line is the net dose response resulting from

single exposures of 1 Gy each.

10.2.7.6 Hypoxia

In the discussion of indirect radiation-induced damage

of the DNA, it was noted that the presence of oxygen

can increase the radiosensitivity of the mammalian

cell by impeding the immediate recombination of ion

pairs following an ionization, thus “fixing” the pres-

ence of the free radicals produced by the ionization.

Hypoxic conditions thus decrease the radiosensitivity

of the cell, a feature which is of great practical concern

in radiotherapy as a tumor frequently contains hypoxic

regions.

A measure of this effect of oxygen concentration

upon radiosensitivity is the oxygen-enhancement

ratio (OER) defined as the ratio of the absorbed dose

required to achieve a specified biological endpoint (e.

g., survival fraction) under hypoxic conditions to that

achieving the same endpoint under aerated conditions,

as shown in Fig. 10.19.

10.2.7.7 RBE and OER as Functions of LET

Having now seen how fractional cell survival varies

with OER and LET, it is of interest to see how both the

RBE and OER vary with LET. Figure 10.20 shows

hypothetical RBE and OER curves as functions of

LET (although hypothetical, they demonstrate quali-

tatively those functions shown in Barendsen et al.

(1966) and Barendsen (1968)).

The OER has a value of about 2.5–3 for low-LET

radiations, but drops off precipitously for LET values

in excess of about 30 KeV/mm to eventually “pla-

teau” to reach unity at about 200 KeV/mm. On the

other hand, the RBE has limited energy dependence,

staying equal to unity with LET values less than

about 10 KeV/mm, to reach a sharp maximum at

about 100 KeV/mm before decreasing. At low values

of LET, the number of ionizations is decreased and

the presence of oxygen can fix the produced free
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Fig. 10.17 Conceptual cell

survival curves for identical

low-LET radiation type but at

different absorbed dose rates,

dD=dt. For a fixed total

administered absorbed dose,
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absorbed dose rate due to the

impairment of cellular repair
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radicals and, hence, the consequential OER is high.

At high LET values, the ionization density within the

intranuclear medium is sufficiently high that oxygen

repair of indirect damage is insufficient and indirect

damage is inhibited. The RBE remains relatively

constant at low-LET values due to the large mean

physical separation between ionization events.

Because of this, the probability that an ionization

will damage DNA through either direct or indirect

mechanisms is small. At high LET, the separation

between ionization events is small and the density

of ionizations correspondingly higher so as to elevate

the probability of an ionization near the DNA mole-

cule leading to the increase in the damage incurrence
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Fig. 10.18 Hypothetical

dose–response curves for

fractionated exposure. The

cell survival is 10% for a

single exposure of 1 Gy. The

exposure is split into four

fractions, each providing

1 Gy. The solid lines indicate
the SFs resulting from an

absorbed dose administered at

a single time. The dashed line
is the dose response obtained

if the absorbed dose is

administered in fractions of

1 Gy each. It can be seen that

the SF for a given total

absorbed dose is greater if the

absorbed dose is given as

smaller, fractionated

exposures (e.g., 0.01% of the

cells survive a 3 Gy absorbed

dose given in a single

exposure whereas 0.1%

survive the same absorbed

dose if given in three

fractions)
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rate. The peaking of the RBE at about 100 KeV/mm
can be explained by noting that the mean separation

between energy deposition events at an LET value of

100 KeV/mm is about 2 nm, which, of course, is of the

order of the DNA double helix’s diameter. Hence, at

this LET value, there is a high probability of a single

charged particle inducing a DSB in the helix which

can lead to cell death. At lower LET values, the mean

separation between events is greater and the proba-

bility of a DSB occurring is correspondingly reduced.

The decrease in RBE with LET increasing beyond

100 KeV/mm reflects “overkill” by densely-ionizing

radiation. Multiples of DSBs are produced, but the

increase in biological effect is limited whereas the

absorbed dose increases with the net result that

the RBE decreases. This RBE maximum at an LET

value of 100 KeV/mm is of particular interest to

therapeutic nuclear medicine of a-emitting radionu-

clides. From Table 10.2, it can be seen that the typical

LET of the a particles emitted from a radionuclide is

between 100 and 150 keV/mm and which is coincident

with this RBE maximization and the minimization

of the OER.

10.2.7.8 Cell Proliferation Kinetics

and Radiosensitivity

The variation of cell sensitivity to ionizing radiation

due to its proliferative capacity is of significant

interest to both the induction of cellular effects and

the minimization of radiation-induced sequelae.

Tumor cells rapidly proliferate as do the blast cells

of some normal tissues and, hence, would be expected

to have comparable radiosensitivities.

It is possible to categorize normal cells in terms of

their proliferation capacities:

No mitosis Neurones

Low mitotic rate/limited

cell renewal

Thyroid, liver, and connective tissue

High mitotic rate/

frequent cell renewal

Red bone marrow (erythroblasts),

spermatogonia, and intestinal

crypt cells

The sensitivity of a given cell to damage induced

by ionizing radiation is commensurate with its prolif-

erative capacity. Cells with a high mitotic index,

which includes tumors, are particularly sensitive to

ionizing radiation; those cells with a low mitotic

index tend to be less radiosensitive.

10.2.8 Repair of Radiation-Induced
Damage

10.2.8.1 Introduction

It has been estimated that the DNA of a single mam-

malian cell will experience normally some 105 lesions

daily as the consequence of a variety of insults includ-

ing replication errors, attacks by reactive chemical

species or ionizing radiation. The fact that the natural

mutation rate is so low demonstrates that intrinsic
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Fig. 10.20 Conceptual curves of OER and RBE as functions of

LET. Note different ordinates for the quantities of interest

Table 10.2 Typical values of LET and particle ranges

Particle Typical LET

(keV/mm)

Typical

range (mm)

Secondary electrons resulting from

Compton and photoelectric

interactions with photons of

energies typical of nuclear

medicine

2–5 5,000

Electrons and positrons emitted

in b decay

1 50–2,500

Auger/Coster–Kronig electrons 50 0.01

a particles emitted in a decay 100–150 50–100
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DNA repair mechanisms exist. These mechanisms are

applied at different phases of the cell cycle.

10.2.8.2 Repair of Sublethal Damage

Sublethal damage repair reflects the increase in cell

survival if a given amount of absorbed dose is admi-

nistered in multiple exposures rather than in a single

one. Figure 10.21 shows a conceptual description of

mammalian cell survival following two exposures

(yielding the same total absorbed dose) separated by

a time interval. The SF initially grows with increasing

time between the two irradiations, reflecting the repair

of sublethal damage caused by the first exposure

(referred to as the conditioning dose). However, after

about 2–4 h, the SF decreases to a minimum and then

begins to increase again. This phenomenon is the

result of radiation-induced synchronization, described

in Sect. 10.2.7.2. As mammalian cells are most radio-

resistant during the S phase of the cell cycles so of a

culture of cells irradiated in situ, the surviving cells

will tend to be in the S phase.

After 6 h, the cells will be in the G2/M phases

which are radiosensitive. Irradiation during this time

will decrease the SF; this is known as reassortment. At

later times, the number of cells increases due to further

cell divisions (repopulation).

10.2.8.3 The Four “Rs” of Radiobiology

The above discussions can be summarized by what are

known as the four “Rs” of radiobiology and their

applicability to fractionated or low-dose irradiation

using low-LET radiation in radiotherapy.
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Repair of sublethal damage – The repair of suble-

thal damage occurs during the first few hours of lesion

induction.

Reassortment – As shown in Fig. 10.20, subsequent

irradiations of a cell population will preferentially lead

to the dominance of radioresistant cells in the irra-

diated population.

Repopulation – This is a special concern in fractio-

nated therapy. Tumor cells can repopulate between

administration fractions, which is not desirable. On

the other hand, repopulation of normal cells during

these intervals is desirable so as to limit the normal

tissue complication rate.

Reoxygenation – Reoxygenation is conceptually

demonstrated in Fig. 10.22 in terms of the irradiation

of a tumor cell.

In short, low-dose or fractional irradiation will

spare normal tissue through the allowance of repair

and repopulation; it will also allow the increased

damage to tumor cells through reoxygenation and

the reassortment of tumor cells into their radio-

sensitive phases. These results need to be reflected

in the various considerations of radionuclide therapy.

The extension of treatment time results in the reduc-

tion of immediate reactions of normal tissues to

irradiation and, as demonstrated in Fig. 10.22, the

reoxygenation of tumors and to increase their radio-

sensitivity.

10.2.9 Radiation-Induced Mutations

10.2.9.1 Introduction

The low absorbed doses associated with diagnostic

nuclear medicine studies set the risks to the irradiated

individual to be the probabilistic risks of radiocarci-

nogenesis and hereditary effects due to the induction

of mutations. Tissue homeostasis is the outcome of the

combination of controlled cell division and apoptosis.

A tumor lacks these attributes and the progression

from normal tissue to tumor is the result of mutations

to three categories of genes (Hall and Giaccia 2006):

� The proto-oncogene which, in normal fashion, is a

positive growth factor but, following mutation,

produces an oncogene that ignores extracellular

signals that would inhibit division.

� Tumor-suppressor genes (e.g., p53) which are neg-

ative growth factors.

� DNA stability genes which allow sensing of DNA

damage and repair.

Radiation

Aerated
cells

Hypoxic
cells

Anoxic
(n ecrotic)

cells

Fig. 10.22 The concept of reoxygenation in the fractionated/

low absorbed dose rate therapy of a tumor. Due to inadequate

vascularization, the tumor will have a necrotic core surrounded

by a shell of hypoxic cells which is further surrounded by

aerated cells in response to the degree of the radial dependence

of vascularization and oxygen tension. Due to the oxygen-

enhancement effect, radiation will preferentially kill the

circumferential aerated cells leaving the hypoxic cells at the

end of treatment. Following exposure, vascularization, and oxy-

genation of the outer rim of the tumor increases to produce

aerated cells which are radiosensitive. Again, following irradia-

tion, this outer shell is killed leaving a reduced hypoxic core.

The process continues sequentially
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Figure 10.23 compares the probabilities of survival

and mutation as functions of absorbed dose for low-

LET radiation. The likelihood of survival decreases

exponentially whereas the rate of mutations, however,

increases with absorbed dose to a maximum absorbed

dose and then decreases with the same slope as that of

the cell survival curve. This reflects the death of the

mutated cells with increasing absorbed dose.

10.2.9.2 Oncogene Activation

The concept of the oncogene – a gene which can

induce cancer – is based upon studies in the early

twentieth century which demonstrated that tumors in

mice, chickens, and rats were transmissible by the

injection of the cell-free filtrate of the tumor into

another animal. The transmitting factor has since

been determined to be a retrovirus (a virus whose

genome is composed of RNA). There are two models

of the activation of oncogenes. The first is the viral

oncogene model in which the retrovirus enters the cell

and its RNA is then integrated into the host cell’s

genome and the genetic information leads to the syn-

thesis of a protein which leads to a malignant transfor-

mation. The second model is that of the activation of

proto-oncogenes through mutation. These are, in the

first instance, normal genes but which, through muta-

tion, lead to malignancy.

10.2.9.3 Inactivation of Tumor-Suppressor

Genes

Uncontrolled growth of cells is inhibited through

genes such as p53. A radiation-induced mutation of

such a gene can lead to its inactivation followed by

uncontrolled cell division leading to a tumor.

10.2.9.4 Germ-Cell Mutations

Mutation-induced activation of an oncogene or inacti-

vation of a tumor-suppressor gene can only affect the

individual in which these processes have occurred. The

effect of a mutation of a germ cell, on the other hand, is

not apparent in the exposed individual but is transmitted

to its progeny and, as the mutation now enters the

broader gene pool, can affect a multitude of individuals.

Hence, radiation-induced hereditary effects have been

of great interest as the affected population is much

greater than the single exposed person.

Large absorbed doses to germ cells lead to perma-

nent sterility. But at low absorbed doses received by

germ cells, the viability of the cell is unaffected, but

mutations can be induced. It is important to understand

that mutations induced by ionizing radiation and

which are expressed as hereditary effects are no dif-

ferent than those which occur naturally; ionizing radi-

ation can only increase the frequency of such

mutations and not influence their characteristics.
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Fig. 10.23 A conceptual plot

of the probability of a

mutation per cell and the

fractional survival of such

cells in a population as a

function of absorbed dose for

low-LET radiation
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10.3 The Linear-Quadratic Dose–
Response Model for Low-LET
Radiation

10.3.1 Introduction

The LQ model was introduced in the discussion of cell

survival curves within the qualitative context of a DSB

produced by single and double ionizations. In the latter

case, the temporal separation between the two separate

ionizations allows the lesion to be repaired. Repair

may be as simple as recombining the ends of the

broken strands. This restitution restores the physical

integrity of the helix, but not the original base pair

sequence. Binary misrepair can also occur between

damaged chromosome pairs. This illegitimate repair

can result in the production of a dicentric chromosome

and acentric chromosome fragments and centric rings,

the latter being predominant.

In this section, the various applications of the LQ

model in assessing and predicting tissue responses to

radiation are investigated. The four main premises of

the LQ formalism are (Brenner et al. 1998):

� The yield of radiation-induced DSBs is propor-

tional to absorbed dose.

� The DSB repair rate is first-order.

� The binary misrepair of DSB pairs produced from

two different radiation tracks competes with this

first-order repair with a yield proportional to the

square of the absorbed dose3.

� Single radiation tracks can induce lethal lesions

with a yield proportional to absorbed dose.

Discussion of the LQ model is limited to low-LET

radiations (photons and electrons) where the scarcity

of ionizations enables cells to repair radiation-induced

damage. High-LET radiations (such as a particles or

Auger electrons) have high ionization densities which

fail to provide an opportunity for the cell to repair

radiation-induced damage (e.g., Fig. 10.15).

10.3.2 DSB Repair Kinetics

10.3.2.1 First-Order Repair Kinetics

The basic kinetics of the induction of radiation-linked

DSBs are first presented. Let U(t) be the mean number

of DSBs present per cell at a time t following irradia-

tion. If it is assumed that the number of repaired DSBs

during a time interval dt is proportional to the total

number of DSBs, given by the product mU(t)dt, then
solving the first-order differential equation yields,

UðtÞ ¼ U0e
�mt (10.15)

where U0 is the number of DSBs at the end of irradia-

tion and m is the first-order DSB repair rate constant.4

Values of m for most organs are of the order 0.2–1.4/h,

corresponding to repair half-lives of between 0.5

and 3 h.

10.3.2.2 Binary DSB Misrepair

Whereas the majority of DSBs can be resolved

through restitution in which the two ends of the DSB

rejoin, some DSB repairs result in illegitimate binary

unions. The rate at which binary misrepair occurs can

be deduced by assuming that the probability distribu-

tion of the number of DSBs is Poisson. Let y be the

number of DSBs in a cell, where U ¼ �y. The number

of DSB pairs in the cell will thus be equal to

y y� 1ð Þ=2 (where, from the definition of U(t), a

dicentric chromosome and the acentric fragments are

counted as a single lesion). Each binary misrepair

removes two DSBs. If k is the rate of binary misrepair

per DSB pair, the mean DSB-removal rate through

binary misrepair is,

2k y y� 1ð Þ=2
� �

¼ k�y
2

¼ kU2
(10.16)

3The time difference between induction of the two lesions

allows the first to be repaired before it would otherwise mis-

repair with the second.

4In some cases, a biexponential temporal behavior in the reduc-

tion of DSB number has been observed (Frankenberg-Schwager

1989). This is not considered here.
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10.3.2.3 Kinetics of DSB Induction, Repair

and Misrepair, and Cell Survival

In this subsection, the kinetics of DSB creation, repair,

and misrepair are used to estimate the fraction of

surviving cells in a population that has been irradiated.

This leads naturally to the LQ expression for this

fraction. However, to simplify the derivation, cell

repopulation is considered to be negligible. From the

premise that the induction of DSB is proportional to

dose, the rate equation for the mean number of DSBs

in a cell is,

dU

dt
¼ d

dD

dt
� mU� kU2 (10.17)

where the first term is the DSB creation rate, the

second term is the first-order repair rate, and the third

term is the binary misrepair rate. d is the mean number

of produced DSBs per unit absorbed dose, the produc-

tion rate of which is roughly 40 DSB/Gy (Sachs et al.

1997) and dD=dt is the absorbed dose rate.5 The rate

equation for the mean number of cells, N, in an irra-

diated population is,

dN

dt
¼ � a

dD

dt
þ kU2

� �
N: (10.18)

The first term of (10.18) describes cell death due to

a single ionizing radiation track and the second term

describes the rate of cell death as a result of binary

DSB misrepair. The kU2 term is smaller than the other

terms of (10.17) for absorbed doses of less than 5 Gy

and, for the ease of solving this pair of coupled differ-

ential equations, is neglected. However, the cor-

responding term in (10.18) is not ignored. Neglecting

kU2 and integrating (10.17), the mean number of

DSBs per cell is

UðtÞ ¼ d e�mt
ðt

�1
dt0

dD t0ð Þ
dt0

emt
0
: (10.19)

Substituting this into (10.18) and integrating, one

obtains, at time T, the logarithm of the SF,

ln
NðTÞ
N0

� �
¼�aD�d2k

2m

� 2

D2

ðT

�1
dt
dDðtÞ
dt

ðt

�1
dt0

dD t0ð Þ
dt0

e�m t�t0ð Þ

0
@

1
AD2

¼�aD�bGD2

(10.20)

where b 	 d2k=2m and G is the Lea–Catcheside dose-

protraction factor (Lea and Catcheside 1942) which

describes the damage repair occurring between two

separate ionizations. This factor is less than or equal

to unity and is developed further in the following

subsection. Equation (10.20) is the LQ model, mod-

ified so as to account for repair of sublethal damage.

Further examination of the b factor is of interest. It

is proportional to the square of the mean number of

DSBs induced per unit absorbed dose (d), reflecting
the effect of two independent ionizations. It is also

proportional to the rate of binary DSB misrepair per

DSB pair and inversely proportional to the first-order

repair rate.

10.3.2.4 Lea–Catcheside Dose-Protraction

Factor

The Lea–Catcheside factor is written in the more

general form,

G ¼ 2

D2

ð1

�1
dt
dDðtÞ
dt

ðt

�1
dt0

dD t0ð Þ
dt0

e�m t�t0ð Þ (10.21)

where

D ¼
ð1

�1
dt
dDðtÞ
dt

(10.22)

The integrand of the second integral over t0 refers to
the first of the two DSBs required to cause lethality; the

exponential term describes the repair and subsequent

5“Saturable” repair mechanisms have been proposed as another

means of describing the curvature of the LQ dose-response

curve (e.g., Goodhead 1985). In saturable repair, m has an

absorbed-dose dependence, decreasing as dose increases and

thus leading to a reduced repair efficiency with increased

absorbed dose. Brenner et al. (1998) presented a modification

of (10.17), dU
dt
¼ d dD

dt
� U

P2
i¼1

li
1þeiU

where the first term in the

summation corresponds to the creation of initial lesions and the

second term corresponds to the production of lethal lesions from

the initial lesions. These terms refer to the saturation of repair

(essentially, this is the Michaelis–Menten equation applied to

enzyme kinetics).
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reduction of such a DSB. The integral over t refers to

the second of the two DSBs that interacts with a remain-

ing unrepaired first DSB to cause the inevitable lethal

damage. For acute irradiation which does not enable the

cell to repair radiation-induced damage, the Lea–

Catcheside factor is G ¼ 1. However, as the kernel

e�m t�t0ð Þ � 1 for prolonged irradiation, then G < 1 in

such cases due to the ability for repair to occur.

The Lea–Catcheside factors for two types of

absorbed dose rates are now derived for two cases of

relevance.

Constant Absorbed Dose Rate for Finite

Irradiation Time

In this case, the absorbed dose rate is given by,

dDðtÞ
dt

¼ R 0 � t � T

¼ 0 elsewhere

(10.23)

where R is a constant dose rate, T is the duration time

of irradiation and the total absorbed dose is clearly

the product of this dose rate and the irradiation time

D ¼ RT. Then, the Lea–Catcheside factor for this

absorbed dose rate is, from its definition,

G ¼ 2

D2

ð1

�1
dt
dDðtÞ
dt

ðt

�1
dt0

dD t0ð Þ
dt0

e�m t�t0ð Þ

¼ 2

RTð Þ2
ðT

0

dtR

ðt

0

dt0 R e�m t�t0ð Þ

¼ 2

T2

ðT

0

dt e�mt
ðT

0

dt0 emt
0

(10.24)

Solving the integrals gives the dose-protraction

factor for a constant absorbed dose rate delivered for

a finite time T,

G ¼ 2

mTð Þ2 mTþ e�mT � 1
� �

(10.25)

It is straightforward to demonstrate that, by

expanding the exponential to second-order, the

Lea–Catcheside factor G ! 1 as the irradiation time

T ! 0. In other words, the bGD2 contribution to cell

lethality increases to bD2 as the absorbed dose is

delivered more acutely. As T ! 1, then G ! 0. A

plot of G as a function of the product of the repair

constant and irradiation time is shown in Fig. 10.24.

Exponentially-Decreasing Absorbed Dose Rate

For an example more representative of nuclear medi-

cine, consider the Lea–Catcheside factor for an expo-

nentially-decreasing absorbed dose rate,

dDðtÞ
dt

¼ Re�lt 0 � t � T

¼ 0 elsewhere:

(10.26)

For calculational purposes, a finite irradiation time

has been allowed for, whereas in internally-admin-

istered absorbed dose, T ! 1. The total absorbed

dose is,

D ¼
ð1

�1
dt
dDðtÞ
dt

¼ R

ðT

0

dt e�lt

¼ R

l
1� e�lT� �

:

(10.27)

The Lea–Catcheside factor for this particular

absorbed dose rate model is given by the evaluation

of the double integrals,

0
0
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dD(t)
dt

G

= R;  0 ≤ t ≤ T 
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Fig. 10.24 Lea–Catcheside dose-prolongation factor G as a

function of the product of mT for a constant absorbed dose rate

for a finite time T and where m is the first-order repair rate

constant
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G ¼ 2

D2

ð1

�1
dt
dDðtÞ
dt

ðt

�1
dt0

dD t0ð Þ
dt0

e�m t�t0ð Þ

¼ 2
R

D

� �2 ðT

0

dt e�lt
ðt

�1
dt0 e�lt0 e�m t�t0ð Þ

¼ 2
l

1� e�lTð Þ
� �2 ðT

0

dt e� lþmð Þt
ðt

�1
dt0 e� l�mð Þt0

¼ 2

l� m
l

1� e�lTð Þ
� �2 ðT

0

dt e� lþmð Þt 1� e� l�mð Þt
� �

¼ 2

l� m
l

1� e�lTð Þ
� �2

1� e� lþmð Þt

lþ m
� 1� e�2lT

2l

� �

(10.28)

By again expanding the exponentials of (10.28) to

second order, it is seen, after some algebraic manipu-

lation, that the dose-protraction factor G ! 1 as

T ! 0. For nuclear medicine dosimetry, one would

want to calculate G1, which is the value for G as

T ! 1 and t ! 1,

G1 ¼ l
lþ m

(10.29)

This G1 term is plotted in Fig. 10.25 as a function

of the ratio of the decay to repair constants, l=m. From
this figure, G1 ! 1 as l=m ! 1.

The absorbed dose rate to a given tissue as a result

of the administration of a radionuclide generally does

not follow a simple monoexponential decrease It takes

a finite amount of time for the tissue to uptake the

radionuclide and the biokinetics are frequently such

that washout follows a multiexponential temporal

behavior. The Lea–Catcheside factor can be calculated

by modeling the absorbed dose as a superposition of

weighted exponential terms and calculating each sep-

arately and the final result obtained by the weighted

summation of terms.

10.3.3 Biologically Equivalent Dose

From (10.14), the logarithm of the fraction of cells of a

population that has been irradiated to an absorbed dose

D is given as,

� ln S ¼ aDþ bGD2 (10.30)

The negative logarithm of the fractional survival is

replaced by defining it as the biological effect of

interest, E 	 � ln S. For a single acute absorbed

dose given over a time duration much less than

that time required for repair, we can then set the

Lea–Catcheside factor G ¼ 1 and the biological effect

as,

E ¼ aDþ bD2: (10.31)

Now, consider the case if the same net absorbed

dose is administered but now expended over n frac-

tions so as to enable damage repair between fractions.

As the absorbed dose per fraction is d ¼ D=n, the

biological effect for fractionated radiotherapy is,

E ¼ n adþ bd2
� �

¼ and 1þ d
a=b

 !

¼ aD 1þ d
a=b

 !
:

(10.32)

Dividing through by a gives,

BED ¼ D 1þ d
a=b

 !
: (10.33)
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Fig. 10.25 Lea–Catcheside dose-protraction factor at infinite

time for exponentially-decreasing absorbed dose rate as a func-

tion of the ratio of the effective decay constant (accounting for

both physical decay and biological washout) to the repair time

constant, l=m
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BED 	 E=a is the biologically equivalent dose6

and is equal to the product of the total absorbed dose

and the factor 1þ d
a=b

� �
. This latter factor is itself

known as the relative effectiveness, RE, so that the

definition of the BED can be written as,

BED ¼ D� RE: (10.34)

The relative effectiveness for a constant absorbed

dose rate R for time T is,

RE ¼ 1þ R mTþ e�mT � 1ð Þ
m2 T a=b

(10.35)

For the case of the continuous and exponentially-

decreasing absorbed dose rate of (10.26),

BED ¼ D 1þ G1R

l a=b
� �

0
@

1
A: (10.36)

Hence,

BED ¼ R

l
� RE (10.37)

and the relative effectiveness is,

RE ¼ 1þ R

lþ mð Þ a=b
� � (10.38)

It would be useful at this point to employ an exam-

ple to describe a practical use of these results. Con-

sider the case of a tumor (with the ratio a=b ¼ 10Gy

and repair constant m ¼ 0.5h�1) to be treated with
131I through internal administration. The effective

half-life of the radionuclide in the tumor, accounting

for both the biological washout and the physical decay

of the isotope, is taken to be 5 days (i.e., l ¼ 0.006h�1).

One wishes to determine the initial absorbed dose rate

required with the radionuclide therapy using 131I so as

to achieve the total absorbed dose required to achieve

the same biological effect as if the tumor had been

treated to a total absorbed dose of 50 Gy over a period

of 5 days using a 137Cs source. As the half-life of 137Cs

is far greater than the 5-day treatment time, we can

treat it as a source of radiation providing a constant

absorbed dose rate of 0.417 Gy/h to the tumor. Using

(10.33), the biologically equivalent dose is 58.2 Gy.

Substituting (10.34) into (10.37) and solving for the

absorbed dose rate R from 131I administered internally

for this value of the BED, R ¼ 0.324 Gy/h. The result-

ing total absorbed dose from the 131I radionuclide

therapy is 54 Gy, which is the absorbed dose required

to yield the same biological effect upon the tumor as

delivering 50 Gy to it continuously over 5 days by a
137Cs source. Further discussion in relation to applica-

tions to the medical internal radiation dose (MIRD)

schema can be found in Baechler et al. (2008).

10.3.4 Effects of Repopulation

The above derivations neglected cell population

growth in order to simplify the various derivations.

But, in reality, cells within a population (e.g., a tumor)

can proliferate during and following irradiation which

will result in a reduction of the BED (Dale 1996).

This effect can be accounted for, admittedly crudely,

by modifying the expression for the biologically effec-

tive dose to include a reductive factor in (10.37),

BED ¼ R

l
� RE� ln 2

a
t

TPot

(10.39)

where it has been assumed that the clonogens increase

exponentially over time t and where TPot is defined to

be the potential doubling time of the cell population.

Hence, the ratio t=TPot gives the number of cell dou-

blings during t.

10.3.5 Applications of the Linear-
Quadratic Model to Internal
Radiation Dosimetry

10.3.5.1 Introduction

The applications of the LQ model to address problems

in internal radiation dosimetry began with the seminal

paper by Dale (1985).

6Also referred to as the extrapolated response dose (Wheldon

and O’Donoghue 1990) or as the biologically effective dose.
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10.3.5.2 a/b Ratios

Recall that the a=b ratio is the absorbed dose at which

the linear and quadratic contributions to the biological

effect are equal. Thus, in terms of the description

offered by the cell survival curve, the curve will be

shallower and more slowly bending for cells with high

a=b ratios and correspondingly steeper and more

curved for cells with low a=b ratios. In general, late

reacting tissues are slowly dividing and have low a=b
ratios of the order of 3 Gy or so. Acutely-reacting

tissues, which are more rapidly dividing (such as neo-

plasia, skin, and intestinal epithelium), have higher

a=b ratios, with values typically about 10 Gy.

10.4 Human Somatic Effects of Ionizing
Radiation

10.4.1 Introduction

Cellular radiobiology enables both the estimation of the

probability of cellular death or mutation as a conse-

quence of exposure to ionizing radiation and the study

of various influencing effects such as hypoxia and

absorbed dose rate. While investigations of irradiated

cells or colonies of cells are fundamental to understand-

ing both the risks posed by ionizing radiation and how

these risks can be modified or mitigated against, extrap-

olation of these cellular data to the metazoan level in

order to predict unequivocally the effects of ionizing

radiation upon the human is not possible. Consequently,

the estimations of risk and effect resulting frommedical

exposures to ionizing radiation are reliant upon the

experiences of exposures of human populations to ion-

izing radiation. In particular, because radiation-induced

mutations and their consequences are no different than

those that occur spontaneously or through other insults

(e.g., chemical or viral), the effects of ionizing radia-

tions at the low absorbed doses associated with medical

imaging are assessed through epidemiological studies

in which large cohorts of irradiated individuals are

compared with large unirradiated populations in order

to observe statistically the elevated incidence of a muta-

tion or its effect resulting from ionizing radiation. These

epidemiological sources are the subject of the following

subsection.

A significant problem in estimating radiation risk is

that many of these sources of human radiation expo-

sure data are for absorbed doses that are much greater

than those typical of medical diagnostic exposures.

In order to use these data (e.g., elevated risk of cancer

per unit absorbed dose) to estimate the risk to the

patient receiving much lower doses, cellular radiobi-

ology can be called upon to guide the development

of dose–response models that can extrapolate from

high absorbed dose epidemiological risks to those

at the low absorbed doses associated with medical

diagnostic procedures, including nuclear medicine.

Figure 10.26 presents the difficulty of estimating the

risk associated with the low absorbed doses due to

medical imaging exposures (here, the risk is the excess

cancer mortality rate (ECMR) beyond that observed in

a population unexposed to radiation7) by using the

risks determined through epidemiological studies at

higher absorbed doses. Although these latter risks are

subject to bias and confounding and are determined by
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Fig. 10.26 Conceptual representation of the extrapolation

of epidemiological dose–response data of ECMR from high

absorbed doses to the low absorbed doses typical of medical

imaging procedures. Five extrapolation models are shown: linear

no threshold (LNT), linear threshold (LT), linear-quadratic (LQ),

hormesis (H), and a bimodal model which predicts an elevated

risk at low doses due to, for example, the bystander effect

7Such a condition is hardly achievable as all populations are

exposed to at least background radiation. Hence, the control

population would be that that was not exposed to the test

radiation.
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comparing a population exposed to known absorbed

doses against another matched unexposed population.

Ideal matching must be in terms of age, sex, race, and

exposure to other confounding carcinogens such as

tobacco. Clearly, this isolation and matching of

cohorts is difficult to achieve. Moreover, the uncer-

tainty bars associated with the determined risk values

are inherently large. Even assuming that perfect statis-

tical matching of the populations is obtained, the

observed risks must then be extrapolated to the low

absorbed doses of interest accounting for the effects of

absorbed dose rate, the LET of the radiation creating

the absorbed dose and the above noted characteristics

of the exposed and unexposed populations. Clearly,

this is not a trivial problem to address and the inter-

ested reader is advised to consult, for example, the

BEIR V and BEIR VII reports (National Research

Council 1990, 2006) for a full exposition of the practi-

calities. What is of interest is, following from the

earlier review of radiobiology, are the different types

of radiobiological models used to extrapolate from the

absorbed doses of the measured data to the range of

absorbed doses of interest to us so as to provide an

estimate of the risk associated with a diagnostic

nuclear medicine study. Clearly, the first requirement

of the extrapolation model is that it be able to repro-

duce the observed risks at higher absorbed doses and

to then “sensibly” extrapolate to the low absorbed

doses of interest to us. Radiobiology can guide the

selection of an appropriate model. As a result, differ-

ent estimates of risks at the absorbed dose range of

clinical interest occur.

Five dose–response models for the ECMR are pre-

sented in Fig. 10.26.

Linear no threshold (LNT) response: This is the

simplest dose-risk model in which the risk is consid-

ered to be proportional to absorbed dose,

ECMR ¼ aLNT D (10.40)

where D is the absorbed dose and aLNT is a constant

of proportionality. This model predicts that there is

always an excess risk of cancer induction and mor-

tality as a function of dose and is only zero (i.e.,

equal to that which “naturally” occurs) at zero

absorbed dose. This is perhaps the basic dose–

response model in that it assumes that ionizing radi-

ation produces irrepairable DNA lesions and that

repair is neglected.

Linear threshold (LT) response: This dose–

response model is a variant of the LT model, Here,

the effect of sublethal cellular repair is accounted for

in a simplistic fashion in that the model assumes that

there is no risk of excess cancer mortality below some

absorbed dose threshold, DT,

ECMR ¼ 0 D � DT

¼ aLT D D>DT:
(10.41)

Our understanding of the repair of sublethal and

potentially lethal damages does not account for the

existence of a threshold absorbed dose, DT, below

which stochastic radiation damage cannot occur. This

requires more involved appreciations of the effects of

the absorbed dose rate, times between fractionated

radiation exposures and environmental conditions.

Hence, this is a simplistic model which implies that,

at absorbed doses less than DT, individual cells can

repair radiation damage or, somatically, the body can

eradicate any nascent tumors through, for example,

an immunological response.

LQ response: From the earlier discussion of the LQ

model, it is possible to hypothesize that the risk

behaves in the form,

ECMR ¼ aLQ Dþ bLQ D2 (10.42)

where the first term describes the effects of fatal DSBs

and the quadratic term describes the effects of second-

ary DSBs. The Lea–Catcheside factor describing sub-

lethal repair of initial DSBs is not included in this

expression.

Hormetic (H) response: This is a controversial dose–

response model in which it is assumed that the exposure

to very low absorbed doses of radiation triggers an

immunological response sufficient to eliminate any

neoplasms. As a result, the cancer risk of the irradiated

population is lower than that of a corresponding unirra-

diated population. This effect then reverses with

increasing absorbed dose to present a risk that increases

with absorbed dose (Luckey 1991).

Bystander response: It has been described how the

bystander effect can lead to an elevated response at

low absorbed doses. Should this model be valid, then

there would be an increase in risk response at lower

absorbed doses. However, such an effect would be

difficult to discern in nuclear medicine due to the
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distribution of radioactivity within the body (Sgouros

et al. 2007).

It is difficult to select from these models one that is

appropriate for predicting effects at low absorbed

doses and which is what would be regarded as a

“reasonable” extrapolation from epidemiological

data. For the purposes of the protection of the patient,

the radiation worker or any other individual exposed to

ionizing radiation, the most conservative model link-

ing risk to absorbed dose is the LNT model. It is

currently regarded that the scientific arguments and

supporting epidemiological data for the use of the

LT, LQ, bystander, and hormetic models in radiation

protection are insufficient to cause abandonment of the

LNT model. Hence, the use of the LNT model in

radiation protection is still recommended in both Inter-

national Commission on Radiological Protection

(ICRP) Publication 103 (ICRP 2007) and the BEIR

VII report of the National Academy of Sciences. This

recommendation is, however, most certainly not with-

out controversy. Whereas most epidemiological stud-

ies suggest that there is no evidence for cancer

induction at effective doses (to be defined later)

below about 150 mSv, which is 10–40 times greater

than that received in most diagnostic nuclear medicine

procedures, there has been indications that effective

doses as low as even 10 mSv, which is of the order of

magnitude of most diagnostic nuclear medicine stud-

ies, can be associated with the induction of solid

tumors (Brenner and Hall 2007).

10.4.2 Epidemiological Sources
of Human Data

Observations of the effects of ionizing radiation upon

individual cells are insufficient to predict somatic

effects. Inevitably, though, an understanding of the

potential risk posed by exposure to ionizing radiation

can only be obtained from analyses of populations of

individuals exposed to ionizing radiation.

10.4.2.1 Nuclear Bombings of Hiroshima

and Nagasaki

The largest cohort of individuals exposed to ionizing

radiation is that of the survivors of the nuclear bombings

of Hiroshima and Nagasaki at the end of the Second

World War. The life span study (LSS) population

consists of 120,321 individuals who were resident in

those two cities in 1950, of whom 91,228 were pre-

sent at the times of the detonations. This population

has been followed up since that date. The population

present at the detonations was made up of two sub-

cohorts: one made up of survivors who were within

2.5 km of the detonations’ hypocenters and a similar-

sized control group who were between 3 and 10 km

from the hypocenters and who received negligible

absorbed doses.

This population presents three significant advan-

tages in minimizing bias in estimating the risks result-

ing from exposure to ionizing radiation. First, it is a

large heterogeneous population in terms of age and

sex. Second, no bias is introduced in terms of disease

(as in long-term survivors of radiotherapy) and occu-

pation (as in radiation workers). Third, exposures were

of the whole body enabling the assessment and com-

parison of cancer risks at different anatomical sites.

However, there were a number of significant difficul-

ties in estimating the absorbed doses received by indi-

viduals that were not resolved until 1980s (Radiation

Effects Research 1987a, b; National Research Council

1990). The fissioning of both weapons produced neu-

trons and g rays. Neutrons elastically scatter from

protons in tissue and the secondary protons, due to

their mass, present a high-LET radiation compared to

the Compton electrons and photoelectrons set in

motion by the g rays. As Fig. 10.15 indicates, the

LET-dependence of biological effects requires a

clear separation of the contributions of neutrons and

photons to the absorbed dose received in order to

isolate their biological effects. The neutron fluences

of both weapons differed because of their designs.8

Earlier estimates of the neutron and photon absorbed

doses grossly overestimated that due to neutrons due

to, among other things, not allowing for attenuation of

the neutron fluence by the water content (i.e., protons)

of the humid air. The neutron and photon fluences

have been estimated by Monte Carlo simulations,

postdetonation measurements using neutron- and

8The “Little Boy” weapon used at Hiroshima consisted of two

subcritical masses of 235U, one of which was fired into the other

to form a critical mass which subsequently fissioned. The “Fat

Man” weapon used at Nagasaki consisted of a subcritical spher-

ical mass of 239Pu which was imploded to form the critical mass.
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photon-emitting sources, and in situ measurements

such as thermoluminescent dosimetry of building

materials exposed to the blasts. Another factor of

importance in being able to apply the survivor data

(excess cancer incidence or mortality per unit

absorbed dose) to provide risk estimates is that the

exposure was essentially instantaneous. Recall that

the incidence of a biological effect for a given fixed

dose increases with dose rate. This, plus consideration

of the extrapolation to low absorbed doses, requires

that the application of the bomb survivor data incor-

porates a dose and dose-rate effectiveness factor

(DDREF) to correct for the prompt exposure and

arrive at a risk estimate more appropriate to protracted

exposure to low absorbed doses. Figure 10.27 demon-

strates how this factor was obtained in the BEIR VII

report. The value of the DDREF is 2, but it is recog-

nized that there is considerable uncertainty associated

with this value (ICRP 2007).

There, however, remain two major complicating

factors to be accounted for. First, during the conditions

of war at the time, the Japanese population were

malnourished and their intrinsic susceptibility to the

effects of ionizing radiation could have been elevated

thus increasing the estimates of risk per unit absorbed

dose. The second, and countering effect, is that of the

“healthy survivor.” This effect predicts that the survi-

vor had a predisposition to surviving prior to exposure

to radiation and, as a result, would tend to decrease the

estimate of risk per unit absorbed dose.

10.4.2.2 Medical Exposures: Examples

Retrospective analyses of cancer incidence in patient

populations who have undergone medical exposures to

ionizing radiation have, in general, the advantages of

consistent and extended follow-up periods and the

availability of accurate dosimetry data. Unfortunately,

these populations can introduce a significant bias as a

result of the disease for which they have been exposed

to ionizing radiation.

There are two groups of medically-exposed sub-

jects to be considered. The first is that made up of

long-term surviving radiation oncology patients. Here,

the exposed tissues and organs of interest are not those

within the treatment portal, which receive a tumorici-

dal absorbed dose, but rather those extraneous to it

and which receive only scattered radiation and much

lower absorbed doses. Clearly, the requirement of the

subjects to have survived for an extended period

(beyond the latency period in order for a radiogenic

cancer to be manifest) limits such cohorts to specific

cancers and radiotherapy regimes with high survival

probabilities. These include, for example, cancers of

the cervix and breast and Hodgkin’s disease (lym-

phoma). The second group is that of patients that

have undergone diagnostic imaging procedures.

While the magnitude of the absorbed doses received

by this latter population are typical of those of interest

to our application to nuclear medicine, it is generally

far more difficult to retrospectively estimate the

absorbed dose in these patients than for the therapeutic

patients.

Secondary Neoplasia in Radiotherapy Patients

Patients suffering from cancers are frequently treated

with ionizing radiation with curative intent; in fact,

about half of all oncology patients receive radiother-

apy during the course of treatment of their disease

(Ron 1998). Radiotherapy is performed predominantly

with X-rays or high-energy electrons produced by

linear accelerators or g rays from a radioisotope source

(e.g., 60Co, 137Cs). Proton irradiation is growing as a

means of therapy, particularly in the United States of
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Fig. 10.27 The rationale for the dose and dose-rate effective-

ness factor (DDREF) defined in the BEIR VII (2006) report for a

hypothetical dose–response curve. A linear approximation at

low absorbed doses (i.e., the tangent to the curve at zero

absorbed dose) yields the slope sL. At higher absorbed doses,

where the response is linear, an extrapolated slope sH is

obtained. The DDREF is the ratio of these two slopes
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America, and, historically, pions and heavy ions have

been used. Those patients with long survival times can

express secondary tumors attributable to the therapeu-

tic ionizing radiation they have received. These sec-

ondary malignancies can occur in regions outside the

primary therapy portal (within which the radiation

absorbed dose would have been intended to tumorici-

dal, with absorbed doses of the order of 50 Gy and

greater) due to radiation scattered from the irradiated

volume or from leakage radiation emitted by the treat-

ment device. The magnitudes of the absorbed doses in

these peripheral regions can be similar to those expe-

rienced in diagnostic imaging procedures and the

detailed radiation prescriptions and treatment plans

allow accurate retrospective estimation of doses at

such sites. Even so, as the doses of interest for estimat-

ing the radiation risk associated with diagnostic levels

of absorbed dose are of the order of tens of mGy

compared to the therapeutic absorbed doses of tens

Gy, accurate measurement, or calculation of such

peripheral doses for radiotherapy patients receiving

high absorbed doses within the treatment portal is

challenging and frequently necessary (McParland

and Fair 1992; Stovall et al. 1995).

Three populations of long-term surviving oncology

patients treated with radiation have provided the most

abundant data.

Cervical cancer: Long-term survivors treated for

cervical cancer have provided a significant cohort to

assess radiocarcinogenesis as a result of exposure to

low absorbed doses. Radiotherapy is provided through

intracavitary 137Cs sources9 within the cervix and/or

uterus or external radiation beam therapy to give high

absorbed doses to the cervix and uterus (several tens of

Gy). Peripheral tissues will also receive a radiation

absorbed dose due to the Compton scattering of

photons from the treatment volume. Absorbed doses

to the active bone marrow has been estimated to be as

high as 7 Gy; absorbed doses to the breast and lung

tissue are estimated to be of the order of 300 mGy

and that to the thyroid is estimated to be 100 mGy

(Kleinerman et al. 1995). Epidemiological studies by

Boice et al. (1985) and extended by Kleinerman et al.

were conducted for up to some 7,543 secondary can-

cers resulting from about 200,000 cervical cancer

patients reviewed in eight countries. Specific details

of the elevated risks of secondary cancers in these

long-term survivors can be found in the original pub-

lications or in the BEIR V and VII reports.

Hodgkin’s disease: Another cohort of long-term

radiotherapy survivors are those treated by radiation

for Hodgkin’s disease. This is a lymphoma predomi-

nantly of younger populations and is frequently treated

successfully with radiation, usually in conjunction

with chemotherapy. As a result of its extended shape

and location, the primary radiation portal is referred to

as the “mantle field” due to its encompassing the

axillary, mediastinal, and cervical lymph nodes. Addi-

tional radiation portals can be used to irradiate the

spleen and Waldeyer’s ring. This combination of a

young age and a long survival time lends well to

follow-up studies of secondary cancers attributable to

scattered radiation received by tissues peripheral to the

primary radiation field. In particular, the extended

radiation field leads to the investigation of secondary

cancers such as leukemia and solid cancers of the

breast and lung.

Breast cancer: Long-term survivors of breast can-

cer treated with radiation provide yet another cohort of

subjects at risk to secondary cancers attributable to the

therapeutic radiation field. Lung cancer, leukemia, and

contralateral breast cancer have been studied as

sequelae due to radiotherapy of primary breast cancer

with retrospective dose estimation derivable from

measurement (McParland 1990).

Radiation therapy has also been used for benign

conditions, of which three significant cohorts providing

data of radiation-induced cancer risk are summarized.

Ankylosing spondylitis: This is a chronic arthritis

affecting the spine and sacroiliac joints. Between 1935

and 1957, radiotherapy was used in the United King-

dom for the treatment of this disease. A cohort of

14,566 patients received spinal irradiation and was

followed up into the 1990s (Weiss et al. 1994); the

radiation dosimetry was estimated by Monte Carlo

simulations of a sample of patients. The cancer mor-

tality rate amongst the irradiated patients was signifi-

cantly greater than those expected from rates in

England and Wales, with significant increases seen in

leukemia, non-Hodgkin’s lymphoma, multiple mye-

loma, and solid tumors of the esophagus, pancreas,

lung, urinary bladder wall, and kidney.

9In much earlier times during the twentieth century, 226Ra

sources were used. These were largely supplanted by safer
137Cs sources in the 1970s and 1980s.
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Tinea capitis: This is a fungal infection of the scalp

and the use of X-rays to epilate the scalp was a fre-

quent means of treating the infection. For example,

between 1948 and 1960 in Israel, approximately

20,000 children were treated in such a manner (Ron

et al. 1998). Epidemiological studies of children irra-

diated for tinea capitis revealed elevated incidences of

brain tumors (glioblastoma and meningioma); a fol-

low-up of 2,215 patients was performed for 25 years

postirradiation (Shore et al. 1976).

Postpartum mastitis: Prior to the introduction of

antibiotics and sulfonamides, irradiation was a fre-

quent mode of treatment for inflammatory conditions.

Some 601 women between 20 and 40 years of age

were treated with radiation in the state of New York

for postpartum mastitis during the 1940s and 1950s

and received absorbed doses to breast tissue between

60 cGy and 14 Gy and exposures. This exposed

cohort was compared against 1,239 women suffering

from the same condition but who did not receive

radiotherapy.

Cancers Arising from Diagnostic Imaging

Procedures

Assessing the elevated risks of radiation-induced can-

cers from patient cohorts exposed to ionizing radiation

in diagnostic imaging procedures can be difficult as

accurate retrospective assessment of the absorbed dose

and the anatomical sites being imaged is not as easy to

achieve as with patients receiving therapeutic expo-

sures. On the other hand, the sizes of populations

undergoing diagnostic procedures are greater than

those undergoing therapy and do not have the con-

founding factor of differentiating between “naturally-

occurring” and radiation-induced secondary cancers

arising in a patient having demonstrated a predisposi-

tion to malignancy. Moreover, they received absorbed

doses with approximately the same magnitude for

which one wishes to assess the risks associated with

imaging. This latter point is a double-edged sword:

although the low magnitudes of absorbed doses are

comparable to the problem at hand, the concurrent

reduction in cancer risk requires greater population

sizes in order to derive a statistically-valid estimate

of cancer risk per unit absorbed dose.

Fluoroscopy-aided artificial pneumothrax in

treatment of pulmonary tuberculosis: A theoretical

approach to treating patients suffering from pulmo-

nary tuberculosis developed in the nineteenth century

was to induce an artificial pneumothorax allowing

drainage of the pleural space and cicatrization of

pulmonary injuries. Beginning in the early part of

the twentieth century, this therapeutic technique

was coupled with fluoroscopic review which led to

large numbers of patients being exposed to X-irradi-

ation. Three epidemiological studies following up

women having received multiple fluoroscopies in

conjunction with artificial pneumothorax have

provided significant data on radiation risk associated

with the exposure of certain organs. The first consists

of 31,710 women in Canada who received fluoros-

copy-associated artificial pneumothorax therapy

between 1930 and 1952, with many receiving multi-

ple fluoroscopies with wide ranges of fractionations

(e.g., BEIR VII reports a mean number of 92 fluo-

roscopy-aided artificial pneumothorax procedures

per patient over periods of up to 2 years). Of this

population, 8,380 received an absorbed dose to the

breast exceeding 10 cGy (with a maximum exceeding

2 Gy). Of particular interest is the fact that patients in

the Canadian province of Nova Scotia were generally

imaged in the anterioposterior view (i.e., the X-rays

incident to the patient’s anterior) whereas the poste-

rior–anterior view was prevalent elsewhere. The for-

mer patients would clearly receive a much higher

absorbed dose to the breast.

Thorium-based vascular contrast medium: The

radiation exposure of interest here is not that from

the external X-ray beam, but rather that due to the

radioactive thorium used in the vascular contrast.

Thorotrast was a vascular contrast agent consisting

of ThO2 in a colloidal suspension used in the 1930s

and 1940s. Thorium was selected for this application

due to its high atomic number (Z ¼ 90) and conse-

quent high photoelectric absorption cross section

allowing visualization of the vasculature in X-ray

imaging. However, its dominant isotope is 232Th

which is an a emitter with a half-life of 14.1 � 109

years; the a particle has a kinetic energy of 4.1 MeV.

There is a high uptake of the 232Th by the liver, spleen,

and bone. Liver washout is especially slow and in

excess of 20 years. Follow-up studies in Europe,

Japan, and the United States of America of those

patients receiving Thorotrast have been conducted. In

such studies, the absorbed dose to the liver from the a
particles was estimated to be as high as 2 Gy and
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elevated incidences of angiosarcomas, biliary duct

carcinomas, and hepatocellular carcinomas with a

risk of the order of 3 � 10�2/man-Gy for a latency

period of 20 years.

In utero exposures: Of particular practical clinical
nuclear medicine interest is the risk to the irradiated

embryo or fetus. As proliferative cells are more radio-

sensitive than those that are not, the risk to the irra-

diated in utero being is expected to be elevated and,

thus, of obvious concern. This has a specific clinical

bearing as the leading risk of death during pregnancy

is pulmonary embolism (PE) thus requiring imaging

through either CT perfusion angiography or ventila-

tion–perfusion scintigraphy, both of which contribute

a radiation dose to the fetus. The Oxford Survey of

Childhood Cancers (Stewart et al. 1956, 1958) and its

reanalysis by Bithell and Stiller (1988) and a study

conducted in the state of New England in the United

States of America (MacMahon 1962) investigated

the incidence of childhood cancer following in utero

irradiation from diagnostic X-rays. The latter was

extended to consider cancer mortality amongst

1,429,400 American children and demonstrated an

excess in cancer incidence in those irradiated with

X-rays in utero.

10.4.2.3 Occupational Exposures

Miners

One cohort exposed to radiation in the course of their

occupation was miners. These individuals were chron-

ically exposed to a particles resulting from the radio-

active decays of 222Rn and 226Rn which are isotopes

of radon which is an inert gas and a daughter product

of 226Ra.

Radiologists

The comparison of the cancer mortality rate of radi-

ologists with those of other medical practitioners is

based upon the expectation that radiologists practicing

in the early part of the twentieth century were more

likely to have received higher radiation absorbed

doses due to then-primitive radiation protection prac-

tices than other physicians or radiologists who

practiced in the latter part of the twentieth century.

Berrington et al. (2001) reported on an analysis of

the causes of death of 2,690 radiologists registered in

the United Kingdom and Ireland between 1897 and

1997 which found increased cancer mortality amongst

radiologists registered up to 1954 compared to other

physicians. After that year, there was no difference in

the cancer mortality risks of radiologists and other

physicians. The discussion, however, of radiologist

risk has not been without debate and further examina-

tion (Cameron 2002; Doll et al. 2005).

Nuclear Workers

These cohorts are made up of individuals working in

the civilian nuclear power industry and in shipyards

building and servicing nuclear-propelled vessels such

as submarines. A study of in excess of 95,000 workers

in the United Kingdom, United States of America, and

Canada demonstrated no excess risk in solid tumors,

but a slight excess in leukemia in the United Kingdom

cohorts was observed (Hall and Giaccia 2006).

Radium Dial Painters

This is perhaps the best-known cohort of individuals

exposed to radiation through their occupation. These

were workers who painted dials of watches and clocks

with a radium-containing paint that fluoresced and was

visible in the dark. They were predominantly women

and who frequently shaped the paint brush with their

lips, thus ingesting 226Ra. Elevated incidences of

osteosarcomas were observed (as there is high uptake

of radium by bone) and of carcinomas in the paranasal

sinuses and mastoid air cells, the latter presumably due

to the radon gas product of the radium decay.

10.4.2.4 Chernobyl

The greatest recognized population accidentally

exposed to ionizing radiation were those individuals

living in the vicinity of the Chernobyl nuclear power

reactor at the time of its explosion and of the fire-

fighters sent to the site. Many of the latter suffered

high radiation exposures and died, despite attempts at

salvage through bone marrow transplantation, of

symptoms reflective of the GI syndrome described in
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the following subsection. Of particular interests in the

former population were the incidences of thyroid can-

cers due to the release of the fission product 131I into

the environment.

10.4.3 Radiation Pathologies

10.4.3.1 Introduction

Exposure of the whole body, or of specific sensitive

organs or tissues, to high absorbed doses can culmi-

nate in acute effects leading to death. In diagnostic

nuclear medicine, this acute radiation syndrome is not

reached due to the very low amounts of administered

activity and the consequent low organ absorbed doses.

This is often not the case in therapeutic nuclear medi-

cine where the radiotoxicities of red bone marrow

(which leads to the hematopoietic syndrome) and

kidney (leading to nephrotoxicity) can often limit the

amount of administered activity.

Most data of the effects of total-body exposure to

high absorbed doses of radiation are derived from

animal experiments; human data are limited primarily

to experiences of radiotherapy patients, the survivors

of the Hiroshima and Nagasaki nuclear bombings and

accidental exposures. Hall and Giaccia (2006) report

that throughout the world some 120 fatalities resulted

from radiation exposures arising from accidents

involving radioactive material occurring between

1944 and 1999.

For a given population, the percentage of mortal-

ities as a function of absorbed dose follows a sigmoi-

dal curve, as shown in Fig. 10.28. The median lethal

dose, labeled as LD50, is about 400 cGy for humans (in

the absence of therapy, such as bone marrow salvage).

Immediately following the exposure of a large part of

the body to an absorbed dose exceeding the order of

50 cGy, early transitory symptoms appear. At absorbed

doses comparable to the LD50 value given above, the

resulting symptoms of irradiation include anorexia, nau-

sea, and vomiting. At supralethal absorbed doses, the

symptoms include diarrhea and hypotension, referred to

as the prodromal radiation syndrome. This prodromal

reaction is followed by a largely asymptomatic latent

period, the duration of which is largely dictated by the

kinetics of cell depletion in the irradiated tissues; an

exception to this is the cerebrovascular syndrome for

which the onset of death is rapid. Hematologic aplasia

can be evident at absorbed doses as low as 50 cGywith a

decrease in circulating lymphocyte counts.

10.4.3.2 Cerebrovascular Syndrome

A whole-body dose of the order of 50–100 Gy will

result in death within 48 h of exposure.10 While all

organ systems will be severely damaged as a result of

such an irradiation, cerebrovascular damage brings

death so rapidly that these other organ system effects

cannot be manifested. The exact cause of death from

the cerebrovascular syndrome is not clear. It has been

typically attributed to cerebral edema, with extravasa-

tion of fluid, macrophages, and granulocytes into the

brain and meninges. However, this description may

not present the complete case as much higher absorbed

doses are required to bring on this syndrome should

only the brain be irradiated.

10.4.3.3 Gastrointestinal Syndrome

At whole-body absorbed doses of the order of 10 Gy,

cells in the epithelial lining of the GI tract are
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Fig. 10.28 A sigmoidal curve describing the mortality-

absorbed dose relationship without salvage. The LD50 for the

human is about 400 cGy

10In these discussions, we assume that the exposure is to photons

(X or g rays); due to the high-LET of the resulting recoil protons,

the biological effects can be achieved at lower absorbed doses of

neutrons.
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depleted. The organization of this lining is that of self-

renewing tissue. The mucosal walls of the intestine are

covered by villi (as shown diagrammatically in

Fig. 10.29) at a density of 20–40 villi/mm2 and each

villus projects about 0.5–1 mm and is covered by a

single layer of columnar epithelium. The mucosa of

the intestinal villi can be divided into four compart-

ments. The stem cell compartment is at the base of the

villus (the crypt of Lieberkühn) which is a region of

great mitotic activity. Progressing up the villus, the

cell differentiating compartment is found which also

has a high mitotic index: this produces the functional

cells which are found at the tip of the villus. Finally, at

the villus’ tip, the spent functional cells are sloughed

off into the intestinal lumen.

Following irradiation to absorbed doses of about

10 Gy, the crypt and differentiating cells are killed off

but the extrusion of the functional cells from the villi

tips continues. As the villi surfaces are sloughed off

due to the normal transit of material through the intes-

tines, the villi begin to contract and, due to the non-

replacement of the extruded cells, breaches of the

intestinal lining occur in regions of denuded intestine

leading to infection by intestinal flora. The presenta-

tion of denuded intestinal wall occurs a few days

postirradiation in the human and the distal end of the

irradiated small intestine is unable to resorb bile salts

which enter the large intestine causing irritation and

diarrhea. Because the magnitude of the absorbed dose

will also lead to the individual being immunocompro-

mised, any infections that occur within the intestinal

wall can spread. Death in the human can subsequently

occurs within a few days following irradiation.

10.4.3.4 Hematopoietic Syndrome

Whereas the cerebrovascular and GI syndromes are

associated with high absorbed doses that are presented

only in extreme circumstances, the hematopoietic syn-

drome can occur for absorbed doses comparable to

those experienced in radiotherapy. Indeed, this syn-

drome presents the barrier of radiotoxicity to many

approaches of radionuclide therapy. For absorbed

doses of between 2.5 and 5 Gy, mitotically-active

stem cells are killed off and the supply of erythrocytes

and leukocytes is markedly diminished. The pathology

resulting from the exposure to radiation does not occur

until a number of weeks later when the circulating

mature blood cells die off and the precursor cell supply

is compromised.

10.4.4 Deterministic (Non-Stochastic)
Effects

10.4.4.1 Introduction

This subsection reviews determinisitic effects asso-

ciated with lower absorbed doses than those linked to

the pathologies of the cerebrovascular, GI, or hemato-

poietic syndromes. The absorbed doses required to

induce such pathologies are not typical of diagnostic

medical procedures, although the radiotoxicity asso-

ciated with the hematopoietic syndrome is a dose-

limiting factor in therapeutic nuclear medicine. A

deterministic effect is defined as a radiation effect in

which there is an absorbed dose threshold of expres-

sion. Below this absorbed dose, there is no manifesta-

tion of an effect; but once this threshold is breached, the

pathology becomes apparent and the degree of severity

of the effect increases with absorbed dose, as shown in

Fig. 10.30. Because of variations between individuals,

the absorbed dose threshold is highly variably over a

population. Table 10.3 summarizes absorbed dose

levels at which such effects can become apparent.

10.4.4.2 Erythema and Epilation

These effects are observed in radiation therapy due to

the high absorbed doses involved. They are, however,
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Fig. 10.29 Diagrammatic representation of the intestinal wall

10.4 Human Somatic Effects of Ionizing Radiation 439



not associated with either diagnostic or therapeutic

nuclear medicine, but have been associated with

some extreme forms of diagnostic exposures received

in fluoroscopy examinations.

10.4.4.3 Sterilization

The effects of ionizing radiation upon individual germ

cells have been described previously. Because of the

difference between male and female gonadal kinetics,

the induction of sterility differs between male and

female in terms of degree and absorbed dose. The

absorbed dose thresholds for temporary and perma-

nent sterility are summarized in Table 10.3

10.4.4.4 Cataractogenesis

A cataract is any change in the transparency of the lens

and it has long been recognized that exposure of the

eye to ionizing radiation can result in the induction of

a cataract. Cataractogenesis has been detected in both

patient and medical practitioner as a result of diagnos-

tic imaging irradiation. As protracted exposures

require absorbed doses exceeding 5 Gy to the lens of

the eye in order to induce a cataract, this effect is

highly unlikely to result from a nuclear medicine pro-

cedure. However, it can be a potential risk associated

with irradiation of the eye in diagnostic procedures

such as cranial CT or fluoroscopy.

10.4.5 Stochastic Effects

10.4.5.1 Introduction

Stochastic effects are those for which the severity of

outcome is independent of radiation dose but the prob-

ability of occurrence increases with absorbed dose.

For example, consider a case of two women both

exposed to ionizing radiation but from which one

receives a higher absorbed dose to the breast than the

other. The probability of breast cancer induction in the

woman receiving the lower absorbed dose is expected

to be less than that of the woman receiving the higher

absorbed dose. However, the consequences of either

morbidity or mortality are equal should both cancers

be expressed in either woman, regardless of the prob-

ability of cancer induction. The stochastic effects

resulting from exposure to ionizing radiation of inter-

est are carcinogenesis and hereditary effects. Ionizing

radiation does not lead to new stochastic effects attrib-

utable to radiation alone: all that can occur is the

increase in the probability of the occurrence of delete-

rious effects which are manifested naturally.

There are two simple categories of epidemiological

models which describe the elevation in risk resulting

from exposure to ionizing radiation. The first is the

absolute risk model in which exposure to ionizing
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Fig. 10.30 Typical dose–response curves for a deterministic

effect. Below a threshold, there is no observable pathology but,

beyond which, the severity of the effect becomes manifest and

increases with absorbed dose. The absorbed dose at which this

effect is apparent varies among individuals as demonstrated by

the three curves

Table 10.3 Absorbed dose thresholds for a selection of deter-

ministic effects

Deterministic effect Approximate typical

threshold absorbed dose for

acute exposure (Gy) (50%

incidence in 5 years

postirradiation)

Bone marrow: aplasia 0.5

Liver: hepatitis 40

Brain: infarction and necrosis 70

Lung: pneumonitis 35

Kidney: nephrosclerosis 25

Sterility Female: permanent 60

Male: temporary 0.15

Male: permanent 50
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radiation additively increases the incidence rate above

the naturally-occurring rate. The second is the relative

risk model in which the implicit assumption is that

ionizing radiation merely increases the natural risk at

all ages of exposure by a given factor. For the example

of cancer, as the natural incidence of cancers increases

with age, the relative risk model emphasizes a greater

degree of radiocarcinogenesis in old age. A preferred

modification of the relative risk model is to incorporate

a time dependence. For example, let l be the rate of

cancer mortality of an irradiated population (e.g.,

the number of cancer deaths per unit population

exposed to radiation) and l0 be that rate in an unirradi-
ated population.

The epidemiological definition of the excess abso-

lute risk (EAR) of cancer mortality is defined as

EAR ¼ l� l0: (10.43)

The relative risk of cancer mortality is,

RR ¼ l
l0

(10.44)

and the excess relative risk (ERR) is, combining the

above two results,

ERR ¼ l� l0
l0

¼ RR� 1:

(10.45)

Note that both the relative and the ERRs are dimen-

sionless quantities.

10.4.5.2 Radiation Carcinogenesis

The incidence of cancer following the exposure to low

absorbed doses of ionizing radiation is of obvious

concern to diagnostic nuclear medicine. This subsec-

tion considers the risks of three specific radiogenic

cancers: leukemia, female breast, and thyroid. Models

derived from epidemiological data and presented in

the BEIR VII report are used in this subsection and

considered in the context of low-LET radiation typical

of diagnostic nuclear medicine. The risk is typically a

function of the sex of the individual, the age at which

exposure occurred, the age for which the risk is eval-

uated (i.e., time postexposure) and the absorbed dose

received by the tissue of interest.

Leukemia

Radiation-induced leukemia was the first cancer to

have been linked to the radiation exposures received

by the survivors of the nuclear bombing of Hiroshima

and Nagasaki (indeed, as from the deaths of many of

the pioneers of the radiation sciences, such as Marie

Curie). Moreover, it is recognized as being the cancer

with the highest relative risk following exposure to

ionizing radiation and is thus deserving of investiga-

tion. The BEIR VII parametric model of the ERR of

radiation-induced leukemia is a function of absorbed

dose, age of exposure, and of elapsed time following

exposure. The sex-specific model of the ERR is,

ERR ¼ bD 1þ yDð Þe ge�þd ln t=25þfe� ln t=25Þð (10.46)

where, for the consideration here of photon and elec-

tron radiation, D is the absorbed dose to the marrow

(i.e., we need not consider the equivalent dose) and the

mean estimated parameters are,

b ¼ 1:1Gy�1 Male

¼ 1:2Gy�1 Female;

e� ¼ e� 30

10
e � 30

¼ 0 e> 30

where e is the age at the time of exposure and the

further parameters are,

g ¼ �0:40 per decade

d ¼ �0.48

f ¼ 0.42

y ¼ 0.87 Gy�1.

t is the time postexposure in units of years.

Figure 10.31 shows a plot of the example of the ERR

per Gy for a female 20 years of age at the time of

exposure as a function of time following exposure,

The ERR per unit absorbed dose is elevated at early

times postexposure, eventually subsiding to unity at

about 45 years postexposure.

Breast Cancer

As the incidence of breast cancer incidence will vary

with culture, diet, etc., most calculations of the ERR

for radiogenic breast cancer are frequently referenced
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to North American women. Assuming, again, low-

LET radiation, the ERR of breast cancer above the

naturally-occurring rate, per Gy is modeled by the

function in age,

ERR ¼ 0:51
60

A

� �2

Gy�1 (10.47)

where A is the attained age in years. This ERR is

shown in Fig. 10.32 as a function of attained age.

Thyroid Cancer

The induction of thyroid cancer as a result of the

exposure of the thyroid gland to radiation due to, for

example, the high levels of radioactive iodine uptake

by the population of the Marshall Islands who were

subject to the radioactive fallout of the BRAVO ther-

monuclear bomb test in 1954 and those exposed to the

radioactive fallout of the Chernobyl accident in 1986,

is well quantified. For low-LET radiation, the BEIR

VII model of thyroid cancer incidence as a function of

age at the time of exposure is,

ERR ¼ be�0:083 e�30
30ð Þ (10.48)

where b ¼ 0.53 for males, b ¼ 1.05 for females and

where e is the age (in years) at the time of exposure. It

should be recalled that ERR is multiplied by the natu-

rally-occurring rate of thyroid cancer incidence to give

the increased incidence due to ionizing radiation. This

ERR as a function of the age at exposure is shown in

Fig. 10.33.

It is immediately obvious that females are subject

to a greater risk of radiogenic thyroid cancer than are

males.

10.4.5.3 Hereditary Effects

Radiation-induced mutations in germ cells can lead to

hereditary effects passed on to the progeny of the

exposed individual. Such mutations do not lead to

new or unique mutations that are specific to ionizing

radiation. Hence, a convenient metric of quantifying

the hereditary effects of ionizing radiation is through
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Fig. 10.31 Predicted ERR per Gy of leukemia for a 20-year-

old female exposed to low-LET radiation as a function of time

postexposure. Curve is calculated using (10.46) and mean values

of parameters given in the BEIR VII report
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Fig. 10.32 Predicted ERR per Gy of breast cancer in the

female as a function of attained age calculated from (10.47)
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Fig. 10.33 Excess relative risk per unit absorbed dose of thy-

roid cancer incidence for males and females as a function of the

age at exposure derived from the BEIR VII model
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the “doubling dose,” which is the absorbed dose

required to increase the natural frequency of an hered-

itary effect by a factor of two. An estimate of the

average doubling dose for low-LET radiation is

1.56 Gy (Hall and Giaccia 2006), whereas ICRP Pub-

lication 103 assumes the incidence of genetic risks up

to the second generation following exposure to ioniz-

ing radiation as 0.2%/Gy over continuous low-dose

rate exposure. Because of the naturally-occurring rate

of hereditary effects, it is difficult to detect any radia-

tion-induced mutations appearing in the progeny of

irradiated individuals. In fact, to quote ICRP Publica-

tion 103: “There continues to be no direct evidence

that exposure of parents to radiation leads to excess

heritable disease in offspring” and that reports lend to

the argument “. . .that the risk of heritable diseases

tended to be overestimated in the past.” Even so,

prudence is necessary in assigning risks to hereditary

effects occurring as a result of exposure to ionizing

radiation. This is a consequence not necessarily of the

risk itself but of its consequences. To explain this, one

should consider the fact that a radiation-induced can-

cer can only affect the individual exposed. In the worst

outcome, only a single individual dies. But in the case

of a radiation-induced mutations passed onto the irra-

diated individual’s offspring, a potentially deleterious

mutation will have been inserted into the gene pool

and more than just the irradiated individual can be

affected. Hence, even though the risk of heritable

disease as a consequence of exposure to ionizing radi-

ation has not been demonstrated in the human, a risk

coefficient for such effects is assigned.

10.5 Antenatal Effects

10.5.1 Introduction

Irradiation of the embryo and fetus is known to result

in effects which may be manifest in either prenatal or

neonatal states and which are dependent upon

absorbed dose, gestational age, and absorbed dose

rate. Recognizing that rapidly differentiating cells are

more prone to radiation-induced damage, it is not

unexpected that the embryo and fetus are acutely sen-

sitive to the effects of ionizing radiation.

Medical irradiation of the pregnant patient is

always of concern and presents the clinician of the

starkest requirement of the optimization of risk and

benefit of medical exposure to ionizing radiation. For

example, most medical physicists practicing in nuclear

medicine have been confronted with a case of a female

patient in late pregnancy requiring a ventilation–

perfusion scan to rule out PE, a condition which is

the most important preventable cause of maternal

death and with an incidence reaching 1.3% of all

pregnancies (Chan and Ginsberg 1999). The need to

estimate the absorbed dose to the fetus resulting from

this procedure and contrasting the theoretical radia-

tion-induced risk with the risks of failing to diagnose a

present PE or the sequelae associated with the admin-

istration of an anticoagulant is almost always required

in such situations. This subsection reviews the demon-

strated risks of the result of maternal irradiation and

the dose–response of these risks.

Prenatal sensitivity to ionizing radiation varies

remarkably over the time of fertilization to implanta-

tion and gestation. During each cycle, within the ovar-

ian cortex, a Graffian follicle containing a mature

ovummoves to the surface of the ovary which ruptures

to release the ovum into an awaiting end of the Fallo-

pian tube which is likely brought into proximity of the

ovary by chemotaxis. This process is known as ovula-

tion. Once within the lumen of the Fallopian tube, the

ovum is transported towards the uterus through ciliary

action and peristalsis. Fertilization typically occurs

shortly after intercourse (within 3 h) in the ampullary

section of the Fallopian tube. The fertilized ovum is

now a zygote and arrives at the uterus within about

5 days of fertilization. Whilst the zygote is still within

the Fallopian tube, it begins to divide to form a mass of

cells referred to as the morula, within which a cavity

appears and the structure forms a blastocyst. Once the

blastocyst has reached the uterus, it becomes embed-

ded within the endometrium and extravasation of the

maternal blood occurs around the blastocyst to provide

its nutrition through maternofetal exchange. This

description of the trail from ovulation to implantation

and prenatal development is necessary for understand-

ing the radiation sensitivities of the zygote, blastocyst,

embryo, and fetus, and our characterizations of the risks.

Following the use of Russell and Russell (1954), we

simplify the discussion by dividing the prenatal phase

into three components:

Preimplantation: That period of time (5–6 days)

between fertilization in the Fallopian tube and the

embedding of the blastocyst in the endometrium
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Organogenesis: That period of time following

implantation during which the major organs develop

Fetal period: That period of time during which the

developed organs grow

10.5.2 Embryonic Death

Irradiation of the embryo can result in death. Absorbed

doses of the order of 2–3 Gy delivered to the embryo

in the first 20 days of gestation are likely to result in

the resorption of the embryonic material or abortion of

the embryo.

10.5.3 Microcephaly and Mental
Retardation

Severe injuries to the developing human brain were

documented in the survivors of the Hiroshima and

Nagasaki bombings. The gestational age at which

exposure occurred is critical to understanding the radi-

ation-induced damage. Four categories of gestational

age are aligned to development of the brain: 0–7

weeks, 8–15, 16–25, and greater than 26 weeks. The

precursors of the neuroglia and neurons appear and are

mitotically active during the first gestational stage

which is followed by the second gestational stage

which is marked by an increase in the number of

neurons and their migration to their developmental

sites subsequent to their cessation in mitotic capacity.

During the third stage, synaptogenesis accelerates and

the cytoarchitecture of the developing brain has been

defined. Further advancements in cytoarchitecture dif-

ferentiation and synaptogenesis occur in the final stage

of gestational development.

The sensitivity of the developing brain is thus

expected to be dependent upon the in utero absorbed

dose and gestational age. Most of the epidemiological

data to derive these results were obtained from chil-

dren exposed in utero at the Hiroshima and Nagasaki

bombings and the consequences of irradiation were

microcephaly and mental retardation. Microcephaly

is associated with in utero exposures at less than

15 weeks gestational age without an apparent thresh-

old absorbed dose. The incidence of mental retardation

is linearly related to the fetal absorbed dose during the

critical gestational age of 8–15 weeks with an inci-

dence risk coefficient of about 40%/Gy and which is

commensurate with an absorbed dose threshold of

about 15 cGy. Absorbed doses of such magnitudes

are unachievable in diagnostic nuclear medicine.

10.5.4 Childhood Cancer

Childhood cancer as a consequence of in utero irradi-

ation was recognized in studies of children irradiated

in utero from radiological obstetric examinations

and the Hiroshima and Nagasaki bombings. The sen-

sitivity of childhood neoplasia due to prenatal irradia-

tion peaks during the third trimester of pregnancy

(Bithell and Stiller 1988). The EAR is estimated to

be about 5%/Gy. In practical terms, ICRP Publication

103 (ICRP 2007) advises that the lifetime risk of

cancer as a consequence of in utero exposure is

no different from exposure during early childhood

which is no more than three times that of the general

population.

10.6 Radiation Risks Presented to
the Diagnostic Nuclear Medicine
Patient

10.6.1 Introduction

Consideration of the safety of the diagnostic nuclear

medicine patient will clearly emphasize stochastic

effects as deterministic effects of exposure to ioniz-

ing radiation are unachievable due to the low

absorbed doses received by such a patient. Conse-

quently, the foci of discussion will be on radiocarci-

nogenesis (of either the patient or the fetus should the

patient be pregnant) and the potential for hereditary

effects.

The fundamental problem in translating the risks

determined from epidemiological studies to those

of the diagnostic nuclear medicine patient is that

both the subjects in the source data cohorts and

the patient are, in general, irradiated nonuniformly.

Different organs and different tissues have differing
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radiosensitivities, as demonstrated earlier in the

ERRs of the breast, thyroid gland, and leukemia. As

a result, the simple use of the physical quantity of

absorbed dose is inadequate to derive the risk an

individual is subject to as a result of nonuniform

irradiation. Moreover, consideration must be taken

of the sex and age of the individual and the time

elapsed since exposure. It is immediately apparent

that the mapping from the simple physical descrip-

tion of absorbed dose to an assessment of stochastic

risk is highly complicated.

The ICRP has addressed these problems since the

1970s with simple, applicable and generic solutions

which are periodically refined through the incorpora-

tion of new knowledge of the effects of ionizing

radiation. These account for, first, the physical attri-

butes of the radiation that the individual is exposed to

(e.g., LET and absorbed dose rate) and, second, the

inherent radiosensitivity of the individual organs and

tissues irradiated. This latter consideration includes

dependencies (which are averaged) upon sex, age,

and absorbed dose rate. As a result, one must reflect

upon the effective dose as a quantity which is rather

unspecific and best suited as a means of comparing

the relative risks between differing types of radiation

exposure.

10.6.2 ICRP Recommendations

The ICRP publishes recommendations on radiation

protection which is updated about every 5–15 years

(ICRP 1959, 1964, 1966, 1977, 1991, 2007). The three

publications of most modern-day relevance are those

of Publication 26 (ICRP 1977), which was superseded

by Publication 60 (ICRP 1991) which has been super-

seded, in turn, by Publication 103 (ICRP 2007).

Of particular importance to those imaging proce-

dures incurring low doses of ionizing radiation, the

ICRP has defined the quantity of the effective dose as a

sex-, age-, and dose rate-independent measure of the

stochastic risk presented to an individual as a result of

a nonuniform irradiation. Note that this quantity is

applicable to stochastic risk only. The ICRP Recom-

mendations equate the stochastic risk of nonuniform

radiation (of high- and/or low-LET radiation) to that

resulting from uniform (i.e., total body) exposure: in

other words, the effective dose due to nonuniform

irradiation is numerically equal to the absorbed dose

from a whole-body exposure to low-LET radiation

that yields the same stochastic risk.

10.6.3 Equivalent (Radiation
Weighted) Dose

10.6.3.1 Introduction

The ICRP Recommendations consider radiological

protection in a wide variety of applications including

medical (both practitioner and patient), occupational,

and aviation exposures. As a result these must account

for several different species of radiations: photons,

electrons/positrons, neutrons, protons, a particles,

and pions (the latter being a component of cosmic

rays and consequently of interest to radiation exposure

associated with high-altitude aviation). Following

from the discussions of Chaps. 6 and 7, it will be

recognized that these radiations will have different

LETs resulting in, as shown earlier in this chapter,

different RBEs. These are accounted for by defining

the equivalent dose which is the absorbed dose

weighted by a factor, wR, to account approximately

for the RBE relevant to the radiation of interest.

For nuclear medicine dosimetry, these are photons

and electrons/positrons resulting from b decay (a par-

ticle and Auger/Coster–Kronig electrons are relevant

only to therapeutic applications associated with high

absorbed doses).

10.6.3.2 Radiation Weighting Factor, wR

The equivalent dose to a given tissue or organ is the

weighted summation of the absorbed doses to that

tissue or organ T from all of the radiations that it is

exposed to,

HT ¼
X
R

wRDT;R (10.49)

where wR is the radiation weighting factor for radia-

tion species R and DT,R is the corresponding (physical)

absorbed dose to the tissue from that radiation. The
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radiation weighting factor is an approximation of the

LET of the radiation. The radiation weighting factors

provided by ICRP Publications 26, 60, and 103 are

provided in Table 10.4

The absorbed dose is averaged over the entire organ

and the physical unit of the equivalent dose is that of

the absorbed dose, Gy, but, because the quantity is

committee-defined, is assigned the special name sie-

vert (Sv).

As the weighting factor for photons and electrons/

positrons11 is unity, one can interpret the equivalent

dose of a given combination of radiations to an organ

or tissue as being equal to the (physical) absorbed dose

in photons or electrons (with wR ¼ 1) that yields the

same biological effect to the individual organ.

Auger/Coster–Kronig electrons are treated by the

ICRP as a special case in which it is recognized that

it is inappropriate to average the absorbed doses from

these radiations over the total mass of DNA should

such electron-emitting isotopes be incorporated within

the DNA. If the Auger/Coster–Kronig electron-emit-

ting isotope is external to the cell, the efficiency of

producing any biological effect is negligible due to the

very short ranges of Auger electrons. However, should

the radionuclide be incorporated within the nucleus,

the RBE increases. If Auger electrons are emitted from

within the cell, but not from within the nucleus, the

RBE can be as high as 8 (Kassis et al. 1988). For cases

where the Auger electron-emitting radionuclide is

incorporated within the nucleus and, subsequently,

the DNA, RBE values in excess of 20 have been

measured. The ICRP states that the biological effects

of Auger electrons are omitted from the radiation

weighting factors of Table 10.4 and must be dealt

with using microdosimetry.

10.6.4 Effective Dose

10.6.4.1 Introduction

Medical radiation protection practice must contend

with two important facts. First, almost all medical

radiation exposures are nonuniform throughout the

body and, second, tissues and organs have varying

radiosensitivities. Thus, in order to estimate the sto-

chastic risk associated with a given imaging study, one

must know which organs/tissues have been irradiated,

the equivalent doses received by them and their intrin-

sic radiosensitivities. Determining the absorbed doses

received by organs and tissues in nuclear medicine

is the fundamental topic of the following chapter.

The intrinsic radiosensitivities are derived from the

data described earlier in this chapter. The contribution

of these to an overall estimate of radiation risk is

modeled by the tissue weighting factor, wT.

10.6.4.2 Tissue Weighting Factor, wT

The effective dose is the sum of the equivalent doses

over a defined ensemble of organs and tissues each

weighted by a tissue weighting factor,

E ¼
X
T

wT HT (10.50)

In ICRP 26, this tissue weighting factor reflected

only mortality risk whereas in ICRP 60 and ICRP 103

it reflected a quantity known as detriment which is an

aggregate of four quantities:

� Probability of attributable fatal cancer

� Weighted probability of attributable nonfatal

cancer

Table 10.4 Radiation weighting factors used in ICRP Publications 26, 60, and 103

Radiation Radiation weighting factor, wR

ICRP ICRP ICRP
Publication 26

(1977)

Publication 60

(1991)

Publication 103

(ICRP, 2007)

g, e
, m
 (excluding Auger electrons) 1 1 1

Protons 10 2 2

p
 – – 2

a particles, fission fragments, heavy nuclei – 20 20

Neutrons 10 Function of neutron energy Function of neutron energy

11Excluding Auger/Coster–Kronig electrons.
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� Weighted probability of severe hereditary effects

� Relative amount of time of life lost

In ICRP 26, the weighted equivalent dose, which is

a doubly-weighted absorbed dose, was assigned the

name effective dose equivalent. The tissues and organs

considered in the calculation of the effective dose have

grown over the three publications reflecting the

expanding knowledge of the radiosensitivities of

these tissues. Table 10.5 summarizes the historical

development of the weighting factors provided by

ICRP Publications 26, 60, and 103.

The procedure recommended in ICRP Publication

103 of calculating the effective dose on the basis of

the measured biodistribution of a radionuclide is

shown in Fig. 10.34. The biodistribution is used to

calculate the absorbed doses to specified tissues and

organs of reference male and female anthropomor-

phic phantoms. The application of the radiation

weighting factors converts these absorbed dose quan-

tities to equivalent doses for each specified tissue and

organ. Having calculated the equivalent doses, these

are then averaged to yield an ensemble of organ and

tissue equivalent doses for the male and female refer-

ence phantoms. These are then further averaged

over both sexes to yield a single ensemble of tissue

equivalent doses and the tissue weighting factors are

then applied to yield the effective dose.

Table 10.5 is an excellent example of displaying

how the understanding of the effects of radiation

dosimetry has evolved over the decades. For example,

the most profound change has been the weighting

factor assigned to the absorbed dose to the gonads

which has decreased from 0.25 in ICRP Publication

26 to 0.20 in ICRP Publication 60 and, finally, to 0.08

in ICRP Publication 103. These reductions reflect the

recognition over time that radiation-induced heredi-

tary effects are much less likely than had been previ-

ously believed.

In diagnostic medicine, one is interested in a mea-

sure of the risks associated with the nonuniform

exposure to low-dose ionizing radiation. The ICRP

has provided estimates of the detriment per unit

effective dose in both Publications 60 and 103.

These are summarized in Table 10.6 (as the recom-

mendations of these publications are applicable to

those who are occupationally exposed to ionizing

radiation, risk factors are calculated separately for

adult workers and the general population, the latter

including children).

The most marked change in stochastic risks between

those specified by ICRP 60 and 103 is that assigned to

severe hereditary effects. Any change in hereditary

effects due to exposure ionizing radiation is measured

by comparing the incidence of these effects in an irra-

diated population with a matched nonirradiated popula-

tion. This reflects that the natural incidence of these

effects in the natural (nonirradiated) population is not

that markedly lower than that of the appearance of these

effects in the matched irradiated population.

10.6.4.3 Additional Considerations

Following the release of ICRP Publication 60, the

ICRP has published a number of refinements to the

evaluation of the effective dose.

Table 10.5 Tissue weighting factors used in ICRP Publications

26, 60, and 103

Tissue or organ Tissue weighting factor, wT

ICRP

Publication

26 (1977)

ICRP

Publication

60 (1991)

ICRP

Publication

103 (2007)

Brain – – 0.01

Salivary glands – – 0.01

Red bone

marrow

0.12 0.12 0.12

Lung 0.12 0.12 0.12

Breast 0.15 0.05 0.12

Colon wall – 0.12 0.12

Stomach wall – 0.12 0.12

Esophagus – 0.05 0.04

Bone surface 0.03 0.01 0.01

Skin – 0.01 0.01

Thyroid gland 0.03 0.05 0.04

Gonads 0.25 0.20 0.08

Liver – 0.05 0.04

Urinary bladder

wall

– 0.05 0.04

Remaining

tissues

0.30a 0.05b 0.12c

aThe remaining tissues in ICRP 26 are the stomach, salivary

glands, lower large intestine wall, and liver
bThe remaining tissues in ICRP 60 are the adrenal glands, brain,

upper large intestine wall, small intestine wall, kidney, muscle,

pancreas, spleen, thymus, and uterus. Further modifications

were recommended in later ICRP publications and are discussed

in the text
cThe remaining tissues in ICRP 103 are adipose tissue, adrenal

glands, connective tissue, extrathoracic airways, gallbladder wall,

kidneys, cardiac wall, lymphatic nodes, muscle, pancreas, pros-

tate gland, small intestine wall, spleen, thymus, and uterus/cervix
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Gonadal Absorbed Dose

As the individual for whom the effective dose is often

to be calculated for is an adult hermaphrodite, in such a

case the absorbed doses to the gonads are to be aver-

aged over the testicular and ovarian absorbed doses.

Esophagus/Thymus Absorbed Dose

The esophagus is a specified organ in the evalua-

tion of the effective dose. However, the esophageal

absorbed dose is not calculated for in the MIRD

schema used in nuclear medicine (Chap. 11). To

resolve this discrepancy, the absorbed dose to

the thymus is used as a surrogate to that to the

esophagus.

Colon Absorbed Dose

For radiation dosimetry purposes, the anatomy of the

colon is considered to consist of:

� The ascending colon which is defined as being the

extent of the bowel from the cecum to the hepatic

flexure.

� The transverse colon which is defined as extending

between the hepatic and splenic flexures.

� The descending colon which extends from the

splenic flexure and includes the sigmoid colon

and the rectum.

In ICRP Publication 60, the upper large intestine

(ULI) wall is included within the remaining tissues

category. However, the ICRP later recommended an

alteration to the manner in which the absorbed dose to

the walls of the colon and the corresponding tissue

Biodistribution
of Radionuclide

Female Reference Phantom
Absorbed Doses

Male Reference Phantom
Absorbed Doses

Radiation Weighting Factors, wR

Tissue Weighting Factors,wT

Male Equivalent Doses
HM

T

Female Equivalent Doses

HF
T

Sex-Averaged Equivalent Doses
HT

Effective Dose
E

Fig. 10.34 Means of

estimating the effective

dose following the

recommendations of ICRP

Publication 103

Table 10.6 Nominal probability coefficients for stochastic effects from ICRP Publications 60 and 103

Exposed populations Detriment (Sv�1)

Fatal cancer Nonfatal cancer

Severe hereditary

effects (%) Total

Adult workers ICRP 60 4.0% 0.8% 0.8 5.6

ICRP 103 4.1% (combined) 0.1 4.2

Entire population ICRP 60 5.0% 1.0% 1.3 7.3

ICRP 103 5.5% (combined) 0.2 5.7
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weighting factors contribution to E were to be evalu-

ated. The absorbed dose to the colon is to be given by

the mass-weighted absorbed doses to the walls of the

ULI and lower large intestine (LLI),

DColon ¼ 0:57DULI þ 0:43DLLI: (10.51)

The ULI is defined as that portion of the colon

from the cecum, the ascending colon to the hepatic

flexure; the transverse colon is that from the hepatic

flexure to the splenic flexure; and, the LLI consists of

the descending colon from the splenic flexure, the

sigmoid colon, and the rectum.

10.6.4.4 Use of the Effective Dose in Nuclear

Medicine

The use of the effective dose as a descriptor of radia-

tion risk arising from medical exposures has long been

contentious (e.g., Martin 2007; Brenner 2008; Dietze

et al. 2009). This has been largely a consequence of

the multiple acts of averaging over sex and age and the

simplification of the biological effects of absorbed

dose rate when using epidemiological data. Further,

the effective dose does not account for the dependence

of risk upon age at exposure and the tissue weighting

factor represents a detriment, which is an amalgam of

the endpoints of cancer mortality and incidence,

hereditary risk, and reduction in life expectancy.

Martin (2007) has suggested the means of how the

effective dose should be used in assessing or compar-

ing the risks associated with medical exposures. His

key recommendation is that the use of the effective

dose be simply as a generic indicator or risk to a

reference hermaphroditic phantom. More specific

risk estimates for a given patient should following

the organ-, sex-, and age-specific risk models, exam-

ples of which were provided earlier.

10.7 Radiobiology Considerations
for the Therapeutic Nuclear
Medicine Patient

10.7.1 Introduction

Whereas the intent of the application of radiobiology

to the diagnostic nuclear medicine patient is for esti-

mating the potential for stochastic risk resulting from

the exposure to low doses of low-LET radiation, the

corresponding application to the therapeutic patient is

markedly different. As noted several times before,

biological effect in therapeutic nuclear medicine is

sought in terms of killing tumor cells, whilst minimiz-

ing radiation-induced damage to normal tissue. This

balance between tumor control probability (TCP) and

radiotoxicity, or normal tissue complication probabil-

ity (NTCP), is critical to the curative intent of thera-

peutic nuclear medicine.

10.7.2 Tumor Control Probability

One can consider that there are two endpoints for

tumor response, those of sterilization and remission.

Thus, tumor control is, as would be evident, related to

the number of remnant viable tumor cells. Applying

Poisson statistics, one can define the TCP as,

TCP ¼ e�Nt (10.52)

where Nt is the number of surviving clonogenic tumor

cells.

10.7.3 Normal Tissue Complication
Probability

The NTCP is not only a function of the physical

attributes of irradiation (LET and absorbed dose

rate12), but also a function of the tissue’s organiza-

tional structure. Normal tissue tolerance is the result of

the ability of the clonogenic cells of the tissue to

ensure an adequate number of mature cells required

to enable normal organ or tissue function to continue.

But this is also subject to the hierarchical structure of

the tissue, hence the previous emphasis on mature

cells. Rapidly proliferating stem cells are, as discussed

earlier, sensitive to radiation. These stem cells differ-

entiate to eventually produce functional cells which

are less sensitive to radiation. Examples of this

12For external beam radiotherapy, the fractionation regime must

also be considered.
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hierarchical model are hematopoietic bone marrow

and the intestinal epithelium. The resulting effects of

radiation upon these tissues have a latent period: the

pluripotential stem cells are killed off more readily by

irradiation, but, due to the serial time development of

the tissue, this is not apparent in terms of organ func-

tion until the mature cells have been depleted and there

are no replacements from the descendants of the now-

depleted stem cells.

Other tissues do not exhibit such a hierarchical

structure, an example being the liver. Normally, the

cells of such tissue rarely undergo mitosis but can be

induced to do so following trauma or injury to the

tissue. The tissue structure lacks a hierarchy and, as a

result, all cells begin to divide following an insult.

Many organs or tissues may be considered to be

made up of functional subunits (FSUs) which can be

discrete and clearly defined structures contributing to

the function of the organ and tissue. An example is

the nephron in the kidney. The exchange of clono-

genic cells between FSUs is not possible. In some

tissues, the FSUs are not so clearly defined; examples

include mucosa and the skin. Differentiation between

the two types of FSU categorization is important as

the responses to radiation differ between them. Due

to each FSU being independent and small, depletion

of the cells within it can be readily achieved through

low absorbed doses. This, for example, explains the

relatively low radiation tolerance of the kidney. On

the other hand, migration of cells between structur-

ally undefined FSUs is possible: an area of skin

denuded due to radiation can be restored by the trans-

fer of clonogenic cells from surrounding unaffected

skin.

Tolerance doses are frequently quantified by TD5/5

and TD50/5 which are the tolerance doses yielding a

5% complication rate in 5 years and a 50% complica-

tion rate in 5 years, respectively. Values for these

tolerance doses are, in general, derived from external

beam radiotherapy and, hence, are complex functions

of fractionation, absorbed dose rate, and fraction of the

volume of organ/tissue irradiated. Meredith et al.

(2008) provide a comparison of tolerance dose

between external beam radiotherapy and radionuclide

therapy using b-emitting radionuclides.

The tolerance doses of normal tissues will clearly

vary between tissues and, indeed, between patients.

For radionuclide therapy, the normal tissue which

defines the radiotoxic limit is frequently the active

bone marrow which would be recognized as having a

tolerance dose of a few hundred cGy.

Meredith et al. (2008) have summarized the three

main points associated with normal tissue tolerance to

radionuclide therapy:

� The tolerance of normal tissue is affected by

absorbed dose rate.

� The inhomogeneous distribution of absorbed dose

affects the tolerance of the irradiated organ as a

whole.

� The FSUs of different organs (e.g., kidney and

spinal cord) have different tolerances.

Wessels et al. (2008) have recently shown how

radiobiology concepts can be incorporated within the

MIRD schema for estimating the risk of normal tissue

complications to the kidney.

10.7.4 Selection of Isotopes for
Radionuclide Therapy

The selection of a particular isotope for radionuclide

therapy must consider several biological, chemical,

and physical factors which can be distilled into three

categories:

Radiation quality: For radiotherapy, particulate

radiations (a particles, b particle, and Auger/Coster–

Kronig electrons) are best suited due to the limited

range and high LET of the particles. The limited

ranges of these particles are advantageous in that this

can limit radiotoxicity by reducing the absorbed doses

to normal, healthy tissues provided that the vector

carrying the radioisotope has a high specificity for

the target. Kassis (2003) has noted the implication of

the differences between the LET of a emitters

(�100 keV/mm) with those of b particles (<1 keV/mm):

approximately four traversals of the cellular nucleus

by the former will result in cell death whereas several

thousand traversals by the latter are required for the

same result.

Specificity: The radionuclide must be delivered

preferentially to the disease location with minimal

uptake by normal tissues. This specificity is achieved

through the choice of an appropriate vector. This can

be simply the chemical form used. For example,

radium chloride has a high uptake in bone and has
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been used (with various isotopes of radium) for the

treatment of ankylosing spondylitis, bone tuberculosis,

and osseous metastases. Monoclonal antibodies can be

labeled with particulate-emitting radionuclides.

Physical half-life: From Chap. 5, the effective half-

life is a function of the physical half-life of the radio-

isotope used and the biological half-life of the labeled

moiety in the targeted organ or tissue. Here, we shall

presume that the letter is a component of the specific-

ity category above and consider the former. We have

seen how the biological effects of irradiation are a

function of the rate at which the absorbed dose is

delivered and the a=b ratio of the tissue in question.

For radionuclide therapy, this effect is demonstrated

by the Lea–Catcheside dose-protraction factor.

Howell et al. (1994) used the LQ model to incorporate

the rate of repair, the rate at which the absorbed dose is

delivered, the physical and biological half-lives of the

radioactive moiety and the required absorbed dose to

conclude that radionuclides with longer half-lives

were more advantageous in radionuclide therapy.

They concluded that the optimal physical half-life of

the radionuclide should be two to three times greater

than the biological clearance half-life. For example,

consider the effective half-life given by (5.10)

in which the physical half-life is T1=2;Phys ¼ 3T1=2;Biol.

Then,

T1=2;eff ¼ 3

2
T1=2;Phys (10.53)

The authors concluded that among the b-emitting

isotopes, 32P, with a 14.126 day half-life, would be

optimal for radionuclide therapy. Rao and Howell

(1993) demonstrated how time-fractionation from

external beam radiotherapy can offer guidance on

selection of the radionuclide half-life.

Currently, most radionuclide therapy is based

upon the use of b-emitting isotopes such as 131I and
90Y with maximum kinetic energies of 610 keV and

2.28 MeV, respectively. Hence, the associated LET

values will be low, although the range of these b
particles are several millimeter which could be

advantageous if there is not a specific uptake of the

isotopes into the nucleus of the target tumor cell.

a-emitting isotopes are progressing into the radionu-

clide therapy field, examples being 211At and 226Ra. a
particles exhibit high LET and the typical range of

them are several cell diameters. Hence, a-emitting

isotopes can be more efficient at producing lethal

effects.

Auger/Coster–Kronig electrons are particularly

advantageous in delivering a high absorbed dose to a

small volume. Even 99mTc has an Auger/Coster–

Kronig electron component, releasing, on average,

four such electrons per decay and depositing nearly

300 eV within a 5 nm sphere around the nuclide. 125I

emits an average of 20 Auger/Coster–Kronig electrons

per decay which deposit an energy of about 1 keV

within a 5 nm sphere. The high-energy depositions in

small volumes associated with Auger/Coster–Kronig

emissions demonstrates that the short ranges of these

electrons requires that the radionuclides to be

incorporated within the cellular nucleus in order to

be in close proximity to the DNA target (or even

incorporated within it) in order to yield tumor cell

inactivation.
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Nuclear Medicine Dosimetry 11

Abstract This chapter begins the introduction of the application of the radiation

dosimetry theory developed so far to nuclear medicine. The phases through which the

development of a radiopharmaceutical must pass in order to enter the market are

summarized, with emphasis upon when radiation dosimetry evaluations are neces-

sary. A brief overview of the history of internal radiation dosimetry is provided,

looking at early attempts at measuring the biodistribution of an administered radio-

nuclide, and reviewing the development of the Marinelli-Quimby-Hine dosimetry

calculation method of the 1940s. The Medical Internal Radiation Dose (MIRD)

schema is introduced and the fundamental MIRD equation derived from first princi-

ples. Similarly, the equivalent schema of the Internal Commission on Radiological

Protection is introduced and parallels between it and the MIRD schema drawn.

Finally, an overview of contemporary software codes used for nuclear medicine

internal radiation dosimetry calculations is given.
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11.1 Introduction

This chapter begins the development of the practical

theory of nuclear medicine radiation dosimetry based

upon the foundations derived in the previous ten. The

adjective “practical” is used deliberately so as to

ascribe to the theory the goal of determining absorbed

doses to the organs and tissues of the nuclear medicine

patient or of those subjects participating in the clinical

trials of new radiopharmaceuticals. The applicability

and degrees of accuracy required in these calculations

are highly variable. In practice, there are three main

applications within nuclear medicine for which radia-

tion dosimetry calculations are required, depending

upon the application of interest and the magnitudes

of the radiation absorbed doses.

The first application is common to all radiophar-

maceuticals and this is the regulatory requirement

B.J. McParland, Nuclear Medicine Radiation Dosimetry,
DOI 10.1007/978-1-84882-126-2_11, # Springer-Verlag London Limited 2010

455



to establish the radiation dosimetry profile of the

radiopharmaceutical during the course of its preclin-

ical and clinical development and before the product

is licensed. This profile, in the form of tabulated

organ absorbed doses and effective dose, is provided

in the Summary of Product Characteristics (SPC) or

Product Insert (PI) of the radiopharmaceutical which

summarizes the properties of the product.

The second application is one which can arise

within the diagnostic nuclear medicine clinic, often

unexpectedly. This is the need to evaluate the radiation

absorbed doses received by a specific patient as a

result of, for examples, the postprocedural discovery

that the patient was pregnant at the time of radiophar-

maceutical administration or of a misadministration of

a radiopharmaceutical. Such incidents are rare, but

require estimates of the internal radiation dosimetry,

typically using data provided in the SPC or PI.

The third application is of patient-specific radiation

dosimetry in therapeutic nuclear medicine. Whereas

the concern in the previous paragraph in diagnosis was

stochastic risk, therapy requires a deterministic effect

achieved through targeted cell kill. Sequellae resulting

from the irradiation of uninvolved healthy tissue, such

as bone marrow and kidney, resulting in radiation-

induced myelotoxicity and nephropathy which can

restrict the amount of administered activity and the con-

sequent probability of tumor control. Hence, accurate

patient-specific radiation dosimetry in therapeutic

nuclear medicine is inevitably necessary. This applica-

tion differs from that of the first. In the latter, a limited

number of subjects are used, but all source organs and

tissues are evaluated. In the third, all patients are

involved, but the radiation dosimetry is evaluated for

a limited number of source and target regions.

This chapter addresses the common radiation

dosimetry calculation needs of the above and exam-

ines the theoretical basis of each. It is not intended to

be a “how to do it” manual. The reader can readily

obtain exquisite practical examples in Stabin’s recent

book (Stabin 2008) and in Pamphlet 16 published by

the Medical Internal Radiation Dosimetry (MIRD)

committee of the Society of Nuclear Medicine

(SNM) in the United States (Siegel et al. 1999).

11.1.1 Development of
Radiopharmaceuticals

11.1.1.1 Introduction

The development of a diagnostic or therapeutic radio-

pharmaceutical generally follows the typical linear

process of Fig. 11.1 which is divided into four distinct

phases. In each phase, the characteristics, or profiles,

Diagnostic and
Therapeutic:

Preclinical Phase I Phase II Phase III NDA

Diagnostic and
Therapeutic:

Diagnostic : Diagnostic :

Therapeutic : Therapeutic :
. Therapeutic Efficiency

. Toxicity

. Genotoxicity

. Immunogenicity (possibly)

. Efficacy

. Bio distribution

. Internal Radiation Dosimetry

. Safety

. Bio distribution

. Internal Radiation Dosimetry

. Pharmaco kinetics(mainly
  for therapeutics alone)

. Safety

. Diagnostic
  Efficacy − preliminary
. Image acquisition
  optimisation
. Chemical mass dose
  and administered activity
  refinement
. Special populations
  (e.g., renal/hepatic
  impairment, paediatrics)

. Tolerance

. Therapeutic Efficiency

. Safety

. Hypothesis confirmation

. Image acquisition
  optimisation
. Chemical mass dose and
  administered activity refinement
. Special populations
  (e.g., renal/hepatic
  impairment, paediatrics)

Fig. 11.1 The development phases of a radiopharmaceutical required to reach a new drug application (NDA). See text for

description
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of the radiopharmaceutical are determined with

increasing detail as development progresses. Common

to all phases is the expansion of the safety profile of

the agent. In the human phases (I through III), this is

done through the accrual over time of increasing num-

bers of subjects who have received the radiopharma-

ceutical.1 This allows a growing base upon which to

assess the rates of incidence of any physiological

effects associated with the agent. In the early phases

(I and II), more detailed safety assessments are typical,

although their degrees of complexity and invasiveness

usually diminish going into Phase III.

In each of the phases, pharmacological safety is

paramount. But, especially with respect to diagnostic

radiopharmaceuticals, one must recall the differences

between the levels of diagnostic radiopharmaceutical

administered and those of therapeutics. The latter are

properly referred to as “drugs” as they carry intent to

induce a physiological change. Diagnostic radiophar-

maceuticals, on the other hand, must not have a physio-

logical effect and, consequently, should not be referred

to as “drugs.” A common, but incorrectly applied as a

generic, description of a diagnostic radiopharmaceuti-

cal is as a “tracer” to reflect this lack of physiological

effect. Whereas the administered chemical dose per

body mass of a therapeutic pharmaceutical is of the

order of mg/kg, that of a diagnostic radiopharmaceuti-

cal is of the order of mg/kg. Indeed, if one looks further
at the complexed ligand, i.e., that associated with the

radioactive moiety used for imaging, the result is of the

order of pg/kg.

At each juncture between phases, regulatory review

and approval of the developmental program is required

prior to proceeding to the next phase. In 2004, the

American Food and Drug Administration (FDA) pub-

lished guidelines advising on its interpretation of the

means of how an imaging agent should be developed

(FDA 2004a–c). Further information on the regulatory

environment within which diagnostic radiopharma-

ceuticals are developed can be found in the FDA

documents previously cited and which are available

at the FDA website: http://www.fda.gov/cber/gdlns/

medimagesaf.htm and through the guidelines provided

by the EuropeanMedicines Agency: http://www.emea.

europa.eu/pdfs/human/qwp/30697007enfin.pdf).

Additional contemporary descriptions of theEuropean

Union environment for the development of radiopharma-

ceuticals can be found in Verbruggen et al. (2008).

Stabin (2008) presents a particularly thorough review

of the regulatory environment in the United States

within which radiopharmaceuticals are developed.

11.1.1.2 Preclinical

The preclinical phase involves the use of nonhuman

biological systems to characterize the safety and

efficacy of the radiopharmaceutical prior to its

entry into man. This is a mandatory requirement by

all regulatory authorities in order to assure the maxi-

mization of confidence in the radiopharmaceutical’s

safety and efficacy prior to human trials. This char-

acterizing can include the pharmacological profiling

of the levels at which toxicity can become evident

and the immunological responses associated with the

agent. The internal radiation dosimetry profile of the

radiopharmaceutical is an aspect of the agent’s

safety and, in the case of a therapeutic indication,

its efficacy. Estimating the human biodistribution of

the radiopharmaceutical and the associated radiation

dosimetry is a critical activity of the preclinical

phase.

The estimate of the human internal radiation

dosimetry on the basis of preclinical studies is essen-

tial in the review of preclinical data prior to permis-

sions being granted to proceed to Phase I.

11.1.1.3 Phase I

Phase I is the “first-time-into-man” stage of develop-

ment. The subjects receiving the investigational

medicinal product (IMP) may be healthy volunteers

(which is the usual case for a diagnostic radiopharma-

ceutical) or subjects with the specific disease to be

diagnosed or treated. Again, the investigation is

focused on the safety profile of the agent and will

generally include pharmacokinetic assessment,

although this is unlikely for a diagnostic radiopharma-

ceutical due to the low chemical mass dose per

administration. The human biodistribution of the phar-

maceutical is measured and the radiation dosimetry

evaluated. The effects of changes in chemical mass

dose are always assessed for a therapeutic agent and

1A Phase IV study is one of an imaging agent which has already

been granted marketing approval.
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also should be in the development of a diagnostic

entity.2

Out of the radiation dosimetry profile generated for

a diagnostic radiopharmaceutical, the stochastic risk

associated with the IMP, as described by the effective

dose, is evaluated. While this result is necessary for

the safety profiling of the IMP, its applicability to

clinical nuclear medicine requires caution in that the

use of the effective dose (and its predecessor, the

effective dose equivalent) in diagnostic nuclear medi-

cine has not been without controversy. It has been

noted that the genesis of the effective dose was the

radiological protection of the radiation worker and,

hence, would not be directly applicable to the individ-

ual diagnostic nuclear medicine patient (Poston 1993).

More recently, its restricted applicability to diagnostic

nuclear medicine risk assessment has been considered

(Bolch et al. 2009). In any event, it must be recognized

that the effective dose is an inappropriate metric by

which to assess the radiation risk posed to the individ-

ual nuclear medicine patient. Nor, as the effective dose

is a measure of stochastic risk, is it applicable to

therapeutic nuclear medicine where deterministic

effects are sought. In its current incarnation, the effec-

tive dose is the arithmetic average of the effective

doses to International Commission on Radiological

Protection (ICRP) Reference Man and Reference

Woman both of which are modeled on 50th-percentile

individuals. As discussed in Chap. 10, the tissue

weighting factors used to calculate the effective dose

are averaged over age and sex for which an assumed

dose-rate factor is applied, thus leading to its inappli-

cability to a given individual. In the clinic, the effec-

tive dose is, at best, suitable only for comparing

relative radiation risks between different diagnostic

radiopharmaceuticals. In the development of diagnos-

tic radiopharmaceuticals it is a required item within

the SPC and PI and is a necessary quantity to provide

when submitting clinical trial applications. But, to

reiterate from Chap. 10, the user should be well

aware of the limitations of what the effective dose

attempts to represent.

On the other hand, deterministic effects are of concern

in therapeutic applications of a radiopharmaceutical.

This requires very accurate assessment of the dosime-

try so as to maximize the absorbed dose to the lesion to

be treated and to minimize that received by healthy

radiosensitive tissues, such as the red bone marrow

and the kidney.

11.1.1.4 Phase II

The Phase II stage of the clinical development of

a radiopharmaceutical is usually that in which proof-

of-concept /-mechanism is established and the efficacy

of the IMP determined preliminarily. In diagnostic

applications, the subjects in Phase II are not healthy

volunteers but patients with the disease in question.

The safety profile of the IMP is expanded and the

imaging parameters (e.g., time postadministration of

acquisition, duration of acquisition, administered activ-

ity) are investigated, refined and optimized. Dosimetry

evaluations are usually not performed unless there are

reasons to assume that the dosimetry can be altered as a

consequence of the disease, although a simplified mea-

surement of the biodistribution (e.g., through measure-

ment of washout from blood or excretion in the urine)

can be performed and compared with the measure-

ments of the healthy volunteers in Phase I. However,

it may be necessary to obtain imaging-based biodistri-

butions in special patient populations. An example

would be those of renally-impaired patients receiving

a radiopharmaceutical which is excreted primarily in

the urine. Here, the concern would be over whether a

reduced rate of renal excretion could impede efficacy,

through a reduced washout of background, or elevate

organ absorbed doses. Again, as in Phase I, extensive

safety evaluations must be performed.

11.1.1.5 Phase III

By this phase, the safety, dosimetry, and preliminary

efficacy attributes of the IMP are now completely

known. Larger populations of patients are recruited

in these Phase III studies so that pivotal, statistically-

significant data are obtained as required in the sub-

mission of the IMP for approval. For a diagnostic

radiopharmaceutical, dosimetry calculations are gen-

erally not required in Phase III; this will not usually be

the case for a therapeutic agent where patient-specific

2Recently, Ballinger et al. (2009) have emphasized the need to

include information on the amount of chemical dose adminis-

tered when a clinical trial of a diagnostic radiopharmaceutical is

reported in the open literature.

458 11 Nuclear Medicine Dosimetry



dosimetry is required to plan for therapy and to assess

the absorbed dose-responses of dose-limiting tissues

(e.g., bone marrow).

11.1.2 Clinical Nuclear Medicine
Applications

11.1.2.1 Diagnostic Radiopharmaceuticals

The main clinical applications of the internal radiation

dosimetry profile for a diagnostic radiopharmaceutical

are in the approximate assessments of the radiation

absorbed doses of special cases (e.g., the pregnant

nuclear medicine patient or mis-administrations), a

nonspecific assessment of radiation risk or as a com-

parator with other imaging modalities. The level of

accuracy in the determination of the radiation absorbed

dose of a diagnostic radiopharmaceutical is relatively

relaxed, thus allowing representative mathematical

models of human anatomy to approximate the subject

(Chap. 12). Such models are generally representative

of the median of a given population (e.g., adult male

Caucasians). For example, a typical calculated effec-

tive dose of a 99mTc-labeled diagnostic radiopharma-

ceutical at a typical administered activity will be of the

order of 4 mSv and that of a 18F-labeled radiopharma-

ceutical will be between 10 and 20 mSv. Recalling the

discussion of Chap. 10, this range of effective doses

would correspond to detriment risks of between 0.02

and 0.1%. Hence, uncertainties in the calculated effec-

tive dose of factors of 2–3 (due to inaccuracy in the

dosimetry calculation or in the variability between

patients) would not be regarded as significant in the

overall estimate of individual risk.

11.1.2.2 Therapeutic Radiopharmaceuticals

The relaxation of accuracy requirements in the diag-

nostic nuclear medicine patient dosimetry is not, or

should not be, applicable to the therapeutic patient.

Ideally, as in contemporary external beam radiother-

apy, the absorbed dose profile of the patient receiving

radionuclide therapy should indicate the magnitude,

and spatial distribution, of the absorbed doses in

the region of interest (almost universally a tumor or

metastasis) and that in healthy tissues which are

acutely radiosensitive and can exhibit radiotoxicities

which can inhibit potentially the administered activity

and the tumor control probability. Unfortunately, this

is currently not the status of common therapeutic

nuclear medicine. While 131I therapy of thyroid dis-

ease dominates the therapeutic field and posology is

frequently based upon clinical experience, the devel-

opment of new therapeutic radiopharmaceuticals is

leading to patient-specific radiotherapy planning com-

ing into vogue, at least within the research venue. This

planning requires a pretherapy assessment of the

expected biodistribution of the therapeutic moiety in

order to allow the therapy planning physicist to pre-

dict the magnitude of the absorbed doses to the target

regions and to the healthy tissues and for the clinician

to then decide upon the amount of administered activ-

ity. The combination of clinical experiences of tissue

responses arising from radionuclide therapy and

external beam radiotherapy, coupled with accurate

internal radiation dosimetry, will assist in reaching

this decision.

11.2 History of Nuclear Medicine
Radiation Dosimetry

11.2.1 Introduction

The two structures which have had the greatest

influence upon the development of nuclear medicine

radiation dosimetry have been the International Com-

mission on Radiological Protection (ICRP) and the

Medical Internal Radiation Dose (MIRD) Committee

of the American SNM. The foci of both entities are,

however, somewhat different. The work of the ICRP

emphasizes the radiological protection of the worker

who is occupationally exposed to ionizing radiation,

although this is not exclusive, as commonly misbe-

lieved. The ICRP has published numerous summaries

of the radiation absorbed dose profiles of radiophar-

maceuticals and recommendations on medical radia-

tion exposure safety. On the other hand, the MIRD

Committee’s remit is exclusively that of the nuclear

medicine patient.

The ICRP began life in 1928 as a Committee asso-

ciated with the International Congress on Radiology
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(Lindell et al. 2009), publishing its first report that

year. The publications and recommendations of the

ICRP have come to form the basis of most of the

world’s regulatory codes and regulations on radiolo-

gical safety. The ICRP is composed of a Main Com-

mission and four standing Committees. These are

Committee 1 on radiation effects, Commission 2 on

derived dose limits, Commission 3 on protection in

medicine and Committee 4 on the applications of the

ICRP recommendations. Task groups and working

parties are created to assist on the planning and draft-

ing of specific reports. The ICRP has published many

recommendations which have become influential in

nuclear medicine dosimetry. These would include

ICRP Publications 26 (1977), 53 (1991a), 60 (1991b),

and 103 (ICRP 2006), which defined the effective dose

equivalent and its successor, the effective dose, and

which provided data on the risks of deterministic and

stochastic effects; ICRP Publication 30 (1979) which

presented dosimetric models of the bone and bone

marrow, the gastrointestinal (GI) tract, and the respi-

ratory system and which was augmented or superseded

by Publications 66 (1994) on the revised respiratory

system, 70 on the revised skeletal model (1995) and

100 (2006) on the revised alimentary tract model; and

those publications which provided a compilation of

the absorbed dose profiles of a multitude of radio-

pharmaceuticals and radionuclides in medical use –

Publication 53 and its addenda (ICRP 1987, 1998,

2008a). Another profound influence it has had on

nuclear medicine radiation dosimetry has been through

its introduction and refinement of Reference Man,

Reference Woman and various reference pediatric

phantoms (ICRP 1975).

The MIRD Committee was originally organized as

an ad hoc entity and met for the first time in November

1964 and adopted its title at its second meeting of

January 1965 (S-Stelson et al. 1995). Its first pamphlet

was published in 1968 (Loevinger and Berman 1968)

and described its schema of calculating internal radia-

tion dosimetry. Since then, the MIRD committee has

published numerous pamphlets, reports, and dose esti-

mates, most of which are cited in this book. The MIRD

pamphlet provides the scientific overview of a partic-

ular nuclear medicine application whereas the MIRD

dose estimate provides dosimetric data specific for a

given radiopharmaceutical.

The ICRP and the MIRD committee have devel-

oped parallel internal dose estimation algorithms,

which will be considered in detail below. In fact, the

algorithms are virtually identical with the main differ-

ences residing in the use of nomenclature and the

target application. The MIRD committee has pub-

lished a pamphlet to, in part, bridge this gap (Bolch

et al. 2009).

The sophistication and accuracy of nuclear medi-

cine radiation dosimetry calculations have grown in

response to a variety of factors. These include the:

� Use of radionuclides moving away from naturally-

occurring radionuclides to artificially-produced

entities and their chelation to, or labeling of,

pharmaceuticals.

� Increase in spatial and temporal precisions and the

detection efficiencies of imaging devices.

� Development of more sophisticated mathematical

models (phantoms) to represent the human anat-

omy so as to enable more accurate calculations of

the absorbed dose distribution.

� Increase in computational power to allow detailed

calculations of radiation transport and energy depo-

sition in tissue.

Prior to the development of particle accelerators

and nuclear reactors in the 1930s and 1940s, only

naturally-occurring radioactive materials were avail-

able to be used in medicine. These were primordial

radionuclides, such as 40K, which has a half-life of

1.2 � 109 years, or the decay products (such as radium

or radon) of 232Th (half-life of 1.41 � 1010 years),
235U (half-life of 7.04 � 108 years) and 238U (half-

life of 4.5 � 109 years). The major difficulties with

the naturally-occurring radionuclides were the diffi-

culty in isolating and concentrating them, their asso-

ciated low specific activities, the nonpenetrating

charged-particle emissions associated with the extra

corpus detectable photons and, to a degree, the heavy

metal nature of the isotopes leading to the associated

imperfect biodistributions and potential toxicities.

The potential for artificially-created radioactive

isotopes was heralded by the work of the Irish physi-

cist, Walton, and his English colleague, Cockroft, in

their construction of a proton accelerator with which,

in 1932, they bombarded a lithium target to yield

the reaction 7Li(p,a)4He. For this work, Walton and

Cockroft won the Nobel Prize in Physics in 1951. This

nuclear reaction using accelerated particles suggested

immediately the possibility of artificially-induced

radioactivity, which was achieved through the reaction
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27Al(a,n)30P by the Joliot-Curies in 1934 which sub-

sequently led to their being awarded the Nobel Prize in

Chemistry in 1935. The a particles used were from an

intense polonium source. Artificial radioactivity

induced through neutron bombardment was shortly

afterwards demonstrated by Fermi and his colleagues.

But it was the work of Lawrence and others at the

University of California through the invention of the

cyclotron in the 1930s and its application to medical

radioisotope production that accelerated the first use

of artificially-produced radionuclides in medicine,

including 24Na, 32P, 128I, and 131I.

In parallel with these developments were the design

and construction of new radiation detectors which

allow spatial information encoding. The Geiger-

Müller detector, described in Chap. 9, was a com-

monly used device for early nonimaging quantification

of in vivo uptake of activity (S-Stelson et al. 1995).

Such a detector, or a scintillation probe, can provide a

basic measure of the total body burden of activity

which can provide a basic amount of data upon

which a dosimetry calculation can be made. Implicit

within this measurement is the assumption that the

activity is uniformly distributed throughout the body

(the probe measurement can only discern the body

retention of a radionuclide or, in the specific case of

iodinated radiopharmaceuticals, the uptake of radio-

active iodine by the thyroid). Imaging-based quantifi-

cation is essential for developing a biodistribution

and evaluating a complete radiation dosimetry profile.

Early attempts at imaging were inherently analog

and involved the translation of a single radiation

detector over the subject to be imaged (a rectilinear

scanner) and encoding the change in intensity of

photon detection as a function of spatial position in a

Cartesian coordinate system (Hamilton 2004). Anger

developed his eponymous camera and associated

energy deposition and position-encoding logic in

1957 (Anger 1964). The camera, based upon the pho-

toelectric absorption of collimated photons in a NaI

(Tl) crystal and the conversion of the scintillation

light into electrical signals by photomultiplier tubes,

has remained in clinical use for over a half-century.

The development of positron-emitting radionuclides,

including 11C and the ubiquitous 18F, led to the devel-

opment of the dedicated positron emission tomogra-

phy (PET) scanner. Although coincidence detection

of a positron-emitting radionuclide in a medical appli-

cation can probably be dated to the early 1950s at

Massachusetts General Hospital (Wrenn et al. 1951),

the 1960s saw the proper birth of coincidence imaging

techniques which have grown into the modern PET

scanner (Jones 2003).

11.2.2 Early Biodistribution
Measurements

11.2.2.1 Introduction

In order to evaluate the radiation absorbed doses to

organs and tissues resulting from an administered

radionuclide, the initial set of data to be obtained is

that of how the radionuclide distributes within the

body and is excreted over time. This data set is

referred to as the biodistribution or biokinetics of the

radiopharmaceutical. How these data are determined

is a critical part of the internal dosimetry evaluation

and modern means of obtaining these data are dis-

cussed later. In this subsection, early attempts made

at measuring in vivo the biodistribution or biokinetics

of an administered radioactive substance are briefly

reviewed.

11.2.2.2 ADME

ADME is the acronym for administration, distribution,

metabolism, and excretion used in the pharmaco-

kinetic literature. Although it is emphasized here that

measurements of the biodistribution are not pharmaco-

kinetic, the above acronym is useful for partitioning

the necessities of a biodistribution measurement.

Administration

A radiopharmaceutical (including radiolabeled anti-

bodies) can be administered to the patient through a

variety of routes largely depending upon whether or

not the intent is diagnostic or therapeutic and upon the

pathology or anatomy to be imaged. Administration

can be intravenous, intraarterial, through direct infu-

sion, intratumor, intracavitary, per os or by inhalation.

The means of administration will dictate the type of

biodistribution assessment.
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Distribution

A radionuclide introduced to the vascular system will

reach the right side of the heart, enter the pulmonary

arteries and pass through the pulmonary capillary bed

to reach the pulmonary veins and pass to the left-side

of the heart where it then enters the arterial system for

distribution throughout the body. Measurements of

this biodistribution are made at many discrete times

postadministration.

Metabolism

In pharmacokinetics, one is interested in how the body

manages the pharmaceutical and how it is metabolized.

This is not at all the case with a radiopharmaceutical

biodistribution measurement. The metabolic outcome

of an administered radiopharmaceutical cannot be

determined through in vivo and in vitro measurements

of the radionuclide linked to the radiopharmaceutical.

These measurements can only indicate the amount of

radionuclide present and cannot provide any informa-

tion to answer questions on the chemical form of the

radionuclide: i.e., is it still in the form of the unmetab-

olized original radiopharmaceutical moiety, is it part

of a metabolite or is it free radionuclide? Such infor-

mation can be determined, however, using high-

performance liquid chromatography.

Excretion

The measurement of the amount of radionuclide

excreted following administration of a radiopharma-

ceutical is essential to evaluating its associated radia-

tion dosimetry. A radiopharmaceutical is designed to

have as high specificity as possible for the pathology

intended for it to detect or treat. For a diagnostic

radiopharmaceutical, in particular, rapid and high

excretion is frequently sought as a means of both

reducing the nonspecific uptake and background

which limits the diagnostic efficacy and of reducing

the radiation absorbed dose. As renal excretion is

much faster than that through the GI tract, the latter

as a means of removing the radionuclide is sought if

possible (although this is not possible for, for example,

lipophilic radiopharmaceuticals where hepatic excre-

tion into the gut is frequently predominant).

11.2.2.3 Excretion of Administered Radium

In the early twentieth century, radium was regarded

popularly as a panacea for many diverse physical ail-

ments and was widely used without control. Radium is

a member of Group II (alkaline earth metals) of the

periodic table of elements and has chemical properties

similar to calcium. As a result, ingested radium is

incorporated into bone and the resulting induction of

osteosarcoma and other bone cancers are historically

well-known consequences, as evidenced by the experi-

ences of the cohort of radium dial-painters discussed

in Chap. 10.

Radium and its radon daughter product were delib-

erately ingested or injected in the early 1900s for

supposed health benefits. At this time, equally deliber-

ate biodistribution measurements, in the form of

experiments to assess the rate of excretion of injected

or ingested radium were performed (Rowland 1994).

For example, Evans (1933) reported a rate of excretion

of 0.005% of administered radium per day in the feces.

Seil et al. (1915) described the excretion of radium

administered intravenously and per os (the latter to

Seil himself). One subject received two intravenous

administrations of radium, each of 3.7 MBq, 2 months

apart. Seil self-administered radium per os in two

instances of 1.85 MBq each, 7 days apart. Radium

activity excreted in the urine and feces of both subjects

was measured. Seil died many years later of diverticu-

litis and his body later exhumed. Radium burden

measurements determined that he had had a systemic

intake of 2.7 MBq of radium.

11.2.2.4 In Vivo Measurement of Blood

Circulation Time

What is likely to have been the first in vivo measure-

ment of the biodistribution of a radionuclide in the

human was that performed by Blumgart and Yens

(1926); Patton (2003). The study was the first to non-

invasively measure the speed of blood flow, but was

not, due to the limited radiation detection technology

available in that era, an imaging-based study. Instead,

a reciprocating Wilson cloud-chamber was used as

a detector. The tracer employed was 214Pb and 214Bi,

both b- and g-emitters, adsorbed onto sodium chloride

which was subsequently dissolved and injected

into the antecubital vein of one arm of a subject.
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The reciprocating cloud-chamber was placed at the

contralateral arm with a lead shield placed between

the chamber and the injection site. The time difference

between that of injection and the detection of radio-

activity at the contralateral arm was measured.

This time difference was found to be in the range of

15–21 s in subjects with a normal cardiovascular

system and in the range of 50–65 s in patients with

cardiac decompensation.

11.2.2.5 Radionuclide Tracers: de Hevesy

The Hungarian chemist George de Hevesy is widely

acknowledged as the pioneer of radioactive tracer

science; moreover, the variety of apocryphal stories

associated with his tracer work make him a most

entertaining and fascinating individual. He received

the Nobel Prize in Chemistry in 1943 for his work on

the use of radionuclides as a means of noninvasively

measuring metabolism in both plants and animals.

de Hevesy’s interest in using radioisotopes famously

began when he was working in Rutherford’sManchester

laboratory in 1913. Rutherford had assigned him the

task of separating one of the daughter products of

radium decay, radium D, from lead. This was impossi-

ble to do as radium D, now known to be the isotope
210Pb, cannot be chemically isolated from other lead

isotopes. Inevitably, de Hevesy failed in this task but

realized that this failure to separate radiumD from lead

allowed radium D to be used as a tracer of lead. Thus,

the concept of the radiotracer was born. Chievitz and de

Hevesy (1935) performed the first tracer experiment

with an artificial radionuclide, 32P, in the rat. The bio-

distribution of 32P in the excreta, brain, spleen, kidneys,

liver, skeleton, blood, muscle, and fat at 22 days post-

administration was reported. This work provided the

first demonstration that bone formation was a dynamic

process: 30% of the 32P atoms deposited within the

skeleton were removed within 20 days.

11.2.2.6 Commentary

The above early in vivo measurements of the temporal

distribution or excretion of radioactive material were

not part of any attempts to estimate the consequent

internal radiation dosimetry. At around the time of

these measurements, the only algorithms for estimat-

ing the absorbed doses resulting from the placement of

radioactive material in corpus were those associated

with the introduction of encapsulated radium brachy-

therapy sources, the most widely used being derived

from the Paterson-Parker rules (Paterson and Parker

1934). The first attempt at calculating the radiation

dosimetry for an internally-distributed radionuclide

is now described.

11.2.3 Marinelli–Quimby–Hine Method
of Internal Radiation Dosimetry
Calculations

Before the 1940s, the development of radiation dosim-

etry calculations was far more advanced in external

beam radiotherapy and brachytherapy than in therapy

using internal radiation sources. This however

changed with three seminal papers (Marinelli 1942;

Marinelli et al. 1948a, b). The first applications of

administered radioactive substances were almost

exclusively therapeutic; any diagnostic indications

were restricted due to the limited amounts of photons

released by most of the naturally-occurring radio-

nuclides then in use. As a result, the calculation of

the internal dosimetry was originally focused on ther-

apy, although it was the Marinelli papers which first

considered diagnostic applications and radiological

safety. Further historical reviews of the development

of internal radiation dosimetry can be found in the

articles by S.-Stelson et al. (1995); Potter (2005); and

Stabin (2006).

The first substantial treatise on internal radiation

dosimetry calculations is that of Marinelli (1942) for

b-emitting radionuclides, in particular 32P in the treat-

ment of leukemia. He presented a unique way of

describing the energy deposited in tissue that was

prescient of the modern concept of kerma. As the

röntgen is defined only for the ionization caused by

photon interactions in air, Marinelli defined a unit

called the equivalent röntgen which was, essentially,

the amount of energy associated with the kerma due to

1 röntgen exposure in 1 g of air deposited in 1 g of soft

tissue. Knowing the amount of b-emitting radionu-

clide activity in a given mass of tissue and the mean

b-particle kinetic energy, the amount of equivalent
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roentgens could thus be evaluated. This quantity

would help enable the therapeutic clinician to pre-

scribe the amount of activity to be administered in

order to deliver a specified amount of kerma in terms

of a known radiological quantity, the röntgen.

In this pioneering paper, Marinelli noted that

knowledge of the biodistribution, in particular the

rate of excretion of the radionuclide, was essential to

accurate dosimetry. He even modeled the biological

elimination of activity with a monoexponential func-

tion leading to the realization of the effective decay

constant (or half-life), derived in Chap. 5. In addition,

he preceded the MIRD formalism by calculating the

cumulated activity (the time-integral of the radioactive

decays in tissue to yield the total number of disinte-

grations) ~A and noting that the largest absorbed dose

in a tissue is given by a radionuclide for which the

product ~A �Tb, where �Tb is the mean kinetic energy of

the b particles, is the greatest.

Marinelli continued this work, following the end of

the Second World War, through two papers written in

collaboration with Quimby and Hine (Marinelli et al.

1948a, b). The first paper (1948a) dealt with the physi-

cal and clinical aspects of both b- and g-emitting

isotopes. The second sentence of the abstract to this

paper was predictive of medical internal radiation

dosimetry by stating that the absorbed dose “. . . can-

not, in general, be measured, but when the half-life,

radiation energy, and biological uptake, and excretion

are known, it can be calculated”. Marinelli’s previous

work on b-emitting isotopes was reiterated with

greater clarity. Noting that the result would only be

approximate due to the lack of charged-particle equi-

librium at the borders, Marinelli, Quimby, and Hine

wrote that the “dose” (which we would recognize as

being more closely related to kerma) to a sphere con-

taining a b-emitting isotope is,

Db ¼ KbC (11.1)

where (and using the historical units of their paper),

Kb ¼ 88 �Tb T1=2 e:r: (11.2)

where e.r. is equivalent röntgen, C is the initial number

of mCi/g of activity and T1=2 is the physical half-life in

days. The above results are straightforward to obtain

(refer to Chap. 9). They then extended this formalism

to the internal radiation dosimetry of g-emitting iso-

topes in a manner similar to dosimetry calculations for

brachytherapy sources. Using, again, their historical

units, the “dose” due to photons was,

Dg ¼ KgCg e:r: (11.3)

where,

Kg ¼
T1=2

ln 2

dX

dt
� 10�3 (11.4)

where dX/dt is the in-air exposure rate in röntgens per

hour measured at 1 cm from a 1 mCi point source of

the radionuclide and C is the initial concentration of

activity in tissue given in units of mCi/g. The factor g
in (11.3) is a geometrical factor and which would be

recognized as being related to a self-absorption factor.

For the example of calculating the absorbed dose at a

point P (Fig. 11.2) this factor is,

g ¼ r
ð
d3r

e�mr

r2
: (11.5)

where m is the linear attenuation coefficient in the

medium at the photon energy of interest. Two examples

of calculating this geometrical factor are worthwhile to

examine. A crude, but easy to calculate, approximation

to the torso is a unit-density sphere of radius R. Then,

for the calculation point at the center of the sphere,

g ¼ r
ð
d3r

e�mr

r2

¼ 4pr
ðR

0

dr e�mr

¼ 4pr
m

1� e�mR
� �

(11.6)

and has units of gram per square centimeter.

r

P

dV

Fig. 11.2 Marinelli method for calculating the absorbed dose

at the point P, in a volume V containing a uniformly-distributed

g-emitting isotope, due to the activity from the differential

volume dV. This is determined by calculating the geometric

factor, g, given by (11.5)
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A model of the torso more realistic than that pro-

vided by a sphere is that of a right-cylinder of height H

and radius R as shown in Fig. 11.3.

Applying cylindrical coordinates and assuming a

uniformly-distributed radionuclide, the factor at point

P in the center of the cylinder is

g ¼ r
ð
d3r

e�mr

r2

¼ 4pr
ðH=2

0

dz

ðR

0

dr r
e�m

ffiffiffiffiffiffiffiffiffi
r2þz2p

r2 þ z2
:

(11.7)

The integral is not solvable analytically, but an

approximate solution can be had by expanding the

exponential to two terms,

e�m
ffiffiffiffiffiffiffiffiffi
r2þz2p

ffi 1� m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
þ m2

2
r2 þ z2
� �

: (11.8)

Substituting this result into (11.7) gives, after a

long and tedious calculation, an expression for g for

a right cylinder of height H and diameter 2R,

g ¼ 4pr
ðH=2

0

dz

ðR

0

dr r
1

r2 þ z2
� mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2
p þ m2

2

� �

¼ 4p
ðH=2

0

dz

ðR

0

dr
r

r2 þ z2

0
@

� m
ðR

0

dr
rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2
p þ m2

2

ðR

0

dr r

1
A

¼ r 4pR tan�1
H

2R
þ pH ln 1þ 2R

H

� �2
 ! 

� 2pmR2 H

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H

2R

� �2
s0

@

þ ln
H

2R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H

2R

� �2
s0

@
1
A
1
A

� pmH2

2
þ H

2

mR
2

� �2
!
: ð11:9Þ

The companion paper (1948b) discussed the practi-

cal applications of the results of the first and introduced

the differential absorption ratio (DAR) to describe the

differences in radionuclide uptake among tissues

which lead to differences in absorbed dose. The DAR

for a given tissue was defined as the ratio of the

concentration of the isotope in that tissue to the aver-

age concentration in the whole body;3 the DAR

allowed one to understand the absorbed dose to an

organ relative to the average absorbed dose. And it is

in this paper that the effective half-life was defined.

In reading these three publications, one sees the

genesis of many of the concepts that are routinely used

in modern internal radiation dosimetry calculations.

11.3 Modern Methods of Nuclear
Medicine Radiation Dosimetry

11.3.1 Introduction

This section provides an overview of modern means of

calculating the internal radiation dosimetry associated

P

R

H

Z

r

Fig. 11.3 Calculation of Marinelli–Quimby–Hine geometrical

factor for a right-cylinder

3One can see the similarity to the modern specific uptake value

(SUV).
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with a radiopharmaceutical using the MIRD and ICRP

methods.

11.3.2 Sources of Data

11.3.2.1 Introduction

All methods of calculating internal radiation dosime-

try require, as input, knowledge of the radiation char-

acteristics of the administered radionuclide, the

anatomy for which the dosimetry is being calculated

for and, finally, the biokinetics of the radiopharmaceu-

tical. The last requirement has already been discussed

briefly in the review of the ADME concept and the

early history of biodistribution measurements; it will

shortly be discussed in considerable detail due to its

importance in evaluating the dosimetry. The first two

requirements are presented here.

11.3.2.2 Radiation and Nuclear Data

The radiation characteristics of the radionuclide are

the first necessary data to be had. These data include:

� Nuclear decay scheme (decay type, emissions,

yields, radiation energies, half-life)

� Radiation-matter interaction coefficients (attenua-

tion coefficients, energy-transfer, and energy-absorp-

tion coefficients, unrestricted, and restricted collision

stopping powers, radiative stopping powers)

These have been discussed in Chaps. 3, 4, 6, and 7.

Data for nuclear decay schemes are not static and

refinements in these values are regularly published in

the literature. Typically, the increased levels of preci-

sion and accuracy in these decay scheme updates have

little direct effect upon the accuracy of an internal

dosimetry calculation as these are dwarfed by

uncertainties in other data, particularly those that are

biological. Any refinement in values of interaction

coefficients, on the other hand, is usually driven by

improvements in theory. Again, any such changes

largely have an insignificant impact upon a dosimetry

calculation.

Nuclear, atomic and, radiological data are readily

accessible at websites hosted by national, academic, or

other centers. Examples include:

� National Nuclear Data Centre (Brookhaven

National Laboratory): http://www.nndc.bnl.gov/

� Radiation Dose Assessment Resource (RADAR):

http://www.doseinfo-radar.com/RADARHome.html

� International Atomic Energy Agency (IAEA):

http://www.iaea.org/

� Ernest O Lawrence Berkeley National Laboratory

Isotopes Project Nuclear Data Dissemination:

http://ie.lbl.gov/toi.html

� National Institute of Standards and Technology

(NIST): http://physics.nist.gov/PhysRefData

� Korea Atomic Energy Research Institute: http://

atom.kaeri.re.kr/

Relevant nuclear decay data are also available in

journal articles and reports. Examples include those of

Stabin and da Luz (2002), Stabin and Siegel (2003)

and ICRP Publication 107 (2008b). Data of the inter-

actions between radiation and matter are available in a

variety of ICRU publications which have been cited in

Chaps. 6 and 7, some of which are available on the

NIST website cited above.

11.3.2.3 Anatomical and Physiological Data

In addition to the requirements of physical data,

nuclear medicine dosimetry calculations need anato-

mical and physiological data. If one is performing a

patient-specific therapy calculation, then these data

will be obtained from the individual patient through,

for example, an acquired whole-body CT scan. How-

ever, such detailed calculations are relatively rare due

to the inherent complexities and demands for high

processing power in order to evaluate the radiation

absorbed dose distribution to sufficient precision. For

low-absorbed dose nuclear medicine applications, a

representative set of anatomical data is usually suffi-

cient. These are provided in the form of a Reference

Man for a given ethnic population and which is

described by an anthropomorphic phantom. These

whole-body phantoms are described in Chap. 12.

11.3.3 MIRD Schema

11.3.3.1 Introduction

As described earlier, the MIRD Committee provided

its first set of instructions on nuclear medicine
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dosimetry calculations in 1968. It is now ubiquitous in

the field. As with all internal radiation dosimetry cal-

culations, it provides a measure of the absorbed dose

(i.e., the integral of the absorbed dose rate) to a target

region due to a temporally-varying amount of activity

in a source organ. The separate absorbed dose contri-

butions to the target region are summed over the

various source organs and the result provides the

total absorbed dose to the target region.

11.3.3.2 The Fundamental MIRD Equation

Derivation of the Fundamental MIRD Equation

The MIRD approach to estimating the absorbed dose

received by a tissue or organ due to activity contained

within the organ itself or another source organ was

presented originally in 1968 by Pamphlet 1 (Loevinger

and Berman 1968). This pamphlet has been since

been followed by the MIRD primer publications

(e.g., Loevinger et al. 1988) and Watson et al. (1993)

which have provided a succinct review of the formal-

ism. In its purest form, the MIRD expression is

remarkably simple and gives the absorbed dose to a

target region rT at time t from activity contained in a

source region rS as,

DrTðtÞ ¼ ~ArSðtÞS rT  rS; tð Þ (11.10)

where ~ArS is the total number of nuclear disintegra-

tions in the source region that have occurred up to

time t, and is known as the cumulated activity, and is

further described shortly. S rT  rS; tð Þ is known sim-

ply as the “S-factor”4 and relates the absorbed dose in

the target region rT to the cumulated activity in source

region rS at time t. In other words, it is the absorbed

dose in the target region per nuclear disintegration in

the source region. In practical nuclear medicine

dosimetry calculations, the S-factor is a previously

calculated entity for combinations of rS and rT and

photon and electron energies. The time dependencies

of absorbed dose, cumulated activity and S-factor are

allowed in this general representation of the MIRD

formula as both the volume and morphology of some

source regions can vary with time. Two obvious exam-

ples are the urinary bladder, which fills and distends

with inflowing urine and then empties and collapses

with each void of urine, and tumors which can increase

in size (in the case of the lack of therapy response) or

decrease as a result of therapy. As a result, the irradia-

tion geometry can change over time. Such a time-

dependence in (11.10) is only a formalism as organ

volumes and shapes are usually taken to be fixed in

contemporary nuclear medicine dosimetry calcula-

tions. Empirically, one need only measure the cumu-

lated activity ~ArS of the source region and use the

predetermined S-factor to derive its contribution to

the absorbed dose received by the target region. How-

ever, as would be expected, the simplicity of (11.10)

belies a considerable amount of physical detail. This

detail will be presented through its derivation for the

source region rS and a target region rT as shown in

Fig. 11.4. The source region rS, which can be an organ,

tissue, or intracavitary contents, contains an amount of

radioactive material and it is desired to calculate the

total absorbed dose in the target region rT resulting

from the radiation emitted from rS. It is possible for the

source and target regions to be the same, as when

calculating for self-dosing of an organ due to the

radioactive material it contains. A fraction of the ener-

gies released by the radioactive decays in rS, presented

as either a photon energy or the kinetic energy of a

charged particle, is deposited in rT. Hence, the

absorbed dose rate at rT at time t due to the activity

in rS, ArSðtÞ is,

dDrTðtÞ
dt

¼ ArSðtÞS rT  rS; tð Þ: (11.11)

rSrT

Fig. 11.4 Concept of the MIRD schema: the absorbed dose to

target region rT is calculated on the basis of the total number of

radioactive decays occurring in source region rS, ~ArS

4The S-factor is sometimes referred to as the dose factor DF or

the dose-conversion factor in the literature.
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To reiterate, the S-factor is the fraction of the

energy released in a single radioactive decay occur-

ring within rS and which is deposited in rT and is

normalized to the mass of the target region rT, mrT .

Because of the dependence upon the distance separat-

ing rS and rT and the mass mrT , the S-factor is a

function of the radionuclide and the sex- and age-

dependent sizes of, and distances between, source

and target regions. In the MIRD schema, these are

defined as specific organs, tissues or contents of

organs although there is no reason to restrict (11.11)

to predefined source and target organs. For example,

the schema can be applied to voxellated phantoms,

where activity and absorbed dose distributions are

evaluated for individual voxels derived from tomo-

graphic image data.

The total absorbed dose to rT is the integral of the

absorbed dose rate given by (11.11) over the exposure

time, TExp,

DrT TExp

� � ¼
ðTExp

0

dt
dDrTðtÞ

dt

¼
ðTExp

0

dt ArSðtÞS rT  rS; tð Þ:

(11.12)

In nuclear medicine dosimetry calculations, the

upper limit of the time integration TExp is set to 1
whereas, in occupational radiation protection applica-

tions (those of the International Commission on Radio-

logical Protection), TExp is set equal to 50 years for an

adult (who is assumed to be aged 20 years at time of

exposure) or else a variable time for pediatric expo-

sures (Bolch et al. 2009). In practice, the target region

will be irradiated by multiple source regions which

requires (11.12) to be rewritten as the summation of

the absorbed dose contributions from NS source

regions,

DrT TExp

� � ¼XNS

rS¼1

ðTExp

0

dt ArSðtÞS rT  rS; tð Þ: (11.13)

From the definition of the S-factor, one can write

S rT  rS; tð Þ ¼
P
i

EiYif rT  rS;Ei; tð Þ
mrTðtÞ

(11.14)

where the summation is over all nuclear decay chan-

nels. Ei is the energy of the ith decay (this is the

released energy if a photon or the mean kinetic energy

if the emission is of a b particle),5 Yi is the yield of that

particular channel, f(rT  rS;Ei;t) is the absorbed

fraction of the energy Ei emitted at time t in rS which

is absorbed by rT (introduced in Chap. 9)
6 and mrTðtÞ is

the mass of the target region at time t. Neglecting the

time dependence, the absorbed fraction is the fraction

of energy Ei released by a radioactive decay at the

source region rS which is deposited in the target

region, rT. Stabin and Siegel (2003) have extended

this expression of the S-factor (which they refer to as

the dose factor, or DF) by including the radiation

weighting factor from ICRP Publication 26 (1977)

for the relevant product of the radioactive decay,

S rT rS; tð Þ ¼
P
i

wR;i EiYif rT rS;Ei; tð Þ
mrTðtÞ

(11.15)

where wR,i is the radiation weighting factor for the ith

emission. In nuclear medicine applications, wR,i is equal

to unity except for Auger electrons and a particles.

The specific absorbed fraction is defined as the

absorbed fraction per unit mass of the target region

(thus having units of inverse mass),

F rT  rS; tð Þ ¼ f rT  rS;Ei; tð Þ
mrTðtÞ

(11.16)

allowing the expression for the S-factor given by

(11.14) to be rewritten as,

S rT  rS; tð Þ ¼
X
i

DiF rT  rS;Ei; tð Þ (11.17)

where Di ¼ EiYi is the mean energy emitted by each

ith nuclear transition.7 Equation (11.17) can also be

written in continuous form,

5The symbols k and T were previously used for the photon

energy and charged particle kinetic energy, respectively. Here,

for simplicity, the symbol E will be used to describe the energies

of both quantities.
6The absorbed fraction f is sometimes referred to as AF in the

literature.
7The specific absorbed fraction F is sometimes referred to as

SAF in the literature.
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S rT  rS; tð Þ ¼
ðEmax

0

dEEF rT  rS;E; tð Þ (11.18)

which would be more appropriate for b-emissions in

which the b-particle energy spectrum, described in

Chap. 4, must be accounted for. Combining (11.13)

and (11.17) and allowing the exposure time to go to

infinity, the absorbed dose to the target region is,

DrT �DrT 1ð Þ

¼
XNS

rS¼1

ð1

0

dtArSðtÞS rT rS; tð Þ

¼
XNS

rS¼1

ð1

0

dtArSðtÞ
ðEMax

0

dEEF rT rS;E; tð Þ:

(11.19)

Equation (11.19) is a generic result in which both

the morphology and size of the source organ are

allowed to vary with time and the resulting effects of

such variations appear in the specific absorbed fraction.

In practice, the specific absorbed fraction is assumed to

be constant with time, enabling (11.19) to be written as,

DrT ¼
XNS

rS¼1

ðEMax

0

dEEF rT  rS;Eð Þ
ð1

0

dt ArSðtÞ:

(11.20)

This time integral of the activity is the total number

of nuclear decays that occur in the source region rS and

is known as the cumulated activity,

~ArS ¼
ð1

0

dt ArSðtÞ: (11.21)

Substituting (11.21) into (11.20) leads to the funda-

mental MIRD expression of (11.10), but without the

time dependence. Note that the cumulated activity is

dimensionless as it is the product of activity (per time)

and time.

Evaluation of the S-Factor

The S-factor is the ratio of the absorbed dose in the

target region rT to the cumulated activity in the source

region rS. It is calculated for source region/target

region combinations using Monte Carlo simulation

of radiation transport and energy deposition to yield

the absorbed fraction. As described in Chap. 9, it is

possible in some circumstances to use the reciprocity

theorem to simplify the calculation. S-factors have

been evaluated typically for reference anthropomor-

phic phantoms. Patient-specific S-values can be

derived, although this is currently in the research

setting. Values of S-factors for combinations of source

and target regions, radionuclides and radiations are

found throughout the literature, especially the MIRD

reports, the compilations by Stabin (2008) and the

RADAR website (Eckerman 2002). In the conven-

tional MIRD schema, the source and target regions

are geometrical approximations of organs, tissues

and organ intracavitary contents. The activity spatial

distribution throughout the source region rS is assumed

to be constant and a Monte Carlo code is used to

simulate the radiation transport from the radionuclide

in rS to the target region rT. The individual energy

depositions in the target region are then summed and

normalized to the mass of the target region (effectively

averaging the absorbed dose over the target region).

While in the conventional MIRD schema, the target

region is a specified organ or tissue or a suborgan

entity (including cellular components), it is straight-

forward to have a voxel as a target region so that the

absorbed dose spatial distribution within an organ or

tissue can be determined. Such calculations are, as

expected, immensely computationally intensive.

Absorbed Dose Contributions from b-Particle
Bremsstrahlung

The above derivations are immediately applicable to

the direct deposition of energy in the target region rT
due to photons and charged particles (electrons, posi-

trons, and a particles) emitted by radionuclides in the

source region rS. However, as discussed in Chap. 7,

charged particles decelerating in a medium will

undergo radiative energy losses due to interactions

with nuclear Coulomb fields (interactions with atomic

electron Coulomb fields can be largely accounted for

by replacing Z2 in the bremsstrahlung yield calcula-

tion by Z(Z þ 1) where Z is the effective atomic

number of the medium). Because the bremsstrahlung
yield varies as m�, where m is the charged particle’s

mass, the radiation emitted by a decelerating a particle
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at the energies typical of a decay (Sect. 4.2 in Chap. 4)

in low-Z media such as tissue are negligible and are

not considered here. Positrons emit bremsstrahlung

but, as discussed in Chap. 7, their radiative yield

becomes comparable to those of electrons only at

kinetic energies exceeding about 75 keV. As b parti-

cles have a limited range, the absorbed fraction is very

nearly equal to unity for most source regions (i.e., the

absorbed fraction f(rS  rS) � 1). However, depend-

ing upon the b-particle kinetic energy spectrum and

the amount of activity of the b-emitting radionuclide,

energy deposition at a distance due to bremsstrahlung

may not be negligible. A common example of a b�-
emitting radionuclide used in therapeutic nuclear medi-

cine is 90Y which has a physical half-life of 64.3 h.

Therapeutic applications of this radionuclide have

included radiation synovectomy (Nemec and Fridrich

1977), chelation with diethylenetriaminepentaacetic

acid (DTPA) in intrathecal therapy of neuroleukaemia

and central nervous system involvement in malignant

lymphoma (Smith et al. 1976), the hepatic arterial

infusion of 90Y-labeled glass microspheres (Roberson

et al. 1992) and, in more recent years, in monoclonal

antibody therapy of non-Hodgkin’s lymphoma

(Wiseman et al. 2000). As the 90Y b-particle energy

spectrum has a maximum energy of 2.27 MeV, the

range of these b particles in soft tissue is less than

about 1 cm. Williams et al. (1989) first investigated a

calculation of the bremsstrahlung contribution within
the MIRD schema in relation to 90Y. Their approach

was to provide an approximate calculation of the

S-factor by using the simple assumption that the brems-
strahlung spectrum could be adequately described by

the Schiff triangular spectrum (Johns and Cunningham

1983). Folding this spectrum with the b-particle energy
spectrum, they evaluated S-values for a uniform distri-

bution of 90Y within the contents of the urinary bladder.

In addition, using an anthropomorphic phantom con-

taining TLDs and a single 90Y source placed within the

urinary bladder section of the phantom, they compared

measured absorbed dose values per unit administered

activity with those calculated using the previously

derived S-values. For example, they measured a mean

absorbed dose within the bladder contents (not the

urinary bladder wall) of 117 mGy/MBq vs. an estimated

absorbed dose (excluding biological washout of activ-

ity) of 168 mGy/MBq. Although agreement between

calculation and measurement was not exceptional,

these results did demonstrate the need to account for

the bremsstrahlung component in the internal radia-

tion dosimetry calculations of b-emitting therapeutic

radionuclides.

Stabin et al. (1994) modeled the bremsstrahlung

absorbed dose by first writing the specific absorbed

fraction at a point a distance r from a monoenergetic

point source photon emitter of energy k,

F r; kð Þ ¼
men
r
ðkÞ

� �
e�mðkÞrBen mr; kð Þ
4pr2

(11.22)

where menðkÞ=r is the mass-energy absorption coeffi-

cient, m(k) is the linear attenuation coefficient and

Ben(mx,k) is the energy absorption build up factor.

When multiplied by the photon energy, this expression

becomes the photon dose point kernel. For the poly-

energetic beam of bremsstrahlung, the mean specific

absorbed fraction is obtained by integrating over the

photon spectrum,

�FðrÞ ¼
ðkMax

0

dkF r; kð Þ dNgðkÞ
dk

(11.23)

where kMax is the maximum photon energy. The

bremsstrahlung spectrum is normalized so that,

ðkMax

0

dk
dNgðkÞ
dk

¼ 1: (11.24)

Calculating the bremsstrahlung energy spectrum

dNgðkÞ=dk requires integrations over both theb-particle
kinetic energy spectrum (from, e.g., the Fermi theory or

measurement) and the photon production cross section

(given by, e.g., the Bethe-Heitler form) for each point on

the b-particle energy integration. Stabin et al. evaluated
the specific absorbed fraction due to 90Y bremsstrahlung

and the absorbed doses to the MIRD-specified target

regions (Table 11.1) for 90Y uniformly distributed in

the liver and spleen. They demonstrated that although

the bremsstrahlung-related absorbed dose can be much

smaller than that due to the b particles themselves

(e.g., by a factor of 1,000 at a distance of 1 mm from

the source in soft tissue), the absorbed doses of

both mechanisms equate at distances of about 1 cm.
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The authors concluded, accordingly, that the brems-

strahlung absorbed dose contribution cannot always be

considered negligible.

Normalized Cumulated Activity

For practical data tabulations, the physical quantities

of absorbed dose and cumulated activity are normal-

ized to the administered activity, A0,

DrT; Norm ¼
XNS

rS¼1
~ArS; NormS rT  rS; tð Þ (11.25)

where the normalized cumulated activity in the source

region rS is,

~ArS; Norm ¼
~ArS

A0

: (11.26)

The dimension of the normalized cumulated activity

is that of time which is why, historically, it was

referred to as the residence time. As this latter term

is potentially confusing and could be misinterpreted as

biological half-life, effective half-life, or some other

temporal quantity, the use of the term normalized

cumulated activity to describe the quantity of (11.26)

is now almost standard. The units of DrT;Norm are of the

absorbed dose per unit activity (e.g., mGy/MBq).

A feature of the normalized cumulated activity

arises over the summation of the normalized cumu-

lated activities in all regions containing activity. Con-

sider the continuous case, rather than a discrete

ensemble of organs, where A rS; tð Þ is the activity at

the position rS and time t within a volume in which an

activity A0 has been administered. The total number of

nuclear disintegrations over all time in that volume is

given by the double integral,
Ð
V

d3rS
Ð1
0

dt A rS; tð Þ ¼Ð1
0

dt
Ð
V

d3rSA rS; tð Þ. As the volume integral yields

total activity within the volume,
Ð
V

d3rSA rS; tð Þ ¼
A0e

�lPt, then

ð
V

d3rS

ð1

0

dt A rS; tð Þ ¼ A0

lP
: (11.27)

From (11.26), this result leads to,

ð
V

d3rS ~ArS;Norm rSð Þ ¼ 1

lP
: (11.28)

In the discrete case of specified source regions, the

integral is replaced by the summation of the normal-

ized cumulated activities,

X
rS

~ArS;Norm ¼
1

lP
(11.29)

where the summation is over all source regions con-

taining activity, including the excreta.

Matrix-Vector Representation of the Fundamental

MIRD Equation

Equation (11.25) can be written more compactly in

matrix-vector form,

DNorm ¼ SA~Norm (11.30)

Table 11.1 Source and target regions used in the MIRD

schema
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where DNorm is the row-vector of the target region

absorbed doses of dimension NT, which is the total

number of target regions,

DNorm ¼ DrT1
DrT2

� � � DrTNT

� �
; (11.31)

where Dr
Ti
is the absorbed dose to the ith target region.

A~Norm is the column-vector of the source regions’

normalized cumulated activities and is of dimension

NS, which is the number of source regions,

A~Norm ¼

~ArS1 ;Norm

~ArS2 ;Norm

..

.

~ArSNS
;Norm

0
BBBB@

1
CCCCA (11.32)

and S is the rectangular NT � NS matrix of S-factors

between individual source and target regions,

S ¼
S rT1

 rS1ð Þ � � � S
�
rT1
 rSNS

�
..
. . .

. ..
.

S
�
rTNT
 rS1

� � � � S
�
rTNT
 rSNS

�

0
BB@

1
CCA:

(11.33)

In the current MIRD schema, there are 25 target

and 26 source regions shown in Table 11.1, S is a

rectangular 25 � 26 matrix (where the whole body is

treated as being a target region on its own). In the

event of the radionuclide emitting only charged parti-

cles, the S-factor matrix will be diagonal if brems-

strahlung and “cross-fire” between organs can be

considered negligible (although not all of the diagonal

elements will be non-zero). If the source and target

regions are within an infinite medium and the radio-

nuclide emits photons, then the reciprocity theorem

suggests that S will be symmetric. This is valid only if

all of the source regions are target regions also. As

there is not such a perfect match between MIRD-

specified source and target regions, this symmetry

will be incomplete. Moreover, when the medium con-

taining these regions is reduced in size to become the

stylized and heterogeneous anthropomorphic phan-

toms to be discussed in Chap. 12, this symmetry

becomes only approximate due to the loss of radiation

equilibrium.

Variations in S-factor Values Due to Changes

in Regions’ Masses

The S-factors are calculated typically for predefined

source and target regions in a known reference anthro-

pomorphic environment. It is possible to modify a

predefined S-factor in order to account for changes in

source organ mass. For example, this can be necessary

for estimating patient-specific dosimetry on the basis

of that previously calculated for a reference phantom

with known S-factor values or absorbed fractions

(Yamaguchi 1978). Let mrS be the mass of the source

region rS and S rT  rSð Þ be the previously calculated

S-factor and let m0rS and S rT  r0Sð Þ be the cor-

responding quantities for the same source region but

identified as r0S as it now has a mass m0rS . Consider the
case of source region self-irradiation due to charged

particle emissions alone within it. Assuming that

charged particle equilibrium exists, then the absorbed

fractions f rS  rS;Eð Þ ¼ f r0S  r0S;Eð Þ ¼ 1. From

(11.15), it follows that the S factor scales linearly with

mass provided charged particle equilibrium exists,

S r0S  r0Sð Þ ¼ mrS

m0rS
S rS  rSð Þ

Charged particlesð Þ:
(11.34)

Consider now the case of a charged-particle emit-

ting radionuclide uniformly distributed throughout the

body and assume that charged particle equilibrium

exists. The body has a mass mWB and the energy

released per single emission is E. The absorbed frac-

tion to a target region rT is f rT  WB;Eð Þ ¼ 1, so

from (11.16), the specific absorbed fraction to the

target region is,

F rT  WBð Þ ¼ 1

mWB

: (11.35)

The corresponding S-factor is, from (11.14),

S rT  WBð Þ ¼ E

mWB

(11.36)

Next consider the dependence of the self-irradia-

tion S factor upon organ mass for a photon-emitting

radionuclide uniformly distributed within the organ.

Using the photon dose point kernel of (9.116) in

Chap. 9, the specific absorbed fraction is given by
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the integral, assuming that the organ can be modeled

by a sphere of radius r0,

F r0S  r0S; k
� �

¼ 3

4pr02r

ð2p

0

dj
ð1

�1
d cos yð Þ

�
ðr0

0

dr r
menðkÞ

4p r0 � rj j2 e
�mðkÞ r0�rj jBD k; m r0 � rj jð Þ

(11.37)

where k is the photon energy and r is the physical

density of the organ. In the condition of mðkÞr0 being
small, then the buildup factor BD k; m r0 � rj jð Þ � 1.

This allows the integral to be solved in the fashion of

(11.7) (Snyder et al. 1978),

F r0S  r0S; k
� � ¼ 3

4pr03r
menðkÞ
mðkÞ 1� e�mðkÞr

0
� �

ffi 3menðkÞ
4pr02r

ð11:38Þ

where the last step is a consequence of the assumption

of mðkÞr0 being small. If (11.38) is adjusted for the

absorbed fraction, then,

f r0S  r0S
� � ¼ m0rS

mrS

� �1=3
f rS  rSð Þ: (11.39)

For the case of the target and mass-scaled source

regions differing and assuming that the physical

distance between the source and target regions does

not change significantly with the changes in the

source and target region masses, then the specific

absorbed fraction is independent of changes in the

source and target region masses. However, for self-

irradiation,

F r0S  r0S
� � ¼ mrS

m0rS

 !2=3

F rS  rSð Þ: (11.40)

Yamaguchi (1978) applied scalings of the photon

absorbed fraction F(rS rT) in order to modify the

S-factors previously calculated for the Caucasian

ICRP Reference Man for an internal radiation dosim-

etry calculation particular to the Japanese population.

Discussions of this application are defined to the sub-

section concerning non-Western population phantoms

in Chap. 12.

MIRD Source and Target Regions

As shown in Table 11.1, the conventional MIRD

schema currently specifies 26 source regions. Of

these, 25 are specific tissues, organs or contents of

organs. All other tissues are grouped into a “remaining

tissues” category. In the current MIRD schema, 24

target regions are explicitly specified. The whole

body is noted as being a target region: the S-factors

for this target region yield the absorbed dose to the

whole body (i.e., total energy absorbed by the body

divided by the whole-body mass) and should not be

confused with the effective dose, which is a stochastic

risk-weighted sum of organ absorbed doses. Note also

that the contents of the GI tract and the urinary bladder

are treated as source regions and the walls of the GI

tract and urinary bladder as target regions.

11.3.4 ICRP Method

The ICRP developed a dosimetry model almost iden-

tical to that of the MIRD committee (ICRP 1979). The

main difference between the two methods is that,

because of the focus of the ICRP is on the radiological

protection of workers in the nuclear industry who are

potentially exposed to radiations with a variety of

LETs, the cumulative dose equivalent is instead cal-

culated for rather than the absorbed dose. The dose

equivalent, which has since been redefined and

renamed as the equivalent dose in ICRP Publications

60 (1991b) and 103 (2007), was defined in Chap. 10

using the radiation weighting factors of ICRP Publica-

tion 30 (ICRP 1979). The cumulative dose equivalent

is the total dose equivalent received by the target

region rT in a period of 50 years following uptake of

a radionuclide. Using the units of ICRP Publication

30, the expression is,

H50;rT ¼ k
X
rs

UrSSEE rT  rSð Þ: (11.41)
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k is a constant for the matching of units (the cumu-

lative dose equivalent has units of sieverts), UrS is the

cumulated activity in the source region rS and the

specific effective energy, SEE(rT  rS), is equivalent

to the MIRD S-factor but now modified by the radia-

tion weighting factor wR, as in the manner of Stabin

and Siegel discussed earlier, but which was referred to

in ICRP Publication 30 as the quality factor Q,

SEE rT  rS; tð Þ ¼
P
i

QiEiYif rT  rS;Ei; tð Þ
m rT; tð Þ :

(11.42)

Qi is the radiation weighting factor (labeled as wR

in Table 10.4) from ICRP Publication 26 (1977).

11.3.5 Suborgan Dimension Calculations

Interest in suborgan activity distributions is especially

important in radionuclide therapy as “cold spots,” or

regions receiving inadequate absorbed dose, can lead

to reduced tumor control probabilities and failure to

cure or control disease. In such cases, the term “voxel

dosimetry” is appropriate. In MIRD Pamphlet 17

(Bolch et al. 1999) “voxel dosimetry” is defined as

the evaluation of the absorbed doses to tissue regions

with submillimeter dimensions ranging up to dimen-

sions of only a few centimeters. In particular, tomo-

graphic emission imaging enables the in vivo

quantification at voxel dimensions of the order of

3–10 mm (dosimetry at spatial dimensions comparable

to the cell or organelles are soon to be considered).

Voxel dosimetry can be based upon three calculation

methods. The first is founded on the use of the dose

point kernels presented in Chap. 9. This calculation

method uses the convolution of the kernel with the

spatial distribution of activity which is the result of the

superposition of individual point sources which are

assigned to discrete voxels. The dose distribution is

calculated usually through the means of the Fast Four-

ier Transform. For example, the absorbed dose at the

point r0 due to the activity volume distribution r rð Þ is,

D r0ð Þ ¼
ð
d3r r rð ÞK r� r0ð Þ (11.43)

Another means of calculating absorbed doses at the

voxel dimension is that of Monte Carlo simulation of

radiation transport and energy deposition. While

clearly computationally intensive, this approach is a

more accurate one in that it can account for the hetero-

geneous nature of tissue.

A third means, and one which is discussed in MIRD

Pamphlet No. 17, applies the MIRD S-factor concept to

voxel-to-voxel calculations. Here, (11.10) would repre-

sent the absorbed dose to the voxel at the location rT due

to radiation emitted from voxel at the location rS. This

approach, however, suffers from the inability to account

for a heterogeneous medium due to the extremes of

computation power required. Despite this limitation to

homogeneous media, it presents computational ease

through the use of precalculated S-factors.

11.3.6 Internal Radiation Dosimetry
Calculation Software

11.3.6.1 Introduction

Table 11.1 demonstrated that the size of the ensemble

of MIRD S-factors linking source and target regions

can be significant (recognizing that the resulting

S-factors are specific for a single radionuclide only).

Manual calculations linking calculated cumulated

activities in source regions to absorbed doses in target

regions are daunting and time consuming. As a result,

software presents a practical means of calculating

target regions’ absorbed doses. This become even

more necessary when the organ-specific approach of

the “classical” MIRD approach is extended to voxel-

based calculations, as described earlier. In this subsec-

tion, various software platforms developed for use in

internal dosimetry calculations are summarized.

11.3.6.2 MIRDOSE

This was the premiere software package for dosimetry

calculations in nuclear medicine (Stabin 1996). In this

package, the user provides normalized cumulated

activities in MIRD source organs for a specific radio-

nuclide and the absorbed doses per unit activity for

MIRD-specified target organs are given as output.
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The first version of the code (MIRDOSE 1) was

developed in the 1980s and used internally only at the

Radiation Internal Dose Information Center (RIDIC)

based at the Oak Ridge National Laboratory. The next

version MIRDOSE 2, was released for general use in

the nuclear medicine community in 1987. This code

was limited to internal radiation dosimetry calculations

for 60 radionuclides and six anthropomorphic phan-

toms. The final version, MIRDOSE 3, was released in

1994 and allowed for calculations of more than 200

radionuclides and 10 anthropomorphic phantoms. The

code was provided free-of-charge by RIDIC and

gained widespread use. However, in 2000, a question

arose of whether or not MIRDOSE 3 should be classi-

fied as a treatment planning device by the US FDA. As

a result of this uncertainty, the RIDIC ceased distribut-

ing MIRDOSE 3.

11.3.6.3 OLINDA/EXM

A solution to the MIRDOSE 3 dilemma was provided

by the development of the Organ Level Internal Dose

Assessment/Exponential Modelling code and which is

described by Stabin et al. (2005). OLINDA/EXM is

currently unique in the field of nuclear medicine

dosimetry in that it has a 510(k) exemption from the

FDA. The code represents a considerable extension

from the original MIRDOSE series in that it allows

calculations for 814 radionuclides and a wide variety

of adult, pediatric and pregnant female phantoms,

tumors, and the prostate gland. It also contains a useful

multi-exponential curve-fitting package allowing the

user to obtain directly the cumulated activities from

measured biodistribution data.

11.3.6.4 OEDIPE

OEDIPE is a graphical user interface (GUI) designed

to create an input file for the MCNP Monte Carlo code

on the basis of a voxellated phantom derived from

either CT or MR image data sets (Chiavassa et al.

2006; Franck et al. 2007). The user provides the

amounts of activities in voxels/organs as functions of

time and the absorbed dose distribution is evaluated by

the Monte Carlo code.

11.3.6.5 AIDE

This code (activity and internal dose estimates) (Bertelli

et al. 2008) incorporates both in vivo biodistribution

data and in vitro assay data to evaluate the internal

radiation dosimetry. Its primary application is radiation

safety and the estimates of absorbed doses associated

with the occupational ingestion of radionuclides.

11.3.6.6 PLEIADES

This is a code (program for linear internal age-depen-

dent doses) developed by the UK’s Health Protection

Agency (Fell 2007; Fell et al. 2007). It solves both the

biokinetic and dosimetry problems and is intended

primarily for radiological protection.

11.3.6.7 MABDOSE

While the acronym for this code evolves from mono-

clonal antibody dosimetry, the code is generic for

solving the internal radiation dosimetry problem

(Johnson et al. 1999a, b). It uses a GUI to allow

definition of a tumor volume and a contained Monte

Carlo package for evaluating S-factors.

11.3.6.8 MINERVA

This is a Monte Carlo-based treatment planning system

(modality-inclusive environment for radiotherapeutic

variable analysis), a component of which is used for

radionuclide therapy (Descalle et al. 2003). It is based

upon the Peregrine Monte Carlo code and allows for the

absorbed dose distribution to be calculated for in a full

three-dimensional fashion accounting for tissue hetero-

geneity and a spatially-variable distribution of activity.

11.3.6.9 CELLDOSE

This is a Monte Carlo-based code used to estimate the

absorbed dose due to electrons at the cellular level

(Champion et al. 2008; Hindié et al. 2009). The code

is capable of following electrons to energies as low as

7.4 eV.
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11.3.6.10 RADAR

While not necessarily an overt software package, the

RADAR site8 (Eckerman 2002) is a pearl for all those

interested in internal radiation dosimetry. It is an eas-

ily accessible site of all forms of internal nuclear

medicine dosimetry data.
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Anthropomorphic Phantoms and Models
of Biological Systems 12

Abstract Except in some very unusual and rare cases, nuclear medicine radiation

absorbed doses are calculated and not measured. Input measurements, in the form of

the biodistribution of the radionuclide, are required but the dosimetry is evaluated

through calculation. This evaluation is almost always currently performed for a

representative anthropomorphic model, or phantom. This chapter describes the

types of phantoms (stylized, voxellated/tomographic and hybrid) and surveys their

development in increasing sophistication and complexity and ethnic diversities.

Biological systems must also be modeled in the evaluation of the internal radiation

dosimetry, especially those dynamic systems such as the urinary bladder and gastro-

intestinal tract where multi-compartmental transport of activity must be calculated

for. Models of specific biological systems (respiratory system, gastrointestinal tract,

heart and contents, kidney, urinary bladder, head and brain, bone and bone marrow,

peritoneal cavity, rectum, prostate gland and spherical tumors) are reviewed and,

where applicable, derivations of cumulated activity expressions provided.
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12.1 Anthropomorphic Whole-Body
Phantoms

12.1.1 Introduction

A phantom is a model of anatomy used in the calcula-

tion of the distribution of absorbed doses to tissues and

organs as a result of exposure to radiation. The phan-

tom can be physical or mathematical. Physical phan-

toms are used almost exclusively for external beam

irradiation and are typically constructed from materi-

als which are radiologically-equivalent to tissues.

Radiation dosimeters (thermoluminescent dosimeters,

radiographic film, or semiconductor detectors) are

placed within the phantom for measuring the absorbed

dose in situ. Because it is impractical to replicate the

temporally-varying distribution of internal activities

B.J. McParland, Nuclear Medicine Radiation Dosimetry,
DOI 10.1007/978-1-84882-126-2_12, # Springer-Verlag London Limited 2010

479



due to an unconfined radioactive source, physical

phantoms are rarely used for nuclear medicine dosim-

etry evaluations; mathematical phantoms are used

instead. The sophistication of the morphology of the

phantom and its radiological constituency can vary

considerably and will be largely dictated by the com-

plexity of the dosimetry problem at hand and by the

computing power available for performing the calcu-

lation of interest. In general, modeling realism has

increased over the decades from simple to more com-

plex geometrical representations of the human anat-

omy to models derived from whole-body tomographic

images. In modern times, the internal absorbed dose

distribution is calculated using Monte Carlo simula-

tions of radiation transport and energy deposition. The

distribution of a radionuclide within the phantom is

assigned to one or more source regions. Depending

upon the spatial resolution of the phantom, the activ-

ities may be considered uniformly distributed within

entire organs, allocated to individual suborgan struc-

tures or even to individual voxels so as to replicate

nonuniform distributions. It is also common to use a

source of monoenergetic photons or photons instead of

a specified radionuclide; repeating the calculation for a

range of photon or charged particle energies can then

enable one to interpolate the resulting data to obtain

results for a specific radionuclide. The transport of

radiation and the deposition of energy to specified

organs or tissues (target regions) are then simulated.

The result is the distribution of absorbed doses which

can be converted to absorbed fractions or specific

absorbed fractions, leading to the calculation of S

values for the source region / target region pair.

The earliest phantom of the human whole body

used for dosimetry calculations was the physicist’s

common first-order bovine approximation, the homo-

geneous sphere, for which analytical dosimetry cal-

culations are generally trivial. A right cylinder more

closely approximates the whole body but, as dem-

onstrated in Chap. 11 pertaining to the Marinelli–

Quimby–Hine calculations, the complexity of the

analytical calculation can demand necessary approxi-

mations. With increasing computer power and the

availability of advanced Monte Carlo codes, more

complex and heterogeneous phantoms were defined

and more detailed dosimetry calculations performed.

As the phantom is intended to be a model of the

individual for whom radiation dosimetry is to be eval-

uated, the patient or subject themselves can provide

the anatomical and morphological data required for a

bespoke dosimetry calculation. This has been a rou-

tine practice in external beam radiotherapy for many

decades. The absorbed dose distribution can be esti-

mated based upon a simple external contour taken

from the patient and the assumption of homogeneous

tissue. More complicated external beam treatment

planning is based upon three-dimensional computed

tomography (CT) image data from which the photon

attenuation coefficients are and used in the treatment

plan. This patient-specific approach has only come

into research use in radionuclide therapy in recent

years because the geometrical placements of the

sources of irradiation in internal therapy are far

more complex compared to external beam therapy

with fixed radiation beams. Excellent historical

reviews of phantoms and descriptions of contempo-

rary mathematical anthropomorphic models can be

found in the chapter by Poston et al. (2003) and the

review article by Zaidi and Xu (2007).

There are three major classes of phantoms in

contemporary use. The first is that described as

being “stylized”. These are phantoms containing a

small ensemble of selected organs, the morphologies

of which are modeled by simple geometrical struc-

tures such as cylinders, spheres, and ellipsoids. For

example, an ellipsoid representing, say, a lung in

Cartesian coordinates would be given by the para-

metric equation,

x� x0

a

� �2
þ y� y0

b

� �2
þ z� z0

c

� �2
� 1 (12.1)

where the parameters (x0, y0, z0) and (a, b, c) would be

specified through matching of the model to the general

shape and dimensions of the organ.

The second class is categorized as tomographic, or

voxellated, phantoms. These are derived from CT or

magnetic resonance (MR) cross-sectional images of

cadavers or living individuals, the latter being volun-

teers or patients from which medical tomographic

examinations are used. The selection of the individual

or cadaver to image is based upon its similarity to a

particular reference individual specific to the ethnic

population at question. Absorbed dose calculations

can be performed using Monte Carlo simulations in a

direct voxel-to-voxel approach or by the segmentation

of macroscopic source and target regions followed by

Monte Carlo calculations.
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The third class of phantoms is the “hybrid” phan-

tom which combines the features of the stylized and

tomographic phantoms. The tomographic class is

somewhat inflexible in its ability to adjust the dimen-

sions and morphologies of organs or to account for

cardiac and respiratory motions (which, however, are

of limited importance to calculating the absorbed

doses due to the internal distribution of a radionu-

clide). A hybrid phantom is mathematically based,

but has a more realistic representation of an organ

than would the stylized phantom be capable of.

Organ sizes and shapes can be distorted in order to

yield a desired result.

12.1.2 Reference Man

12.1.2.1 Introduction

Before embarking upon discussion of the various

anthropomorphic phantoms used in internal radiation

dosimetry, it is necessary to understand the concept of

the very closely related example of Reference Man.1

This is an individual with organs and tissues of

sizes, masses and compositions, and a physiology rep-

resentative of a given population. The still on-going

development of Reference Man was begun by the

International Commission on Radiological Protection

(ICRP) after the end of the Second World War for

use in radiological protection. Calculations of the

absorbed doses to a single Reference Man allowed,

for example, inter-comparison of different irradiation

conditions, consistent radiation safety designs, and

defined radiation protection standards. The ICRP con-

struction was, and remains, representative of a West-

ern individual and, as such, Reference Man cannot be

considered representative of non-Western populations

due to differences in physical stature, metabolisms, etc

across differing ethnicities. This may need to be recog-

nized in mapping dosimetry calculations for the ICRP

Reference Man to different populations. The ICRP did

not embark upon the task of defining additional Refer-

ence Men that were specific to other ethnicities. This

was judged highly impractical because of the diversity

among ethnic groups. Moreover, Reference Man is not

a static model. Over time, changes in the means of

anatomical and physiological measures will occur in a

given population and this will be represented in Refer-

ence Man. Because of the effort involved in modifying

Reference Man to represent changes over ethnicities

and over time, the ICRP instead considered it to be the

responsibility of the relevant local authorities to mod-

ify the ICRP Reference Man data to accommodate the

specific population in question.

12.1.2.2 ICRP Reference Man

As described, the ICRP Reference Man is intended to

be representative of the Western population. In partic-

ular, he is a Caucasian male of between 20 and 30

years of age, living in a temperate environ and has a

diet and lifestyle typical of the North American and

Western European populations. The first detailed

description of the anatomy, composition, and physiol-

ogy of ICRP Reference Man appeared in ICRP Publi-

cation 23 (ICRP 1975). In this instance, he had a

whole-body mass of 70 kg and a height of 170 cm.

Recently, the ICRP extended this description of Ref-

erence Man in its release of ICRP Publication 89

(ICRP 2002) which explicitly included a Reference

Woman and five Reference Children and incorporated

changes in anatomy and physiology considered typical

as having occurred in the Western population during

the time since the release of ICRP Publication 23. In

ICRP Publication 89, Reference Man had a weight of

73 kg and a height of 176 cm.

12.1.2.3 Non-Western Reference Men

Recognizing that the ICRP Reference Man is not rep-

resentative of all ethnicities and that the results of

dosimetry calculations can vary with the physical

sizes and masses of organs, a number of institutions

have designed a Reference Man which is applicable to

their local populations. Perhaps one of the most

advanced and lengthy developments of a non-Western

Reference Man is that of India, the development of

which began at the Bhabha Atomic Research Centre in

Mumbai by Venkataraman et al. (1963), with updates

by Jain et al. (1995a, b) and new parameterizations by

1Here “man” is used in its generic sense and includes, in this

discussion, the female and the child. Where sex or age specific-

ity is required, the individual phantom being referred to will be

noted explicitly.
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Biju and Nagarajan (2000). In a more general devel-

opment to cover the Asian continent, the International

Atomic Energy Agency (IAEA) has led the develop-

ment of a Reference Asian Man which is based

upon reference individuals of Indian, Pakistani,

Bangladeshi, Indonesian, and Vietnamese populations

(IAEA 1998).

12.1.3 Stylized Whole-Body Phantoms

12.1.3.1 Introduction

The stylized phantom is equation-based and a compos-

ite of geometrical volumes that approximate the torso,

head and neck, extremities, and internal organs. These

volumes are typically made up from right circular

cylinders, right elliptical cylinders, spheres, cones, and

ellipsoids (and their intersections), all of which can be

described by analytical functions that simplify Monte

Carlo calculations of radiation transport. The first use

of a stylized anthropomorphic phantom for internal

radiation dosimetry calculations is traceable to the

Manhattan Engineering District project of the Second

World War and which subsequently evolved into the

phantom of ICRP Publication 2 (ICRP 1959; Zaidi and

Xu 2007). That phantom treated the human adult torso

as a homogeneous sphere 30 cm in diameter with the

internal organs considered as spheres of varying dia-

meters. As computing capability increased so as to

enable more realistic calculations of radiation transport,

the complexities of the volumes used, in terms of both

morphology and composition, grew accordingly.

12.1.3.2 Brownell–Ellet–Reddy Phantoms

These early phantoms were geometrically simplistic as

necessitated by the limited computing power avail-

able during the 1950s and 1960s (Brownell et al.

1968). The dosimetry calculations performed were of

the absorbed fractions at the centers of phantoms

representing the adult human and made up of spheri-

cal, elliptical cylindrical, and right cylindrical shapes.

The phantoms were assumed to be homogeneous

with compositions radiologically-equivalent to tissue

(hydrogen, carbon, oxygen, and nitrogen). Specific

organs were not modeled.

12.1.3.3 Snyder and Snyder-Fisher Phantoms

Snyder began an effort at Oak Ridge National

Laboratory in the late 1950s combining a simple

anthropomorphic phantom with Monte Carlo calcu-

lations of the radiation transport within the phantom.

The initial phantom was a right circular cylinder

60 cm in height and 30 cm in diameter so as to

represent the adult human male torso (Poston et al.

2003). Further development by Fisher, Snyder, and

others of anthropomorphic phantoms culminated in

a heterogeneous hermaphroditic phantom. In this

phantom, a right circular cylinder represented the

combined torso, arms and pelvis; the head and neck

were approximated by an elliptical cylinder; and, the

legs and feet were modeled by a truncated elliptical

cone.

By the late 1960s, Fisher and Snyder had devel-

oped a heterogeneous hermaphroditic model of the

adult human (Snyder et al. 1969). The phantom was

made up of three tissue types: skeletal, lung, and soft

with physical densities of 1.5, 0.3, and 1 g/cm3,

respectively. Of particular interest is the fact that

organ masses in this phantom were selected on the

basis of those that were to eventually appear in the

compilation of ICRP Reference Man (ICRP 1975).

The phantom contained 22 internal organs modeled

by geometrical shapes. Absorbed fractions were esti-

mated using Monte Carlo simulation for monoener-

getic photon sources (with energies between 10 keV

and 4 MeV) considered to be uniformly distributed

within source organs; only photon transport was con-

sidered and energy transferred in a photon–electron

interaction (photoelectric absorption or Compton

scatter) was assumed to be locally absorbed. These

results were released in MIRD Pamphlet No. 5 (Snyder

et al. 1978).

Improvements to this heterogeneous phantom were

presented by Snyder and collaborators in the late

1970s (Snyder et al. 1978). The head and neck were

represented by an elliptical cylinder; the upper extre-

mities, torso and pelvis were represented by another

elliptical cylinder; and, the lower extremities were

modeled by a pair of truncated elliptical cones.

Absorbed fractions calculated for this model appeared

in MIRD Pamphlet No. 5, Revised.

Because of its adoption by the MIRD Committee,

the Snyder phantom was frequently referred to as the

MIRD phantom.
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12.1.3.4 Oak Ridge National Laboratory

Phantom Series

Introduction

As the genesis of many of the modern stylized phan-

toms were associated with the Oak Ridge National

Laboratory, this series will be isolated as it reflects

the beginning of the contemporary stylized models.

Cristy (1980) reported on a new series of phantoms

consisting of an adult male and five pediatric examples

(newborn, 1-, 5-, 10-, and 15-years of age). Anatomi-

cal data from the ICRP Reference Man (ICRP 1975)

were incorporated within this phantom.

Cristy–Eckerman Phantoms

The Cristy–Eckerman phantom series (Cristy and

Eckerman 1987) is the series in most common use in

current nuclear medicine dosimetry calculations and

carried on from the work of Cristy noted above. It

consists of six phantoms: the adult male and five

pediatric examples (newborn, 1-, 5-, 10-, and 15-year

old). The 15-year-old phantom was taken to be repre-

sentative of the adult female. The adult male, which

was based upon the ICRP Publication 23 Reference

Man, is actually hermaphroditic. Specific absorbed

fractions were calculated using the ETRAN Monte

Carlo code for photon energies ranging from 100 keV

to 4 MeV. The original Cristy and Eckerman techni-

cal reports describing these phantoms can be found at

http://ordose.ornl.gov/documents/.

Stabin Phantoms of the Female Adult and the

Pregnant Female

Stabin et al. (1995) extended the Cristy–Eckerman

series by deriving a female phantom in nonpregnant

and 3-, 6-, and 9-month pregnant forms. The nonpreg-

nant female model was intended to supplant the use of

the Cristy–Eckerman 15-year-old pediatric phantom

as a model of the adult female. No attempt was made

to model the fetus in the 3-month pregnant female in

which the uterine contents were approximated simply

by a homogeneous structure of soft tissue. For the

6- and 9-month old pregnant female, models of the

fetus were explicitly included. The fetus was modeled

as a cylinder capped with hemispheres; the morphol-

ogy of the fetal skeleton was similarly modeled,

although the material was radiologically comparable

to bone. Specific absorbed fraction data were provided

in that report.

12.1.3.5 Non-Western Populations

As discussed in the context of the development of

Reference Man, its ICRP design was intended to be

representative of the Western population and it was

judged that the responsibility to modify this Reference

Man to be more representative of a particular ethnic

population was that of a local or national agency

responsible for radiological protection in that area.

Most non-Western population phantoms presented

in the literature are tomographic and based upon vox-

ellated CT images acquired of non-Western subjects.

However, efforts have been made in the past to scale

the organ mass and subject physique from Caucasian

phantoms to those appropriate for non-Western popu-

lations. Yamaguchi (1978) described the scaling of

absorbed fractions obtained for a given phantom to

those of another. This scaling of the absorbed fraction

accounted for changes in the target region mass and

the distances between the source and target regions. In

his example, Yamaguchi reevaluated the absorbed

fractions derived by Snyder to evaluate the dosimetry

for a physique more representative of a Japanese male

adult. Jain et al. (1995a) performed a similar scaling in

order to evaluate the differences in absorbed doses and

effective doses received by ICRP Reference Man, and

Reference Men specific to China, Japan, and India as a

result of the administration of three radiopharmaceu-

ticals based on 99mTc and 131I.

Park et al. (2006) describe a stylized phantom of an

average Korean adult male that was based much upon

using anthropometric and organ volume data derived

from a national Korean survey (from body size mea-

surements and MR assessments of internal organs) to

modify the parametric equations defining the external

body and internal organs of the ORNL adult male

phantom. Specific absorbed fractions were calculated

from Monte Carlo simulations of internal photon

emissions with energies ranging from 0.01 to 4 MeV.

The smaller organ volume and reduced inter-organ

distances resulted in higher F values than in the

corresponding ORNL phantom.
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12.1.4 Voxellated (Tomographic) Whole-
Body Phantoms

12.1.4.1 Introduction

The voxellated, or tomographic, whole-body phantom

differs from the stylized phantom in that individual

organs are not modeled by geometrical approxima-

tions. Instead, as in a conventional CT or MR image,

the phantom is made up of individual voxels which

can then be segmented and grouped to isolate specific

organs or suborgan structures as source and target

regions. The voxels can themselves be treated as indi-

vidual source and target regions (although the comput-

ing power required linking the transport of radiation

between the voxels would become phenomenal). The

tomographic phantom provides a more detailed and

realistic representation of the human body and this

increase in realism makes the phantom suitable for

patient-specific dosimetry calculations, especially if

the phantom is derived from imaging data of the

patient to be treated. This is one basis of patient-

specific therapy. However, in diagnostic nuclear med-

icine applications, such specificity is not required as

the amount of absorbed dose received by the patient

undergoing a diagnostic procedure is so small that

errors in absorbed dose calculation by factors of two

to five are usually considered tolerable. Here, patient-

specific calculations are not required and one need

only have the phantom to mimic the patient as closely

as possible. Should more accurate patient dosimetry

calculation be desired, this can be achieved in the

tomographic model by selecting the individual upon

whom the phantom is to be based to be as close as

possible to the desired reference in terms of size and

weight. Organ deformation, as used in hybrid phan-

toms, is another option.

12.1.4.2 Construction Methods

Tomographic phantoms are created from CT and/or

MR examinations of either living subjects or cadavers.

Both sources of data have practical advantages and

disadvantages. In the CT imaging of a cadaver, the

radiation absorbed dose to the subject is not of concern

and the entire body can thus be imaged to significant

detail. However, a difficulty arises from the imaging of

a cadaver postmortem in that the body degrades

through pulmonary collapse and the body fluids will

pool. In addition, X-ray contrast media cannot be

introduced in order to enable vascular delineation in

the cadaver. As a result of these disadvantages, the

resulting image may not be sufficiently representative

of the body in order to create the required phantom.

These problems can be avoided through the CT exam-

ination of a living subject but this comes at the cost of

the subject receiving a potentially high radiation dose

and of the possibility of artifacts created through

patient motion. MR imaging of a subject to create a

tomographic phantom offers the advantage of the lack

of ionizing radiation exposure, but suffers from its

being time-consuming, its inability to accurately

image bone and skeletal tissue and, in the case of

imaging a frozen cadaver, the perturbations of the

spin-lattice and spin–spin relaxation times (Poston

et al. 2003). However, in either imaging case, once

the image data have been acquired, organs and tissues

must be consequently segmented and the tissue types

and compositions assigned to the segmented organs.

For large, macroscopically-visible tissues, this seg-

mentation is relatively easy to do. However, for tissues

with spatial dimensions comparable to or smaller than

the image resolution (e.g., voxel dimension), special

interventions are required in order to model the tissue.

Examples would include the thickness of the skin or of

the bone endosteum.

Because of its use in the development of a number

of tomographic phantoms, the Virtual Human Project1

(VHP) is briefly described here. This project is man-

aged by the US National Library of Medicine2 in

which the cadavers of an adult male and adult female,

both American, have been used to create three-dimen-

sional representations of the human whole-body anat-

omy through CT and MR imaging, and through optical

photographic cryosections. The CT data are provided

in 512 � 512 pixel formats with 1-mm thick slices for

the male and 0.33-mm thick slices for the female.

12.1.4.3 Zubal Phantoms

At Yale University, Zubal and colleagues developed

voxellated phantoms of two live adult males (Zubal

2http://www.nlm.nih.gov/research/visible/visible_human.html.
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et al. 1994) from CT image datasets of the head and

torso and MR image sets of the head. Additional work

was done to couple the arms from the Virtual Human

Project1 to the CT torso image set. The phantoms can

be found at http://noodle.med.yale.edu/zubal/. Follow-

ing postacquisition image processing, the CT data

were based upon isotropic voxels with a side dimen-

sion of 4 mm.

Applications of the Zubal phantoms in nuclear

medicine radiation dosimetry include the calculation

of absorbed fractions (Yoriyaz et al. 2000) and specific

absorbed fractions (Stabin and Yoriyaz 2001).

12.1.4.4 GSF Phantom Series

The German National Research Centre for Environ-

ment and Health Gesellschaft für Strahlenforschung

(GSF) voxel phantom series is based upon CT and MR

images of subjects (Zankl et al. 1988; Petoussi-Henss

et al. 2002; Fill et al. 2004). The series consists of

several tomographic phantoms of both sexes and a

wide range of ages: BABY (female, 8-weeks old),

CHILD (female, 7-years old), DONNA (female, 40-

years old), FRANK (male, 48-years old), GOLEM

(male, 38-years old), HELGA (female, 26-years old),

IRENE (female, 32-years old), LAURA (female, 43-

years old), and DONNA (female, 40-years old). The

adult male from whom GOLEM was created was

selected due to his similarity to ICRP Reference

Man. GOLEM and LAURA have been selected by

the ICRP to be the basis of new reference male and

female models, respectively, to replace the MIRD-type

stylistic phantom for radiation protection dosimetry

(ICRP 2007). Anatomical data from ICRP Publica-

tions 89 have been used to adjust the dimensions of

the phantoms.

12.1.4.5 University of Florida Pediatric

Phantom Series

These are CT-derived pediatric phantoms in which

the first group, referred to as UF Series A (Lee et al.

2005), consists of five phantoms, UF 9 month (male),

UF 4 year (female), UF 8 year (female), UF 11 year

(male), and UF 14 year (male). All were derived

from torso or head CT images of live patients and

voxel sizes range from 0.43 � 0.43 � 3 mm3 to

0.625 � 0.625 � 6 mm3. A second series, UF Series

B (Lee et al. 2006a) was extended from Series A by

the addition of scaled CT extremity image sets

acquired from a Korean adult. Two additional early-

age pediatric phantoms (Nipper et al. 2002) are based

upon CT images of the cadavers of a healthy 6-day

old female and a 6-month old male. The latter had

died from cardiac failure arising from congenital

heart disease and, due to the low patient weight at

the time of death, the phantom was referred as a

2-month old.

12.1.4.6 NORMAN Whole-Body Phantom

NORMAN is a voxellated phantom of the adult human

developed at the UK’s National Radiological Protec-

tion Board (which is now part of the Health Protection

Agency) developed from MR images of 2 � 2 mm2

pixel size and 1 cm thick slices. It has been used for

both nonionizing (Dimbylow 1997) and ionizing radi-

ation dosimetry (Jones 1997).

12.1.4.7 MAX and FAX Whole-Body Phantoms

The male adult voxel (MAX) and female adult voxel

(FAX) phantoms were developed by Kramer et al.

(2003, 2004). MAX is based upon the Zubal seg-

mented phantoms described above. The phantom’s

dimensions were adjusted to match ICRP Reference

Man as closely as possible, with a mass of 74.65 kg

and a height of 175.3 cm. New models for skin and

skeletal dosimetry were incorporated.

FAX was derived from the combined CT scans (at a

pixel resolution of 0.73 � 0.73 mm2 and a slice sepa-

ration of 2.5 mm) of the lower head, neck and torso of

a 37-year-old female subject, with a mass of 63.4 kg

and a height of 165 cm, and from CT scans of the legs

and feet of a second woman. The arms and top of head

of MAXwere used after adjustment to fit. Adjustments

were made to ensure FAX matched as closely as

possible the ICRP Reference Woman defined in

ICRP Publication 89 at a mass of 59.8 kg and height

of 163 cm.

Kramer et al. (2006) revised MAX and FAX to

form FAX06 and MAX06 to account for the new
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tissues specified in the new effective dose calculation

of ICRP Publication 103 (2007).

12.1.4.8 VIP-MAN Whole-Body Phantom

The VIP-man (Virtual Photographic-Man) is a project

initiated at the Rensselaear Polytechnic Institute in the

United States and is based primarily upon the photo-

graphed cryosections of the VHP project discussed

earlier. As it is based upon the cadaver of an individual

who was not selected for the project on the basis of

similarity to Reference Man, the VIP-Man is much

heavier (104.3 kg) than the ICRP Reference Man

(73 kg) but of comparable height (186 vs. 174 cm).

Organ segmentation had been performed manually

during the VHP project, with some further additions

done by the research group (Xu et al. 2000).

12.1.4.9 Non-Western Populations

Introduction

As with our earlier discussion regarding Reference

Man specific to a particular ethnic population, similar

arguments arise for the development of anthropo-

morphic phantoms specific to different ethnicities.

A literature review suggests that the non-Western

anthropomorphic phantoms currently in existence are

those representative of Japanese, Korean, and Chinese

populations and are tomographic in nature.

Japanese Phantoms

A number of Japanese voxellated phantoms are

described by various authors in the literature (Saito

et al. 2001; Nagaoka et al. 2004; Sato et al. 2007). The

male and female phantoms of Nagaoka et al. were

based on MR images of healthy volunteers whereas

those of Saito et al. and Sato et al. were based upon

two males and two females, all healthy, who under-

went whole-body CT. For example, the JM (Japanese

Man) phantom of Sato et al. (2007) is based upon a

54-year-old Japanese adult male of a weight of 65 kg

and height 171 cm, reported to be consistent with the

corresponding population averages of 64 kg and

170 cm.

Korean Phantoms

KORMAN

This is a voxellated model of an adult Korean male

(Lee et al. 2004). It is based upon whole-body MR

images of a volunteer of a height (170 cm) and weight

(68 kg) considered to approximate that of the reference

Korean (170.9 � 3.7 cm; 67.9 � 4.8 kg). Organs

were semiautomatically segmented.

KTMAN-1, KTMAN-2

These are additional whole-body tomographic

phantoms developed from Mr (KTMAN-1) and CT

(KTMAN) image sets of two healthy Korean adult

males (Lee et al. 2006b).

HDRK-Man

This phantom (“High-Definition Reference

Korean-Man”) was developed not from CT or MR

imagery, but from high-resolution color photographs

of serial thin (0.22-mm thick) cryosections of the

cadaver of a 33-year-old Korean male who was

164 cm in height and 55 kg in weight (Kim et al.

2008). The resulting imagery was of 8,590 images

with a resolution of 0.1875 � 0.1875 mm2. Organs

were segmented by anatomists and the body weight

and height, skeletal mass, and organ sizes were

adjusted to fit those of Reference Korean-Man.

Chinese Phantom (CNMAN)

This phantom is of a Chinese adult male and was

created, as was HDRK-Man, from color photography

of slices from a cadaver (Zhang et al. 2007). A total of

1,759 1-mm thick slices were used to create the phan-

tom. Imagery was color photography with a resolution

of 3,072 � 2,048 pixels for each photograph. The

reconstructed phantom has a minimum voxel size of

0.16 � 0.16 � 1 mm3. Physical properties of organs

were assigned from published data.

12.1.5 Hybrid Phantoms

The stylized phantom and the voxellated/ tomographic

phantom represent two extremes. Clearly, the stylized

phantom is simplistic and representative of a defined

Reference Man. Because of this, the stylized phantom

is used primarily in diagnostic applications where the
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absorbed doses are limited so that the inherent inac-

curacies in modeling a given patient with the stylized

reference phantom are of no practical concern. On the

other hand, it would be entirely inappropriate to use a

reference phantom in, for example, radionuclide ther-

apy planning. The resulting errors can lead to failure to

deliver an adequate absorbed dose to the tumor or to

excess irradiation of normal healthy tissue. While it is

possible to scale the S-factors from the reference

phantom to values more representative of the patient,

such modifications would require validation.

The voxellated phantom is, clearly, far more realis-

tic a representation of the anatomy and allows more

comprehensive measures of the internal radiation

dosimetry. As noted above, some authors have

selected individual subjects with physical characteris-

tics close to the reference individual of interest. In

principle, although highly computationally extensive,

a whole-body tomographic data set of a therapeutic

patient can be used to provide a patient-specific dosim-

etry calculation. While the tomographic/voxellated

phantom provides a far more spatially-detailed descrip-

tion of the absorbed dose distribution, it is also highly

more specific and generally insufficiently generic to be

applied to a given patient.

The recent developments of hybrid phantoms seek

to address this problem through the combination of

spatial detail and the ability to create a phantom appli-

cable to any specified individual. The nonuniform

rational B-spline (NURBS) model incorporates the

advantages of the stylized and tomographic phantoms

(Segars et al. 2004; Lee et al. 2007a, b). NURBSs are

used to model three-dimensional surfaces and, through

the use of mathematical transformations, can be used

to model variations in anatomy and differences in

organ size and morphology. Affine transformations

can then be used to alter the surface (an affine trans-

formation being one that preserves collinearity and the

relative separations between points).

12.2 Models of Biological Systems

12.2.1 Introduction

In the static anthropomorphic model, the absorbed

doses to target regions are calculated from known

and static activities in source regions. An assumption

of a temporally and spatially static and uniform dis-

tribution of activity is usually not valid for some

organ systems, in particular the lungs, urinary bladder,

and the gastrointestinal tract. The last two are of

particular interest in diagnostic nuclear medicine in

that high rates of excretion of a radionuclide are

frequently sought in order to reduce the radiation

dose burden and to reduce any background “signal”

that can limit the efficacy of diagnosing the pathology

of interest.

12.2.2 Respiratory System

12.2.2.1 Introduction

Activity can enter the respiratory system through

either perfusion or via the inhalation of radioactive

gases or aerosols. Perfusion is not considered in this

subsection.

In recent times, the ICRP has presented two human

respiratory system models. The first was described in

Publication 30 (1979) and the second presented in

Publication 66 (1994). The second model was an

enhancement of the first and was designed to be cou-

pled with the ICRP’s new human alimentary tract

model (HATM) to be described later. While the respi-

ratory and GI tract models were developed for radio-

logical protection purposes, they are applicable to

nuclear medicine radiation dosimetry purposes. How-

ever, a major problem remaining in the evaluation the

radiation dosimetry resulting from the inhalation of

radioactivity is that of determining the cumulated

activity. A model presented in the MIRD 18 report

(Thomas 2001) considers this problem and is dis-

cussed below.

12.2.2.2 Anatomy

Only a brief overview only of the basic anatomy of the

respiratory system relevant to the dosimetry discus-

sion is provided here. The respiratory system consists

of the nasopharynx extending to the larynx and the

trachea which bifurcates into right and left principal

bronchi which further segment into secondary and

segmental (or tertiary) bronchi in the two lungs. This
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bronchial tree continues to branch into smaller bronch-

ioles which terminate into the alveoli where the rapid

exchange of gases between air and blood occurs. For

radiation dosimetry purposes, interest in the respira-

tory systems focuses on the volume of the lung space

and the exchange rates from the lung space into the

vascular and lymphatic systems.

12.2.2.3 ICRP Models of the Respiratory System

ICRP Publication 30 Model

The model of the respiratory system derived in ICRP

Publication 30 (1979) is specific to the inhalation of

radioactive material and, hence, is primarily of radia-

tion protection interest (although radioactive aerosols

are used in pulmonary ventilation studies as described

below). The respiratory system model is modeled by

three compartments: the nasal passage, the trachea and

bronchial tree and the pulmonary parenchyma, as

shown in Fig. 12.1.

The absorbed dose received by the nasopharynx is

neglected in the model as it is usually much smaller

than those received by the other compartments. In

Fig. 12.1, the parameters fNP, fTB, and fP represent

the fractions of inhaled material that are initially

deposited in the nasal passage, the trachea and

bronchial tree and the pulmonary parenchyma, respec-

tively. The subcompartments A, C, and E are asso-

ciated with absorption of radioactive material and

transfer to body fluids whereas the subcompartments

B, D, F, and G account for particle transport with the

gastrointestinal tract. The pulmonary lymphatic sys-

tem also aids in the removal of radioactive material:

that contained in the parenchymal subcompartment

H is transferred to subcompartment I which is sub-

sequently transferred to the body fluids whereas that

in subcompartment J is assumed to be retained

within the lymphatics. ICRP Publication 30 provides

the set of first-order linear differential equations

describing the transport of radioactive material

between compartments and subcompartments. The

particulate size in the inhaled radioactive aerosol is

considered as a variable.

ICRP Publication 66 Model

In 1994, the ICRP updated its respiratory model for

use in radiological protection (ICRP 1994). Unlike

the ICRP Publication 30 model, the radiation sensitivi-

ties of individual respiratory system tissues are con-

sidered and the absorbed fractions for charged

particles (a particles, electrons and positrons) deposi-

ted within the lung are provided.

Body Fluids

Gastrointestinal Tract

Lymph Nodes

Pulmonary
Parenchyma

Nasal Passage

Trachea & Bronchial

Tree

CfNP fTB fP

B

A

D

I

E

J

HG

F

Fig. 12.1 Compartmental

model of the respiratory

system presented in ICRP

Publication 30 (1979). A

description of the model is

provided in the text
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12.2.2.4 MIRD Report 18 Ventilation Model

Introduction

Ventilation imaging following the inhalation of a

radioactive gas or aerosol is used in conjunction with

pulmonary perfusion imaging as part of the diagnosis

of pulmonary embolism (Gray and Neilly 1999; Bajc

et al. 2009). Radioactive gases used in such ventilation

studies are 81mKr (with a half-life of only 13 s) or,

more rarely, 133Xe.3 Radioactive aerosols include
99mTc-labeled DTPA4,5 or an ultrafine dispersion of
99mTc-labeled graphite particles. Within laminar air

flow, the aerosol behaves physically as a gas with the

radioactive particles remaining airborne. However,

once the air flow becomes turbulent, the particles are

deposited (Hamilton 2004). Evaluating the dosimetry

associated with inhaled radioactivity using the MIRD

schema can be difficult as it is not necessarily a trivial

problem to evaluate both the administered activity and

the cumulated activity within the lung. This difficulty

is due to both the dynamic natures of inhalation, expi-

ration, and transfer across into the body and the means

through which activity is introduced to the lung.

MIRD Pamphlet No 18 (Thomas 2001) summarized

the determination of the administered activity by con-

sidering the three ventilation procedures in common

use: continuous-flow generator output, rebreathing,

and aerosol delivery. For each procedure, a compart-

mental model was designed for the delivery system,

the lung space receiving the radioactivity and the

remainder of the body, as shown in Fig. 12.2.

In each compartmental model, l1 and l2 are the rate
transfer constants into the lung space and the remainder

of the body, respectively, and lNet is the net rate transfer
constant incorporating the effects of l1 and l2. In the

continuous flow system, the virtual equilibrium space

consists of the facemask and associated tubing.

As shown in Fig. 12.3, the lung space activity for

the continuous and rebreathing systems will increase

to approach an asymptote. This is referred to as the

wash-in or administration phase, and is represented by

the equilibrium lung activity, ALung,Eq. Once adminis-

tration of the radioactive gas has ceased at time tAdmin,

the lung space activity decreases rapidly due to both

exhalation of the radioactive gas and transepithelial

transfer of the activity. The calculation model treats

the lung activity as a single mean value and neglects

the explicit calculation of the difference between

inspiration and exhalation volumes and the mixing of

radioactive and nonradioactive gases within the lung.

On the other hand, in the aerosol method, administra-

tion is terminated before an equilibrium lung activity

is achieved. The methodologies of evaluation the

cumulated activities for all three systems are now

derived.

Generator
Virtual Equilibrium

Space
Lung

Space

Lung
Space, VL

Remainder
of Body

Remainder
of Body

Remainder
of Body

Spirometer
Vs

(a) Continuous Flow

(b) Rebreathing System

(c) Aerosol

AON

AOS

dAON /dt

dAG /dt

λ2

λ2

λ2

λ1

λ1

λNet

λNet

λ1

λNet

Nebuliser
Aerosol
Space

Lung
Space

Fig. 12.2 MIRD Pamphlet

No 18 compartmental models

for ventilation studies based

upon continuous flow,

rebreathing and aerosol

systems. Refer to text for

details (after Thomas (2001))

3The radiation dosimetry associated with the radioactive xenon

isotopes in pulmonary imaging was originally addressed in

MIRD Dose Estimate Report 9 (Atkins et al. 1980).
4As 99mTc-DTPA is cleared from the alveolar region by trans-

epithelial diffusion, the rate of its clearance can be used as an

index of the alveolar epithelial membrane integrity where rapid

clearance can be indicative of alveolar inflammation (Bondesson

et al. 2007; Beadsmoore et al. 2007).
5The radiation dosimetry of 99mTc-DTPA aerosols is discussed

in MIRD Dose Estimate Report No. 16 (Atkins et al. 1992).
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Continuous Flow

The lung space activity is determined by assuming that

the generator output activity rate, dAG=dt, is constant.

During the wash-in phase, the activity within the lung

space for the continuous flow system is,

ALung;CFðtÞ ¼ ALung;Eq 1� e� lnetþlpð Þt� �
: (12.2)

The pulmonary administered cumulated activity is

that which occurs during the wash-in phase,

~ALung;CF;Admin ¼
ðtAdmin

0

dt ALung;CFðtÞ

¼ dAG=dt

lP
tAdmin � e� lnetþlpð Þt

lP

 !
:

(12.3)

Rebreathing

Here, the equilibrium lung activity will be propor-

tional to the activity contained within the spirometer,

ALung;Eq ¼ VLung

VLung þ VS

� �
AOS (12.4)

where VLung and VS are the volumes of the lung space

and spirometer, respectively, and AOS is the input

activity to the spirometer. The lung space activity is

averaged over the inspiration and exhalation volumes

and physical decay is implicitly neglected. During the

wash-in phase, the lung space activity is,

ALung;SðtÞ ¼ ALung;Eq 1� e� lnetþlpð Þt� �
: (12.5)

The lung administered cumulated activity is deter-

mined by integrating (12.5) over the administration

time, tAdmin,

~ALung;S;Admin ¼
ðtAdmin

0

dt ALung;SðtÞ

¼
�

VLung

VLung þ VS

�
A0;S

�
�
tAdmin �

�
1� e�ðlNetþlPÞtAdmin

lNet þ lP

��
:

(12.6)

Aerosol

The lung administered cumulated activity is calculated

in the same manner as was done for the continuous

flow and rebreathing systems,

~ALung;Aerosol;Admin

¼ gA0;N

�
tAdmin �

�
1� e�ðlNetþlPÞtAdmin

lNet þ lP

��
:

(12.7)

where A0,N is the activity originally introduced to the

nebulizer and g is that fraction of A0,N that is deposited

within the lungs for infinitely-long administration times.

12.2.3 Gastrointestinal Tract

12.2.3.1 Introduction

The absorbed doses to the walls of the gastrointest-

inal tract (also referred to as the alimentary tract)

are of great interest to nuclear medicine radiation

dosimetry as these tissues have a notable stochastic

Wash-in Wash-out

ALung,Eq

A
L

u
n

g

tAdminTime

Fig. 12.3 Temporal dependence of the lung space activity. In

the continuous flow and rebreathing systems, the equilibrium

activity in the lung space, ALung,Eq, is achieved during the wash-

in phase. At time tAdmin, administration of the gas is ceased and

the activity washes out of the lung. For the aerosol delivery

system, administration is ceased during the build-up portion of

the curve, i.e., before equilibrium is achieved (after Thomas

(2001))
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radiosensitivity, as demonstrated by the allocation by

ICRP Publications 60 and 103 of tissue weighting

factors of 0.12 to the walls of the colon and stomach

(Chap. 10). It bears reminding that, as the GI radiation

syndrome has a threshold absorbed dose of the order of

10 Gy at which the depletion of the epithelial lining of

the gut occurs, deterministic effects associated with GI

tract wall are not of concern in any aspect of nuclear

medicine.

The walls of the GI tract are target regions in the

MIRD schema (Chap. 11) and, while they receive

absorbed doses from other organs or tissues, of partic-

ular interest is the absorbed dose that they receive

from radioactive contents transported through the GI

tract. This special interest arises from the combination

of the intimate contact between the GI tract lumenal

contents and the walls and the protracted time it takes

for the radioactive material to be transported through

the gut.

There are three means through which activity can

be introduced to the GI tract. The first is through the

stomach, by either oral ingestion (e.g., per os adminis-

tration of Na131I) or the ingestion of a radioactive gas

that has been expired from the lungs (e.g., following a

ventilation scan). The second means, and the one

which is of most general interest to nuclear medicine,

is through introduction to the duodenum via the drain-

age of radioactive bile into the duodenum following

parenteral administration of radiopharmaceutical. This

is largely the case for radiopharmaceuticals which are

lipophilic or have large molecular weights. A third is

through resorption of activity present in body fluids

through the GI tract walls. As activity in the GI tract

contents is transported, dynamic models describing

this transport through the different compartments

making up the GI tract are required. Two models

presented by the ICRP and used in nuclear medicine

dosimetry calculations are discussed below.

12.2.3.2 Anatomy

Relevant aspects of the microanatomy of the GI tract

have already been discussed in Chap. 10. Here, dis-

cussion is limited to a gross anatomical description of

the gastrointestinal tract relevant to macroscopic inter-

nal dosimetry calculations.

The GI tract is a hollow tube of muscle lined with

epithelium with varying diameters along its length and

consisting of a number of compartments (Gray 1977;

ICRP 2006):

� Oral cavity (including mouth, teeth, salivary glands,

and the pharynx)

� Esophagus

� Stomach

� Small intestine (made of three components – duo-

denum, jejunum and ileum)

� Large intestine (described by three components –

ascending, traverse, and descending colons)

� The sigmoid colon

� The rectum

� The anus

In the following discussion, interest will be limited

to the source regions represented by the contents of the

stomach, small and large intestines, the sigmoid colon,

and the rectum.

The introduction, transport, and evacuation of mate-

rial within the GI tract are now briefly described. Food

is masticated in the mouth and, following deglutition,

enters the stomach from the esophagus through the

antrum cardiacum. Here, gastric digestion occurs.

The stomach communicates the resulting semifluid

product (chime) to the duodenum6 through the pyloric

sphincter. The duodenum is the first of the small intes-

tine segments, the others being the jejunum and ileum.

The small intestine is so-called due to its small intra-

lumenal diameter compared to that of the large intes-

tine, rather than from their comparative lengths. The

fixation of the small intestine within the peritoneal

cavity is through connective tissue, with the proximal

aspect of the duodenum and the distal aspect of the

ileum being relatively fixed leaving the remainder of

the small intestine, including the whole jejunum, free

within the cavity. The transition from the duodenum to

the jejunum occurs at about 25 cm from the pylorus; of

the remaining small intestine, 40% is considered to be

jejunum and the distal 60% is taken to be the ileum

(ICRP 2006). The total length of the small intestine

from the pylorus to the ilea-caecal valve is about 6 m

in the adult male.

The proximal segment of the duodenum receives

both bile from the biliary tree through the common

6The word “duodenum” evolves from the Greek for “twelve

fingers” which refers to its length being closely equal to twelve

finger lengths.
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bile duct and pancreatic secretions through the pancre-

atic duct. These two ducts unite to create a common

entry into the duodenum, the ampulla of Vater (or

hepatopancreatic ampulla) with the flow controlled

by the sphincter of Oddi (or sphincter of papilla).

Within the liver, bile produced by hepatocytes is

secreted into bile canaliculi which further drain into

bile ducts which, in turn, drain into hepatic ducts

which transport the bile away from the liver to the

duodenum through the common bile duct. The daily

production volume of bile by the liver is between 250

and 1,500 mL and is continuous. The gallbladder is a

sac-like organ which is attached to the inferior aspect

of the liver, communicates with the common bile duct

through the cystic duct and has a storage capacity of

between 35 and 100 mL. When the duodenum is

empty, the sphincter of Oddi closes and bile is refluxed

through the cystic duct to be stored in the gallbladder.

Subsequent gallbladder emptying is biphasic (Lawson

et al. 1983) with an initial rate constant of 0.015/min

followed by a later 0.005/min. The majority of bile

salts released into the gut are resorbed through the wall

in the distal ileum into the blood which then returns

these to the liver to be resecreted into the duodenum

(enterohepatic circulation).

The juncture between the small and large intestines

occurs at the cecum, which is a pouch hanging below

the ileo-caecal valve, which prevents reflux into the

small intestine, to the right side of the body. The large

intestine is structurally segmented into the cecum,

colon, rectum, and anal canal; the colon itself is seg-

mented into the ascending, transverse, descending, and

sigmoid colons. The ascending colon extends superi-

orly from the cecum to the inferior hepatic surface

where it bends to the left at the hepatic flexure to

become the transverse colon which crosses towards

the left side of the body and the splenic flexure

where it then deflects downward to form the descend-

ing colon which deflects medially to form the sigmoid

colon which leads to the rectum and anal canal. There

are two other sets of nomenclature of the large intes-

tine compartments that are used. In the first, which is

used in the ICRP Publication 30 model of GI tract

transit, the upper large intestine (ULI) is the combina-

tion of the ascending and transverse colons and the

lower large intestine (LLI) is the combination of the

descending and sigmoid colons and the rectum. In

the other, which is used in the ICRP 100 model of

the human alimentary tract, the right colon is defined

to be the combined cecum, ascending colon, and

proximal half of the transverse colon and the left

colon is the combined distal half of the transverse

colon, the descending colon, and the combination of

the rectum and sigmoid, known as the rectosigmoid

colon.

12.2.3.3 ICRP Publication 30 Model

ICRP Publication 30 presented a compartmental

model of the GI tract within which the transfer of

radioactive contents between compartments was des-

cribed by first-order linear kinetics. This is shown in

Fig. 12.4. Activity enters the GI tract through inges-

tion or hepatobiliary transport and exits through trans-

fer to body fluids (via the walls of the small intestine

only) or by defecation.

The ICRP Publication 30 model is based upon the

seminal work by Dolphin and Eve (1966) and Eve

(1966) in which the source regions are the compart-

mental contents. Whereas ICRP Publication 30 pro-

vides a generic set of solutions to sequential chains of

first-order linear differential equations, the first-order

kinetics of the GI tract compartmental model of

Fig. 12.4 are derived explicitly here. Let ASt(t),

ASI(t), AULI(t), and ALLI(t) be the activities, corrected

Ingestion

Stomach
Contents

Upper Large
Intestine Contents

Lower Large
Intestine Contents

Body FluidsLiver λ1,λ2

λst

λB

λSI

λ
ULI

λ
LLI

Faeces

Small Intestine
Contents

Fig. 12.4 ICRP Publication 30 compartmental model of the

gastrointestinal tract. Parameters and kinetics are discussed in

the text
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for physical decay,7 within the four GI tract compart-

ments at time t and let AF(t) be the decay-corrected

activity in the feces at time t. Activity enters the

GI tract through ingestion (at a rate of dIðtÞ=dt) and
through hepatobiliary transport which we assume to be

biexponential,

HðtÞ ¼
X2
i¼1

k
HBð Þ
i e�lit (12.8)

A set of first-order differential equations thus

evolves from the model of Fig. 12.4,

dAStðtÞ
dt

¼ dIðtÞ
dt
� lStAStðtÞ (12.9)

dASIðtÞ
dt

¼ dHðtÞ
dt
� lSI þ lBð ÞASIðtÞ þ lStAStðtÞ

(12.10)

dAULIðtÞ
dt

¼ lSIASIðtÞ � lULIAULIðtÞ (12.11)

dALLIðtÞ
dt

¼ lULIAULIðtÞ � lLLIALLIðtÞ (12.12)

dAFðtÞ
dt

¼ lLLIALLIðtÞ (12.13)

where the rate constants are defined in Fig. 12.4. For a

radiopharmaceutical administered intravenously, gas-

tric introduction of activity can be ignored and the

only introduction of activity into the gut is through

hepatobiliary transport into the duodenum. The rate

constant for the start of enterohepatic circulation

through the transfer of activity from the small intestine

to body fluids, lB, can be estimated if the fraction of

the stable element f1 reaching the body fluids is

known,

f1 ¼ lB
lB þ lSI

: (12.14)

From this result,

lB ¼ f1

1� f1

� �
lSI: (12.15)

In nuclear medicine dosimetry calculations, lB
is typically set equal to zero. The rate transfer coef-

ficients have been estimated from transit times of

the GI tract contents. These times can be assessed

in a variety of ways for aiding clinical diagnoses

of unexplained gastrointestinal symptoms, including

scintigraphic imaging following ingestion of 99mTc-

labeled sulfur colloid, 111In-DTPA or through a ra-

diological study of a barium meal. Another means of

estimating the oro-cecal transit time is to measure

the rise in breath hydrogen following the ingestion of

lactulose and resulting as a by-product of bacterial

fermentation in the colon (Lin et al. 2005).Values

of the rate constants lSI, lULI and lSSI recom-

mended for use in the ICRP Publication 30 model

and taken from the work of Eve (1966) are presented

in Table 12.1.

The above set of differential equations is elemen-

tary, but tedious, to solve for the activities of the

individual compartments. Assuming that no activity

is ingested into the stomach, these are,

ASIðtÞ ¼
X3
i¼1

k
ðSIÞ
i e�lit (12.16)

AULIðtÞ ¼
X4
i¼1

k
ðULIÞ
i e�li t (12.17)

ALLIðtÞ ¼
X5
i¼1

k
ðLLIÞ
i e�li t (12.18)

AFðtÞ ¼ CGI �
X5
i¼1

k
ðFÞ
i e�lit (12.19)

Table 12.1 Transfer rate constants of gastrointestinal tract

contents used in the ICRP Publication 30 Model

Compartments l (d�1)
Stomach (St)! small intestine (SI), lSt 24

SI! upper large intestine (ULI), lSI 6

ULI! lower large intestine (LLI), lULI 1.8

LLI! feces, lLLI 1

7A correction for radionuclide physical decay is often used in

nuclear medicine dosimetry so as to isolate the biokinetic fea-

tures of the radiopharmaceutical. This is done simply by pre-

multiplying the activity measured at time t by exp(lPt).
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where CGI is the total cumulative amount of activity

that enters the GI tract and is excreted. For clarity in

writing down these expressions, l3 � lSI, l4 � lULI
and l5 � lLLI. With the initial condition that there is

no activity in the GI tract compartments at time t ¼ 0,

the coefficients and effective rate constants of the

model are,

k
ðSIÞ
i¼1;2 ¼ k

HBð Þ
i

li
l3 � li

� �
(12.20)

k
ðSIÞ
3 ¼ �

X2
i¼1

k
SIð Þ
i (12.21)

k
ðULIÞ
i¼1;2 ¼ k

HBð Þ
i

li
l3 � li

� �
l3

l4 � li

� �
(12.22)

k
ðULIÞ
i¼3;4 ¼ �1ð Þi l3

l4 � l3

� �X2
j¼1

k
HBð Þ
j

lj
li � lj

� �

(12.23)

k
ðLLIÞ
i¼1;2 ¼ k

HBð Þ
i

li
l3 � li

� �
l3

l4 � li

� �
l4

l5 � li

� �

(12.24)

k
ðLLIÞ
i¼3;4¼ �1ð Þi l3

l4�l3

� �
l4

l5�li

� �X2
j¼1

k
HBð Þ
j

lj
li�lj

� �

(12.25)

k
ðLLIÞ
5 ¼

X2
i¼1

k
Inputð Þ
i

li
l5 � li

� �
l3

l5 � l3

� �
l4

l5 � l4

� �

(12.26)

k
ðFÞ
i¼1;2 ¼ k

HBð Þ
i

l3
l3 � li

� �
l4

l4 � li

� �
l5

l5 � li

� �

(12.27)

k
ðFÞ
i¼3 ¼ �

l4
l4 � l3

� �
l5

l5 � l3

� �X2
j¼1

k
HBð Þ
j

lj
l3 � lj

� �

(12.28)

k
ðFÞ
4 ¼

l3
l4 � l3

� �
l5

l5 � l4

� �X2
j¼1

k
HBð Þ
j

lj
l4 � lj

� �

(12.29)

k
ðFÞ
5 ¼ �

X2
i¼1

k
HBð Þ
i

li
l5 � li

� �
l3

l5 � l3

� �
l4

l5 � l4

� �

(12.30)

CGI ¼
X2
i¼1

k
HBð Þ
i : (12.31)

The cumulative activities for each of the compart-

ments are straightforward to determine through ana-

lytical integrations of the activity expressions,

~ASI ¼
X3
i¼1

k
ðSIÞ
i

li þ lP

 !
(12.32)

~AULI ¼
X4
i¼1

k
ðULIÞ
i

li þ lP

 !
(12.33)

~ALLI ¼
X5
i¼1

k
ðLLIÞ
i

li þ lP

 !
(12.34)

~AF ¼ CGI

lP
�
X5
i¼1

k
ðFÞ
i

li þ lP

 !
: (12.35)

In a biodistribution study of a radiopharmaceutical,

it is frequently not possible to accurately assess in

which GI tract compartment the measured in vivo activ-

ity is present. In practice, one instead measures the sum

of the decay-corrected activities in the compartments

determined from in vivo imaging of the GI tract con-

tents and, if the radionuclide is sufficiently long-lived

and sufficient activity is transported through the GI

tract, in vitro measurements of activity present in the

feces. In this case, the measurement is of the sum of

(12.16)–(12.19). This sum is, in fact, equal to

AGITotalðtÞ ¼ CGI �
X2
i¼1

k
HBð Þ
i e�li t (12.36)

which asymptotically approaches the value CGI, the

total amount of activity that enters the GI tract and is

eventually excreted in the feces. Hence, an analytical

fit to (12.36) to the measured sum of the activity

measured in vivo in the gut through imaging and, if

present, in voided feces yields the values of CGI and of

k
HBð Þ
i and li for i ¼ 1, 2. Using these, in conjunction
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with the rate constants of Table 11.2 yields the cumu-

lated activities of the GI tract content source regions.

Figure 12.5 shows an example of the temporal

variations of the activities in the various GI tract

content compartments as a function of time for 99mTc

derived from artificial data. The sum of the decay-

corrected activities determined from images of the

GI tract contents and assays of voided feces were

measured at 9 time points postinjection up to a time

of 22 h and then fit by (12.36). The coefficients and

effective rate constants were then determined for each

of the GI tract content compartments and the corres-

ponding cumulated activities calculated.

The MIRDOSE and OLINDA/EXM codes save the

nuclear medicine physicist from the above tedious

calculations and require the user to input only the

decay-corrected fraction of the administered activity

that enters the GI tract through the stomach or through

hepatobiliary transport into the small intestine (i.e.,

the asymptote CGI value of the analytical fit to the

measured data). However, the user must approach

this single-input method with some degree of caution

as no temporal information regarding this transport

of activity is incorporated.8 In effect, it is implicitly

assumed by the MIRDOSE and OLINDA/EXM codes

that the activity enters the duodenum as a bolus. As

shown in the previous discussion of the anatomy of the

biliary tree, this is not the case. The temporal behavior

of the introduction of activity from the liver to the

duodenum will follow that of biliary transport: i.e.,

being generally continuous, unless the small intestine

is devoid of food, at which point the sphincter of Oddi

closes to force the bile into the reservoir presented by

the gallbladder. When the sphincter relaxes, the gall-

bladder drains its contents into the duodenum with

biphasic time dependence. Hence, the assumption of

a bolus deliver of activity into the small intestine

neglects the actual physiological time course during

which the radionuclide undergoes physical decay. The

consequence of this bolus method is that the bolus

assumption will result in an overestimate of the activ-

ity entering the GI tract contents and a subsequent

overestimation of the absorbed dose to the target

regions (in particular, the walls of the small and large

intestines). Thus, the user must reduce the input value

of the amount of bolus activity assumed to enter the

small intestine in order to compensate for physical

decay during the actual protracted introduction. It is

straightforward to determine this bolus activity by

solving the set of differential equations for a bolus

input to yield the same small intestine contents’ cumu-

lated activity as that derived above. This gives the

result that instead of providing CGI as the small intes-

tine input in the MIRDOSE or OLINDA/EXM ICRP

30 input window, one should provide as the amount of
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Fig. 12.5 99mTc decay-

corrected activities in the

contents of the various GI tract

compartments calculated

using the ICRP 30 model from

created data (solid points)
reflecting the sum of the

measured decay-corrected

activities derived from in vivo

imaging of GI tract contents

and in vitro assay of voided

feces. The asymptotic curve

(marked “Total”) is the fit to

the measured data. The input

of activity to the GI tract is

assumed to be hepatobiliary

only and described by a

biexponential function

8The author is grateful to two colleagues, Drs RD Pickett and

JF Burke, who brought this problem to his attention and led to

this derivation. They achieved the same solution to the problem

through a different and more intuitive means.
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activity that enters the small intestine the value given

by (for an assumed biexponential input from the liver),

AInput ¼
X2
i¼1

k
HBð Þ
i

li
li þ lP

� �
: (12.37)

As CGI ¼ k
HBð Þ
1 þ k

HBð Þ
2 , this result demonstrates

that each of the two input components is reduced by

the ratio of the biological rate constant to the effective

rate constant. Hence, this correction factor will be

more significant for radionuclides with short physical

half-lives, such as 11C, 18F and 99mTc, as the time scale

for transport of activity from the liver to the duodenum

will be of the order of the biphasic time constants of

gallbladder emptying (0.005 and 0.015/min). The

bolus input correction factors ðli=liÞ þ lP of (12.37)

are shown as a function of radionuclide half-life in

Fig. 12.6. Two assumed rate constants are shown and

the correction factors for 18F, 99mTc, and 123I high-

lighted. Clearly, failure to account for the bolus input

correction will lead to significant overestimation of the

activity within the GI tract contents.

12.2.3.4 ICRP Publication 100 Model

In 2006, the ICRP (2006) released a replacement of the

Publication 30 model of the GI tract, which it then

termed the HATM. The evolution of this new model

was the result of a number of factors, including new

gut transit times for adults and pediatric cases which

had become available since the work of Eve and

Dolphin in the 1960s. As with the earlier Publication

30 model, the intended focus of the new model was

that of radiological protection (occupational expo-

sure), but pediatric intakes were calculated for in the

provision of age-dependent transfer rate constants.

Additional changes that arise in the ICRP Publication

100 model include:

� Whereas the ICRP Publication 30 model accounted

for transfer from the gut to body fluids only from

the small intestine, the new model allowed for

transfer from other compartments.

� Extensions of the modeling to include the oral

cavity and esophagus in the alimentary tract and

an explicit link to ingestion of expired radionu-

clides were made.

� The segmentation of the large intestine into upper

and lower components was altered and the large

intestine was instead segmented into right, left, and

rectosigmoid colons.

� Liquid and solid GI tract contents were treated

differently.

Another difference between the ICRP Publications

30 and 100 models is in terms of the dosimetry of the

GI tract walls. Recall from Table 10.3 that at the time

Radionuclide Physical Half-life (h)
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Fig. 12.6 The

gastrointestinal tract bolus

input correction factor of

(12.37) as a function of

radionuclide physical half-life

for the two assumed rate

constants of biliary drainage

into the duodenum
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the Publication 30 model was presented, there were no

explicit tissue weighting factors assigned to the walls

of the various GI tract compartments and only the

walls of the stomach and LLI were grouped in the

“remaining tissues” category. The Publication 100

model followed the ICRP Publication 60 recommen-

dations (ICRP 1991) in which explicit weighting fac-

tors were specified for the stomach and colon walls,

although the small intestine wall was placed in the

“remaining tissues” category.9

The complexity of the model has, accordingly,

increased considerably as shown in Fig. 12.7. Table 12.2

provides the new transfer rate constants shown in that

figure. Of obvious interest is the inclusion of pediatric

constants and the segmentation of the adult constants

into male and female. A comparison of the adult

values in Table 12.2 with those of Eve given in

Table 12.1 will not reveal significant changes.

12.2.3.5 Intestinal Wall as a Source Region

The current MIRD compilation of source regions does

not include the GI tract walls. It is possible that the GI

tract walls can contain activity and this may become

apparent in an investigation of emission images of the

gut. Typically, activity in the GI tract contents appears

at an extended time after administration as the activity

must first reach the liver and to then be transported

into the small intestine through hepatobiliary drainage.

Activity associated with the intestines seen at early

time postadministration would likely reflect uptake in

the soft tissue, rather than in the contents. Uptake in

the walls may also appear highly diffuse and nonspe-

cific. While it might be easier to consider this nonspe-

cific uptake as part of the remaining tissues category, it

may be possible to calculate explicitly the absorbed

doses to the intestinal walls due to activity in the walls.

This calculation may be performed directly or through

an approximation.

Jönsson et al. (2002) derived S-factors for the

small intestine wall, which was modeled as two

Table 12.2 Transfer rate coefficients for ICRP Publication 100

Model of the human alimentary tract

Compartment Transfer rate coefficient (d�1)

3

Months

1

Year

5–15

Years

Adult

Male Female

SI! right colon 6 6 6 6 6

Right colon! left

colon

3 2.4 2.182 2 1.5

Left colon!
rectosigmoid

colon

3 2.4 2.182 2 1.5

Rectosigmoid

colon! feces

2 2 2 2 1.5

General
Circulation

Teeth
Oral

Mucosa
Respiratory

Tract
Stomach

Wall
Small Intestine

Wall

Small Intestine
Content

Stomach
Contents

Cesophagus
Oral Cavity
Contents

Ingestion
Blood or Secretory Organs

( including liver )

Right Colon
Wall

Left Colon
Wall

Left Colon
Contents

Right Colon
Contents

Sigmod Colon
Wall

Faeces
Recto sigmoid

Contents

Portal vein
Liver

Fig. 12.7 ICRP Publication 100 compartmental model of the alimentary tract

9This is in terms of stochastic effects. It is interesting to note that

the wall of the small intestine is also the most important site of

the gastrointestinal tract in terms of deterministic radiation

injury (Nias 1998).
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infinitely-long concentric cylinders. The S-factor

values were not only of the self-dose due to activity

uptake in the walls, but included the contributions

resulting from irradiation by near-by surrounding

loops of small intestine. Stabin (2008) describes a

practical approximation using the output from

OLINDA/EXM and the separation of electron and

photon contributions.

12.2.4 Kidney

12.2.4.1 Introduction

As part of the urinary excretion route, the kidney is of

considerable interest to the assessment of radiation

absorbed dose due to the excretion of low-molecular

weight radiopharmaceuticals through this pathway.

Rapid and significant renal excretion of radioactivity

is usually desirable of a diagnostic radiopharmaceu-

tical in order to reduce nonspecific background accu-

mulation of activity which can limit potentially

the diagnostic efficacy of the radiopharmaceutical.

Because of the low levels of administered activities

associated with diagnostic applications, the potential

for renal toxicity in such cases is nonexistent. This,

however, may not be the case in therapeutic nuclear

medicine. In fact, renal impairment as a consequence

of radionuclide therapy has been described (e.g.,

Lambert et al. 2004). Thus, the kidney can be an

absorbed-dose limiting organ through radiation neph-

ropathy in therapeutic nuclear medicine. As a conse-

quence, considerable effort has been expended on

developing models of the response of the kidney to

radiation. Typical conventional MIRD approaches

have treated the kidney as a single compartmental

model in which activity was assumed to be uniformly

distributed within it. Such an assumption allows only

a mean absorbed dose for the kidney to be calculated.

In fact, due to its complex suborgan physiology, the

activity distribution within the kidney is nonuniform,

resulting in a nonuniform absorbed dose distribution

(Bouchet et al. 2003a). As this nonuniformity can

be imaged through emission tomography (and, to a

much more limited degree, whole-body planar scin-

tigraphy), kidney models of increasing complexity

have been developed to account for this. In addition,

as described below, radiation biology theory has been

applied to these kidney models in an attempt to obtain

more rigorous prediction of renal toxicity in thera-

peutic nuclear medicine.

12.2.4.2 Anatomy

The kidneys lie laterally to the vertebral column

between the levels of the twelfth thoracic and third

lumbar vertebrae. Due to its displacement by the

liver, the right kidney is about 2 cm lower than the

left. Each kidney is about 11 cm long, 6.5 cm wide

and 3 cm thick; the hilum is the depression in the kid-

ney along the medial border through which the renal

vein and artery and the ureter penetrate. The kidney

has two major sections, the renal cortex and renal

medulla, and a cavity, the renal pelvis. The renal

cortex contains the renal medulla which is made up

of eight to fifteen conical renal pyramids, the apices

(renal papillae) of which feed into the renal pelvis.

In detail, these papillae project into minor calyces

which unite to form major calyces which subse-

quently combine to form the hollow renal pelvis.

The renal pelvis collects urine from the calyces and

transports it to the ureter and into the urinary bladder.

The nephron is the radiobiological functional unit

that forms the urine and consists of urinary tubules

and small blood vessels (there are about 106 nephrons

per kidney). Blood enters the kidney through the

renal artery, which subdivides into interlobar arteries

which further subdivide into the arcuate arteries.

Interlobular arteries radiate from the latter into the

renal cortex, subdividing into microscopic afferent

arterioles that feed into a capillary network known

as the glomerulus (producing a filtrate that enters the

renal papillae). The remaining blood feeds into the

efferent arterioles which lead to a secondary capillary

network known as the peritubular network. Blood is

drained from this network into the venous system to

leave the kidney through the renal vein into the infe-

rior vena cava. The glomerular capillaries have large

pores allowing water and dissolved solutes to pass

from the blood plasma into the nephron tubules. This

process of filtration has the effect of distributing

activity within the renal cortex and then transferring

it sequentially to the medulla, papillae, and renal

pelvis. Variants of this simple transfer sequence can
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occur. For example, following water absorption in

the medulla, activity can be concentrated in the

renal pyramids. Regular peristaltic contractions of

the urethral walls of between 1 and 5 times per

minute transfer urine from the renal pelvis to the

urinary bladder.

12.2.4.3 MIRD Renal Models

MIRD Pamphlet 5 and Revision

In this anthropomorphic model of the adult human

(Snyder et al. 1969), the kidney was modeled by two

symmetric and homogeneous ellipsoids cut by a

plane. The kidney mass and volume were 144 g and

144 cm3, as unit physical density was assumed, in

reasonable agreement with the mass of 155 g of

the kidney in ICRP Reference Man (ICRP 1975).

Absorbed fractions were calculated for a photon-

emitting radionuclide uniformly distributed within

the kidney and for combinations of various target reg-

ions and photon energies. In the revision of MIRD

Pamphlet 5 (Snyder et al. 1978), the physical density

of the kidney tissue was reduced to 0.98 g/cm3, but

the volume retained so that the mass of each kidney

was reduced to 142 g.

MIRD Pamphlet 19 Model

Bouchet et al. (2003a) recognized the nonuniform

distribution of activity within the kidney and devel-

oped an age-dependent multiregional kidney model

for six different ages. Absorbed fraction and S-factor

values were calculated for these regions for photon

and electron sources with energies ranging from

10 keV to 4 MeV. The outer region of the kidney

was defined by an ellipsoid truncated by a plane, in

agreement with the Cristy–Eckerman model to be

described. The medullary pyramids and renal papillae

were approximated by half-ellipsoids and the renal

pelvis was modeled by an ellipsoid segment contained

within the entire kidney. Source regions of the renal

cortex, medullary pyramids, medullary papillae, and

the renal pelvis were defined and the corresponding

S-factors for 26 radionuclides were calculated.

12.2.4.4 Other Renal Models

McAfee Model

This was the first multiregional kidney model (McAfee

1969). The kidney was represented by three regions:

the renal pelvis, modeled by a hollow wedge-shaped

structure, with the renal cortex and medulla modeled

by concentric ellipsoids. As in MIRD Pamphlet 5, unit

physical density was assumed; the mass and volume of

a single kidney being 151 g and 151 cm3.

Blau Model

Blau et al. (1975) presented a multiregional kidney

model used to calculate the kidney absorbed doses

resulting from chlormerodrin labeled with the mercury

isotopes, 197Hg and 203H.

Cristy–Eckerman Model

This model of the kidney is that of the Cristy–

Eckerman series of phantoms discussed previously.

The dual ellipsoid geometry of MIRD Pamphlet 5 was

retained, but the renal physical density was increased

to 1.04 g/cm3 to result in a single kidney mass of

149.5 g.

12.2.4.5 Radiobiology Considerations

The developments of the multiregional models of the

kidney by McAfee, Blau et al., and Bouchet et al. were

instigated by the recognition that the complex internal

anatomy of the kidney would result in a nonuniform

distribution of activity within it which will lead to a

nonuniform absorbed dose distribution within the kid-

ney. Radiation-induced renal toxicity associated with

small-ligand radiopharmaceuticals frequently leads to

the kidney being the activity-limiting organ in thera-

peutic nuclear medicine. Because of the complexity of

the kidney’s internal absorbed dose distribution, it is

difficult to obtain an absorbed dose response charac-

teristic which can be predictive of radiation-induced

nephropathy. Such predictive capability can be neces-

sary in radionuclide therapy planning. To address this,

MIRD Pamphlet 20 (Wessels et al. 2008) presented the
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application of radiation biology estimates of absorbed

dose responses of the kidney. The MIRD Pamphlet

19 model was used in these calculations. The linear-

quadratic (LQ) model of absorbed dose response

(Chap. 10) was the basis in calculating the surviving

nephron fractions in the renal cortex and medulla as

functions of radionuclide concentration. The a/b ratio

for the LQ model was estimated from published exter-

nal beam radiotherapy data identifying renal compli-

cations. Temporal sensitivity to the physical half-life

of the radionuclide was modeled using the biologically

effective dose (BED) of Chap. 10. The authors con-

cluded that the combination of the multiregional kid-

ney model and the LQ/BED calculations were useful

for predicting renal radiotoxicity as a sequela of radio-

nuclide therapy.

12.2.5 Urinary Bladder

12.2.5.1 Introduction

In combination with the kidney, the urinary bladder is

of particular interest to an internal radiation dosimetry

calculation as a result of the renal excretion of activity.

The radiosensitive tissue of interest, the urinary blad-

der wall, is in prolonged and intimate contact with the

radioactive source, the contents of the urine. The uri-

nary bladder is a dynamic organ as both its volume

and morphology (and, hence, the amount of activity

contained within it) vary over time due to filling

and voiding. As a result, the S-factors which treat

the urinary bladder contents as a source region rS are

temporally varying. This makes the calculation of the

absorbed dose to the bladder wall more involved than

that of a static organ and requires the assumption of a

specific voiding interval pattern. Dynamic models of

the urinary bladder have been developed with varying

complexities to account for these variabilities in order

to yield accurate S-factors.

12.2.5.2 Anatomy

The urinary bladder is a musculo-membranous reser-

voir for the urine with a shape and position depend-

ent upon sex, age, and the degree of distension. It is

placed posteriorly to the symphisis pubis and anteriorly

to the rectum. In males, the prostate is positioned

inferiorly to it and in females, the bladder is in con-

tact with the vagina and uterus. The bladder wall,

which is the tissue of dosimetric interest, is made up

of four layers:

� Adventitia – a partial coating derived from the

surrounding peritoneum.

� Muscularis – referred to as the detrusor muscle and
consisting of three sublayers one of which is longi-

tudinal followed by a middle layer of circularly-

arranged muscular fibers and an internal layer

which is also composed of longitudinal muscle

fibers.

� Submucosa – a layer of areolar tissue which con-

nects the muscular and mucous layers.

� Mucosa – a thin and smooth layer which is

connected loosely to the muscular layer through

the submucosal coat and, hence, tends to folds

(called rugae) when the bladder is empty.

The urethra conveys urine from the bladder and is

surrounded by two muscular sphincters. The internal

urethral sphincter, which is formed from the detrusor
muscle, is the upper and involuntary sphincter. The

external urethral sphincter is lower and is made up of

voluntary skeletal muscle.

The daily production of urine varies across different

ethnic populations. For example, the Caucasian ICRP

Reference Man is defined to void 1,600 mL of urine per

day (ICRP 2002) whereas the Indian male adult is

reported to void 2,200 mL/day (IAEA 1998). It is not

known if this particular example is a reflection of ethnic

physiological differences or of higher amounts of water

intake in a tropical environment. A consequence of this

difference is that the amount of retained radiopharma-

ceutical which has a high renal excretion fraction will

be expected to be higher in the reference individual

with the low urinary production rate.

12.2.5.3 Static Urinary Bladder Model

The MIRD Pamphlet 5 model of the urinary bladder

is static, treating the organ as an ellipsoid with a

constant volume (202.6 mL) and a wall volume of

45.73 mL. As the urinary bladder is a dynamic organ

in terms of its physical size, morphology, and amount

of activity contained within it due to filling, disten-

sion, and micturition, the full dosimetry description
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of the urinary bladder contents requires consideration

of these effects.

12.2.5.4 Dynamic Urinary Models: The Cloutier

Model

Derivation

Cloutier et al. (1973) proposed a model of the female

urinary bladder in order to estimate the contribution of

the activity contained within the urinary bladder con-

tents to the absorbed dose that is received by the fetus

in the pregnant patient. Their female phantom was that

of the male phantom of Snyder et al. previously dis-

cussed, but scaled by the cube-root of the ratio of

whole-body masses (equal to 0.94). The gravid uterus

was modeled by the combination of a cone and a

hemispherical cap and was fixed in place; the ellipsoi-

dal urinary bladder was assumed to be always in

contact with the uterus and to be displaced inferiorly

as pregnancy progressed.

Of particular interest was the manner by which

Cloutier et al. evaluated the variable cumulated activ-

ity of the urinary bladder as the result of the filling and

regular voiding of urine. Assume that the rate at which

activity (normalized to that administered) is trans-

ferred from the kidney to the urinary bladder can be

described by a multiexponential series,

dAUB;NormðtÞ
dt

¼
XN
i¼1

kilie� liþlPð Þt: (12.38)

Further assume that the bladder is voided at a

regular interval TV, that there is no remnant activity

following micturition and that the removal of activity

from the bladder is instantaneous. The activity within

the urinary bladder contents at a time t between the

(M-1) and M voids is,

A
ðMÞ
UB;NormðtÞ ¼

ðt

M�1ð ÞTV

dt
XN
i¼1

kilie
� liþlpð Þte�lp t�tð Þ

¼
XN
i¼1

kie
�lpt e�li M�1ð ÞTV � e�li M�1ð ÞTV

� �

(12.39)

where t is the time at which activity enters the bladder

and (t � t) is the length of time between when the

activity enters the urinary bladder and when it is

voided. The normalized cumulated activity in the uri-

nary bladder contents during the bladder filling during

the time between the (M � 1)th and Mth voids is the

time integral of (12.39),

~A
ðMÞ
UB;Norm¼

XN
i¼1

ki

ðMTV

M�1ð Þ

dte�lPt
�
e�li M�1ð ÞTV�e�li M�1ð ÞTV

�

¼
XN
i¼1

ki

��
eðliþlPÞTV�eliTV

lP

�
e�ðliþlPÞMTV

�
�
eliTV�1
liþlP

�
e�liMTV

�
ð12:40Þ

The total normalized cumulated activity will be given

by the infinite sum of voids,

~AUB;Norm ¼
X1
M¼1

~A
ðMÞ
UB;Norm: (12.41)

Applying this to (12.40) and recognizing that the

geometric sum,
P1
M¼1

e�xð ÞM ¼ e�x
1�e�x, the total normali-

zed cumulated activity in the urinary bladder con-

tents is,

~AUB;Norm ¼
XN
i¼1

ki
1� e�lPTV

lP
� 1� e� liþlPð ÞTV

li þ lP

� �

� 1

1� e� liþlPð ÞTV
: ð12:42Þ

The Cloutier et al. model is widely used in nuclear

medicine dosimetry. The parameters ki and li are

determined by fitting the sum of the decay-corrected

activities measured in vivo in the urinary bladder con-

tents and the cumulative activity contained in the urine

voided up to the time of the bladder contents measure-

ment to the asymptotic form,

AUBVU;Corr;NormðtÞ ¼ CVU �
XN
i¼1

kie
�li t (12.43)

where AUBVU,Corr,Norm(t) is the sum of the decay-

corrected activities in the urinary bladder contents

and voided urine normalized to that administered and
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CVU is the total amount of activity that is voided in the

urine.10 In practice, N ¼ 2 is usually found to be

sufficient to yield an accurate fit to the data.

The Cloutier et al. model has figured in the

MIRDOSE and OLINDA/EXM codes. Simplifications

inherent to the model were noted previously in its

derivation: the urinary bladder is assumed to be mor-

phologically static (200 mL), whereas its shape and

volume will vary due to the degree of filling; retention

of urine and activity within the bladder following

voiding was assumed to be negligible. Such effects

were examined in the models described in the follow-

ing subsection.

Urinary Bladder Voiding Interval, TV

The ICRP has recommended that internal radiation

dosimetry calculations for adults be performed for a

urinary voiding interval TV of 3.5 h (ICRP 1998). It

has also provided an age-dependent tabulation of uri-

nary bladder voiding intervals, as summarized in

Table 12.3.

It is also a frequent practice (particularly in the

United States) to calculate for voiding intervals of

2.4 and 4.8 h (corresponding to 10 and 5 micturitions

per 24 h period, respectively). For a radiopharmaceu-

tical with a high fraction of radionuclide excreted

renally, it is useful to calculate for several voiding

intervals in order to assess how radiation absorbed

doses can be reduced by frequent micturition.

Figure 12.8 shows an example of the time-activity

curve of the decay-corrected activity (normalized to

that administered) in the urinary bladder (assuming

constant voiding at 2-h intervals and zero postvoid

retention of urine), that in the voided urine and the

combined activity in the urinary bladder contents and

voided urine. The activity in the urinary bladder con-

tents is measured through in vivo imaging and that in

the voided urine is determined through ex vivo assay

as to be described. The sum of the two activities yields

the asymptotic function shown and which is fit by

(12.43) to yield the ki and li used in the dynamic

bladder model estimate of the normalized cumulated

activity of (12.42).

The effects of the combinations of voiding interval

TV, biological fill-up rate of the urinary bladder and

the physical half-life of the radionuclide upon the total

normalized cumulated activity of the urinary bladder

contents are shown in Fig. 12.9. The ordinate is the

total normalized cumulated activity of the urinary

bladder contents for an assumed single exponential

fill normalized to the fraction of administered activity

that is excreted into the urine.11 Curves are calculated

for radionuclides over a wide range of physical half-

lives: 18F (T1/2,Phys ¼ 109.7 min), 99mTc (T1/2,Phys ¼
6.02 h) and 111In (T1/2,Phys ¼ 2.83 days) and for uri-

nary bladder filling half-lives of 0.25, 0.5, and 2.5 h.

Voiding intervals of TV ¼ 2.4 h and TV ¼ 4.8 h

(corresponding to 10 and 5 micturitions per 24-h

period) and the ICRP-specified TV ¼ 3.5 h for adults

are highlighted.

In general, the curves are very nearly linear in

voiding interval, with the slope increasing with both

radionuclide half-life and with bladder filling half-life.

These features are important to minimizing the radia-

tion absorbed dose to the urinary bladder wall and to

Table 12.3 ICRP-recommended age-dependent urinary blad-

der voiding intervals (ICRP 1998)

Age (years): Adult 15 10 5 1 Newborn

Urinary bladder voiding

interval (h)

3.5 3.5 3.0 2.0 2.0 2.0

10It has been suggested (Stabin 2008) that image-based mea-

surements of the urinary bladder contents should not be used in

evaluating the normalized cumulated activity of the urinary

bladder contents, due to a described difficulty in accurately

extracting the value of the activity in the urinary bladder con-

tents. Instead, it was advised that the ex vivo measurement of

activity in the voided urine be the basis alone of determining the

ki and li parameters. This method does indeed work. However,

in the author’s experience, the in vivo measurement of the

activity within the bladder contents is readily possible through

imaging and the method described here of fitting to the sum of

the activities in the bladder contents and in the voided urine

presents two advantages, particularly in a Phase I imaging study.

Firstly, there are likely to be more imaging acquisitions than

voids, thus providing a larger number of data points to fit (12.43)

to. Secondly, if the subject is allowed to void immediately after

the urinary bladder has been imaged, it is possible to compare

the in vivo activity result with the ex vivo result and, allowing

for any retained urine, test the quantitative agreement between

the imaging- and nonimaging-based measurement techniques.

11The curves of Fig. 12.9 can be applied to each phase individu-

ally for a multiexponential function and then the results added as

the normalized cumulated activity is a linear function of each of

the individual components.
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surrounding tissues and organs in the lower abdomen,

such as the gonads. Clearly, frequent micturition aids

in reducing the cumulated activity within the urinary

bladder contents, and this is especially critically for

radionuclides with long physical half-lives. However,

Fig. 12.9 does not tell the complete story as it only

portrays the cumulated activity of the urinary bladder

contents as a function of voiding interval. The nature

of the radioactive decay of the radionuclide within the

urinary bladder contents must be considered as, ulti-

mately, the user is interested in the absorbed dose.

This extension is considered in later in the discussion

comparing the dosimetry of PET and single-photon-

emitting radiopharmaceuticals.
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Fig. 12.8 The decay-

corrected activity (normalized

to that administered) in the

contents of the urinary

bladder, the voided urine and

in the sum of the two. A

constant voiding interval of

2 h is assumed
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Fig. 12.9 The total urinary bladder contents normalized cumu-

lated activity, normalized to the fraction of administered activity

excreted in the urine for a single exponential clearance pattern,

as a function of voiding interval. Curves are for 18F (dashed;

T1/2,Phys ¼ 109.8 min), 99mTc (solid; T1/2,Phys ¼ 6.02 h) and
111In (dash-dot; T1/2,Phys ¼ 2.83 days) with bladder fill up

half-lives of 0.25, 0.5, and 2.5 h. Voiding intervals of 2.4, 3.5,

and 4.8 h are highlighted

12.2 Models of Biological Systems 503



12.2.5.5 Other Dynamic Models of the Urinary

Bladder

Introduction

The Cloutier et al. model provided the first temporally-

varyingurinary bladder description.Anumberof simpli-

fications, as noted above, were applied. In subsequent

years, more comprehensive dynamic bladder models

were developed. Two are described here; brief descrip-

tions of others are provided in the summary of MIRD

Pamphlet 14 (Revised) (Thomas et al. 1999).

Snyder and Ford Model

In the Snyder and Ford (1976) model of the urinary

bladder, the organ is considered as an ellipsoid with

a variable volume of between 0 and 500 mL. Con-

tinuous urinary transfer rates into the bladder (1, 1.4,

and 2 L/day), residual volumes (i.e., urine reten-

tion following voiding) of between 0 and 30% were

accounted for, as was a variable micturition frequency.

The absorbed dose to the urinary bladder wall due to a

charged particle-emitting radionuclide within the urine

was estimated using a dose point kernel and that due to

photons was calculated from a Monte Carlo code.

MIRD Pamphlet 14 and 14 (Revised) Models

In MIRD Pamphlet 14 and its revision (Thomas et al.

1992, 1999), the absorbed doses to the urinary bladder

wall were estimated for a wide range of 19 different

radiopharmaceuticals with the radionuclides of 18F,
89Sr, 99mTc, and 123,124,125,131I. A more sophisticated

dynamic model of the urinary bladder was developed

than of those previous. The effects of urine retention,

variable spherical volume, variable bladder wall thick-

ness, variable urine transfer rates, initial bladder con-

tents volume (i.e., the volume of urine within the

bladder before activity enters it) and a nonregular

voiding interval (i.e., to allow for delays during the

night) were accounted for. A review of the results of

this more sophisticated model concluded that it

yielded a higher absorbed dose to the urinary bladder

wall than did previous models. Most interestingly,

particularly in the design of radiopharmaceutical clini-

cal trials, was their observation that lower absorbed

doses to the urinary bladder wall were achieved, as

expected, through large initial urinary bladder

volumes and higher transfer rates of urine into the

bladder. Hence, absorbed dose reduction is expected

for the subject who is well hydrated prior to adminis-

tration of the radiopharmaceutical. Interestingly, it

was also concluded that, depending upon voiding

rates and hydration status, an early voiding interval

would not necessarily be optimal for minimizing the

urinary bladder wall dose. Depending upon the radio-

pharmaceutical, this optimum first voiding time could

be anywhere from 40 min to 3 h postadministration.

12.2.6 Head and Brain

12.2.6.1 Introduction

The detail that could be desired in the internal radia-

tion dosimetry calculation of the brain has grown

through the development of radiopharmaceuticals

which can lead to highly nonuniform absorbed dose

distributions within the brain as a result of their high

target specificities. Earlier models, such as that of the

MIRD Pamphlet 5 (Revised), of the brain assumed

only uniform distribution of radionuclide and homo-

geneity and were acceptable for estimating a mean

absorbed dose to the brain.

12.2.6.2 MIRD Pamphlet 15 Model

This model (Bouchet et al. 1999a) is based upon the

earlier brain and head model of Bouchet et al. (1996).

The model segregated the head and brain into ten sepa-

rate regions of the brain (caudate nuclei, cerebellum,

cerebral cortex, cerebrospinal fluid contained within the

cranium, lateral and third ventricles, lentiform nuclei,

thalami, and white matter), three regions of the spine

(spinal cord, cerebrospinal fluid within the spine and the

spinal skeleton), the eyes, skin, teeth, thyroid, and upper

face region (maxilla and zygomatic arch), mandible,

and the cranium. The model was a stylized one and a

heterogeneous nature of the tissue in terms of physical

density and elemental composition was allowed.

Radiation transport was calculated using the EGS4

Monte Carlo code (Chap. 9), the results from which

504 12 Anthropomorphic Phantoms and Models of Biological Systems



were derived absorbed fractions and S-factors were

calculated for the above regions for 34 radionuclides.

12.2.7 Cardiac Wall and Contents

12.2.7.1 Models

Both the cardiacwall and the contents of the heart cham-

bers are MIRD-specified source regions (Table 11.1).

MIRD Pamphlet 13 (Coffey et al. 1981) presented a

stylized model of the heart, the atria and ventricles

and the contents. The atria and ventricles were rep-

resented by ellipsoid sections. The left ventricle was

modeled by a semiellipsoid, the right ventricle and

atrium by the shells between two quarter ellipsoids

and the left atrium by the shell between two quarter

ellipsoids.

Some modifications of the ICRP Pamphlet 5

(Revised) lung model were required in order to accept

this new heart model. Specific absorbed fractions were

calculated for monoenergetic photon sources with

energies between 10 keV and 4 MeV within the car-

diac wall and contents.

12.2.7.2 Isolating Activities in Cardiac Wall

and Contents

Both the cardiac wall and the cardiac contents are

treated as source regions in the MIRD schema and,

hence, the cumulated activities of both are required for

MIRD dosimetry calculations. While it is possible to

isolate the activities in both regions in tomographic

slices to define volumes-of-interest, such an approach

is not practical in conjugate-view planar scintigraphy.

In such a case, one may define a ROI over the entire

cardiac volume which will include contributions from

activities in the heart wall and the contents of the

cardiac chambers. The activity in the blood contained

within the cardiac chambers at a given time point can

be estimated from the product of an assumed volume

of blood within the chambers and the measured con-

centration of radionuclide activity in whole blood,

AHeart ChambersðtÞ ¼ VHeart Chambers½AWhole BloodðtÞ�
(12.44)

The volumes of blood in the heart chamber in the

reference male and female are taken to be 9% of the

corresponding total blood volumes, or 477 and 351 mL,

respectively (ICRP 2002).

12.2.8 Bone and Red Bone Marrow

12.2.8.1 Introduction

The radiosensitivity of red bone marrow has been

discussed in Chap. 10 in the context of the hemato-

poietic syndrome. As bone marrow is one of the major

organs which exhibit radiotoxicity (a deterministic

effect) and, hence, can limit the amount of adminis-

tered activity in radionuclide therapy, the ability to

accurately estimate the absorbed dose to marrow is

paramount in therapeutic nuclear medicine. Evalua-

tion of the marrow absorbed dose is also important in

diagnostic nuclear medicine as it is a significant con-

tributor to the effective dose and should be accurately

known. Bone itself is sensitive to radiation, although

this is of concern at low absorbed dose levels where

the stochastic risk of radiation-induced osteosarcoma

exists.

This section reviews dosimetric models of bone and

bone marrow used historically and currently in nuclear

medicine radiation dosimetry calculations. An addi-

tional source of a historical review of these models can

be found in the chapter by Bouchet et al. (2003b).

12.2.8.2 Anatomy and Histology

Skeleton

The skeleton is composed of some 200 distinct bones

(Gray 1977) which are divided into the four classes of

long, short, flat, and irregular. The long bones make up

the clavicle and those bones in the extremities (femur,

tibia, fibula, humerus, radius, ulna, the metacarpal, and

metatarsal bones and the phalanges). The short bones

include the carpus and tarsus and the flat bones include

the cranial bones and the scapulae. Those remain-

ing bones that cannot be categorized into either of

these three are grouped within the irregular class.

These include the vertebrae, sacrum, and the coccyx.

“Bone” is defined here as being the skeletal mineral
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material remaining following the removal of soft tis-

sue components such as red and yellow marrow, carti-

lage, and periarticular tissue.

Further details of the skeleton, bone, bone marrow

and their compositions, anatomy, and histology rele-

vant to internal radiation dosimetry can be found in

ICRP Publications 70 (1995) and 89 (2002).

Bone

At the microscopic scale, bone in the mature skeleton

is classified by two distinct groups on the basis of

porosity and microstructure. The first category is that

of trabecular bone, which is also referred to as cancel-

lous or spongy bone. Trabecular bone is present at the

ends of the long bones (epiphysis), in the interior of

the flat bones and makes up most of the vertebrae. It is

so called due to its cavities (trabeculae) which contain

bone marrow. The second bone category is that of

cortical bone which, because it is hard and dense, is

also referred to as compact bone. Cortical bone is

found in the shafts of the long bones (diaphysis) and

in the outer cortex of all bones. In the diaphysis, the

cortical bone forms a cylinder surrounding the medul-

lary cavity which is lined with a connective tissue, the

endosteum. In the dosimetry literature, the endosteum

is often referred to simply, and erroneously, as the

bone surface, whereas it, in fact, has a finite thickness.

In ICRP Publication 30, the endosteum is specified as

being 10 mm thick; although recent studies suggest

that the mean thickness may be greater at 50 mm
(Gossner et al. 2000; Gossner 2003). The periosteum

is dense connective tissue which surrounds the bone

surface except at articulating surfaces. Trabecular

bone is far more porous than cortical bone; the fraction

of total volume taken up by bone tissue in trabecular

bone can be as low as 5% and range up to a maximum

of about 60%. It thus has a low density and strength,

but a large overall surface area. The spongiosa is

defined as the combination of the bone trabeculae

and the marrow that they contain.

Differentiation between trabecular and cortical

bone is not only important because of their differing

anatomical and mechanical properties, but also in

terms of their differences in retention of bone-seeking

radionuclides, as will be discussed shortly, and the

distribution of activity on and throughout them. In

the neonate, virtually all of the bone is trabecular.

The amount of cortical bone increases with age such

that by the time of maturity, the ratio of cortical to

trabecular bone, by mass, in the skeleton by mass is

about 4:1 (and exactly so in the reference conditions

specified by ICRP Publication 70). However, in terms

of the ratio of the surface area to volume, that for

trabecular bone is about four times greater than that of

cortical bone with the result that the surface areas of

trabecular and cortical bone in the adult have been often

considered as being equal. However, the current refer-

ence values for the adult male skeleton provided in

ICRP Publication 70, and which are reproduced in

Table 12.4, show that the above simplifying assump-

tions underestimate the surface area of trabecular bone.

For example, the ratio of surface area to volume is

actually six times greater for trabecular bone than corti-

cal bone. Further, 61.7% of the total bone area should

be assigned to trabecular bone and 38.3% assigned to

cortical bone, rather than the 50–50% assignation sug-

gested by the simplistic argument above.

Both bone types have a hierarchical structure. The

fundamental functional unit of cortical bone is the

osteon (or Haversian system) which consists of lamel-

lae of compact bone surrounding a central Haversian

canal which is lined with a layer of endosteum. The

osteons have a typical diameter of 200 mm (but which

can vary considerably) and are each aligned parallel to

the long shaft of the bone and each contains a nerve and

blood vessels supplying the bone, osteoblasts, and

undifferentiated cells. Interspersed between the lamel-

lae are lacunae which are interconnected with canaliculi

through which nutrients diffuse. The compact bone is

penetrated by Volkmann’s canals, orthogonal to the

Haversian canals, which interconnect osteons with vas-

culature and nerves. Trabecular bone, as noted before,

is made up of trabeculae, each with a typical diameter

of about 50 mm. The trabeculae contain marrow, which

is discussed in detail in the following section.

Osteogenic cells are found within the bone tissue

in contact with the endosteum and periosteum; these

Table 12.4 Reference bone values for adult male (ICRP 1995)

Component Volume

(cm3)

Surface area

(m2)

Surface area to

volume ratio (cm�1)

Total bone 2,710 17

Cortical

bone

2,130 6.5 30

Trabecular

bone

580 10.5 180

506 12 Anthropomorphic Phantoms and Models of Biological Systems



cells produce osteoblasts (bone-forming cells) and

osteoclasts (bone-destroying cells). Osteocytes are

mature osteoblasts which have synthesized organic

material which subsequently undergoes minerali-

zation and are present within the lacunae. The osteo-

clasts enzymatically break down bone and are

essential for bone growth and remodeling.12 The

osteogenic cells are radiosensitive to the production

of bone tumors.

Trabecular and cortical bone are both specified

MIRD source organs (Table 11.1). Accordingly, one

must specify measured bone activity to either of the

two bone types. While this can be dealt by consider-

ation of the metabolism of the radionuclide and its

vector, the ICRP (1979) has provided two guidelines

specific for alkaline earth metals, but which have been

adopted for other radionuclides if specific bone uptake

data are lacking. If the physical half-life of the radio-

nuclide is 15 days or greater, then it should be assumed

that the activity is distributed throughout the bone

volume, otherwise the radionuclide is assumed to be

distributed over the bone surfaces. Hence, using the

data from Table 12.4, if the radionuclide physical half-

life is 15 days or greater, then the activity would be

assumed to be distributed within the bone volume with

21.4 and 78.6% assigned to trabecular and cortical

bone, respectively. Similarly, if the radionuclide phys-

ical half-life is less than 15 days, then the activity

would be assumed to be distributed over the bone

surface with 38.3 and 61.7% assigned to cortical and

trabecular bone, respectively.

Bone Marrow

Bone marrow is a connective tissue contained within

the trabeculae and is one of the largest organs in the

body with a mass comparable to that of the liver

(1,500 g in total in ICRP Reference Man (ICRP

1975)). It can be considered to be made up grossly

from four categories of tissues, the first of which is the

hematopoietic component, or red (active) marrow. It is

known as “red” due to the large numbers of erythro-

cytes it produces. This is the site of erythropoiesis

which occurs within the trabeculae of all bones in

children, but the extent of which diminishes with

maturity. The red marrow contains pluripotent uncom-

mitted stem cells and unipotent committed stem cells.

The latter differentiate along the development paths

shown in Fig. 12.10.

The physical placements of the various blood cell

components within the marrow differ. For example,

the granulocytic precursor cells (myeloblast and pro-

myelocyte) are present along the endosteal surfaces of

the trabeculae and approach the center of each trabe-

culum as they mature whereas the erythrocytic precur-

sor cells tend to be at the center of the marrow space.

The hierarchy of Fig. 12.10 indicates how, following

the radiation-induced depletion of the stem cells, death

can eventually result afterwards through immunocom-

promise, or the hematopoietic syndrome. On the other

hand, at low absorbed doses, precursor cell depletion

does not occur, but stochastic effects leading to muta-

genesis are the risks of interest which are manifested

through the leukemias.

The second category of intratrabecular tissue is

comprised of an extracellular matrix and randomly-

distributed stromal cells. These cells include adipo-

cytes, thus leading to the description of this category

as “yellow marrow”. This is also referred to as “inac-

tive marrow” as it does not lead to the production of

blood cells, but instead provides structural support of

the red marrow. The remaining categories comprise

the venous sinuses and other intra-trabecular vascula-

ture and additional supporting cells.

The bone marrow cellularity factor (CF) is defined

as the fraction of the total bone marrow volume which

is occupied by the active red bone marrow. This ratio

is essentially equal to unity at birth and decreases with

age. As pointed out by Bolch et al. (2002), this defini-

tion of the mallow CF ignores the volumes of the

venous sinuses, the extracellular matrix, and marrow

support cells. However, these volumes are comparable

or smaller than the hematopoietic component and,

clinically, difficult to segregate. The adipocytes (yel-

low marrow) are, however, easy to differentiate from

the red marrow, thus allowing an approximation to the

bone marrow CF as,

CF ffi 1� Fraction of Volume Occupied

by Adipocytes
(12.45)

12The early tracer work of Chievitz and de Hevesy described in

Chap. 11 using 32P in the rat revealed the fact that bone was

being constantly remodeled.
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The CF is also a function of bone type. For the

adult, the marrow CF ranges from about 0.23 for the

radius and ulna to 0.8 for the lumbar, thoracic and

cervical spine (Eckerman and Stabin 2000). Details

of the age- and skeletal site-distributions of hemato-

poietically-active marrow and CF are summarized in

Tables 40 and 41 of ICRP Publication 70 (1995).

Table 12.5 summarizes the skeletal distributions of

red marrow and CF in a 40-year-old adult using data

from these tables ICRP Publication 70 and which are

actually attributable to Cristy (1981). Work at the

University Florida is active in empirically characteriz-

ing the distributions and relative masses of hemato-

poietically-active marrow and adipocytic marrow

(Bolch et al. 2002; Shah et al. 2003; Pichardo et al.

2007).
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Fig. 12.10 Development and differentiation of the various blood cells from a bone marrow cell. Cells below the dash-dot line are
also found in the peripheral blood (adapted from Ganong 1979)

Table 12.5 Skeletal distribution of hematopoietically-active

marrow and the cellularity factor in the 40-year-old human

(ICRP 1995)

Skeletal site Active marrow

(% of total)

Cellularity

factor, CF

Cranium 7.6 0.38

Mandible 0.8 –

Scapulae 2.8 0.38

Clavicles 0.8 0.33

Sternum 3.1 0.7

Ribs 16.1 0.7

Cervical vertebrae 3.9 0.7

Thoracic vertebrae 16.1 0.7

Lumbar vertebrae 12.3 0.7

Sacrum 9.9 0.7

Os coxae 17.5 0.48

Femora, proximal 6.7 0.25

Humeri, proximal 2.3 0.25
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Estimation of the absorbed dose to red bone mar-

row is essential to radionuclide therapy, yet the corre-

lation of absorbed dose alone to marrow response

(e.g., myelotoxicity) has been incomplete. Methods

of estimating bone marrow dose are discussed.

12.2.8.3 Bone and Bone Marrow Models

Spiers’ Models

Between the 1940s and the 1970s, Spiers and his

students at the University of Leeds established the

foundations of the models of the radiation dosimetry

of trabecular and cortical bone and of bone marrow

(Spiers 1949; Whitwell and Spiers 1976; Beddoe et al.

1976; Beddoe 1977; Spiers et al. 1978). Avoiding the

limitations set by the use of simple geometrical mod-

els of bone substructures upon which to base dosime-

try evaluations, they instead used a bespoke optical

scanner to measure the statistical distributions of path-

lengths13 in the internal cavities of trabecular and

cortical bone using ex vivo thin slice sections. Monte

Carlo modeling of the energy loss and electrons and

positrons traversing these paths due to radionuclides

contained in the bone (including 18F, 32P, 90Sr, and
90Y) was performed. There were, however, some lim-

itations to this work. For example, Beddoe’s calcula-

tion for cortical bone was for radionuclides within the

bone and did not allow for any placement within the

cavities, such as the Haversian canals. The studies by

Spiers and his group established the first estimates of

the electron absorbed fractions f(rT rT) for bone.

Geometrical Models

Representations of bone and its structures by geo-

metrical constructs were attempted by researchers in

Canada in the 1960s (Charlton and Cormack 1963;

Aspin and Johns 1963), particularly as a result of

interest in absorbed doses to bone due to external

beam radiotherapy.

MIRD 11 Model

The estimates of the self-dose absorbed fraction

f(rT rT) derived from Spiers’ models were used in

the S-factor calculations in MIRD Pamphlet 11. In

these calculations, the target regions rT were bone,

red and yellow marrow and the endosteum and the

source regions were trabecular and cortical bone and

red and yellow marrow.

ICRP Publication 30 Model

In 1979, ICRP released its dosimetric model of bone

(ICRP 1979). Although the focus of the model was on

the radiological protection of individuals exposed to

ionizing radiation as a result of their occupation, it has

been used in nuclear medicine radiation dosimetry

calculations. Hence, the dosimetric quantity of interest

was largely the dose equivalent due to the risk of

exposure to bone-seeking a-emitting radionuclides.14

Regardless of the focus, the model is entirely relevant

to nuclear medicine dosimetry. Much of the data used

in the development of this model evolved from the

work by Spiers and his group.

The cells recognized in the model as being at radio-

carcinogenic risk are the hematopoietic stem cells, the

endosteal osteogenic cells, and epithelial cells near to

the surface of the bone. ICRP Publication 30 specified

the location and spatial dimensions of what were to be

regarded as the target regions. For those cells near the

bone surface (i.e., endosteum), the target region was

defined to be a 10 mm thick layer of tissue covering all

endosteal surfaces and those surfaces of the bone lined

with epithelial cells; the total mass of this target region

was said to be 120 g. The other target region was the

active red bone marrow within the trabeculae, with a

13Virtually all of the literature produced from outside the Uni-

versity of Leeds group that refers to these measurements

describes them as being of a “chord length” rather than a

“pathlength”. One of Spiers’ students, Darley, has written that

the Spiers group consistently referred to these measurements

being of pathlengths rather than of chord-lengths, as the latter

implies the traversal of a continuous or closed structure (Darley

2006). To maintain that descriptive precision, these will be

referred to as “pathlengths” in this discussion.

14It is entirely reasonable for a-emitting radionuclides to be

included in the discussion as such radionuclides are used thera-

peutically (Lewington 2005).
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mass of 1,500 g (ICRP 1975). The following radia-

tions were considered:

� a emissions from radionuclides distributed uni-

formly within bone

� a emissions from radionuclides distributed uni-

formly on the bone surfaces

� b emissions from radionuclides distributed uni-

formly within bone

� b emissions from radionuclides distributed uni-

formly on the bone surfaces with

– A mean kinetic energy of 200 keV or less

– A mean kinetic energy exceeding 200 keV

Absorbed fractions for a-emitting radionuclides

were obtained from the calculations by Thorne

(1977); data for b-emitting radionuclides were derived,

in much, from the work by Spiers and his research

group, as referenced earlier. Table 12.6 provides a

summary of the absorbed fractions given by ICRP

Publication 30 for the combinations of particle emis-

sions, anatomical location, and energy. It should be

recognized that the assigned single-valued absorption

factors with little or limited-energy dependencies are

primarily for radiological protection calculation conve-

nience and lack, for example, consideration of the mar-

row CF. These factors were, however, used in the

MIRDOSE 2 code (Stabin 1996).

Eckerman and Stabin Model

Eckerman and Stabin (2000) reexamined the ab-

sorbed factors for b-emitting radionuclides for mar-

row and bone as target regions in a skeletal model

that included age as a variable. Using the Cristy

phantom described earlier and the pathlength method

of Spiers, they evaluated the absorbed fractions for

combinations of source regions of trabecular bone

(volume and surface), red marrow and cortical bone

(volume and surface) and of target regions of red

marrow and bone surface for electron energies

between 1 keV and 4 MeV for skeletal phantoms of

the neonate, 1-, 5-, 10-, 15-year old and adult. The

absorbed fraction within a region was calculated as

the ratio of the amount of energy loss from an elec-

tron traversing the region along the pathlength as a

fraction of the energy released in the b decay. As a

result, the assignation of the absorbed fraction to

red marrow could not be done explicitly. Instead, a

marrow CF was assumed and the energy deposited

within the contents of a trabecular volume scaled

by it accordingly. As an example, Fig. 12.11 shows

the absorbed fractions for the source region being

a b-emitting radionuclide uniformly distributed over

the trabecular bone surface or bone volume and

the source regions being the bone surface and the

red bone marrow. These are taken from the results

Table 12.6 Recommended values from ICRP Publication 30 (1979) for absorbed fractions for various bone source and target

regions for a- and b-emitting radionuclides

Particle type Energy Source region (rs) Target region (rT) Recommended absorbed

fraction f(rT rS)

a All Trabecular bone volume Bone surface 0.025

Red Bone marrow 0.05

Cortical bone volume Bone surface 0.01

Red bone marrow 0

Trabecular bone surface Bone surface 0.25

Red bone marrow 0.5

Cortical bone surface Bone surface 0.25

Red bone marrow 0

b All Trabecular bone volume Bone surface 0.025

Red bone marrow 0.35

Cortical bone volume Bone Surface 0.015

Red bone marrow 0
�T< 200 keV Trabecular bone surface Bone surface 0.25

200 keV � �T 0.025

�T< 200 keV Cortical bone surface Bone surface 0.25

200 keV � �T 0.015

All Trabecular bone surface Red bone marrow 0.5

Cortical bone surface Red bone marrow 0
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calculated by Eckerman and Stabin and from ICRP

Publication 30.

Figure 12.11 demonstrates the simplicity of the

absorbed fraction values provided by the ICRP Publi-

cation 30 for the source region being the trabecular

bone surface. For example, the ICRP 30 approxima-

tion for the absorbed fraction for red marrow being

the target region overestimates that determined by

Eckerman and Stabin by about a factor of 3 for low

electron energies, decreasing to about a factor of 2 for

electron energies exceeding about 300 keV. The differ-

ences between the ICRP Publication 30 f(RM TBS)

values and those of Eckerman and Stabin were attrib-

uted by the latter as being the result of differences in

the assumptions of the marrow CF. The ICRP Publi-

cation 30 results were based upon the assumption that

CF ¼ 1, i.e., all of the marrow was active, whereas

Eckerman and Stabin assumed that CF ¼ 0.6.

The above results demonstrate that the ICRP Publi-

cation 30 approximations, whilst being appropriate

for radiological protection applications, could likely

be insufficiently accurate for bespoke radionuclide

therapy calculations. But even the refinements of the

Eckerman and Stabin results suffer. For example, no

consideration is given of the lack of electronic equi-

librium at the interface between marrow and bone. In

Chap. 9, it was shown that radiations moving from a

high-Z/high-density medium (e.g., bone) to a low-Z/

low-density medium (e.g., marrow) will lead to an

elevation of absorbed dose on the low-Z/low-density

side of the interface. Kwok et al. (1991) demonstrated

through both experimental measurement and calcula-

tion that absorbed dose enhancements of between 10

and 21% in the red marrow could occur at electron

energies typically of many b-emitting radionuclides.

Similar results were reported by Johnson et al. (1992)

using Monte Carlo simulations of radiation transport

arising from b-emissions from 153Sm, 186Re, and
166Ho distributed on bone surfaces.

Bouchet Model

Bouchet et al. (1999b, c, 2000) developed a dosimetric

model of bone and bone marrow using, again, the

pathlength distributions measured by the Spiers group

and Monte Carlo simulation of radiation transport in

two- and three-dimensional models of bone and bone

marrow. Their work culminated in the production of

S-factors using masses of bone, marrow and endos-

teum derived from ICRP Publication 70 (1995).

Further discussion of the model is provided below.

Comparison of Models of Eckerman

and Stabin and Bouchet

The study of the radiation dosimetry of bone and bone

marrow is a rich field to which many investigators

have contributed over the past six decades. This section
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Fig. 12.11 Absorbed

fractions calculated by

Eckerman and Stabin (2000)

(E&S), and compared with

those of ICRP Publication 30

(1979), for the source region

being a b-emitting

radionuclide uniformly

distributed over the trabecular

bone surface (TBS) and the

target regions being either the

red marrow (RM) or the bone

surface/endosteum (BS)
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can provide only an overview of those developments

that the author has judged as having had the most

significant impact on internal radiation dosimetry.

There are still many important facets to the field under-

going investigation, particularly in the application to

radionuclide therapy. These two bone marrow models

provide differing results when applied to dosimetry

calculations. Recently, Stabin (2008) summarized the

three differences between the models.

First, there is the difference in the use of the mar-

row CF. The use of this factor is necessary in a bone

marrow dosimetry calculation as, while it is frequently

the absorbed doses to the soft tissues within the trabe-

culae that are calculated, it is the red marrow which is

the radiosensitive component within the trabecular

marrow space. As both models were still largely

based upon the pathlength concept which cannot dif-

ferentiate between red and yellow marrow, explicit

accounting of the differences between red and yellow

marrow was either neglected or else done by the appli-

cation of skeletal site-specific CF values. The Ecker-

man and Stabin model and the Bouchet et al. model

differ in the calculation of the self-absorbed fraction

due to a b-emitting radionuclide in the red marrow by

the use of the CF,

fi RM RMð Þ ¼ CFifi TM TMð Þ
Eckerman and Stabin

(12.46)

fi RM RMð Þ ¼ fi TM TMð Þ Bouchet et al:

(12.47)

where RM refers to red marrow, TM refers to the

total trabecular marrow space and the index i refers

to the skeletal site. One can see that at low electron

energies, where complete self-absorption will occur,

then the absorbed fractions must be come equal, i.e.,

fi RM RMð Þ ! fi TM TMð Þ. On the other

hand, at higher electron energies, the electrons can

traverse multiple trabeculae and the absorbed fraction

will tend to the CF. These arguments would suggest

that the Bouchet et al. model is applicable to low-

energy electrons and the Eckerman and Stabin model

to high-energy electrons. Bolch et al. (2002) summar-

ized the expectations that, at intermediate electron

energies, the Bouchet et al. model and the Eckerman

and Stabin model would overestimate and underesti-

mate, respectively, the self-absorbed fractions for red

bone marrow. Using a three-dimensional trabecular

bone model based upon high spatial resolution MR

imaging of cadaveric sources of bone and simulation

of adipocyte sites within the trabeculae, they used

Monte Carlo simulations of radiation transport to eval-

uate the electron self-absorbed factor for red marrow.

They demonstrated that, indeed, the Bouchet et al.

model overestimates the fi RM RMð Þ value by

about 40% at an electron energy of 1 MeV whereas

the Eckerman and Stabin model underestimates

fi RM RMð Þ by about 75% at very low electron

energies (10 keV).

The second difference between the two models lay

in the Monte Carlo description of the trajectories of

electrons traversing the 10 mm thick endosteum. In the

Eckerman and Stabin model, the endosteum is

assumed to be penetrated by electrons with trajectories

uniformly distributed in angle (between 0 and 180
).
On the other hand, the Bouchet et al. model assumed a

uniform distribution in the cosine of the angle (i.e.,

between �1 and þ1). This affects the distribution of

pathlengths and, subsequently, the energy deposition.

The third difference was in the assumption of the

distribution of the electron source within the endos-

teum: Bouchet et al. assumed a uniform distribution

within the endosteum whereas Eckerman and Stabin

assumed a uniform distribution over the bone surface.

Stabin et al. (2002) used more refined anatomical

data (Jokisch et al. 1998) in an attempt to reconcile

the differences between the Eckerman and Stabin and

the Bouchet et al. models and Bolch’s group continued

this study of the role of inactive yellow marrow

in bone marrow dosimetry calculations (Shah et al.

2003).

Endosteum Thickness

ICRP Publication 30 specified a uniform endosteal

thickness of 10 mm for dosimetry calculations and

which was used in the Eckerman and Stabin and Bou-

chet et al. calculations. Work by Gossner and colla-

borators (Gossner et al. 2000; Gossner 2003) suggests

that radiosensitive cells leading to osseous cancers can

be as far as 50 mm from the surfaces of the trabeculae

and the medullary cavities of cortical bone. Bolch

et al. (2007) examined the effects of this increased

endosteal thickness upon the specific absorbed frac-

tions for b-emitting radionuclides.
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Red Bone Marrow Dosimetry

Hematologic toxicity as a consequence of irradiation

of active marrow is frequently a limiting factor in the

amount of therapeutic activity administered. As a con-

sequence, there is considerable interest in accurate

evaluation of red bone marrow absorbed dose.

12.2.9 Peritoneal Cavity

The abdominopelvic cavity consists of the abdominal

cavity (containing the small stomach, the small and

most of the large intestines, liver, gallbladder, spleen,

pancreas, and kidneys) and the pelvic cavity (con-

taining the rectosigmoid colon, urinary bladder,

uterus, ovaries, and prostate gland). Serous mem-

branes (the peritoneal membranes) cover both cav-

ities: the parietal peritoneum lines the abdominal

wall and the visceral peritoneum covers the viscera.

The space between these two membranes is the perito-

neal cavity.15 All of the abdominal organs are exterior to

the peritoneal cavity. As ovarian metastases generally

spread through the peritoneal cavity, radionuclide ther-

apy has been used for intraperitoneal disease since the

1940s with the use of 198Au and 32P (Young 1985).

Radioimmunotherapy has now been used for radionu-

clide therapy of the peritoneal cavity (AAPM 2001;

McQuarrie et al. 2004).

Watson et al. (1989) developed a model for estimat-

ing the absorbed dose to the peritoneal space by mod-

ifying the Fisher-Snyder phantom. The peritoneal

cavity was represented by two connected elliptical

cylinders. Data for photon- and electron-emitting

radionuclides were calculated.

12.2.10 Tumors (Spheres)

Localized tumors can be modeled by spheres, which

permit a simple means of estimating the absorbed dose

to the tumor resulting from its uptake of particulate-

emitting radionuclides. The accuracy of this calculation

is dependent upon the degree of charged particle

equilibrium within the tumor which, in turn, is a

function of the charged particles and the radius of

the sphere. The absorbed fractions in a sphere of

soft tissue, representing a tumor, as a function of the

diameter for 90Y and 131I was presented Chap. 9.

Bardiès et al. considered those cases of spheres,

with radii ranging from 5 mm to 5 mm, which

were labeled on the surface with b-emitting radio-

nuclides (Bardiès et al. 1990) and spheres with a

radii ranging between 5 and 200 mm, for a-emitting

radionuclides (1990), in a simulation of radioimmu-

notherapy of small tumors and cells.

12.2.11 Prostate Gland

The prostate gland is approximately ellipsoid in shape

with dimensions of 4 � 3 cm and with a mass of about

16 g. It is inferior to the urinary bladder and surrounds

the proximal aspect of the urethra. As such, it is

formed into lobules by the urethra and ejaculatory

ducts extend throughout these lobules and communi-

cate with the urethra.

As some radiopharmaceuticals have demonstrated

prostatic uptake, Stabin (1994) developed a model of

the prostate gland which was a sphere with a diameter

of 3.08 cm and composed of soft tissue. Specific

absorbed fractions were evaluated for photon energies

ranging from 10 keV to 4 MeV. S-factors for a range

of radionuclides were also derived and presented.

12.2.12 Rectum

A model of the lower colon and surrounding organs

was presented by Mardirossian et al. (1999) as a mod-

ification of the rectosigmoid component of the Cristy–

Eckerman Reference Man phantom. The rectum was

not included within the LLI component of that phan-

tom. In the new rectum model, the rectum was explic-

itly represented. Additional components added were

the prostatic urethra and seminal ducts. The positions

of the prostate gland and the urinary bladder were

displaced, which resulted in changes in the absorbed

doses to the testes and the LLI wall due to activity

within the prostate gland.

15The kidneys and adrenal glands are posterior to the parietal

peritoneum and are hence referred to as being retroperitoneal.
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The Biodistribution (I): Preclinical 13

Abstract The measurement of the biodistribution of a radiopharmaceutical must be

performed in the preclinical setting in order to provide an initial estimate of the

internal radiation dosimetry of the human prior to the first-into-man Phase I study.

This chapter summarizes both the means of how the preclinical biodistribution data

are derived and how these data are scaled from the animal to the human. Crucial to

any preclinical research are the ethics of animal use. This is also reviewed.
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13.1 Introduction

It is a regulatory requirement that the development of a

radiopharmaceutical requires that a preclinical mea-

sure of the associated biodistribution be obtained prior

to the agent’s administration to a human subject in a

Phase I clinical study. This preclinical result must then

be used to predict the biodistribution in the human and,

hence, the radiation dosimetry profile of the radiophar-

maceutical in the human.1 In this section, the methods

of estimating the human data from the preclinical

model and the associated legal, ethical and, regulatory

requirements of animal studies are presented.

Whereas in vitro models can be used to assess some

of the components of the safety profile of a radiophar-

maceutical, they are clearly inadequate to allow ade-

quate prediction of the biodistribution and radiation

dosimetry of the radionuclide once the radiopharma-

ceutical is administered to the human. Preclinical

models more advanced than in vitro measures are

required as the use of higher-order species more

closely approximates the human response. For the

typical preclinical evaluation of the biodistribution of

a radionuclide following the administration of a radio-

pharmaceutical, mammalian species are used. The

model is typically a rat or mouse, although high-order

species such as nonhuman primates can and have

been used for biodistribution and radiation dosimetry

1Of course, preclinical studies of pharmacological safety are

required in parallel.

B.J. McParland, Nuclear Medicine Radiation Dosimetry,
DOI 10.1007/978-1-84882-126-2_13, # Springer-Verlag London Limited 2010

519



studies using image-derived data. Indeed, in its report

on the use of ionizing radiation in biomedical research,

the Internal Commission on Radiological Protection

(ICRP) advises that preclinical evaluation of new

radiopharmaceuticals be performed on multiple spe-

cies, one of which should be a nonhuman primate

(ICRP 1991a, b).

The pharmacokinetics of the radiopharmaceutical

will differ between the animal model and the human.

This difference is a result of, among a multitude of

others, the differences between species in body size

(weight and surface area) and rates of metabolism. As

a result, the biodistribution (i.e., the fraction of admi-

nistered activity in a given organ or tissue as a function

of time) will vary between the preclinical model and

the human. Because of this manifestation of interspe-

cies’ differences, it can be advantageous that the bio-

distribution in the preclinical model be scaled to

provide a more accurate prediction of that of the

human. In some cases, it might be useful to measure

the pharmacokinetics in different species with varying

body masses in order to extrapolate to the expectation

for the human. This scaling can be allometric, i.e.,

using a theoretical interspecies power-dependence of

physiological or morphometric variables.

Finally, it is important to note that the discussion of

the preclinical modeling of a given radiopharmaceuti-

cal is not restricted to the radiopharmaceutical alone,

but must also include other radioactive entities such as

excipients or radiolytic degradation products. In most

cases, the magnitudes of the contributions of these

entities to the radiation dosimetry profile can be

neglected but still must be accounted for.

13.2 Ethical and Regulatory
Requirements of Preclinical
Research

The use of animals in medical research is recognized

throughout the world to be an especially sensitive and

emotive issue. It is fair to say that there are three

parties with distinct views on the practice (Hepple

et al. 2005). The first would be that of complete accep-

tance of animal studies and who would emphasize the

benefits and contributions of such studies to the devel-

opment and understanding of medicine. The second

would be absolutist and unwilling to accept of any

animal experimentation and of even the concept of

transferring the results of animal studies to the

human species. The third view could perhaps be con-

sidered to be intermediate, believing that sentient ani-

mals should not be subject to procedures that could

potentially lead to suffering and pain, regardless of

any new knowledge of biological processes that may

be obtained.

The development of a new diagnostic radiopharma-

ceutical requires that estimated safety and radiation

dosimetry profiles for the human species be estab-

lished prior to the first administration into the human

(EC 2003; FDA 2004). This clearly requires a need for

a preclinical phase using nonhuman species in estab-

lishing these profiles. In any animal study, it is the

ethical expectation that the investigator has thor-

oughly considered other options that would not require

the use of animals (Festing et al. 2002). Indeed, within

the European Union, this is a legal requirement in the

use of vertebrates and other distinct species.2 This

leads to the requirement that the investigator intending

to use animals in an experimental study consider what

are known as the “3Rs” (Russell and Burch 1959).

These are:

Replacement: Can the study be performed with a

life form lower than that of a vertebrate? Can mathe-

matical modeling of the physiological response to the

administered agent be sufficiently accurate that it can

be used as a substitute?

Refinement: If replacement of the animal model is

not possible, then the study should be conducted in a

manner so as to minimize the pain and suffering the

animal is subjected to through, for example, the appro-

priate use of anesthesia or analgesia where required

and the humane and painless killing of animals if and

when needed.

Reduction: It is unquestionably necessary to mini-

mize the number of animals used in a preclinical study

whilst being consistent with achieving the desired

outcome. In order to achieve this necessary goal, the

investigator must understand both the objectives of the

intended study and the sources of experimental varia-

bility and thus design the experiment accordingly.

In the United Kingdom, for example, the research

use of animals is licensed through the Home Office.

2Such as Octupus vulgaris in the European Union.
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The relevant current legislation is the Animals (Scien-

tific Procedures) Act 1986 and may be found at: http://

www.archive.official-documents.co.uk/document/hoc/

321/321-xa.htm.

13.3 Means of Acquiring Preclinical
Biodistribution Data

13.3.1 Introduction

Measurements of the biodistribution of activity fol-

lowing administration to an animal can be performed

through two means, each with advantages and disad-

vantages. The first is that through postmortem dissec-

tion and the second is by in vivo imaging.

13.3.2 Dissection

In this approach, a cohort of animals are administered

a radiopharmaceutical from which sub-cohorts are

sacrificed at specified time points postadministration.

In order to achieve sufficient statistical power in the

measurement of the biodistribution, multiple animals

are sacrificed at each time point. These sacrifices are

followed by dissection, the harvesting of organs and

tissues and subsequent assay of their radioactive con-

tent. As a result of this process and the need to obtain

data as relevant as much as possible to the human, this

approach is limited to mammalian species. Whilst

being a nonlongitudinal process, it has the advantage

of allowing clear excision of many organs and tissues

for the assay of radioactive content. For dosimetry

estimates, as many of the MIRD-specified source

regions and excreta as possible should be collected

and measured for this radioactive content. Additional

organs or tissues which specifically have a high uptake

of the radiopharmaceutical being studied should also

be assayed if possible.

Consideration must be given as to how the activity

content of an organ should be assayed. Depending

upon the size of the organ, it may not be possible to

either physically place the entire organ within the

sampling volume of the activity counter. Further, the

organ’s size may be such that there is nonnegligible

photon attenuation. In either case, an underestimate of

the activity content is possible. One approach to

resolving this problem is the excision of a sample of

organ tissue and assaying its activity content. Assum-

ing that the activity spatial distribution within the

organ is uniform, the organ activity content can then

be estimated by scaling the sample result by the ratio

of the organ to sample masses. Another approach

avoids the assumption of activity distribution unifor-

mity by homogenizing the organ and repeating the

above sampling procedure but by using a sample of

the homogenate. However, unless there is further dis-

section and assaying of suborgan structures, these

methods provide the activity content of the entire

organ.

Some extended tissues and organs (e.g., muscle,

skin, and bone) cannot be excised and assayed in

toto. In such cases, a known sample mass of the

tissue is assayed and the total activity content of

the tissue is estimated on the basis of the measured

activity per unit mass and an assumed whole mass of

the given tissue based upon the total body mass of

the animal (e.g., in the case of the rat, using the

definitive data of Donaldson (1924)). For example,

consider an excised tissue of mass mSample having

been assayed to contain an activity ASample. One

wishes to determine the total activity contained by

the entirety of that tissue. Let mTissue=mWBð ÞRef be
the weight of the tissue in question relative to the

whole-body mass for the reference animal. The total

activity to be assigned to that tissue is then given by

the scaling,

ATissue ¼ ASample

mSample

� �
mTissue

mWB

� �
Ref

mWB: (13.1)

where mWB is the whole-body mass of the actual

animal. This approximation leads to a practical calcu-

lational problem as the assumptions of the relative

weights of sampled tissues are unlikely to reflect the

entireties of those in the individual animal in question.

As a result, the estimate of total activity in the animal

will not match the actual administered activity. This

error, which is introduced by the above estimation, can

be addressed by averaging this discrepancy over all

sampled organs and tissues. For example, let
P NS

i¼1 Ai

13.3 Means of Acquiring Preclinical Biodistribution Data 521

http://www.archive.official-documents.co.uk/document/hoc/321/321-xa.htm
http://www.archive.official-documents.co.uk/document/hoc/321/321-xa.htm
http://www.archive.official-documents.co.uk/document/hoc/321/321-xa.htm


be the summation of measured activities over NS

organs and tissues, including the remnant carcass of

the sacrificed animal and excreta, at time t postadmi-

nistration and decay-corrected to the time of adminis-

tration (i.e., premultiplied by eþlPt), and let A0 be the

injected activity. If all of the activity has been

completely accounted for, the ratio
P NS

i¼1 Ai=A0

should be equal to unity. In practice, however, this is

unlikely to occur due to the assumptions of the frac-

tions of total body mass represented by the sampled

tissues. To force a normalization, the activity of

each source region should then be divided by the

ratio,
P NS

i¼1 Ai=A0 to ensure that the complete summa-

tion of decay-corrected and normalized activities is

equal to unity.

13.3.3 Preclinical Imaging

Large animals, such as the pig (e.g., Jakobsen et al.

2006), dogs (e.g., Nimmagadda et al. 2005), and non-

human primates (e.g., Acton et al. 2001), can be

imaged on a conventional gamma camera or PET

scanner, thus allowing longitudinal studies of the bio-

distribution (much as is done in a human trial) and not

requiring sacrifice at each data collection time point.

In recent years, with the development of purpose-built

preclinical imaging devices such as micro-PET (e.g.,

Wang et al. 2006) and micro-SPECT scanners, some

even with associated micro-CT scanners, these longi-

tudinal studies have been extended to smaller species.

This offers the potential advantage of using a smaller

animal cohort size, in accordance with the ethical

“reduction” requirement cited above. However, the

in vivo measurement of activity in an animal is likely

not to be as accurate as the ex vivo measurement of

dissected tissues for a variety of reasons. These

include partial volume effects, scatter and background

corrections and the inability to completely isolate the

activities amongst an ensemble of tissues and organs.

But, at the same time, nonuniform distribution of

activity within an organ has the potential to be more

readily detected and measured in an imaging-based

study than in one based upon dissection. Because

preclinical imaging studies are inherently dealing

with smaller spatial resolutions, stringent technical

demands are placed upon the requirements of preclin-

ical imaging devices.

13.3.4 Data Acquisition Times

The number and temporal distribution of times post-

administration required to accurately assess a biodis-

tribution in the preclinical model is dependent upon a

variety of factors. There are two outcomes desired

from a biodistribution study (preclinical or clinical).

The first is an understanding of the biokinetics of the

radionuclide and the second is the accurate measure of

the cumulated activities in the source regions. Optimi-

zation of the number, and temporal distribution, of the

measurement points is required in order to achieve

these outcomes. In addition, if the dissection model

is used to derive the radiopharmaceutical biodistribu-

tion, one must include within this optimization the

need to minimize the number of animals sacrificed.

The assumptions that the determination of the number

and temporal distribution of times postadministration

at which the biodistribution is measured in the preclin-

ical model is essentially no different than that of the

clinical model must be tempered. As to be shown, the

difference in metabolic rates between the preclinical

model and the human must be accounted for.

The time-dependence of the activity contained

within an organ or tissue is frequently well-modeled

by a least-square fit by a first- or second-order expo-

nential function in time. Thus, a minimum of four

biodistribution measurements will usually be required.

Improvements to the fit are, of course, achievable with

greater time points, although these could markedly

increase the complexity of the analysis.

Having established the likely number of time points

required, it is necessary to then assign their distribution

over time. As the distribution of activity is most rapid

following administration of the radiopharmaceutical,

an improved fit is had by populating preferentially a

greater number of measurement times early on, with

a low density of measurement times following. The first

measurement time point should be between 2 and 5 min

postadministration in order to determine the distribution

and uptake of the radionuclide. The time of the last

biodistribution measurement is dictated primarily by

the physical half-life of the radionuclide. A reasonable

“rule-of-thumb” for short-lived radionuclides is that

the time postadministration of the last biodistribution

measurement is about four times the physical half-life,

e.g., 24 h for 99mTc (T1=2;Phys ¼ 6:02 h) or 8 h for 18F

(T1=2;Phys ¼ 109:7min). At these times, the biokinetics
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of the radionuclide will have largely stabilized. This

type of selection of the last measurement time is not

necessarily appropriate for longer-lived isotopes such

as 111In (T1=2;Phys ¼ 2:83 days) or 131I (T1=2;Phys¼
8:04 days) where the last measurement can be made at

a shorter time postadministration (when the bio-

distribution has become largely static) and it can be

assumed that the decrease in activity in a source region

is due exclusively to physical decay with no contribu-

tion from biological washout. Siegel et al. (1999) and

the Report 67 of the International Commission on

Radiation Units and Measurements (ICRU 2002) have

specified an initial distribution of sampling times on

the basis of the whole-body effective half-life from

Chap. 5. They recommended an ensemble of image

acquisition starting times of 1/3, 2/3, 3/2, 3, and 5

multiples of the effective half life. Clearly in the pre-

clinical setting, a prediction of T1=2;Eff is unavailable or

at least difficult to estimate.

13.3.5 Sample Sizes

The reduction in the number of animals used in the

preclinical evaluation of any entity, including radio-

pharmaceuticals, must always be sought for ethical

and financial cost reasons. However, as sex-based

differences in the biodistribution must be ascertained

during the preclinical phase prior to entry into man,

males, and females should be used in equal numbers.

The sample size will be driven primarily by the num-

ber of time points at which the biodistribution is

measured which, in turn, is defined by the biokinetics

of the radiopharmaceutical.

13.4 Animal Phantoms

13.4.1 Introduction

Preclinical mathematical models (phantoms) can be

used to estimate the absorbed doses in the animal

model and which can be used to interpret the radiobi-

ological responses of tissues to radionuclide therapy

and to enable prediction of those that will occur

in the human. These responses would include tumor

regression and the therapy-limiting radiotoxicities of

healthy tissues, such as kidney and bone marrow. How-

ever, the determination of the absorbed doses to tissues

in species such as the rat or mouse due to administered

radiopharmaceuticals is difficult. In vivo measurements

using thermoluminescent dosimeters or MOSFETs

are possible, although challenging. Discussions of

these empirical measurements are deferred to the dis-

cussion of in vivo measurements in the human.

However, it is possible to apply the MIRD method

to estimate the absorbed doses to organs, tissues, and

tumors in species other than the human. Clearly, this

requires the evaluation of species-specific S-factors. It

would appear, to date, that nonhuman species phan-

toms and S-factor evaluations have been restricted to

the mouse and rat.

13.4.2 Examples of Animal Phantoms

Athymic nude mice have been used to develop radio-

immunotherapy to develop understanding of, in par-

ticular, radiotoxicity of bone marrow. As a result, this

preclinical model was perhaps the first for which a

phantom was developed. Hui et al. (1994) presented

the first murine phantom and which was exclusively

used for determining the internal absorbed doses due

to antibodies labeled with the b�-emitting 90Y. Ten

athymic nude mice of about 25 g mass each were

dissected and the spatial dimensions and masses of

thirteen major organs measured. With the exception

of the bone and marrow, the organs were modeled by

ellipsoids; the skeleton was modeled by the femur.

The bone and marrow were represented by concentric

cylinders and a spherical tumor was included. The

self-doses to organs were calculated using the dose

point kernel method (Chap. 9) with the exception of

lung, bone, and marrow which were calculated using

Monte Carlo simulation due to their differing physical

densities. Because the mean range of the 90Y b particle

(2.8 mm) is comparable to the murine organ dimen-

sions, the absorbed fraction of a target region adjacent

to a source region was taken to be proportional to the

ratio of the overlapping area between the two regions

to the total surface area of the source region. Themouse

bone marrow model was extended by Muthuswamy

et al. (1998) and applied to 131I, 186Re, and 90Y. How-

ever, as the entire marrow of the mouse is reported to be
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active (Tavassoli and Yoffey 1983), a more complete

accounting of the absorbed dose to marrow is neces-

sary. Again, a cylindrical geometry was assumed for the

bones of the upper and lower extremities. The flat bones

(rib, clavicle, sternum, and pelvis) were modeled by

slabs whereas the vertebrae and skull were represented

by spheres. Absorbed doses were calculated using the

kernel method.

An ellipsoid organ model of the Wistar rat3 was

developed by Konijnenberg et al. (2004) for the same

purpose of preclinical radioimmunotherapy develop-

ment. Again, measurements of organs harvested from

dissected animals were used to define the dimensions

of the ellipsoid models. Monte Carlo calculations were

used to estimate the organ absorbed doses due to both

b- and g-emitting radionuclides. In this paper can be

found Wistar rat S-values for 90Y, 111In, and 177Lu.

More sophisticated and realistic preclinical models

based upon high-spatial resolution MR and CT studies

of the animal have been designed. For example, Johnson

et al. (2002) have demonstrated that magnetic reso-

nance microscopy (MRM) can enable visualization

of the mouse at isotropic resolutions ranging from 25

to 110 mm. Segars et al (2004) have also used MRM

of the mouse (at 110 mm resolution) to develop a high-

spatial resolution murine phantom which also included

respiratory and cardiac motions that had been derived

from gated MR imaging of the mouse. Instead of

modeling the organs as ellipsoids or other predefined

geometrical shapes, they modeled these with nonuni-

form splines (recall the discussion of hybrid anthropo-

morphic phantoms of Chap. 12). Another approach,

which is perhaps more immediately amenable to

dosimetry calculations, was taken by Stabin et al.

(2006) who described their voxellated murine models

of a transgenic mouse and Sprague-Dawley rat.

Images of the animals were acquired using a dedicated

small-animal CT scanner with an isotropic voxel size

of 200 mm for the mouse and an anisotropic voxel size

of 300 � 300 � 500 mm for the rat. The kidneys, liver,

lungs, spleen, heart, stomach, intestines, skeleton, uri-

nary bladder, and testes were segmented from the

images. Absorbed fractions for the segmented organs

electrons with energies between 0.1 and 4.0 MeV and

photons with energies between 0.01 and 4 MeV were

derived for both models using Monte Carlo simula-

tion. Importantly, they also provided comparisons

of their measured mouse and rat organ masses with

those of previous investigators. Another voxel-based

approach was taken by Hindorf et al. (2004), but was

instead based upon a mathematical model of the

mouse in which organs were represented by geomet-

rical shapes. MIRD S-factors for 90Y, 99mTc, 111In and
131I were calculated in that work. The focus of that

research was to determine the sensitivities of murine

organ S-values to various parameters. In particular,

they demonstrated that organ mass is the most signifi-

cant parameter for self-absorbed S-factors. This result

is an important consideration, as discussed below, when

scaling from the preclinical model to the human: the

weights of some organs, such as the thymus and testes,

are of a higher percentage of total body weight in the

mouse or rat than in the human. Finally, Kolbert et al.

(2003) derived the MIRD S-factors and absorbed frac-

tions for the athymic mouse based upon MR-derived

segmented organs. Their approach was based upon the

convolution of the image data and previously calculated

dose point kernels. They provide photon and electron

results for 32P, 90Y, 131I, 153Sm, and 188Re.

13.5 Allometric Scaling of Animal
Biodistribution Data to the Human

13.5.1 Introduction

Once having extracted the biodistribution of activity in

the preclinical model, it is necessary to map these data

over to the human in order to estimate the human

biodistribution from which the human radiation dosi-

metry is evaluated. The extrapolation of preclinical

animal data to the human is a complex field and one

heavily researched by the pharmacological commu-

nity (see, e.g., Riviere 1999). Clearly, one should not

assume that the measured biodistribution in the pre-

clinical animal model will exactly reflect that in the

human, although it will be shown that such a simplistic

assumption can provide a possible advantage in the

planning of a Phase I study of a diagnostic radiophar-

maceutical. The scaling of the biodistribution data

from the preclinical model to the human can range

markedly in terms of complexity. Methods have been

3A strain of albino rat which is one of the most frequent used in

biomedical research.
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investigated in the past for radiopharmaceuticals (e.g.,

Lathrop et al. 1989; Yorke et al. 1991; Onthank 2005).

Interspecies scaling of radionuclide biodistribu-

tions will be derived here from allometric scaling

principles. Allometric scaling between species can be

defined by the power-law (West et al. 1997),

P ¼ kmb (13.2)

where P is the physiological parameter to scale, m is

the body or relevant organ mass and b is the allometric

exponent. The constant of proportionality k is the

allometric coefficient for the parameter. Linearizing

this equation,

ln P ¼ kþ b lnm (13.3)

where k ¼ ln k, provides a result which will be exam-

ined here for a number of parameter selections.

13.5.2 b = 0

By setting b ¼ 0 in (13.2), any mass dependencies are

neglected. In other words, all physiological parameters

are the same in both the animal and the human. This is

the simplest approach in which it is assumed that the

fraction of the administered activity in corresponding

organs and tissues is the same at all time points in the

human and the preclinical animal model. However,

this method, whilst easy to implement, neglects signif-

icant interspecies differences:

� The anatomies of the preclinical model and the

human will not always match exactly. For example,

the rat does not have a gall bladder which could

complicate hepatobiliary mapping between the rat

and the human.

� The mass of a given organ as a fraction of the

whole-body mass typically differs between the pre-

clinical model and the human. For example,

Table 13.1 shows that, as a percentage of whole-

body mass, the human brain is about twice as large

as the rat’s. Hence, excluding any brain uptake

specificity, it is entirely reasonable to assume that

the uptake of activity (as a percentage of that admi-

nistered) will be twice as much in the human brain

as in the rat’s. More importantly, in terms of esti-

mated radiation risk, is that Table 13.1 shows that

the weight of the rat testes is about 23 times that of

the ICRP Reference Man as a percentage of body

mass. Assuming, again, nonspecificity, the assump-

tion that the testicular uptake as a fraction of admi-

nistered activity in both species is the same will

lead to an overestimate of the actual uptake in the

human testes by a factor of 23, with a subsequent

overestimate of the human testicular absorbed

dose. As the effective dose tissue weighting factor

for the gonads is high, this will also result in an

overestimate in the value of the effective dose and

associated stochastic risk.

� The metabolism rates of the human and those spe-

cies commonly used in biodistribution studies will

typically differ.

While these differences are severe, there can be an

advantage in neglecting allometric scaling in using

preclinical biodistribution data in the planning of a

Phase I study of a radiopharmaceutical in healthy

volunteers. The goal of the optimization of the Phase I

study planning is to minimize the organ absorbed

doses and the effective dose. As noted above, the

difference between the rat and human gonadal masses

will, if it is assumed that the fraction of administered

activity taken up by both is the same, result in an

overestimation of the effective dose per unit adminis-

tered activity to the human volunteer. This could be

desirable as an effective dose constraint is imposed

and, as a result, the administered activity is forced to

be lower. As one cannot be entirely sure that the

expected human biodistribution is valid, this could be

considered by some as a conservative approach ensur-

ing a minimized (perhaps excessively) effective dose

to the healthy volunteer. However, as shown in

Table 10.5 in Chap. 10, the tissue weighting factors

for the gonads have been reduced from the value of

0.20 given in ICRP Publication 60 (1991a) to 0.08 in

ICRP Publication 103 (2007). Using this reduced fac-

tor for the gonads largely will reduce the overestima-

tion of the effective dose based upon the assumption of

equivalent biodistributions.

13.5.3 k = 1=mWB and b = 1

In this simplification, it is assumed that the physiologi-

cal parameter scales with the organ mass as a fraction
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Table 13.1 Weights of organs and tissues for the reference human and a selectedWistar Norwegian Albino rat male/female pair (as

percentages of whole-body weights) and the calculated activity scaling quantity, fOrgan (MIRD-specified source regions are in bold)

Organ Reference humana Ratb fOrgan

Malec (%) Femaled (%) Malee (%) Femalef (%) Male Female

Adrenal glands 0.02 0.02 0.02 0.03 1.13 0.81

Brain 1.99 2.17 0.93 1.06 2.14 2.05

Breasts 0.03 0.83

Eyeball 0.02 0.03 0.13 0.15 0.15 0.17

Gallbladder contents 0.08 0.08 g

Gallbladder wall 0.01 0.01

GI tract contents Large intestine (right colon) 0.21 0.27

Large intestine (left colon) 0.10 0.13

Large intestine (rectosigmoid colon) 0.10 0.13

Small intestine 0.48 0.47

Stomach 0.34 0.38

GI tract walls Small intestine wall 0.89 1.00

Stomach wall 0.21 0.23 0.57 0.61 0.36 0.38

Large intestine (right colon) 0.21 0.24

Large intestine (left colon) 0.21 0.24

Large intestine (rectosigmoid colon) 0.10 0.12

Stomach, small and large intestines combined 0.71 0.83 4.56 4.77 0.16 0.17

Heart wall 0.45 0.42 0.40 0.41 1.13 1.00

Heart wall and contents 1.15 1.03

Kidneys 0.42 0.46 0.85 0.87 0.50 0.53

Liver 2.47 2.33 5.01 5.22 0.49 0.45

Lungs (without blood) 0.68 0.70 0.59 0.60 1.16 1.16

Marrow Total 5.00 4.50 3.02h 1.66 1.49

Active (red) 1.60 1.50 0.97i 1.01 1.66 1.49

Inactive (yellow) 3.40 3.00 2.05 2.01 1.66 1.49

Muscle (skeletal) 39.73 29.17 42.7j 43.3k 0.93 0.68

Esophagus 0.05 0.06

Ovaries 0.02 0.03 0.65

Pancreas 0.19 0.20 0.47 0.54 0.41 0.37

Pituitary gland 0.001 0.001 0.004 0.007 0.22 0.15

Prostate 0.02 0.08 0.29

Salivary glands (submaxillary) 0.03 0.04 0.19 0.20 0.18 0.18

Skeleton 14.3 13.00 10.4j 13.2k 1.38 0.98

Skin (total) 4.52 3.83 19.2j 19.5k 0.24 0.20

Spleen 0.21 0.22 0.27 0.27 0.77 0.80

Testes and epididymus 0.0 1.41 0.038

Testes only 0.05 1.09 0.044

Thymus gland 0.03 0.03 0.12l 0.13m 0.28 0.25

Thyroid gland 0.03 0.03 0.02 0.02 1.70 1.70

Urinary bladder wall 0.07 0.07

Uterine wall 0.23 0.23n 0.57
aReference Man data from ICRP Publication 89 (2002)
bRat anatomical data (with the exception of marrow) derived from data presented by Donaldson (1924)
cReference man whole-body weight 73,000 g
dReference woman whole-body weight 60,000 g
eSample male rat weight of 200.8 g (except where noted)
fSample female rat weight of 169.6 g (except where noted)
gRats are absent a gallbladder
hRat marrow percentage weight (whole) is from Fairman and Corner (1934) and is averaged over sexes
iDifferentiation of active and inactive marrow over male and female rats is estimated using measured whole marrow and assuming

the ratio of active to inactive marrow is the same in the rat as in the human
jMeasured from a 218.7 g male rat
kMeasured from a 183.5 g female rat
lMeasured from a 194.1 g male rat
mMeasured from a 175.7 g female rat
nMeasured from a 185 g female rat
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of the total body mass. In the context of activity

uptake, Kirschner et al. (1975) proposed this method

in terms of relative perfusion. This gives the normali-

zed activity in a human organ as a fraction of

that administered, AOrgan=A0

� �
Human

, in terms of

that measured in the corresponding animal organ,

AOrgan=A0

� �
Animal

. This scaling approach begins by

assuming that there is a completely uniform distribu-

tion of activity throughout both the human and animal.

This must be recognized to be a significant simplifica-

tion, as will be addressed. The activity contained in the

human organ is given by the product of the activity

concentration (per unit mass) and the mass of the

organ,

AOrgan;Human ¼ A½ �WB;Human mOrgan;Human (13.4)

where [A]WB,Human is the concentration given by the

ratio of the total activity in the whole-body to the

whole-body mass,

A½ �WB;Human ¼
A0

mWB;Human

: (13.5)

Similarly, for the animal, the whole-body concen-

tration is,

A½ �WB;Animal ¼
A0

mWB;Animal

(13.6)

Solving for A0 in (13.5), substituting the result into

(13.6), rearranging and normalizing both sides to A0

gives the relationship between the human and animal

normalized activities in terms of the ratios of the organ

mass to the whole-body mass,

ANorm;Organ;Human

¼ ANorm;Organ;Animal

mOrgan;Human

�
mWB;Human

mOrgan;Animal
�
mWB;Animal

 !

¼ ANorm;Organ;Animal fOrgan

(13.7)

It then follows that the normalized cumulated activ-

ity scales linearly between species,

~ANorm;Organ;Human ¼ ~ANorm;Organ;Animal fOrgan: (13.8)

Examples of the calculated organ relative mass

scaling factors (fOrgan) from the Wistar rat to the

ICRP Reference Adults are provided in Table 13.1.

In deriving the data in this table, anatomical data for

the male rat with a body weight as close as possible to

200 g and the female rat with a body weight as close as

possible to 170 g were selected. Some data for the

Reference Adults, which do not appear for the rat,

are included for interest alone. A review of the entries

in Table 13.1 will highlight a number of organs and

tissues for which mass-scaling of the rat organ weight

to that of the human is very obviously necessary.

These include the brain, kidney, red bone marrow,

ovaries, skin, testes, and thymus gland.

13.5.4 Metabolic Rate Scaling

Species of larger whole-body masses are known in

general to have slower metabolic rates than those of

lighter masses. Equation (13.1) can then be modified

to account for this observation,

lHuman ¼ lAnimal

mWB;Animal

mWB;Human

� �b

¼ lAnimal fl

(13.9)

where lHuman is the physiological rate in the human,

etc. A simple consideration of surface area or volume

would suggest that the allometric exponent of (13.9)

should be an integral multiple of 1/3 or, b ¼ 1/3, 2/3,

or 1. However, empirical data suggest that b is, in fact,

found in nature to be multiples of 1/4. For example,

the rate of cell metabolism is reported to scale with

m�1=4 (West et al. 1997). Blood flow in the rat is about

15 s and about 50 s in the human (Lin 1998), a

difference more closely reflected with b equal to 1/4

than 1/3. Further, there is no reason to necessarily

restrict the mass ratio of (13.9) to that of whole-body

mass (this is discussed in terms of permeability

and blood flow below). This could be changed to

those of the organs of specific interest, although

the whole-body mass offers calculational simplicity.

Using b ¼ 1/4 and assuming 200 g and 73 kg for

the whole-body masses of the rat and the human,

then fl ¼ 0.23. Hence, uptake and washout of the
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radiopharmaceutical is expected to be slower in the

human than in the preclinical animal model and this

difference must be accounted for when extrapolating

the normalized cumulated activities across species.

While the fractional mass scaling method yielded a

normalized cumulated activity that scaled linearly

with fOrgan, this cannot be the case with the metabolic

rate scaling method as only the physiological temporal

variable is being altered. To demonstrate this, allow

an Nth-order multiexponential model of the decay-

corrected activity normalized to that administered to

the animal,

ANorm;Corr;AnimalðtÞ ¼ Cþ
XN
i¼1

kie
�li;Animalt: (13.10)

As no interspecies changes in activity are accounted

for, C and ki do not vary. The decay-corrected normal-

ized activity in the corresponding organ of the human

is, from (13.9) and (13.10) is,

ANorm;Corr;HumanðtÞ ¼ Cþ
XN
i¼1

kie
�flli;Animalt: (13.11)

The normalized cumulated activity in the human is,

thus,

~ANorm;Organ;Human ¼ C

lP

� �

þ
XN
i¼1

ki

lP þ flli;Animal

� �

(13.12)

13.5.5 Combined Organ Mass and
Metabolic Rate Scalings

The scaling of (13.8) and (13.12) can be combined

(assuming an Nth-order multiexponential describing

the activity) as,

~ANorm;Organ;Human

¼ fOrgan
C

lP

� �
þ
XN
i¼1

ki

lP þ flli;Animal

� � !

(13.13)

13.5.6 Discussion

13.5.6.1 Permeability or Blood Flow Transfer

The above discussion was limited to two simple

methods of allometrically scaling the normalized

cumulated activity from the preclinical animal

model to the human. These, as would be expected,

are not the only approaches. As the parenterally-

administered radiopharmaceutical transfers from

the blood space into the various organ systems, clas-

sical biokinetic models can be used to guide the

interspecies scaling. However, the transfer coeffi-

cients can be difficult to estimate a priori in order

to extrapolate from the preclinical animal model to

the human.

It can be reasonable to accept that in tissues

which are not highly vascularized the blood-tissue

exchange is dominated by permeability. The perme-

ability surface area product (PSAP) is the product of

the membrane permeability and the membrane’s sur-

face area and is in units of volume per unit time.

Hence, it is linked to the rate constants of the multi-

exponential models proposed earlier. For permeability-

dominant tissues, it can be assumed that the PSAP

will scale between species by the surface area of the

organ,

PSAPOrgan;Human ¼ PSAPOrgan;Animal

SAOrgan;Human

SAOrgan;Animal

� �

(13.14)

If it is assumed that the surface area of the organ varies

as the 2/3 power of the organ mass, (13.14) can be

modified to,

PSAPOrgan;Human ¼ PSAPOrgan;Animal

mOrgan;Human

mOrgan;Animal

� �2=3

(13.15)

The 2/3 power reflects, generally, the case of where

permeability dominates over blood flow. For tissues

which are highly vascularized, such as the lung,

spleen, and liver, and where blood flow would domi-

nate, then the exponent could be reasonably set equal

to unity.
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13.5.6.2 Sum of Interspecies-Scaled Normalized

Cumulated Activities

It must be recognized that (13.8) and (13.12) are

approximations. In order to apply these in practical

dosimetry calculations, corrections are required to

compensate for the approximations inherent to the

scaling models. These are considered in turn.

Relative Organ Mass Scaling

Recall that this method is based upon the assumption

of uniform concentration of activity. As noted above,

for the case of complete nonspecificity, if the human

brain mass as a fraction of body mass were twice that

of a rat’s, then twice as much of the fraction of admi-

nistered activity would be taken up by the human brain.

At the other extreme, as exemplified by 99mTc-labeled

macroaggregated albumin used in lung perfusion stud-

ies, virtually all of the administered activity will be

eventually trapped in the lung capillaries regardless of

the species. In such cases, the relative organ mass scal-

ing method will be invalid. In addition, the requirement

that the sum of all normalized cumulated activities be

equal to the reciprocal of the physical decay constant

(11.29) in both species leads to a dilemma as a result of

the constant activity concentration assumption. That is,

from (11.29),

X
rS

~ArS;Norm;Human ¼
X
rS

~ArS;Norm;Animal ¼ 1

lP
:

(13.16)

However, this in combination with (13.8) leads to

the requirement,

X
rS

~ArS;Norm;Animal ¼
X
rS

frS
~ArS;Norm;Animal (13.17)

which is a condition unlikely to be met. It is possible

for (13.16) and (13.17) to be simultaneously forced by

splitting up the ensemble of source regions rS into

NS � 1 explicitly-specified source regions (tissues or

organs) and by defining the Nth
S source region be the

remaining tissues category (i.e., the ensemble of tissues

and organs, including the remnant carcass, that were

not specified or measured for activity content individ-

ually). The scaling factors for the NS � 1 explicitly-

specified organs are calculated for from (13.8). The

scaling factor for the Nth
S (remaining tissues) category

is then solved for from the requirement that,

XNS

rS¼1

frS
~ArS;Norm;Animal ¼ fNS

~ANS;Norm;Animal

þ
XNS�1

rS¼1

frS
~ArS;Norm;Animal ¼ 1

lP
:

(13.18)

Solving for the weighting factor to apply to the

remaining tissues category, fNS
,

fNS
¼

1=lP �
PNS�1

rS¼1

frS
~ArS;Norm;Animal

~ANS;Norm;Animal

: (13.19)

Of course, this is an artificial result forced in order

to achieve an expectation. However, allometric scal-

ing from the animal to the human was always an

approximation based upon equivalent and uniform

activity concentrations. Whether or not such scaling

is necessary or should be used and, if applied, the

extent of its validity must be assessed for each appli-

cation.

Metabolic Rate Scaling

This scaling will also suffer from the inability to

satisfy the requirement of (11.29),

XNS

rS¼1

CrS

lP

� �
þ
XNS

i¼1

kirS
lP þ fllirS;Animal

� � !
¼ 1

lP

(13.20)

This can be corrected, as before but with the addi-

tional assumption that the temporal-dependence of all

source region activities can be adequately modeled by

an Nth-order multiexponential function, by isolating

the normalized cumulated activity of the remaining

tissues category (NS) and setting it equal to,
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~ANS;Norm ¼ 1

lP

�
XNS�1

rS¼1

CrS

lP

� �
þ
XNS

i¼1

kirS
lPþ fllirS;Animal

� � !

(13.21)

Combined Relative Organ Mass and Metabolic

Rate Scaling

The above discussion regarding the metabolic rate

scaling method is relevant here. The normalized

cumulated activity of the remaining tissues category

scaled to the human is given by,

~ANS;Norm¼
1

lP

�
XNS�1

rS¼1

frS
CrS

lP

� �
þ
XN
i¼1

kirS
lPþfllirS;Animal

� � !

(13.22)

13.5.6.3 Validation

The applicabilities of these various allometric scaling

methods have been assessed. In a meta-analysis of data

presented 42 publications, Sparks and Aydogan (1999)

compared the estimates of the human normalized

cumulated activities for 115 organs estimated from

preclinical studies of 11 different radionuclides and 33

radiopharmaceuticals using the methods of assuming

that the organ’s fractional uptake is the same in either

animal or human, the relative organ mass scaling

method, the metabolic rate scaling method and the

combination of the last two methods. The types of

animal species used in the various publications were

not provided and the metric used was the ratio of the

animal to human organ normalized cumulated activity.

The authors determined that the ratio for no applied

corrections tended to follow a log-normal distribution

with a geometric mean of less than 1, with unity reflect-

ing an exact scaling from the animal to the human. That

the geometric mean was less than unity was not perhaps

surprising owing to the expected rapid clearance in the

animal. Of the combinations, the greatest agreement

between animal and human normalized cumulated

activities was observed when both organ-mass and

measurement-time scaling were applied (geometric

mean of 0.79 with a standard deviation of 3.5). The

authors recognized that incomplete data were available

from the literature sources and concluded that they were

unable to identify a definite result as to which method

was superior.

The above reflects the need for a more tightly-

controlled comparison using a single or limited animal

species and radionuclides, performed either prospec-

tively or retrospectively. The endpoint would arguably

be the dosimetry profile rather than the normalized

cumulated activity.
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Abstract The measurement of the distribution and excretion of the radionuclide

following the administration of a radiopharmaceutical is necessary in order to

evaluate the consequential internal radiation dosimetry. This chapter reviews various

in vivo and in vitro means of acquiring these data. The conjugate-view method used

commonly in planar scintigraphy is derived and the various compensatory techniques

to account for attenuation and photon scatter are derived and examined. Quantitative

single-photon emission computed tomography (SPECT) which, due to current lim-

itations in technology, is limited to absorbed dose evaluations of small anatomical

volumes is reviewed as are the corrections required for scatter and attenuation.

Positron emission tomography (PET) is inherently quantitative and its greater sensi-

tivity compared to SPECT permits whole-body biodistributions of positron-emitting

radionuclides to be measured. The principles of PET data acquisition are reviewed in

the context of the nuclear medicine physicist designing a protocol for a whole-body

biodistribution measurement. Finally, quantitative bremsstrahlung imaging of

b-emitting therapeutic radionuclides is a most challenging endeavor, and one

which is not frequently performed. A review of the methodologies is provided.
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14.1 Introduction

The identity of the body is not dependent on the persis-

tence of the same material particles. During life, by the

process of eating and digesting, the body undergoes

perpetual change

St Thomas Aquinas

The calculation of the absorbed dose to a given

target region first requires the determination of the
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cumulated activities of the various source regions. As

the cumulated activity is simply the total number of

radioactive decays in the source region rS, in practice

one measures the activity in that region over time and

integrates over time to yield the normalized cumulated

activity, ~ArS;Norm. In the previous chapter, preclinical

biodistributions were largely determined through dis-

section and the harvesting of organs for activity

assays, although the growth of preclinical imaging

capability makes the future likelihood of longitudinal

animal studies greater. On the other hand, human

studies are almost exclusively imaging-based, with

the limited exception of a single probe measurement

which determines the whole-body activity burden

without spatial information regarding the radionu-

clide. The methods of measuring these biodistribu-

tions in the human are presented here. Siegel et al.

(1999) and Stabin (2008) both provide detailed discus-

sions and examples of the practical implementations

of these methods.

Red (active) bone marrow is a very special consid-

eration in evaluating the human biodistribution. Due to

its radiosensitivity, it can frequently be an adminis-

tered activity-limiting tissue in radionuclide therapy.

Moreover, because of the high tissue weighting factor

applied to the tissue, accurate red bone marrow dosim-

etry is of interest even in diagnostic nuclear medicine.

The cumulated activity of red bone marrow can be

estimated from in vivo imaging or by other means.

Consequently, the topic of red bone marrow activity

acquisition and dosimetry is treated separately.

14.2 Data Collection

14.2.1 Introduction

The measurement of the biodistribution of a radionu-

clide in a human can be as limited to simply using a

gamma scintillation probe so as to measure the reten-

tion of activity following the excretion phase. But for

the complete measurements required of the biokinetics

of an administered radionuclide for either a Phase I

study of a new diagnostic radiopharmaceutical or the

planning for radionuclide therapy, in vivo imaging and

in vitro assays are required to quantify the activity and

its distribution over time.

14.2.2 Source Regions: Definition
and Segmentation

In any measurement of the biodistribution, source

regions (organs, tissues, intracavitary contents, etc)

containing activity which can be detected in an

in vivo image or in vitro assays should be identified.

Ideally, a compilation of source regions to examine

should be prepared prior to actual image analysis on

the basis of the preclinical biodistribution data. These

regions would include the specified MIRD source

regions. Additional organs or tissues expected to dem-

onstrate uptake, on the basis of preclinical studies,

should also be planned to be investigated even if, in

the eventual dosimetry calculation, they are to be

grouped within the remaining tissues category. These

would include, for example, the salivary glands for

which uptake could possibly indicate the presence of

a radiochemical impurity in the case of a 99mTc-based

radiopharmaceutical administration. The injection site

should also be investigated as the presence of signifi-

cant extravasation of the radiopharmaceutical may

require correction for either the actual amount of

radionuclide that has entered the vasculature or of

the time course of delivery.

Regions-of-interest (RoIs), in planar images, or

volumes-of-interest (VoIs) in tomographic data sets,

can be defined manually by the user in order to seg-

ment organs or tissues. This manual approach has

advantages and disadvantages. Perhaps the main

advantage is the inclusion of the operator’s skill and

experience in the manual definition of RoIs. For a

whole-body planar image set used for a biodistribution

study, which may consist of images at no more than a

dozen time points, this is likely to be considered

reasonable. However, a disadvantage arises when a

volume-of-interest (VoI) is to be defined from the

concatenation of RoIs manually drawn on a tomo-

graphic data set consisting of, say, 128 or 256 coronal

slices. Some degree of automated assistance may be

required.

Automated segmentation techniques remove the

reliance upon operator skill and experience in drawing

RoIs. There are a number of techniques available

(Fleming 1996; Lawson 1998). For example, a simple

threshold defined by specifying a percentage of the

maximum number of counts per pixel in an image

and then including all pixels containing counts
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exceeding this threshold within the region is one

approach. In practice, the threshold is set low and, in

gamma camera planar scintigraphy, a highly-serrated

contour will often result due to the contribution of

surrounding background (although this noise tends to

be reduced in tomography segmentation). Smoothing

of the image data prior to thresholding is possible,

although its inclusion is reported to require a further

lowering of the threshold. As problems with overlap of

organs in planar images (e.g., liver and right kidney)

are expected, the approach will inevitably become

semiautomatic and still require user correction. Spatial

gradient-based segmentation approaches can also be

employed), with an example shown by Fig. 14.1. The

edge of the RoI can be defined by the points at which

the count per pixel gradient is at a maximum (i.e., the

first derivative of the variation of counts per pixel at

the edge is equal to zero). Another modification is to

define the edge where the second gradient is a maxi-

mum. This position occurs further out and will increase

the number of pixels within the RoI and reduce the

sensitivity of the activity calculation to the variations

in RoI edge. However, there are difficulties associated

with gradient searches in RoI/VoI segmentation.

Firstly, they are sensitive to noise and some smoothing

(noise averaging) is usually required prior to segmenta-

tion. Secondly, the example shown was for a simple

one-dimensional case whereas gradients in planar and

tomographic images are defined in two and three

orthogonal directions, respectively.

Lawson (1998) has suggested approaches to allow-

ing for multiple orthogonal gradients, including aver-

aging the first-derivative gradients, or using the

Laplacian,

r2f x; y; zð Þ ¼ ]2f

]x2
þ ]2f

]y2
þ ]2f

]z2
(14.1)

14.2.3 Data Acquisition Times

14.2.3.1 Image-Based Data

The problem of defining the optimum number and

temporal distribution of data acquisition times in a

Phase I trial is similar to that discussed in Chap. 13

in the context of the preclinical model. The effective

half-life of the radionuclide, which encompasses both

the physical decay of the radionuclide and the
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Fig. 14.1 Principle of edge gradient search in a simple one-

dimensional model. The profile of the RoI is shown as f(x),

which is the number of counts per pixel at x, with the first-

and second-derivative of the profiles. The edge of the profile can

be defined as that point where the gradient (first derivative) is

equal to its maximum and where the second derivative is equal

to zero. Another definition is that at which the second derivative

is at a maximum
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biokinetics, will be the main driving factor to consider.

But, in a human study, there are additional factors to

account for. As such a study is longitudinal and largely

based upon imaging, the imaging device sensitivity

will define image acquisition durations and, conse-

quently, the number of image acquisition time points.

As many biological processes can be considered as

following first-order kinetics, a multiexponential func-

tion can be used to model the uptake and washout of

activity from a compartment, as to be shown in Chap.

15. The order of this function and the number of image

acquisition points will thus interplay. The acquisition

duration will also be a function of subject compliance

and tolerance. Long acquisition times risk the degra-

dation of image quality as a result of subject motion.

While dense sampling of the biodistribution is desir-

able at early time points, this will be restricted by the

number of images that can be effectively acquired at

these times. Hence, the nuclear medicine physicist

planning, for example, the Phase I trial of a radiophar-

maceutical must optimize the sensitivity of the imag-

ing device (gamma camera or PET scanner) so as to

both limit the amount of activity administered and to

reduce the image acquisition times to tolerable levels.

Typically, this would require a collimator with high

sensitivity for gamma camera scintigraphy and often

the use of the three-dimensional-acquisition mode in

PET scanning. In both modalities, image acquisition

durations should be increased to compensate for the

reduced count rates at later times postadministration as

a consequence of radioactive decay and excretion of

activity. This will obviously reduce the temporal sam-

pling rate at later times postadministration, although

the biokinetics will by then have largely stabilized.

The determination of image acquisition times can

be made on the basis of preclinical data or on human

biokinetics of similar radiopharmaceuticals which

may be predictive of those of the tested radiopharma-

ceutical. Using the previous arguments on sampling

frequency on the basis of multiexponential fits, a min-

imum of four image acquisitions over a period of time

equal to about four effective half-lives for a short-lived

radionuclide (e.g., 18F or 99mTc) would be required to

generate a minimally-useful biodistribution. For

longer-lived radionuclides (e.g., 111In or 123I), acquisi-

tions can usually be terminated at much shorter times

after the biodistribution has largely stabilized. Of

course, the quality of the biodistribution and the infor-

mation it can provide will improve with the number of

image acquisitions, especially as it is necessary to

increase the frequency of acquisitions at early times

in order to accurately capture the temporal distribution

of activity. It is important to note that the biokinetics

are the most significant influence on image acquisi-

tions number and temporal distribution, not the physi-

cal half-life alone. An example of the time ensemble

postadministration to perform whole-body imaging for

a 99mTc-labeled radiopharmaceutical would be: 5, 15,

30, 60, and 90 min; 3, 6, 12, and 24 h. Image acquisi-

tions at early time points are critical to determining the

early distribution of activity from the vascular space;

otherwise the extrapolation of activity data back to the

time of administration can lead to an overestimate of

the cumulated activity. The acquisition durations of

later imaging sessions should be extended in order

to compensate for physical decay and excretion so as

to ensure that they are adequate counting statistics in

the image. As noted in Chap. 13, Siegel et al. (1999)

and Report 67 of the International Commission on

Radiation Units and Measurements (ICRU 2002)

have specified an initial distribution of sampling

times on the basis of the whole-body effective half-

life. They recommended an ensemble of image acqui-

sition starting times of 1/3, 2/3, 3/2, 3, and 5 multiples

of the effective half life.

14.2.3.2 Assay-Based Data

Introduction

In addition to the activities measured in vitro by imag-

ing, the complete biodistribution requires knowledge

of how quickly activity transfers between the blood

and other tissue compartments, if there is any binding

of the radionuclide to whole blood and the rate at

which activity is excreted from the body through the

renal pathway and the gastrointestinal (GI) tract.1 This

is determined by measuring activities in vitro from

samples acquired during the study.

1Excretion of activity through sweat and saliva is rarely

measured and would only be done for a specific purpose such

as estimating the radioactive contamination from a subject hav-

ing received a high administered activity of a long-lived thera-

peutic radionuclide (e.g., 131I).
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Whole Blood and Plasma

The measurements of activity concentration in whole

blood and plasma are useful for estimating the cumu-

lated activities of the cardiac wall, cardiac contents,

and the red bone marrow. They are also necessary for

understanding the distribution of the radiopharmaceu-

tical following injection and, for diagnostic radiophar-

maceuticals, for allowing bridging studies between the

biodistributions of the healthy volunteer cohorts of

Phase I and the subjects, in Phase II, with the disease

or pathology to be diagnosed.2 The selection of time

points at which blood should be sampled is largely

driven by the limitation of the volume of blood that

can be extracted. As the washout of activity from the

blood/plasma can frequently be described by at least a

biexponential, or frequently a tri-exponential, function

in time, at least four to six blood sampling times are

necessary. However, especially with small peptides

administered intravenously, clearance from the vascu-

lature is very rapid at early time points, so one should

increase the number of measurements of blood/plasma

activity concentrations at these early times. Blood

sampling should thus preferably extend to about two

to four physical half-lives of the radionuclide (i.e.,

4–8 h for 18F and 12–24 h for 99mTc)

Excreta

The measurement times of activity present in excreta

is clearly set by the times at which they are voided

from the body. As will be described, the inputs to the

dynamic models of urinary and fecal excretion are the

sums of activities in the respective excretory pathway

and in the excreta. For dosimetry purposes, there is

no point measuring the activity excreted following the

last imaging time point during which the activity in the

excretory pathways will have already been quantified.

14.2.4 Sample Size

A Phase I study of a radiopharmaceutical has two main

objectives: measurement of the biodistribution of the

radioactive moiety and an assessment of the pharmaco-

logical safety of the radionuclide. Fundamental to the

design of the study is the determination of the sample

size required. This has practical, statistical, and ethical

issues associated with it. A study with too many sub-

jects is unethical and, fortunately, rare. On the other

hand, a study with an insufficient number of subjects

will be unlikely to yield an answer to the hypotheses

posed by the study and would also be regarded as

unethical.3 The sample size of a clinical study will be

dictated by, among other factors, the power of the

study, i.e., the probability that the study will lead to

the rejection of the null hypothesis in favor of the

alternative when the null hypothesis is, in fact, false.

This argument cannot, however, be applied to a biodis-

tribution study where no hypotheses are involved. How-

ever, Sparks (2005) used a Monte Carlo-type stochastic

analysis to determine the minimum number of subjects

required in a biodistribution study. He determined that,

by assuming the organ absorbed doses and the effective

dose equivalent to be normally-distributed, a sample

size of six subjects would be adequate to yield a 95%

confidence interval where the upper limit of this confi-

dence interval is a factor of 2 greater than the estimated

mean for an inter-subject variability of s=m ¼ 1:25.

Indeed, a review of the literature reveals that the num-

bers of healthy volunteers recruited for Phase I biodis-

tribution studies of diagnostic radiopharmaceuticals are

almost always less than 10.

14.2.5 Nonimaging Quantification
Methods

14.2.5.1 Introduction

Nonimaging in vivo measurements are uncommon in

nuclear medicine dosimetry and any attempts at doing

2It is desired to know if there are significant differences between

the biodistribution derived from the healthy volunteer cohort

and those of patients that could affect the dosimetry estimate for

the latter. As Phase II subjects are patients with disease, they are

unlikely to be able to tolerate as complete an assessment of the

biodistribution as performed in Phase I. Hence, comparison of

the measurements of the rate at which activity is cleared from

blood and/or is excreted can assist in assessing if the biodistri-

bution is significantly changed in the diseased cohort.

3Everitt (1994) has challenged this last assertion by suggesting

that the use of meta-analysis means that there are few clinical

studies with insufficient numbers of subjects that cannot help to

resolve important clinical questions.
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so have been largely limited to therapeutic nuclear

medicine. On the other hand, in vitro measurements

of activity in whole blood, plasma, and excreta are

essential to the determination of the biodistribution

and internal radiation dosimetry of a radiopharmaceu-

tical. In situ measurements in nuclear medicine of

absorbed dose or activity are very unusual.

This section reviews the techniques used in these

measurements.

14.2.5.2 In Vivo Nonimaging Techniques

Due to its nature, internal radiation dosimetry is very

much based on imaging of the in vivo activity. There is

relatively little scope for the physical in situ measure-

ment of activity content or of absorbed dose. However,

such measurements are required as a means of verify-

ing absorbed dose calculation methodology, in partic-

ular for particulate-emitting radionuclides, or of

determining spatially nonuniform absorbed dose dis-

tributions at very small distance scales.

Thermoluminescent Dosimetry

Thermoluminescent dosimeters (TLDs) are a means of

measuring in vivo absorbed doses in both preclinical

and clinical settings (Griffith et al. 1988; Strand et al.

1994a). Implanting the TLD crystal into tissue is a

means of measuring the integrated absorbed dose

only; as it is not a rate dosimeter, the TLD cannot

yield the activity, which is proportional to absorbed

dose rate. In general practice, CaSO4:Dy has been the

TLD material of choice for in vivo dosimetry mea-

surement due to its high luminescence at low absorbed

doses. However, the biological medium within which

the TLD is placed will alter the response of the dosim-

eter as dissolution of the CaSO4:Dy results when it is

placed in a liquid medium. This TLD material, as a

result, is sensitive to ambient pH and temperature,

resulting in signal loss and supralinearity. A loss of

sensitivity of as high as 70% after 9 days has been

reported. Martin et al. (2000) described a micro-TLD

design for in vivo dosimetry based upon a composite

of LiF:Mg,Cu,P in the form of 400 mm diameter fila-

ments which had a sensitivity 60% greater than

CaSO4:Dy and much greater stability when placed in

liquid media with variable pH levels.

In vivo TLD measurements are additionally diffi-

cult due to the implantation and recovery processes,

especially if the dosimeters are small. One interesting

application of thermoluminescent dosimetry in

nuclear medicine was that of Deloar et al. (1997)

who used a method pioneered earlier by the group

(Matsumoto et al. 1993) based on TLDs to estimate

the absorbed doses to organs following inhalation of

gaseous 15O-labeled tracers. Because of the 122.2 s

half-life of 15O, image-based whole-body biodistribu-

tion measurements are not possible and, as a result,

Deloar et al. placed TLDs on the skin over source

organs of interest (brain, pharynx, thyroid, trachea,

heart, lungs, liver, kidney, spleen, and urinary blad-

der). The absorbed doses recorded at the TLDs were

proportional to the cumulated activities in the source

organs multiplied by predetermined S-factors from the

source organs to the positions of the TLDs.

MOSFET

Whereas a TLD is an integrating dosimeter, the

MOSFET (Chap. 9) provides an absorbed dose rate

measurement. Gladstone et al. (1994) described a

MOSFET dosimeter of 1.6 mm diameter that could

be inserted into tissue using a 16-gauge flexineedle.

While all MOSFETs will suffer from nontissue radio-

logical equivalence, a major shortcoming in the

implantation of such devices is the necessity of leads

to provide the gate voltage and to read out the source-

to-drain current. A possible solution to this problem is

described by Beddar et al. (2005) who described a

glass-encapsulated MOSFET operated in the unbiased

mode. Radiofrequency telemetry is used to power the

MOSFET for absorbed dose measurements.

Scintillator Probe

This is the most common nonimaging means of mea-

suring in vivo activity, especially that of thyroid gland

uptake of 131I. A scintillation probe is positioned at a

fixed distance from the thyroid gland postadministra-

tion and the count rate measured using a multichannel

analyzer and photon energy discrimination. The mea-

surement is then repeated in a calibration setting in

which a container of a known activity of 131I is placed

within a cylindrical plastic phantom and offset from
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the center. The count rate measurement is then

repeated to yield a calibration factor from which the

in vivo thyroid gland uptake is estimated.

Other Means

Other nonimaging methods of assessing absorbed dose

include electron paramagnetic resonance measure-

ments of mineralized tissue (Pass and Aldrich 1985;

Schauer et al. 1994) and biological dosimeters such as

the measurement of chromosome aberrations.

14.2.5.3 In Vitro Measurements

Introduction

The measurements of activity in fluids and substances

obtained or excreted from a human subject having

been administered a radiopharmaceutical are impor-

tant components in obtaining the complete under-

standing of the biodistribution of the radionuclide.

Measurements are typically made with a well scintil-

lation counter, although quantitative imaging using a

gamma camera can be used to quantify high-activity

sources such as voided urine. The temporal variations

of whole blood and plasma activity concentrations are

used to understand the rapidity with which the radio-

nuclide leaves the vascular compartment and can be

used to estimate the activity within the contents of the

cardiac chambers and, in some cases, the cumulated

activity in red bone marrow. A comparison of the

whole blood and plasma activity concentration will

reveal any binding of the radionuclide to red blood

cells.

Measurements of excreted activity are necessary in

order to estimate the absorbed dose to the urinary

bladder wall.4 This is often of concern for diagnostic

radiopharmaceuticals, in particular, as rapid excretion

of activity is desirable both for reducing the absorbed

dose and reducing any background tissue uptake

which can impact on diagnostic efficacy. While the

urinary pathway provides an ideal route for this excre-

tion, it can result in a high absorbed dose to the urinary

bladder wall. Measurements of excreted activity in the

feces are usually of limited applicability as the time

between when activity enters the GI tract (either

through ingestion or hepatobiliary transport) and

when it is excreted in the feces is much longer than

the physical half-lives of many radioisotopes. How-

ever, such measurements may be necessary for longer-

lived isotopes or if a particularly high amount of

activity is introduced to the GI tract and fecal excre-

tion is necessary to completely model the transport of

activity within the tract contents.

Whole Blood

In a typical biodistribution study of a radiopharmaceu-

tical, venous blood samples are acquired from the

subject at multiple time points following administra-

tion.5 Much of the sample volume will be dedicated to

conventional safety analyses, however some blood

must be assigned to radioactive content assay. Clearly,

the times of administration, sample, and assay must be

recorded so that the measured activity concentration

can be decay-corrected to the time of administration.

These times must be carefully judged by the nuclear

medicine physicist planning the study to ensure that

the activity being assayed cannot cause noncorrectable

dead-time errors in the counting device. A conserva-

tive rule-of-thumb of estimating the maximum amount

of activity in whole blood is to neglect physical decay

and the transfer of activity from blood into tissues and

assume a standard volume of blood. For example, in

ICRP Reference Man (ICRP 2002), the volume of

blood is 5,300 mL. Assuming that this is the amount

of blood within the subject (and this value can be

varied with body mass accordingly using data in

ICRP Publication 89), then for a 100 MBq adminis-

tered activity, the maximum activity concentration in

whole blood is,

4This is not quite so true for short-lived radioisotopes, such as
11C, excreted through the urinary pathway. If the physical half-

life of the isotope is much less than the time between urinary

bladder voids, the activity of the urinary bladder contents can be

determined more directly through in vivo imaging.

5For activity measurements for biodistribution and dosimetry

studies alone, there is no reason that blood samples cannot be

arterial, should kinetic modeling using an arterial input function

be concurrent as in a PET study.
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ABL½ �max ¼
100; 000 kBq

5; 300mL

� 19
kBq

mL

One need only use this value to obtain a rough

estimate of the maximum activity concentration likely

to be measured. Physical decay can also be applied to

bring this estimate into a more reasonable range,

although the above result is the most conservative.

The allocation of venous blood sample times can

be estimated from the clearance of activity from

blood in the preclinical animal. Although, in practice,

this must often be considered in conjunction with

required times for safety assessments and access to

a venous catheter with the subject in the gamma

camera or PET scanner. However, as the washout in

a species smaller than the human is expected to be

more rapid, one must be cognizant of the fact that the

human blood sample will likely have a higher activity

concentration than that estimated from the preclinical

model.

It is good practice to allocate two aliquots from

each venous blood sample to be assayed indepen-

dently. Measurement errors are inevitable and an

observed discrepancy between two aliquot measure-

ments can be resolved by comparison with measure-

ments at earlier and later time points. Because of the

low activity values, the activity is usually measured in

a high-sensitivity scintillator well-counter. Measure-

ment corrections as described in Chaps. 5 and 9 are

applied.

Plasma

Plasma activity concentrations can be obtained from

the same venous blood samples; indeed, it is possible

to obtain these from the same whole blood aliquots

after these have been assayed. The whole blood is

centrifuged and the supernatant removed, the volume

measured, and the activity content assayed.

Urine

The activity in excreted urine should be measured as

voided rather than accrued and measured as the total

activity excreted renally. This excreted activity, as will

be seen, is summed with that of the urinary bladder

contents so that the cumulated activity of the sum of

the urinary bladder contents and voided urine is

yielded. The total activity in a urinary void at mea-

surement time t, AUrine,Void (t), is estimated by mea-

suring the activity concentration in an aliquot (or by

measuring two and averaging, for good practice) of

known volumes of urine and scaling this by the total

volume of the void,

AUrine;VoidðtÞ ¼ AUrine;AliqðtÞ
� �

VVoid

¼ AUrine;AliqðtÞVVoid

VAliq

:
(14.2)

Another means of measuring the activity contained

within a urine void is to quantify a conjugate-view

image of the contents of the entire void within a

container placed on a gamma camera.

Again, times of administration, excretion, and assay

must be recorded in order to allow physical decay

correction. Consideration must also be taken of the

expected activity concentration so that the nuclear

medicine physicist can plan the assay time postadmi-

nistration. The activity eventually to be excreted in the

urine can be estimated from the preclinical model

(acknowledging the likely more rapid nature) and the

volume of urine excreted per day can be estimated

from data in ICRP Publication 89 and an assumed

number of urinary bladder voids per day.

Feces

Measurements of the activity contained within the

feces is relatively uncommon, but could be consid-

ered if the radioisotope has a physical half-life compa-

rable to the GI tract content transit times or if there is a

high amount of activity expected to enter the GI tract

(e.g., for lipophilic radiopharmaceuticals expected to

have increased liver uptake and excretion into the

duodenum). For a given void, the mass of the voided

stools is measured and a small sample taken and

weighed. The sample is homogenized and the volume

of the homogenate measured. A sample of known

volume of the homogenate is then assayed. The activ-

ity in the assay volume is then scaled up to yield the

activity in the total homogenate which is subsequently
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scaled up to yield the total activity voided in the feces.

These tasks are best assigned to the unsuspecting

undergraduate.

14.3 Imaging Quantification Methods

14.3.1 Introduction

The quantification of the in vivo activity at multiple

times postadministration is the crux of determining the

biodistribution of the radionuclide of interest. In

almost all cases of the development of a diagnostic

radiopharmaceutical, the biodistribution is initially

measured in healthy volunteers. This is largely due to

the impracticality of having patients undergo whole-

body imaging at several acquisition time points. Imag-

ing times can be long and patient compliance (e.g., in

terms of lack of patient motion) may be difficult to

attain if the patient is in physical discomfort.

As healthy volunteers are, by definition, without

disease they can expect to receive no medical benefit

from the study. Hence, unlike patients for whom clini-

cal efficacy is to be assessed and who may receive

possible medical benefits, healthy volunteers receive a

much lower amount of administered activity than

would a patient, the ethical issues of which are

described in Chap. 16. This is necessary so as to

minimize the radiation absorbed doses received by

the healthy volunteer.6 As a result, a Phase I biodis-

tribution study using healthy volunteers must employ

as sensitive a detection device as possible. For exam-

ple, this would include the use of a high-sensitivity

low-energy general purpose collimator on a gamma

camera for 99mTc and 123I studies and extended image

acquisition times in order to maximize the number of

detected photons for a given amount of activity. In this

way, the amount of information acquired is maximized

for an assumed minimized, and presumably acceptable

to the subject, radiation risk.

A possible downside of the necessity to minimize

the radiation exposure to the healthy volunteer is that

the images generated will be noisy and nondiagnostic.

This is not necessarily a problem as one is generally

seeking to determine the biodistribution of activity in

macroscopic organs rather than to identify changes in

pathology. A second possible disadvantage is that it

may not be possible to fit the entire body in the image

for a combined low count-rate and limited acquisition

time. For example, the lower extremities may need to

be excluded from an image so as to make the image

acquisition duration time tolerable for the subject or in

order to be able to include a greater number of acqui-

sitions. This requires the assumption that the activity

distribution in the unimaged anatomy is both uni-

formly distributed and has a magnitude equal to the

difference between the known administered activity

and the sum of that measured in the imaged anatomy

and that excreted (e.g., McParland et al. 2008).

Here, quantification methods suitable for biodistri-

bution measurements using both single-photon-

emitting radionuclides and positron-emitting radionu-

clides are described.

14.3.2 Single-Photon-Emitting
Radionuclides

14.3.2.1 Conjugate-View Planar Scintigraphy

Method

The conjugate-view method of quantifying in vivo

activity was first proposed by Thomas and collabora-

tors in the 1970s (Thomas et al. 1972, 1976). Since

then, a number of validation studies of the method

using phantoms, animal measurements, and Monte

Carlo simulations (e.g., Eary et al. 1988; Jonsson

et al. 2005; He and Frey 2006) have appeared in the

literature. In the conjugate-view approach, whole-

body anterior and posterior emission scans of the

subject are taken simultaneously with a multiple-

head gamma camera. The camera heads are positioned

so as to acquire anterior and posterior views of the

subject who lies supine on the bed. Nearly all gamma

cameras allow a continuous translation of the bed for a

whole-body acquisition. If necessary, it is possible to

generate a whole-body image suitable for a biodistri-

bution measurement using contiguous static planar

6The patient would receive a higher administered activity in

order to allow a diagnostic-quality image. Hence, the usual

optimization of benefit versus exposure risk used in medical

practice would apply.
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images axially distributed along the subject or, less

conveniently, using diverging collimators.7 Transmis-

sion scans with and without the subject present are

acquired prior to administration of the radiopharma-

ceutical for attenuation measurements, as described

below. The reader can find a detailed practical and

comprehensive overview of the method and its practi-

cal implementation in MIRD Pamphlet No 16 by

Siegel et al. (1999).

Consider the two-dimensional model of Fig. 14.2a

which shows a region containing a uniformly-

distributed activity A of a photon-emitting radionu-

clide within a medium. The overall medium has a

thickness h and the activity-containing object has a

thickness t and lies at a depth d. The first consideration
is of the simplest case of where activity is present

in the internal region only, the region and medium

having the same radiological properties and scatter is

neglected. Consider a differential element of the thick-

ness of the activity-containing region, dr at a depth r as

shown. This differential slice contains an amount of

activity equal to dA where,

dA ¼ CAdt (14.3)

where CA is the amount of activity per unit thickness

in the object,

CA ¼ A

t
(14.4)

The rate at which photons are detected from

this differential thickness in what is identified as the

“anterior” view is,

d2NA

dt dr
¼ kCAe

�mr (14.5)

where k is a calibration factor converting activity to

detected counts per unit time and m is the linear atten-

uation coefficient. k can be conveniently obtained by

imaging a source of the same radionuclide adminis-

tered and of known activity at the same time as the

subject. The count rate due to the activity in the entire

region is given by integrating (14.5) over the depth of

the object,

dNA

dt
¼ kCA

ðdþt

d

dr e�mr

¼ kCA

m
e�md 1� e�mtð Þ

¼ 2
kCA

m
e�m dþ t=2ð Þ sinh

mt
2

(14.6)

where 1� e�xð Þ ¼ 2e�x=2 sinh x=2 has been used.

Similarly, the rate at which photons are detected in

the opposing “posterior” view is,

dNP

dt
¼ kCA

ðh�d

h�t�d

dr e�mr

¼ kCA

m
e�m h�dð Þ emt � 1ð Þ

(14.7)
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a b

h

r

h−t-δ

r δ
A2

A3

t
δ
t

dNP

dt

dNP

dt

dNA

dt

dNA

dt

Fig. 14.2 Geometry

describing the conjugate-view

quantification method. In (a),

a source region containing

activity A is embedded in a

medium of overall thickness

h and which contains no

activity. In (b), the

surrounding medium now

contains activity so the

conjugate-view is now of

three serial regions containing

different amounts of activities

7In principle, conjugate-view scintigraphy could be performed

with a single-headed gamma camera: one view whole-body

scan, followed by a rotation of the gamma camera head by

180o and a subsequent scan of the conjugate-view. However,

error is introduced as the biodistributions of both views were not

acquired at the same time. The error would be greatest at early

times postinjection when still in the distribution phase.
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The geometric mean of the two count rates is,

dN

dt

� �
geom

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dNA

dt

dNP

dt

r

¼ kA
sinh mt=2
mt=2
� � ffiffiffiffi

=
p (14.8)

where the attenuation of the emitted photons through

the entire thickness of the medium is given by

= ¼ e�mh (14.9)

and the total activity within the embedded region is

found by rearranging (14.8),

A ¼ 1

k
ffiffiffiffi=p

dN

dt

� �
geom

mt=2
� �
sinh mt=2

	 


¼ 1

k
ffiffiffiffi=p

dN

dt

� �
geom

fSelf�atten

(14.10)

where the self-attenuation factor, fSelf-atten, for the

region containing activity has been defined.

If it is now assumed that the surrounding medium

contains activity, one is presented with the more

realistic case of Fig. 14.2b, in which there are now

three regions with activities viewed in series. It is

straightforward to repeat the above calculation to find

that,

A1 ¼ 1

k
ffiffiffiffi=p

dN

dt

� �
geom

mmd=2
� �
sinh mmd=2

 !
(14.11)

A2 ¼ 1

k
ffiffiffiffi=p

dN

dt

� �
geom

mSt=2
� �
sinh mSt=2

	 

(14.12)

A3 ¼ 1

k
ffiffiffiffi=p

dN

dt

� �
geom

mM h� t� dð Þ=2� �
sinh mM h� t� dð Þ=2

 !

(14.13)

where the more general case in which the medium and

source regions are associated with different linear

attenuation coefficients, mM and mS, has been allowed

for. In this case, the transmission factor is,

= ¼ e� mM h�tð ÞþmStð Þ (14.14)

MIRD Pamphlet No 16 summarizes (14.11)–

(14.13) for multiple overlying source regions in an

imaged region-of-interest in the general form,

Aj ¼ 1

k
ffiffiffiffi=p

dN

dt

� �
geom

mjtj
�
2

� �
sinh mjdj

�
2

 !
(14.15)

for the jth source region.

A conceptualization of the conjugate-view method

is shown in the simple representative diagram of

Fig. 14.3 which summarizes calculations performed

for a 99mTc point source in soft tissue. The plot

shows the count rates measured on either side of a

30-cm thick homogeneous slab of soft tissue. The

“anterior” and “posterior” count rates are exponen-

tially dependent upon the thickness of material,

whereas the geometric mean (without any scatter cor-

rection) is independent of thickness. As scatter has

been neglected in these derivations, the approximate

contribution of scattered photons is incorporated in the

geometric mean estimate using results from the

buildup factor calculation of Fig. 9.17.

Dead-Time Correction

The dead time of a radiation detector was discussed

in Chap. 5 and was shown to increase with the

actual count rate with the degree of increase being

dependent on whether the dead time was paralysable
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Fig. 14.3 Conceptualisation of the conjugate-view method
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or nonparalysable8 and the length of the dead time

following a single event. Measurement of the dead-

time dependence of a gamma camera should be part of

its normal quality control and methods of doing so are

summarized in Reports 73 (IPEM 1996) and 86 (IPEM

2003) of the Institute of Physics and Engineering in

Medicine (IPEM). Point or distributed sources are

discussed, both of which involve measurement of the

count rate as the source decays. The two-source

method discussed in Chap. 5 can be used to assess

the paralysable dead time of a gamma camera. In most

cases of gamma camera quantification, especially in

the low administered activity regime of diagnostic

radiopharmaceutical Phase I trials, dead-time correc-

tions can largely be ignored.

Transmission Factor

In planar scintigraphy, the transmission factor is typi-

cally measured by translating the subject over either a
99mTc flood source or a 57Co source. Here, the trans-

mission factor for a given RoI is,

= ¼
dN=dt

��
RoI;Subject

dN=dt

���
RoI;NoSubject

(14.16)

where the ratio is of count rates for the RoI with and

without the subject present.

Equation (14.16) shows that the transmission is

determined on a pixel-by-pixel basis which can then

be averaged over macroscopic RoIs and compared

with the scanning repeated without the subject present.

Care must be taken if the radionuclide of the transmis-

sion source differs from the radionuclide being inves-

tigated. The transmission factor must be modified

accordingly to allow for the difference between the

linear attenuation coefficients of the two radionu-

clides. For example, let =Meas be the measured trans-

mission factor for a radionuclide with linear

attenuation coefficient, mMeas. The scaled transmission

factor to use for the administered radionuclide is then,

= ¼ e
m

mMeas
ln=Meas (14.17)

where m is the linear attenuation coefficient in tissue

for the administered radionuclide. Note that the broad-

beam geometry values of m should be used in (14.17)

as scattered photons contribute to the signal.

Self-Attenuation Correction Factor

The self-attenuation correction factor, fSelf-atten,

defined by (14.10), requires that the thickness of the

region be known. Figure 14.4 shows fSelf-atten plotted

as a function of the source region thickness, in multi-

ples of the mean-free pathlength (i.e., mt).
There are various ways of evaluating fSelf-atten. The

first is to simply set it equal to unity (i.e., ignore it).

Consider the case of 140 keV photons from 99mTc for

which the mean-free path in soft tissue is approxi-

mately 7 cm. By neglecting self-attenuation and

setting fSelf-atten ¼ 1, errors in the determined activity

of 2, 8, and 16% would occur for source region thick-

ness of 5, 10, and 15 cm. These levels of uncertainties

could be considered acceptable in some situations,

especially when the effort required to determine the

longitudinal thickness of the organ accurately enough

is realized.

The second method is to determine fSelf-atten
directly by measuring the organ thickness in a trans-

verse planar emission view or through SPECT or

X-ray CT. The first two methods may not allow accu-

rate measurement of the source region thickness,

although the relative insensitivity of fSelf-atten to the

thickness for small dimensions (below about 1.5
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Fig. 14.4 The region self-attenuation factor of (14.10) as a

function of the source region thickness

8A gamma camera typically acts as a paralysable system.
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mean-free pathlengths) can help to reduce the effect of

this measurement inaccuracy. There are additional

possible disadvantages to the use of emission imaging

to determine transverse thicknesses. The planar trans-

verse view may also have the complication of over-

lying regions of activity making the measurement

difficult. SPECT suffers, in particular, if the subject

is a healthy volunteer because in such a case, the

amount of activity administered in a biodistribution

study is minimal in order to reduce the radiation

absorbed doses received by the subject. As a result,

there will likely be an insufficient number of detected

photons to yield a suitable SPECT image. On the other

hand, the transverse thicknesses can be measured from

X-ray CT. A diagnostic-quality CT data set may be

available if the biodistribution is being measured in a

patient and the CT is part of the subject’s standard-of-

care imaging. But it is highly unlikely that this would

be the case for a healthy volunteer participating in the

study. A nondiagnostic quality CT obtained from a

SPECT–CT platform may yield images suitable not

only for transverse thickness measurements but, also

for providing crude anatomical localization and trans-

mission data as noted previously.

A third method is to estimate fSelf-atten from pub-

lished anatomical data such as the Reference Man of

ICRP Publications 23 (1975) and 89 (2002). Again,

the relative insensitivity of fSelf-atten to small changes

in the thickness will help reduce the uncertainty in the

activity estimation with this method.

It is perhaps worth noting that, in the specific case

of the thorax, Macey and Marshall (1982) concluded

that, due to its low physical density compared to soft

tissue, quantification of the uptake in lung using the

conjugate-view method did not require measurements

of either = and fSelf-atten. The latter conclusion is

evident from Fig. 14.4, noting that the mean-free

pathlength of photons in lung tissue is about three

times greater than that in soft tissue.

Scatter Correction

Introduction

The above classical derivation of activity quantifica-

tion in conjugate-view planar scintigraphy failed to

account for the contribution of scattered photons.

Narrow-beam geometry was implicitly assumed

throughout the derivation. The mechanical collimation

of gamma camera scintigraphy cannot exclude all of

the scattered photons within the energy acceptance

window. This is indeed a challenging, but absolutely

essential, task in quantitative imaging (planar or tomo-

graphic). The detection of an unscattered photon pro-

vides the encoded spatial information of the source of

activity, whereas a scattered photon generally comes

from a position other than in the source and degrades

the spatial resolution. In effect, the contribution of

scatter will lead to an overestimate of the activity

within the source region being imaged, image blurring

and a reduced ability to quantify. In addition to colli-

mation, other measures exist to exclude the contribu-

tions of Compton- and Rayleigh-scattered photons to

the scintigraphic image formation process.

One method is by the analysis of the energies of the

detected photons and the acceptance of only those

photons with energies expected of unscattered

photons. Compton-scattered photons have less energy

following the scatter. Hence, setting a lower-energy

limit below which detected photons are rejected from

contributing to the image, serves to exclude a fraction

of Compton-scattered photons. Due to the finite

energy resolution of the detector, an excessively tight

energy cut-off can exclude primary (i.e., unscattered)

photons within the photopeak and thus reduce the

detection efficiency. This is especially true for the

NaI(Tl) scintillator, although new solid-state detec-

tors, such as cadmium zinc telluride (CZT) with better

energy resolutions are entering the nuclear medicine

market. Energy discrimination becomes more com-

plex if the radionuclide has multiple g-ray emissions

and imaging is performed using the dominant emis-

sion when there are photon emissions with higher

energies. Two common examples of such radionu-

clides are 111In and 131I. Compton scatter and energy

degradation of the higher-energy photon emissions

increase the scattered photon component within the

detector’s photopeak.9 A more sophisticated energy

discrimination method is consequently required.

9While selecting the detector’s energy discriminator to accept

only the high-energy photon components will avoid this

mechanism of scatter contribution, this comes at the impractical

cost of thicker and heavier collimators.
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The limitation of this type of energy discrimination

analysis is inherent to the kinematics of Compton

scatter. In particular, recall the Compton relationship

between the scattered photon energy and the incident

photon energy and the scattering angle. Figure 14.5

shows the Compton single-scatter angle as a function

of photon energy through which scattered photons

would still be accepted if the lower-energy window

were 5, 10, 15, and 20% below the original photon

energy. For example, if imaging 140 keV 99mTc

photons and photons of energy below 126 keV were

assumed to have been scattered at least once (i.e., the

10% curve of Fig. 14.5) and rejected, then photons that

had been singly-scattered by as much as 53.5� would
still be accepted and considered as unscattered photons.

Scatter compensation techniques can be conve-

niently placed into one of five categories:

� Photon energy discrimination or analysis (e.g.,

Buvat et al. 1994; Ichihara et al. 1993; Jaszczak

et al. 1984; King et al. 1992; Koral et al. 1988)

� Factor analysis (Mas et al. 1990; Buvat et al. 1993)

� Convolution/subtraction methods (Axelsson et al.

1984; Willowson et al. 2008)

� The effective attenuation coefficient

� The buildup factor (Wu and Siegel 1984)

Many of these methods have been assessed and

compared using Monte Carlo or experimental means

of estimating the effects of scattered photons (e.g.,

Gilardi et al. 1988; Ljungberg et al. 1994; Buvat

et al. 1995). The decision of which scatter compensa-

tion technique to use will be based largely upon the

acquisition requirements (e.g., the full energy spectrum

rather than selected energy windows) and the asso-

ciated computational and implementation complexities

which may or may not be manageable with the avail-

able hardware and software. Because of the great

diversity of techniques available to scintigraphic imag-

ing, only a selected sample will be presented here. The

interested reader is referred to the original works cited

above for discussion on the other techniques. In partic-

ular, the following discussion focuses on the energy

window discrimination and buildup factor methods.

Photon Energy-Discrimination Methods

The simplest method of photon energy discrimination

is, of course, to use a single energy channel centered

on the photopeak corresponding to unscattered

photons. For 99mTc, this is typically a �10% energy

window set over the 140 keV photopeak, i.e., only

those photons with energies between 126 and

154 keV are accepted to form the image. The selection

of the width of the energy acceptance window is

critical. If it is set too “tight,” then the sensitivity of

the gamma camera diminishes rapidly; set too

“broad,” it accepts Compton-scattered photons which

degrades both spatial resolution and the accuracy of

quantification.

The dual-energy window method (Jaszczak et al.

1984, 1985) uses events detected within an energy

window set below the photopeak window (e.g.,

between �35 and �10% of the 99mTc photopeak, or

95–126 keV), as shown in Fig. 14.6. It is assumed that

there is a simple proportional relationship between the

scatter contributions to the two energy windows. That

is, for pixel with index i, the estimated scatter-free

image is,

P̂ðiÞ ¼ NPPðiÞ � kNLEWðiÞ (14.18)

where NPP(i) is the number of counts at pixel location i

in the photopeak window and NLEW(i) is the number

of counts at the same pixel location but in the lower-

energy window. The parameter k represents the frac-

tion of scattered events in the photopeak window (i.e.,

0 � k � 1). A commonly-accepted value is k ¼ 0.5.

Buvat et al. (1995) assessed this method using Monte

Carlo simulations of NaI(Tl) scintigraphic imaging of
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Fig. 14.5 Compton single-scattering angle as a function of

photon energy for lower photon energy acceptance limits as a

percentage decrease of the original photon energy. For example,

for 99mTc photons, photons scattered by as much as 53.5� would
have energies only 10% less than the original photon energy
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a phantom containing 99mTc. They concluded that the

dual-energy window method was good for quantifica-

tion provided that the number of unscattered photons

per pixel exceeded 230.

A somewhat similar approach is the dual-photopeak

window method as shown in Fig. 14.7. The photopeak

window is split into two equal and symmetric nonover-

lapping windows (King et al. 1992). The scatter compo-

nent in the lower window will be greater than that in the

upper window, as scatter results in energy degradation.

The scatter fraction for the pixel with index i is para-

meterized by a polynomial function (Ljungberg et al.

1994) or by a power-function of the form,

SFðiÞ ¼ a
NlwðiÞ
NuwðiÞ
	 
b

þ g (14.19)

where Nlw(i) and Nuw(i) are the total number of counts

at pixel i in the upper and lower windows, respec-

tively, and a, b and g are parameters to fit. The number

of scattered photons detected in the total photopeak

window is simply,

ŜðiÞ ¼ NlwðiÞ þ NuwðiÞð Þ SFðiÞ
1þ SFðiÞ : (14.20)

The estimate of the counts in pixel i due to primary

(unscattered) photons is,

P̂ðiÞ ¼ NlwðiÞ þ NuwðiÞð Þ � ŜðiÞ: (14.21)

The coefficients can be estimated fromMonte Carlo

simulation or empirical measurement (Ljungberg

et al. 1994; Buvat et al. 1995).

The triple-energy window (TEW) method is appli-

cable to those cases where a radionuclide with multi-

ple photon emissions of different energies occur and

one wishes to discriminate against the higher-energy

photons, e.g., 131I (Koral et al. 1988; Ichihara et al.

1993). The configuration is demonstrated in Fig. 14.8.

The estimate of the counts in pixel i due to primary

photons is,

P̂ðiÞ ¼ PPPðiÞ � NLEWðiÞ � NUEWðiÞ: (14.22)

where NPP(i) is the number of counts in the photopeak

window and NLEW(i) and NUEW(i) are the counts in the

lower and upper energy windows, respectively.
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Fig. 14.6 Dual-energy window method for scatter compensa-

tion for the example of 99mTc. It is assumed that all of the

photons detected in the lower-energy window (here 95–

126 keV) are scattered and are in proportion to the total number

of photons detected in the photopeak window (126–154 keV)
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Fig. 14.7 Dual-photopeak window method. Two-equally wide

and symmetric subwindows split the photopeak window
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Fig. 14.8 Triple-energy window technique of photon scatter

discrimination in which only primary photons arising within the

energy window WPP are to be used in forming the scintigraphic

image and the down-scattered photons from higher-energy

emissions are excluded
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Buildup Factor Methods

The buildup factor provides another means of scatter

compensation. Wu and Siegel (1984) presented a

depth-dependent buildup factor method which cor-

rected for both scatter and transmission. Returning to

Fig. 14.2, the anterior and posterior count rates can be

written as (neglecting, temporarily, the source region

thickness so that it is assumed that t ¼ 0),

dNA

dt
¼ dN0

dt
SCDð ÞB d; SCDð Þe�md (14.23)

dNP

dt
¼ dN0

dt
SCDð ÞB h� d; SCDð Þe�m h�dð Þ (14.24)

where dN0=dt SCDð Þ is the count rate measured in air

at the source-collimator distance (SCD), B(d;SCD) is

the measured buildup factor for a SCD and for the

source at a depth d in a scattering and attenuating

medium and m is the narrow-beam linear attenuation

coefficient. Accounting for the thickness t of the

source region and following the derivations of (14.6)

and (14.7), the anterior and posterior count rates are,

dNA

dt
¼ dN0

dt
SCDð ÞB d; SCDð Þe�md (14.25)

dNP

dt
¼ dN0

dt
SCDð ÞB h� d;SCDð Þe�m h�dð Þe�mt

sinhmt=2
mt=2
� �
(14.26)

No transmission measurement of the subject need

be made. The buildup factor is a premeasured quantity

and is a function of photon energy, collimator type,

energy acceptance window, and the depth, size, and

overall thickness of the scattering medium. Using

measured values of dNA=dt and dNP=dt and the pre-

determined buildup factor values, (14.25) and (14.26)

are solved iteratively for both dN0=dt and d. The

typical starting point is to use initial values of

B h=2; SCDð Þ and d ¼ h=2. This method of using the

buildup factor is referred to in MIRD Pamphlet No 16

as the “depth-dependent buildup factor.”

Siegel et al. (1985a, b) extended this development

of the buildup factor. Because of the contribution of

scatter to the broad geometry inherent to scintigraphic

imaging, photon attenuation is not purely exponential

and a plot of the logarithm of the transmission against

attenuator thickness will consequently not be a straight

line but will display a shoulder. This is a common

observation in the depth dose curves of external

beam radiotherapy (Johns and Cunningham 1983).

Siegel et al. (1985a) parameterized the transmission

as a function of depth d as,

= ¼ 1� 1� e�md
� �n

(14.27)

where m is the narrow-beam linear attenuation coeffi-

cient. The form of (14.27) is the same as that of the

multi-target fractional cell survival curve. As shown

in (10.6), for large d, a binomial expansion of this

expression leads to the expression,

= ffi ne�md ðlarge dÞ: (14.28)

It is evident from (9.91) and (14.28) and Fig. 9.17

that the exponent n of (14.28) is the buildup factor at

infinite depth, B(1). Equation (14.28) is thus rewrit-

ten as,

= ¼ 1� 1� e�md
� �B 1ð Þ

(14.29)

and = as a function of depth is demonstrated in

Fig. 14.9.

This approach is the equivalent of the pseudo-

extrapolation number method of Thomas et al.

(1983) in which scatter compensation is accounted

for by replacing = in the denominator of (14.10)

with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B 1ð Þ=p

. Again, allowing for a finite source

thickness, the count rates are modified to,

dNA

dt
¼ dN0

dt
SCDð Þ


 1� 1� e�md
� �B 1ð Þ �

e�mt
sinh mt=2
mt=2
� �

(14.30)

dNP

dt
¼ dN0

dt
SCDð Þ


 1� 1� e�m h�dð Þ
 �B 1ð Þ	 


e�mt
sinh mt=2
mt=2
� � :

(14.31)
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d can be solved for numerically, subject to the con-

straint that 0 � d � h, from the ratio of (14.30) and

(14.31),

dNA=dt

dNP=dt
¼ 1� 1� e�md

� �B 1ð Þ
1� 1� e�m h�dð Þð ÞB 1ð Þ

: (14.32)

Once d has been determined, then dN0=dt can be

calculated from either (14.30) or (14.31).

Background Correction Methods

The background activity will contribute to the net

number of detected photons in the anterior and poste-

rior planar views and failure to account for this will

lead to an overestimate of the activity within the

organ. This subsection reviews a number of means of

correcting for background.

Simple Subtraction

The simplest (and crudest) correction for this back-

ground source is to assume that the number of counts

per pixel (count density) in an RoI set adjacent to the

organ RoI is the same background count density in the

organ RoI. The expression for the geometric mean is

modified to,

dN

dt

� �
geom

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dNA

dt
� dNA;Bkgd

dt

WRoI

WBkgd

	 
	 
	 
s



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dNP

dt
� dNP;Bkgd

dt

WRoI

WBkgd

	 
	 
	 
s

(14.33)

where dNA;Bkgd=dt and dNP;Bkgd=dt are the count

rates measured from the background RoI in the ante-

rior and posterior views, respectively, WRoI is the

number of pixels in the RoI of interest and WBkgd

is the number of pixels in the background RoI.

Neglecting the errors that will be introduced by the

implicit assumption that this background signal

remains constant between this RoI and the organ

RoI, the method will overestimate the background

contribution. This is a result of its inclusion of the

contributions of photons emitted in the volume of

surrounding tissue equal in thickness to that of the

organ. If the background region is in close proximity

to the source region, it will contain a contribution of

scatter from the source region which will elevate the

background counts. Similarly, there will be addi-

tional background counts in the source region RoI

from surrounding tissues and the tendency will be for

the background subtraction to partially compensate

for this combination of scatter corrections (Fleming

1996).

The method also assumes that the background

count rate is uniform over both the RoI of interest

and the background RoI. The following two methods

correct for this latter assumption.

Bilinear Interpolation

A bilinear interpolative approach to correct for the

variability of the background count rate over the RoI

of interest has been proposed by Goris et al. (1976)

and can be described using Fig. 14.10.

A rectangular RoI is set about a target RoI. The

counts at the two pixels at locations (k,m) and (l,n)

(where k,l,m and n are all integers), which are outside

the target RoI and, hence, are background are used to

estimate the background contribution at the pixel at

location (i, j) (where i and j are also integers). The total
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Fig. 14.9 Transmission curve for a broad-beam geometry

allowing scatter. The extrapolation from the purely exponential

portion of the curve to the ordinate yields the buildup factor at

infinite depth
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number of counts in the pixel at (i, j) is cij and the

background contribution is,

bij ¼ bi þ bj

2
(14.34)

where bi and bj are given by the bilinear interpolations,

bi ¼ j�mð Þcin þ n� jð Þcim
n�m

(14.35)

and

bj ¼ i� kð Þclj þ l� ið Þckj
l� k

: (14.36)

The background-corrected counts in pixel (i, j) is,

then,

ĉij ¼ cij � bij (14.37)

Cauchy Integral Method

This approach uses the Cauchy integral theorem which

states that, if the function f is analytic within and on a

simple closed contour C, then the values of f within the

contour C are determined by the values of f on the

contour C. In other words, if z0 is any point interior to

C, then the value of the function at z0 is given by the

contour integral,

f z0ð Þ ¼ 1

2pi

þ
C

dz
fðzÞ
z� z0

: (14.38)

Recasting this result, the background signal at a

complex-valued point z0 within the target RoI is

given by,

b z0ð Þ ¼ 1

2pi

þ
C

dz
cðzÞ
z� z0

(14.39)

where c(z) is the number of counts in a pixel at the

complex-valued point z on an outside contour of the

target RoI. Should the contour be circular with radius R

(Nichols et al. 1987), then the background signal at the

polar coordinate (r, y) is given by the expansions,

b r; yð Þ ¼ a0
2

þ
XM
k¼1

r

R

 �k
ak cos kyþ bk sin kyð Þ (14.40)

where the coefficients of the expansion are given by,

ak ¼ 2

P

XP
j¼1

b R;
2pj
P

	 

cos

2pjk
P

(14.41)

bk ¼
2

P

XP
j¼1

b R;
2pj
P

	 

sin

2pjk
P

(14.42)

and P is the number of discrete points (pixels) around

the circular contour at which the integral is to be

evaluated. Nichols et al. describe the practical imple-

mentations of the above equations, although the com-

plexities of such implementations are evident.

Houston and Sampson (1989) have provided an

experimental comparison of both the bilinear interpo-

lative and Cauchy integral background methods using

phantom and clinical data.

Correction for Over-Subtraction (I) Thomas Method

As noted above, there will be an overcorrection for

background caused by the inclusion of the counts

arising from the background ROI corresponding to

the thickness of the organ. Three methods of varying

complexity to correct for this over-subtraction are

presented here. Thomas et al. (1976) extended the

conjugate-view methodology to account for the

activity “above” and “below” the object. In a straight-

forward, but tedious, manner the conjugate-view result

(i,j)

(l,n)

(k,m)

Fig. 14.10 Bilinear interpolative method for correcting for the

background activity contribution. An organ region-of-interest is

surrounded by a rectangular region-of-interest. See text for

details
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is modified by a multiplicative factor accounting for

background,

A ¼ 1

k
ffiffiffiffi=p

dN

dt

� �
geom

fSelf�attenfBkgd (14.43)

where

fBkgd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1f2

f1

	 
2

þ g3f2
f3

	 
2

þ 2
g1g3f

2
2

f1f3

s



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh

m1t1 þ 2m2t2 þ m3t3
2

	 
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
g1f2
f1

cosh
m1t1 þ m2t2

2

 �r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
g3f2
f3

cosh
m2t2 þ m3t3

2

 �r
:

(14.44)

For conciseness, the subscripts 1 and 3 refer to the

anterior and posterior background regions and t1 ¼ d,
t2 ¼ t and t3 ¼ h � d � t, different linear attenua-

tion coefficients for the three regions are allowed,

fi ¼ sinh miti=2
miti=2
� � i ¼ 1; 2; 3 (14.45)

and the ratios of the background activities in the

anterior and posterior regions to that in the source

region-of-interest are given by g1 ¼ A1=A2 and

g3 ¼ A3=A2.

Correction for Over-Subtraction (II) Buijs Method

Buijs et al. (1992) proposed a modification which

accounted for the thickness of the source organ,

dN

dt

� �
geom

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dNA

dt
� f

dNA;Bkgd

dt

WRoI

WBkgd

	 
	 
	 
s



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dNP

dt
� f

dNP;Bkgd

dt

WRoI

WBkgd

	 
	 
	 
s

(14.46)

where f is the fraction of activity in the background

RoI that is not from the thickness equivalent to the

source RoI interest,

f ¼ 1� t
h

(14.47)

using the nomenclature of Fig. 4.2.

Correction for Over-Subtraction (III) Kojima Method

Kojima’s method (Kojima et al. 1993) is similar in form

to that of Buijs et al. in that it also modifies the back-

ground correction estimated from the background RoI

by a multiplicative factor. However, a different multipli-

cative factor is used in the anterior and posterior views,

dN

dt

� �
geom

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dNA

dt
� fA

dNA;Bkgd

dt

WRoI

WBkgd

	 
	 
	 
s



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dNP

dt
� fP

dNP;Bkgd

dt

WRoI

WBkgd

	 
	 
	 
s

(14.48)

where the fA and fP are calculated assuming that the

concentrations of background activities leading to A1

and A2 are the same,

fA ¼ 1� 1� e�mtð Þ e�m h�d�tð Þ

1� e�mh

	 

(14.49)

fP ¼ 1� 1� e�mtð Þ e�md

1� e�mh

	 

(14.50)

Buijs et al. (1998) have provided an experimental

comparison of the simple background correction and

the over-subtraction correction methods of Thomas,

Buijs, and Kojima based upon a phantom study repli-

cating a kidney within a uniform background activity

distribution. They concluded, in this one example, that

the Buijs and Kojima methods were superior and

that the Kojima result was preferable at low source-

to-background activity ratios.

Overlapping Regions of Activity

Despite its simplicity, the conjugate-view method has

the disadvantage of the likelihood of overlapping

regions each containing activity and the need to isolate

the activities in each source region. Common exam-

ples are the overlap of the liver and the gallbladder, the
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spleen and the left kidney and the liver and right

kidney. The second example can be further compli-

cated by possible activity in the bowel overlapping the

left kidney.

There are a number of possible approaches to

approximately isolating the activity contents in the

individual overlapping regions. The simplest is appli-

cable to paired organs, such as the kidneys. One can

measure the activity content in the organ with no over-

lap and assume that its partner has the same amount

of activity.10 Another method suggested by Stabin

(2008) is to map the RoI drawn over source regions

which are not overlapped in an image taken at a differ-

ent time and apply it to the image when overlap occurs.

Another approach to isolating the overlapping

activities is described here. Consider the general case

of two organs overlapping a third (this could be the

case of the right kidney overlapped by the liver and by

bowel content activity). A simple example is shown in

Fig. 14.11.

In this example, region 1 could correspond to liver,

region 2 to the right kidney and region 3 to the bowel

contents. A total of five RoIs would be drawn: three

over the unoverlapped regions P1, P2, and P3 and

two over the overlaps P12 and P23. The mean numbers

of counts per pixel in the un-overlapped regions are

N1=P1;N2=P2; and N3=P3 and it is assumed that these

mean numbers are the same in the overlapped regions.

Hence, the actual numbers of counts in the three

regions are simply,

N01 ¼
N1

P1
P1 þ P12ð Þ (14.51)

N02 ¼
N2

P2
P2 þ P12 þ P23ð Þ (14.52)

N03 ¼
N3

P3
P3 þ P23ð Þ (14.53)

The above approach requires that the user be able to

accurately draw the five RoIs or for the image analysis

software to allow the user to draw only the three main

RoIs and allow it to isolate the overlap and nonoverlap

counts and pixels.

Collimator Selection

The selection of the collimator to use in a Phase I study

of a diagnostic radiopharmaceutical will be driven by

the need to maximize detector sensitivity so as to mini-

mize the amount of administered activity and the con-

sequent absorbed dose to the (typically, healthy)

volunteer. Hence, the collimator will be a high sensitiv-

ity or general purpose type with an energy selection

based upon the radionuclide to be imaged. In nearly all

cases, a parallel hole collimator is sufficient for extract-

ing a biodistribution suitable for calculating the

absorbed dose from. For a 99mTc- or 123I-labeled radio-

nuclide, a low-energy collimator is sufficient; a high-

sensitivity collimator has a reduced spatial resolution

but high sensitivity (about 400 cps/MBq), whereas a

general purpose collimator will have a better spatial

resolution but a reduced sensitivity (about 150 cps/

MBq). In Phases II and III, the collimator selection

will be defined by the clinical problem at hand to image.

Validation of the Conjugate-View Method

The conjugate-view method was tested empirically by

Hammond et al. (1984) using a model of a 4 cm

diameter lesion in a phantom for 131I and errors of

less than 10% were reported. An additional validation

of the method was performed by Eary et al. (1989) for
131I using two test models. The first was an anthropo-

morphic phantom with chambers representing organs

containing known concentrations of activities. The

second was through in vivo imaging of dogs injected

with a 131I-labeled antibody which were subsequently

sacrificed and organs harvested and assayed for radio-

active content. The 131I activities in the organs were

N1

P1

N12 N2

N3 

N23 

P23 

P3

P2
P12

Fig. 14.11 An example of two regions (1 and 3) overlapping a

third (2). The Ni and Pi (i ¼ 1, 2, 3) are the numbers of counts

and number of pixels in the nonoverlapping regions. The Nij and

Pij (i ¼ 1, 2; j ¼ 2, 3) are those in the overlaps

10The condition of an atrophic kidney with compensatory hyper-

trophy in the contralateral kidney, which is not unknown, would

make this method unusable.
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compared with those estimated through the application

of (14.10). Higher levels of accuracy were stated.

An interesting validation of the conjugate-view

method of quantification was performed by Jönsson

et al. (2005) through Monte Carlo simulation of 99mTc

photon transport in the Zubal voxel-based phantom

described in Chap. 12 through to a NaI(Tl) crystal

with a low-energy general purpose collimator. The

biokinetics of the 99mTc in the phantom were modeled

by measurements of the biodistribution of 99mTc-

sestamibi in the Wistar rat. Two methods of scatter

correction, the effective linear attenuation coefficient

and the TEW method, were examined. The Buijs

method of background correction was applied. Accu-

racy of the order of �10% was obtained in nonover-

lapping organs where scatter was corrected by the

TEW method. However, overestimation of organ

activities by more than 90% was possible in the case

of overlapping organs.

14.3.2.2 Quantitative SPECT for Dosimetry

Calculations

Introduction

Planar scintigraphy as a means of obtaining in vivo

activity data has the two great advantages of relative

ease of implementation and the lack of a need of high

administered activities. This latter point is particularly

important in diagnostic radiopharmaceutical research

for which the Phase I component generally relies upon

healthy volunteers, for whom the absorbed dose must

be minimized. But planar scintigraphy suffers usually

from the disadvantages of a lack of information on

source organ thickness and of the overlaps between

regions in the two conjugate views. While two correc-

tion factors for these two deficiencies have been

discussed, tomographic imaging resolves these by

providing three-dimensional image datasets.

Single-photon emission computed tomography

(SPECT) suffers, itself, from distinct disadvantages.

As SPECT is based upon the acquisition of multiple

projections over an orbit (typically 64 or 128 projec-

tions) and over a clinically-practical acquisition dura-

tion, a higher amount of administered activity than

that used in planar imaging is required in order to

reduce the quantum noise in each image projection to

acceptable levels. Depending upon the number of pro-

jections used and the number of heads on the gamma

camera, the orbital period is typically about 30 min,

but can range from about 15 min to about 45 min.

Combining this protracted image acquisition duration

with the fact that the axial length of the limited useful

field-of-view in a typical conventional gamma camera,

whole-body SPECT acquisitions are impractical and

whole-body tomographic biodistributions cannot be

obtained. These two limitations of SPECT thus cur-

rently restrict the use of quantitative SPECT in nuclear

medicine dosimetry to therapeutic applications where

the absorbed dose to a relatively small target volume

need only be known. As with the planar scintigraphy

methodology just discussed, quantitative SPECT

requires careful consideration of image degradation

due to attenuation and scattered photons. Spatial reso-

lution is restricted by the partial-volume effect so that

accurate quantitative data can be had only from struc-

tures about three times or greater than the total system

spatial resolution (Hoffman et al. 1977). Even so,

quantitative SPECT does play a role in nuclear medi-

cine dosimetry, primarily in therapeutic applications.

This subsection summarizes the principles of quantita-

tive SPECT. An excellent detailed discussion can be

found in the review by Rosenthal et al. (1995). Quanti-

tative SPECT can be differentiated into relative and

absolute quantification. In relative quantification,

quantification is of the relative numbers of counts

within RoIs within the same image or sets of images.

Absolute quantification, however, yields an absolute

measure of activity within the measure (e.g., Bq/voxel,

Bq/mL, Bq/g, or Bq/organ). Examples of quantitative

SPECT used in dosimetry calculations can be found in

Strand et al. (1994b), Giap et al. (1995), and Gonzalez-

Trotter et al. (2001).

The argument of whether or not SPECT can deliver

sufficiently accurate quantification of in vivo activity

remains active as this ability to deliver quantifiable

data is dependent upon corrections for photon scatter

and attenuation.

Scatter Compensation

Compensation for the effects of scattered photons is

crucial in SPECT imaging as these lead to reductions

in image contrast and spatial resolution and affect

the relationship between the source region activity
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and the corresponding signal in the reconstructed

image. The methods of scatter correction described

in the above discussion of quantitative planar imaging

are also applicable to SPECT; indeed many of the

scatter correction methods noted were developed orig-

inally for SPECT imaging.

Attenuation Correction

The discussion of quantitative conjugate-view planar

scintigraphy highlighted the need for the correction of

photon attenuation in order to accurately quantify

activity in vivo. Failure to account for attenuation

will lead to an underestimation of the in vivo activity

being measured and a degradation of image quality at

depth.

Attenuation corrections in SPECT can be provided

in a variety of ways. An analytical form is through the

simple assumption of Chang (1978) that the imaged

anatomy is homogeneous with a fixed linear attenuation

coefficient applied. This correction is applied postre-

construction; for each reconstructed pixel, an average

attenuation factor is calculated and the pixel value in the

uncorrected tomographic image divided by this value.

Clearly, this is a simplistic model and is not applicable

to heterogeneous anatomy, such as the thorax.

Empirical attenuation correction methods are based

upon attenuation measurements. These require a trans-

mission source. This could be a radionuclide (e.g.,
153Gd which emits a range of X and g rays, of which

the 97.5 and 103 keV are used for transmission imag-

ing) or polyenergetic X-rays. In modern SPECT–CT

platforms, attenuation correction is provided by a CT

scan acquired of the subject at very nearly the same

time as the acquisition of the emission image. In all

cases, the attenuation correction is obtained by first

imaging without the subject present and then with. In

CT-derived attenuation, the attenuation map is

described by the matrix of CT numbers associated

with each pixel in a tomographic slice. The CT num-

ber is a measure of the attenuation and is defined by,

CT# ¼ m
mH2O

� 1

	 


 1000 (14.54)

where m is the linear attenuation coefficient of the

medium and mH2O
is the linear attenuation coefficient

for water. The unit of the CT number is the Hounsfield

unit (HU); for air, the CT number is �1,000 HU and

for water it is 0 HU. As the attenuation coefficient is

required at the emission photon energy whereas that

measured is for the polyenergetic X-ray beam from the

CT scanner, conversion of the linear attenuation coef-

ficients are required, as demonstrated by the calibra-

tion curve of Fig. 14.12.

Such a calibration curve is obtained empirically by

imaging a phantom containing materials of different

attenuation coefficients. In Fig. 14.12, the conversion

for CT numbers less than zero is a straightforward

proportionality,

mTissue;Em ¼
mH2O;Em

1000

 CT# (14.55)

where the Em subscript refers to the emission photon

energy. The proportionality is the consequence of the

near-equivalence of atomic numbers between soft tis-

sue and water. Bone yields CT numbers exceeding

zero, but the slope changes. Hence, the linear mapping

of the linear attenuation coefficient is

mTissue;Em ¼ mH2O;Em

þ mH2O;kVp

mBone;Em � mH2O;Em

mBone;kVp � mH2O;kVp

 !


 CT#

1000

(14.56)

where the kVp subscript refers to the X-ray spectrum

of the CT scanner.

Reconstruction

In order to use a SPECT image as a means of quantifi-

cation, the SPECT data must reflect accurately the

spatial distribution of activity (Rosenthal et al. 1996).

This then places demands upon the reconstruction

method to transfer the quantitative data from the pro-

jection image set to the tomographic image. SPECT

reconstruction is performed using either backprojec-

tion or iterative methods (Bruyant 2002).

In basic backprojection, the measured projection

data are reprojected into image space. This results in

two different types of artifacts. The first is the streak
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artifact which results in a “star-like” tomographic

image. The other is due to quantum noise due to the

random nature of radioactive decay. The former can

result in counts appearing outside the subject’s body;

further, if the reconstruction method’s normalization

requires that the total number of counts from the

projection data be preserved in the tomographic vol-

ume, then an underestimate of the activity within the

body will be had. While the star artifact can be mini-

mized by the use of higher numbers of projections, this

will result in an increase in the amount of quantum

noise in each projection if a constant orbit time is

maintained. These effects can be reduced in image

space by convolving the image data with appropriate

filter, a procedure known as filtered backprojection

(FBP). As convolution can be computationally inten-

sive, the image data are Fourier transformed into the

frequency domain. A ramp filter is applied to remove

the streak artifacts in conjunction with a low-pass filter

(e.g., Butterworth) to remove noise. The filtered data

are then inverse Fourier transformed to yield the

reconstructed volume, but this does come at a cost

due to degraded spatial resolution as a result of the

low-pass filtering. In addition, the reconstruction qual-

ity improves with the number of projections acquired.

Iterative reconstruction compares the projections

from the reconstructed image with the acquired pro-

jections and iteratively modifies the reconstructed

image in order to minimize the difference between

the two projection sets. Although iterative reconstruc-

tion predated FBP in its applications to SPECT, it has

become increasingly popular now due to the availabil-

ity of increased computation power. A statistical

approach to this type of iterative reconstruction is

the maximum-likelihood-expectation maximization

(MLEM) method (Dempster et al. 1977). This method

is perhaps the most commonly-used iterative recon-

struction method used in SPECT (Lange and Carson

1984). Newer approaches, such as ordered subsets

expectation maximization (OSEM) method, partitions

the data into subsets before modifying the image

(Hudson and Larkin 1994). Iterative reconstruction

offers the additional advantage of incorporating atten-

uation correction during the reconstruction process

(e.g., Moore et al. 1982).

The reader can refer to the references provided in

order to obtain a deeper knowledge of tomographic

reconstruction. But what is of interest here is what

reconstruction method to use when a tomographic data

set is to be used for activity quantification. Clearly, the

reconstruction should have as little noise as feasible so

that organs can be identified and segmented for activ-

ity quantification. In addition, the reconstruction must

be linear; in other words, the integrity of the activity
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determined in the projection data must be retained in

the reconstructed image. For further practical advice

in using SPECT quantification, the reader is referred to

Rosenthal et al. (1996).

14.3.3 Positron-Emitting Radionuclides

14.3.3.1 Introduction

Positron emission tomography (PET) offers a number

of significant advantages over SPECT, a key one being

the use of electronic “collimation” rather than attenua-

tive collimation. Because of the resulting high-

acceptance solid angle, this yields a detection efficiency

of up to two orders-of-magnitude greater than that of

SPECT for comparable fields-of-view which, as a

result, makes whole-body tomographic biodistribution

measurements feasible for positron-emitting radionu-

clides, unlike the current technology of SPECT. On

the other hand, PET is a more expensive technology

than SPECT and demands an involved infrastructure

for the production of positron-emitting radionuclides

(Chap. 3) and the manufacturing of PET radiopharma-

ceuticals. One physical attribute of the majority of

positron-emitting radionuclides that offers challenges

in acquiring whole-body biodistributions is the rela-

tively short half-life. For example, those of 11C, 15O,

and 18F are 20.38 min, 122.24 s and 109.77 min,

respectively; that of 124I is 4.18 days. Hence, accurate

whole-body biodistributions necessary for internal

radiation dosimetry calculations can be acquired for
18F and 124I, but would be challenging for 11C. Clearly,
15O would not be able to offer suitable data, although

the ingenious method of external placement of TLDs

and the use of precalculated S-factors by Deloar et al.

(1997) provided organ absorbed dose estimates for a
15O study as described earlier.

This subsection discusses the use of PET in biodis-

tribution and radiation dosimetry evaluation and the

dosimetric attributes of positron-emitting radio-

nuclides. The discussion is, however, limited to

providing an overview only of the attributes of PET

that are relevant to the determination of a biodistribu-

tion of a positron-emitting radiopharmaceutical. It

is not intended to be a detailed exposition of PET

technology or data acquisition, reconstruction, and

quantitative analysis; the reader is directed towards,

for examples, the contemporary chapters by Bailey

et al. (2003), Bailey (2003), Koeppe (2008), Meikle

and Badawi (2003) and Turkington (2008), and the

book by Saha (2005) for such comprehensive

accounts. Rather, the limited intent of this subsection

is to highlight those attributes of PET imaging that the

nuclear medicine physicist need be aware of when

measuring the biodistribution of a positron-emitting

radionuclide for later evaluation of the associated

internal radiation dosimetry. In particular, the impacts

of scatter and random events and their corrections,

two-dimensional and three-dimensional acquisition

modes, corrections for attenuation, and that of image

reconstruction upon quantitative whole-body biodis-

tribution measurements are reviewed.

14.3.3.2 Photon Detection in PET

Event Types

The principle of PET is the detection within a coinci-

dence time window of two collinear 511 keV photons

resulting from an electron–positron annihilation event.

Current-generation PET detectors are typically scintil-

lators with high-atomic numbers so as to increase the

photoelectric absorption of the 511-keV photon. In

addition to the efficiency with which a photon is

stopped, the ideal scintillator would have maximum

light output in the prompt fluorescence response rather

than through the phosphorescence and delayed fluo-

rescence channels; i.e., have as rapid a rise time as

possible and as small a decay constant as possible.

This is necessary in order to maximize the temporal

resolution of the detector. High conversion efficiency

(i.e., high light output) is required; common scintilla-

tor types used in contemporary PET technology are

BGO, LSO, and GSO (Table 9.2).

In modern-day PET scanners, the detectors are

arranged contiguously in a ring around the field-

of-view (FoV) to be imaged. Multiple rings are sited

axially in order to provide an extended axial FoV. A

typical radial (transaxial) FoV is about 60 cm and

the typical axial FoV is about 15 cm. Tungsten or

lead annular septa can be inserted between these

rings so as to reduce the detection of scattered photons

depending upon whether the acquisition is in two- or
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three-dimensional mode, as described below. All com-

mercially-available PET scanners are now PET/CT

hybrid platforms, where the CT component is used to

provide transmission data for attenuation correction to

the emission data and/or anatomical imaging for

subsequent coregistration of functional and anatomi-

cal data. Attenuation correction using external radia-

tion sources and the consequent radiation absorbed

dose presented to the subject are discussed later.

Photon pairs are created as a result of an electron–

positron annihilation, each with an energy equal to the

positron/electron rest-mass, 511 keV. The annihilation

site is unlikely to be coincident with the site of the

positron emission (i.e., the position of the radionu-

clide), but will rather be at some distance away fol-

lowing the positron’s moving through and slowing

down in tissue. This sets a minimum uncertainty in

the spatial localization of the radionuclide. The maxi-

mum distance between emission and annihilation sites

is set by the range of the emitted positron. This, in

turn, is a function of the positron kinetic energy spec-

trum which is of the form predicted by the Fermi

theory and which is dictated by the transition matrix

element, the kinematics of three-body final state and

the atomic number of the postdecay nucleus (which

presents a static repulsive Coulomb field to the posi-

tron). Superimposed upon this range are the effects of

multiple scattering and range straggling. For example,

the effective positron ranges for 18F and 82Rb are less

than 1 mm and of the order of 10 mm, respectively.

The two annihilation photons are exactly collinear

only if the electron–positron annihilation occurs at

rest; deviation from collinearity in dual-photon emis-

sion is a consequence of annihilation in flight (in

which, collinearity exists only in the center-of-mass

reference frame). As a result, there will be a spread in

the photon emissions of approximately � 0.25� around
the 180� collinear trajectory. As described in Chap. 7,

single photon emissions can result from positron anni-

hilation on a bound atomic electron where the recoil

nucleus takes up the remnant momentum and triple

emission follows from the decay of the triplet state of

positronium and the subsequent annihilation . These

annihilations photons have energies differing from

511 keV and would not be recorded in the image-

forming process through energy discrimination.

Consider the annihilation event A shown in

Fig. 14.13 and which represents a “true” detected

coincidence in which the directions traveled by the

photons are 180� apart. A photon is detected first in a

scintillator element and generates an electronic signal

with a waveform of the shape of Fig. 9.40.11 If this

output exceeds a predefined amplitude threshold, a

photon is defined as having been detected and a coin-

cidence window of width TWindow triggered, as shown

in Fig. 14.14. Should a second detection event occur in

another detection element within the time TWindow,

then a coincidence is defined to have occurred. In the

case of the “true coincidence” of Event A, the line-of-

response (LoR) joining the two detection elements SA1
and SA2 is coincident with the trajectories of the two

annihilation photons. This would demonstrate cor-

rectly that the annihilation event occurred at some

point along the LoR and that the annihilation photons

did not undergo any nature of interaction between the

annihilation site and the detectors.

It is also possible for one of the photons from an

annihilation event to be detected in one element (SB1),

but for the second photon to undergo Compton scatter

in vivo and be subsequently detected in another ele-

ment (SB2). This does not reflect a collinear detection

(Event B) and is known as a scatter coincidence or

A

C

DB

SD

SB2

SC

SA1

SB1

SA2

Fig. 14.13 True, scatter and random coincidences in PET.

Refer to the text for a description. Although not shown, multiple

coincidences result from a true coincidence and a random event

occurring within the coincidence window TWindow of Fig. 14.14

11See, for example, Bailey (2003) for a description of the scin-

tillation light photon-electron conversion detection element.
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event. The resulting LoR, shown by the dotted line in

Fig. 14.13, does not include the correct position of the

original annihilation event. Scattered coincidences

add a background to the image created by true coin-

cidences which changes relatively slowly over posi-

tion and leads to reduced contrast and, importantly for

biodistribution estimates, an overestimate of activity

concentration.

A third possible coincidence scenario is demon-

strated by two independent annihilation events occur-

ring at points C and D and a photon from each

annihilation being detected at elements Sc and SD
within the coincidence detection window. This is

known as a random coincidence or event and, again,

an erroneous LoR is generated and an overestimate of

the activity concentration occurs.

A “prompt” event is defined as one in which any

pair of photons, giving rise to true coincidences, scat-

tered coincidences, or random coincidences are

detected in two detectors within the coincidence time

window.12 The rate at which prompt coincidences

occur is the sum of the rates of these three event types,

_NPrompt ¼ _NTrue þ _NScat þ _NRand (14.57)

In (14.57), _NTrue represents those events which are

to be used in the tomographic reconstruction in order

to yield a quantitative measurement of activity con-

centration. Hence, it is necessary to determine _NScat

and _NRand and to remove these contributions from
_NPrompt.

Random Events

The setting of the length of TWindow is dictated by two

main factors. The first is the variability set by the

inherent timing resolution resulting from the light

output rise time of the scintillator and the timing

electronics. The second factor is a consequence of

the combination of the photon time-of-flight and the

radial FoV, the dimension which is limited by the

scanner diameter. As the detector ring diameter is of

the order of 100 cm for a whole-body scanner, the

scanner geometry sets a minimum value of 3.3 ns for

TWindow purely on the basis of photon transport. Typi-

cal values of TWindow are 12 ns for BGO scintillators

decreasing to 8 and 6 ns for GSO and LSO scintilla-

tors, respectively.

The rate at which random coincidences are detected

will increase with both TWindow and the amount of

activity present. _NRand is proportional to the product

of the acceptance window length and, due to the sta-

tistically independent detection of photons by a detec-

tor pair, the square of the activity. These random

events add uncorrelated data and reduce image con-

trast. On the other hand, true coincidence events are

correlated and, hence, linearly proportional to the

activity. As a result, the random coincidence event

rate will exceed that of the true coincidences at high

levels of activity.

The random coincidence rate can be determined by

measuring the rate at which “single” events are

detected. These are events detected without correla-

tion to any of the paired coincidence detection. Con-

sider two detectors identified by indices i and j and an

event detected by detector i at time t ¼ 0. A coinci-

dence timing window of duration TWindow is gener-

ated. If there is an event in detector j during the time

interval �½TWindow and þ½TWindow, then a coinci-

dence between detectors i and j is concluded to have

t1 t2
Time

Detector 2

TWindow

Detector 1

Coincidence Acceptance  Window

Fig. 14.14 PET coincidence timing. A scintillation signal in

one detector, due to a detected photon, which exceeds a pre-

defined threshold raises a start pulse at time t1 which triggers a

coincidence acceptance window of temporal width TWindow.

Should a second detection event occur in another detector at

time t2 within the coincidence window, such that t2–t1 � TWindow,

then a coincidence between the two detector elements is defined

to have occurred

12A scattered coincidence is, strictly speaking, a “true” coinci-

dence as both detections arise from the same annihilation event,

even though an incorrect LoR results. For the purpose of discus-

sion here, a “true” coincidence is defined as that arising from the

pair of unscattered photons created by the same electron–

positron annihilation.
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occurred and the line-of-response LoRij between the

two detectors generated. Note that the total time dur-

ing which a coincidence may occur is 2TWindow which

is referred to as the resolving time. Let _Ni be the

detection rate of single events in detector i and _Nj be

that of detector j. It is assumed that no true coinci-

dences occur so that _Ni and _Nj can be assumed to be

statistically independent. Then, the rate of random

coincidences is,

_NRand ¼ 2TWindow
_Ni
_Nj (14.58)

If the detector dead time is sufficiently small that it

can be neglected, then (14.58) implies that the ran-

doms event rate is proportional to the square of the

activity whereas the true coincidences rate will be

proportional to the activity. Equation (14.58) can be

the basis for correcting for random events through the

recording of individual events and performing a post

hoc correction. Another means of correcting for ran-

dom coincidences is the delayed coincidence method

in which two coincidence circuits are used. One is the

undelayed one shown in Fig. 14.14, whereas the other

is delayed by several times the duration TWindow. As

any correlations between events are removed by the

time delay, the resulting coincidences must be due to

random events. This rate _NRand is then subtracted from

the prompt event rate to yield a rate which is the sum

of that due to true coincidences and that due to scat-

tered events,

_NTrue þ _NScat ¼ _NPrompt � _NRand: (14.59)

Much development in PET technology has focused

on faster scintillator materials and faster electronics

allowing TWindow to be reduced, thus lowering the

random event rate without compromising the true

coincidences rate.

Scatter Events

Introduction

The removal of the contributions from scattered

photons, given by _NScat, is next required in order to

yield the desired true coincidence rate. As in planar

scintigraphy and SPECT, these scattered events

degrade image contrast and lead to activity quantifi-

cation overestimations. The contribution from scatter

events can be reduced by inserting lead or tungsten

annular septa between the detector rings in order to

create the two-dimensional acquisition mode (to be

discussed). This, however, reduces the sensitivity of

the scanner, a result which may not be desirable if a

whole-body biodistribution study were required to

use minimal administered activity in order to reduce

the radiation absorbed dose burden. Consequently,

there has been considerable interest in the develop-

ment of methods to remove the contributions of from

photons that have been Compton-scattered in vivo

when the scanner is operated in the three-dimensional

acquisition mode (i.e., with the septa retracted). In

such a mode, the signal-to-noise ratio is improved,

but at a cost of an increase in the number of scatter

events. Zaidi (2000) categorized three-dimensional

PET scatter compensation techniques as:

– Photon energy discrimination

– Convolution/subtraction

– Mathematical estimation of the Compton scatter

contribution

– Reconstruction based

Photon Energy Discrimination

The photon energy discrimination methods are

based upon the multiple-energy window discrimina-

tion described earlier. The scatter-rejection ability of

this method can be restricted due to the limited

energy resolution of scintillators used and the need

to avoid rejecting true coincidences. For example,

Tarantola et al. (2003) report that a typical discrimi-

nation window setting for BGO is from between

300–350 and 650 keV. However, some investigators

have investigated dual-energy (Grootonk et al. 1996)

and triple-energy (Shao et al. 1994) discrimination

in PET.

Convolution Method

This method (Bergstrom et al. 1983; Bailey and

Meikle 1994; Bentourkia and Lecomte 1999) essen-

tially treats the measured energy photopeak as being

the convolution of the projection of the unscattered

photons and a scatter function. For example (Meikle

and Badawi 2003), the projected scatter contribution

is, in the three-dimensional-acquisition mode,

PSc ¼
ð1

�1
dt PUnsc tð Þh s� t; tð Þ (14.60)
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where
Ð1
�1 dt PUnsc tð Þ is the one-dimensional projec-

tion of the true activity distribution and h(s, t) is the
scatter contribution to the position s along the radial

projection due to activity positioned at t. This can be

determined from measurements of a line source of

activity within a scattering medium. However,

PUnsc(t) cannot be measured and, in practice, is

replaced by the observed projection PObs(t) which

preserves acceptable accuracy in activity quantifica-

tion. Should the scatter contribution be spatially

invariant, (14.60) is a convolution. The resulting scat-

ter estimate is subtracted from the observed projection

data.

In the three-dimensional-acquisition mode oper-

ated on a multi-detector ring platform with the septa

retracted, this method is extended to an iterative

approach where the unscattered projection data in the

nth iteration is (Bailey and Meikle 1994),

PnUnsc s; zð Þ ¼ PObsðs; zÞ
� k Pn�1Unsc s; zð Þ � h s; zð Þ� � (14.61)

where z is the axial variable and the convolution is

performed in two dimensions.

Mathematical Estimation

The physics of Compton scatter and the underlying

Klein-Nishina cross sections are well known. Conse-

quently, the scatter contribution to the measured pro-

jection data can, in principle, be estimated and then

subtracted (Ollinger 1996).

The scatter contribution can be calculated analyti-

cally using the Klein-Nishina cross sections. It is, how-

ever, limited in practice to estimating the contribution

from single-order Compton scatter due to the extensive

computation load and time required by calculation of

higher-order multiple scatters. Monte Carlo simulation

of photon transport can, in principle, yield a more

accurate scatter estimate as it will account for multiple

scatter contributions (Levin et al. 1995). Again, the

computation load can be excessive in yielding a statis-

tically powerful result.

Reconstruction Based

As in SPECT, the two tomographic reconstruction

means used in PET are FBP and MLEM (OSEM).

Scatter correction can be incorporated within the iter-

ative reconstruction method. Zaidi (2000) discusses

the hypotheses upon which the correction method is

based. First, it is assumed that that spatial variability of

the scatter component in the image is limited and,

hence, represents a low-frequency component in Four-

ier space. The second is that the low-frequency com-

ponents will converge faster than the high-frequency

ones. A single iteration of the OSEM algorithm is then

used to estimate the scatter component, which can then

be removed from the total data set.

Performance Metrics

A useful metric of count performance is the noise-

equivalent count rate, NECR, defined as (Strother

et al. 1990),

NECR ¼
_N2
True

_NPr ompt

(14.62)

where the prompt event count rate _NPr ompt is given by

(14.57). The NECR represents the count rate which

would give the same signal-to-noise ratio in the detec-

tion data had the scattered and random coincidences

not been present.

Figure 14.15 shows count rates due to the combina-

tion of true and scattered coincidences, random coin-

cidences and the NECR. The “no counting loss” curve

is the extrapolated count rate measured at low activity

values where the contribution of random coincidences

and detector dead-time are negligible. The best opera-

ting condition is for an activity concentration at which

the NECR is maximized.

Another metric commonly used in characterizing

PET scanner performance is the scatter fraction,

SF ¼
_NScat

_NTrue þ _NScat

(14.63)

The scatter fraction is measured using a low-activity

source so that _NRand can be considered negligible.

Dead-Time Correction

When a photon is absorbed in a scintillation crystal

block, the light output is detected and Anger logic

used to decode the spatial position of the interaction

within the block. Energy discrimination is applied and

the electronic processing of a coincidence event initiated

if the photon energy is within the energy acceptance
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window. The system dead time is the combined times of

these processes during which no further photon events

can be processed. As described in Chap. 5, mathematical

corrections can be applied to compensate for the losses

due to dead time in the region where the measured count

rate is linear, or very nearly linear, with the actual count

rate. At high activities, where this linearity fails, this

nature of correction is no longer robust.

14.3.3.3 Data Acquisition and Corrections in PET

Two-Dimensional and Three-Dimensional

Acquisition Modes

PET data can be acquired in either two-dimensional-

or three-dimensional- acquisition modes, depending

upon whether or not annular septa are inserted

between the detection rings, as shown in Fig. 14.16.

The significant difference between the two acquisition

modes is the extent of the radial FoV which yields

differences in sensitivities to true, random, and scat-

tered events.

In the two-dimensional-acquisition mode, the

annular septa restrict the number of LoRs between

detector rings. Data from a few adjacent rings, the

number depending upon the geometry, are grouped

into discrete transaxial planes. Greater detection sen-

sitivity, especially at the center of the axial FoV, can

be achieved by removing these septa and operating in

the three-dimensional-acquisition mode where LoRs

between any two rings can be used. In this case, there

is no grouping of data into individual planes. The

increase in sensitivity between modes is by a factor

of about 3–5. Reconstruction algorithms will also dif-

fer from those used in the two-dimensional-acquisition

mode.

With the removal of the septa, the number of coin-

cidences increases. The lack of septa increases the

number of scatter coincidences, as shown in

Fig. 14.17. With the septa present, the scattered photon

is absorbed by a septum and a coincidence is not

registered. With the septa removed, the same photon

would have been detected and an erroneous LoR

created as shown. The scatter correction methods
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Fig. 14.15 Conceptual

count-rate curves; see text for

description (after Bailey 2003)
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Fig. 14.16 Two- and three-dimensional acquisition configura-

tions in axial cut-aways of a PET scanner (not drawn to scale).

Septa slimit the number of cross-ring LoRs in the 2D-acquisition

mode. The dashed lines indicate the LoRs

14.3 Imaging Quantification Methods 561



reviewed earlier are essential for both two-dimen-

sional and three-dimensional PET acquisition but

must deal with a much higher fraction in three-dimen-

sional (35–40% as opposed to 15–20%).

Another important difference exists between the

two acquisition modes as demonstrated in Fig. 14.18.

In three-dimensional-acquisition mode, extending the

axial FoV will increase the scanner’s acceptance angle

and consequently increase the scanner’s sensitivities

to random coincidences and scattered coincidences,

although the rate of true coincidences will also

increase. Extending the radial length of the side

shields of the detector ring will reduce the effects of

random coincidences occurring from events beyond

the axial length of the detector rings, as suggested by

Fig. 14.18 (Spinks et al. 1998).

From Figs. 14.16 and 14.18, it is clear that the

detection sensitivity is greatest in three-dimensional-

acquisition mode and that this sensitivity is axially-

dependent. Figure 14.19 shows calculated sensitivity

profiles along the axial FoV of a 16-ring PET scanner

as a function of detector plane for both two-dimen-

sional- and three-dimensional-acquisition modes. The

peaked sensitivity of the three-dimensional-acquisi-

tion mode must be considered in whole-body PET

acquisitions where whole-body images are generated

by the concatenation of single axial FoVs. Significant

overlaps of these FoVs are required in order to equalize

the axial sensitivity.

Attenuation Correction

The correction of photon attenuation is, as in planar

scintigraphy and SPECT, essential for both image

quality and quantification, the latter being critical for

biodistribution measurements. As two photons are

detected in coincidence in order to generate the PET

image, absorption, or scatter of either photon (i.e.,

attenuation) will result in the loss of a true coin-

cidence. The result, in the absence of attenuation

correction, would be reduced apparent radionuclide

2D-acquisition

3D-acquisition

Fig. 14.18 The difference in the axial fields-of-view between

2D- and 3D-acquisition modes

2D-acquisition

3D-acquisition

Fig. 14.17 Difference in scatter coincidences between 2D- and

3D-acquisition modes. The dashed line indicates the LoR
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Fig. 14.19 Theoretical relative sensitivity along the radial

planes for a PET scanner with 16 rings predicted from the
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concentration from positron–electron annihilations at

depth in tissue. The net probability of neither photon

being absorbed is, for one photon having a pathlength

d1 in tissue and the other having a pathlength d2 where

d1 þ d2 ¼ D, where D is the total thickness along the

projection,

PNoAbs ¼ e
�
Ðd1
0

dx mðxÞ
e
�
Ðd2
0

dx mðxÞ

¼ e
�
ÐD
0

dxmðxÞ
(14.64)

The line integrals of linear attenuation coefficients

are determined in the same fashion as discussed pre-

viously in SPECT attenuation correction. The mea-

sured _NTrue value along the pathlength is then scaled

by 1=PNoAbs to correct for photon number loss due to

attenuation. The attenuation map is determined by

measuring the transmission using either a positron-

emitting radionuclide (e.g., 68Ge) in which events are

detected in coincidence, a single-photon-emitting

radionuclide (e.g., 137Cs) or, in modern PET/CT plat-

forms, a polyenergetic X-ray beam. In the latter two

cases, energy scaling of the attenuation coefficients to

the 511 keV photon energy is required.

Normalization

The outcome of a PET biodistribution study is the

mean fraction of administered activity present in

organs (or suborgan components or even voxels). As

the administered activity is a known quantity, this

requires absolute quantification of activity in the PET

image.

The sensitivities of LoRs will be variable and

depend upon, for example, the efficiencies of the

detectors and of the subtended solid angle. These

sensitivities must be normalized and equated so that

an absolute value of activity per voxel can be accu-

rately obtained. Meikle and Badawi (2003) provide a

succinct summary of normalization techniques to cor-

rect for the various factors that induce variable LoR

sensitivities. A direct method is to irradiate all LoRs

using a linear 68Ge source; the individual LoR normali-

zation coefficients are proportional to the reciprocal

of the number of counts in each LoR. However this

suffers from requiring extended irradiation times and a

highly uniform linear source; further, the scattering

conditions in the normalization scan will differ mark-

edly from that in clinical imaging. A component-based

model for normalization gives the activity along the

LoR joining the ith detector in the jth ring with the kth

detector in the lth ring as,

A ijklð Þ ¼k _N
ijklð Þ
Prompt� _N

ijklð Þ
Scat � _N

ijklð Þ
Rand

 �


 1
.
= ijklð Þ

 �
T

ijklð Þ
Corr Z

ijklð Þ
True

� (14.65)

where = ijklð Þ is the measured transmission along the

LoR (taken from (14.64)) and T
ijklð Þ
Corr is the dead time

correction factor (Chap. 5). Z ijklð Þ
True is the normalization

coefficient for true coincidences along the LoR and k
is a calibration factor to convert count rate to activity.

As _N
ijklð Þ
Scat cannot be measured but only estimated or

calculated, special consideration is required. In two-

dimensional-acquisition mode where scatter is a small

component and slowly varying over separate the

LoRs. This is not the case in the three-dimensional-

acquisition mode and (14.65) is modified by the

approximation,

A ijklð Þ ¼ k _N
ijklð Þ
Pr ompt �

_N
ijklð Þ
Scat;Calc

Z ijklð Þ
Scat

� _N
ijklð Þ
Rand

 ! 


 1
.
= ijklð Þ

 �
T

ijklð Þ
Corr Z

ijklð Þ
True

�
(14.66)

where _N
ijklð Þ
Scat;Calc is the calculated scatter rate and Z ijklð Þ

Scat

is the normalization coefficient for the scatter coinci-

dences, Z ijklð Þ
Scat 6¼ Z ijklð Þ

True (Ollinger 1995). The true and

scatter coincidences normalization coefficients are

each the product of a variety of efficiency factors

that can be determined empirically. The interested

reader is referred to Meikle and Badawi (2003) for a

detailed description of such measurements.

14.3.3.4 Biodistribution Acquisitions with PET

PET Scanner Characteristics Relevant to

Biodistribution Acquisitions

As with any other imaging system, the main metrics of

PET scanner performance are characterized by its
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spatial resolution and detection sensitivity. PET spa-

tial resolution is defined through the quadrature sum of

the effects due to the noncollinearity of the two g rays

created through positron annihilation, the finite posi-

tron range in tissue prior to annihilation and the intrin-

sic resolution set by the detector itself. This latter

resolution is further defined by the separation between

detectors, the transverse width of the detectors and the

depth of interaction of the photon within the detector,

the latter leading to parallax error in defining an LoR.

These effects are all weighted by the nature of the

tomographic reconstruction. In a dosimetric biodistri-

bution study, the spatial resolution is usually not of

significant consideration as one is evaluating typically

the mean activities within organs in toto. Hence, spa-

tial resolution is of limited concern except in unique

cases where suborgan (voxel) absorbed dose evalua-

tions are performed.

On the other hand, PET sensitivity is of much

greater interest in a biodistribution study where, in

many cases, one is seeking to maximize the sensiti-

vity so as to minimize the administered activity, and

associated radiation absorbed dose burden, provided

to the imaged subject. In PET, sensitivity may be

characterized as the ratio of the true coincidence

detection rate to the actual amount of positron-emit-

ting activity present. A simple and unit-less expres-

sion of this is,

S ¼ Adet

4pr2
e2detlatten (14.67)

where Adet is the cross-sectional area of the detector,

r is the detector ring radius, edet is the detector effi-

ciency (which is squared due to the two detectors)

and latten accounts for attenuation between the source
and detector. This expression displays, as expected,

the increase in sensitivity from switching from two-

dimensional-acquisition mode to three-dimensional-

acquisition mode by the removal of septa and the

increase in Adet.

The measured system sensitivity can be defined by

the ratio of the measured _NTrue to the concentration of

activity being imaged. In the current generation of

PET scanners, the sensitivity is of the order of 5 cps/

Bq/mL in the two-dimensional-acquisition mode and

between 20 and 30 cps/Bq/mL in the three-dimen-

sional-acquisition mode.

Whole-Body PET Acquisitions for Biodistribution

and Dosimetry

Because of the increased sensitivity of the three-

dimensional-acquisition mode to activity from outside

the axial FoV, two-dimensional-acquisition is often

used for imaging the torso so as to reduce the effects

of scattered and random events. In whole-body imag-

ing, this extraneous activity concentration can come

from the torso and extremities. The decision of

whether a two-dimensional- or three-dimensional-

acquisition is used is based upon the type of scin-

tillator and electronics used: e.g., GSO and LSO

scintillators, with their fast response times, allow

high coincidence count rates. While two-dimen-

sional-acquisition reduces the confounding effects of

scatter and randoms (e.g., a scatter fraction of about

15–20% for two-dimensional-acquisition mode vs.

35–40% in three-dimensional-acquisition mode), it

also reduces the sensitivity to true coincidences

which can be compensated for by the administration

of higher amounts of activity.

For a whole-body biodistribution study typical of

that of Phase I in which healthy volunteers are used,

the amount of activity must be reduced in order to

limit the radiation absorbed dose burden presented to

the volunteer. Hence, the combination of high sensi-

tivity (three-dimensional-acquisition mode) and

reduced absorbed dose (low administered activity) is

usually sought in whole-body biodistribution measure-

ments. As a result, special considerations must be

thought of in designing a PET whole-body biodistri-

bution acquisition protocol. First is the combination

of the relatively short axial FoV (typically 15–25 cm)

and the three-dimension-acquisition mode axial sen-

sitivity profile. In current PET scanner designs, data

acquisition during continuous bed movement is not

possible as in a gamma camera. Consequently, a

whole-body PET image is generated by acquiring

images at multiple contiguous bed positions and then

retrospectively concatenating them. As the peaked

axial profile in the three-dimensional-acquisition

mode requires bed positions to be overlapped by up

to 30–50% of the axial FoV (Tarantola et al. 2003), the

effective axial FoV is reduced, thus requiring a larger

number of bed positions to cover a specified total axial

length.

PET has been used in radionuclide therapy

planning. The therapeutic radionuclide is replaced

564 14 The Biodistribution (II): Human



with a positron-emitting isotope of the same element

which is then imaged in order to quantify uptake in the

disease to be treated or in healthy tissues for which

radiotoxicity is to be minimized (Flux et al. 2006).

Examples of such isotope exchanges are 124I for 131I in

patient-specific planning of the treatment of thyroid

carcinoma (Sgouros et al. 2004) and 86Y for 90Y in

planning for therapy of somatostatin receptor-positive

tumors (Rosch et al. 1999; Helisch et al. 2004). As 124I

has a very complicated decay scheme in which only

about 23% of the decays result in positron emission,

quantification is difficult but possible (Pentlow et al.

1996).

Biodistribution Evaluation from PET Images

The PET image set is intrinsically tomographic

providing a three-dimensional representation of the

biodistribution of the positron-emitting radionuclide.

As PET is also inherently quantitative, the calibrated

PET scanner will provide the user with the activity

concentration within a specified VoI and the volume of

that VoI. Corrections for the confounding effects of

background subtraction and organ overlap required in

quantitative planar scintigraphy are not needed in

PET. However, the three-dimensional quantitative

image data of PET can represent an embarrassment

of riches. In evaluating the biodistribution (i.e., the

amount of activity within an organ), the coronal view

of the imaged subject is typically used as it is usually

easier to identify the organs in this view. However,

this coronal view will be of multiple tomographic

slices, usually 128 or 256. This requires the operator

to draw RoIs separately on multiple slices which are

then coalesced to form a VoI. The combination of the

large number of coronal slices, the multiple images

acquired at time points postadministration and the num-

ber of subjects used to define the biodistribution makes

such an approach of evaluating the biodistribution

excruciatingly laborious. Moreover, the low event sta-

tistics for a single slice can make the drawing of an

RoI subject to high variability. There are two possible

solutions to this practical problem. One, for example,

is to simply “collapse” the 128 or 256 coronal slices

and add them to form a single slice (Sprague et al.

2007; McParland et al. 2008). In the second, Sprague

et al. (2007) examined what they termed a “bisected

model” in which the anterior and posterior halves of

the slices were collapsed into two single slices and

subsequently treated as anterior and posterior views as

in conjugate-view scintigraphy. They demonstrated,

for the 18F-labeled radiopharmaceutical under investi-

gation in their work, that the effective doses evaluated

across all three methods (individual slices, bisected

and collapsed) differed by less than 10% and con-

cluded that the simpler and more manageable bisected

and collapsed models were acceptable for pragmatic

PET biodistribution evaluations for relatively broad

biodistributions. In both approaches, the methods of

quantitative planar scintigraphy developed in previ-

ously are applicable, except that the activities

contained in the RoIs are provided directly. Back-

ground compensation and organ overlap corrections

in the summed coronal slices are required and the user

can employ the correction methods previously dis-

cussed or take advantage of the tomographic nature

of the PET image and correct for these effects directly

using, for example, sagittal images.

Radiation Dosimetry of Positron-Emitting

Radionuclides

The limited range of positrons prior to annihilation can

result in a high local absorbed dose due to their energy

exchanges with the medium, as described in Chap. 7.

Hence, one could initially presume that positron-emit-

ting radionuclides necessarily deposit a higher

absorbed dose per unit administered activity than

do single photon-emitting radionuclides. This is not

entirely true as the absorbed dose will, of course, be a

function of the biokinetics of the radiopharmaceutical

and the half-life of the radionuclide, among other

variables. Moreover, most single photon-emitting

radionuclides used in nuclear medicine also emit

low-energy charged particles (e.g., Auger electrons)

which can also result in elevated local absorbed doses.

Of particular interest is the absorbed dose to the uri-

nary bladder wall resulting from its intimate contact

with the radioactive urine it contains. It is possible, as

demonstrated in the earlier discussions of dynamic

urinary bladder models, to be able to influence the

normalized cumulated activity of the bladder contents

and, hence, the absorbed dose to the bladder wall

through modification of the micturition pattern. This

can be achieved by the combination of the hydration

of the patient prior to the administration of a
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radiopharmaceutical which has a high renal excretion

fraction and the allowance of frequent voiding after-

wards. Figure 14.20 shows the absorbed doses to the

urinary bladder wall per unit administered activity

calculated for three single photon-emitting radionu-

clides and five positron-emitting radionuclides as

functions of the voiding interval. This figure should

be considered in conjunction with Fig. 12.9 presented

in the discussion of the Cloutier et al. dynamic urinary

bladder model; that figure demonstrated only the nor-

malized cumulated activity of the urinary bladder con-

tents as a function of voiding interval. Hence, it

reflected only the temporal functions of bladder filling

and voiding and the physical half-lives of the radio-

nuclides considered. Because of the emission of

charged particles by positron-emitting radionuclides

and, indeed, single-photon radionuclides, it is neces-

sary to now expand the discussion to the absorbed dose

which has the potential to make the urinary bladder

wall the “critical tissue” (defined as that which

receives the highest absorbed dose).

The normalized cumulated activities were calcu-

lated for each radionuclide using the Cloutier et al.

model; in order to remove biological variability, it was

assumed in each case that 25% of the administered

activity was excreted renally and that the urinary blad-

der was filled in a single phase with a half-life of

15 min. These figures are not particularly untoward

for a radiopharmaceutical with high renal excretion.

The absorbed doses were then calculated using the

OLINDA/EXM code (Stabin et al. 2005).

All of the absorbed dose curves exhibit a similar

tendency to increase rapidly with voiding interval.

This feature simply arises from the fact that reduced

micturition frequency results in prolongation of expo-

sure of the bladder wall to its radioactive contents. The

absorbed dose due to 15O is a factor of 10–100 times

less than the other radionuclides, which is a conse-

quence of its very short half-life of 122 s. With the

exception of 11C (again with a short half-life of

20.4 min), consider the remaining three single pho-

ton-emitting radionuclides (99mTc, 111In, and 123I) and

three positron-emitting radionuclides (18F, 64Cu, and
124I), separately. In Fig. 12.9, it was shown that the

normalized cumulated activities of 111In and 99mTc

exceeded that of 18F due to the shorter half-life of
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Fig. 14.20 Absorbed dose to the urinary bladder wall per unit

administered activity as a function of voiding interval for eight

radionuclides. Solid-line curves are for single-photon-emitting

radionuclides (99mTc, 111In and 123I) and dashed-line curves
are for positron-emitting radionuclides (11C, 15O, 18F, 64Cu,

and 124I). Data within the parentheses include the physical

half-life of the radionuclide and the percentage of the total

absorbed dose to the bladder wall which is due to charged

particulate radiation (e.g., Auger electrons and electrons and

positrons resulting from b decay). It is assumed in all cases

that 25% of the administered activity is excreted renally and

fills the urinary bladder in a single exponential phase with a

15-min half-life. This figure should be viewed in conjunction

with Fig. 12.9
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18F. However, a different story appears when one

considers the absorbed dose to the bladder wall. The

single-photon-emitting radionuclides result in lower

absorbed doses than the positron-emitters due to the

fact that the absorbed dose contributions by b particles

are higher for the latter (ranging from 64 to 87%) than

for the former (ranging from 39 to 52%).

14.3.4 Imaging of Bremsstrahlung from
b-Emitting Radionuclides and
Activity Quantification

As charged particles have a short mean-free path in

tissue and lose their kinetic energy in more compact

volumes, they are the obvious particle of choice in

therapeutic nuclear medicine. Radionuclide therapy

planning requires knowledge of the fraction of admi-

nistered activity that the target tumor uptakes and that

which radiosensitive healthy tissues uptake. This is

problematic as the charged particles released in vivo

cannot be imaged directly. One possible solution is

through the use of a radionuclide that emits both

photons and b-particles, such as 131I, thus enabling

both therapy and image-based quantification. Another

solution is to replace the therapeutic charged-particle

emitting radiolabel with a photon-emitting analog (e.

g., replacing 90Y with 111In) and image a diagnostic-

level of the therapeutic vector that is labeled with the

photon-emitting moiety. This permits a prediction of

the amount of uptake in both the target and normal

tissues and of the degree of excretion in order to plan

the amount of administered activity of the therapeutic

radionuclide required for the desired therapeutic

effect.13 However, it may be desired to verify directly

the biodistribution of a b-emitting radionuclide.

Although not performed frequently, the measure-

ment of the biodistribution and the quantification of

the b-emitting therapeutic radionuclide activity is pos-

sible by imaging the bremsstrahlung emitted as the b
particles decelerate in tissue (Williams et al. 1989;

Siegel et al. 1992, 1995; Clarke et al. 1992; Shen

et al. 1994; Minarik et al. 2008).14 The difficulty is

not to be underestimated due to the weak photon

output and the continuous and broad energy spectrum

resulting in limitations in both spatial resolution and

quantification of bremsstrahlung imaging.

In vivo bremsstrahlung imaging has probably been

performed mostly with 32P (which emits a b particle

with a mean energy of 695 keV) and 90Y (which emits

a b particle with a mean energy of 935 keV). The

bremsstrahlung spectrum will be given by the folding

of the bremsstrahlung differential cross section in

photon energy with the b-particle energy spectrum.

The resulting broad spectrum puts demands upon the

selection of the appropriate collimator to use with the

gamma camera, the energy acceptance window to use

and the discrimination between scattered and source

photons (e.g., Shen et al. 1994; Siegel et al. 1994). For

example, in determining the combination of collimator

and energy acceptance window to use, Shen et al.

compared the 90Y bremsstrahlung spectra measured

by a gamma camera with a variety of collimators. In

the absence of a collimator, the bremsstrahlung spec-

trum was, as expected, continuous and reaching a peak

at about 100 keV. The inclusion of a collimator

resulted in the spectrum displaying two peaks super-

imposed upon this reduced spectrum. The first was due

to the 74.97 keV Ka1 fluorescent X-ray from the lead

within the collimator and the second was attributed by

the authors to be due to septal penetration. Shen et al.

concluded that a combination of a medium-energy

collimator with the widest energy acceptance window

provided by the gamma camera’s manufacturer

yielded the best combination of resolution and sensi-

tivity for 90Y quantification.

14.4 Red Bone Marrow Activity

14.4.1 Introduction

In radionuclide therapy, active (or red) bone marrow

often presents as an absorbed-dose limiting tissue.

While the absorbed dose to the red bone marrow has,
13Although caution is required in the substitution approach as

the vector conjugated with the therapeutic radionuclide may

have differing biokinetics than when conjugated with the diag-

nostic radionuclide.

14Recall from Chap. 7 that bremsstrahlung from a particles with

kinetic energies typically used in nuclear medicine is negligible.
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itself, been reported to not be consistently predictive

of hematologic toxicity, it is often necessary to evalu-

ate accurately the cumulated activity in bone marrow

as the marrow absorbed dose is likely to be one of a

combination of factors, including pretherapy bone

marrow reserve, that can predict myelosuppression

(Siegel 2005). Moreover, because of the relatively

high tissue weighting factor value of 0.12 assigned to

the red bone marrow in the evaluation of the effective

dose (Table 10.5), accurate estimation of the red bone

marrow absorbed dose is necessary also in diagnostic

nuclear medicine dosimetry. This section reviews

means through which the cumulated activity to the

haematopoietically active red bone marrow can be

acquired.

14.4.2 In Vivo Imaging Estimation of Red
Bone Marrow Activity

The amount of activity contained within the red mar-

row can be estimated using the image quantification

techniques just described (Siegel et al. 1989). In this

case, a single marrow-containing skeletal region is

used to estimate the activity contained in all of the

marrow. The lumbar vertebrae (L1–L5) are perhaps

best for bone marrow imaging due to their relatively

high percentage marrow content and their visibility

due to separation, at least in planar scintigraphy, from

organs which typically demonstrate radionuclide

uptake, such as the liver and kidneys. Assuming that

the imaged subject is an adult, one can then scale the

activity measured in the lumbar vertebrae by the

cellularity factor of 0.7 to determine the uptake by

red marrow alone and then divide by the 12.3% of

whole-body marrow content contained within the

lumbar vertebrae in Reference Man (Table 12.5) to

yield an estimate of the total activity within the red

bone marrow. Clearly, this approach will yield, at

best, an approximation as it is subject to the assump-

tion that the imaged region is representative of all of

the marrow and neglects the variabilities of marrow

content throughout the skeleton (Sgouros et al. 1996)

and of the distribution of the radionuclide within the

marrow.

Moreover, for increased accuracy in the measure-

ment of the marrow activity derived from planar scin-

tigraphy, it may be necessary to account for any

contributions resulting from activity within the blood

contained in the overlapping aorta and inferior vena

cava. Meredith et al. (2008) have described a method

to correct for this as applied to patients receiving 111In-

based or 131I-based radionuclide therapy in which the

volumes of these overlapping vessels and their degrees

of overlap with the lumbar vertebrae were determined

from abdominal contrast-enhanced CT images. In

vitro measurements of activity concentration in the

blood were then used, in conjunction with the vessel

volume measurements, to estimate the amount of

vessel-contained activity overlapping the lumbar mar-

row activity. They estimated that a failure to account

for the activities contained within overlapping large

vessels for the radiopharmaceuticals under investiga-

tion could lead to an overestimate of the red bone

marrow dose by as much as 76%.

Clearly, the tomographic information provided by

quantitative SPECT is another means of isolating the

vertebral column marrow activity from surrounding

activity-containing anatomy.

14.4.3 In Vitro Estimation of Red Bone
Marrow Activity

Sgouros (1993) has described the estimation of the

cumulated activity in red bone marrow in radioimmu-

notherapy on the basis of measurements of activity

concentration in whole blood or plasma and through

measurement via core bone biopsies. An assumption of

Sgouros’ method is that there is rapid equilibration of

the radionuclide-labeled vector within the marrow

and that the vector does not bind to any constituent of

blood, marrow, or bone. The radiolabeled antibody is

assumed, due to its size, to equilibrate within the plasma

and the extracellular fluid of the red marrow, liver, and

spleen (Sgouros 2005). Hence, the concentrations of the

antibody in the plasma and the extracellular fluid of the

red marrow are taken to be the same. The concentration

of activity in the red marrow normalized to the admi-

nistered activity and corrected for physical decay is,

allowing for an explicit time-dependence,
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AðtÞ½ �RM;Norm;Corr ¼ AðtÞ½ �P;Norm;Corr

VEF

VRM

(14.68)

where RM refers to red bone marrow, P to plasma

and EF to the extracellular fluid within the marrow.

[A(t)]P,Norm,Corr is the activity concentration measured

in plasma at time t postadministration normalized

to the administered activity and decay-corrected

to the time of administration, VEF is the volume of

the extracellular fluid within the marrow and VRM

is the total volume of red bone marrow. While an

estimated value of the ratio VEF=VRM is 0.19, based

upon measurements of the leporid femoral red bone

marrow, this is not expected to be uniformly applica-

ble in the human, especially in a patient who has a

reduced bone marrow reserve as a result of therapy

(Siegel 2005). [A(t)]P,Norm,Corr can be obtained

directly from centrifuged blood or else estimated

from the measured activity concentration in whole

blood,

AðtÞ½ �P;Norm;Corr ¼
AðtÞ½ �BL;Norm;Corr

1� h
(14.69)

where BL refers to whole blood, [A(t) ]BL,Norm,Corr is

the measured activity in whole blood and h is the

hematocrit, or the volume fraction of erythrocytes in

whole blood. Standard values for the hematocrit are

47% in the male and 42% in the female, although this

value can vary over the range of 0.2–0.6. Combining

these two equations,

AðtÞ½ �RM;Norm;Corr ¼
AðtÞ½ �BL;Norm;Corr

1� h

VEF

VRM

: (14.70)

Hence, the ratio of the activity concentrations in red

bone marrow to blood is,

AðtÞ½ �jRMBl ¼
VEF=VRM

1� h

¼ 0:36

(14.71)

using the assumed ratio of the extracellular fluid and

red marrow volumes noted above and a hematocrit

value of 0.47. But it must be noted that this ratio of

activity concentrations will vary with the values of the

ratio of volumes and of hematocrit. Sgouros described

the value given by (14.71) as being the baseline, and

noted that it could range from 0.19 to 0.63. In compar-

ison, a task group on radioimmunotherapy dosimetry

of the American Association of Physicists in Medicine

had recommended a first-order approximation of the

red bone marrow specific activity to be 0.2–0.4 times

that of whole blood. The task group recommended, in

addition, that the red bone marrow activity washout be

set equal to the same as that of blood and that the

distribution of activity within the blood be assumed

uniform. It should be reminded that the above deriva-

tion is applicable to radiolabeled antibodies which

equilibrate within the extracellular fluid (Sgouros

2005). Should the radiopharmaceutical not be con-

fined to the extracellular fluid of the red bone marrow

but more widely distributed, then the activity concen-

tration in whole blood is likely to be more representa-

tive of that in the red bone marrow.

Another means of measuring the activity contained

within the red bone marrow is through core biopsy

using a Jamshidi needle, which is a long, hollow

needle tapered distally. The biopsy sample will con-

tain red and yellow marrow, cortical and trabecular

bone and blood. Hence, a direct measurement of the

activity concentration (per unit mass) of the sample

will result in an underestimation of [A(t)]RM,Norm,Corr.

A variety of correction factors must then be applied to

the measured activity concentration of the biopsy sam-

ple to compensate for the contributions of the non-red

marrow components. Sgouros gives simple expres-

sions for these correction factors, but they do not

account for multiple contributions (i.e., corrections

are for biopsy samples consisting of red bone marrow

and one other only contaminant).

The result of (14.71) implicitly assumes that the

ratio of activity concentrations in red marrow to that in

blood is constant. Neglecting this possibility of an

additional time dependence, the red bone marrow nor-

malized cumulated activity concentration is given by

the time integral,

~A
� �

RM;Norm
¼ VEF=VRM

1� h

	 




ð1

0

dt e�lPt AðtÞ½ �BL;Norm;Corr

(14.72)
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The normalized cumulated activity in the red bone

marrow is then obtained by scaling this result by the

volume of red bone marrow,

~ARM;Norm ¼ ~A
� �

RM;Norm

mRM

rRM
(14.73)

where mRM is the total mass of red bone marrow in the

body and rRM is the physical density of red bonemarrow.

14.4.4 Estimation of Red Bone Marrow
Absorbed Dose

Although the subject of this chapter is the acquisition

of the human biodistribution, it is natural to segue from

the measurement of the red bone marrow cumulated

activity to the estimation of the absorbed dose to the

red bone marrow. The total absorbed dose to the mar-

row will be due to a self-irradiation component and to a

“cross-fire” component due to irradiations from else-

where in the body. Using the MIRD schema, the red

bone marrow absorbed dose normalized to the admi-

nistered activity is (Siegel et al. 2005; Siegel 2005),

DRM;Norm ¼ D
Selfð Þ
RM;Norm þ D

Crossð Þ
RM;Norm

¼ ~ARM;NormS RM RMð Þ
þ ~ARB;NormS RM RBð Þ
ffi ~ARM;NormS RM RMð Þ
þ ~AWB;Norm � ~ARM;Norm

� �
S RM RBð Þ

(14.74)

where WB and RB refer to “whole body” and “remain-

der of body” (i.e., the whole body excluding the red

bone marrow). The S-factors are, typically, those cal-

culated for a reference anthropomorphic phantom. For

radionuclide therapy planning, where estimation of the

absorbed dose to the red bone marrow is essential to

avoiding radiation-induced myelotoxicity, patient-

specific estimates of the absorbed dose to the red

bone marrow are desired. Consequently, the absorbed

dose calculation of (14.74) must be modified to repre-

sent that of the individual patient for whom the dosim-

etry is being recalculated. This result can be

approximated by assuming that the blood and red

bone marrow masses relative to the whole body mass

are constants or,

mBL;Pat

mWB;Pat
¼ mBL;Ref

mWB;Ref
(14.75)

where Pat refers to the patient in question and Ref

refers to the reference phantom. Similarly for the red

bone marrow,

mRM;Pat

mWB;Pat
¼ mRM;Ref

mWB;Ref
(14.76)

However, it should be noted that Shen et al. (2002)

found little correlation between mRM and mWB, thus

suggesting the invalidity of (14.76). In contradiction,

Woodard (1984) found a reasonable correlation between

red bone marrow mass and whole body mass (1.37% in

adult males and 1.16% in adult females). Hence, one

must be aware of such questions when evaluating the

red bone marrow radiation absorbed dose. Self-irradia-

tion of the marrow by the marrow is assumed to be due

to charged particles only as the mean-free pathlength of

photons will greatly exceed the marrow cavity dimen-

sions. Recall that, for charged-particle self-irradiation,

the S-factors scale by mass,

S RM RMð ÞPat ¼ S RM RMð ÞRef
mRM;Ref

mRM;Pat

(14.77)

The S-factor for the “cross-fire” contribution from

the remainder of the body can be approximated by

(Siegel et al. 2005),

S RM RBð ÞPat
� S RM WBð ÞRef

mWB;Pat

mWB;Pat�mRM;Pat

�S RM RMð ÞRef
mRM;Pat

mWB;Pat�mRM;Pat

¼ S RM WBð ÞRef
1

1�mRM;Pat
�
mWB;Pat

 !

�S RM RMð ÞRef
1

mWB;Pat
�
mRM;Pat

�1

 !

¼ S RM WBð ÞRef
1

1�mRM;Ref
�
mWB;Ref

 !

�S RM RMð ÞRef
1

mWB;Ref
�
mRM;Ref

�1

 !

(14.78)
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An approximation to the patient-specific normal-

ized absorbed dose to the red bone marrow can thus be

obtained,

DRM;Norm;Pat

¼ ~ARM;NormS RM RMð ÞRef
mWB;Ref

mWB;Pat

þ ~AWB;Norm � ~ARM;Norm

� �	
S RM WBð ÞRef


 1

1�mRM;Ref
�
mWB;Ref

 !
� S RM RMð ÞRef


 1
mWB;Ref

�
mRM;Ref

� 1

 !!
:

(14.79)

It should be noted that this calculation requires, in

addition to that of the red bone marrow, measurement

of the normalized cumulated activity of the whole body.

Another means of estimating the marrow absorbed

dose is through an in vivo biological dosimeter. This

would be the most patient-specific dosimeter and one

that has clearly attracted investigators, although it

would be a postadministration predictor of undesirable

sequelae resulting from irradiation of the marrow. One

could look at the survival of the hematological precur-

sor cells (Fig. 12.10) following the onset of therapy

(Ploemacher et al. 1989; Neben et al. 1993; Goddu

et al. 1998), but this is necessarily an invasive proce-

dure and, hence, limited in practice. Detection and

quantification of radiation-induced changes in the eas-

ily-accessible peripheral blood cells would be prefera-

ble. Such changes would include the chromosomal

aberrations discussed in Chap. 10. Lenarczyk et al.

(2001) presented measurements of the frequency of

micronuclei production in murine reticulocytes as a

function of the administered activity of 32P-labeled

orthophosphate and 90Y-labeled citrate. Such produc-

tion had been previously calibrated against absorbed

dose resulting from photon-irradiation by a 137Cs

source. They concluded that the micronuclear produc-

tion frequency could estimate marrow absorbed dose.
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Abstract In this chapter, practical means of estimating the normalized cumulated

activity from a measured discrete biodistribution set are reviewed. This involves the

integration of these activity values from the time of administration to infinity. Least-

squares fitting of the activity data by analytical functions, including the multiexpo-

nential form and the gamma variate, are reviewed. The analytical results of the

integration of these functions are presented. In some cases, numerical integration is

preferred and this is also reviewed in the context of the Trapezoidal Rule. As the end

product of a biodistribution analysis is the absorbed doses to an ensemble of target

regions, the various sources of uncertainty in the absorbed dose calculated for a target

region using the MIRD schema, of which that of the biodistribution dominates, are

analyzed.
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15.1 Introduction

The two previous chapters have described how bio-

distributions of radiopharmaceuticals are measured in

the preclinical model and in the human. Ultimately,

the output of these acquisitions is the activities in

source regions as functions of time. It is subsequently

necessary to integrate these data in order to yield the

cumulated activities i which, when coupled with the

precalculated S-factors, yield the absorbed doses to

the target regions. This chapter describes methods of

yielding the cumulated activity and the uncertainties

associated with the resulting absorbed dose.

15.2 Normalized Cumulated Activity

15.2.1 Introduction

In the MIRD schema, the absorbed dose per unit

administered activity to a target region is calculated

on the basis of measured normalized cumulated activ-

ities determined for the ensemble of source regions.

The ~ArS;Norm of the source region rs, is the integral of

the activity in the source organ, normalized to that

administered, ArS;NormðtÞ, from the time of adminis-

tration to infinity. While ArS;NormðtÞ is a continuous

B.J. McParland, Nuclear Medicine Radiation Dosimetry,
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function, in practice it is determined as a series of

discrete measurements at different times postadminis-

tration. In order to evaluate ~ArS;Norm, ArS;NormðtÞ must

be integrated and the practical means of doing so are

discussed here.

15.2.2 Analytical Fits to Activity Data

15.2.2.1 Introduction

The least-squares fitting of an analytical expression of

ArS;NormðtÞ to measured data followed by the integra-

tion of this function is one possible means of evaluat-

ing the cumulated activity. An appropriate selection of

the function to fit can also yield physiological infor-

mation such as, for example, uptake and washout

rates. However, it must always be noted that the

measured activity data to which the function is to be

fit reflect only the radionuclide and not the chemical

entity to which it may or may not be bound. The

in vivo or in vitro measurements cannot discern if

the detected radionuclide is free, part of the adminis-

tered radiopharmaceutical or a component of a metab-

olite fragment. Hence, pharmacokinetic interpretation

of measured activity alone is inappropriate.

In order to isolate biological effects, the measured

activity is corrected for physical decay by the premul-

tiplication of each measured activity value at time t by

eþlPhyst, where lPhys is the physical decay constant.

This physical decay-corrected result removes the

effect of the physical decay of the radionuclide and

isolates the temporal biological behavior of the radio-

nuclide. The decay-corrected normalized activity for

the source region rS is,

ArS;Norm;CorrðtÞ ¼ ArS;NormðtÞeþlPhyst: (15.1)

While this correction increases the magnitudes

of the data points to fit at late time points, it also

scales up the greater statistical uncertainties asso-

ciated with these low-count data and this should

not be forgotten. The result of the integration of the

decay-corrected analytical fit must then be folded

with the physical decay of the radionuclide, as

shown below, in order to yield the corrected normali-

zed cumulated activity.

15.2.2.2 Multiexponential Functions

Introduction

The simplest, and most common, means of describing

the uptake and washout of activity with an analytical

function amenable to the practical considerations of

fitting to data is that of writing the decay-corrected

and normalized activity as a series of exponential

functions,

Ars;Norm;CorrðtÞ ¼ Cþ
XN
j¼1

kje
�lj t (15.2)

where C is a constant and kj and lj are the amplitude

and rate constant of the jth exponential term, respec-

tively. Empirically, (15.2) is convenient to use and to

fit to data and naturally results if the transfers of

activity between compartments are described by

first-order kinetics. In most practical cases, the num-

ber of exponential terms N does not exceed 1 or 2 in

order to provide a good fit to an ensemble of activity

data but in other cases, such as the washout from

whole blood or plasma, N ¼ 3 can sometimes be

necessary.

The normalized cumulated activity for the source

region rs is determined by first applying a “decay-

uncorrection” to the fit of (15.2) (i.e., premultiplying

by e�lPhyst) and then integrating from times t ¼ 0 to1,

~Ars;Norm ¼
ð1

0

dt e�lPhystArs;Norm;CorrðtÞ

¼ C

lPhys
þ
XN
j¼1

kj

lj þ lPhys
: (15.3)

Fitting (15.2) to the measured normalized decay-

corrected activity data can be accomplished in a large

variety of ways.

Least-Squares Analysis

The least-squares approach (i.e., the minimization of

the sum of the squared-differences between measured

and fitted activity data) can be approached analyti-

cally or numerically/iteratively. A straight-forward

576 15 The Biodistribution (III): Analysis



analytical least-squares analytical fit of (15.2) can be

had if a single exponential is appropriate for the data to

be fit to. This fit is clearly accomplished by lineariza-

tion through taking logarithms of both sides,

ln ArS;Norm;CorrðtÞ ¼ ln kj � ljt (15.4)

and performing linear regression to the data. Fits of

cases where N > 1 and C > 0 can be achieved ana-

lytically using this linearization through the method of

“exponential stripping,” which is described below.

Numerical fits of (15.2) to measured data can be

obtained by iteration. For the convenience of the

following discussion, the variables of (15.2) will be

written as,

yi � ArS;Norm;Corr tið Þ (15.5)

f ti;bð Þ � Cþ
XN
j¼1

kje
�lj ti (15.6)

where the row vector b of dimension 2N þ 1 is

defined as

bT � C; k1; k2; . . . ; kN; l1; l2; . . . ; lNð Þ (15.7)

in order to make the derivation more concise.

An iterative process is taken so as to minimize the

sum of the squared-differences between measure-

ment and fit,

w2 ¼
XM
i¼1

yi � f ti;bð Þð Þ2 (15.8)

where M is the number of times at which activity has

been measured and is to be fit to. The iterations begin

with the selection of an initial value of the coefficient

vector b. In many problems, this can be difficult but

for fitting a multiexponential of the form of (15.2) in

nuclear medicine biodistribution applications, an

excellent initial guess can usually be had merely by

inspection. If the activity does not monotonically

grow to a constant or does not decrease to a constant

value, then one would remove C from the vector of

(15.7). Should the time-activity curve demonstrate a

wash-in phase with activity increasing to a maximum

and then decreasing as activity washes out of the

source region, then it is reasonable to limit N ¼ 2

and to fix k1 ¼ k2. The magnitudes of the lj can
also be approximated by inspection of the temporal

behavior of the measured data. Following each itera-

tion, the vector b is replaced by the estimate b þ d,
where the vector d represents the iteration in the

coefficients and is to be solved for. In the gradient

approach, the function f(ti, b) is linearized using a

first-order Taylor series approximation,

f ti;bþ dð Þ � f ti;bð Þ þ @f ti;bð Þ
@b

d: (15.9)

Inserting (15.9) into (15.8), differentiating and

setting the result equal to zero results in the matrix-

vector form,

d ¼ JTJ
� ��1

JT y� f bð Þð Þ: (15.10)

J is the (2N þ 1) � M Jacobian matrix,

J ¼

@f t1;bð Þ
@b1

� � � @f tM;bð Þ
@b1

..

. ..
.

@f t1;bð Þ
@b2Nþ1

� � � @f tM;bð Þ
@b2Nþ1

0
BB@

1
CCA (15.11)

and the column vectors are,

y ¼
y1

..

.

yM

0
B@

1
CA (15.12)

and

f bð Þ ¼
f t1;bð Þ

..

.

f tM;bð Þ

0
B@

1
CA: (15.13)

Once d has been solved for, the new estimate of the

coefficient vector is used in the next iteration which is

continued until w2 has reached a minimum.

There are numerous additions and variants to

the above iterative solution. It is likely that in most

practical nuclear medicine dosimetry calculations the

above iterative approach can be unnecessarily com-

plicated due to the many matrix operations. Simpli-

fications are possible which take advantage of the
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simplicity of linear regression. Two such methods are

now described.

Exponential Stripping

The method of exponential stripping is a simple means

of fitting the multiexponential form to measured data

using linear regression and can easily be performed

using the associated worksheet function in a spread-

sheet (Lawson 1998). To demonstrate the process,

consider the case of (15.2) for C ¼ 0 and N ¼ 2,

which is a simple biexponential to fit,

Ars;Norm;CorrðtÞ ¼ k1e
�l1t þ k2e

�l2t: (15.14)

In many cases, the decay constants are such that

l2 < l1 so that at longer times postadministration, the

second exponential term dominates over the first so

that the approximation,

Ars;Norm;CorrðtÞ ffi k2e
�l2t large tð Þ (15.15)

may hold. An example of such a biexponential func-

tion is shown in Fig. 15.1. Equation (15.15) can then

be fit to these data by taking logarithms of both sides

and performing a simple linear regression of the loga-

rithm of the measured Ars;Norm;CorrðtÞ at large t to yield
estimates of ln k2 and l2. Let k̂2 and l̂2 be the

estimates of k2 and l2 resulting from the linear regres-

sion. Returning these to (15.14) and rearranging,

Ars;Norm;CorrðtÞ � k̂2e
�l̂2t ¼ k1e

�l1t: (15.16)

Again, by taking logarithms of both sides and per-

forming a linear regression on the remaining data points

at short times, the estimates of k̂1and l̂1are obtained.
For non-zero C, as in rise of activity to an asymp-

totic value, exponential stripping can also be used in

practice (note that in this case, k1 and k2 will be

negative). This is through fitting to the differ-

ence ln C� ArS;Norm;CorrðtÞ
� �

. One selects a value of

C, which must be greater than the maximum value of

Ars;Norm;CorrðtÞ, calculate the kj and lj through expo-

nential stripping and evaluate the reduced w2. In a

spreadsheet, C can then be iterated and the process

repeated until a minimum in w2 is found.

15.2.2.3 Nonmonotonic Biexponential/Gamma

Variate

If in vivo measurements of activity in an organ are

performed sufficiently early following administration,

it is frequently possible to observe the uptake of activ-

ity by the organ followed by its washout. Figure 15.2

shows an example of such a time-activity curve. It

would be desirable to avoid a least-squares fit to the

Time, t (h)
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Fig. 15.1 Example showing

principle of exponential

stripping in fitting a

biexponential function to the

measured decay-corrected

activity in source region rS
normalized to that

administered. In this example,

k1 ¼ 0.25 and k2 ¼ 0.1 and

l1 ¼ 2.77 h�1 and
l2 ¼ 0.23 h�1, corresponding
to phase half-lives of 0.25 and

3 h, respectively
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data using multiple regressions. There are two possible

ways to achieve this. The first is to use the multi-

exponential as a fit by fixing C ¼ 0 and limiting

N ¼ 2 where k1 ¼ �k2 � k,

ArS;Norm;CorrðtÞ ¼ k e�l1t � e�l2t
� �

: (15.17)

The activity at time t ¼ 0 is equal to zero as

required and the time at which the activity is at a

maximum is given by,

tmax ¼
ln l2=l1

� �
l1 � l2

: (15.18)

In practice, exponential stripping can then be

applied to these data in order to enable such a fit.

Another analytical function that can be used to fit to

the above temporal variation is the gamma variate,

ArS;Norm;CorrðtÞ ¼ ktae�t=b: (15.19)

Madsen (1992) demonstrated a method through

which this function can be reduced to a linear function

and how the parameters k, a and b could be extracted

through a linear regression. By setting the first deriva-

tive of (15.19) to zero, it is straight-forward to find that

the product of a and b is equal to the time at which the

function reaches a maximum,

ab ¼ tmax: (15.20)

Using this result and writing the constant k in terms

of the maximum value of the activity,

k ¼ ArS;Norm;Corr tmaxð Þt�amaxe
a: (15.21)

Substituting this result into (15.19),

ArS;Norm;CorrðtÞ ¼ ArS;Norm;Corr tmaxð Þ t

tmax

� �a

eað1�t=tmaxÞ:

(15.22)

By defining the reduced time, t ¼ t=tmaxð Þ, this

result is rewritten as,

ArS;Norm;Corr tð Þ ¼ ArS;Norm;Corrð1Þtaea 1�tð Þ: (15.23)

Taking the logarithms of both sides,

ln ArS;Norm;Corr tð Þ
� � ¼ ln ArS;Norm;Corrð1Þ

� �
þ a 1þ ln t� tð Þ (15.24)

where ArS;Norm;Corrð1Þ, is the maximum value of the

decay-corrected and normalized activity being fit

to. Equation 15.24 is a linear function in the two

variables of ln ArS;Norm;Corr tð Þ
� �

and 1þ ln t� tð Þ.
A linear regression of these two variables yields

ln ArS;Norm;Corrð1Þ
� �

and a. The parameter b is subse-

quently given by (15.20). This provides an analyti-

cal function representing the temporal behavior of the

activity. The normalized cumulated activity is obtained

by integrating the decay-uncorrected form of (15.19),

~ArS;Norm ¼ k

ð1

0

dt tae�ðlpþ1=bÞt: (15.25)

This integral is be solved numerically or recast in

the form of Euler’s integral (Davis 1972),

~ArS;Norm ¼ k
G 1þ að Þ

lP þ 1=b
� � 1það Þ : (15.26)

15.2.3 Numerical Methods

In some cases, analytical fits to the measured data

are not sufficiently accurate or else are cumbersome to

manipulate. Numerical integration methods can be used

to calculate the cumulated activity using the discrete

Time
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m
,C

or
r(
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b 

un
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)

Fig. 15.2 Nonmonotonic uptake and washout of activity

described by a gamma function
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values of the measured activity as a function of time. In

these cases, decay-correction must not be applied to the

activity data to be integrated, as it cannot be folded out

of the single-valued result afterwards. There are a wide

variety of numerical integration formulae and a com-

pendium can be found in Davis and Polonsky (1972).

When deciding upon the type of numerical integration

algorithm to employ, one must consider those which

allow nonequidistant abscissa values.

The Newton-Cotes formulae are the most com-

monly-used types of numerical integration algorithms,

often in the form of the Trapezoidal and Simpson’s

Rules. More involved methods, such as Gaussian Quad-

rature, are applicable but the simplicity of the Newton-

Cotes approaches are desirable in clinical practice.

Many numerical integration formulae are provided

under the assumption that the sampling interval along

the abscissa is constant, which is certainly not the likely

case in a biodistribution case (and, indeed, undesirable).

The simple Trapezoidal Rule can, in many cases, pro-

vide a suitable integration result.

An example of the application of the Trapezoidal

Rule in numerically integrating an activity decreasing

monotonically in time and sampled at five discrete time

points is shown in Fig. 15.3. The shaded areas have an

area of 1
2

P5
i¼2 A tið Þ � A ti�1ð Þð Þ ti � ti�1ð Þ which

yields an approximation of the cumulated activity.

One can immediately see from Fig. 15.3 two additional

difficulties in the requirement to extrapolate the

measured activity to those at time t ¼ 0 and as

t!1. In most practical biodistribution measure-

ments, the first measurement time point is suffi-

ciently soon after the time of administration that

the extrapolation is simply modeled (e.g., in

Fig. 15.3, a trapezoid could be formed by the com-

bination of a rectangle and a triangle with its hypot-

enuse defined by the extrapolation of that formed

between times t1 and t2). Extrapolation beyond the

final timepoint can be more difficult and is discussed

in the next subsection.

15.2.4 Extrapolation Beyond the Last
Time Point

In any biodistribution measurement, the number of

measurement points will necessarily be finite. However,

as the calculation of the cumulated activity requires

extrapolation to infinite time (e.g., after time t5 in

Fig. 15.3), some nature of extrapolation beyond the

final time point is required. In the case of an analytical

fit, this extrapolation is provided directly by the fit and

will include the combined effects of the biological

washout of activity from the source region and the

physical decay of the radionuclide. If numerical inte-

gration has been used to estimate the cumulated activity

up to the last measurement time, the means of obtaining

the area under the curve to infinite time must be con-

sidered. Without analytical representation, it is not pos-

sible to include the biological washout component

beyond the final measurement time. The simplest solu-

tion to this problem is to assume that the activity in the

source region decays exponentially from the last

measured time point with a rate constant equal to the

physical decay constant alone. Then, the area under the

curve from the final time point to infinite time can be

solved simply through integration of that single expo-

nential function and then added to the numerically-

derived area to yield an estimate of the total cumulated

activity. In this approach, as the biological washout is

neglected beyond the final time point, it is implicitly

assumed that all of the activity remains permanently

bound within the source region and that the only

decrease in activity within that region is due to physical

decay. This assumption will lead to an overestimation

of the cumulated activity in the source region and lead

to an overestimate of the absorbed dose to it and the

target regions. The magnitude of this error will depend

A(t2)

A(t1)

A(t3)

t1 t2 t3 t4 t5

A
(t

)

Time, t

A(t4)

A(t5)

Fig. 15.3 Example of an exponentially decreasing activity.

The cumulated activity is obtained numerically using the Tra-

pezoidal Rule as described in the text

580 15 The Biodistribution (III): Analysis



upon the amount of activity remaining within the source

region, the time postadministration at which extrapola-

tion begins and the rate by which the radionuclide is

biologically cleared. Should the biological decay con-

stant be much less than the physical decay constant (i.e.,

lBiol � lPhys), then this approximation is entirely

appropriate. Even if the two decay constants are

approximately equal (i.e., lBiol � lPhys), the resulting

overestimation may be judged acceptable as it would

present a conservative result. Obviously, the individual

performing this estimation must consider the require-

ments of the calculation at hand in order to determine

the suitability of a method.

15.3 Uncertainty Analysis of the MIRD
Formalism

15.3.1 Introduction

The net uncertainty in the calculated absorbed dose

for target region rT,

DrT ¼
X
rS

~ArSS rT  rSð Þ (15.27)

will be the result of the combination of uncertainties in

the physical and measured quantities and biological

variability. A number of authors have attempted to

estimate the net uncertainty in DrT in specific applica-

tions (e.g., Cloutier et al. 1975; Aydogan et al. 1999).

Stabin (2008) has provided a more generalized and

contemporary uncertainty analysis.

This subsection summarizes the magnitudes of the

uncertainties and variabilities that factor into (15.27)

to yield an estimate of the net uncertainty associated

with DrT .

15.3.2 Sources of Uncertainty and
Variability

15.3.2.1 Introduction

A calculation of the absorbed dose to a target region

is subject to the variability in measurement of the

in vivo and in vitro activities and the assumption of

the appropriate anthropomorphic model to use. In

order to understand the resulting variability in the

target region’s absorbed dose, (15.27) is expanded,

DrT ¼
X
rS

~ArSS rT  rSð Þ

¼ 1

mrT

X
rS

~ArS

X
i

YiEifi rT  rSð Þ (15.28)

where the second summation is over the individual

decays of the radionuclide of interest. Equation 15.28

isolates three categories of uncertainty/variability

sources:

	 Nuclear decay data uncertainties (Yi, Ei)

	 Biological variability, measurement error and

modeling (~ArS)

	 Anthropomorphic phantom modeling (mrT ;

fi(rT rS))

Each of these uncertainties will be analyzed in turn.

The error analysis is simplified if a single pair of

source and target regions and a single decay scheme

with energy E, released per disintegration are con-

sidered. In this case, the absorbed dose to the target

region is,

DrT ¼
1

mrT

~ArSEf rS  rTð Þ: (15.29)

By assuming that the uncertainties of the four vari-

ables mrT ; ~ArS , E, and f rS  rTð Þ are uncorrelated, the
relative uncertainty in the absorbed dose to rT is given

by the quadrature sum,

sDrT

DrT

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
E

E2
þ
s2

~ArS

~A2
rs

þ s2
f

f2
þ
s2
mrT

mrT

 !vuut (15.30)

where the absorbed fraction has been written as

f for clarity. Each term in (15.30) is considered in

sequence.

15.3.2.2 Uncertainty in Nuclear Decay Data

A large variety of academic and government insti-

tutions provide nuclear data. However, it is both the
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National Nuclear Data Center (NNDC) based at the

Brookhaven National Laboratory and the International

Atomic Energy Agency based in Vienna which pro-

vide perhaps the most copious amounts of nuclear data

and in a number of formats. These include access via

an Internet browser or through Evaluated Nuclear

Structure Data Files. Data have been evaluated and

assessed from compiled measurements provided in the

literature and the precision of the data, in many cases,

is exquisite. For example, the NNDC reported value1

of the major 99mTc g ray is 140.5110 (
 0.0010) keV,

where the uncertainty contained within the parenth-

eses is 1 standard deviation. Hence, in virtually all

cases, excluding low-energy Auger electron emissions

and low-yield emissions, any uncertainties associated

with Yi and Ei are negligible and can be ignored. As a

result, the expression for the uncertainty in the calcu-

lated absorbed dose simplifies to,

sDrT

DrT

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

~ArS

~A2
rs

þ s2
f

f2
þ
s2
mrT

mrT

 !vuut : (15.31)

This quadrature sum of uncertainties isolates the

uncertainty in measurement and the uncertainty in anato-

mical modeling. Consider the case of a known (or single)

phantom for which the dosimetry is to be calculated

for. In this case, s2
f ¼ s2

mrT
¼ 0 and (15.31) reduces to,

sDrT

DrT

¼
s~ArS

~ArS

: (15.32)

Thus the relative uncertainty in the target region’s

absorbed dose is equal to the relative uncertainty in the

cumulated activity determined for the target region.

As discussed next, s~ArS
can be a significant uncertainty

due to the compilation of measurement errors asso-

ciated with it, as next discussed.

15.3.2.3 Uncertainty in the Derived Cumulated

Activity Value

Recall that the cumulated activity is the total num-

ber of radioactive decays in a given source region. If

the temporal biological behavior of the physical

decay-corrected activity in that source region can be

adequately modeled by an Nth-order exponential,

ArS;CorrðtÞ ¼
PN

i¼1 kie
�li t, then the cumulated activity

can be expressed as,

~ArS ¼
XN
i¼1

ki

li þ lPhys
: (15.33)

As the uncertainty in the physical decay constant,

lP, is negligible, the uncertainty in the cumulated

activity calculation is driven by the fitting parameters,

ki and li. These are ultimately set by the accuracies in

the acquisitions of in vivo and in vitro activities.

MIRD Pamphlet 16 (Siegel et al. 1999) presents an

assessment of the various methodologies in acquiring

these data. As the ki and li are obtained from fits to

measured data, the uncertainty in ~ArS is due to both

measurement and fit or numerical integration. The

measurement uncertainty arises from activity calibra-

tion inaccuracy and corrections for attenuation and

scatter, among other factors, including reconstruction.

Validation studies of the planar conjugate-view

method have suggested an inaccuracy of the order of

10% for nonoverlapping organs increasing to as much

as 90% for overlapping organs. Intersubject variability

is another factor – differences as great as a factor of

2 in normalized cumulated activities for different

subjects receiving the same radiopharmaceutical are

common.

A detailed analysis of the uncertainties in the nor-

malized cumulated activity values were presented by

Kaplan et al. (1997) in the case of monoclonal anti-

body therapy planning by imaging 111In. Three- and

five-compartmental models were used in the analysis

and a Monte Carlo approach used to estimate the

variability in the cumulated activity resulting from

the measured variances of the model’s parameters.

Perhaps not unexpectedly, the uncertainty in the cum-

ulated activity was dependent upon the model used

but was concluded by the authors to be generally less

than 10%.

He and colleagues compared cumulated activity

estimation methods, again for 111In imaging, using

both planar scintigraphy and SPECT through Monte

Carlo (He et al. 2008, 2009a) and patient (He et al.

2009b) studies. They evaluated cumulated activity

measurements obtained through quantitative SPECT1http://www.nndc.bnl.gov/useroutput/AR_241919_.html
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(using iterative reconstruction and correcting for scat-

ter, attenuation, and partial-volume effects) and con-

jugate-view planar scintigraphy in the context of

radioimmunotherapy planning. They reported that res-

idence time errors of less than 3.8% were obtained

using quantitative SPECT, but that these errors could

extend to between 2 and 107% for planar scintigraphy

alone. They concluded that conjugate-view planar

scintigraphy as a means of dose quantification would

be inadequate for radioimmunotherapy planning.

15.3.2.4 Uncertainty in Anatomic Modeling

Superimposed upon the methodology uncertainty

briefly described in the previous subsection is the

intersubject variation. This is well known (Siegel

et al. 1999). Anyone experienced in evaluating the bio-

distributions of healthy volunteers in a Phase I study

will be aware of intersubject differences of factors of

2 or greater. As an example, Aydogan et al. (1999)

reported absorbed dose uncertainties evaluated for

seven healthy volunteers who had been administered

a 123I-labeled radiopharmaceutical. They concluded

that variations in individual biodistributions and organ

masses could result in a factor of 2 increase in the 95%-

confidence interval about a median organ absorbed

dose estimate.

If the absorbed dose calculation is for a reference

phantom, and it is recognized that the dosimetry is for

that phantom, then the uncertainty arising from ana-

tomic modeling is moot. However, one may be inter-

ested in how representative the dosimetry calculated is

that of reality. This can be achieved through in situ

dosimetry using micro-TLDs or MOSFET detectors,

as discussed earlier. In most nuclear medicine applica-

tions, this is inconvenient and only the absorbed doses

at discrete spatial sampling points are determined.

Another method of determining the uncertainty

arising from the modeling of anatomy is to compare

the absorbed doses calculated for the reference phan-

tom of interest using the MIRD schema with those

calculated for real subjects using Monte Carlo simu-

lation of radiation transport and energy deposition.

Divoli et al. (2009) have performed such an analysis

by using the OEDIPE tool to calculate the S-factors

for nine subjects receiving 131I and comparing these

with S-factors from the OLINDA/EXM code for

the reference male phantom (Sect. 11.3.6.3 in

Chap. 11). The subjects were male with ranges of

whole-body masses of between 59 and 90 kg and

heights of between 162 and 180 cm. Organ volumes

were determined by CT volumetry and assumed tis-

sue densities applied. They determined that the

absorbed dose differences between the reference

male and the subjects could be as significant as

140%. But, interestingly, the application of the

mass-scaling factors of Chap. 11 between the refer-

ence phantom and the human subjects reduced these

absorbed differences to less than 26%.
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The Ethics of Using Human Subjects in Clinical
Trials Involving Radiopharmaceuticals 16

Abstract The participation of humans as subjects in any biomedical research is

subject to ethical review of the appropriateness and value of the research, both to the

individual and to society as a whole. When this research involves nuclear medicine,

either as the primary focus of research or as an adjunct, considerations of the

risks associated with the exposure to ionizing radiation must be taken. This chapter

reviews the ethics of clinical studies involving humans, with an emphasis upon

studies incorporating nuclear medicine.
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16.1 Introduction

One of the intents of this book is to provide a deeper

understanding of the calculation of the internal radia-

tion dosimetry of subjects participating in clinical

research studies in which a nuclear medicine proce-

dure, diagnostic or therapeutic, is a component. Such

studies could involve the development of new diag-

nostic or therapeutic radiopharmaceuticals or the

use of a radiopharmaceutical with known dosimetry

profile as a diagnostic imaging adjunct to other bio-

medical research. It is an ethical tenet in all such

research using humans is that the benefit-to-risk ratio

presented to the subject participating in such a study

be maximized, or at least known, and made unambig-

uously apparent to the subject.1 In nuclear medicine

(neglecting the negligible possibility of chemical toxi-

city which is beyond the scope of this book), the risk is

manifested by either stochastic risk at the low-absorbed

doses of diagnostic radiopharmaceuticals or by deter-

ministic risk at the higher-absorbed doses associated

with therapeutic radiopharmaceuticals. Estimating the

magnitudes of these risks requires that the internal

radiation dosimetry be calculated as accurately as

possible. Hence, the assurance of accurate radiation

dosimetry is an ethical requirement in all nuclear

medicine research.

The ethics of the use of animals in nuclear medicine

research were outlined in Chap. 13. In this section, an

overview of the ethical requirements of the use of

humans in nuclear medicine research is provided.

1The benefit may not necessarily accrue to the participant in the

study but can reflect a societal benefit.

B.J. McParland, Nuclear Medicine Radiation Dosimetry,
DOI 10.1007/978-1-84882-126-2_16, # Springer-Verlag London Limited 2010
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16.2 Human Subjects in Biomedical
Research: General Concepts

16.2.1 Introduction

The ethics of the use of human subjects in nuclear

medicine research are no different than those asso-

ciated with any other biomedical research. All bio-

medical research studies using humans are subject to

both the Declaration of Helsinki and the principles of

Good Clinical Practice (GCP). The latter are defined

by the International Conference on Harmonisation2 as

“an international ethical and scientific quality standard

for designing, conducting, recording, and reporting

trials that involve the participation of human subjects”

(ICH 1996). In the European Union, the implementa-

tion of GCP is set by the Directive 2001/20/EC of the

European Parliament and the Council of the European

Union3 and member states are required to implement

into law and regulation the requirements of this Direc-

tion.4 In the United States of America, corresponding

guidelines are provided in the US Code of Federal

Regulations Title 21.

The nuclear medicine physicist participating in the

design and execution of a clinical trial involving a

radiopharmaceutical must be knowledgeable of these

ethical and regulatory principles as the design conside-

rations will be – and must be – very much driven by

these principles.

16.2.2 Declaration of Helsinki

The Declaration of Helsinki is a policy statement of

the World Medical Association (WMA) concerning

the ethics of the involvement of human subjects in

medical research, including identifiable human mate-

rial and data.5 It provides the genesis of regulatory

and legislative requirements of the conduct of clinical

trials involving humans. The first version was adopted

in 1964 and has been amended some eight times since,

the most recent being at the 59th WMA General

Assembly held in Seoul in 2008. A primary expecta-

tion of the Declaration is that “(m)edical research

involving human subjects must conform to generally

accepted scientific principles, be based on a thorough

knowledge of the scientific literature, other rele-

vant sources of information, and adequate laboratory

and, as appropriate, animal experimentation” (WMA

2008).

Central to all medical research as directed by the

Declaration of Helsinki and manifested in all national

regulatory and legislative requirements is the necessity

of the freely given and informed consent of the subject

participating in a study. This requires the subject to be

made fully aware of, among other things, the risks and

of the benefits associated with the clinical research he

is invited to participate in. In the provision of this

information in order to allow him to decide upon

whether or not to consent to participate in the trial,

the subject must not be influenced by the clinical

investigator or trial staff.

The possible benefits of participating in the trial

may accrue to the individual himself and/or to society

in general. On the other hand, the subject will be

the exclusive recipient of the risks. This requires

that the trial be preceded by investigations of the

predictable risks in order that knowledge of these

can be conveyed to the subject. In a nuclear medicine

trial, this requires accurate estimation of the expected

internal radiation dosimetry. For a diagnostic radio-

pharmaceutical, this would be accompanied by an

evaluation of the effective dose and the associated

stochastic risk. Absorbed doses to radiosensitive tis-

sues (such as red bone marrow and kidney) and esti-

mates of radiation-induced sequellae would be part

of the risk assessment of a trial of a therapeutic

radiopharmaceutical.

2The full title is the International Conference on Harmonisation

of Technical Requirements for Registration of Pharmaceuticals

for Human Use (ICH) and which is a program which brings

together regulatory authorities and representatives from the

pharmaceutical industry from the European Union, Japan and

the United States. It may be found at: http://www.ich.org.
3The Directive may be found at http://euopa.eu/eur-lex/pri/en/

oj/dat/2001/l_121/l_12120010501en00340044.pdf.
4An example, in the UK, being The Medicines for Human Use

(Clinical Trials) Regulations 2004.

5The current version of the Declaration of Helsinki may be

found at http://www.wma.net/e/policy/b3.htm.
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16.2.3 World Health Organization
Recommendations

As in any biomedical research trial, the volunteer

participating in a trial involving radiopharmaceuticals

must be mentally competent to understand and appre-

ciate the risks and benefits associated with the trial and

to then make a reasoned judgment of whether or not to

participate. The probabilities of stochastic risks or the

potential magnitude of deterministic effects must be

clearly communicated to the participating subject in

written and verbal formats. Stochastic risks can be

conveyed to the subject by, for example, comparison

with other common radiological procedures or in

terms of the effective dose received annually from

normal background radiation. As, in a nuclear medi-

cine trial, the subject is exposed to ionizing radiation,

the volunteer should be an adult. In fact, the World

Health Organization (WHO) proposed a guideline that

subjects participating in studies involving exposure to

ionizing radiation should be aged at least 40 years,

where practicable, and preferably greater than 50 years

(WHO 1977). The rationale for this is to reduce the

risk of radiogenic cancer (if the latent period exceeds

the life expectancy of the subject) and genetic effects.

Because of the potential for fetal damage resulting from

maternal irradiation, pregnant women should not par-

ticipate in such studies. Of course, exceptions to these

requirements may necessarily arise (ICRP 1991) lead-

ing to the need of the recruitment of members of dis-

advantaged or vulnerable populations. This can only

occur if such a trial is responsive to the needs of that

population and if there is a reasonable probability that

the population will derive a benefit from the results of

the research. If, for example, the trial has to be per-

formed on mentally incompetent patients (an example

being the development of a radiopharmaceutical for

use in demented patients), then the informed consent

for the subject to participate must come from the legally

authorized representative of that subject; however, if

the subject is capable of providing their own consent

then they should. Similarly, there may be instances in

pediatric medicine where the nuclear medicine proce-

dure must be performed on a child. Clearly, informed

consent from the parents or legally-appointed guardians

of the child is required in such cases. In all situations,

the subject is free to withdraw from the clinical trial at

any time without reprisal.

16.2.4 Practical Considerations

The Declaration of Helsinki stipulates that any research

trial involving humans must undergo review and

approval by an independent Ethics Committee in addi-

tion by other competent authorities, prior to initiation.

There are a number of practical considerations that

must be incorporated in any clinical trial design involv-

ing radiopharmaceuticals. First, justification must be

provided for the administration of the radiopharmaceu-

tical. It is the responsibility of the Committee deciding

upon whether or not to approve the application for a

trial involving radionuclides to assess if substitution

with an imaging modality that does not use ionizing

radiation (e.g., ultrasound or magnetic resonance imag-

ing) is possible. This is a realistic requirement only for

those cases where the radiopharmaceutical is used as an

imaging adjunct and is not itself the focus of the experi-

ment. Should it be concluded that the administration

of a radiopharmaceutical is necessary and unavoidable,

the administration of radiation must be optimized

through application of the ALARA (as low as rea-

sonably achievable) in order to lower the amount of

administered activity (and consequent absorbed dose

burden) to a level at which the basic question the

investigation seeks to answer can still be solved. The

investigation should not be conducted at a lower admi-

nistered activity as no possible benefit can be achieved,

and the subject is confronted with a radiation absorbed

dose and consequent theoretical risk.

The ALARA concept requires the implementation

of appropriate quality assurance (QA) procedures both

within the nuclear medicine clinic and the radiophar-

macy. This is required to ensure that the imaging

equipment is as sensitive as required (i.e., the count

rate per unit activity imaged is maximized) and that the

radiochemical purity of the administered substance is

as high as achievable. ALARA extends not only to the

individual absorbed dose burden, but also to that borne

by a cohort of subjects. The number of subjects within

a given cohort must be minimized through rigorous

statistical justification, as discussed previously.

Finally, the imposition of an absorbed dose or

effective dose limit is required. This limit is likely to

be a function of the status of the volunteers (healthy or

diseased, life expectancy, age), modality (due to the

absorbed dose of the decelerating positrons, PET is a

high-absorbed dose modality per unit activity than
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most single-photon imaging procedures) and culture

(some societies are more tolerant of higher radiation

exposures). It is highly unlikely that any one set limit

can be specified to cover all conditions.6

16.3 Magnitudes of Risks Associated
with Nuclear Medicine Research

In 1977, the WHO published a review and set of

recommendations of the use of ionizing radiation and

radionuclides on humans for biomedical research pur-

poses (WHO 1977). Of particular interest were its

descriptions of risk categories, which were subse-

quently refined by the International Commission on

Radiological Protection (ICRP) in its Publication 62

(ICRP 1991). These are summarized in Table 16.1.

The WHO categorized risk in terms of the dose

equivalent whereas ICRP Publication 62 used the

more recent effective dose (Chap. 10). The latter

defined the risk as the total detriment which is the

sum of the probabilities of a radiation-induced fatal

cancer, the weighted-probability of nonfatal cancers

and the total probability over all succeeding genera-

tions of the occurrence of serious hereditary as a

consequence of the irradiation.7

The risk categories of Table 16.1 correspond to

stochastic risks of ionizing radiation exposure were

derived by the WHO in consideration of the following:

� Category I: Within variations of normal back-

ground radiation

� Category II: Within “dose limits” for members of

the general public

� Category III: Within “dose limits” for occupation-

ally-exposed persons

The ICRP subsequently divided Category II into

Categories IIa and IIb in which Category IIa was

associated with a minor level of risk with the benefit

of exposure expected to be related to increases in

knowledge leading to health benefits. In Category

IIb, the dose levels approach those of occupationally-

exposed individuals with the benefit of exposure more

directed at the cure or prevention of disease.

ICRP Publication 62 recommended how radiophar-

maceuticals should be used in biomedical research:

� Radiopharmaceutical with known internal radia-

tion dosimetry profile: The use of such a radiophar-
maceutical must account for the radiation dosimetry

which will be largely provided either by the agent’s

Summary of Product Characteristics / Package Insert

or other published documentation.

� New diagnostic radiopharmaceutical: The research

and development of a new diagnostic radiophar-

maceutical must be supplemented by preclinical

experiments prior to the introduction of the radio-

pharmaceutical to man. ICRP Publication 62 recom-

mends that such preclinical evaluation be performed

upon multiple species, of which one must be a non-

human primate. A review of the contemporary liter-

ature would suggest that the last recommendation is

not widely conformed to.

� New therapeutic radiopharmaceutical: Preclinical
experiments with animal models should be per-

formed and compared against human healthy

Table 16.1 Levels of risks and benefits associated with the exposure to ionizing radiation in biomedical

research (WHO 1977; ICRP 1991)

Level of risk WHO risk category

(order-of-magnitude total risk)

Corresponding

effective dose (mSv)

Level of societal benefit

Trivial Category I (�10�6 or less) < 0.1 Minor

Minor to intermediate Category IIa (�10�5) 0.1–1 Intermediate

Category IIb (�10�4) 1–10 Moderate

Moderate Category III (�10�3 or more) � 10a Substantial
aTo be kept below deterministic effects’ thresholds except for therapeutic studies

6Of interest is the proposal by Huda and Scrimger (1989) of a

limit of 50 mSv to be applied to healthy volunteers participating

in a nuclear medicine study. Such a value would not be tolerated

in this era for healthy volunteers however it is possible to

consider scenarios (e.g., studies involving multiple PET/CT

examinations of patients with late-stage cancer) where such a

limit might be considered acceptable in a clinical trial.
7ICRP Publication 62 characterized the total detriment due to

ionizing radiation exposure to be 2–3 times greater in children

than in adults and, for adults aged 50 years or more, to be 10–20%

of that of younger adults. This reflects the difference between the

latency period for a radiogenic cancer to express itself in the

irradiated adult and the normal life expectancy of the same.
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volunteer data for which the radiopharmaceutical

has been administered at diagnostic levels.8

� Other biomedical research: These applications are
those in which a nuclear medicine agent (or, collo-

quially, “tracer”) is used as an associated diagnos-

tic for the assessment of a biomedical procedure,

including the administration of another agent.

As, in the first case above, supplied data with the

nuclear medicine agent should be used in order to

estimate the absorbed radiation doses. If these are

not available, or are insufficiently accurate, one

should use, wherever possible, conservative esti-

mates of the radiation dosimetry in order to lead

to an overestimate of the effective dose per unit

administered activity and force a drive to minimize

the amount of administered activity.

16.4 Summary

Even though the intent of ICH is to minimize duplica-

tion of research in different geographies, biomedical

research involving human beings is subject to many

international and national regulations, recommenda-

tions, legislation, and expectations in order to assure

the ethical conduct of such research. The use of radio-

pharmaceuticals requires the participating nuclear

medicine physicist play an active and co-supervisory

role in the design, execution, and analysis of the asso-

ciated clinical trials. This participation must seek to

minimize the ionizing radiation-associated risks and

maximize the integrity of the data acquired through

the use of the radiopharmaceutical. The nuclear medi-

cine physicist engaged in these trials must be aware of

the ethical requirements and the associate legislation

and regulations.
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The Future of Nuclear Medicine Radiation
Dosimetry 17

Abstract This chapter summarizes the directions along which the development of

nuclear medicine radiation dosimetry progresses.
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17.1 Introduction

The premise of this book is that, despite all of the

scientific, medical, and technological advances in the

past four decades, nuclear medicine radiation dosime-

try is not yet a mature discipline. Many advances in the

calculation and measurement of organ absorbed doses

and in the prediction of biological effects remain to be

achieved. This chapter summarizes areas considered

likely to display advances in nuclear medicine dosim-

etry in the near future.

17.2 Single-Photon Radionuclide
Imaging Technology

In the development of radiopharmaceuticals using

single-photon emitting radionuclides, the planar

conjugate-view method has been the usual method of

estimating the associated internal radiation dosimetry.

The disadvantages of the lack of knowledge of source-

organ thickness and only an approximate ability to

correct for organ overlap in the conjugate views have

been noted in Chap. 14. While SPECT offers a solu-

tion to these dilemmas, it is limited by the detection

sensitivities of contemporary gamma cameras which

use NaI(Tl) scintillators to the acquisition of a single

axial field-of-view in a clinically-realistic acquisition

time. This disables the prospect of obtaining a three-

dimensional whole-body biodistribution and, hence,

would be limited to measuring the biodistribution

within a limited anatomical volume.

Room temperature solid-state radiation detectors

offer the promises of high-sensitivity and superior

energy resolution and mechanical advantages such as

reduced weight. The higher sensitivity evolves from

the facts that the mean energy required to generate an

ion pair is about an order of magnitude less in a solid-

state medium than in a gaseous medium and that the

number of channels that can reduce the detection effi-

ciency is less than in scintillator. In many solid-state

detectors, the thermal noise current can limit the sen-

sitivity of the detector and necessitates the use of

cryogenic cooling (e.g., liquid nitrogen) to reduce

the random thermal noise. Some materials have a

sufficiently low noise current at room temperature to

make them practical for the nuclear medicine clinic.

Materials such as cadmium zinc telluride (CdZnTe,

or more commonly known as “CZT”) and cadmium

telluride (CdTe) have been used in nuclear medicine
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applications. The size of the detectors are still small

with, as a result, CZT imaging platforms currently

limited to specific applications where such small

fields-of-view are desired, such as in scintimammo-

graphy, nuclear cardiology, and small-animal imag-

ing. Rapid acquisition times have been reported with

reductions in acquisition times from about 30 min for

NaI(Tl) scintillator detectors to about 3–5 min for CZT

detectors. If axial fields-of-view can be extended to

30–40 cm, it should be possible to imagine whole-

torso (head to mid-thigh) tomographic imaging suit-

able for dosimetry evaluations requiring about

15–20 min for a single acquisition.

17.3 Reference Anthropomorphic
Phantoms in Diagnostic Nuclear
Medicine Radiation Dosimetry

Chapter 12 summarized past, contemporary, and

future anthropomorphic phantoms and their roles in

evaluating the internal radiation dosimetry of diagnos-

tic nuclear medicine procedures. Patient-specific cal-

culations are considered in the following subsection.

The transition from reference phantoms based upon

stylized phantoms (e.g., the Cristy-Eckerman series)

to voxellated (e.g., the GSF series) phantoms is occur-

ring in radiological protection, is noted below in the

discussion pertaining to ICRP Publication 103 (2007).

Such transitions can, no doubt, lead to more accurate

estimates of the internal radiation dosimetry associated

with diagnostic radiopharmaceuticals. However, at the

same time, it must always be borne in mind that the

dosimetry profile thus calculated is only for a reference

phantom and is not specific to the individual patient.

One could sensibly argue if such an improvement in

accuracy will have an appropriate impact upon the com-

parative nature of the effective dose between radio-

pharmaceuticals in diagnostic nuclear medicine.

New phantom approaches, such as the use of non-

uniform rational B-spline (NURBS), can allow a more

diverse series of phantoms to represent the broad pop-

ulation of nuclear medicine patients in terms of sex,

height, weight, and ethnicity. As a result, although the

dosimetry calculation will be for a reference phantom

alone, the calculation can become more representative

of the patient in question.

17.4 Patient-Specific Radionuclide
Therapy Planning

Siegel et al. (2002) advocated eloquently the need for

radionuclide therapy planning to become increasingly

patient-specific in order for it to benefit the therapeutic

patient. This could require modifications of existing

internal radiation dosimetry models, such as the MIRD

method. However, with increasing computing power

and the use of parallel processing, patient-specific

Monte Carlo simulations of radiation transport and

energy deposition using patient-derived image data

(i.e., the radiological anatomy through whole-body

CT and the biodistribution through, for example, a

diagnostic-level administration of activity for imag-

ing) should lead to increased accuracy in the evalua-

tion of organ and tumor absorbed doses. Despite this

expectation, Divoli et al. (2009) have compared patient

absorbed dose values evaluated using the MCNPX

code and patient CT image data sets through the

OEDIPE system with those calculated using the MIRD

schema (throughOLINDA/EXM) but with the S-factors

scaled by patient organ mass for 131I. They concluded

that the use of these mass-scaled S-factors could yield

absorbed doses accurate to within 26%. As the uncer-

tainty in the absorbed dose delivered in external beam

radiotherapy is intended to be less than 5%, this would

suggest that computationally-intensive patient-specific

radionuclide therapy planning is a rich and open field

for research.

17.5 New Radionuclide Delivery Vectors

In conventional nuclear medicine, the radionuclide

administered to a patient through either its natural

form for which it targets the organ or tissue of interest

(e.g., sodium iodide for thyroid tissue), through chela-

tion to a target-specific vector or as a replacement of

the naturally-occurring nonradioactive moiety in a

chemical agent. Some new delivery systems currently

being researched for medical imaging are based upon

nanostructures (Matsuura and Rowlands 2008). Such

structures have physical dimensions of the order of a

nanometer and are being investigated primarily as

efficient means of transporting iodinated or gadolin-

ium-bearing contrast for X-ray and MR applications.
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17.6 New Means of In Vivo Radiation
Dosimetry Measurement

Earlier, this chapter looked at conventional means,

based upon small MOSFETs and small TLDs, of

in vivo measurements of internal radiation dosimetry.

The spatial resolution of such dosimeters are still

relatively gross compared to the variation of internal

radiation absorbed dose spatial variations. However,

new possible means of obtaining such measurements

through quantum dot (QD) dosimeters are being inves-

tigated (Stodilka et al. 2009). The QD is a semicon-

ductor with physical dimensions of a few nm and can

contain between 102 and 105 atoms only and can be

made frommaterials such as cadmium selenide (CdSe),

zinc sulfide (ZnS), indium arsenide (InAr), and indium

phosphide (InP). A QD is defined by its spatial dim-

ension being smaller than the Bohr exciton radius

(DEFINE). Dai et al. (2004) have reviewed several

metal chalcogenides (ZnS and CdSe/ZnS) as scintil-

lators. The ability to fabricate small dosimeters from

such devices is an intriguing means of measuring

heterogeneous absorbed dose distributions.

17.7 New Estimates of Radiation Risk

In Chap. 10, the historical development of the effec-

tive dose equivalent/effective dose as a metric of sto-

chastic risk was discussed through their presentation

by ICRP Publications 26, 60, and 103 which were

released in the 1970s, 1990s, and 2000s, respectively.

The effective dose equivalent of ICRP 26 (1977) has at

last been universally superseded by the effective dose

with the tissue weighting factors of ICRP Publication

60 (ICRP 1991). Since then, ICRP Publication 103

(ICRP 2007) has presented updated tissue weighting

factors based upon revised stochastic risk estimates

resulting from continuing follow up of populations

and individuals exposed to radiation. It could be

expected that regulatory and legislative accounting of

these updated tissue weighting factors will follow,

much as they did in the 1990s following the release

of ICRP Publication 60. As the expectation is that

estimates of radiation-induced stochastic risk will be

revised continuously as more epidemiological data are

accrued, one should anticipate these changes and their

impacts upon the estimate of this stochastic risk. But

an important facet of ICRP 103 with highly practical

implications to the nuclear medicine community is

that the Commission has, for the first time, specified

anthropomorphic phantoms to be used in the evalua-

tion of the effective dose. As noted in that publication,

the Snyder and Cristy-Eckerman phantoms have been

used in the past in, for example, MIRD calculations,

MIRDOSE, and OLINDA/EXM. However, ICRP

Publication 103 uses the reference computational

phantoms of the adult Reference Man and Reference

Woman, with organ dimensions and weights as

described in ICRP Publication 89 (2002). These phan-

toms are the voxellated GOLEM and LAURA from

the GSF series (Chap. 12). It will be interesting to

observe how or if, following the MIRD committee’s

recent summary of achieving congruence between

MIRD and ICRP concepts (Bolch et al. 2009), the

ICRP Publication 103 concepts will be adopted in

nuclear medicine dosimetry calculations. This curios-

ity arises from the FDA’s expectation that radiophar-

maceutical dosimetry calculations should be derived

from the OLINDA/EXM code for which a 510(k)

exemption has been issued. As OLINDA/EXM cur-

rently uses the Cristy-Eckerman and Stabin et al.

series of phantoms, a reconciliation of differences in

the absorbed dose profiles evaluated using the GSF

series of phantoms promoted by ICRP Publication 103

and the “conventional” phantom series of OLINDA/

EXM would be of interest.
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Appendix

Appendix A Nuclear Form Factor for a
Gaussian Charge Distribution

The Gaussian electrical charge density distribution is

given by (3.113) where the normalization constant

r0 is determined from the normalization requirement,

4pr0

ð1

0

dr r2 e� r=RNð Þ2 ¼ 1 (A.1)

where RN is the nuclear radius. The integral is of the

form,
Ð1
0

dx x2 e�ax2 , which is solved by using the

simpler integral
Ð1
0

dx e�ax2 . This latter integral is

solved by first squaring it,

ð1

0

dx e�ax2

0
@

1
A
2

¼
ð1

0

dx e�ax2
ð1

0

dy e�ay2

¼
ð1

0

dx

ð1

0

dy e�a x2þy2ð Þ
(A.2)

Converting the double integral in Cartesian coordi-

nates to one in polar coordinates,

ð1

0

dx

ð1

0

dy e�a x2þy2ð Þ ¼ 1

4
2p
ð1

0

dr r e�ar2

0
@

1
A (A.3)

and noting that d(r2) ¼ 2r dr,

2p
ð1

0

dr r e�ar2 ¼ p
a

ð1

0

dt e�t

¼ p
a

(A.4)

leading to
Ð1
0

dx e�ax2 ¼ 1
2

ffiffi
p
a

p
. Then,

ð1

0

dx x2 e�ax2 ¼ d

da

ð1

0

dx e�ax2

¼ 1

4

ffiffiffi
p

p
a3=2

(A.5)

From this, we obtain
Ð1
0

dr r2 e� r=RNð Þ2 ¼
ffiffi
p

p
4
R3
N

leading to, from (A.1),

r0 ¼
1

p3=2R3
N

(A.6)

and the normalized Gaussian electric charge spatial

distribution,

reðrÞ ¼
e� r=RNð Þ2

p3=2R3
N

: (A.7)

The mean-square radius is,

r2 ¼
ð
d3r r2 reðrÞ

¼ 4ffiffiffi
p

p
R3
N

ð1

0

dr r4 e� r=RNð Þ2
(A.8)

This integral is solved through the successive dif-

ferentiations that led up to (A.5) to yield,

ð1

0

dr r4 e� r=RNð Þ2 ¼ 3
ffiffiffi
p

p
8

R5
N (A.9)
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and,

r2 ¼ 3

2
R2
N (A.10)

The nuclear form factor for the Gaussian electrical

charge spatial distribution derived above is,

FðqÞ ¼ �hc

q

� �
4ffiffiffi
p

p
R3
N

�
ð1

0

dr r sin
qr

�hc

� �
e� r=RNð Þ2 : (A.11)

The integral is rewritten as a complex integral of

the form,

ð1

0

dx x sin bx e�ax2 ¼ 1

2
Im

ð1

�1
dx x e� ax2�ibxð Þ

(A.12)

and the exponent in the integrand is written as a square,

ax2 � ibx ¼ ffiffiffi
a

p
x� i

b

2
ffiffiffi
a

p
� �2

þ b2

4a
: (A.13)

The integral of interest is,

ð1

�1
dx x e� ax2�ibxð Þ ¼ e�b2=4a

ð1

�1
dx x e�

ffiffi
a

p
x�ib=2

ffiffi
a

pð Þ2 :

(A.14)

Using the substitution of the variable, w ¼ ffiffiffi
a

p
x

�ib=2
ffiffiffi
a

p
, the integral can be split into two simpler

integrals,

ð1

�1
dx x e� ax2�ibxð Þ ¼ e�b2=4a

a

 ð1�ib=2
ffiffi
a

p

�1�ib=2
ffiffi
a

p
dwwe�w2

þ i
b

2
ffiffiffi
a

p
ð1�ib=2
ffiffi
a

p

�1�ib=2
ffiffi
a

p
dw e�w2

!

(A.15)

Both integrals are solved for using the Cauchy

integral theorem,
Þ
G dz fðzÞ ¼ 0, providing that fðzÞ

is analytic within a region containing the closed con-

tour, G. The simpler of the two integrals is solved for

first,

ð1�ib=2
ffiffi
a

p

�1�ib=2
ffiffi
a

p
dw e�w2 ¼ lim

R ! 1
ðR�ib=2
ffiffi
a

p

�R�ib=2
ffiffi
a

p
dw e�w2

:

(A.16)

The contour for both integrals is

G ¼ G1 [ G2 [ G3 [ G4, as shown in Fig. A.1 where

w ¼ uþ iv. Equation (A.16) is,

ðR�ib=2
ffiffi
a

p

�R�ib=2
ffiffi
a

p
dw e�w2 ¼

ð
G1

dw e�w2

¼ �
ð
G2

dw e�w2 �
ð
G3

dw e�w2

�
ð
G4

dw e�w2

(A.17)

The integral over the contour element G2 is,

ð
G2

dw e�w2 ¼
ðR

R�ib=2
ffiffi
a

p
dw e�w2

¼ i

ð0

�b=2
ffiffi
a

p
dv e�ðRþivÞ2

¼ 0 for R ! 1

(A.18)

iv

−R R u

Γ2

Γ1

Γ3

Γ4

b
2÷a

−i

Fig. A.1 Contour for evaluating the integrals of (A.15)
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That over G3 is,

ð
G3

dw e�w2 ¼
ð�R

R

du e�u2

¼ � ffiffiffi
p

p
(A.19)

and that over G4 is,

ð
G4

dw e�w2 ¼
ð�R�ib=2

ffiffi
a

p

�R

dw e�w2

¼ 0

(A.20)

via a similar manipulation to lead to (A.18). Hence,

the integral is,

ð1�ib=2
ffiffi
a

p

1�ib=2
ffiffi
a

p
dw e�w2 ¼ ffiffiffi

p
p

: (A.21)

The other integral is solved in a similar fashion,

ðR�ib=2
ffiffi
a

p

�R�ib=2
ffiffi
a

p
dww e�w2 ¼

ð
G1

dww e�w2

¼ �
ð
G2

dww e�w2 �
ð
G3

dww e�w2

�
ð
G4

dww e�w2

:

(A.22)

As before, the integrals over G2 and G4 go to zero as

R ! 1. The integral over G3 is, using the substitution

y ¼ w2 which leads to dy ¼ 2w dw,

ð
G3

dww e�w2 ¼
ð�R

R

dwwe�w2

¼ 1

2

ð�R

R

dy e�y

¼ 0

(A.23)

Thus,

ð1�ib=2
ffiffi
a

p

�1�ib=2
ffiffi
a

p
dww e�w2 ¼ 0 (A.24)

Combining all of the above results in,

ð1

�1
dx x e� ax2�ibxð Þ ¼ i

ffiffiffi
p

p
2

b e� b2=4að Þ
a3=2

: (A.25)

From (A.12),

ð1

0

dx sin bxð Þ e� axð Þ2 ¼
ffiffiffi
p

p
4

b e� b2=4að Þ
a3=2

(A.26)

which leads to,

ð1

0

dr r sin
qr

�hc

� �
e� r=RNð Þ2

¼
ffiffiffi
p

p
4

qR3
N

�hc
e� qRN=2�hcð Þ2 (A.27)

and an expression for the form factor associated with a

Gaussian electric charge distribution,

FðqÞ ¼ e� qRN=2�hcð Þ2 (A.28)

Appendix B Nuclear Form Factor for the
Woods–Saxon Charge Distribution

The normalization constant of the Woods–Saxon elec-

trical charge density distribution is determined from

the requirement,

r0 ¼
1

4p
Ð1
0

dr r2

1þe
r�R50

að Þ
� � : (B.1)
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The integral is not particularly easy to solve and

few solutions are provided in the literature. The solu-

tion is,

ð1

0

dr
r2

1þ e
r�R50

að Þ ¼ 2a3Li3 �e
r�R50

að Þ� �

� 2ra2Li2 �e
r�R50

að Þ� �

þ r2

3
r� 3a ln 1þ e

r�R50
a

� �� ����r¼1

r¼0

ðB:2Þ

where LinðzÞ is the polylogarithm (also known as

Jonquière’s function) of order n defined by,

LinðzÞ ¼
X1
k¼1

zk

kn
zj j < 1 (B.3)

where z ¼ x þ iy. By analytical continuation for

zj j > 1, the dilogarithm and trilogarithm are,

Li2ðzÞ ¼ � Li2 1=z

� �
� ln �zð Þð Þ2

2

� p2

6
zj j > 1

(B.4)

and

Li3ðzÞ ¼ Li3 1=z

� �
� ln �zð Þð Þ3

6

� p2

6
ln �zð Þ zj j > 1:

(B.5)

From (B.4), for r ! 1,

Li2 �e
r�R50

að Þ� �
¼ �Li2 �e�

r�R50
að Þ� �

�
r�R50

a

� 	2
2

� p2

6
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2a2
� p2

6
as r ! 1

(B.6)

and, from (B.5) for r ! 1,

Li3 �e
r�R50

að Þ� �
¼ Li3 �e�

r�R50
að Þ� �

�
r�R50

a

� 	3
6

� p2

6

r� R50
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� �

! � r3

6a3
� p2r

6a
as r ! 1

(B.7)

Thus, for r ! 1,

2a3Li3 �e
r�R50

að Þ� �
� 2ra2Li2 �e

r�R50
að Þ� �

þ r2

3
r� 3a ln 1þ e�

r�R50
að Þ� �� �

! 2a3 � r3

6a3
� p2r
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� �
� 2ra2

r2

2a2
� p2
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� �

þ r2

3
rþ 3a

r

a

� �� �
¼ 0

(B.8)

and, for r ! 0

2a3Li3 �e
r�R50

að Þ� �
� 2ra2Li2 �e

r�R50
að Þ� �

þ r2 r� 3a ln 1þ e
r�R50

að Þ� �� �

! 2a3Li3 �e�
R50
að Þ� �

(B.9)

These two results lead to,

ð1

0

dr
r2

1þ e
r�R50

að Þ ¼ �2a3Li3 �e�
R50
a

� �
(B.10)

and the normalization,

r0 ¼ � 1

8p a3Li3 �e�
R50
a

� � : (B.11)

A feature of the trilogarithm is, as a ! 0 (i.e., the

diffuse edge of the nucleus becomes more defined),

a3Li3 �e�
R50
a

� �
! �R3

50

6
(B.12)
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leading to,

r0 !
3

4pR3
50

(B.13)

which is equivalent to the normalization for the hard-

edge sphere model of the nucleus.

In summary, the normalized Woods–Saxon charge

distribution is,

reðrÞ ¼ � 1

8p a3 1þ e
r�R50

að Þ� �
Li3 �e�

R50
að Þ� � :

(B.14)

The Woods–Saxon mean-square radius is deter-

mined from the general formula for the moments of

the Woods–Saxon distribution,

1

n!

ð1

0

dr
rn

1þ e
r�R50

að Þ ¼ �anþ1Linþ1e
� R50

að Þ: (B.15)

The mean-square radius is,

r2 ¼ 4p
ð1

0

dr r4 reðrÞ

¼ � 1

2a3Li3 �e�
R50
a

� �
ð1

0

dr
r4

1þ e

�
R50
a

	

¼ 12a2
Li5 �e�

�
R50
a

	� �

Li3 �e�
�
R50
a

	� �

(B.16)

The nuclear form factor for the Woods–Saxon elec-

trical charge spatial distribution is,

FðqÞ ¼ � 1

2a3Li3 �e�
R50
að Þ� �

0
B@

1
CA �hc

q

� �

�
ð1

0

dr
r sin qr

�hc

� 	
1þ e

r�R50
að Þ� � (B.17)

As no closed analytical solution exists, the integral

must be solved numerically. On the other hand,

another approach to solving for the Woods–Saxon

form factor is to write the Woods–Saxon charge dis-

tribution as the finite sum of weighted Gaussians,

reðrÞ ¼
r0

1þ e
r�R50

að Þ

ffi
XZ
i¼1

wie
�ki r�Rið Þ2

(B.18)

Appendix C Pair Production Energy
Threshold

In this Appendix, it is demonstrated that electron–

positron pair production in the nuclear Coulomb

field, while a nonnegligible process in the dosimetry

of external photon beam radiotherapy, can be largely

neglected in diagnostic and therapeutic nuclear medi-

cine where photon energies of interest are much less

than 1 MeV. This is due to the fact that the photon

energy required to produce the lepton pair exceeds

2me of 1.022 MeV. The initial state consists of the

photon and the nucleus and the final state consists of

the recoil nucleus and the electron–positron pair con-

sidered to be grouped (Fig. C.1). In the centre-of-mass

frame (labeled by the * superscript), the threshold

covariant four-vector momenta in the initial and final

states are,

p�m;g ¼ k�;�k�ð Þ (C.1)

p�m;N ¼ E�
N; k

�� 	
(C.2)

p�
0

m;e ¼ 2me; 0ð Þ (C.3)

p�
0
m;N ¼ E�0

N ; 0
� �

(C.4)

and the corresponding covariant four-vector momenta

in the laboratory frame are,

pm;g ¼ k� kð Þ (C.5)

pm;N ¼ mN; 0ð Þ (C.6)

p
0
m;e ¼ E

0
e; pe

� �
(C.7)
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p
0
m;N ¼ E

0
N; p

0
N

� �
: (C.8)

The Mandelstam s variable is defined as,

s � pg þ pN
� 	2 ¼ p�g þ p�N

� �2
(C.9)

where the equality follows as this is a relativistic

invariant. We have,

pg þ pN
� 	2 ¼ pm;gp

m
g þ pm;Np

m
N þ pm;Np

m
g þ pm;gp

m
N

¼ m2
N þ 2kmN:

As in the centre-of-mass system, p�g þ p�N ¼
p�

0
e þ p�

0
N, then, and recalling that the kinematic quan-

tities with subscript e refer to the electron–positron

pair which has a rest mass of 2me,

p�g þ p�N
� �2

¼ p�
0
e þ p�

0
N

� �2
¼ p�

0
m;ep

m�0
e þ p�

0
m;Np

m0
N þ p�

0
m;Np

m0
e þ p�

0
m;ep

m�0
N

¼ m2
N þ 4m2

e þ 4mNme:

(C.10)

Equating (C.9) and (C.10) and solving for the

threshold photon energy for electron–positron pair

production,

kThr ¼ 2me þ 2
m2

e

mN

� �
: (C.11)

This result shows that, in order to simultaneously

conserve momentum and energy, the recoil nucleus

takes away momentum which fixes the photon thresh-

old energy to be greater than twice the electron rest

mass by an amount 2 m2
e=mN

� 	
. This excess energy

amount is equal to a few tens of eV and is negligible.

Hence, in practice, it is possible to specify that the

threshold energy for pair production in the nuclear

Coulomb field is 1.022 MeV.

Energy

Electron

Hole / Positron

me

−me

0

Fig. C.1 Electron–positron pair production described by

Dirac’s “hole theory”
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Index

A

Absorbed dose. See Energy exchange, non-stochastic

Absorbed fraction, 340–341, 468

and charged particle equilibrium (CPE), 340

Acquisition times

assay data, 536–537

excreta, 537

whole blood and plasma, 537

image data, 535–536

Activity

analytical fits, 576–579

exponential stripping, 578

g variate, 579

least-squares analysis, 576–578

multiexponential functions, 576–578

non-monotonic biexponential, 579

definition, 152

Activity and internal dose estimates (AIDE), 475

a decay

barrier

one-dimensional, 98–101

penetration, 97–103

three-dimensional, 101–103

transmission, 101

centrifugal energy, 102

energy requirements, 94

energy spectrum, 97

Gamow factor, 101–102

Geiger–Nuttall rule (half-life), 103

half-life calculation, 103–104

kinematics, 95–97

kinetic energies, 94–95

Adjoint, 12

Administration, Distribution, Metabolism and Excretion

(ADME), 461–462

Administration of Radioactive Substances Advisory Committee

(ARSAC), 4

Air kerma-rate constant, 331. See also Energy exchange,

non-stochastic

Allometric scaling

equal interspecies biodistributions, 525

fractional organ mass, 525–527

and metabolic rate combined, 528

metabolic rate, 527–528

normalisation corrections, 529–530

relative organ masses-Reference Adults and rat, 526

validation, 530

Animal phantoms, 523–524

Antenatal effects, 443–444

childhood cancer, 444

embryonic death, 444

microcephaly/mental retardation, 444

Anthropomorphic phantoms, 592

hybrid

definition, 481

NURBS, 487

stylised

Brownell–Ellet–Reddy phantoms, 482

Cristy–Eckerman phantoms, 483

definition, 480

ICRP Publication 2 phantom, 482

Korean, 483

Snyder and Snyder–Fisher phantoms, 482

Stabin phantoms (female and pregnant female), 483

voxellated (tomographic)

Chinese, 486

data sources, 484

definition, 480

GSF phantom series, 485

Japanese, 486

Korean, 486

MAX and FAX, 485–486

NORMAN, 485

University of Florida paediatric phantom series, 485

VIP MAN, 486

Zubal phantoms, 484–485

a particle

discovery, 92

identification as the helium-4 nucleus, 92–93

Apoptosis. See Cell death-radiation induced

Atomic form factor

atomic hydrogen, 177

601



definition, 177

Atomic mass number, 40

Atomic number, 40

Atomic relaxation

non-radiative transitions, 198–200

radiative, 194–198

Auger electrons, 198

kinetic energy, 199

yield, 199

B

Barkas correction term. See Stopping number

b decay

allowed transitions, 121–122

Chadwick-discovery of continuous energy spectrum, 104

Fermi-neutrino, 106

Fermi theory (See Fermi theory of b decay)

Fermi transition, 121

forbidden transitions, 122

Gamow–Teller transition, 121

Hahn and Meitner-early measurements, 104

identification as the electron, 93

kinematics, 108–112

Kurie plot, 115–116

neutron, 108–109

nuclear, 109–112

bþ decay, 110–111

b� decay, 110

Q values, 112

parity non-conservation, 125–126

Pauli-postulation of neutrino, 105

reduced Fermi transition probability, 122

reduced Gamow–Teller transition probability, 122

selection rules, 119–122

Becquerel-unit, 152–153

BED. See Biologically equivalent dose

Bethe integral, 47

Bethe theory, soft collisions, 231–236

cross section, 232–236

for longitudinal excitation, 234

energy transfer, 232

kinematics, 231–232

mass collision stopping power, 236

total cross section, longitudinal interaction, 235

Bhabha scatter. See Hard collisions

Biodistribution, history

blood circulation time, 462–463

de Hevesy, 463

excretion of administered radium, 462

Biologically equivalent dose, 429–430

exponentially decreasing dose rate, 430

Bloch correction term. See Stopping number

Bohr theory, soft collisions, 222–231

adiabatic response, 228

electric field, 225–227

energy transfer, 228–229

derivation, 224

equation of motion of target electron, 224–225

impact parameter, 222–224

impulse approximation, 222–223

mass collision stopping power, 229–231

Bone and bone marrow

anatomy and histology, 505–509

cellularity factor, 507

cortical bone, 506

cortical/trabecular bone-assignation of activities

(ICRP), 507

endosteum, 506

models

Bouchet, 511

comparisons, 511–512

Eckerman and Stabin, 510–511

geometrical, 509

ICRP 30, 509–510

MIRD 11, 509

Spiers, 509

osteogenic cells, 506–507

red (active) bone marrow, 507

trabecular bone, 506

yellow (inactive) bone marrow, 507

Born approximation, 21, 23

Bosons, 34

b particle, discovery, 92

Bragg–Gray cavity theory, 365–366

Bragg–Gray conditions, 366

Bragg–Gray relations, 366

Bragg’s additivity rule, 202, 316

Bremsstrahlung, 299–314

absorbed dose, 469–471

Bethe–Heitler theory, 308–312

differential cross section in photon energy, 311

soft photon limit, 310–311

triple differential cross section, 308–311

classical theory, 299–308

angular distribution, 304–305

energy spectrum (nonrelativistic case), 305–306

energy spectrum (relativistic case), 306–308

radiated power (Larmor formula), 302–303

radiation emission, 301–308

efficiency (See Radiation yield)

electron-electron, 312

Elwert factor, 311

positron-nucleus, 312

Bremsstrahlung imaging, 567

Brennan and Bernstein rules (nuclear angular momentum), 74

Buildup factor

absorbed dose, 358

analytical representations, 359–360

geometric progression formula, 360

Kwok formula, 360

Leichner formula, 360

Meisberger formula, 360

Taylor formula, 360

Boltzmann equation, 359

effective attenuation coefficient, 360

energy fluence, 358

introduction, 357–358

measurement, 358–359

number fluence, 358

Bystander effect. See Cell death-radiation induced
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C

Cadmium zinc telluride (CZT) detectors, 591–592

Cardiac wall and contents, 505

Carrier-free specific activity (CFSA). See Specific activity-
carrier free

Cavity theory. See Bragg–Gray cavity theory

Cell cycle, 404–405

G1 phase, 404

G2 phase, 404

M phase, 404–405

S phase, 404

Cell damage-radiation induced, 412

germ cell, 413

mutations, 424–425

potentially lethal damage, 412

repair, 422–424

sublethal damage, 412

Cell death-radiation induced, 410–412

apoptosis, 411

bystander effect, 411–412

interphase death, 411

mitotic death, 411

CELLDOSE, 475

Cell organelles, 403

Cell radiation sensitivity, 417–422

to absorbed dose rate, 419–420

to hypoxia, 420

to linear energy transfer, 418–419

to proliferative kinetics, 422

Cell survival curves, 413–417

linear-quadratic (LQ) model, 416–417

modified multiple target model, 416

multiple target model, 415

single target model, 414–415

Centromere, 404

Cerenkov radiation. See Density/polarisation effect

Charged particle equilibrium (CPE). See Radiation equilibrium

Chirality operator, 129

Chromatid, 404

Chromatin, 404

Chromosome, 404

Chromosome/chromatid, 409–410

Chromosome/chromatid aberrations

anaphase bridge/inter-arm, 409–410

centric ring, 409

dicentric, 409

symmetric translocation, 410

Clinical trials of radiopharmaceuticals, sample size, 537

Code of Federal Regulations Title 21, 586

Coherent scatter. See Rayleigh scatter

Collision stopping powers

hard and soft collisions combined, 241–245

electrons and positrons, 243–245

massive projectiles, 241–243

restricted, electrons, 268

summary, 268–269

Complete radiation equilibrium (CRE). See Radiation
equilibrium

Complex conjugate, 12

Compton continuum, 186

Compton defect, 186

Compton peak, 186

Compton profile, 188

and incoherent scattering factor, 188

Compton scatter, 179–188

atomic binding effects, 186–188

double differential cross section in solid angle and scattered

photon energy, 186

incoherent scatter

differential cross section in solid angle, 187

example-carbon, 188

kinematics, 179–182

Klein–Nishina cross sections

derivation, 182–186

differential in electron energy, 185

differential in solid angle, 183

energy-transfer, 184

scatter, 184

total, 183

mean energy transfer to recoil electron, 184

Compton wavelength-electron, 181

Conjugate-view planar scintigraphy

activity quantification, 543

background correction

bilinear interpolation method, 549–550

Buijs method, for oversubtraction, 551

Cauchy integral method, 550

Kojima method, for oversubtraction, 551

simple subtraction method, 549

Thomas method, for oversubtraction, 550–551

collimator selection, 552

dead-time correction, 543–544

overlapping regions, 551–552

scatter compensation

depth-dependent buildup factor, 548

depth-independent buildup factor, 548

dual energy window, 546

dual photopeak window, 547

and pseudoextrapolation number method, 548

single energy window, 546

triple energy window, 547

self-attenuation correction factor, 544–545

single-head gamma camera, 542

transmission factor, 544

validation, 552–553

Coster–Kronig electrons, 198

Cristy–Eckerman phantoms. See Anthropomorphic phantoms

Cumulated activity, 469

C-urea breath test

Helicobacter pylori, 1
Currie decision theory-example, 165

Currie-unit, 153

D

Decision theory

decision level, 163

detection level, 163

determination level, 163

Decision theory-example, 165

Declaration of Helsinki, 586

Density/polarisation effect, 251–265
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Čerenkov radiation, 262–265

electromagnetic fields in a dielectric medium, 253–255

electronic polarisation, 251–253

energy loss in a dielectric medium, 255–262

polarisation-definition, 252

Sternheimer–Peierls parameterisation, 261–262

Deoxyribonucleic acid (DNA), 404

Detector dead time, 166–168

non-paralysable response, 167–168

paralysable response, 166–167

Deterministic effects, 439–440

cataractogenesis, 440

erythema and epilation, 439–440

sterilisation, 440

Detriment, 446–447, 588

Deuteron, 87–89

Dielectric constant (relative), 252, 256

Dielectric dispersion, 253

Differential cross section in solid angle, 24

Dipole radiation, 138

Dirac’s equation, 28–30

Directive 2001/20/EC, 586

DNA-radiation damage

direct effect, 407

double strand break (DSB), 408

indirect effect, 406–407

single-strand break (SSB), 408

Dose and dose rate effectiveness factor (DDREF), 434

Dose factor (DF). See S-factor
Dose point kernels, 363–364

Double strand break (DSB). See also DNA-radiation damage

binary misrepair, 426

repair kinetics, 426–429

E

Effective atomic number, 206

Effective attenuation coefficient, 360

Effective dose, 446–449

colon absorbed dose, 448–449

esophageal absorbed dose, 448

gonadal absorbed dose contribution, 448

Elastic Coulomb scatter, 213–219

mean free path, 214

Mott cross section

in momentum transfer, 50

in solid angle, 50

nuclear form factors, 51–57

Rutherford cross section

in momentum transfer, 48

in solid angle, 47

spin-0 projectiles, 46–48, 213–219

atomic scattering, 214–218

screened potential, 213–214

unscreened potential, 213

spin-1/2 projectiles, 48–51, 219

Elastic scatter, 12

recoil kinetic energy, 13–14

scatter kinetic energy, 14–15

Electric multi-pole

electric field, 134

magnetic field, 134

Electric quadrupole moments

effcet of nuclear shape, 82–86

multipole expansion of electric potential, 79–82

reduced, 85–86

Electric susceptibility, 252

Electron capture

energy requirements, 111

experimental evidence, 111

kinematics, 108–112

Electronic polarisability, 252

Energy deposit. See Energy exchange, stochastic

Energy exchange, non-stochastic, 331–332

absorbed dose, 331

air kerma-rate constant, 331

exposure, 331–332

kerma, 331

Energy exchange, stochastic, 328–331

energy

deposit, 328–329

imparted, 330

transferred, 330

lineal energy, 330–331

specific energy, 330

Energy imparted. See Energy exchange, stochastic

Energy straggling, 269–283

atomic electron binding effects, 283

Gaussian probability distribution function, 271–275

Moyal approximation to Landau probability distribution

function, 281

Vavilov probability distribution function, 275–278

distorted log-normal distribution, 283

Edgeworth series, 282

electrons, 283

Fourier series, 282

Gaussian limit, 278–280

Landau limit, 280–281

Energy transferred. See Energy exchange, stochastic

Epidemiological studies-radiation risk, 433–438

accidental exposures, 437–438

Hiroshima, Nagasaki, 433–434

medical exposures, 434–437

occupational exposures, 437

Equivalent dose, 445–446

Ethics of animal use in biomedical research

Animals (Scientific Procedures Act) 1986, 520–521

three ‘R’s (replacement, refinement, reduction), 520

Excitation energy, 245–247

Exposure. See Energy exchange, non-stochastic

F

Fano

factor (See Ionisation of gases)

theorem, 345–346

Fano’s theorem. See Fano
Fermi–Eyges theory. See Multiple elastic scattering

Fermi gas model, 55, 57–60

energy

symmetry, 59

total, 59
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volume (condensation), 59

nucleon Fermi momenta, 58

nucleon potential wells, 58

Fermions, 34

Fermi’s Golden Rule

Number. 1, 19

Number. 2, 18

Fermi theory of b decay

comparative half-life, 118

decay constant, 116–118

energy spectra, 14–116

Fermi factor (nuclear Coulomb correction), 114

Fermi integral, 117

four-fermion interaction vertex, 122–124

matrix element calculation, 112–113

phase space factor calculation, 113–114

Sargent’s rule (transition rate as function of maximum

energy), 118

weak hadronic current, 123

weak leptonic current, 123

Fermi theory of electron capture, 118–119

Feynman dagger notation, 48

Feynman propagator, 182

Filtered backprojection (FBP). See Single-photon emission

computed tomography (SPECT)-quantitative

Fine structure constant, 12–13

Fluorescence yield, 197

parameterisations, 197

Flux calculations, 348

disc source, 351–352

linear source, 349–351

point source, 349

Form factor

atomic elastic scattering, 216–218

inelastic scatter, 234

Four ‘R’s of radiobiology

reassortment, 424

reoxygenation, 424

repair of sublethal damage, 424

repopulation, 424

FSU. See Functional subunit
Functional subunit, 450

Fundamental interactions of matter, 35

G

Gastrointestinal tract

anatomy, 491–492

ICRP 30 model, 492–496

compartmental cumulated activities, 494

compartmental rate constants, 493

correction for bolus activity input, 495

ICRP 100 model, 496–497

compartmental rate constants, 497

intestinal wall as source region, 497–498

GCP. See Good Clinical Practice

g decay

kinematics, 130–131

multi-pole radiation, 131–143

Geiger–Muller counter, 381–382

fill gas requirements, 382–383

Generalised oscillator strength, 234–235

Generations, 34

g-fraction of kinetic energy released as bremsstrahlung, 342

Glashow–Salam–Weinberg electroweak model, 36

GOLEM phantom. See Anthropomorphic phantoms

Good Clinical Practice, 586

GOS. See Generalised oscillator strength

Goudsmit–Saunderson theory. See Multiple elastic scattering

g rays, discovery, 92

Green’s function, 21

H

Hadrons, 34

Half-life

biological, 153

effective, 153

physical, 153

Hard collisions, 237–241

Bhabha scatter, 239–240

differential cross section for massive projectile

spin-0, 237–238

spin-1, 238

spin-1/2, 238

mass collision stopping power

for electrons and positrons, 240–241

for massive projectile, 240

spin-0 and spin-1/2, 240

Moller scatter, 238–239

restricted mass collision stopping power for electrons, 240

Head and brain

MIRD 5 model, 504

MIRD 15 model, 504–505

Hereditary effects of radiation, 442–443

Hermitian conjugate, 12

Human radiogenic cancer risk

bystander response, 432–433

hormetic (H) response, 432

linear no threshold (LNT) model, 432

linear-quadratic response, 432

linear-threshold (LT) response, 432

I

ICH. See International Conference on Harmonisation

ICRP. See International Commission on Radiological Protection

Impact parameter, b, 211

Impulse approximation, 187

Incoherent scatter. See Compton scatter

Incoherent scattering factor, 186

and Compton profile, 188

Interaction bosons

gluon (strong interaction), 35

intermediate vector bosons (weak interaction), 35

photon (electromagnetic interaction), 35

Interfaces between media, 346–348

Internal conversion

coefficient

definition, 144

derivation, 145–147

dosimetric considerations, 144–145
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International Commission on Radiological Protection (ICRP),

334, 588

history, 459–460

internal radiation dosimetry method, 473–474

International Conference on Harmonisation, 586

Interphase death. See Cell death-radiation induced

In vitro assays

faeces, 540–541

plasma, 540

urine, 540

whole blood, 539–540

Ionisation chamber, 376–377

re-entrant (dose calibrator), 383–384

Ionisation of gases

diffusion of electron-ion pairs, 373

drift speed, 375

effect of mass, 375

effects of an electric field, 374

Fano factor, 373–374

introduction, 373

mobility, 375

multiplication factor

M-definition, 371

M-derivation, 379–380

recombination coefficient, 374

space-charge effects, 378–379

thermal speed, 374

Townsend

avalanche, 377

coefficient, 379–380

Ionisation potential. See Excitation energy

Ionising radiation

directly-ionising, 325

indirectly-ionising, 325

Isomeric transitions, 147

Iterative reconstruction. See Single-photon emission computed

tomography (SPECT)-quantitative

K

Kerma, 331. See also Energy exchange, non-stochastic

collision, 341

divergence of photon vector energy fluence, 337

in-air collision, 345

per unit photon fluence, 337–338

Kidney

anatomy, 498–499

models

Blau-multiregional, 499

Cristy–Eckerman-homogeneous, 499

McAfee-multiregional, 499

MIRD 20, 499–500

MIRD-homogeneous, 499

MIRD-multiregional, 499

radiobiology considerations, 499–500

Klein–Gordon equation, 29

Klein–Nishinia cross sections. See Compton scatter

K mesons (kaons), 124

Koide’s formula (leptonic masses), 34

Kurie plot. See b decay

L

Ladder operators, 39

Larmor formula, 302–303. See also Bremsstrahlung

Lateral electronic equilibrium, 342

LAURA phantom. See Anthropomorphic phantoms

Lea–Catcheside factor, 417, 427–429

constant absorbed dose rate, 428

derivation, 427

exponentially-decreasing absorbed dose rate, 428–429

Legendre polynomials, associated, 27

Legendre’s differential equation, 26

Lepton flavours, 106–107

Leptons, 34

Liénhard–Wiechert retarded potentials, 299–301

Life span study (LSS), 433

Lineal energy. See Energy exchange, stochastic

Linear-quadratic (LQ) model, 416–417. See also Cell survival

curves

derivation from DSB kinetics, 427

Lippman–Schwinger equation, 20–21

Liquid-drop model, 63

Coulomb term, 65, 70

nuclear binding energy, 64

paired nucleons term, 65

surface term, 64–65

symmetry term, 65

volume term, 64

Weizsäcker formula for binding energy, 64

M

Magic nuclei, 70

Magnetic dipole moment

classical derivation, 75–77

concentric spheres, 77

gyromagnetic ratio, 76

nuclear, 78–79

Schmidt lines, 79

Magnetic dipole moments, nucleon, 77–78

Magnetic dipole moment sphere, 76

Magnetic multi-pole

electric field, 134

magnetic field, 134

Marinelli–Quimby–Hine method, 463–465

Mass parabolae, 66–68

Maxwell’s equations (free space), 131–132

Mean lifetime, 153–154

Measurement

correction for

background, 161–162

radioactive decay during measurement, 160–161

optimisation of

background counting time, 161

reference standard counting time, 162

reference standard, 162

Medical Internal Radiation Dose (MIRD) Committee

fundamental MIRD equation

derivation, 467

matrix-vector form, 471–472

history, 460

MIRD schema, 466–473
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source and target regions, 471, 473

Mesons, 34

Metal-oxide semiconductor field-effect transistor (MOSFET),

393–394, 538

Microdosimetry, 366–371

absorbed dose-averaged LET, 369

LET probability distribution functions, 368–369

lineal energy, 370

linear energy transfer (LET), 368

specific energy, 370–371

unrestricted LET, 369

validity conditions, 369–370

MIRD committee. SeeMedical Internal Radiation Dose (MIRD)

committee

MIRDOSE, 474–475

Mitosis, 404

Mitotic death. See Cell death-radiation induced

Mobility. See Ionisation of gases

Modality-inclusive environment for radiotherapeutic variable

analysis (MINERVA), 475

Modified multiple target model. See Cell survival curves
Molière theory. See Multiple elastic scattering

Moller scatter. See Hard collisions

Monoclonal antibody dosimetry (MABDOSE), 475

Monte Carlo, 353–357

analogue sampling, 355–356

inversion method, 356

rejection method, 356

codes

EGS, 357

GEANT4, 357

MCNP, 357

random number generator, 354–355

variance reduction, 356

Moseley’s law, 195

MOSFET. SeeMetal-oxide semiconductor field-effect transistor

Mott differential cross sections, 219

Moyal approximation. See Energy straggling

Multiple elastic scattering, 283–298

Fermi diffusion equation, 287

Fermi–Eyges theory, 284–288

Goudsmit–Saunderson theory, 291–293

Molière theory, 293–298

root-mean square scattering angle, 283–284

scattering power

definition, 288–289

spin 0 porjectile, 289

Multiple target models. See Cell survival curves
Multi-pole radiation

angular distribution, 138–139

angular momentum, 135–137

energy, 136–137

selection rules, 137–138

transition rates, 141–143

Muon, 106

N

Nanostructures, 592

Neumann function. See Spherical Bessel function
Neutrino/antineutrino

experimental detection, 106

fundamental characteristics, 105

Goldhaber–Grodzins–Sunyar experiment, 126

helicity, 126–129

muon neutrino, 106

tau neutrino, 106–107

Newton–Cotes formulae, 580

Normalised cumulated activity, 471

numerical integration, 579–580

extrapolation beyond last time point, 580–581

Normal tissue complication probability (NTCP), 449–450

NTCP. See Normal tissue complication probability

Nuclear density, 57

Nuclear form factor, electric charge distribution

exponential, 52–53

Gaussian, 53

point, 52

spherical, 53

Nuclear isomerism, 147–148

Nuclear mass

definition, 41

measurement, 41–43

Nuclear medicine

diagnostic, 2–5

myocardial perfusion imaging, 5

optimisation of administered activity, 3

per caput effective dose, 4

ibritumomab tiuxetan, 1
Nuclear size, measurement

charged particle scattering, 45–51

muonic x rays, 45

nuclear binding energies, 44–45

Nuclear structure

average binding energy per nucleon, 60–61

nucleon separation energy, 61–62

stable nuclei characteristics, 62–63

Nuclei

isobars, 40

isomers, 41

isotones, 40

isotopes, 40

Nucleons, 40

O

OEDIPE, 475

OER. See Oxygen enhancement ratio

Oncogenes, 425

Optical theorem, 28

Ordered subsets expectation maximisation (OSEM). See Single-
photon emission computed tomography (SPECT)-

quantitative

Organ Level Internal Dose Assessment/Exponential Modelling

(OLINDA/EXM), 475

Oxygen effect, 407

Oxygen enhancement ratio (OER), 420

variation with LET, 420–421

P

Package Insert (PI), 456

Peritoneal cavity, 513
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Permeability, 528

PET

attenuation correction, 562–563

normalisation, 563

biodistribution acquisition, 563–567

multiple slices, 565

2D-and 3D-acquisition modes, 561–562

axial sensitivity, 562

FoV, 562

scatter fractions, 561–562

line of response (LoR), 557

performance metrics

noise-equivalent count rate (NECR), 560

scatter fraction, 560

prompt event, 558

radiation dosimetry, 565–567

random coincidence (event)

compensation, 558

definition, 558

scatter coincidence, 557–558

compensation-convolution method, 559–560

compensation-energy discrimination, 559

compensation-model estimation, 560

compensation-reconstruction method, 560

true coincidence, 557

p53 gene, 411

Photoelectric absorption, 189–194

differential cross section in solid angle for K-shell

electrons, 192

energy transfer cross sections, 194

examples

carbon, 193

lead, 194

kinematics, 189

mean fractional energy transfer, 194

photon energy dependence, 193

total cross section for K-shell electrons, 194

Z-dependence, 193

Photon interaction coefficients, 200–206

mass attenuation coefficient, 200–202

mass energy

absorption coefficient, 204–206

transfer coefficient, 202–204

Physical decay constant, 152–153

variability (due to molecular environment), 154

Pion, 36

Plating efficiency, 414

Positron–electron annihilation, 318–322

annihilation

bound atomic electron, 320

free electron, 320–322

in-flight cross section, 319–320

Positronium, 322

singlet, 322

triplet, 322

Potentially lethal damage. See Cell damage-radiation induced

Poynting vector, 174

Preclinical biodistributions

data acquisition times, 522–523

imaging, 522

post-mortem dissection, 521–522

sample sizes, 523

Pregnant female phantoms. See Anthropomorphic phantoms

Program for linear internal age-dependent doses (PLEIADES), 475

Proportional chamber

cylindrical design, 377–378

fill gas requirements, 380–381

multiwire proportional chamber (MWPC), 385–386

Rossi counter, 384

Prostate gland, 513

Q

QCD. See Quantum chromodynamics

Quadrupole radiation, 138–139

Quantum chromodynamics, 36

Quantum dot (QD) dosimeters, 593

Quantum numbers

baryon number, 37

electric charge, 37

isotopic spin (isospin), 38–39

lepton number, 37

electronic, 37

muonic, 37

tau, 37

parity, 38

spin, 37–38

Quarks

colour, 36

flavours, 34

R

RADAR, 476

Radiance. See Radiation fields

Radiant energy. See Radiation fields

Radiation dosimetry, history, 334

Radiation equilibrium

charged particle equilibrium (CPE), 340

equality of absorbed dose and kerma, 340–341

complete radiation equilibrium (CRE), 339

transient charged particle equilibrium (TCPE), 344

Radiation fields, 326–328

phase space, 326

radiance, 326

radiant energy, 326

Radiation length, 314

Radiation pathology, 438–439

cerebrovascular syndrome, 438

gastrointestinal syndrome, 438–439

haematopoietic syndrome, 439

Radiation weighting factor, WR, 445–446

Radiation yield, 315–316

Radiative stopping powers, 313–314

classical electron-nucleus, 303–304

Radical

free, 406–407

hydroxyl, 407

ion, 406

Radioactive decay

branching ratio, 155

daughter half-life greater than that of parent, 157

decay branching, 157–160
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parent half-life greater than that of daughter, 156–157

parent half-life much greater than that of daughter, 156

secular equilibrium, 156

sequential chain-without branching, 155

transient equilibrium, 157

Radiometrics

scalar, 327

energy fluence, 327

energy flux density (energy fluence rate), 327

particle fluence, 327

particle flux density (particle fluence rate), 327

vector, 327–328

energy fluence, 328

energy flux density (energy fluence rate), 328

particle fluence, 328

particle flux density (particle fluence rate), 328

radiance, 327

Radionuclide therapy-patient-specific dosimetry, 592

Radiopharmaceutical development

Phase I, 457–458

Phase II, 458

Phase III, 458–459

preclinical phase, 457

Range

continuous slowing down approximation (CSDA), 316–317

definitions, 316

projected, 317–318

straggling, 318

Rayleigh scatter, 176–179

differential cross section in solid angle, 177

example-carbon, 177

total cross section, 178

RBE. See Relative biological effectiveness
RE. See Relative effectiveness
Reciprocity theorem, 361–363

distributed source and target, 362–363

heterogeneous media, 363

point source and target, 361–362

Rectum, 513

Red bone marrow

absorbed dose estimation, 570–571

activity-image-based measurement, 568

activity-in vitro estimation, 568–570

Reference Man

Asian, 482

ICRP (Western), 481

Indian, 482

Regions-of-Interest (RoIs)

segmentation, 534–535

spatial gradient, 535

Relative biological effectiveness (RBE), 418

variation with LET, 419

Relative effectiveness, 430

Residence time. See Normalised cumulated activity

Respiratory system

anatomy, 487–488

ICRP 30 model, 488

ICRP 66 model, 488

MIRD 18 ventilation model, 489–490

aerosol, 490

continuous flow, 490

re-breathing system, 490

Retarded vector potential, 173

Risk categories, 588

Rossi counter. See Proportional chamber

Rutherford

a, b particle-discovery, 92

Rutherford collision formula, 219–222

S

Scattering amplitude, 23

Scattering cross section, 23–24

Scattering power. See Multiple elastic scattering

Schilling test, 1

Schrödinger’s equation

steady-state, 16

Scintillation photoconversion, 390

photomultiplier tube (PMT), 390

position-sensitive photomultiplier tube (PSPMT), 391–392

Scintillator probe, 538–539

Scintillators, 386–393

fluorescence-delayed, 387

fluorescence-prompt, 387

inorganic, 387–389

activator, 387

common materials, 388

lanthanide oxyorthosilicates, 388

sodium iodide (NaI), 388

organic, 389

phosphorescence, 388

spectroscopy, 392–393

Screening angle, 214

Secular equilibrium. See Radioactive decay
Segre plot, 62

S-factor

definition, 468

dependence on source region mass (charged particles), 472

Shell correction term. See Stopping number

Shell model

nucleon orbitals, 70–74

spin-orbit coupling, 72–73

Sievert integral, 351

Single-photon emission computed tomography (SPECT)-

quantitative

attenuation correction, 554

CT, 554

limitations, 553

reconstruction methods, 554–556

scatter compensation (See conjugate-view planar

scintigraphy)

Single-strand break (SSB), 408

Single target model. See Cell survival curves
Soft collisions, comparison of Bohr and Bethe theories, 236–237

Soft collisions stopping power, 222–237

Specific absorbed fraction, 468

Specific activity, 154–155

carrier free, 154

Specific effective energy (SEE), 474

Specific energy. See Energy exchange, stochastic

Spherical Bessel function

first kind, 25
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second kind, 25

Spinor, 30

SSB. See DNA-radiation damage

Sterility-radiation induced

female, 413

male, 413

Stochastic effects, 440–443

excess absolute risk (EAR), 441

excess relative risk (ERR), 441

hereditary, 442–443

radiation carcinogenesis, 441–442

Stochastic risk-new estimates, 593

Stopping number, 247–265

Barkas correction term, 249

Bloch correction term, 249–250

complete (excluding density effect), 250

shell correction term, 247–248

zeroth-order, 247

Sublethal damage. See Cell damage-radiation induced

Summary of Product Characteristics (SPC), 456

T

Tau lepton, 106

TCP. See Tumor control probability

Technetium-99m, 148

Therapeutic, 5–6

Thermoluminescence

theory, 395–397

two level model, 396

Thermoluminescent dosimetry, 538

Thermoluminescent dosimetry (TLD), 394–398

Thomson scatter, 173–176

differential cross section in solid angle, 176

total cross section, 176

Time-dependent perturbation theory, 15

Tissue weighting factor, WT, 446–447

Transient charged particle equilibrium (TCPE). See Radiation
equilibrium

Transient equilibrium. See Radioactive decay
Trapezoidal rule, 580

Tumor control probability (TCP), 449

Tumours (spheres), 513

U

Uncertainty analysis, sources

anatomic modelling, 583

cumulated activity, 582–583

nuclear decay data, 581–582

Units, 11

Urinary bladder

anatomy, 500

MIRD 5, model-static, 500–501

models-dynamic

Cloutier, 501–503

MIRD 14 and 14 (revised), 504

Snyder and Ford, 504

voiding intervals, 502

V

Vavilov probability distribution function. See Energy

straggling

Vavilov probability distribution function-Gaussian limit. See
Energy straggling

Vavilov probability distribution function-Landau limit. See
Energy straggling

Vector

contravariant, 11

covariant, 11

four-component, 11

three-component, 11

Vector spherical harmonic, 134

Virtual Human Project1, 484

Virtual quantum method. See Bremsstrahlung, classical theory

Volumes-of-Interest (VOIs), 534

W

Weak interaction

parity non-conservation, 124–129

V-A interaction, 129–130

Weizsacker–Williams method. See Bremsstrahlung

WHO. See World Health Organization

Woods–Saxon distribution, 53–54

World Health Organization, 587

Wu. See b decay

W, W/e

definition of, 266

Z

Zubal phantoms. See Anthropomorphic phantoms
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