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Matrix games have been widely used in decision-making systems. In practice,
for the same strategies players take, the corresponding payoffs may be within
certain ranges rather than exact values. To model such uncertainty in matrix
games, we consider interval-valued game matrices in this chapter and extend
the results of classical strictly determined matrix games to fuzzily determined
interval matrix games. Finally, we give an initial investigation into mixed
strategies for such games. We reported this work initially at the Forging New
Frontiers at the University of California, Berkeley in November 2005. The full
paper [2] then appeared in Springer’s journal Soft Computing in 2008.

7.1 Introduction

7.1.1 Matrix Games

Game theory had its beginnings in the 1920s and significantly advanced at
Princeton University through the work of John Nash [3, 7, 8, 10]. The simplest
game is a zero-sum game involving only two players. An m × n matrix G =
{gij}m×n may be used to model such a two-person zero-sum game. If the row
player R uses his i-th strategy (row) and the column player C selects her j-th
choice (column), then R wins (and subsequently C loses) the amount gij . The
objective of R is to maximize his gain while C tries to minimize her loss.

Example 1. A game is described by the matrix

G =

 0 6 −2 −4
5 2 1 3
−8 −1 0 20

 . (7.1)

In the above game, the players R and C have three and four possible strategies,
respectively. If R chooses his first strategy and C chooses her second, then R
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wins g12 = 6 (C loses 6). If R chooses his third strategy and C chooses her
first, then R wins g31 = −8 (R loses 8, C wins 8). In this chapter we restrict
our attention to such two-person zero-sum games.

7.1.2 Strictly Determined Matrix Games

If there exists a gij in a classical m × n game matrix G such that gij is
simultaneously the minimum value of the i-th row and the maximum value
of the j-th column of G, then gij is called a saddle value of the game. If a
matrix game has a saddle value, it is said to be strictly determined. It is well
known, [3] and [10], that the optimal strategies for both R and C in a strictly
determined game are as follows:

• R should choose any row containing a saddle value.
• C should choose any column containing a saddle value.

A saddle value is also called the value of the (strictly determined) game.
In the above example, g23 is simultaneously the minimum of the second row
and the maximum of the third column. Hence, the game is strictly determined
and its value is g23 = 1. The knowledge of an opponent’s move provides no
advantage since the optimal strategies for both players will always result in a
saddle value as the payoff in a strictly determined game.

7.1.3 Motivation for This Work

Matrix games have many useful applications, especially in decision-making
systems. However, in real-world applications, due to certain forms of uncer-
tainty, outcomes of a matrix game may not be a fixed number, even though the
players do not change their strategies. Hence, fuzzy games have been studied
[4, 9, 11]. By noticing the fact that the payoffs may only vary within a desig-
nated range for fixed strategies, we propose using an interval-valued matrix,
whose entries are closed intervals, to model this kind of uncertainty.

In this chapter, as throughout this book, we use boldface letters to denote
(closed and bounded) intervals. For example, x is an interval. Its greatest lower
bound and the least upper bound are denoted by x and x, respectively. We
use uppercase letters to denote general matrices. Boldface uppercase letters
will represent a interval-valued matrices.

Throughout this chapter, we assume that the intervals in the game matrix
G are closed and bounded intervals of real numbers and, for this investigation,
represent uniformly distributed possible payoffs.

Definition 1. Let G = {gij} be an m×n interval-valued matrix. The matrix
G defines a zero-sum interval matrix game provided whenever the row player
R uses his i-th strategy and the column player C selects her j-th strategy, then
R wins and C correspondingly loses a common x ∈ gij.
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Example 2. Consider the following interval game matrix:

G =

 [0, 1] [6, 7] [−2, 0] [−4,−2]
[5, 6] [2, 7] [1, 3] [3, 3]

[−8,−5] [−1, 0] [0, 0] [20, 25]

 (7.2)

In this game, if R chooses row one and C selects column two, then R wins an
amount x ∈ [6, 7]. (C loses the same x that R wins.)

In this chapter, we extend results of classical matrix games to interval-
valued games. To accomplish this, we need to define fuzzy relational operators
for intervals in order to compare every pair of possible interval payoffs from a
rational game-play perspective. These relational operators for intervals will be
developed in Section 7.2. We then study crisply determined and fuzzily deter-
mined interval games in Sections 7.3 and 7.4. Since not all interval games are
determined, we begin an investigation of mixed strategies for non-determined
games. We describe a potential mapping of such an interval game into an
interval linear programming problem in Section 7.5, and we show how lin-
ear interval inequalities can be solved under our definition in Section 7.6. We
summarize these results in Section 7.7.

7.2 Comparing Intervals

To compare strategies and payoffs for an interval game matrix, we need a
notion of an interval ordering relation that corresponds to the intuitive notion
of a “better possible” outcome or payoff. This will be done by defining the
notion of a nonempty interval x not being a better payoff than a nonempty
interval y (i.e., the notion that x is less than or equal to y). Other approaches
that define such relational orderings between some pairs of intervals have been
developed and extended. In [5], Fishburn defined a concept of interval order
corresponding to a special kind of partially ordered set. His context is for the
study of the order of vertices in interval graphs. An interval graph refers to a
graph (X,∼) whose points can be mapped into intervals of a linearly ordered
set such that, for all distinct x and y, x ∼ y if and only if the intervals assigned
to x and y have a nonempty intersection. Allen’s [1] in 1983 listed 13 possible
cases for the temporal relationships between two time intervals. However,
neither of these two developments compares general intervals or models such
a comparison in our game-theoretic context. Unlike these models, we wish to
make every pair of our intervals comparable and to fuzzily quantify the notion
of “indifference” in our game-theoretic context except when the two intervals
are equal.

For the development of our relational operators in our context, we assume
that a rational player will not prefer an interval x as in Figure 7.1, Case 1, to
interval y, as every possible payoff value x ∈ x is less than every payoff value
y ∈ y. Similarly, we assume that in the case of the intervals in Figure 7.1,
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Fig. 7.1. Nonoverlapping and overlapping intervals.

Case 2, the player will not prefer interval x over y, since no value in x offers
a payoff that is greater than what is possible in y, and y offers no payoff that
is less than what is possible in x. Thus, choosing interval y over x maximizes
both the least possible and greatest possible payoff. Finally, in case x = y, we
assume that a rational player will prefer neither over the other. Therefore, in
these cases, using ≤ to represent the relation “is not preferred to,” we have
x ≤ y in the cases represented by Cases 1 and 2 and each of x ≤ y and
y ≤ x when x is equal to y. In these cases, the preference order exhibits the
properties of a total order. Hence, these comparisons can be crisply defined
as true and are consistent with traditional interval comparison operators.

When x is completely contained in y, as displayed in Figure 7.2, the notion
of payoff preference becomes uncertain, since there exist payoff values in y that
are less than every possible payoff in x as well as values in y that are greater
than every possible payoff in x. In this case, a risk-adverse player may (but not
necessarily will) prefer x to y, since x contains the largest worst possible actual
payoff value, whereas a (rational) risk-taking player may prefer y to x, since y
contains the largest best possible actual payoff. However, for any single game,
either player may also rationally decide that he/she is indifferent to the two
choices or will choose the other. In other words, the interval payoff preference
cannot be determined with classical binary logic. This uncertainty, however,
can be well addressed with the theory of fuzzy logic developed by Zadeh [12].
Therefore, we extend the previous crisp preference comparisons with fuzzy
membership. Such a fuzzy membership extension might be expected to be a
continuous one in terms of holding one interval fixed and moving the other
in terms of its midpoint and width, but in the presented context, no such

Case 1: x ∩ y = ∅

Case 2: x ∩ y ≠ ∅
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Fig. 7.2. Nested intervals.

continuous extension is possible. To see this, observe that if the widths of x
and y are equal and the two intervals are initially positioned as in Case 1
of Figure 7.1, as x moves to the right, the inequality x ≤ y is crisply true
(having membership value 1 in a fuzzy context) until x = y and is crisply
false (having membership value 0 in a fuzzy context) afterward. Hence, no
membership value of “x is not preferred to y” will allow for a continuous
extension.

To fuzzily quantify uncertainty as in Figure 7.2, we consider the case that
the interval x is positioned with its left endpoint the same as the left endpoint
of y and x ⊂ y. In this case, a rational player will crisply prefer y over x
for the same reasons expressed in the analysis of Figure 7.1. Hence, x ≤ y
crisply, and in terms of a fuzzy relational operator, the membership value
of this relation is 1. On the other hand, when x is positioned to share its
right endpoint with y, a rational player will crisply prefer x to y for the same
reason. Hence, in this case the membership value of x ≤ y is 0. We then define
the fuzzy membership to be a linear mapping from 1 to 0 as the interval x
“moves” from right to left. The corresponding fuzzy membership values of this
relation then can be associated with the notion of the degree of risk-taking
that a player may exhibit. However, this relationship is not a probabilistic one,
but rather a possible one. For example, a risk-adverse player facing a choice
between two such intervals with an x ≤ y membership value close to 1 may
consider the risk of choosing y over x, in spite of the possibility of receiving
an actual payoff less than every value in x. On the other hand, a risk-taking
player may choose y over x with a small positive membership value of x ≤ y.
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The linear map3

f(x,y) =
y − x

w(y)− w(x)
(7.3)

meets the requirement, where w(x) = x− x is the width of the interval x.
As a special instance, note that the membership is 0.5 when the midpoints

of x and y coincide. If one keeps the interval y fixed, one keeps the midpoints
of x and y equal, and one allows the width of x to vary continuously, there is a
pronounced discontinuity in the membership values of x ≤ y when the widths
become equal. However, this discontinuity is not in conflict with the measure
of uncertainty of the comparison, since by our definition there is uncertainty
in the comparison at all widths of x except when the intervals are equal.

Summarizing the above discussion, we extend the crisp comparison opera-
tor by defining the fuzzy comparison operator � for two closed and bounded
intervals for the “not preferred to” relationship as follows.

Definition 2. Let x and y be two nontrivial intervals. The binary fuzzy op-
erator � of x and y returns the membership for “x is not preferred to y”
between 0 and 1 as

x � y =



1 x ≤ y ≤ x < y

y − x

w(y)− w(x)
y < x < x ≤ y, w(x) 6= w(y)

1 x = y, w(x) = w(y)

0 otherwise.

(7.4)

One can define the dual fuzzy relation “is preferred to” in the analogous
way. We will use the symbol � to denote this dual relationship as a reminder
of the antisymmetry in the crisp case. Therefore, � can be defined in terms
of � as follows.

Definition 3. The binary fuzzy operator � of two intervals x and y is defined
as x � y = 1 if x = y, and x � y = 1− (x � y) otherwise.

Definition 4. If the value of x � y is exactly 1 or 0, then we say that x and
y are crisply comparable . Otherwise, we say that they are fuzzily comparable.

7.3 Crisply Determined Interval Matrix Games

In this section, we extend the concept of classical strictly determined games to
interval matrix games whose row and column entries are crisply comparable.
In this case, we will use ≤ and ≥ in place of � and � to emphasize the
crispness of the appropriate interval comparisons.

3 Linear in the position of x as y is held fixed and the width of x is held fixed.
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Definition 5. Let G be a m×n interval game matrix. If there exists a gij ∈ G
such that gij is simultaneously crisply less than or equal to gik for all k ∈
{1, 2, . . . , n} and crisply greater than or equal to glj for all l ∈ {1, 2, . . . ,m}
then the interval gij is called a saddle interval of the game. An interval matrix
game is crisply determined if it has a saddle interval.

By Definition 5, to determine whether an interval game matrix is crisply
determined, one needs only to do the following:

1. For each row (1 ≤ i ≤ m), find an entry gij∗ that is crisply less than or
equal to all other entries in the i-th row.

2. For each column (1 ≤ j ≤ n), find an entry gi∗j that is crisply greater
than or equal to all other entries in the j-th column.

3. Determine if there is an entry gi∗j∗ that is simultaneously a minimum of
the i-th row and a maximum of the j-th column.

4. If any of the above values cannot be found, the game is not crisply deter-
mined. Otherwise, it is a crisply determined interval matrix game.

Example 3. Examining the interval game matrix (7.2), we found that g14,
g23, and g31 are the minima of rows 1, 2, and 3, respectively. Similarly, g21,
g12, g23, and g34 are the maxima of columns 1, 2, 3, and 4, respectively.
Furthermore, g23 is simultaneously the minimum of the second row and the
maximum of the third column. Hence, g23 = [1, 3] is a saddle interval of the
game matrix. This is a crisply determined interval matrix game.

Mimicking the optimal strategy for a classical strictly determined game,
we have the optimum strategies for both R and C in a crisply determined
interval matrix game defined as follows:

• R should choose any row containing a saddle interval.
• C should choose any column containing a saddle interval.

In this case, uniqueness of the saddle interval value can be established.

Theorem 1. If an interval matrix game is crisply determined, its saddle in-
tervals are identical.

Proof. Let G be a crisply determined interval game matrix and gij and glk

are saddle intervals. Then gij ≤ gik ≤ glk and gij ≥ glj ≥ glk. Hence, from
Definitions 2 and 3, gij = glk.

As in the classical case, in a strictly determined interval game, the knowl-
edge of an opponent’s move provides no advantage, since the payoff is assumed
to be uniformly distributed within a saddle interval.

Definition 6. The value interval of a strictly determined interval game is
its saddle interval. A strictly determined interval game is fair if its saddle
interval is symmetric with respect to zero (i.e., if the saddle interval is of the
form [−a, a] for a ≥ 0). A strictly determined interval game that is not fair
is said to be unfair.
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From Example 3 we know that g23 is a saddle interval of the matrix
game (7.2). However, the midpoint of g23 is 2. Hence, the game is unfair,
since the row player has an average advantage of 2.

7.4 Fuzzily Determined Interval Matrix Games

For a general interval game matrix, crisp comparability may not be satisfied
for all intervals in the same row (or column). Hence, we now must extend
interval comparability to define the fuzzy memberships of an interval vi being
a minimum and a maximum of an interval vector V ; then we define the notion
of a least and greatest interval in V .

Definition 7. Let V = {v1,v2, . . . ,vn} be an interval vector. The fuzzy
membership of vi being a least interval in V is defined as

µ(vi) = min
1≤j≤n

{vi ≺ vj}

and a least interval of the vector V is defined as an interval whose µ value is
largest, that is, an interval vi∗ such that

vi∗ = max
1≤i≤n

µ(vi).

Likewise, the fuzzy membership of vi being a maximum interval in V is

ν(vi) = min
1≤j≤n

{vi � vj}

and a greatest interval of the vector V is

vi∗ = max
1≤i≤n

ν(vi).

Example 4. Find the least and the greatest intervals for the interval vector
V = {[2, 5], [3, 7], [4, 5]}.

Solution: We notice that v2 and v3 are not crisply comparable. By Defi-
nition 7, we have µ([2, 5]) = 1, ν([2, 5]) = 0; µ([3, 7]) = 0, ν([3, 7]) = 2

3 ;
and µ([4, 5]) = 0, ν([4, 5]) = 1

3 . Hence, the least interval of the vector V is
v1 = [2, 5] with membership 1 and the greatest interval of V is v2 = [3, 7]
with membership 2

3 .
Notice, however, that unlike real-valued games, the least or greatest inter-

val of a vector is not necessarily unique. Uniqueness can happen only when
unequal intervals share the same midpoint, as the next example shows.

Example 5. Given the interval vector V = {[2, 5], [3, 6], [4, 5]}, we find that
the least interval of the vector V is v1 = [2, 5] with membership 1. However,
as ν([2, 5]) = 0, ν([3, 6]) = 1

2 , and ν([4, 5]) = 1
2 , each of [3, 6] and [4, 5] is a

greatest interval with membership value 1
2 .
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Definition 7 provides us a way to fuzzily determine least and greatest
intervals for any interval vectors. We are now able to define fuzzily determined
interval matrix games as follows.

Definition 8. Let G be an m×n interval game matrix. If there is a gij ∈ G
such that gij is simultaneously a least and a greatest interval for the i-th
row and the j-th column of G, respectively, then G is a fuzzily determined
interval game. We also call such gij a fuzzy saddle interval of the game with
its membership as min{µ(gij), ν(gij)}.

It is obvious that the crisply determined interval game defined in Defini-
tion 5 is just a special case of a fuzzily determined interval game with 1 as
its membership. The game value of a fuzzily determined interval game can be
reasonably defined as its fuzzy saddle interval with the largest membership
value.

For the convenience of computer implementations, we summarize our dis-
cussion as the following algorithm.

Algorithm 5 (Determine if an interval matrix game is fuzzily determined,
and, if so, determine the fuzzy saddle intervals.)

1. Initialization:
a) Input interval game matrix G = {gij}m×n.
b) Initialize FuzzilyDetermined to be false.

2. Calculation:
a) Evaluate µ(gij) and ν(gij) for all i = 1 to m and j = 1 to n.
b) For each of i = 1 to m, find j∗ such that µ(gij∗) = max

1≤j≤n
{µ(gij)}.

Note: j∗ depends on i.
c) For each of j = 1 to n, find i∗ such that ν(gi∗j) = max

1≤i≤m
{ν(gij)}.

Note: i∗ depends on j.
3. Checking: For each of i = 1 to m and corresponding j∗, check if gij∗ is

also a greatest interval for the j∗ column. If so:
a) Update FuzzilyDetermined to true.
b) Record gij∗ as a fuzzy saddle interval with its membership min{µ(gij∗),

ν(gij∗)}.
4. Finding results:

a) If FuzzilyDetermined is false, the interval game is not fuzzily de-
termined.

b) Otherwise, the interval game is fuzzily determined; return the fuzzy
saddle intervals that have the largest membership among all recorded
fuzzy saddle intervals. Note: The game is crisply determined if the
resulting membership is 1.

The concept of a fuzzily determined interval game in Definition 8 can be
further generalized. For each gij ∈ G, the membership of gij being simulta-
neously a least and a greatest interval for the i-th row and the j-th column of
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G can be defined as ϕ(gij) = min{µ(gij), ν(gij)}. The entries of G with the
largest value of ϕ can be considered to be fuzzy saddle intervals. Therefore,
for any interval game matrix, one can find its fuzzy saddle intervals as those
intervals with the largest value of ϕ. However, it may not make any practical
sense if the membership value is too small.

There are many applications of classical game theory to problems in de-
cision theory and finance. In particular, the following is an example of how
interval Nash games may apply to determine optimal investment strategies.

Example 6. Consider the case of an investor making a decision on to how to
invest a nondivisible sum of money when the economic environment may be
categorized into a finite number of states. There is no guarantee that any
single value (return on the investment) can adequately model the payoff for
any one of the economic states. Hence, it is more realistic to assume that each
payoff lies in some interval.

For this example it is assumed that the decision of such an investor can
be modeled under the assumption that the economic environment (or nature)
is, in fact, a rational “player” that will choose an optimal strategy. Suppose
that the options for this player are the following: strong economic growth,
moderate economic growth, no growth or shrinkage, and moderate shrinkage
(negative growth). For the investor player the options are the following: invest
in bonds, invest in stocks, and invest in a guaranteed fixed return account. In
this case, clearly a single value for the payoff of either investment in bonds
or stock cannot be realistically modeled by a single value representing the
percent of return. Hence, a game matrix with interval payoff values better
represents the view of the game from both players’ perspectives.

Consider the following interval game matrix for this scenario, where the
percentage of return is represented in decimal form:

Bonds Stocks Fixed
Strong [0.11, 0.136] [0.125, 0.158] [0.045, 0.045]
Moderate [0.083, 0.122] [0.08, 0.11] [0.045, 0.045]
None [0.049, 0.062] [0.02, 0.042] [0.045, 0.045]
Negative [0.022, 0.03] [−0.04, 0.015] [0.045, 0.045]

The intervals in each row and column are strictly comparable to each other,
and using the techniques described earlier, one finds that the game is strictly
determined, with the value of the game the trivial interval [0.045, 0.045]. This
corresponds to the actions of those investors who do not have any insight into
what the economy may do in a given time period and who cannot take high
risks.
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7.5 Toward Optimal Mixed Strategies Through Linear
Programming

As in the case of classical matrix games, there is no guarantee that an interval-
valued matrix game is crisply or fuzzily determined. For a nondetermined
interval matrix game, one needs to find an optimal mixed strategy for each
player. For such nondetermined interval-valued matrix games, we will assume
that these mixed strategies are represented by crisp probability values, whose
sum for each player is exactly equal to 1. Hence, the goal is to describe a
context in which each player can choose an optimal mixed strategy from the
set of all possible mixed strategies.

We first remind the reader of the traditional meaning of mixed strategy.

Definition 9. Suppose G is an m × n matrix game (interval or other-
wise). Then a mixed strategy for the row player is a set of probabilities
P = (p1, p2, . . . , pm), such that the player selects row i with probability pi.
Similarly, a mixed strategy for the column player is a set of probabilities
(q1, . . . , qn), such that the column player selects the j-th column with prob-
ability qj.

In the classical zero-sum matrix game context, the problem of finding
an optimal mixed strategy solution can be mapped to an equivalent linear
programming problem. We will now investigate such a transformation for
interval-valued games and present the resulting linear programming problems
to be solved.

Suppose G = (gij) is an m×n interval game matrix and the column player
C chooses column j as her strategy. If P = (p1, p2, . . . , pm) is the row player’s
mixed strategy, then the expected value for the row player, given C’s given
strategy, is the interval v defined by

v = p1 · g1j + p2 · g2j + · · ·+ pm · gmj =
m∑

i=1

pi · gij .

To find the row player’s optimal strategy, we use the “max-min” principle
of traditional zero-sum matrix games, namely to find the largest minimum
expected value/payoff. Hence, we need to find a “maximum” value v and the
corresponding mixed strategy P so that p1 · g1j + p2 · g2j + · · ·+ pm · gmj � v
for each 1 ≤ j ≤ n. The corresponding system to solve is
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Maximize v subject to

x1 · g11 + x2 · g21 + · · ·+ xm · gm1 � v

x1 · g12 + x2 · g22 + · · ·+ xm · gm2 � v

...
x1 · g1n + x2 · g2n + · · ·+ xm · gmn � v

m∑
i=1

xi = 1

x1, x2, · · · , xm ≥ 0.



(7.5)

Since the entries of the game matrix G represents the gains to the row player,
the column player attempts to minimize her losses. Therefore, she attempts
to find the smallest maximum expected value, and the corresponding (dual)
system for her is

Minimize v subject to

x1 · g11 + x2 · g12 + · · ·+ xn · g1n � v

x1 · g21 + x2 · g22 + · · ·+ xn · g2n � v

...
x1 · gm1 + x2 · gm2 + · · ·+ xn · gmn � v

n∑
i=1

xi = 1

x1, x2, · · · , xm ≥ 0



(7.6)

In the classical game theory context, one can assume that each of the payoffs
is positive, since an appropriate linear shift of the payoff values does not
affect the characteristics of the game. In the case of interval-valued games, a
similar shift to make each of the interval payoffs positive (i.e., to make the left
endpoint of each interval entry in the game matrix positive) can be employed.
This shift, as will be shown, does not affect the characteristics of the game.

Theorem 2. Suppose G = (gij) is an m×n interval game matrix and c > 0.
The interval v is a row player’s optimal mixed strategy expected value with
strategy distribution P = (p1, p2, . . . , pm) if and only if v + [c, c] is a corre-
sponding optimal value with strategy distribution P for the row player in the
game G′ = (gij + [c, c]).

Proof. If (p1, p2, . . . , pm) is a strategy distribution and 1 ≤ j ≤ n, then since
each xi is a real number, and the shift [c, c] is a real number, we have

m∑
i=1

xi(gij + [c, c]) =
m∑

i=1

(xi · gij + xi · [c, c]) =
m∑

i=1

xigij + [c, c]
m∑

i=1

xi
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=
m∑

i=1

xigij + [c, c].

Hence, maximizing
∑m

i=1 (gij + [c, c]) ≥ v is equivalent to maximizing∑m
i=1 xigij + [c, c] ≥ v. A similar result follows immediately for the column

player.

Continuing, since the entries in G can be assumed to be positive, we have
v > 0. However, the width of v, in general, can vary. To “normalize” the
width of v in order to investigate a method for solving these interval systems,
we will now assume that v is a degenerate interval; that is, the width of v is
zero. Hence, v can be simultaneously viewed as an interval and real number.
Thus, in this case, dividing each of the inequalities in constrained optimization
problem (7.5) by v and treating the resulting quotients xk/v as a new real-
valued variable zk, we notice that maximizing v is equivalent to minimizing

1
v

=
∑m

i=1 xi

v
=

m∑
i=1

zi,

since
∑m

i=1 xi = 1. Therefore, constrained optimization problem (7.5) can be
converted into an “interval” linear programming4 problem:

Minimize z1 + z2 + · · ·+ zm subject to

z1 · g11 + z2 · g21 + · · ·+ zm · gm1 � 1
z1 · g12 + z2 · g22 + · · ·+ zm · gm2 � 1

...
z1 · g1n + z2 · g2n + · · ·+ zm · gmn � 1

z1, z2, · · · , zm ≥ 0

where the “1” is the interval [1, 1]. After
this linear programming problem is solved
for the values z1, z2, . . . zm, the final val-
ues of x1, x2, . . . xm and v can be quickly
found.



(7.7)

To optimize his strategy, the row player will attempt to find a strategy
distribution P ∗ = (p∗1, p

∗
2, . . . , p

∗
m) and a largest value for v so that, for any

strategy distribution Q for the column player, we will have P ∗GQT � v
for a fixed relational membership value α, treating v as a trivial interval. In
other words, the row player must solve this optimization problem (for a fixed
relational membership value 0 < α ≤ 1).

In a similar fashion, the column player will attempt to find a strategy
distribution Q∗ = (q∗1 , q∗2 , . . . , q∗n) and a smallest value for w ≥ 0 so that, for
4 This is not a linear optimization problem in the usual sense.
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any strategy distribution P for the row player, we will have PG(Q∗)T � w
for the same membership value α. Therefore, the corresponding system will
be 

Maximize z1 + z2 + · · ·+ zm subject to

z1 · g11 + z2 · g12 + · · ·+ zn · g1n � 1
z1 · g21 + z2 · g22 + · · ·+ zn · g2n � 1

...
z1 · gm1 + z2 · gm2 + · · ·+ zn · gmn � 1

z1, z2, · · · , zn ≥ 0


(7.8)

The values of P ∗, Q∗, v, and w are determined by solving these systems.
If each interval gij is interpreted as a trapezoidal fuzzy number, each of

the two previous systems becomes a fuzzy linear programming problem with
a crisp objective function and fuzzy constraints. Several techniques for solv-
ing such fuzzy systems have been developed, including [6]. These techniques
define the notion of an (approximate) optimal solution in a fuzzy context.
However, it is still worthwhile to develop direct techniques to solve interval
linear programming problems, computing exact interval solutions whenever
possible. Hence, we continue to address the development of such a general
theory.

7.6 Solving Interval Inequalities

To solve the optimization problems described in the previous section, we deter-
mine general techniques for finding optima constrained by systems of interval
inequalities.

7.6.1 Single Inequalities

We first consider the simplest case, namely to maximize the real value z
subject to z · x � y, where each of x and y is a positive interval. Clearly, if
both x and y are degenerate intervals, then the maximum value of z is y/x.
Now, consider the case when at least one of x and y is not degenerate. Since
we are using a fuzzy comparison operator for interval comparisons, we will
consider the following restatement of this linear inequality problem:{

Given 0 < α ≤ 1 and intervals x and y, find the maximum value
of z where z · x � y with membership value not less than α.

}
(7.9)

We will represent the relationship between z · x and y in a planar context,
where an interval v is represented by the ordered pair (m(v), r(v)), where
m(v) is the midpoint of the interval and r(v) is the radius of the interval.
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Since this analysis considers only positive intervals (i.e., m(v) < r(v)), the
corresponding point in this coordinate system must lie below the diagonal in
Figure 7.3.

Fig. 7.3. Graphical Representation of z · x ≺ y.

Since the mapping f(z) = z · x is linear,5 it is easy to see that as z
varies, the interval z · x moves on the line from (0, 0) through (m(x), r(x)).
The dynamics of how the interval z · x “moves through” the interval y has
three general cases that must be considered. To distinguish among these cases,
consider the value of z for which the midpoint of z · x equals the midpoint of
y. This value can easily be computed to be (y + y)/(x + x), which we denote
by c. One of three situations can occur for the relationship of c · x to y:

1. c · x ⊂ y and c · x 6= y (corresponds to the line from (0, 0) through
(m(x), r(x)) in Figure 7.3 intersecting the vertical line containing (m(y),
r(y)) below that point)

2. c · x = y (corresponds to the points (0, 0), x and y being collinear in
Figure 7.3)

3. y ⊂ c · x and c · x 6= y (corresponds to the line from (0, 0) through
(m(x), r(x)) in Figure 7.3 intersecting the vertical line containing (m(y),
r(y)) above that point).

5 It is worthy of note that m(zx) = zm(x) and r(zx) = zr(z) for real points z and
intervals x.
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Consider the case c · x = y. Clearly, z = c is the maximum value as
c · x ≤ y crisply, and if ε > 0, then (c + ε)x ≥ y crisply so that (c + ε)x � y
has membership value 0.

Next, consider the case that y ⊂ c · x and c · x 6= y. Hence, we see that
cx < y and y < cx. Since the membership values of z ·x � y is nonincreasing
as z increases, we need only find the value of z such that the membership
value of z · x � y is equal to α. Hence, we to solve the equation

y − zx

(y − zx) + (zx− y)
= α

for z. Doing so, one finds that

z =
y + α(y − y)
x + α(x− x)

.

Therefore, this is the largest value of z that satisfies the initial inequality
with membership not less than α. Notice that in the special case of α = 1,
we get the optimal value z = y/x, which corresponds to the value where the
left endpoints of z · x and y are equal, which is where the crisp comparisons
become fuzzy.

Considering the last case, namely c · x ⊂ y and c · x 6= y; we once again
must find the value of z so that the membership value of z · x � y. However,
since y properly contains z ·x once the left endpoint of the two intervals agree,
the portion of the interval y to the right of z · x must be considered. Hence,
in a symmetrical fashion to the previous case, the equation

y − zx

(zx− y) + (y − zx)
= α

must be solved for z. Doing so generates the maximum value for z to be the
expression

y − α(y − y)
x− α(x− x)

.

Summarizing, we have the following theorem.

Theorem 3. If each of x and y is a positive interval and 0 < α ≤ 1, then
there is a maximum value of the real-valued variable z such that z ·x � y with
fuzzy membership value not less than α.

Example 7. Solve the fuzzy linear programming problem for α = 0.9:
maximize z subject to

z[1, 2] � [3, 5]
z ≥ 0


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The value of z so that the midpoints are equal is c = (3 + 5)/(1 + 2) = 8/3.
In this case, [3, 5] is a proper subset of c[1, 2] = [8/3, 16/3], so the maximum
value of z that satisfies the inequality with the stated membership cut value
is

z =
3 + 0.9(2)
1 + 0.9(1)

=
4.8
1.9

= 2.526315 . . . .

7.6.2 Extending to More General Cases

Let each of z1 and z2 be a real-valued variable, let each of x1, x2, and y be
a positive interval, and fix α with 0 < α ≤ 1. Consider the interval inequality

z1 · x1 + z2 · x2 ≺ y

and the objective function z1 + z2. Let the interval binary operator 	 be de-
fined as x − y = [x − y, x − y] provided w(x) ≥ w(y). If z1 is held constant
between 0 and the corresponding maximum value of c that satisfies c ·x1 � y
(setting z2 = 0 and solving the resulting simpler case using the fuzzy mem-
bership value α), then the maximum value of z2 that satisfies the inequality
z2 · x2 � (y 	 z1 · x1) using the membership value α can be determined by
the above algorithm. The resulting value for z2, in each of the three cases, is
clearly a function of z1; call it z2max(z1) . Hence, the original objective function
can be rewritten as z1 + z2max(z1) , which can be seen to be a continuous func-
tion of z1. Therefore, the objective function must attain a maximum value on
the interval [0, c], which then can be used to determine the solution to the
initial interval linear programming problem.

The following is a simple example that illustrates this approach.

Example 8. Solve the fuzzy linear programming problem for α = 0.9:
maximize x + y subject to

x[1, 2] + y[2, 3] ≺ [4, 8]
z ≥ 0


Solution: We first consider the inequality x[1, 2] ≺ [4, 8]. Note that the two
intervals are collinear in the interval midpoint-radius plane, and setting the
two midpoints equal gives c = 4. Therefore, we must consider the resulting
inequality y[2, 3] ≺ ([4, 8] 	 x[1, 2]) (i.e., y[2, 3] ≺ [4 − x, 8 − 2x]), for each
x in [0, 4]. In the interval midpoint-radius plane, the interval [2, 3] lies below
the line containing [1, 2] and [4, 8]; hence, the line containing (0, 0) and the
interval [2, 3] intersects the vertical line containing [4− x, 8− 2x] below that
point. See Figure 7.4. Therefore, for each value of x in [0, 4], the corresponding
value of y is
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Fig. 7.4. x[1, 2] + y[2, 3] ≺ [4, 8]

y =
(8− 2x)− 0.9(8− 2x− (4− x))

3− 0.9(3− 2)
v =

(2− 0.9)(4− x)
3− 0.9

=
1.1(4− x)

2.1
.

We must optimize the objective function

x + y = x +
1.1(4− x)

2.1

on the interval [0, 4]. The derivative of this function is 1 − 1.1/2.1, which is
positive. Therefore, the maximum value of the objective function occurs when
x = 4 and y = 0.

7.7 Conclusions

A model for crisply and fuzzily determined interval-valued Nash games has
been developed using an appropriate fuzzy interval comparison operator. This
model parallels the classical game context in a closely analogous way. Also,
the theory of optimal mixed strategies for interval-valued games has been
introduced, once again mimicking the classical model of converting the game
into a linear programming problem.

To use interval linear programming techniques to find optimal mixed
strategies in interval games, some assumptions must be made relative to the
expected value interval v. Assuming that this interval is degenerate generates
corresponding “interval” linear programming problems that can be quickly
solved. However, as the expected value of the game corresponds to a linear
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combination of the entries in the game matrix, this assumption appears to be
unrealistic.
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