Chapter 4
The Spatial and Frequency Domains

4.1 Introduction

The interconversion between spatial and frequency domains using Fourier and other
transforms is of critical importance in image processing and, for some imaging
methods, the construction of images from raw scan data. A significant feature of
the transforms is that we can convert back and forth between spatial and frequency
domains without loss of information or introduction of noise.

4.2 Images in the Spatial and Frequency Domains

4.2.1 The Spatial Domain

The concept of the spatial domain requires little introduction. We live in it! Most of
the images we are familiar with are spatial domain images — they display a matrix
of color or gray scale intensities in a 2D spatial plane. They represent a discrete
sampling of the change in intensity of a signal in space and there is a direct corre-
spondence between the coordinates in the image and space in the ‘real world’.

We can perform image processing operations directly on these spatial domain
images and we often do. Most domestic image processing software, for example
Adobe Photoshop, operates exclusively in the spatial domain. However, there are
image adjustments that are faster and more precise if we perform them after first
transforming the spatial domain image into its frequency domain equivalent. Also
there are some image adjustments that can only be performed in the frequency do-
main. Sometimes we acquire raw image data in the spatial frequency domain, most
notably in MRI, and it must be converted into the spatial domain in order to create
an interpretable anatomical image.
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4.2.2 Common All-Garden Temporal Frequency

When we encounter the term frequency we usually think about regular oscillations.
Some examples might include radio waves, audio waves, an ultrasound signal, or
perhaps the waves at the beach. A more specific description of frequency in these
contexts would be temporal frequency — the rate of repetition in time.

Figure 4.1 illustrates how we can often simplify the description of a complex time
domain signal (e.g. a recorded sound wave) by representing it as a spectrum show-
ing the relative intensities of its individual frequency components. In this figure we
see just one time dimension — the x axis. Although less familiar in everyday life,
2D examples are common in science. In magnetic resonance spectroscopy for ex-
ample, it is normal to add third and even higher order time dimensions to investigate
molecular structures.
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Fig. 4.1 Signals that have a regular periodic variation of intensity over time (left) are often rep-
resented as spectra (right) that show the intensities of specific frequency components. The most
common method of conversion of a time domain signal to its frequency domain representation is
the Fourier transform (FT). In this example the rather complicated time domain signal (a) has a
quite simple frequency domain representation (spectrum b) containing just three distinct frequency
components. These three components, shown singly in spectra d, f, and h, correspond to the time
domain signals c, e, and g respectively, and each of these is a simple decaying sinusoid. Signal a is
the sum of the signals c, e, and g. Physical phenomena that might produce these signals could be
as diverse as the vibrations of a musical instrument, or nuclear magnetic resonance in a solution of
small molecules
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Going beyond the familiarity of the idea of temporal frequency there is no reason
we can’t apply the same concepts (and the same maths) to signals that change with
space. Our brains can do quite a good job of resolving sounds into their temporal
frequency components, i.e. recognizing notes. Some people can do this with extreme
precision. Human brains have, however, not evolved to perform spatial frequency
analysis of what our eyes perceive. For that we need an external tool — preferably a
computer.

4.2.3 The Concept of Spatial Frequency

In image processing we often use the term frequency to describe the rate of change
of a signal in space, for example the rate at which the pixel intensity changes as we
scan across or down an image. In this context we are talking about spatial frequency
(in fact if we scanned the image and recorded the change of intensity then we would
once again have a signal that changed with time and thus the spatial and temporal
frequencies would be directly related).

The concept of spatial frequency is extremely useful in image processing. Many
of the methods used in analog and digital signal processing (signals often described
by their temporal frequency) have direct equivalents in image processing. This trans-
fer of methods from the temporal frequency domain to the spatial frequency domain
means much of the terminology has come along for the ride, with occasionally con-
fusing consequences. We will encounter high-pass, low-pass, band-pass and ideal
filters in image processing just as we would in (temporal) signal processing.

Let’s start with a very simple spatial frequency example. Consider the image
shown in Fig. 4.2. As we scan the image from left to right the intensity starts initially
at mid gray, increases slowly to white, decreases slowly to black, and then increases
again to mid gray. If we were to plot the intensity across one row of the image
matrix (all the rows are identical in this image) we would see that the profile has a
sinusoidal shape. It looks very similar to the trace we would see if we connected an
oscilloscope to the domestic electricity supply and measured the changing voltage.
We can say that the intensity changes with a particular spatial frequency — in this
case the frequency is one cycle per image width. We can describe this particular
intensity modulation with a very simple mathematical expression of the form:

I = sin(wx) 4.1

where [ is the intensity,
x is the distance across the image,
and o is the spatial frequency.

Since the value of sin(wx) ranges from —1 to +1, in Eq. 4.2 an intensity of +1
would represent white, and —1 would represent black.

If the bit depth of our image data was 8 we would have 28 = 256 possible
intensities and we would normally use the convention O = black and 255 = white
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Fig. 4.2 This is a very
unusual image because the
intensity profile in the x
direction (a plot of the pixel
intensities in any one row of
the image matrix) is a perfect
sinusoid with wavelength
identical to the width of the
image. The pixel intensities
(1) can be described with a
simple expression of the
form: I = sin(wx) where w

is the spatial frequency of the white —
intensity variation. In this / ™
particular image w = exactly / \
one cycle per image width , / N
\ /
black R,
X

when displaying the image. In this case the precise expression for the x-direction
change in intensity in Fig. 4.2 would be:

I = 127.5 x sin (2m1) 11275 4.2)
m

where x is the distance across the image in pixels,

m is the width of the image in pixels,

and the factor 27 is introduced to convert the spatial frequency from cycles per
image width to radians per image width.

To keep this introduction as simple as possible we will just say that the maximum
of the expression represents black and the minimum white. Also we wont worry
about the need to convert cycles to radians so can leave out the 27” We can ignore
these details for now as we are mainly interested in the general form of the intensity
change as we move through the space of the image.

Now let’s look at the slightly more complex image shown in Fig. 4.3. This image
is similar to Fig. 4.2 but we now see small modulations in the intensity superimposed
on the single cycle that spans the image. Now the intensity is modulated with two
different spatial frequencies — a low frequency of 1 cycle per image width, and a
higher frequency of 10 cycles per image width. Note that the amplitude of the higher
frequency modulation is about one fifth of that of the low frequency modulation. In
this case the (simplified) expression for the intensity modulation would have two
terms, one for each frequency:

1
I = sin(w1x) + gsin(a)zx) 4.3)
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Fig. 4.3 A modified version
of Fig. 4.2. The original
intensity profile has a
superimposed ‘ripple’ that
can also be described by a
sinusoid. The ripple pattern
has higher spatial frequency
and lower amplitude than the
underlying profile. In this
image the intensity profile
can be described as the sum
of the two sinusoids of

different spatial frequency white

and amplitude:

I = sin(wix) + sin(wrx),

where w, = 10w, I
black

where w, = 10w; = 10 cycles per image width

Once again w; has the value of one cycle per image width, or % cycles/pixel. The
astute will notice that this expression has a maximum value of about 1.2 — whiter
than white in our 1 = white, —1 = black scheme. We can ignore this for now
as we are mainly interested in the general form of the intensity change as we move
through the space of the image.

Look closely at the intensity profile in Fig. 4.3. The addition of the higher spatial
frequency (10 cycles per image width) means that the intensity changes much more
quickly in the x direction than it does in Fig. 4.2 — the higher spatial frequency
represents more rapid changes in image intensity as we scan a row of the image
matrix. Put another way, the maximum steepness of the intensity gradient increases
with the spatial frequency.

If we add a still higher spatial frequency, as in Fig. 4.4, we obtain a pattern that re-
sembles a series of narrow black and white lines. As the spatial frequency increased
so too did the maximum rate of change of image intensity.

Because the intensity modulations in the above images have sinusoidal profiles
the mathematical expressions for the modulation are particularly simple. In fact the
choice of sinusoidal intensity modulations in these introductory images is very de-
liberate. They illustrate the idea of describing changes of intensity in space with a
sine wave. We could also make up simple images in which the intensity change was
most simply described as the cosine of a spatial frequency and the position in space.
A more complex image might be described by a mixture of sine and cosine terms.

This leads us to a VERY important principle of image processing. No matter what
the intensity profile of an image might be it is possible to describe it as the sum of
a collection of sine and/or cosine waves of different frequencies and amplitudes.
Before we introduce this idea more formally, let’s consider how a collection of
sinusoids can describe an intensity profile that seems very different from a sinusoid —
Fig.4.5.
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Fig. 4.4 The profile of this
image can be described as the
sum of two sinusoids of
spatial frequencies 1 and 20
cycles per image width:

I = sin(wx) + sin(20wx).
In this example both the
spatial frequencies have equal
amplitude. Notice that the
higher spatial frequency
component resembles the
distinct edge detail seen when
black lines are drawn on a
white or gray background
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Fig. 4.5 The intensity profile of this image does not resemble a sinusoid, yet, as the following
images demonstrate, it can be accurately described as the sum of a long series of sinusoids of
increasing spatial frequency and decreasing amplitude



4.2 Images in the Spatial and Frequency Domains 61

Here the intensity profile has a step-like change from white to black exactly
midway across the image. Although the profile looks nothing like a sinusoid we
will soon see that it can be represented as the sum of a large number of sinusoids of
progressively increasing frequency.

The first step in the process is to find a single low frequency sinusoid that gives
a rough approximation to the step shaped profile. For this particular example the
sinusoidal profile of Fig. 4.2 is just what we are looking for — it is bright or white
in its left half and dark or black in its right half — not a very accurate representation
of Fig.4.5, but not too bad either. How can we improve it? Looking at the sinu-
soidal profile we could say that we need to flatten out the top of the white hump
and the bottom of the black trough. We can do this by adding another sinusoid of
exactly three times the frequency of the original as shown in Fig.4.6. To achieve
the optimum flattening of the white hump and the black trough the higher spatial
frequency component has to have one third of the amplitude of the original. We still

white

black

I = sin(wx) + %sin(.? x)

I = sin(@x)

X

Fig. 4.6 The square intensity profile of Fig. 4.5 can be approximated by adding two sinusoids of
frequency @ and 3w, where ® = 1 cycle per image width. Addition of the higher frequency term
flattens the top and bottom of the profile and steepens the sides. The best approximation to the
square profile is obtained when the amplitude of the higher frequency is % of the amplitude of the
lower frequency
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Fig. 4.7 Five different sinusoid-based profiles that approximate Fig. 4.5. As each successively
higher spatial frequency term is added the accuracy of the approximation improves
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have humps and troughs but their depth, or magnitude, is smaller than in our first,
single sinusoid approximation to Fig. 4.5.

Once again we can improve the fit by flattening humps and troughs with higher
frequency terms. The first five steps of this process are illustrated in images and
profiles in Fig.4.7. As we progressively add more terms of higher frequency we
achieve an ever closer approximation to the step-shaped profile of Fig.4.5. In this
particular case (two bands of identical width) each new higher frequency term is an
odd multiple of the first single-cycle approximation, and each new term has a smaller
amplitude than the previous one. As we add each new term the ‘roundness’ of the
intensity profile decreases and so too does the amplitude of the ripples. Notice that
as each odd frequency term is added the spatial position of the mid gray intensity
level remains unchanged and coincides exactly with the black/white step and the
edges of the original image.

In this process the choices of frequency and amplitude are not arbitrary — they
are each chosen to give the best possible approximation to the original step shape.
In this particular example image the spatial frequency terms are odd harmonics -
exactly analogous to the harmonics observed in a vibrating string.

Of course the rectangular ‘square wave’ profile seen in Fig. 4.5 would be highly
unusual in a medical image. To describe intensity profiles seen in conventional im-
ages we would need more frequencies than just the odd harmonics. In fact, even
Fig. 4.5 is a special case because the white to black transition occurs precisely mid-
way across the image. If it did not then the odd harmonics alone would not be
sufficient for an accurate representation — as we shall see later. (Note: Don’t con-
fuse the frequencies and amplitudes we used to represent of Fig. 4.5 with those that
describe Figs. 4.3 and 4.4 which have quite arbitrary spatial frequency components.)
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We have just examined some simple images and seen how we could describe their
intensity profiles as a single sinusoid or the sum of a series of sinusoids of particular
amplitude and spatial frequency. We only looked at the profile in the x direction as
these images had no variations in intensity in the y direction. Most images aren’t so
simple — the intensity is likely to be highly variable in both the x and y directions,
so for a proper description of an image’s spatial frequency components we need a
2D method. There are several to choose from. In this text we will concentrate on the
Fourier Transform because of its versatility and wide usage in image construction
and processing. However, the 2D Fourier Transform will be a little easier to relate to
the discussion we’ve just had if we first glance over the Cosine and Hartley Trans-
forms. Think of it as learning to wrestle a salt water crocodile by first playing with
a couple of goannas.

4.2.4 The Cosine and Hartley Transforms

The Cosine Transform is a rigorous method for doing what we have just done by
intuition with the main difference being that it describes a profile as the sum of a
series of cosine terms. Just for completeness, and not for memorization, here is the
mathematical description of the discrete 1D Cosine transform:

N-1
F(w) = \/% 3 fx).cocos (n%) (“.4)
x=0

This equation says that if we have a digital image matrix N pixels wide then
we can accurately describe the x profile of any row of the image matrix by adding
together N different spatial frequencies. An analogous Sine Transform also exists,
and although it more obviously resembles the intuitive process we followed in the
last section, it is rarely used in image processing because it has mathematical disad-
vantages that make the Cosine Transform more useful.

Since we are dealing with digital images which are 2D arrays of discrete intensi-
ties the relevant implementation is the 2D Discrete Cosine Transform or DCT. The
DCT is widely used in image processing — most commonly as a central part of the
JPEG image compression method in which it is used to identify low amplitude high
spatial frequency components that can be discarded because they have low visibility
to humans.

In contrast to the Cosine Transform the Hartley Transform describes an intensity
profile using both sine and cosine terms:

gy 2nrnw 2rnw
F(w) = Xn |:c0s ( ) + sin ( )i| 4.5)
2 N N
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Using both sine and cosine terms may seem like an unnecessary complication but
we introduce it here because of the close relationship between the Hartley Trans-
form and the Fourier Transform. In Image]J (the image processing software used to
illustrate examples in this text) the Fourier Transform is computed from a Hartley
Transform.

4.3 Fourier Transforms and Fourier Spectra

With the preceding introductory background we can now discuss the use of the
Fourier transform (FT) to resolve the spatial frequency components of 2D images.

4.3.1 1D Fourier Transforms

Put simply the Fourier transform states that any periodic function can be expressed
as the sum of an infinite series of sines and cosines:

F(w) = /_oo f(x) (cosQRrwx) —isin(2Qrwx)) dx (4.6)

This, just one of several possible expressions for a 1D Fourier Transform, is
included here mainly for the sake of completeness. You don’t have to remember
it, nor understand it in detail, to understand its use in image processing. Since an
image is two dimensional we need to apply Fourier transforms in both directions,
a complication that will be described soon. For now we need only consider 1D
transforms.

A major difference between the Fourier Transform and the Hartley Transform is
that the FT is complex — it includes the imaginary number i = /—1. If you are not
familiar with the idea of complex numbers don’t panic. For the curious there is a
basic introduction to complex numbers included in Appendix C, but you don’t need
to know this to get a feel for what the Fourier transform is doing.

Why have we now introduced yet another headache — complex numbers? What is
the point of imaginary numbers? After all, images are composed of real numbers —
the intensities of pixels.

If we were only interested in processing images to determine their spatial fre-
quency components then the Cosine or Hartley Transforms would indeed be suf-
ficient. However, image processing and image construction needs more versatility
than this. Although you might argue that imaginary numbers don’t exist (you can’t
count or measure objects with them), the complex number formalism is indispens-
able. We need complex numbers and Fourier Transforms to make MRI images and
they are very handy for image analysis. Take a look at Appendix C for some more
examples.
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The following discussion deals mainly with the magnitude or absolute value of
the Fourier Transform. The FT of a purely real function (one that does not involve
multiples of i) such as a digital image, has complex terms, but we need not concern
ourselves with this technicality just yet.

Working in the opposite direction to the Fourier transform above, we can syn-
thesize an arbitrary periodic function by Inverse Fourier Transformation of its
frequency components:

F(x) = /_oo f() (cosRrwx) + isinRrwx)) dw 4.7)

This is very similar to the forward or direct Fourier Transform, the difference
being only the sign of the second term.

Equations 4.6 and 4.7 are descriptions that apply to continuous functions and are
unsuitable for digital data which is discrete, not continuous, and finite, not infinite.
To deal with discrete finite data sets such as digital images we use a modified version
of the Fourier transform — the Discrete Fourier Transform (DFT):

N-l 2nrwx 2rwx
F) =) f(x) (cos( v )—isin( N )) (4.8)

x=0

In this expression x represents the pixel position where there are N pixels in one
row or column of the image, and w represents a specific spatial frequency. Notice
that in the discrete Fourier Transform the integration from —oo to +o00 has been
replaced by a summation from 0 to N — 1 because we only have a finite set of data
to deal with.

There is also a discrete form of the inverse Fourier Transform:

1A 2T wx 2rwx
F(x) = v E f(w) (cos( N ) + isin ( N )) (4.9)
=0

Using the DFT and inverse DFT we can convert an image back and forth between
the spatial and frequency domains as many times as we like without any loss of in-
formation. The transforms are precise descriptions, not approximations. The ability
to use such transforms without fear of data loss permits the processing of images
in either the spatial or frequency domains. The only limitation to this claim is the
internal precision of a computer’s calculations. These are more than adequate for
most image processing tasks.

The summations expressed in the DFT formulae can easily be performed by a
computer. The DFT is still a complex function, and you might wonder how the
computer represents +/—1. It doesn’t have to. We only need to store and manipulate
the coefficients of the imaginary terms and those coefficients are real numbers. This,
believe it or not, is how an anatomical image is constructed from raw MRI data in
which the real and imaginary coefficients represent voltages measured on different
axes of the MRI scanner.
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The DFT has a special characteristic which is very important in image process-
ing. The DFT treats its finite set of discrete input data as if the data repeated itself
infinitely. For a digital image this means the image data is treated as if the image
were tiled infinitely in space — a concept that will be illustrated shortly.

4.3.2 2D Fourier Transforms

For digital images (2D matrices of real numbers) we use a 2D Fourier transform to
resolve the x and y spatial frequency components. The 2D FT produces a two layer
matrix — one layer representing the coefficients of the real terms, and the other layer
the coefficients of the imaginary terms.

Let’s consider a digital image — an m column X n row 2D matrix of pixel in-
tensities. To perform the 2D Fourier transform of the image we can first compute
the 1D DFT of each row of the image matrix and store these transformed rows in
a new two layer complex matrix representing the real and imaginary coefficients.
This new matrix now has both space and spatial frequency dimensions. Each row
represents the series of spatial frequencies present in the corresponding row of the
original image. Each column represents the coefficients of a particular x direction
spatial frequency, and these may vary according to the y coordinate (row number)
in the original image. Since the DFT is a summation of a finite number of terms (N
in Eq. 4.8), not an infinite series, the DFT of a row of m pixel intensities has m terms
representing m distinct spatial frequencies.

To complete the 2D Fourier transform we now compute the 1D DFT of each of
the m columns of the complex matrix of row transforms. The output of this process
is another complex matrix of spatial frequency coefficients. This matrix has spa-
tial frequency dimensions in both directions — x and y. The elements of any row
or column of this matrix represent coefficients of spatial frequency in the original
image but they no longer have any direct correspondence to a particular row or
column in the original image. We need the inverse Fourier Transform to decode this
information.

We could also have first FT’ed the columns of the image matrix, and then the
rows of the matrix of column FTs, with the same final result. The actual algorithm
used in most software differs a little from this rows-then-columns method for the
sake of computational efficiency. It has the same effect except that the complex FT
matrix is square and has dimensions m’ x m’ where m’ is a power of two — the
m’ x m’ square is simply the smallest one that can enclose the original image.

4.3.3 Fourier Spectra

In Fig.4.7 we partially resolved an image into its spatial frequency components
(in one dimension). We stopped our approximation when we got to five terms, but
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adding more higher frequency terms would have increased the accuracy of the ap-
proximation. We could have used a 2D Fourier transform to perform the same task,
including calculation of all the higher order terms, with a result as represented in
Fig.4.8. The FT is a complex function and often produces negative coefficients for
the real and imaginary terms. To illustrate these negative coefficients in Fig. 4.7 the
real and imaginary parts of the complex data are represented by two special images
(c, d) in which zero is represented by mid-gray rather than black. Positive coeffi-
cients are represented by lighter pixels and negative coefficients by darker pixels.
While we have illustrated the real and imaginary data separately in this figure, they
are not normally viewed in this way. The convention is to show the magnitude or
Fourier spectrum which represents the square root of the sum of the squares of the
real and imaginary coefficients of the complex matrix (for more explanation of this
see Appendix C). The magnitude is thus always a positive number (we squared the
coefficients, not the imaginary numbers) and is thus easy to display. This is what is
shown in Fig. 4.8b. Take note of the spectrum part of the description ‘Fourier spec-
trum’. A spectrum is a display of intensity as a function of frequency — in our case,

A=+RI 42

Imaginary

Fig. 4.8 2D Fourier transform of Fig. 4.5. The Fourier spectrum (b) represents the magnitude of
the Real and Imaginary parts, represented here by images ¢ and d. The Fourier spectrum amplitude
A = ~/R* 4+ I? where R and [ are the coefficients of the real and imaginary terms. Note that in ¢
and d mid-gray represents zero. Positive coefficients are represented by lighter pixels and negative
coefficients by darker pixels. For this particular image all the real coefficients are positive. The
Fourier spectrum of a purely real matrix, such as a digital image, is always symmetrical — even if
the image is not symmetrical. Detail of the center of this Fourier spectrum is shown in Fig. 4.9
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Fig. 4.9 An alternative representation of Fig. 4.8b. On the left the intensity of the pixels is plotted
as a 3D bar chart. In a Fourier spectrum it is conventional to plot the log of the complex amplitude
so that the normally large zero and low frequency amplitudes does not obscure the display of the
terms with smaller amplitudes. On the right we see an enlargement of the center of the Fourier
spectrum image. Note that the intensities of the pixels representing amplitudes of the spatial fre-
quencies 1, 3, 5, 7, etc. decrease as frequency increases — just as we saw in Fig. 4.7 (the height of
the bars, and corresponding pixel intensities, decrease slowly because it is the log of the amplitude
that is plotted). The bright zero frequency point at the center of the Fourier spectrum represents
(but is not equal to) the average of all pixel intensities in the original image. Because it has the
largest amplitude it is always shown as a white pixel in the Fourier spectrum

spatial frequency. This should be a reminder that the x and y axes of the Fourier
spectrum image represent x spatial frequency and y spatial frequency, NOT spatial
distances.

Figure 4.9 shows two alternative views of the Fourier spectrum. The 3D bar chart
is intended to emphasize that the pixel intensities in the Fourier spectrum represent
the amplitudes of the individual spatial frequency terms. Notice that the first five on
either side of the center correspond exactly to the frequencies and amplitudes of our
intuitive approximation (Fig.4.7). The height of the bars, and corresponding pixel
intensities, do not drop off in the sequence 1, %, é, %, ... because it is the log of the
amplitude that is plotted.

There are some important points to note about the Fourier spectrum display:

o The origin (‘zero frequency point’, see below) lies by convention at the center of
the FT image matrix. The image is symmetrical because in the Fourier spectrum
of an image there is no difference between positive and negative frequencies.

e For this example all the non-zero data lies along a central row at right angles to
the black/white edge in the original spatial domain image.

e For this example the non-zero data appears in the first and then every second
pixel as we count outwards from the central pixel. These are the odd harmonics
mentioned previously.

e The pixel intensity decreases with increasing distance from the center. This rep-
resents the progressively decreasing amplitude of the higher order harmonics,
also seen in Fig.4.7.
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o For this example there are no non-zero elements in the vertical direction apart
from the central row. This is because there is no modulation of the intensity in
the vertical direction, i.e. for any column of the image matrix for Fig. 4.5 all the
elements are identical.

In general, if the dimensions of a digital image are n x n pixels, then there will be
n terms (i.e. n discrete spatial frequencies) in each dimension of its Fourier trans-
form. Many of these spatial frequencies may have zero amplitude. The equations in
the caption of Fig. 4.7 only show the non-zero terms.

4.3.4 The Zero Frequency or ‘DC’ Term

What about the central white pixel we see in all the Fourier spectra? As mentioned
above, the center of the FT matrix represents the ‘zero frequency’ and is often called
a DC term because of its direct current (DC) equivalent in electrical signal pro-
cessing. It represents a signal that does not vary with time or space. In the Fourier
transform of an image the DC term can be thought of as representing the average
intensity value of the whole image. The only image that will have a zero amplitude
for the zero frequency is a completely black image.

The real explanation for the zero frequency term is hidden in Eq. 4.2. Remember
that the value of sines and cosines range from —1 to 41 but in real images the pixel
intensities are all positive numbers or zero. To keep our mathematical description
of image profiles simple we temporarily adopted the convention of —1 = black and
41 = white. Going back to the 0 = black and 255 = white convention for an 8
bit image we need to add a constant to the sum of all the sine terms to make sure
the total is non-negative. In Eq.4.2 we did this by adding 127.5 to the sine term
that describes the profile of Fig. 4.2. Notice that 127.5 is the average pixel intensity.
Thus the DC term represents a signal that does not vary with space and it’s effect is
to ‘offset’ the output of the non-zero frequency terms.

Because the amplitude of the zero frequency term is usually very much higher
than the amplitude of any of the other frequency terms it is common to plot the log
of the amplitudes to display an image of the Fourier spectrum. This makes it easier
to see variations in the amplitude data.

4.3.5 Fourier Spectra of More Complex Images

In Fig.4.10 we see a slightly more complicated version of Fig. 4.5 and its Fourier
spectrum. At first sight this Fourier spectrum looks identical to the one shown in
Fig. 4.10b, but if we look closely we see that in Fig. 4.10b the pixels immediately
on either side of the central (zero frequency) pixel are black. There is a good reason
for this. The first non-zero term in the sinusoidal approximation to the intensity
profile of Fig. 4.10a has twice the frequency of that for Fig. 4.5 because in Fig. 4.10a
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1.

Fig. 4.10 Another simple image and its Fourier spectrum. For this image the spatial frequency £ 1
cycle per image width has amplitude zero — it is not useful in describing the x-direction profile.
This profile is best described by summation of spatial frequencies £2, £6, 210, =14, etc

]l]:ll]:l] -
Fig. 4.11 A more complex image and its Fourier spectrum. For this image the spatial frequencies
from =£1 to £7 cycles per image width have amplitude zero — they are not useful in describing the

x-direction profile. This profile is best described by summation of spatial frequencies 8, +24,
£40, etc. For clarity image b shows an enlargement of the central part of the Fourier spectrum

we have two black and two white bands. The amplitude of the spatial frequency 1
cycle/image width is zero. If we increase the number of black and white bands
further (Fig. 4.11) the first non-zero terms in the FT occur, as we now expect, further
from the center. We still have a ‘square wave’ intensity profile so the next non-zero
frequency is the next odd harmonic of the ‘primary’ frequency.

Let’s look again at why there is only one row of non-zero data in these Fourier
spectra. Remember that to perform the 2D FT we first transformed all the rows
of the original spatial domain image and then transformed all the columns of the
intermediate row-FT matrix. Since all the rows of the original image are identical
to each other, all the rows of the intermediate row-FT matrix will be identical to
each other. Thus all the elements in any single column of the row-FT matrix will
be identical to each other. When we transform these columns of the intermediate
matrix we produce only DC values because all the elements in any single column
are identical. The FT of a series of constant non-zero terms has just one non-zero
term, the DC term. In the Fourier spectrum the y direction DC term lies midway
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Fig.4.12 Most images have intensity changes in both the x and y directions. In this image we have
a y-direction spatial frequency of exactly 8 cycles per image height, and an x direction frequency
of exactly 2 cycles per image width. For clarity image b shows an enlargement of the center of the
Fourier spectrum. The size of the original spatial domain image matrix (a) was 128 X 128. If the
full 128 x 128 Fourier spectrum were shown in b it would be difficult to see the details that are
very close to the center

between the top and bottom. Of course this lack of spatial frequency modulation in
the y direction is also evident in the original image.

Now let’s look at an image (Fig. 4.12) in which we have intensity changes in both
the horizontal and vertical directions. Once again we have an intensity profile that is
sinusoidal - two cycles per image width in the horizontal direction and 8 cycles per
image width in the vertical direction. We see that the non-zero terms in the FT are
displaced 2 pixels from the center horizontally and eight pixels vertically.

It should now seem reasonably obvious why we have the non-zero elements in
the central row and central column of Fig. 4.12b, but what about the extra four white
spots that have appeared off the center lines? We can understand the origin of these
if we look at the ‘halfway point’ of the 2D Fourier transform process — the row-
FT matrix. Figure 4.13 illustrates the stepwise creation of the Fourier spectrum of
Fig.4.12a. Since each of the Fig.4.12a rows (except the ones that are completely
black) has a sinusoidally modulated intensity with spatial frequency two cycles per
image width the 1D FT has non-zero elements 2 pixels either side of the center.
The completely black rows have 1D FTs that are all zeros. If we complete the 2D
FT process by performing a 1D FT on every column of Fig. 4.13b (strictly speak-
ing we mean on the complex matrix who’s magnitude is Fig. 4.13b) we would find
that, because only the central column and the two columns two pixels either side
of the center have non-zero data, there will be only these same three columns with
non-zero data in the final Fourier spectrum. Furthermore, this non-zero data in the
intermediate matrix, as can be seen in Fig. 4.13b, has a sinusoidal profile with fre-
quency eight cycles per image height. Thus in the final Fourier spectrum (d) we get
non-zero elements eight pixels above and below of the center - exactly as we saw in
Fig.4.12b.

On the basis of the discussion so far we might assume that the Fourier spectrum
of an image becomes more complicated as the complexity of intensity changes in
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Fig. 4.13 The 2D Fourier transform can be formed by stepwise 1D Fourier transformation. Either
the rows or the columns can be transformed first to create intermediate ‘partial Fourier spectra’
(b and ¢). The coordinates of images b and ¢ thus represent spatial frequency in one direction, and
space in the other direction

the image increases, however, this is not always the case. Consider the image and
Fourier spectrum shown in Fig. 4.14. Although this image appears quite simple in
comparison with Fig. 4.12a its Fourier spectrum has so many non-zero terms that it
looks like a white blur.

The explanation of this lies in our earlier statement that when we perform a 2D
Fourier transform on an image the image is treated as if it were tiled infinitely in
all directions. For the images we have discussed so far this tiling does not result in
any change to the modulation of the intensity that we see within the image itself.
Figure 4.14a is different from the previous images in this respect. Here we have a
spatial frequency of 0.5 cycles per image width and 2.5 cycles per image height.
Since the intensity modulation is not an integer number of full cycles in either di-
rection the intensity profile of the infinite tiling does not have a regular sinusoidal
profile. Figure 4.15 shows the tiling effect with just four copies of Fig. 4.14a. There
are sharp discontinuities in the sinusoidal profile at the joins between tiles.
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Fig. 4.14 An apparently simple image may have a complicated Fourier spectrum containing non-
zero amplitudes for a large number of spatial frequencies. This is because the Fourier transform
treats an image as if it were tiled infinitely in all directions. Tiling of this particular image, as shown
in Fig. 4.15 below, results in sharp discontinuities in the sinusoidal profile at the joins between tiles

Fig. 4.15 Partial tiling of Fig.4.14a. The Fourier transform treats an image as if it were tiled
infinitely in all directions. When Fig. 4.14a is tiled we find that the profiles in both the x and y di-
rections feature sharp discontinuities where edges of the original image join. These discontinuities
can only be described by the sum of a very large number of spatial frequencies, as evident in the
Fourier spectrum (Fig. 4.14b)

The FTs of these ‘corrupted’ sinusoids contain a large number of non-zero ampli-
tudes of many frequencies in order to account for the discontinuity in the intensity
profile. The Fourier spectrum (Fig. 4.14b) looks like a white blur because many spa-
tial frequencies have non-zero amplitudes.

Now consider Fig. 4.16a which looks exactly the same as Fig. 4.5 but has a very
different Fourier spectrum — it appears to have no non-zero terms in the central
row. This tells us something about Fig.4.16a that we probably can’t see with the
naked eye. The black and white stripes are not exactly the same width (the black
stripe in the original image was 33 pixels wide and the white stripe 31 pixels). Now
we can no longer approximate the intensity profile with a series of odd harmonics
because the black/white step does not occur precisely at a null (zero) point of the odd
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Fig. 4.16 A slightly asymmetrical version of Fig. 4.5 and its Fourier spectrum. In this image the
white band is slightly narrower than the black band. The Fourier spectrum shows non-zero ampli-
tudes for all x-direction spatial frequencies. Unlike Fig. 4.5, this image cannot be described by the
odd spatial frequencies alone

A’

Fig. 4.17 An image of the letter ‘A’ and its Fourier spectrum. Each straight edge in the spatial
domain image gives rise to a linear feature (a long line of non-zero spatial frequency amplitudes) in
the Fourier spectrum. The Fourier spectrum feature is always oriented perpendicular to the straight
edge it describes in the original image. This is demonstrated more clearly for the ‘letter A’ image
in Fig. 4.18

harmonics. In fact we need both sine and cosine profiles. This example demonstrates
how examination of the Fourier spectrum can sometimes tell us things about the
spatial domain image that are difficult or impossible to perceive directly.

Applying what we have learnt about interpretation of Fourier spectra we can now
explain the features of Fig. 4.17. Because the edges of the letter are very sharp there
are a large number of non-zero terms in the Fourier spectrum. Each of the straight
lines that form the letter ‘A’ give rise to a blurred white line in the Fourier spectrum,
and this line lies perpendicular to the edge from which it originated in the spatial
domain image.

Just as the spatial domain image is treated by the 2D Fourier transform as if
it were tiled infinitely in space the frequency domain data is also, effectively, in-
finitely tiled in frequency space. This means that the long diagonal features in the
Fourier spectrum are ‘wrapped’ at the edges — a feature that extends to the edge of
the Fourier spectrum continues, with decreasing intensity, from the opposite edge.
This characteristic appears more obvious when we look at the Fourier spectra of the
individual parts of the letter ‘A’ image (Fig. 4.18). Most importantly, note that the
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space spatial frequency

Fig. 4.18 Fourier spectra of the individual parts of the letter ‘A’ image. Each long diagonal feature
in the Fourier spectrum ‘wraps’ to the opposite side of the spectrum. Note that the mathematical
processes represented in this diagram are essentially identical to those in Fig. 4.1. This diagram
illustrates 2D spatial frequency spectra and their corresponding spatial domain signals. Figure 4.1
illustrates 1D temporal frequency spectra and their corresponding time domain signals
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extended Fourier spectrum feature does not ‘bounce’ or ‘reflect’ at the edge of the
Fourier spectrum. It is merely the symmetry of the letter ‘A’ image that leads to this
illusion. As we will see later, this ‘data wrapping’ phenomenon is important in the
formation and interpretation of some MRI artifacts.

If we remove the sharp edges from the spatial domain image by application of
a blurring filter we might get something similar to Fig.4.19a. Now we find that
the Fourier spectrum loses most of its high frequency terms — their amplitudes are
zero or very close to zero. The only significant amplitudes lie in a cluster around
the central zero frequency. The blurred image has no rapid changes in its intensity
profile — there are no high spatial frequencies in this image.

Conversely, we could zero the low frequency data from the FT of Fig.4.17b as
shown in Fig. 4.20a, where the black circle represents the area in which the complex
FT data has been set to zero. Now when we perform an inverse FT on the edited
frequency domain data we form the spatial domain image shown in Fig. 4.20b. The
result is that we have only edge detail. The tonal detail, the white infill of the letter
A, is lost.

Fig. 4.19 A blurred version of the ‘letter A’ image and its Fourier spectrum. There are no rapid
changes in the intensity profile so only low spatial frequencies have non-zero amplitudes

Fig. 4.20 Edited FT data from Fig.4.17b (a). All of the low frequency amplitudes under the
black circle have been zeroed. Inverse Fourier transformation of this edited data produces a spatial
domain image (b) that contains only edge information
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4.3.6 How Many Spatial Frequencies are Needed?

2D Fourier spectra are images in which the pixel intensities represent the amplitudes
of complex spatial frequency data. By convention the zero frequency point is plotted
in the center of the Fourier spectrum. The pixels immediately adjacent to the central
pixel represent the amplitudes, in the x and y directions, of the spatial frequency 1
cycle per image width. The next pixels represent the amplitudes of spatial frequency
2 cycles per image width, and so on. The amplitudes of the highest spatial frequen-
cies are represented by the pixel intensities at the edges of the Fourier spectrum.
What is the highest spatial frequency available? Is it high enough to describe the
most sudden intensity change in the image?

Imagine that we have a square digital image which has dimensions m x m pixels.
The Fourier spectrum of this image will have the same dimensions so the maximum
spatial frequency will be fi,qx = mT_l cycles per image width (we have to subtract
1 because one pixel is assigned to the zero frequency ‘DC’term). For a 65 x 65 pixel
image this means the highest spatial frequency in the Fourier spectrum is 32 cycles
per image width. Is this high enough?

Now imagine the highest possible rate of intensity change in a 65 x 65 pixel
image. This would be when adjacent pixels in the image had the maximum possible
intensity difference — such an image might look like Fig. 4.21, which is made up of
alternating rows of black and white pixels. The total number of line pairs is 32.5.
A theoretical way to describe this pattern with sinusoids would be to start with the
spatial frequency 32.5 cycles per image width and add its odd harmonics, starting
with 3 x 32.5 = 97.5. But we don’t have any of these spatial frequencies available!
Our highest is 32.

The solution is to use a sinusoid of frequency 32 and its lower frequency neigh-
bors. This time the required amplitudes, as shown in Fig. 4.21, decrease as the spatial
frequency decreases. In an m x m pixel image there can never be an intensity pattern
denser than 7 line pairs per image width, and this pattern can be described perfectly
by addition of sinusoids of spatial frequency zero to ’"T_l cycles per image width.

E

Fig. 4.21 The maximum possible rate of intensity change in a 65 X 65 pixel image is 32.5 line
pairs per image width (or, in this case, height). Only the spatial frequencies O to 32 cycles are
available, but these are sufficient to perfectly describe the line pairs pattern as the sum of a series
of sinusoids
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Up to the limit of precision of the calculations, the 2D discrete Fourier transform
is a 100% accurate description of a digital image.

4.3.7 Fourier Spectra of Lines

Based on the discussion so far we could reasonably come to the conclusion that the
edge detail in an image is encoded in the outer high frequency part of the Fourier
spectrum and the tonal detail, or shading, is encoded by the central low frequency
part of the spectrum. What then would the Fourier spectrum of a narrow line look
like? When we zeroed the low frequency amplitudes in Fig. 4.20 we were left with
just the outline of the original bold ‘A’ shape — more or less a line drawing of the
solid shape. It looks like we just need the medium and high frequencies to define a
line drawing but the reality is a little more complicated.

Instead of going straight to the Fourier spectrum of a narrow line let’s look at
what happens to the Fourier spectrum of our original black and white stripe im-
age (Fig.4.8a) as we make the white stripe progressively narrower. The effect is
illustrated, in three steps, in Fig. 4.22. As the white stripe gets narrower its Fourier
spectrum continues to have significant amplitudes across the range of frequencies.
The original very simple harmonic pattern seen in Fig. 4.8b becomes more complex
and there are actually more non-zero low frequency amplitudes. When the white
stripe is very narrow (effectively a line) all the spatial frequencies have large ampli-
tudes. In the extreme case, when the line is infinitely narrow (in a digital image this
means one pixel wide), the amplitudes of all spatial frequencies are identical — the
profile of the Fourier spectrum is a flat horizontal line of constant intensity.

Our original idea that we only need high frequency terms to describe a line has
turned out to be inaccurate. In fact we need the full range of available frequencies
to describe a narrow line. The reason that we didn’t need the low frequencies to
show the outline of the letter A is that this is, in fact, not a very accurate outline.
Close inspection of the original of Fig. 4.20b would show a series of feint gray lines
running parallel to all of the white lines. These ‘ringing’ artifacts are due to the
fact that we removed the low frequency information. We will discuss them more in
Chapter 7.

4.4 The Complex Data Behind Fourier Spectra

Because the Fourier transform treats image data as if the image were tiled infinitely
in space it is quite possible for two different images to have identical Fourier spectra.
For example, Fig.4.23a shows a modified version of Fig.4.8a in which the black
region has been moved from the right side to the center of the image. The Fourier
spectra of the original and the modified image are identical. In this example we
moved the black region but we didn’t change its width — it remains the same as the
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Fig. 4.22 Progressive narrowing of the white stripe of Fig.4.8a changes the simple harmonic
pattern in the Fourier spectrum. When the white stripe is just one pixel wide all x direction spatial
frequencies have identical amplitude. In the case, not shown here, of an image containing only a
single non-zero pixel intensity (in other words a point) all x and y direction spatial frequencies
have identical non-zero amplitude, and thus all the pixels in the Fourier spectrum have identical
intensity

total width of the two white regions. So long as the black and white areas have the
same width, no matter where we put the black stripe the infinitely tiled patterns will
appear identical. The spatial frequency amplitudes needed to describe the patterns
will be identical so the Fourier spectra will also be identical.

The information that describes the spatial position of the image data is encoded
in the difference between the coefficients of the real and imaginary data. Comparing
the representations of these coefficients in Fig. 4.8c & d with Fig.4.23c & d we see
that these parts are not identical.
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Imaginary

Fig. 4.23 Shifting the position of the black stripe in Fig. 4.8a, so that it lies in the middle of the
image rather than at the right side, has no effect on the Fourier spectrum so long as the width of
the black and white areas remain identical. This is because there is no change to the pattern that
is formed when the image is tiled infinitely. However, the position of the stripe is encoded in the
complex data (images ¢ and d). Note the difference between the real and imaginary data in this
figure when compared with Fig. 4.8c and d

The difference between the coefficients of the real and imaginary data that we
are interested in is called the phase angle (¢):

¢ = tan™" (%) (4.10)

When a complex number is plotted as a vector in a complex plane diagram the
phase angle is the angle between the positive real axis and the vector. The mag-
nitude, what we show in the Fourier spectrum, is the length of the vector. See
Appendix C for a graphical illustration.

The forward and inverse Fourier transforms can operate on complex data ex-
pressed in either real/imaginary format or magnitude/phase format. The two formats
contain equivalent information and can be interconverted (Fig. 4.24).

When displaying representations of complex frequency domain data most of the
time we can safely ignore the phase information and just look at Fourier spectra.
This is not to say that phase data is unimportant and can be discarded. It cannot,
but we mostly let the computer deal with it and don’t bother to create displays of it.
Figure 4.25 illustrates the effect of applying the inverse Fourier transform to only
the magnitude data, or only the phase data when attempting to reconstruct Fig. 4.8a
from its complex frequency domain equivalent.
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Fig. 4.24 The forward and inverse Fourier transforms can operate on complex data expressed in
either Real + Imaginary format, or Magnitude + Phase format. The two formats contain equivalent
information and can be interconverted

Fig. 4.25 When an image is converted to its frequency domain equivalent by Fourier transfor-
mation both real and imaginary components are created. To recreate the spatial domain image by
inverse Fourier transformation both the real and imaginary data are required. Image a here illus-
trates the result of inverse transformation of just the magnitude data from the Fourier transform of
Fig. 4.8a. Image b illustrates the result of inverse transformation of just the phase data
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Phase information is critical in the creation of magnetic resonance images —
phase encoding is routinely used to describe spatial position in at least one dimen-
sion of an MR image. Raw MRI data always contains matrices of real and imaginary
coefficients. Inverse Fourier transformation of the raw data creates another complex
data set and it is the magnitude of this data that forms the spatial domain anatomical
image. Remember, however, that although we display magnitude data this is not a
Fourier spectrum — the coordinates now are space, not frequency.

Notice that the image Fig.4.25b created from phase data mainly comprises a
central white line — at the position of the boundary between the black and white
regions in the original image. So the phase image is something like an image of the
edges in the original data. This information can be used to identify tissue boundaries
and measure the velocity of fluid (e.g. blood) flow in MRI.

The relationships of image data converted between the spatial and frequency
domains by the Fourier transform are summarized in Fig.4.26. In this diagram
complex data is described in terms of magnitude and phase. It could alternatively
be described in terms of real and imaginary coefficients. The descriptions are
equivalent provided that the appropriate versions of the forward and inverse Fourier
transforms are applied.

The Fourier transform treats all data as if it were complex. When a Fourier
transform is used to convert an image to its spatial frequency domain equivalent
the image data is treated as if either: (a) it is in Real/Imaginary format and all the

Spatial Domain Frequency Domain

Fourier Spectrum

Image
Magnitude —_— > g Magnitude

Phase

Frequency domain
processing

hMagnitude Magnitude
Phase Phase

“ MRI

Fig. 4.26 The relationships of image data converted between the spatial and frequency domains
by the Fourier transform. A spatial domain image is comprised of magnitude (intensity) data only.
Fourier transformation of this magnitude data produces a complex frequency domain data set that
can be expressed in terms of magnitude and phase, as shown here, or real and imaginary coefficients
(not shown). The Fourier spectrum is a display of the magnitude part of the frequency domain
data. Inverse Fourier transformation of complex frequency domain data produces a complex spatial
domain data set. We make an image from the magnitude of this complex data. In MRI raw data
is acquired in the spatial frequency domain. An MR image is a magnitude display of the inverse
Fourier transform of the raw data
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imaginary coefficients are zero; or (b) it is in Magnitude/Phase format and all the
phase angles are zero. In the former case the pixel intensities represent the real co-
efficients, and in the latter they represent the magnitude. These two representations
are in fact identical.

4.5 Two Practical Applications of Fourier Transforms

So far our discussions of the concept of spatial frequency, and transformations
between the spatial and spatial frequency domain, have been illustrated with de-
liberately simple artificial images rather than medical images. We looked at simple
images so that the discussion would not be sidetracked or confused by too many
effects being present simultaneously. Now that we have a basic understanding of
how the Fourier transform crocodile behaves, and hopefully it is a little less scary,
we can look at what happens when we toss a medical image into the enclosure.

4.5.1 How Does the Focal Spot of an X-Ray Tube Affect Image
Resolution?

One of the determinants of X-ray and CT image quality is the physical size of the
source of the X-rays — the focal spot on the anode of the X-ray tube. A large focal
spot will produce more blurry images than a small spot. A lot of engineering en-
ergy has gone into development of X-ray tubes that will produce very intense X-ray
beams from the smallest possible focal spot. Nevertheless, since about 98% of the
electron beam energy gets turned into anode heat rather than X-ray photons, there
is always a compromise between small focal spot size and beam intensity. Many
X-ray machines permit the adjustment of focal spot size according to the resolution
and speed requirements of the imaging study. What effect does the size and shape
of the focal spot have on the spatial resolution of an X-ray image? We can quantify
the answer to this question by careful measurement and use of a Fourier transform.

We know the size and shape of the focal spot affect the sharpness of images but
how do we measure this? We start with an image of the focal spot — easily produced
with a pinhole camera. In this case the pinhole is a very small hole in a sheet of
lead and we form the image on a high resolution sensor which could be a digital
flat panel or a low speed film (without a fluorescent intensifying screen that would
introduce extraneous blur). Suitably magnified we would expect to see the image
looking something like Fig. 4.27a. The spot image is not a neat circular blob but an
irregular blurred rectangle with two bright edges — images of the X-ray tube filament
(a long coil of wire) that result from imperfect focusing of the electron beam. Since
the spot image is a rectangle it should be intuitively obvious that the amount of
image blur due to the finite size of the spot is going to be greater along one axis of
the imaging plane that it is along the perpendicular axis.
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Fig. 4.27 A pinhole image of the focal spot of an X-ray tube (a) and its Fourier spectrum (b).
The profile of the Fourier spectrum (c¢) shows the way contrast is lost with increasing spatial fre-
quency in the x and y directions. Low and medium spatial frequencies, represented by the bright
center of the Fourier spectrum, have high amplitude and consequently good contrast. High spatial
frequencies, represented by the dark outer areas of the Fourier spectrum, have low amplitude and
consequently very poor contrast. Notice that the slightly asymmetrical shape of the Fourier spec-
trum is consistent with the 2D profile of the focal spot image. The bright horizontal bars in image
a are, effectively, two images of the X-ray tube filament that result from imperfect focusing of the
electron beam onto the anode of the X-ray tube

The blurring caused by the finite sized focal spot will blur every point in all
imaged objects. Put another way, the image of every point in the imaged object
will be a more or less bright spot having the same size and shape as the focal spot
image. Small well-defined objects, which as we now know are described by a large
range of spatial frequencies, will appear in the image with low contrast. The way
to quantify the loss of contrast for each spatial frequency is to Fourier transform
the image of the focal spot and examine the Fourier spectrum — Fig.4.27b. The
Fourier spectrum has a bright central region corresponding to high amplitudes for
the low and medium spatial frequencies. So low and medium spatial frequencies
will, in the absence of other blurring factors such as an intensifying screen, have
high amplitudes in an image produced with this focal spot. All the high frequencies
in the Fourier spectrum have very low amplitude. So high spatial frequencies will
have very low contrast in an image produced with this focal spot — all small well-
defined objects and all sharp edges will be blurred.

The profile of a line drawn from the center of the Fourier spectrum (Fig. 4.27¢c)
tells us the degree of attenuation of spatial frequencies in the direction of the line.
The profile would be symmetrical about the zero frequency point because the
Fourier spectra of images (2D arrays of real numbers) are always symmetrical. The
shape of the profile of the line is called the Modulation Transfer Function. The MTF
is used extensively in quantitative description of imaging system performance and
we will discuss it more fully in Chapter 5.

4.5.2 Making Diagnostic Images from Raw MRI Data

Finally, lets look at MRI data, which is directly acquired in the spatial frequency
domain. Figure 4.28 shows the Fourier spectrum of raw complex data from a
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Fig. 4.28 Fourier spectrum of raw frequency domain MRI data (a), and the spatial domain diag-
nostic image (b) formed by inverse Fourier transformation

scan of a human brain. The magnitude of the inverse Fourier transform gives us
the diagnostic spatial domain image.

Although the Fourier spectrum looks rather complicated we can interpret some
of its features in terms of the resultant spatial domain image. We see plenty of signal
at all spatial frequencies, consistent with the presence of both edge and tonal detail
in the spatial domain image. There are a number of weak radial lines in the Fourier
spectrum encoding several distinct edges in the anatomical image — the back of the
skull particularly. The narrow vertical line is consistent with the intensity difference
between the top and bottom edges of the image.

There is another particularly interesting feature of the spatial domain image. The
subject’s nose, which is just outside the field of view on the left side of the image,
has appeared behind his head! This artifact, called phase wrap, occurs because the
signal from the nose, although outside the field of view, is nevertheless detected and
recorded in the complex frequency domain raw data. It appears on the opposite side
of the image because of the effective tiling of the frequency domain data.

4.6 Summary

e A digital image is a spatial domain data set. The coordinates of the image
data represent distance or position in space.

e The term spatial frequency describes the rate of change of intensity in an
image in terms of a sinusoidal intensity profile. Any intensity profile can
be described as the sum of a series of sinusoids of appropriate spatial fre-
quency and amplitude. Any image can be described as the sum of a series
of x and y direction sinusoids.
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A 2D Fourier transform converts an image into its spatial frequency equiv-
alent in the spatial frequency domain. The Fourier transform converts the
real intensity values of a spatial domain image into a symmetrical complex
frequency domain matrix. The Fourier transform of an image is an exact
representation of the image. No information is lost in the process of Fourier
transformation.

Complex data can be expressed in two equivalent interconvertible forms:
Real and Imaginary coefficients; or Magnitude and Phase coefficients.
The Fourier spectrum of a digital image is a display of the magnitude of
the spatial frequency domain version of the image data. The coordinates of
the spectrum data represent differences in spatial frequency.

By convention, 2D Fourier spectra are displayed with the lower frequency
terms in the center of the spectrum. In the middle of the spectrum is the
‘zero frequency’ or ‘DC’ term. The magnitude or amplitude of the DC
term represents the average pixel intensity in the spatial domain image.
Because the amplitude of the DC term is normally much greater than the
amplitude of the non-zero frequencies, it is normal to display the log of the
amplitudes in the Fourier spectrum.

Lines and sharp edges in images are characterized by non-zero amplitudes
of many spatial frequencies. Straight lines and edges in images give rise to
linear features in the Fourier spectrum, and these features lie perpendicular
to their originating lines in the spatial domain image.

The Fourier transform effectively treats 2D data (for example an image)
as if it were tiled infinitely in space. Thus discontinuities in intensity at
the joins between edges of the original data will give rise to linear features
in the Fourier spectrum that are oriented perpendicular to the originating
edges.

An image that contains no sharp edge detail (and no edge discontinuities
when tiled) can be described with low spatial frequencies only. The Fourier
spectrum of such an image will have non-zero values only near its center.
Inverse Fourier transformation of complex spatial frequency domain data
produces complex spatial domain data. We normally view only the mag-
nitude of this complex data. Raw MRI data is an example of a complex
spatial frequency domain data set.
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