
6

Interval Rule Matrices for Decision Making

Chenyi Hu

Department of Computer Science, University of Central Arkansas, 201 Donaghey
Avenue, Conway, AR 72035-0001, USA. chu@uca.edu

In this chapter, we present a decision-making system using an interval rule
matrix. Section 6.2 introduces the rule matrix model. Section 6.3 reports prac-
tical algorithms that establish an interval rule matrix. Section 6.4 describes
how to use an interval rule matrix to make decisions according to environ-
mental observations.

6.1 Introduction

Every day, numerous decisions are made for various reasons. Although many
of these decisions are astute enough and return results as expected, there
are others that can be made better to avoid unwanted consequences. How to
make a good, a better, or even the best decision is a practical question asked
frequently.

A decision problem usually consists of a set of possible states of nature
(environment), a set of possible actions (decisions), and a benefit function
that measures the results of a decision in a given environment. To make a
right decision, one certainly needs to know the current environment and re-
lated knowledge. Through matching input data (relevance of each environment
feature) with a certain set of rules, one may make a decision accordingly. How-
ever, due to uncertainty and incomplete information, the best one can do is to
estimate the benefit for a decision. Usually, the actual best decision can only
be known afterward. Therefore, historical data are often useful for people to
discover rules for decision making.

As the world becomes more complex, the number of features involved in
decision making can be unmanageable for human beings. Modern comput-
ers collect massive datasets and perform trillions of calculations in seconds.
Nowadays, knowledge-based agents are designed, implemented, and embed-
ded into computers as automated decision-making systems. These systems
apply decision theories and algorithms to generate rules based on statisti-
cal/probabilistic, stochastic, fuzzy systems [5, 11, 12, 15], neuro-fuzzy systems

C. Hu et al. (eds.), Knowledge Processing with Interval and Soft Computing,
DOI: 10.1007/978-1-84800-326-2 6, c© Springer-Verlag London Limited 2008

chu@uca.edu

136 Chenyi Hu

[9], and so on. In this chapter, we specifically study an interval rule matrix
model for automated decision making and reasoning about possible courses
of actions based on an environmental observation.

6.2 The Rule Matrix Model

6.2.1 A Simple Example

Decisions are mostly made according to observations of the current environ-
ment and existing knowledge. Here is a simple example.

Example 1. Bob needs to decide if he should carry his umbrella and coat before
leaving home for work. He may carry (a) both his umbrella and coat, (b) his
umbrella but not his coat, (c) his coat but not an umbrella, and (d) neither.
Unfortunately, he has no way to check the forecasts and must make a quick
decision by observing the current weather conditions. Based on his knowledge,
Bob uses the following table to make his decision.

Environment/decision a b c d
Rain or very likely Yes Yes No No
Current temperature Below 40oF Above 40oF Below 40oF Above 40oF

The first row of the table lists all possible decisions for Bob and the first
column lists environmental parameters that Bob takes into consideration for
decision making. By matching the environmental observations with the table,
Bob can easily make his decision.

6.2.2 Rule Matrices

In general, an environment e may contain m features, and there can be n
possible different decisions, d1, d2, . . . , dn, that could be made based on the
presence of the environment features. Let e = (e1, e2, . . . , em)T be an observa-
tion of the environment; that is, e denotes the degree to which certain features
of an environment are present. Then a knowledge-based agent may select a
specific decision by matching the input e with column vectors of the m by n
matrix P :

P =

p11 p12 · · · p1n

p21 p22 · · · p2n

...
pm1 pm2 · · · pmn

 .

If an observation vector e matches Pj , (i. e., the j-th column of P), then
the jth decision dj should be selected. A benefit function can be associated
with the decision as well. We call P a rule matrix for the decision-making
process, and the model is called a rule matrix model.

6 Interval Rule Matrices for Decision Making 137

In practice, a rule matrix should be interval-valued, as suggested by de
Korvin, Hu, and Chen in [4]. This is mainly because of the following two rea-
sons. The first one is that a decision is usually selected according to ranges
of attribute values rather than matching a point exactly. In addition, an en-
vironment observation often imprecise. A rule matrix generated from such
imperfect data should allow an error bounds. By specifying the lower and up-
per bounds of feature presence in an interval rule matrix, we take uncertainty
into consideration appropriately [3, 4, 14].

We denote an interval rule matrix by the boldface uppercase letter P
whose entry pij is an interval for each 1 ≤ i ≤ m and 1 ≤ j ≤ n. By the same
token, an environment observation is also interval-valued and is denoted by
boldface as e.

6.2.3 Another Example

For a more sophisticated example, we describe an interval rule matrix to
enhance network intrusion detection systems (IDSs). In addition to user au-
thentication, cryptography, and firewalls, IDSs are embedded into network
management systems to monitor network states and perform control func-
tions.

Two main types of intrusion detection approach are misuse detection [8]
and anomaly detection [13]. Anomaly detection compares activities with es-
tablished normal usage patterns (profiles) and determines if the network state
deviates over some threshold from normal patterns. This approach is recog-
nized as being capable of catching new attacks. However, normal patterns of
usage and system behaviors can vary wildly. Therefore, anomaly detection
usually produces a very large number of false alarms, see [2] and [10] and
hence is impractical. By representing normal patterns in an interval-valued
matrix, we should be able to reduce false alarms caused by a small change in
normal behavior or a slight deviation from a pattern derived from the network
audit data.

To generate an interval rule matrix for intrusion detection, we may assume
the availability of previous network state data and intrusions associated with
them. These can be automatically collected by network monitoring software.
If we consider m features and n possible interval-valued network states, then
we have an m × n interval rule matrix. We represent the likelihood of an
intrusion with 0 (certainly not) and 1 (absolutely yes). Then the likelihood of
an intrusion can be represented as a mapping from the network state to the
interval [0, 1].

To simplify the example, in [6], Duan, Hu, and Wei considered only three
network state attributes: the average packet delay for a Transmission Con-
trol Protocol (TCP) flow, the bandwidth utilized for the TCP flow, and the
number of TCP flows arriving at one router ingress port (shown as the first,
second, and the third rows of the following matrix, respectively). An artificial
interval matrix for the network state can be as follows:

138 Chenyi Hu

 [0.8, 1.8] [1.6, 2.1] [2.2, 3.1]
[3.5, 5.2] [4.8, 6.5] [6.9, 7.4]
[8, 10] [9, 12] [13, 16]

 .

By counting intrusions associated with each of these states, we can obtain
an empirical probability of intrusions dj associated with the j-th column. For
a current network state observation e, we can estimate the likelihood of a
intrusion (or intrusions) as follows:

• Input: Current network state e.
• Estimation: Compare e and column vectors of P .

Case 1: If e ⊆ P j , the likelihood of an intrusion is dj .
Case 2: If ∀j ∈ {1, 2, . . . , n}, e ∩ P j = ∅, then the network state is very

abnormal when compared to historical states. An intrusion alarm should
be sent to the network administrator.
Case 3: If e ∩ P j 6= ∅ for more than one j ∈ {1, 2, . . . , n}, then one may

select the greatest dj or use other heuristics.

By using the empirical probability and cost function, the system can es-
timate the expected average damage for a possible intrusion. In [6], Duan,
Hu, and Wei further suggested that the interval rule matrix model could be
integrated with data collection, policy generation, and policy application. Ac-
cording to the current likelihood of network intrusion, network control can
then identify risk levels and automatically take actions.

The example constructed earlier shows the potential of interval rule matrix
in various kinds of application. In the rest of this chapter, we discuss ways to
establish an interval rule matrix and to how apply it to decision making.

6.3 Establishing an Interval-Valued Rule Matrix

The main purpose of this section is to design practical algorithms that con-
struct an interval rule matrix P from a known dataset E. We assume that
E contains N environment-decision pairs. Because we have used ek to indi-
cate the kth feature of an environment, we use a superscript ek to denote the
kth observation of the environment. By the term environment-decision pair
[ek, dk∗] ∈ E, we mean that under a given environment ek, 1 ≤ k ≤ N , the
desired decision should be dk∗ for a particular k∗ with 1 ≤ k∗ ≤ n.

A naive way to determine the jth column of P , Pj , is to let Pj = ek if
j = k∗. This certainly ensures that the jth decision will be selected if the
environment is ek. However, this will not work appropriately, since the same
decision dj may be taken for different environment observations. In fact, n
is usually much less than N . By using an interval rule matrix like the one
constructed in the previous section, one may come to the same decision even
with different values of environment observations.

6 Interval Rule Matrices for Decision Making 139

6.3.1 A Straightforward Approach

Our objective is to extract an interval-valued rule matrix P = {pij}m×n =
{[p

ij
, pij]}m×n from a dataset E = {(ek, dk∗)|1 ≤ k ≤ N} without any previ-

ous knowledge except the training dataset itself. A straightforward approach
would be as follows.

For any given j ∈ {1, 2, . . . , n}, we find an interval vector P j such that
∀k ∈ {1, 2, . . . , N}, ek ⊂ P j if dk∗ = j. It is ideal if P j ∩ P k = ∅ whenever
j 6= k. Then these mutually exclusive n column interval vectors form an
interval rule matrix that fits the training dataset. In the following example,
we presorted the training dataset according to the decisions. By taking a
hull for each feature corresponding to the same decisions, we easily obtain an
interval rule matrix.

Example 2. An environment consists of three features, and there are three
possible decisions: a, b, and c. Construct an interval rule matrix from the
following collection of desired environment-decision pairs:

([0.8, 1.1] [1.1, 1.2] [0.8, 1.7], a);
([0.7, 0.9] [1.3, 1.4] [0.9, 1.1], a);
([0.8, 1.0] [1.3, 1.5] [1.0, 1.8], a);
([0.7, 0.9] [1.2, 1.4] [0.9, 1.0], a);
([0.8, 0.9] [1.2, 1.4] [0.9, 1.0], a).
([0.1, 0.4] [2.0, 2.1] [0.2, 0.5], b);
([0.2, 0.3] [2.0, 2.3] [0.2, 0.4], b);
([0.1, 0.4] [2.0, 2.1] [0.2, 0.5], b);
([0.3, 0.4] [2.1, 2.2] [0.3, 0.4], b);
([0.0, 0.2] [2.2, 2.5] [0.4, 0.5], b);
([1.5, 3.3] [0.7, 0.9] [5.8, 6.5], c);
([1.6, 3.0] [0.7, 1.0] [4.8, 5.0], c);
([2.0, 3.2] [0.9, 1.0] [5.1, 6.3], c);
([3.2, 4.0] [0.4, 1.0] [6.2, 6.4], c);
([1.5, 4.0] [0.5, 1.0] [4.8, 6.0], c);

Let us consider the interval vector P a first. The first element of the interval
vector P a should contain the intervals [0.8, 1.1], [0.7, 0.9], [0.8, 1.0], [0.7,
0.9], and [0.8, 0.9]. Hence, the union of these five intervals, [0.7, 1.1], works.
Similarly, we get the second and the third elements of P a as [1.1, 1.5] and
[0.8, 1.8]. Therefore,

P a =

 [0.7, 1.1]
[1.1, 1.5]
[0.8, 1.8]

 .

We can find P b and P c similarly and then construct an interval rule matrix
as

140 Chenyi Hu [0.7, 1.1] [0.0, 0.4] [1.5, 4.0]
[1.1, 1.5] [2.0, 2.5] [0.4, 1.0]
[0.8, 1.8] [0.2, 0.5] [4.8, 6.5]

From the above example we can see that the rule matrix can be up-

dated easily. Whenever a new environment-decision pair becomes available, a
union operation on interval vectors takes care of the updating. Let ([0.9, 1.7],
[1.2, 1.6], [1.0, 1.5]; a) be a newly available pair. Then the first column of the
above rule matrix can be adjusted as [0.7, 1.1]

[1.1, 1.5]
[0.8, 1.8]

 ∪
 [0.9, 1.7]

[1.2, 1.6]
[1.0, 1.5]

 =

 [0.7, 1.7]
[1.1, 1.6]
[0.8, 1.8]

 .

This updating scheme also suggests a way to construct an interval rule matrix
starting from an empty rule matrix (i.e., from an initial rule matrix in which
every element is an empty interval).

Let us write the straightforward approach as an algorithm that con-
structs an m × n interval rule matrix with a known dataset that contains
N environment-decision pairs.

Algorithm 3 (Straightforward construction of an interval rule matrix)

• Initialize an empty m×n rule matrix P such that pij = ∅, ∀i = 1, 2, . . . ,m
and j = 1, 2, . . . , n.

• For each environment-decision pair (ek, dk∗), where k ∈ {1, 2, . . . , N} and
k∗ ∈ {1, 2, . . . , n}, update the rule matrix as follows:

pik∗ ← hull(pik∗ , e
k
i) for i = 1, 2, . . . ,m

where
hull([x, x], [y, y]) = [min{x, y},max{x, y}]

is the smallest interval containing both x = [x, x] and y = [y, y].

For each environment-decision pair, one column of the rule matrix needs to
be updated. Therefore, Algorithm 3 isO(mN). As we can see in this algorithm,
it is unnecessary to presort a training dataset.

The straightforward approach is simple enough, with a relatively low com-
putational cost. However, it may not always result in mutually exclusive
columns. We say that an interval rule matrix is “fat” if two or more columns
have a nonempty intersection. For example, let us assume that a new data
item ([0.3, 0.8][1.4, 2.1][0.4, 0.9]; b) becomes available for updating the above
rule matrix. It would result in the second column of the rule matrix being [0.0, 0.4]

[2.0, 2.5]
[0.2, 0.5]

 ∪
 [0.3, 0.8]

[1.4, 2.1]
[0.4, 0.9]

 =

 [0.0, 0.8]
[1.4, 2.5]
[0.2 0.9]

 .

6 Interval Rule Matrices for Decision Making 141

The intersection of the updated column with the original first column is
nonempty since [0.7, 1.7]

[1.1, 1.6]
[0.8, 1.5]

 ∩
 [0.0, 0.8]

[1.4, 2.5]
[0.2 0.9]

 =

 [0.7, 0.8]
[1.4, 1.6]
[0.8 0.9]

 6= ∅.
If an observation falls into the intersection, say

e =

 [0.72, 0.75]
[1.4, 1.5]

[0.83 0.89]

 ,

then it is unclear whether one should select a or b as the decision. For this
reason, we need to study more sophisticated algorithms.

6.3.2 A Divide-and-Conquer Approach

We now present an alternative approach, with the divide-and-conquer ap-
proach, to establish an interval rule matrix P from a given training dataset.
In real applications, observed environment features at a particular time are
mostly thin intervals. Instead of starting with decisions as in the straightfor-
ward approach, let us begin with the consideration of feature parameters.

To avoid “fat” interval rule matrices, we first subdivide the range of each
feature parameter into narrow subintervals. Then by picking subintervals from
each of the m-features, we construct an m-dimensional tube (interval vectors
whose component intervals are narrow). Thus, if the interval for the i-th fea-
ture is subdivided into ji subintervals for each i, 1 ≤ i ≤ m, the total number
of tubes will be

∏m
i=1 ji.

For each environment-decision pair in the training dataset, we try to fit
the pair with one or more tubes according to its environment value. If a
pair can be put inside a tube completely, we increment the frequency of the
decision(s) associated with the tube. If the environment of a pair covers several
adjacent tubes, we increment the frequency of the decision for each tube that
the environment covers. After doing so for all pairs in E, we have a decision
frequency list associated with each tube. (Some of the frequencies can be zero.)
If these tubes are narrow enough, then each of them may contain only a single
decision, say dj .

In the conquer stage, we select one of the tubes with the highest frequency
for dj as the base for P j , the j-th column of the rule matrix. Adjacent tubes
associated with the same decision dj can then be combined to form the j-th
column of the rule matrix. On the other hand, if a tube contains different
decisions, it can be subdivided further. Of course, the frequency should be
recounted in the latter case.

The conquer stage not only consists of combining those adjacent tubes
associated with the same decision but also of dealing with tubes that are not

142 Chenyi Hu

associated with any decisions at all. In addition, a decision may be associated
with nonadjacent columns. Those tubes that are not associated with any de-
cisions we call empty tubes. These empty tubes can be either removed or kept
inactive for possible future use. (Using a predetermined frequency threshold,
one may computationally filter out statistically insignificant tubes as empty.)

A decision may be associated with multiple disconnected tubes (i.e., the
tubes do not share a common boundary). (Geometrically, there are other tubes
between tubes associated with the same decision.) A separation of two disjoint
tubes with the same decision is removable if the tubes in between are empty.
By taking a hull, one may remove such removable separations.

However, there are nonremovable separations, which means that there ex-
ists a tube between them but associated with another decision. In such a case,
we have to associate the decision with multiple columns. However, this will
cause a contradiction with the assumption that the rule matrix has only n
columns. To resolve this, we can use multiple rule matrices, such that each
rule matrix is on a separate “page.” In this way, the rule matrix is no longer
a two-dimensional array. The column of a rule matrix can be viewed as a
pointer that points to multiple interval vectors on different pages. Obviously,
the number of pages should be the same as the maximum number of disjoint
tubes that are associated with a single decision.

Let us summarize the above idea in an algorithmic format.

Algorithm 4 (Divide and conquer scheme to construct an interval rule ma-
trix)

1. Divide
a) Initialization: Subdivide each domain of the m-features into a prede-

termined number of subintervals to form a set of tubes T . For each
t ∈ T , associate a frequency zero with it for each possible decision.

b) For each (ek, d∗k) ∈ E, if ek ∩ t 6= ∅ for some t ∈ T and there are no
decisions other than d∗k associated with t, add 1 to the frequency count
of d∗k on t. Otherwise, if there are decisions other than d∗k associated
with t, then subdivide t for decision separation.

2. Conquer
a) For those tubes with the same decision, combine them if they are ad-

jacent or the separations are removable.
b) Form the j-th column of the rule matrix with the tube associated with

the decision dj. Note: There can be multiple separated columns asso-
ciated with the same decision dj.

Notice that the frequency count can be used as an indicator for the strength
of a rule. By ignoring very low frequencies, it can be used to avoid tube
refinements that are too detailed. To control the output rule matrix with
Algorithm 4, one may apply (a) a predefined tube size, (b) a frequency cutoff,
and (c) multiple pages. By associating a decision with disconnected columns

6 Interval Rule Matrices for Decision Making 143

on multiple pages, the “fat” rule matrix problem in Algorithm 3 may be
eliminated.

The computational complexity of Algorithm 4 can be much higher than
that of Algorithm 3. For an m-feature environment, if one performs s sub-
divisions for each feature, then T consists of sm tubes. Each matching re-
quires m log s comparisons with binary searching. Even without the tube re-
finement, the algorithm requires O(Nm log s) comparisons. With the refine-
ment, say performing up to h bisections for each feature, the complexity will
be O(Nmhm log s). In real applications, the number of features of a complex
environment can be very large.

A reasonable approach to make Algorithm 4 more practical is to con-
trol the number of features under consideration. Feature selection itself is a
computational decision-making problem [7]. To control the number of fea-
tures, one may rank features according to their correlations with respect to
decisions. By selecting subsets of features based on reliably assessing the sta-
tistical significance of the relevance of features to a given predictor, one may
build more compact feature subsets. Also, applying a singular value decom-
position (SVD), one can form a set of features that are linear combinations
of the original variables, which provide the best possible reconstruction of the
original data in the least squares sense.

In practice, instead of using all of the data in a training dataset to select
features, one may first sample the training dataset with Algorithm 4 to form
an initial rule matrix. With the initial rule matrix, features can then be se-
lected. Applying Algorithm 4 with these selected features, one can adaptively
update the rule matrix. Hopefully, these selected features are good enough for
most data, and only a few environment-decision pairs need to have more fea-
tures than those in the selected sample when updating the rule matrix. Some
heuristics such as sample selection, feature granularity, and cutoff threshold
are needed in applications.

The above practical approach also has other advantages. It allows one to
make a decision with the current rule matrix without completing the training.
The correctness of the decision selected can be used as a feedback to adjust
the rule matrix. We call this capability the ability to do “online” dynamical
training. The selected features can also be updated adaptively. Rules and
significance of a feature for decision making can be changed from time to
time. An adaptive approach can update them as well. Also, we should point
out that domain knowledge can and should play a very significant role in rule
matrix generation and feature selection.

6.4 Decision Making with an Interval Rule Matrix

The purpose of establishing an interval rule matrix is to apply it to making
decisions. Since a multipage rule matrix can be processed page by page, we
consider only single-page interval rule matrices here.

144 Chenyi Hu

Making a decision based on an environment observation e according to
an interval rule matrix requires to determine a j such that e “matches” the
j-th column of the rule matrix. By the word “match”, we mean that the two
interval vectors should somehow be “close.” To determine the closeness of two
interval vectors, we first need to define the distance between two intervals.

Definition 1. Let a and b be two intervals. The distance between a and b is
defined as

dist(a, b) =

0 if a ⊆ b or b ⊆ a

min{|a− b|+ 1; ∀a ∈ a, b ∈ b} if a ∩ b = ∅

1− w(a ∩ b)
min{w(a), w(b)}

otherwise.

The above definition implies the following properties:

1. The distance is reflexive: The distance from an interval a to another in-
terval b is the same as from b to a.

2. The distance between two intervals is zero if one is a subset of the other.
3. The minimum distance between two disjoint intervals is greater than or

equal to 1.
4. The distance between two partially overlapped intervals is between 0 and

1.
5. The distance between two disjoint intervals is in fact the same as

|m(a)−m(b)| − w(a) + w(b)
2

+ 1,

where m() and w() are midpoint and width functions, respectively.

The proof is straightforward.
Note that Definition 1 is appropriate for knowledge processing, but it

differs from other commonly used measures of distance, such as the Hausdorff
distance [1, p. 11], used within the interval mathematics community.

Applying the concept of distance between intervals, we can define the
distance between two interval vectors as follows.

Definition 2. Let x = (x1,x2, . . . ,xm) and y = (y1,y2, . . . ,ym) be two m-
dimensional interval vectors. Then the l-distance between x and y is defined
as

distl(x,y) =

 ∑
1≤i≤m

distl(xi,yi)

 1
l

.

By computing a distance, say l = 1 or l = ∞, between an environment
observation vector e and each column of an interval rule matrix P , one can
then make a decision accordingly. It seems reasonable to select the dj such that
dist(e,P j) = min1≤i≤n dist(e,P i), where P i is the i-th column of P . This is

6 Interval Rule Matrices for Decision Making 145

because the distance between e and P i is viewed as the strength indicator of
the i-th decision. The smaller the distance is, the stronger the decision should
be. In other words, the larger the distance is, the less the decision should
be selected. Zero distance indicates the strongest match between two interval
vectors.

It is possible that an observation vector may have the same (or almost
equal) minimum distance to multiple columns of the rule matrix. This can
happen even when the observation vector is a thin interval vector. To make a
reasonable decision from multiple best matches, instead of a random pick, we
define the expected value of a decision as follows.

Definition 3. Let ρj and vj be the probability and the benefit value of a de-
cision j, respectively. Then, the expected value of the decision j is defined as
expj = ρjvj.

In constructing an interval rule matrix from a training dataset, the de-
cision frequencies have been recorded. They can be considered as empirical
probabilities for each of the decisions. Also, historical data can provide the
average return on a decision. Therefore, one may select the decision with the
highest expected values among the multimatched columns.

Instead of applying the concept of interval distance, an earlier alternative
approach is to select a decision based on an interval rule matrix with fuzzy
logic and values of possibility and necessity functions. Readers may refer to
[4] and Chapter 2 of this book for more information.

6.5 Conclusions

We have studied an interval rule matrix model for establishing decision-
making systems. Using a training dataset consisting of environment-decision
pairs, we have proposed two algorithms to generate an interval rule matrix.
The straightforward approach has a time complexity of O(mN). The divide-
and-conquer approach may use adaptive modification, “online” training, and
feature selection for more practicality.

With an interval rule matrix, making a decision for an environment ob-
servation becomes finding the minimum distance between interval vectors.
Interval rule matrices have potential applications in rule-based automated
decision-making systems.

Acknowledgment: This work is partially supported by the U.S. National Sci-
ence Foundation under grants CISE/CCF-0202042 and CISE/CCF-0727798.

146 Chenyi Hu

References

1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic
Press Inc., New York (1983). Translation by J. Rokne from the original German
“Einführung In Die Intervallrechnung”

2. Bace, R., Mell, P.: NIST special publication on intrusion detection system. Tech-
nical report, NIST (National Institute of Standards and Technology) (2001).
http://csrc.nist.gov/publications/nistpubs/800-31/sp800-31.pdf.

3. Berleant, D., Cheong, M.P., Chu, C.C.N., Guan, Y., Kamal, A., Sheble, G., Fer-
son, S., Peters, J.F.: Dependable handling of uncertainty. Reliable Computing
9(6), 407–418 (2003)

4. de Korvin, A., Hu, C., Chen, P.: Generating and applying rules for interval
valued fuzzy observations. In: Z.R. Yang, R.M. Everson, H. Yin (eds.) Intelligent
Data Engineering and Automated Learning, Lecture Notes in Computer Science,
Vol. 3177, pp. 279–284. Springer-Verlag, Heidelberg (2004)

5. de Korvin, A., Hu, C., Sirisaengtaksin, O.: On firing rules of fuzzy sets of type
II. Applied Mathematics 3, 151-159 (2000)

6. Duan, Q., Hu, C., Wei, H.C.: Enhancing network intrusion detection systems
with interval methods. In: Proceedings of the ACM Symposium on Applied
Computing, pp. 1444–1448 (2005)

7. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J.
Machine Learning Research 3, 1157–1182 (2003)

8. Ilgun, K., Kemmerer, R.A., Porras, P.A.: State transition analysis: A rule-based
intrusion detection approach. Software Engineering 21(3), 181–199 (1995)

9. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE
Transactions on Systems, Man, and Cybernetics 23, 665–684 (1993)

10. Julisch, K.: Clustering intrusion detection alarms to support root cause analysis.
ACM Transactions on Information and System Securroty 6(4), 443–471 (2003)

11. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New
Directions. Prentice-Hall, Upper Saddle River, NJ (2001)

12. Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy Sets and Systems 17, 99–102 (1985)
13. Seleznyov, A., Puuronen, S.: Anomaly intrusion detection systems: Handling

temporal relations between events. In: Proceedings of Recent Advances in In-
trusion Detection, West Lafayette, IN (1999). http://www.raid-symposium.

org/raid99/PAPERS/Seleznyov.pdf

14. Shary, S.P.: A new technique in systems analysis under interval uncertainty and
ambiguity. Reliable Computing 8(5), 321–418 (2002)

15. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems
and decision processes. IEEE Transactions on Systems, Man, and Cybernetics
SMC-3, 28–44 (1973)

http://csrc.nist.gov/publications/nistpubs/800-31/sp800-31.pdf
http://www.raid-symposium.org/raid99/PAPERS/Seleznyov.pdf
http://www.raid-symposium.org/raid99/PAPERS/Seleznyov.pdf

	6 Interval Rule Matrices for Decision Making
	Chenyi Hu

