
1

Fundamentals of Interval Computing

Ralph Baker Kearfott1 and Chenyi Hu2

1 Department of Mathematics, University of Louisiana at Lafayette, Box 4-1010,
Lafayette, LA 70504-1010, USA. rbk@louisiana.edu

2 Department of Computer Science, University of Central Arkansas, 201 Donaghey
Avenue, Conway, AR 72035-0001, USA. chu@uca.edu

This volume deals, generally, with innovative techniques for automated knowl-
edge representation and manipulation when such knowledge is subject to sig-
nificant uncertainty, as well as with automated decision processes associated
with such uncertain knowledge. Going beyond traditional probability theory
and traditional statistical arguments, the techniques herein make use of in-
terval techniques, of fuzzy knowledge representation and fuzzy logic, and of
the combination of interval techniques with fuzzy logic and with probability
theory.

In this chapter, we introduce interval computing, giving reasons for its
development and references to historical work. We also preview the remainder
of the book, contrasting the underlying philosophy and range of application
with prevalent views among experts in interval computation.

1.1 Intervals and Their Representation

By the term interval we mean the set of all real numbers between specified
lower and upper bounds, a and b (i. e. {x|a ≤ x ≤ b; a, b, x ∈ R}). Intervals
are denoted in various ways within the interval computations community. For
examples, see [39, 18, 3, 40, 23]. In this book, we use lowercase boldface letters
to denote intervals. For example, x is an interval. The lower and upper bounds
of an interval x are specified as x and x, respectively. Hence, x = [x, x]. We
call this the endpoint representation of an interval.3 An empty interval - an
interval that contains no real numbers - is simply the empty set ∅. Various
computer representations are possible in implementations for ∅.

The midpoint of a nonempty interval is the algebraic average of its lower
and upper bounds. The width of a nonempty interval is the difference between

3 Alternate representations include midpoint-radius representation and tolerance
representation. We discuss midpoint-radius (or midpoint-width) representation
below.

C. Hu et al. (eds.), Knowledge Processing with Interval and Soft Computing,
DOI: 10.1007/978-1-84800-326-2 1, c© Springer-Verlag London Limited 2008

rbk@louisiana.edu
chu@uca.edu

2 Ralph Baker Kearfott and Chenyi Hu

its upper and lower bounds. We use the uppercase letters M and W in sub-
scripts to specify the midpoint and width of a nonempty interval, respectively.
The midpoint and width of the interval x = [x, x] are xM = (x + x)/2 and
xW = x − x, respectively. We define two unary interval operators, m() and
w(), that return the midpoint and width of an interval, respectively; that is,
m(x) = xM and w(x) = xW .

The lower bound of an interval is the same as the difference between its
midpoint and one-half of its width. Similarly, the upper bound of an interval
is the same as the sum of its midpoint and one-half of its width. We can
represent an interval by its midpoint and width. This is called the midpoint-
width representation of an interval. For example, the interval x = [x, x], in
its midpoint-width representation, is x = [xM − xW /2, xM + xW /2]. If the
lower and upper bounds of an interval are the same, we say that is a trivial
or degenerate or a thin interval. Obviously, the width of a degenerate interval
is zero.

The above discussion can be extended to interval vectors and interval ma-
trices. The entries of an interval vector or matrix are intervals. To unambigu-
ously distinguish point vectors and interval vectors, and point matrices and
interval matrices, in this book we use boldface letters to specify intervals. We
use boldface lowercase letters with arrows on top to denote interval vectors.
For example, ~x is an interval vector. Its lower and upper bounds are ~x and ~x,
respectively. We omit the top arrow when it would not cause confusion. For
example, ~x (or x) with

~x =
(

[1, 2]
[3, 4]

)
can denote an interval vector.

Uppercase letters are used to denote matrices. Boldface uppercase letters
denote interval matrices. For example, A is an interval matrix, and its lower
and upper bounds are A and A, respectively. The midpoint and width of a
nonempty interval vector (or matrix) are real vectors (or matrices). Therefore,
A with

A =
(

[1, 2] [3, 4]
[5, 6] [7, 8]

)
can denote an interval matrix, and its lower and upper bounds are point
matrices

A =
(

1 3
5 7

)
,

A =
(

2 4
6 8

)
.

The notation we adopt in this volume has been recommended (but not
required) for the journal Reliable Computing and has been proposed as a
voluntary standard (although not universally adopted).

1 Fundamentals of Interval Computing 3

1.2 Origins and Reason for Development

Interval computing, specifically interval arithmetic, began primarily as a
means of automating error analysis during the process of computing float-
ing point approximations to solutions of scientific problems. The basic idea
is that the true value x of some quantity appearing in some computation is
not known exactly, but it is bounded in some interval x, x ∈ x. In exact
arithmetic, each operation4 �, � ∈ {+,−,×,÷, etc.} is formally defined on
these intervals in such a way that the result x� y is equal to the set x� y as
x ranges over all values in x and y ranges over all values in y; that is,

x� y = {x� y | x ∈ x and y ∈ y} . (1.1)

For example, let x = [1, 2] and y = [−3,−1]. We then have x+y = [−2, 1],
x− y = [2, 5], x ∗ y = [−6,−1], and x÷ y = [−2,−1/3].

Using the basic interval arithmetic operations, we can perform linear al-
gebra operations such as interval vector dot products, interval matrix-vector
multiplications, interval matrix-matrix operations, etc. We will discuss and
apply these in later chapters.

In addition to binary arithmetic operations, logic and set operations can
also be performed on intervals. For example, [0, 2] ⊂ [1, 2] returns false, [0, 2]∪
[1, 3] = [0, 3], and [0, 2] ∩ [1, 3] = [1, 2]. With these additional features of
interval computing, we develop new algorithms to solve problems that are
hard to solve in classical point arithmetic. By extending interval operations
further with fuzzy logic and probability theory, this book presents additional
algorithms for knowledge processing, especially in handling uncertainty.

Most modern literature on interval arithmetic is traceable to [36], al-
though there are earlier independent works, such as [53], that are often over-
looked but contain many, if not most, of the developments in [36]; some of
these early works are available at http://www.cs.utep.edu/interval-cmp/
early.html.

There is extensive literature on interval computations. Classic introduc-
tions are the books [37], [38], and [2] and the latter’s translation to English
[3]. A numerical analysis textbook that introduces interval arithmetic in ap-
propriate places is [41]. An introduction to interval analysis with numerous
computational examples within the matlab environment, as well as discussion
of the most successful applications, appears in [39]. An early, carefully written
reference on interval arithmetic and its implementation on actual machines is
[29].

4 In actual implementations, an operation � can include not only the four elemen-
tary arithmetic operations but also all of the usual preprogrammed functions, such
as sin, exp, etc., that are available in compiler libraries for scientific programming
languages.

http://www.cs.utep.edu/interval-cmp/early.html
http://www.cs.utep.edu/interval-cmp/early.html

4 Ralph Baker Kearfott and Chenyi Hu

1.3 Computer Implementation and Software

In practice, (1.1) is not achievable exactly in floating point arithmetic on
computers. However, on modern computers (and, in particular, on those for
which the IEEE 754 binary floating point standard is implemented), directed
rounding can be used, so that instead of the exact value x � y defined by
(1.1), an interval z is computed such that

{x� y | x ∈ x and y ∈ y} ⊆ z

and such that the complement of {x� y | x ∈ x and y ∈ y} in z is very small
(on the order of the roundoff unit). In this way, if intervals {x1, . . . ,xn} are
substituted for the variables {x1, . . . ,xn} in an expression E(x1, . . . , xn), and
E is evaluated using interval arithmetic, then the interval result E(x1, . . . ,xn)
contains the range

{E(x1, . . . , xn) | xi ∈ xi, 1 ≤ i ≤ n} , (1.2)

that is, completion of a computation using interval arithmetic with directed
rounding (also called outwardly rounded interval arithmetic), yielding a re-
sult z, provides a mathematically rigorous proof5 that the actual result is
contained in z.

There are numerous software tools and applications for interval comput-
ing written in mainstream languages, such as C, C++, Fortran, Java, Lisp,
as well as in computational algebra systems, such as Maple, matlab, and
Mathematica. For example, intlab [49] is an interval computing toolbox
in matlab. An interval software development environment [22] is available
in FORTRAN-90. Software in C++ supporting interval arithmetic includes
the Boost C++ source libraries (http://www.boost.org/libs/numeric/
interval/doc/interval.htm), filib++ [31], PROFIL/BIAS [26, 27], Sun’s
Studio C++, and Fortran [52], an object-oriented interval matrix computing
environment [43], and others. Interval arithmetic is slated to be embodied in
a technical report for the next C++ standards document [11]. We present an
object-oriented interval toolbox in C++, named “IntBox,” in Chapter 10 of
this book.

Application software packages using interval computing include COSY-
Infinity [9, 14] (and also http://bt.pa.msu.edu/index_cosy.htm) that is
based on Taylor models and interval methods for validated solution of ordinary
differential equations, quadrature, and range bounding, CGAL (http://www.
cgal.org/) that makes geometric computations robust and efficient, GlobSol
[23, 25] that finds reliable solutions for global nonlinear optimization problems
with interval analysis, iCOs for interval constraint satisfaction and global
optimization http://ylebbah.googlepages.com/icos, and others, both old
and new. For additional applications, see [39].

5 Assuming the computer is programmed correctly and is not malfunctioning.

http://www.boost.org/libs/numeric/interval/doc/interval.htm
http://www.boost.org/libs/numeric/interval/doc/interval.htm
http://bt.pa.msu.edu/index_cosy.htm
http://www.cgal.org/
http://www.cgal.org/
http://ylebbah.googlepages.com/icos

1 Fundamentals of Interval Computing 5

1.4 Present Uses of Interval Arithmetic

People soon discovered that interval computations can be applied in more
situations than merely error analysis in existing floating point algorithms.
The fact that the result of a computation carried out with outwardly rounded
interval arithmetic rigorously bounds the range of the computation is useful
in various contexts. On a mathematical level, such uses include the following:

• rigorously bounding the ranges of functions over wide domains;
• including bounded uncertainties in the inputs in models;
• rigorously proving existence and uniqueness of solutions to systems of

equations using computational versions of classical fixed point theorems.

As evidenced by the ubiquitous appearance of Lipschitz constants and
moduli of continuity in classical hard analysis, bounding ranges of a quan-
tity over sizable domains is an important computation in various contexts.
Furthermore, using preexisting interval software and modern programming
languages, bounding such ranges reduces to programming the computation of
the quantity. Within this framework, computations that are equivalent to or
sharper than using moduli of continuity or Lipschitz constants can be carried
out automatically.

Classical fixed point theorems, such as the Brouwer fixed point theorem,
state that if the image of a region x under an operator G is contained in x,
then there is an x ∈ x such that G(x) = x. With interval arithmetic, the range
of G can be bounded, and the hypotheses of the theorem are satisfied if the
interval evaluation of G over x is contained in x. Furthermore, although such
classical theorems can be applied directly, interval Newton methods, with a
theoretical basis in classical fixed point theory, have been extensively devel-
oped to both compute narrow bounds on the solutions to systems of equations
and to prove existence and uniqueness of those solutions within those bounds.
For information on such methods, see, in addition to the general references
on interval computations we have cited earlier, [40], [23], and [18]. The book
[40] contains a thorough treatment of interval Newton methods, and [23] and
[18] treat such methods in the context of algorithms for global optimization.

1.5 Pitfalls

Speed and sharpness were issues early in the study of interval methods, and
there has been considerable discussion of these issues in the literature. How-
ever, present software implementations, using optimizing (in-lining) compil-
ers and operator overloading, achieve, averaged over many operations, speed
within a factor of 5 of hardware floating point operations, and some imple-
mentations within the compiler itself achieve interval evaluation that is, on
average, less than a factor of 2 slower than floating point evaluations for some

6 Ralph Baker Kearfott and Chenyi Hu

of the standard functions. Such speed is usually not the determining factor in
whether to use interval computations.

Similarly, there has been significant discussion and development related to
making the result intervals as tight as possible. In particular, many existing
software systems today compute an interval z that is the narrowest machine-
representable interval that contains the exact range as defined in (1.2) when
� ∈ {+,−,×,÷}; likewise, libraries for interval evaluation of the standard
functions are also of high quality in this sense. Thus, tightness of the basic
operations and interval evaluations of standard functions are not primary
issues in deciding whether to apply interval computations.

The following pitfalls are more significant when designing applications with
interval computations.

1.5.1 Interval Dependency

One major pitfall in interval computations is commonly termed interval de-
pendency . Interval dependency is most easily illustrated by examining the
subtraction operation: If x = [x, x] and y = [y, y], then the exact range x−y
happens to be

x− y = [x− y, x− y]. (1.3)

However, suppose, say, x = [−1, 1] is interpreted to represent some specific
real number x ∈ [−1, 1] but unknown other than that it lies in [−1, 1]. Then
x − x = 0, but if the computer encounters the expression x − x (without
simplification) and substitutes [−1, 1] for both instances of x, it obtains

[−1, 1]− [−1, 1] = [−2, 2]. (1.4)

Observe that [−2, 2] does contain the range of f(x) = x − x as x ranges
over [−1, 1], but it does not sharply bound the range. The “dependency” is
from the fact that the computation (1.4) assumes implicitly that the quantity
in the first instance of [−1, 1] varies independently from the quantity in the
second instance of [−1, 1] whereas, in fact, the two values are correlated or
“dependent.” Observe, however, that [−2, 2] is the exact range of g(x, y) =
x− y as x ranges over [−1, 1] and y ranges over [−1, 1].

Due partly to the interval dependency phenomenon, traditional floating
point algorithms can seldom be converted to successful interval algorithms
(that rigorously bound roundoff error or provide useful bounds on ranges) by
simply replacing floating point numbers by intervals; instead, intervals need
to be introduced in appropriate ways, and new algorithms appropriate for
interval computation are developed.

One property of interval ranges that ameliorates interval dependency is
that the amount of overestimation (i. e., the sum of the differences between the
endpoints of the actual range and the interval arithmetic evaluation) decreases
proportionally to the widths of the input intervals. In fact, for continuously
differentiable quantities, the bounds on the range can be computed in such

1 Fundamentals of Interval Computing 7

a way that the decrease is proportional to the squares of the widths of the
input intervals; in special circumstances, bounds can even be computed with
overestimation proportional to even higher powers of the widths of the input
intervals. Thus, interval computations give locally tight bounds on the ranges
of computed quantities.

1.5.2 Computational Complexity

Computational complexity and similar theoretical issues arise in interval algo-
rithms. For instance, if A is a matrix with interval entries, b is a vector with
interval entries, and the individual entries in A and b are assumed to vary
independently, then it is known that, in general, finding an interval vector
sharply bounding the solution set

{x | Ax = b for some A ∈ A and b ∈ b} (1.5)

is an NP-hard problem. (Such results are collected in [28].) However, there
are many algorithms that successfully compute usefully narrow bounds to the
solution sets to even large linear systems; as one of many examples of success,
see [42]. Furthermore, there is general software that is at least moderately suc-
cessful at handling large, sparse systems of linear equations within a friendly
user environment: the matlab toolbox intlab (see [48, 19]).

1.5.3 Problems with Coordinate Systems

Actual ranges of quantities as input values range over intervals are seldom
sets of the form

{(x1, . . . , xn) | xi ∈ [xi, xi] for 1 ≤ i ≤ n} . (1.6)

(Such sets are commonly termed boxes or interval vectors.) For instance, the
image of the vector-valued function F (x, y) = (x+y, x−y)T is the skewed par-
allelogram depicted in Figure 1.1, whereas the smallest interval vector contain-
ing this range is the substantially larger vertically oriented box in Figure 1.1.
This problem can be severe in interval methods for bounding the solution
sets to initial value problems for systems of ordinary differential equations,
where it is known as the wrapping effect (see, for instance, [38]). It even is
a significant problem in branch-and-bound methods for global optimization,
where excessive subdivision of a domain may occur if the proper coordinate
system is not used.

The wrapping effect has been, to a large extent, successfully ameliorated
for initial value problems, such as in the COSY system [10]. In general, a fix is
to somehow use an appropriate change of coordinates, as is proposed in [24].

8 Ralph Baker Kearfott and Chenyi Hu

(1.1,0.9)

(−0.9,−1.1)

(1.1,1.1)
(0.9,1.1)

Actual range

Interval enclosure
of range

(−1.1,−1.1)

(−1.1,−0.9)

Fig. 1.1. Illustration of overestimation due to the choice of coordinates.

1.5.4 Successes Nonetheless

The concept of mathematical rigor in computer arithmetic is appealing, some-
thing that has caused enthusiasts to make excessive claims about its applica-
bility and usefulness in the past. These claims, in turn, have stimulated naive
experimentation, leading to disillusionment with the technology within the
scientific computing community as a whole. However, with software crafted
to utilize the strengths and avoid the weaknesses of interval computations,
important problems are increasingly solved with interval techniques but not
other methods. For instance, certain chemical kinetics equilibrium problems
[50, 51, 15, 16] have been solved correctly with interval techniques, whereas
earlier floating techniques had given approximate solutions that led to erro-
neous conclusions about the underlying physical problem. There have been
similar successes in solving systems of equations arising in robotics [20, 30].
Inroads have even been made in the computation of parameters for bound-
ary value problems [33, 32, 34, 35]. For additional details on these and other
applications, see [39].

1.6 Context of This Work

In this volume, we present novel techniques for new and improved algorithms
in knowledge engineering. In contrast to much work utilizing interval arith-
metic, the focus here is not on rigor and mathematical theorem proving but

1 Fundamentals of Interval Computing 9

on efficient ways of encompassing uncertain inputs to compute bounds on
outputs. Along these lines, intervals are combined heuristically with methods
from probability theory and other methods that, in their raw form, cannot
be made rigorous by naive application of interval arithmetic. A guiding prin-
ciple in the applications treated in this volume is that the real-world data
often provide interval inputs to the problem and that the data should be so
represented.

In some of the problems tackled in this volume, traditional statistical mod-
els have previously been used, but interval techniques are used creatively for
improved modeling and predictive power. An example of this, appearing in
Section 4.5 of Chapter 4, is the use of interval data to reduce the raw noisy
data in stock market indices. This data reduction is combined with an innova-
tive view6 of interval values of the singular value decomposition and principal
component analysis to both simplify and enhance the predictive power of the
model. In this work and Chapter 5, intervals and interval arithmetic are used
to describe variability and uncertainty in the model inputs and to divine re-
lationships between the model inputs and model outputs; the model outputs
are intervals that approximate the range of behavior over the input intervals
but are not claimed to rigorously enclose that range.7 This is reasonable in
view of the fact that real-world models often have uncertainties that cannot
be quantified, so proof that an exact result is rigorously enclosed may not
make sense.

In contrast, the traditional literature on interval enclosures for eigenvalue-
and singular-value-decompositions assumes that the problem is specified ex-
actly (with a point matrix), and the goal is to compute mathematically rig-
orous bounds on the exact solutions to this point problem. Examples of this
approach are in [21, 4, 5, 6, 7, 1], and [44, 45, 8, 54, 13] in applications to
partial differential equations. Although there has been some work, such as
[46, 47, 12, 13], on bounding the range of eigenvalues of an interval matrix,
rigorous enclosure of the range (often called outer enclosures) is problematical
for general matrices. For this reason, when we adopt a statistician’s philoso-
phy and employ intervals to reduce noisy data and obtain approximate bounds
on ranges, we do not obtain mathematically rigorous results, but we may get
reasonable “guesses” in problems that otherwise would be intractable or for
which rigorous bounds are not meaningful. Furthermore, using interval tech-
nology, we obtain new approaches that compare favorably with traditional
statistical methods.

Continued research on the methods in this volume should lead to additional
mathematical rigor and explanations for the reasons the models appear to
work so well.

6 But similar to that in [17].
7 Nonetheless, measures of quality of the interval result, in terms of how close it is

to the exact range, are discussed.

10 Ralph Baker Kearfott and Chenyi Hu

References

1. Aberth, O., Schaefer, M.J.: Precise matrix eigenvalues using range arithmetic.
SIAM Journal on Matrix Analysis and Applications 14(1), 235–241 (1993)

2. Alefeld, G., Herzberger, J.: Einführung in die Intervallrechnung. Springer-
Verlag, Berlin, (1974)

3. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic
Press Inc., New York (1983)

4. Alefeld, G.: Componentwise inclusion and exclusion sets for solutions of
quadratic equations in finite-dimensional spaces. Numerische Mathematik 48(4),
391–416 (1986)

5. Alefeld, G., Spreuer, H.: Iterative improvement of componentwise errorbounds
for invariant subspaces belonging to a double or nearly double eigenvalue. Com-
puting 36, 321–334 (1986)

6. Behnke, H.: Inclusion of eigenvalues of general eigenvalue problems for matrices.
In: U. Kulisch, H.J. Stetter (eds.) Scientific Computation with Automatic Result
Verification, Computing. Supplementum, Vol. 6, pp. 69–78. Springer, New York
(1988)

7. Behnke, H.: Bounds for eigenvalues of parameter-dependent matrices. Comput-
ing 49(2), 159–167 (1992)

8. Behnke, H., Mertins, U.: Bounds for eigenvalues with the use of finite elements.
In: U. Kulisch, R. Lohner, A. Facius (eds.) Perspectives on Enclosure Methods:
GAMM-IMACS International Symposium on Scientific Computing, Computer
Arithmetic and Validated Numerics, September 2000, Karlsruhe, Germany, 119–
132. Kluwer Academic Publishers, Amsterdam (2001)

9. Berz, M., Makino, K., Shamseddine, K., Hoffstätter, G.H., Wan, W.: COSY
INFINITY and its applications to nonlinear dynamics. In: M. Berz, C. Bischof,
G. Corliss, A. Griewank (eds.) Computational Differentiation: Techniques, Ap-
plications, and Tools, 363–365. SIAM, Philadelphia (1996)

10. Berz, M.: COSY INFINITY web page http://cosy.pa.msu.edu/cosy.pa.msu.

edu (2000)
11. Brönnimann, H., Melquiond, G., Pion, S.: A proposal to add interval arithmetic

to the C++ Standard Library. Technical proposal N1843-05-0103, CIS, Brooklyn
Polytechnic University, S Brooklyn (2005)

12. Chen, S., Qiu, Z., Liu, Z.: A method for computing eigenvalue bounds in struc-
tural vibration systems with interval parameters. Computers and Structures
51(3), 309 (1994)

13. Chen, S., Qiu, Z., Liu, Z.: Perturbation method for computing eigenvalue bounds
in structural vibration systems with interval parameters. Communications in
Applied Numerical Methods 10(2), 121–134 (1994)

14. Corliss, G.F., Yu, J.: Testing COSY’s interval and Taylor model arithmetic.
In: R. Alt, A. Frommer, R.B. Kearfott, W. Luther (eds.) Numerical Software
with Result Verification: Platforms, Algorithms, Applications in Engineering,
Physics, and Economics, Lectures Notes in Computer Science, No. 2992, pp.
91–105. Springer, Heidelberg (2004)

15. Gau, C.Y., Stadtherr, M.A.: New interval methodologies for reliable chemical
process modeling. Computers and Chemical Engineering 26, 827–840 (2002)

16. Gau, C.Y., Stadtherr, M.A.: Dynamic load balancing for parallel interval-
Newton using message passing. Computers and Chemical Engineering 26, 811–
815 (2002)

http://cosy.pa.msu.edu/cosy.pa.msu.edu
http://cosy.pa.msu.edu/cosy.pa.msu.edu

1 Fundamentals of Interval Computing 11

17. Gioia, F., Lauro, C.N.: Principal component analysis on interval data. Compu-
tational Statistics 21(2), 343–363 (2006)

18. Hansen, E.R., Walster, W.: Global Optimization Using Interval Analysis, 2nd
ed. Marcel Dekker, New York (2003)

19. Hargreaves, G.I.: Interval analysis in MATLAB. Master’s thesis, Department of
Mathematics, University of Manchester (2002)

20. Jaulin, L., Keiffer, M., Didrit, O.,Walter, E.: Applied Interval Analysis. Springer-
Verlag, Berlin (2001)

21. Kalmykov, S.A.: To the problem of determination of the symmetric matrix
eigenvalues by means of the interval method. In: Numerical Analysis, Collect.
Sci. Works, pp. 55–59. Sov. Acad. Sci., Sib. Branch, Inst. Theor. Appl. Mech.,
Novosibirsk, USSR (1978) (in Russian)

22. Kearfott, R.B.: A Fortran 90 environment for research and prototyping of enclo-
sure algorithms for nonlinear equations and global optimization. ACM Trans-
actions on Mathematical Software 21(1), 63–78 (1995)

23. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Nonconvex Op-
timization and Its Applications. No. 13. Kluwer Academic, Norwell, MA (1996)

24. Kearfott, R.B.: Verified branch and bound for singular linear and nonlinear
programs: An epsilon-inflation process (April 2007), Submitted

25. Kearfott, R.B.: GlobSol User Guide. Optimization Methods and Software
(2008). Submitted

26. Knüppel, O.: PROFIL/BIAS - A fast interval library. Computing 53(3–4), 277–
287 (1994)

27. Knüppel, O.: PROFIL/BIAS v 2.0. Bericht 99.1, Technische Universität
Hamburg-Harburg, Harburg, Germany (1999). Available from http://www.ti3.

tu-harburg.de/profil_e

28. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and
Feasibility of Data Processing and Interval Computations, Applied Optimiza-
tion, Vol. 10. Kluwer Academic, Norwell, MA (1998)

29. Kulisch, U.W., Miranker, W.L.: Computer Arithmetic in Theory and Practice.
Computer Science and Applied Mathematics. Academic Press Inc., New York
(1981)

30. Lee, D., Mavroidis, C., Merlet, J.P.: Five precision point synthesis of spatial
RRR manipulators using interval analysis. Journal of Mechanical Design 126,
842–849 (2004)

31. Lerch, M., Tischler, G., Gudenberg, J.W.V., Hofschuster, W., Krämer, W.:
FILIB++, a fast interval library supporting containment computations. ACM
Transactions on Mathematical Software 32(2), 299–324 (2006)

32. Lin, Y., Stadtherr, M.A.: Advances in interval methods for deterministic global
optimization in chemical engineering. Journal of Global Optimization 29, 281–
296 (2004)

33. Lin, Y., Stadtherr, M.A.: Lp strategy for interval-Newton method in deter-
ministic global optimization. Industrial & Engineering Chemistry Research, 43,
3741–3749 (2004)

34. Lin, Y., Stadtherr, M.A.: Locating stationary points of sorbate-zeolite potential
energy surfaces using interval analysis. J. Chemical Physics, 121, 10159-10166
(2004)

35. Lin, Y., Stadtherr, M.A.: Deterministic global optimization of molecular struc-
tures using interval analysis. J. Computational Chemistry 26, 1413–1420 (2005)

http://www.ti3.tu-harburg.de/profil_e
http://www.ti3.tu-harburg.de/profil_e

12 Ralph Baker Kearfott and Chenyi Hu

36. Moore, R.E.: Interval arithmetic and automatic error analysis in digital com-
puting. Ph.D. dissertation, Department of Mathematics, Stanford University,
Stanford, CA (1962)

37. Moore, R.E.: Interval Analysis. Prentice–Hall, Upper Saddle River, NJ (1966)
38. Moore, R.E.: Methods and Applications of Interval Analysis. Society for Indus-

trial and Applied Mathematics, Philadelphia (1979)
39. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval algorithms

and their applications with INTLAB: a MATLAB toolkit. Submitted
40. Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of

Mathematics and Its Applications, Vol. 37. Cambridge University Press, Cam-
bridge (1990)

41. Neumaier, A.: Introduction to Numerical Analysis. Cambridge University Press,
Cambridge (2001)

42. Neumaier, A., Pownuk, A.: Linear systems with large uncertainties, with appli-
cations to truss structures. Reliable Computing 13, 149–172 (2007)

43. Nooner, M., Hu, C.: A computational environment for interval matrices. In:
R.L. Muhanna, R.L. Mullen (eds.) Proceedings of 2006 Workshop on Reliable
Engineering Computing, pp. 65–74. Georgia Tech. University, Savanna (2006).
http://www.gtsav.gatech.edu/workshop/rec06/proceedings.html

44. Oishi, S.: Fast enclosure of matrix eigenvalues and singular values via rounding
mode controlled computation. Linear Algebra and its Applications 324(1–3),
133–146 (2001)

45. Plum, M.: Computer-assisted enclosure methods for elliptic differential equa-
tions. Linear Algebra and its Applications 324(1–3), 147–187 (2001)

46. Rohn, J., Deif, A.: On the range of eigenvalues of an interval matrix. Computing
47(3–4), 373–377 (1992)

47. Rohn, J.: Interval matrices: Singularity and real eigenvalues. SIAM Journal on
Matrix Analysis and Applications 14(1), 82–91 (1993)

48. Rump, S.M.: INTLAB-INTerval LABoratory. In: T. Csendes (ed.) Developments
in Reliable Computing: Papers presented at the International Symposium on
Scientific Computing, Computer Arithmetic, and Validated Numerics, Vol. 5(3),
pp. 77–104. Kluwer Academic, Norwell, MA (1999)

49. Rump, S.M.: INTLAB - INTerval LABoratory (1999-2008) http://www.ti3.

tu-harburg.de/rump/intlab/

50. Stadtherr, M.A.: Interval analysis: Application to phase equilibrium problems.
In: A. Iserles (ed.) Encyclopedia of Optimization. Kluwer Academic, Norwell,
MA (2001)

51. Stadtherr, M.A.: Interval analysis: Application to chemical engineering design
problems. In: A. Iserles (ed.) Encyclopedia of Optimization. Kluwer Academic,
Norwell, MA (2001)

52. Sun: Sun studio math libraries (1994-2007). Available from http:

//developers.sun.com/sunstudio/documentation/libraries/math_

libraries.jsp

53. Sunaga, T.: Theory of interval algebra and its application to numerical analysis.
RAAG Memoirs 2, 29–46 (1958)

54. Wieners, C.: A parallel Newton multigrid method for high order finite elements
and its application on numerical existence proofs for elliptic boundary value
equation. Zeitschrift für Angewandte Mathematik und Mechanik 76, 171–176
(1996)

http://www.gtsav.gatech.edu/workshop/rec06/proceedings.html
http://www.ti3.tu-harburg.de/rump/intlab/
http://www.ti3.tu-harburg.de/rump/intlab/
http://developers.sun.com/sunstudio/documentation/libraries/math_libraries.jsp
http://developers.sun.com/sunstudio/documentation/libraries/math_libraries.jsp
http://developers.sun.com/sunstudio/documentation/libraries/math_libraries.jsp

	1 Fundamentals of Interval Computing
	Ralph Baker Kearfott, Chenyi Hu

