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Monte Carlo analysis is traditionally used in risk analysis to model uncertainty
in the values of inputs of various kinds, such as initial conditions and variables.
Although Monte Carlo has proven useful, extensive experience has revealed
limitations in the technique. These limitations have motivated new techniques
that overcome those limitations. This chapter focuses on an alternative ap-
proach: the DEnv algorithm. We begin by briefly discussing limitations of
Monte Carlo simulation, followed by ways of attempting to address these lim-
itations within the Monte Carlo paradigm. Then we discuss the DEnv (from
Distribution Envelopes) algorithm, a technique for working with bounded
families of probability distributions.

9.1 Motivation: Monte Carlo Simulation and Its Limits

It is useful to start with a critical look at Monte Carlo simulation, because the
benefits of bounded families of distributions can best be appreciated in the
context of the limitations of the traditional Monte Carlo method. There are
two limitations that are especially significant in motivating use of bounded
families of distributions in certain problems. These are described in the next
two subsections.

9.1.1 When Knowledge Is Insufficient to Specify a Probability
Distribution for a Model Variable

If some variable is uncertain, that uncertainty can often be modeled with
a distribution function. However, if insufficient information exists to specify
the exact shape of that distribution function, it is impossible to draw the
samples needed by Monte Carlo simulation, unless either some distribution is
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arbitrarily assumed to apply or the variable is described by an interval instead
of a distribution function. An arbitrary distribution (e.g., a normal or “bell”
curve) might be assigned to a variable so that samples could be drawn from
it, but although this would enable Monte Carlo analysis to proceed, the cost
would be in making an unjustified assumption about the variable. Unjustified
assumptions about model variables tend to imply results that, literally, are
also unjustified.

To get justifiable results, given a variable with an unknown distribution,
one might choose to bound it by using an interval to describe its range (possi-
bly excluding the tails of the distribution if such a move is reasonable given the
problem). Then this interval could be sampled, leading to results that bound
the range of values of the outputs. However an interval is a relatively weak
characterization of a variable that ignores information that may be available,
such as variance and mean, that could potentially be used to help characterize
the outputs.

Let us consider two examples. In the first, the information available is
insufficient to specify a single distribution. In the second, an interval is suitable
for describing uncertainty about the available information.

Example 1. Kolmogorov in [13] showed that a distribution obtained from a
limited number of data points is likely to be significantly wrong and that
confidence limits (in the form of bounds around the nominal distribution
defined by the data) are more appropriate. Figure 9.1 shows an example of a
distribution function and its confidence limits. Frame A, at the top, shows a
cumulative distribution obtained from a set of data points. The s-curve shown
rises unevenly due (one might reasonably speculate) to random noise in the
data, although, in principle, the unevenness might actually accurately reflect
the underlying random variable. Frame C, at the bottom, shows probability
bounds that describe the confidence limits of the curve of frame A at the
0.9 probability level. The true distribution (which could be obtained from a
limitless number of sample data) will fall within the bounds of the confidence
limits with a probability of 0.9. Put another way, there is a 0.1 probability
that the true distribution will cross outside the enveloping bounds shown at
least once.

Example 2. A manufacturer of thermostats or some other measurement or
control device might state limits on the measurement error and the controlled
quantity. In this instance, information exists about the range of a variable but
not about its distribution within that range. Intervals would be appropriate
here for expressing uncertainty because they state lower and upper bounds.
Continuing the thermostat case, if the temperature setting s is 67◦, the man-
ufacturer states that settings are accurate to ±1◦, and the manufacturer also
specifies a hysteresis of ±1◦ (i.e., the heater turns on at s−1 = 66◦ and turns
off at s + 1 = 68◦), then the actual temperature can be inferred to be within
(67± 1± 1)◦, or [65, 69]◦. However its distribution within that range cannot
be determined.
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Fig. 9.1. A distribution derived from data, top, and its confidence limits, bottom
(from [2].

9.1.2 Lack of Full Knowledge About the Dependency
Relationships Among Variables

Suppose two variables have no significant relation to each other. For exam-
ple, the price of oranges has no significant relation to the number of sunny
days per year in Seattle, WA, USA. If distribution functions are available for
both variables, each may be sampled to provide pairs of numbers to use in
a simulation model, without fear that the value of a sample of one variable
affects the distribution function that should be used to generate samples of
the second variable. This is convenient both in implementability and in ease
of modeling.

Another convenient situation is if the value of one variable completely
determines the value of a second variable. For example, the number of sunny
days per year completely determines the number of nonsunny days per year,
and both values might be used in a simulation model of, say, utilization of
tourist attractions (of which some would be more attractive on sunny days
and others on nonsunny days). In this situation a sample drawn from one
variable determines the sample to use of the other, and a simulation requiring
both variables is both relatively simple and implementable.

However, a third situation often occurs that presents a problem. For exam-
ple, an agricultural model of production might incorporate as variables both
the price of the product and the number of sunny days in growing areas. It is
likely that the values of those variables will be related in some way (i.e., not
independent) but that this dependency is less than total (i.e., the value of one
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does not fully determine the other). Unless the joint probability distribution
is known, which amounts to knowing exactly what distribution to sample for
one variable given what value was sampled for the other, it is not possible in
general to properly generate a sample value of one variable given a sample
value of the other.

9.1.3 Overcoming the Limitations of Monte Carlo While Staying
Within the Paradigm

Let us look at how the Monte Carlo approach may be made usable in situa-
tions in which the just-mentioned two limitations occur. Later this will help
illustrate the advantages of a better approach, bounded families of distribu-
tions. The next two subsections address the two limitations.

Knowledge insufficient to specify the probability distribution of a model
variable

Often a generic “reasonable” distribution will be used to model such a variable
(e.g., a normal distribution). This permits a Monte Carlo model to be fully
specified and therefore a simulation to be run. However, such an unjustified
assumption about a model variable of course decreases the dependability of
conclusions drawn from simulating the model.

Because potentially untrue assumptions can lead to problematic conclu-
sions, we might wish to express only actual facts about variables. For example,
we might model variables as intervals (i.e., ranges extending from minimum
to maximum plausible values). If we expressed all variables this way, then a
Monte Carlo simulation could be performed based on picking sample points
randomly within those intervals for each simulation run. The results from
many simulation runs would then be combined to give intervals describing
ranges for the outputs. Unfortunately, it would say nothing about the shapes
of their distributions, merely giving estimates of the ranges of their supports.

What if only some variables needed to be described using intervals be-
cause distributions were available for the others? Simulating Monte Carlo
models that mix some variables that are interval-valued and others that are
distribution-function-valued is less straightforward than if all were intervals
or all were distributions. It would be easier to substitute, for each distribution
in such a mixed model, an interval bounding the range of values permitted
by the distribution. A disadvantage of this approach is that using intervals
for variables for which distribution functions are known means ignoring avail-
able information. Although the conclusions drawn may be sufficient in some
situations, they will tend to be weaker than if the distribution information
available was used instead of ignored.

Example 3. We model whether a robotic vehicle can pull a cart containing
cargo up a slope without its wheels slipping against the slope surface (Fig.
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9.2), rendering it unable to complete its task [1]. This example can be applied
to specific situations such as a robot moving cargo from an airplane drop to
a central location, cargo transportation in rough and/or dangerous terrain,
autonomous construction of bridges or other structures, and so on.

Fig. 9.2. Pioneer AT robot pulling a loaded cart up a hill.

The frictional force between the surface and the drive wheels of the robot
must exceed the gravitational force pulling the cart down the incline (see Fig.
9.2). The force of gravity on the cart is mcart ∗g∗sin θ. Let us assume that the
weight of the cargo-carrying cart is much higher than that of the robot. Then
the force of friction on the wheels of the robot is µfriction ∗mrobot ∗ g ∗ cos θ.
So, for the robot to successfully pull the cart up the incline requires that

µfriction ∗mrobot ∗ g ∗ cos θ > mcart ∗ g ∗ sin θ.

In other words,

mrobot >
(mcart ∗ tan θ)

µfriction

must hold. Given mrobot, the unknowns are µfriction,mcart, and θ. These
might be roughly estimated visually and from experience by the robot: mcart

from the size of the cargo; µfriction by the color and glossiness of the incline’s
surface; and θ from stereo vision estimates of its depth at the top and bottom.
These estimates, however, will have large uncertainties associated with them.
Consider just one of these unknowns, mcart, and define mcart = mvehicle +
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mcargo. Based on the manufacturer’s specifications and known variabilities
(e.g., how worn the tires are), mvehicle is likely to be known within an interval,
such as k±10% for some k. Given a sufficiently sized database of actual robot
missions, mcargo could be represented by a probability distribution. Therefore,
to calculate mcart, one must add two quantities, one of which is an interval
and the other a distribution. An easy way to do this is to substitute a second
interval for the distribution, thereby making the sum easy to calculate but
losing potentially valuable information. Another easy way out would be to
substitute a conjectured distribution for the interval, such as a triangular
distribution with mode k. However, this has another problem, which is that
the results of a simulation based on this model would be undependable because
it uses a distribution that is merely a conjecture. The ideal approach would be
to add an interval and a distribution. The problem is that a Monte Carlo model
is not well suited to such a situation. In general it would require combining
multiple Monte Carlo simulations, one for each of a random sample of values
from the interval. (Well-behaved models could be handled by sampling only
the endpoints of the interval.)

Lack of Knowledge About the Precise Nature of the Dependency
Relationships Among Model Variables

The Monte Carlo approach may proceed straightforwardly if variables are
assumed independent. However, if variables are not known for sure to actually
be independent, resulting conclusions can be suspect. This is illustrated by
the following example.

Example 4. Consider the case of a model with two uncertain variables that
must be combined. Some bat populations have suffered fluctuations in popu-
lation in recent years due to such factors as pesticides in their diet of insects,
other human disturbance of habitats, and perhaps other poorly understood
factors. In order to estimate the number of bats of a particular species in
a particular area that will be present 1 year from now, one can add to the
current population the product of the current population and the growth
rate (a negative growth rate would signify a decline in population). Neither
the current population nor the growth rate is likely to be known accurately
and, therefore, might be better modeled using distributions than point values.
Thus, we would have to multiply two distributions together to get an estimate
of next year’s population. Furthermore, the dependency relationship between
these two distributions is unknown. They could be completely independent
(which could lead to eventual extinction for negative growth rates). Alter-
natively, they could be positively correlated. This can occur in populations
that are sufficiently low to be marginally viable. In that case, an increase in
population can cause an increase in growth rate. Finally, it is possible for
population and growth rate to be negatively correlated. This can occur, for
example, when a population approaches the limit of the ability of the envi-
ronment to support it, at which point individuals are forced into competition



9 Bounded Families of Distributions 189

with each other for food and perhaps other resources, making it harder for
them to survive and reproduce.

Thus, a model might specify distribution functions for population and
growth rate, but the dependency relationship between the two distribution
functions may be unknown. What, then, can be said about the product of
population and growth rate and hence about the population in a year? If we
assumed the distributions were independent, then the result of multiplying
them would be some distribution. On the other hand, if we assumed the
distributions were completely correlated (so a higher value for one implied a
correspondingly higher value for the other), or negatively correlated (a higher
value for one implied a correspondingly lower value for the other), then the
result in each case would again be some distinct distribution.

Since we cannot justify any particular dependency relationship in this
example, the result could be any of a family of distributions, each one cor-
responding to some dependency relationship - whether simple or complex -
between the variables. Then the family of all possible result distributions,
which includes independence, full positive and negative correlation, and all
other dependency relationships, may be expressed using a bounded family of
distributions to represent the space within which each member of that in-
finitely numerous family must be [3].

The sensitivity of any conclusions to an independence assumption can be
checked, to a degree, by also running a Monte Carlo simulation on the problem
under the assumption that the variables are perfectly positively correlated, as
well as under the assumption that some are perfectly negatively correlated
with others. These different assumptions, representing extremes of possible
dependencies, will lead to possibly differing conclusions (although not nec-
essarily to extremes within the space of conclusions implied by the space of
possible dependencies; see Ferson et al. [9]). This will help test the sensitivity
of the conclusions to assumptions about dependency.

The trustworthiness of a Monte Carlo simulation will generally be ben-
efited when the dependencies among the variables are known. Correlations
might be known even when full details of dependencies are not. If a corre-
lation between two variables is positive, then a relatively high sample value
for one variable would typically increase the probability of a relatively high
sample value of the other variable. Similarly, a negative correlation would typ-
ically increase the probability of drawing a relatively low value of the other
variable. The term “typically” applies because a positive correlation can hide
a tendency for some high values of one variable to occur with low values of the
other, if that tendency is overcompensated by a tendency for other high val-
ues of one to occur with high values of the other [9]. Even when correlation is
known and modeled, underlying details about a dependency relationship that
are hidden by the crude measure of correlation could impact the validity of
the model and hence dependability of the results of a Monte Carlo simulation.
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9.2 How Bounded Families of Distributions Can Help

We have just described how Monte Carlo simulation can be facilitated through
unsupported assumptions (modeling an interval as a distribution or assum-
ing a dependency relationship), or discarding information (as when model-
ing a distribution with an interval), or kludgey second-order modifications of
the clean classical Monte Carlo approach. Ideally though, elegant techniques
would be used that do not lead to reductions in information quality [17]). The
approach described next, the DEnv technique, meets that requirement.

We begin by reviewing salient features of probability distributions. Because
of their familiarity, they form a convenient lead-in to a discussion of bounded
families of distributions.

The probability is 0 that a sample drawn from a probability density func-
tion will be less than the lowest value in its support, and it is 1 that it will
be no greater than the greatest value in its support (Fig. 9.3). More gener-
ally, the probability that a sample will not exceed a specific value increases
as the value specified increases. Based on that observation, a curve that plots
probability against progressively increasing given values is called a cumulative
distribution function (CDF), often abbreviated simply as “distribution” (Fig.
9.3b).

Fig. 9.3. A probability density function (PDF) and its corresponding cumulative
distribution function (CDF). A CDF describes the cumulative area under its corre-
sponding PDF, rising to a final value of 1. The capacity of these isomorphic repre-
sentations to describe uncertainty is limited, motivating more general methods.
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What happens if something can be said about a density function but not
enough to specify it fully? For example, the mean and variance might be
known, but not the detailed form of the curve. In such a situation, a family of
different density functions conforms to the limited information we have about
it. Almost any density function can be shifted right or left until its mean is
a given value and then stretched or compressed around the mean to adjust
its variance to another given value. Such a family of curves, if many were
superposed, would form a jumble and be difficult to work with. Fortunately,
this apparent jumble can be expressed in the more visualizable way discussed
next.

9.3 Bounded Families of Distributions

If we integrate each member of a family of density functions to get a cor-
responding family of distributions, it is considerably easier to visualize and
work with. Figure 9.4 shows envelopes bounding a family of distributions.
This family corresponds to the family of all density functions with a given
mean and variance. The envelopes shown, one bounding the family on the left
and one on the right, are the bounds on this family of distributions.

Fig. 9.4. Bounds around the family of cumulative distributions with mean 10 and
variance 5. All such CDFs fall within these bounds, and some CDF in the family
touches any given point on each bound. However, the bounding envelope curves do
not themselves have mean 10 and variance 5. (The tails taper off to ±∞, not shown.)
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Clearly, distribution family envelopes provide easily visualized bounds on
the space through which members of the family can travel. Therefore, they
also implicitly bound the corresponding family of density functions, which, as
noted, is not as easy to visualize directly.

Let us next show that bounded distribution families enable a general strat-
egy for circumventing the problems of traditional Monte Carlo simulation de-
scribed earlier. What is needed is a representation for uncertainty that can
(1) express intervals, distributions, and families of distributions and (2) ma-
nipulate model variables thus represented.

1. Expressing intervals, distributions, and bounded families of distributions.
All of these can be expressed using bounded distribution families as a
unifying representation, as we see next.
a) Families of distributions are described using bounds as explained ear-

lier. In principle, there are families that cannot be described with
bounds (e.g., the family of all density functions with a single impulse
and zero density everywhere else). In practice, bounding envelopes can
represent the kinds of family of distributions that seem to typically
arise in practice.

b) Distributions are described using bounding envelopes easily, because a
distribution is simply a family of distributions with one member. The
appropriate bounds consist of a left envelope and a right envelope that
are identical and equal to the distribution in question.

c) Intervals are easily described using bounded distribution families. A
variable restricted to be within an interval [x, x] has a density function
with zero density for values below x or above x. Therefore, any density
function that integrates from 0 to 1 over the interval is in the family
of distributions consistent with the interval. The extremes giving the
left and right envelopes of the corresponding distribution family are
therefore a density function with an impulse at x and zero density
everywhere else and a density function with an impulse at x and zero
density everywhere else. See Figure 9.5.

2. Manipulating model variables that may be intervals, distributions, or fam-
ilies of distributions. Once the variables we wish to manipulate (e.g., by
adding them together, or subtracting, multiplying, dividing, or applying
some other binary function to them) are all expressed as bounded fam-
ilies of distributions, we need no more than a method of manipulating
these bounded families. In other words, the conceptual differences among
intervals, distributions, and distribution families become irrelevant to the
manipulation method. We address such a method next.
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Fig. 9.5. Bounded family of distributions whose left and right envelopes (shown
with dots and dashes, respectively) represent the interval [x, x] (with low bound x
and high bound x).

9.4 Arithmetic Operations on Bounded Families of
Distributions

We begin by showing how to apply a binary operation (e.g., addition) to
variables when one is a distribution and the other is an interval. We will then
extend the ideas to the other three cases of interest: one variable an interval
and the other a bounded family of distributions, one a distribution and the
other a bounded family, and both bounded families.

Consider the case where one variable is described using a distribution
function and another is less well characterized, being described only by an
interval describing its range of plausible values. The presence of a variable x
described by an interval typically prevents representing the sum, product, and
so on of x and some distribution, as a distribution. As Figure 9.6 shows, each
possible value of the interval, when combined with the distribution leads to a
distinct distribution for the output variable. Each distinct distribution is the
distribution of the sum, given some particular sample value from the interval.
The result is a family of distributions, one for each value in the interval. This
family may be bounded with envelopes.

Up to this point, bounded distribution families have been illustrated - liter-
ally - graphically. But computer software for working with these families needs
to represent them using numbers instead. The next section presents a method
for calculating with bounded distribution families that can be implemented
in computer software.



194 Daniel Berleant, Gary Anderson, and Chaim Goodman-Strauss

Fig. 9.6. The distribution farthest to the left is added to the interval [0.228, 0.421].
The result is the bounded family of distributions on the right, of which the left and
right envelopes and five example interior members are shown. In this situation none
of members of the family cross each other (but in other situations, they do).

9.5 A Numerical Approach to Computing with Bounded
Distribution Families

A suitable way to work with bounded families of distributions on computers
uses sets of intervals associated with probabilities. An interval, for this purpose,
is a range described by its low and high endpoints. The interval containing all
numbers from 2 through 9.8, for example, is written [2, 9.8]. In this approach,
each interval is associated with the probability that a sample value of a random
variable will belong to that interval. Graphically, a rectangle can be placed
on the x-axis with its left and right sides at the low and high bounds of
the interval, which has area = probability, so height = area/width. Figure
9.7 shows an example of a set of intervals with associated probabilities, its
rectangles, and its bounded distribution family.

The rectangles are misleading in an important respect: They suggest that
the distribution of probability for a given interval is uniform, because the
interval and its probability are depicted using a rectangle with a flat top.
In fact, no constraint on how probability is distributed within an interval is
intended. At one extreme, probabilities might be concentrated as impulses
at the low bounds of their intervals (i.e., at the left sides of the rectangles).
Then the distribution family envelope curve will rise suddenly at the low
bound of each interval (see the left staircase curve of Fig. 9.7), yielding the
left envelope of a bounded distribution family, which is the fastest-rising curve
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A partially specified distribution

{p([1,4]) = 0.15

p([4,5]) = 0.15

p([7,8]) = 0.25

p([7.5,11])= 0.25

p([9,10]) = 0.2

}

Fig. 9.7. An underspecified distribution consisting of a set of intervals and their
associated probabilities, the corresponding rectangles, and the bounded distribution
family.

that is consistent with the set of intervals and their probabilities. The opposite
extreme would be to concentrate the probabilities at the high bounds of their
corresponding intervals. Then the cumulative curve will rise suddenly at the
high bounds of the intervals yielding a staircase curve that is the right-hand
envelope of the bounded distribution family.

The left and right staircase-shaped envelope curves are bounding in that
all curves that result from distributions of probabilities within their associated
intervals travel between the two envelopes, never crossing them.

For example, Figure 9.8 shows envelopes and two other distributions that
are consistent with those envelopes. One distribution has three straight seg-
ments, each corresponding to a uniform distribution within one of the his-
togram bars in the inset. Thus, when the probability of each interval is dis-
tributed uniformly over the interval (as suggested by the flat tops of the his-
togram bars in the inset), the cumulation rises in a series of connected, non-
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vertical line segments between the envelopes (dark middle curve). The smooth
s-curve also shown between the envelopes corresponds to some smooth den-
sity function that the histogram discretizes. Such a density function is shown
superposed on the histogram.

Fig. 9.8. Left and right staircase-shaped envelopes. In general, these envelopes
may touch at one or more points, but they never cross. Within those bounds, two
CDFs are shown: one composed of three straight line segments and one an s-curve.
The inset shows rectangles arranged in a histogram and, superposed, an example of
a density function that the histogram discretizes.

Showing distribution family bounds avoids problems with collections of
rectangles, such as flat tops, which are misleading in seeming to suggest that
probabilities are distributed uniformly over their intervals. Another poten-
tially misleading visual characteristic of rectangle collections is that rectangles
that overlap may lead to ambiguity regarding the identities of the intervals
underlying them.

Although showing rectangles has limitations, so does showing bounding
envelopes. Different sets of intervals and their probabilities can yield the same
envelopes. For example, consider the sets S1 and S2:

S1 = {p([1, 4]) = 0.5, p([2, 3]) = 0.5},
S2 = {p([1, 3]) = 0.5, p([2, 4]) = 0.5}.

In both of those sets, the extreme case of concentrating probabilities at the
low bounds of their intervals yields two impulses: one at 1 and the other at 2.
The other extreme case, concentrating the probabilities at the high bounds of
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the intervals, also yields two impulses, one at 3 and the other at 4. Thus, the
envelopes for S1 and S2 are identical. Yet, a random variable governed by S1

can lead to different results than one governed by S2. See Section 3.1 of [4]
for a fuller discussion.

9.6 Discretization and Bounded Families of Distributions

Envelopes can be used for representing intervals, distributions, and bounded
families of distributions. Also, we have been building the case that a suitable
underlying data structure for expressing a pair of envelopes is a set of intervals
and their associated probabilities. To further make this case requires address-
ing how to express smoothly curving distributions and envelopes using these
sets. Intervals have definite endpoints and, graphically, sets of them yield left
and right, sharply angled staircase like envelope curves. These are decidedly
not smoothly curving. Yet, sets of intervals and probabilities can be used for
representing smoothly curving envelopes as well. Figure 9.8 inset, shows a
coarse discretization (three rectangles forming a histogram) of a curved den-
sity function. Histograms will approximate a probability density curve better
as the number of histogram bars increases and their widths decrease. In cu-
mulative terms, a distribution will be better approximated by its enclosing
staircase shaped envelopes the more steps the envelopes possess. See Figure
9.9.

At this point we have introduced families of distributions with three alter-
native representations: (1) sets of intervals and probabilities, (2) rectangles,
and (3) envelopes. The sets of intervals and probabilities are the underlying,
computer-friendly specification, whereas rectangles and envelopes are human-
friendly and derivable from the sets. We have not yet shown, however, how to
take two different variables, each a bounded family of distributions, and add,
subtract, multiply, or divide them or perform some other binary operation on
them. This is discussed in the next section.

9.7 Computing with Bounded Distribution Families

We introduce how to do arithmetic computations on bounded distribution
families using an example with a typical structure but artificial data.

Example 5. Consider the goal of finding out what can be determined about
the total amount of some pesticide released into the environment worldwide.
Model this total as C, where C = A+B, A is the amount contributed by U.S.
agriculture, and B is the amount contributed by all other countries. The exact
values of A and B are unknown, but we assume that distributions for them
are available. We can discretize such distributions visually as histograms or
as left and right envelopes (similar to those in Fig. 9.9), or alternatively for
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Fig. 9.9. Two discretizations of the same distribution, a light-colored pair of en-
velopes with 4 steps each, and a dark pair with 64. Each bar of a histogram that
discretizes a density function corresponds in the world of distributions (the integrals
of density functions) to a box, of which the north and east sides are formed by the
left envelope and the south and west sides are formed by the right envelope.

computational purposes as sets of intervals and their probabilities. Table 9.1
shows the description in terms of intervals and probabilities.

A B

p(A in [10,11])=0.1 p(B in [5,6])=0.05

p(A in [11,12])=0.2 p(B in [6,7])=0.06

p(A in [12,13])=0.4 p(B in [7,8])=0.08

p(A in [13,14])=0.2 p(B in [8,9])=0.1

p(A in [14,15])=0.1 p(B in [9,10])=0.21

p(B in [10,11])=0.21

p(B in [11,12])=0.1

p(B in [12,13])=0.08

p(B in [13,14])=0.06

p(B in [14,15])=0.05

Table 9.1. The distribution functions describing the amounts contributed by pes-
ticide sources A and B have been discretized and are shown symbolically as sets of
intervals with associated probabilities.
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To compute A + B to get the total amount of pesticide released, consider
that for any plausible value of A, B might potentially have any value permitted
by its distribution. In terms of the intervals of Table 9.1, we add each interval
in A to each interval in B to get 5 ∗ 10 = 50 new intervals, and we calculate
a probability for each of the new intervals, resulting in a set of intervals and
their probabilities for C = A + B. Thus, if A is in [10, 11] and B is in [5, 6],
then C would be in [10, 11]+ [5, 6] = [15, 17]. Similarly, we can get an interval
describing the value of C given A in any of its 5 intervals and B in any of its
10 intervals. See Table 9.2.

A B → [5, 6] [6, 7] [7, 8] [8, 9] [9, 10] [10, 11] [11, 12] [12, 13] [13, 14] [14, 15]
↓ p = .05 p = .06 p = .08 p = .1 p = .21 p = .21 p = .1 p = .08 p = .06 p = .05

[10, 11] [15, 17] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26]
p = .1
[11, 12] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27]
p = .2
[12, 13] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28]
p = .4
[13, 14] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29]
p = .2
[14, 15] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29] [28, 30]
p = .1

Table 9.2. Intervals for A are shown down the left, for B across the top, and for
C = A + B in the interior cells. For example, when A ∈ [10, 11] and B ∈ [5, 6], then
A + B ∈ [15, 17], and so on.

What about the probabilities associated with the interior cells of the table?
These are not shown in the table because they vary for different dependency
relationships between A and B.

We will call a table like Table 9.2 a joint distribution tableau. It shows the
ranges of intervals for C = A + B for all of the combinations of intervals in A
and B. The probabilities associated with those intervals for C are constrained
by the marginal probabilities, as shown in the first row and column, but
are not fully determined because there is no information available about the
dependency relationship between A and B. If A and B were independent,
the probabilities of the interior cells would be the product of their marginal
probabilities. However, A and B might not be independent. For example,
heavy use of the pesticide in the United States might positively correlate with
heavy use elsewhere due to similar judgments of farmers worldwide. On the
other hand, if overall supply was limited, then heavy use in one country would
limit its use elsewhere, a negative correlation. Each dependency relationship
results in some distribution for C. We wish to construct the left and right
envelopes around the family of all distributions plausible for C. Let us consider
next a few selected values of the left and right envelopes bounding C = A+B,
starting with the left envelope.
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9.7.1 Left Envelope

C = 14: There is no way for A + B to be as low as 14 no matter which of
the possible values of A and B occur. Indeed, the lowest possible value of
A + B is 15, which would only occur if A and B were both at their minimum
possible values of 10 and 5, respectively. Thus the left envelope height is zero
at C = 14 (and all other values of C below 15). For the same reason, this is
also true of the right envelope.

C = 15: The only way C can be 15 is if A = 10 and B = 5, which
occurs only for the top left cell in the interior of the table. The probabilities
in all of the interior cells in the row containing that cell sum to 0.1, because
that is the marginal probability for A ∈ [10, 11]. Similarly, the probabilities
associated with all of the interior cells in the column holding this cell must
sum to 0.05 because that is the marginal probability for B ∈ [5, 6]. This puts
an upper bound on the probability associated with the top left interior cell,
of min(0.05, 0.1) = 0.05. Some dependency relationship between A and B
might be associated with such an assignment of probability to that cell but
no dependency relationship can exist for which that probability would exceed
0.05. One might guess that this upper bound of 0.05 is not achievable because
of a putative need to reserve some of the 0.05 marginal probability to distribute
among other cells in that column. However, simply filling in probability values
in the table by hand and adjusting them by trial and error reveals that in this
case, the full 0.05 probability can be allocated to the top left interior cell
(Table 9.3). Later we will discuss allocating probabilities automatically.

A B → [5, 6] [6, 7] [7, 8] [8, 9] [9, 10] [10, 11] [11, 12] [12, 13] [13, 14] [14, 15]
↓ p = .05 p = .06 p = .08 p = .1 p = .21 p = .21 p = .1 p = .08 p = .06 p = .05

[10, 11] [15, 17] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26]
p = .1 p = .05 p = .05 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0
[11, 12] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27]
p = .2 p = 0 p = .01 p = 0.08 p = .1 p = .01 p = 0 p = 0 p = 0 p = 0 p = 0
[12, 13] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28]
p = .4 p = 0 p = 0 p = 0 p = 0 p = .2 p = 0.2 p = 0 p = 0 p = 0 p = 0
[13, 14] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29]
p = .2 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = .1 p = .08 p = .02 p = 0
[14, 15] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29] [28, 30]
p = .1 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0.01 p = 0 p = 0 p = .04 p = .05

Table 9.3. Joint distribution tableau for C = A+B. Each interior cell shows a range
and probability for C associated with an interval and probability for B at the head
of its column and for A at the head of its row. Many other probability asignments
are also possible, corresponding to different dependencies between A and B.

Thus, the left envelope jumps from 0 to 0.05 at C = 15. This value cannot
rise further until C = 16 because at that value for C, other interior cells
associated with other ranges of A and B can contribute their probabilities to
the ways in which C can be 16, as described next.

C = 16: The three cells whose summed probability we need to maximize
in this case are the top left interior cell (call it the corner cell for now), the
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cell to its right, and the cell below it. As in the previous case, the leftmost
interior column probabilities must add to p(B = [5, 6]) = 0.05. Also, the
second column of interior cells must add up to 0.06. Both of those marginal
probabilities can be distributed among just those three cells, leaving other
interior cells in the two leftmost columns with zero probabilities. This maxi-
mizes the summed probability of those three cells at 0.11. Manual inspection
of the problem is one way to reveal that such an allocation is possible (Table
9.4). This maximum probability of 0.11 applies for values of C from 16 up to
17, at which point other interior cells can contribute their probabilities to the
ways in which C can be 17.

A B → [5, 6] [6, 7] [7, 8] [8, 9] [9, 10] [10, 11] [11, 12] [12, 13] [13, 14] [14, 15]
↓ p = .05 p = .06 p = .08 p = .1 p = .21 p = .21 p = .1 p = .08 p = .06 p = .05

[10, 11] [15, 17] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26]
p = .1 p = .04 p = .06 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0
[11, 12] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27]
p = .2 p = .01 p = 0 p = .08 p = .1 p = .01 p = 0 p = 0 p = 0 p = 0 p = 0
[12, 13] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28]
p = .4 p = 0 p = 0 p = 0 p = 0 p = 0 p = .21 p = .1 p = .08 p = .01 p = 0
[13, 14] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29]
p = .2 p = 0 p = 0 p = 0 p = 0 p = .2 p = 0 p = 0 p = 0 p = 0 p = 0
[14, 15] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29] [28, 30]
p = .1 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = .05 p = .05

Table 9.4. Three interior cells contribute to the cumulative probability p(C ≤ 16).
These are clustered in the upper left.

C = 17: To get the value of the left envelope at this value, we need to
maximize the sum of the probabilities in six cells (clustered in the top left
area of Table 9.5) whose intervals contain any values equal to 17 or less. Table
9.5 manages to allocate probabilities so that all of the probabilities in the first
three interior columns are allocated within those six cells. The sum of the
probabilities associated with those cells, 0.19, is maximal because any more
probability would violate the constraints imposed by the marginal values of
probability for B shown along the top of the table. This maximized probability
applies over 17 ≤ C < 18.

We can continue to work out the values of the left envelope for higher
and higher values of C, but a näıve, pencil-and-paper approach gets unwieldy
for mid-range values of C. Furthermore, computers do not use pencil and pa-
per but require a well-defined procedure. Before discussing such a procedure,
however, let us get a start on the right envelope, illustrating its nature as the
dual of the left.

9.7.2 Right Envelope

C = 21 − ε: To get the cumulative probability defining a y-axis value of a
point on the right bounding envelope of C, we must minimize the sum of
the probabilities associated with interior cells whose interval high bounds are
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A B → [5, 6] [6, 7] [7, 8] [8, 9] [9, 10] [10, 11] [11, 12] [12, 13] [13, 14] [14, 15]
↓ p = .05 p = .06 p = .08 p = .1 p = .21 p = .21 p = .1 p = .08 p = .06 p = .05

[10, 11] [15, 17] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26]
p = .1 p =0 p =0 p =.08 p = .02 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0
[11, 12] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27]
p = .2 p =0 p =.06 p = 0 p = .08 p = .06 p = 0 p = 0 p = 0 p = 0 p = 0
[12, 13] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28]
p = .4 p =.05 p = 0 p = 0 p = 0 p = .15 p = .2 p = 0 p = 0 p = 0 p = 0
[13, 14] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29]
p = .2 p = 0 p = 0 p = 0 p = 0 p = 0 p = .01 p = .1 p = .08 p = .01 p = 0
[14, 15] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29] [28, 30]
p = .1 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = .05 p = .05

Table 9.5. The cumulative probability for C ≤ 17 is maximized by assigning prob-
abilities to interior cells as shown. The probabilities contributing to the sum are
bold. The full marginal probabilities of those columns may be assigned to the
three interior cells holding the interval [17, 19], so their summed probability of
0.05 + 0.06 + 0.08 = 0.19 is the maximum possible cumulation at C = 17.

below C and that therefore must contribute all of their probability to the
cumulation. Every other interior cell holds an interval with a high bound
above C, and so either cannot contribute probability to C (if its low bound is
also above C) or might not contribute probability to C (because its probability
could be concentrated at its high bound, which is above C even though its
low bound is below C).

Table 9.6 shows an allocation of probabilities to interior cells that mini-
mizes the sum of probabilities in cells whose intervals have high bounds below
21 and whose probabilities must therefore contribute to the accumulated prob-
ability at C = 21− ε for small enough ε. In this case, the summed probability
can be as low as zero, as the table illustrates.

A B → [5, 6] [6, 7] [7, 8] [8, 9] [9, 10] [10, 11] [11, 12] [12, 13] [13, 14] [14, 15]
↓ p = .05 p = .06 p = .08 p = .1 p = .21 p = .21 p = .1 p = .08 p = .06 p = .05

[10, 11] [15, 17] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26]
p = .1 p =0 p =0 p =0 p =0 p = .01 p = .01 p = 0 p = .08 p = 0 p = 0
[11, 12] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27]
p = .2 p =0 p =0 p =0 p = .1 p = 0 p = 0 p = .1 p = 0 p = 0 p = 0
[12, 13] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28]
p = .4 p =0 p =0 p = 0 p = 0 p = .2 p = .2 p = 0 p = 0 p = 0 p = 0
[13, 14] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29]
p = .2 p =0 p = .06 p = .08 p = 0 p = 0 p = 0 p = 0 p = 0 p = .06 p = 0
[14, 15] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29] [28, 30]
p = .1 p = .05 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = .05

Table 9.6. An allocation of probabilities to interior cells that minimizes the accu-
mulated probability at C = 21− ε. The relevant cells are those with intervals whose
high bounds are below 21. This comprises 10 cells clustered in the upper left of the
table. All of these can contain 0 probability while maintaining consistency with the
marginal probabilities for A and B, so the minimum summed probability is zero.

C = 21: The minimum cumulative probability at C = 21 consists of the
minimum possible sum of the probabilities of cells whose intervals have high
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bounds of 21 or less. This value is 0.05, because the set of cells whose summed
probabilities is to be minimized includes the entire first column (which is
constrained by the marginal probabilities of B to contain a total probability
of 0.05 within its cells), and the table can be arranged so no other probability
is allocated within the set of cells in question. Table 9.7 illustrates a way to
do this.

A B → [5, 6] [6, 7] [7, 8] [8, 9] [9, 10] [10, 11] [11, 12] [12, 13] [13, 14] [14, 15]
↓ p = .05 p = .06 p = .08 p = .1 p = .21 p = .21 p = .1 p = .08 p = .06 p = .05

[10, 11] [15, 17] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26]
p = .1 p =.05 p =0 p =0 p =0 p =0 p = 0 p = 0 p = 0 p = 0 p = .05
[11, 12] [16, 18] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27]
p = .2 p =0 p =0 p =0 p =0 p = .2 p = 0 p = 0 p = 0 p = 0 p = 0
[12, 13] [17, 19] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28]
p = .4 p =0 p =0 p =0 p = .1 p = 0 p = .2 p = .1 p = 0 p = 0 p = 0
[13, 14] [18, 20] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29]
p = .2 p =0 p =0 p = .04 p = 0 p = .01 p = .01 p = 0 p = .08 p = .06 p = 0
[14, 15] [19, 21] [20, 22] [21, 23] [22, 24] [23, 25] [24, 26] [25, 27] [26, 28] [27, 29] [28, 30]
p = .1 p =0 p = .06 p = .04 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0 p = 0

Table 9.7. Minimized cumulative probability for C = 21. This requires minimizing
the summed probabilities of 15 interior cells in the upper left region of the table.
These are the cells containing intervals with high bounds at or below 21.

This manual process of minimizing cumulated probability for different val-
ues of C (for the right bounding curve) and maximizing it (for the left), if con-
tinued, can produce the complete left and right envelopes. However, a method
that can be done by computer is desirable. Such a method is described next.

9.8 Finding Points on the Bounding Envelopes with
Linear Programming

As the previous section explained, to find the y-axis probability value of a
point on the left or right envelope for a given x-axis value, we must maxi-
mize or minimize the sum of the probabilities of some subset of the interior
cells in a joint distribution tableau. The probabilities in such tables express
a kind of discretized joint probability distribution of two random variables.
The marginals of these tables constrain how the probabilities of the interior
cells can be allocated during the process of maximizing or minimizing a sum
of a subset of them. Specifically, the marginal probabilities impose a value on
the sum of the probabilities of the interior cells in each column, as well as on
the sum of the probabilities of the interior cells in each row. These marginal
values are givens (see tables of previous section).

The preceding paragraph summarizes the need to maximize or minimize
a sum given other, constant sums. This type of situation lends itself to lin-
ear programming, a widely used technique. Numerous software packages,
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commercial and public domain, exist for solving linear programming prob-
lems. Computer program listings for this are even printed in books. Therefore,
rather than describe linear programming algorithms, we show how to set up a
linear programming problem whose solution is a maximized value giving the
y coordinate of a left or right envelope for some x-axis value. We can assume
maximization because when the objective is to minimize the summed prob-
abilities of some interior cells, we can simply maximize the sum of the other
interior cells, and subtract that value from 1.

The desired linear programming problem consists of the constraints and
the sum to be maximized (the objective function, in linear programming ter-
minology). For illustration, consider a simpler joint distribution tableau than
the one used in the previous section (Table 9.8).

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p = 1

4
p = p =

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p = 1

2
p = p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p = 1

4
p = p =

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p = 1

2
p = 1

2

Table 9.8. A joint distribution tableau showing marginals X and Y and interior
cells showing intervals for product XY . Probabilities for the interior cells are left
blank because they are not fully determined.

In Table 9.8 the probabilities in the interior cells (which spread out from
the northeast corner of the table) are left out because they depend on the
dependency relationship between X and Y . Thus, they are variable, although
constrained to some degree by the marginal probabilities shown on the left
and along the bottom. Linear programming can identify specific probabilities
for those interior cells that are (1) consistent with the marginal constraints,
and (2) maximize the summed probabilities of any given subset of interior
cells.

To solve maximization problems such as these by linear programming, one
initializes by assigning feasible values to the variables, which in this case are
the interior cell probabilities. These values serve as a starting point from which
the linear programming process will automatically find an optimal (maximiz-
ing) allocation of probabilities. An initialization method is illustrated next in
the joint distribution tableau of Table 9.8.

1. Identify the row with the highest marginal probability, the column with
the highest marginal probability, and the interior cell at the intersection
of that row and column. The interval in this cell is emphasized in Table
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9.9. (In this case, both columns have the same marginal probability, so
the first one was chosen.)

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p = 1

4
p = p =

Y ∈ [3, 4] XY ∈[3, 8] XY ∈ [6, 16]
p = 1

2
p = p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p = 1

4
p = p =

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p = 1

2
p = 1

2

Table 9.9. XY ∈ [3, 8] is chosen as the location for an initial probability assignment.

2. Assign to the identified cell the maximum probability consistent with the
row and column marginal constraints affecting it. This is the lesser of the
row and column marginal probabilities. See Table 9.10.

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p = 1

4
p = p =

Y ∈ [3, 4] XY ∈[3, 8] XY ∈ [6, 16]
p = 1

2
p =1/2 p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p = 1

4
p = p =

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p = 1

2
p = 1

2

Table 9.10. An initial probability assignment is made to the interior cell holding
interval [3, 8].

3. For bookkeeping purposes, subtract the probability just assigned from
both corresponding marginal probabilities (Table 9.11).

4. Repeat step 1: Identify a row with the highest marginal probability des-
ignation, a column with the highest marginal probability, and the cell at
the intersection of that row and column. This cell is the one holding the
interval [8, 20] in Table 9.11.

5. Repeat step 2: Assign to the newly identified cell the maximum probability
consistent with the row and column constraints affecting it. This is the
lesser of the row and column probabilities. See Table 9.12.

6. Repeat step 3 in the table most recently modified: To keep track of
marginal probability that still needs to be allocated to interior cells, sub-
tract the probability just assigned to an interior cell from the correspond-
ing marginal probabilities (Table 9.13).

7. Repeat step 1 on the current table: Identify a row with the highest amount
of as-yet unallocated marginal probability of the rows, a column with the
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Y ∈ [4, 5] XY ∈ [4, 10] XY ∈[8, 20]
p = 1

4
p = p =

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p′ =0 p = 1

2
p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p = 1

4
p = p =

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p′ =0 p = 1/2

Table 9.11. The probability assigned to the interior cell holding [3, 8] is subtracted
from the contributing marginal probabilities, which are now labeled p′ instead of p
to indicate they have been modified. Then the cell holding [8, 20] is chosen as the
next one to allocate an initial probability to.

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈[8, 20]
p = 1

4
p = p =1/4

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p′ = 0 p = 1

2
p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p = 1

4
p = p =

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p′ = 0 p = 1

2

Table 9.12. The cell holding interval [8, 20] has its probability assigned a value as
high as is consistent with its marginal probabilities.

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p′ =0 p = p =1/4

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p′ = 0 p = 1

2
p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈[4, 12]
p = 1

4
p = p =

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p′ = 0 p′ =1/4

Table 9.13. The allocated probability is subtracted from the relevant marginal cell
probabilities, whose remaining unallocated probabilities are designated p′. Then the
next cell, holding interval [4, 12], is chosen.

highest amount, and the cell at the intersection of that row and column.
This cell holds interval [4, 12] in Table 9.13.

8. Repeat step 2: Assign to the just-identified cell the maximum probability
consistent with the row and column constraints affecting it. This will be
the lesser of its row and column unallocated marginal probabilities. See
Table 9.14.

9. Repeat step 3: Subtract the initial probability assigned the cell from its
corresponding marginal probabilities. See Table 9.15.
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Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p′ = 0 p = p = 1

4

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p′ = 0 p = 1

2
p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈[4, 12]
p = 1

4
p = p =1/4

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p′ = 0 p′ = 1

4

Table 9.14. An initial probability is assigned to the cell holding interval [4, 12].

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p′ = 0 p = p = 1

4

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p′ = 0 p = 1

2
p =

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p′ =0 p = p =1/4

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p′ = 0 p′′ =0

Table 9.15. The probability assigned to an interior cell is subtracted from the
relevant marginals, leaving all zeros in the margins. Key: The number of apostrophes
(p, p′, or p′′) reflects how many times an original marginal probability has been
decremented.

10. All marginal probability numbers are now 0, indicating that no marginal
probability remains to be allocated to interior cells. Therefore, any interior
cells not yet assigned an initial probability must be assigned 0 (Table 9.16).

Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p′ = 0 p =0 p = 1

4

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p′ = 0 p = 1

2
p =0

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p′ = 0 p =0 p = 1

4

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p′ = 0 p′′ = 0

Table 9.16. The interior cells are now fully initialized and ready for a linear pro-
gramming process to modify them to an optimal set of assignments that maximizes.

11. Since the interior cells are now initialized appropriately, the marginal
probability designations used for bookkeeping purposes are no longer
needed and can be replaced with the actual marginal probability values
that were originally present. This results in Table 9.17, which serves as
input to the linear programming problem.
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Y ∈ [4, 5] XY ∈ [4, 10] XY ∈ [8, 20]
p = 1

4
p11 = 0 p21 = 1

4

Y ∈ [3, 4] XY ∈ [3, 8] XY ∈ [6, 16]
p = 1

2
p12 = 1

2
p22 = 1

4

Y ∈ [2, 3] XY ∈ [2, 6] XY ∈ [4, 12]
p = 1

4
p13 = 0 p23 = 1

4

X ∈ [1, 2] X ∈ [2, 4]
Y ⇑ X ⇒ p = 1

2
p = 1

2

Table 9.17. The interior cells have been initialized and the table is ready for linear
programming to be applied.

Table 9.17 also gives distinctive subscripts to the interior cell probabili-
ties so that they can be referred to individually. From this table, linear pro-
gramming will find the best allocation of marginal probabilities over interior
cells, which is the one with the maximum value possible for the sum of the
probabilities of a designated subset of the interior cells. The linear program-
ming problem takes as input all of the row and column constraints plus the
optimization (or “objective”) function, which is the sum of the interior cell
probabilities to be maximized. For Table 9.17, this input is shown in Table
9.18.

Value p11 p21 p12 p22 p13 p23

1/4 1 1 0 0 0 0
1/2 0 0 1 1 0 0
1/4 0 0 0 0 1 1
1/2 1 0 1 0 1 0
1/2 0 1 0 1 0 1

3/4 1 0 1 0 1 1

Table 9.18. The five constraints (three row + two column) from Table 9.17 are
shown in the first five rows, followed in the last row by the optimization function
for maximizing the sum of the probabilities of the four interior cells whose interval
low bound is below 6. The 1’s and 0’s are coefficients of the pij from Table 9.17.

The linear programming process will take a chart like Table 9.18 and find
values for the various pij that maximize the number at the bottom of the Value
column. In the case shown, this is initially 3/4, the sum of the probabilities
whose associated intervals have low bounds below 6. Note that the initial
values of the probabilities shown in Table 9.17 determine the initial value of
3/4 for the optimization function. The 1’s in Table 9.18 are coefficients that
designate which probabilities are governed by which constraints. Thus, the
first row says that 1 ∗ p11 + 1 ∗ p21 + 0 ∗ p12 + 0 ∗ p22 + 0 ∗ p13 + 0 ∗ p23 = 1

4 or,
equivalently, p11 + p21 = 1

4 . This is a constraint stated by Table 9.17, as are
the next four rows. The remaining, last row is not a constraint but rather the
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optimization equation. Hence, the value of 3/4 is not fixed, as it would be for
a constraint, but can vary. Normally it does vary, as the linear programming
algorithm tries to maximize it.

9.9 Conclusion

An introduction to the DEnv approach has been presented at the tutorial
level. More advanced features are available, and a considerable amount of
related work by others has appeared. Regarding advanced features, one is
the use of correlation between two random variables to supplement the basic
row and column constraints imposed by a joint distribution tableau. This is
described in detail in [5]. A slightly less general, but more accessible, discus-
sion of correlation along with an application to reliability of two-component
systems appears in [6]. Many joint distributions encountered in practice are
unimodal. Unimodality constraints in the DEnv approach and its software
implementation are discussed in [18]. A more theoretical discussion from the
Kreinovich lab appears in [7]. A tool and related documentation is available
for download at http://ifsc.ualr.edu/jdberleant/statool/index.htm.

Work on bounded families of distributions has experienced a surge of
interest in recent years. Considerable work has appeared in the biannual
International Symposium on Imprecise Probabilities: Theories and Appli-
cations (ISIPTA) sponsored by the eponymous society (http://sipta.org/).
The focus of the biannual Workshop on Reliable Engineering Computing
(www.gtsav.gatech.edu/workshop/rec08, .../rec06, and .../rec04) is even more
apropos. The most closely related and coherent compendium of work is still
Helton and Oberkampf [12], a collection of papers all focusing on the same set
of challenge problems concerning system response under uncertainty. Various
alternatives to the DEnv algorithm are explored in the context of this set of
problems. Also closely related are reports by Ferson et al. [9, 10]. Although
well-known in the field, Kuznetsov [14] is unfortunately currently unavailable
in English. Other books of interest include [8, 11, 15, 16]). All of these works
deal, as does the present work, with the important problem of drawing what
conclusions are possible in the presence of incomplete information: inference
under severe uncertainty.
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